
Big Spatial and Spatio-Temporal Data
Analytics Systems

Polychronis Velentzas1, Antonio Corral2(B), and Michael Vassilakopoulos1

1 Data Structuring and Engineering Laboratory,
Department of Electrical and Computer Engineering,

University of Thessaly, Volos, Greece
{cvelentzas,mvasilako}@uth.gr

2 Department of Informatics, University of Almeria, Almeria, Spain
acorral@ual.es

Abstract. We are living in the era of Big Data, and Spatial and Spatio-
temporal Data are not an exception. Mobile apps, cars, GPS devices,
ships, airplanes, medical devices, IoT devices, etc. are generating explo-
sive amounts of data with spatial and temporal characteristics. Social net-
working systems also generate and store vast amounts of geo-located infor-
mation, like geo-located tweets, or captured mobile users’ locations. To
manage this huge volume of spatial and spatio-temporal data we need
parallel and distributed frameworks. For this reason, modeling, storing,
querying and analyzing big spatial and spatio-temporal data in distributed
environments is an active area for researching with many interesting chal-
lenges. In recent years a lot of spatial and spatio-temporal analytics sys-
tems have emerged. This paper provides a comparative overview of such
systems based on a set of characteristics (data types, indexing, partition-
ing techniques, distributed processing, query Language, visualization and
case-studies of applications). We will present selected systems (the most
promising and/or most popular ones), considering their acceptance in the
research and advanced applications communities. More specifically, we
will present two systems handling spatial data only (SpatialHaddop and
GeoSpark) and two systems able to handle spatio-temporal data, too (ST-
Hadoop and STARK) and compare their characteristics and capabilities.
Moreover, we will also present in brief other recent/emerging spatial and
spatio-temporal analytics systems with interesting characteristics. The
paper closes with our conclusions arising from our investigation of the
rather new, though quite large world of ecosystems supporting manage-
ment of big spatial and spatio-temporal data.

1 Introduction

We are living in the era of Big Data, and Spatial and Spatio-temporal Data are
not an exception.Mobile apps, cars,GPSdevices, ships, airplanes,medical devices,
IoT devices, etc. are generating explosive amounts of data with spatial and tempo-
ral characteristics. Social networking systems also generate and store vast amounts
of geo-located information, like geo-located tweets, or captured mobile users’ loca-
tions. To manage this huge volume of spatial and spatio-temporal data we need
c© Springer-Verlag GmbH Germany, part of Springer Nature 2021
A. Hameurlain et al. (Eds.): TLDKS XLVII, LNCS 12630, pp. 155–180, 2021.
https://doi.org/10.1007/978-3-662-62919-2_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-62919-2_7&domain=pdf
https://doi.org/10.1007/978-3-662-62919-2_7


156 P. Velentzas et al.

parallel and distributed frameworks. For this reason, modeling, storing, querying
and analyzing big spatial and spatio-temporal data in distributed environments is
an active area for researching with many interesting challenges.

In recent years a lot of spatial and spatio-temporal analytics systems have
emerged. Parallel and distributed Spatio-temporal analytic systems are mostly
either based on Hadoop, or on Spark. Moreover, most of them handle spatial data
only, while others can represent and process statio-temporal information. Con-
sidering these alternatives, four possible groups of systems are formed: Hadoop
or Spark based spatial data systems and Hadoop or Spark based spatio-temporal
data systems.

This paper provides a comparative overview of such systems based on a set
of characteristics (data types, indexing, partitioning techniques, distributed pro-
cessing, query Language, visualization and case-studies of applications). We will
present selected systems (the most promising and/or most popular ones), consid-
ering their acceptance in the research and advanced applications communities.

In Sect. 2 we will introduce parallel and distributed architectures and their
two basic representatives (Hadoop and Spark). Next, in Sect. 3 we will present
two systems handling spatial data only (SpatialHaddop and GeoSpark) and two
systems able to handle spatio-temporal data, too (ST-Hadoop and STARK) and
compare their characteristics and capabilities. In Sect. 4, we will present in brief
other recent/emerging spatio-temporal analytics systems with interesting char-
acteristics. The paper closes with our conclusions arising from our investigation
of the rather new, though quite large world of ecosystems supporting manage-
ment of big spatial and spatio-temporal data.

2 Parallel and Distributed Architectures

Data mining and analysis of big data is a non-trivial task. Often, it is performed
in a distributed infrastructure of multiple compute network-interconnected

Fig. 1. Parallel and distributed system architecture.



Big Spatial and Spatio-Temporal Data Analytics Systems 157

(through the cluster network) nodes, each of which may be equipped with mul-
tiple CPUs or GPUs (Fig. 1).

This kind of architectures bring a number of challenges. First of all, the
resources must be effectively used. For example, one must avoid delays of
CPU/GPU resources due to working data transfer over network. Second, all the
available resources (CPU/GPU, storage and network) should be typically shared
among different users or processes to reduce costs and increase interoperability.
In order to address these challenges several architectures and frameworks have
risen. In this section, we will describe the two most popular of them, Apache
Hadoop and Apache Spark. Both of them are open source and widely used.

2.1 Apache Hadoop

Hadoop is a shared-nothing framework, meaning that the input data is parti-
tioned and distributed to all computing nodes, which perform calculations on
their local data only. Hadoop is a two-stage disk-based MapReduce computation
engine, not well suited to repetitive processing tasks.

MapReduce [10,25] is a programming model for distributed computations
on very large amounts of data and a framework for large-scale data processing
on clusters built from commodity hardware. A task to be performed using the
MapReduce framework has to be specified as two phases: a) the map phase, which
is specified by a map function, takes input, typically from Hadoop Distributed
File System (HDFS) files, possibly performs some computations on this input,
and distributes it to worker nodes, and b) the reduce phase which processes
these results as specified by a reduce function (Fig. 2). An important aspect of
MapReduce is that both the input and the output of the map step are represented
as key/value pairs and that pairs with same key will be processed as one group
by a reducer. The map step is parallelly applied to every pair with key k1 of the
input dataset, producing a list of pairs with key k2. Subsequently, all pairs with
the same key from all lists are grouped together, creating one list for each key
(shuffling step). The reduce step is then parallelly applied to each such group,
producing a list of key/value pairs:

map : (k1, v1) → list(k2, v2) and reduce : (k2, list(v2)) → list((k3, v3))

Additionally, a combiner function can be used to run on the output of the map
phase and perform some filtering or aggregation to reduce the number of keys
passed to the reducer. The MapReduce architecture provides good scalability and
fault tolerance mechanisms. MapReduce was originally introduced by Google in
2004 and was based on well-known principles of parallel and distributed pro-
cessing. It has been widely adopted through Hadoop (an open-source imple-
mentation), whose development was led by Yahoo and later became an Apache
project1.

1 https://hadoop.apache.org/.

https://hadoop.apache.org/


158 P. Velentzas et al.

2.2 Apache Spark

To overcome limitations of the MapReduce paradigm and Apache Hadoop (espe-
cially regarding iterative algorithms), Apache Spark2 was developed. This is
also an open-source cluster-computing framework based on Resilient Distributed
Datasets (RDDs), read-only multisets of data items distributed over the com-
puting nodes. RDDs form a kind of distributed shared memory, suitable for
the implementation of iterative algorithms. Apache Spark achieves high perfor-
mance for both batch and streaming data, using a state-of-the-art DAG (Directed
Acyclic Graph) scheduler (an example is depicted in Fig. 3), a query optimizer
and a physical execution engine.

Fig. 2. MapReduce programming model.

DAG scheduler is the scheduling layer of Apache Spark that implements
stage-oriented scheduling. It transforms a logical execution plan (i.e. RDD lin-
eage of dependencies built using RDD transformations) to a physical execution
plan (using stages).

Fig. 3. An example of a DAG (Directed Acyclic Graph) scheduler.

