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Abstract. We study decision trees as a means of representation of
knowledge. To this end, we design two techniques for the creation
of CART (Classification and Regression Tree)-like decision trees that
are based on bi-objective optimization algorithms. We investigate three
parameters of the decision trees constructed by these techniques: number
of vertices, global misclassification rate, and local misclassification rate.
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1 Introduction

Decision trees are used to a large degree as classifiers [5,6,10], as a means of
representation of knowledge [4,7], and as a kind of algorithms [20,25]. We inves-
tigate here decision trees as a means of representation of knowledge.

Let us consider a decision tree Γ for a decision table D. We investigate three
parameters of Γ :

– N(Γ ) – the number of vertices in Γ .
– G(D,Γ ) – the global misclassification rate [7], which is equal to the number

of misclassifications of Γ divided by the number of rows in D.
– L(D,Γ ) – the local misclassification rate [7], which is the maximum fraction

of misclassifications among all leaves of Γ . One can show that G(D,Γ ) is at
most L(D,Γ ).

The decision tree Γ should have a reasonable number of vertices to be under-
standable. To express properly knowledge from the decision table D, this tree
should have an acceptable accuracy. In [7], we mentioned that the consideration
of only the global misclassification rate may be insufficient: the misclassifications
may be unevenly distributed and, for some leaves, the fraction of misclassifica-
tions can be high. To deal with this situation, we should consider also the local
misclassification rate.

The optimization of the parameters of decision tree has been studied by many
researchers [9,11–13,16–19,24,26]. One of the directions of the research is the bi-
objective optimization [1–8]. In [7], we proposed three techniques for the building
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of decision trees based on the bi-objective optimization of trees and studied
the parameters N , G, and L of the constructed decision trees. Unfortunately,
these techniques are applicable to medium-sized decision tables with categorical
features only and, sometimes, the number of vertices in the trees is too high. In
particular, the decision tree Γ1 with the minimum number of vertices constructed
by these techniques for the decision table D NURSERY from the UCI Machine
Learning Repository [15] has the following parameters: N(Γ1) = 70, G(D,Γ1) =
0.10, and L(D,Γ1) = 0.23.

In this paper, instead of conventional decision trees, we study CART-like
(CART-L) decision trees introduced in the books [1,2]. As the standard CART
[10] trees, CART-L trees use binary splits instead of the initial features. The
standard CART tree uses in each internal vertex the best split among all features.
A CART-L tree can use in each internal vertex the best split for an arbitrary
feature. It extends essentially the set of decision trees under consideration. In
[1,2], we applied Gini index to define the notion of the best split. In this paper,
we use another parameter abs [2].

We design two techniques that build decision trees for medium-sized tables
(at most 10, 000 rows and at most 20 features) containing both categorical and
numerical features. These techniques are based on bi-objective optimization of
CART-L decision trees for parameters N and G [1], and for parameters N and
L. Both techniques construct decision trees with at most 19 vertices (at most
10 leaves and at most nine internal vertices). The choice of 19 is not random.
We consider enough understandable trees with small number of non-terminal
vertices which can be useful from the point of view of knowledge representation.
This choice is supported by some experimental results published in [1]. One
technique (G-19 technique) was proposed in [1]. Another one (L-19 technique)
is completely new. We apply the considered techniques to 14 data sets from the
UCI Machine Learning Repository [15], and study three parameters N , G, and
L of the constructed trees. For example, for the decision table D NURSERY,
L-19 technique constructs a decision tree Γ2 with N(Γ2) = 17, G(D,Γ2) = 0.12,
and L(D,Γ2) = 0.22.

The obtained results show that at least one of the considered techniques (L-
19 technique) can be useful for the extraction of knowledge from medium-sized
decision tables and for its representation by decision trees. This technique can be
used in different areas of data analysis including rough set theory [14,21–23,27].
In rough set, the decision rules are used extensively. We can easily derive decision
rules from the constructed decision trees and use them in rough set applications.

