
 123

Transactions on

Rough Sets XXIILN
CS

 1
24

85

James F. Peters · Andrzej Skowron
Editors-in-Chief

Jo
ur

na
l S

ub
lin

e



Lecture Notes in Computer Science 12485

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693


More information about this subseries at http://www.springer.com/series/7151

http://www.springer.com/series/7151


James F. Peters • Andrzej Skowron (Eds.)

Transactions on
Rough Sets XXII

123



Editors-in-Chief
James F. Peters
University of Manitoba
Winnipeg, MB, Canada

Andrzej Skowron
Systems Research Institute,
Polish Academy of Sciences
Warsaw, Poland

CTN UKSW
Warsaw, Poland

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISSN 1861-2059 ISSN 1861-2067 (electronic)
Transactions on Rough Sets
ISBN 978-3-662-62797-6 ISBN 978-3-662-62798-3 (eBook)
https://doi.org/10.1007/978-3-662-62798-3

© Springer-Verlag GmbH Germany, part of Springer Nature 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer-Verlag GmbH, DE
part of Springer Nature.
The registered company address is: Heidelberger Platz 3, 14197 Berlin, Germany

https://orcid.org/0000-0002-1026-4638
https://orcid.org/0000-0002-5271-6559
https://doi.org/10.1007/978-3-662-62798-3


Preface

Volume XXII of the Transactions on Rough Sets (TRS) is a continuation of a number
of research streams that have grown out of the seminal work of Zdzisław Pawlak1

during the first decade of the 21st century.
The paper by Mohammad Azad investigates bi-objective optimization of classifi-

cation and regression (CART)-like decision trees for data analysis. The results show
that at least one of the considered techniques (L -19) can be useful for the extraction of
knowledge from medium-sized decision tables and for its representation by decision
trees. The paper by Nicholas Baltzer and Jan Komorowski presents the design and
implementation of a multi-core execution process in ROSETTA, which is optimized for
speed and modular extension. The parallel || – ROSETTA software was tested using
four datasets of different sizes for computational speed and memory usage. This tool is
a successor to the Rosetta system developed in 1994 to exploit rough set paradigms in
machine learning. The paper by Stefania Boffa and Brunella Gerla introduces
sequences of orthopairs generated by tolerance relations as special sequences of rough
sets. These special sequences of coverings represent situations where new information
is gradually provided on smaller and smaller sets of objects. The paper also investigates
several operations between sequences of orthopairs to provide concrete representations
for certain classes of many-valued structures. The paper by Arun Kumar contributes to
the algebraic and logical developments of rough set theory. The study leads to new
semantics for the logics corresponding to the classes of Stone algebras, dual Stone
algebras, and regular double Stone algebras. Representations of distributive lattices
(with operators) and Heyting algebras (with operators) are proved. Moreover, it is
shown that various negations appear in Dunn’s Kite negations in this generalized rough
set theory. The paper by Dávid Nagy is on similarity-based (tolerance) rough sets,
where the system of base sets is generated by correlation clustering. The space gen-
erated by the clustering mechanism, on the one hand, represents the interpreted simi-
larity properly and on the other hand, reduces the number of base sets to a manageable
size. This work deals with the properties and applicability of this space, presenting
advantages that can be gained from correlation clustering. Finally, an errata for a
reference which appeared in Transactions on Rough Sets, vol. XVII, LNCS 8375,
pages 197–173 is included.

The editors would like to express their gratitude to the authors of all submitted
papers. Special thanks are due to the following reviewers: Davide Ciucci, Richard
Jensen, Mikhail Moshkov, Lech Polkowski, and Dominik Ślȩzak.

1 See, e.g., Pawlak, Z., A Treatise on Rough Sets, Transactions on Rough Sets IV, (2006), 1–17. See,
also, Pawlak, Z., Skowron, A.: Rudiments of rough sets, Information Sciences 177 (2007) 3–27;
Pawlak, Z., Skowron, A.: Rough sets: Some extensions, Information Sciences 177 (2007) 28–40;
Pawlak, Z., Skowron, A.: Rough sets and Boolean reasoning, Information Sciences 177 (2007) 41–
73.



The editors and authors of this volume extend their gratitude to Alfred Hofmann,
Christine Reiss, and the LNCS staff at Springer for their support in making this volume
of TRS possible.

October 2020 James F. Peters
Andrzej Skowron
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Errata

In the paper

HenrykRybiński andMariusz Podsiadło:Rough Sets in Economy andFinance. Transactions
on Rough Sets XVII, pp. 109–173, Springer (2014) https://link.springer.com/chapter/
10.1007/978-3-642-54756-0_6, https://doi.org/10.1007/978-3-642-54756-0_6

the correct reference to the paper by J.K. Baltzersen should be the following:

7. Baltzersen, J.K.: An attempt to predict stock market data: a rough sets approach.
Diploma Thesis, Knowledge Systems Group, Department of Computer Systems and
Telematics, The Norwegian Institute of Technology, University of Trondheim,
1996.

https://springerlink.bibliotecabuap.elogim.com/chapter/10.1007/978-3-642-54756-0_6
https://springerlink.bibliotecabuap.elogim.com/chapter/10.1007/978-3-642-54756-0_6
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Decision Trees with at Most 19 Vertices
for Knowledge Representation

Mohammad Azad(B)

College of Computer and Information Science, Jouf University,
Sakaka 72441, Saudi Arabia

mmazad@ju.edu.sa

Abstract. We study decision trees as a means of representation of
knowledge. To this end, we design two techniques for the creation
of CART (Classification and Regression Tree)-like decision trees that
are based on bi-objective optimization algorithms. We investigate three
parameters of the decision trees constructed by these techniques: number
of vertices, global misclassification rate, and local misclassification rate.

Keywords: Knowledge representation · Decision trees · Dynamic
programming · Bi-objective optimization

1 Introduction

Decision trees are used to a large degree as classifiers [5,6,10], as a means of
representation of knowledge [4,7], and as a kind of algorithms [20,25]. We inves-
tigate here decision trees as a means of representation of knowledge.

Let us consider a decision tree Γ for a decision table D. We investigate three
parameters of Γ :

– N(Γ ) – the number of vertices in Γ .
– G(D,Γ ) – the global misclassification rate [7], which is equal to the number

of misclassifications of Γ divided by the number of rows in D.
– L(D,Γ ) – the local misclassification rate [7], which is the maximum fraction

of misclassifications among all leaves of Γ . One can show that G(D,Γ ) is at
most L(D,Γ ).

The decision tree Γ should have a reasonable number of vertices to be under-
standable. To express properly knowledge from the decision table D, this tree
should have an acceptable accuracy. In [7], we mentioned that the consideration
of only the global misclassification rate may be insufficient: the misclassifications
may be unevenly distributed and, for some leaves, the fraction of misclassifica-
tions can be high. To deal with this situation, we should consider also the local
misclassification rate.

The optimization of the parameters of decision tree has been studied by many
researchers [9,11–13,16–19,24,26]. One of the directions of the research is the bi-
objective optimization [1–8]. In [7], we proposed three techniques for the building
c© Springer-Verlag GmbH Germany, part of Springer Nature 2020
J. F. Peters and A. Skowron (Eds.): TRS XXII, LNCS 12485, pp. 1–7, 2020.
https://doi.org/10.1007/978-3-662-62798-3_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-62798-3_1&domain=pdf
https://doi.org/10.1007/978-3-662-62798-3_1


2 M. Azad

of decision trees based on the bi-objective optimization of trees and studied
the parameters N , G, and L of the constructed decision trees. Unfortunately,
these techniques are applicable to medium-sized decision tables with categorical
features only and, sometimes, the number of vertices in the trees is too high. In
particular, the decision tree Γ1 with the minimum number of vertices constructed
by these techniques for the decision table D NURSERY from the UCI Machine
Learning Repository [15] has the following parameters: N(Γ1) = 70, G(D,Γ1) =
0.10, and L(D,Γ1) = 0.23.

In this paper, instead of conventional decision trees, we study CART-like
(CART-L) decision trees introduced in the books [1,2]. As the standard CART
[10] trees, CART-L trees use binary splits instead of the initial features. The
standard CART tree uses in each internal vertex the best split among all features.
A CART-L tree can use in each internal vertex the best split for an arbitrary
feature. It extends essentially the set of decision trees under consideration. In
[1,2], we applied Gini index to define the notion of the best split. In this paper,
we use another parameter abs [2].

We design two techniques that build decision trees for medium-sized tables
(at most 10, 000 rows and at most 20 features) containing both categorical and
numerical features. These techniques are based on bi-objective optimization of
CART-L decision trees for parameters N and G [1], and for parameters N and
L. Both techniques construct decision trees with at most 19 vertices (at most
10 leaves and at most nine internal vertices). The choice of 19 is not random.
We consider enough understandable trees with small number of non-terminal
vertices which can be useful from the point of view of knowledge representation.
This choice is supported by some experimental results published in [1]. One
technique (G-19 technique) was proposed in [1]. Another one (L-19 technique)
is completely new. We apply the considered techniques to 14 data sets from the
UCI Machine Learning Repository [15], and study three parameters N , G, and
L of the constructed trees. For example, for the decision table D NURSERY,
L-19 technique constructs a decision tree Γ2 with N(Γ2) = 17, G(D,Γ2) = 0.12,
and L(D,Γ2) = 0.22.

The obtained results show that at least one of the considered techniques (L-
19 technique) can be useful for the extraction of knowledge from medium-sized
decision tables and for its representation by decision trees. This technique can be
used in different areas of data analysis including rough set theory [14,21–23,27].
In rough set, the decision rules are used extensively. We can easily derive decision
rules from the constructed decision trees and use them in rough set applications.

We arrange the remaining of the manuscript as follows. Two techniques for
decision tree building are explained in Sect. 2. The output of the experiments is
in Sect. 3. Finally, Sect. 4 contains brief conclusion.
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Fig. 1. Sets of Pareto optimal points for tables breast-cancer, nursery, and tic-
tac-toe for pairs of parameters N , G and N , L
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2 Two Techniques for Decision Tree Construction

In the books [1,2], an algorithm APOPs is described. If we give this algorithm
a decision table, then it builds the Pareto front – the set of all POPs (Pareto
optimal points) for bi-objective optimization of CART-L trees relative to N and
G (see, for example, Fig. 1(a), (c), (e)). We extend this algorithm to the build-
ing of the Pareto front for parameters N and L (see, for example, Fig. 1(b),
(d), (f)). For each POP, we can get a decision tree with values of the consid-
ered parameters equal to the coordinates of this point. Both algorithm APOPs

and its extension have exponential time complexity in the worst case. We now
describe two techniques of decision tree building based on the operation of the
algorithm APOPs and its extension. The time complexity of these two techniques
is exponential in the worst case.

2.1 G-19 Technique

We apply the algorithm APOPs to a decision table D. The output of this algo-
rithm is the Pareto front for the bi-objective optimization of CART-L trees for
parameters N and G. We choose a POP with the maximum value of the param-
eter N which is at most 19. After that, we get a decision tree Γ , for which the
parameters N and G are equal to the coordinates of this POP. The tree Γ is the
output of G-19 technique. This technique was described in [1]. However, we did
not study the parameter L for the constructed trees.

2.2 L-19 Technique

We apply the extension of the algorithm APOPs to a decision table D to create the
Pareto front for the bi-objective optimization of CART-L trees for parameters
N and L. We choose a POP with the maximum value of the parameter N which
is at most 19. After that, we get a decision tree Γ , for which the parameters N
and L are equal to the coordinates of this POP. The tree Γ is the output of L-19
technique. This is a new technique.

3 Results of Experiments

In Table 1, we describe 14 decision tables, each with its name, number of features
as well as number of objects (rows). These tables are collected from the UCI
Machine Learning Repository [15] for performing the experiments.

We applied G-19 and L-19 techniques to each of these tables and found
values of the parameters N , G, and L for the constructed decision trees. Table 2
describes the experimental results.

The obtained results show that the use of L-19 technique in comparison with
G-19 technique allows us to decrease the parameter L on average from 0.16 to
0.11 at the cost of a slight increase in the parameter G on average from 0.06 to
0.07.
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Table 1. Decision tables which are collected for performing the experiments

Decision table #Features #Objects (rows)

balance-scale 5 625

breast-cancer 10 266

cars 7 1728

hayes-roth-data 5 69

house-votes-84 17 279

iris 5 150

lenses 5 10

lymphography 19 148

nursery 9 12960

shuttle-landing 7 15

soybean-small 36 47

spect-test 23 169

tic-tac-toe 10 958

zoo-data 17 59

Table 2. Results of experiments

Decision table G-19 technique L-19 technique

N G L N G L

balance-scale 19 0.19 0.38 11 0.20 0.32

breast-cancer 19 0.16 0.26 19 0.18 0.20

cars 19 0.10 0.39 19 0.12 0.23

hayes-roth-data 17 0.06 0.17 17 0.06 0.17

house-votes-84 19 0.02 0.02 19 0.02 0.02

iris 17 0.00 0.00 17 0.00 0.00

lenses 7 0.00 0.00 7 0.00 0.00

lymphography 19 0.06 0.20 19 0.10 0.11

nursery 19 0.11 0.34 17 0.12 0.22

shuttle-landing 13 0.00 0.00 13 0.00 0.00

soybean-small 7 0.00 0.00 7 0.00 0.00

spect-test 17 0.02 0.09 19 0.02 0.02

tic-tac-toe 19 0.18 0.39 19 0.21 0.25

zoo-data 17 0.00 0.00 17 0.00 0.00

Average 16.29 0.06 0.16 15.71 0.07 0.11
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4 Conclusions

We proposed to evaluate the accuracy of decision trees not only by the global mis-
classification rate G but also by the local misclassification rate L, and designed
new L-19 technique. This technique constructs decision trees having at most 19
vertices and acceptable values of the parameters G and L. Later we are planning
to extend this technique to multi-label decision tables using bi-objective opti-
mization algorithms described in [2,3]. Also, our goal is to make more experi-
ments with other numbers of vertices like 13, 15, 17, 21, 23, etc. Another direc-
tion of future research is to design some heuristics to overcome the problem of
working with larger data set.

Acknowledgments. The author expresses his gratitude to Jouf University for sup-
porting this research. The author would like to give thanks to Igor Chikalov and Mikhail
Moshkov for valuable comments. The author also would like to give thanks to anony-
mous reviewers for their suggestions.
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||-ROSETTA

Nicholas Baltzer1,2(B) and Jan Komorowski1,3

1 Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
{nicholas.baltzer,jan.komorowski}@icm.uu.se

2 Department of Medical Epidemiology and Biostatistics, Karolinska Institute,
Stockholm, Sweden

3 Polish Academy of Sciences, Warsaw, Poland

Abstract. Technology improves every day. In order for an established
theory to maintain relevance, implementations of such theory must be
updated to take advantage of the new improvements. ROSETTA, a
framework based on Rough Set theory, was developed in 1994 to exploit
Rough Set paradigms in Machine Learning. Since then, much has hap-
pened in the field of Computer Technology, and to fully exploit these
benefits ROSETTA needed to evolve. We designed and implemented
a multi-core execution process in ROSETTA, optimized for speed and
modular extension. The program was tested using four datasets of differ-
ent sizes for computational speed and memory usage, the factors consid-
ered the primary limitations of classification and Machine Learning. The
results show an increase in computation speed consistent with expected
gains. The scaling per thread of memory usage was less than linear after
five threads with increases in memory based primarily on the number
of objects in the dataset. The number of features in the data increased
the base memory needed but did not significantly impact the memory
scaling by threads. The multi-core implementation was successful, and ||-
ROSETTA (pronounced Parallel-ROSETTA) is capable of fully exploit-
ing modern hardware solutions.

Keywords: Bioinformatics · Rough set theory · Parallel computing

1 Introduction

1.1 Background

The application of Rough Set theory to practical matters revolves around the
availability and practicality of modern tools and implementations. As the per-
formance and usability of these tools improve, their adoption widens, and the
algorithms they apply become more standard for future research.

ROSETTA [14] is a tool, a framework, for Rough Set algorithms. It handles
a wide range of functions in the form of a pipeline applied to a dataset. It will
commonly include completion, discretization, reduct computation, classification,
validation, and publishing.
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ROSETTA was built in 1994 and came long before the switch to multi-core
processors and hyper-threading, hence it did not have support for parallel com-
puting. The use of threading in computer-assisted science has increased massively
in later years and made possible computational loads of exponential magnitude;
thus updating ROSETTA to use threaded computations is a step in maintaining
the practicality and application of Rough Sets in Machine Learning, an approach
that has already proven successful in application [1]. Retaining Rough Set theory
implementations is necessary as a wide swath of the computer-assisted science
community is turning more towards deep learning, an approach that prohibits
any reasonable interpretation of the underlying classifier and thus gives up the
discovery of any explanatory path from premise to antecedent.

The design of ||-ROSETTA is an attempt to be as effective as possible in favor
of being as efficient as possible. Thread independence and speed are both maxi-
mized while retaining the modular simplicity of adding new algorithms. This has
the benefit of greatly limiting inter-core communication, but the focus on effi-
cacy maximizes memory usage. The parallelization of ||-ROSETTA is primarily
handled at the level of experiments and not within the algorithms themselves. It
is possible to run multiple discretization algorithms in parallel, but it is not pos-
sible to run a single instance of a discretization algorithm using multiple threads.
The only exception to this is a reduct computation that allows for parallel exe-
cution within the algorithm itself. Adding parallel execution possibilities within
the algorithms themselves would require a unique per-algorithm implementation
to ensure that no memory inconsistencies were introduced, and would only work
for the algorithms that could compute datapoints independently of each other.
All algorithms that relied on computing results sequentially, such as reading data
from a file or discretizing data based on previous discretization cuts, would be
unable to benefit from parallel execution.

An early effort to provide rough set computations in parallel was the design
of PSL [4] – a language for distributed computations – which subsequently was
applied to distributing computation of algorithms implemented in the RSES
library [3]. Distributed computations differ significantly, however, from multi-
core execution.

1.2 ROSETTA

ROSETTA was designed in collaboration between the laboratories of Jan
Komorowski and Andrzej Skowron and implemented by Aleksander Øhrn. It
included a number of algorithms and modules developed within the RSES frame-
work [3]. It was created in C++, and has seen multiple extensions as new algo-
rithms and techniques have been added to its repertoire [10].

Functionality. The core functionality revolves around a pipeline of algorithms
that can be applied in sequence to a dataset for the purpose of analysis and clas-
sification. It has been used in many different fields with authors and users of the
current package concentrating on bioinformatics applications. The algorithms



10 N. Baltzer and J. Komorowski

deal with exporting data, completing data, discretizing data, reduct generation,
data filtering, batch classification, data approximation, rule generation, rule fil-
tering, statistical analysis, dataset generation, and dataset partitioning. There
are multiple algorithms available that can fulfil each of these roles within the
pipeline, and the pipeline itself can be run in several configurations, such as
training-testing splits or k-fold cross-validation where algorithms are applied
separately to each part of the dataset ahead of the testing phase.

The output also takes multiple forms. Discretization cuts and classification
rules can serve as both input and output, and there are several statistical reports
available for the classifier (confusion matrix, ROC curve, Accuracies). Recently,
ROSETTA also became available as an R package [8].

There have been multiple updates to ROSETTA over the years. These addi-
tions have focused on the availability of new algorithms rather than any updates
to the core functionality or computational process.

Design. ROSETTA is constructed with a hierarchy design. All structures
and algorithms inherit from the persistent base class in a strict hierarchy. For
instance, the discretization algorithms inherit from the discretization base class,
which inherits from the algorithm base class, which inherits from the persis-
tent base class. All base classes include a set of virtual methods to ensure that
additions can function within the established framework of execution and manip-
ulation. In addition to this hierarchy of classes, there is also a set of independent
helper classes such as smart pointers, handles, and static I/O functions amongst
others.

There are four distinct major categories that perform all actions in the
ROSETTA framework; structure, transformer, classifier, and executor. All
classes in the structure category fall under the structure base class, while all
classes in the transformer-, classifier-, and executor- categories fall under the
algorithm base class.

Inheriting from the structure base class are all data objects, such as datasets
and rules. These classes contain no transformation methods, only access and
manipulation methods. To ensure that structures can be easily manipulated
and destroyed, they all require reset and duplication methods via pure virtual
functions in the structure base class.

The transformer category contains the processes that transform or extract
information from data objects, such as discretization or reduct computations.
Transformers may apply any transformation to the data and return any type
of data object, with the only requirement (from pure virtual functions in the
algorithm base class) being that it must take a structure as argument and return
a structure handle. For instance, a discretization algorithm will take a dataset,
transform the values, and return the transformed dataset, while a rule generator
will take a reduct set and return a set of rules. Transformer is the largest category,
and the one that has seen the most expansion over the years. The transformer
category base class is algorithm.
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The classifier category contains all forms of classification. Inheriting from
the classifier base class are the different classifier schemas as well as different
classification methods like batching. Classifiers print various statistics such as
confusion matrices, accuracies, and ROCs, given a dataset and a set of rules.
The classification algorithm is usually the last step in a pipeline.

Executors detail the execution of an algorithm onto a structure. These largely
revolve around the continuity of input and output data-structures as well as any
error handling that might arise when the input structure of one algorithm does
not correspond to anything the algorithm expects or can handle. Execution also
comes in different variants, such as cross-validation, where each conformation of
the dataset is computed and validated independently of the other conformations.

Each executor pipeline starts with a dataset. This dataset is used as the
input to the first algorithm, which in turn can have any structure as its output.
To preserve all information from the different algorithms, each output structure
is appended to a pipeline results list in order. This means that the algorithms
in the pipeline do not need to match inputs and outputs impeccably as long as
there is an appropriate input available in the results list. Such a construct allows
a pipeline to reuse previous output structures and insert algorithms that do not
produce a meaningful output structure. Reusing previous structures means that
a pipeline consisting of a reduct computation followed by a rule generation does
not need a second reduct computation in order to run a second, different, rule
generator. It also means that the pipeline algorithms do not necessarily need
to work towards a singular purpose but can generate side-effects such as data
and rule exporting or multiple classifiers for comparison purposes in the same
pipeline. The results list is ordered and the structures within will be attempted
by the algorithm from most recent to last recent.

1.3 Open-MP

Open Multi-Processing (OpenMP) is an application programming interface for
multi-threaded operations in a shared memory computation environment. It sup-
ports Fortran, C, and C++. It consists of a set of compiler directives, libraries,
and run-time variables. OpenMP supports most operating platforms with the
three largest being Windows, macOS, and Linux. It allows for a comparatively
simple approach to threading computer instructions in both shared and inde-
pendent memory environments.

2 Methods

2.1 Parallel Implementation

There are two areas where parallel computations are implemented: the cross-
validation/batch executor and the reduct computation algorithm. These are both
areas that involve independent data requiring significant computation time. The
executor is used for cross-validations and batch training/testing validations, and
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is where most pipelines can be parallelized. The reduct computation algorithm is
where single output pipelines that do not use independent execution can be par-
allelized. In the case of the cross-validation/batch pipeline, executing a reduct
computation within a split will only add additional threading if there are avail-
able cores to work with. All pointers and static accesses are protected by thread
mutexes as defined by OpenMP, and all master counters are volatile and atomic.
Data independence was favored over memory frugality where possible to ensure
that threads could run with as little inter-communication as possible.

The executor function is the master method of the pipeline. Its purpose is
to run the user-specified algorithms on the input dataset until all commands
have been processed. It takes a data structure, a set of algorithms, and a set of
parameters. The algorithms and parameters come in one big set and first need
to be divided into two groups, one group for the algorithms to be applied to the
training data and one group for those to be applied to the testing data. After
the algorithms and parameters have been divided, a shared random number
generator (RNG) is initialized in this non-threaded section to ensure that all
threads have the same generator. This is important for validation and retesting
purposes.

After the algorithms have been prepared, the parallel section starts. The
initialized RNG is copied out to the private memory of every thread to ensure
that execution is deterministic for any given seed regardless of thread racing.
Giving each thread its own but same RNG that the other threads cannot access
means that it doesn’t matter which thread finishes first and reuses the RNG
for the next iteration, the results will always be the same when the program
is run again. The threads are given a static schedule to avoid randomness in
succeeding executions. The static schedule means that the workload of every
thread is specified from the start and cannot be changed. Even if a thread should
finish its workload with iterations left to be assigned from the loop it cannot take
on the extra work. This simple scheduling approach removes the need for any
oversight of the threads, saving computation and memory resources, and it is
highly unlikely that any thread would complete its work fast enough for any
dynamic scheduling to improve the execution speed.

Each threaded iteration uses a different split from the dataset as its testing
set. In a ten-fold cross-validation, the dataset is split into ten parts, and each
iteration will use one of these parts as its testing set while the remaining nine
are used for the training. This methodology is well suited to parallel execution
as all algorithm sets can be run independently of one another. The training
algorithms are executed serially on the input data, which is initially the training
dataset. The output of previous algorithms is used as the input for the next
algorithm, necessitating a functional link in the pipeline lest an algorithm be
given an input list it cannot handle, like a reduct set being used as input for a
rule tuner computation. This chain of training algorithms must at some point
emit a set of rules for classification to be possible.

After the training is completed, the testing data is prepared in the same way
using the second set of algorithms. Usually, the second set of algorithms include
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a discretization function that simply loads the discretization cuts computed on
the training set.

Once the rules have been calculated and the testing data prepared accord-
ingly, a classifier is executed with the rules and testing data. The classification
generates accuracies, a confusion matrix, a list of ROC values as well as the AUC
and accompanying statistics. All these thread-specific statistics are collated in a
structure shared between threads, and after the parallel section has finished, the
averages of all thread results are used as the final determinant of the classifier’s
performance.

The reduct computation is a transformer algorithm. It takes a structure,
performs basic sanity checks on this structure to ensure that it is compati-
ble with reduct computations, and then starts the parallel computations. The
return structure, a set of reducts, is shared between threads. Failure flags are
also shared so that a failure in any one thread can abort the entire process. The
parallel section starts by checking the thread team size to determine if locks
should be used or not, consistent with checking if threading is used specifically
for computing the reducts or if threading is used in a larger context such as
cross-validation. If threading is specifically used for the reduct algorithm then
appending reducts to the return structure requires locks, a way to ensure that
only one thread can run the locked code section at a time. This it to avoid over-
writing or corrupting the shared data. If threading is from the cross-validation
the reducts are computed serially within each cross-validation thread and do not
write to the same data structure. Contrary to the executor function, the reduct
computations are assigned to threads dynamically as the ordering of these does
not have an impact on the outcome.

The parallel batch execution algorithm is specified in Listing 1.
The implementation was focused on increasing speed while retaining the mod-

ularity of the underlying framework. ROSETTA was built with a strict hierarchy
in mind. This hierarchy makes it easy to implement new algorithms without hav-
ing to alter base code such as executor functions or the data structures, as can be
seen by the pipeline structure taking a list of algorithms whatever they may be
(Listing 1). Instead, new algorithms can simply inherit from the already exist-
ing virtual classes and expand from there as needed. Adding multi-threading
on a coarse level with separated memory for the threads, such as the executor
for cross-validations, means that any new algorithm added can benefit from the
multi-threading without having to make any concessions or changes in the algo-
rithm code. The separated memory keeps additions simple while also reducing
the need for locks and other inhibiting functions that slow down the computa-
tions by forcing threads to wait their turn. This is the easiest way to maintain
||-ROSETTA as a collaborative work and it ensures that additions need not
understand the underlying framework to make full use of it.

2.2 Testing Hardware

The computations were performed on a dual socket Hewlett-Packard mainboard
with two Intel Xeon X5650 6-core processors running at 2.66 GHz with a turbo
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Algorithm 1: Pseudocode for the batch classification parallel executor.
Input : An input dataset ds, a set of algorithms algs, and a set of parameters params for

those algorithms
Output: A set of statistical results for the classifier

1 List<Algorithm> alg-train, alg-test;
2 List<Parameter> param-train, param-test;
3 Structure table ← Duplicate(ds);
4 //Get the algorithms and their parameters split for the training and testing parts of the

cross-validation;
5 (alg-train, param-train) ← GetTrainingCommands(algs, params);
6 (alg-test, param-test) ← GetTestingCommands(algs, params);
7 //The random number generator should be initialized in the serial section so that every

thread starts with the same numbers to prevent irreproducible results.;
8 RNG rng ← GetSeed();
9 List<float> accuracies, rocareas, rocstderrors;

10 ConfusionMatrix confusion-matrix;
11 //This is the beginning of the parallel section. From here, everything is executed multiple

times by different threads. firstprivate is a pragma for copying the variables specified into
the private memory of each thread that is initialized. Every thread will have its own
version of these variables. shared is a pragma for making the following variables
accessible to all threads.;

12 Parallel firstprivate(rng, alg-train, alg-test, param-train, param-test) shared(table,
confusion-matrix, accuracies, rocareas, rocstderrors);

13 //This is the variable for how many parts the dataset should be divided into.;
14 int splits ← GetNumberOfSplits();
15 //This is the pipeline loop. It is executed once for every split of the dataset. Schedule

determines how to allocate threads, nowait means that threads should keep going until the
entire workload is done, and ordered means that in some places the threads will have to
run as if they were executed serially;

16 for i ∈ splits; schedule(static, 1) nowait ordered do
17 //Build the training and testing tables for this thread;
18 training-table ← GetTrainingSample(rng, table, i);
19 testing-table ← GetTestingSample(rng, table, i);
20 Ruleset rules;
21 Structure parent;
22 Pipeline pipe-train, pipe-test;
23 Batchclassification results;
24 //The resulting structure from running all the training algorithms on the training

dataset;
25 parent ← pipe-train.ExecuteCommands(training-table, alg-train, param-train);
26 //Take the rules from the training pipeline and add them to the testing pipeline;
27 rules ← GetRuleset(parent);
28 pipe-test.SetRules(rules);
29 //Evaluate the testing pipeline;
30 results ← pipe-test.ExecuteCommands(testing-table, alg-test, param-test);
31 //Gather the results from all the threads;
32 accuracies[i] ← GetAccuracy(results);
33 confusion-matrix[i] ← GetConfusionMatrix(results);
34 rocareas[i] ← GetROCArea(results);
35 rocstderrors[i] ← GetROCStandardError(results);

36 Output(accuracies, confusion-matrix, rocareas, rocstderrors);

boost (version 1.0) of 3.06 GHz and three memory channels. The node had 96 GB
of DDR3 memory running at 1333 MHz and CAS latency 9. The software plat-
form was CentOS 7, with Linux kernel 3.10.0-693.21.1.el7.x86 64. The program
was compiled with OpenMP 3.1 and GCC 4.8.5-36, and used level three stan-
dard compiler optimizations. Scripts used Perl v5.16.3 and took the time values
directly from the system.
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2.3 Testing Pipeline

The testing pipeline is the set of algorithms to be run on the validation data,
using the discretization and the ruleset from the training pipeline. In a 10CV the
validation data is one tenth of the whole dataset, where the other nine parts are
used in the training phase. The datasets were discretized using Entropy scaling
with a termination based on minimum description length [6]. After discretiza-
tion, the reducts were computed using a greedy algorithm biased towards single
prime implicants of minimal length [9]. The reducts were computed modulo
decision and approximated with a hitting fraction of 98%. Rules were generated
from the reducts, tuned [10], and used with an object-tracking schema at a 0.8
fraction for classification. No datasets had missing values hence did not require
completion. The tuned rules were also compared between classifications of the
same dataset with different levels of threading used to see if the results would
differ between the executions. The rules were compared on accuracy, support,
coverage, odds ratios, and risk ratios. While differences were not expected to
impact the time of computations in any meaningful way, consistent and similar
results were important for replication of experiments.

2.4 Tests

||-ROSETTA was run using four different datasets. The first set was using data
gathered from a study on Systemic Lupus Erythematosus (SLE), consisting of
33,007 features and 628 objects [2]. All the values were of type float. The second
set was truncated from a study on histone modifications [7], consisting of 115
features and 7,258 objects. The values were of type string. The third set was
truncated from a study on the probability of credit card clients defaulting on
payment [13], gathered from the UCI Machine Learning Repository [5], and con-
sisted of 24 features and 20,000 objects, all of type integer. The last dataset was
a binary table with feature correlations generated using Cholesky decomposition
[11], containing 10,000 objects and 1,000 features. These datasets were used to
test the scaling of ||-ROSETTA with regards to features and objects separately.
The test was run with a Perl script that measured the time taken using the
on-board clock. The overhead for the script was estimated at less than a second.
The test itself was a ten-fold cross-validation where the training pipe consisted
of Entropy-scaled discretization, Johnson algorithm reduct computations, rule
generation, and a rule exporter. The testing pipe loaded the discretization from
the training pipe and ran an object tracking classification.

3 Results

The results were consistent with the expected scaling for the data used. The
increased threading was efficient, though overhead also increased with the num-
ber of threads used. For the Histone Modifications dataset, at two threads the
overhead was 7%, but at five it had increased to 29% (Table 1). This is likely
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due to the increased demands on memory access channels and increased number
of locks required for additional threads. The comparative total time taken esti-
mates how fast the pipeline is executed compared to a single thread. With ten
iterations for the cross-validation, the time taken is not linear to the number of
threads but rather to the number of iterations needed to complete all ten vali-
dations. The lack of difference in time taken between five and six threads shows
this effect. The time taken for two, five, and ten, threads shows the maximal effi-
ciency of the parallel execution as these will complete the entire cross-validation
using the full thread-potential.

Table 1. Completion times for the histone modifications dataset.*

Histone modifications

Threads Time
taken
(seconds)

Comparative
total time
taken

Theoretical
time per
iteration

Comparative
time taken

1 11,606 100.0% 1,160 (10) 100.0%

2 6,212 107.0% 1,242 (5) 53.5%

3 5,165 133.5% 1,291 (4) 44.5%

4 4,117 141.9% 1,372 (3) 35.5%

5 3,000 129.2% 1,500 (2) 25.8%

6 2,903 150.1% 1,451 (2) 25.0%

10 1,836 158.2% 1,836 (1) 15.8%
∗Threads = the number of threads used for 10CV. Time Taken (seconds)
= the system time needed to finish the computations, including the exe-
cution script. Comparative Total Time taken = the total time needed
as the percentage of the execution time for one thread only. Theoretical
Time per Iteration = the time needed per thread to finish one itera-
tion. This accounts for the decreased efficiency of the computing system
when using all resources simultaneously. Theoretical Time per Iteration
= The amount of time spent on each iteration. This is an average value
as iterations can vary in efficiency. Comparative Time Taken = the real
time needed as a percentage of the time for using one thread. This is the
practical outcome of using more threads for the computation.

The SLE dataset had only 628 objects but 33,007 features. This type of
data scales poorly with ||-ROSETTA in a relative sense, and adds significant
overhead just from building the dataset, a process that cannot be efficiently
threaded. While the estimated time per iteration for the first dataset differed by
a factor 1.58 between one and ten threads, the second dataset differs by a factor
2.96, suggesting considerable overhead (Table 2).

The payment default dataset had 20,000 objects and 24 features. The results
are similar to the histone modifications dataset, showing a difference in perfor-
mance well within the margin of error (Table 3). The synthetic dataset showed
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Table 2. Completion times for the systemic lupus erythematosus dataset.*

Systemic lupus erythematosus

Threads Time
taken
(seconds)

Comparative
total time
taken

Theoretical
time per
iteration

Comparative
time taken

1 740 100.0% 74 (10) 100.0%

2 445 120.3% 89 (5) 60.1%

3 381 154.5% 95 (4) 51.5%

4 334 180.5% 111 (3) 45.1%

5 277 187.2% 138 (2) 37.4%

6 283 229.5% 141 (2) 38.2%

10 219 295.9% 219 (1) 29.6%
∗Threads = the number of threads used for 10CV. Time Taken (seconds)
= the system time needed to finish the computations, including the exe-
cution script. Comparative Total Time taken = the total time needed
as the percentage of the execution time for one thread only. Theoretical
Time per Iteration = the time needed per thread to finish one itera-
tion. This accounts for the decreased efficiency of the computing system
when using all resources simultaneously. Theoretical Time per Iteration
= The amount of time spent on each iteration. This is an average value
as iterations can vary in efficiency. Comparative Time Taken = the real
time needed as a percentage of the time for using one thread. This is the
practical outcome of using more threads for the computation.

stark differences, scaling better in the optimal configurations of two, five, and
ten, threads, likely due to the minimal amount of data needed to represent the
binary values of the dataset (Table 4). This indicates a strong correlation between
memory throughput and thread performance.

The maximum memory usage differed based on features and objects
(Table 5). The large number of objects in the Credit Card Payment Default
dataset led to a high amount of initial memory needed as well as the steepest
scaling with threads (Fig. 3). The more balanced dataset, Histone Modifications,
showed a similar trend with smaller numbers. The dataset for SLE, with 33,007
features and 628 objects, did not significantly increase in memory usage with
the number of threads, but had the highest starting point of memory use. The
Synthetic dataset showed a linear increase in maximum memory use, likely due
to the limited complexity of the data itself.

Compared to the theoretical gain, three datasets perform well (Fig. 2). The
Credit Card Payment Default, Histone Modifications, and Synthetic datasets are
close to the optimal performance, with a minor deviation around three and four
threads.

The rules generated by the process do not differ based on multi-threading.
A single-threaded execution generated the same rulesets in cross-validation as
a ten-threaded execution. Accuracy, ROC curve, and deviations were consistent
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Table 3. Completion times for the credit card payment default dataset.*

Credit card payment default

Threads Time
taken
(seconds)

Comparative
total time
taken

Theoretical
time per
iteration

Comparative
time taken

1 174,133 100.0% 17,413 (10) 100.0%

2 93,902 107.9% 18,780 (5) 53.9%

3 67,337 116.0% 20,201 (4) 38.7%

4 56,399 129.6% 22,560 (3) 32.4%

5 41,796 120.0% 20,898 (2) 24.0%

6 41,592 143.3% 24,955 (2) 23.9%

10 28,613 164.3% 28,613 (1) 16.4%
∗Threads = the number of threads used for 10CV. Time Taken (seconds)
= the system time needed to finish the computations, including the exe-
cution script. Comparative Total Time taken = the total time needed
as a percentage of the execution time for one thread only. Theoretical
Time per Iteration = the time needed per thread to finish one itera-
tion. This accounts for the decreased efficiency of the computing system
when using all resources simultaneously. Theoretical Time per Iteration
= The amount of time spent on each iteration. This is an average value
as iterations can vary in efficiency. Comparative Time Taken = the real
time needed as a percentage of the time for using one thread. This is the
practical outcome of using more threads for the computation.

between executions, and all rulesets were exactly the same regardless of the
number of threads used in the execution (Table 6, Table 7).

3.1 Comparisons

There are other programs for running multi-core Rough Set classifications.
WEKA [12] is a popular classification tool that can implement RSESLib [3],

and the library itself also offers a scheduling tool called Simple Grid Manager
(SGM). WEKA handles multi-thread execution differently from ||-ROSETTA,
needing an external scheduler (WEKA Server) to coordinate concurrent exe-
cutions over multiple processes as well as multiple compute nodes. SGM fills
a similar role as WEKA Server, coordinating and collating independent algo-
rithm executions over multiple compute nodes as long as all the nodes have
the program client installed and running. ||-ROSETTA is so far the only pro-
gram to offer a generalized Rough Set parallel execution feature that requires
neither setup nor external programs or networks to collect and collate the clas-
sification results. This also comes with the restriction that ||-ROSETTA offers
multi-thread computations, but not multi-node computations, something that
both WEKA Server and SGM can facilitate with the proper configuration. This
makes ||-ROSETTA better suited for workstation use. The single machine model
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Table 4. Completion times for the synthetic dataset.*

Synthetic dataset

Threads Time
taken
(seconds)

Comparative
total time
taken

Theoretical
time per
iteration

Comparative
time taken

1 61,851 100.0% 6,185 (10) 100.0%

2 32,872 106.3% 6,574 (5) 53.1%

3 26,559 128.8% 6,640 (4) 42.9%

4 19,402 125.5% 6,467 (3) 31.4%

5 13,286 107.4% 6,643 (2) 21.5%

6 12,980 125.9% 6,490 (2) 21.0%

10 6,752 109.2% 6,752 (1) 10.9%
∗Threads = the number of threads used for 10CV. Time Taken (seconds)
= the system time needed to finish the computations, including the exe-
cution script. Comparative Total Time taken = the total time needed
as a percentage of the execution time for one thread only. Theoretical
Time per Iteration = the time needed per thread to finish one itera-
tion. This accounts for the decreased efficiency of the computing system
when using all resources simultaneously. Theoretical Time per Iteration
= The amount of time spent on each iteration. This is an average value
as iterations can vary in efficiency. Comparative Time Taken = the real
time needed as a percentage of the time for using one thread. This is the
practical outcome of using more threads for the computation.

Table 5. Memory usage by the different datasets.

Peak memory usage

Threads Credit card
payment
default

Systemic
lupus
erythematosus

Histone
modifica-
tions

Synthetic
dataset

1 1,082 1,859 202 689

2 2,049 1,869 372 1,005

3 3,079 1,897 567 1,058

4 4,115 1,994 761 1,417

5 5,135 2,096 955 1,688

6 5,400 2,227 1,028 1,696

7 5,665 2,107 1,100 1,966

8 5,994 2,179 1,172 2,237

9 6,196 2,123 1,245 2,508

10 6,560 2,155 1,402 2,774
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Fig. 1. Comparative total time taken. The comparative time needed of each added
thread when compared to the single-threaded execution. The y-axis depicts the total
computing time needed as compared to a single thread (100%) and the x-axis shows the
number of threads used for attaining that efficacy. A low value on the y-axis indicates
a low overhead cost of adding threads from memory throughput and time spent on
loading data. The Histone Modifications and Credit Card datasets are similar in efficacy
over all thread-teams even though the datasets dimensions differ notably (115 × 7,258
and 24 × 20,000, respectively). The Systemic Lupus dataset scales worse with its drastic
dimensions (33,007 × 628), though a factor 2 difference between 24 features and 33,007
features shows a beneficial scaling coefficient. The fast computation of binary data in
the synthetic dataset shows the speed attainable when memory throughput is not an
issue.

makes ||-ROSETTA more likely to run at optimal speed given that all threads
run on the same hardware, reducing the likelihood that one computation will be
slower than the rest and delay the final results.