The data transformations that take place in Spark are executed in a “lazy”
way. Transformations are lazy in nature: when we call some operation for an
2 https://spark.apache.org/.

https://spark.apache.org/


Big Spatial and Spatio-Temporal Data Analytics Systems 159

RDD, it does not execute immediately; it is executed when output is requested.
Spark maintains a record of which operation is being called (through DAG). We
can think of a Spark RDD as the data that we built up through transformations.
Since transformations are lazy in nature, we can execute operations any time by
calling an action on data. Hence, in lazy evaluation, data is not loaded, and
computations are not performed until it is necessary.

3 Big Spatial and Spatio-Temporal Data Analytics
Systems

In the next subsections, we will present in detail a popular representative of each
of group of systems (Hadoop-based and Spark-based Spatial and Hadoop-based
and Spark-based Spatio-temporal Data Analytics Systems). SpatialHadoop
(http://spatialhadoop.cs.umn.edu/), a full-fledged MapReduce framework with
native support for spatial data, is presented in Subsect. 3.1. Subsect. 3.2 is
devoted to GeoSpark (http://geospark.datasyslab.org), an in-memory cluster
computing framework for processing large-scale spatial data that uses Spark as
its base layer and adds two more layers, the Spatial RDD (SRDD) Layer and
Spatial Query Processing Layer, thus providing Spark with in-house spatial capa-
bilities. ST-Hadoop (http://st-hadoop.cs.umn.edu/), the first full-fledged open-
source MapReduce framework with a native support for spatio-temporal data, is
presented in Subsect. 3.3. ST-Hadoop is a comprehensive extension to Hadoop
and SpatialHadoop that injects spatio-temporal data awareness inside each of
their layers. In Subsect. 3.4, STARK framework for scalable spatio-temporal
data analytics on Spark (https://github.com/dbis-ilm/stark) is presented. It is
built on top of Spark and provides a domain specific language (DSL) that seam-
lessly integrates into any (Scala) Spark program. It includes an expressive set
of spatio-temporal operators for filter, join with various predicates as well as k
nearest neighbor search. Moreover, in Subsect. 3.5 we present a comparison of
these systems regarding their capabilities and characteristics.

3.1 SpatialHadoop

SpatialHadoop (http://spatialhadoop.cs.umn.edu/) [13,14] is a full-fledged
MapReduce framework with native support for spatial data. It is an efficient
disk-based distributed spatial query processing system. Note that MapReduce
[10] is a scalable, flexible and fault-tolerant programming framework for dis-
tributed large-scale data analysis.

SpatialHadoop [13,14] (see in Fig. 4 its architecture) is a comprehensive
extension to Hadoop [7] that injects spatial data awareness in each Hadoop
layer, namely, the language, storage, MapReduce, and operations layers. In the
Language layer, SpatialHadoop adds a simple and expressive high-level language
for spatial data types and operations. In the Storage layer, SpatialHadoop adapts
traditional spatial index structures as Grid, R-tree, R+-tree, Quadtree, etc. to
form a two-level spatial index [15]. SpatialHadoop enriches the MapReduce layer

http://spatialhadoop.cs.umn.edu/
http://geospark.datasyslab.org
http://st-hadoop.cs.umn.edu/
https://github.com/dbis-ilm/stark
http://spatialhadoop.cs.umn.edu/


160 P. Velentzas et al.

by two new components, SpatialFileSplitter and SpatialRecordReader for efficient
and scalable spatial data processing. SpatialFileSplitter (SFS ) is an extended
splitter that exploits the global index(es) on input file(s) to early prune file
cells/blocks not contributing to answer, and SpatialRecordReader (SRR) reads
a split originating from spatially indexed input file(s) and exploits the advan-
tages of the local indices to efficiently process it. At the Operations layer, Spa-
tialHadoop is also equipped with a several spatial operations, including range
query, kNN query and spatial join. Other computational geometry algorithms
(e.g. polygon union, skyline, convex hull, farthest pair and closest pair) are also
implemented following a similar approach [11].

Fig. 4. SpatialHadoop system architecture [14].

Spatial Data Types. The Language layer provides a high-level language with
standard spatial data types and operations to make the system accessible to non-
technical users. In particular, the language layer provides Pigeon [12] a simple
high level SQL-like language that supports OGC-compliant spatial data types
and spatial operations. Pigeon overrides the bytearray data type to support
standard spatial data types, such as, Point, LineString, and Polygon. Conver-
sion between bytearray and geometry, back and forth, is done automatically
on the fly which makes it transparent to end users.

Spatial Storage (indexing Techniques). SpatialHadoop proposes a two-
layer spatial index structure which consists of one global index and multiple local



Big Spatial and Spatio-Temporal Data Analytics Systems 161

indexes. The global index partitions data into HDFS blocks and distributes them
among cluster nodes, while local indexes organize records inside each block. The
separation of global and local indexes lends itself to the MapReduce program-
ming paradigm where the global index is used while preparing the MapReduce
job while the local indexes are used for processing the map tasks. In addition,
breaking the file into smaller partitions allows each partition to be indexed sepa-
rately in memory and dumping it to a file in a sequential manner. SpatialHadoop
uses this two-level design to build a grid index, R-tree and R+-tree. The index
is constructed in one MapReduce job that runs in three phases. (1) The parti-
tioning phase divides the space into n rectangles, then, it partitions the data by
assigning each record to overlapping rectangles. (2) In the local indexing phase,
each partition is processed separately on a single machine and a local index is
constructed in memory before it is dumped to disk. (3) The final global indexing
phase constructs a global index on the master node which indexes all HDFS
blocks in the file using their MBRs as indexing key.

Spatial Partitioning Techniques. In [15], seven different spatial partitioning
techniques in SpatialHadoop are presented, and an extensive experimental study
on the quality of the generated index and the performance of range and spatial
join queries is reported. These seven partitioning techniques are also classified
in two categories according to boundary object handling: replication-based tech-
niques (Grid, Quadtree, STR+ and k-d tree) and distribution-based techniques
(STR, Z-Curve and Hilbert-Curve). The distribution-based techniques assign an
object to exactly one overlapping cell and the cell has to be expanded to enclose
all contained points. The replication-based techniques avoid expanding cells by
replicating each point to all overlapping cells, but the query processor has to
employ a duplicate avoidance technique to account for replicated elements. The
most important conclusions of [15] for distributed join processing, using the over-
lap spatial predicate, are the following: (1) the smallest running time is obtained
when the same partitioning technique is used in both datasets for the join pro-
cessing, (2) Quadtree outperforms all other techniques with respect to running
time, since it minimizes the number of overlapping partitions between the two
files by employing a regular space partitioning, (3) Z-Curve reports the worst
running times, and (4) k-d tree gets very similar results to STR.

Spatial Operations. SpatialHadoop contains a number of basic spatial opera-
tions such as range query, kNN query and spatial join [14]. A range query takes
a set of spatial records P and a query area A as input, and returns the records
from P that overlap with A. SpatialHadoop exploits the global index with the
SpatialFileSplitter to select only the partitions that overlap the query range A.
Then, it uses the SpatialRecordReader to process the local indexes in matching
partitions and find matching records. Finally, a duplicate avoidance step filters
out duplicate results caused by replication in the index. A kNN query algorithm
in SpatialHadoop is composed of the three steps: (1) Initial Answer, where we
come up with an initial answer of the k closest points to the query point q within



162 P. Velentzas et al.

the same file partition as q. It first locates the partition that includes q by feed-
ing the SpatialFileSplitter with a filter function that selects only the overlapping
partition. Then, the selected partition goes through the SpatialRecordReader to
exploit its local index with a traditional kNN algorithm to produce the initial k
answers. (2) Correctness check, where it checks if the initial answer can be con-
sidered final or not. (3) Answer Refinement, if the correctness check result is not
final, a range query is executed to produce the nearest k point as the final result.
For a spatial join query, SpatialHadoop proposes a MapReduce-based algorithm
where the SpatialFileSplitter exploits the two global indexes to find overlapping
pair of partitions. The map function uses the SpatialRecordReader to exploit
the two local indexes in each pair to find matching records. Finally, a duplicate
avoidance step eliminates duplicate pairs in the answer caused by replication in
the index. Finally, CG Hadoop [11] is a suite of computational geometry oper-
ations for MapReduce. It supports five fundamental computational geometry
operations, namely, polygon union, skyline, convex hull, farthest pair, and clos-
est pair, all implemented as MapReduce algorithms.

