
The Complexity of Synthesizing
nop-Equipped Boolean Petri Nets

from g-Bounded Inputs

Ronny Tredup(B)

Universität Rostock, Institut für Informatik, Theoretische Informatik,
Albert-Einstein-Straße 22, 18059 Rostock, Germany

ronny.tredup@uni-rostock.de

Abstract. Boolean Petri nets equipped with nop allow places and tran-
sitions to be independent by being related by nop. We characterize for any
fixed g ∈ N the computational complexity of synthesizing nop-equipped
Boolean Petri nets from labeled directed graphs whose states have at
most g incoming and at most g outgoing arcs.

1 Introduction

Boolean Petri nets are a basic model for the description of distributed and con-
current systems. These nets allow at most one token on each place p in every
reachable marking. Therefore, p is considered a Boolean condition that is true if
p is marked and false otherwise. A place p and a transition t of a Boolean Petri
net N are related by one of the following Boolean interactions: no operation
(nop), input (inp), output (out), unconditionally set to true (set), uncondition-
ally reset to false (res), inverting (swap), test if true (used), and test if false
(free). The relation between p and t determines which conditions p must satisfy
to allow t’s firing and which impact has the firing of t on p: The interaction inp
(out) defines that p must be true (false) first and false (true) after t has fired.
If p and t are related by free (used) then t’s firing proves that p is false (true).
The interaction nop says that p and t are independent, that is, neither need p
to fulfill any condition nor has the firing of t any impact on p. If p and t are
related by res (set) then p can be both false or true but after t’s firing it is false
(true). Also, the interaction swap does not require that p satisfies any particular
condition to enable t. Here, the firing of t inverts p’s Boolean value.

Boolean Petri nets are classified by the interactions of I that they
use to relate places and transitions. More exactly, a subset τ ⊆ I is
called a type of net and a net N is of type τ (a τ -net) if it applies at
most the interactions of τ . So far, research has explicitly discussed seven
Boolean Petri net types: Elementary net systems {nop, inp, out} [9], Contextual
nets {nop, inp, out, used, free} [6], event/condition nets {nop, inp, out, used} [2],
inhibitor nets {nop, inp, out, free} [8], set nets {nop, inp, set, used} [5], trace nets
{nop, inp, out, set, res, used, free} [3], and flip flop nets {nop, inp, out, swap} [10].

c© Springer-Verlag GmbH Germany, part of Springer Nature 2021
M. Koutny et al. (Eds.): ToPNoC XV, LNCS 12530, pp. 101–125, 2021.
https://doi.org/10.1007/978-3-662-63079-2_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-63079-2_5&domain=pdf
https://doi.org/10.1007/978-3-662-63079-2_5

102 R. Tredup

However, since we have eight interactions to choose from, there are actually a
total of 256 different types.

This paper addresses the computational complexity of the τ -synthesis prob-
lem. It consists in deciding whether a given directed labeled graph A, also called
transition system, is isomorphic to the reachability graph of a τ -net N and in
constructing N if it exists. It has been shown that τ -synthesis is NP-complete
if τ = {nop, inp, out} [1], even if the inputs are strongly restricted [14,17].
On the contrary, in [10], it has been shown that it becomes polynomial if
τ = {nop, inp, out, swap}. These opposing results motivate the question which
interactions of I make the synthesis problem hard and which make it tractable.
In our previous work of [13,15,16], we answer this question partly and reveal the
computational complexity of 120 of the 128 types that allow nop.

In this paper, we investigate for fixed g ∈ N the computational complexity of
τ -synthesis restricted to g-bounded inputs, that is, every state of A has at most
g incoming and at most g outgoing arcs. On the one hand, inputs of practical
applications tend to have a low bound g such as benchmarks of digital hardware
design [4]. On the other hand, considering restricted inputs hopefully gives us a
better understanding of the problem’s hardness. Thus, g-bounded inputs are inter-
esting from both the practical and the theoretical point of view. In this paper,
we completely characterize the complexity of τ -synthesis restricted to g-bounded
inputs for all types that allow places and transitions to be independent, that is,
which contain nop. Figure 1 summarizes our findings: For the types of §1 and
§2, we showed hardness of synthesis without restriction in [15]. In this paper, we
strengthen these results to 2- and 3-bounded inputs, respectively, and show that
these bounds are tight. The hardness result of the types of §3 originates from [16].
This paper shows that a bound less than 2 makes synthesis tractable. Hardness for
the types of §4 to §8 has been shown for 2-bounded inputs in [16]. In this paper,
we strengthen this results to 1-bounded inputs. The hardness part for the types
of §9 origin from [13]. In this paper, we argue that the bound 2 is tight. Finally,
while the results of §10 are new, the ones of §11 have been found in [15].

For all considered types τ , the corresponding hardness results are based on
a reduction of the so-called cubic monotone one-in-three 3SAT problem [7].
All reductions follow a common approach that represents clauses by directed
labeled paths. Thus, this paper also contributes a very general way to prove
NP-completeness of synthesis of Boolean types of nets.

2 Preliminaries

Transition Systems. A transition system (TS) A = (S,E, δ) is a directed
labeled graph with states S, events E and partial transition function δ : S ×
E −→ S, where δ(s, e) = s′ is interpreted as s e s′. For s e s′ we say s is
a source and s′ is a sink of e, respectively. An event e occurs at a state s,
denoted by s e , if δ(s, e) is defined. An initialized TS A = (S,E, δ, s0) is a TS
with a distinct state s0 ∈ S where every state s ∈ S is reachable from s0 by a
directed labeled path. TSs in this paper are deterministic by design as their state

The Complexity of Synthesizing nop-Equipped Boolean 103

Fig. 1. The computational complexity of Boolean net synthesis from g-bounded TS for
all types that contain nop.

transition behavior is given by a (partial) function. Let g ∈ N. An initialized TS
A is called g-bounded if for all s ∈ S(A) the number of incoming and outgoing
arcs at s is restricted by g: |{e ∈ E(A) | e s}| ≤ g and |{e ∈ E(A) | s e }| ≤ g.

Boolean Types of Nets [2]. The following notion of Boolean types of nets serves
as vehicle to capture many Boolean Petri nets in a uniform way. A Boolean type
of net τ = ({0, 1}, Eτ , δτ) is a TS such that Eτ is a subset of the Boolean interac-
tions: Eτ ⊆ I = {nop, inp, out, set, res, swap, used, free}. The interactions i ∈ I are
binary partial functions i : {0, 1} → {0, 1} as defined in Fig. 2. For all x ∈ {0, 1}
and all i ∈ Eτ the transition function of τ is defined by δτ (x, i) = i(x). Notice that
I contains all binary partial functions {0, 1} → {0, 1} except for the entirely unde-
fined function ⊥. Even if a type τ includes ⊥, this event can never occur, so it would
be useless. Thus, I is complete for deterministic Boolean types of nets, and that
means there are a total of 256 of them. By definition, a Boolean type τ is completely
determined by its event set Eτ . Hence, in the following we identify τ with Eτ , cf.
Fig. 3. Moreover, for readability, we group interactions by enter = {out, set, swap},
exit = {inp, res, swap}, keep+ = {nop, set, used}, and keep− = {nop, res, free}.

104 R. Tredup

Fig. 2. All interactions in I. An empty cell means that the column’s function is unde-
fined on the respective x. The entirely undefined function is missing in I.

Fig. 3. Left: τ = {nop, out, res, swap, free}. Right: τ̃ = {nop, inp, set, swap, used}. τ and
τ̃ are isomorphic. The isomorphism φ : τ → τ̃ is given by φ(s) = 1 − s for s ∈ {0, 1},
φ(i) = i for i ∈ {nop, swap}, φ(out) = inp, φ(res) = set and φ(free) = used.

τ-Nets. Let τ ⊆ I. A Boolean Petri net N = (P, T,H0, f) of type τ , (τ -net)
is given by finite and disjoint sets P of places and T of transitions, an initial
marking H0 : P −→ {0, 1}, and a (total) flow function f : P × T → τ . A τ -
net realizes a certain behavior by firing sequences of transitions: A transition
t ∈ T can fire in a marking M : P −→ {0, 1} if δτ (M(p), f(p, t)) is defined
for all p ∈ P . By firing, t produces the next marking M ′ : P −→ {0, 1} where

M ′(p) = δτ (M(p), f(p, t)) for all p ∈ P . This is denoted by M t M ′. Given a τ -
net N = (P, T,H0, f), its behavior is captured by a transition system AN , called
the reachability graph of N . The state set of AN consists of all markings that,
starting from initial state H0, can be reached by firing a sequence of transitions.
For every reachable marking M and transition t ∈ T with M t M ′ the state
transition function δ of A is defined as δ(M, t) = M ′.