4 Conclusions

The addition of parallel execution to ROSETTA has drastically increased the
speed at which computations are handled, and the program can now fully make
use of modern hardware. The optimal configuration for efficiency uses a number
of threads divisible by the number of iterations needed for the cross-validation, in
this case two, five, and ten. This places increased reliance on memory and drive
lanes for optimal performance (Fig. 1), and the use of threads should in some
capacity be matched to the width of lanes. The number of threads will impact the
frequency of thread locks and atomic operations, resulting in a limited amount
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Fig. 2. Comparative time taken. The comparative time taken shows the time the
pipeline needed to finish a ten-fold cross-validation (10CV) using the different thread
numbers. The y-axis shows the time taken relative to using one thread (100%), and
the x-axis shows the number of threads used. The most drastic gains were made from
one to two threads, and gains were linear at two, three, four, five, and ten threads,
corresponding to the decrease in iterations needed for the cross-validation. All datasets
follow the same pattern. The lowest line is the theoretical minimum as computed from
a single thread.

of overhead. There is no clear evidence of the effect of frequency boosting at
lower thread counts as all four datasets show different increases in the effec-
tive time needed. The similarity in results between the Histone Modifications
dataset and the Credit Card Payment Default dataset shows that the number of
objects has little impact on the overhead generated by parallel execution (Fig. 2).
Furthermore, it requires a significant number of features to negatively impact
performance, as seen in the doubling of time taken per thread going from 115 to
33,007 features. The trivial increase per feature further suggests an efficient scal-
ing in terms of dataset size. This scaling is dependent on the memory throughput
as can be seen from the performance of the Synthetic dataset. When memory
throughput is not an issue, threaded executions perform similarly in efficiency
as single-threaded executions (Fig. 1). The size of the dataset does not matter in
this regard. The independent nature of the implemented memory management
has resulted in an expansion of memory use based on data size with respect to
threading. While this approach is the most expensive for memory usage, it does
allow for extending the framework without concern for the underlying memory
architecture. A partially shared memory structure would need to be implemented
on an algorithm basis as there is no consensus nor program standard for read and
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Fig. 3. Peak memory use of the three datasets with regards to the number of threads.
The y-axis shows the peak memory in MB used, and the x-axis shows the number of
threads used for the same computation. The Credit Card Payment Default dataset
and the Histone Modifications dataset show a similar trend of scaling, peaking at five
threads and then tapering off the increase in memory usage. The SLE dataset has few
objects and uses a similar amount of memory regardless of threads but starts with
the highest amount. The consistent level indicates that memory use by thread number
scales mostly with the number of objects. The Synthetic dataset has a stable increase
in memory consistent with threads unhindered by memory throughput.

write requirements on the computed results. The shared structures would also
require shared hashes for indexing the thread-specific results so that they can be
reused without the need for searching. While this would be possible, placing the
memory management within the algorithm would add a layer of complexity to
extending the ROSETTA framework. The rulesets generated from the parallel
version and the original do not show any difference at all. This holds regardless
of what criterion is used for the filtering. This is due to the use of ordered and
static schedules for thread workloads and the use of a singular random number
generator that is copied into the private memory of each thread prior to exe-
cuting the parallel section of the batch execution pipeline. This consistency is of
considerable importance for reliable and reproducible research and application.

5 Availability

||-ROSETTA is freely available on GitHub https://github.com/komorowskilab.

https://github.com/komorowskilab
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Table 6. Top five rules with coverage at least 0.05 from two different classifications of
the Histone Modifications dataset using one and ten threads.*

One threadDecisions Ten threadsDecisions

EXPR(1) EXPR(0) EXPR(1) EXPR(0)

H3K9me2(1) AND H3K9ac(1)

Supp. (LHS) 248 248

Supp. (RHS) 181 67 181 67

Acc. (RHS) 0.73 0.27 0.73 0.27

Cov. (LHS) 0.04 0.04

Cov. (RHS) 0.05 0.02 0.05 0.02

Odds Ratio 2.39 (1.80–3.18)0.41 (0.31–0.55) 2.39 (1.80–3.18)0.41 (0.31–0.55)

Risk Ratio 1.37 (1.27–1.49)0.57 (0.46–0.70) 1.37 (1.27–1.49)0.57 (0.46–0.70)

H3K9me3(1)

Supp. (LHS) 286 286

Supp. (RHS) 207 79 207 79

Acc. (RHS) 0.72 0.28 0.72 0.28

Cov. (LHS) 0.04 0.04

Cov. (RHS) 0.06 0.03 0.06 0.03

Odds Ratio 2.33 (1.79–3.04)0.42 (0.32–0.55) 2.33 (1.79–3.04)0.42 (0.32–0.55)

Risk Ratio 1.36 (1.26–1.47)0.58 (0.48–0.70) 1.36 (1.26–1.47)0.58 (0.48–0.70)

H3K36me1(1) AND H3K23ac(1)

Supp. (LHS) 330 330

Supp. (RHS) 233 97 233 97

Acc. (RHS) 0.71 0.29 0.71 0.29

Cov. (LHS) 0.05 0.05

Cov. (RHS) 0.07 0.03 0.07 0.03

Odds Ratio 2.14 (1.68–2.73)0.46 (0.36–0.59) 2.14 (1.68–2.73)0.46 (0.36–0.59)

Risk Ratio 1.33 (1.24–1.43)0.62 (0.52–0.73) 1.33 (1.24–1.43)0.62 (0.52–0.73)

H3K23ac(1) AND H3K23ac.succ(0)

Supp. (LHS) 262 262

Supp. (RHS) 181 81 181 81

Acc. (RHS) 0.69 0.31 0.69 0.31

Cov. (LHS) 0.04 0.04

Cov. (RHS) 0.05 0.03 0.05 0.03

Odds Ratio 1.97 (1.51–2.57)0.50 (0.38–0.66) 1.97 (1.51–2.57)0.50 (0.38–0.66)

Risk Ratio 1.30 (1.19–1.41)0.65 (0.54–0.79) 1.30 (1.19–1.41)0.65 (0.54–0.79)

H3K9me2.succ(1) AND H3K9ac(1)

Supp. (LHS) 237 237

Supp. (RHS) 178 59 178 59

Acc. (RHS) 0.75 0.25 0.75 0.25

Cov. (LHS) 0.04 0.04

Cov. (RHS) 0.05 0.02 0.05 0.02

Odds Ratio 2.65 (1.97–3.58)0.37 (0.27–0.50) 2.65 (1.97–3.58)0.37 (0.27–0.50)

Risk Ratio 1.41 (1.30–1.52)0.53 (0.42–0.66) 1.41 (1.30–1.52)0.53 (0.42–0.66)
∗The two groups, one thread and ten threads, indicate how many threads were used for the clas-

sifications from which the rules were generated. Each segment of the table consists of one feature

pattern for which both classifiers had rules, followed by the statistics Support left-hand size, Support

right-hand side, Accuracy right-hand side, Coverage left-hand side, Coverage right-hand side, Odds

Ratio, and Risk Ratio. Where values are not specific to a decision class (the two possible classes are

EXPR(1) and EXPR(0)) they are given in the first column, otherwise under their respective decision

class column. No value differs between one and ten threads, and this result was consistent across the

entire rulesets generated from classification.
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Table 7. Second best five rules with coverage at least 0.05 from two different classifi-
cations of the Histone Modifications dataset using one and ten threads.*

One threadDecisions Ten threadsDecisions

EXPR(1) EXPR(0) EXPR(1) EXPR(0)

H3K9me2(1) AND H3K9ac(1)

Supp. (LHS) 248 248

Supp. (RHS) 186 62 186 62

Acc. (RHS) 0.75 0.25 0.75 0.25

Cov. (LHS) 0.04 0.04

Cov. (RHS) 0.05 0.02 0.05 0.02

Odds Ratio 2.64 (1.97–3.54)0.37 (0.28–0.50) 2.64 (1.97–3.54)0.37 (0.28–0.50)

Risk Ratio 1.41 (1.30–1.52)0.53 (0.42–0.66) 1.41 (1.30–1.52)0.53 (0.42–0.66)

H3K9me2(1) AND H3K27me2.succ(1)

Supp. (LHS) 267 267

Supp. (RHS) 192 75 192 75

Acc. (RHS) 0.72 0.28 0.72 0.28

Cov. (LHS) 0.04 0.04

Cov. (RHS) 0.05 0.02 0.05 0.02

Odds Ratio 2.25 (1.71–2.95)0.44 (0.33–0.581) 2.25 (1.71–2.95)0.44 (0.33–0.581)

Risk Ratio 1.35 (1.25–1.46)0.60 (0.49–0.72) 1.35 (1.25–1.46)0.60 (0.49–0.72)

H3K9me3(1)

Supp. (LHS) 286 286

Supp. (RHS) 203 83 203 83

Acc. (RHS) 0.71 0.29 0.71 0.29

Cov. (LHS) 0.04 0.04

Cov. (RHS) 0.06 0.03 0.06 0.03

Odds Ratio 2.15 (1.66–2.79)0.46 (0.35–0.60) 2.15 (1.66–2.79)0.46 (0.35–0.60)

Risk Ratio 1.33 (1.23–1.44)0.61 (0.51–0.74) 1.33 (1.23–1.44)0.61 (0.51–0.74)

H3K36me1(1) AND H3K23ac(1)

Supp. (LHS) 331 331

Supp. (RHS) 232 99 232 99

Acc. (RHS) 0.70 0.30 0.70 0.30

Cov. (LHS) 0.05 0.05

Cov. (RHS) 0.07 0.03 0.07 0.03

Odds Ratio 2.07 (1.62–2.63)0.48 (0.37–0.61) 2.07 (1.62–2.63)0.48 (0.37–0.61)

Risk Ratio 1.32 (1.22–1.42)0.63 (0.53–0.75) 1.32 (1.22–1.42)0.63 (0.53–0.75)

H3K9me1.prec(0) AND H4K20me1.prec(1) AND H3K4ac.succ(1)

Supp. (LHS) 265 265

Supp. (RHS) 77 188 77 188

Acc. (RHS) 0.29 0.71 0.29 0.71

Cov. (LHS) 0.04 0.04

Cov. (RHS) 0.02 0.06 0.02 0.06

Odds Ratio 0.33 (0.25–0.44)2.94 (2.25–3.86) 0.33 (0.25–0.44)2.94 (2.25–3.86)

Risk Ratio 0.53 (0.43–0.64)1.56 (1.44–1.69) 0.53 (0.43–0.64)1.56 (1.44–1.69)
∗The two groups, one thread and ten threads, indicate how many threads were used for the classifications

from which the rules were generated. Each segment of the table consists of one feature pattern for

which both classifiers had rules, followed by the statistics Support left-hand size, Support right-hand

side, Accuracy right-hand side, Coverage left-hand side, Coverage right-hand side, Odds Ratio, and

Risk Ratio. Where values are not specific to a decision class (the two possible classes are EXPR(1) and

EXPR(0)) they are given in the first column, otherwise under their respective decision class column.

No value differs between one and ten threads, and this result was consistent across the entire rulesets

generated from classification.
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Abstract. In this thesis, a generalization of the classical Rough set the-
ory [83] is developed considering the so-called sequences of orthopairs
that we define in [20] as special sequences of rough sets.

Mainly, our aim is to introduce some operations between sequences of
orthopairs, and to discover how to generate them starting from the oper-
ations concerning standard rough sets (defined in [32]). Also, we prove
several representation theorems representing the class of finite centered
Kleene algebras with the interpolation property [31], and some classes of
finite residuated lattices (more precisely, we consider Nelson algebras [87],
Nelson lattices [23], IUML-algebras [73] and Kleene lattice with implica-
tion [27]) as sequences of orthopairs.

Moreover, as an application, we show that a sequence of orthopairs can
be used to represent an examiner’s opinion on a number of candidates
applying for a job, and we show that opinions of two or more examiners
can be combined using operations between sequences of orthopairs in
order to get a final decision on each candidate.

Finally, we provide the original modal logic SOn with semantics
based on sequences of orthopairs, and we employ it to describe the
knowledge of an agent that increases over time, as new informa-
tion is provided. Modal logic SOn is characterized by the sequences
(�1, . . . , �n) and (©1, . . . , ©n) of n modal operators corresponding to a
sequence (t1, . . . , tn) of consecutive times. Furthermore, the operator �i

of (�1, . . . , �n) represents the knowledge of an agent at time ti, and it
coincides with the necessity modal operator of S5 logic [29]. On the other
hand, the main innovative aspect of modal logic SOn is the presence of
the sequence (©1, . . . , ©n), since ©i establishes whether an agent is
interested in knowing a given fact at time ti.

Keywords: Rough sets · Orthopairs · Refinements · Many-valued
logic · Modal logic
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Rough sets and orthopairs are mathematical tools that are used to deal
with vague, imprecise and uncertain information. Rough set theory was intro-
duced by the Polish mathematician Zdzislaw Pawlak in 1980 [82–84], and suc-
cessively numerous researchers of several fields have contributed to its devel-
opment. The rough set approach appears of fundamental importance in many
research domains, for example in artificial intelligence and cognitive sciences,
especially in the areas of machine learning, knowledge acquisition, decision anal-
ysis, knowledge discovery from databases, expert systems, inductive reasoning
and pattern recognition [54,77,85,109]. Also, rough set theory has been applied
to solve many real-life problems in medicine, pharmacology, engineering, bank-
ing, finance, market analysis, environment management, etc. (see [52,91,94] for
some examples). On the other hand, rough sets are also explored in mathemat-
ical logic for their relationship with three-valued logics [34,89,100]. Rough set
philosophy is founded on the assumption that each object of the universe of
discourse is described by some information, some data, or knowledge. Objects
characterized by the same data are indiscernible in view of the available infor-
mation about them. In this way, an indiscernibility relation between objects is
generated, and it is the mathematical basis of rough set theory. The set of all
indiscernible objects is named elementary set, and we can say that it is the basic
granule of knowledge about the universe. Indiscernibility relations are equiva-
lence relations, and elementary sets are their equivalence classes. Then, given
an equivalence relation R defined on U , the rough set of a subset X of the uni-
verse U is the pair (LR(X),UR(X)) consisting respectively of the union of all
equivalence classes fully contained in X, named lower approximation of X with
respect to R, and the union of all the equivalence classes that have at least one
element in common with X, named upper approximation of X with respect to
R. Therefore, the rough set (LR(X),UR(X)) is the approximation of X with
respect to the relation R. The set BR(X) is called the R-boundary region of X,
and it is the set UR(X) \ LR(X). The objects of BR(X) cannot be classified as
belonging to X with certainty.

In this dissertation, we focus on orthopairs generated by an equivalence rela-
tion. They are equivalent to rough sets and are defined as follows. Let R be an
equivalence relation on U , and let X be a subset of U , the orthopair of X deter-
mined by R is the pair (LR(X), ER(X)), where LR(X) is the lower approximation
and ER(X), called impossibility domain or exterior region of X with respect to
R, is the union of equivalence classes of R with no elements in common with
X [32]. Orthopairs and rough sets are obtained from one another; indeed, the
impossibility domain coincides with the complement of the upper approximation
with respect to the universe. A pair (A,B) of disjoint subsets of a universe U can
be viewed as the orthopair of a subset of U generated by an equivalence relation
on U ; in this case, we can say that (A,B) is an orthopair on U . We can view any
orthopair (A,B) on the universe U as a three-valued function f : U �→ {0, 1

2 , 1}
such that, let x ∈ U , f(x) = 1 if x ∈ A, f(x) = 0 if x ∈ B and f(x) = 1

2 oth-
erwise. Conversely, the three-valued function f : U �→ {0, 1

2 , 1} determines the
orthopair (A,B) on U , where A = {x ∈ U |f(x) = 1} and B = {x ∈ U |f(x) = 0}.
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Several kinds of operations between rough sets have been considered [34]. They
correspond to connectives in three-valued logics. Logical approaches to some of
these connectives have been given, such as �Lukasiewicz, Nilpotent Minimum,
Nelson and Gödel connectives [4,9,13,81].

Several authors generalized the definitions of rough sets and orthopairs by
considering binary relations that are not equivalence relations, since the latter
are not usually suitable to describe the real-world relationships between elements
[93,107]. We consider orthopairs generated by a tolerance relation, that is a
reflexive and symmetric binary relation [92]. Given a tolerance relation R defined
on U and an element x of U , by tolerance class of x with respect to R, we
mean the set of elements of U indiscernible to x with respect to R. The set
of all tolerance classes of R is a covering of U , that is a set of subsets of U
whose union is U . Moreover, if R is an equivalence relation, then the set of all
equivalence classes is a partition of U (a partition is a set of subsets of U that
are pairwise disjoint and whose union is U). Therefore, we can define rough sets
and orthopairs determined by a covering (or a partition) instead of a tolerance
relation (or an equivalence relation).

In this thesis, we focus on sequences of orthopairs generated by refinement
sequences of coverings [19,20]. A refinement sequence of a universe U is a finite
sequence (C1, . . . , Cn) of coverings of U such that Ci is finer than Cj (each block
of Ci is included at least in a block of Cj) for each j ≤ i. Clearly, for each subset
X of U , the refinement sequence (C1, . . . , Cn) generates the sequence

((L1(X), E1(X)), . . . , (Ln(X), En(X))),

where (Li(X), Ei(X)) is the orthopair of X determined by Ci. Furthermore, we
deal with sequences of partial coverings. These are coverings that do not fully
cover the universe, and they are suitable for describing situations in which some
information is lost during the refinement process [39]. Refinement sequences
of partial coverings are obtained starting from incomplete information tables,
that are tables where a set of objects is described by a set of attributes, but
some information is lost or not available [66]. It is interesting to notice that
when (C1, . . . , Cn) consists of all partitions of U , the pair (U, (C1, . . . , Cn)) is
an Aumann structure, that is a mathematical structure used by economists and
game theorists to represent the knowledge [6,7]. Refinement sequences can be
represented as partially ordered sets. Hence, sequences of orthopairs generated
by refinement sequences can be represented as pairs of upward closed subsets
of such partially ordered sets. By using this correspondence, we give a concrete
representation of some finite algebraic structures related with Kleene algebras.
Kleene algebras form a subclass of De Morgan algebras. The latter were intro-
duced by Moisil [74], and successively, they were explored by several authors,
in particular, by Kalman [63] (under the name of distributive i-lattices), and by
Bialynicki-Birula and Rasiowa, which called them quasi-Boolean algebras [12].
The notation that is still used was introduced by Monteiro [75]. We are interested
in the family of finite centered Kleene algebras with the interpolation property,
studied by the Argentinian mathematician Roberto Cignoli. In particular, in
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[31], he proved that centered Kleene algebras with the interpolation property
are represented by bounded distributive lattices [86]. By Birkhoff representation,
each bounded distributive lattice is characterized as a set of upsets of a partially
ordered set with set intersection and union [14]. In this thesis, we prove that
each finite centered Kleene algebra with the interpolation property is isomor-
phic to the set of sequences of orthopairs generated by a refinement sequence
with operations obtained extending the Kleene operations between orthopairs
(see [34]) to the sequences of orthopairs. We obtain a similar result for some
other finite structures that are residuated lattices [100], and having as reduct a
centered Kleene algebras with the interpolation property. More exactly, we show
that some subclasses of Nelson algebras, Nelson lattices and IUML-algebras are
represented as sequences of orthopairs in which the residuated operations are
respectively obtain by extending Nelson implication, �Lukasiewicz conjunction
and implication, and Sobociński conjunction and implication between orthopairs
(listed in [34]) to sequences of orthopairs. In Table 1 each structure is associated
with its orthopaired operations.

Table 1. Structures and operations between orthopairs

Structures Operations between orthopairs

Nelson algebras Kleene conjunction and Nelson implication

Nelson lattices �Lukasiewicz conjunction and implication

IUML-algebras Sobociński conjunction and implication

Nelson algebras were introduced by Rasiowa [87], under the name of N-
lattices, as the algebraic counterparts of the constructive logic with strong nega-
tion considered by Nelson and Markov [22,88]. The centered Nelson algebras
with the interpolation property are represented by Heyting algebras [11]. Nelson
lattices are involutive residuated lattices, and are equationally equivalent to cen-
tered Nelson algebras [23]. IUML-algebras are the algebraic models of the logic
IUML, which is a substructural fuzzy logic that is an axiomatic extension of the
multiplicative additive intuitionistic linear logic MAILL [73]. IUML-algebras can
also be defined as bounded odd Sugihara monoids, where a Sugihara monoid is
the equivalent algebraic semantics for the relevance logic RM t of R-mingle as
formulated with Ackermann constants. In [49], a dual categorical equivalence is
shown between IUML-algebras and suitable topological spaces defined starting
from Kleene spaces. In this dissertation we focus only on finite IUML-algebras,
and we refer to [3] and [73].

Moreover, we investigate the relationship between sequences of orthopairs
and some finite lattices with implication. The latter are more general than Nel-
son lattices and form a subclass of algebras with implication, (DLI-algebras for
short) [28]. We find a pair of operations that allows us to consider sequences of
orthopairs as Kleene lattices with implication, but they coincide with no pair of
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three-valued operations. Consequently, we can introduce new operations between
orthopairs, and so between rough sets.

On the other hand, some three-valued algebraic structures have been rep-
resented as rough sets generated by one covering [4,40,60–62]. Our results are
more general, since many-valued algebraic structures correspond to sequences of
rough sets determined by a sequence of coverings.

An important application of rough set theory is to partition a given uni-
verse into three pairwise disjoint regions: the acceptance region (i.e. the lower
approximation), the rejection region (i.e. the impossibility domain), and the
uncertain region (i.e. the boundary region). This classification is at the basis of
the three-way decision theory [103], which allows us to make a decision on each
object by considering the region to which it belongs. In this framework, we use
a sequence of orthopairs to represent an examiner’s opinion on a number of can-
didates applying for a job. Moreover, we show that the opinions of two or more
examiners can be combined using operations between sequences of orthopairs
in order to get a final decision on each candidate. On the other hand, we also
show that sequences of orthopairs are identified as decision trees with three out-
comes. Decision trees are graphical models widely used in machine learning for
describing sequential decision problems [48].

Rough sets can be interpreted as the necessity and possibility operators in
modal logic S5 [8,80]. Moreover, the relationships between modal logic and
many generalizations of rough set theory have been examined by several authors
[69,106]. In Sect. 5, we present a new modal logic, named SOn logic, with seman-
tics based on sequences of orthopairs. Modal logic SOn is characterized by two
families of modal operators, (�1, . . . ,�n) and (©1, . . . ,©n), which are semanti-
cally interpreted through the Kripke frame (U, (R1, . . . , Rn)), where (R1, . . . , Rn)
is a sequence of equivalence relations defined on the domain U , such that
Rj(u) ⊆ Ri(u), for each i ≤ j and u ∈ U .

Modal logic SOn can also be viewed as an epistemic logic. More precisely,
SOn can represent the knowledge of an agent that increases over time, as new
information is provided. Epistemic logic is the logic of knowledge and belief [58].
Epistemic modal logic provides models to formalize and describe the process of
accumulating knowledge by individual knowers and groups of knowers by using
modal logic [16,46,59]. Its applications include addressing numerous complex
problems in philosophy, artificial intelligence, economics, linguistics and in other
fields [57,95]. Therefore, the sequences (�1, . . . ,�n) and (©1, . . . ,©n) corre-
spond to a sequence (t1, . . . , tn) of consecutive instants of time. The operator �i

of (�1, . . . ,�n) represents the knowledge of an agent at time ti, and it coincides
with the necessity modal operator of S5 logic [56]. The main innovative aspect
of our logic is the presence of (©1, . . . ,©n), since its element ©i establishes
whether the agent is interested in knowing the truth or falsity of the sentences
at time ti.
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Contents of the Thesis

We conclude this introductory chapter by briefly describing the contents of the
following chapters.

Section 2 reviews the basic notions and the notation that we will use through-
out the thesis along with some simple preliminary results. Specially, we will focus
on rough set theory, partial order theory and lattice theory.

In Sect. 3, we introduce the definition of refinement sequences of partial cover-
ings as special sequences of coverings representing situations where new informa-
tion is gradually provided on ever smaller sets of objects. We provide examples
of environments in which refinement sequences arise; in detail, we obtain refine-
ment sequences starting from incomplete information tables and formal contexts.
Some families of sequences are defined considering how much the blocks of their
coverings overlap. We identify refinement sequences as partially ordered sets.
Moreover, the notion of sequences of orthopairs is introduced in order to gener-
alize the rough set theory. We represent each sequence of orthopairs as a pair
of disjoint upsets of a partially ordered set, or equivalently, as a labelled poset.
Finally, we view sequences of orthopairs as decision trees with only three out-
comes.

Preliminary versions of this chapter appeared in [1,2,19,20].
In Sect. 4, we equip sets of sequences of orthopairs with some operations in

order to obtain finite many-valued algebraic structures. Furthermore, we prove
theorems wherewith to represent such structures as sequences of orthopairs.
We show that, when sequences of orthopairs are generated by one covering,
our operations coincide with some operations between orthopairs listed in [34].
Also, we discover how to generate operations between sequences of orthopairs
starting from those concerning individual orthopairs. Finally, we use a sequence
of orthopairs to represent an examiner’s opinion on a number of candidates
applying for a job. Moreover, we show that opinions of two or more examiners
can be combined using our operations in order to get a final decision on each
candidate.

Some results shown in this chapter can be found in [1,2,19,20].
In Sect. 5, we recall some basic notions of modal logic and the existing con-

nections between modal logic and rough sets. Then, we develop the original
modal logic SOn, defining its language, introducing its Kripke models, and pro-
viding its axiomatization. Moreover, we investigate the properties of our logic
system, such as the consistency, the soundness and the completeness with respect
to Kripke’s semantics. We explore the relationships between modal logic SOn

and sequences of orthopairs. We consider the operations between orthopairs and
between sequences of orthopairs from the logical point of view. Eventually, we
employ modal logic SOn to represent the knowledge of an agent that increases
over time, as new information is provided.

We conclude this dissertation with Sect. 6, in which we briefly summarize the
results that we have obtained, and we discuss their potential further develop-
ments along with new research objectives.
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2 Preliminaries

That language is an instrument of human reason, and
not merely a medium for the expression of thought, is a
truth generally admitted.

George Boole

In this chapter, we introduce the basic notions and the notation that we will
use throughout the thesis along with some simple preliminary results. Briefly, in
Sect. 2.1, we recall the main definitions of rough set theory. In Sect. 2.2, we list
several operations between orthopairs that are found in [34]; moreover, we show
the connection between these operations and three-valued connectives. Finally,
Sect. 2.3 focuses on some important contents of partial order theory and lattice
theory.

2.1 Rough Sets and Orthopairs

Rough set theory, developed by Pawlak [82,83], is a mathematical tool used to
deal with imprecise and vague information of datasets, and it finds numerous
applications in several areas of science, such as, for instance chemistry [65],
medicine [98], marketing [52], social network [18,41], etc. Rough sets provide
approximations of sets with respect to equivalence relations.

Definition 1 (Equivalence relation). An equivalence relation R of U is a
subset on U × U such that

1. (x, x) ∈ R (reflexivity),
2. if (x, y) ∈ R, then (y, x) ∈ R (symmetry),
3. if (x, y) ∈ R and (y, z) ∈ R, then (x, z) ∈ R (transitivity),

for each x, y, z ∈ U .
Moreover, let x ∈ U , we set R(x) = {y ∈ U | (x, y) ∈ R}, and we call R(x)

equivalence class of x with respect to R.

Definition 2 (Rough set). Let R be an equivalence relation on U , and let
X ⊆ U . Then, the rough set of X determined by R is the pair (LR(X),UR(X)),
where

LR(X) = {x ∈ U | R(x) ⊆ X} and
UR(X) = {x ∈ U | R(x) ∩X 	= ∅}.

LR(X) and UR(X) are respectively called lower approximation and upper
approximation of X with respect to R.

We write (L(X),U(X)) instead of (LR(X),UR(X)), when R is clear from
the context.

Also, we call the R-boundary region of X the set BR(X) = UR(X) \ LR(X).
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Remark 1. Let R be an equivalence relation on U , and let X ⊆ U . Then,

LR(X) ⊆ X ⊆ UR(X) and UR(X) = LR(X) ∪ BR(X).

Definition 3 (Orthopair). Let R be an equivalence relation on U , and let
X ⊆ U . Then, the orthopair of X determined by R is the pair (LR(X), ER(X)),
where

LR(X) is the lower approximation given in Definition 2, and
ER(X) = {x ∈ U | R(x) ∩X = ∅}.

ER(X) is called impossibility domain or exterior domain of X. We write
(L(X), E(X)) instead of (LR(X), ER(X)), when R is clear from the context.

Remark 2. Let R be an equivalence relation on U , and let X ⊆ U . Then,

LR(X) ∩ ER(X) = ∅ and ER(X) = U \ UR(X).

The lower and upper approximations, the R-boundary region and the impos-
sibility domain are depicted in Fig. 1. The blocks, that cover the universe U (the
largest rectangle), represent the equivalence classes with respect to an equiva-
lence relation R on U . Moreover, if X is represented by the oval shape, then
L(X) is the union of green blocks, U(X) is the union of green and white blocks,
B(X) is the union of white blocks, and E(X) is the union of red blocks.

Fig. 1. Graphic representation of L(X), U(X), B(X) and E(X) (Color figure online)

In Rough set theory, given an equivalence relation R on the universe U , the
pair (U,R) is called Pawlak space.

Remark 3. Let U be a universe, we denote the power set of U (i.e. the set of
all subsets of U) with 2U . Then, the structure (2U ,∩,∪,¬, ∅, U) is a Boolean
algebra [101], where ∩, ∪ and ¬ are the usual set-theoretic operators. On the
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other hand, lower and upper approximations can be defined as unary opera-
tors on 2U satisfying some properties [71], and so they are also named approx-
imation operators. Thus, given an equivalence relation R on U , the system
(2U ,∩,∪,¬,LR,UR, ∅, U), called Pawlak rough set algebra, is a topological alge-
bra [88], which is an extension of the Boolean algebra (2U ,∩,∪,¬, ∅, U). This
means that we can regard Rough set theory as an extension of Set theory with
the additional approximation operators [105].

We can observe that equivalence relations are equivalent to partitions that
are defined as follows.

Definition 4 (Partition). By partition P of the universe U , we mean a set
{b1, . . . , bn} such that

1. b1, . . . , bn ⊆ U ,
2. bi ∩ bj = ∅, for each i 	= j,
3. b1 ∪ . . . ∪ bn = U .

Therefore, a partition of U is a set of subsets of U that are pairwise disjoint and
whose union is U .

Remark 4. The equivalence relation R of U determines the partition PR of U
made of all equivalence classes of R, namely

PR = {R(x) | x ∈ U};

vice-versa, the partition P of U generates the equivalence relation RP on U such
that, let x, y ∈ U,

x RP y if and only if x and y belong to the same element of P.

We call blocks both equivalence classes and elements of partitions.
By Remark 4, it follows that rough sets and orthopairs can also be defined

starting from partitions. Therefore, the following definition is equivalent to Def-
inition 2 and Definition 3.

Definition 5 (Rough set and Orthopair). Let P be a partition of U , and let
X ⊆ U . The rough set and the orthopair of X determined by P are respectively
the pairs (LP (X),UP (X)) and (LP (X), EP (X)), where

LP (X) = ∪{b ∈ P | b ⊆ X},
UP (X) = ∪{b ∈ P | b ∩X 	= ∅}, and
EP (X) = ∪{b ∈ P | b ∩X = ∅}.

Several authors generalize the classical definitions of rough sets and orthopairs,
by considering binary relations that are not equivalence relations, since the latter
are not usually suitable to describe the real-world relationships between elements
(e.g. [93,107]).

In this thesis, we consider orthopairs generated by tolerance relations [70,92],
or equivalently by coverings [33,36].
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Definition 6 (Tolerance relation). A tolerance relation R on U is a subset
of U × U such that

1. (x, x) ∈ R (reflexivity),
2. if (x, y) ∈ R, then (y, x) ∈ R (symmetry),

for each x, y, z ∈ U .
Moreover, let x ∈ U , we set R(x) = {y ∈ U | (x, y) ∈ R} and we call R(x)

the tolerance class of x with respect to R.

Trivially, an equivalence relation is also a tolerance relation. Moreover, tolerance
relations generate coverings that are defined as follows.

Definition 7 (Covering). By covering C of the universe U , we mean a set
{b1, . . . , bn} such that

1. b1, . . . , bn ⊆ U ,
2. b1 ∪ . . . ∪ bn = U .

We can say that a partition is a covering that satisfies the additional property
to have blocks pairwise disjoint.

2.2 Operations Between Orthopairs

In this section, we focus on some operations between orthopairs corresponding
to three-valued connectives; moreover, here, by orthopair on U , we mean any
pair of disjoint subsets of U , which may not even be the approximation of a
subset of U with respect to a relation on U (see Definition 3).

The relationship between orthopairs and three-valued logics is based on the
idea expressed in the following observation.

Remark 5. The orthopair (A,B) on the universe U generates the three-valued
function f(A,B) : U �→ {0, 1

2 , 1} such that, let x ∈ U ,

f(A,B)(x) =

⎧
⎪⎨

⎪⎩

1 ifx ∈ A,

0 if x ∈ B,
1
2 if x ∈ U \ (A ∪B).

Conversely, the three-valued function f : U �→ {0, 1
2 , 1} determines the orthopair

(Af , Bf ) on U , where

Af = {x ∈ U | f(x) = 1} and Bf = {x ∈ U | f(x) = 0}.

The most simple operations between orthopairs are defined as follows.

Definition 8. Let (A,B) and (C,D) be two orthopairs on the universe U, we
set

(A,B) ∧K (C,D) = (A ∩ C,B ∪D) and
(A,B) ∨K (C,D) = (A ∪ C,B ∩D).
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Table 2. Kleene conjunction

∧ 0 1
2

1

0 0 0 0
1
2

0 1
2

1
2

1 0 1
2

1

Table 3. Kleene disjunction

∨ 0 1
2

1

0 0 1
2

1
1
2

1
2

1
2

1

1 1 1 1

Theorem 1 states that ∧K and ∨K are respectively obtained from the Kleene
conjunction and the Kleene disjunction on {0, 1

2 , 1}. The latter are defined by
Table 2 and Table 3, respectively.

Also, we notice that ∧ and ∨ are the minimum and the maximum on {0, 1
2 , 1},

respectively.

Theorem 1. Let (A,B) and (C,D) be orthopairs on U . Then,

(A,B) ∧K (C,D) = (E,F ) and (A,B) ∨K (C,D) = (G,H),

where

E = {x ∈ U | f(A,B)(x) ∧ f(C,D)(x) = 1},
F = {x ∈ U | f(A,B)(x) ∧ f(C,D)(x) = 0},
G = {x ∈ U | f(A,B)(x) ∨ f(C,D)(x) = 1} and
H = {x ∈ U | f(A,B)(x) ∨ f(C,D)(x) = 0}.

Proof. Let x ∈ U . By Remark 5, x ∈ A ∩ C if and only if f(A,B)(x) = 1 and
f(C,D)(x) = 1, namely f(A,B)(x) ∧ f(C,D)(x) = 1 (see Table 2). Similarly, we can
prove that x ∈ B ∪D if and only if f(A,B)(x) ∧ f(C,D)(x) = 0. By Remark 5 and
starting from Table 3, we can prove that

x ∈ A ∪ C if and only if f(A,B)(x) ∨ f(C,D)(x) = 1, and
x ∈ B ∩D if and only if f(A,B)(x) ∨ f(C,D)(x) = 0.

The next operations between orthopairs are equivalent to some three-
valued connectives belonging to the families of conjunctions and implications
on {0, 1

2 , 1}. Now, we recall the definitions of conjunction and implication that
are based on some intuitive properties in scope of modelling incomplete infor-
mation.

Definition 9 (Conjunction). A conjunction on {0, 1
2 , 1} is a map

∗ :
{

0,
1
2
, 1

}

×
{

0,
1
2
, 1

}

�→
{

0,
1
2
, 1

}

satisfying the following properties: let x, y, z ∈ {0, 1
2 , 1},

1. if x ≤ y, then x ∗ z ≤ y ∗ z,
2. if x ≤ y, then z ∗ x ≤ z ∗ y,
3. 0 ∗ 0 = 0 ∗ 1 = 1 ∗ 0 = 0 and 1 ∗ 1 = 1.
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Table 4. �Lukasiewicz conjunction

�L 0 1
2

1

0 0 0 0
1
2

0 0 1
2

1 0 1
2

1

Table 5. Sobociński conjunction

�S 0 1
2

1

0 0 0 0
1
2

0 1
2

1

1 0 1 1

Example 1. Among the conjunctions listed in [34], we only consider the Kleene
conjunction, the �Lukasiewicz conjunction and the Sobociński conjunction [96].
The latter two are defined by Table 4 and Table 5.

Definition 10 (Implication). An implication on {0, 1
2 , 1} is a map

→:
{

0,
1
2
, 1

}

×
{

0,
1
2
, 1

}

�→
{

0,
1
2
, 1

}

satisfying the following properties: let x, y ∈ {0, 1
2 , 1},

1. if x ≤ y, then y → z ≤ x→ z,
2. if x ≤ y, then z → x ≤ z → y,
3. 0 → 0 = 1 → 1 = 1 and 1 → 0 = 0.

Example 2. Among the implications listed in [34], we consider the Nelson impli-
cation, the �Lukasiewicz implication and the Sobociński implication. They are
defined by the following tables, respectively (Tables 6, 7 and 8).

Table 6. Nelson implication

⇒N 0 1
2

1

0 1 1 1
1
2

1 1 1

1 0 1
2

1

Table 7. �Lukasiewicz implication

⇒L 0 1
2

1

0 1 1 1
1
2

1
2

1 1

1 0 1
2

1

Table 8. Sobociński implication

⇒S 0 1
2

1

0 1 1 1
1
2

0 1
2

1

1 0 0 1

Now, we regard two multiplications between orthopairs defined as follows.
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Definition 11. Let (A,B) and (C,D) be orthopairs on U , we set

1. (A,B) ∗L (C,D) = (A ∩ C, (U \ (A ∪ C)) ∪B ∪D),
2. (A,B) ∗S (C,D) = ((A \D) ∪ (C \B), B ∪D).

We can prove that ∗L and ∗S are respectively equivalent to the three-valued
conjunctions �L and �S . More precisely, the following theorem holds.

Theorem 2. Let (A,B) and (C,D) be orthopairs on U . Then,

(A,B) ∗L (C,D) = (E,F ) and (A,B) ∗S (C,D) = (G,H),

where

E = {x ∈ U | f(A,B)(x) �L f(C,D)(x) = 1},
F = {x ∈ U | f(A,B)(x) �L f(C,D)(x) = 0},
G = {x ∈ U | f(A,B)(x) �S f(C,D)(x) = 1} and
H = {x ∈ U | f(A,B)(x) �S f(C,D)(x) = 0}.

Proof. The proof is similar to that of Theorem1.

Finally, we consider the following implications between orthopairs.

Definition 12. Let (A,B) and (C,D) be orthopairs on U , then

1. (A,B) →N (C,D) = ((U \A) ∪ C,A ∩D),
2. (A,B) →L (C,D) = (((U \A) ∪ C) ∩ (B ∪ (U \D)), A ∩D),
3. (A,B) →S (C,D) = (B ∪ C,U \ [(((U \A) ∪ C) ∩ (A ∪ (U \D))]).

The previous implications are respectively obtained from the three-valued impli-
cations ⇒N , ⇒L and ⇒S . More precisely, the following theorem holds.

Theorem 3. Let (A,B), (C,D) and (E,F ) be orthopairs on U. Then,

(A,B) →N (C,D) = (E,F ), where
E = {x ∈ U | f(A,B)(x) ⇒N f(C,D)(x) = 1} and
F = {x ∈ U | f(A,B)(x) ⇒N f(C,D)(x) = 0}.

(A,B) →L (C,D) = (G,H), where
G = {x ∈ U | f(A,B)(x) ⇒L f(C,D)(x) = 1} and
H = {x ∈ U | f(A,B)(x) ⇒L f(C,D)(x) = 0},

(A,B) →S (C,D) = (I, J),
I = {x ∈ U | f(A,B)(x) ⇒S f(C,D)(x) = 1} and
J = {x ∈ U | f(A,B)(x) ⇒S f(C,D)(x) = 0}.

Proof. The proof is similar to that of Theorem1.
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On the other hand, there is an equivalent way to describe the relationship
between the three-valued connectives ∧, ∨, �L, �S , ⇒N , ⇒L and ⇒S , and
the operations defined in Definitions 8, 11 and 12. It is provided by using the
next definition and the next theorem.

Definition 13. Let C be a covering of the universe U , and let X ⊆ U, we can
define the function FC

X : C �→ {0, 1
2 , 1}, where

FC
X (N) =

⎧
⎪⎨

⎪⎩

1 if N ⊆ X,

0 if N ∩X = ∅,
1
2 otherwise.

(1)

for each N ∈ C. We denote FC
X with FX , when C is clear from the context.

The following theorem states that each operation between orthopairs is obtained
from the respective three-valued connective, by using function 1.

