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Abstract. Boolean Petri nets equipped with nop allow places and tran-
sitions to be independent by being related by nop. We characterize for any
fixed g € N the computational complexity of synthesizing nop-equipped
Boolean Petri nets from labeled directed graphs whose states have at
most g incoming and at most g outgoing arcs.

1 Introduction

Boolean Petri nets are a basic model for the description of distributed and con-
current systems. These nets allow at most one token on each place p in every
reachable marking. Therefore, p is considered a Boolean condition that is true if
p is marked and false otherwise. A place p and a transition ¢ of a Boolean Petri
net N are related by one of the following Boolean interactions: no operation
(nop), input (inp), output (out), unconditionally set to true (set), uncondition-
ally reset to false (res), inverting (swap), test if true (used), and test if false
(free). The relation between p and ¢ determines which conditions p must satisfy
to allow t’s firing and which impact has the firing of ¢ on p: The interaction inp
(out) defines that p must be true (false) first and false (true) after ¢ has fired.
If p and t are related by free (used) then ¢’s firing proves that p is false (true).
The interaction nop says that p and t are independent, that is, neither need p
to fulfill any condition nor has the firing of ¢ any impact on p. If p and ¢ are
related by res (set) then p can be both false or true but after ¢’s firing it is false
(true). Also, the interaction swap does not require that p satisfies any particular
condition to enable t. Here, the firing of ¢ inverts p’s Boolean value.

Boolean Petri nets are classified by the interactions of I that they
use to relate places and transitions. More exactly, a subset 7 C I is
called a type of net and a net N is of type 7 (a 7-net) if it applies at
most the interactions of 7. So far, research has explicitly discussed seven
Boolean Petri net types: Elementary net systems {nop,inp,out} [9], Conteztual
nets {nop,inp,out, used, free} [6], event/condition nets {nop,inp,out,used} [2],
inhibitor nets {nop,inp,out,free} [8], set nets {nop,inp,set,used} [5], trace nets
{nop, inp, out, set, res, used, free} [3], and flip flop nets {nop,inp,out,swap} [10].
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However, since we have eight interactions to choose from, there are actually a
total of 256 different types.

This paper addresses the computational complexity of the 7-synthesis prob-
lem. It consists in deciding whether a given directed labeled graph A, also called
transition system, is isomorphic to the reachability graph of a 7-net N and in
constructing IV if it exists. It has been shown that 7-synthesis is NP-complete
if 7 = {nop,inp,out} [1], even if the inputs are strongly restricted [14,17].
On the contrary, in [10], it has been shown that it becomes polynomial if
7 = {nop, inp, out,swap}. These opposing results motivate the question which
interactions of I make the synthesis problem hard and which make it tractable.
In our previous work of [13,15,16], we answer this question partly and reveal the
computational complexity of 120 of the 128 types that allow nop.

In this paper, we investigate for fixed g € N the computational complexity of
T-synthesis restricted to g-bounded inputs, that is, every state of A has at most
g incoming and at most g outgoing arcs. On the one hand, inputs of practical
applications tend to have a low bound g such as benchmarks of digital hardware
design [4]. On the other hand, considering restricted inputs hopefully gives us a
better understanding of the problem’s hardness. Thus, g-bounded inputs are inter-
esting from both the practical and the theoretical point of view. In this paper,
we completely characterize the complexity of 7-synthesis restricted to g-bounded
inputs for all types that allow places and transitions to be independent, that is,
which contain nop. Figure 1 summarizes our findings: For the types of §1 and
§2, we showed hardness of synthesis without restriction in [15]. In this paper, we
strengthen these results to 2- and 3-bounded inputs, respectively, and show that
these bounds are tight. The hardness result of the types of §3 originates from [16].
This paper shows that a bound less than 2 makes synthesis tractable. Hardness for
the types of §4 to §8 has been shown for 2-bounded inputs in [16]. In this paper,
we strengthen this results to 1-bounded inputs. The hardness part for the types
of §9 origin from [13]. In this paper, we argue that the bound 2 is tight. Finally,
while the results of §10 are new, the ones of §11 have been found in [15].

For all considered types 7, the corresponding hardness results are based on
a reduction of the so-called cubic monotone one-in-three 3SAT problem [7].
All reductions follow a common approach that represents clauses by directed
labeled paths. Thus, this paper also contributes a very general way to prove
NP-completeness of synthesis of Boolean types of nets.

2 Preliminaries

Transition Systems. A transition system (TS) A = (S,E,J) is a directed
labeled graph with states S, events E and partial transition function 6 : S x
E — S, where 6(s,e) = s’ is interpreted as s—¢.s’. For s_ .5’ we say s is
a source and s’ is a sink of e, respectively. An event e occurs at a state s,
denoted by s— %, if §(s, e) is defined. An initialized TS A = (S, E, d, s¢) is a TS
with a distinct state sg € S where every state s € S is reachable from sy by a
directed labeled path. T'Ss in this paper are deterministic by design as their state
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§ |Type of net g | Complexity |#
1 [{nop, inp, free}, {nop, inp, used, free}, > 2|NP-complete| 4
{nop, out, used}, {nop, out, used, free} < 2| polynomial
2 > 3|NP-complete| 3

-
{nop, set, res} Uw and () # w C {used, free} < 3| polynomial

{nop, inp, set}, {nop, inp, set, used}, > 2|NP-complete|16
3 {nop, inp, res, set} Uw and w C {out, used, free}, < 2| polynomial
{nop, out, res}, {nop, out, res, free},
{nop, out, res,set} Uw and w C {inp, used, free}
4 [{nop, inp,out, set} Uw or {nop, inp, out, res} Uw and > 1|NP-complete| 8
w C {used, free}
5 |[{nop, inp, set, free}, {nop, inp, set, used, free}, > 1|NP-complete| 4

{nop, out, res, used}, {nop, out, res, used, free}
6 [{nop, inp, res,swap} Uw or {nop,out,set,swap} Uw and |> 1|NP-complete| 8
w C {used, free}

7 |{nop, inp, set, swap} Uw and w C {out, res, used, free}, > 1|NP-complete |28
{nop, out, res, swap} Uw and w C {inp, set, used, free}

8 |{nop, inp,out} Uw and w C {used, free} > 1|NP-complete| 4

9 [{nop, set, swap} U w, {nop, res,swap} U w, > 2|NP-complete| 9
{nop, res, set, swap} Uw and 0 # w C {used, free} < 2| polynomial

10|{nop, inp}, {nop, inp,used}, {nop,out}, {nop,out,free} |> 0| polynomial | 8
{nop, set, swap}, {nop, res, swap}, {nop, set, res},
{nop, set, res, swap}

11|{nop, res} Uw and w C {inp, used, free}, >
{nop, set} Uw and w C {out, used, free},

{nop, swap} Uw and w C {inp, out, used, free},
{nop} Uw and w C {used, free}

(=]

polynomial |36

Fig. 1. The computational complexity of Boolean net synthesis from g-bounded TS for
all types that contain nop.

transition behavior is given by a (partial) function. Let g € N. An initialized TS
A is called g-bounded if for all s € S(A) the number of incoming and outgoing

arcs at s is restricted by g: [{e € E(A) | —%»s}| < gand [{e € E(4) | s} < g.

Boolean Types of Nets [2]. The following notion of Boolean types of nets serves
as vehicle to capture many Boolean Petri nets in a uniform way. A Boolean type
of net T = ({0,1}, E;,0,) is a TS such that E. is a subset of the Boolean interac-
tions: E; C I = {nop, inp, out, set, res, swap, used, free}. The interactions i € I are
binary partial functions 4 : {0,1} — {0, 1} as defined in Fig. 2. For all z € {0,1}
and all ¢ € E; the transition function of 7 is defined by ¢, (z,4) = i(z). Notice that
I contains all binary partial functions {0, 1} — {0, 1} except for the entirely unde-
fined function L. Even if a type 7 includes L, this event can never occur, so it would
be useless. Thus, I is complete for deterministic Boolean types of nets, and that
means there are a total of 256 of them. By definition, a Boolean type 7 is completely
determined by its event set E.. Hence, in the following we identify 7 with E,, cf.
Fig. 3. Moreover, for readability, we group interactions by enter = {out, set, swap},
exit = {inp, res, swap}, keep™ = {nop, set, used}, and keep~ = {nop, res, free}.
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w‘nop ‘lnp ‘ ‘set T ‘res(a: ‘used ‘free x)
of O 0 1 0
1 1 0 0 1

Fig. 2. All interactions in I. An empty cell means that the column’s function is unde-
fined on the respective . The entirely undefined function is missing in I.

out, swap set, swap
nop /\ /\ nop
free[ 0 1\3 nop nop 0 1\3 used
res \_/ \_/ set
res, swap inp, swap

Fig. 3. Left: 7 = {nop, out, res, swap, free}. Right: 7 = {nop, inp, set, swap, used}. 7 and
7 are isomorphic. The isomorphism ¢ : 7 — 7 is given by ¢(s) =1 — s for s € {0,1},
¢(i) =i for i € {nop,swap}, ¢(out) = inp, ¢(res) = set and ¢(free) = used.

7-Nets. Let 7 C I. A Boolean Petri net N = (P, T, Hy, f) of type 7, (T-net)
is given by finite and disjoint sets P of places and T of transitions, an initial
marking Hy : P — {0,1}, and a (total) flow function f : P x T — 7. A 7-
net realizes a certain behavior by firing sequences of transitions: A transition
t € T can fire in a marking M : P — {0,1} if 6.(M(p), f(p,t)) is defined
for all p € P. By firing, ¢t produces the next marking M’ : P — {0,1} where

M'(p) = 6.(M(p), f(p,t)) for all p € P. This is denoted by M_—L_.M’. Given a 7-
net N = (P, T, Hy, f), its behavior is captured by a transition system Ay, called
the reachability graph of N. The state set of Ay consists of all markings that,
starting from initial state Hy, can be reached by firing a sequence of transitions.