τ-Regions. Let τ ⊆ I. If an input A of τ -synthesis allows a positive decision then
we want to construct a corresponding τ -net N purely from A. Since A and AN

are isomorphic, N ’s transitions correspond to A’s events. However, the notion of
a place is unknown for TSs. So-called regions mimic places of nets: A τ -region
of a given A = (S,E, δ, s0) is a pair (sup, sig) of support sup : S → Sτ = {0, 1}
and signature sig : E → Eτ = τ where every transition s e s′ of A leads to

a transition sup(s) sig(e) sup(s′) of τ . While a region divides S into the two
sets sup−1(b) = {s ∈ S | sup(s) = b} for b ∈ {0, 1}, the events are cumulated
by sig−1(i) = {e ∈ E | sig(e) = i} for all available interactions i ∈ τ . We
also use sig−1(τ ′) = {e ∈ E | sig(e) ∈ τ ′} for τ ′ ⊆ τ . A region (sup, sig)
models a place p and the corresponding part of the flow function f . In particular,
sig(e) models f(p, e) and sup(s) models M(p) in the marking M ∈ RS(N)
corresponding to s ∈ S(A). Every set R of τ -regions of A defines the synthesized
τ -net NR

A = (R, E, f,H0) with flow function f((sup, sig), e) = sig(e) and initial
marking H0((sup, sig)) = sup(s0) for all (sup, sig) ∈ R, e ∈ E. It is well known
that ANR

A
and A are isomorphic if and only if R’s regions solve certain separation

The Complexity of Synthesizing nop-Equipped Boolean 105

atoms [2], to be introduced next. A pair (s, s′) of distinct states of A defines a
state separation atom (SSP atom). A τ -region R = (sup, sig) solves (s, s′) if
sup(s) �= sup(s′). The meaning of R is to ensure that NR

A contains at least one
place R such that M(R) �= M ′(R) for the markings M and M ′ corresponding
to s and s′, respectively. If there is a τ -region that solves (s, s′) then s and s′

are called τ -solvable. If every SSP atom of A is τ -solvable then A has the τ -state
separation property (τ -SSP). A pair (e, s) of event e ∈ E and state s ∈ S where e

does not occur at s, that is ¬s e , defines an event state separation atom (ESSP
atom). A τ -region R = (sup, sig) solves (e, s) if sig(e) is not defined on sup(s)
in τ , that is, ¬δτ (sup(s), sig(e)). The meaning of R is to ensure that there is at
least one place R in NR

A such that ¬M e for the marking M corresponding
to s. If there is a τ -region that solves (e, s) then e and s are called τ -solvable.
If every ESSP atom of A is τ -solvable then A has the τ -event state separation
property (τ -ESSP). A set R of τ -regions of A is called τ -admissible if for every of
A’s (E)SSP atoms there is a τ -region R in R that solves it. The following lemma,
borrowed from [2, p.163], summarizes the already implied connection between
the existence of τ -admissible sets of A and (the solvability of) τ -synthesis:

Lemma 1 ([2]). A TS A is isomorphic to the reachability graph of a τ -net N
if and only if there is a τ -admissible set R of A such that N = NR

A .

We say a τ -net N τ -solves A if AN and A are isomorphic. By Lemma 1,
deciding if A is τ -solvable reduces to deciding whether it has the τ -(E)SSP.
Moreover, it is easy to see that if τ and τ̃ are isomorphic then deciding the
τ -(E)SSP reduces to deciding the τ̃ -(E)SSP:

Lemma 2 (Without proof). If τ and τ̃ are isomorphic types of nets then a
TS A has the τ -(E)SSP if and only if A has the τ̃ -(E)SSP.

In particular, we benefit from the isomorphisms that map nop to nop, swap
to swap, inp to out, set to res, used to free, and vice versa.

Fig. 4. Let τ = {nop, set, swap, free}. The TSs A1, . . . , A4 give examples for the pres-
ence and absence of the τ -(E)SSP: TS A1 has the τ -ESSP as a occurs at every state.
It has also the τ -SSP: The region R = (sup, sig) where sup(s0) = sup(s2) = 1,
sup(s1) = 0 and sig(a) = swap separates the pairs s0, s1 and s2, s1. Moreover, the region
R′ = (sup′, sig′) where sup′(s0) = 0 and sup′(s1) = sup′(s2) = 1 and sig′(a) = set
separates s0 and s1. Notice that R and R′ can be translated into τ̃ -regions, where
τ̃ = {nop, res, swap, used}, via the isomorphism of Fig. 3. For example, if s ∈ S(A1)
and e ∈ E(A1) and sup′′(s) = φ(sup(s)) and sig′′(e) = φ(sig(e)) then the resulting
τ̃ -region R′′ = (sup′′, sig′′) separates s0, s1 and s2, s1. Thus, A1 has also τ̃ -(E)SSP. TS
A2 has the τ -SSP but not the τ -ESSP as event a is not inhibitable at the state s2. TS
A3 has the τ -ESSP (a occurs at every state) but not the τ -SSP as s1 and s2 are not
separable. TS A4 has neither the τ -ESSP nor the τ -SSP.

106 R. Tredup

3 Hardness Results

In this section, for several types of nets τ ⊆ I and fixed g ∈ N, we show that
τ -synthesis is NP-complete even if the input TS A is g-bounded, cf. Fig. 1. Since
τ -synthesis is known to be in NP for all τ ⊆ I [16], we restrict ourselves to the
hardness part. All proofs are based on a reduction of the problem cubic monotone
one-in-three 3-SAT which has been shown to be NP-complete in [7]. The input
for this problem is a Boolean expression ϕ = {ζ0, . . . , ζm−1} of m negation-
free three-clauses ζi = {Xi0 ,Xi1 ,Xi2} such that every variable X ∈ V (ϕ) =
⋃m−1

i=0 ζi occurs in exactly three clauses. Notice that the latter implies |V (ϕ)| =
m. Moreover, we assume without loss of generality that if ζi = {Xi0 ,Xi1 ,Xi2}
then i0 < i1 < i2. The question to answer is whether there is a subset M ⊆ V (ϕ)
with |M ∩ζi| = 1 for all i ∈ {0, . . . , m−1}. For all considered types of nets τ and
corresponding bounds g, we reduce a given instance ϕ to a g-bounded TS Aτ

ϕ

such that the following two conditions are true: Firstly, the TS Aτ
ϕ has an ESSP

atom α which is τ -solvable if and only if there is a one-in-three model M of ϕ.
Secondly, if the ESSP atom α is τ -solvable then all ESSP and SSP atoms of Aτ

ϕ

are also τ -solvable. A reduction that satisfies these conditions proves the NP-
hardness of τ -synthesis as follows: If ϕ has a one-three-model then the conditions
ensure that the TS Aτ

ϕ has the τ -(E)SSP and thus is τ -solvable. Conversely, if
Aτ

ϕ is τ -solvable then, by definition, it has the τ -ESSP. In particular, there is a
τ -region that solves α which, by the first condition, implies that ϕ has a one-in-
three model. Consequently, Aτ

ϕ is τ -solvable if and only if ϕ has a one-in-three
model. Due to space restrictions, we omit for all considered types the proof that
Aτ

ϕ satisfies the second condition, that is, that the solvability of α implies the
(E)SSP. However, the corresponding proofs can be found in the technical report
[11].

A key idea, applied by all reductions in one way or another, is the repre-
sentation of every clause ζi = {Xi0 ,Xi1 ,Xi2}, i ∈ {0, . . . , m − 1}, by a directed
labeled path of Aτ

ϕ on which the variables of ζi occur as events:

si,0 . . . si,j
Xi0 si,j+1 . . . si,j′ Xi1 si,j′+1 . . . si,j′′ Xi2 si,j′′+1 . . . si,n

The reductions ensure that if a τ -region (sup, sig) solves the atom α then
sup(si,0) �= sup(si,n). This makes the image of this path under (sup, sig) a
directed path from 0 to 1 or from 1 to 0 in τ . Thus, there has to be an event e
on the path that causes the state change from sup(si,0) to sup(si,n) by sig(e).
We exploit this property and ensure that this state change is unambiguously
done by (the signature of) exactly one variable event per clause. As a result, the
corresponding variable events define a searched model of ϕ via their signature.
The proof of the following theorem gives a first example of this approach, and
Fig. 5 shows a full example reduction.

Theorem 1. For any fixed g ≥ 2, deciding if a g-bounded TS A is τ -
solvable is NP-complete if τ = {nop, inp, free}, τ = {nop, inp, used, free}, τ =
{nop, out, used} and τ = {nop, out, used, free}.

The Complexity of Synthesizing nop-Equipped Boolean 107

Fig. 5. The TS Aτ
ϕ for ϕ = {ζ0, . . . , ζ5} with clauses ζ0 = {X0, X1, X2}, ζ1 =

{X0, X2, X3}, ζ2 = {X0, X1, X3}, ζ3 = {X2, X4, X5}, ζ4 = {X1, X4, X5}, ζ5 =
{X3, X4, X5} . The red colored area sketc.hes the τ -region (sup, sig) that solves (k1, h0)
and corresponds to the one-in-three model M = {X0, X4}. (Color figure online)

Proof. We argue for τ ∈ {{nop, inp, free}, {nop, inp, used, free}}, which by
Lemma 2 proves the claim for the other types, too.
Firstly, the TS Aτ

ϕ has the following gadget H (left hand side) that provides
the events k0, k1 and the atom α = (k1, h0). Secondly, it has for every clause
ζi = {Xi0 ,Xi1 ,Xi2} the following gadget Ti (right hand side) that applies k0, k1
and ζ ′

is variables as events.

Finally, Aτ
ϕ uses the states ⊥0, . . . ,⊥m and events
1, · · ·
m and ⊕0, . . . ,⊕m

to join the gadgets T0, . . . , Tm−1 and H by ⊥i

i+1 ⊥i+1 and ⊥i

⊕i ti,0, for all

i ∈ {0, . . . , m − 1}, and ⊥m
⊕m h0, cf. Fig. 5.

The gadget H ensures that if (sup, sig) is a region that solves α then
sup(h0) = 1 and sig(k1) = free which implies sup(h1) = 0 and sig(k0) = inp.
This is because sig(k1) ∈ {inp, used} and sup(h0) = 0 implies sig(k0) ∈
{out, set, swap}, which is impossible. Consequently, s k0 and s′ k1 imply
sup(s) = 1 and sup(s′) = 0, respectively. The TS Aτ

ϕ uses these properties to
ensure via T0, . . . , Tm−1 that the region (sup, sig) implies a one-in-three model
of ϕ.

More exactly, if i ∈ {0, . . . , m − 1} then for Ti we have by ti,0
k0 and

ti,3
k1 that sup(ti,0) = 1 and sup(ti,3) = 0. Thus, there is an event Xij

, where
j ∈ {0, 1, 2}, such that sig(Xij

) = inp. Clearly, if sig(Xij
) = inp then sig(Xi�

) �=
inp for all j < � ∈ {0, 1, 2} as Xi�

’s sources have a 0-support. Consequently,

108 R. Tredup

there is exactly one variable event X ∈ ζi such that sig(X) = inp. Since i was
arbitrary, this is simultaneously true for all clauses ζ0, . . . , ζm−1. Thus, the set
M = {X ∈ V (ϕ) | sig(X) = inp} is a one-in-three model of ϕ.