Distributed Processing (MapReduce and Dataflow). In general, a spatial
query processing in SpatialHadoop consists of four steps [14,19,20], regardless
of whether we have one or two input files (see Fig. 5, where two files as input
are shown): (1) Preprocessing, where the data is partitioned according to a spe-
cific spatial index, generating a set of partitions or cells. (2) Pruning, when the
query is issued, where the master node examines all partitions and prunes by a
filter function those ones that are guaranteed not to be included in any possible
result of the spatial query. (3) Local Spatial Query Processing, where a local spa-
tial query processing is performed on each non-pruned partition in parallel on
different machines. (4) Global Processing, where the results are collected from all
machines in the previous step and the final result of the concerned spatial query
is computed. A combine function can be applied in order to decrease the volume
of data that is sent from the map task. The reduce function can be omitted when
the results from the map phase are final.

Fig. 5. Spatial query processing in SpatialHadoop [14,20].



Big Spatial and Spatio-Temporal Data Analytics Systems 163

Query Language. The Language layer contains Pigeon [12], a high level lan-
guage with OGC-compliant spatial data types and functions. In particular, it
adds the following: (1) OGC-compliant spatial data types including, Point,
LineString, Polygon. (2) OGC-standard spatial predicates which return a
Boolean value based on a test on the input polygon(s); e.g., IsClosed, Touches.
(3) Basic spatial functions which are used to extract useful information from a
single shape; e.g., Area. (4) Spatial analysis functions which perform some spa-
tial transformations on input objects; e.g., Centroid, Intersection. (5) Spatial
aggregate functions which take a set of spatial objects and return a single value
which summarizes all input objects; e.g., ConvexHull. (6) and some changes to
the language; e.g. kNN Keyword, FILTER, JOIN.

Visualization. The visualization process involves creating an image that
describes an input dataset. This is a natural way to explore spatial datasets
as it allows users to find interesting patterns in the input which are otherwise
hard to spot. SpatialHadoop provides a visualization layer which generates two
types of images, namely, single level image and multilevel images. For single
level image visualization, the input dataset is visualized as a single image of a
user-specified image size (width x height) in pixels. SpatialHadoop generates a
single level image in three phases. (1) Partitioning phase partitions the data
using either the default non-spatial Hadoop partitioner or using the spatial par-
titioner in SpatialHadoop depending on whether the data needs to be smoothed
or not. (2) In the Rasterize phase, the machines in the cluster process the par-
titions in parallel and generate a partial image for each partition. (3) In the
Merging phase, the partial images are combined together to produce the final
image. SpatialHadoop also supports multilevel images which consist of small tiles
produced at different zoom levels. SpatialHadoop provides an efficient algorithm
that runs in two phases, partition and rasterize. (1) The Partition phase scans
all input records and replicates each record r to all overlapping tiles in the image
according to the MBR of r and the MBR of each tile. This phase produces one
partition per tile in the desired image. (2) The Rasterize phase processes all
generated partitions and generates a single image out of each partition.

Case-Studies of Applications. The core of SpatialHadoop is used in sev-
eral real applications that deal with big spatial data including MNTG [30], a
web-based traffic generator; TAREEG [2], a MapReduce extractor for Open-
StreetMap data; TAGHREED [29], a system for querying and visualizing twit-
ter data, and SHAHED [16], a MapReduce system for analyzing and visualizing
satellite data. SHAHED is a tool for analyzing and exploring remote sensing
data publicly available by NASA in a 500 TB archive. It provides a web inter-
face where users navigate through the map and the system displays satellite data
for the selected area. HadoopViz [17] is a MapReduce-based framework for visu-
alizing big spatial data, it can efficiently produce giga-pixel images for billions
of input records.



164 P. Velentzas et al.

3.2 GeoSpark

The GeoSpark (http://geospark.datasyslab.org) framework exploits the core
engine of Apache Spark and SparkSQL, by adding support for spatial data types,
indexes, and geometrical operations. GeoSpark extends the Resilient Distributed
Datasets (RDDs) concept to support spatial data. It adds two more layers, the
Spatial RDD (SRDD) Layer and Spatial Query Processing Layer, thus provid-
ing Spark with in-house spatial capabilities. The SRDD layer consists of three
newly defined RDDs, PointRDD, RectangleRDD and PolygonRDD. SRDDs sup-
port geometrical operations, like Overlap and Minimum Bounding Rectangle.
SRDDs are automatically partitioned by using the uniform grid technique, where
the global grid file is split into a number of equal geographical size grid cells. Ele-
ments that intersect with two or more grid cells are being duplicated. GeoSpark
provides spatial indexes like Quadtree and R-tree on a per partition base. The
Spatial Query Processing Layer includes spatial range query, spatial join query,
spatial kNN query. GeoSpark relies heavily on the JTS (Java Topology Suite)
and therefore conforms to the specifications published by the Open Geospatial
Consortium. It is a robust and well implemented spatial system. Moreover, a
lot of heterogeneous data sources are supported, like CSV, GeoJSON, WKT,
NetCDF/HDF and ESRI Shapefile. GeoSpark does not directly support tempo-
ral data and operations.

Spatial and Spatio-Temporal Data Types. All the common spatial
datatypes are supported like Point, Multi-Point, Polygon, Multi-Polygon,
LineString, Multi-LineString, GeometryCollection, and Circle. In addition to
these simple datatypes, GeoSpark is integrated with the complex geometrical
shapes concave/convex polygons and multiplesub-shapes.

Spatial and Spatio-Temporal Storage (Indexing Techniques). The
framework indexing architecture is built as a set of indexes per RDD parti-
tion. GeoSpark spatial indexes rely on the R-tree or Quadtree data structure.
There are three kind of index options:

1. Build local indexes: GeoSpark builds a set of indexes per spatial RDD. This
way a global index is not created and all objects are not indexed in one
machine. Furthermore, to speedup queries the indexes are clustered indexes,
meaning that spatial objects are stored directly in the spatial index. As a
result, querying the index returns immediately the spatial object, skipping
the I/O overhead of a second retrieve based on the objects pointer.

2. Query local indexes: The queries are divided in smaller tasks and these tasks
are executed in parallel. The framework will use any existing local spatial
indexes, minimizing query execution time.

3. Persist local indexes: GeoSpark users have the option to reuse the build local
indexes, by storing it in one of the following ways: (1) cache to memory by
calling IndexedSpatialRDD.cache(), (2) persist on disk by calling IndexedSpa-
tialRDD.saveAsObjectFile(HDFS/S3 PATH).

http://geospark.datasyslab.org


Big Spatial and Spatio-Temporal Data Analytics Systems 165

Spatial and Spatio-Temporal Partitioning Techniques. In order to take
advantage of the spatial proximity which is crucial for improving query speed,
GeoSpark automatically repartitions a loaded Spatial RDD according to its inter-
nal spatial data distribution (Fig. 6 presents spatial partitioning techniques sup-
ported by GeoSpark). This is crucial for every computation, because it minimizes
the data shuffles across the cluster and it avoids unnecessary CPU overheads on
partitions that contain unwanted data. The framework implements spatial par-
titioning in three main steps:

Fig. 6. Spatial partitioning techniques [42].

1. Building a global spatial grid file: Each Spatial RDD partition is sampled and
the data are collected by the master node, resulting to a small subset of the
spatial RDD. The sampled RDD is divided in equally load balanced partitions
and their boundaries are used to further partition the initial RDD, resulting to
new spatial RDD partitions, which are also load balanced. GeoSpark offers the
following partition options: Uniform Grid, R-tree, Quadtree and kDB-tree.

2. Assigning a grid cell ID to each object: After constructing the global grid file,
the framework assigns a grid cell to each object. Therefore, it creates a new
spatial RDD whose schema is <Key, Value>. Every spatial object is stored
in the new RDD with its corresponding grid cell ID. In case a spatial object
span across multiple grids, the spatial RDD may contain duplicates.