For every reachable marking M and transition ¢t € T with M_* M’ the state
transition function  of A is defined as 6(M,t) = M'.

7-Regions. Let 7 C I. If an input A of 7-synthesis allows a positive decision then
we want to construct a corresponding 7-net N purely from A. Since A and Ay
are isomorphic, N’s transitions correspond to A’s events. However, the notion of
a place is unknown for TSs. So-called regions mimic places of nets: A 7-region
of a given A = (S, E, 0, s¢) is a pair (sup, sig) of support sup: S — S, ={0,1}
and signature sig : E — E, = 7 where every transition s—°.s’ of A leads to

a transition sup(s ”LQ sup(s’) of 7. While a region divides S into the two
sets sup~1(b) = {s € S| sup(s ) = b} for b € {0,1}, the events are cumulated
by sig=t(i) = {e € E | sigle) = i} for all available interactions i € 7. We
also use sig=(7') = {e € E | sig(e) € 7'} for 7/ C 7. A region (sup, sig)
models a place p and the corresponding part of the flow function f. In particular,
sig(e) models f(p,e) and sup(s) models M(p) in the marking M € RS(N)
corresponding to s € S(A). Every set R of T-regions of A defines the synthesized
T-net N¥ = (R, E, f, Hy) with flow function f((sup, sig),e) = sig(e) and initial
marking Ho((sup, sig)) = sup(so) for all (sup, sig) € R,e € E. It is well known
that A NR and A are isomorphic if and only if R’s regions solve certain separation
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atoms [2], to be introduced next. A pair (s, s’) of distinct states of A defines a
state separation atom (SSP atom). A 7-region R = (sup, sig) solves (s,s’) if
sup(s) # sup(s’). The meaning of R is to ensure that N contains at least one
place R such that M(R) # M'(R) for the markings M and M’ corresponding
to s and ', respectively. If there is a 7-region that solves (s, s’) then s and s’
are called 7-solvable. If every SSP atom of A is 7-solvable then A has the 7-state
separation property (7-SSP). A pair (e, s) of event e € E and state s € S where e

does not occur at s, that is ~s—° ., defines an event state separation atom (ESSP
atom). A 7-region R = (sup, sig) solves (e, s) if sig(e) is not defined on sup(s)
in 7, that is, =, (sup(s), sig(e)). The meaning of R is to ensure that there is at
least one place R in N such that =M_°, for the marking M corresponding
to s. If there is a T-region that solves (e, s) then e and s are called T-solvable.
If every ESSP atom of A is 7-solvable then A has the 7-cvent state separation
property (T-ESSP). A set R of 7-regions of A is called T-admissible if for every of
A’s (E)SSP atoms there is a 7-region R in R that solves it. The following lemma,
borrowed from [2, p.163], summarizes the already implied connection between
the existence of T-admissible sets of A and (the solvability of) 7-synthesis:

Lemma 1 ([2]). A TS A is isomorphic to the reachability graph of a T-net N
if and only if there is a T-admissible set R of A such that N = NX.

We say a 7-net N 7-solves A if Ay and A are isomorphic. By Lemma 1,
deciding if A is 7-solvable reduces to deciding whether it has the 7-(E)SSP.
Moreover, it is easy to see that if 7 and 7 are isomorphic then deciding the
7-(E)SSP reduces to deciding the 7-(E)SSP:

Lemma 2 (Without proof). If 7 and 7 are isomorphic types of nets then a
TS A has the 7-(E)SSP if and only if A has the 7-(E)SSP.

In particular, we benefit from the isomorphisms that map nop to nop, swap
to swap, inp to out, set to res, used to free, and vice versa.

a a a a a a a a a
S0 —— S1 —— S2 S0 —> S1 — S2 S0 ¢—— S1 «— S2 S0 —— S1 —— S2 — S3

TS A;. TS As. TS As. TS As.

Fig. 4. Let 7 = {nop, set, swap, free}. The TSs Ai,..., As give examples for the pres-
ence and absence of the 7-(E)SSP: TS A; has the 7-ESSP as a occurs at every state.
It has also the 7-SSP: The region R = (sup, sig) where sup(so) = sup(s2) = 1,
sup(s1) = 0 and sig(a) = swap separates the pairs so, s1 and s2, s1. Moreover, the region
R = (sup’,sig") where sup’(so) = 0 and sup’(s1) = sup’(s2) = 1 and sig’(a) = set
separates so and si. Notice that R and R’ can be translated into 7-regions, where
7 = {nop, res, swap, used}, via the isomorphism of Fig. 3. For example, if s € S(A1)
and e € F(A1) and sup”(s) = ¢(sup(s)) and sig”(e) = ¢(sig(e)) then the resulting
7-region R" = (sup”, sig") separates so, s1 and s2,s1. Thus, Ay has also 7-(E)SSP. TS
A has the 7-SSP but not the 7-ESSP as event a is not inhibitable at the state so. T'S
As has the 7-ESSP (a occurs at every state) but not the 7-SSP as s1 and sz are not
separable. TS A4 has neither the 7-ESSP nor the 7-SSP.
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3 Hardness Results

In this section, for several types of nets 7 C I and fixed g € N, we show that
7-synthesis is NP-complete even if the input TS A is g-bounded, cf. Fig. 1. Since
T-synthesis is known to be in NP for all 7 C I [16], we restrict ourselves to the
hardness part. All proofs are based on a reduction of the problem cubic monotone
one-in-three 3-SAT which has been shown to be NP-complete in [7]. The input
for this problem is a Boolean expression ¢ = {(p,...,(n—1} of m negation-
free three-clauses (; = {Xj,, X;,, X;,} such that every variable X € V(p) =
U;’Z)l (i occurs in exactly three clauses. Notice that the latter implies |V ()| =
m. Moreover, we assume without loss of generality that if ¢; = {X;,, X;,, Xi, }
then ip < i1 < i2. The question to answer is whether there is a subset M C V (p)
with [MN¢|=1forallie {0,...,m—1}. For all considered types of nets 7 and
corresponding bounds g, we reduce a given instance ¢ to a g-bounded TS A7
such that the following two conditions are true: Firstly, the TS A7, has an ESSP
atom « which is 7-solvable if and only if there is a one-in-three model M of .
Secondly, if the ESSP atom « is 7-solvable then all ESSP and SSP atoms of A7,
are also 7-solvable. A reduction that satisfies these conditions proves the NP-
hardness of T-synthesis as follows: If ¢ has a one-three-model then the conditions
ensure that the TS A7 has the 7-(E)SSP and thus is 7-solvable. Conversely, if
A7, is T-solvable then, by definition, it has the 7-ESSP. In particular, there is a
7-region that solves o which, by the first condition, implies that ¢ has a one-in-
three model. Consequently, A7, is 7-solvable if and only if ¢ has a one-in-three
model. Due to space restrictions, we omit for all considered types the proof that
A7, satisfies the second condition, that is, that the solvability of « implies the
(E)SSP. However, the corresponding proofs can be found in the technical report
[11].

A key idea, applied by all reductions in one way or another, is the repre-
sentation of every clause ¢; = {X;,, X4,, X4, }, ¢ € {0,...,m — 1}, by a directed
labeled path of A; on which the variables of (; occur as events:

86,08, j—58i 41 .- 8ij/ —58i /41 - Si i —58; 41 .- Sin

The reductions ensure that if a 7-region (sup,sig) solves the atom « then
sup(si o) # sup(s;n). This makes the image of this path under (sup, sig) a
directed path from 0 to 1 or from 1 to 0 in 7. Thus, there has to be an event e
on the path that causes the state change from sup(s; o) to sup(s; ) by sig(e).
We exploit this property and ensure that this state change is unambiguously
done by (the signature of) exactly one variable event per clause. As a result, the
corresponding variable events define a searched model of ¢ via their signature.
The proof of the following theorem gives a first example of this approach, and
Fig. 5 shows a full example reduction.

Theorem 1. For any fized g > 2, deciding if a g-bounded TS A is -
solvable is NP-complete if T = {nop,inp, free}, T = {nop, inp, used, free}, T =
{nop, out, used} and T = {nop, out, used, free}.
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1 1 1 S2 1 S3 1s S4 1. Ss 1. Se 1e
@Dl @1l GBQl 693l $4l @sl @61
to,0 — tos ti0 — t15 ta0 — t25 t30 — t35 ta,0 — tas ts,0 — 5,5 ho
ko ko ko ko ko ko
Xo Xo Xo | Xz | x| Xs | ko |
to,1 t11 t21 t3,1 ta,1 ts5,1 h1
x| Xz | x| Xi| Xa| X | k|
to,2 l1,2 ta22 3,2 la2 ts,2 ha
Xa | Xs | Xs | Xs | Xs | X |
to,3 t1,3 ta3 t3,3 ta3 ts5,3
k| k| k) k| k| k|
to,4 t1,4 ta4 t3,4 tg4 t5.4

Fig.5. The TS Aj for ¢ = {(o,...,(s} with clauses (o = {Xo,X1,X2}, 1 =
{Xo,X2, X3}, G2 = {Xo0,X1,X3}, & = {Xo, X4, X5}, G4 = {X1,X4,X5}, & =
{X3, X4, X5} . The red colored area sketc.hes the 7-region (sup, sig) that solves (k1, ho)
and corresponds to the one-in-three model M = {Xo, X4}. (Color figure online)

Proof. We argue for 7 € {{nop,inp,free}, {nop,inp,used,free}}, which by
Lemma 2 proves the claim for the other types, too.