Conversely, if ϕ is one-in-three satisfiable then there is a τ -region (sup, sig)
of Aτ

ϕ that solves α. In particular, if M is a one-in-three model of ϕ then we
first define sup(⊥0) = 1. Secondly, for all e ∈ E(Aτ

ϕ) we define sig(e) = free
if e = k1, sig(e) = inp if e ∈ {k0} ∪ M and else sig(e) = nop. Since Aτ

ϕ is
reachable, by inductively defining sup(si+1) = δτ (sup(si), sig(ei)) for all paths
⊥0

e1 s1 . . . sn−1
en sn, this defines a fitting region (sup, sig), cf. Fig. 5.

This proves that α is τ -solvable if and only if ϕ is one-in-three satisfiable.

In the remainder of this section, we present the remaining hardness results in
accordance to Fig. 1 and the corresponding reductions that prove them.

Theorem 2. For any fixed g ≥ 3, deciding if a g-bounded TS A is τ -solvable is
NP-complete if τ = {nop, set, res} ∪ ω and ∅ �= ω ⊆ {used, free}.

Proof. The TS Aτ
ϕ has the following gadgets H0,H1 and H2 (in this order):

The gadget H0 provides α = (k0, h0,2). By symmetry, Aτ
I is {nop, set, res, used}-

solvable if and only if it is {nop, set, res, free}- or {nop, set, res, free, used}-solvable.
Thus, in the following we assume τ = {nop, set, res, used}, sig(k0) = used and
sup(h0,2) = 0 if (sup, sig) τ -solves α. As a result, by sig(k0) = used, implying

sup(h0,1) = 1, and sup(h0,2) = 0 we have sig(k1) = res. Especially, if k0 s then

sup(s) = 1 and if k1 s then sup(s) = 0. Thus, sup(h1,0) = sup(h2,1) = 1 and
sup(h1,1) = sup(h2,0) = 0 which implies sig(k2) = res and sig(k3) = set.

The construction uses k2 and k3 to produce some neutral events. More
exactly, the TS Aτ

ϕ implements for all j ∈ {0, . . . , 16m − 1} the following gadget
Fj that uses k2 and k3 to ensure that the events zj are neutral:

By sig(k2) = res and sig(k3) = set we have sup(fj,1) = 0 and sup(fj,4) = 1.

This implies sig(zj) 0 and sig(zj) 1 and thus sig(zj) = nop.
Finally, for every i ∈ {0, . . . ,m − 1} and clause ζi = {Xi0 ,Xi1 ,Xi2}, the TS

Aτ
ϕ has the following four gadgets Ti,0, Ti,1Ti,2 and Ti,3 (in this order):

The Complexity of Synthesizing nop-Equipped Boolean 109

Ti,0, . . . , Ti,4 ensure that there is exactly one X ∈ ζi with sig(X) = res: By
sig(k0) = used and sig(k1) = res we get sup(ti,0,0) = sup(ti,1,0) = sup(ti,2,0) =
sup(ti,3,7) = 1 and sup(ti,0,7) = sup(ti,1,7) = sup(ti,2,7) = sup(ti,3,0) = 0. Since
z16i, . . . , z16i+11 are neutral, this implies sup(ti,0,6) = sup(ti,1,6) = sup(ti,2,6) = 0
and that there is a variable event with a res-signature. Moreover, by sup(ti,3,0) =
0 and sup(ti,3,7) = 1 and the neutrality of z16i+12, . . . , z16i+15 there is an event of
y3i, y3i+1, y3i+2 with a set-signature. We argue that there is exactly one variable
event with a res-signature: By sup(ti,0,6) = sup(ti,1,6) = sup(ti,2,6) = 0, we
have sig(X) �∈ {set, used} for all X ∈ {Xi0 ,Xi1 ,Xi2}. Hence, if sig(Xi0) = res
then sup(ti,0,2) = · · · = sup(ti,0,6) = 0 which implies sig(y3i+1) �= set and
sig(y3i+2) �= set and thus sig(y3i) = set. By sig(y3i) = set we have sup(ti,1,2) =
sup(ti,1,4) = 1 which implies sig(Xi1) �= res and sig(Xi2) �= res.

If sig(Xi1) = res, then sup(ti,0,4) = sup(ti,1,2) = 0 which implies sig(y3i) �=
set and sig(y3i+2) �= set and thus sig(y3i+1) = set. By sig(y3i+1) = set we have
sup(ti,0,2) = sup(ti,2,2) = 1 which implies sig(Xi0) �= res and sig(Xi2) �= res.

Since sig(Xi0) = res or sig(Xi1) = res implies sig(Xi2) �= res, we conclude
that sig(Xi2) = res implies sig(Xi0) �= res and sig(Xi1) �= res. Thus, there
is exactly one variable of the i-th clause with a signature res. Hence, the set
M = {X ∈ V (ϕ) | sig(X) = res} is a one-in-three model of ϕ.

To finally build Aτ
ϕ, we use the states ⊥ = {⊥0, . . . ,⊥20m+2} and the events

⊕ = {⊕0, . . . ,⊕20m+2} and
 = {
1, . . . ,
20m+2}. The states of ⊥ are con-

nected by ⊥j

j+1 ⊥j+1 and ⊥j+1

j+1 ⊥j+1 for j ∈ {0, . . . , 20m + 1}. Let
x = 16m + 3 and y = 19m + 3. For all i ∈ {0, 1, 2}, for all � ∈ {0, . . . , 16m − 1}
and for all j ∈ {0, . . . , m} we add the following edges that connect the gadgets

110 R. Tredup

H0,H1,H2 and F0, . . . , F16m−1 and T0,0, T0,1, T0,2, . . . , Tm−1,0, Tm−1,1Tm−1,2

and

If M is a one-in-three model of ϕ then α is τ -solvable by a τ -region (sup, sig):
If s ∈ {h0,0, h1,0, h2,1} or {fj,0 | j ∈ {0, . . . , 16m − 1}} then sup(s) = 1. The
support values of the states of Ti,0, . . . , Ti,3, where i ∈ {0, . . . , m−1}, are defined
in accordance to which event of Xi0 ,Xi1 ,Xi2 belongs to M . The red colored
area above sketches Xi0 ∈ M . Moreover, we define sup(s) = 0 for all s ∈ ⊥. Let
e ∈ E(Aτ

ϕ)\⊕. We define sig(e) = used if e = k0 and sig(e) = res if e ∈ {k1}∪M .
For all i ∈ {0, . . . ,m − 1} and clauses {Xi0 ,Xi1 ,Xi2} and all j ∈ {0, 1, 2} we set
sig(e) = set if e = y3i+j and Xij

∈ M . Otherwise, we define sig(e) = nop. For

all events e ∈ ⊕ and edges s e s′ of A we define sig(e) = set if sup(s′) = 1 and,
otherwise, sig(e) = nop. The resulting τ -region (sup, sig) of Aτ

ϕ solves α. ��

Theorem 3. For any fixed g ≥ 2, deciding if a g-bounded TS A is τ -solvable
is NP-complete if (1) τ = {nop, inp, set} or τ = {nop, inp, set, used} or τ =
{nop, inp, res, set} ∪ ω and ω ⊆ {out, used, free} or if (2) τ = {nop, out, res} or
τ = {nop, out, res, free} or τ = {nop, out, res, set} ∪ ω and ω ⊆ {inp, used, free}.

Proof. We present a reduction for the types of (1). By Lemma 2, this proves the
claim also for the types of (2). The TS Aτ

ϕ has the following gadget H:

The intention of the gadget H is to provide the atom α = (k, h0,6) and the events
of Z = {z0, . . . , z3m−1}, V = {v0, . . . , v3m−1} and W = {w0, . . . , w3m−1}.

The Complexity of Synthesizing nop-Equipped Boolean 111

Moreover, the TS Aτ
ϕ has the following two gadgets F0 and F1 and for all

i ∈ {0, . . . , 6m − 2} the following gadget Gi (in this order):

Finally, the TS Aτ
ϕ has for every clause ζi = {Xi0 ,Xi1 ,Xi2}, i ∈ {0, . . . , m −

1}, the following gadgets Ti,0, Ti,1 and Ti,2 (in this order):

In the following, we argue that H,F0, F1 and G0, . . . , Gm−2 collaborate
like this: If (sup, sig) is a τ -region solving α then either sig(k) = inp, V ⊆
sig−1(enter) and W ⊆ sig−1(keep−) or sig(k) = out and V ⊆ sig−1(exit) and
W ⊆ sig−1(keep+). Moreover, we prove that this implies by the functionality of
T0,0, . . . , Tm−1,2 that M = {X ∈ V (ϕ) | sig(X) �= nop} is a one-in-three model
of ϕ.

Let (sup, sig) be a τ -region that solves α. Since the interactions res, set and
nop are defined on both 0 and 1, this implies sig(k) ∈ {inp, out, used, free}.

If sig(k) = used then sup(s) = sup(s′) = 1 for every transition s k s′.
Hence, we have sup(f0,3) = sup(f1,1) = sup(h0,4) = 1. By definition of
inp, res we have that e s and sig(e) ∈ {inp, res} implies sup(s) = 0. Con-
sequently, by z0 f0,3 and q0 f1,1 we get sig(z0), sig(q0) ∈ keep+ and thus

sup(h0,4) = sup(h0,5) = sup(h0,6) = 1 which contradicts ¬sup(h0,6) sig(k) .
Hence, sig(k) �= used. Similarly, sig(k) = free implies sup(h0,6) = 0, which is a
contradiction. Thus, we have that sig(k) = inp and sup(h0,6) = 0 or sig(k) = out
and sup(h0,6) = 1.