Theorem 4. Let C be a covering of U , and let X,Y ⊆ U . Suppose that the
operation ◦ belongs to {∧K,∨K, ∗L, ∗S ,→N ,→L,→S}, then

(L(X), E(X)) ◦ (L(Y ), E(Y ))

is the orthopair (A,B) such that

A =
⋃
{N ∈ C | FX(N) � FY (N) = 1}

and

B =
⋃
{N ∈ C | FX(N) � FY (N) = 0},

where � respectively belongs to {∧,∨,�L,�S ,⇒N ,⇒L,⇒S}.

Proof. We provide the proof only for the operation ∗S , since the remaining cases
can be similarly demonstrated.

Let x ∈ U and suppose that (L(X), E(X)) ∗S (L(Y ), E(Y )) = (A,B). By
Definition 11, x ∈ A if and only if x ∈ (L(X) \ E(Y )) ∪ (L(Y ) \ E(X)), namely
x ∈ L(X) \ E(Y ) or x ∈ L(Y ) \ E(X). This is equivalent to affirm that x belongs
to a node N of C such that

– N ⊆ X and N ∩ Y = ∅, or
– N ⊆ X and N ∩ Y = ∅.

Then, FX(N) = 1 and FY (N) 	= 0, or FY (N) = 1 and FX(N) 	= 0. We conclude
that FX(N) �S FY (N) = 1, since �S is the Sobociński conjunction.

Similarly, x ∈ B if and only if x ∈ E(X) ∪ E(Y ), by 11; namely, x belongs
to a node N of C such that N ∩ X = ∅ or N ∩ Y = ∅. Then, FX(N) = 0 or
FY (N) = 0. Hence, FX(N) �S FY (N) = 0.
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Remark 6. However, the previous operations can be also defined by considering
orthopairs that correspond to rough sets (see Definition 3). In this case, it is
necessary to introduce some closure properties in order to ensure that operations
between rough sets always generate a rough set. But, it will be done in the next
sections.

Moreover, in Sect. 4.5, we extend the operations defined in Definitions 8, 11
and 12 to sequences of orthopairs in order to obtain many-valued algebraic
structures.

2.3 Ordered Structures

Partial Orders and Lattices. This section contains some important contents of
partial order theory and lattice theory. Partial order and lattice theory play an
important role in many disciplines of computer science and engineering [14,53].

Definition 14 (Partially ordered set). A partially ordered set, more briefly
a poset, is a pair (P,≤), where P is a non empty set and ≤ is a binary relation
on P satisfying the following properties.

1. x ≤ x (reflexivity),
2. if x ≤ y and y ≤ x, then x = y (antisymmetry),
3. if x ≤ y and y ≤ z, then x ≤ z (transitivity),

for each x, y, z ∈ L.
Moreover, if (P,≤) is a poset, then (S,≤) is also a poset, for each S ⊆ P .

An example of partially ordered set is the set 2U of all subsets of U with the set
inclusion ⊆.

Let (P,≤) be a poset, and x, y ∈ P , we say that y is the successor of x in
P , if x < y and there is no z ∈ P such that x < z < y. Furthermore, P has
a maximum (or greatest) element if there exists x ∈ P such that y ≤ x for all
y ∈ P . An element x ∈ P is maximal if there is no element y ∈ P with y > x.
Minimum and minimal elements are dually defined. P has a minimum (or least)
element if there exists x ∈ P such that x ≤ y for all y ∈ P . An element x ∈ P
is minimal if there is no element y ∈ P with y < x.

We can draw the Hasse diagram of each finite poset (P,≤): the elements of
P are represented by points in the plane, and a line is drawn from x up to y,
when y is a successor of x. Smaller elements are drawn under their successors.

Definition 15 (Chain). A partially ordered set (P,≤) is a chain if and only if
x ≤ y or y ≤ x, for each x, y ∈ P .

Definition 16 (Downset and Upset). Let (P,≤) be a partially ordered set,
and let S ⊆ P . Then, S is a downset of P if and only if satisfies the following
property:

for any y ∈ P, if y ≤ x and x ∈ S, then y ∈ S.
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Dually, S is an upset of P if and only if satisfies the following property:

for any y ∈ P, if x ≤ y and x ∈ S, then y ∈ S.

Moreover, we set

↓ S = {y ∈ P | y ≤ x for some x ∈ S} and
↑ S = {y ∈ P | x ≤ y for some x ∈ S}.

Definition 17 (Forest). A partially ordered set (P,≤) is a forest if and only
if the downset of each element of P is a chain.

Definition 18 (Tree). A tree (P,≤) is a forest that has minimum.

Example 3. Consider the following binary relation on the set N of positive inte-
gers defined as follows: let x, y ∈ N,

x � y if and only if x divides y. (2)

Then, the Hasse diagrams of the partially ordered sets

({1, 2, 3},�), ({1, 2, 5, 10},�) and ({2, 7, 14},�)

are respectively represented as follows.

1

2 3

1

2 5

10

14

2 7

Fig. 2. Partially ordered sets

The poset (↑ {7},�) is a chain. The poset ({1, 2, 3},�) is a forest.

Minimal elements of a forest are called roots, while maximal elements are
called leaves. A map f : F �→ G between forests is open if, for a ∈ G and b ∈ F ,
whenever a ≤ f(b) there exists c ∈ F with c ≤ b such that f(c) = a. Equiva-
lently, open maps carry upsets to upsets.

Let P be a poset, and let S be a subset of P . We say that an element x ∈ P
is an upper bound for S if x ≥ s for each s ∈ S. We can say that x is the least
upper bound for S if x is an upper bound for S and x ≤ y, for every upper bound
y of S. Dually, x is a lower bound for S if s ≤ x for each s ∈ S; x is the greatest
lower bound for S if x is a lower bound for S and y ≤ x, for every lower bound
y of S. If the least upper bound and the greatest lower bound of S exist, then
they are unique.
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Definition 19 (Lattice). A lattice is a partially ordered set in which every
pair of elements x and y has a least upper bound and a greatest lower bound,
denoted with x ∧ y and x ∨ y, respectively.

Lattices can also be defined as algebraic structures.

Definition 20 (Lattice). [78] A lattice is an algebra (L,∧,∨) that satisfies
the following proprieties.

1. x ∧ x = x and x ∨ x = x (idempotent laws),
2. x ∧ y = y ∧ x and x ∨ y = y ∨ x (commutative laws),
3. x ∧ (y ∧ z) = (x ∧ y) ∧ z and x ∨ (y ∨ z) = (x ∨ y) ∨ z (associative laws),
4. x ∧ (x ∨ y) = x and x ∨ (x ∧ y) = x (absorption law),

for each x, y, z ∈ L.

Remark 7. The latter two definitions are equivalent. Indeed, suppose that (L,≤)
is a lattice, and x ∧ y and x ∨ y denote the least upper bound and a greatest
lower bound of x and y, respectively. Then, (L,∧,∨) satisfies the all proprieties
of Definition 20.

Moreover, given a lattice (L,∧,∨), we can consider the following binary rela-
tion ≤ on L: let x, y ∈ L

x ≤ y if and only if x ∧ y = x (or x ∨ y = y).

We can prove that (L,≤) is a partially ordered set, in which every pair of ele-
ments has a greatest lower bound and a least upper bound.

An example of lattice is the structure (2U ,∩,∪) of all subsets of a set U , with
the usual set operations of intersection and union, or equivalently (2U ,⊆), where
⊆ is the set inclusion.

We are interested in bounded distributive lattices having the following defini-
tion.

Definition 21 (Bounded lattice). A bounded lattice is a structure

(L,∧,∨, 0, 1)

such that (L,∧,∨) is a lattice, 0 is the identity element for ∨ (x ∨ 0 = 0) and 1
is the identity element for ∧ (x ∧ 1 = x). Moreover, 0 and 1 are called bottom
and top of L, respectively.

Definition 22 (Distributive lattice). [45] A lattice (L,∧,∨) is distributive
if and only if the operations ∧ and ∨ distribute over each other, namely

1. x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) and
2. x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)

for each x, y, z ∈ L.



Sequences of Refinements of Rough Sets 43

In 1937, the mathematician Garrett Birkhoff proved that there exists a one-to-
one correspondence between distributive lattices and partial orders [15]. Namely,
elements of a distributive lattice can be viewed as upsets, and the lattices oper-
ations correspond to intersection and union between sets.

Theorem 5 (Birkhoff’s representation theorem). Let (P,≤) be a partially
ordered set, then the structure (Up(P ),∩,∪, ∅, P ), where Up(P ) is the set of all
upsets of P , and the operations ∩ and ∪ are respectively the intersection and the
union between sets, is a bounded distributive lattice; furthermore, if (L,∧,∨, 0, 1)
is a bounded distributive lattice, then there exists a partially ordered set (P,≤)
such that (Up(P ),∩,∪, ∅, P ) is isomorphic to (L,∧,∨, 0, 1).

Definition 23 (Residuated lattice). A residuated lattice is a structure

(L,∧,∨, ∗,→, e, 0, 1)

such that

1. (L,∧,∨, 0, 1) is a bounded lattice,
2. (L, ∗, e) is a monoid,
3. x ∗ y ≤ z if and only if x ≤ z → y, for each x, y, z ∈ L (∗ and → satisfy the

adjointness property).

Kleene Algebras. Kleene algebras are a subclass of De Morgan algebras. The
latter were introduced by Moisil [74] without the restriction including 0 and 1.
Successively, they were studied by several authors, in particular, by Kalman [63]
(under the name of distributive i-lattices), and by Bialynicki-Birula and Rasiowa,
which called them quasi-Boolean algebras [12]. The notation that is still used was
introduced by Monteiro [75].

Definition 24 (De Morgan algebra). A De Morgan algebra is a structure
(A,∧,∨,¬, 0, 1), where

1. (A,∧,∨, 0, 1) is a bounded distributive lattice,
2. ¬(x ∨ y) = ¬x ∧ ¬y (the Morgan’s law),
3. ¬¬x = x (¬ is an involution),

for each x, y ∈ A.

Definition 25 (Kleene algebra). [30] A Kleene algebra (A,∧,∨,¬, 0, 1) is
a De Morgan algebra such that the following property, called Kleene property,
holds:

x ∧ ¬x ≤ y ∨ ¬y (3)

for each x, y ∈ A.

Kleene algebras are also called normal i-lattices by Kalman.

Example 4. The structure ({0, 1
2 , 1},∧,∨,¬, 0, 1) is a three-element Kleene alge-

bra, where ∧ and ∨ are respectively the Kleene conjunction and implication
defined in Sect. 2.2, and ¬x = 1− x for each x ∈ {0, 1

2 , 1}.
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Example 5. Let C be a partition of the finite universe U , and let OC be the set
of all orthopairs generated by C. Then, the structure

(OC ,∧K,∨K,¬, (∅, U), (U, ∅))

is a Kleene algebra, where ∧K and ∨K are given in Definition 8, and ¬(A,B) =
(B,A) for each (A,B) ∈ OC .

We are interested in the family of finite centered Kleene algebras with the inter-
polation property, that are explored in [31].

From now on, we denote an algebraic structure having support A with A.

Definition 26 (Centered Kleene algebra). A Kleene algebra A is a cen-
tered Kleene algebra if there exists c ∈ A such that c = ¬c. The element c is
called center of A.

By using the Kleene property (see Definition 25), it is easy to prove that if c is
a center of A, then it is unique.

The following notion was introduced for the first time by Monteiro [76].

Definition 27. Let (A,∧,∨,¬, 0, 1) be a centered Kleene algebra. Let c be the
center of A. We say that A has the interpolation property if and only if for every
x, y ≥ c such that x ∧ y ≤ c there exists z such that z ∨ c = x and ¬z ∨ c = y.

In [27] the above definition is called (CK) property, but it is also noticed that
it coincides with the interpolation property described in [31], so we will use this
last name. Not every centered Kleene algebra has the interpolation property, see
Example 5 in [27].

Definition 28. As in [31], let (A,∧,∨,¬, 0, 1) be a Kleene algebra, we set

A+ = {x ∈ A | ¬x ≤ x} and A− = {x ∈ A | x ≤ ¬x}.

We call A+ and A− positive and negative cone, respectively.

We can observe that the structure (A+,∧,∨) is a sublattice of (A,∧,∨) contain-
ing 1, and dually, (A−,∧,∨) is a sublattice of (A,∧,∨) containing 0.

Kalman Construction. The following construction is due to Kalman [63]. Let
(L,∧,∨, 0, 1) be a bounded distributive lattice, we consider

K(L) = {(x, y) ∈ L× L | x ∧ y = 0} (4)

and the operations �, � and ¬ defined on K(L) as follows:

(x, y) � (u, v) = (x ∧ u, y ∨ v) (5)

(x, y) � (u, v) = (x ∨ u, y ∧ v) (6)

¬(x, y) = (y, x) (7)
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for each (x, y), (u, v) ∈ K(L). Then,

K(L) = (K(L),�,�,¬, (0, 1), (1, 0)) (8)

is a centered Kleene algebra, with center (0, 0). Moreover,

K(L)+ = {(x, 0) | x ∈ L} and K(L)− = {(0, x) | x ∈ L}.

The following theorem, proved by Cignoli [31] states that centered Kleene alge-
bras with the interpolation property are represented by bounded distributive
lattices.

Theorem 6. A Kleene algebra A is isomorphic to K(L) for some bounded dis-
tributive lattice L if and only if A is centered and satisfies the interpolation
property. In this case L is isomorphic to the lattice A

+.

By Birkhoff representation theorem and by Theorem 6, the following result holds.

Theorem 7. A Kleene algebra A is isomorphic to K(Up(P )), for some partially
ordered set (P,≤), if and only if A is centered and satisfies the interpolation
property. In this case (Up(P ),∩,∪, ∅, P ) is isomorphic to the lattice A

+.

Remark 8. Trivially, K(Up(P )) is the set of all pairs of disjoint upsets of P , and
the operations 5 and 6 are the following: let (X1,X2), (Y 1, Y 2) ∈ K(Up(P )),
then

(X1,X2) � (Y 1, Y 2) = (X1 ∩ Y 1,X2 ∪ Y 2), (9)

(X1,X2) � (Y 1, Y 2) = (X1 ∪ Y 1,X2 ∩ Y 2). (10)

In this thesis, we focus on some structures having Kleene algebras as reduct.
Namely, they are Nelson algebras, Nelson lattices, Kleene lattices with implica-
tion and IUML-algebras. Moreover, we will require that they are centered and
satisfy the interpolation property.

Nelson Algebras. Nelson algebras were introduced by Rasiowa [87], under the
name of N-lattices, as the algebraic counterparts of the constructive logic with
strong negation considered by Nelson and Markov [88]. The centered Nelson
algebras with the interpolation property are represented by Heyting algebras,
that are defined as follows.

Definition 29 (Pseudo-complement). [31] Let (L,∧,∨, 0, 1) be a bounded
distributive lattice, and let x, y ∈ L. Then, the pseudo-complement of x with
respect to y, denoted with x → y, is an element of L satisfying the following
proprieties:

1. x ∧ x → y ≤ y and
2. if x ∧ z ≤ y, then z ≤ x→ y, for each z ∈ L.
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Notice that, given a bounded distributive lattice (L,∧,∨, 0, 1), the pseudo-
complement of x with respect to y does not always exist.

Definition 30 (Heyting algebra). An Heyting algebra is a structure

(H,∧,∨,→, 0, 1),

where the reduct (H,∧,∨, 0, 1) is a bounded residuated lattice, and x → y is the
pseudo-complement of x with respect to y given in Definition 29.

The next theorem affirms that there exists a one-to-one correspondence between
finite Heyting algebras and finite partially ordered sets.

Theorem 8. [15] For each finite Heyting algebra H, there exists a finite poset
(P,≤) such that H is isomorphic to (Up(P ),∩,∪,→P , ∅, P ), where

X →P Y = P\ ↓ (X \ Y ), (11)

for each X,Y ∈ Up(P ).

Definition 31 (Quasi-Nelson algebra). A quasi-Nelson algebra is a struc-
ture

(A,∧,∨,¬,⇒, 0, 1)

such that

1. (A,∧,∨,¬, 0, 1) is a Kleene algebra, and
2. for each x, y ∈ A, the pseudo-complement of x with respect to ¬x∨y, denoted

with x⇒ y, exists.

Definition 32 (Nelson algebra). A Nelson algebra is a quasi Nelson algebra
(A,∧,∨,¬,⇒, 0, 1), that satisfies the following property: let x, y, z ∈ A

(x ∧ y)⇒ z = x⇒ (y ⇒ z).

Example 6. The structure ({0, 1
2 , 1},∧,∨,¬,⇒N , 0, 1), where ¬x = 1−x for each

x ∈ {0, 1
2 , 1}, and ⇒N is the Nelson implication on {0, 1

2 , 1} defined in Sect. 2.2,
is a three-element Nelson algebra.

Example 7. Let C be a partition of the finite universe U , and let OC be the set
of all orthopairs generated by C. Then, the structure

(OC ,∧K,∨K,¬,→N , (∅, U), (U, ∅))

is a finite Nelson algebra, where →N is given in Definition 12.

Manuel M. Fidel [47] and Dimiter Vakarelov [99] have shown independently that
if (H,∧,∨,→, 0, 1) is an Heyting algebra, then (K(H),⇒), that is the structure
(K(H),�,�,¬,⇒, (∅,H), (H, ∅)), is a Nelson algebra, where

(x, y) ⇒ (u, v) = (x → u, x ∧ v) (12)

for each (x, y), (u, v) ∈ K(H).
Moreover, Cignoli [31] proved the following result.
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Theorem 9. A finite Nelson algebra A is isomorphic to (K(H),⇒) for some
finite Heyting algebra H if and only if A is centered and satisfies the interpolation
property.

By Theorem 8, Eq. 12 and Theorem 9, the following result holds.

Theorem 10. Let A be a Nelson algebra. Then, A is a finite centered Nelson
algebra with the interpolation property if and only if there exists a finite poset
(P,≤) such that A ∼= (K(Up(P )),→1), where

(X1,X2) →1 (Y 1, Y 2) = (P\ ↓ (X1 \ Y 1),X1 ∩ Y 2), (13)

for each (X1,X2), (Y 1, Y 2) ∈ K(Up(P )).

Nelson Lattices. Nelson lattices are algebraic models of constructive logic with
strong negation [97]. They are particular involutive residuated lattices. Moreover,
finite centered Nelson lattices are represented by Heyting algebras.

Definition 33 (Involutive residuated lattice). An involutive residuated lat-
tice is a bounded, integral and commutative residuated lattice

(A,∧,∨, ∗,→, e, 0, 1)

such that the operation ¬, defined by ¬x = x → 0 for each x ∈ A, is an involu-
tion.

The operations ∗ and → of an involutive residuated lattice with support A can
be obtained one from each other as follows: let x, y ∈ A, then

x ∗ y = ¬(x→ ¬y) (14)

and
x → y = ¬(x ∗ ¬y). (15)

Definition 34 (Nelson lattice). A Nelson lattice is an involutive residuated
lattice

(A,∧,∨, ∗,→, e, 0, 1),

where the following inequality holds: let x2 = x ∗ x,

(x2 → y) ∧ ((¬y2) → ¬x) ≤ x→ y,

for each x, y ∈ A.

Example 8. The structure ({0, 1
2 , 1},∧,∨,�L,⇒L, 1

2 , 0, 1) is a three-element Nel-
son lattice, where �L and ⇒L are respectively the �Lukasiewicz conjunction and
implication on {0, 1

2 , 1} defined in Sect. 2.2.
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Example 9. Let C be a partition of the finite universe U , and let OC be the set
of all orthopairs generated by C. Then, the structure

(OC ,∧K,∨K, ∗L,→L, (∅, ∅), (∅, U), (U, ∅)),

where ∗L and →L are defined in Sect. 2.2, is a finite Nelson lattice.

Remark 9. Centered Nelson algebras and Nelson lattices are equationally equiv-
alent, namely they are obtained one from the other as follows [23].
If (A,∧,∨,¬,⇒, 0, 1) is a centered Nelson algebra, then (A,∧,∨, ∗,→, 0, 1) is a
Nelson lattice, where

x ∗ y = ¬(x ⇒ ¬y) ∨ ¬(y ⇒ ¬x) and x→ y = (x ⇒ y) ∧ (¬y ⇒ ¬x),

for each x, y, z ∈ A. Vice-versa, if (A,∧,∨, ∗,→, 0, 1) is a Nelson lattice, then
(A,∧,∨,¬,⇒, 0, 1) is a centered Nelson algebra, where

¬x = x→ 0 and x⇒ y = x2 → y,

for each x, y ∈ A.

We can notice that if (H,∧,∨,→, 0, 1) is an Heyting algebra, then

(K(H), ∗,⇒),

where (K(H), ∗,⇒) denotes (K(H),�,�, ∗,⇒, (∅, ∅), (∅,H), (H, ∅)), is a Nelson
lattice, such that

(x, y) ∗ (u, v) = (x ∧ u, (x → v) ∧ (u → y)) (16)

and
(x, y) ⇒ (u, v) = ((x → u) ∧ (v → y), x ∧ v), (17)

for each x, y, u, v ∈ H.
Finite centered Nelson lattices with the interpolation property are repre-

sented by finite Heyting algebras [27].

Theorem 11. A finite Nelson lattice A is isomorphic to (K(H), ∗,⇒) for some
finite Heyting algebra H if and only if A is centered and satisfies the interpolation
property.

By Theorem 8, Eq. 16, Eq. 17 and Theorem 11, the following result holds.

Theorem 12. Let A be a Nelson lattice. Then, A is a finite centered Nelson
lattice with the interpolation property if and only if there exists a finite poset
(P,≤) such that A ∼= (K(Up(P )), �2 →2), where

(X1,X2) �2 (Y 1, Y 2) = (X1 ∩ Y 1, P \ (↓ (X1 \ Y 2) ∪ ↓ (Y 1 \X2))), (18)

(X1,X2) →2 (Y 1, Y 2) = (P \ (↓ (X1 \ Y 1) ∪ ↓ (Y 2 \X2)),X1 ∩ Y 2), (19)

for each (X1,X2), (Y 1, Y 2) ∈ K(Up(P )).
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IUML-algebras. IUML-algebras are the algebraic counterpart of the logic IUML,
which is a substructural fuzzy logic that is an axiomatic extension of the mul-
tiplicative additive intuitionistic linear logic MAILL [73]. IUML-algebras can
also be defined as bounded odd Sugihara monoids, where a Sugihara monoid is
the equivalent algebraic semantics for the relevance logic RM t of R-mingle as
formulated with Ackermann constants. In [49] a dual categorical equivalence is
shown between IUML-algebras and suitable topological spaces defined starting
from Kleene spaces. In this dissertation, we focus only on finite IUML-algebras
refers to [3] and [73].

Definition 35 (IUML-algebra). An idempotent uninorm mingle logic alge-
bra (IUML-algebra) [73] is an idempotent commutative bounded residuated lattice

(A,∧,∨, ∗,→, e,⊥,�),

satisfying the following properties:

1. (x→ y) ∨ (y → x) ≥ e, and
2. (x→ e) → e = x,

for every x, y ∈ A.

In any IUML-algebra, if we define the unary operation ¬ as ¬x = x → e,
then ¬¬x = x (¬ is involutive) and x → y = ¬(x ∗ ¬y).

Example 10. The structure ({0, 1
2 , 1},∧,∨,�S ,⇒S , 1

2 , 0, 1) is a three-element
IUML-algebra, , where �S and ⇒S are respectively the Sobociński conjunction
and implication on {0, 1

2 , 1} defined in Sect. 2.2.

Example 11. Let C be a partition of the finite universe U , and let OC be the set
of all orthopairs generated by C. Then, the structure

(OC ,∧K,∨K, ∗S ,→S , (∅, ∅), (∅, U), (U, ∅)),

where ∗S and →S are defined in Sect. 2.2, is a finite IUML-algebra.

Moreover, in [3] a dual categorical equivalence is described between finite
forests F with order preserving open maps and finite IUML-algebras with homo-
morphisms.

Definition 36. For any finite forest F , we consider K(Up(F )), that is the set
of pairs of disjoint upsets of F (it is the set defined by Eq. 4 starting from the
lattice (Up(F ),∩,∪, ∅, F ), and we define the following operations: if (X1,X2)
and (Y 1, Y 2) belong to K(Up(F )), we set:

(X1,X2) �3 (Y 1, Y 2) = ((X1 ∩ Y 1) ∪ (X � Y ), (X2 ∪ Y 2) \ (X � Y )) (20)

where, for each U = (U1, U2), V = (V 1, V 2) ∈ K(Up(F )), letting U0 = F \ (U1∪
U2), we set

U � V = ↑ ((U0 ∩ V 1) ∪ (V 0 ∩ U1)).

(X1,X2) →3 (Y 1, Y 2) = ¬((X1,X2) �3 (Y 2, Y 1)). (21)
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Theorem 13. [3] For every finite forest F , the structure

(K(Up(F )), �3,→3) = (K(Up(F )),�,�, �3,→3, (∅, ∅), (∅, F ), (F, ∅))

is an IUML-algebra. Vice-versa, for each finite IUML-algebra A there is a finite
forest FA such that A is isomorphic with (K(Up(FA)), �3,→3).

Kleene Lattices with Implication. Kleene lattices with implication are a class of
Kleene algebras where an additional operation of implication can be defined in
such a way to make them DLI-algebras, (i.e. algebras with implication). The
latter generalize the Heyting algebras and are defined in [28].

Definition 37 (DLI-algebra). A DLI-algebra is a structure

(H,∨,∧,→, 0, 1),

where (H,∧,∨, 0, 1) is a bounded distributive lattice and the following properties
hold: let x, y, z ∈ A

1. (x → y) ∧ (x → z) = x→ (y ∧ z),
2. (x → z) ∧ (y → z) = (x ∨ y)→ z,
3. 0 → x = 1,
4. x→ 1 = 1.

Furthermore, a DLI+-algebra is a DLI-algebra (H,∨,∧,→, 0, 1) where the fol-
lowing inequality holds: a ∧ (a → b) ≤ b, for each a, b ∈ H.

It is easy to prove that each Heyting algebra is also a DLI+-algebra.

Definition 38 (DLI∗-algebra). A DLI∗-algebra is a structure

(H,∧,∨,→, 0, 1),

where (H,∧,∨, 0, 1) is a bounded distributive lattice and → is defined as follows:
let x, y ∈ H,

x→ y =

{
1 if x = 0,

y if x 	= 0.
(22)

Proposition 1. A DLI∗-algebra is a DLI+-algebra.

By Theorem 5, the following result holds.

Theorem 14. The structure (H,∧,∨,→, 0, 1) is a DLI∗-algebra if and only if
H ∼= (Up(P ),∩,∪,→∗

P , ∅, P ), where

X →∗
P Y =

{
P if X = ∅,
Y if X 	= ∅,

(23)

for each X,Y ∈ P .
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Definition 39 (Kleene lattice with implication). A Kleene lattice with
implication is a structure

(A,∧,∨,¬, ∗,→, 0, 1)

such that (A,∧,∨,¬, 0, 1) is a centered Kleene algebra and the following condi-
tions hold: let c be the center of A and let x, y ∈ A

1. (A,∧,∨,→, 0, 1) is a DLI-algebra,
2. (x ∧ (x → y)) ∨ c ≤ y ∨ c,
3. c→ c = 1,
4. (x→ y) ∧ c = (¬x ∨ y) ∧ c,
5. (x→ ¬y) ∨ c = ((x → (¬x ∨ c))).

By Eq. 14, we can define the operation ∗ from →. Vice-versa, by Eq. 15, → is
obtained from ∗.
It is easy to prove that each Nelson algebra is also a Kleene lattice with impli-
cation.

Let (H,∧,∨,→, 0, 1) be a DLI+-algebra, then (K(H), �,⇒) is a Kleene lat-
tice with implication, where⇒ is defined by 17 and x�y = ¬(x⇒ ¬y). Moreover,
the following theorem holds.

Theorem 15. A Kleene lattice with implication A is isomorphic to the structure
(K(H), �,⇒) for some DLI+-algebra H if and only if it has the interpolation
property.

Definition 40 (KLI∗-algebra). A KLI∗-algebra is a structure

(A,∧,∨,¬, ∗,→, 0, 1),

where (A,∧,∨,¬, 0, 1) is a centered Kleene algebra and the operations ∗ and →
are defined as follows: let c be the center of A, and let x, y ∈ A

x→ y =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, if x ≤ c and y ≥ c;
¬x, if x ≤ c and y � c;
y, if x � c and y ≥ c;
((y ∨ c) ∧ ¬x) ∨ ((¬x ∨ c) ∧ y), if x � c and y � c;

(24)

and x ∗ y = ¬(x → y).

Proposition 2. [27] A KLI∗-algebra is a Kleene lattice with implication.

The next result follows by Theorem 14 and Theorem 15.

Theorem 16. The structure (A,∧,∨,¬, ∗,→, 0, 1) is a KLI∗-algebra with the
interpolation property if and only if A ∼= (K(Up(P )), �4,→4), where �4 and →4

are defined as follows.

(X1,X2) �4 (Y 1, Y 2) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(∅, P ), if X1 = ∅ and Y 1 = ∅;
(X1,X2), if X1 = ∅ and Y 1 	= ∅;
(Y 1, Y 2), if X1 	= ∅ and Y 1 = ∅;
(X1 ∩ Y 1,X2 ∩ Y 2), if X1 	= ∅ and Y 1 	= ∅;

(25)
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and

(X1,X2) →4 (Y 1, Y 2) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(P, ∅), if X1 = ∅ and Y 2 = ∅;
(X2,X1), if X1 = ∅ and Y 2 	= ∅;
(Y 1, Y 2), if X1 	= ∅ and Y 2 = ∅;
(Y 1 ∩X2,X1 ∩ Y 2), if X1 	= ∅ and Y 2 	= ∅;

(26)
for each (X1,X2), (Y 1, Y 2) ∈ K(Up(P )).

3 Sequences of Refinements of Orthopairs

Mathematical objects are not so directly given as physical
objects. They are something between the ideal world and
the empirical world.

Kurt Gödel

In this chapter, we introduce the definition of refinement sequences of partial
coverings as special sequences of coverings representing situations where new
information is gradually provided on ever smaller sets of objects. We provide
examples of environments in which refinement sequences arise; in detail, we
obtain refinement sequences starting from incomplete information tables and
formal contexts. We identify some families of sequences considering how much the
blocks of their coverings overlap. We identify refinement sequences as partially
ordered sets. Moreover, we introduce the notion of sequences of orthopairs, in
order to generalize the rough set theory. We represent each sequence of orthopairs
as a pair of disjoint upsets of a partially ordered set, or equivalently, as a labelled
poset. Finally, we provide a theorem that is fundamental to prove the results of
Sect. 4. Preliminary versions of this chapter appeared in [1,2,19,20].

3.1 Refinement Sequences

In this section, we introduce the notion of refinement sequence of a universe.
Refinement sequences are special sequences of partial coverings of a given

universe (a partial covering of U is a subset of 2U , i.e. any set of subsets of U
[35]). More precisely, the refinements sequences are defined as follows.

Definition 41. A sequence C = (C1, . . . , Cn) of partial coverings of U is a
refinement sequence of U if each element of Ci is contained in an element of
Ci−1, for i = 2, . . . , n.

For simplicity, we omit to specify on which universe the refinement sequence is
defined, when it is clear.

Example 12. Suppose that U = {a, b, c, d, e, f, g} and that C1 and C2 are partial
coverings of U respectively defined as follows:
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– C1 = {{a, b, c, d}, {d, e, f, g}};
– C2 = {{a, b, c}, {c, d}, {d, e},{f, g}}.
Then, (C1, C2) is a refinement sequence of U .

Remark 10. We notice that a partial covering of U naturally defines a tolerance
relation on a subset of U and the vice-versa also holds. Moreover, we call blocks
both the elements of a partial covering and the tolerance classes. Therefore,
a refinement sequence (C1, . . . , Cn) of partial coverings of U corresponds to a
sequence (R1, . . . , Rn) of tolerance relations respectively defined on the subsets
U1, . . . , Un of U , where

– Ui is the union of the blocks of Ci, for each i ∈ {1, . . . , n};
– Ui ⊆ Uj , for each j ≤ i;
– Ri(u) ⊆ Rj(u), for each j ≤ i and u ∈ Ui.

In this thesis, we also consider refinement sequences of partial partitions of
a universe, where a partition corresponds to an equivalence relation, and it is a
covering such that its blocks are disjoint with each others.

As shown in the following example, the refinement sequences can be used for
ontology construction.

Example 13. Suppose to start from a set of rocks (first covering) and then to
specify our interest in magmatic rocks and sedimentary rocks that form a partial
covering of the initial set of rocks (the latter also contains several elements that
are metamorphic rocks, then the covering made of magmatic and sedimentary
rocks is partial). Then, we intend to refine such classification by considering two
groups of magmatic rock (intrusive rocks and extrusive rocks) and two groups of
sedimentary rocks (Chemical rocks and Clastic rocks). The refinement sequence
of partial coverings can be represented as follows.

Rocks

Magmatic Rocks Sedimentary Rocks

Intrusive Rocks Extrusive Rocks Chemical Rocks Clastic Rocks

Fig. 3. Refinement sequence for rocks classification

The next example shows that a refinement sequence corresponds to an incomplete
information table. The latter is a table where a set of objects is described by
several attributes, but some data may be missing.
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Example 14. Suppose that we have information about 22 users of Facebook,
labelled with u1, . . . , u22. In particular, we focus on information related to the
place where each user declares to come from on its personal profile.

The available data are organized in the information table as in Table 9, (see
[66]) where U = {u1, . . . , u22} is the universe and {Country,Region,City} is
the set of attributes.

Table 9. Information table of the users

Country Region City

u1 Italy × ×

u2 Italy Lombardy Varese

u3 Italy Lombardy Varese

u4 Italy Lombardy Milan

u5 Italy Lombardy Milan

u6 Italy Lombardy Pavia

u7 Italy Lombardy Pavia

u8 Italy Campania Naples

u9 Italy Campania Naples

u10 Italy Campania ×

u11 Italy Campania ×

Country Region City

u12 France Brittany Rennes

u13 France Brittany Rennes

u14 France Brittany ×

u15 France Brittany ×

u16 France Grand Est Strasbourg

u17 France Grand Est Strasbourg

u18 France Grand Est Mets

u19 France Grand Est Mets

u20 France Grand Est ×

u21 France Grand Est ×

u22 France × ×

Observe that there are three equivalence relations between users determined
respectively by considering users coming from the same country or the same
region or the same city1. They are the so-called indiscernibility relations of
Table 9 [66]. Moreover, their respective partial coverings (that are also partial
partitions) are C1 = {{u1, . . . , u11}, {u12, . . . , u22}} (classes are sets of users com-
ing from the same country); C2 = {{u2, . . . , u7}, {u8, . . . , u11}, {u12, . . . , u15},
{u16, . . . , u21}} (classes are set of users coming from the same region) and
C3 = {{u2, u3}, {u4, u5}, {u6, u7}, {u8, u9}, {u12, u13}, {u16, u17}, {u18, u19}}
(classes are set of users coming from the same city). It easy to see that
C = (C1, C2, C3) is a refinement sequence of U .

Refinement Sequences and Formal Context. There is a close connection between
refinement sequences and formal contexts, which are mathematical structures
used in Formal Concept Analysis and Fuzzy Formal Concept Analysis [26,50].
A formal context is a triple (X,Y, I), where X is a set of objects, Y is a set of

1 The equivalence relations coming from the same region and coming from the same
city are defined on proper subsets of U , for there are missing data for some users.
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attributes, and I is a binary relation between X and Y . If I is a fuzzy relation,
then (X,Y, I) is called fuzzy formal context, and I(x, y) expresses the degree
wherewith the object x has the attribute y. A formal context can be repre-
sented by a table with rows corresponding to objects, columns corresponding
to attributes, and table entries containing each degree I(x, y), with x ∈ X and
y ∈ Y . In particular, it is clear that if I is an ordinary relation, the table entries
only contain the degrees 0 and 1. By using several techniques [10,17], formal con-
cepts are extracted from every formal context. Formal concepts are particular
clusters which represent natural human-like concepts such as “organism living
in water”, “car with all wheel drive system”, etc.

Given a refinement sequence C = (C1, . . . , Cn), we can view a block b of
Ci as the set of all elements of U that have a specific attribute yb. Thus, C
corresponds to a formal context (U, YC , I), where YC = ∪{yb | b ∈ Ci and i ∈
{1, . . . , n}} and “(u, yb) ∈ I if and only if u ∈ b”. For example, let C = (C1 =
{b1, b2}, C2 = {b3, b4, b5}) be the refinement sequence of {a, b, c, d, e, f, g} such
that b1 = {a, b, c}, b2 = {d, e, f, g}, b3 = {a, b, c}, b4 = {d, e} and b5 = {f, g}.
Then, the formal context associated to C is represented by Table 10.

Table 10. Formal context of C

I yb1 yb2 yb3 yb4 yb5

a 1 0 1 0 0

b 1 0 1 0 0

c 1 0 1 0 0

d 0 1 0 1 0

e 0 1 0 1 0

f 0 1 0 0 1

g 0 1 0 0 1

Vice-versa, starting from a formal context, we can build a refinement sequence
as follows. For each y ∈ Y , we set by = {x ∈ X | (x, y) ∈ I}. Let s = |Y |, if s = 1,
then the refinement sequence assigned to (X,Y, I) is trivially made of only one
covering. Suppose that s > 1, then we set Cs = {by | by′ 	⊂ by, for each y′ ∈ Y }
and, let i < s, Ci = {by | there exists by′ ∈ Ci+1 such that by′ ⊂ by and by′ ⊂
by′′ ⊂ by does not hold for each y′′ ∈ Y }. Therefore, C = (Ck, Ck+1, . . . , Cs) is
the refinement sequence assigned to (X,Y, I), where k = max{i ∈ {1, . . . , s −
1} | Ci 	= Ci+1}. For example, we consider the formal context

K = ({a1, a2, a3, a4, a5}, {feline, cat, tiger}, I),

where {a1, a2, a3, a4, a5} represents a set of 5 animals and I is defined by Table 11.
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Table 11. Formal context K

I feline cat tiger

a1 1 1 0

a2 1 1 0

a3 0 0 0

a4 1 0 1

a5 1 0 1

Then, the refinement sequence assigned to K is made of coverings C1 and
C2 such that C1 = {{a1, a2, a4, a5}} = {animals that are felines} and C2 =
{{a1, a2}, {a4, a5}} = {{animals that are cats}, {animals that are tigers}}.

3.2 Refinement Sequences as Posets

In this section, we show that each refinement sequence is represented as a par-
tially ordered set.

Definition 42. Let C = (C1, . . . , Cn) be a refinement sequence of U . We assign
the partially ordered set (PC ,≤C) to C, where:

– PC =
⋃n

i=1 Ci (the set of nodes is the set of all subsets of U belonging to the
coverings C1, . . . , Cn), and

– N ≤C M if and only if M ⊆ N , for N,M ∈ PC (the partial ordered relation
is the reverse inclusion between sets).

Example 15. Let (C1, C2, C3) be a refinement sequence of {a, b, c, d, e, f, g, h},
where

– C1 = {{a, b, c, d, e, f, g}},
– C2 = {{a, b, c, d}, {c, d, e, f}} and
– C3 = {{c, d}, {d, e, f}}.

The poset assigned to (C1, C2, C3) is shown in the following figure.

Proposition 3. If C is a refinement sequence of partial partitions of U , then
(PC ,≤C) is a forest.

Proof. Let N,M ∈ ↓ X, with X ∈ PC . Then, N,M ≤C X. By Definition 42,
X ⊆ N ∩M . Suppose that N ∈ Ci and M ∈ Cj , with i ≤ j. By Definition 41,
there exists Ñ ∈ Cj such that Ñ ⊆ N . Since Cj is a partial partition of U , we
have that Ñ = M or Ñ ∩M = ∅. On the other hand, both M and Ñ contain
X. Consequently, Ñ = M and so N ≤C M .
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{a, b, c, d} {c, d, e, f}

{d, e, f}

{a, b, c, d, e, f, g}

{c, d}

Fig. 4. Poset assigned to (C1, C2, C3)

Example 16. If C is the refinement sequence of Example 14, then (PC ,≤C) is the
following forest.

{u1, . . . , u11} {u12, . . . , u22}

{u2, . . . , u7} {u8, . . . , u11} {u12, . . . , u15} {u16, . . . , u21}

{u2, u3} {u4, u5} {u12, u13} {u16, u17} {u18, u19}{u6, u7} {u8, u9}City

Region

Country

Fig. 5. Forest of the users

Remark 11. The maximal and minimal elements of (PC ,≤C) are all blocks of Cn

and C1, respectively.

Remark 12. The main difference between C = (C1, . . . , Cn) and the partially
ordered set PC is that the coverings C1, . . . , Cn can also contain the same
blocks, while each block appears only once in PC . For example, consider the
refinement sequence C = (C1, C2) such that C1 = {{a, b}, {b, c, d, e}} and
C2 = {{a, b}, {c, d}}, then PC , that is represented by the following figure, has
only one block {a, b}.

{b, c, d, e}

{a, b} {c, d}

Fig. 6. Poset assigned to (C1, C2)
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Remark 13. Let C = (C1, . . . , Cn) be a refinement sequence of partial partitions
of U and let N ∈ Ci, the successors of N are the nodes of Ci+1 that are included
in N if and only if N /∈ Ci+1. More precisely, the successors of N are the blocks
of Cj included in N , such that j = min{k > i | N /∈ Ck}.

3.3 Some Properties of Refinement Sequences

Now, we introduce several properties that a refinement sequence could have;
so, we define what does it mean that a refinement sequence is complete, safe
and pairwise overlapping. Given a refinement sequence C, we denote by K(C)
the set made of the pairs of disjoint upsets of PC . We notice that K(C) coin-
cides with the set K(Up(PC)) given by 4 (see Sect. 2.3) starting from the lattice
(Up(PC),∩,∪, ∅, P ).