Firstly, the TS A7, has the following gadget H (left hand side) that provides
the events kg, k1 and the atom « = (kq, hg). Secondly, it has for every clause
¢ = {Xiy, X4y, X, } the following gadget T; (right hand side) that applies ko, k1
and (/s variables as events.

ki k1 Xio X;

0 v
hg ——— hy ——— ho tio tin ! ti2 tis3 tia

J ko

tis

Finally, A; uses the states lg,..., 1, and events ©1,---O,, and Bg,...,Dm
to join the gadgets Ty, ...,Tn—1 and H by L; Sit 141 and Liﬂti,o, for all

i€{0,...,m—1}, and L, Pm hg, cf. Fig. 5.

The gadget H ensures that if (sup,sig) is a region that solves a then
sup(hg) = 1 and sig(ky) = free which implies sup(h;) = 0 and sig(ko) = inp.
This is because sig(k1) € {inp,used} and sup(hg) = 0 implies sig(ko) €

{out, set,swap}, which is impossible. Consequently, sk, and ¢/_F, imply
sup(s) = 1 and sup(s’) = 0, respectively. The TS A7 uses these properties to
ensure via Tp, ..., Tp,—1 that the region (sup, sig) implies a one-in-three model
of .

More exactly, if ¢ € {0,...,m — 1} then for T; we have by ti7oi> and

ti,SL that sup(t; o) = 1 and sup(t;3) = 0. Thus, there is an event X, where
J €10,1,2}, such that sig(X;,) = inp. Clearly, if sig(X;,) = inp then sig(X;,) #
inp for all j < ¢ € {0,1,2} as X;,’s sources have a O-support. Consequently,
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there is exactly one variable event X € (; such that sig(X) = inp. Since i was
arbitrary, this is simultaneously true for all clauses (p,...,(n—1. Thus, the set
M ={X € V(p) | sig(X) =inp} is a one-in-three model of ¢.

Conversely, if ¢ is one-in-three satisfiable then there is a 7-region (sup, sig)
of A7 that solves a. In particular, if M is a one-in-three model of ¢ then we
first define sup(Lo) = 1. Secondly, for all e € E(A7) we define sig(e) = free
if e = k1, sig(e) = inp if e € {ko} UM and else sig(e) = nop. Since A7, is
reachable, by inductively defining sup(s;+1) = 0, (sup(s;), sig(e;)) for all paths
Lo-ys1 ... 8p_1-2"15,, this defines a fitting region (sup, sig), cf. Fig. 5.

This proves that « is 7-solvable if and only if ¢ is one-in-three satisfiable.

In the remainder of this section, we present the remaining hardness results in
accordance to Fig. 1 and the corresponding reductions that prove them.

Theorem 2. For any fized g > 3, deciding if a g-bounded TS A is T-solvable is
NP-complete if T = {nop, set, res} Uw and ) # w C {used, free}.

Proof. The TS A7, has the following gadgets Ho, H; and Hj (in this order):

ko k‘l k‘() kQ k'l kS
o TR e Y . (Y (Y,
0 1 2 3
ho,o h(],l h(),2 h1,0 I — h1,1 hz,o _— h2,1
- -
kl kO

The gadget Hy provides a = (ko, ho,2). By symmetry, A7 is {nop, set, res, used}-
solvable if and only if it is {nop, set, res, free}- or {nop, set, res, free, used }-solvable.
Thus, in the following we assume 7 = {nop, set, res, used}, sig(ko) = used and
sup(ho2) = 0 if (sup, sig) T-solves a.. As a result, by sig(kg) = used, implying

sup(ho1) =1, and sup(ho2) = 0 we have sig(k1) = res. Especially, if " .s then

sup(s) = 1 and if -FL,s then sup(s) = 0. Thus, sup(hy o) = sup(hs1) = 1 and
sup(hy,1) = sup(ha,p) = 0 which implies sig(k2) = res and sig(ks) = set.

The construction uses ko and k3 to produce some neutral events. More
exactly, the TS A7, implements for all j € {0,...,16m — 1} the following gadget
F}; that uses ko and k3 to ensure that the events z; are neutral:

Zj C2j Cj41 Zj

g (Y (Y O L O

fio fin iz fis fia
- -

k‘g k3

By sig(ks) = res and sig(ks) = set we have sup(f;1) = 0 and sup(f;4) = L.

This implies si9() 0 and 5%) 1 and thus sig(z;) = nop.
Finally, for every i € {0,.. — 1} and clause ¢; = {X;,, X;,, Xi, }, the TS
A7, has the following four gadgets T;.0,Ti1T; 2 and T; 3 (in this order):



The Complexity of Synthesizing nop-Equipped Boolean 109

216 Xig 216i+1 Xi, 216042 Xi, 216i+3
e (@] X, - A6 - X, - Z16is2 - X, o) A543 -
ti,0,0 ti0,1 ;0,2 ti0,3 30,4 ti 0,5 ti0,6 ti0,7
ko Ysi+1 Y3zi+2 kq
216i+4 Xy 216i+5 Xiy 216i+6 Xi, 216i+7
216i+4 R X, R 216i+5 R Xi, R 216i+6 R Xio P! Z16i+7 !
i,1,0 i,1,1 ti1,2 ti13 tin,4 tils tile ti7
ko Y3i Ysi k1
216i+8 Xi, 216i+9 Xio 216i+10 Xy 216i+11
216i+8 m X, m Z16i+9 m Xio m 216i+10 m X, m 216i+11 m
ti2,0 2,1 tio2 ti23 2,4 i,2,5 tioe tionr
ko Y3i+1 k1
216i+12 Y3i 216i+13 Y3i+1 216i+14 Y3i+2 216i+15
216i+12 m Y3i m 216i+13 m Y3i+1 2 216i+14 2 Y3i+2 2 Z16i+15 2
,3,0 tiz ti3,2 ti3,3 1,3,4 ,3,5 1,3,6 ti3,7
k1 ko

Ti0,---,1;4 ensure that there is exactly one X € (; with sig(X) = res: By
sig(ko) = used and sig(k1) = res we get sup(t;0,0) = sup(ti1,0) = sup(ti20) =
sup(tis,z) = 1 and sup(tio7) = sup(ti1,7) = sup(tizr) = sup(tiso) = 0. Since

Z16iy -+ - 5 2165+11 are neutral, this implies sup(tm,@) = sup(ti_l’@) = Sup(ti72,6) =0
and that there is a variable event with a res-signature. Moreover, by sup(t; 3,0) =
0 and sup(t; 3,7) = 1 and the neutrality of z16;112, . - -, #16i+15 there is an event of

Ysi, Ysi+1, Ysi+2 With a set-signature. We argue that there is exactly one variable
event with a res-signature: By sup(t;06) = sup(ti16) = sup(tize) = 0, we
have sig(X) & {set, used} for all X € {X,,,X;,, X, }. Hence, if sig(X;,) = res
then sup(t;02) = --- = sup(tio,e) = 0 which implies sig(ys;+1) # set and
s19(ysit+2) # set and thus sig(ys;) = set. By sig(ys;) = set we have sup(t;1,2) =
sup(t;1,4) = 1 which implies sig(X;,) # res and sig(X;,) # res.

If sig(X;,) = res, then sup(t;0,4) = sup(t;12) = 0 which implies sig(ys;) #
set and sig(ysit+2) # set and thus sig(ys;+1) = set. By sig(ysi+1) = set we have
sup(t;0,2) = sup(ti2,2) = 1 which implies sig(X;,) # res and sig(X;,) # res.

Since sig(X;,) = res or sig(X;,) = res implies sig(X;,) # res, we conclude
that sig(X;,) = res implies sig(X;,) # res and sig(X;,) # res. Thus, there
is exactly one variable of the i-th clause with a 51gnature res. Hence, the set
M ={X € V(p) | sig(X) = res} is a one-in-three model of ¢.

To finally build A7, we use the states L = {Lo,..., Laomt2} and the events
@ = {®o,...,Doom+2}t and © = {S1,...,O20m+2}. The states of L are con-
nected by L; Zi#l 141 and ;g 2%t 1 for j € {0,...,20m + 1}. Let
x=16m+ 3 and y = 19m + 3. For all i € {0,1,2}, for all £ € {0,...,16m — 1}
and for all j € {0,...,m} we add the following edges that connect the gadgets



110 R. Tredup

Ho,Hy,Hy and Fy,...,Figm-1 and 100,701,202, Tm—1,0Tm—-1,1Tm—1,2
and

®; Det3 Da+3j+i Dy+j
P D Dr+3 ) Drt35+i ) Dy+j G
Li ——— hio Lops —— feo Laotsjri —— tji0 Lytj —— tiso

If M is a one-in-three model of ¢ then « is 7-solvable by a 7-region (sup, sig):
If s € {ho0,h1,0,h21} or {fjo|j € {0,...,16m — 1}} then sup(s) = 1. The
support values of the states of T; o, ..., T} 3, where ¢ € {0,...,m—1}, are defined
in accordance to which event of X;,, X;,,X;, belongs to M. The red colored
area above sketches X;, € M. Moreover, we define sup(s) =0 for all s € L. Let
e € E(A})\®. We define sig(e) = used if e = ko and sig(e) = resife € {k1 }UM.
For all i € {0,...,m — 1} and clauses {X,,, X;,, X;,} and all j € {0,1,2} we set
sig(e) = set if e = y3;1; and X;, € M. Otherwise, we define sig(e) = nop. For

i1

all events e € @ and edges s—%.s" of A we define sig(e) = set if sup(s’) = 1 and,
otherwise, sig(e) = nop. The resulting 7-region (sup, sig) of A7, solves a. O

Theorem 3. For any fixed g > 2, deciding if a g-bounded TS A is T-solvable
is NP-complete if (1) 7 = {nop,inp,set} or T = {nop,inp, set, used} or T =
{nop, inp, res, set} Uw and w C {out, used, free} or if (2) T = {nop, out, res} or
7 = {nop, out, res, free} or T = {nop, out, res, set} Uw and w C {inp, used, free}.

