

The Complexity of Synthesizing nop-Equipped Boolean Petri Nets from g-Bounded Inputs

Ronny Tredup^(\boxtimes)

Universität Rostock, Institut für Informatik, Theoretische Informatik, Albert-Einstein-Straße 22, 18059 Rostock, Germany ronny.tredup@uni-rostock.de

Abstract. Boolean Petri nets equipped with nop allow places and transitions to be independent by being related by nop. We characterize for any fixed $g \in \mathbb{N}$ the computational complexity of synthesizing nop-equipped Boolean Petri nets from labeled directed graphs whose states have at most g incoming and at most g outgoing arcs.

1 Introduction

Boolean Petri nets are a basic model for the description of distributed and concurrent systems. These nets allow at most one token on each place p in every reachable marking. Therefore, p is considered a Boolean condition that is *true* if p is marked and *false* otherwise. A place p and a transition t of a Boolean Petri net N are related by one of the following Boolean interactions: no operation (nop), input (inp), output (out), unconditionally set to true (set), unconditionally reset to false (res), inverting (swap), test if true (used), and test if false (free). The relation between p and t determines which conditions p must satisfy to allow t's firing and which impact has the firing of t on p: The interaction inp (out) defines that p must be true (false) first and false (true) after t has fired. If p and t are related by free (used) then t's firing proves that p is false (true). The interaction nop says that p and t are independent, that is, neither need pto fulfill any condition nor has the firing of t any impact on p. If p and t are related by res (set) then p can be both *false* or *true* but after t's firing it is *false* (true). Also, the interaction swap does not require that p satisfies any particular condition to enable t. Here, the firing of t inverts p's Boolean value.

Boolean Petri nets are classified by the interactions of I that they use to relate places and transitions. More exactly, a subset $\tau \subseteq I$ is called a *type of net* and a net N is of type τ (a τ -net) if it applies at most the interactions of τ . So far, research has explicitly discussed seven Boolean Petri net types: *Elementary net systems* {nop, inp, out} [9], *Contextual nets* {nop, inp, out, used, free} [6], *event/condition nets* {nop, inp, out, used} [2], *inhibitor nets* {nop, inp, out, free} [8], *set nets* {nop, inp, set, used} [5], *trace nets* {nop, inp, out, set, res, used, free} [3], and *flip flop nets* {nop, inp, out, swap} [10].

M. Koutny et al. (Eds.): ToPNoC XV, LNCS 12530, pp. 101–125, 2021. https://doi.org/10.1007/978-3-662-63079-2_5

However, since we have eight interactions to choose from, there are actually a total of 256 different types.

This paper addresses the computational complexity of the τ -synthesis problem. It consists in deciding whether a given directed labeled graph A, also called transition system, is isomorphic to the reachability graph of a τ -net N and in constructing N if it exists. It has been shown that τ -synthesis is NP-complete if $\tau = \{ nop, inp, out \}$ [1], even if the inputs are strongly restricted [14,17]. On the contrary, in [10], it has been shown that it becomes polynomial if $\tau = \{ nop, inp, out, swap \}$. These opposing results motivate the question which interactions of I make the synthesis problem hard and which make it tractable. In our previous work of [13,15,16], we answer this question partly and reveal the computational complexity of 120 of the 128 types that allow nop.

In this paper, we investigate for fixed $q \in \mathbb{N}$ the computational complexity of τ -synthesis restricted to g-bounded inputs, that is, every state of A has at most q incoming and at most q outgoing arcs. On the one hand, inputs of practical applications tend to have a low bound q such as benchmarks of digital hardware design [4]. On the other hand, considering restricted inputs hopefully gives us a better understanding of the problem's hardness. Thus, g-bounded inputs are interesting from both the practical and the theoretical point of view. In this paper, we completely characterize the complexity of τ -synthesis restricted to q-bounded inputs for all types that allow places and transitions to be independent, that is, which contain nop. Figure 1 summarizes our findings: For the types of $\S1$ and $\S2$, we showed hardness of synthesis without restriction in [15]. In this paper, we strengthen these results to 2- and 3-bounded inputs, respectively, and show that these bounds are tight. The hardness result of the types of $\S3$ originates from [16]. This paper shows that a bound less than 2 makes synthesis tractable. Hardness for the types of $\S4$ to $\S8$ has been shown for 2-bounded inputs in [16]. In this paper, we strengthen this results to 1-bounded inputs. The hardness part for the types of $\S9$ origin from [13]. In this paper, we argue that the bound 2 is tight. Finally, while the results of $\S10$ are new, the ones of $\S11$ have been found in [15].

For all considered types τ , the corresponding hardness results are based on a reduction of the so-called *cubic monotone one-in-three 3SAT* problem [7]. All reductions follow a common approach that represents clauses by directed labeled paths. Thus, this paper also contributes a very general way to prove NP-completeness of synthesis of Boolean types of nets.

2 Preliminaries

Transition Systems. A transition system (TS) $A = (S, E, \delta)$ is a directed labeled graph with states S, events E and partial transition function $\delta : S \times E \longrightarrow S$, where $\delta(s, e) = s'$ is interpreted as $s \stackrel{e}{\longrightarrow} s'$. For $s \stackrel{e}{\longrightarrow} s'$ we say s is a source and s' is a sink of e, respectively. An event e occurs at a state s, denoted by $s \stackrel{e}{\longrightarrow}$, if $\delta(s, e)$ is defined. An *initialized* TS $A = (S, E, \delta, s_0)$ is a TS with a distinct state $s_0 \in S$ where every state $s \in S$ is *reachable* from s_0 by a directed labeled path. TSs in this paper are *deterministic* by design as their state

§	Type of net τ	g	Complexity	#
1	$\{nop, inp, free\}, \{nop, inp, used, free\},$	≥ 2	NP-complete	4
	$\{nop, out, used\}, \{nop, out, used, free\}$	< 2	polynomial	
2	$\{n \in \mathbb{N} \ $		NP-complete	3
	$\{100, 300, 100\} \odot \omega$ and $\psi \neq \omega \subseteq \{1300, 100\}$	< 3	polynomial	
3	$\{nop, inp, set\}, \{nop, inp, set, used\},\$	≥ 2	NP-complete	16
	$\{nop,inp,res,set\}\cup\omega ext{ and }\omega\subseteq\{out,used,free\},$	<2	polynomial	
	$\{nop, out, res\}, \{nop, out, res, free\},\$			
	$\{nop,out,res,set\}\cup\omega \text{ and }\omega\subseteq\{inp,used,free\}$			
4	$\{nop,inp,out,set\}\cup\omega \text{ or } \{nop,inp,out,res\}\cup\omega \text{ and }$	≥ 1	NP-complete	8
	$\omega \subseteq \{used,free\}$			
5	$\{nop, inp, set, free\}, \{nop, inp, set, used, free\},$	≥ 1	NP-complete	4
	$\{nop, out, res, used\}, \{nop, out, res, used, free\}$			
6	$\{nop,inp,res,swap\}\cup\omega \text{ or } \{nop,out,set,swap\}\cup\omega \text{ and }$	≥ 1	NP-complete	8
	$\omega \subseteq \{used,free\}$			
7	$\{nop, inp, set, swap\} \cup \omega \text{ and } \omega \subseteq \{out, res, used, free\},$	≥ 1	NP-complete	28
	$\{nop,out,res,swap\}\cup\omega \text{ and }\omega\subseteq\{inp,set,used,free\}$			
8	$\{nop,inp,out\}\cup\omega\text{ and }\omega\subseteq\{used,free\}$	≥ 1	NP-complete	4
9	$\{nop,set,swap\}\cup\omega,\{nop,res,swap\}\cup\omega,$	≥ 2	NP-complete	9
	$\{nop,res,set,swap\}\cup\omega \text{ and } \emptyset\neq\omega\subseteq\{used,free\}$	<2	polynomial	
10	$\{nop, inp\}, \{nop, inp, used\}, \{nop, out\}, \{nop, out, free\}$	≥ 0	polynomial	8
	$\{nop, set, swap\}, \{nop, res, swap\}, \{nop, set, res\},$			
	$\{nop, set, res, swap\}$			
11	$\{nop,res\}\cup\omega \text{ and } \omega \subseteq \{inp,used,free\},\$	≥ 0	polynomial	36
	$\{nop,set\}\cup\omega \text{ and }\omega\subseteq\{out,used,free\},$			
	$\{nop,swap\}\cup\omega \text{ and }\omega\subseteq\{inp,out,used,free\},$			
	$\{nop\}\cup\omega ext{ and }\omega\subseteq\{used,free\}$			

Fig. 1. The computational complexity of Boolean net synthesis from g-bounded TS for all types that contain nop.

transition behavior is given by a (partial) function. Let $g \in \mathbb{N}$. An initialized TS A is called g-bounded if for all $s \in S(A)$ the number of incoming and outgoing arcs at s is restricted by $g: |\{e \in E(A) \mid \stackrel{e}{\longrightarrow} s\}| \leq g$ and $|\{e \in E(A) \mid s \stackrel{e}{\longrightarrow} s\}| \leq g$.

Boolean Types of Nets [2]. The following notion of Boolean types of nets serves as vehicle to capture many Boolean Petri nets in a uniform way. A *Boolean type* of net $\tau = (\{0, 1\}, E_{\tau}, \delta_{\tau})$ is a TS such that E_{τ} is a subset of the Boolean interactions: $E_{\tau} \subseteq I = \{\text{nop, inp, out, set, res, swap, used, free}\}$. The interactions $i \in I$ are binary partial functions $i : \{0, 1\} \rightarrow \{0, 1\}$ as defined in Fig. 2. For all $x \in \{0, 1\}$ and all $i \in E_{\tau}$ the transition function of τ is defined by $\delta_{\tau}(x, i) = i(x)$. Notice that I contains all binary partial functions $\{0, 1\} \rightarrow \{0, 1\}$ except for the entirely undefined function \bot . Even if a type τ includes \bot , this event can never occur, so it would be useless. Thus, I is complete for deterministic Boolean types of nets, and that means there are a total of 256 of them. By definition, a Boolean type τ is completely determined by its event set E_{τ} . Hence, in the following we identify τ with E_{τ} , cf. Fig. 3. Moreover, for readability, we group interactions by enter = {out, set, swap}, exit = {inp, res, swap}, keep⁺ = {nop, set, used}, and keep⁻ = {nop, res, free}.

x	nop(x)	inp(x)	out(x)	set(x)	res(x)	swap(x)	used(x)	free(x)
0	0		1	1	0	1		0
1	1	0		1	0	0	1	

Fig. 2. All interactions in I. An empty cell means that the column's function is undefined on the respective x. The entirely undefined function is missing in I.

Fig. 3. Left: $\tau = \{\text{nop, out, res, swap, free}\}$. Right: $\tilde{\tau} = \{\text{nop, inp, set, swap, used}\}$. τ and $\tilde{\tau}$ are isomorphic. The isomorphism $\phi : \tau \to \tilde{\tau}$ is given by $\phi(s) = 1 - s$ for $s \in \{0, 1\}$, $\phi(i) = i$ for $i \in \{\text{nop, swap}\}$, $\phi(\text{out}) = \text{inp, } \phi(\text{res}) = \text{set and } \phi(\text{free}) = \text{used}$.

 τ -Nets. Let $\tau \subseteq I$. A Boolean Petri net $N = (P, T, H_0, f)$ of type τ , $(\tau$ -net) is given by finite and disjoint sets P of places and T of transitions, an initial marking $H_0 : P \longrightarrow \{0, 1\}$, and a (total) flow function $f : P \times T \to \tau$. A τ net realizes a certain behavior by firing sequences of transitions: A transition $t \in T$ can fire in a marking $M : P \longrightarrow \{0, 1\}$ if $\delta_{\tau}(M(p), f(p, t))$ is defined for all $p \in P$. By firing, t produces the next marking $M' : P \longrightarrow \{0, 1\}$ where $M'(p) = \delta_{\tau}(M(p), f(p, t))$ for all $p \in P$. This is denoted by $M \xrightarrow{t} M'$. Given a τ net $N = (P, T, H_0, f)$, its behavior is captured by a transition system A_N , called the reachability graph of N. The state set of A_N consists of all markings that, starting from initial state H_0 , can be reached by firing a sequence of transitions. For every reachable marking M and transition $t \in T$ with $M \xrightarrow{t} M'$ the state transition function δ of A is defined as $\delta(M, t) = M'$.

 τ -Regions. Let $\tau \subseteq I$. If an input A of τ -synthesis allows a positive decision then we want to construct a corresponding τ -net N purely from A. Since A and A_N are isomorphic, N's transitions correspond to A's events. However, the notion of a place is unknown for TSs. So-called regions mimic places of nets: A τ -region of a given $A = (S, E, \delta, s_0)$ is a pair (sup, sig) of support $sup : S \to S_{\tau} = \{0, 1\}$ and signature sig: $E \to E_{\tau} = \tau$ where every transition $s \xrightarrow{e} s'$ of A leads to a transition $sup(s) \xrightarrow{sig(e)} sup(s')$ of τ . While a region divides S into the two sets $sup^{-1}(b) = \{s \in S \mid sup(s) = b\}$ for $b \in \{0, 1\}$, the events are cumulated by $sig^{-1}(i) = \{e \in E \mid sig(e) = i\}$ for all available interactions $i \in \tau$. We also use $sig^{-1}(\tau') = \{e \in E \mid sig(e) \in \tau'\}$ for $\tau' \subseteq \tau$. A region (sup, sig)models a place p and the corresponding part of the flow function f. In particular, sig(e) models f(p,e) and sup(s) models M(p) in the marking $M \in RS(N)$ corresponding to $s \in S(A)$. Every set \mathcal{R} of τ -regions of A defines the synthesized τ -net $N_A^{\mathcal{R}} = (\mathcal{R}, E, f, H_0)$ with flow function f((sup, sig), e) = sig(e) and initial marking $H_0((sup, sig)) = sup(s_0)$ for all $(sup, sig) \in \mathcal{R}, e \in E$. It is well known that $A_{N_A^{\mathcal{R}}}$ and A are isomorphic if and only if \mathcal{R} 's regions solve certain separation

atoms [2], to be introduced next. A pair (s, s') of distinct states of A defines a state separation atom (SSP atom). A τ -region R = (sup, sig) solves (s, s') if $sup(s) \neq sup(s')$. The meaning of R is to ensure that $N_A^{\mathcal{R}}$ contains at least one place R such that $M(R) \neq M'(R)$ for the markings M and M' corresponding to s and s', respectively. If there is a τ -region that solves (s, s') then s and s' are called τ -solvable. If every SSP atom of A is τ -solvable then A has the τ -state separation property (τ -SSP). A pair (e, s) of event $e \in E$ and state $s \in S$ where e does not occur at s, that is $\neg s \xrightarrow{e}$, defines an event state separation atom (ESSP) atom). A τ -region R = (sup, siq) solves (e, s) if siq(e) is not defined on sup(s)in τ , that is, $\neg \delta_{\tau}(sup(s), sig(e))$. The meaning of R is to ensure that there is at least one place R in $N_A^{\mathcal{R}}$ such that $\neg M \xrightarrow{e}$ for the marking M corresponding to s. If there is a τ -region that solves (e, s) then e and s are called τ -solvable. If every ESSP atom of A is τ -solvable then A has the τ -event state separation property (τ -ESSP). A set \mathcal{R} of τ -regions of A is called τ -admissible if for every of A's (E)SSP atoms there is a τ -region R in \mathcal{R} that solves it. The following lemma, borrowed from [2, p.163], summarizes the already implied connection between the existence of τ -admissible sets of A and (the solvability of) τ -synthesis:

Lemma 1 ([2]). A TS A is isomorphic to the reachability graph of a τ -net N if and only if there is a τ -admissible set \mathcal{R} of A such that $N = N_A^{\mathcal{R}}$.

