
Transactions on
Petri Nets
and Other Models
of Concurrency XVLN

CS
 1

25
30

Jo
ur

na
l S

ub
lin

e

Maciej Koutny
Editor-in-Chief

Fabrice Kordon · Lucia Pomello
Guest Editors

Lecture Notes in Computer Science 12530

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this subseries at http://www.springer.com/series/8379

http://www.springer.com/series/8379

Maciej Koutny • Fabrice Kordon •

Lucia Pomello (Eds.)

Transactions on
Petri Nets
and Other Models
of Concurrency XV

123

Editor-in-Chief
Maciej Koutny
Newcastle University
Newcastle upon Tyne, UK

Guest Editors
Fabrice Kordon
Sorbonne Université
Paris, France

Lucia Pomello
Università degli Studi di Milano-Bicocca
Milan, Italy

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISSN 1867-7193 ISSN 1867-7746 (electronic)
Transactions on Petri Nets and Other Models of Concurrency
ISBN 978-3-662-63078-5 ISBN 978-3-662-63079-2 (eBook)
https://doi.org/10.1007/978-3-662-63079-2

© Springer-Verlag GmbH Germany, part of Springer Nature 2021, corrected publication 2021
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer-Verlag GmbH, DE
part of Springer Nature.
The registered company address is: Heidelberger Platz 3, 14197 Berlin, Germany

https://orcid.org/0000-0002-5626-828X
https://doi.org/10.1007/978-3-662-63079-2

Preface by Editor-in-Chief

The 15th issue of LNCS Transactions on Petri Nets and Other Models of Concurrency
(ToPNoC) contains revised and extended versions of a selection of the best papers from
the workshops held at the 40th International Conference on Application and Theory of
Petri Nets and Concurrency (Petri Nets 2019, Aachen, Germany, 23–28 June 2019),
and the 19th International Conference on Application of Concurrency to System
Design (ACSD 2019, Aachen, Germany, 23–28 June 2019).

I would like to thank the two guest editors of this special issue: Fabrice Kordon and
Lucia Pomello. Moreover, I would like to thank all authors, reviewers, and organizers
of the Petri Nets 2019 and ACSD 2019 satellite workshops, without whom this issue of
ToPNoC would not have been possible.

January 2021 Maciej Koutny

The original version of the book was revised: the affiliation of Lucia Pomello has been
corrected. The correction to the book is available at
https://doi.org/10.1007/978-3-662-63079-2_9

LNCS Transactions on Petri Nets and Other Models
of Concurrency: Aims and Scope

ToPNoC aims to publish papers from all areas of Petri nets and other models of
concurrency ranging from theoretical work to tool support and industrial applications.
The foundations of Petri nets were laid by the pioneering work of Carl Adam Petri and
his colleagues in the early 1960s. Since then, a huge volume of material has been
developed and published in journals and books as well as presented at workshops and
conferences.

The annual International Conference on Application and Theory of Petri Nets and
Concurrency started in 1980. For more information on the international Petri net
community, see: http://www.informatik.uni-hamburg.de/TGI/PetriNets/.

All issues of ToPNoC are LNCS volumes. Hence they appear in all main libraries
and are also accessible on SpringerLink (electronically). It is possible to subscribe to
ToPNoC without subscribing to the rest of LNCS.

ToPNoC contains:

– Revised versions of a selection of the best papers from workshops and tutorials
concerned with Petri nets and concurrency

– Special issues related to particular subareas (similar to those published in the
Advances in Petri Nets series)

– Other papers invited for publication in ToPNoC
– Papers submitted directly to ToPNoC by their authors

Like all other journals, ToPNoC has an Editorial Board, which is responsible for the
quality of the journal. The members of the board assist in the reviewing of papers
submitted or invited for publication in ToPNoC. Moreover, they may make
recommendations concerning collections of papers for special issues. The Editorial
Board consists of prominent researchers within the Petri net community and in related
fields.

Topics

The topics covered include: system design and verification using nets; analysis and
synthesis; structure and behavior of nets; relationships between net theory and other
approaches; causality/partial order theory of concurrency; net-based semantical, logical
and algebraic calculi; symbolic net representation (graphical or textual); computer tools
for nets; experience with using nets, case studies; educational issues related to nets;
higher-level net models; timed and stochastic nets; and standardization of nets.

Also included are applications of nets to: biological systems; security systems;
e-commerce and trading; embedded systems; environmental systems; flexible manu-
facturing systems; hardware structures; health and medical systems; office automation;

http://www.informatik.uni-hamburg.de/TGI/PetriNets/

operations research; performance evaluation; programming languages; protocols and
networks; railway networks; real-time systems; supervisory control; telecommunica-
tions; cyber physical systems; and workflow.

For more information about ToPNoC see: http://www.springer.com/gp/computer-
science/lncs/lncs-transactions/petri-nets-and-other-models-of-concurrency-topnoc-/
731240

Submission of Manuscripts

Manuscripts should follow LNCS formatting guidelines, and should be submitted as
PDF or zipped PostScript files to ToPNoC@ncl.ac.uk. All queries should be addressed
to the same e-mail address.

viii LNCS Transactions on Petri Nets and Other Models of Concurrency

http://www.springer.com/gp/computer-science/lncs/lncs-transactions/petri-nets-and-other-models-of-concurrency-topnoc-/731240
http://www.springer.com/gp/computer-science/lncs/lncs-transactions/petri-nets-and-other-models-of-concurrency-topnoc-/731240
http://www.springer.com/gp/computer-science/lncs/lncs-transactions/petri-nets-and-other-models-of-concurrency-topnoc-/731240

LNCS Transactions on Petri Nets and Other Models
of Concurrency: Editorial Board

Editor-in-Chief

Maciej Koutny Newcastle University, UK

Associate Editors

Grzegorz Rozenberg Leiden University, The Netherlands
Susanna Donatelli University of Turin, Italy
Jetty Kleijn Leiden University, The Netherlands
Wil M. P. van der Aalst RWTH Aachen University, Germany

Editorial Board

Didier Buchs University of Geneva, Switzerland
Gianfranco Ciardo Iowa State University, USA
José-Manuel Colom University of Zaragoza, Spain
Jörg Desel FernUniversität in Hagen, Germany
Michel Diaz LAAS - CNRS, France
Hartmut Ehrig Technical University of Berlin, Germany
Jorge C. A. de Figueiredo Federal University of Campina Grande, Brazil
Luis Gomes Universidade Nova de Lisboa, Portugal
Serge Haddad ENS Paris-Saclay, France
Xudong He Florida International University, USA
Kunihiko Hiraishi JAIST, Japan
Gabriel Juhás Slovak University of Technology, Slovak Republic
Lars M. Kristensen Western Norway University of Applied Science,

Norway
Charles Lakos University of Adelaide, Australia
Johan Lilius Åbo Akademi University, Finland
Chuang Lin Tsinghua University, China
Satoru Miyano University of Tokyo, Japan
Madhavan Mukund Chennai Mathematical Institute, India
Wojciech Penczek ICS PAS, Poland
Laure Petrucci Université Sorbonne Paris Nord, France
Lucia Pomello University of Milano-Bicocca, Italy
Wolfgang Reisig Humboldt University of Berlin, Germany
Manuel Silva University of Zaragoza, Spain

P. S. Thiagarajan NUS, Singapore
Glynn Winskel University of Cambridge, UK
Karsten Wolf University of Rostock, Germany
Alex Yakovlev Newcastle University, UK

x LNCS Transactions on Petri Nets and Other Models of Concurrency

Preface by Guest Editors

This volume of ToPNoC contains revised versions of a selection of the best workshop
papers presented at satellite events of the 40th International Conference on Application
and Theory of Petri Nets and Concurrency (Petri Nets 2019) and the 19th International
Conference on Application of Concurrency to System Design (ACSD 2019). These
events took place in Aachen, Germany in June 2019.

As guest editors, we are indebted to the program committees of the workshops and
in particular to the chairs. Without their enthusiastic efforts, this volume would not
have been possible.

The workshop papers considered for this special issue have been selected in close
cooperation with the workshop chairs. Members of the program committees have
participated in reviewing the new versions of the papers eventually submitted. We have
received suggestions for papers for this special issue from:

– ATAED 2019: Workshop on Algorithms & Theories for the Analysis of Event Data
(chairs: Wil M. P. van der Aalst, Robin Bergenthum, Josep Carmona),

– PNSE 2019: International Workshop on Petri Nets and Software Engineering
(chairs: Ekkart Kindler, Daniel Moldt, Manuel Wimmer).

The authors of the suggested papers have been invited to improve and extend their
results where possible, based on the comments received before and during the work-
shops. Each resulting revised submission was reviewed by at least two referees. We
followed the principle of asking for fresh reviews of the revised papers, also from
referees not involved initially in the reviewing of the original workshop contributions.
All papers have gone through the standard two- or three-stage journal reviewing
process, and eventually eight papers have been accepted after rigorous reviewing and
revising.

Conformance checking, used to check if a log conforms to a model and vice versa,
is a fundamental technique in process mining. The paper by Alessandro Berti and
Wil M. P. van der Aalst, A Novel Token-Based Replay Technique to Speed Up
Conformance Checking and Process Enhancement, presents an attempt to perform
conformance checking exploiting a revisited token-based replay approach in contrast to
alignment-based ones. The new proposed replay technique improves the speed and
scalability of the algorithm, also for models with invisible transitions, and avoiding
well-known problems such as token flooding.

Some applicative scenario often requires modeling a large set of variants of similar
systems. In order to manage a unique model in these cases, the paper Extensible
Structural Analysis of Petri Net Product Lines, by Elena Gómez-Martínez, Juan De
Lara, and Esther Guerra, introduces the notion of Product Line Petri Net (PLPN),
which represents a set of possible Petri nets. The authors show that certain structural
properties of this set of Petri nets can be verified directly on the PLPN instead of
checking them on each single model. This is done by reducing the problem to a

SAT-problem of some propositional formula. This approach is more efficient than
checking explicitly each net of the product line.

It is known that the regional structure of a condition/event transition system, i.e. its
set of regions with set inclusion and set complement, forms an orthomodular partial
order (OMP). These regional structures are relevant to the relations between local states
and local events of net systems and as such are of interest for the behavioural theory of
Petri Nets. The paper Stability of Regional Orthomodular Posets under Synchronisa-
tion and Refinement, by Federica Adobbati, Carlo Ferigato, Stefano Gandelli, and
Adrián Puerto Aubel, is a further step towards the characterization of orthomodular
posets which are “stable”, i.e. correspond to the regional structure of condition/event
transition systems. The authors present a composition and a refinement operation for
OMPs showing that both preserve stability.

Theoretical results in the area of synthesis of net models from behavioural speci-
fications are presented in the paper Efficient Synthesis of Weighted Marked Graphs with
Circular Reachability Graph, and Beyond, by Raymond Devillers, Evgeny Erofeev,
and Thomas Hujsa. The authors specialize previous methods of synthesis of
Conflict-Free (CF) nets and their Weighted Marked Graphs (WMG) subclass, two
classes of weighted Petri nets allowing modelling of various real-world applications.
They define conditions for checking the existence of a WMG whose reachability graph
is isomorphic to a given LTS forming a single cycle, and propose two polynomial-time
synthesis algorithms. The problems in extending these results to CF net synthesis are
also discussed.

Another theoretical result dealing with Synthesis goes next. The paper The Com-
plexity of Synthesizing nop-Equipped Boolean Petri Nets from g-Bounded Inputs, by
Ronny Tredup, shows that computational complexity of p-synthesis remains hard for
Boolean Petri nets g-bounded inputs, even when g is low (g being the maximum
number of incoming and outgoing arcs). When g becomes very small, it sometimes
makes the difference between hardness and tractability.

The next paper, A Two-Player Asynchronous Game on Fully Observable Petri Nets,
by Federica Adobbati, Luca Bernardinello, and Lucia Pomello, deals with an asyn-
chronous way to execute Petri nets. A Petri net is distributed if its elements can be
assigned to a set of locations so that each element belongs to exactly one location, and
each transition belongs to the same location as its input places. The paper defines an
asynchronous game played on the unfolding of a distributed net with two locations, the
“user” and the “environment”. There are interesting applications of this work in situ-
ations where the “user” has to avoid dangerous situations that may occur in a system
controlled by the “environment”.

Model checking has to fight combinatorial explosion, especially in distributed (and
thus asynchronous) systems. The paper Solving finite-linear-path CTL-Formulas using
the CEGAR Approach, by Torsten Liebke and Karsten Wolf proposes a verification
technique helping to solve CTL queries using the Petri net state equation with a
CEGAR (counterexample guided abstraction refinement) approach. Such techniques
are being implemented in the well-known LoLA 2 tool.

We end this special issue with Verification of the MQTT IoT Protocol using
Property-specific CTL Sweep-Line Algorithms, by Alejandro Rodríguez, Lars Michael
Kristensen, and Adrian Rutle. This paper is a case study dealing with MQTT, a

xii Preface by Guest Editors

publish-subscribe communication protocol increasingly being used for implementing
internet-of-things (IoT) applications. This protocol is implemented using Coloured
Petri Nets (CPNs) and behavioural properties are verified using CTL. To overcome
combinatorial explosion during the process, the authors use the well known
“sweep-line” method, which remains an open problem for CTL.

As guest editors, we would like to thank all the authors and referees who have
contributed to this issue. The quality of this volume is the result of the high scientific
value of their work. Moreover, we would like to acknowledge the excellent cooperation
throughout the whole process that has made our work a pleasant task, despite the
extremely challenging conditions our communities had to face in 2020 with the
COVID pandemic. We are also grateful to the Springer/ToPNoC team for the final
production of this issue.

January 2021 Fabrice Kordon
Lucia Pomello

Preface by Guest Editors xiii

Organization of This Issue

Guest Editors

Fabrice Kordon Sorbonne Université, France
Lucia Pomello University of Milano-Bicocca, Italy

Workshop Co-chairs

Wil M. P. van der Aalst RWTH Aachen University, Germany
Robin Bergenthum FernUniversität in Hagen, Germany
Josep Carmona Universitat Politècnica de Catalunya, Spain
Ekkart Kindler Technical University of Denmark, Denmark
Daniel Moldt University of Hamburg, Germany
Manuel Wimmer Johannes Kepler Universität Linz, Austria

Reviewers

Josep Carmona
Evgeni Erofeev
Stefan Haar
Serge Haddad
Ekkart Kindler
Jetty Kleijn
Marta Koutny
Lars Michael Kristensen

Laure Petrucci
Pascal Poizat
Adrián Puerto Aubel
Lorenzo Rossi
Stefan Schwoon
Yann Thierry-Mieg
Ronny Tredup
Karsten Wolf

Contents

A Novel Token-Based Replay Technique to Speed Up Conformance
Checking and Process Enhancement . 1

Alessandro Berti and Wil M. P. van der Aalst

Extensible Structural Analysis of Petri Net Product Lines. 27
Elena Gómez-Martínez, Juan de Lara, and Esther Guerra

Stability of Regional Orthomodular Posets Under Synchronisation
and Refinement. 50

Federica Adobbati, Carlo Ferigato, Stefano Gandelli,
and Adrián Puerto Aubel

Efficient Synthesis of Weighted Marked Graphs with Circular Reachability
Graph, and Beyond . 75

Raymond Devillers, Evgeny Erofeev, and Thomas Hujsa

The Complexity of Synthesizing nop-Equipped Boolean Petri Nets
from g-Bounded Inputs . 101

Ronny Tredup

A Two-Player Asynchronous Game on Fully Observable Petri Nets 126
Federica Adobbati, Luca Bernardinello, and Lucia Pomello

Solving Finite-Linear-Path CTL-Formulas Using the CEGAR Approach 150
Torsten Liebke and Karsten Wolf

Verification of the MQTT IoT Protocol Using Property-Specific CTL
Sweep-Line Algorithms . 165

Alejandro Rodríguez, Lars Michael Kristensen, and Adrian Rutle

Correction to: Transactions on Petri Nets and Other Models
of Concurrency XV. C1

Maciej Koutny, Fabrice Kordon, and Lucia Pomello

Author Index . 185

A Novel Token-Based Replay Technique
to Speed Up Conformance Checking

and Process Enhancement

Alessandro Berti1,2(B) and Wil M. P. van der Aalst1,2

1 Process and Data Science Group, RWTH Aachen University,
Lehrstuhl für Informatik 9, 52074 Aachen, Germany

a.berti@pads.rwth-aachen.de
2 Fraunhofer Gesellschaft, Institute for Applied Information Technology (FIT),

Sankt Augustin, Germany

Abstract. Token-based replay used to be the standard way to conduct
conformance checking. With the uptake of more advanced techniques
(e.g., alignment based), token-based replay got abandoned. However,
despite decomposition approaches and heuristics to speed-up computa-
tion, the more advanced conformance checking techniques have limited
scalability, especially when traces get longer and process models more
complex. This paper presents an improved token-based replay approach
that is much faster and scalable. Moreover, the approach provides more
accurate diagnostics that avoid known problems (e.g., “token flooding”)
and help to pinpoint compliance problems. The novel token-based replay
technique has been implemented in the PM4Py process mining library.
We will show that the replay technique outperforms state-of-the-art tech-
niques in terms of speed and/or diagnostics.

Keywords: Log-model replay · Process diagnostics · Conformance
checking

1 Introduction

The importance of conformance checking is growing as is illustrated by the new
book on conformance checking [11] and the Gartner report which states “we see
a significant trend toward more focus on conformance and enhancement process
mining types” [14]. Conformance checking aims to compare an event log and a
process model in order to discover deviations and obtain diagnostics informa-
tion [25]. Deviations are related to process executions not following the process
model (for example, the execution of some activities may be missing, or the
activities are not happening in the correct order), and are usually associated
to higher throughput times and lower quality levels. Hence, it is important to
detect them, understand their causes and re-engineer the process in order to
avoid such deviations. A prerequisite for both conformance checking and per-
formance analysis is the ability to replay the event log on the model. This is
c© Springer-Verlag GmbH Germany, part of Springer Nature 2021
M. Koutny et al. (Eds.): ToPNoC XV, LNCS 12530, pp. 1–26, 2021.
https://doi.org/10.1007/978-3-662-63079-2_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-63079-2_1&domain=pdf
http://orcid.org/0000-0003-1830-4013
http://orcid.org/0000-0002-0955-6940
https://doi.org/10.1007/978-3-662-63079-2_1

2 A. Berti and W. M. P. van der Aalst

needed to relate and compare the behavior observed in the log with the behav-
ior observed in the model. Different replay techniques have been proposed, like
token-based replay [27] and alignments [7,11]. In recent years, alignments have
become the standard-de-facto technique since they are able to find an optimal
match between the process model and a process execution contained in the event
log. Unfortunately, their performance on complex process models and large event
logs is poor. Token-based replay used to be the default technique for conformance
checking, but has been almost abandoned in recent years, because the handling
of invisible transitions and duplicate transitions require heuristics to select the
proper path in the model. For example, models may get flooded with tokens in
highly non-conforming executions, enabling unwanted parts of the process model
and hampering the overall fitness evaluation. Moreover, more detailed diagnos-
tics, that have been developed in recent years, have only been defined in the
context of alignments.

In the paper [9], a revival of token-based replay is proposed. The approach
improves the execution time of the token-based replay operation, increasing
the performance gap between token-based replay and alignments (see Sect. 2.3).
Moreover, the approach is able to manage the token-flood problem (see Sect. 3.3).

This contribution aims to extend [9] in some areas:

– Root cause analysis is introduced as a diagnostic (on the output of the token-
based replay) provided by the approach.

– An analysis of a backwards state-space exploration approach (BTBR) is
added. While this technique is not the main contribution of this paper, it
provides a viable alternative to the state-of-the-art approach described in
[27]. Moreover, some example applications are provided for both BTBR and
ITBR.

– The evaluation section has been extended and includes now a detailed com-
parison of fitness values.

The remainder of the paper is organized as follows: in Sect. 2 an introduction
to the main concepts used in this paper is provided. In Sect. 3, the problems
are defined, and an improved token-based replay is proposed. In Sect. 4, some
changes to the implementation are discussed and the evaluation of the approach
is proposed. In Sect. 5, the tool support is presented, and we elaborate on the
additional diagnostics (throughput time and root cause analysis). In Sect. 6, the
related work is described. Section 7 concludes the paper.

2 Background

This section introduces standard concepts related to Petri nets and event logs.
Moreover, the main token-based replay approach [27] is introduced.

A Novel Token-Based Replay Technique 3

2.1 Petri Nets

Petri nets provide a modeling language used from several process mining tech-
niques, e.g., well-known process discovery1 algorithms like the alpha miner and
the inductive miner [16] (through conversion of the resulting process tree) can
produce Petri nets. We start from the definition of elementary nets:

Definition 1 (Nets). A net is a triple (P, T,E) where:

– P and T are disjoint sets of places and transitions respectively.
– E ⊆ (P × T) ∪ (T × P).

Petri nets are such the set of arcs is a multiset over (P × T) ∪ (T × P).

Definition 2 (Multiset). Let X be a set. B ∈ B(X) = X → N is a multiset
over X where each element x ∈ X appears B(x) times. Between multisets B1 ∈
B(X) and B2 ∈ B(X) we define the following operations:

– (union) B′ = B1 ∪ B2 ⇐⇒ B′(x) = B1(x) + B2(x) ∀x ∈ X. We can also
say, in the same setting, that B′ = B1 + B2

– (intersection) B′ = B1 ∩ B2 ⇐⇒ B′(x) = min(B1(x), B2(x)) ∀x ∈ X.
– (multiset inclusion) B1 ≤ B2 ⇐⇒ B1(x) ≤ B2(x) ∀x ∈ X. Conversely,

B2 ≥ B1 ⇐⇒ B1 ≤ B2.
– (difference) B′ = B1 \ B2 ⇐⇒ B′(x) = max(B1(x) − B2(x), 0) ∀x ∈ X. We

can also say, in the same setting, that B′ = B1 − B2.

Moreover, we say that x ∈ B ⇐⇒ B(x) > 0.

An accepting Petri net is a Petri net along with a final marking.

Definition 3 (Accepting Petri Nets). A (labeled, marked) accepting Petri
net is a net of the form PN = (P, T, F,M0,MF , l) such that:

– P is the set of places.
– T is the set of transitions.
– F ∈ B((P × T) ∪ (T × P)) is a multiset of arcs.
– M0 ∈ B(P) is the initial marking2.
– MF ∈ B(P) is the final marking.
– l : T → ∑ ∪ {τ} is a labeling function that assigns to each transition t ∈ T

either a symbol from ∑ (the set of labels) or the empty string τ .

Definition 4 (Preset and Postset of a Place/Transition). Let x ∈ P ∪ T
be a place or a transition. Then •x, x• ∈ B(P ∪ T) are defined such that:

– •x(y) = F ((y, x)) ∀y ∈ P ∪ T, (y, x) ∈ (P × T) ∪ (T × P) is the preset of the
element x.

1 With a process discovery technique, a process model is constructed capturing the
behavior seen in an event log. See the book [4] for an introduction to the most
popular process discovery algorithms.

2 A marking M ∈ B(P) is a place multiset. We denote with UM the universe of
markings.

4 A. Berti and W. M. P. van der Aalst

– x • (y) = F ((x, y)) ∀y ∈ P ∪ T, (x, y) ∈ (P × T) ∪ (T × P) is the postset of
the element x.

The initial marking corresponds to the initial state of a process execution. Pro-
cess discovery algorithms may associate also a final marking to the Petri net,
that is the state in which the process execution should end. A transition t is
said to be visible if l(t) ∈ ∑

; is said to be invisible if l(t) = τ . If for all t ∈ T
such that l(t) �= τ , |{t′ ∈ T |l(t′) = l(t)}| = 1, then the Petri net contains unique
visible transitions; otherwise, it contains duplicate transitions. In the following,
some definitions in the context of nets and Petri nets are introduced.

Definition 5 (Execution Semantics). The execution semantics of a Petri
net is the following:

– A transition t ∈ T is enabled (it may fire) in M if there are enough tokens in
its input places for the consumptions to be possible, i.e. iff •t ≤ M .

– Firing a transition t ∈ T in marking M produces the marking M ′ = (M \
•t) ∪ t•.

Definition 6 (Path). A path of a net N = (P, T,E) is a non-empty and finite
sequence η1, . . . , ηn of nodes of P ∪ T such that (η1, η2), . . . , (ηn−1, ηn) ∈ E. A
path η1 . . . ηn leads from η1 to ηn.

Definition 7 (Strongly Connected Nets). The net N = (P, T,E) is strongly
connected if a path exists between any node in P ∪ T , i.e., (x, y) ∈ E∗ ∀ x, y ∈
P ∪ T .

An important concept is the one of structural components, that is a collection of
subnets with the property of holding at most one token per time during an exe-
cution of the net. Subnets, S-nets and S-components [13] are defined as follows.

Definition 8 (Subnets). N ′ = (P ′, T ′, E′) is a subnet of N = (P, T,E) if
P ′ ⊆ P , T ′ ⊆ T and E′ = E ∩ ((P ′ × T ′) ∪ (T ′ × P ′)).

Definition 9 (S-nets). A net N ′ = (P ′, T ′, E′) is an S-net if | • t| = 1 = |t • |
for every transition t ∈ T ′.

Definition 10 (S-Component). A subnet N ′ = (P ′, T ′, E′) of N is an S-
component of N if T ′ = •P ′ ∪ P ′• and N ′ is a strongly connected S-net.

2.2 Event Logs

In process mining, the definition of event log is fundamental, since it is the input
of many techniques as process discovery and conformance checking.

Definition 1 (Event Log). A log is a tuple L = (CI , E,Σ, case ev, act, attr,
≤) where:

A Novel Token-Based Replay Technique 5

Case ID Activity

case-10011 Confirmation of receipt
case-10011 T02 Check confirmation of receipt
case-10011 T03 Adjust confirmation of receipt
case-10011 T02 Check confirmation of receipt
case-10017 Confirmation of receipt
case-10017 T06 Determine necessity of stop advice
case-10017 T02 Check confirmation of receipt
case-10017 T03 Adjust confirmation of receipt
case-10017 T02 Check confirmation of receipt
case-10017 T10 Determine necessity to stop indication
case-10017 T03 Adjust confirmation of receipt
case-10017 T02 Check confirmation of receipt
case-10017 T03 Adjust confirmation of receipt
case-10024 Confirmation of receipt
case-10024 T02 Check confirmation of receipt
case-10024 T04 Determine confirmation of receipt
case-10024 T05 Print and send confirmation of receipt
case-10024 T06 Determine necessity of stop advice
case-10024 T10 Determine necessity to stop indication
case-10025 Confirmation of receipt
case-10025 T02 Check confirmation of receipt
case-10025 T04 Determine confirmation of receipt
case-10025 T05 Print and send confirmation of receipt
case-10025 T06 Determine necessity of stop advice
case-10025 T10 Determine necessity to stop indication
case-10028 Confirmation of receipt
case-10028 T02 Check confirmation of receipt
case-10028 T04 Determine confirmation of receipt
case-10028 T05 Print and send confirmation of receipt
case-10028 T06 Determine necessity of stop advice
case-10028 T10 Determine necessity to stop indication
case-10028 T16 Report reasons to hold request
case-10028 T17 Check report Y to stop indication
case-10028 T19 Determine report Y to stop indication
case-10028 T20 Print report Y to stop indication

a) Fragment of Event log

b) Process model (Petri net)

Fig. 1. Petri net extracted by the inductive miner on a filtered version of the “Receipt
phase of an environmental permit application process” event log.

– CI is a set of case identifiers.
– E is a set of events.
– Σ is the set of activities.
– case ev ∈ CI → P(E)\{∅} maps case identifiers onto set of events (belonging

to the case).
– act ∈ E → Σ maps events onto activities.
– attr ∈ E → (Uattr �→ Uval) (where Uattr is the universe of attribute names,

and Uval is the universe of attribute values) maps events onto a partial func-
tion assigning values to some attributes.

– ≤ ⊆ E × E defines a total order on events.

For a process supported by an information system, an event log is a set of cases,
each one corresponding to a different execution of the process. A case contains

6 A. Berti and W. M. P. van der Aalst

the list of events that are executed (in the information system) in order to
complete the case. To each case and event, some attributes can be assigned (e.g.
the activity and the timestamp at the event level). A classification of the event
is a string describing the event (e.g. the activity is a classification of the event).
For each case, given a classification function, the corresponding trace is the list
of classifications associated with the events of the case. An example application
of the inductive miner process discovery algorithm to an event log is represented
in Fig. 1.

2.3 Token-Based Replay

In process mining, a replay technique (as introduced in [4]) is a comparison of the
behavior of a process execution with the behavior allowed by a process model.
Among the replay techniques, the most important ones are token-based replay
and alignments that act on Petri nets. Many different replay techniques are
available in the process mining field, targeting different types of process models
(not only Petri nets).

Token-based replay is applied to both a trace of the log and an accepting
Petri net. The output of the replay operation is a list of transitions enabled
during the replay, along with some numbers (c, p, m and r) defined as follows:

Definition 11 (Consumed, Produced,Missing, andRemainingTokens).
Let L be an event log and σ be a trace of L. Then c is the number of consumed tokens
during the replay of σ, p is the number of produced tokens during the replay of σ,
m is the number of missing tokens during the replay of σ, and r is the number of
remaining tokens during the replay of σ.

At the start of the replay, it is assumed that the tokens in the initial marking
are inserted by the environment, increasing p accordingly (for example, if the
initial marking consists of one token in one place, then the replay starts with
p = 1). The replay operation considers, in order, the activities of the trace. In
each step, the set of enabled transitions in the current marking is retrieved. If
there is a transition corresponding to the current activity, then it is fired, a
number of tokens equal to the sum of the input arcs is added to c, and a number
of tokens equal to the sum of the output arcs is added to p. If there is not a
transition corresponding to the current activity enabled in the current marking,
then a transition in the model corresponding to the activity is searched (if there
are duplicate corresponding transitions, then [27] provides an algorithm to choose
between them). Since the transition could not fire in the current marking, the
marking is modified by inserting the token(s) needed to enable it, and m is
increased accordingly. At the end of the replay, if the final marking is reached,
it is assumed that the environment consumes the tokens from the final marking,
and c is increased accordingly. If the marking reached after the replay of the
trace is different from the final marking, then missing tokens are inserted and
remaining tokens r are set accordingly. The following relations hold during the
replay: c ≤ p + m and m ≤ c. The relation p + m = c + r holds at the end of the
replay. A fitness value can be defined for a trace and for the log.

A Novel Token-Based Replay Technique 7

Definition 12 (Trace Fitness). Let L be an event log, σ be a trace of L, and
c, p, m and r be the consumed, produced, missing and remaining tokens during
the replay of σ. Then the fitness value for the trace is defined as:

fσ =
1
2

(
1 − m

c

)
+

1
2

(

1 − r

p

)

Definition 13 (Log Fitness). Let L be a log and σ0, . . . , σn be the traces in
L. Let c(σi), p(σi), m(σi) and r(σi) be the consumed, produced, missing and
remaining tokens during the replay of trace σi. Then a fitness value for the log
L is defined as:

fL =
1
2

(

1 −
∑

σi∈L m(σi)
∑

σi∈L c(σi)

)

+
1
2

(

1 −
∑

σi∈L r(σi)
∑

σi∈L p(σi)

)

The log fitness is different from the average of fitness values at trace level. When,
during the replay, a transition corresponding to the activity could not be enabled,
and invisible transitions are present in the model, a technique is deployed to
traverse the state space (see [27]) and possibly reach a marking in which the
given transition is enabled. A heuristic (see [27]) that uses the shortest sequence
of invisible transitions that enables a visible task is proposed. This heuristic
tries to minimize the possibility that the execution of an invisible transition
interferes with the future firing of another activity. A well-known problem for
token-based replay is the token flooding problem [11]. Indeed, when the case
differs much from the model, a lot of missing tokens are inserted during the
replay. As a result of all the added tokens, many transitions become enabled.
Therefore, also deviating events are likely to match an enabled transition. This
leads to misleading diagnostics because unwanted parts of the model may be
activated, and so the fitness value for highly problematic executions may be too
high. To illustrate the token-flooding problem consider a process model without
concurrency (only loops, sequences, and choices) represented as a Petri net.
At any stage, there should be at most one token in the Petri net. However,
each time there is a deviation, a token may be added, and that leads to a
state which was never reachable from the initial state. The original token-based
replay implementation [27] was only implemented in earlier versions of the ProM
framework (ProM4 and ProM5) and proposes localized metrics on places of the
Petri net that help to understand which parts of the model are more problematic.
To improve performance in the original implementation, a preprocessing step is
used to group cases having the same trace. In this way, multiple cases having
the same trace only need to be analyzed once.

3 Approach

In Sect. 2.3, two problems were analyzed, that led to a relative abandonment of
the token-based replay technique (older versions of ProM supported this, but
ProM 6 does not):

8 A. Berti and W. M. P. van der Aalst

1. The slowness in the traversal of invisible transitions, for which an expensive
state-space exploration is required.

2. The token flooding problem.

To resolve the first problem, the methodology of exploration of the state-space
needs to be changed. We describe in this section two approaches for token-
based replay that address problem (1). In Sect. 3.1, an alternative approach
(BTBR) to the one described in [27] is provided, in which a backwards state-
space exploration is performed, instead of a forward state-space exploration.
This leads to some advantages in managing common constructs in Petri net
models, such as skips/loops, that are invisible transitions. However, a state-
space exploration is still required and, with larger models, this is detrimental.
After the backwards token-based replay, in Sect. 3.2 a novel technique (ITBR)
is introduced. The improved token-based replay shows good performance results
in the assessment.

Moreover, some approaches to solve problem (2) are proposed in Sect. 3.3,
that exploit the properties of the process model in order to determine which
tokens in the replay operation are useful and which are “superfluous”.

3.1 Backwards Token-Based Replay

Fig. 2. A schema of the backwards activation algorithm for invisible transitions.

This section introduces an alternative token-based replay approach that is based
on a backwards state-space exploration. The technique adopts the approach pre-
sented in [27] when a transition corresponding to the replayed activity is enabled

A Novel Token-Based Replay Technique 9

Fig. 3. An application the backwards activation approach for invisible transitions.

in the reached marking. When no corresponding transitions are enabled in the
current marking M0, an alternative approach (represented in Fig. 2) is followed
to use invisible transitions and reach a marking where at least one corresponding
transition is enabled. In the following, we suppose that t ∈ T is a transition that
corresponds to the replayed activity.

Definition 14 (Backwards Set of a Transition). Let PN = (P, T, F,M0,
MF , l) be an accepting Petri net. We define the function:

BS : T → P(T)

BS(t) = {t′ ∈ T | l(t′) = τ ∧ • t ≤ t′•}
Definition 15 (Backwards Marking). Let PN = (P, T, F,M0,MF , l) be an
accepting Petri net. We define the function:

M← : UM × T → UM

M←(M, t) = (M \ t•) ∪ •t
As the backwards marking given M and t. The backwards marking is such that
t is enabled in M←(M, t).

10 A. Berti and W. M. P. van der Aalst

The idea of the approach is to find a sequence of invisible transitions t1, . . . , tn
(where ti �= tj for i, j ∈ {1, . . . , n}) such that this sequence leads from the current
marking M0 to a marking in which t is enabled. In order to do so, the state-
space is explored going backwards, and the B-set BS(t) is considered for further
exploration. In such way, we are sure that the firing of every invisible transition
tn ∈ BS(t) leads to a marking where the target transition t is enabled. If for
any tn ∈ BS(t), M←(M, tn) ⊆ M0, then tn is enabled in marking M0, and leads
from M0 to a marking where t is enabled, and the approach stops. Otherwise, a
recursion happens considering each item of the following set of B-sets

{BS(tn) | tn ∈ BS(t)}
The recursion continues until a marking that is contained in M0 is reached and
a list of transitions leading from M0 to a marking enabling t is obtained.

An example of application of the approach is reported in Fig. 3. There, we
need to replay a transition t but we are stuck since we are in a marking M0 = {p10}
where t is not enabled. In this case, the approach considers first the invisible
transition t2, since t has a preset that is contained in the postset of t2. In doing
so, a marking M2 is found where the invisible transition t2 is enabled. Then, since
M2 is not a subset of M0, another backward step is done and the transition t1
is considered (because its postset contains the preset of t2). A marking M1 is
reached where t1 is enabled and, moreover, M1 ⊆ M0. This ends the procedure,
since from the current marking we are sure to be able to reach a marking where
t is enabled by visiting transition t1 and t2: t1 is enabled in M0, t2 is enabled
by construction on the marking obtained firing t1 on M0, and t is enabled by
construction on the marking obtained firing t2.

The approach described in this section works nicely with models containing
skip/loop transitions. Indeed, while the original token-based replay [27] needs to
consider all the possibilities from the current marking, discarding some of them
using heuristics, the backwards token-based replay approach considers the mini-
mal marking in which a target transition is enabled and recursively explores the
transitions which postset contains the minimal marking. However, the method
is limited in the management of models with concurrency, given the B-set of a
transition contains only the invisible transitions which completely enable that
transition.

3.2 Improved Token-Based Replay

The method described in this part helps to enable a transition t through the traver-
sal of invisible transitions. This helps to avoid the insertion of missing tokens
when an activity needs to be replayed on the model, but no corresponding tran-
sition is enabled in the current marking M . Moreover, it helps to avoid time-
consuming state-space explorations that are required by [27]. The approach works
with accepting Petri nets in which the invisible transitions have non-empty preset
and postset; this because any invisible transition with empty preset/postset would
not belong to any shortest path between places. The description of the method
starts from a preprocessing step on the Petri net, and continues with an algorithm
to enable transitions using the results of this preprocessing step.

A Novel Token-Based Replay Technique 11

Preprocessing Step. Given an accepting Petri net PN = (P, T, F,M0,MF , l),
it is possible to define a directed graph G = (V,A) such that the vertices V
are the places P of the Petri net, and A ⊆ P × P is such that (p1, p2) ∈ A if
and only if at least one invisible transition connects p1 to p2. Then, to each arc
(p1, p2) ∈ A, a transition τ(p1, p2) is associated to, picking one of the invisible
transitions connecting p1 to p2.

Using an informed search algorithm for traversing the graph G, the shortest
paths between nodes are found. These are sequences of places 〈p1, . . . pn〉 such
that (pi, pi+1) ∈ A for any 1 ≤ i < n, and are transformed into sequences
〈t1, t2, . . . , tn−1〉 of transitions such that ti = τ(pi, pi+1) for any 1 ≤ i < n.

Given a marking M such that M(p1) > 0 and M(p2) = 0, a marking M ′

where M ′(p2) > 0 could3 be reached by firing the sequence 〈t1, . . . , tn〉 that is
the shortest path in G between p1 and p2.

Fig. 4. A setting in which the application of the improved token-based replay is useful.
The replay on this Petri net of the trace 〈X,Z〉 requires the firing of invisible transitions.

Enabling Transitions. This subsection explains how to apply the shortest
paths to reach a marking where a transition is enabled. We start from defining
the sets Δ(M, t) and Λ(M, t).

Definition 16 (Delta Set and Lambda Set given a Marking and a Tran-
sition). Let PN = (P, T, F,M0,MF , l) be an accepting Petri net. Then we
define:

Δ : UM × T → P(P)

3 During the activation of the sequence, some places could still have missing tokens.

12 A. Berti and W. M. P. van der Aalst

Δ(M, t) = {p ∈ •t | M(p) < F ((p, t))}
and

Λ : UM × T → P(P)

Λ(M, t) = {p ∈ P | F ((p, t)) = 0 ∧ M(p) > 0}
Given a marking M and a transition t, Δ(M, t) is the set of places that miss at
least one token to enable transition t, while Λ(M, t) is the set of places for which
the marking has at least one token and t, in order to fire, does not require any
of these places .

Given Δ(M, t) and Λ(M, t), the idea is about using places in Λ(M, t) (that
are not useful to enable t) and, through the shortest paths, reach a marking M ′

where t is enabled.
Given a place p1 ∈ Λ(M, t) and a place p2 ∈ Δ(M, t), if a path exists

between p1 and p2 in G, then it is useful to see if the corresponding shortest path
〈t1, . . . , tn〉 could fire in marking M . If that is the case, a marking M ′ could be
reached, firing such sequence from M , that has at least one token in p2. However,
the path may not be a feasible path in the model, or may require a token from
one of the input places of t. So, the set Δ(M ′, t) may be smaller than Δ(M, t),
since p2 gets at least one token. The approach is about considering all the combi-
nations of places (p1, p2) ∈ Λ(M, t)×Δ(M, t) such that a path exists between p1
and p2 in G. These combinations, namely {(p1, p2), (p′

1, p
′
2), (p

′′
1 , p′′

2), . . .}, have
corresponding shortest paths S = {〈t1, . . . , tm〉, 〈t′1, . . . , t′n〉, 〈t′′1 , . . . , t′′o 〉, . . .} in
G.

The algorithm to enable transition t through the traversal of invisible tran-
sitions considers the sequences of transitions in S, ordered by length, and tries
to fire them. If the path can be executed, a marking M ′ is reached, and the set
Δ(M ′, t) may be smaller than Δ(M, t), since a place in Δ(M, t) gets at least one
token in M ′. However, one of the following situations could happen:

1. no shortest path between combinations of places (p1, p2) ∈ Λ(M, t)×Δ(M, t)
could fire: in that case, we are “stuck” in the marking M , and the token-based
replay is forced to insert the missing tokens;

2. a marking M ′ is reached, but Δ(M ′, t) is not empty, hence t is still not enabled
in marking M ′. In that case, the approach is iterated on the marking M ′;

3. a marking M ′ is reached, and Δ(M ′, t) is empty, so t is enabled in marking
M ′.

When situation (2) happens, the approach is iterated. A limit on the num-
ber of iterations may be set, and if it is exceeded, then the token-based replay
inserts the missing tokens in marking M . The approach is straightforward when
sound workflow nets without concurrency (only loops, sequences, and choices)
are considered, since in the considered setting (M marking where transition t
is not enabled) both sets Λ(M, t) and Δ(M, t) have a single element, a single
combination (p1, p2) ∈ Λ(M, t) × Δ(M, t) exists and, if a path exists between
p1 and p2 in G, and the shortest path could fire in marking M , a marking
M ′ will be reached such that Δ(M ′, t) = ∅ and the transition t is enabled.

A Novel Token-Based Replay Technique 13

Moreover, it performs particularly well on models that are output of popular
process discovery algorithms (inductive miner [16], heuristics miner [30], . . .)
where potentially long chains of invisible (skip, loop) transitions need to be tra-
versed in order to enable a transition. The approach described in this subsection
can also manage duplicate transitions corresponding to the activity that needs
to be replayed. In that case, we are looking to enable one of the transitions
belonging to the set TC ⊆ T that contains all the transitions corresponding to
the activities in the trace. The approach is then applied on the shortest paths
between places. A similar approach can be applied to reach the final marking
when, at the end of the replay of a trace, a marking M is reached that is not
corresponding to the final marking. In that case, Δ = {p ∈ P | M(p) < MF (p)}
and Λ = {p ∈ P | MF (p) = 0 ∧ M(p) > 0}. This does not cover the case where
the reached marking contains the final marking but has too many tokens.

An example application of the approach is contained in Fig. 4. There, after
executing X we have three tokens, one in p1 one in p2 and one in p3. The
next replayed activity is Z, that requires one token in p4 and one token in p5.
However, since Y is not executed, both tokens are missing. From the marking
{p1, p2, p3} to the set of missing tokens {p4, p5}, the set of shortest paths is
S = {〈p1, p4〉, 〈p2, p6, p5〉, 〈p3, p7, p8, p5〉}. These are ordered by the length of the
path. Starting from the first path, transition t1 is enabled, and p4 is reached.
Then, the second path is examined, however t3 cannot fire hence p5 cannot be
reached. So, the last path is executed, and that leads to putting one token in p5
and eventually enabling t.

3.3 Addressing the Token Flooding Problem

To address the token flooding problem, which is one of the most severe problems
when using token-based replay, we propose several strategies. The final goal
of these strategies is to avoid the activation of unwanted transitions that get
enabled by the insertion of missing tokens, keeping the fitness value low for the
problematic parts of the model. The common pattern behind these strategies is
to determine superfluous tokens, that are tokens that cannot be used anymore.
During the replay, f (initially set to 0) is an additional variable that stores
the number of “frozen” tokens. When a token is detected as superfluous, it is
“frozen”: that means, it is removed from the marking and f is increased. Frozen
tokens, like remaining tokens, are tokens that are produced in the replay but
never consumed. Hence, at the end of the replay p + m = c + r + f . To each
token in the marking, an age (number of iterations of the replay for which the
token has been in the marking without being consumed) is assigned. The tokens
with the highest age are the best candidates for removal. The techniques to
detect superfluous tokens are deployed when a transition requires the insertion
of missing tokens to fire, since the marking would then possibly contain more
tokens. One of the following strategies can be used:

1. Using a decomposition of the Petri net in semi-positive invariants [18] or
S-components [1,13] to restrict the set of allowed markings. Considering S-

14 A. Berti and W. M. P. van der Aalst

components, each S-component should hold at most 1 token, so it is safe to
remove the oldest tokens if they belong to a common S-component.

2. Using place bounds [20]: if a place is bounded to n tokens and during the
replay operation the marking contains m > n tokens for the place, the “old-
est” tokens according to the age are removed.

4 Implementation and Evaluation of the Improved
Token-Based Replay Technique

In this section, we present some changes to the implementation that have been
performed in order to increase the performance of ITBR. Moreover, we present
an assessment of ITBR on real-life logs.

4.1 Changes to the Implementation to Improve Performance

In our implementation of token-based replay, we adapt some ideas first used in
the context of alignments [6]:

1. Post-fix caching: a post-fix is the final part of a case. During the replay of
a case, the couple marking+post-fix is saved in a dictionary along with the
list of transitions enabled from that point to reach the final marking of the
model. For the next replayed cases, if one of them reaches exactly a marking +
post-fix setting saved in the dictionary, the final part of the replay is retrieved
from the dictionary.

2. Activity caching: the list of invisible transitions that are activated, from a
given marking, to reach a marking where a particular transition is enabled,
is saved into a dictionary. For the next replayed cases, if one of them reaches
a marking + target transition setting saved in the dictionary, then the corre-
sponding invisible transitions are fired accordingly to enable the target tran-
sition.

In the following:

– CTBR is the classical token-based replay (implemented in ProM 5).
– ITBR is the improved token-based replay described in this paper (imple-

mented in PM4Py).
– ABR is the alignment-based replay (implemented in the “Replay a Log on

Petri Net for Conformance Analysis” plug-in of ProM 6).
– BTBR is the token-based with backwards state-space exploration described

in this paper (implemented in PM4Py).
– AFA is the approach described in [24] (implemented in PM4Py).
– REABR is the recomposition approach described in [15] (available in ProM

6).
– ITBR−PC is the improved token-based replay without postfix caching
– ITBR−AC is the improved token-based replay without activity caching
– ITBR−PC/−AC is the improved token-based replay without activity or postfix

caching.

A Novel Token-Based Replay Technique 15

4.2 Evaluation: Execution Time

Table 1. Performance of the different replay approaches on real-life logs and models
extracted by the inductive miner. The first columns contain some features of the log.
The middle columns compare ITBR with ABR. In the rightmost columns, the perfor-
mance of the BTBR, AFA and REABR approaches (BTBR was unable to analyze two
of the datasets) are included.

Log Cases Variants T.ITBR T.ABR T.BTBR T.AFA T.REABR

repairEx 1104 77 0.06 0.2 0.04 0.03 0.8

reviewing 100 96 0.10 0.4 0.29 0.11 2.2

bpic2017 (offer) 42995 16 0.30 1.5 0.06 0.01 0.18

receipt 1434 116 0.09 0.8 0.25 0.10 0.91

roadtraffic 150370 231 1.03 5.3 0.09 1.37

Billing 100000 1020 1.36 8.0 2.04 1.18 9.7

bpic2017 (application) 31509 15930 56.1 1520.3 116.7 1369.2

bpic2018 43809 28457 145.8 8427.2 400.99 543.01 2550.0

bpic2019 251734 11973 27.0 599.1 84.60 97.50 435.9

In this section, the improved token-based replay (ITBR) is assessed, looking at
the speed and the output of the replay, against the alignment-based approach
on Petri nets (ABR) and the other considered approaches. Tests contained in
Table 1 are performed on real-life logs that can be retrieved from the 4TU log
repository4. The tests have been done on an Intel I7-5500U powered computer
with 16 GB DDR4 RAM.

Comparison Against ABR. For real-life logs and models extracted by the
inductive miner, the ITBR is 5 times faster on average. Even for large logs, the
replay time is less than a few seconds. For the latest BPI Challenge logs, given
the model extracted by the inductive miner implementation in PM4Py, there is
a noticeable speedup that is > 20x, but also the token-based replay is taking
over 20 s.

ABR produces a different output than the one of token-based replay, so
results are not directly comparable. Both are replay techniques, so the goal of
both techniques is to provide information about fitness according to the pro-
cess model (albeit the fitness measures are defined in a different way, and so
are intrinsically different). This is valid in particular for the comparison of exe-
cution times: a trace may be judged fitting according to a process model in a
significantly lower amount of time using token-based replay in comparison to
alignments. If an execution is unfit according to the model, it can also be judged
unfit in a significantly lower amount of time. For a comparison, read Section 8.4
of book [11] or consult [5,26].
4 The logs are available at the URL https://data.4tu.nl/repository/collection:event

logs.

https://data.4tu.nl/repository/collection:event_logs
https://data.4tu.nl/repository/collection:event_logs

16 A. Berti and W. M. P. van der Aalst

Comparison Against BTBR. The comparison between ITBR and BTBR
shows that generally ITBR has significantly better performance on larger logs
(BPI Challenge 2017 application, BPI Challenge 2018, BPI Challenge 2019). This
shows that the preprocessing step helps to get better performance from token-
based replay. The BTBR approach seems also limited in the type of process
models it can handle: while it succeeds for 7 of the considered logs/models, it
fails for two settings due to concurrency in the process model.

Comparison Against AFA. The alignments on finite automaton approach
(AFA) shows better performance than ITBR for the vast majority of the logs,
excluding the three bigger logs that have been considered (BPI Challenge 2017
application, BPI Challenge 2018, BPI Challenge 2019). Moreover, it shows signif-
icantly better performance than the other two evaluated alignments approaches
(ABR and REABR) working on Petri nets. Possibly, the worse results of AFA
against ITBR in the three BPI Challenge logs have been caused by the bigger
size of the automaton, that can grow fast in complexity.

Comparison Against REABR. The alignments approach based on a max-
imal decomposition and, then, a recomposition of the results (REABR) shows
a significant performance increase in comparison to classical alignments (ABR),
showing the effectiveness of the approach. However, it records worse results than
AFA that is performed on a different class of models (finite automatons) and
ITBR.

Table 2. Comparison of the ITBR execution times on models extracted by the induc-
tive miner on the given logs with or without postfix and activity caching. Here, the
first column is the name of the log, the second is the execution time of ITBR without
postfix and activity caching, the third is the execution time of ITBR without activity
caching, the fourth is the execution time of ITBR without the postfix caching, the fifth
is the execution time of ITBR with activity and postfix caching enabled.

Log ITBR−PC/−AC(s) ITBR−AC(s) ITBR−PC(s) ITBR(s)

repairEx 0.10 0.08 0.08 0.06

reviewing 0.33 0.42 0.14 0.10

bpic2017 (offer) 0.37 0.42 0.30 0.30

receipt 0.17 0.15 0.12 0.09

roadtraffic 1.58 2.08 1.18 1.03

Billing 2.23 1.91 1.45 1.36

bpic2017 (application) 75.7 69.1 64.3 56.1

bpic2018 164.8 161.8 158.9 145.8

bpic2019 48.6 37.8 43.2 27.0

In Table 2, the effectiveness of the implementation is evaluated in order
to understand how the improvements in the implementation contribute to the

A Novel Token-Based Replay Technique 17

overall efficiency of the approach. Columns in the table represent the execution
time of the replay approach when no caching, only post-fix caching, only activity
caching and the sum of post-fix caching and activity caching is deployed. In
the vast majority of logs, the comparison shows that ITBR provides the best
performance.

4.3 Evaluation: Comparison Between Fitness Values

Table 3. Fitness values comparison between the considered approaches on models
extracted by the alpha miner and the inductive miner. Here, the first column is the
name of the log, from the second to the seventh there is the fitness (whether the
algorithms succeed) calculated for the different approaches on models extracted by
the inductive miner, from the eight to the tenth there is the fitness calculated by the
different considered token-based replay approaches on models extracted by the alpha
miner.

Inductive miner Alpha miner

Log ITBR CTBR ABR BTBR AFA REABR ITBR CTBR BTBR

repairEx 1.0 1.0 1.0 1.0 1.0 1.0 0.88 0.88 0.88

reviewing 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

bpic2017 (offer) 1.0 1.0 1.0 1.0 1.0 0.72 0.72

receipt 1.0 1.0 1.0 1.0 1.0 1.0 0.39 0.39 0.39

roadtraffic 1.0 1.0 1.0 1.0 0.62 0.62

Billing 1.0 1.0 1.0 1.0 1.0 0.69 0.69

In Table 3, a comparison between the fitness values recorded by the ITBR, the
CTBR and the ABR is provided, for both the alpha miner and inductive miner
models. From then onwards, the biggest logs (bpic2017 (application), bpic2018,
bpic2019) are dropped, since a qualitative evaluation is performed. For some real-
life logs (bpic2017, roadtraffic, Billing) the CTBR did not succeed in the replay
in a reasonable time (an empty space has been reported in the corresponding
columns). Alignments have not been evaluated on the models extracted by the
alpha miner since it is not assured to have a sound workflow net to start with.
The fitness values obtained in Table 3 show that the ITBR, on these logs and the
models extracted from them by the inductive miner, is as effective in exploring
invisible transitions as the CTBR and the ABR.

4.4 Evaluation: Comparison Between Outputs

A comparison between the output of token-based replay and alignments has
been proposed in Table 4. Some popular logs, that are taken into account also
for previous evaluations, are being filtered in order to discover a model (using
the inductive miner) that is not perfectly fit against the original log. Instead of
comparing the fitness values, the comparison is done on the similarity between

18 A. Berti and W. M. P. van der Aalst

Table 4. Comparison between the output of the ITBR and the ABR. First, the name
of the log is reported. Then, the number of transitions activated by the two methods
is reported, and some aggregations of the similarity measure are provided. Rightmost,
the fitness values are reported.

Transitions Similarity Fitness

Log ABR ITBR Min Max Med ABR ITBR

repairEx 34858 30459 0.75 1.0 0.94 0.934 0.941

reviewing 9412 8912 0.81 1.0 0.937 0.967 0.974

bpic2017 (offer) 257970 258565 1.0 1.0 1.0 0.995 0.996

receipt 27375 26642 0.42 1.0 0.94 0.839 0.863

roadtraffic 1184482 1023901 0.35 1.0 0.625 0.791 0.816

the set of transitions that are activated in the model during the alignments
and the set of transitions that are activated in the model during the token-based
replay. The more similar the two sets are, the higher the value of similarity should
be. The similarity is calculated as the ratio of the size of the intersection of the
two sets and the size of the union of the two sets. This is a simple approach, with
some limitations: 1) transitions are counted once during the replay 2) the order
in which transitions are activated is not important 3) the number of transitions
activated by the alignments is intrinsically higher: while token-based replay could
just insert missing tokens and proceed, alignments have to find a path in the
model from the initial marking to the final marking, so a higher number of
transitions is expected. This comparison, aside fitness values, confirm that the
results of the two replay operations, that is a set of transitions activated in the
model, are similar. Table 4 provides some further evidence that the two replay
techniques are comparable.

4.5 Evaluation: Handling of the Token-Flooding Problem

Table 5. Handling of the token-flooding problem: evaluation between outputs with
(ITBR+TFC) and without token-flooding cleaning. With the approach enabled, more
similar results to alignments are obtained. In the table, the fitness values are reported.
Then, in the middle columns, the number of transitions enabled by the methods are
inserted. Eventually, the median of the similarity values, as in Sect. 4.4, is reported.

Fitness Transitions Similarity

Log ABR ITBR ITBR+TFC ABR ITBR ITBR+TFC ITBR ITBR+TFC

repairEx 0.934 0.941 0.934 34858 30459 30459 0.94 0.94

reviewing 0.967 0.974 0.967 9412 8912 8912 0.937 0.937

bpic2017 (offer) 0.995 0.996 0.995 257970 258565 259597 1.0 1.0

receipt 0.839 0.863 0.862 27375 26642 27508 0.94 0.94

roadtraffic 0.791 0.816 0.791 1184482 1023901 1184039 0.625 0.625

A Novel Token-Based Replay Technique 19

In Table 5, the importance of handling the token flooding problem is illus-
trated on several logs. The models against which the technique is evaluated are
the same obtained in Sect. 4.4. For both the fitness values (albeit the underlying
concepts/fitness formulas are different) and the number of transitions activated
in the model, we are getting a more similar (higher) number, since the activation
of unwanted parts of the process model is avoided. For the median of similar-
ity between the outputs, we obtain equal numbers between the ITBR and the
ITBR+TFC approach; this means that the token flooding procedure acts only on
the most problematic traces of the log according to the model.

1 from pm4py . ob j e c t s . l og . importer . xes import f a c t o ry as xes impor te r
2 from pm4py . a lgo . d i s cove ry . alpha import f a c t o ry as alpha miner
3 from pm4py . a lgo . conformance . token rep lay import f a c t o ry as t r f a c t o r y
4 log = xes impor te r . apply (”C:\\ running−example . xes ”)
5 net , im , fm = alpha miner . apply (l og)
6 a l i g n e d t r a c e s = t r f a c t o r y . apply (log , net , im , fm)

Fig. 5. PM4Py code to load a log, apply the alpha miner and visualize a Petri net.

5 Tool Support

The contribution described in this paper has been implemented in the Python
library PM4Py. The tool can be easily installed in the Python 3.7 environment
following the documentation reported on the website. The application of token-
based replay is performed on an event log and an accepting Petri net. Example
code to import a XES file, apply the alpha miner and then the token-based
replay is presented in Fig. 5.

In the tool, we provide also some advanced diagnostics, in order to be able
to answer to the following questions:

1. If a given transition is executed in an unfit way, what is the effect on the
throughput time?

2. If a given transition is executed in an unfit way, why does this happen?
3. If a given activity that is not contained in the process model is executed,

what is the effect on the throughput time?
4. If a given activity that is not contained in the process model is executed, why

does this happen?

For questions 1) and 3), the throughput time diagnostic introduced in Sect. 5.1
can be used. For questions 2) and 4), the root cause analysis diagnostic intro-
duced in Sect. 5.2 can provide the corresponding answers.

The documentation about the usage of the token-based replay5 and of the
diagnostics6 is available on the website.
5 http://pm4py.pads.rwth-aachen.de/documentation/conformance-checking/token-

based-replayer/.
6 http://pm4py.pads.rwth-aachen.de/documentation/conformance-checking/token-

based-replayer/token-based-replay-diagnostics/.

http://pm4py.pads.rwth-aachen.de/documentation/conformance-checking/token-based-replayer/
http://pm4py.pads.rwth-aachen.de/documentation/conformance-checking/token-based-replayer/
http://pm4py.pads.rwth-aachen.de/documentation/conformance-checking/token-based-replayer/token-based-replay-diagnostics/
http://pm4py.pads.rwth-aachen.de/documentation/conformance-checking/token-based-replayer/token-based-replay-diagnostics/

20 A. Berti and W. M. P. van der Aalst

5.1 Advanced Diagnostics: Throughput Time Analysis

The comparison between the throughput time in non-fitting cases and fitting
cases permits to understand, for each kind of deviations, whether it is important
or not important for the throughput time. To evaluate this, the “Receipt phase
of an environmental permit application process” log is taken. After some filtering
operations, the model represented in Fig. 1 is obtained. Several activities that
are in the log are missing according to the model, while some transitions have fit-
ness issues. After performing the token-based replay enabling the local informa-
tion retrieval, and applying the duration diagnostics.diagnose from trans fitness
function to the log and the transitions fitness object, it can be seen that
the transition T06 Determine necessity of stop advice is executed in an unfit
way in 521 cases. For the cases where this transition is enabled according
to the model the median throughput time is around 20 min, while in the
cases where this transition is executed in an unfit way the median throughput
time is 1.2 days. So, the throughput time of unfit cases is 146 times higher
in median than the throughput time of fit cases. Activities of the log that
are not in the model are likely to make the throughput time of the process
higher since they are executed rarely. In our implementation, applying the dura-
tion diagnostics.diagnose from notexisting activities method, the median execu-
tion time of cases containing these activities can be retrieved and compared with
the median execution time of cases that do not contain them (that is 20 minutes).
Taking into account the activity T12 Check document X request unlicensed, it
is contained in 44 cases, which median throughput time is 6.9 days (505 times
higher than the standard).