Proof. We present a reduction for the types of (1). By Lemma 2, this proves the
claim also for the types of (2). The TS A, has the following gadget H:

20 Vo k qo 20

ho,o ho,1 ho,2 ho,3 ho,4 ho,s ho.e
T
/ 0 Co
T3m—2
/ C3m—2
k Z3m—1 V3m—1 k q3m—1 Z3m—1
h3m71,0 I h3mfl,1 — h3m71,2 — h3m71,3 — h3m71,4 — h3mfl,5 — h3m71,6
T3m—1
/ C3m—1
k Wo Po k Yo Wo
ham,0 —— ham,1 —— ham2 ham,3 h3m,a h3m,s h3m,6
T3m
/ C3m
T6m—2
/ Cem—2
W3m—1 P3m—1 k Ysam—1 W3m—1

hem—-1,0 —> hem—1,1 — Pem—-12 —> hem-1,3 — hem—1,4 — hem—-1,5 — Nem—1,6

The intention of the gadget H is to provide the atom o = (k, ho 6) and the events
of Z=A{zo0,...,23m-1}, V={vo,...,03m—1} and W = {wp, ..., W3m_1}-
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Moreover, the TS A7 has the following two gadgets Fy and Fy and for all
i €{0,...,6m — 2} the following gadget G; (in this order):

k n 20 k 0 k Ci
foo — foo —— fo2 — fo3 —— foa fio — fir — fi2 9i,0 —— gi,1

gi2 — 9i3
i

Finally, the TS A7, has for every clause ¢; = {X;,, Xi,, X, }, 7 € {0,...,m —
1}, the following gadgets T; ¢, T;,1 and T; 2 (in this order):

ti,0,0 k ti1,0 k
tio1 tin
Usi W3 Usi+1 W31
X X, X, X, X Xio
—_ 3 _ > —_ 3 _ 3 _ > —_ 3
tiog . “tios _ “tioa_ “tios titg _ “tinz _ Ttina " tiis
T, Ty Ty Ty Ly Lig
tiz2,0 \k
ti2n
U342 W3it2
XiQ Xz' Xi
tizo - O tizsz 2 O tia. o tias
Tiy Lig Tiy

In the following, we argue that H, Fj, F} and Gy,...,G—2 collaborate
like this: If (sup,sig) is a 7-region solving « then either sig(k) = inp, V C
sig~1(enter) and W C sig=!(keep™) or sig(k) = out and V C sig~!(exit) and
W C sig_l(keepﬂ. Moreover, we prove that this implies by the functionality of
T0.05---,Tm—1,2 that M = {X € V(y) | sig(X) # nop} is a one-in-three model
of .

Let (sup, sig) be a T-region that solves a. Since the interactions res, set and
nop are defined on both 0 and 1, this implies sig(k) € {inp,out,used,free}.

If sig(k) = used then sup(s) = sup(s’) = 1 for every tramsition s—* g

Hence, we have sup(fos) = sup(fi,1) = sup(hos) = 1. By definition of

inp,res we have that —©.s and sig(e) € {inp,res} implies sup(s) = 0. Con-
20

sequently, by 20, fo3 and —20.f, 1 we get sig(zo),sig(qo) € keep™ and thus

sup(ho.a) = sup(hos) = sup(hos) = 1 which contradicts —sup(ho,e) siglh)
Hence, sig(k) # used. Similarly, sig(k) = free implies sup(ho,s) = 0, which is a
contradiction. Thus, we have that sig(k) = inp and sup(hg,¢) = 0 or sig(k) = out
and sup(hg¢) = 1.

As a next step, we show that sig(k) = inp and sup(hg) = 0 together imply

sig(vo) € enter and sig(z) € keep™. By sig(k) = inp and —¥_hg, and ho s

we get sup(ho,1) = 0 and sup(hg3) = 1. Moreover, by —*¢.hg ¢ and sup(ho¢) =
0 we obtain sig(z9) € keep, which by sup(ho1) = 0 implies sup(hoz2) = 0.



112 R. Tredup

Finally, sup(ho2) = 0 and sup(hg 3) = 1 imply sig(vo) € enter. Notice that this
reasoning purely bases on sig(k) = inp and sup(ho) = 0. Moreover, A7, uses
for every j € {0,...,6m — 2} the TS G, to ensure sup(hog) = sup(hig) =
-+ = sup(hem—1,6). This transfers zy € keep™ and vy € enter to V' C enter and
W C keep™. In particular, by sig(k) = inp we have sup(g;0) = sup(g;1) = 1
and sup(g;2) = sup(g;3) = 0, that is, sig(c;) = nop. Hence, if sig(k) = inp
and sup(hog) = 0 then sup(h;¢) = 0 for all i € {0,...,6m — 1}. Perfectly
similar to the discussion for 2o and vy we obtain that V C sig~!(enter) and
W C sig='(keep™), respectively. Similarly, sig(k) = out and sup(hgg) = 1
imply V C sig~!(exit) and W C sig~"(keep™).

We now argue that T} g, ..., T,—1,2 ensure that M = {X € V(p) | sig(X) #
nop} is a one-in-three model of ¢. Let i € {0,...,m — 1} and sig(k) = inp
and sup(hgg) = 0 implying V C sig—'(enter) and W C sig—!(keep”). By
sig(k) = inp and V C sig '(enter) and W C sig '(keep”) we have that
sup(tioz) = sup(ting) = sup(tizz) = 1 and sup(tios) = sup(tiis) =
sup(t;25) = 0. As a result, every event e € {X;,, X;,, X;,} has a 0-sink, which
implies sig(e) € {nop,inp,res}, and every event e € {x;,,z;,, x;, } has a 1-sink,
which implies sig(e) € {nop,out,set}. By sup(t;p2) = 1 and sup(t;05) = 0
there is a X € {X;,,X;,, X;,} such that sig(X) € {inp,res}. We argue that
sig(Y) = nop for Y € {X;,,X:, Xi,} \ {X}. If sig(X;,) € {inp,res} then
sup(t; 0,3) = 0 which implies sig(z;,) € {out,set} and, therefore, sup(t;1.4) = 1.
Since sig(X;,), sig(Xi,) € {out,set} and sig(x;,), sig(z;,) & {inp,res}, it holds
sup(t;0,3) = sup(tio.4) =0 and sup(t;1,3) = sup(t;1,4) = 1, respectively. Thus,
for all e € {X;,,X;,}, there are edges — s and —¢.s’" such that sup(s) = 0
and sup(s’) = 1. This implies sig(e) = nop. Similarly, if sig(X;,) € {inp, res},
then sig(X;,) = sig(X;,) = nop, and if sig(X;,) € {inp,res}, then sig(X;,) =
sig(X;,) = nop. Hence, every clause (; has exactly one variable event with a
signature different from nop. This makes M = {X € V(y) | sig(X) # nop} a
one-in-three model of ¢. Similarly, if sig(k) = out and sup(ho ) = 1, then M is
also a one-in-three model of .

To join the gadgets and finally build A7, we use the states L =
{Llo,...yLomt1} and the events & = {Dg,...,Pom+1} and © =

{&1,...,89m+1}. The states of L are connected by L, Sty Ljy1 for j €
{0,...,9m + 1}. Let « = 6m + 2. For all i« € {0,...,6m — 2}, for all
j € {0,...,m — 1} and for all £ € {0,1,2} we add the following edges
that connect the gadgets Hy, Fo, F1,Go, ..., Gem—2 and Ty 0,701,702 up to
Trm-1,0Tm-1,1,Tim-1,2 to A:
D ® D D Datj4:

Lo -, ho,o 14 -, fo,0 Lo -, fio  Liys ;i 9i+3,0 Layjrae ﬂ tjeo

If M is a one-in-three model of ¢ then there is a 7-region (sup, sig) of A7, that
solves a.. The red colored area of the figures introducing the gadgets indicates
already a positive support of some states. In particular, if s € {hjo,hj3|j €

{07 .. 76m_]—}} ors e {f0,0a f0,2af0,37f1707f1,1} S € {gj,Oagj,l ‘ j S {07 cee 76m_
2}} then sup(s) = 1. The support values of the states of T p,...,T; 2, where
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i €{0,...,m—1}, are defined in accordance to which of the events X, , X; , X;,
belongs to M. The red colored area above sketches the situation where X;, € M.
Moreover, for all s € L, we define sup(s) = 0. Let e € E(A7) \ ©. We define
sigle) =inpife € {k}UM. For alli € {0,...,m—1} and clauses {X;,, Xi,, X, }
and all j € {0,1,2} we set sig(e) =setif e=nor e e {vj,p; | j €{0,...,3m —
1}} or e = x;; and X;; € M. Otherwise, we define sig(e) = nop. Finally, for all
events e € @ and edges s— %5’ of A we define sig(e) = set if sup(s’) = 1 and,
otherwise, sig(e) = nop.

Joining of 1-Bounded Gadgets. In the following, we consider types 7 where
T-synthesis from 1-bounded inputs is NP-complete. All gadgets Ag,..., A, of

the reductions are directed paths A; = s)-L,..., st on pairwise distinct
states s, ..., s.,. For all types, the joining is the concatenation
©1 1 O2 D2 S) [$3)
A; = A 1 Ay 1o " 1, ", A,

with fresh states 1q,...,1, and events &1, - 8,,P1, - Pn.

Theorem 4. For any fixed g > 1, deciding if a g-bounded TS A is T-solvable
is NP-complete if T = {nop, inp, out, set} Uw or 7 = {nop, inp, out, res} Uw and
w C {used, free}.