We say a τ -net N τ -solves A if A_N and A are isomorphic. By Lemma 1, deciding if A is τ -solvable reduces to deciding whether it has the τ -(E)SSP. Moreover, it is easy to see that if τ and $\tilde{\tau}$ are isomorphic then deciding the τ -(E)SSP reduces to deciding the $\tilde{\tau}$ -(E)SSP:

Lemma 2 (Without proof). If τ and $\tilde{\tau}$ are isomorphic types of nets then a TS A has the τ -(E)SSP if and only if A has the $\tilde{\tau}$ -(E)SSP.

In particular, we benefit from the isomorphisms that map nop to nop, swap to swap, inp to out, set to res, used to free, and vice versa.

$$s_{0} \xrightarrow{a} s_{1} \xleftarrow{a} s_{2} \qquad s_{0} \xrightarrow{a} s_{1} \xrightarrow{a} s_{2} \qquad s_{0} \xleftarrow{a} s_{1} \xleftarrow{a} s_{2} \qquad s_{0} \xleftarrow{a} s_{1} \xleftarrow{a} s_{2} \qquad s_{0} \xrightarrow{a} s_{1} \xrightarrow{a} s_{2} \xrightarrow{a} s_{3}$$

TS A₁. TS A₂. TS A₃. TS A₄.

Fig. 4. Let $\tau = \{\text{nop, set, swap, free}\}$. The TSs A_1, \ldots, A_4 give examples for the presence and absence of the τ -(E)SSP: TS A_1 has the τ -ESSP as a occurs at every state. It has also the τ -SSP: The region R = (sup, sig) where $sup(s_0) = sup(s_2) = 1$, $sup(s_1) = 0$ and sig(a) = swap separates the pairs s_0, s_1 and s_2, s_1 . Moreover, the region R' = (sup', sig') where $sup'(s_0) = 0$ and $sup'(s_1) = sup'(s_2) = 1$ and sig'(a) = set separates s_0 and s_1 . Notice that R and R' can be translated into $\tilde{\tau}$ -regions, where $\tilde{\tau} = \{\text{nop, res, swap, used}\}$, via the isomorphism of Fig. 3. For example, if $s \in S(A_1)$ and $e \in E(A_1)$ and $sup''(s) = \phi(sup(s))$ and $sig''(e) = \phi(sig(e))$ then the resulting $\tilde{\tau}$ -region R'' = (sup'', sig'') separates s_0, s_1 and s_2, s_1 . Thus, A_1 has also $\tilde{\tau}$ -(E)SSP. TS A_2 has the τ -ESSP but not the τ -ESSP as event a is not inhibitable at the state s_2 . TS A_3 has the τ -ESSP (a occurs at every state) but not the τ -SSP.

3 Hardness Results

In this section, for several types of nets $\tau \subseteq I$ and fixed $g \in \mathbb{N}$, we show that τ -synthesis is NP-complete even if the input TS A is q-bounded, cf. Fig. 1. Since τ -synthesis is known to be in NP for all $\tau \subseteq I$ [16], we restrict ourselves to the hardness part. All proofs are based on a reduction of the problem *cubic monotone* one-in-three 3-SAT which has been shown to be NP-complete in [7]. The input for this problem is a Boolean expression $\varphi = \{\zeta_0, \ldots, \zeta_{m-1}\}$ of m negationfree three-clauses $\zeta_i = \{X_{i_0}, X_{i_1}, X_{i_2}\}$ such that every variable $X \in V(\varphi) =$ $\bigcup_{i=0}^{m-1} \zeta_i$ occurs in exactly three clauses. Notice that the latter implies $|V(\varphi)| =$ m. Moreover, we assume without loss of generality that if $\zeta_i = \{X_{i_0}, X_{i_1}, X_{i_2}\}$ then $i_0 < i_1 < i_2$. The question to answer is whether there is a subset $M \subseteq V(\varphi)$ with $|M \cap \zeta_i| = 1$ for all $i \in \{0, \ldots, m-1\}$. For all considered types of nets τ and corresponding bounds g, we reduce a given instance φ to a g-bounded TS A_{α}^{τ} such that the following two conditions are true: Firstly, the TS A_{φ}^{τ} has an ESSP atom α which is τ -solvable if and only if there is a one-in-three model M of φ . Secondly, if the ESSP atom α is τ -solvable then all ESSP and SSP atoms of A_{α}^{τ} are also τ -solvable. A reduction that satisfies these conditions proves the NPhardness of τ -synthesis as follows: If φ has a one-three-model then the conditions ensure that the TS A^{τ}_{ω} has the τ -(E)SSP and thus is τ -solvable. Conversely, if A^{τ}_{α} is τ -solvable then, by definition, it has the τ -ESSP. In particular, there is a τ -region that solves α which, by the first condition, implies that φ has a one-inthree model. Consequently, A^{τ}_{ω} is τ -solvable if and only if φ has a one-in-three model. Due to space restrictions, we omit for all considered types the proof that A^{τ}_{α} satisfies the second condition, that is, that the solvability of α implies the (E)SSP. However, the corresponding proofs can be found in the technical report [11].

A key idea, applied by all reductions in one way or another, is the representation of every clause $\zeta_i = \{X_{i_0}, X_{i_1}, X_{i_2}\}, i \in \{0, \ldots, m-1\}$, by a directed labeled path of A_{ω}^{τ} on which the variables of ζ_i occur as events:

$$s_{i,0} \dots s_{i,j} \underbrace{X_{i_0}}_{s_{i,j+1}} \dots s_{i,j'} \underbrace{X_{i_1}}_{s_{i,j'+1}} \dots s_{i,j''} \underbrace{X_{i_2}}_{s_{i,j''+1}} \dots s_{i,n''}$$

The reductions ensure that if a τ -region (sup, sig) solves the atom α then $sup(s_{i,0}) \neq sup(s_{i,n})$. This makes the image of this path under (sup, sig) a directed path from 0 to 1 or from 1 to 0 in τ . Thus, there has to be an event e on the path that causes the state change from $sup(s_{i,0})$ to $sup(s_{i,n})$ by sig(e). We exploit this property and ensure that this state change is unambiguously done by (the signature of) exactly one variable event per clause. As a result, the corresponding variable events define a searched model of φ via their signature. The proof of the following theorem gives a first example of this approach, and Fig. 5 shows a full example reduction.

Theorem 1. For any fixed $g \ge 2$, deciding if a g-bounded TS A is τ -solvable is NP-complete if $\tau = \{\text{nop, inp, free}\}, \tau = \{\text{nop, inp, used}, \text{free}\}, \tau = \{\text{nop, out, used}\}$ and $\tau = \{\text{nop, out, used}, \text{free}\}.$

Fig. 5. The TS A_{φ}^{τ} for $\varphi = \{\zeta_0, \ldots, \zeta_5\}$ with clauses $\zeta_0 = \{X_0, X_1, X_2\}, \zeta_1 = \{X_0, X_2, X_3\}, \zeta_2 = \{X_0, X_1, X_3\}, \zeta_3 = \{X_2, X_4, X_5\}, \zeta_4 = \{X_1, X_4, X_5\}, \zeta_5 = \{X_3, X_4, X_5\}$. The red colored area sketc.hes the τ -region (sup, sig) that solves (k_1, h_0) and corresponds to the one-in-three model $M = \{X_0, X_4\}$. (Color figure online)

Proof. We argue for $\tau \in \{\{nop, inp, free\}, \{nop, inp, used, free\}\}, which by Lemma 2 proves the claim for the other types, too.$

Firstly, the TS A_{φ}^{τ} has the following gadget H (left hand side) that provides the events k_0, k_1 and the atom $\alpha = (k_1, h_0)$. Secondly, it has for every clause $\zeta_i = \{X_{i_0}, X_{i_1}, X_{i_2}\}$ the following gadget T_i (right hand side) that applies k_0, k_1 and $\zeta'_i s$ variables as events.

$$h_0 \xrightarrow{k_0} h_1 \xrightarrow{k_1} h_2 \qquad t_{i,0} \xrightarrow{X_{i_0}} t_{i,1} \xrightarrow{X_{i_1}} t_{i,2} \xrightarrow{X_{i_2}} t_{i,3} \xrightarrow{k_1} t_{i,4}$$

$$\downarrow k_0$$

$$t_{i,5}$$

Finally, A_{φ}^{τ} uses the states \bot_0, \ldots, \bot_m and events $\ominus_1, \cdots \ominus_m$ and $\oplus_0, \ldots, \oplus_m$ to join the gadgets T_0, \ldots, T_{m-1} and H by $\bot_i \xrightarrow{\ominus_{i+1}} \bot_{i+1}$ and $\bot_i \xrightarrow{\oplus_i} t_{i,0}$, for all $i \in \{0, \ldots, m-1\}$, and $\bot_m \xrightarrow{\oplus_m} h_0$, cf. Fig. 5.

The gadget H ensures that if (sup, sig) is a region that solves α then $sup(h_0) = 1$ and $sig(k_1) =$ free which implies $sup(h_1) = 0$ and $sig(k_0) =$ inp. This is because $sig(k_1) \in \{\text{inp, used}\}$ and $sup(h_0) = 0$ implies $sig(k_0) \in \{\text{out, set, swap}\}$, which is impossible. Consequently, $s \stackrel{k_0}{\longrightarrow}$ and $s' \stackrel{k_1}{\longrightarrow}$ imply sup(s) = 1 and sup(s') = 0, respectively. The TS A_{φ}^{τ} uses these properties to ensure via T_0, \ldots, T_{m-1} that the region (sup, sig) implies a one-in-three model of φ .

More exactly, if $i \in \{0, \ldots, m-1\}$ then for T_i we have by $t_{i,0} \xrightarrow{k_0}$ and $t_{i,3} \xrightarrow{k_1}$ that $sup(t_{i,0}) = 1$ and $sup(t_{i,3}) = 0$. Thus, there is an event X_{i_j} , where $j \in \{0, 1, 2\}$, such that $sig(X_{i_j}) = inp$. Clearly, if $sig(X_{i_j}) = inp$ then $sig(X_{i_\ell}) \neq inp$ for all $j < \ell \in \{0, 1, 2\}$ as X_{i_ℓ} 's sources have a 0-support. Consequently,

there is exactly one variable event $X \in \zeta_i$ such that sig(X) = inp. Since i was arbitrary, this is simultaneously true for all clauses $\zeta_0, \ldots, \zeta_{m-1}$. Thus, the set $M = \{X \in V(\varphi) \mid sig(X) = \mathsf{inp}\}\$ is a one-in-three model of φ .

Conversely, if φ is one-in-three satisfiable then there is a τ -region (sup, sig) of A^{τ}_{φ} that solves α . In particular, if M is a one-in-three model of φ then we first define $sup(\perp_0) = 1$. Secondly, for all $e \in E(A^{\tau}_{\omega})$ we define sig(e) = free if $e = k_1$, sig(e) = inp if $e \in \{k_0\} \cup M$ and else sig(e) = nop. Since A_{α}^{τ} is reachable, by inductively defining $sup(s_{i+1}) = \delta_{\tau}(sup(s_i), sig(e_i))$ for all paths $\perp_0 \xrightarrow{e_1} s_1 \dots s_{n-1} \xrightarrow{e_n} s_n$, this defines a fitting region (sup, sig), cf. Fig. 5.

This proves that α is τ -solvable if and only if φ is one-in-three satisfiable.

In the remainder of this section, we present the remaining hardness results in accordance to Fig. 1 and the corresponding reductions that prove them.

Theorem 2. For any fixed $g \ge 3$, deciding if a g-bounded TS A is τ -solvable is *NP-complete if* $\tau = \{ \mathsf{nop}, \mathsf{set}, \mathsf{res} \} \cup \omega \text{ and } \emptyset \neq \omega \subseteq \{ \mathsf{used}, \mathsf{free} \}.$

Proof. The TS A_{φ}^{τ} has the following gadgets H_0, H_1 and H_2 (in this order):

The gadget H_0 provides $\alpha = (k_0, h_{0,2})$. By symmetry, A_7^{τ} is {nop, set, res, used}solvable if and only if it is {nop, set, res, free}- or {nop, set, res, free, used}-solvable. Thus, in the following we assume $\tau = \{\mathsf{nop}, \mathsf{set}, \mathsf{res}, \mathsf{used}\}, sig(k_0) = \mathsf{used} \text{ and }$ $sup(h_{0,2}) = 0$ if $(sup, sig) \tau$ -solves α . As a result, by $sig(k_0) = \mathsf{used}$, implying $sup(h_{0,1}) = 1$, and $sup(h_{0,2}) = 0$ we have $sig(k_1) = \text{res.}$ Especially, if $\underline{k_0} \to s$ then sup(s) = 1 and if $\xrightarrow{k_1} s$ then sup(s) = 0. Thus, $sup(h_{1,0}) = sup(h_{2,1}) = 1$ and $sup(h_{1,1}) = sup(h_{2,0}) = 0$ which implies $sig(k_2) = \text{res and } sig(k_3) = \text{set}$.