3. Re-partitioning SRDD across the cluster: The Spatial RDD generated by the
last step has a <Key, Value> pair schema. The Key represents a grid cell ID.
In this the spatial RDD is repartitioned by the key, and the objects with the
same key are grouped into the same partition.

Spatial and Spatio-Temporal Operations. The GeoSpark framework comes
with a full range of spatial operations. Users can facilitate spatial analysis and
spatial data mining by combining queries with one or more of the following
spatial operations:



166 P. Velentzas et al.

1. Spatial Range query: This operation returns all the spatial objects that lie
within a defined region. As an example, this query can find all gas stations
in the city center.

2. Spatial join: This kind of queries combine two or more datasets, using spatial
predicates (e.g. Intersects, Overlaps, Contains, Distance etc).

3. Spatial k nearest neighbors (kNN) query: kNN query computes the k nearest
neighbors around a center point. For example, a kNN query could be, find
the 5 nearest hotels around the user.

Distributed Processing (MapReduce and Dataflow). GeoSpark can run
spatial query processing operations on the SRDDs, right after the Spatial RDD
layer loads, partitions are generated and indexing is completed. The spatial query
processing layer provides support for many spatial operations like range query,
distance query, k Nearest Neighbors (kNN) query, range join query and distance
join query. In order to describe the distributed processing of GeoSpark we will
analyze the simplest of the queries the range query. A spatial range query is faster
and less resource-consuming because it just returns objects that the input query
window object contains. To complete such queries, we need to issue a parallelized
Filter transformation in Apache Spark, which introduces a narrow dependency.
As a result, repartitioning is not needed. These is also a more efficient way, we
can broadcast the query window to all workers and parallelize the processing
across the cluster. The query processing algorithm needs only one stage, due to
the narrow dependency which does not require data shuffle. In Fig. 7, the range
query DAG and data flow is depicted.

Query Language. GeoSparkSQL supports SQL/MM Part3 Spatial SQL Stan-
dard. It includes four kinds of SQL operators as follows. All these operators can
be directly called through this command in Scala: var myDataFrame = spark-
Session.sql(“YOUR SQL HERE”).

Fig. 7. Range query DAG and data flow [42].



Big Spatial and Spatio-Temporal Data Analytics Systems 167

1. Constructor: Constructor creates a geometry from an input string or coordi-
nates. For example, we have the following constructor ST GeomFromWKT
(string), which constructs a Geometry from Wkt, ST GeomFromGeoJSON
(string) which constructs a Geometry from a JSON string, ST Point (deci-
mal, decimal) which constructs a Point from coordinates,

2. Function: There are many available functions like ST Distance (geometry,
geometry) which returns the Euclidean distance between two geometries,
ST Area (geometry) that calculates the area of a geometry and many more.

3. Predicate: The spatial predicates describe the spatial relationships. They
also imply a spatial logic amongst the spatial objects which is essen-
tially a spatial join. GeoSpark supports a complete set of predicates
like ST Contains(geometry, geometry), ST Intersects (geometry, geometry),
ST Equals (geometry, geometry).

4. Aggregate function: SQL has aggregate functions, which are used to
aggregate the results of a SQL query. Likewise, GeoSparkSQL also sup-
ports spatial aggregate functions. Spatial aggregate functions aggregate
the results of SQL queries involving geometry objects. For example,
ST Union Aggr(geometryColumn) returns the polygon union of all polygons
of the geometryColumn.

Visualization. GeoSpark visualization is supported with the core visualization
framework GeoSparkViz [41]. GeoSparkViz a large-scale geospatial map visu-
alization framework. GeoSparkViz extends Apache Spark with native support
for general cartographic design. It offers a plethora of utilities that enable users
to perform data management and visualization on spatial data. One of the best
features of GeoSparkViz is that it reduces the overhead of loading the intermedi-
ate spatial data generated during the data management phase to the designated
map visualization tool.

3.3 ST-Hadoop

ST-Hadoop (http://st-hadoop.cs.umn.edu/) [4,6], see in Fig. 8 its architec-
ture, is a full-fledged open-source MapReduce framework with a native support
for spatio-temporal data. ST-Hadoop is a comprehensive extension to Hadoop
[7] and SpatialHadoop [14] that injects spatio-temporal data awareness inside
each of their layers, mainly, language, indexing, MapReduce and operations lay-
ers. In the Language layer, ST-Hadoop extends Pigeon language [12] to sup-
ports spatio-temporal data types and operations. In the Indexing layer, ST-
Hadoop spatio-temporally loads and divides data across computation nodes in
the Hadoop Distributed File System (HDFS). In this layer, ST-Hadoop scans a
random sample obtained from the whole dataset, bulk loads its spatio-temporal
index in-memory, and then uses the spatio-temporal boundaries of its index
structure to assign data records with its overlap partitions. ST-Hadoop sacri-
fices storage to achieve more efficient performance in supporting spatio-temporal
operations, by replicating its index into temporal hierarchy index structure that

http://st-hadoop.cs.umn.edu/


168 P. Velentzas et al.

consists of two-layer indexing of temporal and then spatial. The MapReduce
layer introduces two new components of SpatioTemporalFileSplitter and Spa-
tioTemporalRecordReader, that exploit the spatio-temporal index structures to
speed up spatio-temporal operations. Finally, the Operations layer encapsulates
the spatio-temporal operations that take advantage of the ST-Hadoop temporal
hierarchy index structure in the indexing layer, such as spatio-temporal range,
spatio-temporal top-k nearest neighbor, and spatio-temporal join queries.

The key idea behind the performance gain of ST-Hadoop is its ability to
load the data in HDFS in a way that mimics spatio-temporal index struc-
tures [3]. Hence, incoming spatio-temporal queries can have minimal data access
to retrieve the query answer. The extensibility of ST-Hadoop allows others to
extend spatio-temporal features and operations easily using similar approaches
as described in [6].

Spatial and Spatio-Temporal Data Types. Spatio-temporal data types
(STPoint, Time and Interval) are used to define the schema of input files upon
their loading process. ST-Hadoop extends STPoint, TIME and INTERVAL. For
instance, the TIME instance is used to identify the temporal dimension of the
data, while the time INTERVAL mainly provided to equip the query predicates.

Spatial and Spatio-Temporal Storage (Indexing Techniques). ST-
Hadoop HDFS organizes input files as spatio-temporal partitions that satisfy one
main goal of supporting spatio-temporal queries. ST-Hadoop imposes temporal
slicing, where input files are spatio-temporally loaded into intervals of a specific
time granularity, e.g., days, weeks, or months. Each granularity is represented
as a level in ST-Hadoop index. Data records in each level are spatio-temporally
partitioned, such that the boundary of a partition is defined by a spatial region
and time interval.

The key idea behind the performance gain of ST-Hadoop is its ability to
load the data in HDFS in a way that mimics spatio-temporal index structures.
To support all spatio-temporal operations including more sophisticated queries
over time, ST-Hadoop replicates spatio-temporal data into a Temporal Hierarchy
Index. ST-Hadoop set Temporal Hierarchy Index structure to four levels of days,
weeks, months and years granularities, but it can be changed by the users.

ST-Hadoop index structure consists of two-layer indexing of a temporal and
spatial. This two-layer indexing is replicated in all levels, where in each level the
sample is partitioned using different granularity. ST-Hadoop trade-off storage to
achieve more efficient performance through its index replication. In general, the
index creation of a single level in the Temporal Hierarchy goes through four con-
secutive phases, called sampling, temporal slicing, spatial indexing, and physical
writing. For instance, in the spatial indexing phase, ST-Hadoop determines the
spatial boundaries of the data records within each temporal slice. ST-Hadoop
spatially index each temporal slice independently, and it takes the advantages
of applying different types of spatial bulk loading techniques in HDFS that are



Big Spatial and Spatio-Temporal Data Analytics Systems 169

Fig. 8. ST-Hadoop system architecture [4,6].

already implemented in SpatialHadoop (Grid, STR-tree, Quadtree and k-d tree).
The output of this phase is the spatio-temporal boundaries of each temporal slice.