5.2 Advanced Diagnostics: Root Cause Analysis

Root cause analysis is a type of diagnostic, that is obtained on top of the token-
based replay results, that permits to understand the reasons why a deviation
happened. This is done using the ideas of the framework described in [12]:

– Log attributes (at the case and the event level) are transformed into numeric
features (for string attributes, one-hot encoding is applied); for each case, a
vector of features is obtained.

– A class (e.g. for (2), 0 for fit traces, 1 for unfit traces; for (4), 0 for traces not
containing the activity, 1 for traces containing it) is assigned to each case.

– A machine learning algorithm is applied to learn a representation of the data.

By transforming the log into a matrix of numeric features, interoperability is kept
across a wide set of machine learning classification algorithms (e.g. decision trees,
random forests, deep learning methods). Within our implementation, decision
trees are used to get a description of the differences between the two classes.
The decision tree in our approach was trained on the entire dataset, since the
goal is to obtain some discrimination rules between the two classes.

A Novel Token-Based Replay Technique 21

a) Decision tree extracted comparing fit
and unfit cases for transition T02 Check
Confirmation of receipt.

b) Decision tree extracted comparing
cases containing and not containing
activity T03 Adjust confirmation of
receipt that is not in the model.

Fig. 6. Root Cause Analysis performed on the log “Receipt phase of an environmental
permit application process” and a model extracted using inductive miner on a filtered
version of the log. In the represented decision trees, two different kind of deviations,
a) an activity that is in the model but is executed in an unfit way, and b) an activity
is executed that is not in the model, have been analyzed.

This framework permits to answer to the following questions:

1. If a given transition is executed in an unfit way, why does this happen?
2. If a given activity that is not contained in the process model is executed,

which is the effect on the throughput time?

To evaluate this, the “Receipt phase of an environmental permit applica-
tion process” log and the model represented in Fig. 1 are taken. In the fol-
lowing examples, the decision tree has been built using only the org:group
attribute. Applying the root cause analysis.diagnose from notexisting activities
method, for transition T02 Check Confirmation of receipt the decision tree
shown in Fig. 6(a) is obtained, that permits to understand the following infor-
mation: (1) Group 4 triggers an unfit execution according to the model. (2)
Group 2 triggers sometimes an unfit execution according to the model. Applying
the duration diagnostics.diagnose from notexisting activities method, for activ-
ity T03 Adjust confirmation of receipt the decision tree shown in Fig. 6(b) is
obtained, that permits to understand that Group 4 and 2 trigger the activity.

6 Related Work

Token-based replay has been introduced as a conformance checking technique
in [27]. The approach has also been used internally in some process discovery
algorithms such as the genetic miner [19] to evaluate the quality of the can-
didates. Recently, a flexible online replay technique, that provides token-based

22 A. Berti and W. M. P. van der Aalst

replay as option, has been described in [10]. This is based on a decomposition of
the model, in such way the state space exploration can be performed with better
performance. The approach introduced in this paper has been compared against
[27]; in comparison to [10], our approach does not require a decomposition of
the model.

Another conformance checking technique for Petri nets is the one of footprints
[4]. In this technique, a footprint table is found on both the process model
(describing the relationships between the activities as in the model) and the
event log (describing the relationships between the activities as recorded in the
process execution). Then, a comparison is done between these two tables. While
this technique is very scalable for conformance checking, it is not a proper replay
technique as it does not provide a sequence of transitions in the model.

Currently, the standard replay technique on Petri nets is the computation of
alignments with optimal cost [4,11]. In the assessment, we have compared against
the approach described in [7], showing that our token-based replay provides
better performance than such technique.

Other techniques are based on decomposing the model [2,22], in order to
perform a multiple number of smaller alignments. The recomposition approach
described in [15] is able to provide the optimal cost of an alignment between
the model and the process execution under some assumptions. The technique
usually leads to shorter execution times. However, token-based replay is often
still faster (as shown in the assessment).

Approaches to approximate the conformance checking results are described
in [8,29]; these might not produce the optimal cost of an alignment but produce
generally a good approximation of the alignment or of its cost. In comparison,
our approach is able to produce a proper path in the model when the execution
is fit (see the assessment).

In [3,28], map-reduce approaches have been applied to parallelize the compu-
tation of the alignments. Online conformance checking techniques [31] iteratively
update the alignment to include new events; in doing so, for efficiency reasons,
the number of states stored and visited might be reduced, hence optimality of
the alignments is not granted. The improved token-based replay approach intro-
duced in the paper is an offline technique. At the moment, we don’t provide any
scalable map-reduce architecture.

Other replay techniques have focused on different types of process models.
In [17], a process tree discovered using inductive miner is converted into a deter-
ministic finite automaton for fast fitness checking. In [24], the goal is to perform
alignments on automatons. This shows some advantages in models without con-
currency, but suffer from scalability issues in models with concurrency. In [23], a
decomposition of a Petri net model into S-components is performed in order to
get a collection of automatons, against which alignments are performed. In [21],
an efficient replay technique for BPMN models is proposed.

A Novel Token-Based Replay Technique 23

Table 6. A description of the replay techniques presented in Sect. 6. The third column
is the target model. The fourth column describes the super-class of the replay technique
(Ali = alignments, TR= token-based replay, DFA = DFA semantics, FP = footprints).
The fifth column describes whether the technique is an online technique. The sixth
column describes whether the output is optimal (see the bottom of Sect. 6).

Refs. Description Model Appr. Online Opt.

[9,19,27] Token-based replay approaches Petri nets TR No No

[10] Flexible conformance checking approach,

based on a decomposition

Petri nets TR/Ali Yes No

[7] Alignments with optimal cost Petri nets Ali No Yes

[15] Replay technique based on decomposing the

model, performing alignments and

recomposing the result

Petri nets Ali No Yes/No

[8,29] Different replay techniques based on

alignments approximation

Petri nets Ali No No

[3,28] Distributed alignments computation Petri nets Ali No Yes

[31] Online conformance checking Petri nets Ali Yes No

[24] Alignments on top of automatons DFA Ali No Yes

[17] Technique to verify the fitness of traces on top

of process trees through conversion to a finite

automaton

DFA DFA No No

[23] Alignment technique that exploits a

decomposition of the original Petri net model

in S-components, converts them in finite

automatons, and apply alignment on the

single components

DFA Ali No No

[21] Replay technique on top of BPMN BPMN TR No No

[4] Footprints comparison Any FP No No

Table 6 summarizes the approaches discussed in this section. The optimality
concept is defined only for the techniques producing alignments (see [11]). Since
token-based replay techniques are based on heuristics for invisible/duplicate
transitions, and the footprints technique is a matrix comparison, they have been
considered as non-optimal.

7 Conclusion

In this paper, an improved token-based replay approach for Petri nets has been
proposed. The technique exploits a preprocessing step that leads to a better
handling of invisible transitions. Moreover, the intermediate storage techniques
have been improved to achieve a lower execution time.

Token-based replay approaches already outperformed alignment-based
approaches for Petri nets with visible transitions. The proposed token-based
replay approach is faster than alignment-based approaches for Petri nets also for
models with invisible transitions.

Next to an increase in speed, the problem of token flooding is addressed by
“freezing” superfluous tokens (see Sect. 3.3). In this way, the replay does not lead
to markings with many more tokens than what would be possible according to
the model, avoiding the activation of unwanted parts of the process model and

24 A. Berti and W. M. P. van der Aalst

leading to lower values of fitness for problematic parts of the model. Moreover,
we showed that we are able to diagnose the effects of deviations on the case
throughput time, and we are able to perform root cause analysis.

The approach has some limitations. First, we do not propose any termi-
nation or fitness guarantees. Also, performance is in some cases worse than
advanced replay techniques as automaton-based alignments (as AFA). However,
the improved token-based replay has a clear performance lead on the biggest logs
and models that have been considered (BPI Challenge 2017, 2018 and 2019).

We hope that this will trigger a revival of token-based replay, a technique
that seemed abandoned in recent years. Especially when dealing with large logs,
complex models, and real-time applications, the flexible tradeoff between quality
and speed provided by our implementation is beneficial.

Acknowledgements. We thank the Alexander von Humboldt (AvH) Stiftung for
supporting our research.

References

1. van der Aalst, W.M.P.: Structural characterizations of sound workflow nets. Com-
put. Sci. Rep. 96(23), 18–22 (1996)

2. van der Aalst, W.M.P.: Decomposing process mining problems using passages. In:
Haddad, S., Pomello, L. (eds.) PETRI NETS 2012. LNCS, vol. 7347, pp. 72–91.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31131-4 5

3. van der Aalst, W.M.P.: Distributed process discovery and conformance checking.
In: de Lara, J., Zisman, A. (eds.) FASE 2012. LNCS, vol. 7212, pp. 1–25. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-28872-2 1

4. van der Aalst, W.M.P.: Data science in action. Process Mining, pp. 3–23. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49851-4 1

5. van der Aalst, W.M.P., Adriansyah, A., van Dongen, B.: Replaying history on pro-
cess models for conformance checking and performance analysis. Wiley Interdisc.
Rev. Data Min. Knowl. Discov. 2(2), 182–192 (2012)

6. Adriansyah, A.: Aligning observed and modeled behavior. Ph.D. thesis, Depart-
ment of Mathematics and Computer Science (2014)

7. Adriansyah, A., Sidorova, N., van Dongen, B.: Cost-based fitness in conformance
checking. In: 2011 11th International Conference on Application of Concurrency
to System Design (ACSD), pp. 57–66. IEEE (2011)

8. Bauer, M., van der Aa, H., Weidlich, M.: Estimating process conformance by
trace sampling and result approximation. In: Hildebrandt, T., van Dongen, B.F.,
Röglinger, M., Mendling, J. (eds.) BPM 2019. LNCS, vol. 11675, pp. 179–197.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26619-6 13

9. Berti, A., van der Aalst, W.M.P.: Reviving token-based replay: increasing speed
while improving diagnostics. In: Algorithms & Theories for the Analysis of Event
Data (ATAED 2019) (CEUR 2371), pp. 87–103 (2019)

10. vanden Broucke, S.K.L.M., Munoz-Gama, J., Carmona, J., Baesens, B., Van-
thienen, J.: Event-based real-time decomposed conformance analysis. In: Meers-
man, R., et al. (eds.) OTM 2014. LNCS, vol. 8841, pp. 345–363. Springer, Heidel-
berg (2014). https://doi.org/10.1007/978-3-662-45563-0 20

https://doi.org/10.1007/978-3-642-31131-4_5
https://doi.org/10.1007/978-3-642-28872-2_1
https://doi.org/10.1007/978-3-662-49851-4_1
https://doi.org/10.1007/978-3-030-26619-6_13
https://doi.org/10.1007/978-3-662-45563-0_20

A Novel Token-Based Replay Technique 25

11. Carmona, J., Dongen, B., Solti, A., Weidlich, M.: Conformance Checking: Relating
Processes and Models. Springer, Heidelberg (2018). https://doi.org/10.1007/978-
3-319-99414-7

12. de Leoni, M., van der Aalst, W.M.P., Dees, M.: A general framework for correlating
business process characteristics. In: Sadiq, S., Soffer, P., Völzer, H. (eds.) BPM
2014. LNCS, vol. 8659, pp. 250–266. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-10172-9 16

13. Esparza, J.: Reduction and synthesis of live and bounded free choice petri nets.
Inf. Comput. 114(1), 50–87 (1994)

14. Kerremans, M.: Gartner Market Guide for Process Mining, Research Note
G00353970 (2018). www.gartner.com

15. Lee, W.L.J., Verbeek, H., Munoz-Gama, J., van der Aalst, W.M.P., Sepúlveda,
M.: Recomposing conformance: closing the circle on decomposed alignment-based
conformance checking in process mining. Inf. Sci. 466, 55–91 (2018)

16. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured
process models from event logs - a constructive approach. In: Colom, J.-M., Desel,
J. (eds.) PETRI NETS 2013. LNCS, vol. 7927, pp. 311–329. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-38697-8 17

17. Leemans, S.J., Fahland, D., van der Aalst, W.M.P.: Scalable process discovery and
conformance checking. Softw. Syst. Model. 17(2), 599–631 (2018)

18. Mart́ınez, J.: A simple and fast algorithm to obtain all invariants of a generalised
Petri net. In: Girault, C., Reisig, W. (eds.) Application and Theory of Petri nets.
INFORMATIK, vol. 52, pp. 301–310. Springer, Heidelberg (1982). https://doi.org/
10.1007/978-3-642-68353-4 47

19. de Medeiros, A.K.A., Weijters, A.J., van der Aalst, W.M.P.: Genetic process min-
ing: an experimental evaluation. Data Min. Knowl. Disc. 14(2), 245–304 (2007)

20. Miyamoto, T., Kumagai, S.: Calculating place capacity for Petri nets using unfold-
ings. In: International Conference on Application of Concurrency to System Design
(ACSD) 1998, pp. 143–151. IEEE (1998)

21. Molka, T., Redlich, D., Drobek, M., Caetano, A., Zeng, X.J., Gilani, W.: Con-
formance checking for BPMN-based process models. In: Proceedings of the 29th
Annual ACM Symposium on Applied Computing, pp. 1406–1413 (2014)

22. Munoz-Gama, J., Carmona, J., van der Aalst, W.M.P.: Single-entry single-exit
decomposed conformance checking. Inf. Syst. 46, 102–122 (2014)

23. Reißner, D., Armas-Cervantes, A., Conforti, R., Dumas, M., Fahland, D., La Rosa,
M.: Scalable alignment of process models and event logs: an approach based on
automata and s-components. arXiv preprint arXiv:1910.09767 (2019)

24. Reißner, D., Conforti, R., Dumas, M., La Rosa, M., Armas-Cervantes, A.: Scalable
conformance checking of business processes. OTM 2017. LNCS, vol. 10573, pp.
607–627. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69462-7 38

25. Rogge-Solti, A., Senderovich, A., Weidlich, M., Mendling, J., Gal, A.: In log and
model we trust? A generalized conformance checking framework. In: La Rosa, M.,
Loos, P., Pastor, O. (eds.) BPM 2016. LNCS, vol. 9850, pp. 179–196. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-45348-4 11

26. Rozinat, A., van der Aalst, W.M.P.: Conformance testing: measuring the fit and
appropriateness of event logs and process models. In: Bussler, C.J., Haller, A. (eds.)
BPM 2005. LNCS, vol. 3812, pp. 163–176. Springer, Heidelberg (2006). https://
doi.org/10.1007/11678564 15

27. Rozinat, A., van der Aalst, W.M.P.: Conformance checking of processes based on
monitoring real behavior. Inf. Syst. 33(1), 64–95 (2008)

https://doi.org/10.1007/978-3-319-99414-7
https://doi.org/10.1007/978-3-319-99414-7
https://doi.org/10.1007/978-3-319-10172-9_16
https://doi.org/10.1007/978-3-319-10172-9_16
www.gartner.com
https://doi.org/10.1007/978-3-642-38697-8_17
https://doi.org/10.1007/978-3-642-68353-4_47
https://doi.org/10.1007/978-3-642-68353-4_47
http://arxiv.org/abs/1910.09767
https://doi.org/10.1007/978-3-319-69462-7_38
https://doi.org/10.1007/978-3-319-45348-4_11
https://doi.org/10.1007/11678564_15
https://doi.org/10.1007/11678564_15

26 A. Berti and W. M. P. van der Aalst

28. Shugurov, I., Mitsyuk, A.: Applying MapReduce to conformance checking. Proc.
Inst. Syst. Program. RAS 28, 103–122 (2016). https://doi.org/10.15514/ISPRAS-
2016-28(3)-7

29. Taymouri, F., Carmona, J.: An evolutionary technique to approximate multiple
optimal alignments. In: Weske, M., Montali, M., Weber, I., vom Brocke, J. (eds.)
BPM 2018. LNCS, vol. 11080, pp. 215–232. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-98648-7 13

30. Weijters, A., van der Aalst, W.M.P., De Medeiros, A.A.: Process mining with
the heuristics miner-algorithm, pp. 1–34. Technical report WP 166, Technische
Universiteit Eindhoven (2006)

31. van Zelst, S.J., Bolt, A., Hassani, M., van Dongen, B.F., van der Aalst, W.M.P.:
Online conformance checking: relating event streams to process models using
prefix-alignments. Int. J. Data Sci. Anal. 8(3), 269–284 (2019). https://doi.org/
10.1007/s41060-017-0078-6

https://doi.org/10.15514/ISPRAS-2016-28(3)-7
https://doi.org/10.15514/ISPRAS-2016-28(3)-7
https://doi.org/10.1007/978-3-319-98648-7_13
https://doi.org/10.1007/978-3-319-98648-7_13
https://doi.org/10.1007/s41060-017-0078-6
https://doi.org/10.1007/s41060-017-0078-6

Extensible Structural Analysis of Petri
Net Product Lines

Elena Gómez-Mart́ınez(B) , Juan de Lara , and Esther Guerra

Modelling and Software Engineering Research Group,
Universidad Autónoma de Madrid, C/ Francisco y Valiente, 11, 28049 Madrid, Spain

{MariaElena.Gomez,Juan.DeLara,Esther.Guerra}@uam.es
http://miso.es

Abstract. Petri nets are a popular formalism to represent concurrent
systems. However, their standard form does not offer variability sup-
port to model and effectively analyse large sets of variants of a given
system. For this purpose, we propose a notion of product line of Petri
nets to represent a set of similar concurrent systems. The formalization
enriches Petri nets with a feature model characterizing the variability of
the systems. Moreover, places, transitions and arcs can define presence
conditions that determine the subset of system variants they belong to.

To enable an efficient analysis of the set of all net variants, we have
lifted several structural analysis methods for Petri nets, to the product
line level. Currently, we support the lifted checking of the marked graph,
state-machine, and (extended) free-choice properties, which avoids their
analysis on each particular net of the product line in isolation.

We demonstrate the feasibility of our proposal using examples in the
domain of flexible assembly lines, and introduce an extensible tool infras-
tructure. The tool is based on Eclipse and FeatureIDE, and permits
adding new analysis methods externally. Moreover, we present an eval-
uation that shows the efficiency gains of our method with respect to an
enumerative approach that analyses the properties on every net within
the product line separately.

Keywords: Petri nets · Structural analysis · Product lines ·
Model-driven engineering

1 Introduction

Petri nets are a popular formalism to model concurrent systems [21]. They are
widely used due to their rich body of theoretical results enabling analysis, and the
plethora of existing supporting tools1. However, some scenarios require modelling
(possibly a large set of) variants of similar systems. Some examples reported in
the literature include the design of the variants of controllers for cyber-physical
systems [20], modelling all possible variants of flexible assembly lines [24], or

1 See for example https://www.informatik.uni-hamburg.de/TGI/PetriNets/tools/.

c© Springer-Verlag GmbH Germany, part of Springer Nature 2021
M. Koutny et al. (Eds.): ToPNoC XV, LNCS 12530, pp. 27–49, 2021.
https://doi.org/10.1007/978-3-662-63079-2_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-63079-2_2&domain=pdf
http://orcid.org/0000-0002-7753-3345
http://orcid.org/0000-0001-9425-6362
http://orcid.org/0000-0002-2818-2278
https://www.informatik.uni-hamburg.de/TGI/PetriNets/tools/
https://doi.org/10.1007/978-3-662-63079-2_2

28 E. Gómez-Mart́ınez et al.

building families of workflow process models [28]. In these cases, the designer
needs to build many variations of a base model. However, if there are many vari-
ants, then building, maintaining and analysing this large set of variants becomes
challenging.

To facilitate the management of large sets of net variants, we combine Petri
nets with software product lines (SPLs) [25,27] to define a notion of Petri net
product line (PNPL). This allows modelling the variability space using a fea-
ture model, and automatically producing specific Petri nets from given feature
configurations [15].

As the main contribution of this paper, we propose lifting some structural
analysis techniques of Petri nets to the product line level. This means that we do
not need to analyse each Petri net that can be produced from a PNPL separately,
but our analysis techniques work on the whole set of Petri nets directly. In this
paper, we explain how to lift the analysis of the marked graph, state-machine,
and (extended) free-choice [11] properties to PNPLs, but other structural anal-
ysis techniques like (extended) asymmetric choice [2] or equal conflict nets [32]
can be lifted in a similar way. In the above-mentioned scenarios, these struc-
tural analysis techniques can be used to assess soundness of workflow nets [1] by
analysing if some/all nets are free choice; to check whether synchronization can
interfere with conflicts in a flexible assembly line by analysing if some/all nets
are free choice; or checking whether any variant of a controller design can lead
to conflicts by checking if all variants are marked graphs.

As a second contribution, we present extensible prototype tool support to
model and analyse PNPLs. Our tool is based on Eclipse, and has an extension
point to enable contributing further analysis techniques externally. Moreover,
we use our tool to evaluate the efficiency of our lifted analysis techniques, which
show good improvement compared to enumerating and analysing each Petri net
within the product line.

This paper extends our work in [12] by a more comprehensive formalization
of the lifting process (Sect. 3.1), the lifted analysis of two additional properties
(free-choice and extended free-choice), improved tool support and an expanded
evaluation.

In the following, Sect. 2 introduces PNPLs; Sect. 3 proposes lifting the analy-
sis of structural properties to PNPLs and lifts the analysis of the marked graph
and (extended) free-choice properties; Sect. 4 presents tool support; Sect. 5 eval-
uates the efficiency of our lifted analysis; Sect. 6 compares with related research;
and Sect. 7 concludes. The Appendix details the lifting of the state-machine
property.

2 Petri Net Product Lines

This section defines PNPLs, and how to derive concrete Petri nets via feature
configurations. We consider a simple notion of Petri net, as given in Definition 1,
but the approach can be easily adapted to other more complex versions.

Extensible Structural Analysis of Petri Net Product Lines 29

genA

PartA

cnvA

pr

genB cnvB

PartB

150%
Petri netA 150% net

contains all
variants
superimposed

Flexible
AssemblyLine

PartA PartB
+

Feature model

Feature combina ons
allowed by the feature
model

PartA

PartB

PartA, PartB

proc

genB cnvB

PartB

genA cnvA

proc

genB cnvB

genA cnvA

proc

PartA, PartB PartA

A feature model
defines the variants
that can be selected

[Def 2]

[Def 3]

Presence condi ons
(boolean formulae)

[Def 3]

Configura ons

[Def 4]

Petri nets that can be
derived from each
configura on (called
products) [Def 5]

Fig. 1. Ingredients of a PNPL.

Definition 1 (Petri net). A Petri net is a tuple PN = (P, T,A), where P and
T are disjoint sets of places and transitions, and A ⊆ (P × T) ∪ (T × P) is the
set of arcs connecting either places to transitions or vice versa.

Given an arc a ∈ A, we use a0 to refer to its source, and a1 to refer to its
target.

We define a notion of PNPL to support the definition of net variants. Figure 1
shows the concepts that it involves. Firstly, the variability space is represented
as a set of features in a feature model. Then, the main idea is to superimpose
all net variants within a single net – called 150% Petri net2 – and annotate its
elements with presence conditions (logic formulae over the features in the feature
model). Users can retrieve a particular net variant by selecting a subset of the
available features. Such a choice is called a configuration. Then, the selected
features are substituted by true in the presence conditions, and the unselected
ones by false. This makes each presence condition to evaluate either to true or
false. The elements whose presence condition evaluates to false are eliminated
from the 150% net, and the remaining elements form the selected net variant.
In the following, we define each component of the approach in detail.

PNPLs build on the notion of a feature model that defines the variability
space of possible configurations.

Definition 2 (Feature model). A feature model FM = (F, Ψ) consists of a
set of propositional variables F = {f1, ..., fn} called features, and a propositional
formula Ψ over the variables in F .

2 The term 150% model is standard in software product lines. It refers to the fact that
a single model contains many variants superimposed.

30 E. Gómez-Mart́ınez et al.

Fig. 2. Feature model for the flexible assembly line using (a) the diagrammatic notation
of feature models [15], and (b) Definition 2.

Remark. The propositional formula Ψ in the feature model is used to determine
the allowed combinations of feature values (those making the formula true).

Example. As an illustration, we will be using a family of Petri nets describing
the behaviour of a flexible assembly line, that is, a production system that can be
quickly reconfigured in different set-ups to produce a variety of goods or adapt to
customer demands [24]. Here, the problem is to model all such possible configu-
rations in a compact way, and analyse properties of all configurations efficiently.
Figure 2(a) shows the feature model using a diagrammatic notation [15], and
Fig. 2(b) using Definition 2. Our assembly line can be configured to accept one
or two kinds of input parts (PartA, PartB), can optionally have a quality control
process (QualityControl) and a parallel conveyor (Parallel), and can produce one
or two kinds of products (Prod1, Prod2).

A PNPL is a Petri net whose elements can be annotated with boolean for-
mulae, having as variables the features of the feature model.

Definition 3 (Petri net product line). A PNPL PNL = (FM,PN,Φ) is
made of a feature model FM , a Petri net PN (called the 150% Petri net), and
a mapping Φ which consists of pairs 〈x, Φx〉 mapping an element x ∈ P ∪ T ∪ A
to a propositional formula Φx (called the presence condition (PC) of x) over the
features in FM .

PNL is well-formed if ∀a ∈ A : (Φa ⇒ Φa0) ∧ (Φa ⇒ Φa1) is true.

As noticed, we use an annotative approach to facilitate the analysis. The
approach relies on the definition of a 150% Petri net that contains all variants
of the PNPL, and the assignment of PCs to its elements. Then, a particular
Petri net can be obtained by removing the elements whose PC evaluates to
false given a choice (a configuration) of feature values. This kind of variability
which starts from a maximal description of a set of systems (the 150% Petri net)
and deletes elements upon certain conditions is called negative [10]. Instead,
other approaches to SPLs use positive variability, i.e., they start from a minimal
description of the systems to which new elements are added depending on the
selected features [29]. Our method can also be applied to positive variability
approaches as long as they permit deriving a 150% Petri net.

Extensible Structural Analysis of Petri Net Product Lines 31

In Definition 3, the well-formedness condition requires the PC of an arc to be
stronger than the PC of its source and target elements. This ensures that, if the
arc is present in a product Petri net (i.e., a Petri net derived from a configuration
by deleting from the 150% net the elements whose PC is false), its source and
target elements will be present as well. Definitions 4 and 5 will provide the formal
notions of configuration and Petri net derivation.

Fig. 3. 150% Petri net with PC annotations, modelling a flexible assembly line.

Example. Figures 2 and 3 show the feature model and the 150% net composing
the PNPL of the flexible assembly line. The 150% Petri net in Fig. 3 uses dashed
regions as a shortcut to assign the same PC to all the elements in the region.
For example, formula PartB in the top-left corner is attached to transition genB,
to place cnvB, and to the arcs from/to place cnvB . If an element does not show
an attached PC, then we assume that its PC is true.

The way to obtain a specific product Petri net from a PNPL is by selecting
a subset of the features in its feature model. This selection is called a feature
configuration. In the following definition, we use Ψ [X/true, Y/false] to denote
the substitution of all variables in X by true, and all variables in Y by false,
in formula Ψ .

Definition 4 (Feature configuration). A valid feature configuration ρ ⊆ F
of a PNPL PNL with feature model FM = (F, Ψ) is a subset of its features
satisfying Ψ , i.e., Ψ [ρ/true, F \ ρ/false] evaluates to true when each f ∈ ρ is
substituted by true, and each f ∈ F \ρ is substituted by false. We use P (FM) =
{ρi} for the set of all valid feature configurations of PNL.

To improve readability, in the remaining of the paper, feature configurations
omit features that are mandatory in any configuration.

Example. Figure 2 admits 36 feature configurations. In all of them, PartA or
PartB (inclusive) need to be selected, and similarly, Prod1 or Prod2 need to be
selected as well. For instance, some valid configurations are ρ0 = {PartA, Prod1},
ρ1 = {PartA, PartB, Prod1}, and ρ2 = {PartB, Parallel, Prod1}. As mentioned above,
these configurations would also include features FlexibleAssemblyLine, InParts, Pro-
cess and OutProducts, but we do not show them as they are mandatory.

32 E. Gómez-Mart́ınez et al.

Given a feature configuration, we obtain the corresponding product Petri net
by removing from the 150% Petri net any element whose PC is false.

Definition 5 (Petri net derivation). Given a PNPL PNL = (FM,PN =
(P, T,A), Φ) and a configuration ρ ∈ P (FM), we derive the net PNρ =
(Pρ, Tρ, Aρ) building each set Xρ ⊆ X (for X = {P, T,A}) as {x ∈
X | Φx[ρ/true, F \ ρ/false] = true}. We use Prod(PNL) = {PNρ | ρ ∈
P (FM)} for the set of all derivable nets from PNL.

Example. Figure 4 shows a Petri net derivation example using the feature con-
figuration ρ2 = {PartB, Parallel, Prod1}. This way, PNρ2 contains exactly those
elements whose PC evaluates to true.

Fig. 4. Petri net derivation example.

To analyse a property in every Petri net that can be derived from a PNPL,
a naive method would derive and analyse each product Petri net one by one.
However, this can be time-consuming since the number of derivable Petri nets
can be exponential on the number of features in the worst case. Hence, the next
section proposes a method to lift the analysis of structural properties to the
product line level.

3 Structural Analysis of Petri Net Product Lines

This paper is focused on the efficient analysis of structural properties of the set of
nets that can be derived from a PNPL. Structural properties depend only on the
net topology and are independent of the initial marking [21]. These properties
include connectedness, state-machine, marked graph, and (extended) free-choice,
among others.

Extensible Structural Analysis of Petri Net Product Lines 33

In the following, we first introduce the general scheme and required con-
cepts for the lifted analysis of structural properties (Sect. 3.1). Then, we lift the
analysis for the marked graph (Sect. 3.2), free-choice (Sect. 3.3) and extended
free-choice properties (Sect. 3.4). The appendix contains the lifting of the state-
machine property.

3.1 Lifting the Analysis of Structural Properties

Structural properties look at connectivity patterns of a given Petri net to assert
the occurrence of some particular structure. These properties are frequently for-
mulated using first-order logic and auxiliary functions, such as the pre- and
post-sets of each place and transition in the net. Figure 5(a) illustrates the for-
malization of a structural property using a formula P , which is checked on a
Petri net PN . We write PN |= P to indicate that property P holds on the
Petri net PN .

Fig. 5. (a) Checking a structural property P on a Petri net PN . (b) Checking a struc-
tural property P on a PNPL PNL using an enumerative approach. (c) Checking a
structural property P on a PNPL PNL using a lifted approach.

To check a structural property in the set of nets of a PNPL, we can sepa-
rately check the property in each derivable net PNi, as Fig. 5(b) shows. Because
we now look at a set of nets, instead of at individual ones, we can distinguish
between weak and strong property satisfaction. Weak satisfaction requires that
some product Petri net of the PNPL satisfies the property P (e.g., the marked
graph property, cf. Definition 7), while strong satisfaction requires that all prod-
uct Petri nets satisfy P . The problem with this solution is that checking P on
each product net might be too costly as there may be an exponential number of
them.

Instead, we propose the solution outlined in Fig. 5(c) to improve the effi-
ciency of the analysis of structural properties for a PNPL. In this solution, we
first lift the property P to the product line level. For this purpose, we encode P
as a formula ΦP which takes into account the PCs of the elements in the 150%
Petri net, and is satisfied by those configurations ρ such that PNρ |= P . Then,

34 E. Gómez-Mart́ınez et al.

we recast the checking of weak/strong property satisfaction as a constraint satis-
faction problem. Specifically, if SAT (Ψ ∧ ΦP) (with SAT a predicate that holds
if the formula is satisfiable, and Ψ the formula of the feature model), then there
is some valid configuration which produces a Petri net that satisfies the property
P . We can use a constraint solver to obtain a feature configuration that satisfies
the formula Ψ ∧ ΦP . If such a configuration exists, then we have weak property
satisfaction.

Conversely, the formula ¬ΦP is satisfied by those configurations that produce
Petri nets where P does not hold. This way, we have strong satisfiability if
SAT (Ψ ∧¬ΦP) does not hold. This means that no valid configuration (satisfying
Ψ) produces a Petri net that does not satisfy P (where ¬ΦP holds).

The structural properties that we consider in this paper – state-machine,
marked graph, (extended) free-choice – make use of the pre- and post-sets of
each place p and each transition t (written •p, p•, •t and t• respectively). Hence,
we need to incorporate the PCs within those sets, as Definition 6 shows.

Definition 6 (Lifted pre-/post-sets). Given a PNPL PNL = (FM,PN =
(P, T,A), Φ), for any element x ∈ P ∪ T , the lifted pre-set of x is ◦x =
{(y, Φ(y,x)) | (y, x) ∈ A}, while its lifted post-set is x◦ = {(y, Φ(x,y)) | (x, y) ∈ A}.
Remark. In the previous definition, we can use the PC of the arc (Φa) instead of
the PC of its source or target place or transition (Φa0 , Φa1) because, according to
Definition 3, in a well-formed PNPL, Φa ⇒ Φa0 ∧ Φa ⇒ Φa1 , and so, Φa ∧ Φa0 =
Φa = Φa ∧ Φa1 .

As an illustration, the following subsections apply this approach to lift the
analysis of the marked graph, free-choice and extended free-choice properties.
Since the state-machine property is the dual of the marked graph property, we
show it in the Appendix. Other structural properties like asymmetric choice can
be lifted in a similar way.

3.2 Lifted Analysis of the Marked Graph Property

Firstly, we provide the definition of the marked graph (MG) property. In a MG
Petri net, each place has exactly one input transition and one output transition,
whereas each transition may have multiple input and output places. Therefore,
a MG allows concurrent and synchronization structures with no conflict.

Definition 7 (Marked graph, from [21]). A Petri net PN = (P, T,A) is a
marked graph, written PN |= MG, if ∀p ∈ P : |•p| = |p•| = 1.

We lift this definition of MG to the product line level. Therefore, a PNPL
strongly (weakly) satisfies the MG property if all (some of) its derivable nets are
MGs.

Extensible Structural Analysis of Petri Net Product Lines 35

Definition 8 (Strong and weak MG product line). A Petri net product
line PNL is a strong marked graph iif ∀PNρ ∈ Prod(PNL) : PNρ |= MG.
PNL is a weak marked graph iif ∃PNρ ∈ Prod(PNL) : PNρ |= MG.

If we can derive from the product line PNL a net that is not a MG, then
PNL is not a strong MG product line. In particular, given a feature configuration
ρ, a Petri net derivation PNρ is not a MG if it has a place p with more than one
input transition, more than one output transition, no input transitions, or no
output transitions. Therefore, for a PNPL to be a strong MG, we require that
the size of the lifted pre-set ◦p = {(t0, Φ(t0,p)), ..., (tn, Φ(tn,p))} and the lifted
post-set p◦ = {(t0, Φ(p,t0)), ..., (tn, Φ(p,tn))} of every place p to be one for every
possible configuration. For the case of the pre-set, this is the case if the following
formula is true:

Φ◦p � false

∨ (Φ(t0,p) ∧ ¬Φ(t1,p) ∧ ... ∧ ¬Φ(tn,p))
∨ (¬Φ(t0,p) ∧ Φ(t1,p) ∧ ... ∧ ¬Φ(tn,p))
∨ ... (¬Φ(t0,p) ∧ ¬Φ(t1,p) ∧ ... ∧ Φ(tn,p))

(1)

The formula is made of a disjunction of conjunctions, where only one term in
each conjunction can be true. This ensures that, regardless of the configuration,
the pre-set of the place will have size one. The disjunctions start with false, so
that Φ◦p is false when ◦p is empty. The terms Φ(ti,p) are the PCs in the lifted
pre-set of p (◦p). The formula that ensures that the size of the post-set of a place
is one for every possible configuration is defined similarly, but using the terms
Φ(p,ti) in the lifted post-set of p (p◦).

This way, a PNPL includes some Petri net that is a MG if there is a feature
configuration ρ such that for every place p in the PNPL:

– p is not in PNρ, therefore Φp is false; or
– p is in PNρ, and therefore Φ◦p and Φp◦ need to be true.

We can express these conditions as the logical formula in Equation 2.

ΦMG = ∧p∈P [¬Φp ∨ (Φp ∧ Φ◦p ∧ Φp◦)] (2)

If SAT (Ψ ∧ ΦMG) is true, then the PNPL is a weak MG. In such a case, we
can use a constraint solver to obtain a feature configuration that satisfies the
formula. The Petri net derived using this feature configuration is ensured to be
a MG.

Conversely, the feature configurations making the formula ΦMG false yield
Petri nets that are not MGs. Hence, a PNPL is a strong MG if SAT (Ψ ∧¬ΦMG)
is unsatisfiable (i.e., no valid configuration produces a net that is not a MG).

Example. In the PNPL consisting of the feature model in Fig. 2 and the 150%
net in Fig. 3, the interesting cases are those for places in and ctrl. In the latter
case, any Petri net that contains either both transitions inc1 and inc2, or both
transitions prod and fix, is not a MG because place ctrl would have either two

36 E. Gómez-Mart́ınez et al.

incoming or two outgoing arcs. This is the case for the Petri nets derived from
configurations that select the features Parallel or QualityControl. Similarly, place
in will have two incoming arcs for configurations that select the feature Quality-

Control, and two outgoing arcs for configurations that select the feature Parallel,
resulting in nets that are not MGs. Overall, the example PNPL is not a strong
MG product line. However, it is a weak MG product line as, for example, the
configuration that only selects features PartA and Prod1 produces a Petri net
that is a MG. In practice, if we would like to have no conflicts in the flexible
assembly line, we might rule out the problematic variants (i.e., those that are not
MGs) by extending the formula Ψ in the feature model. The concrete formula,
not reduced, corresponding to the MG property of our example PNPL is the
following:

ΦMG = (¬PartA ∨ (PartA ∧ PartA ∧ PartA))

∧ (¬PartB ∨ (PartB ∧ PartB ∧ PartB)) ∧ (QualityControl ∧ Parallel)

∧ (¬Parallel ∨ (Parallel ∧ Parallel ∧ Parallel))

∧ (Parallel ∧ QualityControl) ∧ (¬Prod1 ∨ (Prod1 ∧ Prod1

∧ (Prod1 ∧ Prod2))) ∧ (¬Prod2 ∨ (Prod2 ∧ Prod2 ∧ (Prod1 ∧ Prod2)))

∧ ((¬(Prod1 ∧ Prod2)) ∨ ((Prod1 ∧ Prod2) ∧ (Prod1 ∧ Prod2)))

Then, to assess the MG property on the PNPL, we analyse the satisfiability
of the conjunction of this formula ΦMG and the formula of the feature model Ψ .

Interestingly, the lifted analysis of the MG property is very similar to the
analysis of the state-machine property. A state-machine (SM) is a subclass of
Petri net where each transition t has exactly one input place and one output
place, while each place may have multiple input and output transitions. This
way, analysing whether a PNPL is a weak/strong SM product line is dual to
checking the MG property in a PNPL but replacing transitions by places and
vice versa (details in the Appendix).

3.3 Lifted Analysis of the Free-Choice Property

Next, we define the free-choice (FC) property. In a FC net, it is not possible to
mix choice and synchronization into one routing construct, i.e., either a choice is
preceded by a synchronization, or vice versa. FC Petri nets do not have conflicts
since every transition has a unique input place.

Definition 9 (Free-choice, from [7]). A Petri net PN = (P, T,A) is a free-
choice Petri net, written PN |= FC, if for every two transitions t1 and t2 ∈ T ,
t1 �= t2 : •t1 ∩ •t2 �= ∅ ⇒ |•t1| = |•t2| = 1.

In other words, a Petri net is FC if every place is either connected to a
unique output transition, or all its output transitions have a unique input place.
Formally:

∀p ∈ P : |p•| = 1 ∨ ∀t ∈ p• : |•t| = 1 (3)

Extensible Structural Analysis of Petri Net Product Lines 37

Following the rationale of the previous analysis, we first lift the definition of
property FC to the product line level. Hence, a PNPL is a strong (weak) FC if
all (some) its derivable nets are FC.

Definition 10 (Strong and weak FC product line). A Petri net product
line PNL is a strong free-choice iif ∀PNρ ∈ Prod(PNL) : PNρ |= FC. PNL
is a weak free-choice iif ∃PNρ ∈ Prod(PNL) : PNρ |= FC.

According to Eq. 3, every outgoing arc from a place either is unique, or is
the only incoming arc to the target transition of the arc. Therefore, a PNPL
includes a FC Petri net if there is a feature configuration ρ such that for every
place p in the PNPL:

– p is not in PNρ, therefore Φp is false; or
– p is in PNρ, and therefore either Φp◦ is true, or for every transition t in the

post-set p•:
• t is not in PNρ, therefore Φt is false; or
• t is in PNρ, and therefore Φ◦t needs to be true.

Equation 4 shows the encoding of these conditions as a logical formula
expressing the cases in which a PNPL is a FC product line.

ΦFC = ∧p∈P [¬Φp ∨ (Φp ∧ (Φp◦ ∨ (∧t∈p• [¬Φt ∨ (Φt ∧ Φ◦t)])))] (4)

If SAT (Ψ ∧ ΦFC) is satisfied, then the PNPL is a weak FC product line. On
the contrary, configurations leading to nets that are not FC satisfy Ψ ∧ ¬ΦFC .
Therefore, a PNPL is a strong FC product line if SAT (Ψ ∧¬ΦFC) does not hold.

Example. The sets of conflicting transitions in the PNPL of Fig. 3 (out1 and
out2; prod and fix) only have one input place, and therefore, the example is a
strong FC product line. In practice, this means that our example has a sound
design: in no variant of our flexible assembly line, synchronization (i.e., sequenc-
ing of part production or movement through the conveyors in the assembly line)
interferes with conflicts (i.e., choice of paths for parts in the assembly line).

3.4 Lifted Analysis of the Extended Free-Choice Property

Extended-free choice (EFC) Petri nets satisfy a weaker condition than FC Petri
nets, and every FC Petri net is also EFC. Informally, we say that a Petri net is
EFC if the result of a choice between two transitions is never influenced by the
rest of the system. The following definition formalizes this intuition.

Definition 11 (Extended free-choice, from [7]). A Petri net PN =
(P, T,A) is an extended free-choice Petri net, written PN |= EFC, if for every
two transitions t1 and t2 ∈ T , t1 �= t2 : •t1 ∩ •t2 �= ∅ ⇒ •t1 = •t2.

38 E. Gómez-Mart́ınez et al.

In an EFC Petri net, if a transition has two or more input places, then all
these places must have the same set of output transitions. Formally:

∀t ∈ T : ∀p1, p2 ∈ •t ⇒ p1
• = p2

• (5)

Next, we lift the definition of the EFC property to the product line level. A
PNPL is a strong (weak) EFC if all (some) derivable nets are EFC.

Definition 12 (Strong and weak EFC product line). A Petri net product
line PNL is a strong extended free-choice iif ∀PNρ ∈ Prod(PNL) : PNρ |=
EFC. PNL is a weak extended free-choice iif ∃PNρ ∈ Prod(PNL) : PNρ |=
EFC.

According to Eq. 5, we check that each transition t has the following EFC
condition:

– t is not in PNρ, therefore Φt is false; or
– t is in PNρ, and therefore Φt needs to be true, and moreover, for every two

places p1 and p2 in the pre-set •t such that p1 �= p2:
1. each transition t′ that is not in the post-set of both p1 and p2 is not in

PNρ, and hence Φ(pi, t
′) is false (for i = 1 or 2); and

2. each transition t′ that is in the post-set of both p1 and p2 is in PNρ (and
hence Φ(p1, t′) and Φ(p2, t′) are true), or disappears from both post-sets
(and therefore Φ(p1, t′) and Φ(p2, t′) are false).

In the previous condition, the first requirement demands configurations where
the transitions t′ that only belong to one of the post-sets (i.e., to p1

• \ p2
• or

to p2
• \ p1

•) disappear from this post-set. The second requirement demands the
common transitions in p1

• ∩ p2
• to be maintained. Equation 6 captures these

conditions as a logical formula:

ΦEFC(t) = ¬Φt ∨ (Φt ∧p1,p2∈•t|p1 �=p2 [∧t′∈p1•\p2• ¬Φ(p1,t′)

∧t′∈p2•\p1• ¬Φ(p2,t′)

∧t′∈p2•∩p1• Φ(p1,t′) ⇔ Φ(p2,t′)])
(6)

Therefore, we define ΦEFC = ∧t∈T ΦEFC(t). Consequently, if there exists a
feature configuration that satisfies SAT (Ψ ∧ ΦEFC), then there is a derivable
Petri net that is EFC, and hence the PNPL is a weak EFC product line. A
PNPL is strong EFC if SAT (Ψ ∧ ¬ΦEFC) does not hold.

Example. In the PNPL of Fig. 3, there are two transitions that may have two
incoming places in some configurations: proc and pack. However, their incoming
places only have those transitions as their output, and therefore, the example
is a strong EFC. Actually, as we have seen in Sect. 3.3, the example is a strong
FC product line, and in consequence, we can conclude that it is a strong EFC
product line as well.

Extensible Structural Analysis of Petri Net Product Lines 39

 FEATUREIDE
Composer

 PETRINETS VAR

Property
Analysis

 STATEMACHINE

 FREECHOICE TEXTUAL
EDITOR

 PETRINETS
EDITOR

Feature
model

150% Petri net
model

Mapping
model

Analysis
result

Feature
configura on

 SAT4J
«uses»

 MARKEDGRAPH

 EXTENDEDFREECHOICE
…

Fig. 6. Architecture of our Petrinets var tool.

4 Tool Support

We have implemented an Eclipse plugin, called Petrinets var, which supports the
presented approach. Figure 6 shows its architecture.

Petrinets var provides two editors: one to specify the 150% Petri net, and
another to assign PCs to its elements in a so-called mapping model. We use the
Eclipse Modeling Framework (EMF) [31] as the underlying modelling technology,
and therefore, both the 150% Petri net and the mapping model are EMF-based
models that conform to their respective meta-models. The meta-model of the
mapping model defines classes to represent the abstract syntax of the boolean
formulae making the PCs, together with a cross-reference that points to the Petri
net meta-model elements that can be annotated.

We rely on FeatureIDE [19] to specify the feature model and the feature
configurations. FeatureIDE provides an extension point Composer that our tool
instantiates to automate the derivation of specific Petri nets from the 150% Petri
net given a feature configuration. Our tool defines an extension point as well,
called Property Analysis, that allows extending the tool with new analysis methods.
We currently provide four instances of this extension point to analyse whether
some/all Petri nets in a PNPL are state-machines, marked graphs, free-choice
or extended free-choice. Since the analysis techniques provided so far rely on
the Sat4J solver [5], our plugin provides facilities to transform the conjunction
of the analysis formula and the formula of the feature model into conjunctive
normal form (CNF), as Sat4J requires. This can simplify the implementation of
new analysis techniques by future users.

Figure 7 shows a screenshot of our tool. The Eclipse project explorer (label
1) contains the FeatureIDE project with the definition of the PNPL used as
a running example. This project is configured with our composer and declares
the 150% Petri net (file 150mm.petrinets), the feature model (file model.xml
that is being edited in the window labelled 2), and the mapping model (file
annotation.vrb that is being edited in the window labelled 3). As the figure shows,
there are dedicated editors for each kind of file. The textual editor for the PCs
has code completion (e.g., offering the available feature names) and validation

40 E. Gómez-Mart́ınez et al.

Fig. 7. Screenshot of our Petrinets var tool.

(e.g., it checks that the used features are defined in the feature model). A popup
menu on the mapping model allows selecting the lifted analysis to perform. The
results of the analyses, including the analysis time, are shown in a dialog box
like the one shown in the figure.

Our current implementation uses its own EMF meta-model to represent 150%
Petri nets. This meta-model supports a simple notion of net like the one we
have used in the paper. However, to improve interoperability with other Petri
net tools, we are planning to use the standard Petri Net Markup Language
(PNML) [26] instead, for which there is an EMF implementation available.

5 Evaluation

Next, we report on two experiments to assess the efficiency gains of our lifted
analyses, compared to generating all derivable nets in a PNPL and analysing
each net separately. In the latter case, we perform an explicit analysis of each
single net (i.e., without converting the analysis into a constraint satisfaction
problem, which may take longer). In our evaluation, we measure the time for
analysing the strong satisfaction of the MG, SM, FC and EFC properties (i.e.,
whether all nets in the PNPL satisfy the property).

We have carried out two experiments based on the running example. In the
first experiment, illustrated in Fig. 8, we have analysed the efficiency of our
analysis techniques when considering PNPLs with 150% Petri nets of different

Extensible Structural Analysis of Petri Net Product Lines 41

Fig. 8. Experiment 1: PNPL modelling a replicated flexible assembly line.

size but the same number of features. For this purpose, we have created ten
PNPLs having the same feature model as in Fig. 2, and whose 150% Petri net
contains n replicas of the assembly line in Fig. 3, with n from 1 to 10 (i.e.,
the first PNPL contains 1 replica, the second one contains two replicas, and so
on). All created PNPLs have 36 valid feature configurations. As in the running
example, the PNPLs are neither strong MG nor strong SM product lines, but
they are strong FC and EFC product lines.

Figure 9 shows the analysis time in milliseconds with logarithmic scale of
running 10 times the first execution. We consider just the first execution to
discard cache effects. As it can be observed, all lifted analysis techniques were
up to three orders of magnitude faster than the time to generate and analyse
each net in isolation. In addition, the analysis time did not depend on the size
of the 150% Petri net.

The goal of our second experiment is assessing whether an increase in the
number of features of the PNPL has an impact in the analysis time. For this
purpose, we have created seven PNPLs whose 150% Petri net contains a single
assembly line, but they define an increasing number of features to model addi-
tional input parts (PartA, PartB, PartC, and so on) and output products (Prod1,
Prod2, Prod3, and so on). Figure 10 illustrates the construction of the different
feature models. The simplest PNPL contains one input part and one output
product, and the most complex one has five input parts and five output prod-
ucts. These PNPLs are constructed by adding replicas of the PartA and Prod1

regions in the PNPL of Fig. 3. The PNPL with one input part and one output
product is both a strong MG and a strong SM, but the remaining PNPLs are
not. All PNPLs in the experiment are strong FC and EFC product lines.

The graphics in Fig. 11 show the analysis time in milliseconds with logarith-
mic scale (vertical axis to the left of the graphics), and the number of configura-
tions of each PNPL (vertical axis to the right). Like in the first experiment, we

42 E. Gómez-Mart́ınez et al.

0

5

10

15

20

25

30

35

40

45

50

1

10

100

1000

10000

100000

1000000

1 2 3 4 5 6 7 8 9 10

N
um

be
ro

f c
on

fig
ur

a
on

s

An
al

ys
is

m
e

(m
s l

og
 sc

al
e)

Number of assembly lines

Marked Graph

0

5

10

15

20

25

30

35

40

45

50

1

10

100

1000

10000

100000

1000000

1 2 3 4 5 6 7 8 9 10

N
um

be
ro

f c
on

fig
ur

a
on

s

An
al

ys
is

m
e

(m
s l

og
 sc

al
e)

Number of assembly lines

State Machine

0

5

10

15

20

25

30

35

40

45

50

1

10

100

1000

10000

100000

1000000

1 2 3 4 5 6 7 8 9 10

N
um

be
ro

f c
on

fig
ur

a
on

s

An
al

ys
is

m
e

(m
s l

og
 sc

al
e)

Number of assembly lines

Free Choice

0

5

10

15

20

25

30

35

40

45

50

1

10

100

1000

10000

100000

1000000

1 2 3 4 5 6 7 8 9 10

N
um

be
ro

f c
on

fig
ur

a
on

s

An
al

ys
is

m
e

(m
s l

og
 sc

al
e)

Number of assembly lines

Extended Free Choice

Number of configura ons PNPL All nets Number of configura ons PNPL All nets

Number of configura ons PNPL All nets Number of configura ons PNPL All nets

Fig. 9. Analysis time (ms in logarithmic scale) for PNPLs with 150% Petri nets of
different size.

FlexibleAssemblyLine

InParts Process OutProducts

PartA PartB QualityControl Parallel Prod1 Prod2

mandatory optional

alternative
(exactly one)

or
(at least one)

Legend

PartN ProdN … …

Fig. 10. Experiment 2: PNPL modelling an assembly line with N input parts and
output products.

consider just the first execution to discard cache effects. It can be observed that
the number of configurations is exponential on the number of features. While
the analysis time of all nets in the PNPL one by one is exponential as well, the
analysis time of the lifted property is roughly constant. Therefore, the larger
the number of features in a PNPL, the bigger the efficiency gains of our lifted
analysis compared to an enumerative approach.

Extensible Structural Analysis of Petri Net Product Lines 43

0

10.000

20.000

30.000

40.000

50.000

60.000

70.000

0,00001

0,0001

0,001

0,01

0,1

1

10

100

1000

1 2 3 4 5 6 7

N
um

be
ro

f c
on

fig
ur

a
on

s

An
al

ys
is

m
e

(m
s l

og
 sc

al
e)

x
10

00
00

Number of InPart and OutProduct places

Marked Graph

0

10.000

20.000

30.000

40.000

50.000

60.000

70.000

0,00001

0,0001

0,001

0,01

0,1

1

10

100

1000

1 2 3 4 5 6 7

N
um

be
ro

f c
on

fig
ur

a
on

s

An
al

ys
is

m
e

(m
s l

og
 sc

al
e)

x
10

00
00

Number of InPart and OutProduct places

State Machine

0

10.000

20.000

30.000

40.000

50.000

60.000

70.000

0,00001

0,0001

0,001

0,01

0,1

1

10

100

1000

1 2 3 4 5 6 7

N
um

be
ro

f c
on

fig
ur

a
on

s

An
al

ys
is

m
e

(m
s l

og
 sc

al
e)

x
10

00
00

Number of InPart and OutProduct places

Free Choice

0

10.000

20.000

30.000

40.000

50.000

60.000

70.000

0,00001

0,0001

0,001

0,01

0,1

1

10

100

1000

1 2 3 4 5 6 7

N
um

be
ro

f c
on

fig
ur

a
on

s

An
al

ys
is

m
e

(m
s l

og
 sc

al
e)

x
10

00
00

Number of InPart and OutProduct places

Extended Free Choice

Number of configura ons PNPL All nets

Number of configura ons PNPL All nets Number of configura ons PNPL All nets

Number of configura ons PNPL All nets

Fig. 11. Analysis time (ms in logarithmic scale) for PNPLs with feature models of
different size.

Threats to Validity. While our experiments show gains of at least two orders
of magnitude with respect to an enumeration-based approach, the experiments
were based on a synthetic net and variations of it generated by replicating either
a part of the net or a part of the feature model. Therefore, to further validate
these results, we plan to consider models arising in realistic scenarios.

In addition, these results are for checking strong satisfaction of the properties.
We plan to extend the experiments to consider weak satisfaction, for which we
would require PNPLs with different percentages of product Petri nets satisfying
the properties. We expect that our method will provide larger efficiency gains
when the percentage of product Petri nets satisfying the property is low, as more
nets within the PNPL need to be inspected to find one satisfying the property.

44 E. Gómez-Mart́ınez et al.

6 Related Work

The main analysis techniques for Petri nets can be classified into three groups [9]:
i) enumeration, ii) transformation (mainly reduction), and iii) structural. Enu-
meration methods are based on the construction of a reachability/coverability
graph, but they suffer the state explosion problem. Transformation methods
obtain a slice of a Petri net that is easier to analyse but preserves the properties
under study [6]. Structural analysis techniques are based on the net structure
and its initial marking, and can be divided into two subgroups: linear program-
ming techniques based on the state equation, and graph-based techniques based
on “ad hoc” reasoning frequently derived from the firing rule. A survey on Petri
nets models and their analysis techniques can be found at [30].

There are several mechanisms to model variability for SPLs. Most of them
can be classified into annotation-based and composition-based techniques [3]. In
annotation-based approaches, parts of a model are annotated with information
about their mapping to products of the product line. They are widely used since
they are easy to implement but they work under the closed world assumption,
i.e., the set of features is fixed. In composition-based modelling, the product line
is decomposed into separate modules representing features that can be composed
to derive products. They support positive variability, that is, composition units
are added on demand. Surveys on SPL modelling techniques can be found in [4,
8,33].

Just like us, some works have added variability to Petri nets using SPL tech-
niques. Feature Petri nets (FN) [22] extend Petri nets to allow modelling the
behaviour of an entire SPL. A FN transition is activated if its input places are
marked and its application condition (a logical constraint over features) is true
under the current configuration state. Dynamic feature Petri nets (DFPN) [23]
extend FN to control feature bindings at runtime, and allow the evaluation of
some dynamic properties using model checking. These works lift analysis tech-
niques based on the reachability graph to the product line level, by adding PCs to
this graph. They follow an annotative approach to model variability. Similarly,
some works have used variability in Petri nets to express variants of higher-
level languages – like activity diagrams – and use a variable reachability graph
for analysis [14]. This work also uses an annotative approach for SPLs. With
respect to these works, our mapping model is more general: [14] only supports
variability in edges and [23] only supports variability in arcs and transitions,
while our approach permits PCs in arcs, places and transitions. With respect to
analysis techniques, the mentioned works focus on the reachability graph, while
we lift structural analysis techniques.

In addition to SPL methods, other techniques to handle variability in Petri
nets have been proposed. Conditional Petri nets [34] associate to each transition
a condition defined with the family of L languages, and transitions are con-
ditioned by the transition sequence previously applied. Likewise, logical Petri
nets [17] limit transition firing by means of constraints on first-order logic. There
are also reconfigurable nets [18], which can change the net topology at runtime

Extensible Structural Analysis of Petri Net Product Lines 45

by means of rewriting rules. Instead, PNPLs are static: the user needs to provide
a configuration to derive a Petri net.

Regarding analysis of model-based product lines, Czarnecki and Piet-
roszek [10] propose an approach to check whether all possible derivable mod-
els satisfy the OCL constraints of their meta-model. We may have encoded the
different structural properties in OCL and used that technique. However, our
solution permits generating specific constraints for the analysed PNPL (instead
of relying on one generic OCL constraint), which therefore can be solved using
simpler and potentially more efficient standard SAT-solving techniques. Instead,
Czarneck’s approach requires extending an existing OCL-based checker to con-
sider PCs, while in practice we just use the Sat4J SAT solver.

Concerning SPL analysis of temporal properties, Legay et al. [16] represent
the behaviour of variability-intensive systems by means of an extension of tran-
sition systems, called Feature Transition System. These authors also propose
model checking algorithms to verify all products of a SPL [8]. Unlike this app-
roach, we only focus on static properties, but we plan to explore behavioural
properties in future works.

Altogether, to the best of our knowledge, there are no previous works on lift-
ing the analysis of structural properties of PNPLs. This is relevant to enable an
efficient analysis of structural properties for all variants within a PNPL. Struc-
tural analysis helps in discovering possible design errors in some product Petri
net, e.g., related to the existence of conflicts, or interference of synchronization
with conflicts. Our work is a first step in this direction, which we have realized
in practice through extensible tooling.

7 Conclusions and Future Work

In this paper, we have proposed the notion of Petri net product line, and showed
how to analyse structural properties (the marked graph, state-machine, free
choice and extended free choice properties) at the product line level. We have
validated the approach in practice by presenting an extensible prototype on top
of FeatureIDE, and an experiment that shows the benefits of our approach with
respect to an enumerative one.

In the future, we plan to support more types of static analysis techniques,
exploit compositionality of Petri nets in these analysis techniques, and perform
more thorough experiments. We also plan to consider further types of proper-
ties (not only strong and weak), in the line of [13]. Our idea is to develop a
domain-specific language to express such analyses, which then can be compiled
into standard SAT solving procedures. At the tool level, we will use the PNML
meta-model to ease the connection of our approach with Petri net tools like
CPN Tools [35]. We are also planning to explore the lifting of dynamic analysis
techniques, e.g., based on the incidence matrix and on the reachability graph
(similar to [23]). For the former, our idea is to include the PCs on the elements
of the matrix, and use constraint solving to find place/transition invariants for
some/all Petri net products. For the latter, a first idea – if we restrict to Petri

46 E. Gómez-Mart́ınez et al.

nets with PCs only in transitions – is to calculate the reachability graph of the
150% Petri net, and then annotate the reachability graph with PCs, in the style
of [23]. Finally, we would like to combine product lines with other types of Petri
nets (e.g., with inhibitor or read arcs, or with timed transitions), and consider
variability of the Petri net language itself.

Acknowledgments. Work funded by the Spanish Ministry of Science (RTI2018-
095255-B-I00) and the R&D programme of Madrid (P2018/TCS-4314).

Appendix

This appendix lifts the analysis of the state-machine property. A state-machine
(SM) is a subclass of Petri net where each transition t has exactly one input
and one output place, while each place may have multiple input and output
transitions. SMs allow representing decisions, but not the synchronization of
concurrent activities.

Definition 13 (State-machine, from [21]). A Petri net PN = (P, T,A) is a
state-machine, written PN |= SM , if ∀t ∈ T : |•t| = |t•| = 1.