The construction uses k_2 and k_3 to produce some neutral events. More exactly, the TS A_{φ}^{τ} implements for all $j \in \{0, \ldots, 16m - 1\}$ the following gadget F_i that uses k_2 and k_3 to ensure that the events z_i are neutral:

$$f_{j,0} \xrightarrow{z_j} \overbrace{f_{j,1}}^{z_j} \xrightarrow{c_{2j}} \overbrace{f_{j,2}}^{c_{2j+1}} \xrightarrow{z_j} \overbrace{f_{j,3}}^{z_j} \xrightarrow{f_{j,4}} \overbrace{f_{j,4}}^{z_j} \xrightarrow{f_{j,4}} \overbrace{f_{j,3}}^{z_j} \xrightarrow{f_{j,4}} \overbrace{f_{j,4}}^{z_j} \xrightarrow{f_{j,4}} \xrightarrow{f_{j,4}} \overbrace{f_{j,4}}^{z_j} \xrightarrow{f_{j,4}} \xrightarrow{f_$$

By $sig(k_2) = res$ and $sig(k_3) = set$ we have $sup(f_{j,1}) = 0$ and $sup(f_{j,4}) = 1$. This implies $\frac{sig(z_j)}{2} = 0$ and $\frac{sig(z_j)}{2} = 1$ and thus $sig(z_j) = \mathsf{nop}$.

Finally, for every $i \in \{0, \ldots, m-1\}$ and clause $\zeta_i = \{X_{i_0}, X_{i_1}, X_{i_2}\}$, the TS A^{τ}_{φ} has the following four gadgets $T_{i,0}, T_{i,1}T_{i,2}$ and $T_{i,3}$ (in this order):

$$\underbrace{\begin{array}{c}z_{16i+8} \\ t_{i,2,0} \\ t_{i,2,0} \\ t_{i,2,0} \\ t_{i,2,1} \\ t_{i,2,1} \\ t_{i,2,2} \\ y_{3i+1} \end{array}}_{y_{3i+1}} X_{i_2} \\ x_{i_2} \\ x_{i_1} \\ x_{i_0} \\ x_{i_1} \\ x_{i_1} \\ x_{i_1} \\ x_{i_1} \\ x_{i_0} \\ x_{i_1} \\ x$$

 $T_{i,0}, \ldots, T_{i,4}$ ensure that there is exactly one $X \in \zeta_i$ with sig(X) = res: By $sig(k_0) = used$ and $sig(k_1) = res$ we get $sup(t_{i,0,0}) = sup(t_{i,1,0}) = sup(t_{i,2,0}) = sup(t_{i,3,7}) = 1$ and $sup(t_{i,0,7}) = sup(t_{i,1,7}) = sup(t_{i,2,7}) = sup(t_{i,3,0}) = 0$. Since $z_{16i}, \ldots, z_{16i+11}$ are neutral, this implies $sup(t_{i,0,6}) = sup(t_{i,1,6}) = sup(t_{i,2,6}) = 0$ and that there is a variable event with a res-signature. Moreover, by $sup(t_{i,3,0}) = 0$ and $sup(t_{i,3,7}) = 1$ and the neutrality of $z_{16i+12}, \ldots, z_{16i+15}$ there is an event of $y_{3i}, y_{3i+1}, y_{3i+2}$ with a set-signature. We argue that there is exactly one variable event with a res-signature: By $sup(t_{i,0,6}) = sup(t_{i,1,6}) = sup(t_{i,2,6}) = 0$, we have $sig(X) \notin \{set, used\}$ for all $X \in \{X_{i_0}, X_{i_1}, X_{i_2}\}$. Hence, if $sig(X_{i_0}) = res$ then $sup(t_{i,0,2}) = \cdots = sup(t_{i,0,6}) = 0$ which implies $sig(y_{3i+1}) \neq set$ and $sig(y_{3i+2}) \neq set$ and thus $sig(y_{3i}) = set$. By $sig(y_{3i}) = set$ we have $sup(t_{i,1,2}) = sup(t_{i,1,4}) = 1$ which implies $sig(X_{i_1}) \neq res$ and $sig(X_{i_2}) \neq res$.

If $sig(X_{i_1}) = \text{res}$, then $sup(t_{i,0,4}) = sup(t_{i,1,2}) = 0$ which implies $sig(y_{3i}) \neq$ set and $sig(y_{3i+2}) \neq$ set and thus $sig(y_{3i+1}) =$ set. By $sig(y_{3i+1}) =$ set we have $sup(t_{i,0,2}) = sup(t_{i,2,2}) = 1$ which implies $sig(X_{i_0}) \neq$ res and $sig(X_{i_2}) \neq$ res.

Since $sig(X_{i_0}) = \operatorname{res} \operatorname{or} sig(X_{i_1}) = \operatorname{res} \operatorname{implies} sig(X_{i_2}) \neq \operatorname{res}$, we conclude that $sig(X_{i_2}) = \operatorname{res} \operatorname{implies} sig(X_{i_0}) \neq \operatorname{res}$ and $sig(X_{i_1}) \neq \operatorname{res}$. Thus, there is exactly one variable of the *i*-th clause with a signature res. Hence, the set $M = \{X \in V(\varphi) \mid sig(X) = \operatorname{res}\}$ is a one-in-three model of φ .

To finally build A_{φ}^{φ} , we use the states $\bot = \{\bot_0, \ldots, \bot_{20m+2}\}$ and the events $\oplus = \{\oplus_0, \ldots, \oplus_{20m+2}\}$ and $\ominus = \{\ominus_1, \ldots, \ominus_{20m+2}\}$. The states of \bot are connected by $\bot_j \xrightarrow{\ominus_{j+1}} \bot_{j+1}$ and $\bot_{j+1} \xrightarrow{\ominus_{j+1}} \bot_{j+1}$ for $j \in \{0, \ldots, 20m + 1\}$. Let x = 16m + 3 and y = 19m + 3. For all $i \in \{0, 1, 2\}$, for all $\ell \in \{0, \ldots, 16m - 1\}$ and for all $j \in \{0, \ldots, m\}$ we add the following edges that connect the gadgets

 H_0, H_1, H_2 and F_0, \ldots, F_{16m-1} and $T_{0,0}, T_{0,1}, T_{0,2}, \ldots, T_{m-1,0}, T_{m-1,1}T_{m-1,2}$ and

If M is a one-in-three model of φ then α is τ -solvable by a τ -region (sup, sig): If $s \in \{h_{0,0}, h_{1,0}, h_{2,1}\}$ or $\{f_{j,0} \mid j \in \{0, \ldots, 16m - 1\}\}$ then sup(s) = 1. The support values of the states of $T_{i,0}, \ldots, T_{i,3}$, where $i \in \{0, \ldots, m-1\}$, are defined in accordance to which event of $X_{i_0}, X_{i_1}, X_{i_2}$ belongs to M. The red colored area above sketches $X_{i_0} \in M$. Moreover, we define sup(s) = 0 for all $s \in \bot$. Let $e \in E(A_{\varphi}^{\tau}) \setminus \oplus$. We define $sig(e) = \mathsf{used}$ if $e = k_0$ and $sig(e) = \mathsf{res}$ if $e \in \{k_1\} \cup M$. For all $i \in \{0, \ldots, m-1\}$ and clauses $\{X_{i_0}, X_{i_1}, X_{i_2}\}$ and all $j \in \{0, 1, 2\}$ we set $sig(e) = \mathsf{set}$ if $e = y_{3i+j}$ and $X_{i_j} \in M$. Otherwise, we define $sig(e) = \mathsf{nop}$. For all events $e \in \oplus$ and edges $s \stackrel{e}{\longrightarrow} s'$ of A we define $sig(e) = \mathsf{set}$ if sup(s') = 1 and, otherwise, $sig(e) = \mathsf{nop}$. The resulting τ -region (sup, sig) of A_{φ}^{τ} solves α .

Theorem 3. For any fixed $g \ge 2$, deciding if a g-bounded TS A is τ -solvable is NP-complete if (1) $\tau = \{\text{nop, inp, set}\}$ or $\tau = \{\text{nop, inp, set, used}\}$ or $\tau = \{\text{nop, inp, res, set}\} \cup \omega$ and $\omega \subseteq \{\text{out, used, free}\}$ or if (2) $\tau = \{\text{nop, out, res}\}$ or $\tau = \{\text{nop, out, res, free}\}$ or $\tau = \{\text{nop, out, res, set}\} \cup \omega$ and $\omega \subseteq \{\text{inp, used, free}\}$.

Proof. We present a reduction for the types of (1). By Lemma 2, this proves the claim also for the types of (2). The TS A_{ω}^{τ} has the following gadget H:

The intention of the gadget *H* is to provide the atom $\alpha = (k, h_{0,6})$ and the events of $Z = \{z_0, ..., z_{3m-1}\}, V = \{v_0, ..., v_{3m-1}\}$ and $W = \{w_0, ..., w_{3m-1}\}$.

Moreover, the TS A_{φ}^{τ} has the following two gadgets F_0 and F_1 and for all $i \in \{0, \ldots, 6m-2\}$ the following gadget G_i (in this order):

Finally, the TS A_{φ}^{τ} has for every clause $\zeta_i = \{X_{i_0}, X_{i_1}, X_{i_2}\}, i \in \{0, \ldots, m-1\}$, the following gadgets $T_{i,0}, T_{i,1}$ and $T_{i,2}$ (in this order):

In the following, we argue that H, F_0, F_1 and G_0, \ldots, G_{m-2} collaborate like this: If (sup, sig) is a τ -region solving α then either $sig(k) = \mathsf{inp}, V \subseteq sig^{-1}(\mathsf{enter})$ and $W \subseteq sig^{-1}(\mathsf{keep}^-)$ or $sig(k) = \mathsf{out}$ and $V \subseteq sig^{-1}(\mathsf{exit})$ and $W \subseteq sig^{-1}(\mathsf{keep}^+)$. Moreover, we prove that this implies by the functionality of $T_{0,0}, \ldots, T_{m-1,2}$ that $M = \{X \in V(\varphi) \mid sig(X) \neq \mathsf{nop}\}$ is a one-in-three model of φ .

Let (sup, sig) be a τ -region that solves α . Since the interactions res, set and nop are defined on both 0 and 1, this implies $sig(k) \in \{\text{inp, out, used, free}\}$. If sig(k) = used then sup(s) = sup(s') = 1 for every transition $s \xrightarrow{k} s'$. Hence, we have $sup(f_{0,3}) = sup(f_{1,1}) = sup(h_{0,4}) = 1$. By definition of inp, res we have that $\xrightarrow{e} s$ and $sig(e) \in \{\text{inp, res}\}$ implies sup(s) = 0. Consequently, by $\xrightarrow{z_0} f_{0,3}$ and $\xrightarrow{q_0} f_{1,1}$ we get $sig(z_0), sig(q_0) \in \text{keep}^+$ and thus $sup(h_{0,4}) = sup(h_{0,5}) = sup(h_{0,6}) = 1$ which contradicts $\neg sup(h_{0,6}) \xrightarrow{sig(k)}$. Hence, $sig(k) \neq \text{used}$. Similarly, $sig(k) = \text{free implies } sup(h_{0,6}) = 0$, which is a contradiction. Thus, we have that $sig(k) = \text{inp and } sup(h_{0,6}) = 0$ or sig(k) = outand $sup(h_{0,6}) = 1$.

As a next step, we show that sig(k) = inp and $sup(h_{0,6}) = 0$ together imply $sig(v_0) \in enter$ and $sig(z_0) \in keep^-$. By sig(k) = inp and $\xrightarrow{k} h_{0,1}$ and $h_{0,3} \xrightarrow{k}$ we get $sup(h_{0,1}) = 0$ and $sup(h_{0,3}) = 1$. Moreover, by $\xrightarrow{z_0} h_{0,6}$ and $sup(h_{0,6}) = 0$ we obtain $sig(z_0) \in keep^-$, which by $sup(h_{0,1}) = 0$ implies $sup(h_{0,2}) = 0$.

Finally, $sup(h_{0,2}) = 0$ and $sup(h_{0,3}) = 1$ imply $sig(v_0) \in$ enter. Notice that this reasoning purely bases on sig(k) = inp and $sup(h_{0,6}) = 0$. Moreover, A_{φ}^{τ} uses for every $j \in \{0, \ldots, 6m - 2\}$ the TS G_j to ensure $sup(h_{0,6}) = sup(h_{1,6}) =$ $\cdots = sup(h_{6m-1,6})$. This transfers $z_0 \in$ keep⁻ and $v_0 \in$ enter to $V \subseteq$ enter and $W \subseteq$ keep⁻. In particular, by sig(k) = inp we have $sup(g_{i,0}) = sup(g_{i,1}) = 1$ and $sup(g_{i,2}) = sup(g_{i,3}) = 0$, that is, $sig(c_i) =$ nop. Hence, if sig(k) = inp and $sup(h_{0,6}) = 0$ then $sup(h_{i,6}) = 0$ for all $i \in \{0, \ldots, 6m - 1\}$. Perfectly similar to the discussion for z_0 and v_0 we obtain that $V \subseteq sig^{-1}(\text{enter})$ and $W \subseteq sig^{-1}(\text{keep}^-)$, respectively. Similarly, sig(k) = out and $sup(h_{0,6}) = 1$ imply $V \subseteq sig^{-1}(\text{exit})$ and $W \subseteq sig^{-1}(\text{keep}^+)$.

We now argue that $T_{i,0}, \ldots, T_{m-1,2}$ ensure that $M = \{X \in V(\varphi) \mid sig(X) \neq ig(X)\}$ nop} is a one-in-three model of φ . Let $i \in \{0, \ldots, m-1\}$ and sig(k) = inpand $sup(h_{0.6}) = 0$ implying $V \subseteq sig^{-1}(\text{enter})$ and $W \subseteq sig^{-1}(\text{keep}^{-})$. By sig(k) = inp and $V \subseteq sig^{-1}(enter)$ and $W \subseteq sig^{-1}(keep^{-})$ we have that $sup(t_{i,0,2}) = sup(t_{i,1,2}) = sup(t_{i,2,2}) = 1$ and $sup(t_{i,0,5}) = sup(t_{i,1,5}) = sup(t_{i,1,5})$ $sup(t_{i,2,5}) = 0$. As a result, every event $e \in \{X_{i_0}, X_{i_1}, X_{i_2}\}$ has a 0-sink, which implies $sig(e) \in \{nop, inp, res\}$, and every event $e \in \{x_{i_0}, x_{i_1}, x_{i_2}\}$ has a 1-sink, which implies $sig(e) \in \{\text{nop, out, set}\}$. By $sup(t_{i,0,2}) = 1$ and $sup(t_{i,0,5}) = 0$ there is a $X \in \{X_{i_0}, X_{i_1}, X_{i_2}\}$ such that $sig(X) \in \{inp, res\}$. We argue that $sig(Y) = nop \text{ for } Y \in \{X_{i_0}, X_{i_1}, X_{i_2}\} \setminus \{X\}.$ If $sig(X_{i_0}) \in \{inp, res\}$ then $sup(t_{i,0,3}) = 0$ which implies $sig(x_{i_0}) \in \{\text{out}, \text{set}\}$ and, therefore, $sup(t_{i,1,4}) = 1$. Since $sig(X_{i_1}), sig(X_{i_2}) \notin \{\text{out}, \text{set}\}$ and $sig(x_{i_1}), sig(x_{i_2}) \notin \{\text{inp}, \text{res}\}, \text{ it holds}$ $sup(t_{i,0,3}) = sup(t_{i,0,4}) = 0$ and $sup(t_{i,1,3}) = sup(t_{i,1,4}) = 1$, respectively. Thus, for all $e \in \{X_{i_1}, X_{i_2}\}$, there are edges $\xrightarrow{e} s$ and $\xrightarrow{e} s'$ such that sup(s) = 0and sup(s') = 1. This implies sig(e) = nop. Similarly, if $sig(X_{i_1}) \in \{inp, res\}$, then $sig(X_{i_0}) = sig(X_{i_2}) = nop$, and if $sig(X_{i_2}) \in \{inp, res\}$, then $sig(X_{i_0}) =$ $sig(X_{i_1}) = nop$. Hence, every clause ζ_i has exactly one variable event with a signature different from nop. This makes $M = \{X \in V(\varphi) \mid sig(X) \neq nop\}$ a one-in-three model of φ . Similarly, if sig(k) = out and $sup(h_{0.6}) = 1$, then M is also a one-in-three model of φ .