Spatial and Spatio-Temporal Partitioning Techniques. In the temporal
slicing phase, ST-Hadoop determines the temporal boundaries by slicing the in-
memory sample into multiple time intervals, to efficiently support a fast-random
access to a sequence of objects bounded by the same time interval. ST-Hadoop
employs two temporal slicing techniques, where each manipulates the sample
according to specific slicing characteristics: (1) Time-partition slicing, slices the
sample (from the sampling phase) into multiple splits that are uniformly on
their time intervals, and (2) Data-partition slicing where the sample is sliced to
the degree that all sub-splits are uniformly in their data size. The output of the
temporal slicing phase finds the temporal boundary of each split, that collectively
cover the whole time domain. Moreover, ST-Hadoop takes the advantages of
applying different types of spatial bulk loading techniques in HDFS that are
already implemented in SpatialHadoop such as Grid, STR-tree, Quadtree and
k-d tree.

Spatial and Spatio-Temporal Operations. The combination of the spatio-
temporally load balancing with the temporal hierarchy index structure gives
the kernel of ST-Hadoop, that enables the possibility of efficient and prac-
tical realization of spatio-temporal operations. The Operations layer encapsu-
lates the implementation of three common spatio-temporal operations, namely,



170 P. Velentzas et al.

spatio-temporal range, spatio-temporal top-k nearest neighbor and spatio-
temporal join query as case studies of how to exploit the spatio-temporal index-
ing in ST-Hadoop [6]. For the case of the spatio-temporal range query, ST-
Hadoop exploits its temporal hierarchy index to select partitions that overlap
with the temporal and spatial query predicates. An efficient algorithm that runs
in three steps, temporal filtering, spatial search, and spatio-temporal refinement.
(1) In the temporal filtering step, the hierarchy index is examined to select a
subset of partitions that cover the temporal interval T. (2) Once the temporal
partitions are selected, the spatial search step applies the spatial range query
against each matched partition to select records that spatially match the query
range A. (3) Finally, in the spatio-temporal refinement step, compares individual
records returned by the spatial search step against the query interval T, to select
the exact matching records. Similarly, there is a possibility that selected parti-
tions might partially overlap with the query area A, and thus records outside
the A need to be excluded from the final answer.

Distributed Processing (MapReduce and Dataflow). In the MapRe-
duce layer, new implementations added inside SpatialHadoop MapReduce layer
to enable ST-Hadoop exploits its spatio-temporal indexes and realizes spatio-
temporal predicates. The implementation of MapReduce layer is based on
MapReduce layer in SpatialHadoop [14], and just few changes were made to
inject time awareness in this layer.

Query Language. The Language layer extends Pigeon language [12] to sup-
ports spatio-temporal data types (i.e., STPOINT, TIME and INTERVAL) and spatio-
temporal operations (e.g., OVERLAP, KNN and JOIN) that take the advantages of
the spatio-temporal index. Pigeon already equipped with several basic spatial
predicates. ST-Hadoop changes the OVERLAP function to support spatio-temporal
operations. ST-Hadoop extended the JOIN to take two spatio-temporal indexes
as an input, and the processing of the join invokes the corresponding spatio-
temporal procedure. ST-Hadoop extends KNN operation to finds top-k points to
a given query point in space and time. ST-Hadoop computes the nearest neigh-
bor proximity according to some α (0 ≤ α ≤ 1) value that indicates whether
the kNN operation leans toward spatial, temporal, or spatio-temporal closeness.
A ranking function computes the proximity between query point and any other
points of the dataset.

Case-Studies of Applications. Summit [5] is a full-fledged open-source
library on ST-Hadoop MapReduce framework with built-in native support for
trajectory data. Summit cluster contains one master node that breaks a MapRe-
duce job into smaller tasks, carried out by slave nodes. Summit modifies three
core layers of ST-Hadoop, namely, Language, Indexing and Operations. The Lan-
guage layer adds new SQL-Like interface for trajectory operations and data
types. The modifications and the implementation of the Indexing (trajectory



Big Spatial and Spatio-Temporal Data Analytics Systems 171

indexing) and Operation (trajectory range query, trajectory k nearest neighbor
query and trajectory similarity query) layers are more complicated.

3.4 STARK

The STARK framework (https://github.com/dbis-ilm/stark) [21] is a promis-
ing new spatio-temporal data analytics framework (see in Fig. 9 its architec-
ture). It is tightly integrated with Apache Spark [8] by leveraging Scala lan-
guage features and it adds support for spatial and temporal data types and
operations. Furthermore, STARK exploits SparkSQL functionality and imple-
ments SQL functions for filter, join with various predicates and aggregate vector
as well as raster data. STARK also supports k nearest neighbor search and a
density-based clustering operator allows to find groups of similar events. STARK
includes spatial partitioning and indexing techniques for fast and efficient exe-
cution of the data analysis tasks.

Fig. 9. STARK framework architecture [21].

Spatial and Spatio-Temporal Data Types. The main data structure of
STARK is STObject. This class is a super-class of all spatial objects and pro-
vides a time component. STObject relies on the JTS library with the JTSplus
extension, thus it supports all types of geometry objects, such as Point, Poly-
gon, Linestring, Multipoint, Multypolygon and Multilinestring. Regarding the
temporal data-type, the STObject contains o time component that facilitates
temporal operations.

Spatial and Spatio-Temporal Storage (Indexing Techniques). The
framework can index any partition, using an in memory spatial index struc-
ture. The R-tree index structure is currently supported by STARK, because of
its JTS library dependency. Also, other indexing structures are planned to be
included in future versions. There are three available indexing modes:

https://github.com/dbis-ilm/stark


172 P. Velentzas et al.

1. No Index: In some cases, indexing should be avoided (e.g. full table scan).
No index mode should be used in these cases. When using no index mode, it
does not matter how the RDD is partitioned.

2. Live Indexing: When live indexing is used, the framework firstly partitions
the data items, in case they are not already partitioned. The spatio-temporal
predicate is evaluated and the index is populated. Finally, the index is queried
and the result is returned.

3. Persistent Index: The content of a partition is put into an index structure
which can even be stored to disk and then used to evaluate the predicate.
This execution mode transforms the input RDD from RDD[(STObject, V)] to
RDD[RTree[STObject, (STObject, V)]]. After this transformation the result-
ing RDD consists of R-tree objects instead of single tuples. Multiple subse-
quent operations can benefit from these indexes. Furthermore, the same index
can be used among different scripts, eliminating costly index creation time.

Spatial and Spatio-Temporal Partitioning Techniques. STARK is taking
advantage of the Hadoop environment, resulting to parallel execution on cluster
nodes. Every node processes a fragment of the whole dataset, which is call a par-
tition. STARK spatial and spatio-temporal partitioning does not utilize Spark’s
built-in partitioners, for example a hash partitioner. Currently STARK uses only
spatial partitioning, temporal partitioning is under development. In order to take
advantage of the locality of data, STARK uses the following partitioners:

1. Grid Partitioner: The Grid Partitioner, evenly divides the dimensions based
on a grid over the data space. The number of partitions per dimension are
given as parameters. The disadvantage of grid partitioning is that spatial
objects are not evenly distributed within the grid’s partitions. As a result,
some partitions are nearly empty, while other are contain most of the objects.

2. Binary Space Partitioner: Binary Space Partitioner (BSP) computes its parti-
tions based on a maximum cost, which is given as a parameter. This is done by
firstly dividing the data space into small quadratic shells, with a given side
length. Then the partitioner evaluates all possible partitioning candidates
along the cell bounds and then continues with testing all possible candidates.
Finally, the partitioning with smallest cost difference between both candidate
partitions is applied. The whole process results to two partitions and repeats
itself recursively, if the according partition is longer than one cell length in
at least one dimension and its cost is greater than the given maximum cost.