Definition 43. A refinement sequence C of a universe U is complete if and
only if ⋃

N∈A

N ∩
⋃

N∈B

N = ∅ (27)

for each pair (A,B) of K(C).

If the pair (A,B) belongs to K(C), and it satisfies the condition 27, then we say
that “(A,B) is a pair of totally disjoint upsets of PC” and “A and B are totally
disjoint from each other”.

Example 17. Let C = (C1, C2, C3) be a refinement sequence of the universe
{a, b, c, d, e, f}, where

– C1 = {{a, b, c, d, e, f}},
– C2 = {{a, b, c, d}, {d, e, f}} and
– C3 = {{a, b}}.

Also, we consider the sets A1 = {{a, b, c, d}, {a, b}} and A2 = {{d, e, f}}, which
are upsets of PC , and they are pairwise disjoint. We have that {d} is the intersec-
tion between {a, b, c, d} ∪ {a, b} (the blocks of A1) and {d, e, f} (the only block
of A2). Indeed, the refinement sequence C is not complete.

Example 18. The refinement sequence of {a, b, c, d, e, f, g} represented by the
following forest is complete.

{a, b, c} {d, e, f}

{a, b, c, d, e, f, g}

Fig. 7. Complete refinement sequence
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Proposition 4. Let C = (C1, . . . , Cn) be a refinement sequence of U . If C1, . . . ,
Cn are partial partitions of U , then C is complete.

Proof. Let A1 and A2 be upsets of PC such that A1 ∩ A2 = ∅. Suppose that
b1 ∈ A1 ∩Ci and b2 ∈ A2 ∩Cj with i ≤ j. By Definition 41, there exists b̃2 ∈ Ci

with b2 ⊆ b̃2. Since Ci is a partial partition, b1 ∩ b̃2 = ∅ or b1 = b̃2. The equality
b1 = b̃2 implies b2 ∈ A1∩A2 which can not occur (A2 is an upset). Consequently,
b1 ∩ b̃2 = ∅ and so b1 ∩ b2 = ∅.

On the other hand, there exist complete refinement sequences made of cov-
erings that are not partitions (see the following example).

Example 19. Let C = (C1, C2, C3) be the refinement sequence of the universe
{a, b, c, d, e, f, g} such that

– C1 = {{a, b, c, d, e}, {f, g}},
– C2 = {{a, b, c}, {a, b, d}, {f, g}} and
– C3 = {{a, b}, {f, g}}.

Then, C is complete.

Definition 44. A refinement sequence C is safe if for each N ∈ PC such that
N ⊆ N1 ∪ . . . ∪ Nr with N1, . . . , Nr ∈ PC, there exists j ∈ {1, . . . r} such that
N ⊆ Nj.

Therefore, given a safe refinement sequence C, each node N of PC is not
included in the union of some other nodes of PC that are all greater than N or
disjoint with N .

The followings are two examples of refinement sequence: the first one is safe
and the second one is not safe.

Example 20. Suppose that

C1 = {{a, b, c, d, e}, {a, f, g, h}} and C2 = {{a, b, c}, {c, d}, {f, g}},

then the refinement sequence C = (C1, C2) is safe.

Example 21. The refinement sequence (C̃1, C̃2) with

C̃1 = {{a, b, c, d, e}, {c, d, e, f, g, h}} and C̃2 = {{a, b, c}, {c, d}, {e, f, g}},

is not safe, since {a, b, c, d, e} ⊆ {a, b, c} ∪ {c, d} ∪ {e, f, g}.

The next remark provides a condition that all nodes of PC must satisfy so
that the complete refinement sequence C is also safe.

Remark 14. By Definition 44, if C is safe and N ∈ PC , then there exists x ∈ N
such that x /∈ M , for each M ∈ PC\ ↓ {N}.

The following proposition yields a condition on nodes of PC , so that a complete
refinement sequence C is also safe.
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Proposition 5. Let C be a complete refinement sequence of U . C is safe if and
only if each node of PC is not included in the union of its successors.

Proof. (⇒). This implication is trivial, and it holds true even without the
assumption that C is complete.

(⇐). Suppose that N ∈ PC and N ⊆ N1 ∪ . . . ∪ Nr, with N1, . . . , Nr ∈ PC
and Ni ∩N 	= ∅ for each i ∈ {1, . . . , r}. Since C is complete, Ni ⊆ N or N ⊆ Ni,
for each i ∈ {1, . . . , n}. By hypothesis, there exists Ñ ∈ {N1, . . . , Nr} such that
Ni 	⊆ N . Then, N ⊆ Ni.

By Proposition 4, we can say that a refinement sequence of partial partitions is
safe if and only if each node of the respective forest is not equal the union of its
successors.

Definition 45. A refinement sequence C = C1, . . . , Cn is pairwise overlapping
if there are not disjoint blocks in Ci, for each i ∈ {1, . . . , n}.

Example 22. The refinement sequence of Examples 15 is pairwise overlapping,
since the element d belongs to each block of C1, C2 and C3.

A pairwise overlapping refinement sequence differs more from the sequences of
partial partitions than the other refinement sequences. Furthermore, refinement
sequences of partial partitions are pairwise overlapping if and only if the forests
assigned with them are chains.

We also notice that refinement sequences that are associated to forests are
not complete, when are pairwise overlapping. As a consequence, a complete
refinement sequence cannot also be pairwise overlapping.

3.4 Sequences of Refinements of Orthopairs

The main aim of this section is to define sequences of refinements of orthopairs.

Definition 46. Let C = (C1, . . . , Cn) be a refinement sequence of U and X ⊆ U .
The sequence of refinements of orthopairs of X determined by C is the sequence

OC(X) = ((L1(X), E1(X)), . . . , (Ln(X), En(X))),

where (Li(X), Ei(X)) is the orthopair of X determined by Ci.

For short, OC(X) is also called sequence of orthopairs of X determined by C.

Example 23. Let U = {a, b, c, d, e, f, g, h, i, j} and X = {a, b, c, d, e}. If C is
the refinement sequence of U made of C1 = {{a, b, c, d, e, f, g, h, i, j}}, C2 =
{{a, b, c, d, e}, {e, f, g, h, i}}, C3 = {{a, b, c}, {c, d}, {e, f, g}, {g, h}}, then

OC(X) = ((∅, ∅), ({{a, b, c, d, e}}, ∅), ({{a, b, c}, {c, d}}, {{g, h}})) .
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Example 24. Suppose that we are interested to describe the set X =
{u1, u8, u9, u10, u11, u12, u13, u14, u15, u16, u17} with respect to the refinement
sequence C of Example 14. We know that X contains all users that have
the attributes Campania (hence Naples), Brittany (hence Rennes) and Stras-
bourg; while users that come from Lombardy (hence Varese, Milan and
Pavia) and Mets do not belong to X. This means that the sequence of
orthopairs of X is (OC1(X),OC2(X), OC3(X)) where OC1(X) = (∅, ∅),
OC2(X) = ({u8, . . . , u15}, {u2, . . . , u7}) and OC3(X) = ({u8, u9, u12, u13, u16,
u17}, {u2, . . . , u7, u18, u19})).

We indicate the set of all sequences of orthopairs generated by C with SO(C);
namely, we set

SO(C) = {OC(X) | X ⊆ U}.
Given a refinement sequence C = (C1, . . . , Cn) of U , by Definition 46, the

orthopair (Li(X), Ei(X)) of OC(X) is generated by the covering Ci that is finer
than Ci−1. Clearly, this does not imply that (Li(X), Ei(X)) approximates bet-
ter than (Li−i(X), Ei−1(X)) the set X (we say that the orthopair O(X) =
(L(X), E(X)) approximates better than the orthopair Õ(X) = (L̃(X), Ẽ(X))
the set X if and only if L̃(X) ⊆ L(X) and Ẽ(X) ⊆ E(X)), since X ∩ Ui may be
strictly included in X ∩ Ui−1 (the sets U1, . . . , Un are defined in Remark 10).

Example 25. We consider the sequence of Example 24. We observe that OC3(X)
is not a better approximation of X than OC2(X), despite C3 is finer than C2,
since u10, u11, u14, u15 appear in OC2(X), but they do not appear in OC3(X).
Trivially, this is the consequence of the fact that the sequence of partial coverings
loses objects during the refinement process.

More precisely, the following proposition holds.

Proposition 6. Let C = (C1, . . . , Cn) be a refinement sequence of U and X ⊆
U . Suppose that a ∈ Li−1(X) (or a ∈ Ei−1(X)), with i ∈ {2, . . . , n}. Then,
a ∈ Li(X) if and only if a ∈ Ui; (or a ∈ Ei(X) if and only if a ∈ Ui).

Moreover, it is clear that two different subsets of the given universe can have the
same sequences of orthopairs.

Example 26. Let C = (C1, C2) be the refinement sequence of Example 18. Sup-
pose that X = {a, b, c, d} and Y = {a, b, c, e}, then

OC(X) = OC(Y ) = ((∅, ∅), ({a, b, c}, ∅)).

At this is point, in order to show that each sequence of orthopairs is represented
by a pair of disjoint upsets of the poset assigned to the given refinement sequence,
we give the following definition.
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Definition 47. Let C = (C1, . . . , C2) be a refinement sequence of U and X ⊆ U .
We set

(X1
C ,X2

C) = ({N ∈ PC | N ⊆ X}, {N ∈ PC | N ∩X = ∅}).

Moreover, we set KO(C) = {(X1
C ,X2

C) | X ⊆ U}.

From now, we write (X1,X2) instead of (X1
C ,X2

C), when C is clear from the
context.

The following theorem shows that there is a one-to-one correspondence
between the elements of SO(C) and KO(C).

Theorem 17. Given a refinement sequence C = (C1, . . . , Cn) of a universe U ,
the map

α : OC(X) ∈ SO(C) �→ (X1,X2) ∈ KO(C)
is a bijection.

Proof. First of all, we prove that α is well defined and injective, namely OC(X) =
OC(Y ) if and only if (X1,X2) = (Y 1, Y 2).

(⇒). We observe that N ∈ X1 if and only if N ∈ Ci and N ⊆ X for some
i ∈ {1, . . . , n}, namely N ∈ Ci and N ⊆ Li(X). Consequently N ∈ Y 1, since
Li(X) = Li(Y ). Dually, N ∈ X2 if and only if N ∈ Y 2, since Ei(X) = Ei(Y ) for
each i ∈ {1, . . . , n}.

(⇐). Let i ∈ {1, . . . , n}. x ∈ Li(X) if and only if there is N ∈ PC such that
x ∈ N and N ⊆ X. By hypothesis, N ⊆ Y . Then, x ∈ Li(Y ). Dually, we can
prove that Ei(X) = Ei(Y ) for each i ∈ {1, . . . , n}, since X2 = Y 2.

Surjectivity follows by the definition of KO(C). Hence, α is a bijection.

Remark 15. Definition 42 and Theorem 17 allow us to view a sequence of
orthopairs as a labelled poset. Indeed, we can graphically represent sequences of
orthopairs. More precisely, given a refinement sequence C, the sequence OC(X)
corresponds to the poset PC that has labels associated with its nodes through
the function lX : PC �→ {•, ◦, ?} such that

lX(N) =

⎧
⎪⎨

⎪⎩

• if N ∈ X1;
◦ if N ∈ X2;
? if N ∈ PC \ {X1 ∪X2}.

(28)

For example, consider the refinement sequence of Example 18. Assume that
X = {d, e, f, g}, Y = {a, b, c, d, e, f} and Z = {a}, then the sequences OC(X) =
((∅, ∅), ({d, e, f}, {a, b, c})), OC(Y ) = ((∅, ∅), ({a, b, c, d, e, f}, ∅)) and OC(Z) =
((∅, ∅), (∅, {d, e, f})) have the following labelled posets, respectively.

Trivially, by Eq. 28, if lX(N) = • and N ≤C M , then lX(M) = •. Similarly,
if lX(N) = ◦ and N ≤C M , then lX(M) = ◦. On the other hand, lX(M) can be
anyone between •, ◦ and ?, when lX(N) =? and N ≤C M .
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• •

?

◦ •

?

? ◦

?

Fig. 8. Labelled posets

Sequences of Orthopairs and Decision Trees. Sequences of orthopairs correspond
to decision trees. These are graphical models widely used in machine learning for
describing sequential decision problems. A decision tree generates a classification
procedure that recursively partitions a universe into smaller subdivisions on the
basis of a set of tests defined at each branch (or node) in the tree [48]. The tree
is made of a root node (the universe), a set of internal nodes (splits), and a set of
terminal nodes (leaves). A test is applied for the universe and for each internal
node in order to split the set of objects into successively smaller groups. The
terminal nodes are labelled with values corresponding to the final decisions. An
example of decision tree can be viewed in Fig. 9, where the labels A, B, C and D
represent the final outcomes of the decision-making process.

T T

T T

T T

T

A

CB

D

Fig. 9. Decision tree

Let C be a refinement sequence of partial partitions of U , and let X ⊆ U . The
sequence of orthopairs OC(X) determines three pairwise disjoint subsets of U :
∪{N ∈ PC | lX(N) = •}, ∪{N ∈ PC | lX(N) = ◦} and ∪{N ∈ PC | lX(N) =?}.
This also corresponds to result produced by the decision tree (TC(X),≤C) such
that
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– TC(X) = (PC ∪ {U}) \H, where

H = {N ∈ PC | if M ∈ PC and M ≤C N then lX(M) ∈ {•, ◦}}, and

– let N be a leaf of TC(X), then the label of N is lX(N).

Trivially, TC(X) can have three outcomes at most, which are •, ◦ and ?. Hence,
if OC(X) is the sequence of orthopairs having labelled poset as in Fig. 10. Then,
the tree decision TC(X) is shown in Fig. 11.

? ?

? ◦ • •

◦ ◦ •

Fig. 10. Labelled poset of OC(X)

T T

T

? ◦ • •

Fig. 11. Decision tree TC(X)

Clearly, a decision tree with three outcomes determines a refinement sequence
(by considering all nodes of the tree) and a sequence of orthopairs (by consider-
ings all nodes and all labels of the tree).

From now, given a refinement sequence C, we write K(C) to denote K(Up(PC)),
that is

K(Up(PC)) = {(A,B) ∈ Up(PC)× Up(PC) | A ∩B = ∅},
where Up(PC) is the set of all upsets of PC (see Sect. 2.3).

The next proposition shows that each element of KO(C) also belongs to K(C).

Proposition 7. Let C be a refinement sequence of U and X ⊆ U . Then,
(X1,X2) is a pair of disjoint upsets of PC.

Proof. By Definition 47, X1 ∩ X2 = ∅. If N ∈ X1 and N ≤C M , then M ⊆
N ⊆ X (by Definition 47) hence M ⊆ X and M ∈ X1. Similarly, if N ∈ X2 and
N ≤C M then M ⊆ N and N ∩X = ∅, hence M ∩X = ∅ and M ∈ X2.

By Proposition 7, KO(C) ⊆ K(C). However, the opposite does not always hold.

Example 27. Consider the refinement sequence C, where PC is represented in
Fig. 12.

We have that ({{a, b, c}}, {{c, d}}) ∈ KO(C), but ({{a, b, c}}, {{c, d}}) /∈
K(C).
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{a, b, c} {c, d}

{a, b, c, e} {a, b, c, d, f}

Fig. 12. Poset of C

The next theorem (Theorem 18) provides the condition that a pair of disjoint
upsets of PC must have in order to belong to KO(C), when C is safe. To prove
Theorem 18, we need the following proposition.

Proposition 8. Let C be a safe refinement sequence of U and let A be an upset
of PC. Suppose that N ∈ PC and

N ⊆
⋃

M∈A

M.

Then, N ∈ A.

Proof. Since C is safe (see Definition 44), there exists M ∈ A such that N ⊆ A.
However, A is an upset of PC , then N ∈ A.

From now on, we only consider coverings that do not contain singletons, which
are blocks with only one element. We stress that the imposition of this constraint
concerns the very relations between coverings and orthopairs as approximation
of sets, as shown in the following example.

Example 28. Let U = {a, b, c, d, e} and consider the covering of U given by
C = {{a, b}, {c}, {d, e}}. Then, (X1,X2) = ({a, b}, {d, e}) is an orthopair made
of blocks of C, but (X1,X2) does not approximate any subset X of U , since
either c ∈ X, and then c ∈ X1 or c ∈ X, and then c ∈ X2. More generally, each
orthopair such that {c} is not contained in one of the components of the pair
does not approximate any subset of U .

In order to state the next theorem, we recall that two upsets A and B of a
given poset are totally disjoint if and only if all blocks of A are disjoint from all
blocks of B.

Theorem 18. Let C be a safe refinement sequence of U and let (A,B) ∈ K(C).
Then, (A,B) ∈ KO(C) if and only if A and B are totally pairwise disjoint.

Proof. (⇒). By Definition 47, if (A,B) ∈ KO(C), then there exists X ⊆ U such
that N ⊆ X for each N ∈ A and N ∩M = ∅ for each M ∈ B. Trivially, each
node of A is disjoint with each node of B, since there is not x ∈ U such that
x ∈ X and x /∈ X.
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(⇐). Suppose that each node of A is disjoint with each node of B. We set

D = {N ∈ PC \ (A ∪ B) | N ∩ M = ∅ for each M ∈ A and if M >C N then M ∈ B}.

Since C is safe, for each N ∈ D, we can pick an element xN ∈ N such that
xN /∈M , for each M ∈ PC \ {↓ N} (see Remark 14). Then, we set

X =
⋃

N∈A

N ∪ {xN |N ∈ D}.

We prove that (A,B) = (X1,X2). It is trivial that A ⊆ X1 and B ⊆ X2. Now,
we suppose that N ∈ X1, and we intend to prove that N ∈ A. Let x ∈ N . Then,
x = xM with M ∈ D or x belongs to some node of A. If x = xM with M ∈ D,
then N ∈ ↓ M (see Remark 14), and so M ⊆ N . Now, two cases can happen. If
M is not a maximal element of PC , then M contains some elements of the nodes
of B. However, by the hypothesis that A and B are totally pairwise disjoint, this
is an absurd. In the other case, namely, if M is a maximal element of PC , then
it contains at least another element that is not equal to xM (we assumed that
the blocks of refinement sequences are not singletons). By definition of D, such
element is not in A and it is different from other elements xN . It is clear that
it is an absurd, since N is included in X, by hypothesis. We can conclude N is
included in the union of blocks of A. Therefore, by Proposition 8, since C is safe,
we have that N ∈ A. Now, we suppose that N ∈ X2, and we intend to prove
that N ∈ B. if N ∈ X2, then N ∩M = ∅, for each M ∈ A ∪D. Consequently,
N /∈ (↓ A) ∪ (↓ D). Moreover, we can notice that B = PC \ {(↓ A) ∪ (↓ D)}.
Then, we can state that N ∈ B.

Theorem 18 permits us to prove the following result, which is relevant to
regard sequences of orthopairs as Kleene algebras.

Theorem 19. Let C be a complete and safe refinement sequence of U . Then,
KO(C) = K(C).

Proof. We have that KO(C) ⊆ K(C), by Proposition 7. Moreover, Let (A,B) ∈
K(C), then A and B are totally pairwise disjoint, since C is complete. By hypoth-
esis that C is safe and by Theorem 18, (A,B) ∈ KO(C).

As a consequence of the previous theorem, we can define several operations on
sequences of orthopairs, using the operations already defined on sets of pairs of
disjoint upsets of posets (see Sect. 2.3). However, we will explore this topic in
the next chapter.

4 Sequences of Orthopairs as Kleene Algebras

Mathematics is the art of giving the same name to dif-
ferent things.

Henrie Poincaré



Sequences of Refinements of Rough Sets 67

In this chapter, we equip sets of sequences of orthopairs with some oper-
ations in order to obtain finite many-valued algebraic structures (those are
defined in Sect. 2.3). Furthermore, we prove theorems providing to represent
such structures as sequences of orthopairs. We show that, when sequences of
orthopairs are generated by one covering, our operations coincide with opera-
tions between orthopairs listed in Sect. 2.2. Also, we discover how to generate
operations between sequences of orthopairs starting from those concerning indi-
vidual orthopairs. Finally, we use a sequence of orthopairs to represent an exam-
iner’s opinion on a number of candidates applying for a job. Moreover, we show
that opinions of two or more examiners can be combined using our operations
in order to get a final decision on each candidate.

4.1 From a Safe Refinement Sequence to a Kleene Algebra

In the previous chapter, given a refinement sequence C, we proved that each
element of KO(C) is a pair of disjoint upsets of PC (see Proposition 7), and that
KO(C) coincides with K(C) if and only if C is safe and complete (see Example 27
and Theorem 19). As a consequence, we can equip KO(C) with the operations �,
� and ¬ defined by Definition 9, 10 and 7 (see Sect. 2.3), respectively, and so we
can consider the following structure

KO(C) = (KO(C),�,�,¬, (PC , ∅), (∅, PC)).

Unfortunately, KO(C) is not always a lattice, since KO(C) could not be closed
under � and �, when KO(C) ⊂ K(C).

Example 29. Let U = {a, b, c, d} and C = (C1, C2), where

– C1 = {{a, b, c, d}} and
– C2 = {{a, b}, {c, d}}).

Then, it occurs that

– (∅, {{a, b}}) � (∅, {{c, d}}) = (∅, {{a, b}, {c, d}}) and
– ({{a, b}}, ∅) � ({{c, d}}, ∅) = ({{a, b}, {c, d}}, ∅).

However, (∅, {{a, b}, {c, d}}), ({{a, b}, {c, d}}, ∅) /∈ KO(C).

On the other hand, the following theorem states that requiring that refine-
ment sequences be safe is sufficient to obtain finite centered Kleene algebras.

Theorem 20. Let C be a safe refinement sequence of U . Then,

1. KO(C) ⊇ K+(C) and
2. KO(C) is a centered Kleene subalgebra of K(C) (see Definition 26), where

K(C) = (K(C),�,�,¬, (∅, PC), (PC , ∅)),

and the center is (∅, ∅).
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Proof. 1. Let (A,B) ∈ K+(C), then B = ∅. Consequently, A and B are totally
disjoint, namely satisfy Condition 27. Certainly, (A,B) ∈ KO(C), by Theo-
rem 18.

2. Since K+(C) ⊆ KO(C), we have that (∅, ∅) ∈ KO(C). Moreover, KO(C) is
closed under all operations of K(C), since both (X1∩Y 1,X2∪Y 2) and (X1∪
Y 1,X2 ∩ Y 2) are pairs of totally disjoint upsets of PC . Then, by Theorem 18,
both belong to KO(C).

Remark 16. Clearly, when C is a safe refinement sequence of U , then K−(C) is
also included in KO(C).

When a safe refinement sequence C is also complete or pairwise overlapping,
KO(C) satisfies properties that are additional to those of Theorem20. More pre-
cisely, the following theorem holds.

Theorem 21. Let C be a safe refinement sequence of U,

1. if C is complete, then KO(C) is a finite centered Kleene algebra with the inter-
polation property,

2. if C is pairwise overlapping, then KO(C) = K+(C) ∪ K−(C).

Proof. 1. By Theorem 19, KO(C) = K(C). Moreover, the structure K(C) is a
centered Kleene algebra with the interpolation property (see Theorem7).

2. By Definition 47, if (A,B) ∈ KO(C), then A and B are totally disjoint. How-
ever, since C is pairwise overlapping, Vice-versa, by Theorem 20, if (A,B) is
in K+(C) or K−(C), then belongs to KO(C), also.

In the next example, we take three different refinement sequences such that their
posets are isomorphic, and we show that the Hasse diagrams of their respective
Kleene algebras are not isomorphic.

Example 30. We consider the refinement sequences C = (C1, C2) and C′ =
(C ′

1, C
′
2) of {a, b, c, d, e, f}, where

– C1 = {{a, b, c, d, e}, {c, d, f}},
– C2 = {{a, b}, {c, d}},
– C ′

1 = {{a, b, d, e, f}, {c, d, e}} and
– C ′

2 = {{b, d}, {d, e}}.

As shown in Fig. 13 and Fig. 14, PC and PC′ have the same Hasse diagram. Then,
K(C) ∼= K(C′).

We set b1 = {a, b, c, d, e}, b2 = {c, d, f}, b3 = {a, b}, b4 = {c, d}, b′
1 =

{a, b, d, e, f}, b′
2 = {c, d, e}, b′

3 = {b, d} and b′
4 = {d, e}. Then, the Hasse diagrams

of KO(C) and KO(C′) are represented in Fig. 15 and Fig. 16, respectively.
Notice that KO(C) = K(C), since C is safe and complete. Instead, since

C′ is safe but not complete, KO(C′) ⊂ K(C′) and ({b′
3}, {b′

4}), ({b′
4}, {b′

3}),
({b′

3}, {b′
2, b

′
4}), ({b′

2, b
′
4}, {b′

3}) /∈ KO(C′). We stress that KO(C) 	∼= KO(C′),
despite PC ∼= PC′ .
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{a, b} {c, d}

{c, d, f}{a, b, c, d, e}

Fig. 13. Hasse diagram of PC

{b, d} {d, e}

{c, d, e}{a, b, d, e, f}

Fig. 14. Hasse diagram of P ′
C

({b1, b2, b3, b4}, ∅)

({b1, b3, b4}, ∅) ({b2, b3, b4}, ∅)

({b3, b4}, ∅)

({b2, b4}, {b3})

({b2, b4}, ∅)

({b3}, ∅) ({b4}, ∅)

(∅, ∅)

(∅, {b3})(∅, {b4})

(∅, {b3, b4})

(∅, {b2, b3, b4}) (∅, {b1, b3, b4})

(∅, {b1, b2, b3, b4})

(∅, {b2, b4})

({b3}, {b2, b4})

({b3}, {b4}) ({b4}, {b3})

Fig. 15. Hasse diagram of KO(C)

Now, we consider the refinement sequence C̃ = (C̃1, C̃2), where

– C̃1 = {{a, b, c, d, e}, {c, d, f}} and
– C̃2 = {{a, b, c}, {c, d}}.

Clearly, C̃ is a safe and pairwise overlapping refinement sequence. If we set
b̃1 = {a, b, c, d, e}, b̃2 = {c, d, f}, b̃3 = {a, b, c} and b̃4 = {c, d}, then the Hasse
diagrams of PC̃ and KO(C̃) are respectively represented in Fig. 17 and Fig. 18.

We can observe that KO(C̃) = K(C̃)+ ∪ K(C̃)−. Moreover, KO(C̃) 	∼= KO(C)
and KO(C̃) 	∼= KO(C′), despite PC̃ ∼= PC and PC̃ ∼= PC′ .
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({b′
1, b

′
2, b

′
3, b

′
4}, ∅)

({b′
1, b

′
3, b

′
4}, ∅) ({b′

2, b
′
3, b

′
4}, ∅)

({b′
3, b

′
4}, ∅) ({b′

2, b
′
4}, ∅)

({b′
3}, ∅) ({b′

4}, ∅)

(∅, ∅)

(∅, {b′
3})(∅, {b′

4})

(∅, {b′
3, b

′
4})

(∅, {b′
2, b

′
3, b

′
4}) (∅, {b′

1, b
′
3, b

′
4})

(∅, {b′
1, b

′
2, b

′
3, b

′
4})

(∅, {b′
2, b

′
4})

Fig. 16. Hasse diagram of KO(C′)

Remark 17. Let C be a refinement sequence, then |KO(C)|, that is the cardinality
of KO(C), depends from the number of blocks that pairwise overlap in every
covering of C. Consequently, if C is complete and safe, then |KO(C)| is maximum,
and it is equal to |K(C)|. Furthermore, if C is pairwise overlapping and not safe,
then |KO(C)| ≥ |K(C)+ ∪ K(C)−|.

We can extend the results shown in Theorem 21, by considering the operation→1

and the pairs of operations (�2,→2), (�3,→3) and (�4,→4), defined in Sect. 2.3
(more exactly, see the Eqs. 13, 18, 19, 20, 21, 25 and 26), on the set KO(C). Then,
let i ∈ {1, . . . , 4}, we can use the notation K

i
O(C) to denote the structure KO(C)

with the additional operations �i and →i.

Corollary 1. If C is a safe and complete refinement sequence, then

– K
1
O(C) is a finite Nelson algebra,

– K
2
O(C) is a finite Nelson lattice and

– K
4
O(C) is a finite KLI∗ algebra.
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{a, b, c} {c, d}

{c, d, f}{a, b, c, d, e}

Fig. 17. Hasse diagram of PC̃

({b̃1, b̃2, b̃3, b̃4}, ∅)

({b̃1, b̃3, b̃4}, ∅) ({b̃2, b̃3, b̃4}, ∅)

({b̃3, b̃4}, ∅)

({b̃3}, ∅) ({b̃4}, ∅)

(∅, ∅)

(∅, {b̃3})(∅, {b̃4})

(∅, {b̃3, b̃4})

(∅, {b̃2, b̃3, b̃4}) (∅, {b̃1, b̃3, b̃4})

(∅, {b̃1, b̃2, b̃3, b̃4})

Fig. 18. Hasse diagram of KO(C̃)

Regarding K
3
O(C), we need to add the extra condition that C must be composed

by partial partitions.

Corollary 2. If C is a safe refinement sequence of partial partitions, then K
3
O(C)

is a finite IUML-algebra.

If some coverings of C are not partitions, then the operations �i and →i

cannot be defined on KO(C). Clearly, this is a consequence that such operations
are defined between pairs of disjoint upsets of a forest (see Eqs. 20 and 21), and
they can not be extended between pairs of disjoint upsets of a poset.

Example 31. Let C be the refinement sequence defined in Example 30. C is safe
and complete, but

({b3}, {b2, b4}) �3 ({b1, b3, b4}, ∅) = ({b1, b3, b4}, {b2})

and
({b3}, {b2, b4}) →3 (∅, {b1, b3, b4}) = ({b2}, {b1, b3, b4})

that do not belong to K(C).
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4.2 From a Complete Refinement Sequence to a Kleene Algebra

In this section, given a complete refinement sequence C, we want to determine
new operations on KO(C), to obtain the same structure encountered in the pre-
vious section. In order to do this, starting from a complete refinement sequence
C, we build a new refinement sequence C′ such that KO(C) = KO(C′) = K(C′).

Definition 48. Let C = (C1, . . . , Cn) be a refinement sequence of U . Then, we
build the sequence C′ = (C ′

1, . . . , C
′
n) in the following way.

– C ′
n = Cn,

– for every i ∈ {1, . . . , n − 1} and N ∈ Ci, if there are not N1, . . . , Nl ∈ C ′
i+1

such that N = N1 ∪ . . . ∪Nl then N ∈ C ′
i, otherwise N /∈ C ′

i but Nj ∈ C ′
i for

each j = 1, . . . , l.

Example 32. Let C be the refinement sequence of Example 14. Then, C′ =
(C ′

1, C
′
2, C

′
3), where

C ′
1 = {{u1, . . . , u11}, {u12, . . . , u22}};

C ′
2 = {{u2, u3}, {u4, u5}, {u6, u7}, {u8, . . . , u11}, {u12, . . . , u15}, {u16, . . . ,

u21}};
C ′

3 = {{u2, u3}, {u4, u5}, {u6, u7}, {u7, u8}, {u12, u13}, {u16, u17}, {u18, u19}.

Observe that C′ is still a refinement sequence of U, so we can associate it
with a poset PC′ .

Example 33. Let C be the refinement sequence of Example 14. The poset PC′

assigned to the new refinement sequence C′ represented in Fig. 19.

{u1, . . . , u11} {u12, . . . , u22}

{u8, . . . , u11} {u12, . . . , u15} {u16, . . . , u21}{u2, u3} {u4, u5}

{u12, u13} {u16, u17} {u18, u19}

{u6, u7}

{u8, u9}

Fig. 19. Forest of the users

We notice that the node {u2, . . . , u7} of PC (see Example 16) does not belong
to PC′ , and it is equal to the union of its successors {u2, u3}, {u4, u5} and {u6, u7}.

Remark 18. In general, PC′ is obtained by removing from PC all the nodes equal
to the union of their successors (cfr. the operation of elimination in [24]). That
is, we delete reducible elements, according to the terminology given in [108], in
the covering generated by all sets in the forest PC .
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By the previous remark follows this proposition.

Proposition 9. Let C be a refinement sequence of U and let N ∈ PC. Then,
N ∈ PC′ if and only if N 	= N1 ∪ . . . ∪Nr, where N1, . . . , Nr are the successors
of N in PC.

Clearly, KO(C′) ⊆ KO(C). Moreover, it is clear that the following proposition
holds.

Proposition 10. Let C be a complete refinement sequence. Then, C′ is also
complete.

The following proposition shows that there exists an order isomorphism
between KO(C) and KO(C′), when C is complete.

Theorem 22. Let C = (C1, . . . , Cn) be a complete refinement sequence of U . If
C′ is the refinement sequence of U built in Definition 48, then the function

β : KO(C) �→ KO(C′),

where β((X1
C ,X2

C)) = (X1
C′ ,X2

C′) for each X ⊆ U , is an order isomorphism.

Proof. – The function β is injective. Let X,Y ⊆ U , we suppose that

β((X1
C ,X2

C)) = β((Y 1
C , Y 2

C )).

Then,
(X1

C′ ,X2
C′) = (Y 1

C′ , Y 2
C′). (29)

Firstly, we intend to prove that X1
C = Y 1

C . By Definition 48, each node N
of PC is equal to N1 ∪ . . . ∪ Nr, where N1 ∪ . . . ∪ Nr ∈ PC′ . Let N ∈ X1

C ,
then N = N1 ∪ Nr ⊆ X and so Ni ⊆ X for each i ∈ {1, . . . , r}. Therefore,
N1, . . . , Nr ∈ X1

C′ = Y 1
C′ . Consequently, N is included in Y and so belongs to

Y 1
C . The proof that X2

C = Y 2
C is analogous.

– The function β is surjective. Let X ⊆ U and (X1
C′ ,X2

C′) ∈ KO(C′). We consider
the set

H = {N ∈ PC : N = N1 ∪ . . .∪Nr, where Ni ∈ X1
C′ for each i ∈ {1, . . . , r}}

and

K = {N ∈ PC : N = N1∪ . . .∪Nr, where Ni ∈ X2
C′ for each i ∈ {1, . . . , r}}.

Since C is complete, we have that (X1
C′ ∪ H,X2

C′ ∪ K) belongs to KO(C).
Moreover, it is clear that β((X1

C′ ∪H,X2
C′ ∪K)) = (X1

C′ ,X2
C′).

– It is trivial that (X1
C ,X2

C) ≤ (Y 1
C , Y 2

C ) if and only if (X1
C′ ,X2

C′) ≤ (Y 1
C′ , Y 2

C′)
(we remember that, let (X1,X2) and (Y 1, Y 2) be two pairs of disjoint upsets,
then (X1,X2) ≤ (Y 1, Y 2) if and only if X1 ⊆ Y 1 and Y 2 ⊆ Y 1).

By Proposition 5 and Proposition 9, the next result follows.
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Proposition 11. Let C be a complete refinement sequence, then C′ is safe.

Consequently, by Theorem19, KO(C′) coincides with K(C′). Therefore, we can
consider KO(C′) equipped with the operations defined in the previous section. By
using this result and Theorem22, we can introduce the following new operations
on KO(C).

Definition 49. Let C be a complete refinement sequence of U and let β be the
function defined in Theorem22. Then, we set

– (X1
C ,X2

C) ∩KO
(Y 1

C , Y 2
C ) := β−1((X1

C′ ,X2
C′) � (Y 1

C′ , Y 2
C′)),

– (X1
C ,X2

C) ∪KO
(Y 1

C , Y 2
C ) := β−1((X1

C′ ,X2
C′) � (Y 1

C′ , Y 2
C′)),

– ¬KO
(X1

C ,X2
C) := β−1(¬(X1

C′ ,X2
C′)),

– (X1
C ,X2

C) �i
KO

(Y 1
C , Y 2

C ) := β−1((X1
C′ ,X2

C′) �i (Y 1
C′ , Y 2

C′)), for each i ∈ {2, 3, 4},
– (X1

C ,X2
C) →i

KO
(Y 1

C , Y 2
C ) := β−1((X1

C′ ,X2
C′) →i (Y 1

C′ , Y 2
C′)), for each i ∈

{1, 2, 3, 4}.

As a consequence of the previous definition and the results of Sect. 4.1, we obtain
the following theorem.

Theorem 23. Let C be a complete refinement sequence of U , then

K
′
O(C) = (KO(C),∩KO

,�KO
,¬KO

, (∅, PC′), (PC′ , ∅))

is a centered Kleene algebra with the interpolation property and if C is pairwise
overlapping, then KO(C) ∼= K(C′)+ ∪ K(C′)−. Moreover,

– (K′
O(C),→1

KO
) is a finite Nelson algebra;

– (K′
O(C), �2KO

,→2
KO

) is a finite Nelson lattice;
– (K′

O(C), �4KO
,→4

KO
) is a finite KLI∗-algebra.

If C is a refinement sequence of partial partitions, then

– (K′
O(C), �3KO

,→3
KO

) is a finite IUML-algebra.

Remark 19. Trivially, if C is also safe, then C = C′ and so KO(C) = K
′
O(C).

Example 34. Let C be the refinement sequence defined in Example 29. Trivially,
C′ = {{a, b}, {c, d}}. The Hasse diagram of K(C), KO(C) and KO(C′) (which is
the same as that of K(C′)) are respectively represented in Fig. 20, Fig. 21 and
Fig. 22.

Now, we consider ({{a, b}}, ∅) and ({{c, d}}, ∅) in KO(C). Then ({{a, b}}, ∅)�
({{c, d}}, ∅) is equal ({{a, b}, {c, d}}, ∅), which does not belong to KO(C). How-
ever, ({{a, b}}, ∅) ∪KO

({{c, d}}, ∅) = β−1(({{a, b}, {c, d}}, ∅)) = ({{a, b, c, d},
{a, b}, {c, d}}, ∅) ∈ KO(C).
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({{a, b, c, d}, {a, b}, {c, d}}, ∅)

({{a, b}, {c, d}}, ∅)

({{a, b}}, ∅) ({{c, d}}, ∅)

(∅, ∅)({{a, b}}, {{c, d}}) ({{c, d}}, {{a, b}})

(∅, {{c, d}}) (∅, {{a, b}})

(∅, {{a, b}, {c, d}})

(∅, {{a, b, c, d}, {a, b}, {c, d}})

Fig. 20. Hasse diagram of K(C)

({{a, b, c, d}, {a, b}, {c, d}}, ∅)

({{a, b}}, ∅) ({{c, d}}, ∅)

(∅, ∅)({{a, b}}, {{c, d}}) ({{c, d}}, {{a, b}})

(∅, {{c, d}}) (∅, {{a, b}})

(∅, {{a, b, c, d}, {a, b}, {c, d}})

Fig. 21. Hasse diagram of KO(C)

4.3 From a Kleene Algebra to a Refinement Sequence

In this section, we associate a finite Kleene algebra with a refinement sequence
and the respective sequences of orthopairs.

Let (P,≤) be a finite partially ordered set, and let n be the maximum number
of elements of a chain in P . For each i ∈ {1, . . . , n} we define the i-th level of P
as
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({{a, b}, {c, d}}, ∅)

({{a, b}}, ∅) ({{c, d}}, ∅)

(∅, ∅)({{a, b}}, {{c, d}}) ({{c, d}}, {{a, b}})

(∅, {{c, d}}) (∅, {{a, b}})

(∅, {{a, b}, {c, d}})

Fig. 22. Hasse diagram of KO(C′)

P i = {N ∈ P | i = max{|h| | h is a chain of ↓ N} }. (30)

We denote by M(P ) the set of maximal elements of P and we set UP =
{x1, . . . , xm}, where m = |P | + |M(P )|. We call maximal sequence of P the
sequence C = (C1, . . . , Cn) built as follows. Suppose M(P ) consists of nodes
N1, . . . , Nu, where u = |M(P )| ≤ �m/2� since u < 2u ≤ |M(P )|+ |P | = m. We
set

bNi
= {x2i−1, x2i} (31)

for every i = 1, . . . , u and

Cn = {bNi
| Ni ∈M(P )}. (32)

Since |P\M(P )| = m−2u, we denote by Nu+1, . . . , Nm−u the nodes of P\M(P )
and we set αP (Ni) = xi+u for any i ∈ {u + 1, . . . ,m− u}.

For each N /∈M(P ), let

bN =
⋃

M>N

bM ∪ {αP (N)} (33)

and, for each j ∈ {1, . . . , n− 1},

Cj = {bN | N ∈ P j} ∪ {bM | M ∈M(P ) and ↓ M ∩ P j = ∅}. (34)

It is trivial to see that for each N,M ∈ P

bN ∩ bM = ∪{ bL | L ∈ ↑ N ∩ ↑M }. (35)

Example 35. Let P be the partially ordered set with the following Hasse dia-
gram.
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N3 N4

N2N1

Fig. 23. Hasse diagram of P

UP = {x1, . . . , x6}, since 6 = 4 + 2, where |P | = 4 and |M(P )| = 2. We have
αP (N3) = x5 and αP (N4) = x6. Then, we have bN1 = {x1, x2}, bN2 = {x3, x4},
bN3 = {x1, x2}∪ {x3, x4}∪ {αP (N3)} = {x1, x2, x3, x4, x5} and bN4 = {x3, x4}∪
{αP (N4)} = {x3, x4, x6}. Moreover, n = 2, then the maximal sequence is made
of two partial coverings of {x1, . . . , x6} that are C1 = {{x1, x2, x3, x4, x5}, {x3,
x4, x6}} and C2 = {{x1, x2}, {x3, x4}}.

Proposition 12. Let P be a finite partially ordered set. Then, the maximal
sequence C of P is a complete and safe refinement sequence of UP and SO(C) ∼=
K(Up(P )).