Next, we lift the definition of the SM property to the product line level. A
PNPL is a strong (weak) SM if all (some) derivable nets are SMs.

Definition 14 (Strong and weak SM product line). A Petri net product
line PNL is a strong state-machine iif ∀PNρ ∈ Prod(PNL) : PNρ |= SM .
PNL is a weak state-machine iif ∃PNρ ∈ Prod(PNL) : PNρ |= SM .

Similar to the case of MGs, to ensure that all derivable nets are SMs, we
check that the size of the lifted pre-set ◦t = {(p0, Φ(p0,t)), ..., (pn, Φ(pn,t))} and
the lifted post-set t◦ = {(p0, Φ(t,p0)), ..., (pn, Φ(t,pn))} of a transition t is one in
every configuration. The size of the lifted pre-set ◦t of a transition t is one if the
following formula is true. The disjunction starts with false to consider the case
when ◦t is empty. The formula Φt◦ to check that the size of the lifted post-set of
a transition t is one is defined similarly.

Φ◦t � false

∨ (Φ(p0,t) ∧ ¬Φ(p1,t) ∧ ... ∧ ¬Φ(pn,t))
∨ (¬Φ(p0,t) ∧ Φ(p1,t) ∧ ... ∧ ¬Φ(pn,t))
∨ ... (¬Φ(p0,t) ∧ ¬Φ(p1,t) ∧ ... ∧ Φ(pn,t))

(7)

Hence, a PNPL includes some Petri net that is a SM if there is a feature
configuration ρ such that for every transition t in the PNPL:

– t is not in PNρ, therefore Φt is false; or
– t is in PNρ, and therefore Φ◦t and Φt◦ need to be true.

Extensible Structural Analysis of Petri Net Product Lines 47

Equation 8 shows the formula that captures the two previous conditions.

ΦSM = ∧t∈T [¬Φt ∨ (Φt ∧ Φ◦t ∧ Φt◦)] (8)

If there is a feature configuration such that SAT (Ψ ∧ΦSM) holds, then there
is a derivable Petri net that is a SM, and the PNPL is a weak SM. On the
contrary, the feature configurations that produce nets which are not SMs are
those making the formula ¬ΦSM true. Hence, the PNPL is a strong SM if
SAT (Ψ ∧ ¬ΦSM) does not hold.

References

1. van der Aalst, W.: Structural characterizations of sound workflow nets. Computing
Science Reports 9263, Technische Universiteit Eindhoven (1996)

2. van der Aalst, W., Kindler, E., Desel, J.: Beyond asymmetric choice: a note on
some extensions. Petri Net Newsl. 55, 3–13 (1998)

3. Apel, S., Batory, D., Kästner, C., Saake, G.: Feature-Oriented Software Product
Lines - Concepts and Implementation. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-37521-7

4. Benduhn, F., Thüm, T., Lochau, M., Leich, T., Saake, G.: A survey on modeling
techniques for formal behavioral verification of software product lines. In: VaMoS,
pp. 80:80–80:87. ACM (2015). https://doi.org/10.1145/2701319.2701332, http://
doi.acm.org/10.1145/2701319.2701332

5. Berre, D.L., Parrain, A.: The Sat4j library, release 2.2. JSAT 7(2–3), 59–64 (2010)
6. Berthelot, G.: Transformations and decompositions of nets. In: Brauer, W., Reisig,

W., Rozenberg, G. (eds.) ACPN 1986. LNCS, vol. 254, pp. 359–376. Springer,
Heidelberg (1987). https://doi.org/10.1007/978-3-540-47919-2 13

7. Best, E.: Structure theory of petri nets: the free choice hiatus. In: Brauer, W.,
Reisig, W., Rozenberg, G. (eds.) ACPN 1986. LNCS, vol. 254, pp. 168–205.
Springer, Heidelberg (1987). https://doi.org/10.1007/978-3-540-47919-2 8

8. Classen, A., Cordy, M., Schobbens, P., Heymans, P., Legay, A., Raskin, J.: Featured
transition systems: foundations for verifying variability-intensive systems and their
application to LTL model checking. IEEE Trans. Softw. Eng. 39(8), 1069–1089
(2013)

9. Colom, J., Teruel, E., Silva, M.: Performance Models for Discrete Event Systems
with Synchronisations: Formalisms and Analysis Techniques. Ed. KRONOS (1998)

10. Czarnecki, K., Pietroszek, K.: Verifying feature-based model templates against
well-formedness OCL constraints. In: GPCE, pp. 211–220. ACM (2006)

11. Desel, J., Esparza, J.: Free Choice Petri Nets. Cambridge University Press, Cam-
bridge (1995)

12. Gómez-Mart́ınez, E., de Lara, J., Guerra, E.: Towards extensible structural analysis
of Petri net product lines. In: PNSE, vol. 2424, pp. 37–46. CEUR (2019)

13. Guerra, E., de Lara, J., Chechik, M., Salay, R.: Property satisfiability analysis for
product lines of modelling languages. IEEE Trans. Softw. Eng. (2020, in press).
https://doi.org/10.1109/TSE.2020.2989506

14. Heuer, A., Stricker, V., Budnik, C.J., Konrad, S., Lauenroth, K., Pohl, K.: Defining
variability in activity diagrams and Petri nets. Sci. Comput. Program. 78(12),
2414–2432 (2013)

https://doi.org/10.1007/978-3-642-37521-7
https://doi.org/10.1007/978-3-642-37521-7
https://doi.org/10.1145/2701319.2701332
http://doi.acm.org/10.1145/2701319.2701332
http://doi.acm.org/10.1145/2701319.2701332
https://doi.org/10.1007/978-3-540-47919-2_13
https://doi.org/10.1007/978-3-540-47919-2_8
https://doi.org/10.1109/TSE.2020.2989506

48 E. Gómez-Mart́ınez et al.

15. Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, A.: Feature-oriented domain
analysis (FODA) feasibility study. Technical report. CMU/SEI-90-TR-021, Soft-
ware Engineering Institute, Carnegie Mellon University (1990)

16. Legay, A., Perrouin, G., Devroey, X., Cordy, M., Schobbens, P.-Y., Heymans, P.:
On featured transition systems. In: Steffen, B., Baier, C., van den Brand, M., Eder,
J., Hinchey, M., Margaria, T. (eds.) SOFSEM 2017. LNCS, vol. 10139, pp. 453–463.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-51963-0 35

17. Liu, W., Wang, P., Du, Y., Zhou, M., Yan, C.: Extended logical Petri nets-based
modeling and analysis of business processes. IEEE Access 5, 16829–16839 (2017)

18. Llorens, M., Oliver, J.: Structural and dynamic changes in concurrent systems:
reconfigurable Petri nets. IEEE Trans. Comput. 53(9), 1147–1158 (2004). https://
doi.org/10.1109/TC.2004.66

19. Meinicke, J., Thüm, T., Schröter, R., Benduhn, F., Leich, T., Saake, G.: Mastering
Software Variability with FeatureIDE. Springer, Heidelberg (2017). https://doi.
org/10.1007/978-3-319-61443-4

20. Meyers, B., Mierlo, S.V., Maes, D., Vangheluwe, H.: Efficient software controller
variant development and validation (ECoVaDeVa) overview of a flemish ICON
project. In: STAF Co-Located Events, vol. 2405, pp. 49–54. CEUR (2019)

21. Murata, T.: Petri nets: properties, analysis and applications. Proc. IEEE 77(4),
541–580 (1989)

22. Muschevici, R., Clarke, D., Proença, J.: Feature petri nets. In: SPLC Workshops,
pp. 99–106. Lancaster University (2010)

23. Muschevici, R., Proença, J., Clarke, D.: Feature nets: behavioural modelling of
software product lines. Softw. Syst. Model. 15(4), 1181–1206 (2016). https://doi.
org/10.1007/s10270-015-0475-z

24. Nabi, H., Aized, T.: Modeling and analysis of carousel-based mixed-model flexible
manufacturing system using colored Petri net. Adv. Mech. Eng. 11(12), 1–14 (2019)

25. Northrop, L., Clements, P.: Software Product Lines: Practices and Patterns.
Addison-Wesley Longman Publishing Co., Inc., Boston (2002)

26. Petri Net Markup Language. www.pnml.org
27. Pohl, K., Böckle, G., van der Linden, F.: Software Product Line Engineering. Foun-

dations Principles and Techniques. Springer, Heidelberg (2005). https://doi.org/
10.1007/3-540-28901-1

28. Rosa, M.L., van der Aalst, W., Dumas, M., Milani, F.: Business process variability
modeling: a survey. ACM Comput. Surv. 50(1), 2:1–2:45 (2017)

29. Seidl, C., Schaefer, I., Aßmann, U.: DeltaEcore - a model-based delta language
generation framework. In: Modellierung. LNI, vol. 225, pp. 81–96. GI (2014)

30. Silva, M.: Half a century after Carl Adam Petri’s Ph.D. thesis: a perspective on
the field. Ann. Rev. Control 37(2), 191–219 (2013). https://doi.org/10.1016/j.
arcontrol.2013.09.001

31. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling
Framework 2.0, 2nd edn. Addison-Wesley Professional, Boston (2009)

32. Teruel, E., Silva, M.: Structure theory of equal conflict systems. Theoret. Comput.
Sci. 153(1&2), 271–300 (1996)

33. Thüm, T., Apel, S., Kästner, C., Schaefer, I., Saake, G.: A classification and survey
of analysis strategies for software product lines. ACM Comput. Surv. 47(1), 6:1–
6:45 (2014). https://doi.org/10.1145/2580950

https://doi.org/10.1007/978-3-319-51963-0_35
https://doi.org/10.1109/TC.2004.66
https://doi.org/10.1109/TC.2004.66
https://doi.org/10.1007/978-3-319-61443-4
https://doi.org/10.1007/978-3-319-61443-4
https://doi.org/10.1007/s10270-015-0475-z
https://doi.org/10.1007/s10270-015-0475-z
www.pnml.org
https://doi.org/10.1007/3-540-28901-1
https://doi.org/10.1007/3-540-28901-1
https://doi.org/10.1016/j.arcontrol.2013.09.001
https://doi.org/10.1016/j.arcontrol.2013.09.001
https://doi.org/10.1145/2580950

Extensible Structural Analysis of Petri Net Product Lines 49

34. Tiplea, F., Jucan, T., Masalagiu, C.: Conditional Petri net languages. Elektronische
Informationsverarbeitung und Kybernetik 27(1), 55–66 (1991)

35. Westergaard, M., Kristensen, L.M.: The Access/CPN framework: a tool for inter-
acting with the CPN tools simulator. In: Franceschinis, G., Wolf, K. (eds.) PETRI
NETS 2009. LNCS, vol. 5606, pp. 313–322. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-02424-5 19

https://doi.org/10.1007/978-3-642-02424-5_19
https://doi.org/10.1007/978-3-642-02424-5_19

Stability of Regional Orthomodular
Posets Under Synchronisation

and Refinement

Federica Adobbati1, Carlo Ferigato3, Stefano Gandelli1,
and Adrián Puerto Aubel2(B)

1 DISCo—Università degli Studi di Milano-Bicocca, Milan, Italy
2 Inria - Rennes Bretagne-Atlantique, IRISA, Université de Rennes I, Rennes, France

puerto.adrian@gmail.com
3 JRC—European Commission, Joint Research Centre, Ispra, Italy

Abstract. The regions of a condition/event transition system can be
used to identify the sequential components of the distributed system it
represents. With the aim of analysing such a system with respect to its
local states, we study the structure obtained from ordering the regions by
set inclusion. The resulting algebraic structure is an orthomodular partial
order (omp). Given an omp, one can then define another condition/event
transition system, canonical with respect to it. We are interested in char-
acterising cases in which an omp is stable, i.e. it is isomorphic to the omp
obtained as the regional structure of its canonical transition system. We
propose, to this aim, a composition operation, and a refinement oper-
ation for stable orthomodular partial orders, the results of which are
stable.

1 Introduction

This work studies the interrelations between local states, locally observable prop-
erties, and events of distributed systems. It extends the work presented in [1].
Our framework is in the relation between Petri net systems, and the labelled
transition systems expressing their behaviour, their case graphs.

Labelled transition systems are a widespread class of models, suitable for
specifying the desired behaviour of a system. They are commonly used, for
instance, to verify that the system complies with a given specification [10]. These
models represent systems as their collections of possible states, and the events
that lead them from one state to another. Among their features, we focus on
their expression of concurrency by means of interleaving semantics. Indeed, inter-
leaving of events is understood as their causal independence, which can in turn
be exploited to assign these events to different localities. It is common practice,
in particular in the field of Petri net synthesis [2], to let this interleaving guide
the discovery of the local states of a system, so as to better represent the way
it can be distributed. In this way, the states of the transition system, hence-
forth referred to as global, can be expressed as particular combinations of the so
discovered local states.
c© Springer-Verlag GmbH Germany, part of Springer Nature 2021
M. Koutny et al. (Eds.): ToPNoC XV, LNCS 12530, pp. 50–74, 2021.
https://doi.org/10.1007/978-3-662-63079-2_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-63079-2_3&domain=pdf
https://doi.org/10.1007/978-3-662-63079-2_3

Stability of Regional Orthomodular Posets Under Synchronisation 51

We focus on the particular case in which these local states act like Boolean
variables, forbidding the execution of events by carrying true or false values.
Thus, our framework is narrowed down to elementary and condition/event net
synthesis [15], and their close relation to the theory of regions. This relation
was first noted by Ehrenfeucht and Rozenberg in [11,12]. In a labelled transition
system, a region is a set of global states having a consistent incidence with
respect to the events, so as to be the extension of a local state. Such a system
is said to be elementary, or condition/event, if it has enough regions to actually
guide its behaviour, and it is then said to be separated. In this case, a Petri net
system can be constructed with these regions as local states, such that its case
graph will be isomorphic to the initially specified transition system. A duality
arises: global states can be expressed as (logically) consistent collections of local
states, and each local state is identified with a region.

Regions, as subsets of global states of a system, form an algebraic structure
[4]. This structure arises naturally when interpreting them as the extensions of
locally observable properties of the system. They can be ordered by set inclusion,
in a relation that expresses implication. Negation, disjunction, and conjunction
can be defined as set operations, only locally though, in the latter two cases. The
resulting structure was shown to be an orthomodular partial order [4], omp for
short. Orthomodular partial orders typically represent, in an algebraic fashion,
systems about which the acquisition of information depends on the point of
view. They were first introduced by Birkhoff and Von Neumann [8] in order to
formalise the logic of quantum systems. Foulis and Randall [13,19] extended their
approach to provide a general model, referred to as test space, which represents
the dependencies between the different experiments one can perform on a given
system.

When the elements of the omp are regions, it is convenient to consider
observers of the system rather than experiments. Furthermore, each such
observer is bound to a spatial location. In this way, they can individually observe
only a part of the distributed system, the behaviour observable from their loca-
tion. The theory of Petri nets justifies that, in this setting, only sequential
behaviour is locally observable. In other words, two events will only be concur-
rent in the system if they do not involve a same location. The omp then depicts
synchronisations as the observations which are common to different localities,
and expresses the logical consequences they have on each of the involved local
components. This last interpretation justifies our view that omps are suitable
models for specifying the physical implementation of distributed systems, fur-
ther allowing for a logical analysis. Such a consideration raises the question of
whether any given omp can be obtained from the interleaving of events of some
transition system.

We hence consider a second synthesis problem: Given an omp determine
whether it is the regional structure of some condition/event transition system.
This problem was first posed in [4], and a solution was pointed at. This solution
involves the construction of a condition/event transition system which is canon-
ical with respect to the omp. Indeed, when an omp is rich, one can make use

52 F. Adobbati et al.

of a representation theorem to find a set of global states such that the elements
of the omp are subsets of it, in which case we say the omp admits a concrete
representation.1 By considering a complete directed graph whose vertices are
these global states, one can label each arc with an event so that all elements
of the omp can be found as regions of this new transition system, tagged as
saturated. When the structure of regions of the saturated system is isomorphic
to the specified omp, then the latter is called stable. Not every omp is stable. In
fact, when it is not rich, it does not admit a concrete representation.

The full characterisation of the class of stable omps is an open problem,
first posed in [4, p.667] in the setting of category theory, but we here prefer to
restate it in terms of stability. Note that, by construction, any stable omp must
be isomorphic to a regional omp, the structured collection of regions of some
elementary transition system. It is further conjectured that every regional omp
is stable. The present work extends a series of papers [1,4–7] the scope of which
is to study this stability of omps, in an attempt to prove the conjecture. In [6],
some classes of stable omps were presented. Here, two operations of composition
and refinement are defined, and it is proved that they preserve stability. These
results then allow to show the stability of regional omps for a wider range of
systems.

2 Background

This section recalls the different definitions, and established results that will
serve as a ground for the contributions of the present work. We first present the
class of transition systems at stake, as well as the basic facts about orthomodular
posets, while pointing out their relations. The last subsection will lead into our
line of research by presenting the results that launched it in [4].

2.1 Transition Systems and Regions

A labelled transition system is a directed graph whose vertices are called states,
and whose arcs, called transitions, are labelled over an alphabet whose elements
are called events. They are commonly used to specify the behaviour of distributed
systems, and as models on which to verify whether the system satisfies desired
properties [10].

Definition 1 (Transition System). A transition system is a structure A =
(Q,E, T), where Q is a set of states, E is a set of events and T ⊆ Q × E × Q
is a set of transitions carrying labels in E, such that:

1. the underlying graph of the transition system is connected;
2. ∀(q1, e, q2) ∈ T q1 �= q2;
1 We remark that our notion of state on omps is distinct from the notion of state in

the space of the configurations of event structures as in [16] since the regions of a
condition/event transition system are based on the labels associated to the events
and not to the individual occurrence of events as in occurrence transition systems.

Stability of Regional Orthomodular Posets Under Synchronisation 53

3. ∀(q, e1, q1), (q, e2, q2) ∈ T q1 = q2 ⇒ e1 = e2;
4. ∀e ∈ E ∃ (q1, e, q2) ∈ T .

All the structures we here consider are finite. It will be relevant to consider
the following postulates, which guide our interpretation. First, the principle of
extensionality [18] states that events are characterised by their observable effect,
and can thus only be distinguished from one another by an observation of their
effect on the system. Second, the principle of locality states that all observa-
tions are attached to a spatial location by the laws of physics, so that only an
ubiquitous observer could globally apprehend a distributed system at a given
instant. According to these, an event must be characterised by the modification,
if any, that it performs on the states of each of the local components of the sys-
tem. Conversely, when the identity of the events is coherently provided, as for
example in a labelled transition system, then these principles allow for inferring
the different locations of the system, assuming it is maximally distributed over
space. This is achieved thanks to the notion of region.

Regions were introduced in [11,12] and, in several variants, are the funda-
mental tool for solving the so called synthesis problem for Petri nets.

Definition 2 (Region). A region of a transition system A = (Q,E, T) is a
subset r of Q such that: ∀e ∈ E,∀(q1, e, q2), (q3, e, q4) ∈ T :

1. (q1 ∈ r and q2 /∈ r) implies (q3 ∈ r and q4 /∈ r) and
2. (q1 /∈ r and q2 ∈ r) implies (q3 /∈ r and q4 ∈ r).

Regions are subsets of states which have a consistent orientation with the
labelling of transitions. As such, they can be assigned an incidence with respect
to each event, and interpreted as Boolean conditions which hold at the states
composing them. In this way, events may be described by the change of truth
values they apply to these conditions. In the following, we will say that a region
is the extension of the corresponding condition, or property. In general, the
extension of a property is the collection of states at which it holds, and the
property is considered observable when its extension is indeed a region.

Example 1. The right-hand side of Fig. 1 shows a labelled transition system. The
set {q1, q2} is a region, all occurrences of e1 exit it, and the only occurrence of e4
enters it. All occurrences of each of the remaining events are independent from
it, they do not cross the border of its extension.

The set of regions of a transition system A will be denoted by R(A), and given
a state q of A, Rq will denote the subset of the regions in R(A) which contain
the state q. Given a transition system A and its set of regions R(A), the pre-set
and post-set operators on the regions and on the events of A will be used in the
main part of this contribution.

Definition 3 (Pre- and Post-sets). •(.), the pre-set operator, and (.)•, the
post-set operator are defined on the events E and on the regions R(A) of the
transition system A as follows. Let r be a region in R(A):

54 F. Adobbati et al.

b1

b2

b4

b5

b3
e1 e2

e3

e4

q1

q2

q3

q4

q5

e2

e1
e2

e1

e3e4

Fig. 1. To the left, a Condition/Event net system. To the right, the transition system
corresponding to its case graph. To the right a subset of states is drawn. It corresponds
to the extension of b1: {q ∈ Q | b1 ∈ q} = {q1, q2}.

1. •r = {e ∈ E | ∃ (q1, e, q2) ∈ T such that q1 /∈ r and q2 ∈ r};
2. r• = {e ∈ E | ∃ (q1, e, q2) ∈ T such that q1 ∈ r and q2 �∈ r};
3. •e = {r ∈ R(A) | e ∈ r•};
4. e• = {r ∈ R(A) | e ∈ •r}.
We are concerned with a specific class of transition systems, the condition/
event transition systems (cets for short). cets can be defined as those labelled
transition systems which are the case graph of some condition/event net system.
However, the characterisation of these, in terms of their regions [11,12], allows us
to provide an alternative definition, in terms of the so called separation axioms.
It follows from the results of [11,12] that the two definitions are equivalent.

Definition 4 (CETS – Condition/Event Transition System). A cets is
a transition system A = (Q,E, T), in which the following conditions hold:

1. ∀ q1, q2 ∈ Q Rq1 = Rq2 ⇒ q1 = q2;
2. ∀ q1 ∈ Q ∀ e ∈ E •e ⊆ Rq1 ⇒ ∃ q2 ∈ Q such that (q1, e, q2) ∈ T ;
3. ∀ q1 ∈ Q ∀ e ∈ E e• ⊆ Rq1 ⇒ ∃ q2 ∈ Q such that (q2, e, q1) ∈ T .

This definition requires of a transition system, that its set of regions is suffi-
cient to fully determine the incidence of each event with respect to each state. In
this way, events are not only described, but fully characterised by the truth-value
modifications they apply to the observable properties of the system. Under these
conditions, a condition/event net system can be constructed, which has the set
of regions for conditions, and the transition labels as events, and such that its
case graph is isomorphic to the original transition system. This tight relation
between condition/event net systems, and cets was thoroughly formalised in
[15], in the equivalent framework of elementary systems.2

2 For this reference, please note that in the elementary framework, the definition of
region coincides with the one we give here. Elementary transition systems and cets
only differ in state reachability considerations.

Stability of Regional Orthomodular Posets Under Synchronisation 55

The following example is meant to provide some intuition to the readers
familiar with Petri net theory. The formal definitions regarding Petri nets are out
of the scope of this work, and this example is not fundamental for understanding
the rest of it.

Example 2. Given the condition/event net system in Fig. 1, we can represent its
behaviour through its case graph, in the same figure. The global state {b1, b4} =
q1 is reached only through the occurrence of e4, when the system is in the state
{b3} = q5. From the state q1, the net system can reach the state {b2, b4} = q3, if
e1 occurs, or {b1, b5} = q2, if e2 occurs. If both e1 and e2 occur, the system is in
the state {b2, b5} = q4. Finally, the state q5 is only reached by firing e3, starting
from the state q4.

We now show that the opposite construction is also possible, i.e. starting
from the cets on the right of Fig. 1, we can derive the net system on the left
through a synthesis procedure. The first step is computing the regions of the
cets. These will represent the conditions of the net, while the labels on the arcs
are translated into events. The following sets of states are regions in the cets:
{q1, q2} = b1, {q3, q4} = b2, {q2, q4} = b5, {q1, q3} = b4 and {q5} = b3. The set
of these regions satisfies the list of axioms in Definition 4, therefore they are
sufficient for the synthesis of the cets [2]. For every region, we have to consider
which are the events in its pre-set and which are in its post-set. Let us consider
the region {q1, q2} = b1, all the transitions labelled e1 go out from the region,
while the transition e4 comes into it. In the synthesised net, this is represented
by putting b1 in the post-set of e4 and in the pre-set of e1. Analogously, we can
determine the relations between all the other conditions and events of the net
considering the pre-set and post-set of the other regions listed above.

2.2 Orthomodular Partially Ordered Sets

Orthomodular partially ordered sets, indicated as omp in what follows, are well
known algebraic structures in the literature on Quantum Logics. The following
definition can be found as Definition 1.1.1 in [17]. Note that ∧ and ∨ are the usual
meet and join operations on a partial order, denoting respectively the greatest
lower bound, and the least upper bound.

Definition 5 (OMP - Orthomodular Partially Ordered Set). An ortho-
modular partially ordered set 〈L,≤, (.)′, 0, 1〉 is a set L endowed with a partial
order ≤ and a unary operation (.)′ (called orthocomplement), such that the fol-
lowing conditions are satisfied:

1. L has a least and a greatest element (respectively 0 and 1) and 0 �= 1;
2. ∀x, y ∈ L : x ≤ y ⇒ y′ ≤ x′ (·)′ is antitone;
3. ∀x ∈ L : (x′)′ = x (·)′ is involutive;
4. ∀x, y ∈ L : x ≤ y′ ⇒ x ∨ y ∈ L finite orthogonal joins;
5. ∀x, y ∈ L : x ≤ y ⇒ y = x ∨ (x′ ∧ y) orthomodular law.

Two elements x and y in L are said to be orthogonal, noted by x ⊥ y, whenever
x ≤ y′.

56 F. Adobbati et al.

Axioms 2 and 3 constitute the definition of orthocomplement for (·)′. Whenever
(·)′ is an orthocomplement then ⊥ is a symmetric relation. Note that ∧ and ∨
operations are not required to be globally defined. However, Axiom 4 imposes the
existence of a least upper bound for each finite collection of pairwise orthogonal
elements. We will often denote 〈L,≤, (.)′, 0, 1〉 simply by L, and assume that an
omp Li has underlying structure 〈Li,≤i, (.)′, 0i, 1i〉.
Example 3. The regions R(A) of a cets A are shown in [3] to satisfy:

1. ∅, Q ∈ R(A);
2. r ∈ R(A) ⇒ Q \ r ∈ R(A);
3. r1, r2 ∈ R(A) ⇒ (r1 ∩ r2 ∈ R(A) ⇔ r1 ∪ r2 ∈ R(A)).

These properties imply that R(A) can be interpreted as an omp whenever A
is a cets. ∅ and Q serve as 0 and 1 respectively, the order is given by set
containment and orthocomplement by set complement; moreover, two regions
are orthogonal whenever their intersection is empty, and so their union is again
a region. Note that, since orthogonal regions have no state in their intersection,
they are interpreted as mutually exclusive properties, or conditions.

Throughout this work, the omp obtained from the regions of a cets A =
(Q,E, T) will be denoted H(A) = (R(A),⊆, ∅, Q, (·)′), (·)′ being the set comple-
ment operation. An omp L is called regional, when there exists a cets A such
that H(A) is isomorphic to L.

We introduce the notion of compatibility, which is central in the theory of
omps, and in our case of study. This notion will help define Boolean algebras as
a particular class of omps, which are most relevant for the analysis of sequential
behaviour or, equivalently, locality of observations.

Definition 6 (Compatibility, Boolean Algebra). Let L be an omp. We
say two elements x, y ∈ L are compatible, and write x $ y whenever there exist
three pairwise orthogonal elements x0, z, y0 ∈ L : x0 ⊥ z ⊥ y0 ⊥ x0 such that
x = x0∨z and y = y0∨z. Equivalently, we may say that x $ y whenever they share
a common orthogonal basis {x0, z, y0}. We say two elements are incompatible,
denoted x � $ y, when they are not compatible. L is a Boolean algebra whenever
all of its elements are pairwise compatible, ∀x, y ∈ L : x $ y.

Ordered elements and orthogonal elements are always compatible.
Boolean algebras are usually defined as bounded distributive orthocomple-

mented lattices, and it is rather routinary to verify that these definitions are
equivalent (see [14,17]). We often name an omp B, or Bi when it is required to
be a Boolean algebra, knowing that any omp noted L,Li might as well be one.

Example 4. The trivial omp 2 = {0, 1}, with 0 ≤ 1 and 0′ = 1 is a Boolean
algebra. Indeed, it has only two elements, and 0 ⊥ 1. Using the notation of
Definition 6, we can verify that 0 $ 1, by putting x0 = 0, z = 0, y0 = 1.

The next simpler example of Boolean algebra is depicted on top of Fig. 4, as
I = {0, x, x′, 1}, where x′ denotes the orthocomplement of x.

Stability of Regional Orthomodular Posets Under Synchronisation 57

Given a cets A, then its omp of regions R(A) is a Boolean algebra if, and
only if, A has no interleaving of events whatsoever, and thus no two events
are concurrent. In this case A can not be distributed. As a matter of fact, two
properties must be observable from a same location whenever their extensions
are compatible regions [4].

A subset M of an omp L with the order relation and the orthocomplement
operation inherited from L is a sub-omp of L in case M is an omp ([17], defi-
nition 1.2.2). When a sub-omp M of L is a Boolean algebra, it is simply called
a Boolean subalgebra. M is furthermore a maximal Boolean subalgebra, when it
is a sub-omp of no other Boolean subalgebra of L than itself. Each element of
an omp belongs at least to one of its maximal Boolean subalgebras. Maximal
Boolean subalgebras of a regional omp represent the sequential components of
the underlying system. They can be identified with the different locations on
which it may be maximally distributed. Note that a region might belong to dif-
ferent maximal Boolean subalgebras, in which case it corresponds to a property
which is observable and modifiable from the different corresponding locations.

In order to formalise the composition of omps, as well as to define the notion
of state, we will require the following definition.

Definition 7 (OMP-morphism).([17], finite case of definition 1.2.7) Let L1

and L2 be omp. A mapping f : L1 → L2 is a morphism of omps if the following
conditions are satisfied:

1. f(01) = 02;
2. ∀x ∈ L1 f(x′) = f(x)′;
3. for any finite sequence {xi | i ∈ I} of mutually orthogonal elements in L1,

f(
∨

i∈I

xi) =
∨

i∈I

f(xi)

A morphism f : L1 → L2 is an isomorphism if f is injective, maps L1 onto L2

and f−1 is a morphism. An isomorphism f : L1 → M , when M is a sub-omp of
L2, is called embedding.

Morphisms of omps preserve compatibility, order and orthogonality [4].
Two-valued states of an omp are a well-known concept in the literature on

Quantum Logics ([17], Definition 2.1.1). We here provide a simpler definition, and
refer to two-valued states simply as states, since the states of a cets correspond
to (two-valued) states of its regional omp.

Definition 8 (State of an OMP). Let L be an omp, and 2 be the trivial
Boolean algebra 2 = {0, 1}, with 0 ≤ 1 and 0′ = 1. A state of L is an omp-
morphism s : L → 2.

A state of an omp L is thus a consistent assignment of truth values to the
elements of L. As such, it is common to identify it with its support : {x ∈ L |
s(x) = 1)}. Indeed, each state is the characteristic function of its support.3 The
3 Note that in [4] the support of a state was called filter, and indeed, its restriction

to each maximal Boolean subalgebra yields an order-theoretic prime, principal and
maximal filter.

58 F. Adobbati et al.

collection of all states of an omp L will be denoted by S(L). It will also be
useful to consider the collection of states which contain a given element. Given
an element x ∈ L, let us define the notation Sx = {s ∈ S(L) | x ∈ s}. It is worth
noting that if we fix a state of a cets, then the morphism assigning 1 to the
regions that contain it is indeed a state of its regional omp.

Example 5. Let A = (Q,E, T) be a cets, and H(A) = (R(A),⊆, ∅, Q, (·)′), be
its regional omp. Then for any q ∈ Q, the omp-morphism

sq : H(A) → 2 such that sq(r) =

{
1 q ∈ r

0 q /∈ r

is a state of H(A).

In the cases at stake in this work, finiteness of both cetss and omps provides
particular importance to the notion of atom, that will provide a useful charac-
terisation of states.

Definition 9 (Atom of an OMP). Let L be an omp. An element a ∈ L is
called an atom when it covers 0, formally:
a �= 0 with ∀x ∈ L : (x ≤ a) ⇒ (x = a ∨ x = 0).

The collection of atoms of L is noted A(L). Straightforward verification shows
that two atoms are compatible if, and only if they are orthogonal. Indeed, when
referring to a cets A, the atoms of H(A) faithfully represent the local states of
the system in that they are mutually exclusive if and only if they belong to a same
maximal Boolean subalgebra—a same sequential component of the system. This
fact provides atoms with particular importance in Petri net synthesis.4 Their
importance relies on the fact that finite omps are faithfully represented by the
orthogonality relation among their atoms. Each element of L can be retrieved as
the join of a collection of pairwise orthogonal atoms. The reader is referred to
[7] for the details, and to [13,19] for a full characterisation of this representation
of omps. Note that, when restricted to atoms, the maximal Boolean subalgebras
are simply the maximal cliques of ⊥.

Remark 1. As is common in an order-theoretic framework, we graphically repre-
sent omps by their Hasse diagrams. In these, order is represented upwards, and
only the covering relation (x ≺ y ⇔ ∀z ∈ L \ {y} : (z ≤ y ⇒ z ≤ x)) is explicitly
depicted. This type of representation, however, grows unreadable very quickly,
justifying the use of a simpler graphical representation. If L is finite, we may
depict only its atoms, and draw solid lines to represent its maximal Boolean sub-
algebras. In this way, two atoms linked by a solid line are orthogonal, and their
join is ensured to exist. This representation is called block diagram or Greechie
diagram as in [20, p.107] or [17, def. 2.4.6]. In Fig. 2 the Hasse diagram and the
Greechie diagram of the same omp are represented. In either case, two omps
with identical representation will certainly be isomorphic.

4 In [3], as minimal regions, the atoms of a regional omp were shown to suffice for
solving the synthesis problem.

Stability of Regional Orthomodular Posets Under Synchronisation 59

∅

b1 b2 b3 b4 b5

b′
1 b′

2 b′
3 b′

4 b′
5

Q

b3

b4

b5

b2

b1

Fig. 2. Two representations of the omp L obtained by ordering by set containment
the regions of the transition system in Fig. 1. To the left, all regions are represented
in a Hasse diagram, order is represented upwards. To the right, only atoms of the two
maximal Boolean subalgebras in L are depicted (see Remark 1).

Since, as said above, we are interested in the specification of a finite omp L
by its collection of atoms, A(L), we will use here a characterisation of states
introduced in [4] (proposition 29, p. 649).5

Proposition 1. Let A(L) be the set of atoms of an omp L, E the set of the
maximal cliques of ⊥ in L restricted to A(L), and C the set of the maximal
cliques of � $ in L restricted to A(L). Consider S = {s ∈ C | ∀e ∈ E |s ∩ e| = 1},
then s ∈ S iff its up-closure ↑(s) = {x ∈ L | ∃a ∈ s : a ≤ x} is the support of a
state in L.

This last result states that each state of an omp selects exactly one atom in each
maximal Boolean subalgebra, and that conversely, such a collection of atoms
always corresponds to a single state. Since this correspondence is one to one,
we will often refer to these particular collections of atoms as the states they
characterise, when clear from the context. When interpreting atoms as local
states of the system, this correspondence is the simple statement that global
states are formed by selecting exactly one local state per location. We remark
that, as in [17, prop. 2.4.9], there exist finite omps whose set of states is empty.
In these cases, the set S in Proposition 1 is empty. The following section will
deal with omps having “enough” states, so as to be representable in terms of
these.

2.3 Saturated Transition System and the Stability Problem

This section is concerned with the representation of an arbitrary omp as the
collection of regions of some cets. This is not always possible, and in fact, a
5 In [4] a different but equivalent terminology is used: transitive partial Boolean algebra

for omp and filter for state.

60 F. Adobbati et al.

well known result due to S. Gudder (see [17]) states that omps need to verify a
particular property in order to be representable as a collection of subsets, such
that their containment represents the order of the omp.

Definition 10 (Rich OMP). An omp L is called rich whenever
∀x, y ∈ L : Sx ⊆ Sy ⇒ x ≤ y.

Note that in an arbitrary omp x ≤ y ⇒ Sx ⊆ Sy, and so rich omps are those
with enough states to faithfully represent their order as inclusion of sets of their
states. In this representation orthocomplement is simply given by set-theoretic
complement.

However, we are interested not only in interpreting elements of an omp as
subsets of states, but as actual regions. We here report the canonical construction
of a transition system from an omp, first introduced in [4].

Definition 11 (Saturated Transition System). Let L be an omp. Consider
S(L) to be the support of its states. Define the symmetric differences between
supports of states as [s, s′] = (s \ s′, s′ \ s) for s, s′ ∈ S(L), and let E(L) =
{[s, s′] | s, s′ ∈ S(L)}, and T (L) = {(s, [s, s′], s′) | s, s′ ∈ S(L)}. Then the
saturated transition system of L is J(L) = (S(L), E(L), T (L)).

Note that each event e ∈ E(L) will be of the form e = [s, s′] = (s \ s′, s′ \ s), as
such, it is characterised by its sets of pre-conditions, and post-conditions seen as
elements of L. The underlying graph of J(L) is complete, presenting a transition
(s, [s, s′], s′) between each ordered pair of distinct states (s, s′). In [7] it is shown
that the construction of J(L) can be done by considering exclusively the atoms
of L. In particular, states are determined by their atoms, and so are events, as
symmetric differences of the atoms of states. This is displayed in the following
example.

Example 6. From the omp L in Fig. 3 (on the left), we want to construct the
transition system J(L). Note that the figure depicts only the atoms of L. In [7],
it was shown that we produce isomorphic transition systems whether we consider
either the full omp or its atoms only. So, for the sake of simplicity, we develop this
example by considering the latter case. First, we need to compute all the states of
L: S(L) = {s1 = {b1, b4, b6}, s2 = {b1, b5, b6}, s3 = {b1, b4, b7}, s4 = {b1, b5, b7},
s5 = {b2, b4}, s6 = {b2, b5}, s7 = {b3, b6}, s8 = {b3, b7}}. Every element in S(L)
is a state of J(L). Every pair of states is connected with a transition labelled
by the symmetric difference between the states. For example, the transition
starting from s1 and arriving in s2 is labelled by 〈{b4}, {b5}〉 (e1 in the picture).
The other labels shown in Fig. 3 are: e2 = 〈{b6}, {b7}〉, e3 = 〈{b1, b5}, {b3}〉
and e4 = 〈{b1, b7}, {b2}〉. In order to have a clearer picture, not all the arcs are
represented, but J(L) actually has an arc connecting every pair of nodes in both
directions. Considering all the arcs starting from s2, the following are missing
in the figure: the arc to s1, that is labelled 〈{b5}, {b4}〉; the arc to s3, labelled
〈{b5, b6}, {b4, b7}〉; the arc to s5, labelled 〈{b1, b5, b6}, {b2, b4}〉; the arc to s6,
labelled 〈{b1, b6}, {b2}〉; the arc to s8 labelled 〈{b1, b5, b6}, {b3, b7}〉. Analogously,
we can compute all the events connecting two nodes in the saturated transition
system.

Stability of Regional Orthomodular Posets Under Synchronisation 61

L

b3 b2 b1

b4

b5

b6

b7

s1

s1 s2

s3
s4

s5 s6

s7

s8

J(L)

e1

e2 e2

e1

e3

e3

e2

e4

e1

e4

Fig. 3. A omp L and the associated transition system J(L). In order to have a clearer
picture, the transition system represented above is not saturated.

It was shown in [4], that if L is rich, then for each x ∈ L, Sx is a region of
J(L), and L (or rather {Sx | x ∈ L}) is even a sub-omp of H(J(L)). Also, in
this case, the regions of {Sx | x ∈ L} suffice to satisfy the axioms of Definition
4, so that J(L) is a cets.

In general, however, H(J(L)) may have more elements than L. We hence
say that an omp L is stable when it is isomorphic to H(J(L)). Note that, by
definition, all stable omps are indeed regional. It is known that richness is a
necessary condition for stability. Some other necessary conditions have been
identified in [4–6], and all of these are, in particular, verified by regional omps.
It is in fact conjectured that all regional omps are stable. The following section
tackles this conjecture, with an operational approach.

3 Composition of OMPs and Their Stability

This section will start introducing a rather general composition operation for
omps. The result of this composition will not always be an omp but we show
that it is the case in particular instances. For this composition operation, we
show that the results are stable.

3.1 Composition of OMPs

We here present a composition operation for omps, in the fashion of those pre-
sented in [9] for a less general case.

Definition 12 (V-formation). A V-formation of omps is a tuple
(I, L1, L2, φ1, φ2), such that I, L1, and L2 are omps, and φi : I → Li(i = 1, 2)
are morphisms of omps.

A V-formation serves as specification for composing L1 and L2 on the com-
mon interface I. In categorical terms, it is simply a diagram in the category of

62 F. Adobbati et al.

omps. Strictly speaking, the interface would only be φ−1
1 (L1) ∩ φ−1

2 (L2), so in
order to simplify notation, we here consider V-formations in which φi(i = 1, 2)
are embeddings, and so for each i = 1, 2, φi(I) is a sub-omp of Li isomorphic
to I.

0I

1I

x x′

I

01 = φ1(0I)

11 = φ1(1I)

a1 b1 c1 = φ1(x)

a′
1 b′

1 c′
1 = φ1(x′)

L1

02 = φ2(0I)

12 = φ2(1I)

a2b2φ2(x′) = c2

a′
2b′

2φ2(x) = c′
2

φ1 φ2

L2

Fig. 4. A V-formation

Given a V-formation of omps embeddings, we propose a straightforward
composition operation. The nature of the proposed composition interprets the
interface I as a sub-omp of each component, so as to identify the two copies
element-wise. In this sense, it requires the morphisms of the V-formation to be
actual embeddings.

Definition 13 (Equivalence induced by a V-formation). Let V =
(I, L1, L2, φ1, φ2) be a V-formation of omps. Consider L̃, the disjoint union
of L1 and L2 such that φi : I → L̃ (i = 1, 2), with φ1(I) ∩ φ2(I) = ∅. The
equivalence relation induced by V is the binary relation ∼V = {(x, x) ∈ L̃2 | x ∈
L̃} ∪ {(φ1(x), φ2(x)) ∈ L̃2 | x ∈ I} ∪ {(φ2(x), φ1(x)) ∈ L̃2 | x ∈ I}.

It is straightforward to verify that ∼V is an equivalence relation. It is reflex-
ive, and symmetric by construction. If x, y, z ∈ L̃ are such that x ∼V y and
y ∼V z then it must be either z = x or z = y, so ∼V is transitive. We will
denote the equivalence class of an element x ∈ L̃ by [x]. This equivalence rela-
tion satisfies these additional properties:

Stability of Regional Orthomodular Posets Under Synchronisation 63

Proposition 2. Let V = (I, L1, L2, φ1, φ2) be a V-formation of omps, with L̃,
and ∼V as in Definition 13. Then:

1. ∀i ∈ {1, 2} : ∀x ∈ Li : [x] ∩ Li = {x};
2. ∀x, y ∈ L̃ : x ∼V y ⇔ x′ ∼V y′;
3. [01] = [02] = {01, 02} and [11] = [12] = {11, 12};
4. ∀x, y ∈ L̃ : (x ≤ y) ⇒ ¬(∃x̃ ∈ [x], ỹ ∈ [y] : ỹ < x̃).

Proof. 1. By construction.
2. Let x, y ∈ L̃ be two distinct elements such that x ∼ y. From the definition of

∼V , it follows that ∃z ∈ I : φ1(z) = x and φ2(z) = y (up to swapping of x
and y). Since φ1 and φ2 are omp-morphisms, it follows that φ1(z′) = x′ and
φ2(z′) = y′, hence x′ ∼ y′.

3. It is a direct consequence of Axioms 1 and 2 in Definition 7.
4. Let x ≤ y then ∃i ∈ {1, 2} : x, y ∈ Li, and x ≤i y. Analogously, ∃j ∈ {1, 2} :

x̃, ỹ ∈ Lj , and ỹ <j x̃. Clearly it must be that i �= j. Now, x ∼V x̃, and
y ∼V ỹ ⇒ ∃a, b ∈ I : φi(a) = x, φj(a) = x̃, φi(a) = y, and φj(b) = ỹ. Since
φi is an omp-embedding, it must reflect the order, yielding a ≤ b, but φj

preserves the order, and so x̃ ≤ ỹ.

��
These results allow for endowing the quotient L̃/ ∼V with a structure.

Definition 14 (I -pasting of OMPs). Consider the setting of Definition 13,
and define:

1. L = L̃/ ∼V ,
2. 0 = [01] = [02] and 1 = [11] = [12],
3. ∀[x] ∈ L : [x]′ = [x′],
4. [x] ≺ [y] ⇔ ∃x ∈ [x] : ∃y ∈ [y] : x ≤ y in L̃, and
5. ≤ ⊆ L × L as the transitive closure of ≺.

Then the I-pasting of L1 and L2 induced by V is the structure L1|I|L2 = 〈L,≤,
(·)′, 0, 1〉.

It follows immediately from Proposition 2 (4.) that ≤ is a partial order rela-
tion. Proposition 2 (2.), states that ∼V is congruence for complementation, and
so (·)′ is well-defined on L. It is furthermore trivial to verify that 0 and 1 are
respectively the minimal and maximal elements in L. Moreover, whenever x ⊥ y,
then [x] ⊥ [y].

So defined, the composition of two omps over an interface is simply obtained
by identifying the elements whose pre-images through φ1 and φ2 coincide.

In general, such an I-pasting will be a partial order endowed with an opera-
tion of orthocomplement [14]. This is, however, not sufficient to guarantee that
it is in fact an omp.

The following example shows that it can fail to be.

64 F. Adobbati et al.

Example 7. With reference to Fig. 4. Let I = {0, 1, x, x′} be an omp with
0 ≤ x, x′ ≤ 1. For i = 1, 2, let Li be Boolean algebras with three atoms
each {ai, bi, ci}. Since φi are omp-morphisms, φi(0) = 0i, and φi(1) = 1i.
Now let φ1(x) = c1, so that φ1(x′) = c′

1 = a1 ∨ b1; and φ2(x′) = c2 so that
φ2(x) = c′

2 = a2 ∨ b2. In this case, ∼ is the reflexive and symmetric closure of
{(01, 02), (11, 12), (c1, c′

2), (c
′
1, c2)}, let [x] denote its equivalence classes.

In L1|I|L2, as shown in Fig. 5, we have that [a1] ≤ [c′
1] = [c2] ≤ [a′

2]. Hence,
[a1] and [a2] are orthogonal, but they have no least upper bound.

Indeed, [a1], [a2] ≤ [b′
1], [b

′
2]. This contradicts Axiom 4 of Definition 5.

[0]

[1]

[a1] [b1]
[c1][c2]

[b2] [a2]

[a′
1] [b′

1] [b′
2] [a′

2]

Fig. 5. Hasse diagram of L1|I|L2 as in Example 7. This composition does not form an
omp.

In what follows, we will study cases in which this composition is actually an
omp.

3.2 Extending a System with a Sequential Component

It is a known result [17] that whenever L1 and L2 are omp’s, and I = {0, 1} is
the trivial Boolean algebra, then L1|I|L2, as defined in the last subsection, is an
omp. It was further shown in [6] that in this case, if L1 and L2 are stable, then
so must be L1|I|L2.

In this work, we consider the case, in which the interface is a non-trivial
Boolean algebra I = {0, 1, y, y′}. In this case A(I) = {y, y′}. With such an inter-
face, we impose that the corresponding saturated transition systems synchronise
according to the specified embeddings. One of the components will be a finite
Boolean algebra, and will be denoted by B. Boolean algebras considered as omps
were shown to be stable in [6].

The proof of stability will require the notion of free atom. An atom is free
in an omp if it belongs to just one maximal Boolean subalgebra. Such an atom
represents an observation accessible from one single locality, when seen as the

Stability of Regional Orthomodular Posets Under Synchronisation 65

region of a cets, it corresponds to a local state belonging to only one sequential
component.

Example 8. With reference to Fig. 2, b1, b2, b4, b5 and b3 are all atoms, however
b1, b2, b4, b5 are free, but b3 is not. Indeed, b3 belongs to two maximal Boolean
algebras.

The considered embeddings will then identify a free atom of an omp with an
atom of B.

Theorem 1. Let L be an omp, and x ∈ A(L) be an atom. Let B be a finite
Boolean algebra, and a ∈ A(B). Let I = {0, 1, y, y′}, and define φL : I → L, and
φB : I → B such that φL(y) = x, and φB(y) = a. Then L|I|B induced by the
V-formation (I, L,B, φL, φB) is an omp.

Proof. After Proposition 2, it suffices to show that orthogonal joins are well
defined, and that the orthomodular law holds. First note that in this case, the
only identifications are [0] = {0L, 0B}, [1] = {1L, 1B}, [x] = {x, a} and [x′] =
{x′, a′}, all other equivalence classes being singletons. Since both x and a are
atoms, we have that ≤=≺, in the setting of Definition 14. Furthermore, for each
pair of orthogonal elements [c] ⊥ [d], there must be c ∈ L′ ∩ [c] and d ∈ L′ ∩ [d],
where L′ ∈ {L,B} such that c ⊥ d in L′. If this holds for both L′ = L and
L′ = B, then the only possibility is [c] = [x] and [d] = [x′], for which the join
must be [1], and is well defined. Now, from the Definition 14 (4.) of ≺, it follows
that for every pair of ordered elements [c] ≤ [f], there must be one L′ ∈ {L,B}
such that c ∈ L′∩[c] and f ∈ L′∩[f], with c ≤ f . Now, this ensures, on one hand,
that orthogonal joins (and meets) are well defined in the I − pasting, whenever
they are well-defined on L and B. Indeed if c ∈ L′ ∩ [c] and f ∈ L′ ∩ [f], with
c ≤ f holds for both L′ = L and L′ = B, φ′

L preserving order, it must be either
c = 0L′ or f = 1L′ .

On the other hand, since L′ is an omp, then c ≤ f implies that f = c∨(f∧c′),
hence [f] = [c] ∨ ([f] ∧ [c]′). ��
In the following, L|I|B will refer to this particular construction, and L will be
assumed to be stable. Furthermore, we will suppose that φL(y) = x is a free
atom, and show that L|I|B is stable whenever L is.

We start defining J ′(L) = (Q′
L, E′

L, T ′
L) in the following way:

Q′
L = Sy ∪ {s ∪ {vi}|s ∈ Sy′ , φB(y) �= vi ∈ A(B)},

E′
L = {[s, s′]|s, s′ ∈ Q′

L, s �= s′},

T ′
L = {(s, [s, s′], s′)|s, s′ ∈ Q′

L, [s, s′] ∈ E′
L, s �= s′}.

Lemma 1. J ′(L) is isomorphic to J(L|I|B). Furthermore, for every vi ∈ A(B)
such that φB(y) �= vi, the subgraph of J ′(L) induced by S(y)∪S(vi) is isomorphic
to J(L).

66 F. Adobbati et al.

s0 s1

s2

s3 s4

φL(y)

J(L) J ′(L) ∼= J(L|I|B)

s1

s4

[φL(y)]

sv10

sv12

sv13

sv20

sv22

sv23

Fig. 6. Construction of J ′(L), where L is the omp of Fig. 2, I is as in Theorem 1,
and B is a Boolean algebra with three atoms: A(B) = {φB(y), v1, v2}. Lines represent
transitions in both directions. Dashed lines have an incidence with respect to φL(y) or
[φL(y)], whereas solid lines are independent from them.

Proof. Every state q ∈ Q′
L contains one, and only one, atom of B and since

φL(y) is a free atom, it has one, and only one, atom for every Boolean algebra
of L. Hence the elements of Q′

L coincide with the elements of S(L|I|B). Since
the construction of J ′(L) is completely determined by the set of states as in the
construction of J(L|I|B), the two transition systems J(L|I|B) and J ′(L) are
isomorphic (Fig. 6).

We also observe that for every atom vi ∈ A(B) different from φB(y) the
elements in S(y) ∪ S(vi) coincide with the elements of S(y) ∪ S(y′), which is
the set of states of J(L). From this observation it is easy to see that there is an
isomorphism between J(L) and any subgraph of J ′(L) induced by a set of states
in the form S(y) ∪ S(vi). ��
This last lemma will permit to consider J ′(L) instead of J(L|I|B).

Lemma 2. If a region H ∈ R(J ′(L)) contains a state s∪{vi} ∈ Q′
L and Svi

�⊆ H
then ∀s ∪ {vj} ∈ Q′

L : s ∪ {vj} ∈ H.

Proof. Since Svi
�⊆ H there must be a state s′ ∪ {vi} /∈ H, which means that

the event [s, s′] is an event labeling a transition exiting H. Now suppose that
there is a state s ∪ {vj} ∈ Q′

L that doesn’t belong to H. This means that the
transition from s∪{vj} to s′ ∪{vj} ∈ Q′

L does not exit H, but such a transition
is also labeled [s, s′], which is not possible since that would mean that H is not
a region. ��
Lemma 3. Every atomic region of J ′(L) is in the form Sx for x ∈ A(L|I|B).

Proof. Assume that there is an atomic region H �∈ {Sx | x ∈ A(L|I|B)}. Con-
sider the subgraphs induced by Sy ∪ Svi

for all the φB(y) �= vi ∈ B and call

Stability of Regional Orthomodular Posets Under Synchronisation 67

Hvi
⊂ H the sets H∩(Sy∪Svi

). All the Hvi
are atomic regions in every subgraph

of J ′(L) induced by Sy ∪ Svi
, since they are all isomorphic to J(L). The regions

Hvi
can be atomic or not. If they are atomic, then they must coincide with an

atomic region Sx, with y �= x ∈ Ln. Hence, after Lemma 2, H ∈ {Sx}x∈Ln+1 . If
they are not atomic, then there are H ′

v1
⊂ Hv1 ,...,H

′
vk

⊂ Hvk
from which we can

make the region
⋃

i∈{1,..,k} H ′
vi

⊂ H, hence H is not atomic. ��

Theorem 2. Let L be a stable omp, and x ∈ A(L) be a free atom. Let B
be a finite Boolean algebra, and a ∈ A(B). Let I = {0, 1, y, y′}, and define
φL : I → L, and φB : I → B such that φL(y) = x, and φB(y) = a. Then L|I|B
induced by the V-formation (I, L,B, φL, φB) is stable.

Proof. We wish to show that H(J(L|I|B)) � L|I|B. With Lemma 1, we reduce
it to showing that H(J ′(L)) � L|I|B. Since H(J ′(L)) is a finite omp, it is
characterised by the orthogonality relation among its atoms. Now, Lemma 3
states that each atom of H(J ′(L)) corresponds to an atom of L|I|B, and it was
shown in [6] that every atom of L|I|B must be an atom of H(J ′(L)).

For each pair of elements x ∈ A(L), y ∈ A(B), there is a state in s ∈ J(L|I|B)
such that [x] ∈ s and [y] ∈ s. Hence, the pasting must preserve incompatibil-
ity. Since the pasting also preserves orthogonality, we have that L|I|B, and
H(J(L|I|B)) have same collection of atoms, with identical orthogonality rela-
tions. As it was shown in [7], this is sufficient to state that H(J(L|I|B)) � L|I|B.

��

3.3 Stability of Atom Refinement

The operation of refining an atom of an omp into two new atoms preserves
stability.

Theorem 3. Let L be a stable omp. Let x ∈ A(L). Consider Ma = (A(L) \
{x}) ∪ {y, z}, in which all orthogonal atoms of L remain orthogonal in Ma, and
all atoms orthogonal to x in L are orthogonal to both y and z in Ma. Then the
omp M generated by Ma is stable.

Proof. We will consider only the atoms of L and M , and states as represented
by maximal cliques of � $ as in Proposition 1. Let Sx′ be the set of states of L not
containing x. By construction of Ma, for each state s ∈ Sx of L there are two
states of M , in Sy and Sz respectively. Furthermore, the states of Sx′ all contain
an atom orthogonal to x in L, and it will be orthogonal to both y and z in M .
Thus, Sx′ , Sy and Sz constitute a partition of the states of M .

Starting from the states of M as partitioned above, it is possible to define
the following sets of events: Ex′ = {[s, s′] | s, s′ ∈ Sx′ , s �= s′}, Ey,z =
{[s, s′]|s ∈ Sy, s

′ ∈ Sz}, Ey = {[s, s′]|s, s′ ∈ Sy}, Ez = {[s, s′]|s, s′ ∈ Sz},
Ex′,y = {[s, s′] | s ∈ Sx′ , s′ ∈ Sy} and Ex′,z = {[s, s′] | s ∈ Sx′ , s′ ∈ Sz}.

Let Ay be the transition system with the following sets of states and events:
Sx′∪Sy and Ex′∪Ey∪Ex′,y, let, symmetrically, Az be the transition system whose

68 F. Adobbati et al.

states are Sx′ ∪Sz and whose events are Ex′ ∪Ez∪Ex′,z. We note that both R(Ay)
and R(Az) are isomorphic to the regions of the saturated system J(L) since in
both cases of R(Ay) and R(Az), atoms y and z replace uniformly x. Moreover,
since states Sy and Sz are disjoint, it is possible to construct the cets A =
Ay ∪Az endowed by all the new events in Ey,z. We note that R(A) must contain
R(J(M)) since cets A, having less events than J(M), can have less constraints
in the construction of its regions. We want to show that R(A) = R(J(M)). Let,
by contradiction, r be a region in R(A) not belonging to R(J(M)).

If r ⊆ Sx′ , then r ∈ R(J(M)) since all the labels in Ex′ belong to both cets
A and J(M) and the new events in Ex′,y and Ex′,z are distinct copies of the
original events Ex′,x in J(L), so they do not create new regions. If r ⊆ Sy and,
symmetrically, for r ⊆ Sz then r must be a region in R(J(M)) since all the
labels in Ey and Ex′,y, and symmetrically Ez and Ex′,z are, by construction,
isomorphic to the labels Ex′,x in J(L) and all the new labels Ey,z are exiting
from or, respectively, entering in r. The only remaining case could be for r being
a minimal region in R(A) and a non minimal region in R(J(M)) but this would
be in contradiction with y and z being atoms in M . ��

4 Applying the Results to Prove Stability

It was shown, in [6], that some classes of omps are stable.
The first class regards the degenerate case in which the omp is a Boolean

algebra. Indeed, the result is here trivial, since all transitions of the saturated
transition system carry different labels. Systems having a Boolean algebra for
structure of regions are characterised by being fully sequential, the whole system
is bound to a single locality. An example of this class is on the left in Fig. 7.

The second class, is that of omps consisting of a collection of Boolean algebras
such that their pairwise intersections all coincide in the same Boolean subalgebra.
This case has to be interpreted as the class of systems the sequential components
of which, all synchronise through the same channel. One can think of several
systems, pairwise independent but for a resource shared by all of them (see
Fig. 7 for an example).

Finally, it was shown that the {0, 1}-pasting of two stable omps is stable.
The {0, 1}-pasting of two omps corresponds to their disjoint union, but for iden-
tification of the maximal and minimal elements as in Fig. 8. This composition
operation corresponds to the parallel composition of the corresponding operand
systems. Indeed, the two systems are simply considered as a whole, although they
remain independent, they do not synchronise or exchange information. This
operation allows to compose stable omps, with the certainty that the compound
will be stable. The only requirement is that the operands are stable, so one can
compose any two omp from the aforementioned classes. Furthermore, the result
of the composition being stable, it can be itself an operand for a further compo-
sition, and so this composition can be iterated, in order to generate a wide class
of stable systems. As an operation, it is associative and commutative. However,
this kind of composition is very restrictive, since it does not allow to specify but

Stability of Regional Orthomodular Posets Under Synchronisation 69

c

Fig. 7. To the left, a Boolean algebra with 5 atoms. To the right, an omp consisting
of 5 Boolean algebras of 3 atoms each, all sharing exactly the same atom c, hence all
other atoms are free. Both omps are represented as Greechie diagrams, and both are
stable.

Fig. 8. Hasse diagram of the parallel composition of two Boolean algebras with 3
atoms each. It is obtained from the V-formation in Fig. 4, when replacing I by 2, and
morphisms accordingly.

an empty interface for the components. This issue has been tackled in the present
work: in the last section we have presented a composition operation, which pre-
serves stability of its operands, but allows to specify an interface. An interface is
the identification of two local states, one in each of the operands, that will serve
as a communication channel, allowing them to synchronise their behaviours. The
result concerns the extension of a system with one single sequential component.
Since the omp resulting from such a composition is again stable, it can be taken
as operand for further composition, and in this fashion, the composition can be
iterated.

The main limitation of the composition operation we have presented is that
it only allows for interfaces consisting of a single local state, and it would be
suitable to extend the result so as to allow for larger interfaces, that could permit
to model more complex communication protocols. In this sense, the solution we
provide is a refinement operation, that preserves stability.