3. Partitioning Polygons: The spatial partitioners decide the preferred partition
for each spatial object. In case the object is a point, the partitioner checks
which cell contains the point and the assigns it to its relevant partition.
When the spatial object is a polygon, even if this polygon is bigger than the
partitions, the partitioner calculates its centroid point and then assign it the
same way as if it was a point.

Spatial and Spatio-Temporal Operations. STARK supports most of the
spatial and temporal operations. All operations rely on the STObject class and



Big Spatial and Spatio-Temporal Data Analytics Systems 173

its spatial and temporal component. When the temporal component is missing,
operations check only the spatial one. The STOBject class provides the following
filter functions: intersect, contains and containedBy. Moreover, STARK imple-
ments the following operations: join, nearest neighbors, clustering and skyline
(currently in development). All operations benefit from the underlying spatial
and temporal partitioners and additionally from a partition-local spatial or tem-
poral indexing.

Distributed Processing (MapReduce and Dataflow). STARK is fully
integrated into Spark, so it benefits from Spark’s DAG (Directed Acyclic Graph)
execution model. The DAG scheduler transforms a logical execution plan to a
physical execution plan.

Query Language. Besides the Scala API based on the core RDDs, STARK
is integrated into SparkSQL and implements SQL functions to filter, join, and
aggregate vector and raster data.

Visualization. STARK is heavily depended on Spark’s capabilities; therefore
the visualization tools of Spark can be used to visualize STARK data. There is
only one documented visualization tool designed especially for STARK spatial
visualization (see Fig. 10), which also combines raster data in final layout. This
visualization tool comes with a web interface [22] where users can interactively
explore raster and vector data using SQL.

Fig. 10. STARK Visualization, Web Interface [22].



174 P. Velentzas et al.

3.5 Comparison of Systems

In Table 1, we compare the four systems presented in the previous sections,
regarding the features included in the presentation of these systems. Note that,
there was non-available (N.A.) information available in the literature regarding
some features of certain systems (language for GeoSpark, visualization for ST-
hadoop and applications for GeoSpark and STARK).

4 More Big Spatial and Spatio-Temporal Data Analytics
Systems

Apart from the previous four most representative data analytics systems that
are actively maintained, we can find much more. They can be classified in four
categories depending on whether are Hadoop-based or Spark-based [31,40], or
spatial or spatio-temporal.

4.1 Hadoop-Based Big Spatial Data Analytics Systems

Hadoop-GIS [1] is scalable, high performance spatial data-ware housing sys-
tem running on Hadoop. It utilizes SATO spatial partitioning (similar to kd-tree)
and local spatial indexing to achieve efficient query processing. Hadoop-GIS uses
global partition indexing to achieve efficient query results. Hadoop-GIS is sup-
ported with Hive, Pig and Scope. Hadoop-GIS supports fundamental spatial
queries such as point, containment, join, and complex queries such as spatial
cross-matching (large scale spatial join) and nearest neighbor queries. However,
it lacks the support of complex geometry types including convex/concave poly-
gons, line string, multi-point, multi-polygon, etc. HadoopGIS visualizer can plot
images on the master node.

Parallel Secondo [28] integrates Hadoop with SECONDO, that is a
database that can handle non-standard data types, i.e., spatial data. It employs
Hadoop as the distributed task manager and performs operations on a multin-
ode spatial DBMS. It supports the common spatial indexes and spatial queries
except kNN. However, it only supports uniform spatial data partitioning tech-
niques, which cannot handle the spatial data skewness problem. In addition, the
visualization function needs to gather the data to the master node for plotting.

Esri GIS tools for Hadoop [18] are open source tools which would run
on the ArcGIS platform. These allows integration of the Hadoop with Spatial
data analytics software, i.e., ArcGIS Desktop. These tools work with big spatial
data (big data with location) and allow you to complete spatial analysis using
the power of distributed processing in Hadoop. For instance, (1) run a filter
and aggregate operations on billions of spatial data records based on location;
(2) define new areas (polygons) and run a point in polygon analysis on billions
of spatial data records inside Hadoop; (3) visualize analysis results on a map
and apply informative symbology; (4) integrate your maps in reports, or publish
them as map applications online; etc.



Big Spatial and Spatio-Temporal Data Analytics Systems 175

Table 1. Overview of the comparative criteria of big spatial and spatio-temporal data
analytics systems

GeoSpark SpatialHadoop ST-Hadoop STARK

Datatypes Point, Rectangle,
LineString,
Polygon

Point, Rectangle,
LineString,
Polygon

STPoint, Time,
Interval

Point, Polygon,
Linestring,
Multipoint,
Multypolygon,
Multilinestring,
Time, Interval

Indexes R-tree, Quadtree R-tree Temporal
hierarchy index,
Temporal Slicing,
Spatial index

R-tree

Partitioning Quadtree, k-d
tree, STR-tree,
Voronoi,
Uniform, Hilbert

Quadtree,
STR-tree, STR+,
k-d tree,
Hilbert-curve,
Z-curve

Time-
partitioning
slicing,
Data-partitioning
slicing

Grid
Partitioning,
Binary Space
Partitioning

Operations Range, kNN,
Spatial join,
Distance join

Range, kNN,
Spatial join

Spatio-temporal
range,
spatio-temporal
top-k nearest
neighbor,
spatio-temporal
join

Intersect,
contains,
containedBy,
spatial join,
nearest
neighbors,
clustering,
skyline

Processing DAG execution
model

MapReduce MapReduce DAG execution
model

Language N.A Pigeon Pigeon Piglet, Pig Latin

Visualization GeoSparkViz Single level
image, Multilevel
images

N.A Web UI

Applications N.A MNTG,
TAREEG,
TAGHREED,
SHAHED,
HadoopViz

Summit N.A

GeoWave [35] is a software library that connects the scalability of dis-
tributed computing frameworks and key-value stores with modern geospatial
software to store, retrieve and analyze massive geospatial datasets. GeoWave
indexes multidimensional data in a way that ensures values close together in
multidimensional space are stored physically close together in the distributed
datastore of your choice, by using Space Filling Curves (SFCs). GeoWave pro-
vides Hadoop input and output formats for distributed processing and analysis
of geospatial data. GeoWave allows geospatial data in Accumulo platform to be
shared and visualized via OGC standard services.



176 P. Velentzas et al.

ScalaGiST [27] (Scalable Generalized Search Tree) is a scalable and non-
intrusive indexing framework for Hadoop-MapReduce systems. It is based on
classical Generalized Search Tree (GiST). ScalaGiST is designed for dynamic
distributed environments to handle large-scale datasets and adapt to changes in
the workload while leveraging commodity hardware. ScalaGiST is extensible in
terms of both data and query type. It supports multiple types of indexes and
can be dynamically deployed on large clusters while resilient to machine failures.

4.2 Spark-Based Big Spatial Data Analytics Systems

SIMBA [38] (Spatial In-Memory Big data Analytics) extends the Spark SQL
engine to support spatial queries and analytics through SQL and the DataFrame
API. Simba partitions data in a manner that they are of proper and balanced
size and gathers records that locate close to the same partition (STR is used by
default). It builds a local index per partition and a global index by aggregat-
ing information from local indexes. Simba builds local R-tree indexes on each
DataFrame partition and uses R-tree grids to perform the spatial partitioning.
It supports range and kNN queries, kNN and distance joins.

SpatialSpark [39] is a lightweight implementation of spatial support in
Apache Spark. It targets in-memory processing for higher performance. Spa-
tialSpark supports several spatial data types including points, linestrings, poly-
lines, rectangles and polygons. It supports three spatial partitioning schemes
fixed Grid, binary split and STR partitioning. The indexing is supported used
R-trees. SpatialSpark offers range queries and spatial joins between various geo-
metric objects.