As a next step, we show that sig(k) = inp and sup(h0,6) = 0 together imply

sig(v0) ∈ enter and sig(z0) ∈ keep−. By sig(k) = inp and k h0,1 and h0,3
k

we get sup(h0,1) = 0 and sup(h0,3) = 1. Moreover, by z0 h0,6 and sup(h0,6) =
0 we obtain sig(z0) ∈ keep−, which by sup(h0,1) = 0 implies sup(h0,2) = 0.

112 R. Tredup

Finally, sup(h0,2) = 0 and sup(h0,3) = 1 imply sig(v0) ∈ enter. Notice that this
reasoning purely bases on sig(k) = inp and sup(h0,6) = 0. Moreover, Aτ

ϕ uses
for every j ∈ {0, . . . , 6m − 2} the TS Gj to ensure sup(h0,6) = sup(h1,6) =
· · · = sup(h6m−1,6). This transfers z0 ∈ keep− and v0 ∈ enter to V ⊆ enter and
W ⊆ keep−. In particular, by sig(k) = inp we have sup(gi,0) = sup(gi,1) = 1
and sup(gi,2) = sup(gi,3) = 0, that is, sig(ci) = nop. Hence, if sig(k) = inp
and sup(h0,6) = 0 then sup(hi,6) = 0 for all i ∈ {0, . . . , 6m − 1}. Perfectly
similar to the discussion for z0 and v0 we obtain that V ⊆ sig−1(enter) and
W ⊆ sig−1(keep−), respectively. Similarly, sig(k) = out and sup(h0,6) = 1
imply V ⊆ sig−1(exit) and W ⊆ sig−1(keep+).

We now argue that Ti,0, . . . , Tm−1,2 ensure that M = {X ∈ V (ϕ) | sig(X) �=
nop} is a one-in-three model of ϕ. Let i ∈ {0, . . . ,m − 1} and sig(k) = inp
and sup(h0,6) = 0 implying V ⊆ sig−1(enter) and W ⊆ sig−1(keep−). By
sig(k) = inp and V ⊆ sig−1(enter) and W ⊆ sig−1(keep−) we have that
sup(ti,0,2) = sup(ti,1,2) = sup(ti,2,2) = 1 and sup(ti,0,5) = sup(ti,1,5) =
sup(ti,2,5) = 0. As a result, every event e ∈ {Xi0 ,Xi1 ,Xi2} has a 0-sink, which
implies sig(e) ∈ {nop, inp, res}, and every event e ∈ {xi0 , xi1 , xi2} has a 1-sink,
which implies sig(e) ∈ {nop, out, set}. By sup(ti,0,2) = 1 and sup(ti,0,5) = 0
there is a X ∈ {Xi0 ,Xi1 ,Xi2} such that sig(X) ∈ {inp, res}. We argue that
sig(Y) = nop for Y ∈ {Xi0 ,Xi1 ,Xi2} \ {X}. If sig(Xi0) ∈ {inp, res} then
sup(ti,0,3) = 0 which implies sig(xi0) ∈ {out, set} and, therefore, sup(ti,1,4) = 1.
Since sig(Xi1), sig(Xi2) �∈ {out, set} and sig(xi1), sig(xi2) �∈ {inp, res}, it holds
sup(ti,0,3) = sup(ti,0,4) = 0 and sup(ti,1,3) = sup(ti,1,4) = 1, respectively. Thus,
for all e ∈ {Xi1 ,Xi2}, there are edges e s and e s′ such that sup(s) = 0
and sup(s′) = 1. This implies sig(e) = nop. Similarly, if sig(Xi1) ∈ {inp, res},
then sig(Xi0) = sig(Xi2) = nop, and if sig(Xi2) ∈ {inp, res}, then sig(Xi0) =
sig(Xi1) = nop. Hence, every clause ζi has exactly one variable event with a
signature different from nop. This makes M = {X ∈ V (ϕ) | sig(X) �= nop} a
one-in-three model of ϕ. Similarly, if sig(k) = out and sup(h0,6) = 1, then M is
also a one-in-three model of ϕ.

To join the gadgets and finally build Aτ
ϕ, we use the states ⊥ =

{⊥0, . . . ,⊥9m+1} and the events ⊕ = {⊕0, . . . ,⊕9m+1} and
 =

{
1, . . . ,
9m+1}. The states of ⊥ are connected by ⊥j

j+1 ⊥j+1 for j ∈

{0, . . . , 9m + 1}. Let x = 6m + 2. For all i ∈ {0, . . . , 6m − 2}, for all
j ∈ {0, . . . , m − 1} and for all � ∈ {0, 1, 2} we add the following edges
that connect the gadgets H0, F0, F1, G0, . . . , G6m−2 and T0,0, T0,1, T0,2 up to
Tm−1,0, Tm−1,1, Tm−1,2 to Aτ

ϕ:

If M is a one-in-three model of ϕ then there is a τ -region (sup, sig) of Aτ
ϕ that

solves α. The red colored area of the figures introducing the gadgets indicates
already a positive support of some states. In particular, if s ∈ {hj,0, hj,3 | j ∈
{0, . . . , 6m−1}} or s ∈ {f0,0, f0,2, f0,3, f1,0, f1,1} s ∈ {gj,0, gj,1 | j ∈ {0, . . . , 6m−
2}} then sup(s) = 1. The support values of the states of Ti,0, . . . , Ti,2, where

The Complexity of Synthesizing nop-Equipped Boolean 113

i ∈ {0, . . . , m−1}, are defined in accordance to which of the events Xi0 ,Xi1 ,Xi2

belongs to M . The red colored area above sketches the situation where Xi0 ∈ M .
Moreover, for all s ∈ ⊥, we define sup(s) = 0. Let e ∈ E(Aτ

ϕ) \ ⊕. We define
sig(e) = inp if e ∈ {k}∪M . For all i ∈ {0, . . . ,m−1} and clauses {Xi0 ,Xi1 ,Xi2}
and all j ∈ {0, 1, 2} we set sig(e) = set if e = n or e ∈ {vj , pj | j ∈ {0, . . . , 3m −
1}} or e = xij

and Xij
∈ M . Otherwise, we define sig(e) = nop. Finally, for all

events e ∈ ⊕ and edges s e s′ of A we define sig(e) = set if sup(s′) = 1 and,
otherwise, sig(e) = nop.

Joining of 1-Bounded Gadgets. In the following, we consider types τ where
τ -synthesis from 1-bounded inputs is NP-complete. All gadgets A0, . . . , An of
the reductions are directed paths Ai = si

0
e1 . . . , en si

n on pairwise distinct
states si

0, . . . , s
i
n. For all types, the joining is the concatenation

with fresh states ⊥1, . . . ,⊥n and events
1, · · ·
n,⊕1, · · · ⊕n.

Theorem 4. For any fixed g ≥ 1, deciding if a g-bounded TS A is τ -solvable
is NP-complete if τ = {nop, inp, out, set} ∪ ω or τ = {nop, inp, out, res} ∪ ω and
ω ⊆ {used, free}.

Proof. Our construction proves the claim for τ = {nop, inp, set, out} ∪ ω with
ω ⊆ {used, free}. By Lemma 2, this proves the claim also for the other types.

The TS Aτ
ϕ has the following gadgets H0,H1,H2 and H3 (in this order):

If used ∈ τ then Aτ
ϕ has the following gadget H4:

For all i ∈ {0, . . . , m−1}, the TS Aτ
ϕ has for the clause ζi = {Xi0 ,Xi1 ,Xi2} and

the variable Xi ∈ V (ϕ) the following gadgets Ti and Bi, respectively:

The gadget H0 provides the atom α = (k0, h0,6). Moreover, the gadgets
H0, . . . ,H4 ensure that if (sup, sig) is a τ -region solving α then sig(k0) = out
and sig(k1) ∈ {out, set}. In particular, H4 prevents the solvability of α by
used. As a result, such a region implies sup(ti,1) = 1, sup(ti,4) = 0 and
sup(bi,1) = 0 for all i ∈ {0, . . . , m− 1}. On the one hand, by sup(bi,1) = 0 for all
i ∈ {0, . . . , m − 1} we have sig(X) �∈ {out, set} for all X ∈ V (ϕ). On the other
hand, by sup(ti,1) = 1 and sup(ti,4) = 0 there is an event X ∈ {Xi0 ,Xi1 ,Xi2}

114 R. Tredup

such that sig(X) = inp. Since no variable event has an incoming signature
we obtain immediately sig(Y) �= inp for Y ∈ {Xi0 ,Xi1 ,Xi2} \ {X}. Thus,
M = {X ∈ V (ϕ) | sig(X) = inp} is a one-in-three model of ϕ.

We argue that H0, . . . , H4 behave as announced. Let (sup, sig) be a region
that solves (k0, h0,6). If sig(k0) = inp then sup(h0,6) = 0 and sig(h0,7) = 1,
implying sig(o) ∈ {out, set} and sup(h0,3) = 1. Thus, there is an event e ∈
{k1, z0, z1} with sig(e) = inp. By sig(k0) = inp we have sup(h1,1) = sup(h2,1) =
1 and sup(h3,1) = 0 implying sig(e) �= inp for all e ∈ {k1, z0, z1}, a contradiction.

If sig(k0) = free then sup(h0,6) = 1 and sup(h0,1) = sup(h0,7) = sup(h1,1) =
0 which implies sig(o) = inp and sup(h0,2) = 1. By sup(h0,1) = 0 and sup(h0,2) =
1 we have sig(z0) ∈ {out, set} which by sup(h1,1) = 0 is a contradiction.