70 F. Adobbati et al.

The intended use of this result with respect to the previous composition oper-
ation is twofold. One one hand, the atom serving as interface in the compound
system can be refined so as to allow for a richer interface.

Example 9. Consider two Boolean algebras B1, and B2 with three atoms each,
A(Bi) = {ai, bi, ci}. Their parallel composition is shown in Fig. 8. Let I =
{0, x, x′, 1} and consider the two omp-morphisms φi : I → Bi, such that
φi(x) = ci. B1 is a stable omp, and c1 is clearly a free atom, so after The-
orem 2, L = B1|I|B2 is a stable omp. L is isomorphic to the omp depicted
in Fig. 2, by considering b3 = [φ1(x)] = [φ2(x)]. Since L is stable, and b5 is a
free atom, we can compose it with a new Boolean algebra B3, by means of the
morphisms φL and φ3, provided by φL(x) = b5 and φ3(x) = c3. The Greechie
diagram of L|I|B3 is depicted at the top of Fig. 9. Thanks to Theorem 3, we can
now split any atom of L|I|B3, obtaining, for example, the stable omp depicted
at the bottom of Fig. 9.

[b3] [b4] [b5]

[b3] [b4] [b5]

Fig. 9. Greechie diagrams of two omps. The omp depicted below, is obtained from the
one depicted above, by refining the atoms as shown. Since the omp above is stable, so
is the one below.

On the other hand, a free atom of the operands can be refined prior to the oper-
ation. In this way, only one of the two refining atoms will be used as interface
with the appended sequential component, the other one remaining free for fur-
ther composition. With this method, one can iterate the composition operation
without worrying about exhaustion of available free atoms of the original system.

Example 10. Consider a system made of two sequential components each of
which can get to a state for which they require the same resource. If each of
these components can be in two additional states, the regional omp for this
system is represented as L1 in Fig. 10. B1 and B2 represent the two sequential
components, and x1, x2 correspond to their mutually exclusive states. Bc repre-
sents the state of the resource c, it can be in state xi, indicating that Bi holds
c, or in state y1, indicating that c is available. When c is available, no other
component is involved in the coresponding local state of Bc, and so y1 is a free
atom. L1 is isomorphic to the omp at the top of Fig. 9, and was shown to be
stable in Example 9.

Stability of Regional Orthomodular Posets Under Synchronisation 71

We may want to make the resource c available for a third sequential com-
ponent B3, so we can use Theorem 2 to compose L1 and B3 on y1, obtaining
the stable L2 = L1|I|B3 a shown in Fig. 10. However, in this new compound
system, the resource must be held by one of the three components Bi, as Bc has
no more free atoms. No additional component can be added to the system, to
compete for c. Instead of performing the composition L1|I|B3 directly, we can
first make use of Theorem 3, and refine y1 in L1 into two new free atoms x3, y2,
thus obtaining the omp L3 of Fig. 10. We can now compose it with B3 on x3,
thus obtaining L4 = L3|I|B3, which is stable. One can see that y2 remains a free
atom, a local state representing that the resource is available.

Analogously, y2 can be further refined into x4, y3, so as to add a sequential
component B4 on x4, to compete for the resource. This process can be iterated, to
obtain a system with n sequential components competing for the same resource.
Its regional omp will then be L5, as in Fig. 10. Note that for each Bi any atom
but xi is free, and so it can be refined to increase the number of local states of
each sequential component.

L1

x1 x2 y1
Bc

B1 B2

L2

x1 x2 y1
Bc

B1 B2 B3

L3

x1 x2 x3 y2
Bc

B1 B2

y1 L4

x1 x2 x3 y2
Bc

B1 B2 B3

L5

x1 x2 x3

B1 B2 B3

xn−1 xn yn−1
Bc

Bn−1 Bn

Fig. 10. Support for Example 10: refining a free atom, and iterating composition

5 Conclusion

The results we have presented in this work build upon previous results, and in
many aspects, their proofs rely on them.

72 F. Adobbati et al.

For instance, regional omps were studied for the first time in [4]. In that
contribution, primeness was a central property of regional omps where an omp is
prime if, for every pair of distinct elements, there exists a state that contains one
element and not the other. In [1], the equivalence of richness and primeness for
omps was formally proved and this allowed to us to exploit the formal properties
of rich omps in this contribution.

On the other hand, the analysis that was performed in [7] regarding suffi-
ciency of atoms for the construction of the saturated transition system, allowed
us to importantly simplify the proofs we have presented here.

Finally, in [6], stability of omps was shown for particular subclasses. Further-
more, the parallel composition operation was shown to preserve stability, setting
the ground for a different approach to prove the stability conjecture.

Indeed, in the present work, we have formalised two additional operations
which preserve stability. One corresponds to the refinement of a local state into
two. The second corresponds to the extension of a system with a sequential
component which synchronises with it over a local state which is not already a
synchronisation. With these elements, we can define an algebra of system omps,
such that all its elements are stable.

However, not every regional omp can be obtained with the defined operations.
For instance, a strong limitation is the restriction of the composition operation to
interfacing on free atoms. Another limitation of this operation is that it does not
allow for extending a system with a sequential component that would synchronise
with the system at more than one state. In particular, the paradigmatic example
of an omp which is not a lattice, known as the Janowitz square [14,17] (see
Fig. 11), can not be generated within this algebra. A clear goal in our approach
is to extend this algebra so as to generate every regional omp. In this way,
by showing that we can generate all regional omps with stability preserving
operations, we would prove the conjecture that all regional omps are stable.

Fig. 11. Greechie diagram representation of a regional and stable omp which can not
be generated with the proposed operations. It is commonly known as the Janowitz
square.

Note that the conjecture was first posed in a categorical setting. Indeed,
J and H form a pair of adjoint functors between the category of (prime and
coherent)6 omps, and the category of cets (with suitably defined morphisms).
Unsurprisingly, this is the same kind of relation we find between the category
6 In the terminology of [4].

Stability of Regional Orthomodular Posets Under Synchronisation 73

Petri net systems, and the category of labelled transition systems (for example,
in the elementary case). Indeed, the case graph construction, and the synthesis
of saturated net system are seen as functors from one category to the other, and
these are adjoint to each other. In this elementary framework however, it is shown
that this adjunction is in fact a co-reflection [15], which implies that iterating
alternated case graph, and synthesis constructions does only yield isomorphic
elements in each of the two categories. Thus, the conjecture posed in [4], can be
restated as emulating this result: (H,J) form a co-reflection.

Acknowledgements. We wish to thank Lucia Pomello, and Luca Bernardinello for
the fruitful discussions. We are also grateful to the anonymous reviewers for their useful
comments.

References

1. Adobbati, F., Ferigato, C., Gandelli, S., Aubel, A.P.: Two operations for stable
structures of elementary regions. In: van der Aalst, W.M.P., Bergenthum, R.,
Carmona, J. (eds.) Proceedings of the International Workshop ATAED 2019 Satel-
lite event of the conferences: ICATPN 2019 and ACSD 2019, CEUR Workshop
Proceedings, Aachen, Germany, 25 June 2019, vol. 2371, pp. 36–53. CEUR-WS.org
(2019)

2. Badouel, E., Bernardinello, L., Darondeau, P.: Petri Net Synthesis. TTCSAES.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47967-4

3. Bernardinello, L.: Synthesis of net systems. In: Ajmone Marsan, M. (ed.) ICATPN
1993. LNCS, vol. 691, pp. 89–105. Springer, Heidelberg (1993). https://doi.org/10.
1007/3-540-56863-8 42

4. Bernardinello, L., Ferigato, C., Pomello, L.: An algebraic model of observable prop-
erties in distributed systems. Theor. Comput. Sci. 290(1), 637–668 (2003)

5. Bernardinello, L., Ferigato, C., Pomello, L., Aubel, A.P.: Synthesis of transition
systems from quantum logics. Fundamenta Informaticae 154(1–4), 25–36 (2017)

6. Bernardinello, L., Ferigato, C., Pomello, L., Aubel, A.P.: On stability of regional
orthomodular posets. Trans. Petri Nets Other Models Concurrency 13, 52–72
(2018)

7. Bernardinello, L., Ferigato, C., Pomello, L., Aubel, A.P.: On the decomposition of
regional events in elementary systems. In: van der Aalst, W.M.P., Bergenthum, R.,
Carmona, J. (eds.) Proceedings of the International Workshop ATAED 2018 Satel-
lite event of the conferences: ICATPN 2018 and ACSD 2018, CEUR Workshop Pro-
ceedings, Bratislava, Slovakia, 25 June 2018, vol. 2115, pp. 39–55. CEUR-WS.org
(2018)

8. Birkhoff, G., Von Neumann, J.: The logic of quantum mechanics. Ann. Math 37(4),
823–843 (1936)

9. Bruns, G., Harding, J.: Amalgamation of ortholattices. Order 14(3), 193–209
(1997)

10. Clarke Jr, E.M., Grumberg, O., Kroening, D., Peled, D., Veith, H.: Model Checking.
MIT Press, Cambridge (2001)

11. Ehrenfeucht, A., Rozenberg, G.: Partial (set) 2-structures: part I: basic notions
and the representation problem. Acta Informatica 27(4), 315–342 (1990)

12. Ehrenfeucht, A., Rozenberg, G.: Partial (set) 2-structures: part II: state spaces of
concurrent systems. Acta Informatica 27(4), 343–368 (1990)

https://doi.org/10.1007/978-3-662-47967-4
https://doi.org/10.1007/3-540-56863-8_42
https://doi.org/10.1007/3-540-56863-8_42

74 F. Adobbati et al.

13. Foulis, D.J., Randall, C.H.: Operational statistics. I: basic concepts. J. Math. Phys.
13(11), 1667–1675 (1972)

14. Hughes, R.I.G.: The Structure and Interpretation of Quantum Mechanics. Harvard
University Press, Cambridge (1989)

15. Nielsen, M., Rozenberg, G., Thiagarajan, P.S.: Elementary transition systems.
Theor. Comput. Sci. 96(1), 3–33 (1992)

16. Nielsen, M., Rozenberg, G., Thiagarajan, P.S.: Transition systems, event structures
and unfoldings. Inf. Comput. 118(2), 191–207 (1995)

17. Pavel, P., Sylvia, P.: Orthomodular Structures as Quantum Logics. Kluwer Aca-
demic Publishers, Amsterdam (1991)

18. Petri, C.A.: General net theory: computing system design. In: Joint IBM-University
of Newcastle upon Tyne Seminar, September 1976, Proceedings (1977)

19. Randall, C.H., Foulis, D.J.: Operational statistics. II: manuals of operations and
their logics. J. Math. Phys. 14(10), 1472–1480 (1973)

20. Rival, I.: The diagram. In: Reidel, D. (ed.) Graphs and Order, Series C: Mathe-
matical and Physical Sciences, pp. 103–133 (1985)

Efficient Synthesis of Weighted Marked
Graphs with Circular Reachability

Graph, and Beyond

Raymond Devillers1, Evgeny Erofeev2, and Thomas Hujsa3(B)

1 Département d’Informatique, Université Libre de Bruxelles, 1050 Brussels, Belgium
rdevil@ulb.ac.be

2 Department of Computing Science, Carl von Ossietzky Universität Oldenburg,
26111 Oldenburg, Germany

evgeny.erofeev@informatik.uni-oldenburg.de
3 LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France

thujsa@laas.fr

Abstract. In previous studies, several methods have been developed to
synthesise Petri nets from labelled transition systems (LTS), often with
structural constraints on the net and on the LTS. In this paper, we focus
on Weighted Marked Graphs (WMGs) and Choice-Free (CF) Petri nets,
two weighted subclasses of nets in which each place has at most one out-
put; WMGs have the additional constraint that each place has at most
one input.

We provide new conditions for checking the existence of a WMG whose
reachability graph is isomorphic to a given circular LTS, i.e. forming a
single cycle; we develop two new polynomial-time synthesis algorithms
dedicated to these constraints: the first one is LTS-based (classical syn-
thesis) while the second one is vector-based (weak synthesis) and more
efficient in general. We show that our conditions also apply to CF syn-
thesis in the case of three-letter alphabets, and we discuss the difficulties
in extending them to CF synthesis over arbitrary alphabets.

Keywords: Weighted Petri net · Weighted marked graph · Choice-free
net · Synthesis · Weak synthesis · Labelled transition system · Cycle ·
Cyclic word · Circular solvability · Polynomial-time algorithm ·
P-vector · T-vector · Parikh vector

1 Introduction

Petri nets form a highly expressive and intuitive operational model of discrete
event systems, capturing the mechanisms of synchronisation, conflict and concur-
rency. Many of their fundamental behavioural properties are decidable, allowing
to model and analyse numerous artificial and natural systems. However, most

E. Erofeev—Supported by DFG through grant Be 1267/16-1 ASYST.
T. Hujsa—Supported by the STAE foundation/project DAEDALUS, Toulouse, France.

c© Springer-Verlag GmbH Germany, part of Springer Nature 2021
M. Koutny et al. (Eds.): ToPNoC XV, LNCS 12530, pp. 75–100, 2021.
https://doi.org/10.1007/978-3-662-63079-2_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-63079-2_4&domain=pdf
https://doi.org/10.1007/978-3-662-63079-2_4

76 R. Devillers et al.

interesting model checking problems are worst-case intractable, and the efficiency
of synthesis algorithms varies widely depending on the constraints imposed on
the desired solution. In this study, we focus on the Petri net synthesis problem
from a labelled transition system (LTS), which consists in determining the exis-
tence of a Petri net whose reachability graph is isomorphic to the given LTS,
and building such a Petri net solution when it exists.

In previous studies on analysis or synthesis, structural restrictions on nets
encompassed plain nets (each weight equals 1; also called ordinary nets) [33],
homogeneous nets (for each place p, all the output weights of p are equal) [29,
37], free-choice nets (the net is plain, and any two transitions sharing an input
have the same set of inputs) [15,37], join-free nets (each transition has at most
one input place) [14,28,29,37]. Recently, another kind of restriction has been
considered, limiting the number of distinct labels of the LTS [5,6,24,25].

Depending on the constraints on the solution to be constructed, the com-
plexity of the synthesis problem can vary widely: the problem can be solved in
polynomial-time for bounded Petri nets [3], while aiming at elementary net sys-
tems, or at various other Petri net subclasses with fixed marking bound, makes
the problem NP-complete [4,38].

In this paper, we study the solvability of LTS with weighted marked graphs
(WMGs; each place has at most one output and one input) and choice-
free nets (CF; each place has at most one output). Both classes are impor-
tant for real-world applications, and are widely studied in the literature [10–
12,19,21,27,35,36]. We focus mainly on finite circular LTS, i.e. strongly con-
nected LTS that contain a unique cycle1. In this context, we investigate the
cyclic solvability of a word w, meaning the existence of a Petri net solution to
the finite circular LTS induced by the infinite cyclic word w∞. These restrictions
appear in practical situations, since various complex applications can be decom-
posed into subsystems satisfying such constraints [5,7,11,17,18,23,24,26].

Contributions. We study further the links between simple LTS structures and
the reachability graph of WMGs and CF nets, as follows. First, we show that
a binary (i.e. over a two-letter alphabet) LTS is CF-solvable if and only if it
is WMG-solvable. Then, we develop new conditions for WMG-solving a cyclic
word over an arbitrary alphabet, with a polynomial-time synthesis algorithm.

We show that a word over a three-letter alphabet is cyclically WMG-solvable
iff it is cyclically CF-solvable, and that this result does not hold with four-letter
alphabets. More generally, we discuss the difficulties of extending these results
to CF synthesis over arbitrary alphabets.

We introduce the notion of weak synthesis, which aims at synthesising a
Petri net from a given transition-vector Υ instead of a sequence: the solution
obtained enables some sequence whose Parikh vector equals Υ . This allows to

1 A set A of k arcs in a LTS G defines a cycle of G if the elements of A can be ordered
as a sequence a1 . . . ak such that, for each i ∈ {1, . . . , k}, ai = (ni, �i, ni+1) and
nk+1 = n1, i.e. the i-th arc ai goes from node ni to node ni+1 until the first node
n1 is reached, closing the path.

Efficient Synthesis of Weighted Marked Graphs 77

be less restrictive on the solution design. Then, we provide a polynomial-time
algorithm for the weak synthesis of WMGs with circular reachability graphs.

Finally, we show that our weak synthesis algorithm performs generally much
faster than the sequence-based algorithm.

Comparing with [20], we provide more details, we add the equivalence result
on CF nets for three-letter alphabets in Subsection 4.4 and the new Sect. 5 on
weak synthesis, with a new synthesis algorithm and the study of its complexity.

Organisation of the Paper. After recalling classical definitions, notations and
properties in Sect. 2, we present the equivalence of CF- and WMG-solvability
for 2-letter words in Sect. 3.

In Sect. 4, we focus on circular LTS: we give a new characterisation of WMG-
solvability and a dedicated polynomial-time synthesis algorithm. We prove the
equivalence between cyclic WMG and CF synthesis for three-letter alphabets.
We also provide a number of examples showing that some of our results cannot
be applied to the class of CF-nets over arbitrary alphabets.

Section 5 contains our study of the weak synthesis problem for WMGs with
a circular reachability graph, with a new polynomial-time synthesis algorithm.
Finally, Sect. 6 presents our conclusions and perspectives.

2 Classical Definitions, Notations and Properties

LTS, Sequences and Reachability. A labelled transition system with initial
state, LTS for short, is a quadruple TS = (S,→, T, ι) where S is the set of
states, T is the (finite) set of labels, → ⊆ (S × T × S) is the transition relation,
and ι ∈ S is the initial state. A label t is enabled at s ∈ S, written s[t〉, if
∃s′ ∈ S : (s, t, s′) ∈→, in which case s′ is said to be reachable from s by the firing
of t, and we write s[t〉s′. Generalising to any (firing) sequences σ ∈ T ∗, s[ε〉 and
s[ε〉s are always true, with ε being the empty sequence; and s[σt〉s′, i.e., σt is
enabled from state s and leads to s′ if there is some s′′ with s[σ〉s′′ and s′′[t〉s′.
For clarity, in case of long formulas we write �rσ�sτ �q instead of r[σ〉s[τ〉q, thus
fixing some intermediate states along a firing sequence. A state s′ is reachable
from state s if ∃σ ∈ T ∗ : s[σ〉s′. The set of states reachable from s is noted [s〉.

Petri Nets and Reachability Graphs. A (finite, place-transition) weighted
Petri net, or weighted net, is a tuple N = (P, T,W) where P is a finite set of
places, T is a finite set of transitions, with P ∩T = ∅ and W is a weight function
W : ((P ×T)∪(T ×P)) → N giving the weight of each arc. A Petri net system, or
system, is a tuple S = (N,M0) where N is a net and M0 is the initial marking,
which is a mapping M0 : P → N (hence a member of NP) indicating the initial
number of tokens in each place. The incidence matrix I of the net is the integer
P × T -matrix with components I(p, t) = W (t, p) − W (p, t).

A place p ∈ P is enabled by a marking M if M(p) ≥ W (p, t) for every transi-
tion t ∈ T . A transition t ∈ T is enabled by a marking M , denoted by M [t〉, if for

78 R. Devillers et al.

all places p ∈ P , M(p) ≥ W (p, t). If t is enabled at M , then t can occur (or fire)
in M , leading to the marking M ′ defined by M ′(p) = M(p) − W (p, t) + W (t, p),
denoted M [t〉M ′. A marking M ′ is reachable from M if there is a sequence of
firings leading from M to M ′. The set of markings reachable from M is denoted
by [M〉. The reachability graph of S is the labelled transition system RG(S)
with the set of vertices [M0〉, the set of labels T , initial state M0 and transitions
{(M, t,M ′) | M,M ′ ∈ [M0〉∧M [t〉M ′}. A system S is bounded if RG(S) is finite.

Vectors. The support of a vector is the set of the indices of its non-null compo-
nents. Consider any net N = (P, T,W) with its incidence matrix I. A T-vector
(respectively P-vector) is an element of NT (respectively NP); it is called prime
if the greatest common divisor of its components is one (i.e., it is non-null and
its components do not have a common non-unit factor). A T-semiflow ν of the
net is a non-null T-vector such that I · ν = 0. A T-semiflow is called minimal
when it is prime and its support is not a proper superset of the support of any
other T-semiflow [36].

The Parikh vector P(σ) of a finite transition sequence σ is a T-vector count-
ing the number of occurrences of each transition in σ, and the support of σ is the
support of its Parikh vector, i.e., supp(σ) = supp(P(σ)) = {t ∈ T | P(σ)(t) > 0}.

Strong Connectedness and Cycles in LTS. The LTS is said reversible if,
∀s ∈ [ι〉, we have ι ∈ [s〉, i.e., it is always possible to go back to the initial state;
reversibility implies the strong connectedness of the LTS.

A sequence s[σ〉s′ is a cycle, or more precisely a cycle at (or around) state
s, if s = s′. A non-empty cycle s[σ〉s is called small if there is no non-empty
cycle s′[σ′〉s′ in TS with P(σ′) � P(σ) (the definition of Parikh vectors extends
readily to sequences over the set of labels T of the LTS). A cycle s[σ〉s is prime
if P(σ) is prime. TS has the prime cycle property if each small cycle has a prime
Parikh vector.

A circular LTS is a finite, strongly connected LTS that contains a unique
cycle; hence, it has the shape of an oriented circle. The circular LTS induced by
a word w=w1 . . . wk is defined as s0[w1〉s1[w2〉s2 . . . [wk〉s0 with initial state s0.
All notions defined for labelled transition systems apply to Petri nets through
their reachability graphs.

Some Petri Net Subclasses. A net N = (P, T,W) is plain if no arc weight
exceeds 1; pure if ∀p ∈ P : (p•∩•p) = ∅, where p• = {t ∈ T | W (p, t)>0} and
•p = {t ∈ T | W (t, p)>0}; choice-free (CF) [13,36] or place-output-nonbranching
(ON) [7] if ∀p ∈ P : |p•| ≤ 1; a weighted marked graph (WMG) if |p•| ≤ 1 and
|•p| ≤ 1 for all places p ∈ P . The WMGs form a subclass of the CF nets and
contain the weighted T-systems (WTSs) of [35], also known as weighted event
graphs (WEGs) in [32], in which ∀p ∈ P , |•p| = 1 and |p•| = 1. Plain WEGs are
also known as marked graphs [12] or T-nets [15].

Efficient Synthesis of Weighted Marked Graphs 79

Isomorphism and Solvability. Two LTS TS1 = (S1,→1, T, s01) and TS2 =
(S2,→2, T, s02) are isomorphic if there is a bijection ζ : S1 → S2 with ζ(s01) =
s02 and (s, t, s′) ∈→1 ⇔ (ζ(s), t, ζ(s′)) ∈→2, for all s, s′ ∈ S1. If an LTS TS is
isomorphic to RG(S), where S is a net system, we say that S solves TS . Solving
a word w = 	1 . . . 	k amounts to solve the acyclic LTS defined by the single path
ι[1〉s1 . . . [k〉sk. A finite word w is cyclically solvable if the circular LTS induced
by w is solvable. An LTS is WMG- (or CF-)solvable if a WMG (or a CF system)
solves it.

Separation Problems. Let TS = (S,→, T, s0) be a given labelled transition
system. The theory of regions [2] characterises the solvability of an LTS through
the solvability of a set of separation problems. In case the LTS is finite, we have
to solve 1

2 ·|S|·(|S|−1) states separation problems and up to |S|·|T | event/state
separation problems, as follows:

– A region of (S,→, T, s0) is a triple (R,B,F) ∈ (NS ,NT ,NT) such that for all
(s, t, s′) ∈→, R(s) ≥ B(t) and R(s′) = R(s) − B(t) + F(t). A region models a
place p, in the sense that R(s) models the token count of p at the marking
corresponding to s, B(t) (for backward) models W (p, t), and F(t) (for forward)
models W (t, p).

– A states separation problem (SSP for short) consists of a set of states {s, s′}
with s �= s′. It is solved by a region (R,B,F) when R(s) �= R(s′), meaning the
region allows to discriminate between s and s′.

– An event/state separation problem (ESSP for short) consists of a pair (s, t) ∈
S×T with ¬s[t〉. It is solved by a region (R,B,F) when R(s) < B(t), meaning
the region allows to exclude a forbidden transition from some state.

In the rest of this paper, we interpret these two separation problems in terms
of places of the hoped-for Petri net system as follows:

– For each SSP {s, s′}, s �= s′, the two states s and s′ must be distinguished by
a place p such that Ms(p) �= Ms′(p), i.e. p has a different number of tokens
in the markings corresponding to the two states.

– For each ESSP (s, t) with ¬s[t〉, there must exist a place p such that Ms(p) <
W (p, t) for the marking Ms corresponding to state s, where W refers to the
arcs of the hoped-for Petri net system.

Notice that if the LTS is infinite, also the number of separation problems (of
each kind) becomes infinite.

A synthesis procedure does not necessarily lead to a connected solution.
However, the technique of decomposition into prime factors described in [16,17]
can always be applied first, so as to handle connected partial solutions and
recombine them afterwards. Hence, in the sequel, we focus on connected nets,
w.l.o.g. In the next section, we consider the CF synthesis problem with two
distinct labels.

80 R. Devillers et al.

3 Reversible Binary CF Synthesis

In this section, we relate CF- to WMG-solvability for binary reversible LTS.

Lemma 1 (Pure CF-solvability)
If a reversible LTS has a CF solution, it has a pure CF solution.

Proof. Let TS = (S,→, T, ι) be a reversible LTS. If t ∈ T does not occur in →,
TS is solvable iff TS ′ = (S,→, T \ {t}, ι) is solvable and a possible solution of
TS is obtained by adding to any solution of TS ′ a transition t and a fresh place
p, initially empty, with an arc from p to t (e.g. with weight 1), so that p is not
a side condition2. We can thus assume that each label of T occurs in →.

Fig. 1. A general pure (h = 0) or non-pure (h > 0) choice-free place p with initial
marking μ0. Place p has at most one outgoing transition named x. The set {a1, . . . , am}
comprises all other transitions, i.e., T = {x, a1, . . . , am}, and kj denotes the weight of
the arc from aj to p (which could be zero).

The general form of a place in a CF solution is exhibited in Fig. 1. If h = 0,
we are done, so that we shall assume h > 0. If −h ≤ k < 0, the marking of p
cannot decrease, and since x occurs in →, the system cannot be reversible. If
k = 0, for the same reason all the ki’s must be null too, μ0 ≥ h, and we may
drop p. Hence we assume that k > 0 and ∃i : ki > 0.

Once x occurs, the marking of p is at least h, remains so, and since the system
is reversible, all the reachable markings have at least h tokens in p. But then, if
we replace p by a place p′ with initially μ0 − h tokens, the same ki’s and h = 0,
we get exactly the same reachability graph, but with h tokens less in p′ than in
p. This will wipe out the side condition for p, and repeating this for each side
condition, we get an equivalent pure and choice-free solution. ��
Theorem 1 (Reversible binary CF-solvability)
A binary reversible LTS is CF-solvable iff it is WMG-solvable.

Proof. If we have two labels, from Lemma 1, if there is a CF solution, there will
be one with places of the form exhibited in Fig. 2, hence a WMG solution. ��

In the next section, the number of letters is no more restricted.

2 A place p is a side condition if •p ∩ p• �= ∅.

Efficient Synthesis of Weighted Marked Graphs 81

Fig. 2. A generic pure CF-place with two labels.

4 Cyclic WMG- and CF-Solvablity

In this section, we recall and extend conditions for WMG-solvability of some
restricted classes of LTS formed by a single circuit, which were developed in [19].

We gradually study the separation problems – SSPs in Subsect. 4.1 and
ESSPs in Subsect. 4.2 – for cyclic solvability with WMGs, leading to a language-
theoretical characterisation of cyclically WMG-solvable sequences. The charac-
terisation gives rise to a polynomial-time synthesis algorithm in Subsect. 4.3,
which is shown to be more efficient than the classical synthesis approach.

Finally, in Subsect. 4.4, we study the extensibility of these results to the CF
case: for three-letter alphabets, we show that a word is cyclically WMG-solvable
iff it is cyclically CF-solvable; unfortunately, for arbitrary alphabets, we show
with the help of examples that the other results cannot be directly extended.

In the following, two distinct labels a and b are called (circularly) adjacent in
a word w if w = (w1abw2) or w = (bw3a) for some w1, w2, w3 ∈ T ∗. We denote
by pa,∗ any place pa,b where b is adjacent to a. Also, if T = {t0, t1, . . . , tm} with
m > 0, at least one label is adjacent to t0, and at each point at least one label
is adjacent to the ones we distinguished so far, until we get the whole set T ; we
can thus start from any label ti instead of t0.

Theorem 2 (Sufficient condition for cyclic WMG-solvability [19])
Consider any word w over any finite alphabet T such that P(w) is prime. Suppose
the following: ∀u = w t1t2 (i.e., the projection3 of w on {t1, t2}) for some distinct
circularly adjacent labels t1, t2 in w, u = v� for some positive integer 	 such that
P(v) is prime, and v is cyclically solvable by a circuit (i.e., a circular Petri net
system). Then, w is cyclically solvable with a WMG.

Theorem 3 (Cyclic WMG-solvability of ternary words [19])
Consider a ternary word w (with three letters in its alphabet T) with Parikh
vector (x, x, y) such that gcd(x, y) = 1. Then, w is cyclically solvable with a
WMG if and only if, for any pair t1 �= t2 ∈ T such that w = (w1t1t2w2) or
w = (t2w3t1), u = v� for some positive integer 	 with u = w t1t2 , P(v) is prime,
and v is cyclically solvable by a circuit.

For a circular LTS, the solvability of its binary projections by circuits is
a sufficient condition, as specified by Theorem 2, but it turns out not to be

3 The projection of a word w ∈ A∗ on a set A′ ⊆ A of labels, noted w A′ , is the
word obtained by erasing in w all the occurrences of labels belonging to A \ A′. For
example, the projection of the word w = �1 �2 �3 �2 on the set {�1, �2} is the word
�1 �2 �2.

82 R. Devillers et al.

Fig. 3. The WMG on the left solves aacbbdabd cyclically, and the WMG in the middle
solves aacbbeabd cyclically. On the right, the WMG solves abcabdabd cyclically.

a necessary one. Indeed, for the cyclically solvable sequence w1 = aacbbdabd
(cf. left of Fig. 3), its binary projection on {a, b} is w1 a,b = aabbab which is
not cyclically solvable with a WMG (neither generally solvable). Looking only
at the Parikh vector of the sequence is also not enough to establish its cyclic
(un)solvability. For instance, sequences w2 = abcabdabd and w3 = abcbadabd are
Parikh-equivalent: P(w2) = P(w3) = (3, 3, 1, 2) (and also Parikh-equivalent to
w1), but w2 is cyclically solvable with a WMG (e.g. with the WMG on the right
of Fig. 3) and w3 is not WMG-cyclically solvable.

All the binary projections of w1 and w3 are cyclically WMG-solvable, except
wi a,b. Only the unsolvability of w3 a,b implies the unsolvability of w3. Since
all the wi are Parikh-equivalent, then so are their binary projections. Thus, we
have to analyse the sequences themselves, without abstracting to Parikh vectors.
Since the projections w1 a,b and w3 a,b are equivalent (up to cyclic rotation
and swapping a and b), it is not sufficient to check the ‘problematic’ binary
projections. We then study the conditions for solvability of separation problems.

4.1 SSPs for Prime Cycles

For any word w = t0 . . . tk, for 0 ≤ i, j ≤ k such that i �= j, we note Pij =
P(titi+1 . . . tj−1) if i < j and Pij = P(titi+1 . . . tk−1tkt0t1 . . . tj−1) if i > j.

Lemma 2 (SSPs are solvable for prime cycles). For a cyclic transi-
tion system TS = (S,→, T, s0) defined by some word w = t0 . . . tk, where
S = {s0, . . . , sk}, →= {(si−1, ti−1, si) | 1 ≤ i ≤ k} ∪ {(sk, tk, s0)}, if P(w)
is prime then all the SSPs are solvable.

Proof. If |T | = 1, then k = 0 and |S| = 1, so that there is no SSP to solve. We
may thus assume |T | > 1.

For each pair of distinct labels a, b ∈ T that are adjacent in TS, construct
places pa,b (and pb,a since adjacency is commutative) as in Fig. 2 with

m =
P(w)(b)

gcd(P(w)(a),P(w)(b))
, n =

P(w)(a)
gcd(P(w)(a),P(w)(b))

, (1)

and μ0 = n ·P(w)(b). Clearly, the markings of pa,b reachable by repeatedly firing
u = w ab are always non-negative, and the initial marking is reproduced after
each repetition of the sequence u. Consider two distinct states si, sj ∈ S (w.l.o.g.

Efficient Synthesis of Weighted Marked Graphs 83

i < j). We now demonstrate that there is at least one place of the form pa,b such
that Mi(pa,b) �= Mj(pa,b), where Ml denotes the marking corresponding to state
sl for 0 ≤ l ≤ k. If j − i = 1, then any place of the form pti,∗ distinguishes
states si and sj . The same is true if j − i > 1 but ∀l ∈ [i, j − 1] : tl = ti.
Otherwise, choose some letter a from ti . . . tj−1 and an adjacent letter b. Then
Mj(pa,b) = Mi(pa,b) + m · Pij(a) − n · Pij(b). If Mi(pa,b) �= Mj(pa,b), place pa,b

distinguishes si and sj . Otherwise we have m ·Pij(a) = n ·Pij(b), hence, due to
the choice of m and n:

Pij(a)
P(w)(a)

=
Pij(b)

P(w)(b)

(so that b also belongs to ti . . . tj−1). Consider some other letter c which is
adjacent to a or b. If place pa,c distinguishes si and sj , we are done. Otherwise,
due to the choice of the arc weights for these places, we have

Pij(a)
P(w)(a)

=
Pij(c)

P(w)(c)
=

Pij(b)
P(w)(b)

.

Since ti . . . tj−1 is finite, by progressing along the adjacency relation, either
we find a place which has different markings at si and sj , or for all a, b ∈
supp(ti . . . tj−1) we have

Pij(a)
P(w)(a)

=
Pij(b)

P(w)(b)
.

If supp(ti . . . tj−1) = supp(w), P(w) is proportional to P(ti . . . tj−1), but since
ti . . . tj−1 is smaller than w (otherwise si = sj) this contradicts the primality of
P(w). Hence, there exist adjacent c and d such that c ∈ supp(w)\supp(ti . . . tj−1)
and d ∈ supp(ti . . . tj−1). For the place pc,d we have Mj(pc,d) �= Mi(pc,d). ��

This property has some similarities with Theorem 4.1 in [22], but the pre-
conditions are different. The reachability graph of any CF system, hence of any
WMG, satisfies the prime cycle property [8,9]. Thus, primeness of a sequence
avoids solving SSPs when aiming at these two classes of Petri nets.

4.2 ESSPs in Cyclic WMG-Solvability

Now, we develop further conditions for the cyclic WMG-solvability.

Lemma 3 (Special form of WMG solutions for cycles). If w ∈ T ∗ is
cyclically solvable by a WMG, there exists a WMG S = ((P, T,W),M0), where
P consists of places pa,b, for each pair of distinct circularly adjacent a and b
(i.e., either w = u1abu2 or w = bu3a).

Proof. Consider a sequence w = t0 . . . tk, where P(w) is prime. Let us assume
that the system ((P, T,W),M0) is a WMG solving w cyclically. Due to the
definition of WMGs, all the places that we have to consider are of the form
schematised in Fig. 4. The arc weights may differ due to the parameter l > 0,
but the ratio W (a,pa,b)

W (pa,b,b) = m
n is determined by the Parikh vector of w and its

84 R. Devillers et al.

cyclic solvability; the initial marking is to be defined. Moreover, we have to
consider only those places which are connected to the pairs of circularly adjacent
transitions in w. Indeed, if w = u1�si

a�si+1b u2, where b �= a, si is the state
reached after performing u1 and si+1 is the state reached after performing u1a,
then any place that solves the ESSP ¬Mi[b〉 is an input place for b. On the
other hand, any place whose marking at Msi

differs from its marking at Msi+1

is connected to a. Hence, a place p ∈ P solving ¬Mi[b〉 is of the form pa,b. Since
p is only affected by a and b, it also disables b at all the states between sl and si

in w when it is of the form w = u3�sj
tj�sj+1b

+�sl
u4�si

abu2 with P(u4)(b) = 0 (in
the case there is no b in the prefix between s0 and abu2, sl = s0). Analogously,
if tj �= b, there must be a place q ∈ P of the form ptj ,b that solves ¬Msj

[b〉.
Doing so, we ascertain that the places of the form schematised in Fig. 4 for the
adjacent pairs of transitions are sufficient to handle all the ESSPs.

pa,b
a b

l ·m l · n

Fig. 4. A general place from a to b in a WMG solution of w: m = P(w)(b), n = P(w)(a),
l may be any multiple of 1/ gcd(m, n).

In fact, for each pair of adjacent transitions a and b in w, a single place of
the form pa,b is sufficient. Indeed, assume there are p1, p2 ∈ P of the form pa,b.
If M0(p1)

gcd(W (a,p1),W (p1,b)) ≥ M0(p2)
gcd(W (a,p2),W (p2,b)) then for any M ∈ [M0〉, M(p1) <

W (p1, b) implies M(p2) < W (p2, b). Hence, p1 is redundant in the system. It
means we can choose l as we want (among the multiples of 1/ gcd(m,n)) and
only keep the place of the form pa,b in any solution with the smallest initial
marking. Note that it may happen that we need a place pa,b, but not pb,a. ��

The existence of a WMG solution of this special form allows us to establish
a necessary condition for the cyclic solvability of sequences.

Lemma 4 (A necessary condition for cyclic solvability with a WMG).
If w ∈ T ∗ is cyclically solvable by a WMG, then for any adjacent transitions
a and b in w, and any two occurrences of ab in w = u1 �sr

a b . . . �sq
a b u2, the

inequality
Prj(b) − 1

Prj(a)
<

m

n
<

Pjq(b) + 1
Pjq(a)

(2)

holds true, where m,n are as in (1), r ≤ j ≤ q, and the right inequality is omitted
when Pjq(a) = 0 and the left inequality is omitted when Prj(a) = 0.

Proof. Let w be cyclically solvable with a WMG S = ((P, T,W),M0) as in
Lemma 3, and place p ∈ P be of the form pa,b (as in Fig. 4, with l = 1
and a well chosen initial marking) for an adjacent pair ab. Choose two ab’s
in w = u1 �sr

a �sr+1 b �sr+2 . . . �sq
a �sq+1 b u2 with possibly other letters between

Efficient Synthesis of Weighted Marked Graphs 85

sr+2 and sq (if there is only one ab, apply the argumentation while wrapping
around w circularly, i.e., sr[w〉sq). Since p solves ESSPs ¬sr[b〉 and ¬sq[b〉, the
next inequalities hold true, where μr denotes the marking of pa,b at state sr:

¬sr[b〉 : μr < n

sr+1[b〉 : μr + m ≥ n

∀j : r ≤ j ≤ q : μr + Prj(a) · m − Prj(b) · n ≥ 0
¬sq[b〉 : μr + Prq(a) · m − Prq(b) · n < n

(3)

From the first and the third line of (3) we get Prj(a) · m − Prj(b) · n > −n.
This implies:

Prj(b) − 1
Prj(a)

<
m

n
when r < j ≤ q. (4)

From the third and the fourth line of (3) we obtain

(Prq(a) − Prj(a)) · m − (Prq(b) − Prj(b)) · n < n.

If Pjq(a) �= 0, since Prq = Prj + Pjq this inequality can be written as

m

n
<

Pjq(b) + 1
Pjq(a)

. (5)

Thus, from (4) and (5) we have a necessary condition for solvability. ��
In particular, Lemma 4 explains the cyclic unsolvability of the word w3 =

�sr
ab c b �sj

a d �sq
ab d. Indeed, P(w3)(b) = 3 = P(w3)(a), so that m/n = 1 and

1 ≮ 0+1
1 = Pjq(b)+1

Pjq(a)
. Moreover, the necessary condition for cyclic sovability from

Lemma 4 extends to a sufficient one in the following sense.

Lemma 5 (A sufficient condition for cyclic solvability by a WMG). If
w ∈ T ∗ has a prime Parikh vector, and for each circularly adjacent ab pair in
w = . . . �sq

a b . . . , the inequality

m

n
<

Pjq(b) + 1
Pjq(a)

(6)

holds true for any sj such that Pjq(a) �= 0, then w is cyclically WMG-solvable.

Proof. We have proved in Lemma 2 that all SSPs are solvable for prime cycles.
Let us consider the ESSPs at states s as in w = . . . �sab . . ., i.e. ¬s[b〉. Since
we are looking for a WMG solution, all the sought places are of the form pa,b

(see Lemma 3 and Fig. 4) with m,n as in (1). To define the initial marking of
pa,b, let us put n ·P(w)(b) tokens on it and fire the sequence w once completely.
Choose some state s′ in w = . . . �s′ a . . . such that the number k of tokens on
pa,b at state s′ is minimal (it may be the case that such an s′ is not unique;
we can choose any such state). Define M0(pa,b) = n · P(w)(b) − k as the initial
marking of pa,b. By construction, the firing of w reproduces the markings of

86 R. Devillers et al.

pa,b and M0 guarantees their non-negativity. Let us show that the constructed
place pa,b solves all the ESSPs ¬s[b〉, where w = . . . �sab Consider such a
state s in w (w.l.o.g. we assume s �= s′, since s′ certainly disables b). From
w = u1 �s′a . . . �s a b u2 (circularly) and from inequality (6) for sj = s′ and
sq = s, we get Ps′s(a) ·m−Ps′s(b) ·n < n since Ps′s(a) > 0. Since Ms′(pa,b) = 0,
Ms(pa,b) = Ms′(pa,b)+Ps′s(a) ·m−Ps′s(b) ·n < n, i.e., pa,b disables b at state s.

Now, we show that places of the form pa,b also solve the other ESSPs against
b, i.e., at the states where b is not the subsequent transition. Sequence w (up to
rotation) can be written as w = u1 bx1 u2 bx2 . . . ul b

xl , 1 ≤ l ≤ P(w)(b), and for
1 ≤ i ≤ l: xi > 0, ui ∈ (T \ {b})+. Transition b has to be disabled at all the
states between successive b-blocks. Consider an arbitrary pair of such blocks bxj

and bxj+1 in w = . . . bxj uj bxj+1 . . . = . . . bxj �s u′
j �r t bxj+1 . . ., with uj = u′

jt.
Place pt,b does not allow b to fire at state r. We have to check that b is not enabled
at any state between s and r, i.e., it is not enabled ‘inside’ u′

j . If u′
j is empty, then

s = r, and we are done. Let u′
j �= ε. Due to P(u′

j)(b) = P(uj)(b) = 0, the marking
of place pt,b cannot decrease from s to r, i.e., Ms(pt,b) ≤ Ms′′(pt,b) ≤ Mr(pt,b)
for any s′′ ‘inside’ u′

j . Since pt,b disables b at r, it then disables b at all states
between s and r, inclusively. ��

From Lemmas 4 and 5 we can deduce the following characterisation.

Theorem 4 (A characterisation of cyclic WMG-solvability). A sequence
w ∈ T ∗ is cyclically solvable with a WMG iff P(w) is prime and, for any pair of
circularly adjacent labels in w, for instance w = . . . �sq

ab . . .,

m

n
<

Pjq(b) + 1
Pjq(a)

holds true with m, n as in (1) for any sj such that Pjq(a) �= 0. A WMG solution
can be found with the places of the form pa,b for every such pair of a and b.

4.3 A Polynomial-Time Algorithm for Cyclic WMG-Solvability

From the characterisation given by Theorem 4 and the considerations above,
Algorithm 1 below synthesises a cyclic WMG solution for a given sequence
w ∈ T ∗, if one exists.

The algorithm works as follows. Initially, the Parikh vector of the input
sequence is calculated and checked for primeness in lines 2–3. If the Parikh
vector is prime, we consecutively consider all the pairs of adjacent letters and
examine the inequality from Theorem 4 for them. To achieve it, we take the
first two letters in the sequence (lines 4–11), check if the inequality is satisfied
for all the states (lines 12–18), and if so, construct a new place connecting the
two letters under consideration (19–25). Then, the sequence is cyclically rotated
such that the initial letter goes to the end and the second letter becomes initial
(line 8). In the new sequence, we take again the first two letters (lines 9–11) and
repeat the procedure for them. The algorithm stops after a complete rotation of
the initial sequence, and by this moment all the pairs of adjacent letters have

Efficient Synthesis of Weighted Marked Graphs 87

been checked. The ordered alphabet is stored in the array T , and the sequence
is stored in v. We use variables a and b to store the letters under consideration
in each step, ia and ib to store their indices in the alphabet, and na and nb
are used for counting their occurrences during the check of the inequality from
Theorem 4. Variables M and Mmin are used to compute the initial marking of
the sought place.

Algorithm 1: Synthesis of a WMG solving a cyclic word
input : w ∈ T n, T = {t0, . . . , tm−1}
output: A WMG system (N, M0) cyclically solving w, if it exists

1 var: T [0 .. m − 1] = (t0, . . . , tm−1), v[0 .. n − 1], a, b, na, nb, ia, ib, M , Mmin;
2 compute the Parikh vector P[0 .. m − 1] of w;
3 if P is not prime then return unsolvable ; // Parikh-primeness

4 b ← w[0];
5 for j = 0 to m − 1 do // index of b
6 if b = T [j] then ib ← j

7 for i = 0 to n − 1 do
8 v ← w[i] . . . w[n − 1]w[0] . . . w[i − 1] ; // rotation of w
9 a ← b, b ← v[1], ia ← ib ; // fix first adjacent pair

10 for j = 0 to m − 1 do
11 if b = T [j] then ib ← j

12 na ← 1, nb ← 1 ;
13 if a �= b then
14 for k = 2 to n − 1 do

15 if P[ib]
P[ia]

≥ P[ib]−nb+1
P[ia]−na

then

16 return unsolvable ; // check solvability condition

17 if v[k] = T [ia] then na ← na + 1 ;
18 if v[k] = T [ib] then nb ← nb + 1 ;

19 M ← P[ia] · P[ib], Mmin ← M ;
20 for k = 0 to n − 1 do // find initial marking

21 if w[k] = a then M ← M + P[ib] ;
22 if w[k] = b then M ← M − P[ia] ;
23 if M < Mmin then Mmin ← M ;

24 add new place pT [ia],T [ib] to N with
25 W (T [ia], p) = P[ib], W (p, T [ib]) = P[ia], M0 = P[ia] · P[ib] − Mmin;

26 return (N, M0)

Polynomial-time Complexity of Algorithm 1. For a sequence of length n
over an alphabet with m labels, the Parikh vector can be computed in O(n) and
its primeness can be checked using e.g. the Euclidean algorithm, with a running
time in O(m · log22 n). The main for-cycle of Algorithm 1 involves the enumera-
tion of all pairs of distinct states of the cycle. For each pair of adjacent labels, a

88 R. Devillers et al.

run of the for-cycle consists of a lookup for an index in O(m), the verification
of the inequality in O(n) and the construction of a place in O(n), which sums
up to O(m + n). Thus, the main for-loop requires a runtime in O(n(n + m)).
Taking into account that m ≤ n, and that n growths much faster than log22 n,
the overall running time of the algorithm does not exceed O(n2).

Complexity Comparison: the Known General Approach Is Less Effi-
cient. For a comparison, solving a cycle of length n over m labels with a WMG
amounts to solve n(n−1) SSPs and n(m−1) ESSPs at most. In the special case
of WMG synthesis from a prime cycle, we know that all the SSPs are solvable
(Lemma 2) and that solving first the other problems avoids to consider the SSPs
(see [21]). Since each of the sought places has at most one input and one out-
put, each of the separation problems seeks for 3 unknown variables, namely the
initial marking of a place, the input and the output arc weights. For an ESSP,
the output transition is clearly the one which has to be disabled and the input
transition is to be found. So, there are m − 1 possibilities to define a concrete
ESSP, which in the worst case gives us up to n(m − 1)2 systems of inequalities
to solve all the ESSPs.

The general region-based synthesis typically uses ILP-solvers, and using e.g.
Karmarkar’s algorithm [31] (which is known to be efficient) for solving an ILP-
problem with k unknowns, we expect a running time of O(k3.5·L2·log L·log log L)
where L is the length of the input in bits. For the case of a cycle, the input of each
separation problem is the matrix with the range of (n+1)×m and the vector of
right sides with the range of n+1, where each component of the vector and of the
matrix is a natural number not greater than n. Hence, the length of the input
for a single separation problem can be estimated as L = (m + 1) · (n + 1) · log2 n
bits, implying a runtime of O(n2 ·m2 · log22 n · log L · log log L) for solving a single
separation problem (the number of unknowns being equal to 3, i.e. constant).
Thus the general synthesis approach would need a runtime of O(n3 · m4 · LF)
with the logarithmic factor LF = log22 n·log((m+1)·(n+1)·log2 n)·log log((m+
1) ·(n+1) · log2 n). Note that, with this general approach, some redundant places
may be constructed, but they can be wiped out in a post-processing phase.

4.4 CF-Solvability vs WMG-Solvability of Cycles

Let us now relate cyclic WMG-solvability to cyclic CF-solvability.

Theorem 5. A sequence u ∈ {a, b, c}∗ is cyclically WMG-solvable iff u is cycli-
cally CF-solvable.

Proof. WMGs form a proper subclass of CF nets, hence the direct implication.
Let now TS = (S, T = {a, b, c},→, s0) be a CF-solvable circular LTS obtained
from u and Υ = P(u). By contraposition, assume that TS is not solvable by a
WMG. Then, due to Theorem 4, for some distinct states j, q ∈ S and distinct
labels a, b ∈ T

Υ (a)
Υ (b)

≥ Pjq(a) + 1
Pjq(b)

. (7)

Efficient Synthesis of Weighted Marked Graphs 89

W.l.o.g. we can choose the leftmost j satisfying (7). Then, in TS we have r[a〉j
for some r ∈ S preceding j. Indeed, if this is not the case and either r[b〉j or
r[c〉j, then (7) holds true for r and q, contradicting the choice of j. On the other
hand, since Pjq(a) + 1 = Prq(a) and Pjq(b) = Prq(b), the inequality (7) implies

Υ (a)
Υ (b)

≥ Prq(a)
Prq(b)

. (8)

Consider a place p which is an input place of a in a cyclic CF solution of u.
From Lemma 1, we can assume pureness, i.e., the place has the form illustrated
on the right of Fig. 5 with x = a, y = b, z = c.

q

rj

b

a

a

µ0

p

x

y

z
kx

ky

kz

Fig. 5. u (left) is cyclically solvable by a CF system; a CF place over {x, y, z} (right).

We must have the following constraints for p:

cycle : kb · Υ (b) + kc · Υ (c) = ka · Υ (a)
r[a〉 : Mr(p) ≥ ka

r[a . . .〉q : Mq(p) = Mr(p) + kb · Prq(b) + kc · Prq(c) − ka · Prq(a).
(9)

If Prq(c) ≥ Prq(a) · Υ (c)
Υ (a) , then due to (8) and (9),

Mq(p) = Mr(p) + kb · Prq(b) + kc · Prq(c) − ka · Prq(a)

≥ ka +
(
kb · Υ (b)

Υ (a)
+ kc · Υ (c)

Υ (a)
− ka

) · Prq(a) = ka,

implying q[a〉 which contradicts q[b〉. Hence, Prq(c) < Prq(a) · Υ (c)
Υ (a) . Together

with (8), we have
Prq(b)
Υ (b)

≥ Prq(a)
Υ (a)

>
Prq(c)
Υ (c)

.

which is equivalent to

Pqr(b)
Υ (b)

≤ Pqr(a)
Υ (a)

<
Pqr(c)
Υ (c)

. (10)

For an arbitrary input place of b, hence of the form illustrated on the right of
Fig. 5 with x = b, y = a, z = c,

cycle : ka · Υ (a) + kc · Υ (c) = kb · Υ (b)
q[b〉 : Mq(p) ≥ kb

q[b . . .〉r : Mr(p) = Mq(p) + ka · Pqr(a) + kc · Pqr(c) − kb · Pqr(b).
(11)

90 R. Devillers et al.

Then, due to (10) and (11),

Mr(p) = Mq(p) + ka · Pqr(a) + kc · Pqr(c) − kb · Pqr(b)

≥ kb +
(
ka · Υ (a)

Υ (b)
+ kc · Υ (c)

Υ (b)
− kb

) · Pqr(b) = kb

which implies r[b〉, a contradiction. Thus, TS is solvable by some WMG. ��
When the alphabet has more than three elements, the inclusion of WMGs

into CF nets is strict, i.e., there are cyclically CF-solvable sequences that are
not cyclically WMG-solvable: the sequence w = abcbad has a cyclic CF solution
(cf. Fig. 6); for a �r b c �q b a d we have P(w)(a)

P(w)(b) = 2
2 ≮ 0+1

1 = Prq(a)+1
Prq(b)

which, by
Theorem 4, implies the cyclic unsolvability of w by a WMG.

a b c

bad

a
2

3

b

3
2

c
2

2

d

2
2

Fig. 6. Sequence abcbad is cyclically solved by the CF system on the right.

By Lemma 3, using places only between adjacent transitions is sufficient for
cyclic WMG-solvability. For the sequence abcbad in Fig. 6, b follows a and c, and
the input place of b in the CF solution is an output place for both a and c. The
situation is similar for a, which follows b and d. However, this is not always the
case when we are looking for a solution in the class of CF nets. For instance,
the sequence cabdaaab is cyclically solvable by a CF system (see Fig. 7). In this
sequence, b always follows a. But in order to solve ESSPs against b, we need an
output place for c (in addition to a). Indeed, if there is a place pa,b as on the
right of Fig. 7 which solves ESSPs against b, then for ca �s bdaa �q ab we get

s[b〉 : μ0 + 2 ≥ 4
¬q[b〉 : μ0 + 3 · 2 − 4 < 4

Subtracting the first inequality from the second one, we get 4 − 4 < 0, a contra-
diction. Hence, pa,b cannot solve all ESSPs against b in the cycle cabdaaab.

In a WMG, a place has at most one input. This restriction is relaxed for
CF nets: multiple inputs are allowed. Let us show that a single input place for
each transition is not always sufficient. For instance, consider the cyclically CF-
solvable sequence bcafdeaaabcdaafdcaaa and Fig. 8. Assume we can solve all
ESSPs against transition a with a single place p as on the right of the same
figure; due to Lemma 1, we do not need any side-condition. Then, for p and
w = �s0 b c a f d �s5 e �s6 a a a b c �s11 d �s12 a a f d �s16 c �s17 a a a, the following
system of inequalities must hold true:

Efficient Synthesis of Weighted Marked Graphs 91

c

a b

d

a

aa

b
a

b
3

c
2

2

d
2 3

µ0

pa,b

a b
2 4

Fig. 7. cabdaaab is cyclically CF-solvable (middle), but is not cyclically WMG-solvable.

7

10

a
2

2
4

b
3

3

9
c

2

5

9

3
d

25

3

3
e

3
9 9

f

9

3

3

µ0

p

b

c

d

e

f

a

kbkc

kd

ke

kf

k

Fig. 8. w = bcafdeaaabcdaafdcaaa is cyclically solved by the CF system on the left;
a (pure) place of a CF system with 6 transitions on the right.

cycle : 2 · kb + 3 · kc + 3 · kd + ke + 2 · kf = 9 · k (0)
¬s5[a〉 : μ0 + kb + kc + kd + kf − k < k (1)
s6[aaa〉 : μ0 + kb + kc + kd + ke + kf − k ≥ 3 · k (2)
¬s11[a〉 : μ0 + 2 · kb + 2 · kc + kd + ke + kf − 4 · k < k (3)
s12[aa〉 : μ0 + 2 · kb + 2 · kc + 2 · kd + ke + kf − 4 · k ≥ 2 · k (4)
¬s16[a〉 : μ0 + 2 · kb + 2 · kc + 3 · kd + ke + 2 · kf − 6 · k < k (5)
s17[aaa〉 : μ0 + 2 · kb + 3 · kc + 3 · kd + ke + 2 · kf − 6 · k ≥ 3 · k (6)

From the system above we obtain:

(2) − (1) : ke > 2 · k

(4) − (3) : kd > k

(6) − (5) : kc > 2 · k

which implies 3 · kc + 3 · kd + ke > 11 · k, contradicting the equality (0). Hence,
the ESSPs against a cannot be solved by a single place.

5 Weak Synthesis of WMGs in Polynomial-Time

For any given word w over a set of labels T whose support equals T , each system
S = ((P, T,W),M0) that cyclically WMG-solves w, when it exists, has a unique

92 R. Devillers et al.

minimal (hence prime) T-semiflow Υ with support T , since it is live (meaning
that for each transition t, from each reachable marking M , a marking M ′ is
reachable from M that enables t) and bounded (see [35]). In some situations, it
might be sufficient to specify only the desired unique minimal T-semiflow, which
leads to what we call a weak synthesis problem. Given such a prime Parikh
vector Υ , the aim is thus to construct a WMG cyclically solving an arbitrary
sequence whose Parikh vector equals Υ . In this section, we provide a method for
constructing a solution in polynomial-time. To achieve it, we first need to recall
known liveness conditions for WMGs and their circuit subclass.

5.1 Previous Results on Liveness

In [32], a polynomial-time sufficient condition of liveness is developed for the
well-formed, strongly connected weighted event graphs (WEGs), equivalent to
the well-formed, strongly connected WMGs. Under these assumptions, each place
has exactly one ingoing and one outgoing transitions. Variants of this liveness
condition for other classes of nets are given in [28], Theorems 4.2 and 5.5.

Additional Notions. We introduce the following notions for our purpose:

– For any place p, gcdp denotes the gcd of all input and output weights of p.
– A marking M0 satisfies the useful tokens condition if, for each place p, M0(p)

is a multiple of gcdp. Indeed, if M0(p) = k · gcdp +r for some non-negative
integers k and r such that 0 < r < gcdp, then r tokens are never used by any
firing (see [28,32] for more details).

– A net (P, T,W) with incidence matrix I is conservative if there is a P-vector
X ≥ 1|P | such that X · I = 0|T |, where 1|P | denotes the vector of size
|P | in which each component has value 1. Such a P-vector X is called a
conservativeness vector. The net is 1-conservative if 1|P | is a conservativeness
vector, i.e. if for each transition, the sum of its input weights equals the sum
of its output weights.

– A net N is structurally bounded if for each marking M0, (N,M0) is bounded.
– By Theorem 4.11 in [35], a live WTS (N,M0) is bounded iff N is conservative.

We focus on live and bounded WMG solutions (which are WTS), hence on
conservative, thus structurally bounded (see [34]), solutions.

– The scaling operation (Definition 3.1 in [28]): The multiplication of all input
and output weights of a place p together with its marking by a positive ratio-
nal number αp is a scaling of the place p if the resulting input and output
weights and marking are integers. If each place p of a system is scaled by a
positive rational αp, the system is said to be scaled by the vector α whose
components are the scaling factors αp.

Recalling Theorem 3.2 in [28], if S = ((P, T,W),M0) is a system and α is
a vector of |P | positive rational components, then scaling S by α preserves the
feasible sequences of firings. We deduce from it, and from Theorem 3.5 in the
same paper, the following result.

Efficient Synthesis of Weighted Marked Graphs 93

Lemma 6. Consider a system S, whose scaling by a vector α of positive ratio-
nals yields the system S ′. Then, for each feasible sequence σ, denote by M the
marking reached when firing σ in S and by M ′ the marking reached when firing
σ in S ′; the set of places enabled by M equals the set of places enabled by M ′.

Thus, in conservative systems, we can reason equivalently on feasible
sequences and enabled places in the system scaled by a conservativeness vec-
tor, yielding a 1-conservative system whose tokens amount remains constant.

The next result is a specialisation of Theorem 4.5 in [28] to circuit Petri nets,
using the fact that the liveness of circuits is monotonic, i.e. preserved upon any
addition of initial tokens (see [14,28,35] and Theorem 7.10 in [30] with its proof).

Proposition 1 (Sufficient condition of liveness [28,30,32]). Consider a
conservative circuit system S = (N,M0), with N = (P, T,W). S is live if the
following conditions hold:

– for a place p0, with {t0} = p•
0, M0(p0) = W (p0, t0);

– for every place p in P \ {p0}, with p• = {t}, M0(p) = W (p, t) − gcdp.

Moreover, for every marking M ′
0 such that M ′

0 ≥ M0, (N,M ′
0) is live.

In the particular case of a binary circuit, i.e. with two transitions, we recall
the next characterisation condition of liveness, given as Theorem 5.2 in [32].