To join the gadgets and finally build A_{φ}^{τ} , we use the states $\bot = \{\bot_0, \ldots, \bot_{9m+1}\}$ and the events $\oplus = \{\oplus_0, \ldots, \oplus_{9m+1}\}$ and $\ominus = \{\oplus_1, \ldots, \ominus_{9m+1}\}$. The states of \bot are connected by $\bot_j \xrightarrow{\ominus_{j+1}} \bot_{j+1}$ for $j \in \{0, \ldots, 9m + 1\}$. Let x = 6m + 2. For all $i \in \{0, \ldots, 6m - 2\}$, for all $j \in \{0, \ldots, m - 1\}$ and for all $\ell \in \{0, 1, 2\}$ we add the following edges that connect the gadgets $H_0, F_0, F_1, G_0, \ldots, G_{6m-2}$ and $T_{0,0}, T_{0,1}, T_{0,2}$ up to $T_{m-1,0}, T_{m-1,1}, T_{m-1,2}$ to A_{φ}^{τ} :

$$\bot_0 \xrightarrow{\oplus_0} h_{0,0} \quad \bot_1 \xrightarrow{\oplus_1} f_{0,0} \quad \bot_2 \xrightarrow{\oplus_2} f_{1,0} \quad \bot_{i+3} \xrightarrow{\oplus_{i+3}} g_{i+3,0} \quad \bot_{x+j+3\ell} \xrightarrow{\oplus_{x+j+3\ell}} t_{j,\ell,0}$$

If M is a one-in-three model of φ then there is a τ -region (sup, sig) of A_{φ}^{τ} that solves α . The red colored area of the figures introducing the gadgets indicates already a positive support of some states. In particular, if $s \in \{h_{j,0}, h_{j,3} \mid j \in \{0, \ldots, 6m-1\}\}$ or $s \in \{f_{0,0}, f_{0,2}, f_{0,3}, f_{1,0}, f_{1,1}\}$ $s \in \{g_{j,0}, g_{j,1} \mid j \in \{0, \ldots, 6m-2\}\}$ then sup(s) = 1. The support values of the states of $T_{i,0}, \ldots, T_{i,2}$, where $i \in \{0, \ldots, m-1\}$, are defined in accordance to which of the events $X_{i_0}, X_{i_1}, X_{i_2}$ belongs to M. The red colored area above sketches the situation where $X_{i_0} \in M$. Moreover, for all $s \in \bot$, we define sup(s) = 0. Let $e \in E(A_{\varphi}^{\tau}) \setminus \oplus$. We define sig(e) = inp if $e \in \{k\} \cup M$. For all $i \in \{0, \ldots, m-1\}$ and clauses $\{X_{i_0}, X_{i_1}, X_{i_2}\}$ and all $j \in \{0, 1, 2\}$ we set sig(e) = set if e = n or $e \in \{v_j, p_j \mid j \in \{0, \ldots, 3m - 1\}\}$ or $e = x_{i_j}$ and $X_{i_j} \in M$. Otherwise, we define sig(e) = set if sup(s') = 1 and, otherwise, sig(e) = sig(e) = sig(e) = set if sup(s') = 1 and, otherwise, sig(e) = sig(e)

Joining of 1-Bounded Gadgets. In the following, we consider types τ where τ -synthesis from 1-bounded inputs is NP-complete. All gadgets A_0, \ldots, A_n of the reductions are directed paths $A_i = s_0^i \xrightarrow{e_1} \ldots, \xrightarrow{e_n} s_n^i$ on pairwise distinct states s_0^i, \ldots, s_n^i . For all types, the joining is the concatenation

$$A_{\varphi}^{\tau} = A_0 \xrightarrow{\ominus_1} \bot_1 \xrightarrow{\oplus_1} A_1 \xrightarrow{\ominus_2} \bot_2 \xrightarrow{\oplus_2} \cdots \xrightarrow{\ominus_n} \bot_n \xrightarrow{\oplus_n} A_n$$

with fresh states \perp_1, \ldots, \perp_n and events $\ominus_1, \cdots \ominus_n, \oplus_1, \cdots \oplus_n$.

Theorem 4. For any fixed $g \ge 1$, deciding if a g-bounded TS A is τ -solvable is NP-complete if $\tau = \{\text{nop, inp, out, set}\} \cup \omega \text{ or } \tau = \{\text{nop, inp, out, res}\} \cup \omega \text{ and } \omega \subseteq \{\text{used, free}\}.$

Proof. Our construction proves the claim for $\tau = \{\text{nop}, \text{inp}, \text{set}, \text{out}\} \cup \omega$ with $\omega \subseteq \{\text{used}, \text{free}\}$. By Lemma 2, this proves the claim also for the other types.

The TS A_{φ}^{τ} has the following gadgets H_0, H_1, H_2 and H_3 (in this order):

$$\begin{array}{c} h_{0,0} \xrightarrow{k_0} h_{0,1} \xrightarrow{z_0} h_{0,2} \xrightarrow{o} h_{0,3} \xrightarrow{k_1} h_{0,4} \xrightarrow{z_1} h_{0,5} \xrightarrow{z_0} h_{0,6} \xrightarrow{o} h_{0,7} \xrightarrow{k_0} h_{0,8} \\ \\ h_{1,0} \xrightarrow{z_0} h_{1,1} \xrightarrow{k_0} h_{1,2} \quad h_{2,0} \xrightarrow{z_1} h_{2,1} \xrightarrow{k_0} h_{2,2} \quad h_{3,0} \xrightarrow{k_0} h_{3,1} \xrightarrow{k_1} h_{3,2} \end{array}$$

If used $\in \tau$ then A_{φ}^{τ} has the following gadget H_4 :

$$h_{4,0} \xrightarrow{k_1} h_{4,1} \xrightarrow{z_0} h_{4,2} \xrightarrow{k_1} h_{4,3}$$

For all $i \in \{0, \ldots, m-1\}$, the TS A_{φ}^{τ} has for the clause $\zeta_i = \{X_{i_0}, X_{i_1}, X_{i_2}\}$ and the variable $X_i \in V(\varphi)$ the following gadgets T_i and B_i , respectively:

$$t_{i,0} \xrightarrow{\quad k_1 \quad } t_{i,1} \xrightarrow{\quad X_{i_0} \quad } t_{i,2} \xrightarrow{\quad X_{i_1} \quad } t_{i,3} \xrightarrow{\quad X_{i_2} \quad } t_{i,4} \xrightarrow{\quad k_0 \quad } t_{i,5} \qquad b_{i,0} \xrightarrow{\quad X_i \quad } b_{i,1} \xrightarrow{\quad k_0 \quad } b_{i,2}$$

The gadget H_0 provides the atom $\alpha = (k_0, h_{0,6})$. Moreover, the gadgets H_0, \ldots, H_4 ensure that if (sup, sig) is a τ -region solving α then $sig(k_0) = \mathsf{out}$ and $sig(k_1) \in \{\mathsf{out}, \mathsf{set}\}$. In particular, H_4 prevents the solvability of α by used. As a result, such a region implies $sup(t_{i,1}) = 1$, $sup(t_{i,4}) = 0$ and $sup(b_{i,1}) = 0$ for all $i \in \{0, \ldots, m-1\}$. On the one hand, by $sup(b_{i,1}) = 0$ for all $i \in \{0, \ldots, m-1\}$ we have $sig(X) \notin \{\mathsf{out}, \mathsf{set}\}$ for all $X \in V(\varphi)$. On the other hand, by $sup(t_{i,1}) = 1$ and $sup(t_{i,4}) = 0$ there is an event $X \in \{X_{i_0}, X_{i_1}, X_{i_2}\}$

such that sig(X) = inp. Since no variable event has an incoming signature we obtain immediately $sig(Y) \neq inp$ for $Y \in \{X_{i_0}, X_{i_1}, X_{i_2}\} \setminus \{X\}$. Thus, $M = \{X \in V(\varphi) \mid sig(X) = inp\}$ is a one-in-three model of φ .

We argue that H_0, \ldots, H_4 behave as announced. Let (sup, sig) be a region that solves $(k_0, h_{0,6})$. If $sig(k_0) = inp$ then $sup(h_{0,6}) = 0$ and $sig(h_{0,7}) = 1$, implying $sig(o) \in \{\text{out}, \text{set}\}$ and $sup(h_{0,3}) = 1$. Thus, there is an event $e \in \{k_1, z_0, z_1\}$ with sig(e) = inp. By $sig(k_0) = inp$ we have $sup(h_{1,1}) = sup(h_{2,1}) = 1$ and $sup(h_{3,1}) = 0$ implying $sig(e) \neq inp$ for all $e \in \{k_1, z_0, z_1\}$, a contradiction.

If $sig(k_0) =$ free then $sup(h_{0,6}) = 1$ and $sup(h_{0,1}) = sup(h_{0,7}) = sup(h_{1,1}) = 0$ which implies sig(o) = inp and $sup(h_{0,2}) = 1$. By $sup(h_{0,1}) = 0$ and $sup(h_{0,2}) = 1$ we have $sig(z_0) \in \{$ out, set $\}$ which by $sup(h_{1,1}) = 0$ is a contradiction.

If $sig(k_0) = used$ then $sup(h_{0,6}) = 0$ and $sup(h_{0,1}) = sup(h_{0,7}) = sup(h_{1,1}) = sup(h_{2,1}) = 1$. This implies $sig(o) \in \{out, set\}$ and $sup(h_{0,3}) = 1$. Thus, by $sup(h_{0,6}) = 0$ there is an event $e \in \{k_1, z_0, z_1\}$ with sig(e) = inp. By $sup(h_{1,1}) = sup(h_{2,1}) = 1$, we have $e \notin \{z_0, z_1\}$. If $sig(k_1) = inp$ then $sup(h_{4,1}) = 0$ and $sup(h_{4,2}) = 1$, implying $sig(z_0) \in \{out, set\}$ and $sup(h_{0,6}) = 1$. This is a contradiction. Altogether, this proves $sig(k_0) \notin \{inp, used, free\}$.

Consequently, we obtain $sig(k_0) = out$ and $sup(h_{0,6}) = 1$ which implies sig(o) = inp and $sup(h_{0,3}) = 0$. By $sup(h_{0,6}) = 1$, this implies that there is an event $e \in \{k_1, z_0, z_1\}$ with $sig(e) \in \{out, set\}$. Again by $sig(k_0) = out$, we have $sup(h_{1,1}) = sup(h_{2,1}) = 0$, which implies $e = k_1$. The signatures $sig(k_0) = out$ and $sig(k_1) \in \{out, set\}$ and the construction of T_0, \ldots, T_{m-1} and B_0, \ldots, B_{m-1} ensure that $M = \{X \in V(\varphi) \mid sig(X) = inp\}$ is a one-in-three model of φ : By $sig(k_0) = out$ and $sig(k_1) \in \{out, set\}$ we have $sup(t_{i,1}) = 1$ and $sup(t_{i,4}) = sup(b_{i,1}) = 0$ for all $i \in \{0, \ldots, m-1\}$. By $sup(t_{i,1}) = 1$ and $sup(t_{i,4}) = 0$, there is an event $X \in \zeta_i$ such that sig(X) = inp. Moreover, by $sup(b_{i,1}) = 0$, we get $sig(X_i) \notin$ enter for all $i \in \{0, \ldots, m-1\}$. Thus, X is unambiguous and thus M is a searched model.

Conversely, if M is a one-in-three model of φ then there is a τ -region (sup, sig) that solves α . The red colored area above sketches states with a positive support. Which states of T_i , besides of $t_{i,0}, t_{i,1}$ and $t_{i,5}$, get a positive support depends for all $i \in \{0, \ldots, m-1\}$ on which of $X_{i_0}, X_{i_1}, X_{i_2}$ belongs to M. The red colored area above sketches the case $X_{i_0} \in M$. Moreover, we define sup(s) = 1 if $s = b_{i,0}$ and $X_i \in M$ or if $s \in \bot$. The signature is defined as follows: $sig(k_1) = set$; for all $e \in E(A_{\varphi}^{\tau}) \setminus \{k_1\}$ and all $s \stackrel{e}{\longrightarrow} s' \in A_{\varphi}^{\tau}$, if sup(s') > sup(s), then sig(e) = out; if sup(s) > sup(s'), then sig(e) = inp; else sig(e) = nop.

Theorem 5. For any $g \ge 1$, deciding if a g-bounded TS A is τ -solvable is NP-complete if $\tau = \{\text{nop, inp, set, free}\}$ or $\tau = \{\text{nop, inp, set, used}, \text{free}\}$ or $\tau = \{\text{nop, out, res, used}\}$ or $\tau = \{\text{nop, out, res, used}\}$.

Proof. Our reduction proves the claim for $\tau = \{\text{nop}, \text{inp}, \text{set}, \text{free}\}$ and $\tau = \{\text{nop}, \text{inp}, \text{set}, \text{used}, \text{free}\}$ and thus by Lemma 2, for the other types, too.