If sig(k0) = used then sup(h0,6) = 0 and sup(h0,1) = sup(h0,7) = sup(h1,1) =
sup(h2,1) = 1. This implies sig(o) ∈ {out, set} and sup(h0,3) = 1. Thus,
by sup(h0,6) = 0 there is an event e ∈ {k1, z0, z1} with sig(e) = inp. By
sup(h1,1) = sup(h2,1) = 1, we have e �∈ {z0, z1}. If sig(k1) = inp then
sup(h4,1) = 0 and sup(h4,2) = 1, implying sig(z0) ∈ {out, set} and sup(h0,6) = 1.
This is a contradiction. Altogether, this proves sig(k0) �∈ {inp, used, free}.

Consequently, we obtain sig(k0) = out and sup(h0,6) = 1 which implies
sig(o) = inp and sup(h0,3) = 0. By sup(h0,6) = 1, this implies that there is an
event e ∈ {k1, z0, z1} with sig(e) ∈ {out, set}. Again by sig(k0) = out, we have
sup(h1,1) = sup(h2,1) = 0, which implies e = k1. The signatures sig(k0) = out
and sig(k1) ∈ {out, set} and the construction of T0, . . . , Tm−1 and B0, . . . , Bm−1

ensure that M = {X ∈ V (ϕ) | sig(X) = inp} is a one-in-three model of ϕ: By
sig(k0) = out and sig(k1) ∈ {out, set} we have sup(ti,1) = 1 and sup(ti,4) =
sup(bi,1) = 0 for all i ∈ {0, . . . , m − 1}. By sup(ti,1) = 1 and sup(ti,4) = 0, there
is an event X ∈ ζi such that sig(X) = inp. Moreover, by sup(bi,1) = 0, we get
sig(Xi) �∈ enter for all i ∈ {0, . . . , m − 1}. Thus, X is unambiguous and thus M
is a searched model.

Conversely, if M is a one-in-three model of ϕ then there is a τ -region (sup, sig)
that solves α. The red colored area above sketches states with a positive support.
Which states of Ti, besides of ti,0, ti,1 and ti,5, get a positive support depends for
all i ∈ {0, . . . , m − 1} on which of Xi0 ,Xi1 ,Xi2 belongs to M . The red colored
area above sketches the case Xi0 ∈ M . Moreover, we define sup(s) = 1 if s = bi,0

and Xi ∈ M or if s ∈ ⊥. The signature is defined as follows: sig(k1) = set; for
all e ∈ E(Aτ

ϕ)\{k1} and all s e s′ ∈ Aτ
ϕ, if sup(s′) > sup(s), then sig(e) = out;

if sup(s) > sup(s′), then sig(e) = inp; else sig(e) = nop. ��

Theorem 5. For any g ≥ 1, deciding if a g-bounded TS A is τ -solvable is
NP-complete if τ = {nop, inp, set, free} or τ = {nop, inp, set, used, free} or τ =
{nop, out, res, used} or τ = {nop, out, res, used, free}.

Proof. Our reduction proves the claim for τ = {nop, inp, set, free} and τ =
{nop, inp, set, used, free} and thus by Lemma 2, for the other types, too.

The TS Aτ
ϕ has the following gadgets H0 and H1 providing the atom

(k0, h0,3):

The Complexity of Synthesizing nop-Equipped Boolean 115

For all i ∈ {0, . . . ,m − 1}, the Aτ
ϕ for the clause ζi = {Xi0 ,Xi1 ,Xi2} and the

variable Xi ∈ V (ϕ) the gadgets Ti and Bi as previously defined for Theorem 4.
The gadgets H0 and H1 ensure that a τ -region (sup, sig) solving (k0, h0,3)
satisfies sig(k0) = free and sig(k1) = set. This implies sup(ti,1) = 1 and
sup(ti,4) = sup(bi,2) = 0 for all i ∈ {0, . . . , m − 1}. By sup(ti,1) = 1 and
sup(ti,4) = 0, there is an event X ∈ ζi such that sig(X) = inp and, by
sup(bi,2) = 0 for all i ∈ {0, . . . , m − 1}, we have sig(X) �= set for all X ∈ V (ϕ).
Thus, the event X ∈ ζi is unique and M = {X ∈ V (ϕ) | sig(X) = inp} is a
one-in-three model.

We briefly argue that H0 and H1 perform as announced: Let (sup, sig) be
a τ -region that solves α. If sig(k0) = inp then sup(h1,1) = 0 and sup(h1,2) = 1
which implies sig(z0) = set and thus sup(h0,3) = 1, a contradiction. Hence,
sig(k0) �= inp. If sig(k0) = used then sup(h0,1) = sup(h1,2) = 1 and sup(h0,3) =
0. Consequently, sig(z0) = inp or sig(k1) = inp but this contradicts sup(h1,2) = 1
and sup(h0,3) = 0. Thus, sig(k0) �= used. Thus, we have sig(k0) = free and
sup(h0,3) = 1, which implies that one of k1, z0 has a set-signature. By sig(k0) =
free, we get sup(h1,3) = 0 and thus sig(k1) = set.

If M is a one-in-three model of ϕ then we can define an α solving region
similar to the one of Theorem 4, where we replace sig(k0) = inp by sig(k0) = free.

Theorem 6. For any fixed g ≥ 1, deciding if a g-bounded TS A is τ -solvable is
NP-complete if τ = {nop, inp, res, swap} ∪ ω or τ = {nop, out, set, swap} ∪ ω and
ω ⊆ {used, free}.

Proof. The TS Aτ
ϕ has the following gadgets H0,H1,H2 and H3:

The gadgets H0, . . . , H3 provide the atom α = (k, h0,2) and ensure that a τ -
region (sup, sig) solving α satisfies sig(k) = inp and sup(h0,2) = 0. The TS Aτ

ϕ

has the following gadgets F0, F1 and for all j ∈ {0, . . . , 10} the gadget Gj :

For all j ∈ {0, . . . , 10}, the gadgets F0, F1, Gj ensure sig(uj) = swap for any
τ -region (sup, sig) solving α.

116 R. Tredup

For all i ∈ {0, . . . , m − 1}, the TS Aτ
ϕ has for the clause ζi = {Xi0 ,Xi1 ,Xi2}

some gadgets Ti,0, . . . , Ti,6 and Bi. The purpose of these gadgets is to make
the one-and-three satisfiability of ϕ and the solvability of α the same. In partic-
ular, the TS Ti,0 is defined by:

The gadgets Ti,1, Ti,2 and Ti,3 are defined (in this order) as follows:

Moreover, the gadgets Ti,4, Ti,5 and Ti,6 are defined like this:

Finally, the gadget Bi is defined as follows:

Let (sup, sig) be a τ -region solving α. We first argue that the gadgets H0, . . . , H3

and F0, F1 and G0, . . . , G10 ensure that a τ -region (sup, sig) solving α satisfies
sig(k) = inp, sup(h0,2) = 0 and sig(u0) = · · · = sig(u10) = swap.

If sig(k) = free and sup(h0,2) = 1 then s k s′ implies sup(s) = sup(s′) = 0.
Especially, by sup(h0,1) = 0 and sup(h0,2) = 1 we have sig(y0) = swap.
Moreover, by sup(h2,1) = sup(h2,4) = 0 and sig(y0) = swap we have that
sup(h2,2) = sup(h2,3) = 1. This implies sig(y1) ∈ {nop, used}. By sup(h1,1) = 0
and h1,1

y1 this implies sig(y1) = nop and thus sup(h1,2) = 0. Furthermore,
by sup(h1,2) = sup(h1,3) = 0 and h1,2

y0 h1,3 this implies sig(y0) �= swap, a
contradiction. Thus, we have sig(k) �= free.

If sig(k) = used and sup(h0,2) = 0 then s k s′ implies sup(s) = sup(s′) = 1.
Thus, we get sup(h0,1) = sup(h0,3) = sup(h1,3) = 1 which with sup(h0,2) = 0
implies sig(y0) = sig(v) = swap. Moreover, sup(h1,3) = 1 and sig(y0) = swap
imply sup(h1,2) = 0. By sup(h1,1) = 1, this implies sig(y1) ∈ {inp, res}. Finally,
sup(h3,3) = 1 and sig(v) = sig(y0) = swap imply sup(h3,1) = 1. This contradicts

The Complexity of Synthesizing nop-Equipped Boolean 117

sig(y1) ∈ {inp, res}. Thus, sig(k) �= used. Altogether, this shows that sig(k) =
inp and sup(h0,2) = 0, which implies sig(v) = swap.

By sig(k) = inp we have sup(f0,1) = sup(f1,1) = sup(gj,1) = 0 and
sup(f0,3) = sup(f1,3) = sup(gj,4) = 1. By sig(v) = swap, this implies
sup(f0,2) = sup(f1,2) = 0 and thus sig(z0), sig(z1) ∈ {nop, res, free}. More-
over, sup(gj,1) = 0, sup(gj,4) = 1 and sig(z0), sig(z1) ∈ {nop, res, free} imply
sup(gj,2) = 0 and sup(gj,3) = 1 and thus sig(uj) = swap.

Let i ∈ {0, . . . ,m−1}. We now show that Ti,0, . . . , Ti,6 and Bi collaborate as
announced. By sig(k) = inp and sig(u9) = sig(u10) = swap, we have sup(bi,1) =

1 for all i ∈ {0, . . . , m−1}. Since Xi bi,1 for all i ∈ {0, . . . , m−1}, the gadget Bi

ensures for all X ∈ V (ϕ) that s X s′ and sup(s) �= sup(s′) imply sig(X) = swap.
The

gadget Ti,0 works like this: By sig(k) = inp we get that sup(ti,0,1) = 0 and

sup(ti,0,8) = 1. Consequently, the image sup(ti,0,1)
sig(Xi0) . . .

sig(u3) sup(ti,0,8)

of the path ti,0,1
Xi0 . . . u3 ti,0,8 performs an odd number of state changes

between 0 to 1 in τ . Since sig(u0) = · · · = sig(u3) = swap, the events u0, . . . , u3

perform an even number of state changes. Thus, either all of Xi0 ,Xi1 ,Xi2 are
mapped to swap or exactly one of them. The construction of Ti,1, . . . , Ti,6 guar-
antees that there is exactly one variable event mapped to swap.