Proposition 2 (Liveness of binary 1-conservative circuits [32]). Consider
a 1-conservative binary circuit S = ((P, T,W),M0) that fulfills the useful tokens
condition, with T = {a, b} and P = {pa,b, pb,a}, where pa,b is the output of a and
pb,a is the output of b. Let m = W (a, pa,b) and n = W (pa,b, b). Then S is live iff
M0(pa,b) + M0(pb,a) > m + n − 2 · gcd(m,n).

Now, consider any 1-conservative binary circuit system S whose initial mark-
ing M0 marks one place pa,b with its output weight W (pa,b, b) and the other place
pb,a with W (pb,a, a) − gcdpb,a

. Each marking reachable from M0 enables exactly
one place; applying Lemma 6, this is also the case for any scaling of S, hence:

Lemma 7 (One enabled place in binary circuits). Consider a conservative
binary circuit system S = (N,M0), with N = (P, T,W), T = {a, b}, such that
for the place pa,b with output b, M0(pa,b) = W (pa,b, b) and for the other place
pb,a with output a, M0(pb,a) = W (pb,a, a)−gcdpb,a

. Then each reachable marking
enables exactly one place.

This lemma will help ensuring that the reachability graph of the synthesised
WMG forms a circle. Figure 9 illustrates Lemma 7 and Proposition 1.

We recall a liveness characterisation. Since a place with an output and no
input, called a source-place, prevents liveness, we assume there is no such place.

Proposition 3 (Liveness of WMGs [35]). Consider a WMG S without
source places. Then S is live iff each circuit P-subsystem of S is live.

94 R. Devillers et al.

pa,b
pb,a

a b

6 4

3 2

pa,b
pb,a

a b

3 2

3 2

pa,b pb,cpc,a
a

b

c

3 2 3

346

Fig. 9. These circuits are conservative and fulfill the sufficient condition of liveness of
Proposition 1. On the left, gcdpa,b

= 2 and gcdpb,a
= 1. The system in the middle

is obtained from the one on the left by scaling pa,b with 1
2
. In this second system,

gcdpa,b
= 1 and gcdpb,a

= 1. On the right, gcdpa,b
= 1, gcdpb,c

= 3 and gcdpc,a
= 2.

5.2 Weak Synthesis of WMGs in Polynomial-Time

Algorithm 2 below constructs a WMG from a given prime T-vector Υ . We prove
it terminates and computes a WMG cyclically solving some word with Parikh
vector Υ , hence performing weak synthesis. We then show it lies in PTIME.

Algorithm 2: Weak synthesis of a WMG with circular RG.
Data: A prime T-vector Υ with support T = {t1, . . . , tm}.
Result: A WMG cyclically solving a word with Parikh vector Υ .

1 We construct first an unmarked WMG N = (P, T, W) containing all possible
binary circuits (which we call the complete WMG), as follows:

2 for each pair of distinct labels ti, tj in T do
3 Add two new places pi,j and pj,i forming a binary circuit P-subnet with set

of labels {ti, tj}, such that:

4 W (pi,j , tj) = W (tj , pj,i) = Υ (ti)
gcd(Υ (ti),Υ (tj))

5 W (pj,i, ti) = W (ti, pi,j) =
Υ (tj)

gcd(Υ (ti),Υ (tj))
.

6 Then, we construct its initial marking M0, visiting the transitions in increasing
order, as follows:

7 for i = 2..m do
8 Mark each output place pi,h of ti that is an input of a transition th of

smaller index, i.e. h < i, with M0(p) = W (pi,h, th);
9 Mark each input place ph,i of ti that is an output of a transition th of

smaller index, i.e. h < i, with
M0(p) = W (ph,i, ti) − gcdph,i

= W (ph,i, ti) − 1;

10 return (N, M0)

Theorem 6 (Weak synthesis of a WMG). For every prime T-vector Υ ,
Algorithm 2 terminates and computes a WMG cyclically solving Υ , i.e. cyclically
solving some word w ∈ T ∗ such that P(w) = Υ .

Proof. The proof is illustrated in Figs. 10, 11 and 12. Consider any prime T-
vector Υ ∈ (N \ {0})m, where m is the number of transitions. In the first loop,

Efficient Synthesis of Weighted Marked Graphs 95

we consider each pair of transitions once. In the second loop, we consider each
place once. Thus, the algorithm terminates. Let us prove its correction.

If |T | = 1, there is one transition and Υ = (1): the WMG with T = {t1},
P = ∅ and the sequence w = t1 fulfill the claim. Hence, we suppose |T | ≥ 2.

For each place pi,j , we have Υ (tj) · W (pi,j , tj) = Υ (ti) · W (ti, pi,j), so that
−W (pi,j , tj) · Υ (tj) + W (ti, pi,j) · Υ (ti) = 0, hence I · Υ = 0, where I is the
incidence matrix of N . Moreover, each circuit P-subnet of N is conservative (by
Corollary 3.6 in [35]).

Now, let us consider the second loop: we prove the next invariant Inv() to
be true at the end of each iteration 	, for each 	 = 1..m − 1, by induction on 	:
Inv(): ”At the end of the 	-th iteration, the WMG P-subsystem S� defined by
the set of places P� = {pu,v | u, v ∈ {1, . . . , 	+1}, u �= v} is live, and each binary
circuit P-subsystem of S� has exactly one enabled place”.

Before entering the loop, i.e. before the first iteration, the WMG in unmarked.
Base case: 	 = 1. At the end of the first iteration, P� = P1 = {p1,2, p2,1},

which induces a live binary circuit (by Proposition 1) with exactly one enabled
place, since only one output of t2 is enabled by M0 and the other place is an
output of t1 considered in the second part of the loop.

Inductive case: 1 < 	 ≤ m−1. We suppose Inv(−1) to be true, and we prove
that Inv() is true. Thus, at the end of iteration 	 − 1, we suppose that the P-
subsystem S�−1 induced by P�−1 is live, and that each binary circuit P-subsystem
of S�−1 has exactly one enabled place. The iteration 	 marks only all the input
and output places of t�+1 that are inputs or outputs of transitions in {t1, . . . , t�}.
None of these places has been considered in any previous iteration, since each
iteration considers only places connected to transitions of smaller index. Thus,
these places are newly marked at iteration 	, and the only places unmarked at
the end of this iteration are connected to transitions of higher index.

We deduce that, at the end of iteration 	:
− each binary circuit of S� has exactly one enabled place: indeed, each such
binary circuit either belongs to S�−1, on which the inductive hypothesis applies,
or to the circuits newly marked at iteration 	;
− each circuit P-subsystem of S� with three places or more is live: indeed, con-
sider any such conservative circuit C; either C is a P-subsystem of S�−1, which
is live by the inductive hypothesis, hence Proposition 3 applies and C is live,
or C contains transition t�+1, in which case C contains necessarily an output
p�+1,h of t�+1 with h < 	 + 1: since each place pu,v of S� is marked with at least
W (pu,v, tv) − gcdpu,v

and p�+1,h is marked with W (p�+1,h, th), C fulfills the suf-
ficient condition of liveness of Proposition 1, hence is live; we deduce that each
circuit P-subsystem is live, hence S� is live by Proposition 3.

We proved that Inv() is true for every integer 	 = 1..m − 1. We deduce that
the WMG system Sm−1 = (N,M0) obtained at the end of the last iteration,
which is the system returned, fulfills Inv(m − 1). Suppose that some marking
M reachable in Sn−1 enables two distinct transitions ti and tj . Since Sn−1 is
a complete WMG, there is a binary circuit P-subsystem Ci,j = (Ni,j ,Mi,j)
containing ti and tj , in which exactly one place is enabled, applying Lemma 7

96 R. Devillers et al.

(since M {pi,j ,pj,i} = Mi,j is a marking reachable in (Ni,j ,M0 {pi,j ,pj,i})). We
deduce that M cannot enable both ti and tj , a contradiction.

Thus the WMG returned is live and each of its reachable markings enables
exactly one transition. It is known that, in each live and bounded WMG, a
sequence σ is feasible such that P(σ) = Υ which is the unique minimal T-
semiflow of the WMG (see [35,36]). Consequently, its reachability graph is a
circle, i.e. the WMG solves Υ (and σ) cyclically. We get the claim. ��

t1
p1,2
p2,1

t1 t2

w1,2 w2,1

w2,1w1,2

p1,2
p2,1

t1 t2

2 3

32

Fig. 10. Sketching Theorem 6 for 1 and 2 transitions. On the left, the circuit system
S1 has no place and solves Υ = (1). In the circuit system S2 in the middle, the output
of t2 is marked as black and its input as grey. On the right, an instanciation of the
binary case, given Υ = (3, 2). These systems are live, RG(S1) and RG(S2) are circles.

p1,2

p2,1

p1,3

p3,1 p2,3

p3,2

t1 t2

t3

w1,2 w2,1

w2,1w1,2

w1,3

w3,1 w3,2

w2,3

w3,1

w1,3 w2,3

w3,2

p1,2

p2,1

p1,3

p3,1 p2,3

p3,2

p1,4

p4,1

p2,4

p4,2

p3,4p4,3

t1 t2

t3

t4

w1,2 w2,1

w2,1w1,2

w1,3

w3,1 w3,2

w2,3

w3,1

w1,3 w2,3

w3,2

w3,4

w4,3w4,3

w3,4

w4,1

w1,4
w4,2

w2,4

w1,4
w4,1

w2,4
w4,2

Fig. 11. Sketching Theorem 6 for 3 and 4 transitions (systems S3, S4). Each black place
pi,j is marked with W (pi,j , tj), each grey place pi,j is marked with W (pi,j , tj)−gcdpi,j

.

On the left, in the circuit induced by {p1,2, p2,1}, the output of t2 is black and its input
is grey. Then, each output of t3 is black, each input is grey. Each circuit of S3 is live, S3

is live and RG(S3) is a circle. In S4, we keep the marking of S3 and mark each output
of t4 as black, each of its inputs as grey. Thus, S4 is live and RG(S4) is a circle.

Polynomial-time Complexity of Algorithm 2. Let m be the number of
transitions (labels). The initial construction of the net N considers a number of
transition pairs equal to m·(m−1). The computation of gcd(i, j) for any two inte-
gers i, j can be done using the Euclidean algorithm in O(log22(max(i, j))), which

Efficient Synthesis of Weighted Marked Graphs 97

p1,2

p2,1

p1,3

p3,1 p2,3

p3,2

p1,4

p4,1

p2,4

p4,2

p3,4p4,3

t1 t2

t3

t4

3 2

23

1

1 3

2

1

1 2

3

2

11

2

1
2

3
4

2
1

4
3

s0

s1

s2 s3

s4

s5

s6

s7s8

s9

s10

t1

t2
t3

t4

t4

t2

t1
t3

t4

t2

t4

Fig. 12. Illustration of the proof of Theorem 6 for the prime T-vector Υ = (2, 3, 2, 4).
On the left, a complete WMG S, with all possible binary circuits. Its marking fol-
lows the black and grey places of Fig. 11. Pick any circuit P-subsystem C, e.g. the
one induced by {p4,3, p3,2, p2,4}: it is conservative and fulfills the condition of Propo-
sition 1, hence it is live. On the right, an LTS representing RG(S). The sequence
w = t1 t2 t3 t4 t4 t2 t1 t3 t4 t2 t4, with P(w) = Υ , is cyclically WMG-solvable.

remains polynomial in the size of the input vector binary encoding. Computing
u
v for two integers u, v, v �= 0, can also be done in O(log22(max(u, v))). Thus, con-
structing N lies in O(m(m−1)3log22(q)) where q is the highest value in Υ . Then,
the algorithm marks all places in O(m(m − 1)), knowing that the gcd of each
place is 1. Hence the algorithm lies in PTIME: O(3m(m−1)log22(q)+m(m−1)),
i.e. O(m(m − 1)(3log22(q) + 1)) where q is the highest value in Υ .

Comparison with the Sequence-Based Synthesis. Algorithm 1 uses
O(n(m + n)) steps, where m is the number of labels and n is the length of
the input sequence w to be solved cyclically. Since n equals the sum of the com-
ponents of Υ = P(w), we get q ≤ n. Also, m ≤ n; depending on the weights,
n can be exponentially larger than m. Hence, log22(q) ∈ O(log22(n)), so that
m(m − 1)(3log22(q) + 1) ∈ O(m2 · log22(n)). When n is exponential in m, Algo-
rithm 2 operates in time polynomial in m while Algorithm 1 operates in time
exponential in m.

6 Conclusions and Perspectives

In this work, we specialised previous methods of analysis and synthesis to the
CF nets and their WMG subclass, two useful subclasses of weighted Petri nets
allowing to model various real-world applications.

We highlighted the correspondence between CF- and WMG-solvability for
binary alphabets. We also tackled the case of an LTS formed of a single cycle
with an arbitrary number of letters, for which we developed a characterisation

98 R. Devillers et al.

of WMG-solvability together with a dedicated polynomial-time synthesis algo-
rithm. We showed the equivalence between cyclic WMG- and CF-solvability in
the case of three-letter alphabets, and that it does not extend to four-letter
alphabets. We also discussed the applicability of our conditions to cyclic CF
synthesis over arbitrary alphabets.

Finally, we introduced the notion of weak synthesis, allowing to be less restric-
tive on the solution design, and provided a polynomial-time algorithm weakly
synthesising a WMG with circular reachability graph. We showed this second
algorithm to often operate much faster than the sequence-based one.

As a natural continuation of the work, we expect extensions of our results
in two directions: generalising the class of goal-nets and relaxing the restrictions
on the LTS under consideration. Also, we plan to investigate applications of our
results, in particular to process mining [1]: the algorithm for synthesising a net
from a transition system can be applied to classical process discovery which is
also a kind of synthesis; and the algorithm for weak synthesis can be employed
in streaming process mining, where only partial information about the behaviour
of the modelled system can be stored for a later processing.

Acknowledgements. We would like to thank the anonymous referees for their careful
proofreading, their relevant comments and their insightful suggestion of addressing the
process mining area.

References

1. van der Aalst, W.M.P.: Process Mining - Data Science in Action. Second Edition.
Springer (2016). https://doi.org/10.1007/978-3-662-49851-4

2. Petri Net Synthesis. TTCSAES. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-47967-4 14

3. Badouel, E., Bernardinello, L., Darondeau, P.: Polynomial algorithms for the syn-
thesis of bounded nets. In: Mosses, P.D., Nielsen, M., Schwartzbach, M.I. (eds.)
CAAP 1995. LNCS, vol. 915, pp. 364–378. Springer, Heidelberg (1995). https://
doi.org/10.1007/3-540-59293-8 207

4. Badouel, E., Bernardinello, L., Darondeau, P.: The synthesis problem for elemen-
tary net systems is NP-complete. Theoret. Comput. Sci. 186(1), 107–134 (1997).
https://doi.org/10.1016/S0304-3975(96)00219-8

5. Barylska, K., Best, E., Erofeev, E., Mikulski, L., Piatkowski, M.: On binary words
being Petri net solvable. In: Proceedings of the International Workshop on Algo-
rithms & Theories for the Analysis of Event Data, Brussels, Belgium, pp. 1–15
(2015)

6. Barylska, K., Best, E., Erofeev, E., Mikulski, L., Piatkowski, M.: Conditions for
Petri net solvable binary words. T. Petri Nets Other Models Concurrency 11,
137–159 (2016). https://doi.org/10.1007/978-3-662-53401-4 7

7. Best, E., Devillers, R.: Synthesis and reengineering of persistent systems. Acta
Informatica 52(1), 35–60 (2014). https://doi.org/10.1007/s00236-014-0209-7

8. Best, E., Devillers, R.: Characterisation of the state spaces of marked graph Petri
nets. Inf. Comput. 253(3), 399–410 (2017)

9. Best, E., Devillers, R., Schlachter, U.: Bounded choice-free Petri net synthesis:
Algorithmic issues. Acta Informatica (2017)

https://doi.org/10.1007/978-3-662-49851-4
https://doi.org/10.1007/978-3-662-47967-4_14
https://doi.org/10.1007/978-3-662-47967-4_14
https://doi.org/10.1007/3-540-59293-8_207
https://doi.org/10.1007/3-540-59293-8_207
https://doi.org/10.1016/S0304-3975(96)00219-8
https://doi.org/10.1007/978-3-662-53401-4_7
https://doi.org/10.1007/s00236-014-0209-7

Efficient Synthesis of Weighted Marked Graphs 99

10. Best, E., Devillers, R., Schlachter, U., Wimmel, H.: Simultaneous Petri net syn-
thesis. Sci. Ann. Comp. Sci. 28(2), 199–236 (2018)

11. Best, E., Hujsa, T., Wimmel, H.: Sufficient conditions for the marked graph real-
isability of labelled transition systems. Theoretical Comput. Sci. 750, 101–116
(2017)

12. Commoner, F., Holt, A., Even, S., Pnueli, A.: Marked directed graphs. J. Comput.
Syst. Sci. 5(5), 511–523 (1971). https://doi.org/10.1016/S0022-0000(71)80013 2

13. Crespi-Reghizzi, S., Mandrioli, D.: A decidability theorem for a class of vector-
addition systems. Inf. Process. Lett. 3(3), 78–80 (1975). https://doi.org/10.1016/
0020-0190(75)90020 4

14. Delosme, J.M., Hujsa, T., Munier-Kordon, A.: Polynomial sufficient conditions of
well-behavedness for weighted join-free and choice-free systems. In: 13th Interna-
tional Conference on Application of Concurrency to System Design, pp. 90–99,
July 2013. https://doi.org/10.1109/ACSD.2013.12

15. Desel, J., Esparza, J.: Free Choice Petri Nets, Cambridge Tracts in Theoretical
Computer Science, vol. 40. Cambridge University Press, New York (1995)

16. Devillers, R.: Products of transition systems and additions of Petri Nets. In: Desel,
J., Yakovlev, A. (eds) Proceedings of the 16th International Conference on Appli-
cation of Concurrency to System Design (ACSD 2016), pp. 65–73 (2016)

17. Devillers, R.: Factorisation of transition systems. Acta Informatica 55(4), 339–362
(2017). https://doi.org/10.1007/s00236-017-0300-y

18. Devillers, R.: Articulation of transition systems and its application to Petri net syn-
thesis. In: Application and Theory of Petri Nets and Concurrency - 40th Interna-
tional Conference, Aachen, Germany, 23–28 June, 2019, Proceedings, pp. 113–126
(2019). https://doi.org/10.1007/978-3-030-21571-2 8

19. Devillers, R., Erofeev, E., Hujsa, T.: Synthesis of weighted marked graphs from con-
strained labelled transition systems. In: Proceedings of the International Workshop
on Algorithms & Theories for the Analysis of Event Data, Satellite event of the
Conferences: Petri Nets and ACSD, Bratislava, Slovakia, pp. 75–90 (2018)

20. Devillers, R., Erofeev, E., Hujsa, T.: Synthesis of weighted marked graphs from
circular labelled transition systems. In: Proceedings of the International Workshop
on Algorithms & Theories for the Analysis of Event Data, Satellite event of the
conferences: Petri Nets and ACSD, Aachen, Germany, pp. 6–22, June 2019

21. Devillers, R., Hujsa, T.: Analysis and synthesis of weighted marked graph petri
nets. In: Khomenko, V., Roux, O.H. (eds.) PETRI NETS 2018. LNCS, vol. 10877,
pp. 19–39. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91268-4 2

22. Devillers, R., Hujsa, T.: Analysis and synthesis of weighted marked graph Petri
nets: Exact and approximate methods. Fundamenta Informaticae (2019)

23. Devillers, R., Schlachter, U.: Factorisation of Petri net solvable transition systems.
In: Application and Theory of Petri Nets and Concurrency - 39th International
Conference, Bratislava, Slovakia, 24–29 June, 2018, Proceedings, pp. 82–98 (2018).
https://doi.org/10.1007/978-3-319-91268-4 5

24. Erofeev, E., Barylska, K., Mikulski, L., Piatkowski, M.: Generating all minimal
Petri net unsolvable binary words. In: Proceedings of the Prague Stringology Con-
ference 2016, Prague, Czech Republic, pp. 33–46 (2016)

25. Erofeev, E., Wimmel, H.: Reachability graphs of two-transition Petri nets. In: Pro-
ceedings of the International Workshop on Algorithms & Theories for the Analysis
of Event Data, Zaragoza, Spain, pp. 39–54 (2017)

26. Hujsa, T.: Contribution to the study of weighted Petri nets. Ph.D. thesis, Pierre
and Marie Curie University, Paris, France (2014)

https://doi.org/10.1016/S0022-0000(71)80013_2
https://doi.org/10.1016/0020-0190(75)90020_4
https://doi.org/10.1016/0020-0190(75)90020_4
https://doi.org/10.1109/ACSD.2013.12
https://doi.org/10.1007/s00236-017-0300-y
https://doi.org/10.1007/978-3-030-21571-2_8
https://doi.org/10.1007/978-3-319-91268-4_2
https://doi.org/10.1007/978-3-319-91268-4_5

100 R. Devillers et al.

27. Hujsa, T., Delosme, J.M., Munier-Kordon, A.: On the reversibility of well-behaved
weighted choice-free systems. In: Ciardo, G., Kindler, E. (eds.) Application and
Theory of Petri Nets and Concurrency, pp. 334–353. Springer (2014)

28. Hujsa, T., Delosme, J.M., Munier-Kordon, A.: Polynomial sufficient conditions of
well-behavedness and home markings in subclasses of weighted Petri nets. ACM
Trans. Embed. Comput. Syst. 13(4s), 141:1–141:25 (2014). https://doi.org/10.
1145/2627349

29. Hujsa, T., Devillers, R.: On liveness and deadlockability in subclasses of weighted
petri nets. In: van der Aalst, W., Best, E. (eds.) PETRI NETS 2017. LNCS, vol.
10258, pp. 267–287. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
57861-3 16

30. Hujsa, T., Devillers, R.: On deadlockability, liveness and reversibility in subclasses
of weighted Petri nets. Fundam. Inform. 161(4), 383–421 (2018) https://doi.org/
10.3233/FI-2018-1708

31. Karmarkar, N.: A new polynomial-time algorithm for linear programming. Com-
binatorica 4(4), 373–395 (1984). https://doi.org/10.1007/BF02579150

32. Marchetti, O., Munier-Kordon, A.: A sufficient condition for the liveness of
Weighted Event Graphs. Eur. J. Oper. Res. 197(2), 532–540 (2009)

33. Murata, T.: Petri nets: properties, analysis and applications. Proc. IEEE 77(4),
541–580 (1989)

34. Silva, M., Terue, E., Colom, J.M.: Linear algebraic and linear programming tech-
niques for the analysis of place/transition net systems. In: Reisig, W., Rozenberg,
G. (eds.) ACPN 1996. LNCS, vol. 1491, pp. 309–373. Springer, Heidelberg (1998).
https://doi.org/10.1007/3-540-65306-6 19

35. Teruel, E., Chrzastowski-Wachtel, P., Colom, J.M., Silva, M.: On weighted T-
systems. In: Jensen, K. (ed.) ICATPN 1992. LNCS, vol. 616, pp. 348–367. Springer,
Heidelberg (1992). https://doi.org/10.1007/3-540-55676-1 20

36. Teruel, E., Colom, J.M., Silva, M.: Choice-free petri nets: a model for deterministic
concurrent systems with bulk services and arrivals. IEEE Trans. Syst. Man Cybern.
Part A 27(1), 73–83 (1997). https://doi.org/10.1109/3468.553226

37. Teruel, E., Silva, M.: Structure theory of Equal Conflict systems. Theoret. Comput.
Sci. 153(1&2), 271–300 (1996)

38. Tredup, R.: Synthesis of Structurally Restricted b-bounded Petri Nets: Complex-
ity Results. In: Filiot, E., Jungers, R., Potapov, I. (eds.) RP 2019. LNCS, vol.
11674, pp. 202–217. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
30806-3 16

https://doi.org/10.1145/2627349
https://doi.org/10.1145/2627349
https://doi.org/10.1007/978-3-319-57861-3_16
https://doi.org/10.1007/978-3-319-57861-3_16
https://doi.org/10.3233/FI-2018-1708
https://doi.org/10.3233/FI-2018-1708
https://doi.org/10.1007/BF02579150
https://doi.org/10.1007/3-540-65306-6_19
https://doi.org/10.1007/3-540-55676-1_20
https://doi.org/10.1109/3468.553226
https://doi.org/10.1007/978-3-030-30806-3_16
https://doi.org/10.1007/978-3-030-30806-3_16

The Complexity of Synthesizing
nop-Equipped Boolean Petri Nets

from g-Bounded Inputs

Ronny Tredup(B)

Universität Rostock, Institut für Informatik, Theoretische Informatik,
Albert-Einstein-Straße 22, 18059 Rostock, Germany

ronny.tredup@uni-rostock.de

Abstract. Boolean Petri nets equipped with nop allow places and tran-
sitions to be independent by being related by nop. We characterize for any
fixed g ∈ N the computational complexity of synthesizing nop-equipped
Boolean Petri nets from labeled directed graphs whose states have at
most g incoming and at most g outgoing arcs.

1 Introduction

Boolean Petri nets are a basic model for the description of distributed and con-
current systems. These nets allow at most one token on each place p in every
reachable marking. Therefore, p is considered a Boolean condition that is true if
p is marked and false otherwise. A place p and a transition t of a Boolean Petri
net N are related by one of the following Boolean interactions: no operation
(nop), input (inp), output (out), unconditionally set to true (set), uncondition-
ally reset to false (res), inverting (swap), test if true (used), and test if false
(free). The relation between p and t determines which conditions p must satisfy
to allow t’s firing and which impact has the firing of t on p: The interaction inp
(out) defines that p must be true (false) first and false (true) after t has fired.
If p and t are related by free (used) then t’s firing proves that p is false (true).
The interaction nop says that p and t are independent, that is, neither need p
to fulfill any condition nor has the firing of t any impact on p. If p and t are
related by res (set) then p can be both false or true but after t’s firing it is false
(true). Also, the interaction swap does not require that p satisfies any particular
condition to enable t. Here, the firing of t inverts p’s Boolean value.

Boolean Petri nets are classified by the interactions of I that they
use to relate places and transitions. More exactly, a subset τ ⊆ I is
called a type of net and a net N is of type τ (a τ -net) if it applies at
most the interactions of τ . So far, research has explicitly discussed seven
Boolean Petri net types: Elementary net systems {nop, inp, out} [9], Contextual
nets {nop, inp, out, used, free} [6], event/condition nets {nop, inp, out, used} [2],
inhibitor nets {nop, inp, out, free} [8], set nets {nop, inp, set, used} [5], trace nets
{nop, inp, out, set, res, used, free} [3], and flip flop nets {nop, inp, out, swap} [10].

c© Springer-Verlag GmbH Germany, part of Springer Nature 2021
M. Koutny et al. (Eds.): ToPNoC XV, LNCS 12530, pp. 101–125, 2021.
https://doi.org/10.1007/978-3-662-63079-2_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-63079-2_5&domain=pdf
https://doi.org/10.1007/978-3-662-63079-2_5

102 R. Tredup

However, since we have eight interactions to choose from, there are actually a
total of 256 different types.

This paper addresses the computational complexity of the τ -synthesis prob-
lem. It consists in deciding whether a given directed labeled graph A, also called
transition system, is isomorphic to the reachability graph of a τ -net N and in
constructing N if it exists. It has been shown that τ -synthesis is NP-complete
if τ = {nop, inp, out} [1], even if the inputs are strongly restricted [14,17].
On the contrary, in [10], it has been shown that it becomes polynomial if
τ = {nop, inp, out, swap}. These opposing results motivate the question which
interactions of I make the synthesis problem hard and which make it tractable.
In our previous work of [13,15,16], we answer this question partly and reveal the
computational complexity of 120 of the 128 types that allow nop.

In this paper, we investigate for fixed g ∈ N the computational complexity of
τ -synthesis restricted to g-bounded inputs, that is, every state of A has at most
g incoming and at most g outgoing arcs. On the one hand, inputs of practical
applications tend to have a low bound g such as benchmarks of digital hardware
design [4]. On the other hand, considering restricted inputs hopefully gives us a
better understanding of the problem’s hardness. Thus, g-bounded inputs are inter-
esting from both the practical and the theoretical point of view. In this paper,
we completely characterize the complexity of τ -synthesis restricted to g-bounded
inputs for all types that allow places and transitions to be independent, that is,
which contain nop. Figure 1 summarizes our findings: For the types of §1 and
§2, we showed hardness of synthesis without restriction in [15]. In this paper, we
strengthen these results to 2- and 3-bounded inputs, respectively, and show that
these bounds are tight. The hardness result of the types of §3 originates from [16].
This paper shows that a bound less than 2 makes synthesis tractable. Hardness for
the types of §4 to §8 has been shown for 2-bounded inputs in [16]. In this paper,
we strengthen this results to 1-bounded inputs. The hardness part for the types
of §9 origin from [13]. In this paper, we argue that the bound 2 is tight. Finally,
while the results of §10 are new, the ones of §11 have been found in [15].

For all considered types τ , the corresponding hardness results are based on
a reduction of the so-called cubic monotone one-in-three 3SAT problem [7].
All reductions follow a common approach that represents clauses by directed
labeled paths. Thus, this paper also contributes a very general way to prove
NP-completeness of synthesis of Boolean types of nets.

2 Preliminaries

Transition Systems. A transition system (TS) A = (S,E, δ) is a directed
labeled graph with states S, events E and partial transition function δ : S ×
E −→ S, where δ(s, e) = s′ is interpreted as s e s′. For s e s′ we say s is
a source and s′ is a sink of e, respectively. An event e occurs at a state s,
denoted by s e , if δ(s, e) is defined. An initialized TS A = (S,E, δ, s0) is a TS
with a distinct state s0 ∈ S where every state s ∈ S is reachable from s0 by a
directed labeled path. TSs in this paper are deterministic by design as their state

The Complexity of Synthesizing nop-Equipped Boolean 103

Fig. 1. The computational complexity of Boolean net synthesis from g-bounded TS for
all types that contain nop.

transition behavior is given by a (partial) function. Let g ∈ N. An initialized TS
A is called g-bounded if for all s ∈ S(A) the number of incoming and outgoing
arcs at s is restricted by g: |{e ∈ E(A) | e s}| ≤ g and |{e ∈ E(A) | s e }| ≤ g.

Boolean Types of Nets [2]. The following notion of Boolean types of nets serves
as vehicle to capture many Boolean Petri nets in a uniform way. A Boolean type
of net τ = ({0, 1}, Eτ , δτ) is a TS such that Eτ is a subset of the Boolean interac-
tions: Eτ ⊆ I = {nop, inp, out, set, res, swap, used, free}. The interactions i ∈ I are
binary partial functions i : {0, 1} → {0, 1} as defined in Fig. 2. For all x ∈ {0, 1}
and all i ∈ Eτ the transition function of τ is defined by δτ (x, i) = i(x). Notice that
I contains all binary partial functions {0, 1} → {0, 1} except for the entirely unde-
fined function ⊥. Even if a type τ includes ⊥, this event can never occur, so it would
be useless. Thus, I is complete for deterministic Boolean types of nets, and that
means there are a total of 256 of them. By definition, a Boolean type τ is completely
determined by its event set Eτ . Hence, in the following we identify τ with Eτ , cf.
Fig. 3. Moreover, for readability, we group interactions by enter = {out, set, swap},
exit = {inp, res, swap}, keep+ = {nop, set, used}, and keep− = {nop, res, free}.

104 R. Tredup

Fig. 2. All interactions in I. An empty cell means that the column’s function is unde-
fined on the respective x. The entirely undefined function is missing in I.

Fig. 3. Left: τ = {nop, out, res, swap, free}. Right: τ̃ = {nop, inp, set, swap, used}. τ and
τ̃ are isomorphic. The isomorphism φ : τ → τ̃ is given by φ(s) = 1 − s for s ∈ {0, 1},
φ(i) = i for i ∈ {nop, swap}, φ(out) = inp, φ(res) = set and φ(free) = used.

τ-Nets. Let τ ⊆ I. A Boolean Petri net N = (P, T,H0, f) of type τ , (τ -net)
is given by finite and disjoint sets P of places and T of transitions, an initial
marking H0 : P −→ {0, 1}, and a (total) flow function f : P × T → τ . A τ -
net realizes a certain behavior by firing sequences of transitions: A transition
t ∈ T can fire in a marking M : P −→ {0, 1} if δτ (M(p), f(p, t)) is defined
for all p ∈ P . By firing, t produces the next marking M ′ : P −→ {0, 1} where

M ′(p) = δτ (M(p), f(p, t)) for all p ∈ P . This is denoted by M t M ′. Given a τ -
net N = (P, T,H0, f), its behavior is captured by a transition system AN , called
the reachability graph of N . The state set of AN consists of all markings that,
starting from initial state H0, can be reached by firing a sequence of transitions.
For every reachable marking M and transition t ∈ T with M t M ′ the state
transition function δ of A is defined as δ(M, t) = M ′.

τ-Regions. Let τ ⊆ I. If an input A of τ -synthesis allows a positive decision then
we want to construct a corresponding τ -net N purely from A. Since A and AN

are isomorphic, N ’s transitions correspond to A’s events. However, the notion of
a place is unknown for TSs. So-called regions mimic places of nets: A τ -region
of a given A = (S,E, δ, s0) is a pair (sup, sig) of support sup : S → Sτ = {0, 1}
and signature sig : E → Eτ = τ where every transition s e s′ of A leads to

a transition sup(s) sig(e) sup(s′) of τ . While a region divides S into the two
sets sup−1(b) = {s ∈ S | sup(s) = b} for b ∈ {0, 1}, the events are cumulated
by sig−1(i) = {e ∈ E | sig(e) = i} for all available interactions i ∈ τ . We
also use sig−1(τ ′) = {e ∈ E | sig(e) ∈ τ ′} for τ ′ ⊆ τ . A region (sup, sig)
models a place p and the corresponding part of the flow function f . In particular,
sig(e) models f(p, e) and sup(s) models M(p) in the marking M ∈ RS(N)
corresponding to s ∈ S(A). Every set R of τ -regions of A defines the synthesized
τ -net NR

A = (R, E, f,H0) with flow function f((sup, sig), e) = sig(e) and initial
marking H0((sup, sig)) = sup(s0) for all (sup, sig) ∈ R, e ∈ E. It is well known
that ANR

A
and A are isomorphic if and only if R’s regions solve certain separation

The Complexity of Synthesizing nop-Equipped Boolean 105

atoms [2], to be introduced next. A pair (s, s′) of distinct states of A defines a
state separation atom (SSP atom). A τ -region R = (sup, sig) solves (s, s′) if
sup(s) �= sup(s′). The meaning of R is to ensure that NR

A contains at least one
place R such that M(R) �= M ′(R) for the markings M and M ′ corresponding
to s and s′, respectively. If there is a τ -region that solves (s, s′) then s and s′

are called τ -solvable. If every SSP atom of A is τ -solvable then A has the τ -state
separation property (τ -SSP). A pair (e, s) of event e ∈ E and state s ∈ S where e

does not occur at s, that is ¬s e , defines an event state separation atom (ESSP
atom). A τ -region R = (sup, sig) solves (e, s) if sig(e) is not defined on sup(s)
in τ , that is, ¬δτ (sup(s), sig(e)). The meaning of R is to ensure that there is at
least one place R in NR

A such that ¬M e for the marking M corresponding
to s. If there is a τ -region that solves (e, s) then e and s are called τ -solvable.
If every ESSP atom of A is τ -solvable then A has the τ -event state separation
property (τ -ESSP). A set R of τ -regions of A is called τ -admissible if for every of
A’s (E)SSP atoms there is a τ -region R in R that solves it. The following lemma,
borrowed from [2, p.163], summarizes the already implied connection between
the existence of τ -admissible sets of A and (the solvability of) τ -synthesis:

Lemma 1 ([2]). A TS A is isomorphic to the reachability graph of a τ -net N
if and only if there is a τ -admissible set R of A such that N = NR

A .

We say a τ -net N τ -solves A if AN and A are isomorphic. By Lemma 1,
deciding if A is τ -solvable reduces to deciding whether it has the τ -(E)SSP.
Moreover, it is easy to see that if τ and τ̃ are isomorphic then deciding the
τ -(E)SSP reduces to deciding the τ̃ -(E)SSP:

Lemma 2 (Without proof). If τ and τ̃ are isomorphic types of nets then a
TS A has the τ -(E)SSP if and only if A has the τ̃ -(E)SSP.

In particular, we benefit from the isomorphisms that map nop to nop, swap
to swap, inp to out, set to res, used to free, and vice versa.

Fig. 4. Let τ = {nop, set, swap, free}. The TSs A1, . . . , A4 give examples for the pres-
ence and absence of the τ -(E)SSP: TS A1 has the τ -ESSP as a occurs at every state.
It has also the τ -SSP: The region R = (sup, sig) where sup(s0) = sup(s2) = 1,
sup(s1) = 0 and sig(a) = swap separates the pairs s0, s1 and s2, s1. Moreover, the region
R′ = (sup′, sig′) where sup′(s0) = 0 and sup′(s1) = sup′(s2) = 1 and sig′(a) = set
separates s0 and s1. Notice that R and R′ can be translated into τ̃ -regions, where
τ̃ = {nop, res, swap, used}, via the isomorphism of Fig. 3. For example, if s ∈ S(A1)
and e ∈ E(A1) and sup′′(s) = φ(sup(s)) and sig′′(e) = φ(sig(e)) then the resulting
τ̃ -region R′′ = (sup′′, sig′′) separates s0, s1 and s2, s1. Thus, A1 has also τ̃ -(E)SSP. TS
A2 has the τ -SSP but not the τ -ESSP as event a is not inhibitable at the state s2. TS
A3 has the τ -ESSP (a occurs at every state) but not the τ -SSP as s1 and s2 are not
separable. TS A4 has neither the τ -ESSP nor the τ -SSP.

106 R. Tredup

3 Hardness Results

In this section, for several types of nets τ ⊆ I and fixed g ∈ N, we show that
τ -synthesis is NP-complete even if the input TS A is g-bounded, cf. Fig. 1. Since
τ -synthesis is known to be in NP for all τ ⊆ I [16], we restrict ourselves to the
hardness part. All proofs are based on a reduction of the problem cubic monotone
one-in-three 3-SAT which has been shown to be NP-complete in [7]. The input
for this problem is a Boolean expression ϕ = {ζ0, . . . , ζm−1} of m negation-
free three-clauses ζi = {Xi0 ,Xi1 ,Xi2} such that every variable X ∈ V (ϕ) =
⋃m−1

i=0 ζi occurs in exactly three clauses. Notice that the latter implies |V (ϕ)| =
m. Moreover, we assume without loss of generality that if ζi = {Xi0 ,Xi1 ,Xi2}
then i0 < i1 < i2. The question to answer is whether there is a subset M ⊆ V (ϕ)
with |M ∩ζi| = 1 for all i ∈ {0, . . . , m−1}. For all considered types of nets τ and
corresponding bounds g, we reduce a given instance ϕ to a g-bounded TS Aτ

ϕ

such that the following two conditions are true: Firstly, the TS Aτ
ϕ has an ESSP

atom α which is τ -solvable if and only if there is a one-in-three model M of ϕ.
Secondly, if the ESSP atom α is τ -solvable then all ESSP and SSP atoms of Aτ

ϕ

are also τ -solvable. A reduction that satisfies these conditions proves the NP-
hardness of τ -synthesis as follows: If ϕ has a one-three-model then the conditions
ensure that the TS Aτ

ϕ has the τ -(E)SSP and thus is τ -solvable. Conversely, if
Aτ

ϕ is τ -solvable then, by definition, it has the τ -ESSP. In particular, there is a
τ -region that solves α which, by the first condition, implies that ϕ has a one-in-
three model. Consequently, Aτ

ϕ is τ -solvable if and only if ϕ has a one-in-three
model. Due to space restrictions, we omit for all considered types the proof that
Aτ

ϕ satisfies the second condition, that is, that the solvability of α implies the
(E)SSP. However, the corresponding proofs can be found in the technical report
[11].

A key idea, applied by all reductions in one way or another, is the repre-
sentation of every clause ζi = {Xi0 ,Xi1 ,Xi2}, i ∈ {0, . . . , m − 1}, by a directed
labeled path of Aτ

ϕ on which the variables of ζi occur as events:

si,0 . . . si,j
Xi0 si,j+1 . . . si,j′ Xi1 si,j′+1 . . . si,j′′ Xi2 si,j′′+1 . . . si,n

The reductions ensure that if a τ -region (sup, sig) solves the atom α then
sup(si,0) �= sup(si,n). This makes the image of this path under (sup, sig) a
directed path from 0 to 1 or from 1 to 0 in τ . Thus, there has to be an event e
on the path that causes the state change from sup(si,0) to sup(si,n) by sig(e).
We exploit this property and ensure that this state change is unambiguously
done by (the signature of) exactly one variable event per clause. As a result, the
corresponding variable events define a searched model of ϕ via their signature.
The proof of the following theorem gives a first example of this approach, and
Fig. 5 shows a full example reduction.

Theorem 1. For any fixed g ≥ 2, deciding if a g-bounded TS A is τ -
solvable is NP-complete if τ = {nop, inp, free}, τ = {nop, inp, used, free}, τ =
{nop, out, used} and τ = {nop, out, used, free}.

The Complexity of Synthesizing nop-Equipped Boolean 107

Fig. 5. The TS Aτ
ϕ for ϕ = {ζ0, . . . , ζ5} with clauses ζ0 = {X0, X1, X2}, ζ1 =

{X0, X2, X3}, ζ2 = {X0, X1, X3}, ζ3 = {X2, X4, X5}, ζ4 = {X1, X4, X5}, ζ5 =
{X3, X4, X5} . The red colored area sketc.hes the τ -region (sup, sig) that solves (k1, h0)
and corresponds to the one-in-three model M = {X0, X4}. (Color figure online)

Proof. We argue for τ ∈ {{nop, inp, free}, {nop, inp, used, free}}, which by
Lemma 2 proves the claim for the other types, too.
Firstly, the TS Aτ

ϕ has the following gadget H (left hand side) that provides
the events k0, k1 and the atom α = (k1, h0). Secondly, it has for every clause
ζi = {Xi0 ,Xi1 ,Xi2} the following gadget Ti (right hand side) that applies k0, k1
and ζ ′

is variables as events.

Finally, Aτ
ϕ uses the states ⊥0, . . . ,⊥m and events
1, · · ·
m and ⊕0, . . . ,⊕m

to join the gadgets T0, . . . , Tm−1 and H by ⊥i

i+1 ⊥i+1 and ⊥i

⊕i ti,0, for all

i ∈ {0, . . . , m − 1}, and ⊥m
⊕m h0, cf. Fig. 5.

The gadget H ensures that if (sup, sig) is a region that solves α then
sup(h0) = 1 and sig(k1) = free which implies sup(h1) = 0 and sig(k0) = inp.
This is because sig(k1) ∈ {inp, used} and sup(h0) = 0 implies sig(k0) ∈
{out, set, swap}, which is impossible. Consequently, s k0 and s′ k1 imply
sup(s) = 1 and sup(s′) = 0, respectively. The TS Aτ

ϕ uses these properties to
ensure via T0, . . . , Tm−1 that the region (sup, sig) implies a one-in-three model
of ϕ.

More exactly, if i ∈ {0, . . . , m − 1} then for Ti we have by ti,0
k0 and

ti,3
k1 that sup(ti,0) = 1 and sup(ti,3) = 0. Thus, there is an event Xij

, where
j ∈ {0, 1, 2}, such that sig(Xij

) = inp. Clearly, if sig(Xij
) = inp then sig(Xi�

) �=
inp for all j < � ∈ {0, 1, 2} as Xi�

’s sources have a 0-support. Consequently,

108 R. Tredup

there is exactly one variable event X ∈ ζi such that sig(X) = inp. Since i was
arbitrary, this is simultaneously true for all clauses ζ0, . . . , ζm−1. Thus, the set
M = {X ∈ V (ϕ) | sig(X) = inp} is a one-in-three model of ϕ.

Conversely, if ϕ is one-in-three satisfiable then there is a τ -region (sup, sig)
of Aτ

ϕ that solves α. In particular, if M is a one-in-three model of ϕ then we
first define sup(⊥0) = 1. Secondly, for all e ∈ E(Aτ

ϕ) we define sig(e) = free
if e = k1, sig(e) = inp if e ∈ {k0} ∪ M and else sig(e) = nop. Since Aτ

ϕ is
reachable, by inductively defining sup(si+1) = δτ (sup(si), sig(ei)) for all paths
⊥0

e1 s1 . . . sn−1
en sn, this defines a fitting region (sup, sig), cf. Fig. 5.

This proves that α is τ -solvable if and only if ϕ is one-in-three satisfiable.

In the remainder of this section, we present the remaining hardness results in
accordance to Fig. 1 and the corresponding reductions that prove them.

Theorem 2. For any fixed g ≥ 3, deciding if a g-bounded TS A is τ -solvable is
NP-complete if τ = {nop, set, res} ∪ ω and ∅ �= ω ⊆ {used, free}.

Proof. The TS Aτ
ϕ has the following gadgets H0,H1 and H2 (in this order):

The gadget H0 provides α = (k0, h0,2). By symmetry, Aτ
I is {nop, set, res, used}-

solvable if and only if it is {nop, set, res, free}- or {nop, set, res, free, used}-solvable.
Thus, in the following we assume τ = {nop, set, res, used}, sig(k0) = used and
sup(h0,2) = 0 if (sup, sig) τ -solves α. As a result, by sig(k0) = used, implying

sup(h0,1) = 1, and sup(h0,2) = 0 we have sig(k1) = res. Especially, if k0 s then

sup(s) = 1 and if k1 s then sup(s) = 0. Thus, sup(h1,0) = sup(h2,1) = 1 and
sup(h1,1) = sup(h2,0) = 0 which implies sig(k2) = res and sig(k3) = set.

The construction uses k2 and k3 to produce some neutral events. More
exactly, the TS Aτ

ϕ implements for all j ∈ {0, . . . , 16m − 1} the following gadget
Fj that uses k2 and k3 to ensure that the events zj are neutral:

By sig(k2) = res and sig(k3) = set we have sup(fj,1) = 0 and sup(fj,4) = 1.

This implies sig(zj) 0 and sig(zj) 1 and thus sig(zj) = nop.
Finally, for every i ∈ {0, . . . ,m − 1} and clause ζi = {Xi0 ,Xi1 ,Xi2}, the TS

Aτ
ϕ has the following four gadgets Ti,0, Ti,1Ti,2 and Ti,3 (in this order):

The Complexity of Synthesizing nop-Equipped Boolean 109

Ti,0, . . . , Ti,4 ensure that there is exactly one X ∈ ζi with sig(X) = res: By
sig(k0) = used and sig(k1) = res we get sup(ti,0,0) = sup(ti,1,0) = sup(ti,2,0) =
sup(ti,3,7) = 1 and sup(ti,0,7) = sup(ti,1,7) = sup(ti,2,7) = sup(ti,3,0) = 0. Since
z16i, . . . , z16i+11 are neutral, this implies sup(ti,0,6) = sup(ti,1,6) = sup(ti,2,6) = 0
and that there is a variable event with a res-signature. Moreover, by sup(ti,3,0) =
0 and sup(ti,3,7) = 1 and the neutrality of z16i+12, . . . , z16i+15 there is an event of
y3i, y3i+1, y3i+2 with a set-signature. We argue that there is exactly one variable
event with a res-signature: By sup(ti,0,6) = sup(ti,1,6) = sup(ti,2,6) = 0, we
have sig(X) �∈ {set, used} for all X ∈ {Xi0 ,Xi1 ,Xi2}. Hence, if sig(Xi0) = res
then sup(ti,0,2) = · · · = sup(ti,0,6) = 0 which implies sig(y3i+1) �= set and
sig(y3i+2) �= set and thus sig(y3i) = set. By sig(y3i) = set we have sup(ti,1,2) =
sup(ti,1,4) = 1 which implies sig(Xi1) �= res and sig(Xi2) �= res.

If sig(Xi1) = res, then sup(ti,0,4) = sup(ti,1,2) = 0 which implies sig(y3i) �=
set and sig(y3i+2) �= set and thus sig(y3i+1) = set. By sig(y3i+1) = set we have
sup(ti,0,2) = sup(ti,2,2) = 1 which implies sig(Xi0) �= res and sig(Xi2) �= res.

Since sig(Xi0) = res or sig(Xi1) = res implies sig(Xi2) �= res, we conclude
that sig(Xi2) = res implies sig(Xi0) �= res and sig(Xi1) �= res. Thus, there
is exactly one variable of the i-th clause with a signature res. Hence, the set
M = {X ∈ V (ϕ) | sig(X) = res} is a one-in-three model of ϕ.

To finally build Aτ
ϕ, we use the states ⊥ = {⊥0, . . . ,⊥20m+2} and the events

⊕ = {⊕0, . . . ,⊕20m+2} and
 = {
1, . . . ,
20m+2}. The states of ⊥ are con-

nected by ⊥j

j+1 ⊥j+1 and ⊥j+1

j+1 ⊥j+1 for j ∈ {0, . . . , 20m + 1}. Let
x = 16m + 3 and y = 19m + 3. For all i ∈ {0, 1, 2}, for all � ∈ {0, . . . , 16m − 1}
and for all j ∈ {0, . . . , m} we add the following edges that connect the gadgets

110 R. Tredup

H0,H1,H2 and F0, . . . , F16m−1 and T0,0, T0,1, T0,2, . . . , Tm−1,0, Tm−1,1Tm−1,2

and

If M is a one-in-three model of ϕ then α is τ -solvable by a τ -region (sup, sig):
If s ∈ {h0,0, h1,0, h2,1} or {fj,0 | j ∈ {0, . . . , 16m − 1}} then sup(s) = 1. The
support values of the states of Ti,0, . . . , Ti,3, where i ∈ {0, . . . , m−1}, are defined
in accordance to which event of Xi0 ,Xi1 ,Xi2 belongs to M . The red colored
area above sketches Xi0 ∈ M . Moreover, we define sup(s) = 0 for all s ∈ ⊥. Let
e ∈ E(Aτ

ϕ)\⊕. We define sig(e) = used if e = k0 and sig(e) = res if e ∈ {k1}∪M .
For all i ∈ {0, . . . ,m − 1} and clauses {Xi0 ,Xi1 ,Xi2} and all j ∈ {0, 1, 2} we set
sig(e) = set if e = y3i+j and Xij

∈ M . Otherwise, we define sig(e) = nop. For

all events e ∈ ⊕ and edges s e s′ of A we define sig(e) = set if sup(s′) = 1 and,
otherwise, sig(e) = nop. The resulting τ -region (sup, sig) of Aτ

ϕ solves α. ��

Theorem 3. For any fixed g ≥ 2, deciding if a g-bounded TS A is τ -solvable
is NP-complete if (1) τ = {nop, inp, set} or τ = {nop, inp, set, used} or τ =
{nop, inp, res, set} ∪ ω and ω ⊆ {out, used, free} or if (2) τ = {nop, out, res} or
τ = {nop, out, res, free} or τ = {nop, out, res, set} ∪ ω and ω ⊆ {inp, used, free}.

Proof. We present a reduction for the types of (1). By Lemma 2, this proves the
claim also for the types of (2). The TS Aτ

ϕ has the following gadget H:

The intention of the gadget H is to provide the atom α = (k, h0,6) and the events
of Z = {z0, . . . , z3m−1}, V = {v0, . . . , v3m−1} and W = {w0, . . . , w3m−1}.

The Complexity of Synthesizing nop-Equipped Boolean 111

Moreover, the TS Aτ
ϕ has the following two gadgets F0 and F1 and for all

i ∈ {0, . . . , 6m − 2} the following gadget Gi (in this order):

Finally, the TS Aτ
ϕ has for every clause ζi = {Xi0 ,Xi1 ,Xi2}, i ∈ {0, . . . , m −

1}, the following gadgets Ti,0, Ti,1 and Ti,2 (in this order):

In the following, we argue that H,F0, F1 and G0, . . . , Gm−2 collaborate
like this: If (sup, sig) is a τ -region solving α then either sig(k) = inp, V ⊆
sig−1(enter) and W ⊆ sig−1(keep−) or sig(k) = out and V ⊆ sig−1(exit) and
W ⊆ sig−1(keep+). Moreover, we prove that this implies by the functionality of
T0,0, . . . , Tm−1,2 that M = {X ∈ V (ϕ) | sig(X) �= nop} is a one-in-three model
of ϕ.

Let (sup, sig) be a τ -region that solves α. Since the interactions res, set and
nop are defined on both 0 and 1, this implies sig(k) ∈ {inp, out, used, free}.

If sig(k) = used then sup(s) = sup(s′) = 1 for every transition s k s′.
Hence, we have sup(f0,3) = sup(f1,1) = sup(h0,4) = 1. By definition of
inp, res we have that e s and sig(e) ∈ {inp, res} implies sup(s) = 0. Con-
sequently, by z0 f0,3 and q0 f1,1 we get sig(z0), sig(q0) ∈ keep+ and thus

sup(h0,4) = sup(h0,5) = sup(h0,6) = 1 which contradicts ¬sup(h0,6) sig(k) .
Hence, sig(k) �= used. Similarly, sig(k) = free implies sup(h0,6) = 0, which is a
contradiction. Thus, we have that sig(k) = inp and sup(h0,6) = 0 or sig(k) = out
and sup(h0,6) = 1.

As a next step, we show that sig(k) = inp and sup(h0,6) = 0 together imply

sig(v0) ∈ enter and sig(z0) ∈ keep−. By sig(k) = inp and k h0,1 and h0,3
k

we get sup(h0,1) = 0 and sup(h0,3) = 1. Moreover, by z0 h0,6 and sup(h0,6) =
0 we obtain sig(z0) ∈ keep−, which by sup(h0,1) = 0 implies sup(h0,2) = 0.

112 R. Tredup

Finally, sup(h0,2) = 0 and sup(h0,3) = 1 imply sig(v0) ∈ enter. Notice that this
reasoning purely bases on sig(k) = inp and sup(h0,6) = 0. Moreover, Aτ

ϕ uses
for every j ∈ {0, . . . , 6m − 2} the TS Gj to ensure sup(h0,6) = sup(h1,6) =
· · · = sup(h6m−1,6). This transfers z0 ∈ keep− and v0 ∈ enter to V ⊆ enter and
W ⊆ keep−. In particular, by sig(k) = inp we have sup(gi,0) = sup(gi,1) = 1
and sup(gi,2) = sup(gi,3) = 0, that is, sig(ci) = nop. Hence, if sig(k) = inp
and sup(h0,6) = 0 then sup(hi,6) = 0 for all i ∈ {0, . . . , 6m − 1}. Perfectly
similar to the discussion for z0 and v0 we obtain that V ⊆ sig−1(enter) and
W ⊆ sig−1(keep−), respectively. Similarly, sig(k) = out and sup(h0,6) = 1
imply V ⊆ sig−1(exit) and W ⊆ sig−1(keep+).

We now argue that Ti,0, . . . , Tm−1,2 ensure that M = {X ∈ V (ϕ) | sig(X) �=
nop} is a one-in-three model of ϕ. Let i ∈ {0, . . . ,m − 1} and sig(k) = inp
and sup(h0,6) = 0 implying V ⊆ sig−1(enter) and W ⊆ sig−1(keep−). By
sig(k) = inp and V ⊆ sig−1(enter) and W ⊆ sig−1(keep−) we have that
sup(ti,0,2) = sup(ti,1,2) = sup(ti,2,2) = 1 and sup(ti,0,5) = sup(ti,1,5) =
sup(ti,2,5) = 0. As a result, every event e ∈ {Xi0 ,Xi1 ,Xi2} has a 0-sink, which
implies sig(e) ∈ {nop, inp, res}, and every event e ∈ {xi0 , xi1 , xi2} has a 1-sink,
which implies sig(e) ∈ {nop, out, set}. By sup(ti,0,2) = 1 and sup(ti,0,5) = 0
there is a X ∈ {Xi0 ,Xi1 ,Xi2} such that sig(X) ∈ {inp, res}. We argue that
sig(Y) = nop for Y ∈ {Xi0 ,Xi1 ,Xi2} \ {X}. If sig(Xi0) ∈ {inp, res} then
sup(ti,0,3) = 0 which implies sig(xi0) ∈ {out, set} and, therefore, sup(ti,1,4) = 1.
Since sig(Xi1), sig(Xi2) �∈ {out, set} and sig(xi1), sig(xi2) �∈ {inp, res}, it holds
sup(ti,0,3) = sup(ti,0,4) = 0 and sup(ti,1,3) = sup(ti,1,4) = 1, respectively. Thus,
for all e ∈ {Xi1 ,Xi2}, there are edges e s and e s′ such that sup(s) = 0
and sup(s′) = 1. This implies sig(e) = nop. Similarly, if sig(Xi1) ∈ {inp, res},
then sig(Xi0) = sig(Xi2) = nop, and if sig(Xi2) ∈ {inp, res}, then sig(Xi0) =
sig(Xi1) = nop. Hence, every clause ζi has exactly one variable event with a
signature different from nop. This makes M = {X ∈ V (ϕ) | sig(X) �= nop} a
one-in-three model of ϕ. Similarly, if sig(k) = out and sup(h0,6) = 1, then M is
also a one-in-three model of ϕ.

To join the gadgets and finally build Aτ
ϕ, we use the states ⊥ =

{⊥0, . . . ,⊥9m+1} and the events ⊕ = {⊕0, . . . ,⊕9m+1} and
 =

{
1, . . . ,
9m+1}. The states of ⊥ are connected by ⊥j

j+1 ⊥j+1 for j ∈

{0, . . . , 9m + 1}. Let x = 6m + 2. For all i ∈ {0, . . . , 6m − 2}, for all
j ∈ {0, . . . , m − 1} and for all � ∈ {0, 1, 2} we add the following edges
that connect the gadgets H0, F0, F1, G0, . . . , G6m−2 and T0,0, T0,1, T0,2 up to
Tm−1,0, Tm−1,1, Tm−1,2 to Aτ

ϕ:

If M is a one-in-three model of ϕ then there is a τ -region (sup, sig) of Aτ
ϕ that

solves α. The red colored area of the figures introducing the gadgets indicates
already a positive support of some states. In particular, if s ∈ {hj,0, hj,3 | j ∈
{0, . . . , 6m−1}} or s ∈ {f0,0, f0,2, f0,3, f1,0, f1,1} s ∈ {gj,0, gj,1 | j ∈ {0, . . . , 6m−
2}} then sup(s) = 1. The support values of the states of Ti,0, . . . , Ti,2, where

The Complexity of Synthesizing nop-Equipped Boolean 113

i ∈ {0, . . . , m−1}, are defined in accordance to which of the events Xi0 ,Xi1 ,Xi2

belongs to M . The red colored area above sketches the situation where Xi0 ∈ M .
Moreover, for all s ∈ ⊥, we define sup(s) = 0. Let e ∈ E(Aτ

ϕ) \ ⊕. We define
sig(e) = inp if e ∈ {k}∪M . For all i ∈ {0, . . . ,m−1} and clauses {Xi0 ,Xi1 ,Xi2}
and all j ∈ {0, 1, 2} we set sig(e) = set if e = n or e ∈ {vj , pj | j ∈ {0, . . . , 3m −
1}} or e = xij

and Xij
∈ M . Otherwise, we define sig(e) = nop. Finally, for all

events e ∈ ⊕ and edges s e s′ of A we define sig(e) = set if sup(s′) = 1 and,
otherwise, sig(e) = nop.

Joining of 1-Bounded Gadgets. In the following, we consider types τ where
τ -synthesis from 1-bounded inputs is NP-complete. All gadgets A0, . . . , An of
the reductions are directed paths Ai = si

0
e1 . . . , en si

n on pairwise distinct
states si

0, . . . , s
i
n. For all types, the joining is the concatenation

with fresh states ⊥1, . . . ,⊥n and events
1, · · ·
n,⊕1, · · · ⊕n.

Theorem 4. For any fixed g ≥ 1, deciding if a g-bounded TS A is τ -solvable
is NP-complete if τ = {nop, inp, out, set} ∪ ω or τ = {nop, inp, out, res} ∪ ω and
ω ⊆ {used, free}.

Proof. Our construction proves the claim for τ = {nop, inp, set, out} ∪ ω with
ω ⊆ {used, free}. By Lemma 2, this proves the claim also for the other types.

The TS Aτ
ϕ has the following gadgets H0,H1,H2 and H3 (in this order):

If used ∈ τ then Aτ
ϕ has the following gadget H4:

For all i ∈ {0, . . . , m−1}, the TS Aτ
ϕ has for the clause ζi = {Xi0 ,Xi1 ,Xi2} and

the variable Xi ∈ V (ϕ) the following gadgets Ti and Bi, respectively:

The gadget H0 provides the atom α = (k0, h0,6). Moreover, the gadgets
H0, . . . ,H4 ensure that if (sup, sig) is a τ -region solving α then sig(k0) = out
and sig(k1) ∈ {out, set}. In particular, H4 prevents the solvability of α by
used. As a result, such a region implies sup(ti,1) = 1, sup(ti,4) = 0 and
sup(bi,1) = 0 for all i ∈ {0, . . . , m− 1}. On the one hand, by sup(bi,1) = 0 for all
i ∈ {0, . . . , m − 1} we have sig(X) �∈ {out, set} for all X ∈ V (ϕ). On the other
hand, by sup(ti,1) = 1 and sup(ti,4) = 0 there is an event X ∈ {Xi0 ,Xi1 ,Xi2}

114 R. Tredup

such that sig(X) = inp. Since no variable event has an incoming signature
we obtain immediately sig(Y) �= inp for Y ∈ {Xi0 ,Xi1 ,Xi2} \ {X}. Thus,
M = {X ∈ V (ϕ) | sig(X) = inp} is a one-in-three model of ϕ.