Proof. Firstly, we prove that C is a refinement sequence of UP . Then, suppose
that b ∈ Ci with i > 1, we have b = bN where N ∈ P . Since bN ∈ Ci, two
cases are possible: if N ∈ P i, then there exists at least a node M of P i−1 such
that M < N (see Eq. 30), hence bM ∈ Ci−1 (see Eq. 34) and bN ⊂ bM (see
Eq. 33); if N /∈ P i, then N ∈ M(P ) and ↓ N ∩ P i = ∅. In this latter case, we
have two subcases to consider: ↓ N ∩ P i−1 = ∅ which implies bN ∈ Ci−1 and
↓ N ∩ P i−1 	= ∅ which implies that there exists M ∈ P i−1 with M ≤ N , hence
bN ⊆ bM where bM ∈ Ci−1.
C is complete, since if bN ∩bM 	= ∅ with bN , bM ∈ PC , then bN ∩bM ⊇ bL with

L ∈ ↑ N ∩ ↑M (see Eq. 35), hence bN and bM can not belong to two upsets that
are disjoint. To prove that C is safe, we consider the blocks bN , bN1 , . . . , bNk

of
coverings of C with bN ⊆ bN1 ∪ . . . ∪ bNk

. Then, we pick a subset {bN ′
1
, . . . , bN ′

h
}

of {bN1 , . . . , bNk
} such that bN ⊆ bN ′

1
∪ . . . ∪ bN ′

h
and bN ∩ bN ′

i
	= ∅ for each

i ∈ {1, . . . , h}. Trivially, bN ∩ b 	= ∅ if and only if bN ⊆ b, when N ∈ M(P ).
Otherwise, if N /∈ M(P ), by Eq. 33 we have that αP (N) ∈ bN , hence αP (N)
belongs to b′

Ni
for some i ∈ {1, . . . , h}, then bN ⊆ bN ′

i
since N ′

i ≤ N (see Eq. 33).
By Proposition 7, KO(C) ⊆ K(C). Vice-versa, let (A,B) ∈ K(C), then A∗ ∩

B∗ = ∅, since otherwise, by Eq. 35, there exist N,M,L ∈ P such that bL ⊆
bN ∩ bM , then bL ∈ A ∩ B that is an absurd. By Theorem19, (A,B) ∈ KO(C).
Therefore, K(C) ⊆ KO(C).

Furthermore, observe that if C = (C1, . . . , Cn) is the maximal sequence of the
poset P , then Cn is a partial partition of the respective universe UP .

We remark that the maximal sequence C = (C1, . . . , Cn) of a given partially
ordered set P is not the only complete and safe refinement sequence having the
assigned poset isomorphic to P . We can generate such sequences in addressing
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numerous ways. For example, we can build a sequence C∗ by adopting the previ-
ous procedure, but by assigning a set Ai made of at least three elements to the
maximal node Ni of P , for each i ∈ {1, . . . , m}. Trivially, if the sets A1, . . . , Am

are pairwise disjoints, then C∗ is a complete and safe refinement sequence sat-
isfying PC∗ ∼= PC . Clearly, we can also generate a safe and complete refinement
with its poset isomorphic to P by starting from the maximal sequence C. For
example, we can add a finite set disjoint with UP to each block of an upsets of C.
On the other hand, we observe that the universe covered by any safe and com-
plete refinement sequence with its poset isomorphic to P has cardinality grater
that |UP |.

By Theorem 9 and Proposition 12, the following theorem holds.

Theorem 24. Let P be a partially ordered set and C its maximal sequence.
Then, KO(C) is a centered Kleene algebra that satisfies the interpolation property.

4.4 Representation Theorems

Considering that KO(C) coincides with the set of sequences of orthopairs gener-
ated by C (see Theorem 17), we can define on SO(C) the following operations.

Definition 50. Let C be a refinement sequence of U and let α be the function
defined in Theorem17. Then, let X,Y ⊆ U , we set

– O(X) �O(Y ) := α−1((X1,X2) ∩KO
(Y 1, Y 2));

– O(X) �O(Y ) := α−1((X1,X2) ∪KO
(Y 1, Y 2));

– ∼ O(X) := α−1(¬
KO

(X1,X2));
– O(X)�i O(Y ) := α−1((X1,X2) �i

KO
(Y 1, Y 2)), for i ∈ {2, 3, 4};

– O(X) ↪→i O(Y ) := α−1((X1,X2) →i
KO

(Y 1, Y 2)), for i ∈ {1, 2, 3, 4}.
Moreover, given a refinement sequence C = (C1, . . . , Cn), we set

⊥C = (⊥1, . . . ,⊥n) and �C = ∼ ⊥C ,

where ⊥i = (∅, {x ∈ b | b ∈ Ci}), for each i from 1 to n. Then, it is clear that ⊥C
and �C are respectively the minimum and the maximum of SO(C). Moreover,
we set eC = ((∅, ∅), . . . , (∅, ∅)), that is α−1((∅, ∅)).
Theorem 25. Let S be a Kleene algebra. S is a finite centered Kleene algebra
with interpolation property if and only if

S ∼= (SO(C),�,�,∼,⊥C ,�C),

where C is a complete refinement sequence of a finite universe U .

Proof. (⇒). If S is a centered Kleene algebra with interpolation property, then
there exists a bounded distributive lattice LS such that S ∼= K(LS), by Theo-
rem 9. By Birkhoff representation theorem, there exists a poset PLS

such that
LS
∼= U(PLS

). Consequently, S ∼= K(U(PLS
)). By Proposition 12, C is the maximal

sequence of PLS
, that is a complete and safe refinement sequence of UPLS

.
(⇐). By the Theorems 17 and 23, if C is complete, then (SO(C),�,�,∼

,⊥C ,�C) is a centered Kleene algebra with the interpolation property.
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Similarly, by using the theorems of Sect. 2.3, we can present some classes of
finite many-valued structures such that their reduct is a centered Kleene algebra
with the interpolation property as sequences of orthopairs. More precisely, the
following theorems hold.

Theorem 26. Let S be a Nelson algebra. S is a finite centered Nelson algebra
with interpolation property if and only if

S ∼= (SO(C),�,�,∼,�1, ↪→1,⊥C ,�C),

where C is a complete refinement sequence of a finite universe U .

Theorem 27. Let S be a Nelson lattice. S is a finite centered Nelson lattice with
interpolation property if and only if

S ∼= (SO(C),�,�,∼,�2, ↪→2, eC ,⊥C ,�C),

where C is a complete refinement sequence of a finite universe U .

Theorem 28. Let S be a IUML-algebra. S is a finite IUML-algebra if and only
if

S ∼= (SO(C),�,�,∼,�3, ↪→3, eC ,⊥C ,�C),

where C is a refinement sequence of partial partitions of a finite universe U .

Theorem 29. Let S be a KLI∗-algebra. S is finite and satisfies the interpolation
property if and only if

S ∼= (SO(C),�,�,∼,�4, ↪→4,⊥C ,�C),

where C is a complete refinement sequence of a finite universe U .

4.5 Operations Between Sequences of Orthopairs

In this section, we focus on operations between sequences of orthopairs. In par-
ticular, we show how they can be obtained starting from the operations between
orthopairs of an individual covering. The latter are listed in Sect. 2.2.

Theorem 30. Let C = (C1, . . . , Cn) be a safe and complete refinement sequence
of U and let X,Y ⊆ U , then

1. OC(X) �OC(Y ) = ((A1, B1), . . . , (An, Bn)),
2. OC(X) �OC(Y ) = ((D1, E1), . . . , (Dn, En)),
3. ∼ OC(X) = ((F1, G1), . . . , (Fn, Gn)),

where

1. (Ai, Bi) = (Li(X), Ei(X)) ∧K (Li(Y ), Ei(Y ))
2. (Di, Ei) = (Li(X), Ei(X)) ∨K (Li(Y ), Ei(Y ))
3. (Fi, Gi) = ¬(Li(X), Ei(X)),
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for each i ∈ {1, . . . , n}. The operations ∧K and ∨K are given in Definition 8, and
¬(A,B) = (B,A).

Proof. We only provide the proof of point 1, since we can demonstrate the
remaining cases in a similar way. Then, we suppose that Z is the subset of
U such that OC(X) � OC(Y ) = OC(Z). Since C is safe, OC(X) � OC(Y ) =
α−1((X1,X2)� (Y 1, Y 2)) = α−1((X1∩Y 1,X2∪Y 2)). Then, Z1 = X1∩Y 1 and
Z2 = X2 ∪ Y 2. On the other hand, we recall that

(Li(X), Ei(X)) ∧K (Li(Y ), Ei(Y )) = (Li(X) ∩ Li(Y ), Ei(X) ∪ Ei(Y )).

So, fixed i ∈ {1, . . . , n}, x ∈ Li(Z) if and only if there exists N ∈ PC such
that N ⊆ Z. Therefore, there exists N ∈ PC such that N ∈ X1 ∩ Y 1, and so
N ⊆ X ∩ Y . This is equivalent to say that x ∈ Li(X)∩ Ei(Y ). Similarly, we can
prove that x ∈ Ei(Z) if and only if Ei(X) ∪ Ei(Y ).

Example 36. Let C = (C1, C2) be the refinement sequence of {a, b, c, d, e}, such
that C1 = {{a, b, c, d, e}} and C2 = {{a, b}, {c, d}}. Since C is safe and complete,
the previous theorem holds. Then,

OC({a, b}) �OC({a, b, c}) = ((∅, ∅), ({a, b}, {c, d})),
where

(L1({a, b}), E1({a, b})) ∧K (L1({a, b, c}), E1({a, b, c})) = (∅, ∅) ∧K (∅, ∅) = (∅, ∅).
(L2({a, b}), E2({a, b})) ∧K (L2({a, b, c}), E2({a, b, c})) = ({a, b}, {c, d}) ∧K ({a,

b}, ∅) = ({a, b}, {c, d})).
Moreover,

OC({a, b}) �OC({a, b, c}) = ((∅, ∅), ({a, b}, ∅)),
where

(L1({a, b}), E1({a, b})) ∨K (L1({a, b, c}), E1({a, b, c})) = (∅, ∅) ∨K (∅, ∅) = (∅, ∅).
(L2({a, b}), E2({a, b})) ∨K (L2({a, b, c}), E2({a, b, c})) = ({a, b}, {c, d}) ∨K ({a,

b}, ∅) = ({a, b}, ∅)).
Moreover,

∼ OC({a, b}) = ((∅, ∅), ({c, d}, {a, b})),
where

(L1({a, b}), E1({a, b})) = ¬(∅, ∅) = (∅, ∅);
(L2({a, b}), E2({a, b})) = ¬({a, b}, {c, d}) = ({c, d}, {a, b}).
The following theorems allow us to express the operations ↪→1, �2, ↪→2, �3

and ↪→3 through the operations between orthopairs of an individual covering
(see Definition 11 and Definition 12). We present the proof only for the oper-
ation �3 of Theorem 33, because it is possible to give the proof for the other
operations with similar procedures. We recall that, given a refinement sequence
C = (C1, . . . , Cn), in Remark 10, we denote the union of all blocks of Ci with Ui,
for each i ∈ {1, . . . , n}.



Sequences of Refinements of Rough Sets 81

Theorem 31. Let C = (C1, . . . , Cn) be a safe and complete refinement sequence
of U . Then,

OC(X) ↪→1 OC(Y )

is the sequence ((A1, B1), . . . , (An, Bn)) defined as follows. Firstly, we set

(A′
i, B

′
i) = (Li(X), Ei(X)) →N (Li(Y ), Ei(Y )),

for each i from 1 to n. Then, we set (An, Bn) = (A′
n, B′

n) and

Ai = A′
i \ ∪{N ∈ Ci | N ′ ⊆ N with N ′ ∈ Ci+1 and N ′ ⊆ Ui+1 \Ai+1},

and Bi = B′
i for each i < n.

Theorem 32. Let C = (C1, . . . , Cn) be a safe and complete refinement sequence
of U . Then,

OC(X)�2 OC(Y )

is the sequence ((A1, B1), . . . , (An, Bn)) defined as follows. Firstly, we set

(A′
i, B

′
i) = (Li(X), Ei(X)) ∗L (Li(Y ), Ei(Y )),

for each i from 1 to n. Then, we set (An, Bn) = (A′
n, B′

n), Ai = A′
i, and

Bi = B′
i \ ∪{N ∈ Ci | N ′ ⊆ N with N ′ ∈ Ci+1 and N ′ ⊆ Ui+1 \Bi+1}

for each i < n. Moreover,
OC(X) ↪→2 OC(Y )

is the sequence defined as follows. Firstly, we set

(A′
i, B

′
i) = (Li(X), Ei(X)) →L (Li(Y ), Ei(Y )),

for each i from 1 to n. Then, we set (An, Bn) = (A′
n, B′

n),

Ai = A′
i \ ∪{N ∈ Ci | N ′ ⊆ N with N ′ ∈ Ci+1 and N ′ ⊆ Ui+1 \Ai+1},

and Bi = B′
i, for each i < n.

Theorem 33. Let C = (C1, . . . , Cn) be a safe refinement sequence of partial
partitions of U , then

OC(X)�3 OC(Y )

is the sequence of orthopairs ((A1, B1), . . . , (An, Bn)) defined as follows. Firstly
we set

(A′
i, B

′
i) = (Li(X), Ei(X)) ∗S (Li(Y ), Ei(Y ))

for each i from 2 to n. Then, we set (A1, B1) = (A′
1, B

′
1),

Ai = A′
i ∪ {N ∈ Ci | N ⊆ Ai−1}, and Bi = B′

i \Ai,

for each i > 0.
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Moreover,
OC(X) ↪→3 OC(Y )

is the sequence of orthopairs ((A1, B1), . . . , (An, Bn)) defined as follows. Firstly,
we set

(A′
i, B

′
i) = (Li(X), Ei(X)) →S (Li(Y ), Ei(Y ))

for each i > 2. Then, we set

(A1, B1) = (A′
1, B

′
1), Bi = B′

i ∪ {N ∈ Pi | N ⊆ Bi−1}, and Ai = A′
i \Bi,

for each i > 0.

In order to prove Theorem33, we need to move from sequences of orthopairs
to pairs of disjoint upsets. Let C be a refinement sequence of U such that C = C′.
Then, the operation �3KO

coincides with �3 on K(C). Indeed, C = C′ implies
that β is the identity function (β is defined in Theorem22). Consequently, for
any X,Y ⊆ U , we have (X1,X2) �3KO

(Y 1, Y 2) = β−1((X1,X2) �3 (Y 1, Y 2)) =
(X1,X2) �3 (Y 1, Y 2).

On the other hand, if C 	= C′ the IUML-algebras KO(C) and KO(C′) are not
isomorphic. In any case, we can find a relationship between operations in KO(C′)
and Sobociński conjunction, as follows.

Proposition 13. Let C be a refinement sequence of partial partitions of U , let
X,Y ⊆ U , and let FC

X be the function defined by Eq. 1. Then,

(X1
C ,X2

C) �3KO
(Y 1

C , Y 2
C ) = β−1((Z1

C′ , Z2
C′)),

where
Z1

C′ =↑ {N ∈ PC′ | F C′
X (N) �S F C′

Y (N) = 1}
and

Z2
C′ = {N ∈ PC′ | F C′

X (N) �S F C′
Y (N) = 0} \ Z1

C′ .

Proof. By Definition 49, we must prove that Z1
C′ = (X1

C′ ∩ Y 1
C′) ∪ (X � Y ) and

Z2
C′ = (X2

C′ ∪ Y 2
C′)\(X � Y ), where X � Y is related to C′.

A node N belongs to (X1
C′ ∩ Y 1

C′) ∪ (X � Y ) if and only if FX(N) = 1 and
FY (N) = 1, or there exists M ∈ PC′ such that N ⊆ M and FX(M) = 1 and
FY (M) = 1\2, or FX(M) = 1\2 and FY (M) = 1. This is equivalent to affirm
that FX(N) �S FY (N) = 1 or there exists M ∈ PC′ such that N ⊆ M and
FX(M) �S FY (M) = 1, since �S is the Sobociński conjunction.

Similarly, N belongs to (X2
C′ ∪ Y 2

C′)\(X � Y ) if and only if FX(N) = 0 or
FY (N) = 0 and there does not exist M ∈ PC′ such that N ⊆M and FX(M) �S
FY (M) = 1. Then, N ∈ {N ∈ PC′ | FX(N) �S FY (N) = 0} \ Z1.
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Proof (Theorem 33). By definition of α (see Theorem 17), we have (X1,X2) =
α(OC(X)), (Y 1, Y 2) = α(OC(Y )). Let Z be the subset of U such that

(Z1, Z2) = α(OC(X))�3 α(OC(Y )).

By induction on i we prove that (Li(Z), Ei(Z)) = (Ai, Bi).
Let i = 1. By definition and recalling that Z1 = {N ∈ PC | N ⊆ Z}, we have

L1(Z) =
⋃
{N ∈ C1 | N ⊆ Z} =

⋃
{N ∈ C1 ∩ Z1}.

By Proposition 13, Z1 =↑ {N ∈ PC | FX(N) �S FY (N) = 1}, hence Z1 ∩ C1 =
{N ∈ C1 | FX(N) �S FY (N) = 1}. We have, by Proposition 4:

L1(Z) =
⋃
{N ∈ C1 | FX(N) �S FY (N) = 1} = A1.

Now, we fix i > 1 and suppose by induction hypothesis that Ai−1 = Li−1(Z).
Then by Proposition 4 and 13,

Li(Z) =
⋃

N∈Z1∩Ci

N

=
⋃
{N ∈Ci | FX(N)�SFY (N) = 1}∪

⋃
{N ∈Ci |N ⊆M with M ∈ Z1∩Ci−1}.

We notice that A′
i = ∪{N ∈ Ci | FX(N)�S FY (N) = 1} and Ai−1 = Li−1(Z) =

∪{M | M ∈ Z1 ∩ Ci−1}. Consequently,

Li(Z) = A′
i ∪ {N ∈ Ci | N ⊆ Ai−1}.

Similarly, by Propositions 4 and 13, we can prove that Bi = B′
i \Ai, for each

i ∈ {1, . . . , n}.

In other words, the operation �3 maps each pair of sequences of orthopairs to
the sequence of orthopairs given by applying the Sobociński conjunction between
orthopairs relative to the same partition and then closing with respect to the
inclusion in the first component.

Hence, we can say that if we apply �3 to sequences of orthopairs, the inde-
terminate value is always overcome by the determined ones, and in addition, as
soon as a determined value is reached with respect to a given level of partial
partitions, it is automatically given to all the blocks in the next refinements.

Example 37. Let C′ be the refinement sequence of U of Example 16. We consider
X,Y ⊆ U such that OC′(X) is equal to OC(X) defined in Example 24 and
OC′(Y ) = (OC′

1
(Y ),OC′

2
(Y ),OC′

3
(Y )), where

OC′
1
(Y ) = (∅, ∅),

OC′
2
(Y ) = ({u3, u4}, {u5, u6, u15, . . . , u20}) and

OC′
3
(Y ) = ({u3, u4, u7, u8}, {u5, u6, u11, u12, u15, . . . , u18}).
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Hence,

OC′
1
(X) ∗S OC′

1
(Y ) = (∅, ∅),

OC′
2
(X) ∗S OC′

2
(Y ) = ({u7, . . . , u14}, {u1, . . . , u6, u15, . . . , u20}),

OC′
3
(X) ∗S OC′

3
(Y ) = ({u7, u8}, {u1, . . . , u6, u11, u12, u15, . . . , u18}).

Then, in order to close with respect to the inclusion in the first component, we
add the elements of block {u11, u12} to the first component of OC′

3
(X)∗SOC′

3
(Y )

and we subtract them from the second component of OC′
3
(X) ∗S OC′

3
(Y ).

Finally, we obtain that OC′(X)�3OC′(Y ) is the sequence of SO(C′) made of
the following pairs.

(∅, ∅),
({u7, . . . , u14}, {u1, . . . , u6, u15, . . . , u20}) and
({u7, u8, u11, u12}, {u1, . . . , u6, u15, . . . , u18}).

We observe that OC′(X) �3 OC′(Y ) provides precise information about the
blocks {u15, . . . , u20}, {u1, u2}, {u7, . . . , u10} and {u11, . . . , u14}, while we do not
know what happens to the elements u19 and u20 in OC′(X) and to the elements
u1, u2, u9, u10, u13 and u14 in OC′(Y ). Hence, the uncertainty represented by the
sequence OC′(X) �3 OC′(Y ) is smaller than uncertainty that is in OC′(X) and
OC′(Y ).

Remark 20. The operations �4 and ↪→4 are not obtained by the generalization
of some three-valued connectives. On the other hand, they allow us to define a
new pair of operations between orthopairs that is following.

Let C be a covering of U , and let X,Y ⊆ U . Then,

(L(X), E(X)) �4 (L(Y ), E(Y )) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(∅, U), if L(X) = ∅ and L(Y ) = ∅;
(L(X), E(X)), if L(X) = ∅ and L(Y ) 	= ∅;
(L(Y ), E(Y )), if L(X) 	= ∅ and L(Y ) = ∅;
(L(X) ∩ L(Y ), E(X) ∩ E(Y )), if L(X) 	= ∅ and L(Y ) 	= ∅.

(36)
and

(L(X), E(X)) ↪→4 (L(Y ), E(Y )) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(U, ∅), if L(X) = ∅ and E(Y ) = ∅;
(E(X), L(X)), if L(X) = ∅ and E(Y ) 	= ∅;
(L(Y ), E(Y )), if L(X) 	= ∅ and E(Y ) = ∅;
(E(X) ∩ L(Y ), L(X) ∩ E(Y )), if L(X) 	= ∅ and E(Y ) 	= ∅.

(37)

4.6 Application Scenario

In this section, we explain how an examiner’s opinion on a number of candidates
applying for a job can be represented by a sequence of orthopairs. Also, we
show how opinions of two or more examiners can be combined by employing



Sequences of Refinements of Rough Sets 85

the operations �, �, �2, �3 and �4 in order to get a final decision on each
candidate. Moreover, such results are found in [21].

Imagine that a food company needs to recruit staff through a commission
composed of several examiners, and managed by a committee chair. We indicate
the set of twenty-four candidates with {c1, . . . , c24}. The first selection will be
to investigate the curriculum vitae of each candidate, after that all shortlisted
applicants will be called for the first job interview. We suppose that the chair
identifies some groups of applicants of {c1, . . . , c24} that have some specific char-
acteristics which in his/her opinion are useful to work for the given company.
Step by step, as it will be explained, the chair continues to refine each of these
groups by identifying other suitable characteristics to work for the company.
We underline that the chair selects sets made of applicants that have a specific
characteristic in order to allow to each examiner to express his/her opinion on
groups of candidates and not on every individual candidate. In this way, the first
selection process is simplified.

In detail, the refinement process is made as follows. Initially, the chair
identifies two characteristics: “to have a master degree in chemistry” and “to
have a master degree in biology”. Consequently, the covering C1 = {b1, b2} of
{c1, . . . , c24} is determined, where b1 = {c1, . . . , c12} is made of candidates with
a master degree in chemistry and b2 = {c13, . . . , c23} is made of candidates with
a master degree in biology. Successively, the chair decides that the best can-
didates of b1 are those specialized in “industrial chemistry”, namely those of
the set b3 = {c1, . . . , c5} or in “pharmaceutical technology”, namely the can-
didates of the set b4 = {c6, . . . , c11}. Moreover, the chair thinks that the best
candidates of b2 are those of b5 = {c13, . . . , c17} that are specialized in “Biology
of immunology” and those of b6 = {c18, . . . , c22} that are specialized in “Food
biology”. In this way, the partial covering C2 = {b3, b4, b5, b6} of {c1, . . . , c24}
is determined. Eventually, the chair considers b7 = {c1, c2}, b8 = {c3, c4}, b9 =
{c6, c7}, b10 = {c8, c9}, b11 = {c13, c14}, b12 = {c15, c16} and b13 = {c18, c19}
and b14 = {c20, c21}, where b7, b9, b11 and b13 are respectively the subsets
of b3, b4, b5 and b6 of candidates that have a certificate of Spanish language,
instead b8, b10, b12 and b14 are respectively the subsets of b3, b4, b5, b6 of can-
didates that have a certificate of French language. Trivially, C3 = {b7, . . . , b14}
is also a partial covering of {c1, . . . , c24}, and C = (C1, C2, C3) is a refinement
sequence of {c1, . . . , c24}. More precisely, C1, C2 and C3 are partial partitions
of {c1, . . . , c24}. The data used for the chair’s classification are contained in the
incomplete information table as Table 12, where {c1, . . . , c24} is the universe and
{Master degree, Specialization, Language certification} is the set of attributes.
The poset assigned to C is a forest, and it is shown in Fig. 24.
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{c1, . . . , c12} {c13, . . . , c23}

{c1, . . . , c5} {c6, . . . , c11} {c13, . . . , c17} {c18, . . . , c22}

{c1, c2} {c3, c4} {c6, c7} {c13, c14} {c15, c16} {c18, c19} {c20, c21}{c8, c9}

Fig. 24. Forest of the candidates

Table 12. Information table of the candidates

Master degree Specialization Language certification

c1 Chemistry Industrial Chemistry Spanish

c2 Chemistry Industrial Chemistry Spanish

c3 Chemistry Industrial Chemistry French

c4 Chemistry Industrial Chemistry French

c5 Chemistry Industrial Chemistry ×
c6 Chemistry Pharmaceutical Technology Spanish

c7 Chemistry Pharmaceutical Technology Spanish

c8 Chemistry Pharmaceutical Technology French

c9 Chemistry Pharmaceutical Technology French

c10 Chemistry Pharmaceutical Technology ×
c11 Chemistry Pharmaceutical Technology ×
c12 Chemistry × ×
c13 Biology Immunology Spanish

c14 Biology Immunology Spanish

c15 Biology Immunology Spanish

c16 Biology Immunology French

c17 Biology Immunology ×
c18 Biology Food Biology Spanish

c19 Biology Food Biology Spanish

c20 Biology Food Biology French

c21 Biology Food Biology French

c22 Biology Food Biology ×
c23 Biology × ×
c24 × × ×
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It is easy to notice that C is safe and complete.
Clearly, PC is isomorphic to the forest of Fig. 25.

{Ch} {Bio}

{Ch, IC} {Ch, PT} {Bio, I} {Bio, FB}

{Ch, IC, Sp} {Ch, IC, Fr} {Ch, PT, Sp} {Ch, PT, Fr} {Bio, I, Sp} {Bio, I, Fr} {Bio, FB, Sp} {Bio, FB, Fr}

Fig. 25. Forest of the values of the candidates

Each node of Fig. 25 is the set of all values contained in Table 12 that
characterizes the block of candidates of the respective node in PC (we set
Ch = Chemistry, IC = Industrial Chemistry, PT = Pharmaceutical Technology,
Bio = Biology, I = Immunology, FB = Pharmaceutical Technology, Sp = Spanish,
Fr= French). As an example, {Ch, IC, Fr} is the set of the values that charac-
terize the block {c3, c4}.

Once the classification process is completed, the chair invites every examiner
to express his / her opinion about every block of PC , starting from the blocks
that are minimal elements of PC to those that are maximal elements of PC .
Namely, examiners must first reveal their point of view on the nodes of level 0
of PC , then on those of level 1 of PC , and finally on those of level 2 of PC . For
example, they can evaluate the blocks of PC by following this order: {c1, . . . , c12},
{c13, . . . , c23}, {c1, . . . , c5}, {c6, . . . , c11}, {c13, . . . , c17}, {c18, . . . , c22}, {c1, c2},
{c3, c4}, {c6, c7}, {c8, c9}, {c13, c14}, {c15, c16}, {c18, c19}, {c20, c21}. Moreover,
given a block b of PC and an examiner E, we assume that three possibilities can
occur: E could be in favour of the recruitment of all candidates in b, or E could
not want to hire them, or E could be doubtful about them. Trivially, if E is in
favour of the applicants of b, then E is also in favour of the candidates of all
blocks included in b. For example, if E wants to recruit all candidates having
a master degree in Chemistry, namely those of {c1, . . . , c12}, then E is also in
favour of hiring the candidates of {c1, . . . , c5} and {c6, . . . , c11}, regardless of
their specialization, and consequently also all candidates of {c1, c2}, {c3, c4},
{c6, c7}, and {c8, c9}, regardless of their language certification. Similarly, if E is
not in favour of the applicants of b, then E is against hiring all candidates of every
block included in b. Therefore, the opinion of E about all blocks of candidates in
PC is represented by the sequence of orthopairs OC(E) belonging to SO(C), that
is

OC(E) = ((L1(E), E1(E)), (L2(E), E2(E)), (L3(E), E3(E))),
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such that

Lj(E) = ∪{b ∈ Cj | E is in favour of hiring the candidates of b} and
Ej(E) = ∪{b ∈ Cj | E is not in favour of hiring the candidates of b},

for j = 1, 2, 3.
Once examiners give their opinions, the chair can combine these through

some operations defined between sequences of orthopairs. Hence, if E1, . . . ,Em

are our examiners, then the chair can consider the sequence

OC(E1) � . . . �OC(Em),

where � ∈ {�,�,�2,�3,�4} (these operations are defined in Sect. 4.5).
So, if a candidate belongs at least to one of the first components of the pairs in

OC(E1)�. . .�OC(Em), then he / she will pass the first selection; if he / she belongs
to at least one of the second components of the pairs in OC(E1) � . . . �OC(Em),
then he / she will be excluded; otherwise, the chair will decide about him / her.

In order to provide the reader with a more intuitive representation of the
examiners opinion and their combinations through our operations, we can
describe sequences of orthopairs as labelled graphs defined in Remark 15. Thus,
the labelled poset assigned to the sequence OC(X) of SO(C) is determined by
the function

lX : PC �→ {•, ◦, ?}
such that

lX(b) =

⎧
⎪⎨

⎪⎩

• if b ⊆ Li(X) for some i ∈ {1, 2, 3},
◦ if b ⊆ Ei(X) for some i ∈ {1, 2, 3},
? otherwise,

where (Li(X), Ei(X)) denotes the i-th orthopair of OC(X).
Now, we assume that the examiners of the commission are two: E1 and E2.

Moreover, the opinions of E1 and E2 are respectively expressed by the following
labelled posets.

? ?

• ? ? ?

• • ? • ◦ ◦ ? ?

Fig. 26. Labelled forest of OC(E1)
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? ?

?

? ◦

?

? ◦ • ◦ • ◦ ◦ ◦

Fig. 27. Labelled forest of OC(E2)

The labelled posets assigned to OC(E1)�OC(E2), OC(E1)�OC(E2), OC(E1)�2

OC(E2), OC(E1)�3OC(E2) and OC(E1)�4OC(E2) are respectively the following.

? ?

?

? ◦

?

? ◦ ? ◦ ◦ ◦ ◦ ◦

Fig. 28. Labelled forest of OC(E1) � OC(E2)

• ?

?

? ?

?

• • • • • ◦ ? ?

Fig. 29. Labelled forest of OC(E1) � OC(E2)

We can observe that each of the previous operation determines the
choice or the exclusion of some candidates of {c1, . . . , c24} with respect to
the first selection. For example, �2 involves the exclusion of candidates
c3, c4, c8, c9, c13, . . . , c23, and it does not allow any candidate to be admitted.

We can make the following remarks, in order to compare the results generated
with �, �, �2 and �3. By theorems proved in Sect. 4.5, by Theorem 1, and by
Theorem 2, we can affirm that �,�,�2 and �3 are respectively obtained starting
from the three-valued operations ∧, ∨, �L and �S . Therefore, we obtain more
excluded candidates with �2 than with �, � and �3; indeed, �2 is determined
starting from the �Lukasiewicz conjunction �L, where 1

2 �L 1
2 = 0, instead of

1
2 ∨

1
2 = 1

2 �S 1
2 = 1

2 ∧
1
2 = 1

2 . More candidates pass the first selection with �3

than with � and �2, since �3 is obtained from the Sobociński conjunction �S ,
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? ?

?

◦ ◦

◦

? ◦ ? ◦ ◦ ◦ ◦ ◦

Fig. 30. Labelled forest of OC(E1) 
2 OC(E2)

• ?

?

? ◦

?

• • • ◦ ◦ ◦ ◦ ◦

Fig. 31. Labelled forest of OC(E1) 
3 OC(E2)

? ?

?

? ?

?

? ? ? ? ? ◦ ? ?

Fig. 32. Labelled forest of OC(E1) 
4 OC(E2)

where 1
2 �S 1 = 1 �S 1

2 = 1, instead of 1
2 �L 1 = 1 �L 1

2 = 1
2 ∧ 1 = 1∧ 1

2 = 1
2 . On

the other hand, the operation � refers more candidates to the chair’s decision
than �2 and �3, since it is defined starting from the Kleene conjunction ∧,
where 1

2 ∧
1
2 = 1

2 ∧ 1 = 1 ∧ 1
2 = 1

2 .
In this context, the operation �4 can be interpreted as follows. Given j ∈

{1, 2}, we say that the opinion of Ej is overall positive, when Ej is in favour of
recruiting of at least one block of candidates of PC , otherwise Ej ’s opinion is
overall negative. If the opinions of E1 and E2 are both overall negative, then all
candidates of {c1, . . . , c24} are excluded. If only the E1’ s opinion (or the E2’ s
opinion) is overall positive, then the candidates that are negative for E2 (or E1)
are excluded (by negative candidates for E2 (or E1), we mean those belonging to
each block b such that lE2(b) = ◦ (or lE1(b) = ◦)), and the chairman decides for
the remaining applicants. If the opinions of E1 and E2 are both overall positive,
then the candidates of each block b in PC such that lE1(b) = lE2(b) = • pass the
first selection, the candidate of each block b in PC such that lE1(b) = lE2(b) = ◦
are excluded, and the chairman decides for the remaining applicants.
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We can notice that each operation belonging to {�,�,�2,�3,�4} represents
a way to repartition the universe {c1, . . . , c24} in three sets of candidates: the
selected candidates (those belonging to some blocks with label •), the excluded
candidates (those belonging to some blocks with label ◦), and the remaining
candidates on which the evaluation is uncertain (those belonging to blocks that
all with label ?). More generally, each sequence of orthopairs of SO(C) deter-
mines a tri-partition (i.e. partition made of three elements) of {c1, . . . , c24}. For
example, OC(E1) and OC(E2) generate respectively the following partitions of
{c1, . . . , c24}.

PE1 = {{c1, . . . , c5, c8, c9}, {c13, . . . , c16}, {c6, c7, c10, c11, c12, c17, . . . , c24}},
PE2 = {{c6, c7, c13, c14}, {c3, c4, c8, c9, c15, c16, c18, . . . , c22},

{c1, c2, c5, c10, c11, c12, c17, c23, c24}}.

Tri-partitions are at the basis of three-way decision (3WD) theory pro-
posed by Yao [103]. A three-way decision procedure mainly consists in
two steps: dividing the universe in three regions and then acting, i.e. tak-
ing a different strategy on objects belonging to different regions. In 3WD
theory, the standard tools to trisect the universe are the classical rough
sets and orthopairs, namely those generated by a partition [104]. Then,
the lower approximation, the impossibility domain and the boundary region
are called acceptance region, rejection region and uncertain region, respec-
tively. On the other hand, a sequence of orthopairs divides the universe in
a more precise way also starting from an incomplete information table, in
which the data are missing. For example, if we focus on the labelled for-
est assigned to OC(E1), then we can observe that level 2 gives arise the tri-
partition {{c1, c2, c3, c4, c8, c9}, {c13, c14, c15, c16}, {c6, c7, c18, c19, c20, c21}}, but
level 1 allows us to put in the acceptance region also the element c5.

Furthermore, operations between sequences of orthopairs represent several
ways to aggregate different tri-partitions of the same universe. For example, if
we consider �, then the tri-partition made of {c1, . . . , c9, c13, c14}, {c15, c16} and
{c10, c11, c12, c17, . . . , c24} is generated starting from PE1 and PE2 .

Once the three regions have been obtained, one might need to expand or
reduce one of them. For example, it could occur that the accepted candidates
with � may be too many. Then, we can assign a weight to every object of the
universe, by considering the labels of each block to which it belongs. Let P j

C be
the j-th level of PC defined in Eq. 30 such that j ∈ {1, . . . , n}, where n is the
maximum number of elements of a chain in PC . For each c ∈ {c1, . . . , c24}, we
set

pj(c) =

⎧
⎪⎨

⎪⎩

1 if c ∈ b where b ∈ P k
C with k ≤ j and it is labelled with •;

0 if c ∈ b where b ∈ P k
C with k ≤ j and it is labelled with ◦;

1
2 otherwise.
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Moreover, we assign to c, the following final weight.

w(c) =

n∑

j=1

pj(c)

n
.

If we focus on the sequences of orthopairs obtained starting from operation �3,
we have

– w(c1) = w(c2) = w(c3) = w(c4) = w(c5) =
1
2 + 1 + 1

3
=

5
6
;

– w(c6) = w(c7) =
1
2 + 1

2 + 1
3

=
2
3
;

– w(c8) = w(c9) = w(c13) = w(c14) = w(c15) = w(c16) =
1
2 + 1

2 + 0
3

=
1
3
;

– w(c18) = w(c19) = w(c20) = w(c21) = w(c22) =
1
2 + 0 + 0

3
=

1
6
;

– w(c10) = w(c11) = w(c12) = w(c17) = w(c23) = w(c24) =
1
2 + 1

2 + 1
2

3
=

1
2
.

Trivially, w(c) belongs to the real interval [0, 1], and it expresses how much the
candidate c must pass the first selection from 0 to 1.

The weights w(c1), . . . , w(c24) can be used in several ways. For example,
the chair could decide that the candidates with weight greater than 2

3 , and so
c1, c2, c3, c4, c5 pass the first selection, and that the remaining candidates are
excluded. Moreover, he could choose two thresholds α and β in [0, 1] such that
α ≤ β. Successively, he can redefine the following tri-partition of {c1, . . . , c24}

– {c ∈ {c1, . . . , c24} : w(c) ≤ α}} (rejection region),
– {c ∈ {c1, . . . , c24} : α < w(c) < β} (uncertain region),
– {c ∈ {c1, . . . , c24} : w(c) ≥ β} (acceptance region).

We observe that our procedure can be also applied for sequences of orthopairs
generated by a sequence of equivalence relations that is not a refinement
sequence. However, the advantage of considering sequences of refinements of
orthopairs is that once we know that a block N is included in the acceptance
region (or in the rejection region), we also know that all blocks included in N
are included in the acceptance region (or in the rejection region). Similarly, if
we know that pj(c) = 1 (or pj(c) = 0), we also know that pj+1(c) = 1 (or
pj+1(c) = 0).
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5 Modal Logic and Sequences of Orthopairs

“Then you should say what you mean,” the March Hare
went on. “I do,” Alice hastily replied; “at least – at least I
mean what I say–that’s the same thing, you know.” “Not
the same thing a bit!” said the Hatter. “You might just
as well say that ‘I see what I eat’ is the same thing as ‘I
eat what I see’ !” “You might just as well say,” added the
March Hare, “that ‘I like what I get’ is the same thing as
‘I get what I like’ !” “You might just as well say,” added
the Dormouse, who seemed to be talking in his sleep, “that
‘I breathe when I sleep’ is the same thing as ‘I sleep when
I breathe’!”

Lewis Carroll (Alice’s Adventures in Wonderland)

In this chapter, firstly, we recall some basic notions of modal logic and
the existing connections between modal logic and rough sets (see Sect. 5.1). In
Sect. 5.2, we develop the original modal logic SOn, defining its language, intro-
ducing its Kripke models, and providing its axiomatization. Moreover, we inves-
tigate the properties of our logic system, such as the consistency, the soundness
and the completeness with respect to Kripke semantics. In Sect. 5.3 we explore
the relationships between modal logic SOn and sequences of orthopairs. Also, we
consider the operations between orthopairs and between sequences of orthopairs
from the logical point of view. In the last section of this chapter, we employ
modal logic SOn to represent the knowledge of an agent that increases over
time, as new information is provided.

5.1 Modal Logic S5 and Rough Sets

Modal logic is the logic of necessity and possibility [38]. It is characterized by the
symbols � and ♦, called modal operators, such that the formula �ϕ means “it
is necessary that ϕ” or, in other words, “ϕ is the case in every possible circum-
stance”, and the formula ♦ϕ means “it is possible that ϕ” or, in other words,
“ϕ is the case in at least one possible circumstance”. However, necessity and
possibility are not the only modalities, since the term modal logic is used more
broadly to cover a family of logics with similar rules and a variety of different
symbols [51]. In this thesis, we are interested in propositional modal logic S5,
that was proposed by Clarence Irving Lewis and Cooper Harold Langford in
their book Symbolic Logic [68].

Now, we briefly describe the syntax and the semantics of modal logic S5 [29].
The S5-language contains all symbols of propositional logic, plus the modalities
� and ♦. In terms of semantics, the formulas of S5-language are interpreted
with the Kripke models. A Kripke model of S5 is a triple consisting of a universe
U (its element are named possible worlds), an equivalence relation R on U , and
an evaluation function v, that assigns to a propositional variable p the set of all
worlds of U in which p is true. We can extend v on the formulas of propositional
logic as usual and on the modal formulas as following. Let p be a propositional
variable, and let u ∈ U ,
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�p is true in u if and only if “p is true in every world v of U such that
uRv”, and

♦p is true in u if and only if “p is true at least in a world v of U such that
uRv”.

The axiom schemas are obtained by adding the following schemas to those of
propositional logic.

Definition 51 (Axioms of S5).