In particular, the gadgets Ti,4, Ti,5 and Ti,6 ensure that if e ∈
{w3i, w3i+1, w3i+2} then sig(e) �∈ {nop, used}. We argue for w3i: By sig(k) = inp
we get sup(ti,4,1) = 0 and sup(ti,4,4) = 1 which, by sig(u7) = sig(u8) = swap,
implies sup(ti,4,2) = 1 and sup(ti,4,3) = 0. Clearly, this implies sig(w3i) �∈
{nop, used}. Similarly, we obtain that sig(w3i+1) �∈ {nop, used} and sig(w3i+2) �∈
{nop, used}.

Finally, the gadgets Ti,1, Ti,2 and Ti,3 ensure that no two variable events
of the same clause can have a swap signature: By sig(k) = inp we get that
sup(ti,1,1) = 0 and sup(ti,1,7) = 1 which with sig(u4) = sig(u5) = sig(u6) =
swap implies sup(ti,1,3) = 0 and sup(ti,1,6) = 0. Thus, if sig(Xi0) = sig(Xi1) =
swap then sup(ti,1,4) = sup(ti,1,5) = 1 which implies sig(w3i) ∈ {nop, used}, a
contradiction. Similarly, one uses Ti,2 and Ti,3 to show that neither Xi0 and Xi2

nor Xi1 and Xi2 can simultaneously be mapped to swap. As i was arbitrary,
there is exactly one variable per clause that is mapped to swap. Thus, M =
{X ∈ V (ϕ) | sig(X) = swap} is a one-in-three model of ϕ.

Conversely, a one-in-three model M of ϕ allows a τ -region (sup, sig) that
solves α: The red colored area above indicates which states of H0, . . . , H3, F0, F1,
G0, . . . , G10 and T0,4, T0,5, T0,6, . . . , Tm−1,4, Tm−1,5, Tm−1,6 have positive sup-
port. Moreover, we define sup(s) = 1 for all s ∈ ⊥. Which states of Ti,0, . . . , Ti,3,
where i ∈ {0, . . . , m−1}, besides of k’s sources get a positive support depends on
which of Xi0 ,Xi1 ,Xi2 belongs to M . The red colored area sketches the situation
for Xi0 ∈ M . It is easy to see that there is for all e ∈ E(Aτ

ϕ) a fitting sig-value
making (sup, sig) a (solving) τ -region where sig(k) = inp and sup(h0,2) = 0. ��

118 R. Tredup

Theorem 7. For any fixed g ≥ 1, deciding if a g-bounded TS A is τ -solvable
is NP-complete if τ = {nop, inp, set, swap} ∪ ω and ω ⊆ {out, res, used, free} or if
τ = {nop, out, res, swap} ∪ ω and ω ⊆ {inp, set, used, free}.

Proof. We present the reduction for the types built by τ = {nop, inp, set, swap}∪
ω where ω ⊆ {out, res, used, free}. Again, the other types are covered by Lemma 2.

The TS Aτ
ϕ has the following gadgets H0,H1,H2 and H3:

If τ ∩ {used, free} �= ∅ then Aτ
ϕ has also the following gadgets H4, . . . , H12:

The gadgets H0, . . . , H3 (H4, . . . , H12, if added) provide α = (k, h3,3). They
ensure that if (sup, sig) τ -solves α, then sig(k) ∈ {inp, out}. The TS Aτ

ϕ adds
the following gadgets F0, F1, F2 and, for all i ∈ {0, . . . , 13}, the gadgets Gi, Ni:

The gadgets F0, F1, F2 and G0, N0, . . . , G13, N13 guarantee that if (sup, sig)
solves α then sig(ui) = swap. Similarly to the reduction of Theorem 6, the
TS Aτ

ϕ has for every i ∈ {0, . . . , m−1} gadgets Ti,0, . . . , Ti,6 and Bi to make the
one-in-three satisfiability of ϕ and the τ -solvability of α the same. These gadgets
and the ones for Theorem 6 have basically the same intention. However, since
the current types have different interactions, the peculiarity of these gadgets is
slightly different. In particular, Aτ

ϕ has for each clause ζi = {Xi0 ,Xi1 ,Xi2} the
following gadget Ti,0:

The Complexity of Synthesizing nop-Equipped Boolean 119

Moreover, the gadgets Ti,1, Ti,2 and Ti,3 are defined as follows:

Furthermore, the gadgets Ti,4, Ti,5 and Ti,6 are defined by

Finally, the TS Aτ
ϕ has for all i ∈ {0, . . . ,m − 1} the following gadget Bi:

We briefly argue for the announced functionality of the gadgets. Let (sup, sig)

be a τ -region solving α. If sig(k) = free then sup(h3,3) = 1 and s k s′ implies
sup(s) = sup(s′) = 0. Since sup(h3,1) = 0 and sup(h3,3) = 1, there is an event
e ∈ {v0, v1} such that sig(e) ∈ {out, set, swap}. If sig(v0) ∈ {out, set, swap}, then,
by sup(h1,1) = 0, we get sig(v0) = swap. Moreover, if sig(v1) ∈ {out, set, swap},
which implies sig(h3,2) = 1, then, by sup(h2,3) = 0, we get sig(v1) = swap.
By sig(v1) = swap and sup(h2,3) = 0, we get sup(h2,2) = 1. By sup(h1,1),
this implies sig(v0) = swap. Thus, in any case we get sig(v0) = swap. By
sig(v0) = swap and sup(h4,3) = sup(h5,1) = 0 we obtain sup(h4,2) = sup(h5,2) =
1 which implies sig(x) = swap. Using this and sup(s) = sup(s′) = 0 if

s k s′, we have that sup(hj,2) = 1 for all j ∈ {6, . . . , 11}. This implies
sig(y0) = sig(y1) = sig(y2) = swap. By sup(h12,1) = sup(h12,4) = 0,
the image of h12,1

y0 . . . y2 h12,4 is a path from 0 to 0 in τ . The number
of state changes between 0 and 1 on such a path is even. This contradicts
sig(y0) = sig(y1) = sig(y2) = swap. Thus, sig(k) �= free. The assumption that
sig(k) = used and sup(h3,3) = 0 yields a contradiction, too.

We conclude that sig(k) = inp and sup(h3,3) = 0. This implies sig(v0) �∈
{out, set} and if s k s′ ∈ Aτ

I , then sup(s) = 1 and sup(s′) = 0. Thus,
by sup(h2,1) = 0 and sup(h2,3) = 1 there is an event e ∈ {v0, v1} such
that sig(e) ∈ {out, set, swap}. If e = v0 then sig(v0) = swap. Moreover, if

120 R. Tredup

e = v1 then sup(h3,2) = 1 which with sup(h3,3) = 0 and sup(h1,1) = 1
implies sig(v0) = swap. Consequently, any case implies sig(v0) = swap. This
results in sig(uj) = swap for all j ∈ {0, . . . , 13} as follows. By sup(f0,3) =
sup(f1,3) = 1 and sig(v) = swap we obtain sup(f0,2) = sup(f1,2) = 0 which with
sup(f0,1) = sup(f1,1) = 0 implies sig(z0), sig(z1) ∈ {nop, res, free}. Moreover, by
sig(z0), sig(z1) ∈ {nop, res, free} and sup(f2,1) = 0 we get sup(f2,3) = 0 which
with sup(f2,4) = 1 implies sig(z2) ∈ {out, set, swap}. By sig(z0) ∈ {nop, res, free}
and sup(gi,1) = 0, we get sup(gi,2) = 0. Furthermore, sig(z1) ∈ {nop, res, free}
and sup(gi,4) = 1 yields sig(z1) = nop and sup(gi,3) = 1. This implies sig(ui) ∈
{out, set, swap}. Finally, by sup(ni,1) = 0 and sig(z2) ∈ {out, set, swap}, we get
sup(ni,1) = 1 and, by sup(ni,4) = 1 and sig(v0) = swap, we have sup(ni,3) = 0.
Since sig(ui) ∈ {out, set, swap}, this yields sig(ui) = swap for all i ∈ {0, . . . , 13}.
The gadgets Ti,0, . . . , Ti,6, where i ∈ {0, . . . ,m−1}, use sig(k) = inp and sig(ui) =
swap for all i ∈ {0, . . . , 13} similarly to the ones of Theorem 6 to ensure that
M = {X ∈ V (ϕ) | sig(X) = swap} is a one-in-three model of ϕ: By sup(ti,4,6) =
sup(ti,5,6) = sup(ti,6,6) = 1 and sig(u5) = sig(u6) = swap we have sup(ti,4,4) =

sup(ti,5,4) = sup(ti,6,4) = 1 for all i ∈ {0, . . . ,m − 1}. Thus, if X ∈ V (ϕ), s X s′

and sup(s) �= sup(s′) then sig(X) = swap. Using this, one argues in a manner
quite similar to that of the proof of Theorem 6 that Ti,0, . . . , Ti,6 collaborate in
such a way that there is exactly one variable event X ∈ {Xi0 ,Xi1 ,Xi2} such that
sig(X) = swap. Thus, M is a corresponding model. Moreover, if sig(k) = out and
sup(h3,3) = 1 then we obtain again that sig(ui) = swap for all i ∈ {0, . . . , 13}
which also guarantees that M is a searched model.

Conversely, if M is a one-in-three model of ϕ then we can define analogously
to Theorem 6 a τ -region solving α. ��

Theorem 8 ([12]). For any fixed g ≥ 1, deciding if a g-bounded TS A is τ -
solvable is NP-complete if τ ∈ {nop, inp, out} ∪ {used, free}.