The TS A_{φ}^{τ} has the following gadgets H_0 and H_1 providing the atom $(k_0, h_{0,3})$:

$$h_{0,0} \xrightarrow{k_0} h_{0,1} \xrightarrow{k_1} h_{0,2} \xrightarrow{z_0} h_{0,3} \xrightarrow{k_1} h_{0,4} \xrightarrow{z_1} h_{0,5} \xrightarrow{k_0} h_{0,6}$$

$$h_{1,0} \xrightarrow{k_0} h_{1,1} \xrightarrow{z_0} h_{1,2} \xrightarrow{k_0} h_{1,3}$$

For all $i \in \{0, \ldots, m-1\}$, the A_{φ}^{τ} for the clause $\zeta_i = \{X_{i_0}, X_{i_1}, X_{i_2}\}$ and the variable $X_i \in V(\varphi)$ the gadgets T_i and B_i as previously defined for Theorem 4. The gadgets H_0 and H_1 ensure that a τ -region (sup, sig) solving $(k_0, h_{0,3})$ satisfies $sig(k_0) =$ free and $sig(k_1) =$ set. This implies $sup(t_{i,1}) = 1$ and $sup(t_{i,4}) = sup(b_{i,2}) = 0$ for all $i \in \{0, \ldots, m-1\}$. By $sup(t_{i,1}) = 1$ and $sup(t_{i,4}) = 0$, there is an event $X \in \zeta_i$ such that sig(X) = inp and, by $sup(b_{i,2}) = 0$ for all $i \in \{0, \ldots, m-1\}$, we have $sig(X) \neq$ set for all $X \in V(\varphi)$. Thus, the event $X \in \zeta_i$ is unique and $M = \{X \in V(\varphi) \mid sig(X) =$ inp $\}$ is a one-in-three model.

We briefly argue that H_0 and H_1 perform as announced: Let (sup, sig) be a τ -region that solves α . If $sig(k_0) = inp$ then $sup(h_{1,1}) = 0$ and $sup(h_{1,2}) = 1$ which implies $sig(z_0) = set$ and thus $sup(h_{0,3}) = 1$, a contradiction. Hence, $sig(k_0) \neq inp$. If $sig(k_0) = used$ then $sup(h_{0,1}) = sup(h_{1,2}) = 1$ and $sup(h_{0,3}) = 0$. Consequently, $sig(z_0) = inp$ or $sig(k_1) = inp$ but this contradicts $sup(h_{1,2}) = 1$ and $sup(h_{0,3}) = 0$. Thus, $sig(k_0) \neq used$. Thus, we have $sig(k_0) = free$ and $sup(h_{0,3}) = 1$, which implies that one of k_1, z_0 has a set-signature. By $sig(k_0) =$ free, we get $sup(h_{1,3}) = 0$ and thus $sig(k_1) = set$.

If M is a one-in-three model of φ then we can define an α solving region similar to the one of Theorem 4, where we replace $sig(k_0) = inp$ by $sig(k_0) = free$.

Theorem 6. For any fixed $g \ge 1$, deciding if a g-bounded TS A is τ -solvable is NP-complete if $\tau = \{\text{nop, inp, res, swap}\} \cup \omega$ or $\tau = \{\text{nop, out, set, swap}\} \cup \omega$ and $\omega \subseteq \{\text{used, free}\}.$

Proof. The TS A_{φ}^{τ} has the following gadgets H_0, H_1, H_2 and H_3 :

$$\begin{array}{c} h_{0,0} \xrightarrow{k} h_{0,1} \xrightarrow{y_0} h_{0,2} \xrightarrow{v} h_{0,3} \xrightarrow{k} h_{0,4} \qquad h_{1,0} \xrightarrow{k} h_{1,1} \xrightarrow{y_1} h_{1,2} \xrightarrow{y_0} h_{1,3} \xrightarrow{k} h_{1,4} \\ \\ h_{2,0} \xrightarrow{k} h_{2,1} \xrightarrow{y_0} h_{2,2} \xrightarrow{y_1} h_{2,3} \xrightarrow{y_0} h_{2,4} \xrightarrow{k} h_{2,5} \qquad h_{3,0} \xrightarrow{y_1} h_{3,1} \xrightarrow{y_0} h_{3,2} \xrightarrow{v} h_{3,3} \xrightarrow{k} h_{3,4} \end{array}$$

The gadgets H_0, \ldots, H_3 provide the atom $\alpha = (k, h_{0,2})$ and ensure that a τ region (sup, sig) solving α satisfies sig(k) = inp and $sup(h_{0,2}) = 0$. The TS A_{φ}^{τ} has the following gadgets F_0, F_1 and for all $j \in \{0, \ldots, 10\}$ the gadget G_j :

For all $j \in \{0, ..., 10\}$, the gadgets F_0, F_1, G_j ensure $sig(u_j) = swap$ for any τ -region (sup, sig) solving α .

For all $i \in \{0, \ldots, m-1\}$, the TS A_{φ}^{τ} has for the clause $\zeta_i = \{X_{i_0}, X_{i_1}, X_{i_2}\}$ some gadgets $T_{i,0}, \ldots, T_{i,6}$ and B_i . The purpose of these gadgets is to make the one-and-three satisfiability of φ and the solvability of α the same. In particular, the TS $T_{i,0}$ is defined by:

$$\underbrace{t_{i,0,0} \xrightarrow{k} t_{i,0,1} \xrightarrow{u_0} t_{i,0,2} \xrightarrow{X_{i_0}} t_{i,0,3} \xrightarrow{u_1} t_{i,0,4} \xrightarrow{X_{i_1}} t_{i,0,5} \xrightarrow{u_2} t_{i,0,6} \xrightarrow{X_{i_2}} t_{i,0,7} \xrightarrow{u_3} t_{i,0,8} \xrightarrow{k} t_{i,0,9}}_{i,0,9}$$

The gadgets $T_{i,1}, T_{i,2}$ and $T_{i,3}$ are defined (in this order) as follows:

$$\begin{aligned} t_{i,1,0} & \xrightarrow{k} t_{i,1,1} \xrightarrow{u_4} t_{i,1,2} \xrightarrow{u_5} t_{i,1,3} \xrightarrow{X_{i_0}} t_{i,1,4} \xrightarrow{w_{3i}} t_{i,1,5} \xrightarrow{X_{i_1}} t_{i,1,6} \xrightarrow{u_6} t_{i,1,7} \xrightarrow{k} t_{i,1,8} \\ t_{i,2,0} & \xrightarrow{k} t_{i,2,1} \xrightarrow{u_4} t_{i,2,2} \xrightarrow{u_5} t_{i,2,3} \xrightarrow{X_{i_2}} t_{i,2,4} \xrightarrow{w_{3i+1}} t_{i,2,5} \xrightarrow{X_{i_0}} t_{i,2,6} \xrightarrow{u_6} t_{i,2,7} \xrightarrow{k} t_{i,2,8} \\ t_{i,3,0} & \xrightarrow{k} t_{i,3,1} \xrightarrow{u_4} t_{i,3,2} \xrightarrow{u_5} t_{i,3,3} \xrightarrow{X_{i_1}} t_{i,3,4} \xrightarrow{w_{3i+2}} t_{i,3,5} \xrightarrow{X_{i_2}} t_{i,3,6} \xrightarrow{u_6} t_{i,3,7} \xrightarrow{k} t_{i,3,8} \end{aligned}$$

Moreover, the gadgets $T_{i,4}, T_{i,5}$ and $T_{i,6}$ are defined like this:

Finally, the gadget B_i is defined as follows:

 $b_{i,0} \xrightarrow{X_i} b_{i,1} \xrightarrow{u_9} b_{i,2} \xrightarrow{u_{10}} b_{i,3} \xrightarrow{k} b_{i,4}$

Let (sup, sig) be a τ -region solving α . We first argue that the gadgets H_0, \ldots, H_3 and F_0, F_1 and G_0, \ldots, G_{10} ensure that a τ -region (sup, sig) solving α satisfies $sig(k) = inp, sup(h_{0,2}) = 0$ and $sig(u_0) = \cdots = sig(u_{10}) = swap$.

If sig(k) =free and $sup(h_{0,2}) = 1$ then $s \xrightarrow{k} s'$ implies sup(s) = sup(s') = 0. Especially, by $sup(h_{0,1}) = 0$ and $sup(h_{0,2}) = 1$ we have $sig(y_0) =$ swap. Moreover, by $sup(h_{2,1}) = sup(h_{2,4}) = 0$ and $sig(y_0) =$ swap we have that $sup(h_{2,2}) = sup(h_{2,3}) = 1$. This implies $sig(y_1) \in \{$ nop, used $\}$. By $sup(h_{1,1}) = 0$ and $h_{1,1} \xrightarrow{y_1}$ this implies $sig(y_1) =$ nop and thus $sup(h_{1,2}) = 0$. Furthermore, by $sup(h_{1,2}) = sup(h_{1,3}) = 0$ and $h_{1,2} \xrightarrow{y_0} h_{1,3}$ this implies $sig(y_0) \neq$ swap, a contradiction. Thus, we have $sig(k) \neq$ free.

If sig(k) = used and $sup(h_{0,2}) = 0$ then $s \xrightarrow{k} s'$ implies sup(s) = sup(s') = 1. Thus, we get $sup(h_{0,1}) = sup(h_{0,3}) = sup(h_{1,3}) = 1$ which with $sup(h_{0,2}) = 0$ implies $sig(y_0) = sig(v) = swap$. Moreover, $sup(h_{1,3}) = 1$ and $sig(y_0) = swap$ imply $sup(h_{1,2}) = 0$. By $sup(h_{1,1}) = 1$, this implies $sig(y_1) \in \{inp, res\}$. Finally, $sup(h_{3,3}) = 1$ and $sig(v) = sig(y_0) = swap$ imply $sup(h_{3,1}) = 1$. This contradicts $sig(y_1) \in \{inp, res\}$. Thus, $sig(k) \neq used$. Altogether, this shows that sig(k) = inp and $sup(h_{0,2}) = 0$, which implies sig(v) = swap.

By sig(k) = inp we have $sup(f_{0,1}) = sup(f_{1,1}) = sup(g_{j,1}) = 0$ and $sup(f_{0,3}) = sup(f_{1,3}) = sup(g_{j,4}) = 1$. By sig(v) = swap, this implies $sup(f_{0,2}) = sup(f_{1,2}) = 0$ and thus $sig(z_0), sig(z_1) \in \{nop, res, free\}$. Moreover, $sup(g_{j,1}) = 0, sup(g_{j,4}) = 1$ and $sig(z_0), sig(z_1) \in \{nop, res, free\}$ imply $sup(g_{j,2}) = 0$ and $sup(g_{j,3}) = 1$ and thus $sig(u_j) = swap$.

Let $i \in \{0, \ldots, m-1\}$. We now show that $T_{i,0}, \ldots, T_{i,6}$ and B_i collaborate as announced. By $sig(k) = \operatorname{inp}$ and $sig(u_0) = sig(u_{10}) = \operatorname{swap}$, we have $sup(b_{i,1}) = 1$ for all $i \in \{0, \ldots, m-1\}$. Since $\xrightarrow{X_i} b_{i,1}$ for all $i \in \{0, \ldots, m-1\}$, the gadget B_i ensures for all $X \in V(\varphi)$ that $s \xrightarrow{X} s'$ and $sup(s) \neq sup(s')$ imply $sig(X) = \operatorname{swap}$. The

gadget $T_{i,0}$ works like this: By sig(k) = inp we get that $sup(t_{i,0,1}) = 0$ and $sup(t_{i,0,8}) = 1$. Consequently, the image $sup(t_{i,0,1}) \xrightarrow{sig(X_{i_0})} \dots \xrightarrow{sig(u_3)} sup(t_{i,0,8})$ of the path $t_{i,0,1} \xrightarrow{X_{i_0}} \dots \xrightarrow{u_3} t_{i,0,8}$ performs an odd number of state changes between 0 to 1 in τ . Since $sig(u_0) = \dots = sig(u_3) = swap$, the events u_0, \dots, u_3 perform an even number of state changes. Thus, either all of $X_{i_0}, X_{i_1}, X_{i_2}$ are mapped to swap or exactly one of them. The construction of $T_{i,1}, \dots, T_{i,6}$ guarantees that there is exactly one variable event mapped to swap.

In particular, the gadgets $T_{i,4}, T_{i,5}$ and $T_{i,6}$ ensure that if $e \in \{w_{3i}, w_{3i+1}, w_{3i+2}\}$ then $sig(e) \notin \{\text{nop, used}\}$. We argue for w_{3i} : By sig(k) = inp we get $sup(t_{i,4,1}) = 0$ and $sup(t_{i,4,4}) = 1$ which, by $sig(u_7) = sig(u_8) = \text{swap}$, implies $sup(t_{i,4,2}) = 1$ and $sup(t_{i,4,3}) = 0$. Clearly, this implies $sig(w_{3i}) \notin \{\text{nop, used}\}$. Similarly, we obtain that $sig(w_{3i+1}) \notin \{\text{nop, used}\}$ and $sig(w_{3i+2}) \notin \{\text{nop, used}\}$.

Finally, the gadgets $T_{i,1}, T_{i,2}$ and $T_{i,3}$ ensure that no two variable events of the same clause can have a swap signature: By sig(k) = inp we get that $sup(t_{i,1,1}) = 0$ and $sup(t_{i,1,7}) = 1$ which with $sig(u_4) = sig(u_5) = sig(u_6) =$ swap implies $sup(t_{i,1,3}) = 0$ and $sup(t_{i,1,6}) = 0$. Thus, if $sig(X_{i_0}) = sig(X_{i_1}) =$ swap then $sup(t_{i,1,4}) = sup(t_{i,1,5}) = 1$ which implies $sig(w_{3i}) \in \{nop, used\}$, a contradiction. Similarly, one uses $T_{i,2}$ and $T_{i,3}$ to show that neither X_{i_0} and X_{i_2} nor X_{i_1} and X_{i_2} can simultaneously be mapped to swap. As *i* was arbitrary, there is exactly one variable per clause that is mapped to swap. Thus, M = $\{X \in V(\varphi) \mid sig(X) = swap\}$ is a one-in-three model of φ .