We argue that H0, . . . , H4 behave as announced. Let (sup, sig) be a region
that solves (k0, h0,6). If sig(k0) = inp then sup(h0,6) = 0 and sig(h0,7) = 1,
implying sig(o) ∈ {out, set} and sup(h0,3) = 1. Thus, there is an event e ∈
{k1, z0, z1} with sig(e) = inp. By sig(k0) = inp we have sup(h1,1) = sup(h2,1) =
1 and sup(h3,1) = 0 implying sig(e) �= inp for all e ∈ {k1, z0, z1}, a contradiction.

If sig(k0) = free then sup(h0,6) = 1 and sup(h0,1) = sup(h0,7) = sup(h1,1) =
0 which implies sig(o) = inp and sup(h0,2) = 1. By sup(h0,1) = 0 and sup(h0,2) =
1 we have sig(z0) ∈ {out, set} which by sup(h1,1) = 0 is a contradiction.

If sig(k0) = used then sup(h0,6) = 0 and sup(h0,1) = sup(h0,7) = sup(h1,1) =
sup(h2,1) = 1. This implies sig(o) ∈ {out, set} and sup(h0,3) = 1. Thus,
by sup(h0,6) = 0 there is an event e ∈ {k1, z0, z1} with sig(e) = inp. By
sup(h1,1) = sup(h2,1) = 1, we have e �∈ {z0, z1}. If sig(k1) = inp then
sup(h4,1) = 0 and sup(h4,2) = 1, implying sig(z0) ∈ {out, set} and sup(h0,6) = 1.
This is a contradiction. Altogether, this proves sig(k0) �∈ {inp, used, free}.

Consequently, we obtain sig(k0) = out and sup(h0,6) = 1 which implies
sig(o) = inp and sup(h0,3) = 0. By sup(h0,6) = 1, this implies that there is an
event e ∈ {k1, z0, z1} with sig(e) ∈ {out, set}. Again by sig(k0) = out, we have
sup(h1,1) = sup(h2,1) = 0, which implies e = k1. The signatures sig(k0) = out
and sig(k1) ∈ {out, set} and the construction of T0, . . . , Tm−1 and B0, . . . , Bm−1

ensure that M = {X ∈ V (ϕ) | sig(X) = inp} is a one-in-three model of ϕ: By
sig(k0) = out and sig(k1) ∈ {out, set} we have sup(ti,1) = 1 and sup(ti,4) =
sup(bi,1) = 0 for all i ∈ {0, . . . , m − 1}. By sup(ti,1) = 1 and sup(ti,4) = 0, there
is an event X ∈ ζi such that sig(X) = inp. Moreover, by sup(bi,1) = 0, we get
sig(Xi) �∈ enter for all i ∈ {0, . . . , m − 1}. Thus, X is unambiguous and thus M
is a searched model.

Conversely, if M is a one-in-three model of ϕ then there is a τ -region (sup, sig)
that solves α. The red colored area above sketches states with a positive support.
Which states of Ti, besides of ti,0, ti,1 and ti,5, get a positive support depends for
all i ∈ {0, . . . , m − 1} on which of Xi0 ,Xi1 ,Xi2 belongs to M . The red colored
area above sketches the case Xi0 ∈ M . Moreover, we define sup(s) = 1 if s = bi,0

and Xi ∈ M or if s ∈ ⊥. The signature is defined as follows: sig(k1) = set; for
all e ∈ E(Aτ

ϕ)\{k1} and all s e s′ ∈ Aτ
ϕ, if sup(s′) > sup(s), then sig(e) = out;

if sup(s) > sup(s′), then sig(e) = inp; else sig(e) = nop. ��

Theorem 5. For any g ≥ 1, deciding if a g-bounded TS A is τ -solvable is
NP-complete if τ = {nop, inp, set, free} or τ = {nop, inp, set, used, free} or τ =
{nop, out, res, used} or τ = {nop, out, res, used, free}.

Proof. Our reduction proves the claim for τ = {nop, inp, set, free} and τ =
{nop, inp, set, used, free} and thus by Lemma 2, for the other types, too.

The TS Aτ
ϕ has the following gadgets H0 and H1 providing the atom

(k0, h0,3):

The Complexity of Synthesizing nop-Equipped Boolean 115

For all i ∈ {0, . . . ,m − 1}, the Aτ
ϕ for the clause ζi = {Xi0 ,Xi1 ,Xi2} and the

variable Xi ∈ V (ϕ) the gadgets Ti and Bi as previously defined for Theorem 4.
The gadgets H0 and H1 ensure that a τ -region (sup, sig) solving (k0, h0,3)
satisfies sig(k0) = free and sig(k1) = set. This implies sup(ti,1) = 1 and
sup(ti,4) = sup(bi,2) = 0 for all i ∈ {0, . . . , m − 1}. By sup(ti,1) = 1 and
sup(ti,4) = 0, there is an event X ∈ ζi such that sig(X) = inp and, by
sup(bi,2) = 0 for all i ∈ {0, . . . , m − 1}, we have sig(X) �= set for all X ∈ V (ϕ).
Thus, the event X ∈ ζi is unique and M = {X ∈ V (ϕ) | sig(X) = inp} is a
one-in-three model.

We briefly argue that H0 and H1 perform as announced: Let (sup, sig) be
a τ -region that solves α. If sig(k0) = inp then sup(h1,1) = 0 and sup(h1,2) = 1
which implies sig(z0) = set and thus sup(h0,3) = 1, a contradiction. Hence,
sig(k0) �= inp. If sig(k0) = used then sup(h0,1) = sup(h1,2) = 1 and sup(h0,3) =
0. Consequently, sig(z0) = inp or sig(k1) = inp but this contradicts sup(h1,2) = 1
and sup(h0,3) = 0. Thus, sig(k0) �= used. Thus, we have sig(k0) = free and
sup(h0,3) = 1, which implies that one of k1, z0 has a set-signature. By sig(k0) =
free, we get sup(h1,3) = 0 and thus sig(k1) = set.

If M is a one-in-three model of ϕ then we can define an α solving region
similar to the one of Theorem 4, where we replace sig(k0) = inp by sig(k0) = free.

Theorem 6. For any fixed g ≥ 1, deciding if a g-bounded TS A is τ -solvable is
NP-complete if τ = {nop, inp, res, swap} ∪ ω or τ = {nop, out, set, swap} ∪ ω and
ω ⊆ {used, free}.

Proof. The TS Aτ
ϕ has the following gadgets H0,H1,H2 and H3:

The gadgets H0, . . . , H3 provide the atom α = (k, h0,2) and ensure that a τ -
region (sup, sig) solving α satisfies sig(k) = inp and sup(h0,2) = 0. The TS Aτ

ϕ

has the following gadgets F0, F1 and for all j ∈ {0, . . . , 10} the gadget Gj :

For all j ∈ {0, . . . , 10}, the gadgets F0, F1, Gj ensure sig(uj) = swap for any
τ -region (sup, sig) solving α.

116 R. Tredup

For all i ∈ {0, . . . , m − 1}, the TS Aτ
ϕ has for the clause ζi = {Xi0 ,Xi1 ,Xi2}

some gadgets Ti,0, . . . , Ti,6 and Bi. The purpose of these gadgets is to make
the one-and-three satisfiability of ϕ and the solvability of α the same. In partic-
ular, the TS Ti,0 is defined by:

The gadgets Ti,1, Ti,2 and Ti,3 are defined (in this order) as follows:

Moreover, the gadgets Ti,4, Ti,5 and Ti,6 are defined like this:

Finally, the gadget Bi is defined as follows:

Let (sup, sig) be a τ -region solving α. We first argue that the gadgets H0, . . . , H3

and F0, F1 and G0, . . . , G10 ensure that a τ -region (sup, sig) solving α satisfies
sig(k) = inp, sup(h0,2) = 0 and sig(u0) = · · · = sig(u10) = swap.

If sig(k) = free and sup(h0,2) = 1 then s k s′ implies sup(s) = sup(s′) = 0.
Especially, by sup(h0,1) = 0 and sup(h0,2) = 1 we have sig(y0) = swap.
Moreover, by sup(h2,1) = sup(h2,4) = 0 and sig(y0) = swap we have that
sup(h2,2) = sup(h2,3) = 1. This implies sig(y1) ∈ {nop, used}. By sup(h1,1) = 0
and h1,1

y1 this implies sig(y1) = nop and thus sup(h1,2) = 0. Furthermore,
by sup(h1,2) = sup(h1,3) = 0 and h1,2

y0 h1,3 this implies sig(y0) �= swap, a
contradiction. Thus, we have sig(k) �= free.

If sig(k) = used and sup(h0,2) = 0 then s k s′ implies sup(s) = sup(s′) = 1.
Thus, we get sup(h0,1) = sup(h0,3) = sup(h1,3) = 1 which with sup(h0,2) = 0
implies sig(y0) = sig(v) = swap. Moreover, sup(h1,3) = 1 and sig(y0) = swap
imply sup(h1,2) = 0. By sup(h1,1) = 1, this implies sig(y1) ∈ {inp, res}. Finally,
sup(h3,3) = 1 and sig(v) = sig(y0) = swap imply sup(h3,1) = 1. This contradicts

The Complexity of Synthesizing nop-Equipped Boolean 117

sig(y1) ∈ {inp, res}. Thus, sig(k) �= used. Altogether, this shows that sig(k) =
inp and sup(h0,2) = 0, which implies sig(v) = swap.

By sig(k) = inp we have sup(f0,1) = sup(f1,1) = sup(gj,1) = 0 and
sup(f0,3) = sup(f1,3) = sup(gj,4) = 1. By sig(v) = swap, this implies
sup(f0,2) = sup(f1,2) = 0 and thus sig(z0), sig(z1) ∈ {nop, res, free}. More-
over, sup(gj,1) = 0, sup(gj,4) = 1 and sig(z0), sig(z1) ∈ {nop, res, free} imply
sup(gj,2) = 0 and sup(gj,3) = 1 and thus sig(uj) = swap.

Let i ∈ {0, . . . ,m−1}. We now show that Ti,0, . . . , Ti,6 and Bi collaborate as
announced. By sig(k) = inp and sig(u9) = sig(u10) = swap, we have sup(bi,1) =

1 for all i ∈ {0, . . . , m−1}. Since Xi bi,1 for all i ∈ {0, . . . , m−1}, the gadget Bi

ensures for all X ∈ V (ϕ) that s X s′ and sup(s) �= sup(s′) imply sig(X) = swap.
The

gadget Ti,0 works like this: By sig(k) = inp we get that sup(ti,0,1) = 0 and

sup(ti,0,8) = 1. Consequently, the image sup(ti,0,1)
sig(Xi0) . . .

sig(u3) sup(ti,0,8)

of the path ti,0,1
Xi0 . . . u3 ti,0,8 performs an odd number of state changes

between 0 to 1 in τ . Since sig(u0) = · · · = sig(u3) = swap, the events u0, . . . , u3

perform an even number of state changes. Thus, either all of Xi0 ,Xi1 ,Xi2 are
mapped to swap or exactly one of them. The construction of Ti,1, . . . , Ti,6 guar-
antees that there is exactly one variable event mapped to swap.

In particular, the gadgets Ti,4, Ti,5 and Ti,6 ensure that if e ∈
{w3i, w3i+1, w3i+2} then sig(e) �∈ {nop, used}. We argue for w3i: By sig(k) = inp
we get sup(ti,4,1) = 0 and sup(ti,4,4) = 1 which, by sig(u7) = sig(u8) = swap,
implies sup(ti,4,2) = 1 and sup(ti,4,3) = 0. Clearly, this implies sig(w3i) �∈
{nop, used}. Similarly, we obtain that sig(w3i+1) �∈ {nop, used} and sig(w3i+2) �∈
{nop, used}.

Finally, the gadgets Ti,1, Ti,2 and Ti,3 ensure that no two variable events
of the same clause can have a swap signature: By sig(k) = inp we get that
sup(ti,1,1) = 0 and sup(ti,1,7) = 1 which with sig(u4) = sig(u5) = sig(u6) =
swap implies sup(ti,1,3) = 0 and sup(ti,1,6) = 0. Thus, if sig(Xi0) = sig(Xi1) =
swap then sup(ti,1,4) = sup(ti,1,5) = 1 which implies sig(w3i) ∈ {nop, used}, a
contradiction. Similarly, one uses Ti,2 and Ti,3 to show that neither Xi0 and Xi2

nor Xi1 and Xi2 can simultaneously be mapped to swap. As i was arbitrary,
there is exactly one variable per clause that is mapped to swap. Thus, M =
{X ∈ V (ϕ) | sig(X) = swap} is a one-in-three model of ϕ.

Conversely, a one-in-three model M of ϕ allows a τ -region (sup, sig) that
solves α: The red colored area above indicates which states of H0, . . . , H3, F0, F1,
G0, . . . , G10 and T0,4, T0,5, T0,6, . . . , Tm−1,4, Tm−1,5, Tm−1,6 have positive sup-
port. Moreover, we define sup(s) = 1 for all s ∈ ⊥. Which states of Ti,0, . . . , Ti,3,
where i ∈ {0, . . . , m−1}, besides of k’s sources get a positive support depends on
which of Xi0 ,Xi1 ,Xi2 belongs to M . The red colored area sketches the situation
for Xi0 ∈ M . It is easy to see that there is for all e ∈ E(Aτ

ϕ) a fitting sig-value
making (sup, sig) a (solving) τ -region where sig(k) = inp and sup(h0,2) = 0. ��

118 R. Tredup

Theorem 7. For any fixed g ≥ 1, deciding if a g-bounded TS A is τ -solvable
is NP-complete if τ = {nop, inp, set, swap} ∪ ω and ω ⊆ {out, res, used, free} or if
τ = {nop, out, res, swap} ∪ ω and ω ⊆ {inp, set, used, free}.

Proof. We present the reduction for the types built by τ = {nop, inp, set, swap}∪
ω where ω ⊆ {out, res, used, free}. Again, the other types are covered by Lemma 2.

The TS Aτ
ϕ has the following gadgets H0,H1,H2 and H3:

If τ ∩ {used, free} �= ∅ then Aτ
ϕ has also the following gadgets H4, . . . , H12:

The gadgets H0, . . . , H3 (H4, . . . , H12, if added) provide α = (k, h3,3). They
ensure that if (sup, sig) τ -solves α, then sig(k) ∈ {inp, out}. The TS Aτ

ϕ adds
the following gadgets F0, F1, F2 and, for all i ∈ {0, . . . , 13}, the gadgets Gi, Ni:

The gadgets F0, F1, F2 and G0, N0, . . . , G13, N13 guarantee that if (sup, sig)
solves α then sig(ui) = swap. Similarly to the reduction of Theorem 6, the
TS Aτ

ϕ has for every i ∈ {0, . . . , m−1} gadgets Ti,0, . . . , Ti,6 and Bi to make the
one-in-three satisfiability of ϕ and the τ -solvability of α the same. These gadgets
and the ones for Theorem 6 have basically the same intention. However, since
the current types have different interactions, the peculiarity of these gadgets is
slightly different. In particular, Aτ

ϕ has for each clause ζi = {Xi0 ,Xi1 ,Xi2} the
following gadget Ti,0:

The Complexity of Synthesizing nop-Equipped Boolean 119

Moreover, the gadgets Ti,1, Ti,2 and Ti,3 are defined as follows:

Furthermore, the gadgets Ti,4, Ti,5 and Ti,6 are defined by

Finally, the TS Aτ
ϕ has for all i ∈ {0, . . . ,m − 1} the following gadget Bi:

We briefly argue for the announced functionality of the gadgets. Let (sup, sig)

be a τ -region solving α. If sig(k) = free then sup(h3,3) = 1 and s k s′ implies
sup(s) = sup(s′) = 0. Since sup(h3,1) = 0 and sup(h3,3) = 1, there is an event
e ∈ {v0, v1} such that sig(e) ∈ {out, set, swap}. If sig(v0) ∈ {out, set, swap}, then,
by sup(h1,1) = 0, we get sig(v0) = swap. Moreover, if sig(v1) ∈ {out, set, swap},
which implies sig(h3,2) = 1, then, by sup(h2,3) = 0, we get sig(v1) = swap.
By sig(v1) = swap and sup(h2,3) = 0, we get sup(h2,2) = 1. By sup(h1,1),
this implies sig(v0) = swap. Thus, in any case we get sig(v0) = swap. By
sig(v0) = swap and sup(h4,3) = sup(h5,1) = 0 we obtain sup(h4,2) = sup(h5,2) =
1 which implies sig(x) = swap. Using this and sup(s) = sup(s′) = 0 if

s k s′, we have that sup(hj,2) = 1 for all j ∈ {6, . . . , 11}. This implies
sig(y0) = sig(y1) = sig(y2) = swap. By sup(h12,1) = sup(h12,4) = 0,
the image of h12,1

y0 . . . y2 h12,4 is a path from 0 to 0 in τ . The number
of state changes between 0 and 1 on such a path is even. This contradicts
sig(y0) = sig(y1) = sig(y2) = swap. Thus, sig(k) �= free. The assumption that
sig(k) = used and sup(h3,3) = 0 yields a contradiction, too.

We conclude that sig(k) = inp and sup(h3,3) = 0. This implies sig(v0) �∈
{out, set} and if s k s′ ∈ Aτ

I , then sup(s) = 1 and sup(s′) = 0. Thus,
by sup(h2,1) = 0 and sup(h2,3) = 1 there is an event e ∈ {v0, v1} such
that sig(e) ∈ {out, set, swap}. If e = v0 then sig(v0) = swap. Moreover, if

120 R. Tredup

e = v1 then sup(h3,2) = 1 which with sup(h3,3) = 0 and sup(h1,1) = 1
implies sig(v0) = swap. Consequently, any case implies sig(v0) = swap. This
results in sig(uj) = swap for all j ∈ {0, . . . , 13} as follows. By sup(f0,3) =
sup(f1,3) = 1 and sig(v) = swap we obtain sup(f0,2) = sup(f1,2) = 0 which with
sup(f0,1) = sup(f1,1) = 0 implies sig(z0), sig(z1) ∈ {nop, res, free}. Moreover, by
sig(z0), sig(z1) ∈ {nop, res, free} and sup(f2,1) = 0 we get sup(f2,3) = 0 which
with sup(f2,4) = 1 implies sig(z2) ∈ {out, set, swap}. By sig(z0) ∈ {nop, res, free}
and sup(gi,1) = 0, we get sup(gi,2) = 0. Furthermore, sig(z1) ∈ {nop, res, free}
and sup(gi,4) = 1 yields sig(z1) = nop and sup(gi,3) = 1. This implies sig(ui) ∈
{out, set, swap}. Finally, by sup(ni,1) = 0 and sig(z2) ∈ {out, set, swap}, we get
sup(ni,1) = 1 and, by sup(ni,4) = 1 and sig(v0) = swap, we have sup(ni,3) = 0.
Since sig(ui) ∈ {out, set, swap}, this yields sig(ui) = swap for all i ∈ {0, . . . , 13}.
The gadgets Ti,0, . . . , Ti,6, where i ∈ {0, . . . ,m−1}, use sig(k) = inp and sig(ui) =
swap for all i ∈ {0, . . . , 13} similarly to the ones of Theorem 6 to ensure that
M = {X ∈ V (ϕ) | sig(X) = swap} is a one-in-three model of ϕ: By sup(ti,4,6) =
sup(ti,5,6) = sup(ti,6,6) = 1 and sig(u5) = sig(u6) = swap we have sup(ti,4,4) =

sup(ti,5,4) = sup(ti,6,4) = 1 for all i ∈ {0, . . . ,m − 1}. Thus, if X ∈ V (ϕ), s X s′

and sup(s) �= sup(s′) then sig(X) = swap. Using this, one argues in a manner
quite similar to that of the proof of Theorem 6 that Ti,0, . . . , Ti,6 collaborate in
such a way that there is exactly one variable event X ∈ {Xi0 ,Xi1 ,Xi2} such that
sig(X) = swap. Thus, M is a corresponding model. Moreover, if sig(k) = out and
sup(h3,3) = 1 then we obtain again that sig(ui) = swap for all i ∈ {0, . . . , 13}
which also guarantees that M is a searched model.

Conversely, if M is a one-in-three model of ϕ then we can define analogously
to Theorem 6 a τ -region solving α. ��

Theorem 8 ([12]). For any fixed g ≥ 1, deciding if a g-bounded TS A is τ -
solvable is NP-complete if τ ∈ {nop, inp, out} ∪ {used, free}.

Proof. The claim follows directly from our result of [12]. There we use 1-bounded
cycle free gadgets to prove that synthesis of (pure) b-bounded Petri nets is NP-
complete. The joining of [12] yields a 2-bounded TS. However, it is easy to see
that the 1-bounded joining of this paper fits, too. The (pure) 1-bounded Petri
net type is isomorphic to {nop, inp, out, used} ({nop, inp, out}). By symmetry,
τ -solving ESSP atoms by used is equivalent to solving them by free. ��

4 Polynomial Time Results

Theorem 9. For any fixed g < 2, one can decide in polynomial time if a g-
bounded TS A is τ -solvable if τ = {nop, inp, set} or τ = {nop, inp, set, used} or
τ = {nop, out, res} or τ = {nop, out, res, free} or τ = {nop, set, res} ∪ ω with
non-empty ω ⊆ {inp, out, used, free}.

Proof. If A is τ -solvable then no event e of A occurs twice in a row. Otherwise,
the SSP atom (s′, s′′) of a sequence s e s′ e s′′ is not τ -solvable. Thus, in what
follows, we assume that A has no event occurring twice in a row. Moreover, it

The Complexity of Synthesizing nop-Equipped Boolean 121

is easy to see that a 1-bounded TS A = s0
e1 . . . em sm is a simple directed

path on pairwise distinct states s0, . . . , sm or a directed cycle, that is, all states
s0, . . . , sm except s0 and sm are pairwise distinct. This proof proceeds as fol-
lows. First, we assume that τ = {nop, inp, set} and that A is a directed cycle and
argue that the τ -solvability of a given ESSP atom (k, s) or a SSP atom (s, s′) of
A is decidable in polynomial time. Secondly, we argue that the presented algo-
rithmic approach is applicable to directed paths, too. Thirdly, we show that the
procedure introduced for {nop, inp, set} can be extended to {nop, inp, set, used}.
By Lemma 2, this proves the claim for {nop, out, res} and {nop, out, res, free},
too. After that we investigate the case where τ = {nop, set, res} ∪ ω with non-
empty ω ⊆ {inp, out, used, free}. We argue that it is sufficient to decide the
{nop, inp, res, set}- and {nop, res, set, used}-solvability of A and that this is doable
in polynomial time. The corresponding procedures again modify those intro-
duced for {nop, inp, set}.

Let τ = {nop, inp, set} and A be 1-bounded (cycle) TS with event k ∈ E(A)
that occurs m times. Since A is a cycle, we can assume that k occurs at

A’s initial state: ι k . Moreover, since k does not occur twice in a row, its
occurrences partition A into m k-free subsequences I0, . . . , Im−1 such that

Ii = si
0

yi
1 si

1 . . . si
ni−1

yi
ni si

ni
, i ∈ {0, . . . , m − 1}, and sm−1

nm−1
= ι, cf. Fig. 6.

Obviously, defining sup(ι) = 1, sig(k) = inp and sig(e) = set for all e ∈
E(A) \ {k} inductively yields a region (sup, sig) solving the ESSP atoms (k, s)

where k s. Thus, it remains to consider the case ¬(k s). Since ¬(k s),
there is an i ∈ {0, . . . , m−1} such that s is a state of the i-th subsequence Ii. In
particular, there is a j ∈ {1, . . . , ni −1} such that s = si

j . The state si
j divides Ii

into the sequences I0i = si
0

yi
1 . . .

yi
j si

j and I1i = si
j

yi
j+1 . . .

yi
ni si

ni
, cf. Fig. 6.

If (sup, sig) is a region that solves α then sig(k) = inp and sup(si
j) = 0 is

true. This implies for all � ∈ {0, . . . , m − 1} that sup(s�
0) = 0 and sup(s�

n�
) = 1.

Thus, it remains to define the signature of the events of
⋃m−1

�=0 E(I�) such that

0 sig(y�
1) . . .

sig(y�
n�

) 1, for all � ∈ {0, . . . , m − 1} \ {i}, and 0 sig(yi
1) . . .

sig(yi
j) 0

and 0 sig(yi
j+1) . . .

sig(yi
ni

) 1.
If there is for all � ∈ {0, . . . , m − 1} \ {i} an event e� ∈ E(I�) such that

e� �∈ E(I0i) and if there is an event ei ∈ E(I1i) so that ei �∈ E(I0i) then sup(ι) = 1,

Fig. 6. A sketch of a cyclic 1-bounded input A with ESSP atom α = (k, si
j).

122 R. Tredup

sig(k) = inp, sig(e�) = set for all � ∈ {0, . . . , m − 1}, and sig(e) = nop for all
e ∈ E(A) \ {k, e0, . . . , e�} yields a τ -region (sup, sig) of A that solves α. Clearly,
whether A satisfies this property is decidable in polynomial time.

Otherwise, there is a sequence I ∈ {I0, . . . , Ii−1, I
1
i , Ii+1, . . . , Im−1} so that

E(I) ⊆ E(I0i). Thus, if (sup, sig) is a τ -region that solves α then there is a
� ∈ {1, . . . , j−1} such that sig(yi

�) = set. Consequently, there has to be a �′ ∈ {�+
1, . . . , j} such that sig(yi

�′) = inp and, in particular, sig(yi
�′′) = nop for all �′′ ∈

{�′ + 1, . . . , j}. Using this, one finds that (sup, sig) implies a region (sup′, sig′)
that solves α and gets along with at most two inp-events. More exactly, defining
sup′(ι) = 1, sig′(k) = sig′(yi

�′) = inp, sig′(e) = nop for all e ∈ {yi
�′+1, . . . , y

i
j} and

sig′(e) = set for all e ∈ E(A)\({k, yi
�′ , . . . , yi

j}) yields a valid τ -region (sup′, sig′)
that solves α. Since (sup, sig) was arbitrary, these deliberations show that in the
second case the atom α is τ -solvable if and only if there is a corresponding
region (sup′, sig′). This yields the following polynomial procedure that decides
whether α is τ -solvable: For � from j to 2 test if (sup�, sig�) (inductively) defined
by sup�(ι) = 1, sig�(yi

�) = inp, sig�(yi
�′) = nop for all �′ ∈ {� + 1, . . . , j} and

sig�(e) = set for all e ∈ E(A) \ ({k, yi
�, . . . , y

i
j}) yields a τ -region of A. If the test

succeeds for any iteration then return yes, otherwise return no.
We can modify this approach to test the τ -solvability of an SSP atom β =

(s, s′) as follows. Since A = ι e1 . . . em ι is a cycle we can assume without loss of
generality that s = ι and s′ = si for some i ∈ {1, . . . , m−1}. The states ι and si

partition A into two subsequences I0 = ι e1 . . . ei si and I1 = si
ei+1 . . . em ι.

If β is solvable by a region (sup′, sig′) such that sup′(ι) = 1 and sup′(si) = 0 then
there is an event e ∈ I0 such that sig(e) = inp. In particular, there is a region
(sup, sig) as follows: sup(ι) = 1, sig(ej) = inp and j ∈ {1, . . . , i}, sig(e�) = nop
for all � ∈ {j + 1, . . . , i} and sig(e) = set for all e ∈ E(A) \ {ej , . . . , ei}. Similar
to the approach for α, we can check if such a region exists in polynomial time.
Moreover, the case where sup(ι) = 0 and sup(si) = 1 works symmetrically.

So far we have shown that the τ -solvability of (E)SSP atoms of A are decid-
able in polynomial time if A is a cycle. If A = ι e1 . . . em sm is a directed
path then its cycle extension Ac has a fresh event ⊕ �∈ E(A) and is defined by

Ac = ι e1 . . . em sm
⊕ ι. The event ⊕ is unique thus an (E)SSP atom of A is

solvable by a τ -region of A if and only if it is solvable by a τ -region of Ac. Thus,
we can decide the solvability of atoms of A via Ac. Altogether, this proves that
the τ -solvability of (E)SSP atoms of 1-bounded inputs is decidable in polynomial
time. Since we have at most |S|2 + |E| · |S| atoms to solve, the decidability of
the {nop, inp, set}-solvability for 1-bounded TS is polynomial.

Similar to the discussion for τ = {nop, inp, set}, one argues that the following
assertion is true: If τ = {nop, inp, set, used} then there is a τ -region (sup′, sig′)
with sig′(k) = used and sup(si

j) = 0 if and only if there is a τ -region (sup, sig)
and an number � ∈ {1, . . . , j} such that sup(ι) = 1, sig(k) = used, sig(yi

�) =
inp, sig(yi

�′) = nop for all �′ ∈ {� + 1, . . . , j} and sig(e) = set for all e ∈
E(A) \ {k, yi

�, . . . , y
i
j}. Clearly, the procedure introduced for {nop, inp, set} can

be extended appropriately to a procedure that works for {nop, inp, set, used}.

The Complexity of Synthesizing nop-Equipped Boolean 123

It remains to investigate the case where τ = {nop, res, set} ∪ ω with non-
empty ω ⊆ {inp, out, used, free}. For a start, let’s argue that deciding the
τ -solvability is equivalent to deciding the {nop, inp, res, set}-solvability or the
{nop, res, set, used}-solvability of A. This can be seen as follows: If (sup, sig) is a
region that solves an ESSP atom α = (k, s) such that sig(k) = inp then there is a
{nop, inp, res, set}-region (sup′, sig′) that solves (k, s), too. The region (sup′, sig′)
originates from (sup, sig) by sup′ = sup, sig′(k) = inp and for all e ∈ E(A)\{k}
by sig′(e) = nop if sig(e) ∈ {nop, used, free}, sig′(e) = res if sig(e) ∈ {inp, res}
and, finally, sig′(e) = set if sig(e) ∈ {out, set}. Similarly, one argues that
α is τ -solvable such that sig(k) = out if and only if it is {nop, out, res, set}-
solvable. Moreover, {nop, inp, res, set} and {nop, out, res, set} are isomorphic thus
τ -solvability with inp or out reduces to {nop, inp, res, set}-solvability. Similarly,
the τ -solvability with used or free reduces to {nop, res, set, used}-solvability. It is
easy to see that the procedure introduced for {nop, inp, set} can be extended to
the types {nop, inp, res, set} and {nop, res, set, used}. The only difference is that
we now search for an event yi

� such that sig(yi
�) = res instead of sig(yi

�) = inp.
Finally, we observe that a SSP atom β = (s, s′) is τ -solvable if and only if it

is {nop, res, set}-solvable. The states s and s′ induce again a partition I0 and I1
of A and we can adapt the approach above to {nop, res, set}. ��

Theorem 10. For any fixed g ∈ N, deciding whether a g-bounded TS A is τ -
solvable is polynomial if one of the following conditions is true:

1. τ = {nop, inp, free} or τ = {nop, inp, used, free} or τ = {nop, out, used} or
τ = {nop, out, used, free} and g < 2.

2. τ = {nop, set, res} ∪ ω and ∅ �= ω ⊆ {used, free} and g < 3.
3. τ = τ ′ ∪ ω and τ ′ ∈ {{nop, set, swap}, {nop, res, swap}, {nop, res, set, swap}}

and ∅ �= ω ⊆ {used, free} and g < 2.
4. τ ∈ {{nop, inp}, {nop, inp, used}, {nop, out}, {nop, out, free}} or τ ∈ T =

{{nop, set, swap}, {nop, res, swap}, {nop, set, res}, {nop, set, res, swap}},

Proof. (1): It is easy to see that A is a loop, A ∼= s e s or that A is cycle
free, since there is an unsolvable SSP atom otherwise. Moreover, if an event e

occurs twice consecutively, s e s′ e s′′, then (s, s′) is not τ -solvable. Thus,
for every e ∈ E(A) there is a s ∈ S(A) such that (e, s) has to be solved by
sig(e) = inp (sig(e) = out) and sup(s) = 0 (sup(s) = 1). If e occurs twice on
the directed path A then such a region does not exist. On the other hand, A
is τ -solvable if every event occurs exactly once. Consequently, A is τ -solvable
if and only if it is 1-bounded and every event occurs exactly once.

(2): Since ESSP atoms of a τ -solvable input A are only solvable by used and free,
we have that if s e s′ ∈ A then s′ e s′′ ∈ A. If s = s′′ �= s′ or if s, s′, s′′

are pairwise distinct then (s, s′) is not τ -solvable. This implies s′ e s′. As
a result, τ -solvable inputs have the shape

124 R. Tredup

Thus, if the loop erasement A′ of A originates from A by erasing all loops
s e s, that is, A′ = ι e1 . . . em sm, then deciding the τ -solvability of A
reduces to deciding if A′ has the τ -SSP and if all ESSP atoms (e, s) with
¬(e s) of A′ are τ -solvable. This is doable in polynomial time by the
approach of Theorem 9.

(3): Since ESSP atoms of an input A are only solvable by used and free, if
s e s′ and s �= s′ then s′ e . If s e s′ e s′′ e s′′′ ∈ A and s, s′, s′′, s′′′

are pairwise different, then the SSP atom (s′, s′′′) is not τ -solvable. As a
consequence, τ -solvable inputs can have at most 3 different states.

(4): Let τ ∈ {{nop, inp}, {nop, inp, used}}. If A is τ -solvable, then for all e ∈
E(A) holds ι e . Otherwise, (e, ι) is not τ -solvable. Similarly, if τ ∈ T ,
then ESSP atoms are not τ -solvable thus, every event occurs at ι. A is g-
bounded. This implies |E(A)| ≤ g. Thus, A has at most 2 · |τ |g τ -regions.
Since g is fixed, τ -synthesis is polynomial by brut-force. By Lemma 2, the
claim follows.

��

5 Conclusion

In this paper, we fully characterize the computational complexity of nop-
equipped Boolean Petri nets from g-bounded TS for any fixed g ∈ N. Our results
show that if τ -synthesis is hard then it remains hard even for low bounds g.
Moreover, they also show that when g becomes very small, sometimes it makes
the difference between hardness and tractability, cf. Fig. 1 §1–§3 and §9, but
sometimes it does not, cf. Fig. 1 §4–§7. In this sense, the parameter g helps to
recognize interactions that contribute to the power of a type. By Theorem 3
and Theorem 9, {nop, inp, set}-synthesis is hard if g ≥ 2 and tractable if g < 2,
respectively. By Theorem 5, {nop, inp, set, free}-synthesis remains hard for all
g ≥ 1. Thus, if restricted to 1-bounded inputs then the test interaction free
makes the difference between hardness and tractability of synthesis. Surprisingly
enough, by Theorem 9, replacing free by used makes synthesis from 1-bounded
TS tractable again. It remains future work, to characterize the computational
complexity of synthesis for the remaining 128 types which do not contain nop.
Moreover, since τ -synthesis generally remains hard even for (small) fixed g, the
bound of a TS is ruled out for FPT-algorithms. Future work might be concerned
with parameterizing τ -synthesis by the dependence number of the searched τ -net:
If N = (P, T, f,M0) is a Boolean net, p ∈ P and if the dependence number dp of
p is defined by dp = |{t ∈ T | f(p, t) �= nop}| then the dependence number d of N
is defined by d = max{dp | p ∈ P}. At first glance, d appears to be a promising
parameter for FPT-approaches because this parameterization puts the problem

The Complexity of Synthesizing nop-Equipped Boolean 125

into the complexity class XP: Since a τ -region of A = (S,E, δ, ι) is determined
by sup(ι) and sig, for each (E)SSP atom α there are at most 2 · |τ |d ·

∑d
i=0

(|E|
i

)

fitting τ -regions solving α. Thus, by |τ | ≤ 8, τ -synthesis parameterized by d is
decidable in O(|E|d · |S| · max{|S|, |E|}).

References

1. Badouel, E., Bernardinello, L., Darondeau, P.: The synthesis problem for elemen-
tary net systems is NP-complete. Theor. Comput. Sci. 186(1–2), 107–134 (1997)

2. Badouel, E., Bernardinello, L., Darondeau, P.: Petri Net Synthesis. Texts in The-
oretical Computer Science. An EATCS Series, Springer (2015)

3. Badouel, E., Darondeau, P.: Trace nets and process automata. Acta Inf. 32(7),
647–679 (1995)

4. Cortadella, J.: Private correspondance (2017)
5. Kleijn, J., Koutny, M., Pietkiewicz-Koutny, M., Rozenberg, G.: Step semantics of

Boolean nets. Acta Inf. 50(1), 15–39 (2013)
6. Montanari, U., Rossi, F.: Contextual nets. Acta Inf. 32(6), 545–596 (1995)
7. Moore, C., Robson, J.M.: Hard tiling problems with simple tiles. Discrete Comput.

Geom. 26(4), 573–590 (2001)
8. Pietkiewicz-Koutny, M.: Transition systems of elementary net systems with

inhibitor arcs. In: Azéma, P., Balbo, G. (eds.) ICATPN 1997. LNCS, vol. 1248,
pp. 310–327. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-63139-
9 43

9. Rozenberg, G., Engelfriet, J.: Elementary net systems. In: Petri Nets. Lecture
Notes in Computer Science, vol. 1491, pp. 12–121. Springer (1996)

10. Schmitt, V.: Flip-flop nets. In: Puech, C., Reischuk, R. (eds.) STACS 1996. LNCS,
vol. 1046, pp. 515–528. Springer, Heidelberg (1996). https://doi.org/10.1007/3-
540-60922-9 42

11. Tredup, R.: The complexity of synthesizing nopequipped boolean nets from g-
bounded inputs (technical report), to appear in CoRR (2019)

12. Tredup, R.: Hardness results for the synthesis of b-bounded Petri Nets. In:
Donatelli, S., Haar, S. (eds.) PETRI NETS 2019. LNCS, vol. 11522, pp. 127–147.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21571-2 9

13. Tredup, R.: Tracking down the bad guys: reset and set make feasibility for flip-flop
net derivatives NP-complete. ICE. EPTCS 304, 20–37 (2019)

14. Tredup, R., Rosenke, C.: Narrowing down the hardness barrier of synthesizing
elementary net systems. In: CONCUR. LIPIcs, vol. 118, pp. 16:1–16:15. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik (2018)

15. Tredup, R., Rosenke, C.: The complexity of synthesis for 43 Boolean Petri Net
types. In: Gopal, T.V., Watada, J. (eds.) TAMC 2019. LNCS, vol. 11436, pp. 615–
634. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14812-6 38

16. Tredup, R., Rosenke, C.: On the hardness of synthesizing Boolean nets. In:
ATAED@Petri Nets/ACSD. CEUR Workshop Proceedings, vol. 2371, pp. 71–86.
CEUR-WS.org (2019)

17. Tredup, R., Rosenke, C., Wolf, K.: Elementary net synthesis remains NP-complete
even for extremely simple inputs. In: Khomenko, V., Roux, O.H. (eds.) PETRI
NETS 2018. LNCS, vol. 10877, pp. 40–59. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-91268-4 3

https://doi.org/10.1007/3-540-63139-9_43
https://doi.org/10.1007/3-540-63139-9_43
https://doi.org/10.1007/3-540-60922-9_42
https://doi.org/10.1007/3-540-60922-9_42
https://doi.org/10.1007/978-3-030-21571-2_9
https://doi.org/10.1007/978-3-030-14812-6_38
https://doi.org/10.1007/978-3-319-91268-4_3
https://doi.org/10.1007/978-3-319-91268-4_3

A Two-Player Asynchronous Game
on Fully Observable Petri Nets

Federica Adobbati, Luca Bernardinello(B), and Lucia Pomello

DISCo, Università degli Studi di Milano - Bicocca, Viale Sarca 336 U14, Milan, Italy
luca.bernardinello@unimib.it

Abstract. A Petri net is distributed if its elements can be assigned to
a set of locations so that each element belongs to exactly one location,
and each transition belongs to the same location as its input places.

We define an asynchronous game played on the unfolding of a dis-
tributed net with two locations, the ‘user’ and the ‘environment’. The
user can control the transitions in its location. A play in the game is a
run in the unfolding, together with a sequence of cuts in that run. The
rules of the game require that the environment satisfies a progress con-
straint: no transition in its location can be indefinitely postponed. In the
general case, the game can be defined so that the user can observe only
some transitions. In this paper, we only consider the case in which all
transitions are observable, and study a reachability problem, in which
the user tries to fire a target transition. We propose an algorithm which
decides if the user has a winning strategy and, if so, computes a winning
strategy.

1 Introduction

The ideas behind this paper were conceived while studying the problem of weak
observable liveness [3,6], where we suppose that a Petri net models a system
comprising a user and an environment; the user controls a subset of transitions,
and observes a subset of transitions. The aim of the user is to force liveness of a
special transition (the target), whatever the behaviour of the environment. The
environment is supposed to guarantee progress of uncontrollable transitions.

The problem can be stated as deciding whether the user has a strategy allow-
ing him to achieve his aim, irrespective of the choices of the environment. The
strategy is formalized as a response function, mapping observations (sequences
of observable transitions) to sets of controllable transitions.

In a first attempt to develop an algorithm for finding a strategy, the problem
was translated into an infinite game on a finite graph, where the finite graph is
derived from the marking graph of the net [3]. Besides the usual problem of state
explosion, this approach hides the potential concurrency in the net, by using an
interleaving semantics.

Hence, the authors started to explore the idea of defining an asynchronous
game, to be played on the unfoldings of Petri nets, in which to encode the

c© Springer-Verlag GmbH Germany, part of Springer Nature 2021
M. Koutny et al. (Eds.): ToPNoC XV, LNCS 12530, pp. 126–149, 2021.
https://doi.org/10.1007/978-3-662-63079-2_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-63079-2_6&domain=pdf
https://doi.org/10.1007/978-3-662-63079-2_6

A Two-Player Asynchronous Game on Fully Observable Petri Nets 127

weak observable liveness problem, but also several other problems, formalized
by defining a suitable aim for the user. Such a game was proposed in [4], where
its application to weak observable liveness was studied.

Other possible applications of such a game could be in the general frame of
verification, adaptation and control of distributed systems; so that, in the case
of a winning strategy for the user with respect to a specific behavioral property,
the system model could be adapted imposing that specific property, for example
by adding an interacting component which implements the user behavior by
synthesising the winning strategy; a reference for this sort of applications could
be for example [12].

In this paper, we consider distributed net systems, in which all choices are
local to one component, restricted to the case of exactly two components, user
and environment, where the user has a sequential behaviour, whereas in the
environment, transitions can be concurrent with each other, and with user’s
transitions.

We propose an asynchronous game played on the unfolding of the system in
a general setting, so that by defining proper strategies, we can adapt the same
model for the verification of different properties. Here we study a reachability
problem, in which the user tries to fire a target transition.

In the general case, in which the user can observe the occurrence of only some
environment’s transitions, the definition of the game on unfolding may allow to
define a winning strategy for the user, whereas this would be not possible by
considering a game based on interleaving semantics. This fact has been briefly
discussed on the basis of an example in [2] and is motivated by the fact that,
in the unfolding, it is possible to distinguish different occurrences of the same
transition, occurrences which can be differently related to other occurrences of
another transition. In this way, the structure of the unfolding, even with partial
observability, may allow to reconstruct the unobservable evolution of the system.

Obviously, the lack of information may even prevent to find a winning strat-
egy; the chances of having a winning strategy for the user increase by observing
as much as possible the behaviour of the environment; and if the user has no
strategy by observing every transitions, there is no hope in the case of partial
observability.

As a first step towards the identification of an algorithm in the general case
of partial observability, in this paper we assume full observability, and propose
an algorithm on the unfolding which decides if the user has a winning strategy
and, if so, it computes such a winning strategy.

The paper, which is an extended, revised version of [1], is structured as
follows. In the next section, we recall the needed notions about Petri nets, dis-
tributed Petri nets, and unfoldings, In Sect. 3 we define the general game, and
the notions of strategy and winning strategy. The problem of controlled reacha-
bility is introduced in Sect. 4, together with the algorithm looking for a winning
strategy. Several approaches to notions of asynchronous games are briefly dis-
cussed in Sect. 5, while prospects for future developments are presented in the
final section.

128 F. Adobbati et al.

2 Petri Nets

Petri nets model concurrent systems. The basic elements of a net are local states
(places) and local transitions. The global state of a net is distributed among its
local states. When a transition occurs, it changes the value of local states in its
neighbourhood. Several types of nets have been defined and studied. Here, we
use 1-safe net systems.

Definition 1. A net is a triple N = (P, T, F), where P and T are disjoint sets.
The elements of P are called places and represented by circles, the elements of
T are called transitions and represented by squares. F is called flow relation,
with F ⊆ (P × T) ∪ (T × P), and is represented by arcs.

Let x ∈ P ∪ T be an element of the net; the pre-set of x is the set •x = {y ∈
P ∪ T | (y, x) ∈ F}, the post-set of x is the set x• = {y ∈ P ∪ T | (x, y) ∈ F}.

We assume that any transition has non-empty pre-set and post-set: ∀t ∈ T ,
•t �= ∅ and t• �= ∅.

A net is infinite if P ∪ T is infinite, finite otherwise.
Two transitions, t1 and t2, are independent if (•t1 ∪ t•1) and (•t2 ∪ t•2) are

disjoint.
A net N ′ = (P ′, T ′, F ′) is a subnet of N = (P, T, F) if P ′ ⊆ P , T ′,⊆ T , and

F ′ is F restricted to the elements in N ′.

Definition 2. A net system is a quadruple Σ = (P, T, F,m0) consisting of a
finite net N = (P, T, F) and an initial marking m0 : P → N.

A transition t is enabled at a marking m, denoted m[t〉, if, for each p in •t,
m(p) > 0. A transition t, enabled at m, can occur (or fire) producing a new
marking

m′(p) =

⎧
⎪⎨

⎪⎩

m(p) + 1 if p ∈ t• \ •t
m(p) − 1 if p ∈ •t \ t•

m(p) otherwise

A marking m′ is reachable from another marking m, if there is a sequence
t1t2 . . . tn such that m[t1〉m1[t2〉 . . . mn−1[tn〉m′; in this case, we write m′ ∈ [m〉.
The set of reachable markings is the set of markings reachable from the initial
marking m0, denoted [m0〉.

A net system is 1-safe if, for each reachable marking m, and each place p,
m(p) ≤ 1. Markings in 1-safe net systems can, and will be, considered as subsets
of places.

In a net system, two transitions, t1 and t2, are concurrent at a marking m if
they are independent and both enabled at m.

The non sequential behaviour of 1-safe net systems can be recorded by occur-
rence nets, which are used to represent by a single object the set of potential
histories of a net system. In the following, by F ∗ we denote the reflexive and
transitive closure of F .

Two elements x, y ∈ P ∪ T are said to be in conflict, denoted x#y, iff there
exist t1, t2 ∈ T : t1 �= t2, t1F

∗x, t2F
∗y ∧ ∃p ∈ •t1 ∩ •t2.

A Two-Player Asynchronous Game on Fully Observable Petri Nets 129

Definition 3. A net N = (B,E, F) is an occurrence net if

– for all b ∈ B, |•b| ≤ 1
– F ∗ is a partial order on B ∪ E
– for all x ∈ B ∪ E, the set {y ∈ B ∪ E | yF ∗x} is finite
– for all x ∈ B ∪ E, x#x does not hold

We will say that two elements x and y, x �= y, of N are concurrent, and write
x co y, if they are not ordered by F ∗, and they are not in conflict.

By min(N) we will denote the set of minimal elements with respect to the
partial order induced by F ∗.

A B-cut of N is a maximal set of pairwise concurrent elements of B. B-cuts
represent potential global states through which a process can go in a history of
the system. By analogy with net systems, we will sometimes say that an event
e of an occurrence net is enabled at a B-cut γ, denoted γ[e〉, if •e ⊆ γ. We will
denote by γ + e the B-cut (γ\•e) ∪ e•. A B-cut is a deadlock cut if no event is
enabled at it.

Let Γ be the set of B-cuts of N . A partial order on Γ can be defined as
follows: let γ1, γ2 be two B-cuts. We say γ1 < γ2 iff

1. ∀y ∈ γ2∃x ∈ γ1 : xF ∗y
2. ∀x ∈ γ1∃y ∈ γ2 : xF ∗y
3. ∃x ∈ γ1,∃y ∈ γ2 : xF+y

In words, γ1 < γ2 if any condition in the second B-cut is or follows a condition of
the first B-cut and any condition in the first B-cut is or comes before a condition
of the second B-cut (and there exists at least one condition coming before).

A sequence of B-cuts, γ0γ1 . . . γi . . . is increasing if γi < γi+1 for all i ≥ 0.
We will say that an event e ∈ E precedes a B-cut γ, and write e < γ, iff

there is y ∈ γ such that eF+y. In this case, each element of γ either follows e or
is concurrent with e in the partial order induced by the occurrence net.

Definition 4. A branching process of Σ = (P, T, F,m0) is an occurrence net
N = (B,E, F), together with a labelling function μ : B ∪ E → P ∪ T , such that

– μ(B) ⊆ P and μ(E) ⊆ T
– for all e ∈ E, the restriction of μ to •e is a bijection between •e and •μ(e);

the same holds for e•

– the restriction of μ to min(N) is a bijection between min(N) and m0

– for all e1, e2 ∈ E, if •e1 = •e2 and μ(e1) = μ(e2), then e1 = e2

A run of Σ is a branching process (N,μ) such that the conflict relation of the
underlying occurrence net is empty.

For γ a B-cut of N , the set {μ(b) | b ∈ γ} is a reachable marking of Σ, and we
refer to it as the marking corresponding to γ.

Let (N1, μ1) and (N2, μ2) be two branching processes of Σ. We say that
(N1, μ1) is a prefix of (N2, μ2) if N1 is a subnet of N2, and

130 F. Adobbati et al.

– min(N1) = min(N2)
– if b ∈ B1 and (e, b) ∈ F2, then e ∈ E1

– if e ∈ E1, and b is either a precondition or a postcondition of e in N2, then
b ∈ B1

For any 1-safe net system Σ, there exists a unique, up to isomorphism, maximal
branching process of Σ. We will call it the unfolding of Σ, and denote it by
unf(Σ) (see [7]).

A run of Σ describes a particular history of Σ, in which conflicts have been
solved. Any run of Σ is a prefix of the unfolding unf(Σ); we will also say that
it is a run on unf(Σ).

In this paper we are interested in Petri nets modelling systems in which a
User controls a subset of transitions, while interacting with an Environment.
Intuitively, this means that the User can decide whether to fire such a transition
when it is enabled.

We also assume that choices among transitions are local either to the Envi-
ronment or to the User, and that transitions controlled by the User are never
concurrent with each other, while they can be concurrent with transitions in the
Environment.

As a formal setting, we refer to the so-called distributed net systems, as
introduced and studied in [5] and in [10].

Definition 5. A distributed net system over a set L of locations is a 1-safe net
system Σ = (P, T, F,m0) together with a map

λ : (P ∪ T) → L

such that for every p ∈ P , t ∈ T , if p ∈ •t, then λ(p) = λ(t).

In this paper, we consider the special case of distributed net systems 〈Σ,λ〉
such that L = {Environment,User}, i.e. of distributed net systems with only
two components, representing the Environment and the User, respectively; we
assume that the User controls all transitions in its location, and these transitions
are never concurrent with each other. From now on, by distributed net system
we will mean a net system satisfying these constraints.

In distributed net systems, when a transition is enabled, it can never be
disabled by the occurrence of transitions belonging to different components. In
the case of a cycle this observation justifies the following lemma.

Lemma 1. Let 〈Σ,λ〉 be a distributed net system with two locations, A and G.
Let m be a marking, and

m1[t1〉m2[t2〉m3[...〉m1

be a firing sequence with λ(ti) = A for each i. Then, if λ(t) = G, and t is enabled
at mi for some i between the two repetitions of m1, then t is enabled at mj for
each mj in the cycle.

A Two-Player Asynchronous Game on Fully Observable Petri Nets 131

The notions of unfolding and run apply in the obvious ways to distributed net
systems. We will use Ec to denote the set of controllable events in the unfolding
(occurrences of controllable transitions, performed by the User), and Enc =
E \ Ec to denote uncontrollable events. Uncontrollable transitions are meant to
represent actions performed by the Environment.

In the graphical representation, controllable transitions and events will be
represented by black squares.

Fig. 1. A distributed net system with two locations

Example 1. Figure 1 shows a distributed net system with two locations. Places
are not explicitly divided into the two components, because their partition can
be inferred by their post-transitions. A prefix of the unfolding of the system is
shown in Fig. 2. Each element of the unfolding is decorated with the label of an
element in the net, with an exponent which distinguishes different occurrences
of the same element. The dotted line suggests that the unfolding goes on by
repeating occurrences of transitions t1 and t2, and of their neighbouring places.

3 An Asynchronous Game on the Unfolding

Let Σ be a distributed net system with two locations, Environment and User.
We assume that the Environment is subject to a progress (or weak fairness)
property: if an uncontrollable transition is enabled, then it will eventually either
fire or become disabled.

We define a game on unf(Σ). A play in the game is a run, weakly fair with
respect to uncontrollable transitions, together with an increasing sequence of
B-cuts, which can be seen as a potential record of the play as observed by an
external entity. Several transitions can occur between two contiguous cuts in the
sequence.

132 F. Adobbati et al.

Fig. 2. The unfolding of the distributed net system in Fig. 1

Definition 6. Let ρ = (Bρ, Eρ, Fρ, μρ) be a run on unf(Σ) and π = γ0, γ1, · · · ,
γi, · · · an increasing sequence of B-cuts. The pair (ρ, π) is said to be a play if:

– ∀e ∈ Enc\Eρ, the net obtained by adding e and its postconditions to ρ is not
a run of unf(Σ);

– ∀e ∈ Eρ there is a B-cut γi ∈ π such that e < γi.

In general, the winning condition for the User is defined by a set of plays. The
significant cases to analyse are those in which the winning set is determined by
a property that we are interested in investigating on the model.

For example, let us suppose that we are interested in knowing if a user is able
to force the occurrence of a target transition once. We can model this problem
as a game in which the User wins a play if the corresponding run contains an
occurrence of the target transition.

Another possible goal of a play, as analysed for example in [9], is to verify if
it is always possible to avoid a certain marking in a controllable system. In this
case the User wins those plays in which there are no cuts associated with that
marking. Whatever the goal of the game is, a strategy is a function formalizing
the behaviour of the User during a play.

In general, one might suppose that the User cannot observe everything in the
system. For instance, it might not directly observe firings of some transitions in
the Environment. In this paper, we suppose that the User can see all occurrences
of transitions. This implies that the User can determine the current cut in the
unfolding on the basis of the transition occurrences observed so far; hence, a
strategy can be defined as a map from B-cuts to sets of controllable events.

Definition 7. Let Γ be the set of B-cuts in unf(Σ). A strategy is a function
α : Γ → 2Ec such that for every γ ∈ Γ and for every e ∈ Ec, if e ∈ α(γ), then e
is enabled in γ.

Definition 8. Let (ρ, π) be a play. An event e ∈ Ec is finally postponed in
(ρ, π) iff there is a cut γi ∈ π in which e is enabled and such that ∀k ≥ i, γk[e〉.

A Two-Player Asynchronous Game on Fully Observable Petri Nets 133

Definition 9. Let (ρ, π) be a play and α be a strategy. An event e ∈ Ec is finally
eligible in (ρ, π) by α iff there is a cut γi ∈ π such that e ∈ α(γi) and ∀k ≥ i,
e ∈ α(γk).

A play complies with a strategy if all controllable events in the play have been
chosen according to the strategy, and no controllable event is finally postponed
and eligible.

Definition 10. Let ρ = (Bρ, Eρ, Fρ, μρ) be a run in unf(Σ), π = γ1γ2, ... be an
increasing infinite sequence of B-cuts and α be a strategy. The pair (ρ, π) is an
α−play iff:

1. (ρ, π) is a play;
2. For every controllable event e belonging to Eρ, there must be a B-cut γi ∈ π

such that e ∈ α(γi) and γi+1 = (γi\•e) ∪ e•.
3. If |Eρ ∩Ec| < ∞, there is no event e ∈ Ec ∩Eρ finally eligible by α and finally

postponed in the play.

A strategy α : Γ → 2Ec is winning iff the User wins all the α-plays. In general,
if there is a winning strategy, it is not unique.

Example 2. The net system shown in Fig. 1 is distributed, with two locations.
Define a game on its unfolding, shown in Fig. 2, so that the User wins a play if
the play contains an occurrence of t7.

By inspecting the net, it is clear that a winning strategy for the User consists
in waiting for the Environment to choose between t5 and t6, and then fire,
respectively, either t8 or t9. Since the Environment cannot postpone its choice
forever, and will be forced to eventually fire either t3 or t4, the User will be
able to fire t7, and win the game. Formally, the winning strategy can be defined
as follows: α({p11, p

1
6, p}) = {t19}, where p is any occurrence of either p9 or p10,

α({p11, p
1
5}) = {t18}, α({p27}) = {t27}, α({p17, p}) = {t17}, where p is any occurrence

of either p9 or p10, α(γ) = ∅ for any other B-cut γ. In particular, α({p11, p
1
2}) = ∅,

to encode the decision to wait, in the initial cut, for the Environment to choose
its first move. Figure 3 shows an α-play.

4 Controlled Reachability

In this section we apply the general idea of asynchronous game to a specific
reachability problem, and propose an algorithm to determine if the User has a
winning strategy.

Let 〈Σ,λ〉, where Σ = (P, T, F,m0), be a distributed net system. The prob-
lem of controlled reachability consists in determining if the User is able to lead
the system to fire a certain transition once, despite the Environment behaviour,
starting from the initial marking. This can be analysed through a game on the
unfolding. Let t be the target transition; we define as winning condition for the
User the set of plays (ρ, π) in which there is an event e ∈ Eρ labelled with t.

134 F. Adobbati et al.

Fig. 3. An α-play on the unfolding in Fig. 2

A target transition t is controllably reachable in Σ if, and only if, there is a
strategy α on unf(Σ) such that the User wins every α-play. Example 2 above
can be seen as a game of controlled reachability. The strategy discussed in the
example is a winning strategy for this game.

Fig. 4. A distributed net system

Example 3. The net shown in Fig. 4 is distributed, with two locations. Consider
the game of controlled reachability played on its unfolding, shown in Fig. 5,
where the target transition is t4. If the Environment cooperates with the User
by eventually choosing t1, then the target is reached. However, the Environment
can choose t2 at every cut consisting in an occurrence of p1. The Environment
is subject to a weak fairness constraint, but not to a strong fairness constraint.
Hence, irrespective of the strategy chosen by the User, an infinite play made of
repeated occurrences of the cycle p1, t2, p2, t3, p1 is admissible.

A Two-Player Asynchronous Game on Fully Observable Petri Nets 135

Fig. 5. The (prefix of the) unfolding of the net system shown in Fig. 4

In a general case, given a strategy α, there are infinitely many α−plays in
unf(Σ), and some plays could be infinite, hence the exhaustive exploration of
them would take infinite time. We propose an algorithm that, given a distributed
net system and a target transition, establishes if there is a winning strategy for
the controlled reachability of the target and, if so, computes a winning strategy.

4.1 Algorithm for a Winning Strategy

In this section we present the algorithm looking for a winning strategy for the
reachability of a target transition on fully observable systems, and we illustrate
it on the system in Fig. 1, already discussed in Example 2. The algorithm we
present generates a prefix of the unfolding of a given net system, deciding whether
there exists a winning strategy for the User. In the positive case, it gives as
output a strategy as a function on reachable markings; the strategy is initially
associated to B-cuts of the unfolding, but the algorithm works so that, for distinct
cuts corresponding to the same marking, the strategy gives the same answer.

The input data are the following:

– A net in which the transitions are enumerated so that all the uncontrollable
transitions precede all the controllable ones. If the target is a controllable
transition, it must be the first of the controllable transitions.

– The position of the first controllable transition.
– The initial marking m0 of the system.
– The target transition.

The value of these variables is available for all the functions of the algorithm
and does not change during its execution.

The core of the algorithm is the recursive function unf exploration (see
Algorithm 1), which unfolds the net by exploring reachable cuts, and constructs
at the same time a prefix of the unfolding and a strategy.