K. �(ϕ → ψ) → (�ϕ → �ψ) (distribution axiom);
T. �ϕ→ ϕ (necessitation axiom);
5. ♦ϕ→ �♦ϕ.

We notice that Axiom 5 it is equivalent to the set of axioms made of

B. ϕ→ �♦ϕ and
4. �ϕ→ ��ϕ.

The inference rules are the modus ponens and the necessitation rule (ϕ/�ϕ).
We stress that S5 belongs to the family of normal modal logics, that are charac-
terized by adding the necessitation rule, and a list of axiom schemas Ax includ-
ing K to the principles of propositional logic. The weakest normal modal logic is
named K in honour of Saul Kripke, where Ax={K}. Thus, S5, as every normal
modal logic, is an extension of K. A further example of normal modal logic is
S4, that is obtained by adding to system K the axiom schemas T a and 4.

The system S5 is sound and complete with respect to the class of all Kripke
models of S5.

Moreover, propositional modal logic is also interpreted as an extension of clas-
sical propositional logic with two added operators expressing modality [55]. Since
Pawlak rough set algebra is an extension of Boolean algebra (see Remark 3), the
relationship between propositional modal logic and rough sets appears intuitive.
In particular, modal logic S5 is connected with rough set theory, since the neces-
sity and possibility can be interpreted as the lower and the upper approximation
[79,80]. Hence, let (U,R, v) be a Kripke model of S5, we have that

||�ϕ||v = LR(||ϕ||v) and ||♦ϕ||v = UR(||ϕ||v),

where ||ϕ||v, ||�ϕ||v and ||♦ϕ||v are made of possible worlds in which ϕ, �ϕ and
♦ϕ are true, respectively.

It is important to recall that S5 can be considered as an epistemic logic in the
sense that it is suitable for representing and reasoning about the knowledge of
an individual agent [42,46,67]. Indeed, the formula �ϕ can be read as “the agent
knows ϕ”. Moreover, the axioms of S5 express the properties of the knowledge.
For instance, Schema 4 expresses the fact that if an agent knows ϕ, then she
knows that she knows ϕ (the positive introspection axiom).
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5.2 Modal Logic SOn

In this section, the novel modal logic SOn is developed.
From now, by refinement sequence, we mean a refinement sequence of partial

partitions of the given universe, and we fix an integer n > 0.

Language of SOn

We indicate the language of SOn with L. Then, the alphabet of L consists of

– a set Var of propositional variables;
– the logical connectives ∧ and ¬;
– the sequences of modal operators (�1, . . . ,�n) and (©1, . . . ,©n).

The propositional variables are typically denoted with p, q, r, . . . and refer to the
statements that are considered basic, for example “the book is red”. The symbols
∧ and ¬ are respectively the conjunction and negation of classical propositional
logic. Fixed i ∈ {1, . . . , n}, we call i-box and i-circle the modal operators �i and
©i, respectively.

We denote the well formed formulas of L with Greek letters. As usual, the
set Form of all well formed formulas of L is the smallest set that contains Var
and satisfies the following conditions. Let ϕ,ψ ∈ Form,

– if ϕ ∈ Form, then ¬ϕ, �iϕ, ©iϕ ∈ Form, for each i ∈ {1, . . . , n};
– if ϕ,ψ ∈ Form, then ϕ ∧ ψ ∈ Form.

We simply call the elements of Form formulas or sentences. Moreover, the alpha-
bet of L also contains the brackets “(” and “)” to establish the order wherewith
the connectives work in the complex formulas. In this way, the language is clear
and has no ambiguity.

The abbreviations introduced in the next definition, except the last one, are
the standard abbreviations defined for the classical propositional logic [64].

Definition 52 (Abbreviations in L). Let ϕ,ψ ∈ Form and p ∈ Var,

1. ⊥ := p ∧ ¬p (false);
2. � := ¬⊥ (true);
3. ϕ ∨ ψ := ¬(¬ϕ ∧ ¬ψ) (disjunction);
4. ϕ→ ψ := ¬ϕ ∨ ψ (implication);
5. ϕ ≡ ψ := (ϕ → ψ) ∧ (ψ → ϕ) (equivalence);
6. !iϕ := �i¬ϕ, (i-triangle) with i ∈ {1, . . . , n}.

We employ the convention that↔ dominates→, and→ dominates the remaining
symbols. For example, the formula �ip→ q is understood as (�ip) → q.

By schema, we mean a set of formulas all having the same form. For example,
the schema ϕ ∧ ψ is the set {ϕ ∧ ψ | ϕ,ψ ∈ Form}.
Semantics of SOn

We define the Kripke models of SOn, which we also call orthopaired Kripke
models or SOn-models.
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Definition 53. A Kripke model of SOn is a triple

M = (U, (R1, . . . , Rn), v),

where

1. U is a non-empty set of objects,
2. (R1, . . . , Rn) is a sequence of equivalence relations on U (i.e. for i from 1 to

n, Ri ⊆ (U ×U) and Ri is reflexive, symmetric and transitive) such that, let
u ∈ U ,
– R1(u) 	= {u}, and
– Ri+1(u) ⊆ Ri(u), for each i < n;

3. v is an evaluation function that assigns a subset of U to each element of Var
(i.e. v : Var �→ 2U , where 2U is the power set of U).

We say that U is the domain or the universe of M, the elements of U are the
states or the possible worlds of M, and R1, . . . , Rn are the accessibility relations
of M. The pair (U, (R1, . . . , Rn)) is called Kripke frame of SOn. Moreover, let
p ∈ Var, if u ∈ v(p), then we can say that p is true at u in M.

Remark 21. The domain of an orthopaired Kripke model has at least two ele-
ments.

Example 38. Let Var = {p, q, r}, we suppose that

– U = {a, b, c, d},
– R1 = {(a, b), (b, a), (c, d), (d, c)} ∪ {(u, u) | u ∈ U},
– R2 = {(a, b), (b, a)} ∪ {(u, u) | u ∈ U},
– v is a function from Var to 2U such that v(p) = {a, b, c}, v(q) = {c, d} and
v(r) = {a, c}.

Then, M = (U, (R1, R2), v) is a Kripke model of SOn.

Orthopaired Kripke models are also models of modal logic S5n developed in
[46]. However, a Kripke model of S5n is not always a Kripke model of SOn; in
fact, the accessibility relations of each S5n-model have only the property to be
equivalence relations.

Definition 54 (Kripke models of SOn as graphs). A Kripke model M =
(U, (R1, . . . , Rn), v) of SOn is represented by the graph GM, where

– the set of the vertices is U ,
– two vertices are connected with the labeled edge i if and only if

i = max{j ∈ {1, . . . , n} | (a, b) ∈ Rj}.

– the label of u ∈ U is the list of the propositional variables that are true at u
in M.

Example 39. Suppose that Var = {p} and M = (U, (R1, R2), v) is a Kripke
model of SOn, where
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Fig. 33. Graph GM

– U = {a, b, c, d, e};
– R1 = {(a, b), (b, a), (a, c), (c, a), (b, c), (c, b), (d, e), (e, d)} ∪ {(u, u) | u ∈ U},
– R2 = {(a, b), (b, a)} ∪ {(u, u) | u ∈ U},
– v(p) = {a, b, d}.

The graph GM is as in Fig. 33.

The notion of truth of a formula in a Kripke model of SOn is given by the next
definition.

Definition 55. Let M = (U, (R1, . . . , Rn), v) be a Kripke model of SOn. The
notion of (M, u) |= ϕ is inductively defined as follows.

1. (M, u) |= p, with p ∈ Var iff “ u ∈ v(p) = ||p||v”;
2. (M, u) |= (ϕ ∧ ψ) iff “ (M, u) |= ϕ and (M, u) |= ψ”;
3. (M, u) |= ¬ϕ iff “ (M, u) 	|= ϕ”;
4. (M, u) |= �iϕ iff “ Ri(u) ⊆ ||ϕ||v and Ri(u) 	= {u}”;
5. (M, u) |= ©iϕ iff “ u |= ϕ and Ri(u) 	= {u}”;

where ||ϕ||v is the truth set of ϕ, that is

||ϕ||v = {u ∈ U | (M, u) |= ϕ}.

(M, u) |= ϕ can be read as “ϕ is true at u in M” or “ϕ holds at u in M” or
“(M, u) satisfies ϕ”. Moreover, we say that “ϕ is false at u in M” if and only
if (M, u) 	|= ϕ. We can write u |= ϕ, instead of (M, u) |= ϕ, when M is clear
from the context.

Remark 22. The points 1, 2 and 3 of Definition 55 are given for standard Kripke
semantics too. Also, once fixed i ∈ {1, . . . , n}, u |= �iϕ differs from u |=
�ϕ, where � is the necessity operator of S5 logic interpreted by Ri, since the
additional condition Ri(u) 	= {u} is required.

The next proposition follows by Definition 52 and Definition 55.

Proposition 14. Let M = (U, (R1, . . . , Rn), v) be a Kripke model of SOn.
Then,
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1. (M, u) |= (ϕ ∨ ψ) iff “either (M, u) |= ϕ or (M, u) |= ψ”;
2. (M, u) |= !iϕ iff “Ri(u) ∩ ||ϕ||v = ∅ and Ri(u) 	= {u}”;
3. (M, u) |= ϕ → ψ iff “(M, u) |= ϕ implies that (M, u) |= ψ”;
4. (M, u) |= ϕ ≡ ψ iff “(M, u) |= ϕ if and only if (M, u) |= ψ”;

for each u ∈ U , ϕ,ψ ∈ Form and i ∈ {1, . . . , n}.

Remark 23. It is clear that

– (M, u) |= �1ϕ iff R1(u) ⊆ ||ϕ||v;
– (M, u) |= !1ϕ iff R1(u) ∩ ||ϕ||v = ∅;
– (M, u) |= ϕ iff (M, u) |= ©1ϕ;
– If (M, u) |= ©iϕ, then (M, u) |= ϕ;
– If (M, u) |= �iϕ, then (M, u) |= ©iϕ;

for each i from 1 to n.

The following theorem expresses the connection between the logical connectives
of L and the set-theoretic operations.

Theorem 34. Let M = (U, (R1, . . . , Rn), v) be a Kripke model of SOn. Then,

1. ||⊥||v = ∅;
2. ||�||v = U ;
3. ||¬ϕ||v = U \ ||ϕ||v;
4. ||ϕ ∧ ψ||v = ||ϕ||v ∩ ||ψ||v;
5. ||ϕ ∨ ψ||v = ||ϕ||v ∪ ||ψ||v;
6. ||ϕ → ψ||v = (U \ ||ϕ||v) ∪ ||ψ||v;
7. ||ϕ ≡ ψ||v = ((U \ ||ϕ||v) ∪ ||ψ||v) ∩ ((U \ ||ψ||v) ∪ ||ϕ||v);
8. ||�iϕ||v = {u ∈ U | Ri(u) ⊆ ||ϕ||v and Ri(u) 	= {u}};
9. ||!iϕ||v = {u ∈ U | Ri(u) ∩ ||ϕ||v = ∅ and Ri(u) 	= {u}}; for i from 1 to n.

Let Cln be the class of the Kripke models of SOn, we define the notion of
validity in the models that belong to Cln.

Definition 56. Let M∈ Cln. Then, for each ϕ ∈ Form, we write

– |=M ϕ iff “(M, u) |= ϕ, for every world u in M”, and we say that ϕ is
valid in M;

– |=Cln ϕ iff “|=M ϕ, for every model M in Cln”, and we say that ϕ is valid
in Cln.

From the previous notions of validity, two logical consequence relations can
be formally defined.

Definition 57. For each M∈ Cln, ϕ ∈ Form and Γ ⊆ Form, we write

– Γ |= Mϕ iff “if |=M Γ , then |=M ϕ”, and
– Γ |= Clnϕ iff “if |=Cln Γ , then |=Cln ϕ”.
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Proposition 15. Let i ∈ {1, . . . , n}, the instances of the following schemes are
SOn-tautologies.

Ab�1. !1⊥.
Dist�i

. �i(ϕ ∧ ψ) ≡ �iϕ ∧�iψ.
Dist�i

. !i(ϕ ∨ ψ) ≡ !iϕ ∧!iψ.
P1. ¬©i ϕ → (¬�iϕ ∨ ¬!iϕ).
P2. (¬©i ϕ ∧ ϕ) → (¬�iϕ ∧ ¬!iϕ).

Proof. Let M = (U, (R1, . . . , Rn), v) ∈ Cln, and let u ∈ U .

Ab�1 . By Definition 53, R1(u) 	= {u}; moreover, by Theorem34, ||⊥||v = ∅.
Then, (M, u) |= !1⊥.

Dist�i
. By Theorem 34, ||ϕ∧ψ||v = ||ϕ||v ∩ ||ψ||v. Trivially, Ri(u) ⊆ ||ϕ∧ψ||v if

and only if Ri(u) ⊆ ||ϕ||v and Ri(u) ⊆ ||ψ||v. Then, (M, u) |= �i(ϕ ∧ ψ) if
and only if (M, u) |= �iϕ ∧�iψ.

Dist�i
. (M, u) |= !i(ϕ ∨ ψ) if and only if Ri(u) ⊆ ||ϕ ∨ ψ||v and Ri(u) 	=

{u}. By Proposition 14, Ri(u) ∩ ||ϕ ∨ ψ||v = Ri(u) ∩ (||ϕ||v ∪ ||ψ||v). Since
Ri(u) ∩ (||ϕ||v ∪ ||ψ||v) = (Ri(u) ∩ ||ϕ||v) ∪ (Ri(u) ∩ ||ψ||v), we have that
Ri(u) ∩ ||ϕ ∨ ψ||v = ∅ if and only if Ri(u) ∩ ||ϕ||v = ∅ and Ri(u) ∩ ||ψ||v = ∅.
Then, (M, u) |= !iϕ and (M, u) |= !iψ.

P1. Suppose that (M, u) |= ¬ ©i ϕ. Then, (M, u) 	|= ϕ or Ri(u) = {u}. If
(M, u) 	|= ϕ, then ¬�iϕ is true at u in M. If Ri(u) = {u}, then both ¬�iϕ
and ¬!iϕ are true at u in M.

P2. If (M, u) |= ¬©i ϕ ∧ ϕ, then Ri(u) = {u}. Consequently, both ¬�iϕ and
¬!iϕ are true at u in M.

Axiomatic System of SOn

The orthopaired modal logic SOn is the smallest set of sentences that contains
the instances of the axiom schemes of propositional logic and the instances of
the axiom schemes of Definition 58, and that is closed under the inference rules
of Definition 59.

Definition 58 (Axioms of SOn).

Z�1. �1�.
Def1. �iϕ ≡ !i¬ϕ.
Def2. ©iϕ ≡ ©i� ∧ ϕ.
K�i

. �i(ϕ → ψ) → (�iϕ → �iψ).
T�i

. �iϕ → ϕ.
B�i

. ©iϕ → �i¬!iϕ.
4�i

. �iϕ → �i�iϕ.
Eq. ©i� ≡ �i�.
R1©i

. ©iϕ → (�jϕ → �iϕ), with j ≤ i.
R2©i

. �iϕ →©iϕ.
Nst©i

. ©iϕ→©jϕ, with 0 < j ≤ i.
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Definition 59 (Inference rules of SOn).

MP.
ϕ, ϕ → ψ

ψ
(Modus Ponens).

�iMn.
ϕ→ ψ

�iϕ→ �iψ
, for each i ∈ I.

We notice that Schema Z�1 ensures that all equivalence classes of the first
accessibility relation of the SOn-models are not singletons. Furthermore, fixed
i ∈ {1, . . . , n}, Schema Def1 allows us to obtain �i through the modal operator
!i; vice-versa, we also have that !iϕ ≡ �i¬ϕ. Trivially, Def2 is introduced
to individuate the possible worlds of which the i-th equivalence class is a sin-
gleton. Schemas K�i

, T�i
and 4�i

are respectively the schemas K, T, and 4
that characterized S4 (see Definition 51), where � = �i and ♦ = ¬!i. Thus,
K�i

states that the operator �i distributes over the implication →; T�i
and

4�i
express respectively that the accessibility relations of all SOn-models are

reflexive and transitive relations. On the other hand, taking �i = �, B�i
is not

equal to B; they are different because the hypothesis of B�i
(©iϕ) is stronger

than the hypothesis of B (ϕ); so, we can say that each relation of each Kripke
model of SOn is a strongly symmetric relation. Furthermore, B�1 is equal to B,
since Z�1 requires that the condition R1(u) 	= {u} is satisfied, for each possible
world u, and for each accessibility relation R1 of the SOn-models. Moreover,
by Schema B�i

, we can observe that the accessibility relations of the SOn-
models satisfy the euclidean property. Also, we have to stress that the modal
operator !i corresponds to the negation of the possibility operator ♦ of every
modal logic. In addition, the schemas Eq, R1©i

, R2©i
and Nst©i

provide some
connections between the operators ©i and �i. More precisely, Eq affirms that
both (M, u) |= ©i� and (M, u) |= �i� mean that Ri(u) is not a single-
ton. R1©i

guarantees that each relation is finer than the previous one, namely
Ri+1(u) ⊆ Ri(u) for each i > 1. By R2©i

, we have that ©i follows from �i. On
the other side, Nst©i

states that if Ri(u) is not a singleton, then all equivalence
classes of the previous relations to Ri containing u are not singletons. Finally,
we can notice that T�i

is obtained from Def2 and R2©i
.

Remark 24. Suppose that Schema Z�1 is substituted by the schemas ¬ ©1 �,
. . . , ¬ ©n �. Then, each equivalence class of each accessibility relation of the
SOn-models is a singleton. In this case, it is clear that all axiom schemas of
Definition 58 are trivially satisfied by each SOn-model. Moreover, if n = 1, then
the axiom schemas Eq, R1©1 , R2©1 and Nst©1 are trivially satisfied by each
SO1-model. Thus, the axiom schemas of our logic is obtain by adding Z�1 to
those of modal logic S5 and by setting �1 = � and !1 = ¬♦. Clearly, in
this case, the Kripke models of SO1 are all Kripke models of S5 such that the
equivalence classes of their accessibility relations are not singletons.

Soundness and Completeness of SOn

Next, we prove the soundness of SOn system with respect to the class of models
Cln already defined.



Sequences of Refinements of Rough Sets 101

Theorem 35. The axiom schemes of SOn are valid in the class Cln, and the
rules preserve the validity in this class.

Proof. Let M = (U, (R1, . . . , Rn), v) be a model of Cln. Fixed u ∈ U , we prove
that each instance of the axiom schemas of SOn is true at u in M.

Z�1 . By Definition 53, R1(u) 	= {u}, and by Theorem 34, ||�||v = U . Then,
(M, u) |= �1�.
Def1. (M, u) |= �iϕ if and only if Ri(u) ⊆ ||ϕ||v and Ri(u) 	= {u}, by Defini-
tion 55. Moreover, Ri(u) ⊆ ||ϕ||v if and only if Ri(u)∩ (U \ ||ϕ||v) = ∅. However,
by Theorem 34, U \ ||ϕ||v = ||¬ϕ||v, So, it is clear that (M, u) |= !i¬ϕ.
Def2. It is trivial.
K�i

. Suppose that (M, u) |= �i(ϕ → ψ) and (M, u) |= �iϕ. Then, Ri(u) 	=
{u}, Ri(u) ⊆ ||ϕ → ψ||v and Ri(u) ⊆ ||ϕ||v. By Theorem 34, ||ϕ → ψ||v = (U \
||ϕ||v)∪||ψ||v. Therefore, it is obvious that Ri(u) ⊆ ||ψ||v and so (M, u) |= �iψ.
T�i

. Suppose that (M, u) |= �iϕ. Then, Ri(u) ⊆ ||ϕ||v. By Definition 53, Ri is
reflexive and so u ∈ Ri(u). Consequently, (M, u) |= ϕ.
B�i

. Suppose that (M, u) |= ©iϕ. Then, (M, u) |= ϕ and Ri(u) 	= {u}. Since
u ∈ ||ϕ||v, we have that

Ri(u) ∩ ||ϕ||v 	= ∅. (38)

On the other hand,

||!iϕ||v = {v ∈ U | Ri(v) 	= {v} and Ri(v) ∩ ||ϕ||v = ∅}. (39)

By Eq. 38 and 39, Ri(u) ∩ ||!iϕ||v = ∅. Therefore, Ri(u) ⊆ U \ ||!iϕ||v and so
Ri(u) ⊆ ||¬!iϕ||v. Consequently, (M, u) |= ¬!iϕ.
4�i

. If (M, u) |= �iϕ, then Ri(u) ⊆ ||ϕ||v and Ri(u) 	= {u}. On the other
hand, ||�iϕ||v = ∪u∈U{Ri(u) | Ri(u) 	= {u}}. Then, Ri(u) ⊆ ||�iϕ||v. Therefore,
(M, u) |= �i�iϕ.
Eq. By Theorem 34, we have that ||�||v = U . Then, both �i� and ©i� are
true at u in M if and only if Ri(u) 	= {u}.
R1©i

. Suppose that (M, u) |= ©iϕ and (M, u) |= �jϕ. Then Rj(u) ⊆ ||ϕ||v.
Since j ≤ i, Ri(u) ⊆ Rj(u). Therefore, Ri(u) ⊆ ||ϕ||v. Since (M, u) |= ©iϕ, we
also have that Ri(u) 	= {u}. Then, (M, u) |= �iϕ.
R2©i

. Trivially, Ri(u) ⊆ ||ϕ||v implies that u ∈ ||ϕ||v, since Ri is a reflexive
relation.
Nest©i

. Let j ≤ i, if Ri(u) 	= {u} then Rj(u) 	= {u}, since Ri(u) ⊆ Rj(u);
indeed (M, u) |= ©iϕ →©jϕ.

We prove that if the hypothesis of the inference rules are true at u in M, then
the thesis is also true at u in M.

MP. It is trivial.
�iMn. By Theorem 34, if (M, u) |= ϕ → ψ, then ||ϕ||v ⊆ ||ψ||v. If (M, u) |=
�iϕ, then Ri(u) ⊆ ||ϕ||v and Ri(u) 	= {u}. Then, it is clear that (M, u) |= ψ.
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Corollary 3. The SOn system is sound with respect to the class of models Cln
(i.e. if #SOn

ϕ then |=Cln ϕ, for each ϕ ∈ Form).

We usually write “#SOn
ϕ” to mean that ϕ is a theorem of SOn, this is

#SOn
ϕ.

In terms of theoremhood, we can characterize notions of deducibility and
consistency.

Definition 60. A formula ϕ of Form is deductible or derivable from a set of
sentences Γ in the system SOn, written Γ #SOn

ϕ, if we have

#SOn
(ϕ1 ∧ ... ∧ ϕn) → ϕ,

where ϕ1, . . . , ϕn are formulas in Γ .

Definition 61. A subset Γ of Form is consistent in SOn, written ConSOn
Γ , if

and only if the falsum is not deducible from Γ in SOn, namely Γ 	#SOn
⊥.

Thus, Γ is inconsistent in SOn just when Γ #SOn
⊥.

Next, we define the idea of a canonical model for axiomatic system SOn, and
we prove some fundamental theorems about completeness. Before of introducing
the concept of canonical model, we need to define the concept of maximality.
Intuitively, a set of formulas is maximal if it is consistent, and it contains as
many formulas as it can without becoming inconsistent. We write MaxSOn

Γ to
indicate that Γ is SOn-maximal, and we formally give the definition as follows.

Definition 62. Let Γ ⊆ Form, MaxSOn
Γ if and only if

1. ConsSOn
Γ , and

2. for each ϕ ∈ Form, if ConsSOn
( Γ

⋃
{ϕ} ) then ϕ ∈ Γ .

Now, we have to recall Theorem 36, the Lindenbaum’s lemma and its two
corollaries (found in [29]) for the maximal consistent sets of logical systems. By
logical system, we mean be any set which contains certain initial axioms and
which is closed under certain rules of inference. Moreover, we write MaxΣΓ to
denote that Γ is Σ-maximal.

Theorem 36. Let Σ be a logical system, and let MaxΣΓ , then

1. ¬ϕ ∈ Γ iff ϕ /∈ Γ ;
2. ϕ ∧ ψ ∈ Γ iff ϕ ∈ Γ and ψ ∈ Γ ;
3. ϕ → ψ ∈ Γ iff if ϕ ∈ Γ , then ψ ∈ Γ .

Theorem 37 (Lindenbaum’s lemma). [90] Let Σ be a logical system. If
ConΣΓ , then there is a MaxΣΔ such that Γ ⊆ Δ

Corollary 4. Let Σ be a logical system. Then,

#Σ ϕ if and only if ϕ ∈ Δ,

for every MaxΣΔ.
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Corollary 5. Let Σ be a logical system. Then, Γ #Σ ϕ if and only if ϕ is an
element of every MaxΣΔ such that Γ ⊆ Δ.

In terms of maximality we can define what we shall call the proof set of
a formula. Relative to system SOn, the proof set of a formula ϕ (denoted by
| ϕ |SOn

) is the set of SOn-maximal sets containing ϕ.

Definition 63. Let ϕ ∈ Form, we set

| ϕ |SOn
= {MaxSOn

Γ | ϕ ∈ Γ}.

We can state that a formula is deducible from a set of formulas if and only if it
belongs to every maximal extension of the set.

Theorem 38. Let Γ ⊆ Form, and let ϕ ∈ Form. Then,

Γ #SOn
ϕ if and only if ϕ ∈ Δfor every Δ ∈| Γ |SOn

Proof. It follows from the Lindenbaum’s Lemma.

Definition 64. The canonical model of SOn is the structure

M∗ = (U∗, (R∗
1, . . . , R

∗
n), v∗)

that satisfies the following conditions.

1. U∗ = {Γ ⊆ Form : MaxSOn
Γ};

2. For every w′, w ∈ U∗, w′ ∈ R∗
i (w) iff {ϕ|�iϕ ∈ w} ⊆ w′ (namely, wR∗

i w
′ if

and only if every formula ϕ belongs to w′, whenever �iϕ belongs to w), and
©i� ∈ w;

3. v∗(p) = | p |SOn
, for each p ∈ Var.

The canonical model has this property: if w ∈ U∗, then the formulas that are
true at w in M∗ are all and only the formulas belonging to w. More precisely,
the following theorem holds.

Theorem 39. Let M∗ be the canonical model of SOn. Then, for every possible
world w of M∗ and for every formula ϕ of Form,

(M∗, w) |= ϕ if and only if ϕ ∈ w. (40)

Proof. In order to prove the statement 40, we use the induction on the length
of the formulas. By the definition of v∗ and by Definition 63, the propositional
variables satisfy 40 (case base). Suppose that the statement 40 holds for the
formulas ϕ and ψ (induction hypothesis), we intend to prove that ¬ϕ, ϕ ∧ ψ,
�iϕ and ©iϕ satisfy 40 for each i ∈ {1, . . . , n} (induction step).

(¬ϕ). By Definition 55, (M∗, w) |= ¬ϕ if and only if (M∗, w) 	|= ϕ. By induction
hypothesis, we have that ϕ /∈ w, namely ¬ϕ /∈ w, since Theorem 36 holds.
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(ϕ ∧ ψ). By Definition 55, (M∗, w) |= ϕ ∧ ψ if and only if (M∗, w) |= ϕ and
(M∗, w) |= ψ. By induction hypothesis, we have that ϕ ∈ w and ψ ∈ w,
namely ϕ ∧ ψ ∈ w, since Theorem 36 holds.

(�iϕ). Suppose that (M∗, w) |= �iϕ. Then, by Definition 55, R∗
i (u) ⊆ ||ϕ||v∗ .

Therefore, if w′ ∈ U∗ and {ψ | �iψ ∈ w} ⊆ w′, then (M∗, w′) |= ϕ.
By induction hypothesis, ϕ ∈ w′. Then, w′ #SOn

ϕ, by Theorem 36. By
Corollary 5, {ψ | �iψ ∈ w} #SOn

ϕ. So, by Definition 60, #SOn
ψ1∧. . .∧ψn →

ϕ. By rule �iMn, # �iψ1 ∧ . . . ∧ �nψ → �iϕ ∈ w. Moreover, by modus
ponens, �iϕ ∈ w.
Let �iϕ ∈ w, we intend to prove that R∗

i (w) ⊆ ||ϕ||v∗ and R∗
i (w) 	= {w}.

Firstly, suppose that w′ ∈ R∗
i (w), then {ψ | �iψ ∈ w} ⊆ w′. Thus, ϕ ∈ w,

since �iϕ ∈ w. Then, w ∈ ||ϕ||v∗ .
By schema R2©i

, �iϕ → ©iϕ ∈ w and by hypothesis ©iϕ ∈ w. Then, by
modus ponens, ©iϕ ∈ w, and so R∗

i (w) 	= {w}.
(©iϕ). (M∗, w) |= ©iϕ if and only if (M∗, w) |= ϕ and (M∗, w) |= ©i�.

Then, by induction hypothesis, ϕ ∈ w and by definition of canonical model
©i� ∈ w. They are equivalent to say that ϕ ∧©i� ∈ w, namely ©iϕ ∈ w.

Theorem 40. The canonical model M∗ = (U∗, (R∗
1, . . . , R

∗
n), v∗) is a Kripke

model of SOn.

Proof. (R∗
i is reflexive). Let w ∈ U∗ such that �iϕ ∈ w. By the schema Ti

of Definition 58 (�iϕ → ϕ) and by Theorem 36, we have that ϕ ∈ w. Then,
wR∗

i w.
(R∗

i is symmetric). Suppose that wR∗
i w

′, with w 	= w′. Therefore, R∗
i (w) 	= {w}

(consequently, ©i� ∈ w), and {ϕ ∈ Form | �iϕ ∈ w} ⊆ w′. Let ϕ ∈ Form
such that �iϕ ∈ w′. We have to prove that ϕ ∈ w. If ϕ /∈ w, then ¬ϕ ∈ w. By
Schema Def2, ©i¬ϕ ∈ w. By Schema B�i

and by Theorem36, �i¬!i¬ϕ ∈
w. By hypothesis, ¬!i¬ϕ ∈ w′, namely !i¬ϕ /∈ w′. By Schema Def1, �iϕ /∈
w′. The latter is an absurd, since we have assumed that �iϕ ∈ w′.

(R∗
i is transitive). Suppose that wR∗

i w
′ and w′R∗

i w
′′. Consequently, {ϕ ∈

Form | �iϕ ∈ w} ⊆ w′ and {ϕ ∈ Form | �iϕ ∈ w′} ⊆ w′′. Let ϕ ∈ Form such
that �iϕ ∈ w, we have to prove that ϕ ∈ w′′. By schema 4�i

of Definition 58
and Theorem 36, if �iϕ ∈ w, then �i�iϕ ∈ w. By hypothesis, �iϕ ∈ w′ and
so ϕ ∈ w′′.

(R∗
1(w) 	= {w}, for each w ∈ U∗). We consider w ∈ U∗. By Definition 64,
©i� ∈ w. Then, ©1� ∈ w and so R∗

1(w) 	= {w}.
(R∗

i+1(w) ⊆ R∗
i (w), for each i ∈ {1, . . . , n−1}). Let w′ ∈ R∗

i+1(w) and ϕ ∈ Form
such that �iϕ ∈ w. We have to prove that ϕ ∈ w′. By Schema T�i

, the
hypothesis that �iϕ ∈ w implies that ϕ ∈ w. By Definition 64, ©i+1� ∈ w.
Consequently, ©i� ∧ ϕ ∈ w and so ©i+1ϕ ∈ w.
Since Ri+1(w) 	= {w}, then ©i+1� ∈ w. By schema R1©i

of Definition 58
and Theorem 36, �i+1ϕ ∈ w. Then, ϕ ∈ w′.
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5.3 Orthopaired Kripke Model and Sequences of Orthopairs

In this section, we intend to investigate on the connections between sequences
of orhopairs and modal logic SOn. The relationships between rough sets and
modal logic have been explored by several authors (see [69] for a list); the most
studied one concerns Pawlak set theory and modal logic S5 [8,90]. As we have
already said in Sect. 5.1, the intuition behind this link is that the lower and the
upper approximations can be regarded as two unary operations on subsets of the
given universe. Thus, let U be a universe, and let R be an equivalence relation
on U , the Pawlak rough set algebra (2U ,∩,∪,¬,LR,UR, ∅, U) is an extension
of the Boolean algebra (2U ,∩,∪,¬, ∅, U) (see Remark 3), and then it may be
interpreted in terms of the notions of topological space and topological Boolean
algebra [8].

Firstly, we prove that there is a one-to-one correspondence between refine-
ment sequences and Kripke frames of SOn.

Without loss of generality, let be C = (C1, . . . , Cn) a refinement sequence of
U , we suppose that its first partition C1 covers U .

Let n be a positive integer. We denote the set of all refinement sequences
made of n partial partitions with RSn, and the set of all Kripke frames of SOn

made of n equivalence relations with Fn.

Definition 65. We consider the map f : RSn �→ Fn, where, let C ∈ RSn, f(C) =
(U, (R1, . . . , Rn)) ∈ Fn such that

1. U = ∪{b | b ∈ C1},
2. uRiv if and only if u = v or {u, v} ⊆ b, with b ∈ Ci; for each u, v ∈ U and

i ∈ {1, . . . , n}.

Clearly, let (U, (R1, . . . , Rn)) ∈ Fn, then f−1((U, (R1, . . . , Rn))) is the refinement
sequence (C1, . . . , Cn) of U such that

Ci = {Ri(u) | u ∈ U and Ri(u) 	= {u}}.

Proposition 16. The function f is a bijection.

Proof. It is trivial.

Let C ∈ RSn, we denote f(C) with FC . vice versa, let F ∈ Fn, we denote
f−1(C) with CF .

Example 40. Let C = (C1 = {{a, b, c}, {d, e}}, C2 = {{a, b}}) be a refinement
sequence of {a, b, c, d, e}. Then, f(C) = ({a, b, c, d, e}, (R1, R2)), where

1. R1 = {(a, b), (b, a), (a, c), (c, a), (b, c), (c, b), (d, e), (e, d)} ∪ {(u, u) | u ∈
{a, b, c, d, e}} and

2. R2 = {(a, b), (b, a)} ∪ {(u, u) | u ∈ {a, b, c, d, e}}.

Vice versa, f−1(({a, b, c, d, e}, (R1, R2)) = C.
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Therefore, function f allows us to identify Kripke frames of SOn logic having
U as universe with refinement sequences of partial partitions of U . Furthermore,
we can observe that Kripke frame (U, (R1, . . . , Rn)) corresponds to the sequences
of Pawlak spaces ((U,R1), . . . , (U,Rn)).

The following theorem establishes a connection between sequences of
orthopairs and the modal operators (�1, . . . ,�n) and (!1, . . . ,!n) of SOn logic.

Theorem 41. Let F = (U, (R1, . . . , Rn)) ∈ Fn and (F , v) ∈ Cn. Then,
(||�iϕ||v, ||!iϕ||v) is the orthopair of ||ϕ||v generated by the i-th partition of
CF . Therefore,

( (||�1ϕ||v, ||!1ϕ||v), . . . , (||�nϕ||v, ||!nϕ||v) )

is the sequence of orthopairs of ||ϕ||v generated by CF .

Proof. The proof follows by Definition 55 (point 4), Proposition 14 (point 2) and
Definition 65.

Example 41. Let F be the Kripke frame of Example 40. We suppose that Var =
{p, q} and we consider the Kripke model (F , v) such that v(p) = {a, b, c}, and
v(q) = {a, b, d}. Then, ||p ∧ q||v = {a, b}. Moreover,

( (||�1 p∧q||v, ||!1 p∧q||v), (||�2 p∧q||v, ||!2 p∧q||v) ) = ((∅, {d, e}), ({a, b}, ∅)),

that is the sequence OCF (||ϕ||v).

Trivially, let v and v’ be two evaluation functions such that v 	= v’, then the
sequence OCF (||ϕ||v) is not usually equal to OCF (||ϕ||v′).

Example 42. We consider the Kripke model (F , v) of Example 41 and the Kripke
model (F , v’) such that v’(p) = {a, d, e} and v’ = {d, e}.
Then, ||p∧ q||v’ = {d, e} and so OCF (||ϕ||v’) = (({d, e}, {a, b, c}), (∅, {a, b})), that
is not equal to the sequence OCF (||ϕ||v).

Given a Kripke model (F , v) of SOn and two formulas ϕ and ψ, there exists a
formula obtained from ϕ and ψ that is valid in (FC , v) if and only if the sequences
of orthopairs of ||ϕ||v and ||ψ||v generated by CF are equal to each other. More
precisely, the following theorem holds.

Theorem 42. Let ϕ,ψ ∈ Form and (F , v) ∈ Cn, then

OCF (||ϕ||v) = OCF (||ψ||v) iff |=(F,v)
n∧

i=1

(�iϕ ≡ �iψ) ∧ (!iϕ ≡ !iψ).

Proof. Notice that, by Proposition 14, |=(F,v) (�iϕ ≡ �iψ) if and only if
||�iϕ||v = ||�iψ||v, for each i ∈ {1, . . . , n}. Then, the thesis clearly follows.

The following remark shows that the modal operators ©1, . . . ,©n allow us to
understand what are the elements that are lost during the refinement process.
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Remark 25. Let C = (C1, . . . , Cn) be a refinement sequence of U , through the
modal operator ©i, it is easy to check whether an element of U belongs to a
block of the Ci; thus, let u ∈ U and i ∈ {1, . . . , n}, we have that

u ∈
⋃

b∈Ci

b if and only if ((FC , v), u) |= ©i�,

for each evaluation function v.

Furthermore, we can express the property of safety of refinement sequences of
partial partitions by using the modal operators (�1, . . . ,�n) and (©1, . . . ,©n)
(the meaning of safe refinement sequence is given in Definition 44).

Theorem 43. Let C be a refinement sequence of U . Then, C is safe if and only
if the following condition holds:

“if (M, u) |= �iϕ and i ≤ j, then Ri(u) = Rj(u) or there exists u′ ∈ Ri(u)
such that (M, u′) |= ¬ ©j ϕ” (or “if (M, u) |= !iϕ, then Ri(u) = Rj(u) or
there exists u′ ∈ Ri(u) such that (M, u′) |= ¬ ©j ¬ϕ”), for each ϕ ∈ Form,
M = (FC , v) ∈ Cn, u ∈ U and i ∈ {1, . . . , n− 1}.

Proof. (⇒). We suppose that (M, u) |= �iϕ and Ri(u) 	= Rj(u), with j > i.
We notice that Ri(u) ∈ Ci, since Ri(u) 	= {u}. On the other hand, Ri(u) /∈ Cj ,
since Ri(u) 	= Rj(u). So, we call N1, . . . , Nm the blocks of Cj that are included
in Ri(u). By Remark 13, the successors N ′

1, . . . , N
′
l of Ri(u) belong to Ck, where

i < k ≤ j. Since C is safe, there exists u′ ∈ Ri(u) such that u′ /∈ N ′
1 ∪ . . . ∪ N ′

l

(see Definition 44). Then, u′ /∈ ∪{b | b ∈ Ck} and so u′ /∈ ∪{b | b ∈ Cj}. Then,
Rj(u′) = {u′} and this means that (M, u′) |= ¬©j ϕ.

(⇐). Let N ∈ PC . Suppose that N1, . . . , Nm are the successors of N in
PC . We intend to prove that N1 ∪ . . . ∪ Nm ⊂ N . We consider the evaluation
function v such that v(p) = N , where p ∈ Var. If N ∈ Ci, then there exists
u ∈ U such that N = Ri(u). Trivially, we have that ((FC , v), u) |= �ip. We
notice that N1, . . . , Nm belong to Cj , with j > i. By hypothesis, there exists
u′ ∈ Ri(u)(= N) such that ((FC , v), u) |= ¬©i p. Then Rj(u′) 	= {u′} and so u′

does not belong to some nodes of Cj . Therefore, u′ ∈ N , but u′ /∈ N1 ∪ . . .∪Nm

and so by Definition 44, C is safe.

As a consequence of the previous theorem, we can express the results of
Corollary 2 for refinement sequences of partial partitions by using the modal
operators (�1, . . . ,�n) and (©1, . . . ,©n) as follows.

Theorem 44. Let C = (C1, . . . , Cn) be a refinement sequence of U . Then, K
3
C

is a finite IUML-algebra if and only if the following condition holds:
“if (M, u) |= �iϕ and i ≤ j, then Ri(u) = Rj(u) or there exists u′ ∈ Ri(u)

such that (M, u′) |= ¬ ©j ϕ” (or “if (M, u) |= !iϕ, then Ri(u) = Rj(u) or
there exists u′ ∈ Ri(u) such that (M, u′) |= ¬ ©j ¬ϕ”), for each ϕ ∈ Form,
M = (FC , v) ∈ Cn, u ∈ U and i ∈ {1, . . . , n− 1}.

However, by using modal logic, we can also express the results obtained for the
structures K

1
C , K

2
C and K

4
C in Sect. 4, but only when C is a refinement sequence
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of partial partitions (we recall that such algebraic structures, except K
3
C , are

generated by refinement sequences of partial coverings of the given universe).
At the end of this section, we intend to include the operations �, �, ↪→1,

�2, ↪→2, �3 and ↪→3 defined on sequences of orthopairs of partial partitions (see
Definition 50) in our modal logic.2

Theorem 45. Let ϕ,ψ ∈ Form and (F , v) ∈ Cln. If CF is safe, then

OCF (||ϕ||v) �OCF (||ψ||v) = ((A1, B1), . . . , (An, Bn)),

where (Ai, Bi) = (||�iϕ∧�iψ||v 3, ||!iϕ∨!iψ||v), for each i ∈ {1, . . . , n}, and

OCF (||ϕ||v) �OCF (||ψ||v) = ((C1,D1), . . . , (Cn,Dn)),

where (Ci,Di) = (||�iϕ ∨�iψ||v, ||!iϕ ∧!iψ||v4 ), for each i ∈ {1, . . . , n}.