Proof. The claim follows directly from our result of [12]. There we use 1-bounded
cycle free gadgets to prove that synthesis of (pure) b-bounded Petri nets is NP-
complete. The joining of [12] yields a 2-bounded TS. However, it is easy to see
that the 1-bounded joining of this paper fits, too. The (pure) 1-bounded Petri
net type is isomorphic to {nop, inp, out, used} ({nop, inp, out}). By symmetry,
τ -solving ESSP atoms by used is equivalent to solving them by free. ��

4 Polynomial Time Results

Theorem 9. For any fixed g < 2, one can decide in polynomial time if a g-
bounded TS A is τ -solvable if τ = {nop, inp, set} or τ = {nop, inp, set, used} or
τ = {nop, out, res} or τ = {nop, out, res, free} or τ = {nop, set, res} ∪ ω with
non-empty ω ⊆ {inp, out, used, free}.

Proof. If A is τ -solvable then no event e of A occurs twice in a row. Otherwise,
the SSP atom (s′, s′′) of a sequence s e s′ e s′′ is not τ -solvable. Thus, in what
follows, we assume that A has no event occurring twice in a row. Moreover, it

The Complexity of Synthesizing nop-Equipped Boolean 121

is easy to see that a 1-bounded TS A = s0
e1 . . . em sm is a simple directed

path on pairwise distinct states s0, . . . , sm or a directed cycle, that is, all states
s0, . . . , sm except s0 and sm are pairwise distinct. This proof proceeds as fol-
lows. First, we assume that τ = {nop, inp, set} and that A is a directed cycle and
argue that the τ -solvability of a given ESSP atom (k, s) or a SSP atom (s, s′) of
A is decidable in polynomial time. Secondly, we argue that the presented algo-
rithmic approach is applicable to directed paths, too. Thirdly, we show that the
procedure introduced for {nop, inp, set} can be extended to {nop, inp, set, used}.
By Lemma 2, this proves the claim for {nop, out, res} and {nop, out, res, free},
too. After that we investigate the case where τ = {nop, set, res} ∪ ω with non-
empty ω ⊆ {inp, out, used, free}. We argue that it is sufficient to decide the
{nop, inp, res, set}- and {nop, res, set, used}-solvability of A and that this is doable
in polynomial time. The corresponding procedures again modify those intro-
duced for {nop, inp, set}.

Let τ = {nop, inp, set} and A be 1-bounded (cycle) TS with event k ∈ E(A)
that occurs m times. Since A is a cycle, we can assume that k occurs at

A’s initial state: ι k . Moreover, since k does not occur twice in a row, its
occurrences partition A into m k-free subsequences I0, . . . , Im−1 such that

Ii = si
0

yi
1 si

1 . . . si
ni−1

yi
ni si

ni
, i ∈ {0, . . . , m − 1}, and sm−1

nm−1
= ι, cf. Fig. 6.

Obviously, defining sup(ι) = 1, sig(k) = inp and sig(e) = set for all e ∈
E(A) \ {k} inductively yields a region (sup, sig) solving the ESSP atoms (k, s)

where k s. Thus, it remains to consider the case ¬(k s). Since ¬(k s),
there is an i ∈ {0, . . . , m−1} such that s is a state of the i-th subsequence Ii. In
particular, there is a j ∈ {1, . . . , ni −1} such that s = si

j . The state si
j divides Ii

into the sequences I0i = si
0

yi
1 . . .

yi
j si

j and I1i = si
j

yi
j+1 . . .

yi
ni si

ni
, cf. Fig. 6.

If (sup, sig) is a region that solves α then sig(k) = inp and sup(si
j) = 0 is

true. This implies for all � ∈ {0, . . . , m − 1} that sup(s�
0) = 0 and sup(s�

n�
) = 1.

Thus, it remains to define the signature of the events of
⋃m−1

�=0 E(I�) such that

0 sig(y�
1) . . .

sig(y�
n�

) 1, for all � ∈ {0, . . . , m − 1} \ {i}, and 0 sig(yi
1) . . .

sig(yi
j) 0

and 0 sig(yi
j+1) . . .

sig(yi
ni

) 1.
If there is for all � ∈ {0, . . . , m − 1} \ {i} an event e� ∈ E(I�) such that

e� �∈ E(I0i) and if there is an event ei ∈ E(I1i) so that ei �∈ E(I0i) then sup(ι) = 1,

Fig. 6. A sketch of a cyclic 1-bounded input A with ESSP atom α = (k, si
j).

122 R. Tredup

sig(k) = inp, sig(e�) = set for all � ∈ {0, . . . , m − 1}, and sig(e) = nop for all
e ∈ E(A) \ {k, e0, . . . , e�} yields a τ -region (sup, sig) of A that solves α. Clearly,
whether A satisfies this property is decidable in polynomial time.

Otherwise, there is a sequence I ∈ {I0, . . . , Ii−1, I
1
i , Ii+1, . . . , Im−1} so that

E(I) ⊆ E(I0i). Thus, if (sup, sig) is a τ -region that solves α then there is a
� ∈ {1, . . . , j−1} such that sig(yi

�) = set. Consequently, there has to be a �′ ∈ {�+
1, . . . , j} such that sig(yi

�′) = inp and, in particular, sig(yi
�′′) = nop for all �′′ ∈

{�′ + 1, . . . , j}. Using this, one finds that (sup, sig) implies a region (sup′, sig′)
that solves α and gets along with at most two inp-events. More exactly, defining
sup′(ι) = 1, sig′(k) = sig′(yi

�′) = inp, sig′(e) = nop for all e ∈ {yi
�′+1, . . . , y

i
j} and

sig′(e) = set for all e ∈ E(A)\({k, yi
�′ , . . . , yi

j}) yields a valid τ -region (sup′, sig′)
that solves α. Since (sup, sig) was arbitrary, these deliberations show that in the
second case the atom α is τ -solvable if and only if there is a corresponding
region (sup′, sig′). This yields the following polynomial procedure that decides
whether α is τ -solvable: For � from j to 2 test if (sup�, sig�) (inductively) defined
by sup�(ι) = 1, sig�(yi

�) = inp, sig�(yi
�′) = nop for all �′ ∈ {� + 1, . . . , j} and

sig�(e) = set for all e ∈ E(A) \ ({k, yi
�, . . . , y

i
j}) yields a τ -region of A. If the test

succeeds for any iteration then return yes, otherwise return no.
We can modify this approach to test the τ -solvability of an SSP atom β =

(s, s′) as follows. Since A = ι e1 . . . em ι is a cycle we can assume without loss of
generality that s = ι and s′ = si for some i ∈ {1, . . . , m−1}. The states ι and si

partition A into two subsequences I0 = ι e1 . . . ei si and I1 = si
ei+1 . . . em ι.

If β is solvable by a region (sup′, sig′) such that sup′(ι) = 1 and sup′(si) = 0 then
there is an event e ∈ I0 such that sig(e) = inp. In particular, there is a region
(sup, sig) as follows: sup(ι) = 1, sig(ej) = inp and j ∈ {1, . . . , i}, sig(e�) = nop
for all � ∈ {j + 1, . . . , i} and sig(e) = set for all e ∈ E(A) \ {ej , . . . , ei}. Similar
to the approach for α, we can check if such a region exists in polynomial time.
Moreover, the case where sup(ι) = 0 and sup(si) = 1 works symmetrically.

So far we have shown that the τ -solvability of (E)SSP atoms of A are decid-
able in polynomial time if A is a cycle. If A = ι e1 . . . em sm is a directed
path then its cycle extension Ac has a fresh event ⊕ �∈ E(A) and is defined by

Ac = ι e1 . . . em sm
⊕ ι. The event ⊕ is unique thus an (E)SSP atom of A is

solvable by a τ -region of A if and only if it is solvable by a τ -region of Ac. Thus,
we can decide the solvability of atoms of A via Ac. Altogether, this proves that
the τ -solvability of (E)SSP atoms of 1-bounded inputs is decidable in polynomial
time. Since we have at most |S|2 + |E| · |S| atoms to solve, the decidability of
the {nop, inp, set}-solvability for 1-bounded TS is polynomial.

Similar to the discussion for τ = {nop, inp, set}, one argues that the following
assertion is true: If τ = {nop, inp, set, used} then there is a τ -region (sup′, sig′)
with sig′(k) = used and sup(si

j) = 0 if and only if there is a τ -region (sup, sig)
and an number � ∈ {1, . . . , j} such that sup(ι) = 1, sig(k) = used, sig(yi

�) =
inp, sig(yi

�′) = nop for all �′ ∈ {� + 1, . . . , j} and sig(e) = set for all e ∈
E(A) \ {k, yi

�, . . . , y
i
j}. Clearly, the procedure introduced for {nop, inp, set} can

be extended appropriately to a procedure that works for {nop, inp, set, used}.

The Complexity of Synthesizing nop-Equipped Boolean 123

It remains to investigate the case where τ = {nop, res, set} ∪ ω with non-
empty ω ⊆ {inp, out, used, free}. For a start, let’s argue that deciding the
τ -solvability is equivalent to deciding the {nop, inp, res, set}-solvability or the
{nop, res, set, used}-solvability of A. This can be seen as follows: If (sup, sig) is a
region that solves an ESSP atom α = (k, s) such that sig(k) = inp then there is a
{nop, inp, res, set}-region (sup′, sig′) that solves (k, s), too. The region (sup′, sig′)
originates from (sup, sig) by sup′ = sup, sig′(k) = inp and for all e ∈ E(A)\{k}
by sig′(e) = nop if sig(e) ∈ {nop, used, free}, sig′(e) = res if sig(e) ∈ {inp, res}
and, finally, sig′(e) = set if sig(e) ∈ {out, set}. Similarly, one argues that
α is τ -solvable such that sig(k) = out if and only if it is {nop, out, res, set}-
solvable. Moreover, {nop, inp, res, set} and {nop, out, res, set} are isomorphic thus
τ -solvability with inp or out reduces to {nop, inp, res, set}-solvability. Similarly,
the τ -solvability with used or free reduces to {nop, res, set, used}-solvability. It is
easy to see that the procedure introduced for {nop, inp, set} can be extended to
the types {nop, inp, res, set} and {nop, res, set, used}. The only difference is that
we now search for an event yi

� such that sig(yi
�) = res instead of sig(yi

�) = inp.
Finally, we observe that a SSP atom β = (s, s′) is τ -solvable if and only if it

is {nop, res, set}-solvable. The states s and s′ induce again a partition I0 and I1
of A and we can adapt the approach above to {nop, res, set}. ��

Theorem 10. For any fixed g ∈ N, deciding whether a g-bounded TS A is τ -
solvable is polynomial if one of the following conditions is true:

1. τ = {nop, inp, free} or τ = {nop, inp, used, free} or τ = {nop, out, used} or
τ = {nop, out, used, free} and g < 2.