The function takes five input arguments:

1. γ: the cut that must be analysed;
2. M : the list of markings associated to the cuts already analysed in the current

run;
3. El: the list of events that fired in the current run;

136 F. Adobbati et al.

4. e: the last event added to the current run, leading to γ;
5. sz: the set of events enabled in γ that are part of a cycle or that are in conflict

with events that are in a cycle.

It returns a Boolean variable, that is equal to True if there is a winning strat-
egy, for all the plays passing from the input cut γ consistent with the strategy,
False otherwise. In addition, it possibly modifies the prefix and the strategy,
initially empty, filling them with events, cuts and choices already explored.

The first time that the function is called, the input consists always in the
initial cut γ0 in the unfolding, empty lists for the list of visited markings, the list
of analysed events and the list of events that are part of cycles or in conflict with
them (those events will be discovered during the execution of the algorithm), a
fictitious event i. The function unf exploration uses some auxiliary functions:

– enab n is a function that has an input cut and returns the list of uncontrol-
lable events which are enabled in that specific cut;

– similarly, enab c returns the controllable enabled events.
– extract returns the first element of an input list, and the list deprived of

this element.
– stable zone returns the set of events that can be part of a cycle, and those

in conflict with them.

Let us recall that we denote with γ + e the cut obtained by firing the event
e in the cut γ.

The function constructs every run by adding uncontrollable events until one
of the following cases occurs: (1) the target occurs; (2) a deadlock cut is reached
or a cut is reached in which only transitions that are part of a cycle or that are
in conflict with events in a cycle are enabled; (3) a cut that has been previously
analysed is reached (two subcases are considered); (4) a cut is reached in which
no uncontrollable event is enabled, and some controllable events are enabled; (5)
a cut is reached corresponding to a marking which has already been visited in the
current run, and there are not uncontrollable enabled events that are concurrent
with all the ones that occurred between the two equivalent markings.

In case (1), the current run corresponds to a play won by the User; hence
the function tries to backtrack along choices among uncontrollable events, if
possible. Symmetrically, in case (2), the current run corresponds to a play won
by the Environment; hence, the function tries to backtrack along choices among
controllable events, if possible. In cases (3), the current run is the prefix of a
set of runs that have been already analysed. The User wins or loses according
to the analysis previously done. In case (4), a controllable event is added, and
the exploration restarts from the new cut. Finally, in case (5), if possible, a
controllable event is added, and the exploration restarts from the new cut; if
this is not possible, the run corresponds to a play won by the Environment and
the function tries to backtrack and change the previous controllable choices.

Example 4. Consider the net system shown in Fig. 1, and its unfolding (Fig. 2),
where the ordering on the set of transitions is given by their indices. Starting from

A Two-Player Asynchronous Game on Fully Observable Petri Nets 137

Algorithm 1. Unfolding exploration
function unf exploration(γ, M , El, e, sz)

if e == target then return true
else if γ is a deadlock or enables only transitions in sz then return false
else if γ ∈ Γbad then return false
else if γ ∈ Γgood then return true
else if μ(γ) ∈ M then return explore cut c(γ, M, El)
else if enab n(γ) �= ∅ then

E =enab n(γ)
repeat

e0, E = extract(E)
v = unf exploration(γ + e0, M.append(μ(γ)), E.append(e), e0)
if v == true then

unf = unf ∪[γ, e0, γ + e0]
end if

until E == ∅ ∨ v == false
if v == true then

if γ ∈ ver then
sz =stable zone(E)
v = Unf exploration(γ, M, El, e)

else
Γgood.append(γ)

end if
else

Γbad.append(γ)
end if
return v

else
E =enab c(γ)
repeat

e0, E = extract(E)
v = Unf exploration(γ + e0, M.append(μ(γ)), El.append(e), e0)
if v == true then

unf = unf ∪[γ, e0, γ + e0]
str = str ∪ [γ, e0]

end if
until E == ∅ ∨ v == true
if v == true then

if γ ∈ ver then
sz =stable zone(E)
v = Unf exploration(γ, M, El, e)

else
Γgood.append(γ)

end if
else

Γbad.append(γ)
end if
return v

end if
end function

138 F. Adobbati et al.

the initial B-cut, the algorithm adds the event t15, reaching a cut in which only
controllable transitions are enabled. It then adds t18, reaching the cut {p13, p

1
5},

and starts again adding uncontrollable transitions. This run will lead to the
target event t27, hence it is not necessary to backtrack on controllable events.

The next backtracking step goes back to the initial cut, and starts exploring a
new run by adding t16; from {p11, p

1
6, p

1
10}, the events t11 and t12 fire. This produces

the cut {p11, p
1
6, p

2
10}, that corresponds to a marking that has already been visited.

Hence, the controllable event t18 is added, leading to a cut in which only the cycle
formed by occurrences of t1 and t2 can occur, thus repeating the same marking.
The algorithm backtracks and tries t19. The events t21 and t14 are enabled in
{p14, p

1
6, p

2
10}. Due to the order of the transitions of the net, t21 and t22 occur,

reproducing the same marking. In order to guarantee the progress of the system,
the algorithm adds only events that have been enabled since the first repetition
of the marking associated with the current cut and have never been disabled
from that moment on.

In Example 4, the only event that satisfies these requirements is t14. By pro-
ceeding in this way, the algorithm continues until the target is reached.

In the following, we explain in detail how unf exploration works in a
general step of execution of the algorithm. If γ is a cut of a play on the unfolding,
one of these situations is verified:

1. γ is not a deadlock, it enables events that are not part of cycles or in conflict
with them, has not been previously analysed, it is the first time that the
associated marking is visited in the play, the target has not occurred yet and
there are k uncontrollable enabled transitions to analyse in μ(γ). In this case,
the prefix of the play currently ending with γ is extended in k different plays,
each of them obtained by adding a different uncontrollable event after γ. The
output for this step is True only if the values returned by all recursive calls
on the cuts that immediately follow γ is True.
Considering the system in Fig. 1 and its unfolding (Fig. 2), we find the
described situation in the initial cut of the unfolding: in {p11, p

1
2}, both the

events t16 and t15 are enabled. Therefore, the algorithm extends the current
prefix considering the two plays obtained by adding the two events and the
cuts that follow their occurrence.

2. γ is not a deadlock, μ(γ) has never been analysed in the play, the target
did not fire in the previous part of the play and the only enabled events
that are not part of cycles or in conflict with them are controllable. In this
case, the algorithm analyses the controllable events in the order induced by
enumeration of the transitions in the net, until it finds an extension that
returns True as output or it ends the analysis of all the controllable events
enabled in γ.
Referring to Fig. 2, the cut {p11, p

1
5} enables t18 and t19. The algorithm starts

constructing the play with t18. After verifying that the User wins all the α-
plays passing from the cut {p13, p

1
5}, the function does not continue with the

analysis of t19, and returns the Boolean value True.

A Two-Player Asynchronous Game on Fully Observable Petri Nets 139

3. Either γ is a deadlock, or all the enabled events are part of a cycle or in
conflict with events in a cycle, or γ follows the target transition. These are
base cases for the recursive algorithm. Their occurrence stops the exploration
for that play. If the target fired, the algorithm returns True, in all the other
cases of this situation, it returns False.
In the considered example, all the plays ending with a cut in which there is
an occurrence of p8 are winning for the User (because an occurrence of t7 has
necessarily fired).

4. γ has already been considered in a previous step. In this case, the analysis
stops and the function returns True, if the first analysis of the cut returned
True, and False otherwise. This case is verified in case of concurrency in the
Environment component.

5. μ(γ) was already visited in the play. In this case, the algorithm checks if any
controllable event fired between the two repetitions. If this happens it returns
False. (This is justified by the fact that the victory of the user cannot depend
on the choice of a controllable transition that contributes to a cycle without
the target.) Otherwise, it analyses only the events that are enabled and con-
current with all the ones fired in the cycle. If there are uncontrollable events
among them, then it behaves as in 1; if there are only controllable events, it
behaves as in 2; if there is no event satisfying the requirements, it behaves
like in a deadlock situation.
During the execution of the algorithm on the system in Fig. 1, the cut
{p13, p

1
6, p

3
10} is analysed. The only enabled event is t31, but it is not added

to the play, because it depends on the repeated occurrences of transitions t1
and t2, that create a cycle in the system. Hence, the algorithm returns False
for this particular play. Later, changing the controllable choice, it analyses
the cut {p14, p

1
6, p

3
10}. In this cut, t14 is enabled and concurrent with all the

occurrences of t1 and t2, hence, the algorithm extends the play with it.

The functions explore cut c (Algorithm 2) and f (Algorithm 3) deal with
concurrency. Specifically, explore cut c is called by unf exploration when
a cut associated with a marking repeated in the run is detected. The function f
is called by explore cut c; it takes the current cut, the list of the previously
visited markings, and the list of events that have been fired. It checks whether
a controllable event fired in the cycle; if not, it returns the list E of events
concurrent with all the events occurred after the first cut in the run associated
to the same marking as the current one. The events in E are the only ones
considered by explore cut c to extend the prefix of the run.

In Algorithm 2, there are two more auxiliary functions:

– ENC takes a list of events as input, and returns only the uncontrollable ones.
– Symmetrically, EC takes a list as input, and returns the controllable events

in it.

Both unf exploration and explore cut c are responsible for the con-
struction of the prefix and the strategy. The prefix is updated every time that
unf exploration returns the value True (with the exception of the very first

140 F. Adobbati et al.

call). When this happens, the receiving function appends to the prefix a triple
consisting of its input cut γ, the following cut γ + e that was in input to the
call to the function that just returned True, and the event e. If the added event
e is controllable, then the strategy is also updated. In particular, the algorithm
appends the input cut γ coupled with the controllable transition μ(e) to the
current strategy.

At the end of the execution of unf exploration, if there is a winning
strategy, it is defined on the cuts of the prefix. To complete it, we have to
define it on the markings, detect the parts of the plays corresponding to a cyclic
behaviour on the system and, if the strategy chooses a transition immediately
after them, the algorithm has to fill the strategy, attributing the same choice to
all the markings in the cycle.

4.2 Discussion

In this section, we discuss the correctness of the proposed algorithm.

Lemma 2. Every play exploration ends due to one of the following ending
criteria:

1. The target fires. In this case the User wins all the α−plays with the constructed
prefix.

2. The play reaches a deadlock cut γ before reaching the target. In this case the
User loses the play.

3. The play reaches a cut in which the target has not fired, and the only enabled
transitions can be part of cycles or in conflict with transitions that can be part
of a cycle. In this case the user loses the play.

4. The play reaches a cut γ that was previously analysed.
5. The play reaches a cut γ′ such that there is another cut γ : γ < γ′ for which

μ(γ) = μ(γ′), γ corresponds to the first occurrence of μ(γ) in the play, and
– either γ′ does not enable any event that is concurrent with all the events

occurred between γ and γ′,
– or there is a controllable event e such that γ < e < γ′.

If the prefix is consistent with the strategy, the User loses at least an α−play.

Moreover, if α is a strategy defined on the markings, then, for every prefix of an
α−play determined with one of these criteria, we can decide if the User wins all
the α−plays starting with such a prefix.

Proof. 1. If the target fired in the prefix, then every play with such a prefix is
winning for the User, because it includes the target.

2. If the target does not fire and the play is in a deadlock, the prefix coincides
with the whole play. Since it does not have the target, it is losing for the User.

3. If the target does not fire and the only enabled transitions can be part of a
cycle or in conflict with transitions in cycles, then the user cannot prevent
the environment to remain in the cycles forever (the transitions in a cycle are
uncontrollable by construction). Since the target is not part of this cycle, the
user cannot be sure to reach it.

A Two-Player Asynchronous Game on Fully Observable Petri Nets 141

Algorithm 2. Cuts associated with markings already visited in the prefix
Input: the cut γ that must be analysed, the ordered list M and E of the markings
and events that occurred in the run before γ.

function explore cut c(γ, M, El)
E, Elreap = f(γ, M, El)
if E = ∅ ∨ EC(Elreap) �= ∅ then return false
else

E = f(γ, M)
Enc = ENC(E)
Ec = EC(E)
if Enc �= ∅ then

v = true
repeat

e0, Enc = extract(Enc)
v = unf exploration(γ + e0, M, e0)
if v == true then

unf = unf ∪[γ, e0, γ + e0]
end if

until Enc == ∅ ∨ v == false
if v == true then

Γgood.append(γ)
else

Γbad.append(γ)
end if
ver.append(μ(γ), Elreap)
return v

else
v = false
repeat

e0, Ec = extract(Ec)
v = unf exploration(γ + e0, M, e0)
if v == true then

unf = unf ∪[γ, e0, γ + e0]
str = str ∪ [γ, e0]

end if
until Ec == ∅ ∨ v == true
if v == true then

Γgood.append(γ)
else

Γbad.append(γ)
end if
ver.append(μ(γ), Elreap)
return v

end if
end if

end function

142 F. Adobbati et al.

Algorithm 3. Events that are concurrent with the ones that already fired in
the run
Input: the cut γ that must be analysed and the ordered lists M, El of the markings
and the events that occurred in the run before γ.
Output: list of events that have been enabled from the cut associated with the first
occurrence of the marking μ(γ) to the current cut γ, list of events that occurred in the
run between the two repetitions on μ(γ).

function f(γ, M, El)
i = 0
while M [i] �= μ(γ) do

i = i+1
end while
Elreap = El[i : len(El)]
E = []
for all e ∈enab c(γ) do

if μ(e) enabled in m ∀m ∈ M [i : len(M)] then
E.append(e)

end if
end for

return E, Elreap

end function

Algorithm 4. Full strategy
v = unf exploration(γ0, [], i)
if v == True then

str = cuts to markings()
str = complete strategy()

end if

4. If two prefixes end with the same cut γ, it means that they differ only for the
order in which the concurrent events occurred, and their possible elongations
are the same. The winning condition for the User does not depend on the
order in which events occurred, but only from the presence of the target in
the run. Hence, if the algorithm is requested to analyse a cut for which it has
already determined if α is winning, it can immediately stop and return the
same answer.

5. First, we have to show that if the play does not reach the target, does not
end with a deadlock, and does not reach a cut previously analysed, then this
last criterion is verified. The number of reachable markings in the system is
finite, hence after a number of steps equal at most to the number of reachable
markings, the algorithm analyses a cut γ′, such that μ(γ) = μ(γ′), where γ is a
cut preceding γ′ and belonging to the same play. Let us suppose that k events
are enabled in γ′ and concurrent with all the ones fired between γ and γ′. The
algorithm adds one of these to the play and continues as before. If the play
reaches a cut γ′′ such that μ(γ) = μ(γ′′), then the events that the algorithm
analyses are necessarily strictly less then k, because they should be concurrent

A Two-Player Asynchronous Game on Fully Observable Petri Nets 143

both with the events occurred between γ and γ′ and with those fired between
γ′ and γ′′. Since for every repetition, the number of events satisfying the
requirements to be added decreases, after at most k cuts corresponding to
the same marking μ(γ), the third criterion is satisfied. Notice that this does
not depend on the specific cut: the same reasoning applies to all markings.
The next step is showing that if there is an α−play with such a prefix, then
there is at least an α−play in which the User loses. We first consider the
case in which there are not enabled events concurrent with all the ones in the
cycle. If the prefix follows the strategy α, then the play repeating infinitely
many times the behaviour of the prefix is an α−play and the target never
occurs. We cannot guarantee that the User will lose all the α-plays with such
a prefix, but the fact that there is at least one is enough to state that α is
not a winning strategy for the User. Secondly, we consider the case where a
controllable transition fired between two occurrences of the same marking.
By construction, the algorithm analyses controllable events only when all the
significant uncontrollable events have been fired; hence, there cannot be any
uncontrollable event that is concurrent with the cycle and that leads to the
target, otherwise it would have been analysed before in the prefix. Again, if
the prefix is consistent with the strategy, the play that repeats infinitely often
the cycle is an α−play and does not contain the target.

��
A consequence of Lemma 2 is the termination of the algorithm. We proved that
every prefix constructed by the algorithm is finite. The number of considered
α−plays is also finite, because at every step there is only a finite number of
enabled events to extend the prefix.

By construction, if the algorithm finds a winning strategy, all the runs in the
prefix: (1) are consistent with the strategy, and (2) contain the target.

(1) All the plays in the list are consistent with the strategy. Every time that
the algorithm analyses a cut γ and chooses to extend the prefix with a
controllable event, it explores all the plays including γ and, one by one,
each of the controllable enabled events. It stops when it finds a controllable
enabled event such that, from the cut of the unfolding following this event,
the User has a winning strategy. When this happens, the prefix is updated,
adding the event and the cuts preceding and following it. Also the strategy is
updated, choosing the associated controllable transition in γ. In this way, at
every step, all the parts of runs in the prefix constructed until that moment
are consistent with the strategy updated until that moment. If in γ there
is no controllable enabled event such that, after it, the User has a winning
strategy, then the part of the prefix already generated is not connected to
the initial cut in the unfolding, since the event connecting this part to γ is
not added to the prefix. At the same way, if there is a winning strategy, it
cannot depend on the strategy calculated on the disconnected parts of the
unfolding. If the algorithm finds a winning strategy and a disconnected part
was found, since the algorithm chooses a controllable event in γ only when
it is necessary to win, then there must be another cut in the prefix, that

144 F. Adobbati et al.

precedes γ in the partial order, in which the algorithm adds a controllable
transition that allows the User to avoid γ.

(2) All maximal runs in the prefix contain the target. If a run ends without
the target, then the strategy allowing that run is not winning and must be
changed. If it cannot be changed, then the algorithm will not state that there
is a winning strategy, hence there must be a controllable node in which the
decision previously taken can be changed. When another possible choice is
analysed, all parts of runs depending on the previous one are deleted. Hence
all the remained runs contain the target.

If the algorithm finds a winning strategy, every play in the unfolding consistent
with this strategy is equivalent to an extension of a play in the prefix. This is
shown in two steps.

1. Let us first consider the case without uncontrollable cyclic behaviours of the
system.
The strategy α constructed by the algorithm chooses a controllable transition
only if there are not uncontrollable enabled ones. Let {t1, ..., tn} be a set of
uncontrollable transitions in a play, so that after their occurrence, there are
not other uncontrollable enabled transitions. In whatever order the transitions
are considered, the cut in the unfolding after their occurrence is the same, and
the strategy will choose the same transition, because the following part of the
unfolding is every time visited in the same way. Considering an α−play, there
must be a prefix of its run in the unfolding, because all the uncontrollable
transitions are analysed in all the uncontrollable cuts of the prefix and the
strategy chooses only a transition for every cut, hence the controllable choices
must be the same of the ones considered in the prefix. This is enough to state
that the play is won by the User, because in the common prefix of the run
there is the target transition.

2. If there are uncontrollable cyclic behaviours, such that there is a concur-
rent enabled transition leading to the target, then there is more variety in
the possible α−plays, because the strategy is defined on markings in which
uncontrollable events are enabled. Anyway, if an α-play has a prefix with
the same events of one of the prefixes produced by the algorithm, then it is
won by the User, regardless of the order of the cuts in the play. Some of the
α−plays have a longer uncontrollable part, because if an uncontrollable tran-
sition would be finally enabled, or a controllable transition would be finally
enabled and eligible, there must be a certain point in which it will fire, but
the precise point is unknown. However, since we complete every cycle at least
once and from every cut that is not a repetition all the possible uncontrol-
lable extensions are explored, and since the part of the unfolding starting
from a given cut is isomorphic to the part of the unfolding starting from
every cut corresponding to the same marking, the uncontrollable sequence of
the α−play can be divided in parts such that an isomorphic one has been
considered by the algorithm.

Based on the previous observations, if the algorithm finds a winning strategy,
the proposed strategy is winning in the unfolding.

A Two-Player Asynchronous Game on Fully Observable Petri Nets 145

Finally, we wish to show that if the algorithm states the existence of a winning
strategy and proposes one on the cuts of the prefix, to complete it adding the
same choice to all the markings that are part of a cycle is necessary and does
not change the correctness.

– Let us suppose that a cycle with only uncontrollable transitions is in the
net, and there is a controllable enabled transition that is concurrent with
all the transitions in the cycle and which is necessary for the victory of the
User. The strategy constructed together with the prefix adds the choice of
the controllable transition only in the cut associated to the last repeated
marking. This strategy is incomplete, because the chosen transition is not
finally eligible, since every time that the system is in a marking of the cycle
that is not the one that has been repeated in the prefix, the strategy does not
choose it. To overcome this problem we fill the strategy by adding the choice
of the controllable transition in every marking along the cycle.

– This preserves the correctness of the strategy. Actually, if γ is a cut that in
a certain play is between γ1 and γ2 with γ1 < γ2 and μ(γ1) = μ(γ2) and α′

is the strategy computed by Algorithm 1 and translated on markings, then
necessarily α′(μ(γ)) = α′(μ(γ1)) or α′(μ(γ)) = ∅.
Specifically, if α′(μ(γ)) �= ∅, then it has to be α′(μ(γ)) = α′(μ(γ1)). Let us
suppose that {ti} = α′(μ(γ)), {tj} = α′(μ(γ2)) and ti precedes tj in the
enumeration defined by the input net. Then, ti is not a winning choice in
μ(γ2), but there is a play that leads from γ to γ2 and between these two
cuts only uncontrollable events fire (because the controllable component is
sequential). The algorithm updates the strategy in a cut only if, starting
from that cut, the User is able to win every play. This cannot be the case,
because the play can arrive in γ2 and the User loses the play. Reasoning in
the same way, it cannot be that ti follows tj in the enumeration. Hence it
must be {ti} = α′(μ(γ)) = α′(μ(γ1)).
If μ(γ) is never visited more than once in any run, then α′(μ(γ)) = ∅. We
construct a final strategy α such that α = α′ for every marking m in which
α′(m) �= ∅ and α(m′) = α′(m1) for all m′ such that there is a play in the
unfolding with two cuts γ1, γ2 : μ(γ1) = μ(γ2) = m1 and a cut γ : μ(γ) = m′

and γ1 < γ < γ2.
The marking m′ could be reached in more than one run, and if it is part of
two different uncontrollable cycles, with different repeated markings, there
could be the doubt that α(m′) is not well defined, but this is not possible.
Let us suppose that there is another play in the unfolding with two cuts
γ′
1, γ

′
2 : μ(γ′

1) = μ(γ′
2) = m2 �= m1 and a cut γ′ : μ(γ′) = μ(γ) = m′ and

γ′
1 < γ′ < γ′

2. We have to show that if there is a winning strategy, then
α′(μ(γ1)) = α′(μ(γ′

1)). By contradiction, let us assume {ti} = α′(μ(γ1)),
{tj} = α′(μ(γ′

1)) and ti precedes tj in the enumeration (the opposite case
is equivalent due to the symmetry of definitions). Then, ti is not a winning
choice for γ′

1, otherwise it would have been chosen before analysing tj . If ti is
not winning for γ′

1, then it cannot be winning from γ1, because, starting from
γ1 the play can arrive in γ firing only uncontrollable transitions, and from γ

146 F. Adobbati et al.

there is a path made only by uncontrollable transitions to a cut γ′′
2 such that

μ(γ′′
2) = μ(γ′

1). Since the unfolding starting from γ′′
2 is isomorphic to the one

starting from γ′
1, if the strategy is not winning from γ′

1 it cannot be winning
from γ′′

2 and therefore from γ1.

4.3 Experiments

This work is mainly theoretical, and a full experimental evaluation of the algo-
rithm is beyond the aim of this paper. However, we tested the algorithm on some
preliminary examples, and we plan to extend experimentation in future works.
The set of the examples that we considered and a Python implementation of the
algorithm are available at https://github.com/MC3-lab/PNstrunf.

The parameters of the net that we think are important to consider are: (1)
the number of elements in the net; (2) the number of controllable transitions;
(3) the level of concurrency, i.e. the maximum number of concurrent transitions
that are enabled in a reachable marking; (4) the presence of cycles. We evaluate
the performance of the algorithm by showing the total number of calls to the
functions unf exploration and explore cut c, and the number of cuts in
the prefix at the end of the execution. The results of the experiments are shown in
Table 1. In all these cases, the User has a winning strategy. From the results, we
see that the level of concurrency and the cycles increase the computational cost
of the algorithm. In some cases, cycles raise a lot the number of necessary steps
to arrive at the solutions, without contributing in the research of the strategy
(this is the case in the comparison between the nets bc and bc2). We are currently
working to develop a preprocessing of the net, in order to identify these inactive
part that may not be considered in the research of the strategy.

Table 1. Results of the experiments

Net |P ∪ T | |K| Conc Cycles #calls g dim

Heart 15 2 2 no 10 8

Double heart 26 2 3 No 31 24

Big heart 141 30 2 No 355 126

HeartC 19 2 2 Yes 20 14

bc 23 2 3 No 19 16

bc2 27 2 4 Yes 1882 1162

10conc0 32 0 10 No 5122 1024

10conc1 32 1 10 No 2307 1025

10conc2 32 2 10 No 1028 258

conc 12 2 3 Yes 255 143

https://github.com/MC3-lab/PNstrunf

A Two-Player Asynchronous Game on Fully Observable Petri Nets 147

5 Other Approaches to Asynchronous Games

The general notion of asynchronous game presented in this paper was defined in
[4], where it was applied to a problem of controlled liveness, under the hypothesis
of full observability.

An asynchronous game on Petri nets was also defined by Finkbeiner and
Olderog in [9]. This game is developed for Place/Transition nets, and is played on
their unfoldings. The players are represented by tokens, moving on the places of
the unfolding, divided into two teams: system and environment. System players
have an equivalent function as the User in the game defined by [4] and used
in this paper. Their objective is to guarantee a safety property. For example,
the aim might be to avoid reaching a certain place. The places are divided into
system places, where system players can move, and environment places, reserved
to environment players. The strategy is defined on each place and states which
is the next place where a token has to move. Places are the central elements in
this game, in contrast to the game in [4] where the focus is on transitions.

The information available to the players is another difference. In [4], and in
our approach, this information consists in observed transitions. If a transition
is observable, then the User knows whether the transition occurred or not. If a
transition is unobservable, then there is no way for the User to know whether it
occurred, unless he can infer this from observations. In the game described by
Finkbeiner and Olderog, the players communicate by means of synchronizations.
Participating in the same transition, they acquire the knowledge of the past of
the players that take part to the synchronization. One or the other approach
may be more convenient for the User/System depending on the structure of the
system and on the property that has to be verified.

In [9] a strategy for the System is defined on the unfolding of the net system,
and must be fair, i.e. if a System player can move, then it must do it. This
requirement avoids the trivial case in which safety is verified just because the
players refuse to move. In the game in [4] for a similar reason, progress is granted
by the environment. In that case the User wishes to force a transition to occur
infinitely often. In almost every case this goal would be impossible to reach if
the environment does not fire any of its transitions.

Under the restricted hypothesis of just one environment player (and an arbi-
trary number of system players), and complete information, Bernd Finkbeiner,
Manuel Gieseking and Ernst-Rüdiger Olderog developed a tool, presented in [8],
finding a strategy for the game as defined in [9]. The tool translates the game
to a standard two-players game over finite graphs.

A different approach for the verification of properties through asynchronous
games was developed by several authors, among which Glynn Winskel in [13]
and Julian Gutierrez in [11]. The game is defined on event structures. An event
structure is a set of events in which a partial order and a conflict relation are
defined. Event structures are in relation with Petri nets used in this paper: given
an occurrence net, there is always an event structure with the same partial order
and the same conflict relations of the events in the occurrence net. The opposite
is also true: constructing an occurrence net in which the partial order between

148 F. Adobbati et al.

events is the same as in an event structure is always possible. However, this
occurrence net is not always equivalent to the unfolding of a Petri net. As in
the game in [9], the two players have limited knowledge of what happens in the
system. When two or more events cause the occurrence of another one, there is
an exchange of information that can be used by the strategy. Gutierrez shows
that the game can be applied to the bisimulation problem and model-checking.

6 Conclusions

In this work we have presented an algorithm for the computation of a strategy
for a reachability problem in a distributed net system with full observability.
The algorithm has been implemented and tested on different nets. The next
step consists in studying its complexity.

We plan to apply the general idea of the game to different problems and to
define proper algorithms to find winning strategies in each case.

On the theoretical side, we will consider the case of partial observability. In
this extended case the definition of a strategy needs to be redefined, because
in general, if only some transitions are observable, the current marking of the
system, and the current cut on the unfolding, are unknown. Moreover, while
with full observability the information given by the observations on the system
or on the unfolding is the same, with partial observability a strategy on the
unfolding may be able to distinguish two different evolutions of the system, even
if the observed transitions are the same. This happens because in the structure
of the unfolding there is a track of the different stories of the system, hence being
able to distinguish two events corresponding to the same transition would mean
being able to reconstruct also the unobservable story of the system up to every
observed event.

In addition, we will study the possibility of implementing the strategy, by
adding causal dependencies between controllable and uncontrollable transitions,
formalizing them with the insertion of new places in the net. If it is possible for
a winning strategy to be implemented in such a way, then the goal of the User
will be reached in every execution of the obtained net system.

Another future generalization is increasing the number of players. It would
be interesting to analyse a game in which more than two players try to reach
a goal, eventually in a cooperative or in a competitive way, and considering a
game in which concurrency is allowed also in the User component.

Acknowledgments. This work has been partially supported by MIUR. The authors
thank the anonymous referees for their useful comments.

A Two-Player Asynchronous Game on Fully Observable Petri Nets 149

References

1. Adobbati, F., Bernardinello, L., Pomello, L.: An asynchronous game on distributed
Petri nets. In: Moldt, D., Kindler, E., Wimmer, M. (eds.) Proceedings of the
International Workshop on Petri Nets and Software Engineering (PNSE 2019),
co-located with the 40th International Conference on Application and Theory of
Petri Nets and Concurrency Petri Nets 2019 and the 19th International Confer-
ence on Application of Concurrency to System Design ACSD 2019 and the 1st
IEEE International Conference on Process Mining Process Mining 2019, Aachen,
Germany, June 23–28, 2019. CEUR Workshop Proceedings, vol. 2424, pp. 17–36.
CEUR-WS.org (2019). http://ceur-ws.org/Vol-2424/paper2.pdf

2. Adobbati, F., Bernardinello, L., Pomello, L.: Asynchronous games on Petri nets
and partial order. In: Cherubini, A., Sabadini, N., Tini, S. (eds.) Proceedings of
the 20th Italian Conference on Theoretical Computer Science, ICTCS 2019, Como,
Italy, September 9–11, 2019. CEUR Workshop Proceedings, vol. 2504, pp. 139–144.
CEUR-WS.org (2019). http://ceur-ws.org/Vol-2504/paper17.pdf

3. Bernardinello, L., Kılınç, G., Pomello, L.: Weak observable liveness and infinite
games on finite graphs. In: van der Aalst, W., Best, E. (eds.) PETRI NETS 2017.
LNCS, vol. 10258, pp. 181–199. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-57861-3 12

4. Bernardinello, L., Pomello, L., Puerto Aubel, A., Villa, A.: Checking weak observ-
able liveness on unfoldings through asynchronous games. In: Moldt, D., Kindler,
E., Rölke, H. (eds.) Proceedings of the International Workshop on Petri Nets and
Software Engineering (PNSE2018), Bratislava, Slovakia, June 24–29, 2018. CEUR
Workshop Proceedings, vol. 2138, pp. 15–34. CEUR-WS.org (2018). http://ceur-
ws.org/Vol-2138/paper1.pdf

5. Best, E., Darondeau, P.: Petri net distributability. In: Clarke, E., Virbitskaite, I.,
Voronkov, A. (eds.) PSI 2011. LNCS, vol. 7162, pp. 1–18. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-29709-0 1

6. Desel, J., Kılınç, G.: Observable liveness of Petri nets. Acta Inf. 52(2), 153–174
(2015). https://doi.org/10.1007/s00236-015-0218-1

7. Engelfriet, J.: Branching processes of Petri nets. Acta Inf. 28(6), 575–591 (1991).
https://doi.org/10.1007/BF01463946

8. Finkbeiner, B., Gieseking, M., Olderog, E.: Adam: causality-based synthesis of
distributed systems. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS,
vol. 9206, pp. 433–439. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
21690-4 25

9. Finkbeiner, B., Olderog, E.: Petri games: synthesis of distributed systems with
causal memory. Inf. Comput. 253, 181–203 (2017). https://doi.org/10.1016/j.ic.
2016.07.006

10. van Glabbeek, R.J., Goltz, U., Schicke-Uffmann, J.: On characterising dis-
tributability. Logical Methods in Comput. Sci. 9(3) (2013). https://doi.org/10.
2168/LMCS-9(3:17)2013

11. Gutierrez, J.: Concurrent logic games on partial orders. In: Beklemishev, L.D., de
Queiroz, R. (eds.) WoLLIC 2011. LNCS (LNAI), vol. 6642, pp. 146–160. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-20920-8 17

12. Ramadge, P., Wonham, W.: The control of discrete event systems. Proc. IEEE
77(1), 81 (1989)

13. Winskel, G.: Distributed games and strategies. arXiv preprint arXiv:1607.03760
(2016)

http://ceur-ws.org/Vol-2424/paper2.pdf
http://ceur-ws.org/Vol-2504/paper17.pdf
https://doi.org/10.1007/978-3-319-57861-3_12
https://doi.org/10.1007/978-3-319-57861-3_12
http://ceur-ws.org/Vol-2138/paper1.pdf
http://ceur-ws.org/Vol-2138/paper1.pdf
https://doi.org/10.1007/978-3-642-29709-0_1
https://doi.org/10.1007/s00236-015-0218-1
https://doi.org/10.1007/BF01463946
https://doi.org/10.1007/978-3-319-21690-4_25
https://doi.org/10.1007/978-3-319-21690-4_25
https://doi.org/10.1016/j.ic.2016.07.006
https://doi.org/10.1016/j.ic.2016.07.006
https://doi.org/10.2168/LMCS-9(3:17)2013
https://doi.org/10.2168/LMCS-9(3:17)2013
https://doi.org/10.1007/978-3-642-20920-8_17
http://arxiv.org/abs/1607.03760

Solving Finite-Linear-Path CTL-Formulas
Using the CEGAR Approach

Torsten Liebke(B) and Karsten Wolf

Universität Rostock, Institut für Informatik, Rostock, Germany
{torsten.liebke,karsten.wolf}@uni-rostock.de

Abstract. Petri nets are an established formal method for modelling
and verifying asynchronous, concurrent and distributed systems. To ver-
ify a specification, given as a temporal logic formula, state space methods
often encounter the state space explosion problem. We propose a veri-
fication technique to solve the CTL query E (φ U ψ) using the Petri
net state equation with a counterexample guided abstraction refinement
(CEGAR) approach. As a side product we show that (EX)kφ formulas
can be solved with the CEGAR approach as well. We use these special
formulas as building bricks to solve the class of finite-linear-path CTL-
formulas. The proposed techniques are strong at invalidating infeasible
behaviour. In addition to this it will often terminate quickly. We are also
introducing quick-checks for solving EG φ under certain circumstances.

Keywords: Petri nets · Verification · Structural analysis · CEGAR ·
ILP

1 Introduction

Explicit model checking algorithms encounter the state space explosion problem.
A different concept to verify the reachability problem was introduced in [8]
and extended by [3,4]. This concept is based on the structure of Petri nets
and decreases the state space explosion problem significantly. It transforms the
problem to an integer linear programming (ILP) problem, which runs iteratively
based on counterexample guided abstraction refinement, proposed in [2].

Due to the fact that ILP-problems can become infeasible, the CEGAR app-
roach is especially good to verify negative results. This makes it a valuable
complement to explicit model checking algorithms, which are in general good
for verifying positive results, due to the on-the-fly effect.

In [6] it is shown that it is beneficial to use specialized routines for com-
mon formulas to increase the number of verifiable problems. We propose two
techniques to solve the CTL queries E(φ U ψ) and (EX)kφ with the CEGAR
approach for Petri nets. Using well known tautologies, also A(φ R ψ) and (AX)kφ
are solvable with these techniques. [6] also shows that only 62.3% of the E(φ
U ψ)/A(φ R ψ) formulas from the Model Checking Contest 2018 [1] are solved
using the explicit model checker LoLA 2 [9]. This is due to the reason that the
c© Springer-Verlag GmbH Germany, part of Springer Nature 2021
M. Koutny et al. (Eds.): ToPNoC XV, LNCS 12530, pp. 150–164, 2021.
https://doi.org/10.1007/978-3-662-63079-2_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-63079-2_7&domain=pdf
https://doi.org/10.1007/978-3-662-63079-2_7

Solving Finite-Linear-Path CTL-Formulas Using the CEGAR Approach 151

on-the-fly effect has no or very limited impact in some cases, e.g. when φ ∧ ¬ψ
holds in the entire state space. For this case, the CEGAR approach we are intro-
ducing will terminate very quickly, stating that the ILP-problem is infeasible
and thus the result of the formula is false.

We use these specialized routines as building bricks to solve a much bigger
class of formulas, namely the finite-linear-path CTL-formulas. This class is char-
acterized by two facts: First, the formulas are ending in a final marking, hence,
they are finite and secondly, they have a linear witness path without branch-
ing. Using tautologies we can again check both the existential and the universal
finite-linear-path formulas.

One drawback is that termination of the introduced approach is not guar-
anteed, which makes the procedure incomplete [8]. This drawback vanishes if
a portfolio approach is applied where traditional algorithms are combined with
the newly introduced methods.

We also introduce some quick-checks for verifying EG φ using the presence
of deadlocks or the absence of certain transition invariants.

2 Basic Definitions

We consider place/transition Petri nets.

Definition 1 (place/transition net). A place/transition net [P, T, F,W,m0]
consists of a finite set P of places, a finite set T of transitions, a set F ⊆
(P × T) ∪ (T × P) of arcs, a mapping W : (P × T) ∪ (T × P) −→ N where
[x, y] /∈ F if and only if W ([x, y]) = 0, and an initial marking m0. A marking is
a mapping m : P −→ N.

Transition t is enabled in marking m if, for all p ∈ P , m(p) ≥ W ([p, t]).
Firing an enabled transition in m yields the marking m′ where, for all p, m′(p) =
m(p) − W ([p, t]) + W ([t, p]). This is denoted m

t−→ m′.

Every Petri net defines a labeled transition system where the set of mark-
ings reachable from m0 form the set of states, m0 is the initial state, and the
firing relation just defined forms the labeled transition relation. We restrict our
considerations to Petri nets where the related transition system is finite.

The incidence matrix of a Petri net N is a matrix CN : P ×T −→ Z where, for
all p ∈ P, t ∈ T , CN (p, t) = W (t, p) − W (p, t). The incidence matrix is involved
in important and well-known results of Petri net theory. If it is clear to which
Petri net the incidence matrix belongs then we only write C.

Definition 2 (Reachability problem). Given is a tuple (N,m,m′) consisting
of a Petri net N and two markings m,m′. A marking m′ is reachable from
marking m in a Petri net N , if there exists a firing sequence w ∈ T ∗ with
m

w−→ m′. The set of all reachable markings in N starting in m is written as
RN (m). The question whether m′ ∈ RN (m) is called the reachability problem.

The feasibility of the Petri net state equation is a necessary condition for a
positive answer to this question.

152 T. Liebke and K. Wolf

Proposition 1 (Petri net state equation). Let w ∈ T ∗ be a firing sequence
of N , that is, the sequence of labels on a path from some marking m to a marking
m′ in the transition system corresponding to N . Then it holds

m + C · ℘(w) = m′

where ℘(w) is a vector and |℘(w)(t)| is the number of occurrences of t in the
sequence w.

In the sequel, we shall refer to ℘(w) as the Parikh vector of w.

Definition 3 (T-invariant). A Parikh vector ℘(w) is called a T -invariant if
C · ℘(w) = 0. If the firing sequence w is executable, we call ℘(w) realizable.

A realizable T-invariant is a cycle in the state space and will not change the
marking.

Definition 4 (Solution space). The solution of the Petri net state equation
m + C · ℘(w) = m′ can be written as the sum of a base solution and a period
vector, which is a linear combination of T-invariants: ℘(w) = b+

∑
i niyi, where

b ∈ N
T is the base solution and ni ∈ N is the coefficient of the T-invariant

yi ∈ N
T [3,8].

3 Increasing and Decreasing Transitions

Consider a formal sum s = k1p1 + · · · + knpn, which we also call atomic propo-
sition. Every marking m turns this sum into the integer number vs(m) =
k1m(p1) + · · · + knm(pn). We can immediately derive from the firing rule of
Petri nets:

Definition 5 (Delta). Let s be a formal sum and t a transition, then Δt,s is
defined as Δt,s = k1C(p1, t) + · · · + knC(pn, t).

Lemma 1. For all markings m, m
t−→ m′ implies vs(m) + Δt,s = vs(m′).

Proof. Apply the Petri net state equation. �	
As we assume the transition system to be finite, there is only a finite range

of values that vs(m) can take. Call an integer number k a lower bound for formal
sum s if, for any reachable marking m, vs(m) ≥ k, and upper bound for s if, for
any reachable m, vs(m) ≤ k. There exist several approaches in Petri net theory
for computing bounds. As an example, we can solve the following optimisation
problem where s is the objective function (to be minimised or maximised) and
the state equation serves as side condition. If the problem yields a solution with
non-diverging value for the objective function, that value is a lower (resp. upper)
bound for s.

Based on Lemma 1, we can identify increasing and decreasing transitions.

Solving Finite-Linear-Path CTL-Formulas Using the CEGAR Approach 153

Definition 6 (Increasing, decreasing). Given an atomic proposition of the
form s ≤ k. Let L be a lower bound and U an upper bound for s. We call
transition t w.r.t. the formal sum s:

1. weakly increasing iff Δt,s < 0
2. weakly decreasing iff Δt,s > 0
3. strongly increasing iff there is an upper bound U for s where Δt,s ≤ k − U
4. strongly decreasing iff there is a lower bound L for s where Δt,s > k − L.

The terminology may sound strange at first glance. However, increasing tran-
sitions have the tendency to turn a false proposition into a true one while decreas-
ing transitions help turning a true proposition into a false one.

Let p ≤ 0 be an atomic proposition where p is the number of tokens on place
p in a Petri net. Then all transitions in the preset of p are strongly decreasing.

Lemma 2. Consider markings m and m′, transition t with m
t−→ m′ and atomic

proposition s ≤ k.

1. If s ≤ k is false in m and true in m′ then t is weakly increasing w.r.t. s.
2. If s ≤ k is true in m and false in m′ then t is weakly decreasing w.r.t. s.
3. If t is strongly increasing w.r.t. s ≤ k then s ≤ k is true in m′.
4. If t is strongly decreasing w.r.t. s ≤ k then s ≤ k is false in m′.

Proof. Regarding 1, we have vs(m) > k and vs(m′) ≤ k. By Lemma 1, we
conclude Δt,s < 0. Regarding 3, we have vs(m) ≥ L (since L is a lower bound).
Hence, vs(m′) = vs(m) + Δt,s ≤ L + Δt,s and, according to Definition 6,
vs(m′) ≤ k. �	

4 CEGAR Approach for Reachability Analysis in Petri
Nets

Abstraction is a powerful method for verifying systems. It omits irrelevant details
of the system behaviours, to simplify the analysis and verification. Finding the
right abstraction is hard. If it is too coarse, the verification might fail and if it
is too fine, the state space explosion problem might occur. A solution is to use
some initial abstraction [2], which is an overapproximation of the original system
and then iteratively refine the abstraction based on spurious counterexamples.

In our case, the Petri net state equation is the initial abstraction for the
reachability problem. Solving the state equation is a non-negative integer linear
programming problem. The objective function for the ILP-problem is the short-
est firing sequence of the Parikh vector f(w) =

∑
t∈T |℘(w)(t)| leading from the

initial marking m to the final marking m′.
The feasibility of this linear system is a necessary condition for reachability,

but not a sufficient one. We distinguish between three different situations:

– If the linear system is infeasible, the necessary condition is violated and the
final marking is not reachable.

154 T. Liebke and K. Wolf

– If the linear system has a realizable solution, then the final marking is reach-
able.

– If the linear system has an unrealizable solution, which is a counterexample,
then the abstraction has to be refined.

If we have an unrealizable solution, then there exists at least one t ∈ T
which fired less than |℘(w)(t)| times. To produce a new solution which avoids
the spurious one, we build a refined abstraction using inequalities for the ILP-
problem.

Definition 7 (Constraints). We define two types of constraints, both being
linear inequalities over transitions [8].

– Jump constraints have the form |ti| < n, with n ∈ N and ti ∈ T where |ti|
represents the firing count of transition t. Using the fact that base solutions
are pairwise incomparable, jump constraints intend to generate a new base
solution.

– Increment constraints have the form
∑k

i=1 ni|ti| ≥ n with ni ∈ Z, n ∈ N, and
ti ∈ T . Increment constraints are used to get a new non-base solution, i.e.,
T-invariants are added, since their interleaving with another sequence w may
turn w from unrealizable to realizable.

Adding the two types of constrains to existing solutions we can traverse
through the solution space and check whether the unrealizable solution of our
linear system becomes realizable or whether the ILP-problem becomes infeasible.

Definition 8 (Partial solutions). Let N = (P, T, F,W,m) be a Petri net
and m′ ∈ RN (m) a reachability problem. A partial solution is a tuple ps =
(Γ, ℘(w), σ, r) with:

– Γ is the set of jump and increment constraints. Together with the state equa-
tion they form the ILP-problem.

– ℘(w) is the minimal solution fulfilling the ILP-problem.
– σ is a firing sequence with m

σ−→ and ℘(σ) ≤ ℘(w).
– r is the remainder with r = ℘(w) − ℘(σ) and ∀t ∈ T : (r(t) > 0 =⇒ ¬m

σt−→).

Partial solutions are produced during the examination of the solution ℘(w)
of the ILP-problem by exploring the state space of N . For this an explicit model
checking algorithm with reachability preserving stubborn sets [7] can be used to
build a tree of reachable markings, such that for all transitions t ∈ T it holds
that they only occur |℘(w)(t)| times. Stubborn sets, which are concerned with
only one ordering of transitions, are very useful here, to avoid the explosion of
the solution space. Each path to a leaf represents a maximal firing sequence of
a new partial solution. If a partial solution has an empty remainder r = 0, it is
a full solution and the reachability problem is satisfied. If no full solution exists,
℘(w) might be realizable by another firing sequence σ′, or by adding a jump
constraint to get to a new base solution, or by adding an increment constraint
to get additional tokens for transitions with r(t) > 0. If all possible partial
solutions are explored and no full solution is found, the reachability problem can
not be satisfied.

Solving Finite-Linear-Path CTL-Formulas Using the CEGAR Approach 155

Theorem 1 (Reachability of solutions). If the reachability problem has a
solution, a realizable solution of the state equation can be reached by constantly
appending the minimal solution with constraints [8].

As stated in [3] it is an open question, whether this procedure always termi-
nates.

5 Solving E (φ U ψ) with the CEGAR Approach

Definition 9 (E(φ U ψ)). Let N = (P, T, F,W,m) be a Petri net and φ and ψ

two propositions. m |= E(φ U ψ) ⇐⇒ ∃w ∈ T ∗ : m
w−→ m′, with ∃i ∈ N ∀j <

i : (mj |= φ) ∧ (mi |= ψ). Which means that in every state along path w, φ is
true until a state is reached where ψ is true.

It is well known that EF ψ can be rewritten as E (true U ψ). To solve E(φ
U ψ), where φ and ψ are atomic propositions, we solve EF ψ with the CEGAR
approach. In addition to this we introduce additional (balance) constraints to
keep φ true along the path. Furthermore we cut-off paths in the exploration of
partial solutions, whenever states are reached where both φ and ψ are false.

Definition 10 (Balance constraints). Given a Petri net N = (P, T, F,W,m)
and an atomic proposition ψ and φ = s0 ≤ k0 ∧ s1 ≤ k1 ∧ · · · ∧ sn ≤ kn,
where si is a formal sum, 0 ≤ i ≤ n and i, k, n ∈ N. Ti = {t ∈ T |Δt,si

�=
0} is the set of transitions which can change the value of si. It contains all
weakly/strongly increasing/decreasing transitions w.r.t. to si. We call Ti,ψ ⊆ Ti

the set of decreasing transitions w.r.t si, which are at the same time increasing
w.r.t ψ: Ti,ψ = {t ∈ Ti|Δt,si

> 0 ∧ Δt,φ < 0}. We define variables δi, which
are 0, if Ti,ψ = ∅ and otherwise are MAX(Δt,si

|t ∈ Ti,ψ). The δi-offset is the
maximum arc weight of all transitions that can change the value of si ≤ ki from
true to false and ψ from false to true. Let θi = ki − vsi

(m) be the offset, which
is the number of tokens that can be consumed from the initial marking and still
leave the truth value of si ≤ ki unchanged. We call ∀si :

∑
t∈Ti

Δt,si
≤ θi + δi

balance constraints w.r.t. si and m.

Fig. 1. The minimal solution for this Petri net and the formula E (p1 > 0) U (p3 > 0)
is t1t2. Since t1 is weakly decreasing w.r.t. p1 > 0, the balance constraint adds the
weakly increasing transition t0 to the solution.

As an example, consider Fig. 1 and the formula E (p1 > 0) U (p3 > 0). Note
that this formula and every other formula can be rewritten into the required

156 T. Liebke and K. Wolf

s ≤ k-format: E (−p1 ≤ −1) U (−p3 ≤ −1). To satisfy the formula, we check
EF p3 > 0, while keeping p1 > 0 true along the path. The minimal solution to
the ILP would be the firing vector (t1, t2), m

t1t2−−→ m′, where m′ satisfies p3 > 0.
But after firing the weakly decreasing transition t1 w.r.t. p1 > 0, a marking
m′′ = (p0, p2) is reached that does neither satisfy p3 > 0 nor p1 > 0. To avoid
this marking, the balance constraint would add the weakly increasing transition
t0 to the solution vector, m

t0t1t2−−−−→ m′, to keep p1 > 0 true.
Balance constraints in general ensure that the sum of all increasing and

decreasing transitions w.r.t. a formal sum s is smaller than the offset, which
is based on the initial marking and the maximal arc weight of all transitions
t ∈ Ti,ψ. In case the offset θi is negative, φ is violated and E(φ U ψ) has the value
of ψ. We detect this case in the initial marking, before we compute the balance
constraints and can return with a definitive answer directly in the beginning.
Balance constraints make sure that φ is not violated and ψ is true in the final
marking. The only transitions which are allowed to violate φ are in the set Ti,ψ

and they have also the effect to turn ψ to true. Due this effect, if such transitions
exist, they tend to occur at the end of the firing sequence, but not exclusively.
We add the balance constraints to our initial abstraction, the state equation and
run the CEGAR algorithm for EF ψ.

Lemma 3. Given a Petri net N = (P, T, F,W,m) and formula φ = s0 ≤ k0 ∧
s1 ≤ k1∧· · ·∧sn ≤ kn, where si is a formal sum and k ∈ N and m |= φ. Adding
to the ILP-problem all balance constraints for φ and checking that θi ≥ 0, then
it is guaranteed that after executing the entire firing sequence given as a solution
℘(w) to the ILP-problem that ψ is true. It also ensures that if a complete firing
sequence exists, φ is true along the path and is only violated, if at all, in the final
marking, where ψ holds.

Proof. Regarding the second claim, we know, based on Definition 6, that only
increasing/decreasing transitions affect si ≤ ki. The offset θi ensures that the
truth value of si ≤ ki stays unchanged. The balance constraint ensures that φ is
not violated minus the δi-offset, which ensures the possibility of a firing sequence
which does not violate φ along the path, until ψ holds.

If the set Ti,ψ is not empty, the δi-offset based on the maximum of Δt,si

ensures that transitions are not ignored in the balance constraint that violate φ
but also turn ψ to true. The additional offset, which is the maximal arc weight
of the transitions in the set, is enough to make sure that only one transition
is allowed to fire, with the effect of making φ false and ψ true. We use the
maximum, since an arc weight, which is not the maximum, will have a smaller
effect and will not change the outcome. Transitions from the set Ti,ψ can also
fire, if they are in a different context, i.e. when they do not turn φ to false.

Theorem 1 ensures that if the complete solution ℘(w) is fired, we get to the
final marking m′ which satisfies ψ. �	

Lemma 3 only ensures that m′ |= ψ, where m′ is the final marking after firing
the entire solution ℘(w). But it does not guarantee that intermediate markings

Solving Finite-Linear-Path CTL-Formulas Using the CEGAR Approach 157

satisfy φ. This is due to the fact that also decreasing transitions w.r.t. φ are
allowed to fire.

Lemma 4. In the exploration of the solution space cutting off paths in markings
m∗, with m∗ |= ¬φ ∧ ¬ψ results in keeping only partial solutions which can
become full solutions.

Proof. Based on Definition 9, marking m∗ |= ¬φ ∧ ¬ψ violates the property
E(φ U ψ). All paths extending m∗ are also violating E(φ U ψ) and no extension
to the path can make the property true. �	

t0
p0

t1

p1

t2
p2

t3
p3

p4

t4 t5

p5

Fig. 2. For the given Petri net and the formula E (p1 + p2 > 0) U (p3 > 0), the
minimal solution (t0, t1) is cut off. With the CEGAR approach we jump to the next
base solution (t2, t3), which is only a partial one. The T-invariant (t4, t5) is added with

the next CEGAR step and provides a full solution, m
t5t2t3(t4)−−−−−−→ m′.

Consider, for example, the Petri net in Fig. 2 and the formula E (p1+p2 > 0)
U (p3 > 0). The minimal solution to the ILP is (t0, t1). After firing t0, a marking
m′ = (p0, p5) is reached that violates p1 + p2 > 0 and p3 > 0. Lemma 4 ensures
that this solution is cut off. There are also no increasing transitions we can add
to this solution. Using the CEGAR approach, we jump to a new base solution,
(t2, t3). But this solution is only a partial solution due to the fact that neither t2
nor t3 can fire. At this point, the CEGAR approach adds the T-invariant (t4, t5)
from which tokens can be borrowed. Now we have a full solution and we get the

path m
t2t3t4(t5)−−−−−−→ m′ which satisfies p1 + p2 > 0 until (p3 > 0) is satisfied.

158 T. Liebke and K. Wolf

Theorem 2. Let N = (P, T, F,W,m) be a Petri net, ψ an atomic proposition
and φ a proposition of the form φ = s0 ≤ k0 ∧ s1 ≤ k1 ∧ · · · ∧ sn ≤ kn, where
si is a formal sum and i, k, n ∈ N and it holds that m |= φ. If E(φ U ψ)
has a realizable solution in the solution space, it can be reached by solving EF
ψ using the CEGAR approach from [8] and by adding all balance constraints to
the initial abstraction and cutting-off all paths in m∗ in the exploration of the
solution space, whenever m∗ with m∗ |= ¬φ ∧ ¬ψ is reached.

Proof. In [8] EF ψ is proved. We constantly add jump and increment constraints
to get to a full solution, such that the final marking m′ of this solution satisfies
ψ, m′ |= ψ. Lemma 3 ensures that we only get solutions, such that after firing
the complete solution ℘(w), φ holds. Lemma 4 makes sure that φ is not violated
along the path. �	

6 Solving (EX)kφ with the CEGAR Approach

Definition 11 ((EX)kφ). Given a Petri net N = (P, T, F,W,m), a proposition
φ and k ∈ N \ {0}. m |= (EX)kφ ⇐⇒ ∃w ∈ T k : m

w−→ mk ∧ mk |= φ. This
means there exists a path m

w−→ mk with |w| = k transitions in it and mk |= φ.

For example for k = 2 this means (EX)2φ = EX EX φ ⇐⇒ ∃t1t2 ∈ T 2 :
m

t1t2−−→ mk ∧ mk |= φ. To solve (EX)kφ, we solve EF φ. In addition to this
we introduce an additional (length) constraint which ensures that the length of
sequence w of the ILP-problem solution ℘(w) is equal to k.

Definition 12 (Length constraint). Given a proposition of the form (EX)kφ
with k ∈ N \ {0} and an atomic proposition φ. We call

∑
t∈T |℘(w)(t)| = k a

length constraint.

The sum of the number of occurrences of all transitions in the Parikh vector
℘(w) should exactly be k. To make the proposition true, marking mk, which is
reached after firing k transitions, must satisfy φ.

Theorem 3. Given a Petri net N = (P, T, F,W,m) and proposition (EX)kφ
with k ∈ N\{0}. If (EX)kφ has a realizable solution in the solution space, it can
be reached by solving EF φ using the CEGAR approach from [8] and by adding
the length constraint to the initial abstraction.

Proof. Based on Definition 11, m |= (EX)kφ ⇐⇒ ∃w ∈ T k ∧m
w−→ m′ ∧m′ |=

φ. The length constraint
∑

t∈T |℘(w)(t)| = k from Definition 12 ensures that
only solutions ℘(w) of the ILP-problem are found, such that the length of the
firing sequence is exactly k and results in the final marking mk |= φ. �	

Solving Finite-Linear-Path CTL-Formulas Using the CEGAR Approach 159

7 Solving Finite-linear-path CTL-formulas
with the CEGAR Approach

Theorems 1-3 are solving simple CTL-formulas. They all have in common that
they have a linear and finite witness path. We use this building bricks to solve
a larger class of CTL-formulas with the CEGAR approach. Namely the class of
finite-linear-path formulas.

Definition 13 (Existential finite-linear-path formula). If φ and ψ are
existential finite-linear-path formulas and ρ is an atomic proposition, then the
following formulas are existential finite-linear-path formulas:

– ρ (the base of the inductive definition);
– EF φ;
– EX φ;
– E(ρ U φ);
– φ ∨ ψ;
– φ ∧ ρ;

The existentially quantified formulas are paired with the universally quan-
tified formulas. These two formulas can be reduced to each other by negation.
Hence, they permit the application of the same verification techniques. The class
of CTL-formulas is extended to the universal finite-linear-path formulas, which
use the path as a counterexample. The class is defined accordingly:

Definition 14 (Universal finite-linear-path formula). If φ and ψ are uni-
versal finite-linear-path formulas and ρ is an atomic proposition, then the fol-
lowing formulas are universal finite-linear-path formulas:

– ρ (the base of the inductive definition);
– AG φ;
– AX φ;
– A(ρ R φ);
– φ ∧ ψ;
– φ ∨ ρ;

It is easy to see that the negation of an existential finite-linear-path for-
mula is indeed a universal finite-linear-path formula and vice versa. That is, we
may restrict subsequent considerations to existential finite-linear-path formulas.
Universal finite-linear-path formulas can be verified by checking their negation.

We introduce the concept of how to solve this class of formulas with an
example. The interesting part of this class are formulas which have nested CTL-
operators, e.g. E (ρ1 U (E (ρ2 U φ))). The idea is to use for each CTL-operator
one state equation with its own set of variables and constraints and then solve
the entire ILP-problem.

In our example the first objective would be to solve the left/outer EU-
formula. That is, we have to reach a marking m′ |= ρ2 while keeping ρ1
true. For this we have to solve the ILP-problem consisting of the state equation

160 T. Liebke and K. Wolf

m+C ·℘(w)1 = m′ and the balance constraints for ρ1. The second objective is to
solve the right/inner EU-formula. Here we are doing the same things as before,
that is, we have to reach a marking m′′ |= φ while keeping ρ2 true. We now
add to the ILP-problem a slightly different state equation, m′ +C ·℘(w)2 = m′′,
where we start in the marking m′, which we reached from the first state equation
and furthermore we introduce a new set of variables ℘(w)2 for our second Parikh
vector to reach the final marking m′′. The balance constraints to keep ρ2 true
are added as well. Both state equations can be linked together into one equation,
m + C · ℘(w)1 + C · ℘(w)2 = m′′.

Definition 15 (ILP-problem for existential finite-linear-path formula).
Let N = (P, T, F,W,m) be a Petri net and φ be an existential finite-linear-path
formula, which contains i ∈ N CTL-operators. We call the following an ILP-
problem for an existential finite-linear-path formula or in short ILPφ:

For all CTL-operators add a new set of variables for the Parikh vector ℘(w)i

and the product of C · ℘(w)i to the state equation:

m + C · ℘(w)1 + . . . + C · ℘(w)i = m′.

Also add for all EU-operators balance constraints and for EX-operators length
constraints based on their corresponding variables.

Once we build the initial ILP-problem we can use the CEGAR approach to
find either a realizable solution or to add enough constraints to make the ILP-
problem infeasible to verify that no solution exists. While realizing the solution
it is important to first use all the transitions from the first Parikh vector ℘(w)1
to keep the structure of the formula in place. ℘(w)1 keeps ρ1 true until ρ2 is
reached. If all transitions from ℘(w)1 are used in the realization we can start
with the transitions of ℘(w)2.