LocationSpark [34] is an ambitious project, built as a library on top of
Spark. It requires no modifications to Spark and provides spatial query APIs on
top of the standard operators. It supports a wide range of spatial features. It
provides Dynamic Spatial Query Execution and operations (Range, kNN, Insert,
Delete, Update, Spatial-Join, kNN-Join, Spatio-Textual). The system builds two
indexes, a global (Grid, Quadtree and a Spatial-Bloom Filter) and a local per-
worker, user-decided index (Grid, R-tree, Quadtree and IR-tree). Global index
is constructed by sampling the data. Spatial indexes are aiming to tackle unbal-
anced data partitioning. Additionally, the system contains a query scheduler,
aiming to tackle query skew.

Magellan [32] is a distributed execution engine for spatial analytics on big
data. It leverages modern database techniques in Apache Spark like efficient
data layout, code generation, and query optimization in order to optimize spa-
tial queries. Magellan extends SparkSQL to accommodate spatial datatypes,
geometric predicates and queries. Magellan supports several spatial data types
like points, linestrings, rectangles, polygons, multipoints and multipolygons. It
allows the user to build a Z-curve index on spatial objects. Magellan supports
range queries and spatial joins.

SparkGIS [9] a distributed, in-memory spatial data processing framework
to query, retrieve, and compare large volumes of analytical image result data for
algorithm evaluation. SparkGis combines the in-memory distributed processing



Big Spatial and Spatio-Temporal Data Analytics Systems 177

capabilities of Apache Spark and the efficient spatial query processing of Hadoop-
GIS. SparkGIS mitigates skew by making available various partitioning schemes
as previously evaluated on MapReduce. SparkGIS uniquely improves memory
management in spatial-processing Spark jobs by spatially aware management
of partitions loaded into memory rather than arbitrary spilling to disk. The
performance of SparkGIS was proved with medical pathology images and with
OpenStreetMap (OSM) data.

GeoTrellis [26] is an open source, geographic data processing library
designed to work with large geospatial raster data sets. GeoTrellis leverages
Apache Spark for distributed processing. GeoTrellis relies on the data being
exposed using an HDFS filesystem with the individual files written using the
GeoTIFF format. Distributed processing relies on indexing large datasets based
on a multi-dimensional space-filling curve (SFC), since SFCs enable the transla-
tion of multi-dimensional indices into a single-dimensional one, while maintaining
geospatial locality. GeoTrellis includes some operations using vector and point
data to support raster data operations.

Other big spatial data analytics systems are GeoMatch and SciSpark. Geo-
Match [43] is a scalable and efficient big-data pipeline for large-scale map match-
ing on Apache Spark. GeoMatch utilizes a novel spatial partitioning scheme
inspired by Hilbert SFC, generating an effective indexing technique based such
SFC that expedites spatial query processing in a distributed computing envi-
ronment. Once the index has been built, GeoMatch uses an efficient and intu-
itive load balancing scheme to evenly distribute the parts of the index between
available computing cores. SciSpark [37] is a big data framework that extends
Apache Spark’s in-memory parallel computing to scale scientific computations.
The current architecture of SciSpark includes: (1) time and space partitioning of
high resolution geo-grids from NetCDF3/4; (2) a sciDataset class providing n-
dimensional array operations; (3) parallel computation of time-series statistical
metrics; and (4) an interactive front-end using science (code and visualization)
Notebooks.

4.3 Hadoop-Based Big Spatio-Temporal Data Analytics Systems

CloST [33] is a Hadoop-based storage system for big spatio-temporal data ana-
lytics, based on MapReduce framework. CloST is targeted at fast data load-
ing, scalable spatio-temporal range query processing and efficient storage usage
to handle very large historical spatio-temporal datasets. A simple data model
which has special treatments on three core attributes including an object id,
a location and a time. Based on this data model, CloST hierarchically parti-
tions data using all core attributes which enables efficient parallel processing of
spatio-temporal range scans and efficient parallel processing of two simple types
of spatio-temporal queries: single-object queries and all-object queries. CloST
supports a parallel implementation of the R-tree index.



178 P. Velentzas et al.

4.4 Spark-Based Big Spatio-Temporal Data Analytics Systems

BinJoin [36] is a Spark-based implementation of a spatio-temporal attribute
join that runs in a distributed manner across a Hadoop cluster. One important
conclusion obtained from the experimental study is that the most effective and
efficient distributed spatial join algorithm depends on the characteristics of the
two input datasets. For the implementation of the join algorithms was used a
local index and a query optimizer. Finally, an interesting observation extracted
from the experiments is that spatio-temporal near join was able to scale to larger
input sizes than space-only near join, because the temporal condition alleviates
the effects of spatial skew.

GeoMesa [23] is an open-source spatio-temporal index extension built on top
of distributed data storage systems. It provides a module called GeoMesaSpark
to allow Spark to read the preprocessed and preindexed data from Accumulo
data store. GeoMesa also provides RDD API, DataFrame API and Spatial SQL
API so that the user can run spatio-temporal queries on Apache Spark [24].
GeoMesa uses R-tree spatial partitioning technique to decrease the computation
overhead. However, it uses a Grid file as the local index per DataFrame partition.
GeoMesa supports range query and spatial join query.

5 Conclusions

In a world where the volume of available data is continuously expanding and, in
numerous cases, the related data objects contain spatial and/or spatio-temporal
characteristics, scalable (and, therefore, distributed) systems capable of model-
ing, storing, querying and analyzing big spatial and spatio-temporal data are a
necessity for modern and emerging applications. This fact is verified by the large
number of parallel and distributed systems for big spatial and spatio-temporal
data management and analysis that have been developed. In this paper, we pre-
sented four selected such systems, considering their acceptance in the research
and advanced applications communities. This presentation was structured along
specific categories of key system features and intends to provide to the reader
a view of the differences and similarities of these systems. These four systems
are actively being maintained and updated. However, many more systems have
been developed. To assist the reader to develop a more complete point of view of
the large world of ecosystems supporting management of big spatial and spatio-
temporal data, we also present in brief a number of them. This paper intends
to provide information that would allow a researcher or practitioner choose a
system that is most suitable for his/her needs or compare another system (that
will be developed in the future, or is not covered in this paper) with the ones
presented here.

References

1. Aji, A., Wang, F., Vo, H., Lee, R., Liu, Q., Zhang, X., Saltz, J.H.: Hadoop-GIS:
a high performance spatial data warehousing system over MapReduce. PVLDB
6(11), 1009–1020 (2013)



Big Spatial and Spatio-Temporal Data Analytics Systems 179

2. Alarabi, L., Eldawy, A., Alghamdi, R., Mokbel, M.F.: TAREEG: a MapReduce-
based web service for extracting spatial data from OpenStreetMap. In: SIGMOD
Conference, pp. 897–900 (2014)

3. Alarabi, L., Mokbel, M.F.: A demonstration of ST-hadoop: a MapReduce frame-
work for big spatio-temporal data. PVLDB 10(12), 1961–1964 (2017)

4. Alarabi, L., Mokbel, M.F., Musleh, M.: ST-Hadoop: a MapReduce framework for
spatio-temporal data. In: SSTD Conference, pp. 84–104 (2017)

5. Alarabi, L.: Summit: a scalable system for massive trajectory data management.
SIGSPATIAL Special 10(3), 2–3 (2018)

6. Alarabi, L., Mokbel, M.F., Musleh, M.: ST-Hadoop: a MapReduce framework for
spatio-temporal data. GeoInformatica 22(4), 785–813 (2018). https://doi.org/10.
1007/s10707-018-0325-6

7. Apache. Hadoop. http://hadoop.apache.org/
8. Apache. Spark. http://spark.apache.org/
9. Baig, F., Vo, H., Kurç, T.M., Saltz, J.H., Wang, F.: SparkGIS: resource aware

efficient in-memory spatial query processing. In: SIGSPATIAL/GIS Conference,
pp. 28:1–28:10 (2017)

10. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
In: OSDI Conference, pp. 137–150 (2004)

11. Eldawy, A., Li, Y., Mokbel, M.F., Janardan, R.: CG Hadoop: computational geom-
etry in MapReduce. In: SIGSPATIAL/GIS Conference, pp. 284–293 (2013)