Proof. Our construction proves the claim for 7 = {nop,inp, set,out} U w with
w C {used, free}. By Lemma 2, this proves the claim also for the other types.
The TS A, has the following gadgets Ho, H1, Ha and H3 (in this order):

ko 20 0 k1 2 20 0 ko

hoo ho 1 ho 2 ho3 ho4 ho s ho.6 ho7 hos
20 ko 21 ko ko k1

h1,0 — h1.1 h— h1,2 }12,0 — h/271 h— h2,2 h:s,o — h3,1 —— h3,2

If used € 7 then A7, has the following gadget Hy:

kl Z0 kl
hao ha ha ha3

For all i € {0,...,m— 1}, the TS A, has for the clause (; = {X;,, Xi;, Xi, } and
the variable X; € V(i) the following gadgets T; and B;, respectively:

kl X1 Xi1 Xz ko Xi k‘o

tio il i i3 tia ti5 bi g — b1 — bi2

The gadget Hp provides the atom o = (ko,hoe). Moreover, the gadgets

Hy, ..., Hy ensure that if (sup, sig) is a 7-region solving « then sig(ko) = out
and sig(ky) € {out,set}. In particular, Hy prevents the solvability of o by
used. As a result, such a region implies sup(t;1) = 1, sup(t;4a) = 0 and

sup(b;1) =0 for all i € {0,...,m —1}. On the one hand, by sup(b; 1) = 0 for all
i €40,...,m — 1} we have sig(X) ¢ {out,set} for all X € V(¢). On the other
hand, by sup(t;1) = 1 and sup(t;4) = O there is an event X € {X,,, X;,, X, }

10
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such that sig(X) = inp. Since no variable event has an incoming signature
we obtain immediately sig(Y) # inp for Y € {X;,,Xi,Xi,} \ {X}. Thus,
M ={X € V(p) | sig(X) =inp} is a one-in-three model of ¢.

We argue that Hy,..., Hs behave as announced. Let (sup, sig) be a region
that solves (ko, hos). If sig(ko) = inp then sup(hog) = 0 and sig(ho7) = 1,
implying sig(o) € {out,set} and sup(hos) = 1. Thus, there is an event e €
{k1, z0, 71} with sig(e) = inp. By sig(ko) = inp we have sup(h1,1) = sup(ha1) =
1 and sup(hs,1) = 0 implying sig(e) # inp for all e € {k1, 29, 21}, a contradiction.

If sig(ko) = free then sup(ho) = 1 and sup(ho 1) = sup(ho7) = sup(hi1) =
0 which implies sig(o) = inp and sup(ho2) = 1. By sup(ho,1) = 0 and sup(ho 2) =
1 we have sig(zo) € {out,set} which by sup(hq,1) = 0 is a contradiction.

If sig(ko) = used then sup(ho¢) = 0 and sup(ho,1) = sup(ho,7) = sup(hi1) =
sup(ho1) = 1. This implies sig(o) € {out,set} and sup(hoz) = 1. Thus,
by sup(hos) = O there is an event e € {ki, 20,21} with sig(e) = inp. By
sup(h11) = sup(ha1) = 1, we have e & {zp,2z1}. If sig(k1) = inp then
sup(hy,1) = 0 and sup(hy 2) = 1, implying sig(zo) € {out,set} and sup(hoe) = 1.
This is a contradiction. Altogether, this proves sig(ko) & {inp, used, free}.

Consequently, we obtain sig(kg) = out and sup(hge) = 1 which implies
sig(o) = inp and sup(ho 3) = 0. By sup(ho) = 1, this implies that there is an
event e € {k1, 20,21} with sig(e) € {out,set}. Again by sig(ko) = out, we have
sup(hy,1) = sup(hg,1) = 0, which implies e = k;. The signatures sig(ko) = out
and sig(k1) € {out,set} and the construction of Ty, ..., T,—1 and By, ..., Bm-1
ensure that M = {X € V(y) | sig(X) = inp} is a one-in-three model of : By
sig(ko) = out and sig(k1) € {out,set} we have sup(t;1) = 1 and sup(t;4) =
sup(b; 1) =0for alli € {0,...,m —1}. By sup(t;1) = 1 and sup(t; 4) = 0, there
is an event X € (; such that sig(X) = inp. Moreover, by sup(b; 1) = 0, we get
sig(X;) & enter for all ¢ € {0,...,m — 1}. Thus, X is unambiguous and thus M
is a searched model.

Conversely, if M is a one-in-three model of ¢ then there is a 7-region (sup, sig)
that solves a. The red colored area above sketches states with a positive support.
Which states of T, besides of ¢; o,t; 1 and ¢; 5, get a positive support depends for
all i € {0,...,m — 1} on which of X;,, X;,,X;, belongs to M. The red colored
area above sketches the case X;, € M. Moreover, we define sup(s) = 1if s = b; ¢
and X; € M or if s € L. The signature is defined as follows: sig(k;) = set; for
all e € E(A7)\{k1} and all s_“.s" € A7, if sup(s’) > sup(s), then sig(e) = out;
if sup(s) > sup(s’), then sig(e) = inp; else sig(e) = nop. O

Theorem 5. For any g > 1, deciding if a g-bounded TS A is T-solvable is
NP-complete if T = {nop, inp, set, free} or T = {nop, inp, set, used, free} or T =
{nop, out, res, used} or T = {nop, out, res, used, free}.

Proof. Our reduction proves the claim for 7 = {nop,inp,set,free} and 7 =
{nop, inp, set, used, free} and thus by Lemma 2, for the other types, too.

The TS A7, has the following gadgets Ho and H; providing the atom
(ko, ho,3):
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For all i € {0,...,m — 1}, the A7 for the clause (; = {X;,, X;,, X, } and the
variable X; € V() the gadgets T; and B; as previously defined for Theorem 4.
The gadgets Hy and H; ensure that a 7-region (sup,sig) solving (ko,ho,3)
satisfies sig(ko) = free and sig(k;) = set. This implies sup(t;1) = 1 and
sup(t;s) = sup(bjz) = 0 for all ¢ € {0,...,m — 1}. By sup(t;1) = 1 and
sup(t;s) = 0, there is an event X € (; such that sig(X) = inp and, by
sup(b;2) =0 for all ¢ € {0,...,m — 1}, we have sig(X) # set for all X € V().
Thus, the event X € ¢; is unique and M = {X € V(p) | sig(X) = inp} is a
one-in-three model.

We briefly argue that Hy and H; perform as announced: Let (sup, sig) be
a 7-region that solves a. If sig(ko) = inp then sup(hq,1) = 0 and sup(hi2) =1
which implies sig(z9) = set and thus sup(ho3) = 1, a contradiction. Hence,
sig(ko) # inp. If sig(ko) = used then sup(ho1) = sup(hi2) =1 and sup(ho,3) =
0. Consequently, sig(zo) = inp or sig(k1) = inp but this contradicts sup(hi 2) =1
and sup(hg,3) = 0. Thus, sig(ko) # used. Thus, we have sig(ky) = free and
sup(hg,3) = 1, which implies that one of k1, zp has a set-signature. By sig(ko) =
free, we get sup(hq,3) = 0 and thus sig(k1) = set.

If M is a one-in-three model of ¢ then we can define an a solving region
similar to the one of Theorem 4, where we replace sig(kg) = inp by sig(ko) = free.

Theorem 6. For any fized g > 1, deciding if a g-bounded TS A is T-solvable is
NP-complete if T = {nop, inp, res, swap} Uw or T = {nop, out, set, swap} Uw and
w C {used, free}.

Proof. The TS A7, has the following gadgets Ho, H1, H2 and Hj:

k Yo 1 k k Y1 Yo k
ho,o e hgyl _— ho‘yg L} hoyg _ hU,4 hl,O _— hl,l _ hl,g —_ hl’g —_ h1,4

k Yo 4 Yo k Y1 Yo k
hg’o — hZ,l — }112,2 E— h2’3 — h274 — }L275 hg’o — ]L3=1 — }113'2 L} h3’3 — ]L3,4

The gadgets Hy, ..., Hs provide the atom o = (k,hg2) and ensure that a 7-
region (sup, sig) solving « satisfies sig(k) = inp and sup(hg2) = 0. The TS A7
has the following gadgets Fy, F} and for all j € {0,...,10} the gadget G;:

k 20 1 k k 21 1 k
fo,o — fo1 — foz = Joz — foa fio — fi1 — fie = fi3 — fia

k 20 u; 21
95,0 — 95,1 — 952 — 95,3 —> 9j4 — Y9j5

For all j € {0,...,10}, the gadgets Fy, F1,G; ensure sig(u;) = swap for any
T-region (sup, sig) solving a.
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For all i € {0,...,m — 1}, the TS A7, has for the clause (; = {X;,, Xi,, Xi, }
some gadgets T; o, ...,T;6 and B;. The purpose of these gadgets is to make
the one-and-three satisfiability of ¢ and the solvability of o the same. In partic-
ular, the TS T; o is defined by:

k uo Xio U1 Xiy U2 Xiy u3 k
tin,0 — tio1 —> tio2 — tios — tioa —>t105 — ti0,6 — tio7r — tins — i0,9

The gadgets T;,1,T; 2 and T; 3 are defined (in this order) as follows:

k Uy us Xig w3; k
t1104)t1114’“124)ttli4)257,144)74‘115*)12164)151174)2218

k Uy us W3i41 Xi, Ug k
ti20 — ti21 —H‘wz—>tlz:z—>h24—>t125*>tlzo—>tz27—>ttzs

k Uy us Xi, Wsit2 Xi, ug k

Moreover, the gadgets T; 4,T; 5 and T; ¢ are defined like this:

k u7 W34 ug k

tia0 tian tia2 tia3 tia,4 tias
k w7y W3i+1 ug k

ti,5,0 tis ti5,2 05,3 ti,5,4 ti5,5
. uy W3i4+2 usg k

ti,6,0 ti6,1 ti,6,2 ti,6.3 ti,6,4 ti6,5

Finally, the gadget B; is defined as follows:

X Ug U0 k
bio bi 1 bi2 bi 3 bia

Let (sup, sig) be a 7-region solving . We first argue that the gadgets Hy, ..., H3
and Fp, F; and Gy, ..., G ensure that a 7-region (sup, sig) solving « satisfies
sig(k) = inp, sup(ho,2) = 0 and sig(ug) = - -+ = sig(uip) = swap.