Proof. By Theorem 30, OCF (||ϕ||v) � OCF (||ψ||v) = ((A1, B1), . . . , (An, Bn)),
such that (Ai, Bi) = (Li(||ϕ||v), Ei(||ϕ||v))∧K(Li(||ψ||v), Ei(||ψ||v)) = (Li(||ϕ||v)∩
Li(||ψ||v), Ei(||ϕ||v)∪Ei(||ψ||v)). Suppose that u ∈ U , we have that u ∈ Li(||ϕ||v)∩
Li(||ψ||v) if and only if Ri(u) ⊆ ||ϕ||v, Ri(u) ⊆ ||ψ||v and Ri(u) 	= {u}, namely
u |= �iϕ ∧�iψ. Moreover, u ∈ Ei(||ϕ||v) ∪ Ei(||ψ||v) if and only if Ri(u) 	= {u}
and either Ri(u) ⊆ ||ϕ||v or Ri(u) ⊆ ||ψ||v, namely u |= !iϕ ∨!iψ. The proof
for the operation � is analogous.

Definition 66. Let ϕ,ψ ∈ Form, we recursively define the sequences of formu-
las (α1(ϕ,ψ), . . . , αn(ϕ,ψ)), (β1(ϕ,ψ), . . . , βn(ϕ,ψ)), (γ1(ϕ,ψ), . . . , γn(ϕ,ψ)),
(δ1(ϕ,ψ), . . . , δn(ϕ,ψ)), (ε1(ϕ,ψ), . . . , εn(ϕ,ψ)), (ζ1(ϕ,ψ), . . . , ζn(ϕ,ψ)),
(η1(ϕ,ψ), . . . , ηn(ϕ,ψ)), (θ1(ϕ,ψ), . . . , θn(ϕ,ψ)), (ι1(ϕ,ψ), . . . , ιn(ϕ,ψ)) and
(κ1(ϕ,ψ), . . . , κn(ϕ,ψ)) as follows.

– αn(ϕ,ψ) := ¬�nϕ ∨�nψ;
– αi(ϕ,ψ) := (¬�iϕ ∨�iψ) ∧ ¬αi+1(ϕ,ψ), with i ∈ {1, . . . , n− 1};
– βi(ϕ,ψ) := �iϕ ∧�iψ, with i ∈ {1, . . . , n};
– γi(ϕ,ψ) := �iϕ ∧�iψ, with i ∈ {1, . . . , n};
– δn(ϕ,ψ) := λn(ϕ,ψ);
– δi(ϕ,ψ) := λi(ϕ,ψ) ∧ ¬δi+1(ϕ,ψ), with i ∈ {1, . . . , n− 1}, where

λi(ϕ,ψ) := ¬(�iϕ ∨�iψ) ∨�iϕ ∨�iψ.

– εn(ϕ,ψ) := μn(ϕ,ψ);
– εi(ϕ,ψ) := μi(ϕ,ψ) ∧ ¬εi+1(ϕ,ψ), with i ∈ {1, . . . , n− 1}, where

μi(ϕ,ψ) := (¬�iϕ ∨�iψ) ∧ (!iϕ ∨ ¬!iψ).

– ζi(ϕ,ψ) := �iϕ ∧!iψ, with i ∈ {1, . . . , n};
2 We exclude the operations 
4 and ↪→4, since they can not be obtained starting from

operations between the orthopairs.
3 By Preposition 15, �iϕ ∧ �iψ = �i(ϕ ∧ ψ).
4 By Preposition 15, �iϕ ∧ �iψ = �i(ϕ ∨ ψ).
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– η1(ϕ,ψ) := ν1(ϕ,ψ);
– ηi(ϕ,ψ) := νi(ϕ,ψ) ∨�iηi−1(ϕ,ψ), with i > 1 and

νi(ϕ,ψ) = (�iϕ ∧ ¬!iψ) ∨ (�iψ ∧ ¬!iϕ).

– θi(ϕ,ψ) := (!iϕ ∨!iψ) ∧ ¬ ηi(ϕ,ψ), with i ∈ {1, . . . , n};5
– ιi(ϕ,ψ) := ((¬�iϕ ∨�iψ) ∧ (!iϕ ∨ ¬!iψ)) ∧ κi(ϕ,ψ), for each

i ∈ {1, . . . , n};
– κ1(ϕ,ψ) := �1ϕ ∧!1ψ;
– κi(ϕ,ψ) := (�iϕ ∧!iψ) ∨ κi−1(ϕ,ψ), for each i ∈ {2, . . . , n}.

Theorem 46. Let ϕ,ψ ∈ Form and (F , v) ∈ Cn. If CF is safe, then

OCF (||ϕ||v) ↪→1 OCF (||ψ||v) = ((E1, F1), . . . , (En, Fn)),

where (Ei, Fi) = (||αi(ϕ,ψ)||v, ||βi(ϕ,ψ)||v), for each i ∈ {1, . . . , n}.

OCF (||ϕ||v)�2 OCF (||ψ||v) = ((G1,H1), . . . , (Gn,Hn)),

where (Gi,Hi) = (||γi(ϕ,ψ)||v, ||δi(ϕ,ψ)||v), for each i ∈ {1, . . . , n}.

OCF (||ϕ||v) ↪→2 OCF (||ψ||v) = ((I1, J1), . . . , (In, Jn)),

where (Ii, Ji) = (||εi(ϕ,ψ)||v, ||ζi(ϕ,ψ)||v), for each i ∈ {1, . . . , n}.

OCF (||ϕ||v)�3 OCF (||ψ||v) = ((K1, L1), . . . , (Kn, Ln)),

where (Ki, Li) = (||ηi(ϕ,ψ)||v, ||θi(ϕ,ψ)||v), for each i ∈ {1, . . . , n}.

OCF (||ϕ||v) ↪→3 OCF (||ψ||v) = ((M1, N1), . . . , (Mn, Nn)),

where (Mi, Ni) = (||ιi(ϕ,ψ)||v, ||κi(ϕ,ψ)||v), for each i ∈ {1, . . . , n}.

Proof. We only provide the proof for the operation �3, since those of the remain-
ing cases are analogous.

Let u ∈ U ,

((F , v), u) |= νi iff ((F , v), u) |= �1ϕ ∧ ¬!1ψ or ((F , v), u) |= �1ψ ∧ ¬!1ϕ,

that is

– Ri(u) ⊆ ||ϕ||v, Ri(u) 	= {u} and Ri(u) ∩ ||ψ||v 	= ∅, or
– Ri(u) ⊆ ||ψ||v, Ri(u) 	= {u} and Ri(u) ∩ ||ϕ||v 	= ∅.

Consequently, we obtain that

((F , v), u) |= νi if and only if u ∈ (Li(ϕ) \ Ei(ψ)) ∪ (Li(ψ) \ Ei(ϕ)).

5 Observe that this expression is equivalent to (�iϕ \ �iψ ∧ �iψ \ �iϕ).
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Trivially, we can observe that

((F , v), u) |= �iηi−1(ϕ,ψ) iff Ri(u) ⊆ ||ηi−1(ϕ,ψ)||v and Ri(u) 	= {u},

and
((F , v), u) |= θi(ϕ,ψ) iff u ∈ Ei(||ϕ||v) ∪ Ei(||ψ||v).

By Theorem 33 and by (X,Y ) ∗S (Z,W ) = ((X \ W ) ∪ (Z \ Y ), Y ∪ W ) (see
Definition 11), we obtain that the i-th component of the sequence OCF (||ϕ||v)�3

OCF (||ψ||v) is (||ηi(ϕ,ψ)||v, ||θi(ϕ,ψ)||v).

5.4 Epistemic Logic SOn

In this section, we employ modal logic SOn and describe the knowledge of an
agent during a sequence (t1, . . . , tn) of consecutive instants of time. Also, we
intend to establish whether the given agent is interested in knowing the truth
or falsity of the sentences at every instant of (t1, . . . , tn). In detail, we represent
situations in which, given an agent A and a sequence (t1, . . . , tn),

– A knows more information at time ti+1 than at time ti, and
– A is less interested in knowing at time ti+1 than at time ti.

Example 43. We suppose that a restaurant owner manages seven restaurants
in seven Italian cities: Viterbo, Rieti, Rome, Latina, Frosinone, Potenza and
Matera. He needs to know the weather report for tomorrow in order to decide
whether to set up the gardens of his restaurants. At time t1, he knows by speaking
with a friend, that it is cloudy throughout Lazio, consequently it is cloudy in
Viterbo, Rieti, Rome, Latina and Frosinone, but he does not know the weather
in Potenza and Matera. At time t2 > t1, he finds the weather report on Internet,
and he knows that it is cloudy with a chance of rain in Viterbo and Rieti, it
is cloudy without rain in Latina and Frosinone, and it is sunny in Matera and
Potenza. Since he decides that the restaurant will be close in Rome, he does not
look for any information about the weather there. This situation is synthesized
in Table 13, where C, C + R, C−R and S denote respectively cloudy, cloudy with
rain, cloudy without rain and sunny. Moreover, the symbol × means that the
restaurant owner excludes Rome from all cities he is interested in knowing the
weather, and ? means that he has not information about the respective cities.

Table 13. Information about the weather

Viterbo Rieti Rome Latina Frosinone Potenza Matera

t1 C C C C C ? ?

t2 C + R C + R × C − R C − R S S

Table 13 corresponds to a refinement sequence made of the partial partitions
C1 and C2, where
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– C1 = {{Viterbo, Rieti, Rome, Latina, Frosinone}, {Potenza, Matera}} and
– C2 = {{Viterbo, Rieti}, {Latina, Frosinone}, {Potenza, Matera}}.

Then, each block of C1 is the set of the cities that, at time t1, have the
same weather with respect to the knowledge of the restaurant owner, and C2

is made of the cities that, at time t2, have the same weather with respect to
the knowledge of the restaurant owner. We underline that the owner has more
information about the weather in cities of Table 13 at time t2 than at time t1
(for example, at time t1, he knows that it is cloudy in Viterbo, and at time t2,
he knows that it is cloudy with rain there); however, he is interested in knowing
the weather in less cities at time t2 than at time t1 (precisely, at time t2, he
excludes Rome).

The finite sequences (�1, . . . ,�n) and (©1, . . . ,©n) of SOn correspond to a
sequence (t1, . . . , tn) made of consecutive instants of time, or of consecutive time
intervals. In addition, let i ∈ {1, . . . , n}, the interpretation of the modality �i

with respect to an orthopaired Kripke model allows us to represent the knowledge
of an agent at time ti. Furthermore, the semantic interpretation of the modality
©i establishes whether the agent is interested in knowing the truth or falsity
of a sentence at each initial possible world at time ti. Thus, each Kripke frame
M = (U, (R1, . . . , Rn)) of SOn is associated with a pair (A, (t1, . . . , tn)) such
that A is an agent, and (t1, . . . , tn) is a sequence of successive instants of time.
More precisely, let u ∈ U, i ∈ {1, . . . , n} and ϕ ∈ Form, if u |= �iϕ, we can say
that

“at time ti, the agent A knows that ϕ is true at u”.

Moreover, if u |= ©iϕ, then we can say that

“ϕ is true at u, but at time ti, A is not interested in knowing it”.

When Ri(u) 	= {u} (i.e. u |= ©i�), at time ti, the agent A is not able to
distinguish the elements of Ri(u) from one another; on the contrary, that is
Ri(u) = {u} (i.e. u |= ¬ ©i �), at time ti, the agent A ignores whether a
formula is true or false at u. The epistemic interpretation that we give to modal
logic SOn is better explained through the following example.

Example 44. We consider a game where a player selects a card x in D that is a
deck of French playing cards which are left face down, and he/she tries to guess
the identity of x. He/she repeats these actions (i.e. select and try to guess a card)
for up to three times, exactly at times t1, t2 and t3, with t1 < t2 < t3. If he/she
guesses the identity of the choice card at least once, then he/she wins; otherwise,
he/she loses. Trivially, let i ∈ {1, 2}, if he/she guesses the selected card at time
ti, then the game finishes without considering the time ti+1. Furthermore, during
the game, a referee, that knows the identity of all cards of D, provides the player
with information on several properties of the cards in D at each time of the
sequence (t1, t2, t3), as it will be shown.

We suppose that Alice and Bob are respectively the player and the referee
of this game. Then, it occurs that
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1. at time t1, Bob divides the deck D into two stacks: red cards and black cards;
2. at time t2 > t1, he also brings together all cards that have the same suit in

each group of cards that have the same colours;
3. at time t3 > t2, he divides each group of cards obtained at time t2 into two

stacks: the cards whose number is less than 7 and the cards whose number is
greater or equal to 7.

The classification made by Bob to cards of D at times t1, t2 and t3 is represented
in the following figure, where c(x) and s(x) respectively denote the colour and
the suit of card x.

{x ∈ D | c(x) = red}

{x ∈ D | s(x) = ♦} {x ∈ D | s(x) = ♥}

{x | x < 7} {x | x < 7}{x | x ≥ 7} {x | x ≥ 7}

{x ∈ D | c(x) = black}

{x ∈ D | s(x) = ♠} {x ∈ D | s(x) = ♣}

{x | x < 7} {x | x < 7}{x | x ≥ 7} {x | x ≥ 7}t3

t2

t1

Fig. 34. Forest of Bob’s classification at times t1, t2 and t3

We set B1 = {x ∈ D | c(x) = red}, B2 = {x ∈ D | c(x) = black}, B3 =
{x ∈ D | s(x) = ♦}, B4 = {x ∈ D | s(x) = ♥}, B5 = {x ∈ D | s(x) = ♠},
B6 = {x ∈ D | s(x) = ♣}, B7 = {x ∈ D | s(x) = ♦ and x < 7}, B8 =
{x ∈ D | s(x) = ♦ and x ≥ 7}, B9 = {x ∈ D | s(x) = ♥ and x < 7}, B10 =
{x ∈ D | s(x) = ♥ and x ≥ 7}, B11 = {x ∈ D | s(x) = ♠ and x < 7},
B12 = {x ∈ D | s(x) = ♠ and x ≥ 7}, B13 = {x ∈ D | s(x) = ♣ and x < 7},
B14 = {x ∈ D | s(x) = ♣ and x ≥ 7}.

We also assume that, let i ∈ {1, 2, 3}, at time ti, Bob informs Alice about the
properties that characterize each cards group corresponding to ti. For example,
at time t2, he says to Alice that the cards of B4 are all cards of D whose suit
is ♥ (then they are also red). Consequently, when Alice chooses a card x in Bi,
despite she does not know the identity of x, she knows that x has the proprieties
characterizing Bi. Thus, if she chooses a card x at time t2 in B4, then she knows
that the suit of x is ♥, and so that the colour of x is red.

In this framework, Alice represents the agent of the knowledge, and D is
the universe of possible worlds of the Kripke frame assigned to Alice. We notice
that each block of the forest in the previous figure is a set of cards which are
indistinguishable for Alice at the respective time. For example, at time t2, she
still does not have enough information to distinguish 2♥ from 8♥. Moreover,
it is easy to notice that the information that Bob gives to Alice defines three
equivalence relations on D, one for each time in (t1, t2, t3), as follows: let x, y ∈ D

– xR1y ⇔ c(x) = c(y),
– xR2y ⇔ s(x) = s(y),
– xR3y ⇔ xR2y and {max(x, y) < 7 or min(x, y) ≥ 7}.
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Now, we imagine that at time t2, in order to further help Alice, Bob removes
from D a group D2 of cards. Again, at time t3, he removes from D \ D2 the
group D3 of cards. We suppose that he also informs Alice what cards belong to
D2 (at time t2) and D3 (at time t3). These actions allow us to define three new
equivalent relations, R′

1, R
′
2 and R′

3, as follows. Let x, y ∈ D

– xR′
1y ⇔ xR1y

– xR′
2y ⇔

{
xR2y, if x, y /∈ D2

x = y, otherwise

– xR′
3y ⇔

{
xR3y, if x, y /∈ D2 ∪ D3

x = y, otherwise

We suppose that Bob chooses D2 and D3 so that each group Bi without the
cards of D2 ∪ D3 is not made of one card.

Then, we can observe that, let i ∈ {1, 2, 3}, a cards is removed from D at
time ti if and only if its equivalent class with respect to R′

i is a singleton.
From now on, we indicate the card with number or face i, and suit j with

ij, and we write [ij]k to denote the equivalence class of ij with respect to R′
k.

Therefore, let ϕ be the proposition “the card is black”, trivially, we have that

i♦, i♥ |= �1¬ϕ and i♠, i♣ |= �1ϕ,

for each i ∈ {1, . . . , 10}∪{J,Q,K}. We respectively read the previous expressions
as follows.

– “At time t1, Alice knows that i♦ is not black”;
– “at time t1, Alice knows that i♥ is not black”;
– “at time t1, Alice knows that i♠ is black”;
– “at time t1, Alice knows that i♣ is black”.

On the other hand, if ϕ′ is the proposition “the card is a two” and j ∈
{♦,♥,♠,♣}, we have that

2j |= ¬�1ϕ
′,

since [2j]1 is equal to {ij ∈ D | c(ij) = red} or {ij ∈ D | c(ij) = black}, and
both are not contained in ||ϕ′|| = {2j | j ∈ {♦,♥,♠,♣}}. Then, 2j |= ¬�1ϕ

′

means that

“at time t1, Alice does not know that the number of 2j is a two”.

We recall that all cards od D are left face down, and so Alice does not know
the identity of 2j. The previous sentences correspond to the fact that, at time
t1, Alice only knows the colour of all cards of D, but she does not have more
information about them; for example, she knows that 2♥ is red, but no that
it is a two. We suppose that D2 is made of all cards of D with face J,Q,K.
Consequently, let ψ be the proposition “the suit of the card is a spade”, the
sentence

K♠ |= ¬�2ψ
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that we read as follows,

“at time t2, Alice does not know that the suit of card is a spade”,

is true, since [K♠]2 is a singleton.
Moreover, the sentence

K♠ |= ¬©2 ψ

that we read as follows,

“the suit of card is a spade, but at time t2, Alice is not interested in
knowing it”,

is also true.
The latter two propositions correspond to the fact that at time t2 Alice has

information on suit of cards of D, but she ignores K♠, since it is removed from
the deck.

Furthermore,

5♥ |= ©2¬ϕ

holds, and we read it as “the card is not black and at time t2 Alice is interested
to know it”.

At this point, we assume that at time t3 Bob removes 1♦, 2♦, 6♦, 8♦, 10♦,
2♥, 4♥, 5♥, 6♥, 7♥, 1♠, 2♠, 3♠, 7♠, 10♠, 3♣, 5♣, 6♣, 7♠ and 8♠ from D\D2.
Then, let ψ′ be the proposition “the number of the card is greater than or equal
to 7”, these sentences hold:

7♦ |= �3ψ
′ and 9♠ |= ©3ψ

′.

On the other hand, we have that

9♠ |= ¬�2ψ
′ and 7♥ |= ¬©3 ψ′.

They say that

– “at time t3, Alice knows that the number of 7♦ is greater than or equal to
7”,

– the number of 9♠ is greater than or equal to 7, and at time t3, Alice is
interested in knowing it”,

– “at time t2, Alice does not know that the number of 9♠ is greater than or
equal to 7”,

– “7♥ is greater than or equal to 7, but at time t3, Alice is not interested in
knowing it”.

The pair (D, (R′
1, R

′
2, R

′
3)) is a Kripke frame of SO3 logic, and it is assigned to

Alice and to the sequence (t1, t2, t3). Furthermore, (D, (R′
1, R

′
2, R

′
3)) corresponds

to the refinement sequence whose forest is represented in the following figure.
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{ij ∈ D | c(ij) = red}

{i♦ | i ∈ {1, . . . , 10}} {i♥ | i ∈ {1, . . . , 10}}

{3♦, 4♦, 5♦} {1♥, 3♥}{7♦, 9♦} {8♥, 9♥, 10♥}

{ij ∈ D | c(ij) = black}

{i♠ | i ∈ {1, . . . , 10}} {i♣ | i ∈ {1, . . . , 10}}

{4♠, 5♠, 6♠} {1♣, 2♣, 4♣}{8♠, 9♠} {9♣, 10♣}t3

t2

t1

Fig. 35. Forest corresponding to (D, (R′
1, R

′
2, R

′
3))

The next proposition states that at time ti, Alice has the information acquired
at time ti, plus all information acquired at previous times.

Proposition 17. Let ϕ be a formula, for each i ≥ j, # �i�jϕ↔ �jϕ.

Finally, we can notice that by using theorems of SOn, we can investigate on the
properties of the knowledge of Alice during the sequence (t1, t2, t3). For example,
by Schema �iϕ →©iϕ, we can deduce that “at time ti, if Alice knows ϕ, then
she is also interested in knowing it”.

6 Conclusions and Future Directions

I hope that we continue with exploration
Margaret H. Hamilton

In this thesis, we developed and studied a generalization of the rough set
theory. In detail, we introduced the sequences of orthopairs generated by refine-
ment sequences, that are special sequences of coverings representing situations
where new information is gradually provided on smaller and smaller sets of
objects. Refinement sequences can be viewed as formal contexts, so in the future,
we propose to explore the connections between sequences of orthopairs and
the fuzzy concept lattices [102]. Moreover, we want to consider fuzzy sequences
of orthopairs, by generalizing the notion of fuzzy rough sets [43]. In particu-
lar, we would like to define novel sequences of orthopairs starting from the
Atanassov intuitionistic fuzzy sets [5]. Another way to introduce novel sequences
of orthopairs is to consider pairs of disjoint upsets such that intersection between
their components has cardinality equal to an integer k ≥ 0. In this case, the
identity KO(C) = K(C) could also hold for a refinement sequence C that is not
complete and safe.

Also, we would like to deepen the relationships between sequences of
orthopairs and decision trees by considering the so-called three-way decision
trees [25,72].

In Sect. 4, we investigated several operations between sequences of orthopairs,
that allowed us to provide concrete representations of the following classes of
many-valued structures: finite centered Kleene algebras with interpolation prop-
erty, finite centered Nelson algebras with the interpolation property, finite cen-
tered Nelson lattices with the interpolation property, finite IUML-algebras and
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finite KLI∗-algebras with the interpolation property. Consequently, we found a
way to interpret the operations in these algebraic structures in terms of approx-
imations of sets. As a future direction, we intend to discover other algebraic
structures that can be interpreted as sequences of orthopairs. Also, given the
refinement sequences C1 and C2 of the universes U1 and U2, respectively, it would
be interesting to consider the product of the Kleene algebras KO(C1) and KO(C2),
and to discover the universe and the class of refinement sequences corresponding
it. Moreover, we can notice that rough sets can also be interpreted by a temporal
semantics, as done for NM-algebras in [13]. Therefore, another topic of future
works is to provide a pure logical temporal semantics in these structures and
their related logics.

Furthermore, we will focus on the novel operations between orthopairs �4

and ↪→4, defined by Eqs. 36 and 37, in order to connect them with a three-valued
propositional logic having a non-deterministic semantics [37].

In the previous chapter, we presented the original modal logic SOn, with
semantics based on sequences of orthopairs. The Kripke models of SOn are
characterized by a sequence (R1, . . . , Rn) of equivalence relations corresponding
to a refinement sequence of partitions. In the future, we intend to consider a new
modal logic, that extends SOn, since the sequences of the accessibility relations
of its Kripke models are related to refinement sequences of coverings.

Sequences of orthopairs corresponds to decision trees with three outcomes,
so we could investigate their relationship. Also, we could employ operations
between sequences of orthopairs to combine several decision trees.

Eventually, we interpreted SOn logic as an epistemic logic; namely, we used
SOn to represent the knowledge of an agent that increases over time, as new
information is provided. Then, we also wish to compare SOn with some other
existing epistemic logics, especially the logics where time and multiple epistemic
operators are involved [44,46], and to investigate the potential extensions of
SOn. As a future application, we also intend to study SOn to predict the inter-
est of users of a social network for a given piece of advertisement in a given time
window. Indeed, in this case, each block of a partition can represent topics that
received the same amount of interest by a user [18,41]. By refining the informa-
tion about the user, it is possible to obtain a refinement sequence of partitions.
Hence, the logic permits to express complex sentences about the user’s interests
and to tailor advertisements in a very effective way.
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J., Szmidt, E., Zadrożny, S., Atanassov, K.T., Krawczak, M. (eds.) IWIF-
SGN/EUSFLAT -2017. AISC, vol. 641, pp. 235–248. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-66830-7 22

21. Boffa, S., Gerla, B.: How to merge opinions by using operations between sequences
of orthopairs. In: 2019 IEEE International Conference on Fuzzy Systems (FUZZ-
IEEE). IEEE (2019)

22. Brignole, D., Monteiro, A.: Caracterisation des algèbres de nelson par des egalités.
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1 Introduction

The work presented in this paper revolves around the theme of Rough Set The-
ory, in particular that of algebras and logics related to it. The theory was intro-
duced by Pawlak in 1982 [60]. It drew the attention of algebraists and logi-
cians soon after, and since then, a lot of research has been carried out in the
areas related to algebras and logics. Some classical algebras such as 3-valued
�Lukasiewicz-Moisil (LM) algebras, regular double Stone algebras or semi-simple
Nelson algebras have been given a new look with the help of the rough set theo-
retic framework, through representation theorems. On the other hand, some new
algebraic structures surfaced during the algebraic studies of rough sets, exam-
ples being topological quasi Boolean algebras, pre-rough and rough algebras.
It was shown then that 3-valued LM algebras, regular double Stone algebras,
semi-simple Nelson algebras and pre-rough algebras are all equivalent, modulo
some transformations. Study on logics of rough sets has taken its own course
over the years, but a substantial intersection with the study on algebras evolved,
wherein we find logics corresponding to the different (but possibly equivalent,
as just mentioned) classes of algebraic structures formed by rough sets. Part of
this paper involves a study of certain classes of algebras emanating from rough
sets, proving their rough set representations. Corresponding logics with rough
set semantics are thereby obtained.

Pawlak was motivated by practical applications. As he has mentioned at
several places, rough set theory is a kind of implementation of Frege’s ‘boundary-
line’ approach to vagueness: a vague concept is characterized by a boundary
region consisting of all elements of the domain of discourse which cannot be
classified to the concept or its complement. An underlying indiscernibility is
referred to, with respect to which a classification of the domain is obtained. The
indiscernibility was assumed by Pawlak to be represented, mathematically, by
an equivalence relation on the domain, so that the classification of the domain
is given by the partition induced by the equivalence relation. The domain with
a classification was termed an approximation space.

However, as studies in ‘Pawlakian’ rough set theory progressed, generaliza-
tions of the theory also emerged. These were proposed in various ways – by
replacing the equivalence relation on the domain with any binary relation (e.g.
[35–37,40–42,77,82,83]), or by replacing the partition with an arbitrary classifi-
cation, say a covering (e.g. [13,63,64,81,85–87]). Yao [82] generalized rough set
theory using modal logic. In fact, in the general scenario, questions such as (a)
what are definable sets and rough sets, or (b) how to approximate a set in a gran-
ule based approximation space, still interest researchers. Significant topological
connotations also arise. The second part of this paper deals with a particular
generalization of rough set theory based on quasi-orders, the basic definitions
being motivated by the ‘granule-based’ approach. We make a study of algebras
of definable and rough sets, and corresponding logics, in this framework.

The other area of work that has engaged us is the study on negations. ‘What
is a Negation?’, is still a point of discussion for philosophers, linguists, logicians
and mathematicians. We have been particularly interested in the approach to
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the subject by Dunn [26,27,29]. Dunn’s perp semantics provides a Kripke-type
semantics for various logics with negations. Negations are looked upon as modal
operators in this framework. Just as in modal logic, through duality results,
this study also provides set representations for various classes of algebras. We
noticed that there was no work on the interactions of rough sets, its logics or
algebras, and perp semantics, and embarked on this line of work for the paper.
We characterize various negations that appear in rough set theoretic algebraic
structures (both Pawlakian and generalized), in compatibility, exhaustive and
K− frames. Some new negations have also come up during the investigations.

We have organized this introductory section as follows. In Sect. 1.1, we pro-
vide the basic notions of algebras and logics used in this work. In Sect. 1.2,
preliminaries of classical rough set theory are presented. In Sect. 1.3, we present
a summary of some representation results and some logics in the context of
Pawlakian rough set theory. This is followed by a brief introduction to perp
semantics, in Sect. 1.4. In Sect. 1.5, some generalizations of rough set theory are
mentioned. Finally, in Sect. 1.6, we present the objectives of this paper, including
a sectionwise summary.

1.1 Basic Notions from Algebras and Logics

There has always been a close relationship between logic and algebra. In this
section, we review some fundamental notions and results on algebras, in partic-
ular lattice based algebras, and logic. For the detail study about the history of
mentioned definitions and results, we refer to [2,21].

Definition 1. Let A be a set. A binary relation ≤ is called an ordering in A if ≤
is reflexive, antisymmetric and transitive relation on A, i.e., for all x, y, z ∈ A,

1. x ≤ x,
2. x ≤ y and y ≤ x implies x = y,
3. x ≤ y, y ≤ z implie x ≤ z.

Definition 2. A map φ from a poset (A,≤) to poset (B,≤) is called an order
embedding if and only if

a ≤ b ⇐⇒ φ(a) ≤ φ(b), a, b ∈ A.

Let (A,≤) be a poset. If for each pair {x, y} of elements of A, glb{x, y} and
lub{x, y} exists then (A,≤) is called a lattice. Usually, glb{x, y} is denoted as
x∨y and lub{x, y} is denoted as x∧y. There is another equivalent way to define
lattice.

Definition 3. An abstract algebra (A,∨,∧) is called a lattice if for all
x, y, z ∈ A

1. x ∨ y = y ∨ x, x ∧ y = y ∧ x.
2. x ∨ (y ∨ z) = (x ∨ y) ∨ z, x ∧ (y ∧ z) = (x ∧ y) ∧ z.
3. x ∧ (x ∨ y) = x, (x ∧ y) ∨ y = y.
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A lattice L is called bounded if there exist largest and least elements. More-
over, L is called complete if for any A ⊆ L, lub of A and glb of A exist. L
is called distributive if for all x, y, z ∈ L, x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) and
x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z). L is said to be completely distributive if L is
complete and for any doubly indexed subset {ai,j : i ∈ I, j ∈ J} of L,

∧
i∈I

∨
j∈J

ai,j =
∨

f :I→J

∧
i∈I

ai,f(i).

Definition 4. Let L := (L,∨,∧, 0, 1) be a complete lattice.

(i) An element a ∈ L is said to be completely join irreducible, if a =
∨

S
implies that a ∈ S, for every subset S of L.

Notation 1. Let JL denote the set of all completely join irreducible elements
of L, and J(x) := {a ∈ JL : a ≤ x}, for any x ∈ L.

(ii) A set S is said to be join dense in L, provided for every element a ∈ L, there
is a subset S′ of S such that a =

∨
S′.

Completely distributive lattices in which the set of completely join irreducible
elements is join dense, will be of special interest to us. In the literature, such
lattices have been studied under various names, e.g. perfect, doubly algebraic,
bi-algebraic or completely prime-algebraic distributive lattices (cf. [33]).

Lemma 1. [9] Let L and K be two completely distributive lattices. Further,
suppose JL and JK are join dense in L and K respectively. Let φ : JL → JK

be an order isomorphism. Then the extension map Φ : JL → JK ,

Φ(x) =
∨

(φ(J(x))),

is a lattice isomorphism.

Definition 5. K := (K,∨,∧,∼, 0, 1) is a De Morgan algebra, if

(i) (K,∨,∧, 0, 1) is a bounded distributive lattice, and for all a, b ∈ K,
(ii) ∼ (a ∧ b) =∼ a ∨ ∼ b (De Morgan property),
(iii) ∼∼ a = a (involution).

Definition 6. An abstract algebra (H,∨,∧,→, 0, 1) is called a Heyting algebra
if it satisfies the following properties.

(i) (H,∨,∧, 0, 1) is a bounded distributive lattice.
(ii) For each a, b ∈ H, a → b is defined as,

a → b := max{c ∈ H : a ∧ c ≤ b}.
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In a Heyting algebra H, a → 0 is called the pseudo complement of a, and is
denoted as ∼ a. Let us write the expression for ∼ a explicitly, as we will be
using it in this paper heavily.

∼ a := a → 0 = max{c ∈ H : a ∧ c = 0}.

A bounded pseudo complemented lattice L is a lattice in which ∼ a is defined for
every element a of L, as above, i.e. ∼ a := max{c ∈ L : a ∧ c = 0}.

Definition 7. An algebra A := (A,∨,∧,∼, 0, 1) is a Stone algebra if

(i) (A,∨,∧,∼, 0, 1) is a bounded distributive pseudo complemented lattice,
(ii) ∼ a∨ ∼∼ a = 1, for all a ∈ A (Stone property).

A bounded dual pseudo complemented lattice L is a lattice in which a unary
operator ¬ is defined such that for every element a of L, ¬a := min{c ∈ L :
a ∨ c = 1} exists.

Definition 8. An algebra A := (A,∨,∧,¬, 0, 1) is a dual Stone algebra, if

(i) (A,∨,∧,∼, 0, 1) is a bounded distributive dual pseudo complemented lattice,
(ii) ¬a ∧ ¬¬a = 0, for all a ∈ A (Dual Stone property).

Definition 9. An algebra A := (A,∨,∧,∼,¬, 0, 1) is a regular double Stone
algebra if

(i) (A,∨,∧,∼, 0, 1) is a bounded distributive lattice,
(ii) (A,∨,∧,∼, 0, 1) is a Stone algebra,
(iii) (A,∨,∧,¬, 0, 1) is double Stone algebra,
(iv) a ∧ ¬a ≤ b∨ ∼ b, for all a, b ∈ A (Regularity).

Note that regularity in a regular double Stone algebra A can also be character-
ized as [75]:

∼ a =∼ b and ¬a = ¬b imply a = b, a, b ∈ A.

Distributive lattices are algebraic models of the logic DLL introduced by Dunn
[25]. The study of logics in this paper is almost completely based on DLL. Let
us present the logic. The language consists of

– Propositional variables: p, q, r, . . ..
– Logical connectives: ∨,∧.

The well-formed formulas of the logic are then given by the scheme:

p | α ∨ β | α ∧ β .

Notation 2. Denote the set of propositional variables by P, and that of well-
formed formulas by F .
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Let α and β be two formulas. The pair (α, β) is called a consequence pair. The
rules and postulates of the logic DLL are presented in terms of consequence
pairs. Intuitively, the consequence pair (α, β) reflects that β is a consequence of
α. In the representation of a logic, a consequence pair (α, β) is denoted by α � β
(called a consequent). The logic is now given through the following postulates
and rules, taken from [27] and [29]. These define reflexivity and transitivity of �,
introduction, elimination principles and the distributive law for the connectives
∧ and ∨.

Definition 10. (DLL- postulates)

1. α � α (Reflexivity).

2.
α � β β � γ

α � γ (Transitivity).
3. α ∧ β � α, α ∧ β � β (Conjunction Elimination)

4.
α � β α � γ

α � β ∧ γ (Conjunction Introduction)
5. α � α ∨ β, β � α ∨ β (Disjunction Introduction)

6.
α � γ β � γ

α ∨ β � γ (Disjunction Elimination)
7. α ∧ (β ∨ γ) � (α ∧ β) ∨ (α ∧ γ) (Distributivity)

Further Dunn in [25] extended the language of DLL by adding,

– Propositional constants: �,⊥.

Then, he added the following postulate to extend DLL to give a logic BDLL,
whose algebraic models are bounded distributive lattices.

– α � � (Top); ⊥ � α (Bottom).

In this paper, we study several extensions of the logic BDLL.
Let L be a logic which is an extension of BDLL. By α �L β, we shall mean

that the consequent α � β is derivable in the logical system L.

1.2 Classical Rough Set Theory

A practical source of an approximation space in rough set theory, is an informa-
tion system. It is a tuple <U,Att, V al, f>, where

1. U is a non empty set finite set of objects,
2. Att is a finite set of attributes,
3. V al = ∪A∈AttV alA, where V alA is a non empty finite set of values for

attribute A,
4. f : U × Att → V al is an information function, where f(a,A) ∈ V alA.

Given an information system <U,Att, V al, f>, let F ⊆ Att. Define a relation
R on U as: aRb if and only if f(a,A) = f(b, A), for all A ∈ F . Then R is
an equivalence relation on U . The pair (U,R) is then an approximation space.
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Outer rectangle represents U .

Each block represents an

equivalence class.

Fig. 1. (U, R)

Although, in an information system <U,Att, V al, f>, U is a finite non empty
set, mathematically U can be taken as an infinite set.

As our approach in this paper is abstract, we work on approximation spaces
(U,R) only. An approximation space can be visualized as in Fig. 1. Given
an approximation space (U,R), each equivalence class in U due to R is called
an elementary set, and a union of elementary sets is called a definable set. Let
X ⊆ U , Pawlak in [60,61], proposed a pair of approximation operators, called
lower and upper approximation operators, denoted L,U, respectively, and defined
on the power set P(U) as follows.

LX :=
⋃

{[x] : [x] ⊆ X}.

UX :=
⋃

{[x] : [x] ∩ X �= ∅}.

Elementary sets in the approximation space are also regarded as ‘granules’, as
their unions define definable sets, and in particular, the lower and upper approx-
imations of sets.

X

(U, R)

Fig. 2. (U, R), X

Before Pawlak used the approximation operators L,U in the context of rough
set theory, similar operators were studied in the context of modal logic (S5),
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topology and algebras. Let us mention properties of definable sets and operators
L and U, from the topological and algebraic angles. Let D denote the collection
of definable sets for a given approximation space (U,R). Then we have

Proposition 1.

1. Topologically,
(a) D forms a clopen topology on U .
(b) L is an interior operator on P(U). Hence L generates a topology on U in

which definable sets are open sets.
2. Algebraically,

(a) D forms a complete atomic Boolean algebra.
(b) (P(U),∪,∩,c , L) is a Boolean algebra with a modal operator.

Note that L and U are dual operators, i.e., LX = (UXc)c. Hence L and U generate
the same topology, in which U is the closure operator. The pictorial representa-
tion of X, LX and UX is given in the Figs. 2, 3 and 4 respectively.

X

(U, R)

L(X)

Fig. 3. (U, R), X, L(X)

X

(U, R)

L(X)U(X)

X

Fig. 4. (U, R), X,U(X)

Let (U,R) be an approximation space. For each X ⊆ U , the ordered pair
(LX,UX) is called a rough set. One must mention here that there are alternative
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definitions of rough sets as well. A foundational study on this may be found in
[14]. There are some works, for instance by Banerjee and Chakraborty [4], where
a generalized version of rough sets in a Pawlakian approximation space has been
studied. These are ordered pairs (D1,D2), where D1,D2 are definable sets, and
D1 ⊆ D2. Let us denote by RS, the collection of all rough sets in (U,R), and
by R, that of all the generalized rough sets, both as mentioned above. In other
words, RS := {(LX,UX) : X ⊆ U}, and R := {(D1,D2) ∈ D × D : D1 ⊆ D2}.
In this work, we adopt the above definitions of rough sets only.

1.3 Algebras and Logics from Classical Rough Set Theory

Let (U,R) be an approximation space. As mentioned above, D is a complete
atomic Boolean algebra. Then a generalized rough set is just a monotone ordered
pair of sets. Now let B be any Boolean algebra, and let us consider the more
general picture of generalized rough sets. Consider the set B[2] := {(a, b) : a ≤
b, a, b ∈ B}. Hence, the set R is the same as the set D[2]. A lot of work has been
done on algebraic structures based on the set B[2]. In fact, Moisil was the first
one, who considered the set B[2], while constructing an example of a 3-valued LM
algebra. In the context of our work on classical rough set theory, we shall refer
to 3-valued LM algebras, so let us give the definition. We follow the notations
of [11].

Definition 11. ([11]) An algebra (A,∨,∧, N, 0, 1, φ2) is a 3-valued �Lukasiewicz-
Moisil (LM) algebra if

1. (A,∨,∧, N, 0, 1) is a De Morgan algebra,
2. φ2(x ∨ y) = φ2x ∨ φ2y,
3. φ2(x ∧ y) = φ2x ∧ φ2y,
4. φ2x ∧ Nφ2x = 0,
5. φ2φ2x = φ2x,
6. φ2Nφ2x = Nφ2x,
7. Nφ2Nx ≤ φ2x,
8. φ2x = φ2y and φ2Nx = φ2Ny imply x = y,

for any x, y ∈ A.

Theorem 1. (cf. [17])

1. Let B := (B,∨,∧,c , 0, 1) be a Boolean algebra.
The structure (B[2],∨,∧, N, (0, 0), (1, 1), φ2) is a 3-valued LM algebra, where

(a, b) ∨ (c, d) := (a ∨ c, b ∨ d),
(a, b) ∧ (c, d) := (a ∧ c, b ∧ d),
N(a, b) := (bc, ac),
φ2(a, b) := (b, b).

2. Let (BM ,∨,∧, N, 0, 1, φ2) be a 3-valued LM algebra. Then there exists a
Boolean algebra B such that BM is embeddable into B[2].
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The important aspect of the above theorem is the fact that any arbitrary 3-
valued LM algebra can also be looked upon as a 3-valued LM algebra in which
elements are pairs of sets.

As mentioned earlier, 3-valued LM algebras, semi simple Nelson algebras and
regular double Stone algebras are equivalent, in the sense that either of the alge-
bras can be obtained from the other through some transformations. To put it
more explicitly, let us define the operators ∼1,∼2,∼3, I,C : B[2] → B[2] as,

∼1 (a, b) := (bc, ac),

∼2 (a, b) := (bc, bc),

∼3 (a, b) := (ac, ac),

a, b ∈ B, a ≤ b.
Then, we have the following.

– The structure (B[2],∨,∧,∼2,∼3, (0, 0), (1, 1)) is a Stone, double Stone and
regular double Stone algebra.