Conversely, a one-in-three model M of φ allows a τ -region (sup, sig) that solves α : The red colored area above indicates which states of $H_0, \ldots, H_3, F_0, F_1,$ G_0, \ldots, G_{10} and $T_{0,4}, T_{0,5}, T_{0,6}, \ldots, T_{m-1,4}, T_{m-1,5}, T_{m-1,6}$ have positive support. Moreover, we define sup(s) = 1 for all $s \in \bot$. Which states of $T_{i,0}, \ldots, T_{i,3}$, where $i \in \{0, \ldots, m-1\}$, besides of k's sources get a positive support depends on which of $X_{i_0}, X_{i_1}, X_{i_2}$ belongs to M. The red colored area sketches the situation for $X_{i_0} \in M$. It is easy to see that there is for all $e \in E(A_{\varphi}^{\tau})$ a fitting sig-value making (sup, sig) a (solving) τ -region where $sig(k) = \inf and sup(h_{0,2}) = 0$. \Box **Theorem 7.** For any fixed $g \ge 1$, deciding if a g-bounded TS A is τ -solvable is NP-complete if $\tau = \{\text{nop, inp, set, swap}\} \cup \omega$ and $\omega \subseteq \{\text{out, res, used, free}\}$ or if $\tau = \{\text{nop, out, res, swap}\} \cup \omega$ and $\omega \subseteq \{\text{inp, set, used, free}\}$.

Proof. We present the reduction for the types built by $\tau = \{\mathsf{nop}, \mathsf{inp}, \mathsf{set}, \mathsf{swap}\} \cup \omega$ where $\omega \subseteq \{\mathsf{out}, \mathsf{res}, \mathsf{used}, \mathsf{free}\}$. Again, the other types are covered by Lemma 2. The TS A_{φ}^{τ} has the following gadgets H_0, H_1, H_2 and H_3 :

If $\tau \cap \{\mathsf{used}, \mathsf{free}\} \neq \emptyset$ then A^{τ}_{ω} has also the following gadgets H_4, \ldots, H_{12} :

$$\begin{array}{c} h_{4,0} \xrightarrow{k} h_{4,1} \xrightarrow{x} h_{4,2} \xrightarrow{v_0} h_{4,3} \xrightarrow{k} h_{4,4} & h_{5,0} \xrightarrow{k} h_{5,1} \xrightarrow{v_0} h_{5,2} \xrightarrow{x} h_{5,3} \xrightarrow{k} h_{5,4} \\ \hline h_{6,0} \xrightarrow{k} h_{6,1} \xrightarrow{x} h_{6,2} \xrightarrow{y_0} h_{6,3} \xrightarrow{k} h_{6,4} & h_{7,0} \xrightarrow{k} h_{7,1} \xrightarrow{y_0} h_{7,2} \xrightarrow{x} h_{7,3} \xrightarrow{k} h_{7,4} \\ \hline h_{8,0} \xrightarrow{k} h_{8,1} \xrightarrow{x} h_{8,2} \xrightarrow{y_1} h_{8,3} \xrightarrow{k} h_{8,4} & h_{9,0} \xrightarrow{k} h_{9,1} \xrightarrow{y_1} h_{9,2} \xrightarrow{x} h_{9,3} \xrightarrow{k} h_{9,4} \\ \hline h_{10,0} \xrightarrow{k} h_{10,1} \xrightarrow{x} h_{10,2} \xrightarrow{y_2} h_{10,3} \xrightarrow{k} h_{10,4} & h_{11,0} \xrightarrow{k} h_{11,1} \xrightarrow{y_2} h_{11,2} \xrightarrow{x} h_{11,3} \xrightarrow{k} h_{11,4} \\ \hline h_{12,0} \xrightarrow{k} h_{12,1} \xrightarrow{y_0} h_{12,2} \xrightarrow{y_1} h_{12,3} \xrightarrow{y_2} h_{12,4} \xrightarrow{k} h_{12,5} \end{array}$$

The gadgets H_0, \ldots, H_3 $(H_4, \ldots, H_{12}, \text{ if added})$ provide $\alpha = (k, h_{3,3})$. They ensure that if $(sup, sig) \tau$ -solves α , then $sig(k) \in \{\text{inp,out}\}$. The TS A_{φ}^{τ} adds the following gadgets F_0, F_1, F_2 and, for all $i \in \{0, \ldots, 13\}$, the gadgets G_i, N_i :

The gadgets F_0, F_1, F_2 and $G_0, N_0, \ldots, G_{13}, N_{13}$ guarantee that if (sup, sig) solves α then $sig(u_i) = swap$. Similarly to the reduction of Theorem 6, the TS A_{φ}^{τ} has for every $i \in \{0, \ldots, m-1\}$ gadgets $T_{i,0}, \ldots, T_{i,6}$ and B_i to make the one-in-three satisfiability of φ and the τ -solvability of α the same. These gadgets and the ones for Theorem 6 have basically the same intention. However, since the current types have different interactions, the peculiarity of these gadgets is slightly different. In particular, A_{φ}^{τ} has for each clause $\zeta_i = \{X_{i_0}, X_{i_1}, X_{i_2}\}$ the following gadget $T_{i,0}$:

$$\underbrace{t_{i,0,0}}{\overset{k}{\longrightarrow}} t_{i,0,1} \xrightarrow{u_0} \underbrace{t_{i,0,2}}{\overset{X_{i_0}}{\longrightarrow}} \underbrace{u_1}{\overset{X_{i_0}}{\longrightarrow}} \underbrace{t_{i,0,4}}{\overset{X_{i_1}}{\longrightarrow}} \underbrace{t_{i,0,5}}{\overset{u_2}{\longrightarrow}} \underbrace{t_{i,0,6}}{\overset{X_{i_2}}{\longrightarrow}} \underbrace{t_{i,0,7}}{\overset{u_3}{\longrightarrow}} \underbrace{t_{i,0,8}}{\overset{k}{\longrightarrow}} \underbrace{t_{i,0,9}}{\overset{k}{\longrightarrow}} \underbrace{t_{i,0,9}}{\overset{X_{i_1}}{\longrightarrow}} \underbrace{u_2}{\overset{X_{i_2}}{\longrightarrow}} \underbrace{t_{i,0,7}}{\overset{X_{i_2}}{\longrightarrow}} \underbrace{u_3}{\overset{X_{i,0,8}}{\longrightarrow}} \underbrace{t_{i,0,9}}{\overset{X_{i_1}}{\longrightarrow}} \underbrace{u_2}{\overset{X_{i_2}}{\longrightarrow}} \underbrace{t_{i,0,7}}{\overset{X_{i_2}}{\longrightarrow}} \underbrace{u_3}{\overset{X_{i,0,8}}{\longrightarrow}} \underbrace{t_{i,0,9}}{\overset{X_{i_1}}{\longrightarrow}} \underbrace{u_2}{\overset{X_{i_2}}{\longrightarrow}} \underbrace{t_{i,0,7}}{\overset{X_{i_2}}{\longrightarrow}} \underbrace{u_3}{\overset{X_{i,0,8}}{\longrightarrow}} \underbrace{t_{i,0,9}}{\overset{X_{i_1}}{\longrightarrow}} \underbrace{u_2}{\overset{X_{i_2}}{\longrightarrow}} \underbrace{t_{i,0,7}}{\overset{X_{i_1}}{\longrightarrow}} \underbrace{u_3}{\overset{X_{i_1}}{\longrightarrow}} \underbrace{t_{i,0,9}}{\overset{X_{i_1}}{\longrightarrow}} \underbrace{u_2}{\overset{X_{i_2}}{\longrightarrow}} \underbrace{t_{i,0,7}}{\overset{X_{i_2}}{\longrightarrow}} \underbrace{u_3}{\overset{X_{i,0,8}}{\longrightarrow}} \underbrace{t_{i,0,9}}{\overset{X_{i_1}}{\longrightarrow}} \underbrace{u_3}{\overset{X_{i_2}}{\longrightarrow}} \underbrace{u_3}{\overset{X_{i_1}}{\longrightarrow}} \underbrace{u_3}{\overset{X_{i_1}}{\longrightarrow}} \underbrace{u_3}{\overset{X_{i_2}}{\longrightarrow}} \underbrace{u_3}{\overset{X_{i_1}}{\longrightarrow}} \underbrace{u_3}{\overset{X_{i_2}}{\longrightarrow}} \underbrace{u_3}{\overset{X_{i_1}}{\longrightarrow}} \underbrace{u_3}{\overset{X_{i_1}}{\longrightarrow}} \underbrace{u_3}{\overset{X_{i_2}}{\longrightarrow}} \underbrace{u_3}{\overset{X_{i_2}}{\longleftarrow} \underbrace{u_3}}{\overset{X_{i_2}}{\longrightarrow}} \underbrace{u_3}{\overset{X_{i_2}}{\longrightarrow}} \underbrace{u_3}{\overset{X_{i_2}}{\longrightarrow}} \underbrace{u_3}{\overset{X_{i_2}}{\longrightarrow}} \underbrace{u_3}{\overset{X_{i_2}}{\longrightarrow}} \underbrace{u_3}{\overset{X_{i_2}}{\longleftarrow}} \underbrace{u_3}{\overset{X_{i_2}}{\longleftarrow} \underbrace{u_3}}{\longleftarrow} \underbrace{u_3}{\overset{X_{i_2}}{\longrightarrow}} \underbrace{u_3}{\overset{X_{i_3}}{\longleftarrow}} \underbrace{u_3}{\overset{X_{i_3}}{\longleftarrow}} \underbrace{u_3}{\overset{X_{i_3}}{\longleftarrow} \underbrace{u_3}}{\longleftarrow} \underbrace{u_3}{\overset{X_{i_3}}{\longleftarrow} \underbrace{u_3}}{\overset{X_{i_3}}{\longleftarrow} \underbrace{u_3}}{\overset{X_{i_3}}{\longleftarrow} \underbrace{u_3}}{\overset{X_{i_3}}{\longleftarrow$$

Moreover, the gadgets $T_{i,1}, T_{i,2}$ and $T_{i,3}$ are defined as follows:

$$t_{i,1,0} \xrightarrow{k} t_{i,1,1} \xrightarrow{u_4} t_{i,1,2} \xrightarrow{X_{i_0}} t_{i,1,3} \xrightarrow{w_{3i}} t_{i,1,4} \xrightarrow{X_{i_1}} t_{i,1,5} \xrightarrow{u_5} t_{i,1,6} \xrightarrow{u_6} t_{i,1,7} \xrightarrow{k} t_{i,1,8}$$

$$t_{i,2,0} \xrightarrow{k} t_{i,2,1} \xrightarrow{u_4} t_{i,2,2} \xrightarrow{X_{i_2}} t_{i,2,3} \xrightarrow{w_{3i+1}} t_{i,2,4} \xrightarrow{X_{i_0}} t_{i,2,5} \xrightarrow{u_5} t_{i,2,6} \xrightarrow{u_6} t_{i,2,7} \xrightarrow{k} t_{i,2,8}$$

$$t_{i,3,0} \xrightarrow{k} t_{i,3,1} \xrightarrow{u_4} t_{i,3,2} \xrightarrow{X_{i_1}} t_{i,3,3} \xrightarrow{w_{3i+2}} t_{i,3,4} \xrightarrow{X_{i_2}} t_{i,3,5} \xrightarrow{u_5} t_{i,3,6} \xrightarrow{u_6} t_{i,3,7} \xrightarrow{k} t_{i,3,8} \xrightarrow{u_{1,3,8}} t_{1,3,8} \xrightarrow{u_{1,3,8}} \xrightarrow{u_{1,3,8}} t_{1,3,8} \xrightarrow{u_{1,3,8}}$$

Furthermore, the gadgets $T_{i,4}, T_{i,5}$ and $T_{i,6}$ are defined by

$$\begin{array}{c} t_{i,4,0} & \stackrel{k}{\longrightarrow} t_{i,4,1} & \stackrel{u_7}{\longrightarrow} t_{i,4,2} & \stackrel{u_8}{\longrightarrow} t_{i,4,3} & \stackrel{w_{3i}}{\longrightarrow} t_{i,4,4} & \stackrel{u_9}{\longrightarrow} t_{i,4,5} & \stackrel{u_{10}}{\longrightarrow} t_{i,4,6} & \stackrel{k}{\longrightarrow} t_{i,4,7} \\ \hline t_{i,5,0} & \stackrel{k}{\longrightarrow} t_{i,5,1} & \stackrel{u_7}{\longrightarrow} t_{i,5,2} & \stackrel{u_8}{\longrightarrow} t_{i,5,3} & \stackrel{w_{3i+1}}{\longrightarrow} t_{i,5,4} & \stackrel{u_9}{\longrightarrow} t_{i,5,5} & \stackrel{u_{10}}{\longrightarrow} t_{i,5,6} & \stackrel{k}{\longrightarrow} t_{i,5,7} \\ \hline t_{i,6,0} & \stackrel{k}{\longrightarrow} t_{i,6,1} & \stackrel{u_7}{\longrightarrow} t_{i,6,2} & \stackrel{u_8}{\longrightarrow} t_{i,6,3} & \stackrel{w_{3i+2}}{\longrightarrow} t_{i,6,4} & \stackrel{u_9}{\longrightarrow} t_{i,6,5} & \stackrel{u_{10}}{\longrightarrow} t_{i,6,6} & \stackrel{k}{\longrightarrow} t_{i,6,7} \end{array}$$

Finally, the TS A_{φ}^{τ} has for all $i \in \{0, \ldots, m-1\}$ the following gadget B_i :

$$b_{i,0} \xrightarrow{X_i} b_{i,1} \xrightarrow{u_{11}} b_{i,2} \xrightarrow{k} b_{i,3}$$

We briefly argue for the announced functionality of the gadgets. Let (sup, sig)be a τ -region solving α . If sig(k) =free then $sup(h_{3,3}) = 1$ and $s \xrightarrow{k} s'$ implies sup(s) = sup(s') = 0. Since $sup(h_{3,1}) = 0$ and $sup(h_{3,3}) = 1$, there is an event $e \in \{v_0, v_1\}$ such that $sig(e) \in \{\mathsf{out}, \mathsf{set}, \mathsf{swap}\}$. If $sig(v_0) \in \{\mathsf{out}, \mathsf{set}, \mathsf{swap}\}$, then, by $sup(h_{1,1}) = 0$, we get $sig(v_0) = swap$. Moreover, if $sig(v_1) \in \{out, set, swap\}$, which implies $sig(h_{3,2}) = 1$, then, by $sup(h_{2,3}) = 0$, we get $sig(v_1) = swap$. By $sig(v_1) = swap$ and $sup(h_{2,3}) = 0$, we get $sup(h_{2,2}) = 1$. By $sup(h_{1,1})$, this implies $sig(v_0) = swap$. Thus, in any case we get $sig(v_0) = swap$. By $sig(v_0) = swap \text{ and } sup(h_{4,3}) = sup(h_{5,1}) = 0 \text{ we obtain } sup(h_{4,2}) = sup(h_{5,2}) =$ 1 which implies sig(x) = swap. Using this and sup(s) = sup(s') = 0 if $s \xrightarrow{k} s'$, we have that $sup(h_{j,2}) = 1$ for all $j \in \{6, \ldots, 11\}$. This implies $sig(y_0) = sig(y_1) = sig(y_2) = swap.$ By $sup(h_{12,1}) = sup(h_{12,4}) = 0,$ the image of $h_{12,1} \xrightarrow{y_0} \dots \xrightarrow{y_2} h_{12,4}$ is a path from 0 to 0 in τ . The number of state changes between 0 and 1 on such a path is even. This contradicts $sig(y_0) = sig(y_1) = sig(y_2) =$ swap. Thus, $sig(k) \neq$ free. The assumption that sig(k) = used and $sup(h_{3,3}) = 0$ yields a contradiction, too.