12. Eldawy, A., Mokbel, M.F.: Pigeon: a spatial MapReduce language. In: ICDE Con-
ference, pp. 1242–1245 (2014)

13. Eldawy, A., Mokbel, M.F.: The ecosystem of SpatialHadoop. SIGSPATIAL Special
6(3), 3–10 (2014)

14. Eldawy, A., Mokbel, M.F.: SpatialHadoop: a MapReduce framework for spatial
data. In: ICDE Conference, pp. 1352–1363 (2015)

15. Eldawy, A., Alarabi, L., Mokbel, M.F.: Spatial partitioning techniques in spatial
hadoop. PVLDB 8(12), 1602–1605 (2015)

16. Eldawy, A., Mokbel, M.F., Al-Harthi, S., Alzaidy, A., Tarek, K., Ghani, S.: SHA-
HED: a MapReduce-based system for querying and visualizing spatio-temporal
satellite data. In: ICDE Conference, pp. 1585–1596 (2015)

17. Eldawy, A., Mokbel, M.F., Jonathan, C.: HadoopViz: a MapReduce framework
for extensible visualization of big spatial data. In: ICDE Conference, pp. 601–612
(2016)

18. ESRI-GIS: GIS Tools for Hadoop (2014). http://esri.github.io/gis-tools-for-
hadoop/. Accessed 20 July 2019

19. Garcia-Garcia, F., Corral, A., Iribarne, L., Mavrommatis, G., Vassilakopoulos, M.:
A comparison of distributed spatial data management systems for processing dis-
tance join queries. In: ADBIS Conference, pp. 214–228 (2017)

20. Garćıa-Garćıa, F., Corral, A., Iribarne, L., Vassilakopoulos, M., Manolopoulos, Y.:
Efficient large-scale distance-based join queries in spatialhadoop. GeoInformatica
22(2), 171–209 (2017). https://doi.org/10.1007/s10707-017-0309-y

21. Hagedorn, S., Goetze, P., Sattler, K.U.: he STARK framework for spatio-temporal
data analytics on spark. In: BTW Conference, pp. 123–142 (2017)

22. Hagedorn, S., Birli, O., Sattler, K.U.: Processing large raster and vector data in
apache spark. In: BTW Conference, pp. 551–554 (2019)

23. Hughes, N.J., Annex, A., Eichelberger, C.N., Fox, A., Hulbert, A., Ronquest,
M.: Geomesa: a distributed architecture for spatio-temporal fusion. In: Geospa-
tial Informatics, Fusion, and Motion Video Analytics V, vol. 9473, p. 94730F.
International Society for Optics and Photonics (2015)

https://doi.org/10.1007/s10707-018-0325-6
https://doi.org/10.1007/s10707-018-0325-6
http://hadoop.apache.org/
http://spark.apache.org/
http://esri.github.io/gis-tools-for-hadoop/
http://esri.github.io/gis-tools-for-hadoop/
https://doi.org/10.1007/s10707-017-0309-y


180 P. Velentzas et al.

24. Hulbert, A., Kunicki, T., Hughes, J.N., Fox, A.D., Eichelberger, C.N.: An experi-
mental study of big spatial data systems. In: BigData Conference, pp. 2664–2671
(2016)

25. Jiang, D., Ooi, B.C., Shi, L., Wu, S.: The performance of MapReduce: an in-depth
study. PVLDB 3(1), 472–483 (2010)

26. Kini, A., Emanuele, R.: Geotrellis: adding geospatial capabilities to spark. Spark
Summit (2014)

27. Lu, P., Chen, G., Ooi, B.C., Vo, H.T., Wu, S.: ScalaGiST: scalable generalized
search trees for MapReduce systems. PVLDB 7(14), 1797–1808 (2014)

28. Lu, J., Güting, R.H.: Parallel secondo: boosting database engines with hadoop. In:
ICPADS Conference, pp. 738–743 (2012)

29. Magdy, A., Alarabi, L., Al-Harthi, S., Musleh, M., Ghanem, T.M., Ghani, S., Mok-
bel, M.F.: Taghreed: a system for querying, analyzing, and visualizing geotagged
microblogs. In: SIGSPATIAL/GIS Conference, pp. 163–172 (2014)

30. Mokbel, M.F., Alarabi, L., Bao, J., Eldawy, A., Magdy, A., Sarwat, M., Waytas, E.,
Yackel, S.: MNTG: an extensible web-based traffic generator. In: SSTD Conference,
pp. 38–55 (2013)

31. Pandey, V., Kipf, A., Neumann, T., Kemper, A.: How good are modern spatial
analytics systems? PVLDB 11(11), 1661–1673 (2018)

32. Sriharsha, R.: Magellan: Geospatial Analytics Using Spark (2015). https://github.
com/harsha2010/magellan. Accessed 20 July 2019

33. Tan, H., Luo, W., Ni, L.M.: CloST: a hadoop-based storage system for big spatio-
temporal data analytics. In: CIKM Conference, pp. 2139–2143 (2012)

34. Tang, M., Yu, Y., Malluhi, Q.M., Ouzzani, M., Aref, W.G.: LocationSpark: a dis-
tributed in-memory data management system for big spatial data. PVLDB 9(13),
1565–1568 (2016)

35. Whitby, M.A., Fecher, R., Bennight, C.: GeoWave: utilizing distributed key-value
stores for multidimensional data. In: SSTD Conference, pp. 105–122 (2017)

36. Whitman, R.T., Park, M.B., Marsh, B.G., Hoel, E.G.: Spatio-temporal join on
apache spark. In: SIGSPATIAL/GIS Conference, pp. 20:1–20:10 (2017)

37. Wilson, B., Palamuttam, R., Whitehall, K., Mattmann, C., Goodman, A., Bous-
tani, M., Shah, S., Zimdars, P., Ramirez, P.M.: SciSpark: highly interactive in-
memory science data analytics. In: BigData Conference, pp. 2964–2973 (2016)

38. Xie, D., Li, F., Yao, B., Li, G., Zhou, L., Guo, M.: Simba: efficient in-memory
spatial analytics. In: SIGMOD Conference, pp. 1071–1085 (2016)

39. You, S., Zhang, J., Gruenwald, L.: Large-scale spatial join query processing in
cloud. In: ICDE Workshops, pp. 34–41 (2015)

40. Yu, J., Sarwat, M.: Geospatial data management in apache spark: a tutorial. In:
ICDE Conference, pp. 2060–2063 (2019)

41. Yu, J., Zhang, Z., Sarwat, M.: GeoSparkViz: a scalable geospatial data visualization
framework in the apache spark ecosystem. In: SSDBM Conference, pp. 15:1–15:12
(2018)

42. Yu, J., Zhang, Z., Sarwat, M.: Spatial data management in apache spark: the
GeoSpark perspective and beyond. GeoInformatica 23(1), 37–78 (2018). https://
doi.org/10.1007/s10707-018-0330-9

43. Zeidan, A., Lagerspetz, E., Zhao, K., Nurmi, P., Tarkoma, S., Vo, H.T.: GeoMatch:
efficient large-scale map matching on apache spark. In: BigData Conference, pp.
384–391 (2018)

https://github.com/harsha2010/magellan
https://github.com/harsha2010/magellan
https://doi.org/10.1007/s10707-018-0330-9
https://doi.org/10.1007/s10707-018-0330-9

	Big Spatial and Spatio-Temporal Data Analytics Systems
	1 Introduction
	2 Parallel and Distributed Architectures
	2.1 Apache Hadoop
	2.2 Apache Spark

	3 Big Spatial and Spatio-Temporal Data Analytics Systems
	3.1 SpatialHadoop
	3.2 GeoSpark
	3.3 ST-Hadoop
	3.4 STARK
	3.5 Comparison of Systems

	4 More Big Spatial and Spatio-Temporal Data Analytics Systems
	4.1 Hadoop-Based Big Spatial Data Analytics Systems
	4.2 Spark-Based Big Spatial Data Analytics Systems
	4.3 Hadoop-Based Big Spatio-Temporal Data Analytics Systems
	4.4 Spark-Based Big Spatio-Temporal Data Analytics Systems

	5 Conclusions
	References