If sig(k) = free and sup(hgo) = 1 then s—* s’ implies sup(s) = sup(s’) = 0.

Especially, by sup(ho1) = 0 and sup(ho2) = 1 we have sig(yo) = swap.
Moreover, by sup(he1) = sup(he4) = 0 and sig(yo) = swap we have that
sup(hg, 2) = sup(hg 3) = 1. This implies sig(y1) € {nop, used}. By sup(hi1) =0
and hy 1YL, this implies sig(y;) = nop and thus sup(hy2) = 0. Furthermore,
by sup(hl,g) = sup(h1,3) = 0 and hq oY .h; 3 this implies sig(yo) # swap, a
contradiction. Thus, we have sig(k) # free.

If sig(k) = used and sup(ho2) = 0 then s—* s’ implies sup(s) = sup(s’) = 1.
Thus, we get sup(ho1) = sup(ho3) = sup(hi,3) = 1 which with sup(hg2) = 0
implies sig(yo) = sig(v) = swap. Moreover, sup(hi 3) = 1 and sig(yo) = swap
imply sup(hi2) = 0. By sup(hy1) = 1, this implies sig(y;) € {inp, res}. Finally,
sup(hs 3) =1 and sig(v) = sig(yo) = swap imply sup(hs 1) = 1. This contradicts
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sig(y1) € {inp,res}. Thus, sig(k) # used. Altogether, this shows that sig(k) =
inp and sup(ho 2) = 0, which implies sig(v) = swap.

By sig(k) = inp we have sup(fo1) = sup(fi,1) = sup(g;1) = 0 and
sup(fo3) = sup(fi,3) = sup(gja) = 1. By sig(v) = swap, this implies
sup(fo,2) = sup(fi2) = 0 and thus sig(zo),sig(z1) € {nop,res,free}. More-
over, sup(g;1) = 0, sup(gj4) = 1 and sig(zo), sig(z1) € {nop,res, free} imply
sup(g;.2) = 0 and sup(g;3) = 1 and thus sig(u;) = swap.

Let ¢ € {0,...,m—1}. We now show that T} o, ..., T; ¢ and B; collaborate as
announced. By sig(k) = inp and sig(ug) = sig(u19) = swap, we have sup(b; 1) =

1foralli e {0,...,m—1}. Since me for alli € {0,...,m—1}, the gadget B;

ensures for all X € V(i) that s—Xs" and sup(s) # sup(s’) imply sig(X) = swap.

The
gadget T;o works like this: By sig(k) = inp we get that sup(t;0,1) = 0 and
)Sig(Xio) - siglus) sup(tios)
of the path t@o,lﬁ%..&ti’o’g performs an odd number of state changes
between 0 to 1 in 7. Since sig(ug) = - - - = sig(uz) = swap, the events uo, ..., us
perform an even number of state changes. Thus, either all of X, , X;,, X;, are
mapped to swap or exactly one of them. The construction of T; 1,...,T; ¢ guar-
antees that there is exactly one variable event mapped to swap.

In particular, the gadgets T;4,7;5 and T;¢ ensure that if e €
{ws;, w3it1, wsi42} then sig(e) & {nop, used}. We argue for ws;: By sig(k) = inp
we get sup(tia1) = 0 and sup(t;4.4) = 1 which, by sig(ur) = sig(us) = swap,
implies sup(ti42) = 1 and sup(t;s3) = 0. Clearly, this implies sig(ws;) &
{nop, used}. Similarly, we obtain that sig(ws;+1) & {nop, used} and sig(ws;t2) &

sup(t;0,8) = 1. Consequently, the image sup(t; 01

{nop, used}.
Finally, the gadgets T;1,T;2 and T; 3 ensure that no two variable events
of the same clause can have a swap signature: By sig(k) = inp we get that

sup(t;1,1) = 0 and sup(t;1,7) = 1 which with sig(us) = sig(us) = sig(us) =
swap implies sup(t;1,3) = 0 and sup(t;1,6) = 0. Thus, if sig(X,,) = sig(X;,) =
swap then sup(t;14) = sup(t;15) = 1 which implies sig(ws;) € {nop, used}, a
contradiction. Similarly, one uses T; 5 and T; 3 to show that neither X;, and X;,
nor X;, and X;, can simultaneously be mapped to swap. As ¢ was arbitrary,
there is exactly one variable per clause that is mapped to swap. Thus, M =
{X € V(p) | sig(X) = swap} is a one-in-three model of ¢.

Conversely, a one-in-three model M of ¢ allows a 7-region (sup, sig) that
solves a: The red colored area above indicates which states of Hg, ..., Hs, Fy, F,
GO7 ceey GlO and 1—'()747 T0,5, TO)G’ ce ,1—'7‘,171)47 Tm71,5; Tm71,6 have pOSitiVG sup-
port. Moreover, we define sup(s) =1 for all s € L. Which states of T} o, ..., T; 3,
where i € {0,...,m—1}, besides of k’s sources get a positive support depends on
which of X;,, X;,, X;, belongs to M. The red colored area sketches the situation
for X;, € M. It is easy to see that there is for all e € E(A}) a fitting sig-value
making (sup, sig) a (solving) 7-region where sig(k) = inp and sup(ho2) =0. O
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Theorem 7. For any fized g > 1, deciding if a g-bounded TS A is T-solvable
is NP-complete if T = {nop, inp, set, swap} Uw and w C {out, res, used, free} or if
7 = {nop, out, res, swap} Uw and w C {inp, set, used, free}.

Proof. We present the reduction for the types built by 7 = {nop, inp, set, swap}U
w where w C {out, res, used, free}. Again, the other types are covered by Lemma 2.
The TS A7, has the following gadgets Ho, H1, H> and H3:

k Vo Vo k
ho,o — hgy —— ho,z ]7/1,0 e h1,1 — h1,2
k Vo V1 k k U1 Vo
ha,0 ho 1 ha2 ha.3 ho.4 h3,0 h31 h3,2 h3.3

If 7 N {used, free} # () then A7, has also the following gadgets Hay, ..., Hia:

k x Vo k k Vo aw k
h4,0 — }L471 —_— h4_2 — h413 — }14‘4 h570 —_— hs_’] — h512 — h573 —_— }1/574
he,o -L }1’6,1 i} h672 ﬂ) hs,g -L }1/6/1 h770 -L h7_’1 ﬂ) h7,2 i} h773 -L i1/7_/1
hg,o —L h/gyl i} h&z i} hg,g -L h/g.4 h970 -L ]L,L)_yl i} hg,g i} h9’3 -L }L9_4
hio,0 L h1o1 L hio 2 ﬁ hio,3 L hi1o,4 ha1,o L hi1 1 —2> hai2 i> hi1s — hi14

Yo Y1 Y2 k
hi2o — hi21 —— higg — his3 — higg —— hios

The gadgets Ho,...,Hs (Ha,...,Hio, if added) provide o« = (k, h33). They
ensure that if (sup, sig) 7-solves a, then sig(k) € {inp,out}. The TS A7 adds
the following gadgets Fy, F1, F» and, for all ¢ € {0,...,13}, the gadgets G;, N;:

Vo k

k 20 k 21 Vo k
fo,o E— fo,l I— fo,z I— f0,3 E— fo.,& fl,o E— f1,1 I— f1,2 — f1,3 E— f1,4

k 20 21 22 k
f2,0 S— f2,1 — f2,2 — f2,3 — f2,4 a— f2,5

13 20 U; z1 153 k Z9 U; Vo k
9i,0 — 9i1 — 9i2 — 9i,3 — Gi 4 —> Gi5 ;0 — N1 — N2 — N3 — N4 — N5

The gadgets Fy, F1,F» and Gy, Ny, ...,G13, N3 guarantee that if (sup, sig)
solves a then sig(u;) = swap. Similarly to the reduction of Theorem 6, the
TS A7, has for every i € {0,...,m—1} gadgets T}, ..., ;¢ and B; to make the
one-in-three satisfiability of ¢ and the 7-solvability of o the same. These gadgets
and the ones for Theorem 6 have basically the same intention. However, since
the current types have different interactions, the peculiarity of these gadgets is
slightly different. In particular, A7, has for each clause (; = {X;,, Xi,, X;, } the
following gadget T; o:

i09
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k Uug Xig Ul X, U2 Xiy us k
ti0,0 — ti01 — ti02 — tio3 — tioa —>tz05 — tioe —>t107—>tlos — ti0,9

Moreover, the gadgets T; 1,75 2 and T; 3 are defined as follows:
Uy X wW3; X us Ug

k k
t110*>7f111*>h12—>t113*>tu4—>t115—>t116*>t117*>f718

k Uy Xi, W3i41 Xio us Ug k
ti20 — ti21 *>t122—>t123*>t124*>t125 4>7L126*>t127*>t128

k Uy Xiy W3it2 Xi, us ug k
tiz o — tisn —>t132—>tz33—>t134—>t135 — tige — tigg —— tiss

Furthermore, the gadgets T; 4,T; 5 and T; ¢ are defined by

k u7 ug w3; Ug u10 k

tia0 tian tiao ;4,3 54,4 tias tiae tian
k u7 ug W3i41 Uug u10 k

ti,5,0 ti5,1 ti5,2 ti5.3 i,5,4 ti5,5 ti5,6 ti5,7
k Uz ug W3i42 Uy U1 k

ti6,0 tie61 tie6,2 tie6,3 1,6,4 ti6,5 ti 6,6 tier

Finally, the TS A7, has for all i € {0,...,m — 1} the following gadget B;:

We briefly argue for the announced functionality of the gadgets. Let (sup, sig)

be a 7-region solving a. If sig(k) = free then sup(hz3) = 1 and s ¢ implies
sup(s) = sup(s’) = 0. Since sup(hs 1) = 0 and sup(hg3) = 1, there is an event
e € {vg, v1} such that sig(e) € {out, set,swap}. If sig(vy) € {out, set,swap}, then,
by sup(h1,1) = 0, we get sig(vo) = swap. Moreover, if sig(vi) € {out,set,swap},
which implies sig(hs2) = 1, then, by sup(ha3) = 0, we get sig(vi) = swap.
By sig(v1) = swap and sup(hs3) = 0, we get sup(he2) = 1. By sup(hi 1),
this implies sig(vg) = swap. Thus, in any case we get sig(vg) = swap. By
sig(vo) = swap and sup(hy 3) = sup(hs,1) = 0 we obtain sup(hq ) = sup(hs2) =
1 which implies sig(x) = swap. Using this and sup(s) = sup(s’) = 0 if

/

s ¥ s we have that sup(hj2) = 1 for all j € {6,...,11}. This implies
sig(yo) = sig(y1) = sig(y2) = swap. By sup(hiz1) = sup(hiza) = 0,
the image of hio1-% ... ¥2.h154 is a path from O to 0 in 7. The number
of state changes between 0 and 1 on such a path is even. This contradicts
sig(yo) = sig(y1) = sig(y2) = swap. Thus, sig(k) # free. The assumption that
sig(k) = used and sup(hs 3) = 0 yields a contradiction, too.

We conclude that sig(k) = inp and sup(hg3) = 0. This implies sig(vy) &

{out,set} and if s—*.s' € A7, then sup(s) = 1 and sup(s’) = 0. Thus,
by sup(hg1) = 0 and sup(has) = 1 there is an event e € {vg,v1} such
that sig(e) € {out,set,swap}. If e = vy then sig(vg) = swap. Moreover, if
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e = vy then sup(hs2) = 1 which with sup(hss) = 0 and sup(hi1) = 1
implies sig(vg) = swap. Consequently, any case implies sig(vg) = swap. This
results in sig(u;) = swap for all j € {0,...,13} as follows. By sup(fo3) =
sup(f1,3) =1 and sig(v) = swap we obtain sup(fo2) = sup(fi1,2) = 0 which with
sup(fo,1) = sup(f1,1) = 0 implies sig(z), sig(z1) € {nop, res, free}. Moreover, by
sig(z0), sig(z1) € {nop,res, free} and sup(fa1) = 0 we get sup(fo,3) = 0 which
with sup(fa,4) = 1 implies sig(z2) € {out, set,swap}. By sig(zo) € {nop, res, free}
and sup(g;1) = 0, we get sup(g;2) = 0. Furthermore, sig(z1) € {nop,res, free}
and sup(gi4) = 1 yields sig(z1) = nop and sup(g; 3) = 1. This implies sig(u;) €
{out, set,swap}. Finally, by sup(n;1) = 0 and sig(z2) € {out,set,swap}, we get
sup(n; 1) =1 and, by sup(n;4) = 1 and sig(vy) = swap, we have sup(n;3) = 0.
Since sig(u;) € {out, set,swap}, this yields sig(u;) = swap for all ¢ € {0,...,13}.
The gadgets T o, . .., T; 6, where i € {0, ..., m—1}, use sig(k) = inp and sig(u;) =
swap for all i € {0,...,13} similarly to the ones of Theorem 6 to ensure that
M ={X e V(p) | sig(X) = swap} is a one-in-three model of ¢: By sup(t; 16) =
sup(tis6) = sup(tiee) = 1 and sig(us) = sig(ug) = swap we have sup(t; 4.4) =

sup(tisa) = sup(tiga) = 1foralli e {0,...,m—1}. Thus, if X € V(p), s-2.s’
and sup(s) # sup(s’) then sig(X) = swap. Using this, one argues in a manner
quite similar to that of the proof of Theorem 6 that T;,...,7T; ¢ collaborate in
such a way that there is exactly one variable event X € {X;,, X;,, X;, } such that
sig(X) = swap. Thus, M is a corresponding model. Moreover, if sig(k) = out and
sup(hg3z) = 1 then we obtain again that sig(u;) = swap for all ¢ € {0,...,13}
which also guarantees that M is a searched model.

Conversely, if M is a one-in-three model of ¢ then we can define analogously
to Theorem 6 a 7-region solving «. O

Theorem 8 ([12]). For any fized g > 1, deciding if a g-bounded TS A is T-
solvable is NP-complete if T € {nop, inp, out} U {used, free}.

Proof. The claim follows directly from our result of [12]. There we use 1-bounded
cycle free gadgets to prove that synthesis of (pure) b-bounded Petri nets is NP-
complete. The joining of [12] yields a 2-bounded TS. However, it is easy to see
that the 1-bounded joining of this paper fits, too. The (pure) 1-bounded Petri
net type is isomorphic to {nop,inp,out,used} ({nop,inp,out}). By symmetry,
7-solving ESSP atoms by used is equivalent to solving them by free. O

4 Polynomial Time Results

Theorem 9. For any fized g < 2, one can decide in polynomial time if a g-
bounded TS A is T-solvable if T = {nop, inp, set} or T = {nop, inp, set, used} or
7 = {nop,out, res} or T = {nop,out, res, free} or T = {nop, set, res} U w with
non-empty w C {inp, out, used, free}.

Proof. If A is T-solvable then no event e of A occurs twice in a row. Otherwise,

the SSP atom (s, s”) of a sequence s—¢ s’ 5" is not 7-solvable. Thus, in what
follows, we assume that A has no event occurring twice in a row. Moreover, it
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is easy to see that a 1-bounded TS A = s9-°L,... %n.,5,. is a simple directed
path on pairwise distinct states sg, ..., s, or a directed cycle, that is, all states
S0, -, Sm except sg and s,, are pairwise distinct. This proof proceeds as fol-
lows. First, we assume that 7 = {nop, inp,set} and that A is a directed cycle and
argue that the 7-solvability of a given ESSP atom (k, s) or a SSP atom (s, s’) of
A is decidable in polynomial time. Secondly, we argue that the presented algo-
rithmic approach is applicable to directed paths, too. Thirdly, we show that the
procedure introduced for {nop,inp,set} can be extended to {nop,inp, set, used}.
By Lemma 2, this proves the claim for {nop,out,res} and {nop,out, res, free},
too. After that we investigate the case where 7 = {nop, set, res} U w with non-
empty w C {inp,out, used, free}. We argue that it is sufficient to decide the
{nop, inp, res, set}- and {nop, res, set, used }-solvability of A and that this is doable
in polynomial time. The corresponding procedures again modify those intro-
duced for {nop,inp, set}.

Let 7 = {nop, inp,set} and A be 1-bounded (cycle) TS with event k € E(A)
that occurs m times. Since A is a cycle, we can assume that k occurs at

A’s initial state: (F .. Moreover, since k£ does not occur twice in a row, its

occurrences partition A into m k-free subsequences Iy,...,I,,_1 such that
. !/ . y7 . . _ .
I = 80*1>51 st _tsh i€ 40, .,m—1}, and sjt =, cf. Fig. 6.

Obviously, defining sup(t) = 1, sig(k) = inp and sig(e) = set for all e €
E(A)\ {k} inductively yields a region (sup, sig) solving the ESSP atoms (k, s)
where —* 5. Thus, it remains to consider the case =(—*.s). Since —(_*.s),
thereisan i € {0,...,m— 1} such that s is a state of the i-th subsequence ;. In

particular, there is a j € {1, .. — 1} such that s = s5. The state s} divides I,
into the sequences I? = s) 71, vi . yJ 8] and I} = s; 22 L ¢ cf. Fig. 6.

If (sup, sig) is a region that solves « then sig(k) = inp and sup( s5) = 0 is
true. This implies for all £ € {0,...,m — 1} that sup(s§) = 0 and sup(s,,) = 1.
Thus, it remains to define the signature of the events of UZBl E(I;) such that

i 4 i L ; i ; i
029w, 590 1 for all € € {0,...,m — 1} \ {i}, and 059W, 9
and 0 g(y]+1) . Sig(yv; ) 1

If there is for all ¢ € {0,.. — 1} \ {i} an event e, € E(I;) such that
e¢ € E(I?) and if there is an event e; € E(I}) so that e; & E(I?) then sup(t) = 1,

.0 0 1

k 0 Y1 o Yno k 1 Y1 1 1 yﬂl 1 k 5
L —— 59 — s} - sno 1= Spg —> S — > 8] " Spy—1 — Sp, — 5§
. N
/ \
1 \
| I
\ /
\ /7
i+1 i K i i—1
‘Tf Sng Sni—1 SjH1 S S T S 1 — 80 %k Sny g
Yn; Yit+1 Y; Yji—1 Y1

Fig. 6. A sketch of a cyclic 1-bounded input A with ESSP atom a = (k, s5).
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sig(k) = inp, sig(eg) = set for all £ € {0,...,m — 1}, and sig(e) = nop for all
e € E(A)\{k,eq,...,es} yields a 7-region (sup, sig) of A that solves . Clearly,
whether A satisfies this property is decidable in polynomial time.