Definition 16 (Realization ordering). Let N = (P, T, F,W,m) be a Petri
net, φ an existential finite-linear-path formula, which contains i ∈ N CTL-
operators and ILPφ the corresponding ILP-problem. To keep the structure of φ in
place while realizing a solution of ILPφ it must hold that ∀j, k ∈ N : 0 ≤ j < k ≤ i
the transitions from ℘(w)j must be realized before the transitions of ℘(w)k. We
call this the realization ordering.

Theorem 4. Let N = (P, T, F,W,m) be a Petri net, φ be an existential finite-
linear-path formula and ILPφ be an ILP-problem for the existential finite-linear-
path formula φ based on Definition 15. If φ has a realizable solution in the
solution space, it can be reached by using Theorems 1–3 with ILPφ as the initial
ILP-problem and using the realization ordering based on Definition 16 for finding
a realizable solution.

Proof. We proceed by induction, according to Definition 13.
Case ρ (atomic proposition): In CTL an atomic proposition is satisfied, if it
holds in the initial marking. Based on Definition 15 and the fact that no CTL-
operator is present, no product of C · ℘(w) is added to the equation. It follows

Solving Finite-Linear-Path CTL-Formulas Using the CEGAR Approach 161

that m = m′, which means that the atomic proposition must hold in the initial
marking.
Case EF φ: This case can be traced back to Case E(ρ U φ) using the tautology
EF φ ⇐⇒ E(TRUE U φ).
Case EX φ: Definition 15 ensures that C ·℘(w) is added to the state equation and
that the length constraint for EX φ is added to the ILP-problem. A witness path
for EX φ is an existential finite-linear-path to the next marking which satisfies φ.
The path extended by a witness path for φ at the final marking (which exists by
induction hypothesis) yields a witness path for EX φ. Theorem 3 makes sure that
if a realizable solution exists, the witness path for EX φ is found and Definition
16 ensures that the witness path is added at the correct position to keep the
structure of the formula in place.
Case E(ρ U φ): This case is similar to the previous one. Definition 15 ensures
that C · ℘(w) is added to the state equation and that the balance constraints
are added to the ILP-problem. A witness path for E(ρ U φ) is an existential
finite-linear-path where ρ is true in every marking until a marking is reached
where φ holds. Theorem 2 makes sure that if a realizable solution exists, the
witness path for E(ρ U φ) is found and Definition 16 ensures that the witness
path is added at the correct marking (which exists by induction hypothesis) to
keep the structure of the formula in place.
Case φ ∨ ψ: If φ is satisfied then there exists a witness path for φ for which the
induction hypothesis may be applied. Otherwise, there is a witness path for ψ
for which again the induction hypothesis applies. A formula like EX φ ∨ ψ is
rewritten to EX φ ∨ EX ψ and both sides are verified separately.
Case φ ∧ ρ: In this case, φ and ρ are satisfied. Since ρ is an atomic proposition,
only the initial marking of the path is concerned. Hence, the induction hypothesis
applied to φ yields the desired result. �	

8 Partially Solving EG φ with the CEGAR Approach

Definition 17 (EG φ). Let N = (P, T, F,W,m) be a Petri net and φ a propo-
sitions. m |= EG φ ⇐⇒ ∃w ∈ T ∗ : m

w−→ m′, with ∀i ∈ N : (mi |= φ). This
means that in every state along a path w, φ is true.

Definition 18 (DEADLOCK). Given a Petri net N = (P, T, F,W,m). N
has a deadlock if there exist a reachable marking from m in which no transition
is activated.

φ is true along a path w, if at least one of two conditions is fulfilled. Either
there exists an infinite path containing a cycle or the path ends in a deadlock.
Precisely:

1. If the path is infinite then there exists a cycle and the path can be split into
two parts w1w2 with m

w1−−→ m′ w2−−→ m′, where w1 is a path leading to a
marking m′, from which a cycle starts, namely w2, which goes back to m′.
Each state in both w1 and w2 satisfies φ and w2 can be repeated infinitely
often.

162 T. Liebke and K. Wolf

2. If the paths ends in a deadlock every state including the last one, the deadlock
state, must satisfy φ.

In both cases we can use the knowledge about the existence of a deadlock
to create necessary or sufficient quick-checks to solve EG φ. If the Petri net has
no deadlocks, the only possibility to satisfy EG φ is if a cycle can be reached
while φ stays true and the cycle keeps φ also true in every state. The cycle is
basically a T-invariant and we can reformulate the problem of solving EG φ into
solving the state equation once and finding a T-invariant while keeping φ true,

m
m+C·℘(w1)=m′
−−−−−−−−−−→ m′ C·℘(w2)=0−−−−−−−→ m′.
Solving the first part, the state equation, is problematic due to fact that

m′ is not known. The reason for this is that there can be exponentially many
T-invariants which keep φ true in every state. In addition to this we would have
to solve the problem of finding a minimal marking to fire a T-invariant, where
minimal is in regard to the entire token number in the marking. It would also
make no difference if minimal is in regard to the componentwise comparison
of markings, meaning that no more token can be removed. To the best of our
knowledge there is no polynomial algorithm known for this problem. We could
use a brute-force-method where we calculate for every sequence of a T-invariant,
which are all permutations, the minimal required markings to fire completely. All
markings can then be compared and we can search for the minimal markings.
The runtime for this method would be exponential. This, in connection with
the possibility of exponentially many T-invariants, is not a suitable approach to
solve EG φ.

But on the other hand the second part can be used to build a necessary
condition check. If no T-invariant exists that keeps φ true and the Petri net has
no deadlocks we know that EG φ can never be true. To check this we can add
to the ILP-problem for finding an invariant an adjusted version of the balance
constraint from Definition 10.

Definition 19 (Minimum constraints). Let N = (P, T, F,W,m) be a Petri
net and a proposition φ = s0 ≤ k0 ∧ s1 ≤ k1 ∧ · · · ∧ sn ≤ kn, where si is a
formal sum, 0 ≤ i ≤ n and i, k, n ∈ N. Ti = {t ∈ T |Δt,si

�= 0} is the set
of transitions which can change the value of si. It contains all weakly/strongly
increasing/decreasing transitions w.r.t. to si. We call ∀si :

∑
t∈Ti

Δt,si
≤ 0

minimum constraints w.r.t. si.

These constraints ensure that the sum of all increasing and decreasing transi-
tions is smaller than or equal to zero. Otherwise the truth value of the proposition
will be changed.

Proposition 2. Given a Petri net N = (P, T, F,W,m) and a proposition φ =
s0 ≤ k0 ∧ s1 ≤ k1 ∧ · · · ∧ sn ≤ kn, where si is a formal sum and i, k, n ∈ N and it
holds that m |= φ. If the Petri net has no deadlocks and if the ILP-problem for
finding a T-invariant, C · ℘(w) = 0 in addition with the minimum constraints
has no solution, then EG φ is also false, m �|= EG φ.

Solving Finite-Linear-Path CTL-Formulas Using the CEGAR Approach 163

Proof. Based on Definition 17 if the Petri net has no deadlocks then the only way
to satisfy EG φ is to find a cycle which keeps φ true in every state. If there exists
such a cycle it must be a T-invariant and based on Definition 3 the equation
C ·℘(w) = 0 must have a solution. The minimum constraints based on Definition
19 ensure that φ stays true in the cycle. If the ILP-problem, C · ℘(w) = 0 plus
the minimum constraints, is infeasible, then no T-invariant, therefore no cycle
exists, that keeps φ true. It follows that EG φ can never be true. �	

In case the Petri net has deadlocks we can build a sufficient quick-check. We
use the fact that EG φ is true if the path ends in a deadlock and every state
along the path satisfies φ. In CTL this condition can be rewritten to E(φ U (φ ∧
DEADLOCK)), where the DEADLOCK predicate can be easily expressed as a
conjunction of disjunctions over atomic propositions.

Proposition 3. Given a Petri net N = (P, T, F,W,m) with deadlocks and an
atomic proposition φ. If the ILP-problem for E(φ U (φ ∧ DEADLOCK)) has a
realizable solution, then EG φ is true, m |= EG φ.

Proof. If the Petri net has deadlocks, then based on Definition 17 EG φ is among
others true, if a path which satisfies φ in every state ends in a deadlock. Definition
9 states that φ is true until ψ holds and ψ is in this case φ ∧ DEADLOCK. �	

9 Conclusion and Future Work

We proposed two promising techniques to solve E(φ U ψ) and (EX)kφ with the
CEGAR approach for Petri nets and used this as building bricks to solve the class
of finite-linear-path CTL-formulas. The main concept is to use constraints on
the Parikh vector. We refine the over approximation iteratively until it becomes
a realizable solution or infeasible. We also introduced quick-checks for solving
EG φ under certain circumstances.

To solve E(φ U ψ), we solve EF ψ and keep φ true in every state along the
path. To keep φ true, we introduced the concept of balance constraints for the
ILP-problem to ensure that an atomic proposition is true after firing the entire
solution vector. Furthermore we used a cut-off criterion to ensure that φ is also
true in every state along the path. For solving (EX)kφ we introduced the concept
of a length constraint, which makes sure that we only get solutions of length k.
The finite-linear-path formulas are using the proposed techniques for solving E(φ
U ψ) and (EX)kφ in addition to an ILP-problem that is build dependent on the
CTL-operators contained in the finite-linear-path formula. To verify EG φ with
a necessary quick-check in the absence of deadlocks we proposed a minimum
constraints which ensure that when no T-invariant is found, EG φ must be
false. As a sufficient quick-check in the presence of deadlocks we introduced the
deadlock-constraint and check if E(φ U (φ ∧ DEADLOCK)) has a realizable
solution. All proposed techniques are based on solving ILP-problems and thus
avoiding the state space explosion problem.

These techniques will be implemented in LoLA 2 [9]. LoLA 2 is an explicit
model checker and is every year on the podium of the Model Checking Contest

164 T. Liebke and K. Wolf

for Petri nets. Once implemented we expect that the proposed approach will
increase the verification performance for this formulas significantly. Especially
in case of a negative result, the procedure will terminate quickly, due to the fact
that the ILP-problem will become infeasible. We expect a similar performance
increase as it was the case for the CEGAR approach for reachability analysis,
where the performance of LoLA 2 increased from solving under 80% to over 90%
in the Model Checking Contest.

Acknowledgements. This study is an extended version of [5]. We thank the anony-
mous reviewers of both PNSE and ToPNoC for their comments.

References

1. Amparore, E.G., et al.: Presentation of the 9th edition of the model checking contest.
In: Tools and Algorithms for the Construction and Analysis of Systems - 25 Years
of TACAS: TOOLympics, Held as Part of ETAPS 2019, 6–11 April 2019, Prague,
Czech Republic, Proceedings, Part III, pp. 50–68 (2019)

2. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: Computer Aided Verification, 12th International Con-
ference, CAV 2000, 15–19 July 2000, Chicago, IL, USA, Proceedings, pp. 154–169
(2000)

3. Hajdu, Á., Vörös, A., Bartha, T.: New Search strategies for the petri net CEGAR
approach. In: Devillers, R., Valmari, A. (eds.) PETRI NETS 2015. LNCS, vol. 9115,
pp. 309–328. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19488-2 16

4. Hajdu, Á., Vörös, A., Bartha, T., Mártonka, Z.: Extensions to the CEGAR approach
on Petri nets. Acta Cybern. 21(3), 401–417 (2014)

5. Liebke, T., Wolf, K.: Solving E (φ U ψ) using the CEGAR approach. In: Moldt,
D., Kindler, E., Wimmer, M. (eds.) Petri Nets and Software Engineering. Interna-
tional Workshop, PNSE 2019, Aachen, Germany, June 24, 2019. CEUR Workshop
Proceedings. CEUR-WS.org, vol. 2424, pp. 47–56 (2019)

6. Liebke, T., Wolf, K.: Taking some burden off an explicit CTL model checker. In:
Donatelli, S., Haar, S. (eds.) PETRI NETS 2019. LNCS, vol. 11522, pp. 321–341.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21571-2 18

7. Schmidt, K.: Stubborn sets for standard properties. In: Application and Theory of
Petri Nets 1999, 20th International Conference, ICATPN 1999, 21–25 June 1999,
Williamsburg, Virginia, USA, Proceedings, pp. 46–65 (1999)

8. Wimmel , H., Wolf, K.: Applying CEGAR to the Petri net state equation. In:
Tools and Algorithms for the Construction and Analysis of Systems - 17th Interna-
tional Conference, TACAS 2011, Held as Part of the Joint European Conferences on
Theory and Practice of Software, ETAPS 2011, 26 March – 3 April, Saarbrücken,
Germany, 2011. Proceedings, pp. 224–238 (2011)

9. Wolf, K.: Petri net model checking with LoLA 2. In: Application and Theory of
Petri Nets and Concurrency - 39th International Conference, PETRI NETS 2018,
24–29 June 2018, Bratislava, Slovakia, Proceedings, pp. 351–362 (2018)

https://doi.org/10.1007/978-3-319-19488-2_16
https://doi.org/10.1007/978-3-030-21571-2_18

Verification of the MQTT IoT Protocol
Using Property-Specific CTL Sweep-Line

Algorithms

Alejandro Rodŕıguez(B), Lars Michael Kristensen, and Adrian Rutle

Department of Computer Science, Electrical Engineering, and Mathematical Sciences,
Western Norway University of Applied Sciences, Bergen, Norway

{arte,lmkr,aru}@hvl.no

Abstract. MQTT is a publish-subscribe communication protocol being
increasingly used for implementing internet-of-things (IoT) applications.
In earlier work we have developed a formal and executable model of the
MQTT protocol using Coloured Petri Nets (CPNs) and performed an ini-
tial verification of behavioural properties. The contribution of this paper
is to investigate the use of the sweep-line method for verification of the
MQTT CPN model in order to alleviate the effect of the state explosion
problem. We formulate the behavioural properties using Computation
Tree Logic (CTL) and show how to formulate a progress measure for the
sweep-line method based on the main phases of the MQTT protocol. To
perform the verification of properties, we provide some property-specific
CTL model checking algorithms compatible with the sweep-line method.

Keywords: Coloured Petri Nets · Modelling · Verification ·
Communication protocols · Internet of Things

1 Introduction

The development of distributed software systems is challenging, and one of
the main approaches to tackle the challenges is to build an executable model
of the system prior to implementation and deployment. Coloured Petri Nets
(CPNs) [13] is a formal modelling formalism convenient for specifying complex
concurrent and distributed systems. CPN Tools [9,15] is a software tool that
supports the construction, simulation (execution), state space analysis, and per-
formance analysis of CPN models. One of the key functionalities of CPN Tools
is the ability to perform model checking [1] of the modelled system. This means
that one can generate the state space (the set of reachable states) of a system
in order to verify key behavioural properties. Temporal logics [23] such as Com-
putation Tree Logic (CTL) and Linear Temporal Logic (LTL) are widely used
to express behavioural properties of systems.

MQTT [2] is a publish-subscribe messaging protocol for IoT suited for
constrained application domains such as Machine-to-Machine communication

c© Springer-Verlag GmbH Germany, part of Springer Nature 2021
M. Koutny et al. (Eds.): ToPNoC XV, LNCS 12530, pp. 165–183, 2021.
https://doi.org/10.1007/978-3-662-63079-2_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-63079-2_8&domain=pdf
https://doi.org/10.1007/978-3-662-63079-2_8

166 A. Rodŕıguez et al.

(M2M) and IoT contexts. MQTT is designed with the aim of being light-weight
and easy to implement. In earlier work [19], we have developed a formal and
executable specification of MQTT motivated by the fact that until now, the
protocol has only been specified using an (ambiguous) natural language specifica-
tion. MQTT contains relatively complex protocol logic for handling connections,
subscriptions, and quality of service levels related to message delivery.

Our initial verification experiments were conducted using ordinary full state
spaces and clearly highlighted the presence of the state explosion problem [8,22].
This was caused by the exponential growth in the number of reachable states of
the system with respect to the number of clients, packets, and topics. A large
part of the model checking research has aimed at developing techniques for allevi-
ating this inherent complexity problem. This includes several different families of
reduction methods such as partial-order reduction methods [7] that reduce the
number of interleaving execution considered, and hash compaction [21] which
provides a compact representation of states with a small probability of not cov-
ering the complete state space. Since the amount of memory is often the lim-
iting factor in model checking, we focus on the family of methods that combat
state explosion by deleting states from memory during state space exploration.
Specifically, we consider the sweep-line method [12] which is based on the idea
of exploiting a notion of progress exhibited by many systems. We focus on CTL
because CPN Tools implements a CTL-based temporal logic called ASK-CTL [3]
which enables queries taking into account both state and event information. Fur-
thermore, CTL is able to capture the behavioural properties of interest for the
MQTT protocol.

The contribution of this paper is twofold: (1) the implementation of the
sweep-line method using the Standard ML (SML) language together with the
ability of performing model checking of certain behavioural properties specified
using tailored CTL sweep-line model checking algorithms based on [17]; and (2)
the application of sweep-line based CTL model checking to our CPN model of the
MQTT IoT protocol. It should be noted that there already exists work on LTL
model checking using the sweep-line method [10], but several of the behavioural
properties that we aim to verify for MQTT are true CTL properties, i.e., not
expressible in LTL [22,24].

The rest of this paper is organised as follows. In Sect. 2 we introduce the
sweep-line method and in Sect. 3 we provide the property-specific CTL model
checking algorithm that we employ for the verification. Section 4 gives a brief
review of the CPN model of the MQTT protocol. We describe the experiments
carried out and the results obtained in Sect. 5. Finally, in Sect. 6, we sum up the
conclusions and outline directions for future work. The reader is assumed to be
familiar with the basic concepts of CPNs and CTL model checking techniques.
This paper is based upon the workshop paper [20] and the conference paper [17].

2 The Sweep-Line State Space Exploration Method

The sweep-line method [4] is aimed at systems for which it is possible to define
a measure of progress based on the states of the system. A progress measure

Verification of the MQTT IoT Protocol Using CTL Sweep-Line Algorithms 167

maps each state of the system into a progress value and is in most cases specific
for the system under consideration. In this paper, we consider the version of
the sweep-line algorithm for monotonic progress measures. The key property of
a monotonic progress measure is that for any given state s, all states reachable
from s have a progress value which is greater than or equal to the progress value
of s. This means that a monotonic progress measure preserves the reachability
relation. Having defined a progress measure of the system makes it possible to
organise the state space into layers such that states that share the same progress
value belong to the same layer.

The basic idea of the sweep-line method is to explore the state space in a
least-progress-first order, one layer at a time, such that once all states in a given
layer have been processed, they are removed from memory and the exploration
proceeds to the next layer [12]. In conventional state space exploration, the states
are kept in memory to recognise already visited states. However, a monotonic
progress measure guarantees that states which have a progress value that is
strictly less than the minimal progress value of those states for which successors
have not yet been calculated can never be reached again. It is therefore safe to
delete such states from memory which significantly reduces the memory usage
during the state space exploration.

The progress exploited by the sweep-line method and formalised in the form
of a progress measure is defined below in Definition 1 where S denotes the set
of system states, s0 ∈ S denote the initial state, s →∗ s′ denotes that s′ ∈ S is
reachable from s ∈ S via some number of transitions, and reach(s0) the set of
states reachable from the initial state.

Definition 1 (Monotonic Progress Measure). A monotonic progress
measure is a tuple P = (O,�, Ψ) such that O is a set of progress values,
� is a total order on O, and Ψ : S → O is a progress mapping such that
∀s, s′ ∈ reach(s0) : s →∗ s′ ⇒ Ψ(s) � Ψ(s′). �

A progress measure is non-monotonic when there is at least one regress edge,
i.e., an edge where the source state has a larger progress value than the des-
tination state. A generalised version of the sweep-line method that can handle
non-monotonic progress measures and regress edges also exists [14], but is not the
focus of our work. It was already proved [12] that the sweep-line method guar-
antees full coverage of the state space, and in the case of a monotonic progress
measure it terminates after having explored each reachable state once. In the
case of a non-monotonic progress measures, termination is still guaranteed but
some states may be explored multiple times.

Algorithm 1 based on [12] specifies the sweep-line algorithm for monotonic
progress measures. The algorithm starts with a hash table of visited states and
a priority queue on progress values containing the states that are still to be
processed. Both are initialized at the beginning with the initial state s0 (lines
2-3). The progress value for the current (initial) layer ψc is also initialized in
line 4. Then, the algorithm executes a loop (lines 5-28) which ends when all the
reachable states have been processed. For each iteration, we select one of the

168 A. Rodŕıguez et al.

Data:
Nodes � Hash table of visited states currently stored.
Unprocessed � Priority queue of unprocessed states.
Layer � List of states processed in the current layer.
ψc � Progress value for current layer.
Φ � Property to be verified.
Result: True if the property is satisfied, false otherwise.

1 begin
2 Nodes.insert(s0)
3 Unprocessed.insert(s0)
4 ψc ←− ψ(s0)
5 while ¬(Unprocessed.isEmpty()) do

/* node with lowest progress measure */

6 s ←− Unprocessed.getMinElement()
7 if ψc � ψ(s) then
8 if ¬ (checkProperty(Layer, Φ)) then
9 return false

10 end
11 forall s′ ∈ Layer do
12 Nodes.delete(s′)
13 end
14 Layer ←− ∅

/* Update progress measure for current layer */

15 ψc ←− ψ(s)

16 end
17 Layer.insert(s)

/* For every successor state of s */

18 forall (t, s′) such that s
t−→ s′ do

19 if ¬(Nodes.contains(s′)) then
20 Nodes.insert(s′)
21 if (ψ(s) � ψ(s′)) then
22 RaiseException(‘Regress edge found’)
23 else
24 Unprocessed.insert(s′)
25 end

26 end

27 end

28 end
29 return true

30 end

Algorithm 1: Sweep-line algorithm for monotonic progress measures

states with the lowest progress value among the unprocessed states (line 6). The
condition in line 7 checks if the progress value of the layer is strictly less than
the progress value of the selected state; if so, we are about to move into the
next layer. This is the point where we invoke the property-specific CTL model

Verification of the MQTT IoT Protocol Using CTL Sweep-Line Algorithms 169

checking algorithm for the property Φ using the checkProperty procedure at
line 8. If the checkProperty determines that the property is violated, then we
return false and the algorithm stops. The implementation of checkProperty

is the subject of the next section. In line 18, we use s
t−→ s′ to denote that the

transition t is enabled in state s, and that the occurrence of t in s leads to the
state s′. If the property is never violated the algorithm returns true at the end
of the execution (line 29).

3 CTL Property Checking Algorithms

CTL [5] is an important branching temporal logic that is sufficiently expressive
for the formulation of an important set of behavioural system properties. Even
though a large set of properties can be specified using the semantics of CTL, there
are some restrictions when applying them with the sweep-line method algorithm.
The challenge of combining CTL model checking with the sweep-line method
is that conventional algorithms for CTL model checking propagate information
backwards from a state to its predecessors [6]. This follows the opposite workflow
than the forward progress-first exploration that the sweep-line method performs.

In this paper, we do not consider the full CTL, but only formulas of the
AG{EF,AF}-fragment that can be obtained from the following grammar, where
p as an atomic state proposition and φ is called a state predicate:

Φ ::=AGψ |ψ
ψ ::=EFφ |AFφ |φ
φ ::= p |φ1 ∧ φ2 |φ1 ∨ φ2 | ¬φ

The formulas expressing behavioural properties to be verified are interpreted
over the paths of the state space as informally explained below:

Property - AGψ “Invariantly”, which holds if ψ holds in all states that are
reachable from the current state.

Property - EFφ “Holds potentially” or “possibly”, which holds if it is possible
to find a state reachable from the current state where φ holds.

Property - AFφ “Holds eventually” which holds if from the current state, a
state satisfying φ is always eventually reached.

Property - AG EFφ “Always possible”, which holds if from any state reachable
from the current state, a state satisfying φ can always be reached.

Property - AG AFφ “Always eventually”, which holds if from any state reach-
able from the current state, a state satisfying φ is always eventually reached.

We say that a formula (property) Φ holds if Φ holds in the initial state s0. To
model check the AFEF and AGAFproperties, we exploit the set of strongly
connected components (SCC). A strongly connected component of a directed
graph is a maximal subgraph determined by nodes that are mutually reachable.
A strongly connected component is terminal if no states in the component has
outgoing edges to states in other components. It should be noted that when

170 A. Rodŕıguez et al.

checking the AGAF and AF properties we implicitly add a self-loop to any
terminal states, i.e. (deadlocked) states without enabled transitions.

Because of the monotonicity of the progress measure, each strongly connected
component only contains nodes belonging to the same layer and is hence always
contained in a single layer. This is formally stated in the proposition below.

Proposition 1. Let P = (O,�, ψ) a monotonic progress measure, SCC be the
set of strongly connected components, and let scc ∈ SCC be a strongly connected
component. Then: ∀s, s′ ∈ scc : ψ(s) = ψ(s′).

Proof. Assume that there exists an scc ∈ SCC and states s, s′ ∈ scc such that
ψ(s) 	= ψ(s′). Hence either ψ(s) 	� ψ(s′) or ψ(s′) 	� ψ(s). Since s and s′ are in
the same scc, then they are mutually reachable and therefore there must exist
a pair of states (si, sj) on the path from either s to s′ or s′ to s such that
ψ(si) 	� ψ(sj). This contradicts the fact that the progress measure is monotonic.

Based on this, we can compute the strongly connected components for a given
layer immediately before we delete the nodes in the current layer and move to
the next one. The algorithm checks the property depending on the form of the
property as outlined below.

Property - AGφ. We check that every node within the layer satisfies φ. If φ
does not hold in one of them, we return false and abort the exploration.

Property - EFφ. If at least one state is encountered that satisfies φ, then true
is returned and the execution finishes. Thus, false will be returned if at the
end of the exploration not a single state satisfying φ has been found.

Property - AG EFφ. For this property, we first compute the SCC of the
given Layer. The property will not be satisfied and therefore the procedure
will finish the execution returning false, if any scc among the SCC of Layer
is terminal and φ does not hold in any of the states contained in scc.

Property - AG AFφ. For this property, we first compute the SCC of the
given Layer. We then remove the states that satisfy φ. If the resulting set of
nodes has a cycle, then the property is violated and therefore the execution
immediately finishes returning false.

Property - AFφ. This property can be checked in a similar fashion as AGAFφ
with the modification that we can truncate the search at SCC where all cycles
include a state satisfying φ.

The two first properties can easily be checked by just inspecting each state
encountered during the sweep-line state space exploration. For verification of the
two other properties, we invoke the procedure checkProperty at the moment
where the algorithm is about the leave the current layer and move into the next
ones. We do not detail the checking of AFφ as it is very similar to AGAFφ as
explained above.

Verification of the MQTT IoT Protocol Using CTL Sweep-Line Algorithms 171

A consequence of Proposition 1 is that SCC can be computed by considering
one layer at a time. Furthermore, Theorem 1 ensures that the sweep-line method
covers all reachable states which means that we will encounter all strongly con-
nected components at some stage. The remaining step consist of linking the
inspection of SCC to the model checking of the AGEF and AGAF properties.
This is done in the proposition below which formalises the requirements infor-
mally introduced above.

Proposition 2. Let SCC be the set of strongly connected components of M ,
SCCT ⊆ SCC the set of terminal strongly connected components, and let φ be
a state predicate. Then:

1. AGEFφ is satisfied ⇔ ∀scc ∈ SCCT ∃s ∈ scc : φ(s)
2. AGAFφ is satisfied ⇔ ∀scc ∈ SCC : scc \ {s ∈ scc : φ(s)} is acyclic

Proof. First we prove 1. Assume that AGEFφ holds and there exists a terminal
scc named scct such that no states in scct satisfy φ. Since all states belong to
some scc, then we can find a path from the initial state to a state s in scct. Since
scct is terminal and do not contain states satisfying φ, then we can no longer
reach states that satisfies φ from s. Hence, AGEFφ cannot hold. Assume that
each terminal scc contains a state satisfying φ and let s be any reachable state.
Since we cannot have cycles that spans multiple SCC and all states belong to
some scc, there must exists a path from the scc to which s belongs to a state s′

in some terminal scc. Within this terminal scc, all states are mutually reachable
and by our assumption at least one state in there satisfies φ. Hence, AGEFφ
holds.

Next we prove 2. Assume that AGAFφ holds and there exists a scc such that
when all states satisfying φ are removed from scc we still have a cycle consisting
of states in scc. In that case, we can find a path s0, s1 . . . s leading to a state
s on this cycle, and we can then extend this to an infinite path by repeating
the states on the cycle to which s belong. Since no state on the cycle satisfy φ,
then AGAFφ cannot hold. Hence, we cannot have such cycles. Assume now
that each strongly connected component becomes acyclic when removing states
satisfying φ. Since all cycles belongs to some strongly connected component,
then we cannot have cycles where no states satisfy φ. Thus, from any states on
an infinite path we must eventually encounter a state satisfying φ which means
that AGAFφ holds.

Based on Proposition 2 we can now specify the checkProperty procedure
which is given in Algorithm 2. The procedure first computes the SCC of the
given layer L. Here any algorithm for computing SCC can be used, and we do
not specify this further. Based on the SCC and Proposition 2, the procedure
then checks whether the property being investigated is violated in which case
false is returned and the entire algorithm terminates. At the end of the algorithm
(line 18), true is returned in case the property was never violated.

172 A. Rodŕıguez et al.

1 begin
2 SCC ← ComputeSCC(Layer)
3 if Φ ≡ AGEFφ then
4 forall scc ∈ SCC do
5 if isTerminal(scc) ∧ ∀s ∈ scc : ¬φ(s) then
6 return false
7 end

8 end

9 end
10 if Φ ≡ AGAFφ then
11 forall scc ∈ SCC do
12 V ← scc \ {s ∈ scc | φ(s)}
13 if hasCycle(V) then
14 return false
15 end

16 end

17 end
18 return true

19 end

Algorithm 2: Checking strongly connected components of current layer

We have not specified the details of the isTerminal and hasCycle pro-
cedures. The isTerminal procedure can be implemented by checking that all
successors of nodes in the scc are contained in the scc. The hasCycle procedure
can be implemented by, e.g., a depth-first search of the nodes in V .

The completeness of the basic sweep-line algorithm and Proposition 1 ensures
that all strongly connected components will eventually have been computed and
inspected in Algorithm 2. Furthermore, Algorithm 2 is a direct implementation
of the two properties stated in Proposition 2. We therefore have the following
theorem concerning the correctness of our algorithm:

Theorem 1. Let P = (O,�, ψ) be a monotonic progress measure, and let Φ ≡
AGEFφ or Φ ≡ AGAFφ. Then Algorithm 1 terminates and Φ is satisfied if
and only if the algorithm returns true.

In Algorithm 2 we have separated the computation of SCC from the check-
ing of the SCC. As an optimisation it is possible to integrate the checking of
the properties of a scc into the scc computation algorithm. This could make it
possible to check the SCC as they are encountered by the scc-algorithm. As a
further optimisation it is also possible to compute the SCC as the layer is being
explored and not at the end of exploring a layer. However, for reason of clarity,
we have decided to separate the two steps in the formulation of the algorithm.

As the continuation of the work presented in [17], we have implemented
Algorithm 1 using the Standard ML language, and integrated it into CPN Tools.
This allows us not only to analyse states spaces of models constructed using
CPN Tools taking advantage of the sweep-line method, but also to verify the

Verification of the MQTT IoT Protocol Using CTL Sweep-Line Algorithms 173

aforementioned behavioural properties. We have also optimised the algorithm, so
every time a property is violated or we know that it cannot be further satisfied,
the execution stops to save time.

4 The CPN MQTT Model

Our aim is to use the property-specific sweep-line model checking algorithms for
CTL from the previous section to verify the key behavioural properties of the
CPN model we have developed of the MQTT protocol [19].

MQTT applies topic-based filtering of messages with a topic being part of
each published message. An MQTT client can subscribe to a topic to receive
messages, publish on a topic, and clients can subscribe to as many topics as they
are interested in. As described in [18], an MQTT client can operate as a publisher
or as a subscriber, and we use the term client to generally refer to a publisher or
a subscriber. The broker [18] is the core of any publish/subscribe protocol and is
responsible for keeping track of subscriptions, receiving and filtering messages,
deciding to which clients they will be dispatched, and sending them to all sub-
scribed clients. The MQTT protocol delivers application messages according to
the three Quality of Service (QoS) levels defined in [2], which are motivated by
the typically needs that IoT applications may have in terms of reliable delivery
of messages.

4.1 Interaction Overview

MQTT defines five main operations: connect, subscribe, publish, unsubscribe
and disconnect. Such operations, except the connect which must be performed
a priori by each of the clients who want to participate in the communication,
are mutually independent and can be triggered in parallel by the clients and
processed by the broker. We have developed the CPN model following modelling
patterns that ensure modularity, and thereby encapsulation of both the protocol
logic and the behaviour of such operations.

In order to show how the clients and the broker interact, we describe the
different actions that clients may carry out by considering an example. Figure 1
shows a sequence diagram for a scenario where two clients connect, perform
subscribe, publish and unsubscribe, and finally disconnect from the broker. The
protocol interaction is as follows:

1. Client 1 and Client 2 request a connection to the Broker.
2. The Broker sends back a connection acknowledgement (CONNACK) to confirm

the establishment of the connection.
3. Client 2 subscribes to topic 1 with a QoS level 1, and the Broker confirms the

subscription with a subscribe acknowledgement message.
4. Client 1 publishes on topic 1 with a QoS level 1. The Broker responds with a

corresponding publish acknowledgement (PUBACK).
5. The Broker transmits the publish message to Client 2 which is subscribed to

the topic.

174 A. Rodŕıguez et al.

Fig. 1. Message sequence diagram illustrating the MQTT phases.

6. Client 2 gets the published message, and sends a publish acknowledgement
back as a confirmation to the Broker that it has received the message.

7. Client 2 unsubscribes to topic 1, and the Broker responds with an unsubscribe
acknowledgement.

8. Client 1 and Client 2 disconnect.

4.2 CPN Model Overview

We now briefly show and discuss the model and its main elements that are
important for the understanding of the work carried out. We refer the reader
to [19] for a detailed description of the MQTT protocol and the MQTT CPN
model. The complete CPN model of the MQTT protocol consists of twenty four
modules organised into six hierarchical levels.

The model is organised following a modelling pattern that ensures modu-
larity and therefore, encapsulation of the protocol logic and behaviour of such
operations. This offers advantages both for readability and understandability of
the model and also, for making it easier to detect and fix errors during the incre-
mental verification. For instance, this has allowed us to make a clear separation
of the different QoS functional logic without having any negative complexity
impact on the model. Note that the verification is incremental in the sense that
we start with a core functionality of the protocol, and then we incrementally add
more operations until we have the complete functionality included. This implies
that we incrementally verify properties associated to each set of the operations.

Figure 2 shows the top-level module of the CPN MQTT model which con-
sists of two substitution transitions (drawn as rectangles with double-lined bor-
ders) representing the Clients and the Broker roles of MQTT. Substitution tran-
sitions constitute the basic syntactical structuring mechanism of CPNs and

Verification of the MQTT IoT Protocol Using CTL Sweep-Line Algorithms 175

Fig. 2. The top-level module of the MQTT CPN model.

each of the substitution transitions has an associated module that models the
detailed behaviour of the clients and the broker, respectively. The name of the
(sub)module associated with a substitution transition is written in the rectan-
gular tag positioned next to the transition.

The two substitution transitions in Fig. 2 are connected via directed arcs to
the two places CtoB and BtoC. The clients and the broker interact by producing
and consuming tokens on the places. The places CtoB and BtoC are designed
to behave as queues. The queue mechanism offers some advantages that the
MQTT specification implicitly indicates. The purpose of this is to ensure the
ordered message distribution as assumed from the transport service on top of
which MQTT operates.

4.3 Client and Broker State Modelling

The colour sets defined for modelling the client state are shown in Fig. 3. The
ClientProcessing submodule in Fig. 4 models all the operations that a client can
carry out. Clients can behave as senders and receivers, and the five substitution
transitions CONNECT, PUBLISH, SUBSCRIBE, UNSUBSCRIBE and DISCONNECT have
been constructed to capture both behaviours.

The place Clients (top-left place in Fig. 4) uses a token for each client to
store its respective state during the communication. The State colour set is
an enumeration type containing the values READY (for the initial state), WAIT
(when the client is waiting to be connected), CON (when the client is connected),
and DISC (for when the client has disconnected). The states of the clients are
represented by the ClientxState colour set which is a product of Client and
ClientState. The colour set ClientState is used to represent the state of a
client and consists of a list of TopicxQoS, a State, and a PID. Using this, a
client stores the topics it is subscribed to, and the quality of service level of

176 A. Rodŕıguez et al.

Fig. 3. Colour set definitions used for modelling client state.

Fig. 4. ClientProcessing submodule.

each subscription. The colour set PID is used for modelling the packet identifiers
which play a central role in the MQTT protocol logic.

Verification of the MQTT IoT Protocol Using CTL Sweep-Line Algorithms 177

Fig. 5. The BrokerProcessing module.

We have structured the broker similarly as we have done for clients. This can
be seen from Fig. 5 which shows the BrokerProcessing submodule. The Connect-
edClients place keeps the information of all clients as perceived by the broker.
This place is designed as a central storage, and it is used by the broker to dis-
tribute the messages over the network. The broker behaviour is different from
that of the clients, since it will have to manage all the requests and generate
responses for several clients at the same time.

5 Model Checking and Experimental Results

In this section we show how we have performed sweep-line based model checking
of the CPN MQTT model and present the results from the experiments.

5.1 Progress Measure

The first aspect to consider is how to define the progress measure of the model.
Since the model runs in an acyclic configuration there is a final state where all
the clients are disconnected and we take advantage of the PID as a way to keep
track of the evolution of the message interchange. We have therefore defined
the progress measure as a combination of the different states the clients can
go through in conjunction with the PIDs. In the experiments, we consider two

178 A. Rodŕıguez et al.

clients, so the initial state is made up of two clients in the READY state and PID
= 0 and the final state is reached when both clients are in a DISC state and the
PID = 3.

Our definition of this progress measure over the possible combinations splits
our state space into 100 layers. We have also experimented with other progress
measures specifications, for instance, just taking into account the states or only
the PIDs which for each such separated choice produces a total of 16 layers. In
our experience, there is a trade-off between the granularity and the size of each
layer, and it is up to the analyst to decide depending on the concrete resources.
Since the progress measure is defined such that the progress values are integers,
we have for the states assigned 1 for READY, 2 for WAIT, 3 for CON and 4 for
DISC, and 1 for PID = 0, 2 for PID = 1, 3 for PID = 2 and 4 for PID = 4. It
is important to note that the clients cannot backtrack to a previous state nor
to a lower PID. For instance, if client 1 reaches the CON state, it can never be
again in the WAIT state. As we need to keep a global notion of progress, we
compute it using the following equation with c1 and c2 being client 1 and client
2, respectively and where B is a base:

ψc = B3 ∗ state(c1) + B2 ∗ pid(c1) + B1 ∗ state(c2) + B0 ∗ pid(c2)

Essentially, we interpret the states and the PIDs of the two clients as a number
where B is required to be larger than the number of states of each client. In our
experiments, we have used B = 10, i.e., the decimal numbering system. With
this, we can obtain a progress value for each possibility (between 1111 and 4444)
and respecting the monotonic ordering of non-regress.

As we have implemented the model in a modular and parameterized fashion,
we are able to control several elements, for instance, the number of clients,
the operations those clients can perform (e.g., connect and subscribe), and the
size of the queues for handling messages. Note that, in order to obtain a finite
state space, we have to limit the number of clients and topics, and also bound
the packet identifiers. The packet identifiers are incremented throughout the
execution of the different phases of the protocol, i.e., the connect, subscribe,
data exchange, unsubscribe, and disconnect phases. This means that we cannot
use a single global bound on the packet identifiers as a client could reach this
bound, e.g., already during the publish phase and hence the global bound would
prevent (block) a subsequent unsubscribe to take place. We therefore introduce a
local upper bound on packet identifiers for each phase. This local bound expresses
that the given phase may use packet identifiers up to this local bound. In the
next subsection, we present the results of, first, running the state space using
the sweep-line algorithm, and second, verifying certain behavioural properties.

5.2 Incremental Verification and Properties

We have designed a system to run six incremental executions which gives us more
control to detect errors during the validation of the model and the verification
of the properties. The six different scenarios are wrapped within three different

Verification of the MQTT IoT Protocol Using CTL Sweep-Line Algorithms 179

steps. In the first step we include only the parts related to clients connecting and
disconnecting. In the second step we add subscribe and unsubscribe, and finally
in the third step we add data exchange considering the three quality of service
levels in turn. At each step, we include verification of additional properties. Below
we briefly discuss the three steps and the properties verified at each step. Note
that properties that reason about clients are verified for each individual client.
In other words, the properties make sure that every client involved satisfies the
property being verified.

Step 1. Connect and Disconnect. In this first step we consider only the part of
the model related to clients connecting and disconnecting to the broker.

S1-P1-ConsistentConnect. The clients and the broker have a consistent view
of the connection state.

S1-P2-ClientsCanConnect. There exists a reachable state in which each client
is connected to the broker.

S1-P3-ConsistentTermination. Each terminal state (dead marking) has a
consistent and desired behaviour.

S1-P4-PossibleTermination. The protocol can always be terminated, i.e., a
terminal state (dead marking) can always be reached.

Step 2. Subscribe and Unsubscribe. In this step, we add the ability for the clients
to subscribe and unsubscribe (in addition to connect/disconnect from step 1).

S2-P1-CanSubscribe. There exists states in which both the clients and the
broker sides consider each client to be subscribed.

S2-P2-ConsistentSubscription. In every state there is a consistent subscrip-
tion in both clients and broker sides.

S2-P3-PossiblySubscribed. If the client sends a subscribe message, then even-
tually both the clients and the broker sides will consider the client to be
subscribed.

S2-P4-CanUnsubscribe. For each client there exists executions in which the
client sends an unsubscribe message.

S2-P5-EventuallyUnsubscribed. If the client sends an unsubscribe message,
then eventually that both the clients and the broker sides consider the client
to be unsubscribed.

Step 3. Publish and QoS levels. We add the ability for the clients to publish and
receive messages in addition to the rest of the properties of Steps 1 and 2.

S3-P1-PublishConnect. Each client can publish if it is in a connected state.
S3-P2-CanPublish. There exists an execution in which each client publishes

a message.
S3-P3-CanReceive. For each client there exists an execution in which each

client receives a message.
S3-P4-ReceiveSubscribed. A client only receives data if it is subscribed to

the topic, i.e., the client side considers the client to be subscribed.

180 A. Rodŕıguez et al.

Table 1 shows the representation of the properties in CTL. Note that the
verified properties have the forms described in Sect. 3. We have marked in Table 1
some properties with “*”. The property S2-P3 has been computed as if it were
an EF property (the same applies to S2-P5). However, this does not completely
verify the property since it only checks that it is possible to find a state where
the client is subscribed. What we really want to check is that we can reach a
state where the client sends a subscribe message, and eventually after that the
client is subscribed in the broker side. The implementation of such properties of
the form AG(Φ ⇒ AF (Ψ)) is part of our future work.

5.3 Experimental Results

Table 2 summarises the statistics as a result of running the six scenarios, using
both approaches, the traditional CPN state space exploration and the sweep-
line method approach, and verifying the properties aforementioned. The States
and Arcs columns give the number of states and edges, respectively, in the state
space. The Peak column lists the peak number of states stored in memory (i.e.,
the number of states in the largest layer). The Rel. Mem. Reduction column
indicates the reduction of memory as the result of using the sweep-line method,
compared to the total number of states (stored in memory by the tradition
approach). For instance, in row number 5 in Table 2, we have a reduction in
memory consumed of 84.17%, which means that the number of states we have
in memory corresponds to the 15.83% of the total amount of states we would
store using the traditional approach. The TV-Time column amounts the time
that took for the traditional procedure to verify the properties. The SLV-Time
column details the time needed to verify the properties using the sweep-line
approach. Finally, the column Rel. Time Increment gives the relative additional

Table 1. CTL properties verified.

Property CTL formula Description

S1-P1 AGΦ Φ: Consistent connection

S1-P2 EFΦ Φ: Each client is connected to the broker

S1-P3 AG(¬ DM ∨ Φ) DM: Dead marking | Φ: desired dead marking

S1-P4 AGEF DM DM: Dead marking (checked in S1-P3 that it is desired)

S2-P1 EFΦ Φ: Each client can subscribe

S2-P2 AGΦ Φ: Each client is consistently subscribed

S2-P3* EFΦ Explanation above

S2-P4 EFΦ Φ: Each client can unsubscribe

S2-P5* EFΦ Explanation above

S3-P1 AG (Φ ⇒ Ψ) Φ: Client connected | Ψ: Client can publish

S3-P2 EFΦ Φ: Each client can send a publish

S3-P3 EFΦ Φ: Each client can receive a publish

S3-P4 AG (Φ ⇒ Ψ) Φ: Client receives a publish | Ψ: Client is subscribed

Verification of the MQTT IoT Protocol Using CTL Sweep-Line Algorithms 181

Table 2. Results on the six incremental executions using both approaches.

Configuration States Arcs Peak Rel. Mem.
Reduction

TV-Time SLV-Time Rel. Time
Increment

1. Conn-Disconn 35 48 9 74.29% 0.00 s 0.00 s 0%

2. 1 + Subscribe 507 1,054 180 64.50% 0.156 s 0.219 s 79%

3. 2 + Unsubscribe 1,849 4,120 300 83.78% 1.328 s 2.171 s 63.48%

4. 3 + Pub QoS 0 4,282 8,840 711 83.4% 4.453 s 4.983 s 11.9%

5. 3 + Pub QoS 1 11,462 23,934 1,815 84.17% 20.172 s 28.531 s 41.44%

6. 3 + Pub QoS 2 43,791 85,682 7,037 83.93% 168.113 s 250.708 s 49.13%

time that was necessary for the sweep-line method to proceed, compared to the
traditional approach.

The two approaches provided the same results during the evaluation of the
properties, keeping the consistency of the verification process. Even though the
sweep-line is more time consuming, the memory usage was successfully reduced
even in the worst case scenario. The highest relative time consumption is located
in the third row with an increase of 63.48%. However, this should not be taken
completely as reference since the calculation with such a low number of states
and arcs is very sensitive to also the time that takes to compute the state space
and the SCC.

6 Conclusions and Future Work

We have presented the application of the sweep-line method for verifying an
elaborate set of behavioral properties of the MQTT protocol. The application of
the sweep-line method relied on a set of on-the-fly algorithms for model checking
selected CTL behavioral properties. We have compared the application of the
sweep-line method with the application of standard CTL model checking in CPN
Tools demonstrating a substantial reduction in memory usage at the expense
of a modest increase in execution time. The consistency between the results
obtained using conventional CTL model checking and the results obtained with
the implementation of our property-specific CTL model checking algorithms for
the sweep-line method serves as a validation of our new approach.

We see several possible directions for future work based on the results and
experiments presented in this paper. We plan to investigate a more complete
set of scenarios where different configurations are considered. This includes the
number of clients, different progress measures, distinct queue sizes, and the pos-
sibility of retransmitting packets. This is going to be relevant to make other
analysis and study, first, how the number and size of the strongly connected
components affects the sweep-line method and second, how the reduction factor
grows with the value of the parameter. Related to this, there are also several pos-
sibilities for improving the implementation of the property-specific CTL model
checking algorithms that we employ.

182 A. Rodŕıguez et al.

CTL model checking with the sweep-line method has until now been an open
research problem, and the algorithms presented represents a first step towards
addressing this. The extension of our approach to cover a larger subset of CTL
properties is an important direction of future work. An example is the S2-P3-
EventualSubscribed property discussed in Sect. 5. Properties on this form can be
explored in a two-steps fashion way, where first the property in the left-hand side
of the implication is accomplished, and then a second instance of the state space
is explored, checking whether the property in the right-hand side is satisfied or
not. The work presented in [16] on using tailored model checking algorithms
for different CTL properties could serve as a starting point. A key challenge is
to identity a subset of CTL compatible with the least-progress-first exploration
order of the sweep-line method. In the context of symbolic model checking using
binary-decision diagrams (BDDs), forward CTL model checking algorithms have
been developed [11]. However, the sweep-line method is not compatible with the
use of BDDs. The reason is that deleting states from a BDD (as required by
the sweep-line method) may cause the memory usage for storing the BDD to
increase. This counteracts the idea of how the sweep-line method alleviates the
state explosion problem.

A more open direction of future work is to develop CTL model checking
techniques that can be used for non-monotonic progress measures - and not
only monotonic progress measures as presented in this paper. We see potential
improvements in being capable of including non-monotonic progress measures. It
would significantly expand the class of models that can be analysed, for instance,
we could also run the algorithm in the cyclic version of the CPN MQTT model.

References

1. Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press, Cambridge
(2008)

2. Banks, A., Gupta, R.: MQTT Version 3.1.1. OASIS Stand. 29, 89 (2014). http://
docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html

3. Cheng, A., Christensen, S., Mortensen, K.H.: Model checking coloured petri nets
- exploiting strongly connected components. DAIMI Rep. Ser. 26, 519 (1997)

4. Christensen, S., Kristensen, L.M., Mailund, T.: A sweep-line method for state space
exploration. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, pp.
450–464. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45319-9 31

5. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons
using branching time temporal logic. In: Kozen, D. (ed.) Logic of Programs 1981.
LNCS, vol. 131, pp. 52–71. Springer, Heidelberg (1982). https://doi.org/10.1007/
BFb0025774

6. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state
concurrent systems using temporal logic specifications. ACM Trans. Program.
Lang. Syst. (TOPLAS) 8(2), 244–263 (1986)

7. Clarke, E.M., Grumberg, O., Minea, M., Peled, D.: State space reduction using
partial order techniques. Int. J. Softw. Tools Technol. Transf. 2(3), 279–287 (1999)

http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
https://doi.org/10.1007/3-540-45319-9_31
https://doi.org/10.1007/BFb0025774
https://doi.org/10.1007/BFb0025774

Verification of the MQTT IoT Protocol Using CTL Sweep-Line Algorithms 183

8. Clarke, E.M., Klieber, W., Nováček, M., Zuliani, P.: Model checking and the state
explosion problem. In: Meyer, B., Nordio, M. (eds.) LASER 2011. LNCS, vol. 7682,
pp. 1–30. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35746-
6 1

9. CPN tools. http://cpntools.org/
10. Evangelista, S., Kristensen, L.M.: Hybrid on-the-fly LTL model checking with the

sweep-line method. In: Haddad, S., Pomello, L. (eds.) PETRI NETS 2012. LNCS,
vol. 7347, pp. 248–267. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-31131-4 14

11. Iwashita, H., Nakata, T., Hirose, F.: CTL model checking based on forward state
traversal. In: Proceedings of International Conference on Computer Aided Design,
pp. 82–87. IEEE Computer Society (1996)

12. Jensen, K., Kristensen, L., Mailund, T.: The sweep-line state space exploration
method. Theor. Comput. Sci. 429, 169–179 (2012)

13. Jensen, K., Kristensen, L.M., Wells, L.: Coloured petri nets and CPN tools for mod-
elling and validation of concurrent systems. Int. J. Softw. Tools Technol. Transf.
9(3), 213–254 (2007)

14. Kristensen, L.M., Mailund, T.: A generalised sweep-line method for safety prop-
erties. In: Eriksson, L.-H., Lindsay, P.A. (eds.) FME 2002. LNCS, vol. 2391, pp.
549–567. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45614-7 31

15. Kristensen, L.M., Christensen, S.: Implementing coloured petri nets using a func-
tional programming language. Higher-order Symbolic Comput. 17(3), 207–243
(2004)

16. Liebke, T., Wolf, K.: Taking some burden off an explicit CTL model checker. In:
Donatelli, S., Haar, S. (eds.) PETRI NETS 2019. LNCS, vol. 11522, pp. 321–341.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21571-2 18

17. Lilleskare, A., Kristensen, L.M., Høyland, S.-O.: CTL model checking with the
sweep-line state space exploration method. In: Proceedings of Norwegian Infor-
matics Conference (NIK) (2017)

18. MQTT essentials part 3: Client, broker and connection establishment. https://
www.hivemq.com/blog/mqtt-essentials-part2-publish-subscribe

19. Rodŕıguez, A., Kristensen, L.M., Rutle, A.: Formal modelling and incremental
verification of the MQTT IoT protocol. In: Koutny, M., Pomello, L., Kristensen,
L.M. (eds.) Transactions on Petri Nets and Other Models of Concurrency XIV.
LNCS, vol. 11790, pp. 126–145. Springer, Heidelberg (2019). https://doi.org/10.
1007/978-3-662-60651-3 5

20. Rodriguez, A., Kristensen, L.M., Rutle, A.: On CTL model checking of the MQTT
IoT protocol using the sweep-line method. In: Petri Nets and Software Engineering.
International Workshop, PNSE 19, Aachen, Germany, June 24, 2019, volume 2424
of CEUR Workshop Proceedings, pp. 57–72 (2019)

21. Stern, U., Dill, D.L.: Improved probabilistic verification by hash compaction. In:
Camurati, P.E., Eveking, H. (eds.) CHARME 1995. LNCS, vol. 987, pp. 206–224.
Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60385-9 13

22. Valmari, A.: The state explosion problem. In: Advanced Course on Petri Nets, pp.
429–528. Springer (1996)

23. Van Leeuwen, J., Leeuwen, J.: Handbook of Theoretical Computer Science, vol. 1.
Mit Press, Elsevier (1990)

24. Vardi, M.Y.: Branching vs. Linear time: final showdown. In: Margaria, T., Yi,
W. (eds.) TACAS 2001. LNCS, vol. 2031, pp. 1–22. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-45319-9 1

https://doi.org/10.1007/978-3-642-35746-6_1
https://doi.org/10.1007/978-3-642-35746-6_1
http://cpntools.org/
https://doi.org/10.1007/978-3-642-31131-4_14
https://doi.org/10.1007/978-3-642-31131-4_14
https://doi.org/10.1007/3-540-45614-7_31
https://doi.org/10.1007/978-3-030-21571-2_18
https://www.hivemq.com/blog/mqtt-essentials-part2-publish-subscribe
https://www.hivemq.com/blog/mqtt-essentials-part2-publish-subscribe
https://doi.org/10.1007/978-3-662-60651-3_5
https://doi.org/10.1007/978-3-662-60651-3_5
https://doi.org/10.1007/3-540-60385-9_13
https://doi.org/10.1007/3-540-45319-9_1

Correction to: Transactions on Petri Nets
and Other Models of Concurrency XV

Maciej Koutny, Fabrice Kordon , and Lucia Pomello

Correction to:
M. Koutny et al. (Eds.): Transactions on Petri Nets and Other
Models of Concurrency XV, LNCS 12530,
https://doi.org/10.1007/978-3-662-63079-2

The original version of this publication was revised. The affiliation of Lucia Pomello
was corrected to “Università degli Studi di Milano-Bicocca, Milan, Italy”.

The updated version of the book can be found at
https://doi.org/10.1007/978-3-662-63079-2

© Springer-Verlag GmbH Germany, part of Springer Nature 2021
M. Koutny et al. (Eds.): ToPNoC XV, LNCS 12530, p. C1, 2021.
https://doi.org/10.1007/978-3-662-63079-2_9

https://orcid.org/0000-0002-5626-828X
https://doi.org/10.1007/978-3-662-63079-2
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-63079-2_9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-63079-2_9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-63079-2_9&domain=pdf
https://doi.org/10.1007/978-3-662-63079-2
https://doi.org/10.1007/978-3-662-63079-2_9

Author Index

Adobbati, Federica 50, 126
Aubel, Adrián Puerto 50

Bernardinello, Luca 126
Berti, Alessandro 1

de Lara, Juan 27
Devillers, Raymond 75

Erofeev, Evgeny 75

Ferigato, Carlo 50

Gandelli, Stefano 50
Gómez-Martínez, Elena 27
Guerra, Esther 27

Hujsa, Thomas 75

Kristensen, Lars Michael 165

Liebke, Torsten 150

Pomello, Lucia 126

Rodríguez, Alejandro 165
Rutle, Adrian 165

Tredup, Ronny 101

van der Aalst, Wil M. P. 1

Wolf, Karsten 150

	Preface by Editor-in-Chief
	LNCS Transactions on Petri Nets and Other Models of Concurrency: Aims and Scope
	LNCS Transactions on Petri Nets and Other Models of Concurrency: Editorial Board
	Preface by Guest Editors
	Organization of This Issue
	Guest Editors
	Workshop Co-chairs
	Reviewers

	Contents
	A Novel Token-Based Replay Technique to Speed Up Conformance Checking and Process Enhancement
	1 Introduction
	2 Background
	2.1 Petri Nets
	2.2 Event Logs
	2.3 Token-Based Replay

	3 Approach
	3.1 Backwards Token-Based Replay
	3.2 Improved Token-Based Replay
	3.3 Addressing the Token Flooding Problem

	4 Implementation and Evaluation of the Improved Token-Based Replay Technique
	4.1 Changes to the Implementation to Improve Performance
	4.2 Evaluation: Execution Time
	4.3 Evaluation: Comparison Between Fitness Values
	4.4 Evaluation: Comparison Between Outputs
	4.5 Evaluation: Handling of the Token-Flooding Problem

	5 Tool Support
	5.1 Advanced Diagnostics: Throughput Time Analysis
	5.2 Advanced Diagnostics: Root Cause Analysis

	6 Related Work
	7 Conclusion
	References

	Extensible Structural Analysis of Petri Net Product Lines
	1 Introduction
	2 Petri Net Product Lines
	3 Structural Analysis of Petri Net Product Lines
	3.1 Lifting the Analysis of Structural Properties
	3.2 Lifted Analysis of the Marked Graph Property
	3.3 Lifted Analysis of the Free-Choice Property
	3.4 Lifted Analysis of the Extended Free-Choice Property

	4 Tool Support
	5 Evaluation
	6 Related Work
	7 Conclusions and Future Work
	References

	Stability of Regional Orthomodular Posets Under Synchronisation and Refinement
	1 Introduction
	2 Background
	2.1 Transition Systems and Regions
	2.2 Orthomodular Partially Ordered Sets
	2.3 Saturated Transition System and the Stability Problem

	3 Composition of OMPs and Their Stability
	3.1 Composition of OMPs
	3.2 Extending a System with a Sequential Component
	3.3 Stability of Atom Refinement

	4 Applying the Results to Prove Stability
	5 Conclusion
	References

	Efficient Synthesis of Weighted Marked Graphs with Circular Reachability Graph, and Beyond
	1 Introduction
	2 Classical Definitions, Notations and Properties
	3 Reversible Binary CF Synthesis
	4 Cyclic WMG- and CF-Solvablity
	4.1 SSPs for Prime Cycles
	4.2 ESSPs in Cyclic WMG-Solvability
	4.3 A Polynomial-Time Algorithm for Cyclic WMG-Solvability
	4.4 CF-Solvability vs WMG-Solvability of Cycles

	5 Weak Synthesis of WMGs in Polynomial-Time
	5.1 Previous Results on Liveness
	5.2 Weak Synthesis of WMGs in Polynomial-Time

	6 Conclusions and Perspectives
	References

	The Complexity of Synthesizing nop-Equipped Boolean Petri Nets from g-Bounded Inputs
	1 Introduction
	2 Preliminaries
	3 Hardness Results
	4 Polynomial Time Results
	5 Conclusion
	References

	A Two-Player Asynchronous Game on Fully Observable Petri Nets
	1 Introduction
	2 Petri Nets
	3 An Asynchronous Game on the Unfolding
	4 Controlled Reachability
	4.1 Algorithm for a Winning Strategy
	4.2 Discussion
	4.3 Experiments

	5 Other Approaches to Asynchronous Games
	6 Conclusions
	References

	Solving Finite-Linear-Path CTL-Formulas Using the CEGAR Approach
	1 Introduction
	2 Basic Definitions
	3 Increasing and Decreasing Transitions
	4 CEGAR Approach for Reachability Analysis in Petri Nets
	5 Solving E (U) with the CEGAR Approach
	6 Solving (EX)k with the CEGAR Approach
	7 Solving Finite-linear-path CTL-formulas with the CEGAR Approach
	8 Partially Solving EG with the CEGAR Approach
	9 Conclusion and Future Work
	References

	Verification of the MQTT IoT Protocol Using Property-Specific CTL Sweep-Line Algorithms
	1 Introduction
	2 The Sweep-Line State Space Exploration Method
	3 CTL Property Checking Algorithms
	4 The CPN MQTT Model
	4.1 Interaction Overview
	4.2 CPN Model Overview
	4.3 Client and Broker State Modelling

	5 Model Checking and Experimental Results
	5.1 Progress Measure
	5.2 Incremental Verification and Properties
	5.3 Experimental Results

	6 Conclusions and Future Work
	References

	Correction to: Transactions on Petri Nets and Other Models of Concurrency XV
	Correction to: M. Koutny et al. (Eds.): Transactions on Petri Nets and Other Models of Concurrency XV, LNCS 12530, https://doi.org/10.1007/978-3-662-63079-2

	Author Index