We conclude that sig(k) = inp and $sup(h_{3,3}) = 0$. This implies $sig(v_0) \notin \{out, set\}$ and if $s \xrightarrow{k} s' \in A_I^{\tau}$, then sup(s) = 1 and sup(s') = 0. Thus, by $sup(h_{2,1}) = 0$ and $sup(h_{2,3}) = 1$ there is an event $e \in \{v_0, v_1\}$ such that $sig(e) \in \{out, set, swap\}$. If $e = v_0$ then $sig(v_0) = swap$. Moreover, if

 $e = v_1$ then $sup(h_{3,2}) = 1$ which with $sup(h_{3,3}) = 0$ and $sup(h_{1,1}) = 1$ implies $sig(v_0) = swap$. Consequently, any case implies $sig(v_0) = swap$. This results in $sig(u_i) = swap$ for all $j \in \{0, \ldots, 13\}$ as follows. By $sup(f_{0,3}) =$ $sup(f_{1,3}) = 1$ and sig(v) = swap we obtain $sup(f_{0,2}) = sup(f_{1,2}) = 0$ which with $sup(f_{0,1}) = sup(f_{1,1}) = 0$ implies $sig(z_0), sig(z_1) \in \{\text{nop}, \text{res}, \text{free}\}$. Moreover, by $sig(z_0), sig(z_1) \in \{\text{nop}, \text{res}, \text{free}\}\ \text{and}\ sup(f_{2,1}) = 0\ \text{we get}\ sup(f_{2,3}) = 0\ \text{which}$ with $sup(f_{2,4}) = 1$ implies $sig(z_2) \in \{\text{out}, \text{set}, \text{swap}\}$. By $sig(z_0) \in \{\text{nop}, \text{res}, \text{free}\}$ and $sup(g_{i,1}) = 0$, we get $sup(g_{i,2}) = 0$. Furthermore, $sig(z_1) \in \{nop, res, free\}$ and $sup(g_{i,4}) = 1$ yields $sig(z_1) = nop$ and $sup(g_{i,3}) = 1$. This implies $sig(u_i) \in$ {out, set, swap}. Finally, by $sup(n_{i,1}) = 0$ and $sig(z_2) \in {out, set, swap}$, we get $sup(n_{i,1}) = 1$ and, by $sup(n_{i,4}) = 1$ and $sig(v_0) = swap$, we have $sup(n_{i,3}) = 0$. Since $siq(u_i) \in \{\text{out, set, swap}\}$, this yields $siq(u_i) = \text{swap}$ for all $i \in \{0, \dots, 13\}$. The gadgets $T_{i,0}, \ldots, T_{i,6}$, where $i \in \{0, \ldots, m-1\}$, use sig(k) = inp and $sig(u_i) =$ swap for all $i \in \{0, \dots, 13\}$ similarly to the ones of Theorem 6 to ensure that $M = \{X \in V(\varphi) \mid sig(X) = swap\}$ is a one-in-three model of φ : By $sup(t_{i,4,6}) =$ $sup(t_{i,5,6}) = sup(t_{i,6,6}) = 1$ and $sig(u_5) = sig(u_6) = swap$ we have $sup(t_{i,4,4}) = sup(t_{i,5,6}) = sup(t_{i,6,6}) = 1$ and $sig(u_5) = sig(u_6) = sup(u_6) = sup$ $sup(t_{i,5,4}) = sup(t_{i,6,4}) = 1$ for all $i \in \{0, \ldots, m-1\}$. Thus, if $X \in V(\varphi), s \xrightarrow{X} s'$ and $sup(s) \neq sup(s')$ then sig(X) = swap. Using this, one argues in a manner quite similar to that of the proof of Theorem 6 that $T_{i,0}, \ldots, T_{i,6}$ collaborate in such a way that there is exactly one variable event $X \in \{X_{i_0}, X_{i_1}, X_{i_2}\}$ such that sig(X) = swap. Thus, M is a corresponding model. Moreover, if sig(k) = out and $sup(h_{3,3}) = 1$ then we obtain again that $sig(u_i) = swap$ for all $i \in \{0, \ldots, 13\}$ which also guarantees that M is a searched model.

Conversely, if M is a one-in-three model of φ then we can define analogously to Theorem 6 a τ -region solving α .

Theorem 8 ([12]). For any fixed $g \ge 1$, deciding if a g-bounded TS A is τ -solvable is NP-complete if $\tau \in \{\text{nop}, \text{inp}, \text{out}\} \cup \{\text{used}, \text{free}\}.$

Proof. The claim follows directly from our result of [12]. There we use 1-bounded cycle free gadgets to prove that synthesis of (pure) *b*-bounded Petri nets is NP-complete. The joining of [12] yields a 2-bounded TS. However, it is easy to see that the 1-bounded joining of this paper fits, too. The (pure) 1-bounded Petri net type is isomorphic to {nop, inp, out, used} ({nop, inp, out}). By symmetry, τ -solving ESSP atoms by used is equivalent to solving them by free.

4 Polynomial Time Results

Theorem 9. For any fixed g < 2, one can decide in polynomial time if a gbounded TS A is τ -solvable if $\tau = \{\text{nop, inp, set}\}$ or $\tau = \{\text{nop, inp, set, used}\}$ or $\tau = \{\text{nop, out, res}\}$ or $\tau = \{\text{nop, out, res, free}\}$ or $\tau = \{\text{nop, set, res}\} \cup \omega$ with non-empty $\omega \subseteq \{\text{inp, out, used, free}\}$.

Proof. If A is τ -solvable then no event e of A occurs twice in a row. Otherwise, the SSP atom (s', s'') of a sequence $s \xrightarrow{e} s' \xrightarrow{e} s''$ is not τ -solvable. Thus, in what follows, we assume that A has no event occurring twice in a row. Moreover, it

is easy to see that a 1-bounded TS $A = s_0 \underbrace{e_1} \ldots \underbrace{e_m} s_m$ is a simple directed path on pairwise distinct states s_0, \ldots, s_m or a directed cycle, that is, all states s_0, \ldots, s_m except s_0 and s_m are pairwise distinct. This proof proceeds as follows. First, we assume that $\tau = \{\text{nop}, \text{inp}, \text{set}\}$ and that A is a directed cycle and argue that the τ -solvability of a given ESSP atom (k, s) or a SSP atom (s, s') of A is decidable in polynomial time. Secondly, we argue that the presented algorithmic approach is applicable to directed paths, too. Thirdly, we show that the procedure introduced for $\{\text{nop}, \text{inp}, \text{set}\}$ can be extended to $\{\text{nop}, \text{inp}, \text{set}, \text{used}\}$. By Lemma 2, this proves the claim for $\{\text{nop}, \text{out}, \text{res}\}$ and $\{\text{nop}, \text{out}, \text{res}, \text{free}\}$, too. After that we investigate the case where $\tau = \{\text{nop}, \text{set}, \text{res}\} \cup \omega$ with nonempty $\omega \subseteq \{\text{inp}, \text{out}, \text{used}, \text{free}\}$. We argue that it is sufficient to decide the $\{\text{nop}, \text{inp}, \text{res}, \text{set}\}$ - and $\{\text{nop}, \text{res}, \text{set}, \text{used}\}$ -solvability of A and that this is doable in polynomial time. The corresponding procedures again modify those introduced for $\{\text{nop}, \text{inp}, \text{set}\}$.

Let $\tau = \{\text{nop, inp, set}\}$ and A be 1-bounded (cycle) TS with event $k \in E(A)$ that occurs m times. Since A is a cycle, we can assume that k occurs at A's initial state: $\iota \xrightarrow{k}$. Moreover, since k does not occur twice in a row, its occurrences partition A into m k-free subsequences I_0, \ldots, I_{m-1} such that $I_{m-1} = i \prod_{i=1}^{j} y_{n_i}^i$ $c_{i_m}^i = i \in \{0, \dots, m-1\}$ and $c_{m-1}^{m-1} = i \in \Gamma$.

$$I_i = s_0^i \xrightarrow{g_1} s_1^i \dots s_{n_i-1}^i \xrightarrow{g_{n_i}} s_{n_i}^i, i \in \{0, \dots, m-1\}, \text{ and } s_{n_{m-1}}^{m-1} = \iota, \text{ cf. Fig. 6.}$$

Obviously, defining $sup(\iota) = 1$, sig(k) = inp and sig(e) = set for all $e \in E(A) \setminus \{k\}$ inductively yields a region (sup, sig) solving the ESSP atoms (k, s) where $\xrightarrow{k} s$. Thus, it remains to consider the case $\neg(\xrightarrow{k} s)$. Since $\neg(\xrightarrow{k} s)$, there is an $i \in \{0, \ldots, m-1\}$ such that s is a state of the i-th subsequence I_i . In particular, there is a $j \in \{1, \ldots, n_i - 1\}$ such that $s = s_j^i$. The state s_j^i divides I_i into the sequences $I_i^0 = s_0^i \xrightarrow{y_1^i} \ldots \xrightarrow{y_j^i} s_j^i$ and $I_i^1 = s_j^i \xrightarrow{y_{j+1}^i} \ldots \xrightarrow{y_{n_i}^i} s_{n_i}^i$, cf. Fig. 6.

If (sup, sig) is a region that solves α then $sig(k) = \inf gup(s_j^i) = 0$ is true. This implies for all $\ell \in \{0, \dots, m-1\}$ that $sup(s_0^\ell) = 0$ and $sup(s_{n_\ell}^\ell) = 1$. Thus, it remains to define the signature of the events of $\bigcup_{\ell=0}^{m-1} E(I_\ell)$ such that $0 \xrightarrow{sig(y_1^\ell)} \dots \xrightarrow{sig(y_{n_\ell}^\ell)} 1$, for all $\ell \in \{0, \dots, m-1\} \setminus \{i\}$, and $0 \xrightarrow{sig(y_1^i)} \dots \xrightarrow{sig(y_{j}^i)} 0$ and $0 \xrightarrow{sig(y_{j+1}^i)} \dots \xrightarrow{sig(y_{n_i}^i)} 1$.

If there is for all $\ell \in \{0, \ldots, m-1\} \setminus \{i\}$ an event $e_{\ell} \in E(I_{\ell})$ such that $e_{\ell} \notin E(I_{i}^{0})$ and if there is an event $e_{i} \in E(I_{i}^{1})$ so that $e_{i} \notin E(I_{i}^{0})$ then $sup(\iota) = 1$,

$$\begin{array}{c} \iota \xrightarrow{k} s_{0}^{0} \xrightarrow{y_{1}^{0}} s_{1}^{0} \cdots s_{n_{0}-1}^{0} \xrightarrow{y_{n_{0}}^{0}} s_{n_{0}}^{0} \xrightarrow{k} s_{0}^{1} \xrightarrow{y_{1}^{1}} s_{1}^{1} \cdots s_{n_{1}-1}^{1} \xrightarrow{y_{n_{1}}^{1}} s_{n_{1}}^{1} \xrightarrow{k} s_{0}^{2} \\ \swarrow \\ s_{0}^{i+1} \xleftarrow{k} s_{n_{i}}^{i} \xleftarrow{y_{n_{i}}^{i}} s_{n_{i-1}}^{i} \cdots s_{j+1}^{i} \xleftarrow{y_{j+1}^{i}} s_{j}^{i} \xleftarrow{y_{j}^{i}} s_{j-1}^{i} \xleftarrow{y_{j}^{i}} s_{j-1}^{i} \xleftarrow{y_{j-1}^{i}} \cdots s_{1}^{i} \xleftarrow{y_{1}^{i}} s_{0}^{i} \xleftarrow{k} s_{n_{i-1}}^{i-1} \end{array}$$

Fig. 6. A sketch of a cyclic 1-bounded input A with ESSP atom $\alpha = (k, s_j^i)$.

 $sig(k) = inp, sig(e_{\ell}) = set$ for all $\ell \in \{0, \ldots, m-1\}$, and sig(e) = nop for all $e \in E(A) \setminus \{k, e_0, \ldots, e_{\ell}\}$ yields a τ -region (sup, sig) of A that solves α . Clearly, whether A satisfies this property is decidable in polynomial time.

Otherwise, there is a sequence $I \in \{I_0, \ldots, I_{i-1}, I_i^1, I_{i+1}, \ldots, I_{m-1}\}$ so that $E(I) \subseteq E(I_i^0)$. Thus, if (sup, sig) is a τ -region that solves α then there is a $\ell \in \{1, \ldots, j-1\}$ such that $sig(y_\ell^i) = set$. Consequently, there has to be a $\ell' \in \{\ell + 1, \ldots, j\}$ such that $sig(y_{\ell'}^i) = inp$ and, in particular, $sig(y_{\ell''}^i) = nop$ for all $\ell'' \in \{\ell' + 1, \ldots, j\}$. Using this, one finds that (sup, sig) implies a region (sup', sig') that solves α and gets along with at most two inp-events. More exactly, defining $sup'(\iota) = 1$, $sig'(k) = sig'(y_{\ell'}^i) = inp$, sig'(e) = nop for all $e \in \{y_{\ell'+1}^i, \ldots, y_j^i\}$ and sig'(e) = set for all $e \in E(A) \setminus (\{k, y_{\ell'}^i, \ldots, y_j^i\})$ yields a valid τ -region (sup', sig') that solves α . Since (sup, sig) was arbitrary, these deliberations show that in the second case the atom α is τ -solvable if and only if there is a corresponding region (sup', sig'). This yields the following polynomial procedure that decides whether α is τ -solvable: For ℓ from j to 2 test if (sup_ℓ, sig_ℓ) (inductively) defined by $sup_\ell(\iota) = 1$, $sig_\ell(y_\ell^i) = inp$, $sig_\ell(y_{\ell'}^i) = nop$ for all $\ell' \in \{\ell + 1, \ldots, j\}$ and $sig_\ell(e) = set$ for all $e \in E(A) \setminus (\{k, y_{\ell'}^i, \ldots, y_j^i\})$ yields a τ -region of A. If the test succeeds for any iteration then return yes, otherwise return no.