Otherwise, there is a sequence I € {Io,...,I;—1, I}, Iix1,...,I;n_1} so that
E(I) C E(I?). Thus, if (sup,sig) is a T-region that solves a then there is a
¢ e {l1,...,j—1} such that sig(y}) = set. Consequently, there has to be a ¢’ € {{+
1,...,j} such that sig(y}) = inp and, in particular, sig(y},) = nop for all £ €
{¢/ +1,...,7}. Using this, one finds that (sup, sig) implies a region (sup’, sig’)
that solves o and gets along with at most two inp-events. More exactly, defining
sup' (1) = 1, sig’ (k) = sig'(yj,) = inp, sig’(e) = nop foralle € {y},,q,...,y}} and
sig'(e) = set for all e € E(A)\({k,y}s,...,y}}) yields a valid 7-region (sup’, sig’)
that solves a. Since (sup, sig) was arbitrary, these deliberations show that in the
second case the atom « is 7-solvable if and only if there is a corresponding
region (sup’, sig’). This yields the following polynomial procedure that decides
whether « is T-solvable: For £ from j to 2 test if (supy, sige) (inductively) defined
by supe(t) = 1, sige(yi) = inp, sige(yl,) = nop for all ¢/ € {{+1,...,5} and
sige(e) = set for all e € E(A)\ ({k, y,...,y}}) yields a 7-region of A. If the test
succeeds for any iteration then return yes, otherwise return no.

We can modify this approach to test the 7-solvability of an SSP atom (§ =
(s,) as follows. Since A = ¢ L, ... % is a cycle we can assume without loss of
generality that s = ¢ and s’ = s; for some ¢ € {1,...,m —1}. The states ¢ and s;
partition A into two subsequences Ip = -, ... % .s; and I} = s; &L, ., m
If 3 is solvable by a region (sup’, sig’) such that sup’(¢) = 1 and sup’(s;) = 0 then
there is an event e € Iy such that sig(e) = inp. In particular, there is a region
(sup, sig) as follows: sup(t) =1, sig(e;) = inp and j € {1,...,4}, sig(e;) = nop
forall £ € {j +1,...,i} and sig(e) = set for all e € E(A) \ {ej,...,e;}. Similar
to the approach for «, we can check if such a region exists in polynomial time.
Moreover, the case where sup(t) = 0 and sup(s;) = 1 works symmetrically.

So far we have shown that the 7-solvability of (E)SSP atoms of A are decid-

able in polynomial time if A is a cycle. If A = %, . “m,5 is a directed
path then its cycle extension A, has a fresh event © ¢ E(A) and is defined by

Ao =18, . fms. P The event @ is unique thus an (E)SSP atom of A is
solvable by a 7-region of A if and only if it is solvable by a 7-region of A.. Thus,
we can decide the solvability of atoms of A via A.. Altogether, this proves that
the 7-solvability of (E)SSP atoms of 1-bounded inputs is decidable in polynomial
time. Since we have at most |S|? + |E| - |S| atoms to solve, the decidability of
the {nop, inp, set}-solvability for 1-bounded TS is polynomial.

Similar to the discussion for 7 = {nop, inp, set}, one argues that the following
assertion is true: If 7 = {nop, inp, set, used} then there is a T-region (sup’, sig’)
with sig’(k) = used and sup(s}) = 0 if and only if there is a 7-region (sup, sig)
and an number ¢ € {1,...,j} such that sup(t) = 1, sig(k) = used, sig(y}) =
inp, sig(yl,) = nop for all ¢/ € {¢{ +1,...,5} and sig(e) = set for all e €
E(A)\ {k,y;,...,y;}. Clearly, the procedure introduced for {nop,inp,set} can
be extended appropriately to a procedure that works for {nop, inp, set, used}.
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It remains to investigate the case where 7 = {nop,res,set} Uw with non-
empty w C {inp,out,used, free}. For a start, let’s argue that deciding the
7-solvability is equivalent to deciding the {nop,inp,res, set}-solvability or the
{nop, res, set, used }-solvability of A. This can be seen as follows: If (sup, sig) is a
region that solves an ESSP atom a = (k, s) such that sig(k) = inp then there is a
{nop, inp, res, set}-region (sup’, sig’) that solves (k, s), too. The region (sup’, sig’)
originates from (sup, sig) by sup’ = sup, sig’(k) = inp and for all e € E(A)\ {k}
by sig’(e) = nop if sig(e) € {nop, used, free}, sig’(e) = res if sig(e) € {inp, res}
and, finally, sig’(e) = set if sig(e) € {out,set}. Similarly, one argues that
a is T-solvable such that sig(k) = out if and only if it is {nop, out, res, set}-
solvable. Moreover, {nop, inp, res, set} and {nop, out, res, set} are isomorphic thus
T-solvability with inp or out reduces to {nop, inp, res, set}-solvability. Similarly,
the T-solvability with used or free reduces to {nop, res, set, used }-solvability. It is
easy to see that the procedure introduced for {nop,inp,set} can be extended to
the types {nop,inp,res,set} and {nop,res,set, used}. The only difference is that
we now search for an event y! such that sig(y;) = res instead of sig(y;) = inp.

Finally, we observe that a SSP atom 8 = (s, s) is 7-solvable if and only if it
is {nop, res, set}-solvable. The states s and s’ induce again a partition Iy and Iy
of A and we can adapt the approach above to {nop, res,set}. a

Theorem 10. For any fized g € N, deciding whether a g-bounded TS A is T-
solvable is polynomial if one of the following conditions is true:

1. 7 = {nop, inp, free} or T = {nop, inp, used, free} or T = {nop, out, used} or
7 = {nop, out, used, free} and g < 2.

2. 7 = {nop, set, res} Uw and O # w C {used, free} and g < 3.

3.7 =717 Uw and 7 € {{nop, set, swap}, {nop, res, swap}, {nop, res, set, swap} }
and ) # w C {used, free} and g < 2.

4. 7 € {{nop,inp},{nop, inp, used}, {nop, out}, {nop, out, free}} or v € T =
{{nop, set, swap}, { nop, res, swap}, { nop, set, res}, { nop, set, res, swap}},

Proof. (1): It is easy to see that A is a loop, A = s ®.s or that A is cycle

free, since there is an unsolvable SSP atom otherwise. Moreover, if an event e

occurs twice consecutively, s—% s’ ¢ .s” then (s,s’) is not 7-solvable. Thus,

for every e € E(A) there is a s € S(A) such that (e, s) has to be solved by
sig(e) = inp (sig(e) = out) and sup(s) = 0 (sup(s) = 1). If e occurs twice on
the directed path A then such a region does not exist. On the other hand, A
is 7-solvable if every event occurs exactly once. Consequently, A is T-solvable
if and only if it is 1-bounded and every event occurs exactly once.

(2): Since ESSP atoms of a 7-solvable input A are only solvable by used and free,

we have that if s—.s' € A then s'_¢.s" € A. If s=5" # 5 orifs,s,s"
are pairwise distinct then (s, s’) is not 7-solvable. This implies s’ ¢ .s’. As
a result, T-solvable inputs have the shape
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el €m

€0 m €m m

A=t— 81 -+ Sm—1 —— Sy
Thus, if the loop erasement A’ of A originates from A by erasing all loops
s—%.s, that is, A’ = 1=, ... %m,g,,, then deciding the 7-solvability of A
reduces to deciding if A’ has the 7-SSP and if all ESSP atoms (e, s) with

—(—%.s) of A’ are T-solvable. This is doable in polynomial time by the
approach of Theorem 9.

(3): Since ESSP atoms of an input A are only solvable by used and free, if
5 °.s" and s # s’ then /%, If s- ¢ s’ ¢ 5" ¢ ¢ € A and s,5,5",s"
are pairwise different, then the SSP atom (s’,s”) is not -solvable. As a
consequence, 7-solvable inputs can have at most 3 different states.

(4): Let 7 € {{nop,inp}, {nop,inp,used}}. If A is 7-solvable, then for all e €

E(A) holds +—©. Otherwise, (e,¢) is not 7-solvable. Similarly, if 7 € 7,
then ESSP atoms are not 7-solvable thus, every event occurs at ¢. A is g-
bounded. This implies |E(A)| < g. Thus, A has at most 2 - |7|9 T-regions.
Since g is fixed, T-synthesis is polynomial by brut-force. By Lemma 2, the
claim follows.

O

5 Conclusion

In this paper, we fully characterize the computational complexity of nop-
equipped Boolean Petri nets from g-bounded TS for any fixed g € N. Our results
show that if 7-synthesis is hard then it remains hard even for low bounds g.
Moreover, they also show that when g becomes very small, sometimes it makes
the difference between hardness and tractability, cf. Fig. 1 §1-§3 and §9, but
sometimes it does not, cf. Fig. 1 §4-87. In this sense, the parameter g helps to
recognize interactions that contribute to the power of a type. By Theorem 3
and Theorem 9, {nop, inp, set}-synthesis is hard if ¢ > 2 and tractable if g < 2,
respectively. By Theorem 5, {nop,inp, set, free}-synthesis remains hard for all
g > 1. Thus, if restricted to 1-bounded inputs then the test interaction free
makes the difference between hardness and tractability of synthesis. Surprisingly
enough, by Theorem 9, replacing free by used makes synthesis from 1-bounded
TS tractable again. It remains future work, to characterize the computational
complexity of synthesis for the remaining 128 types which do not contain nop.
Moreover, since 7-synthesis generally remains hard even for (small) fixed g, the
bound of a TS is ruled out for FPT-algorithms. Future work might be concerned
with parameterizing 7-synthesis by the dependence number of the searched 7-net:
If N = (P, T, f, My) is a Boolean net, p € P and if the dependence number d, of
p is defined by d, = [{t € T'| f(p,t) # nop}| then the dependence number d of N
is defined by d = max{d, | p € P}. At first glance, d appears to be a promising
parameter for FPT-approaches because this parameterization puts the problem
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into the complexity class XP: Since a 7-region of A = (S, E,J,:) is determined
by sup(1) and sig, for each (E)SSP atom « there are at most 2 |7|%- Z?:o (“fl)
fitting 7-regions solving . Thus, by |7| < 8, T-synthesis parameterized by d is

decidable in O(|E|? - |S| - max{|S|,|E|})-
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