2. τ = {nop, set, res} ∪ ω and ∅ �= ω ⊆ {used, free} and g < 3.
3. τ = τ ′ ∪ ω and τ ′ ∈ {{nop, set, swap}, {nop, res, swap}, {nop, res, set, swap}}

and ∅ �= ω ⊆ {used, free} and g < 2.
4. τ ∈ {{nop, inp}, {nop, inp, used}, {nop, out}, {nop, out, free}} or τ ∈ T =

{{nop, set, swap}, {nop, res, swap}, {nop, set, res}, {nop, set, res, swap}},

Proof. (1): It is easy to see that A is a loop, A ∼= s e s or that A is cycle
free, since there is an unsolvable SSP atom otherwise. Moreover, if an event e

occurs twice consecutively, s e s′ e s′′, then (s, s′) is not τ -solvable. Thus,
for every e ∈ E(A) there is a s ∈ S(A) such that (e, s) has to be solved by
sig(e) = inp (sig(e) = out) and sup(s) = 0 (sup(s) = 1). If e occurs twice on
the directed path A then such a region does not exist. On the other hand, A
is τ -solvable if every event occurs exactly once. Consequently, A is τ -solvable
if and only if it is 1-bounded and every event occurs exactly once.

(2): Since ESSP atoms of a τ -solvable input A are only solvable by used and free,
we have that if s e s′ ∈ A then s′ e s′′ ∈ A. If s = s′′ �= s′ or if s, s′, s′′

are pairwise distinct then (s, s′) is not τ -solvable. This implies s′ e s′. As
a result, τ -solvable inputs have the shape

124 R. Tredup

Thus, if the loop erasement A′ of A originates from A by erasing all loops
s e s, that is, A′ = ι e1 . . . em sm, then deciding the τ -solvability of A
reduces to deciding if A′ has the τ -SSP and if all ESSP atoms (e, s) with
¬(e s) of A′ are τ -solvable. This is doable in polynomial time by the
approach of Theorem 9.

(3): Since ESSP atoms of an input A are only solvable by used and free, if
s e s′ and s �= s′ then s′ e . If s e s′ e s′′ e s′′′ ∈ A and s, s′, s′′, s′′′

are pairwise different, then the SSP atom (s′, s′′′) is not τ -solvable. As a
consequence, τ -solvable inputs can have at most 3 different states.

(4): Let τ ∈ {{nop, inp}, {nop, inp, used}}. If A is τ -solvable, then for all e ∈
E(A) holds ι e . Otherwise, (e, ι) is not τ -solvable. Similarly, if τ ∈ T ,
then ESSP atoms are not τ -solvable thus, every event occurs at ι. A is g-
bounded. This implies |E(A)| ≤ g. Thus, A has at most 2 · |τ |g τ -regions.
Since g is fixed, τ -synthesis is polynomial by brut-force. By Lemma 2, the
claim follows.

��

5 Conclusion

In this paper, we fully characterize the computational complexity of nop-
equipped Boolean Petri nets from g-bounded TS for any fixed g ∈ N. Our results
show that if τ -synthesis is hard then it remains hard even for low bounds g.
Moreover, they also show that when g becomes very small, sometimes it makes
the difference between hardness and tractability, cf. Fig. 1 §1–§3 and §9, but
sometimes it does not, cf. Fig. 1 §4–§7. In this sense, the parameter g helps to
recognize interactions that contribute to the power of a type. By Theorem 3
and Theorem 9, {nop, inp, set}-synthesis is hard if g ≥ 2 and tractable if g < 2,
respectively. By Theorem 5, {nop, inp, set, free}-synthesis remains hard for all
g ≥ 1. Thus, if restricted to 1-bounded inputs then the test interaction free
makes the difference between hardness and tractability of synthesis. Surprisingly
enough, by Theorem 9, replacing free by used makes synthesis from 1-bounded
TS tractable again. It remains future work, to characterize the computational
complexity of synthesis for the remaining 128 types which do not contain nop.
Moreover, since τ -synthesis generally remains hard even for (small) fixed g, the
bound of a TS is ruled out for FPT-algorithms. Future work might be concerned
with parameterizing τ -synthesis by the dependence number of the searched τ -net:
If N = (P, T, f,M0) is a Boolean net, p ∈ P and if the dependence number dp of
p is defined by dp = |{t ∈ T | f(p, t) �= nop}| then the dependence number d of N
is defined by d = max{dp | p ∈ P}. At first glance, d appears to be a promising
parameter for FPT-approaches because this parameterization puts the problem

The Complexity of Synthesizing nop-Equipped Boolean 125

into the complexity class XP: Since a τ -region of A = (S,E, δ, ι) is determined
by sup(ι) and sig, for each (E)SSP atom α there are at most 2 · |τ |d ·

∑d
i=0

(|E|
i

)

fitting τ -regions solving α. Thus, by |τ | ≤ 8, τ -synthesis parameterized by d is
decidable in O(|E|d · |S| · max{|S|, |E|}).

References

1. Badouel, E., Bernardinello, L., Darondeau, P.: The synthesis problem for elemen-
tary net systems is NP-complete. Theor. Comput. Sci. 186(1–2), 107–134 (1997)

2. Badouel, E., Bernardinello, L., Darondeau, P.: Petri Net Synthesis. Texts in The-
oretical Computer Science. An EATCS Series, Springer (2015)

3. Badouel, E., Darondeau, P.: Trace nets and process automata. Acta Inf. 32(7),
647–679 (1995)

4. Cortadella, J.: Private correspondance (2017)
5. Kleijn, J., Koutny, M., Pietkiewicz-Koutny, M., Rozenberg, G.: Step semantics of

Boolean nets. Acta Inf. 50(1), 15–39 (2013)
6. Montanari, U., Rossi, F.: Contextual nets. Acta Inf. 32(6), 545–596 (1995)
7. Moore, C., Robson, J.M.: Hard tiling problems with simple tiles. Discrete Comput.

Geom. 26(4), 573–590 (2001)
8. Pietkiewicz-Koutny, M.: Transition systems of elementary net systems with

inhibitor arcs. In: Azéma, P., Balbo, G. (eds.) ICATPN 1997. LNCS, vol. 1248,
pp. 310–327. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-63139-
9 43

9. Rozenberg, G., Engelfriet, J.: Elementary net systems. In: Petri Nets. Lecture
Notes in Computer Science, vol. 1491, pp. 12–121. Springer (1996)

10. Schmitt, V.: Flip-flop nets. In: Puech, C., Reischuk, R. (eds.) STACS 1996. LNCS,
vol. 1046, pp. 515–528. Springer, Heidelberg (1996). https://doi.org/10.1007/3-
540-60922-9 42

11. Tredup, R.: The complexity of synthesizing nopequipped boolean nets from g-
bounded inputs (technical report), to appear in CoRR (2019)

12. Tredup, R.: Hardness results for the synthesis of b-bounded Petri Nets. In:
Donatelli, S., Haar, S. (eds.) PETRI NETS 2019. LNCS, vol. 11522, pp. 127–147.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21571-2 9

13. Tredup, R.: Tracking down the bad guys: reset and set make feasibility for flip-flop
net derivatives NP-complete. ICE. EPTCS 304, 20–37 (2019)

14. Tredup, R., Rosenke, C.: Narrowing down the hardness barrier of synthesizing
elementary net systems. In: CONCUR. LIPIcs, vol. 118, pp. 16:1–16:15. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik (2018)

15. Tredup, R., Rosenke, C.: The complexity of synthesis for 43 Boolean Petri Net
types. In: Gopal, T.V., Watada, J. (eds.) TAMC 2019. LNCS, vol. 11436, pp. 615–
634. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14812-6 38

16. Tredup, R., Rosenke, C.: On the hardness of synthesizing Boolean nets. In:
ATAED@Petri Nets/ACSD. CEUR Workshop Proceedings, vol. 2371, pp. 71–86.
CEUR-WS.org (2019)

17. Tredup, R., Rosenke, C., Wolf, K.: Elementary net synthesis remains NP-complete
even for extremely simple inputs. In: Khomenko, V., Roux, O.H. (eds.) PETRI
NETS 2018. LNCS, vol. 10877, pp. 40–59. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-91268-4 3

https://doi.org/10.1007/3-540-63139-9_43
https://doi.org/10.1007/3-540-63139-9_43
https://doi.org/10.1007/3-540-60922-9_42
https://doi.org/10.1007/3-540-60922-9_42
https://doi.org/10.1007/978-3-030-21571-2_9
https://doi.org/10.1007/978-3-030-14812-6_38
https://doi.org/10.1007/978-3-319-91268-4_3
https://doi.org/10.1007/978-3-319-91268-4_3

	The Complexity of Synthesizing nop-Equipped Boolean Petri Nets from g-Bounded Inputs
	1 Introduction
	2 Preliminaries
	3 Hardness Results
	4 Polynomial Time Results
	5 Conclusion
	References