We can modify this approach to test the τ -solvability of an SSP atom $\beta = (s, s')$ as follows. Since $A = \iota \stackrel{e_1}{\longrightarrow} \ldots \stackrel{e_m}{\longrightarrow} \iota$ is a cycle we can assume without loss of generality that $s = \iota$ and $s' = s_i$ for some $i \in \{1, \ldots, m-1\}$. The states ι and s_i partition A into two subsequences $I_0 = \iota \stackrel{e_1}{\longrightarrow} \ldots \stackrel{e_i}{\longrightarrow} s_i$ and $I_1 = s_i \stackrel{e_{i+1}}{\longrightarrow} \ldots \stackrel{e_m}{\longrightarrow} \iota$. If β is solvable by a region (sup', sig') such that $sup'(\iota) = 1$ and $sup'(s_i) = 0$ then there is an event $e \in I_0$ such that sig(e) = inp. In particular, there is a region (sup, sig) as follows: $sup(\iota) = 1$, $sig(e_j) = inp$ and $j \in \{1, \ldots, i\}$, $sig(e_\ell) = nop$ for all $\ell \in \{j + 1, \ldots, i\}$ and sig(e) = set for all $e \in E(A) \setminus \{e_j, \ldots, e_i\}$. Similar to the approach for α , we can check if such a region exists in polynomial time. Moreover, the case where $sup(\iota) = 0$ and $sup(s_i) = 1$ works symmetrically.

So far we have shown that the τ -solvability of (E)SSP atoms of A are decidable in polynomial time if A is a cycle. If $A = \iota \stackrel{e_1}{\longrightarrow} \ldots \stackrel{e_m}{\longrightarrow} s_m$ is a directed path then its cycle extension A_c has a fresh event $\oplus \notin E(A)$ and is defined by $A_c = \iota \stackrel{e_1}{\longrightarrow} \ldots \stackrel{e_m}{\longrightarrow} s_m \stackrel{\oplus}{\longrightarrow} \iota$. The event \oplus is unique thus an (E)SSP atom of A is solvable by a τ -region of A if and only if it is solvable by a τ -region of A_c . Thus, we can decide the solvability of atoms of A via A_c . Altogether, this proves that the τ -solvability of (E)SSP atoms of 1-bounded inputs is decidable in polynomial time. Since we have at most $|S|^2 + |E| \cdot |S|$ atoms to solve, the decidability of the {nop, inp, set}-solvability for 1-bounded TS is polynomial.

Similar to the discussion for $\tau = \{\text{nop}, \text{inp}, \text{set}\}\)$, one argues that the following assertion is true: If $\tau = \{\text{nop}, \text{inp}, \text{set}, \text{used}\}\)$ then there is a τ -region $(sup', sig')\)$ with $sig'(k) = \text{used}\)$ and $sup(s_j^i) = 0\)$ if and only if there is a τ -region $(sup, sig)\)$ and an number $\ell \in \{1, \ldots, j\}\)$ such that $sup(\iota) = 1$, $sig(k) = \text{used}\)$, $sig(y_{\ell'}^i) = \text{inp}\)$, $sig(y_{\ell'}^i) = \text{nop}\)$ for all $\ell' \in \{\ell + 1, \ldots, j\}\)$ and $sig(e) = \text{set}\)$ for all $e \in E(A) \setminus \{k, y_{\ell}^i, \ldots, y_j^i\}\)$. Clearly, the procedure introduced for $\{\text{nop}, \text{inp}, \text{set}\}\)$ can be extended appropriately to a procedure that works for $\{\text{nop}, \text{inp}, \text{set}, \text{used}\}\)$.

It remains to investigate the case where $\tau = \{\mathsf{nop}, \mathsf{res}, \mathsf{set}\} \cup \omega$ with nonempty $\omega \subset \{\text{inp.out, used, free}\}$. For a start, let's argue that deciding the τ -solvability is equivalent to deciding the {nop, inp, res, set}-solvability or the {nop, res, set, used}-solvability of A. This can be seen as follows: If (sup, siq) is a region that solves an ESSP atom $\alpha = (k, s)$ such that siq(k) = inp then there is a {nop, inp, res, set}-region (sup', sig') that solves (k, s), too. The region (sup', sig')originates from (sup, siq) by sup' = sup, siq'(k) = inp and for all $e \in E(A) \setminus \{k\}$ by sig'(e) = nop if $sig(e) \in \{nop, used, free\}, sig'(e) = res$ if $sig(e) \in \{inp, res\}$ and, finally, siq'(e) = set if $siq(e) \in {out, set}$. Similarly, one argues that α is τ -solvable such that siq(k) = out if and only if it is {nop, out, res, set}solvable. Moreover, {nop, inp, res, set} and {nop, out, res, set} are isomorphic thus τ -solvability with inp or out reduces to {nop, inp, res, set}-solvability. Similarly, the τ -solvability with used or free reduces to {nop, res, set, used}-solvability. It is easy to see that the procedure introduced for {nop, inp, set} can be extended to the types {nop, inp, res, set} and {nop, res, set, used}. The only difference is that we now search for an event y_{ℓ}^{i} such that $sig(y_{\ell}^{i}) = \text{res}$ instead of $sig(y_{\ell}^{i}) = \text{inp.}$

Finally, we observe that a SSP atom $\beta = (s, s')$ is τ -solvable if and only if it is {nop, res, set}-solvable. The states s and s' induce again a partition I_0 and I_1 of A and we can adapt the approach above to {nop, res, set}.

Theorem 10. For any fixed $g \in \mathbb{N}$, deciding whether a g-bounded TS A is τ -solvable is polynomial if one of the following conditions is true:

- 1. $\tau = \{\text{nop, inp, free}\}$ or $\tau = \{\text{nop, inp, used, free}\}$ or $\tau = \{\text{nop, out, used}\}$ or $\tau = \{\text{nop, out, used, free}\}$ and g < 2.
- 2. $\tau = \{ nop, set, res \} \cup \omega \text{ and } \emptyset \neq \omega \subseteq \{ used, free \} \text{ and } g < 3.$
- 3. $\tau = \tau' \cup \omega$ and $\tau' \in \{\{\text{nop, set, swap}\}, \{\text{nop, res, swap}\}, \{\text{nop, res, set, swap}\}\}$ and $\emptyset \neq \omega \subseteq \{\text{used, free}\}$ and g < 2.
- 4. $\tau \in \{\{nop, inp\}, \{nop, inp, used\}, \{nop, out\}, \{nop, out, free\}\} \text{ or } \tau \in \mathcal{T} = \{\{nop, set, swap\}, \{nop, res, swap\}, \{nop, set, res\}, \{nop, set, res, swap\}\},$
- Proof. (1): It is easy to see that A is a loop, $A \cong s \xrightarrow{e} s$ or that A is cycle free, since there is an unsolvable SSP atom otherwise. Moreover, if an event eoccurs twice consecutively, $s \xrightarrow{e} s' \xrightarrow{e} s''$, then (s, s') is not τ -solvable. Thus, for every $e \in E(A)$ there is a $s \in S(A)$ such that (e, s) has to be solved by sig(e) = inp (sig(e) = out) and sup(s) = 0 (sup(s) = 1). If e occurs twice on the directed path A then such a region does not exist. On the other hand, A is τ -solvable if every event occurs exactly once. Consequently, A is τ -solvable if and only if it is 1-bounded and every event occurs exactly once.
- (2): Since ESSP atoms of a τ -solvable input A are only solvable by used and free, we have that if $s \xrightarrow{e} s' \in A$ then $s' \xrightarrow{e} s'' \in A$. If $s = s'' \neq s'$ or if s, s', s''are pairwise distinct then (s, s') is not τ -solvable. This implies $s' \xrightarrow{e} s'$. As a result, τ -solvable inputs have the shape

Thus, if the *loop erasement* A' of A originates from A by erasing all loops $s \xrightarrow{e} s$, that is, $A' = \iota \xrightarrow{e_1} \ldots \xrightarrow{e_m} s_m$, then deciding the τ -solvability of A reduces to deciding if A' has the τ -SSP and if all ESSP atoms (e, s) with $\neg(\xrightarrow{e} s)$ of A' are τ -solvable. This is doable in polynomial time by the approach of Theorem 9.

- (3): Since ESSP atoms of an input A are only solvable by used and free, if $s \xrightarrow{e} s'$ and $s \neq s'$ then $s' \xrightarrow{e}$. If $s \xrightarrow{e} s' \xrightarrow{e} s'' \xrightarrow{e} s''' \in A$ and s, s', s'', s''' are pairwise different, then the SSP atom (s', s''') is not τ -solvable. As a consequence, τ -solvable inputs can have at most 3 different states.
- (4): Let $\tau \in \{\{\text{nop, inp}\}, \{\text{nop, inp, used}\}\}$. If A is τ -solvable, then for all $e \in E(A)$ holds $\iota \xrightarrow{e}$. Otherwise, (e, ι) is not τ -solvable. Similarly, if $\tau \in \mathcal{T}$, then ESSP atoms are not τ -solvable thus, every event occurs at ι . A is g-bounded. This implies $|E(A)| \leq g$. Thus, A has at most $2 \cdot |\tau|^g \tau$ -regions. Since g is fixed, τ -synthesis is polynomial by brut-force. By Lemma 2, the claim follows.

5 Conclusion

In this paper, we fully characterize the computational complexity of nopequipped Boolean Petri nets from q-bounded TS for any fixed $q \in \mathbb{N}$. Our results show that if τ -synthesis is hard then it remains hard even for low bounds q. Moreover, they also show that when g becomes very small, sometimes it makes the difference between hardness and tractability, cf. Fig. 1 $\S1-\S3$ and $\S9$, but sometimes it does not, cf. Fig. 1 §4–§7. In this sense, the parameter g helps to recognize interactions that contribute to the power of a type. By Theorem 3and Theorem 9, {nop, inp, set}-synthesis is hard if $g \ge 2$ and tractable if g < 2, respectively. By Theorem 5, {nop, inp, set, free}-synthesis remains hard for all $q \geq 1$. Thus, if restricted to 1-bounded inputs then the test interaction free makes the difference between hardness and tractability of synthesis. Surprisingly enough, by Theorem 9, replacing free by used makes synthesis from 1-bounded TS tractable again. It remains future work, to characterize the computational complexity of synthesis for the remaining 128 types which do not contain **nop**. Moreover, since τ -synthesis generally remains hard even for (small) fixed g, the bound of a TS is ruled out for FPT-algorithms. Future work might be concerned with parameterizing τ -synthesis by the *dependence number* of the searched τ -net: If $N = (P, T, f, M_0)$ is a Boolean net, $p \in P$ and if the dependence number d_p of p is defined by $d_p = |\{t \in T \mid f(p, t) \neq \mathsf{nop}\}|$ then the dependence number d of N is defined by $d = \max\{d_p \mid p \in P\}$. At first glance, d appears to be a promising parameter for FPT-approaches because this parameterization puts the problem

into the complexity class XP: Since a τ -region of $A = (S, E, \delta, \iota)$ is determined by $sup(\iota)$ and sig, for each (E)SSP atom α there are at most $2 \cdot |\tau|^d \cdot \sum_{i=0}^d {|E| \choose i}$ fitting τ -regions solving α . Thus, by $|\tau| \leq 8$, τ -synthesis parameterized by d is decidable in $\mathcal{O}(|E|^d \cdot |S| \cdot \max\{|S|, |E|\})$.

References

- Badouel, E., Bernardinello, L., Darondeau, P.: The synthesis problem for elementary net systems is NP-complete. Theor. Comput. Sci. 186(1-2), 107-134 (1997)
- Badouel, E., Bernardinello, L., Darondeau, P.: Petri Net Synthesis. Texts in Theoretical Computer Science. An EATCS Series, Springer (2015)
- Badouel, E., Darondeau, P.: Trace nets and process automata. Acta Inf. 32(7), 647–679 (1995)
- 4. Cortadella, J.: Private correspondance (2017)
- Kleijn, J., Koutny, M., Pietkiewicz-Koutny, M., Rozenberg, G.: Step semantics of Boolean nets. Acta Inf. 50(1), 15–39 (2013)
- 6. Montanari, U., Rossi, F.: Contextual nets. Acta Inf. 32(6), 545–596 (1995)
- Moore, C., Robson, J.M.: Hard tiling problems with simple tiles. Discrete Comput. Geom. 26(4), 573–590 (2001)
- Pietkiewicz-Koutny, M.: Transition systems of elementary net systems with inhibitor arcs. In: Azéma, P., Balbo, G. (eds.) ICATPN 1997. LNCS, vol. 1248, pp. 310–327. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-63139-9_43
- Rozenberg, G., Engelfriet, J.: Elementary net systems. In: Petri Nets. Lecture Notes in Computer Science, vol. 1491, pp. 12–121. Springer (1996)
- Schmitt, V.: Flip-flop nets. In: Puech, C., Reischuk, R. (eds.) STACS 1996. LNCS, vol. 1046, pp. 515–528. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-60922-9_42
- 11. Tredup, R.: The complexity of synthesizing nopequipped boolean nets from *g*-bounded inputs (technical report), to appear in CoRR (2019)
- Tredup, R.: Hardness results for the synthesis of b-bounded Petri Nets. In: Donatelli, S., Haar, S. (eds.) PETRI NETS 2019. LNCS, vol. 11522, pp. 127–147. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21571-2_9
- 13. Tredup, R.: Tracking down the bad guys: reset and set make feasibility for flip-flop net derivatives NP-complete. ICE. EPTCS **304**, 20–37 (2019)
- Tredup, R., Rosenke, C.: Narrowing down the hardness barrier of synthesizing elementary net systems. In: CONCUR. LIPIcs, vol. 118, pp. 16:1–16:15. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2018)
- Tredup, R., Rosenke, C.: The complexity of synthesis for 43 Boolean Petri Net types. In: Gopal, T.V., Watada, J. (eds.) TAMC 2019. LNCS, vol. 11436, pp. 615– 634. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14812-6_38
- Tredup, R., Rosenke, C.: On the hardness of synthesizing Boolean nets. In: ATAED@Petri Nets/ACSD. CEUR Workshop Proceedings, vol. 2371, pp. 71–86. CEUR-WS.org (2019)
- Tredup, R., Rosenke, C., Wolf, K.: Elementary net synthesis remains NP-complete even for extremely simple inputs. In: Khomenko, V., Roux, O.H. (eds.) PETRI NETS 2018. LNCS, vol. 10877, pp. 40–59. Springer, Cham (2018). https://doi. org/10.1007/978-3-319-91268-4_3