We arrange the remaining of the manuscript as follows. Two techniques for
decision tree building are explained in Sect. 2. The output of the experiments is
in Sect. 3. Finally, Sect. 4 contains brief conclusion.
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Fig. 1. Sets of Pareto optimal points for tables breast-cancer, nursery, and tic-
tac-toe for pairs of parameters N , G and N , L
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2 Two Techniques for Decision Tree Construction

In the books [1,2], an algorithm APOPs is described. If we give this algorithm
a decision table, then it builds the Pareto front – the set of all POPs (Pareto
optimal points) for bi-objective optimization of CART-L trees relative to N and
G (see, for example, Fig. 1(a), (c), (e)). We extend this algorithm to the build-
ing of the Pareto front for parameters N and L (see, for example, Fig. 1(b),
(d), (f)). For each POP, we can get a decision tree with values of the consid-
ered parameters equal to the coordinates of this point. Both algorithm APOPs

and its extension have exponential time complexity in the worst case. We now
describe two techniques of decision tree building based on the operation of the
algorithm APOPs and its extension. The time complexity of these two techniques
is exponential in the worst case.

2.1 G-19 Technique

We apply the algorithm APOPs to a decision table D. The output of this algo-
rithm is the Pareto front for the bi-objective optimization of CART-L trees for
parameters N and G. We choose a POP with the maximum value of the param-
eter N which is at most 19. After that, we get a decision tree Γ , for which the
parameters N and G are equal to the coordinates of this POP. The tree Γ is the
output of G-19 technique. This technique was described in [1]. However, we did
not study the parameter L for the constructed trees.

2.2 L-19 Technique

We apply the extension of the algorithm APOPs to a decision table D to create the
Pareto front for the bi-objective optimization of CART-L trees for parameters
N and L. We choose a POP with the maximum value of the parameter N which
is at most 19. After that, we get a decision tree Γ , for which the parameters N
and L are equal to the coordinates of this POP. The tree Γ is the output of L-19
technique. This is a new technique.

3 Results of Experiments

In Table 1, we describe 14 decision tables, each with its name, number of features
as well as number of objects (rows). These tables are collected from the UCI
Machine Learning Repository [15] for performing the experiments.

We applied G-19 and L-19 techniques to each of these tables and found
values of the parameters N , G, and L for the constructed decision trees. Table 2
describes the experimental results.

The obtained results show that the use of L-19 technique in comparison with
G-19 technique allows us to decrease the parameter L on average from 0.16 to
0.11 at the cost of a slight increase in the parameter G on average from 0.06 to
0.07.



Decision Trees with at Most 19 Vertices for Knowledge Representation 5

Table 1. Decision tables which are collected for performing the experiments

Decision table #Features #Objects (rows)

balance-scale 5 625

breast-cancer 10 266

cars 7 1728

hayes-roth-data 5 69

house-votes-84 17 279

iris 5 150

lenses 5 10

lymphography 19 148

nursery 9 12960

shuttle-landing 7 15

soybean-small 36 47

spect-test 23 169

tic-tac-toe 10 958

zoo-data 17 59

Table 2. Results of experiments

Decision table G-19 technique L-19 technique

N G L N G L

balance-scale 19 0.19 0.38 11 0.20 0.32

breast-cancer 19 0.16 0.26 19 0.18 0.20

cars 19 0.10 0.39 19 0.12 0.23

hayes-roth-data 17 0.06 0.17 17 0.06 0.17

house-votes-84 19 0.02 0.02 19 0.02 0.02

iris 17 0.00 0.00 17 0.00 0.00

lenses 7 0.00 0.00 7 0.00 0.00

lymphography 19 0.06 0.20 19 0.10 0.11

nursery 19 0.11 0.34 17 0.12 0.22

shuttle-landing 13 0.00 0.00 13 0.00 0.00

soybean-small 7 0.00 0.00 7 0.00 0.00

spect-test 17 0.02 0.09 19 0.02 0.02

tic-tac-toe 19 0.18 0.39 19 0.21 0.25

zoo-data 17 0.00 0.00 17 0.00 0.00

Average 16.29 0.06 0.16 15.71 0.07 0.11
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4 Conclusions

We proposed to evaluate the accuracy of decision trees not only by the global mis-
classification rate G but also by the local misclassification rate L, and designed
new L-19 technique. This technique constructs decision trees having at most 19
vertices and acceptable values of the parameters G and L. Later we are planning
to extend this technique to multi-label decision tables using bi-objective opti-
mization algorithms described in [2,3]. Also, our goal is to make more experi-
ments with other numbers of vertices like 13, 15, 17, 21, 23, etc. Another direc-
tion of future research is to design some heuristics to overcome the problem of
working with larger data set.
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