– Moreover, the structure (B[2],∨,∧,∼1,∼2, (0, 0), (1, 1)) is a semi simple Nel-
son algebra.

Hence, one can deduce that for a given approximation space (U,R), R forms a 3-
valued LM algebra, regular double Stone algebra as well as a semi simple Nelson
algebra, and using Stone’s representation theorem, Theorem 1 and versions of
Theorem 1 in the context of regular double Stone algebra and semi simple Nelson
algebra, can be re-phrased in terms of generalized rough sets.

R in the context of rough set theory has been extensively studied by many
authors. In particular, the investigations of Banerjee and Chakrborty have led
to the introduction of topological quasi Boolean algebras, pre-rough and rough
algebras [4]. Representation of rough algebra in terms of generalized rough sets
has been proved in [4]. Let us give the definitions.

Definition 12. ([5]) An algebra (A,∨,∧,¬, L, 0, 1) is a pre-rough algebra if

1. (A,∨,∧) is a distributive lattice,
2. ¬¬a = a,
3. ¬(a ∨ b) = ¬a ∧ ¬b,
4. La ≤ a,
5. L(a ∧ b) = La ∧ Lb,
6. LLa = La,
7. L1 = 1,
8. MLa = La, where Ma = ¬L¬a,
9. ¬La ∨ La = 1,

10. L(a ∨ b) = La ∨ Lb,
11. La ≤ Lb, Ma ≤ Mb imply a ≤ b,

a, b ∈ A.

Theorem 2. [4] Any pre-rough algebra P := (A,≤,∨,∧,¬, L, 0, 1) is isomor-
phic to the subalgebra of L(A) formed by the the set {(La,Ma) : a ∈ A}, where
L(A) = {La : a ∈ A}.
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An abstract algebra (A,∨,∧,¬, L, 0, 1) is called a topological quasi Boolean
algebra (tqBa) if it satisfies axioms 1-8 of a pre-rough algebra. An algebra
(A,≤,∨,∧,¬, L, 0, 1) is a rough algebra if

1. (A,≤,∨,∧,¬, L, 0, 1) is a pre-rough algebra,
2. L(A) is complete and completely distributive.

Saha, Sen and Chakraborty have subsequently done extensive work on tqBa,
pre-rough and other ‘intermediate’ algebras [67,68].

Theorem 3. [4]

1. Let (U,R) be an approximation space. Then the structure (R,∨,∧,∼1,
L,M, 0, 1) forms a topological quasi Boolean algebra, pre-rough algebra and
rough algebra, where L,M are defined as follows:

L(D1,D2) := (D1,D1) and M(D1,D2) := (D2,D2).

2. Any rough algebra is isomorphic to a subalgebra of the approximation space
algebra R corresponding to some approximation space (U,R).

Later, it was shown in [3] that pre-rough algebras and 3-valued LM algebras are
equivalent. It is still an open problem to obtain representations of topological
quasi Boolean algebras in terms of R.

We already have RS ⊆ R. So, it is natural to ask, what kind of algebraic
structure can be inherited in RS from R. The first paper in this regard appeared
by Pomyka�la and Pomyka�la [62] in which he showed that RS forms a Stone
algebra. However, representation could not be obtained. Later, Comer in [19]
proved that RS forms a regular double Stone algebra and obtained a repre-
sentation result in terms of rough sets. Pagliani in [58,59] showed that the set
RS ′ := {(LA, (UA)c) : A ⊆ U} can be turned into a semi simple Nelson algebra
and obtained a representation result for the class of finite semi simple Nelson
algebras. Note that, there is a close connection between RS ′ and RS: both are
order isomorphic. Hence the structure of RS ′ can be transferred to RS and
vice-versa.

Further, in [59], Pagliani showed that for any approximation space (U,R),
RS may be turned into a 3-valued Post algebra, but R may not. Moreover, RS
may form a Boolean algebra, but R may not form a Boolean algebra. In all
the above representation results, negations have been defined using set theoretic
complement. So, we can say that negations in these algebras are describable by
set theoretic complement, or that the negations arise from Boolean negation.

The algebraic study of rough set theory leads to emergence of several logic.
For instance, Banerjee and Chakraborty in [3,4] obtained the propositional sys-
tem of pre-rough logic for the class of pre-rough algebras. Pre-rough logic, by
virtue of algebraic representation, can also be given a Kripke-type rough set
semantics. There are several logics that emerge from rough set theory with
semantics based on information systems (cf. [6,45,46]).
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Let us recall the approximation operators in Pawlakian rough set theory. Let
(U,R) be an approximation space. L,U : PU → P(U) are such that for A ⊆ U ,

LA :=
⋃

{[x] : [x] ⊆ A},

UA :=
⋃

{[x] : [x] ∩ A �= ∅}. (∗)

In literature L and U have been interpreted in the following way.

1. x certainly belongs to A, if x ∈ LA, i.e. all objects which are indiscernible to
x are in A.

2. x certainly does not belong to A, if x /∈ UA, i.e. all objects which are indis-
cernible to x are not in A.

3. Belongingness of x to A is not certain, but possible, if x ∈ UA but x /∈ LA. In
rough set terminology, this is the case when x is in the boundary of A: some
objects indiscernible to x are in A, while some others, also indiscernible to x,
are in Ac.

These interpretations have led to much work in the study of connections between
3-valued algebras or logics and rough sets, see for instance [1,3,18,30,38,59]. It
was shown by Banerjee in [3] that 3-valued �Lukasiewicz logic and pre-rough
logic are equivalent, thereby imparting a rough set semantics to the former. In
fact, Obtu�lowicz was the first who made the connection of rough sets to multi-
valued aspects. In [1], Avron and Konikowska have studied 3-valued logic with
respect to the above interpretations, obtained a non-deterministic logical matrix
and studied the 3-valued logic generated by this matrix. A simple predicate
language is used, with no quantifiers or connectives, to express membership in
rough sets. Connections, in special cases, with 3-valued Kleene, �Lukasiewicz and
two paraconsistent logics are established.

As we mentioned above, rough set theory provides a framework to look at
elements of certain algebras as pairs of sets, through representation results. Such
representations have a logical importance. Dunn’s 4-valued semantics [27] is also
motivated by his representation of De Morgan algebras. In fact, he considers
pairs of the form (A+, A−), with no restrictions on completeness or consistency.
He proved the following (we present his result in our language).

Theorem 4 [23]. Given a De Morgan algebra K := (K,∨,∧,∼, 0, 1), there exists
a set U such that K can be embedded into the De Morgan whose elements are of
the form (A+, A−), where A+, A− ⊆ U .

Further, he established the soundness and completeness results for De Morgan
logic and a 4-valued semantics. In [30], Düntsch explicitly explains the 3-valued
aspects of rough set theory. The logic he considers is that for regular double
Stone algebras. He assigns formulas a generalized rough set, i.e., if α is a for-
mula in the given language and v is the assignment, then v(α) = (A,B). These
assignments induce the following 3-values:

vα(x) =

⎧
⎨

⎩

1 if x ∈ A
1/2 if x ∈ B, x /∈ A
0 if x /∈ B.
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This vα is a valuation in 3 element algebra. But Düntsch does not use this
valuation in any exploration of logic. A sequent calculus of logic of regular double
Stone algebra and its rough set semantics is discussed by Dai and Banerjee and
Khan in [6,20].

In this paper, we have discussed a logic for the class of Kleene algebras, and
are able to give it a rough set as well as a 3-valued semantics.

1.4 Negations as Modal Operators

The perp semantics introduced by John M. Dunn in [24,26] provides a framework
of studying various negations as modal operators. Negations are looked upon as
impossibility operators in ‘compatibility’ frames in this semantics. The notion of
perp (⊥) has also been used by Goldblatt in 1974 in his seminal paper ‘Semantic
analysis of orthologic’. As mentioned by Dunn, the motivation (cf. [27]) of perp
negation lies in Birkhoff-von Neumann’s work of quantum logic. Dunn considered
negations in the perp frame, and arrived at his well known ‘Dunn’s (Lopsided)
Kite of Negations’ (Fig. 5). He has also studied various logics with negations
in the dual of compatibility (perp) frames, where negations can be interpreted
as unnecessity. Later, he combined the perp and and its dual semantics [29] to
study Galois negations.

As the perp semantics provides a Kripke type semantics for logics with nega-
tions, one can establish dualities between classes of algebras and frames. We
exploit this feature in our work, to get duality results for several classes of alge-
bras and corresponding frames.

The basic notions of perp, dual perp and combined semantics are presented
in Sect. 3.

1.5 Generalized Rough Sets: Definitions and Properties

As mentioned earlier, generalization of rough set theory has been done in dif-
ferent ways in literature. In the relation based approach of generalizing rough
sets, one uses an arbitrary binary relation in the definition of classical lower and
upper approximations [35–37,40–42,77,82,83]. In covering based generalizations
of rough sets, one uses a covering in place of a partition in the definition of
Pawlakian lower and upper approximation operators [52,63,64,77–79,81,83,85–
87]. For a good summary on generalizations of rough sets, one can refer to the
work of Samanta and Chakraborty [69]. Pawlakian lower and upper approxima-
tion operators can be represented in different ways, and each representation has
its own interpretation [76]. For example, the definition we provide in (∗) (cf.
Sect. 1.2) is a granule based definition of the approximation operators.
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∼∼ a ≤ a

De Morgan
a∧ ∼ a = 0

Intutionistic

a ∧ b ≤ c ⇒ a∧ ∼ c ≤∼ b

Minimal(Johansson)

a ≤∼∼ a Quasi − Minimal(Dunn′sMinimal)

∼ a∧ ∼ b ≤∼ (a ∨ b) Preminimal

Ortho

Fig. 5. Dunn’s Lopsided Kite of Negations

The essence of classical rough set theory is to approximate a set with the help
of granules, where a granule is an equivalence class in the domain. A granule is
just a collection of objects having some properties in common. So, granules may
be overlapping. In fact, one can generate granules from any given binary relation
or a given covering. For example, in case of a binary relation R, R(x) := {y :
xRy} is a granule. In case of a covering, granules can be generated in many ways.
For instance, let U be a set and C a given covering on U .

NC
x := ∪{Ci ∈ C : x ∈ Ci} = Friends(x) [63].

N(x) := ∩{Ci ∈ C : x ∈ Ci} = Neighbour(x) [85].

NC
x and N(x) are examples of granules. Now, lower and upper approximation

operators can be defined in many ways too. The definition of rough sets is taken
to be the same as in the classical case, i.e. RS := {(LX,UX) : X ⊆ U}.

In covering based generalizations of rough sets, we could find only one work
by Bonikowski [12] in which algebraic structures of RS have been dealt with. In
this work, he provides a condition on the approximation space under which RS
becomes a lattice.

There is notable work by Järvinen and Radeleczki, on algebraic studies in
relation based rough sets. He considers the approximation space (U,R), where R
is a quasi order (reflexive and transitive relation) on U , and defines the following
lower and upper approximation operators. L,U : P(U) → P(U) such that for
A ⊆ U ,

LA := {x : R(x) ⊆ A},

UA := {x : R(x) ∩ A �= ∅}.
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In [42] they prove that RS is a complete and completely distributive lattice.
Moreover, in the same paper, they characterize the completely join irreducible
elements and proves the join density of the set. Later, they have extended their
results in [40], and proved the following.

Theorem 5 [40]. Let (U,R) be an approximation space. The structure
(RS,∨,∧, c, (∅, ∅), (U,U)) is a Nelson algebra, where ∨,∧ are component wise
join and meet respectively. c is the Kleene negation defined as c(LA,UA) :=
((UA)c, (LA)c).

He also obtains a rough set representation of Nelson algebras over algebraic
lattices.

Theorem 6 [40]. Let A := (A,∨,∧, c, 0, 1) be a Nelson algebra defined over
an algebraic lattice. Then there exists an approximation space (U,R) such that
A ∼= RS.

Further, Järvinen and Pagliani in [39] provide a rough set semantics for con-
structive logic with strong negation through this representation result.

Nagarajan and Umadevi [53] also consider the same definition of lower and
upper approximation operators as Järvinen, and investigate algebraic structures
of rough sets in the framework.

1.6 Objectives of This Paper

Representation results of 3-valued LM algebra, regular double Stone algebra,
semi-simple Nelson algebra and rough algebras have been obtained in terms of
either R or RS for some approximation space (U,R). Through the rough set
representation, negations of the concerned algebras are described or defined by
set theoretic complement. We observe that all the previously mentioned algebras
are based on Kleene algebra. In Sect. 2 of this paper, we prove a structural
theorem for the class of Kleene algebras, which was an unaddressed question so
far. More precisely, we provide a solution to the following problem.

Question 1. Given a Kleene algebra (Definition 13) K := (K,∨,∧,∼, 0, 1),
does there exist an approximation space (U,R) such that K can be embedded into
the Kleene algebra R (RS) of some approximation space?

The affirmative answer to this question provides a representation of Kleene alge-
bras in terms of R, and hence in terms of RS for some approximation space
(U,R). This also reflects that each element of a Kleene algebra can be looked
upon as a monotone ordered pair of sets. As mentioned earlier, such represen-
tations have a logical importance. Motivated by Dunn’s representations of De
Morgan algebras leading to his 4-valued semantics of De Morgan logic, in Sect.
2, we deal with the following issues.

Question 2.

1. Study the logical aspect of Question 1.
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2. Find a multi valued propositional logic which represents a logic for rough sets.

We consider a logical system LK , and provide a rough set semantics for it through
which we obtain a 3-valued semantics. This gives us an affirmative answer to
Question 2.

For a given approximation space (U,R), the unary operators ∼,¬s,¬ds :
R(RS) −→ R(RS) defined as,

(i) ∼ (D1,D2) := (Dc
2,D

c
1) (∼ (LX,UX) = ((UX)c, (LX)c)).

(ii) ¬s(D1,D2) := (Dc
2,D

c
2) (¬s(LX,UX) = ((UX)c, (UX)c)).

(iii) ¬ds(D1,D2) := (Dc
1,D

c
2) (¬ds(LX,UX) = ((LX)c, (LX)c)).

satisfy Kleene, Stone and double Stone property. Moreover, ¬s and ¬ds are
regular in the sense that

¬s(D1, D2) ≤ ¬s(D3, D4) and ¬ds(D1, D2) ≤ ¬ds(D3, D4) ⇒ (D1, D2) ≤ (D3, D4).

Dunn’s model of negations provides a framework to study various logics with
negations. In Sect. 3, we give a semantic analysis of negations with Kleene, Stone,
double Stone and regularity properties. More precisely, we address the following
issues.

Question 3.

1. Can Kleene and Stone properties be looked upon as perp?
2. Semantic analysis of Kleene and double Stone properties in exhaustive frames

(dual perp).
3. Semantic analysis of regular double Stone property of negation in K− frame.

Due to Kripke type behavior of perp semantics, one can establish discrete
dualities between various lattice based algebras with negations and classes of
compatibility, exhaustive or K− frames. In Sect. 4, we study the following.

Question 4. Establish discrete duality results for Kleene, Stone, double Stone
and regular double Stone algebras.

We next pass on to generalized rough set theory, focussing on generalizations
based on quasi orders. However, we first address the issue of defining approxi-
mation operators maintaining the essence of classical rough set theory, namely
by adopting a granule based approach. In Sect. 5, we deal with the following.

Question 5. What would be the minimum requirement from a pair of approxi-
mation operators for them to qualify as ‘approximating by granules’? More fun-
damentally, what do we mean by ‘approximation by granules’?

We put forth such criteria, and discuss a pair of approximation operators in quasi
order-generated covering-based approximation spaces (QOCAS). Then, we ask
the natural algebraic questions.
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Question 6.

1. Study the algebraic structures of definable sets in QOCAS.
2. Study the algebraic structures of R and RS for any QOCAS.

In fact, we prove that R will always form a Heyting algebra, completely distribu-
tive lattice in which the set of join irreducible elements is dense. Moreover, we
obtain rough set representation results for such classes of algebras. Further, we
provide a condition on a QOCAS (U,R) under which RS forms a distributive
lattice, which also gives the representation of R in terms RS.

While constructing the algebraic models of 3-valued �Lukasiewicz logic, Moisil
defined a unary operator Δ on the set B[2], as,

Δ(a, b) := (a, a), a, b ∈ B, a ≤ b,

which yields a representative class of 3-valued LM algebras. In the context of
rough set theory, Banerjee and Chakraborty defined operators L and M on the
set R and RS for a given approximation space, as:

L(D1,D2) := (D1,D1), L(LA,UA) = (LA, LA),
M(D1,D2) := (D2,D2), L(LA,UA) = (UA,UA).

Taking a cue from the work of Moisil and Banerjee and Chakraborty, we inves-
tigate the following in Sect. 6.

Question 7. Define unary operators I and C on the set L2 := {(a, b) : a ≤
b}, where L may be a distributive lattice, a Heyting algebra or a completely
distributive lattice in which the set of join irreducible elements is join dense.

1. What kind of enhanced algebraic structures based on the set L[2] do we get?
2. Provide rough set representation of the algebraic structures obtained in 1.

For a given Boolean algebra (B,∨,∧,c , 0, 1), the Boolean negation c induces
many negations on the set B[2], e.g., De Morgan, Kleene, or Stone negations.
In the context of rough set theory, for a given approximation space (U,R), the
set theoretic complement on the definable sets of D induces many negations on
the collection R (RS) of rough sets, such as negations of the Kleene or of the
regular double Stone algebra.

Following similar ideas, some natural questions arise.

Question 8.

1. What kind of unary operators are induced on L[2] by pseudo complementation
or dual pseudo complemention defined on L?

2. Characterize the unary operators obtained in 1, in compatibility or exhaustive
frames.

We address these questions in Sect. 6, and find that the unary operators are
indeed characterizable, and yield new positions in Dunn’s Lopsided Kite and
dual Kite of negations.



140 A. Kumar

1.7 Convention

In this paper, while working with the examples, we will denote a set A =
{a, b, c, d, e....} as abcde....

2 Kleene Algebras: Boolean and Rough Set
Representations

Algebraists, since the beginning of work on lattice theory, have been keenly
interested in representing lattice-based algebras as algebras based on set lat-
tices. Some such well-known representations are the Birkhoff representation for
finite lattices, Stone representation for Boolean algebras, or Priestley represen-
tation for distributive lattices. It is also well-known that such representation
theorems for classes of lattice-based algebras play a key role in studying set-
based semantics of logics ‘corresponding’ to the classes. In this paper, we pursue
this line of investigation, and focus on Kleene algebras and their representations.
We then move to the corresponding propositional logic, denoted LK , and define
a 3-valued and rough set semantics for it.

Kleene algebras were introduced by Kalman [43] and have been studied under
different names such as normal i-lattices, Kleene lattices and normal quasi-
Boolean algebras, e.g. cf. [15,16]. The algebras are defined as follows.

Definition 13. An algebra K := (K,∨,∧,∼, 0, 1) is called a Kleene algebra if
the following hold.

1. (K,∨,∧,∼, 0, 1) is a De Morgan algebra, i.e.,
(i) (K,∨,∧, 0, 1) is a bounded distributive lattice, and for all a, b ∈ K,
(ii) ∼ (a ∧ b) =∼ a ∨ ∼ b (De Morgan property),
(iii) ∼∼ a = a (involution).

2. a ∧ ∼ a ≤ b ∨ ∼ b, for all a, b ∈ K(Kleene property).

Note that in literature the structure ‘idempotent semirings with a closure oper-
ation’ have been also termed as Kleene algebras [47]. In this paper, by Kleene
algebras we always mean the above structure.

In order to investigate a representation result for Kleene algebras, it would be
natural to first turn to the known representation results for De Morgan algebras,
as Kleene algebras are based on them. One finds the following, in terms of sets.

– Rasiowa [65] represented De Morgan algebras as set-based De Morgan alge-
bras, where De Morgan negation of a set is defined by taking the set-theoretic
complement of its image under an involution.

– In Dunn’s [23,27] representation, each element of a De Morgan algebra can be
identified with an ordered pair of sets, where De Morgan negation is defined
as reversing the order in the pair.

On the other hand, we also find that there are algebras based on Kleene
algebras which can be represented by ordered pairs of sets, and where negations
are described by set-theoretic complements. Consider the set B[2] := {(a, b) : a ≤
b, a, b ∈ B}, for any partially ordered set (B,≤). We have already mentioned the
following in Sect. 1.



A Study of Algebras and Logics of Rough Sets 141

– (Moisil (cf. [17])) For each 3-valued �Lukasiewicz-Moisil (LM) algebra A, there
exists a Boolean algebra B such that A can be embedded into B[2].

– (Katriňák [44], cf. [11]) Every regular double Stone algebra can be embedded
into B[2] for some Boolean algebra B.

Rough set theory also provides a way to represent algebras as pairs of sets.
In rough set terminology (that will be elaborated on in Sect. 2.3), we have the
following results for algebraic structures based on Kleene algebras.

– (Comer [19]) Every regular double Stone algebra is isomorphic to an algebra
of rough sets in a Pawlak approximation space.

– (Järvinen [40]) Every Nelson algebra defined over an algebraic lattice is iso-
morphic to an algebra of rough sets in an approximation space based on a
quasi order.

It must be mentioned that there are similar representation results in rough set
theory for other structures as well, e.g. for the class of rough algebras [4], or
finite semi-simple Nelson algebras [59].

In this section, the following representation results are established for Kleene
algebras.

Theorem 7.

(i) Given a Kleene algebra K, there exists a Boolean algebra BK such that K
can be embedded into BK

[2].
(ii) Every Kleene algebra is isomorphic to an algebra of rough sets in a Pawlak

approximation space.

This section is organized as follows. In Sect. 2.1, we prove (i) of Theorem 7. In
Sect. 2.2, we establish a rough set representation of Kleene algebras, that is, (ii)
of Theorem 7. The logic LK and its 3-valued semantics are introduced in Sect.
2.3, and soundness and completeness results are proved. Rough set semantics of
the logic LK is presented in Sect. 2.4.

The content of this section is based on the article [50].

2.1 Boolean Representation of Kleene Algebras

Construction of new types of algebras from a given algebra has been of prime
interest for algebraists, especially in the context of algebraic logic. Some well
known examples of such construction are:

– Nelson algebra from a given Heyting algebra (Vakarelov [74], Fidel [32]).
– Kleene algebras from distributive lattices (Kalman [43]).
– 3-valued �Lukasiewicz-Moisil (LM) algebra from a given Boolean algebra

(Moisil, cf. [17]).
– Regular double Stone algebra from a Boolean algebra (Katriňák [44], cf. [11]).
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Our work is based on Moisil’s construction of a 3-valued LM algebra (which
is, in particular, a Kleene algebra). Let us present this construction. Let B :=
(B,∨,∧,c , 0, 1) be a Boolean algebra. Consider again, the set

B[2] := {(a, b) : a ≤ b, a, b ∈ B}.

Proposition 2 [11]. B[2] := (B[2],∨,∧,∼, (0, 0), (1, 1)) is a Kleene algebra,
where, for (a, b), (c, d) ∈ B[2],

(a, b) ∨ (c, d) := (a ∨ c, b ∨ d),
(a, b) ∧ (c, d) := (a ∧ c, b ∧ d),
∼ (a, b) := (bc, ac).

Proof. Let us only demonstrate the Kleene property for ∼.
(a, b) ∧ ∼ (a, b) = (a, b) ∧ (bc, ac) = (a ∧ bc, b ∧ ac) = (0, b ∧ ac).
(c, d) ∨ ∼ (c, d) = (c, d) ∨ (dc, cc) = (c ∨ dc, d ∨ cc) = (c ∨ dc, 1).
Hence (a, b) ∧ ∼ (a, b) ≤ (c, d) ∨ ∼ (c, d).

In this section, we prove the representation Theorem 7(i).
Using Stone’s representation, each Boolean algebra is embeddable in a power

set algebra, so that B[2], for any Boolean algebra B, is embeddable in the Kleene
algebra formed by P(U)[2] for some set U . Thus, because of Theorem 7(i), one
can say that each element of a Kleene algebra can also be looked upon as a pair
of sets.

Now observe that we already have the following well-known representation
theorem, due to the fact that 1, 2 and 3 (Fig. 6) are the only subdirectly irre-
ducible (Kleene) algebras in the variety of Kleene algebras.

a =∼ a1 := 2 :=

0 = ∼ 1

1 = ∼ 0

3 :=

0 = ∼ 1

a =∼ a

1 = ∼ 0

Fig. 6. Subdirectly irreducible Kleene algebras

Theorem 8 [2]. Let K be a Kleene algebra. There exists a (index) set I such
that K can be embedded into 3I .

So, to prove Theorem 7(i), we establish the following.
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Theorem 9. For the Kleene algebra 3I corresponding to any index set I, there
exists a Boolean algebra B3I such that 3I ∼= (B3I )[2].

We use the following steps:

1. Characterize the completely join irreducible elements of the Kleene algebras
3I and (2I)[2] and prove their join density in the respective lattices.

2. Establish an order isomorphism between J3I and J(2I)[2] .
3. Extend the order isomorphism to Kleene isomorphism to establish the result.

Completely join irreducible elements play a fundamental role in establishing
isomorphisms between some well-known lattice based algebras.
Firstly, let us characterize the completely join irreducible elements of the Kleene
algebras 3I and (2I)[2], for any given index set I, and prove their join density
in the respective lattices.

Let i ∈ Iand let i, k ∈ I. Denote by fx
i , x ∈ {a, 1}, the following element in

3I .

fx
i (k) :=

{
x if k = i
0 otherwise

Then we have,

Proposition 3. The set of completely join irreducible elements of 3I is given
by:

J3I = {fa
i , f1

i : i ∈ I}.

Moreover, J3I is join dense in 3I .

Proof. Let fa
i = ∨k∈Kfk, K ⊆ I. This implies that fa

i (j) = ∨k∈Kfk(j), for each
j ∈ I. If j �= i, by the definition of fa

i , fa
i (j) = 0. So ∨k∈Kfk(j) = 0, whence

fk(j) = 0, for each k ∈ K. If j = i, then fa
i (j) = a, which means ∨k∈Kfk(j) = a.

But as a is join irreducible in 3, there exists a k′ ∈ K such that fk′(j) = a. Hence
fa

i = fk′ . A similar argument works for f1
i .

Now let f ∈ 3I . Take K := {j ∈ I : f(j) �= 0}, and for each j ∈ K, define the
element fj of 3I as

fj(k) :=
{

f(j) if k = j
0 otherwise

Clearly, we have f = ∨j∈Kfj , where fj ∈ J3I .

Let us note that for each i, j ∈ I, fa
i ≤ f1

i , and if i �= j, neither fx
i ≤ fy

j nor
fx

j ≤ fy
i holds for x, y ∈ {a, 1}. The order structure of J3I can be visualized by

Fig. 7.

Example 1. Let us consider the Kleene algebra 33. The set J33 of completely
join irreducible elements of 33 is then given by
J33 = {fa

1 := (a, 0, 0), f1
1 := (1, 0, 0), fa

2 := (0, a, 0), f1
2 := (0, 1, 0), fa

3 :=
(0, 0, a), f1

3 := (0, 0, 1)}.
Let f := (0, a, 1) ∈ 33. Then f = f2 ∨ f3, where f2 = (0, a, 0) and f3 = (0, 0, 1).
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fa
i

f1
i

fa
j

f1
j

fa
k

f1
k

Fig. 7. Hasse diagram of J3I

As any complete atomic Boolean algebra is isomorphic to 2I for some index set
I, henceforth, we shall identify any complete atomic Boolean algebra B with 2I .
Now, for any such algebra, B[2] is a Kleene algebra (cf. Proposition 2); in fact,
it is a completely distributive Kleene algebra.

Proposition 4. Let B be a complete atomic Boolean algebra. The set of com-
pletely join irreducible elements of B[2] is given by

JB[2] = {(0, a), (a, a) : a ∈ JB}.

Moreover, JB[2] is join dense in B[2].

Proof. Let a ∈ JB and let (a, a) = ∨k∈K(xk, yk), K ⊆ I, where (xk, yk) ∈ B[2]

for each k ∈ K. (a, a) = ∨k∈K(xk, yk) implies a = ∨kxk. As a ∈ JB , a = xk′ for
some k′ ∈ K. We already have xk′ ≤ yk′ ≤ a, hence combining with a = xk′ ,
we get (a, a) = (xk′ , yk′). With similar arguments one can show that for each
a ∈ JB , (0, a) is completely join irreducible.

Now, let (x, y) ∈ B[2]. Consider the sets J(x), J(y) (cf. Notation 1, Definition
4). Then (x, y) = ∨a∈J(x)(a, a) ∨ ∨b∈J(y) (0, b). Hence JB[2] is join dense in
B[2].

For a, b ∈ JB , (0, a) ≤ (a, a), and if a �= b, x, y ∈ {a, b} with x �= y, neither
(0, x) ≤ (0, y), (y, y) nor (x, x) ≤ (0, y), (y, y) holds. Then, similar to the case of
3I , the completely join irreducible elements of B[2] can be visualized by Fig. 8.

(0, ai)

(ai, ai)

(0, aj)

(aj , aj)

(0, ak)

(ak, ak)

Fig. 8. Hasse diagram of JB[2]
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Example 2. Consider the Boolean algebra 4 of four elements with atoms a and
b. The set of completely join irreducible elements of 4[2] is given by
J4[2] = {(0, a), (a, a), (0, b), (b, b)}.
Let (a, 1) ∈ 4[2]. Then J(a) = {a} and J(1) = {a, b}. Hence
(a, 1) = (a, a) ∨ (0, a) ∨ (0, b).

Now, let us first present the basic lattice-theoretic definitions and results that
will be required to arrive at the proof of Theorem 9.

Definition 14.

1. A complete lattice of sets is a family F such that
⋃

H and
⋂

H belong to F
for any H ⊆ F .

2. Let L be a complete lattice.
(a) a ∈ L, is said to be compact if for every subset S of L,

a ≤
∨

S ⇒ a ≤ T for some finite subset T of S.

(b) L is said to be algebraic if any element x ∈ L is the join of a set of
compact elements of L.

(c) L is said to satisfy the Join-Infinite Distributive Law, if for any subset
{yj}j∈J of L and any x ∈ L,

(JID) x ∧
∨

j∈J

yj =
∨

j∈J

x ∧ yj .

Theorem 10 [21]. Let L be a lattice. The following are equivalent.

(i) L is complete, satisfies (JID) and the set of completely join irreducible
elements is join dense in L.

(ii) L is completely distributive and L is algebraic.

It can be easily seen that both the lattices 3I and (2I)[2] are complete and satisfy
(JID). We have already observed from above that the sets of completely join
irreducible elements of 3I and (2I)[2] are join dense in the respective lattices.
So Theorem 10(i) holds for 3I and (2I)[2], and therefore, 3I and (2I)[2] are
completely distributive and algebraic lattices.
For the remaining study of this Section, let us fix an index set I. Now we can
write J3I = {fa

i , f1
i : i ∈ I} and J(2I)[2] = {(0, g1i ), (g1i , g1i ) : i ∈ I}, where g1i ’s

are the atoms or completely join irreducible elements of the Boolean algebra 2I ,
defined as f1

i with domain restricted to 2. In other words,

g1i (k) :=
{

1 if k = i
0 otherwise

Theorem 11. The sets of completely join irreducible elements of 3I and (2I)[2]

are order isomorphic.
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Proof. We define the map φ : J3I → J(2I)[2] as follows. For i ∈ I,

φ(fa
i ) := (0, g1i ),

φ(f1
i ) := (g1i , g1i ).

One can show that φ is an order isomorphism due to the following.

– fx
i ≤ fy

j if and only if i = j and x, y = a or x, y = 1, or x = a, y = 1. In any
case, by definition of φ, φ(fx

i ) ≤ φ(fy
j ).

– Let φ(fx
i ) ≤ φ(fy

j ) and assume φ(fx
i ) = (g1k, g1l ) and φ(fy

j ) = (g1m, g1n). But
then again: k = l = m = n or g1k = g1m = 0, l = n or g1k = 0, l = m = n.
Again, following the definition of φ, we have fx

i ≤ fy
j .

– If (0, g1i ) ∈ J(2I)[2] , then φ(fa
i ) = (0, g1i ). Similarly for (g1i , g1i ). Hence φ is

onto.

Using Theorem 11 and Lemma 1, we have the following.

Theorem 12. The algebras 3I and (2I)[2] are lattice isomorphic.

In order to obtain Theorem 9, one would like to extend the above lattice iso-
morphism to a Kleene isomorphism. We use the technique of Järvinen in [40].
Let us present the preliminaries.
Let K := (K,∨,∧,∼, 0, 1) be a completely distributive De Morgan algebra.
Define for any j ∈ JK ,

j∗ :=
∧

{x ∈ K : x �∼ j}.

Then j∗ ∈ JK . For complete details on j∗, one may refer to [40]. Further, it
is shown that Lemma 1 can be extended to De Morgan algebras defined over
algebraic lattices.

Theorem 13. Let L := (L,∨,∧,∼, 0, 1) and K := (K,∨,∧,∼, 0, 1) be two De
Morgan algebras defined on algebraic lattices. If φ : JL → JK is an order iso-
morphism such that

φ(j∗) = φ(j)∗, for all j ∈ JL,

then Φ is an isomorphism between the algebras L and K.

Now, let fa
i ∈ J3I . By definition, (fa

i )∗ =
∧

{f ∈ 3I : f �∼ (fa
i )}, where for

each i ∈ I,

∼ (fa
i )(k) =

{
a if k = i
1 otherwise

Clearly, we have f1
i �∼ (fa

i ). Now let f �∼ (fa
i ). Then what does f look like?

If k �= i, f(k) ≤∼ (fa
i )(k) = 1. So, for f �∼ (fa

i ), f(i) has to be 1 (otherwise
f(i) = 0 or a will lead to f ≤∼ (fa

i )). Hence, f1
i ≤ f and (fa

i )∗ = f1
i .

Similarly, one can easily show that (f1
i )∗ = fa

i .
On the other hand, let us consider (0, g1i ) ∈ J(2I)[2] . Then, (0, g1i )∗ =∧

{(g, g′) ∈ (2I)[2] : (g, g′) �∼ (0, g1i )}. By definition of ∼, we have ∼ (0, g1i ) =



A Study of Algebras and Logics of Rough Sets 147

((g1i )c, 0c) = ((g1i )c, 1). Observe that (g1i , g1i ) � ((g1i )c, 1), as, g1i � (g1i )c is
true in a Boolean algebra. Now, let (g, g′) ∈ J(2I)[2] be such that (g, g′) �∼
(0, g1i ) = ((g1i )c, 1). But we have g′ ≤ 1, so for (g, g′) �∼ (0, g1i ) to hold,
we must have g � (g1i )c. g1i is an atom of 2I and g � (g1i )c imply g1i ≤ g.
Hence (g1i , g1i ) ≤ (g, g′), and we get (0, g1i )∗ = (g1i , g1i ). Similarly, we have
(g1i , g1i )∗ = (0, g1i ). Let us summarize these observations in the following lemma.

Lemma 2. The completely distributive De Morgan algebra 3I has the following
properties. For each i ∈ I,

1. (fa
i )∗ = f1

i , (0, g1i )∗ = (g1i , g1i ).
2. (f1

i )∗ = fa
i , (g1i , g1i )∗ = (0, g1i ).

We return to Theorem 9.

Proof of Theorem 9:
Let the Kleene algebra 3I be given. Consider 2I as a Boolean subalgebra of 3I .
Using the definition of φ (cf. Theorem 11) and its extension (cf. Lemma 1), and
Lemma 2 we have, for each i ∈ I,

φ((fa
i )∗) = φ(f1

i ) = (g1i , g1i ) = φ(fa
i )∗, φ((f1

i )∗) = φ(fa
i ) = (0, g1i ) = φ(f1

i )∗.

By Theorem 12, φ is an order isomorphism between J3I and J(2I)[2] . Hence using
Theorem 13, Φ is an isomorphism between the De Morgan algebras 3I and (2I)[2].
As both the algebras are Kleene algebras which are also equational algebras
defined over De Morgan algebras, the De Morgan isomorphism Φ extends to
Kleene isomorphism. ��
Let us illustrate the above theorem through examples:

Example 3. Consider the Kleene algebra 3 := {0, a, 1}. Then J3 = {a, 1}. For
2 := {0, 1}, 2[2] = {(0, 0), (0, 1), (1, 1)} and J2[2] = {(0, 1), (1, 1)}. Further, a∗ =
1, 1∗ = a and (0, 1)∗ = (1, 1) and (1, 1)∗ = (0, 1).
Then φ : J3 → J2[2] is defined as

φ(a) := (0, 1),

φ(1) := (1, 1).

Hence the extension map Φ : 3 → 2[2] is given as

Φ(a) := (0, 1),

Φ(1) := (1, 1),

Φ(0) := (0, 0).

The diagrammatic illustration of this example is given in Fig. 9.
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0 = ∼ 1

a =∼ a

1 = ∼ 0

3 := 2 :=

0 = ∼ 1

1 = ∼ 0

(2)[2] :=

(0,0) = ∼ (1,1)

(0,1) = ∼ (0,1)

(1,1) = ∼ (0,0)

Fig. 9. 3 ∼= (2)[2]

Example 4. Let us consider the Kleene algebra 3 × 3.
3 × 3 := {(0, 0), (0, a), (0, 1), (a, 1), (1, 1), (a, 0), (1, 0), (1, a), (a, a)}.
J3×3 = {(0, a), (0, 1), (a, 0), (1, 0)} and
(0, a)∗ = (0, 1), (0, 1)∗ = (0, a), (a, 0)∗ = (1, 0), (1, 0)∗ = (a, 0).
Take the Boolean subalgebra 2 × 2 := {(0, 0), (0, 1), (1, 0), (1, 1)} of 3 × 3. For
convenience, let us change the notations. We represent the set 2 × 2 and its
elements as 22 = {0, x, y, 1}, where (0, 0) is replaced by 0, (0, 1) is replaced by
x, (1, 0) is replaced by y, and (1, 1) is replaced by 1. Then
(22)[2] = {(0, 0), (0, x), (0, 1), (0, y), (x, x), (x, 1), (y, 1), (y, y), (1, 1)}, and
J(22)[2] = {(0, x), (0, y), (x, x), (y, y)}.
Further, (0, x)∗ = (x, x), (x, x)∗ = (0, x) and (0, y)∗ = (y, y), (y, y)∗ = (0, y).
The diagrammatic illustration of the isomorphism between 3 × 3 and (22)[2] is
given in Fig. 10.

Let us end this section with the following note. Gehrke and Walker in [34]
proved that R when considered as Stone algebra, is isomorphic to 2I × 3J for
appropriate index sets I and J . It is also observed that 3 is isomorphic to 2[2],
by 0, a, 1 mapping to (0, 0), (0, 1), (1, 1) respectively, whence 3I is isomorphic to
(2[2])I for index set I. Then it can easily be proved that (2[2])I is isomorphic to
(2I)[2]. This provides an alternative proof of Theorem 9.

2.2 Rough Set Representation of Kleene Algebras

Let us briefly recall from Sect. 1.2, some basic notions of rough set theory. For
an approximation space (U,R), one defines for each A ⊆ U , the lower and upper
approximations LA,UA respectively as:

LA :=
⋃

{[x] : [x] ⊆ X},

UA :=
⋃

{[x] : [x] ∩ X �= ∅}. (∗)

The ordered pair (LA,UA) is called a rough set in (U,R). Let us also recall the
notations:
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3 × 3 =

(0, 1)

(1, 1)

(0, a)

(0, 0)

(a, 0)

(1, 0)

(a, a)

(a, 1) (1, a)

(22)[2] =

(x, x)

(1, 1)

(0, x)

(0, 0)

(0, y)

(y, y)

(0, 1)

(x, 1) (y, 1)

J3×3 =

(0, a)

(0, 1)
(1, 0)

(a, 0)

J(22)[2] =

(0, x)

(x, x)
(y, y)

(0, y)

φ

Fig. 10. 32 ∼= (22)[2]

R := {(D1,D2) ∈ D × D : D1 ⊆ D2},RS := {(LA,UA) : A ⊆ U}.

The collection D of definable sets forms a complete atomic Boolean algebra in
which atoms are the equivalence classes. The collection RS forms a distributive
lattice – in fact, it forms a Kleene algebra. On the other hand, R is the set D[2]

and hence forms a Kleene algebra (cf. Proposition 2) as well.
In this section, we proceed to establish part (ii) of Theorem 7. Moreover,

we formalize the connection of rough sets with the 3-valued semantics being
considered in this work. We end this section with a rough set semantics for LK

(cf. Theorem 22), obtained as a consequence of the rough set representation
result of Kleene algebras.

It has already been noted by many authors (for e.g., [4,5,59]) that, for an
approximation space (U,R), sets R and RS may not be the same. So, it is
natural to ask how R and RS differ as algebraic structures. The following result
mentioned in [4] gives a connection between the two. The proof is not given in
[4]; we sketch it here, as it is used in the sequel.

Theorem 14. For any approximation space (U,R), there exists an approxima-
tion space (U ′, R′) such that R corresponding to (U,R) is order isomorphic to R′
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corresponding to (U ′, R′). Further, R′ = RS ′, the latter denoting the collection
of rough sets in the approximation space (U ′, R′) .

Proof. Let (U,R) be the given approximation space. Consider the set A := {a ∈
U : |R(a)| = 1}, where R(a) denotes the equivalence class of a in U . So A is the
collection of all elements which are R-related only to themselves. Now, let us
consider a set A′ which consists of ‘dummy’ elements from outside U , indexed
by the set A, i.e. A′ := {a′ : a ∈ A} such that A′ ∩ U = ∅. Let U ′ = U ∪ A′.
Define an equivalence relation R′ on U ′ as follows.

If a ∈ U then R′(a) := R(a) ∪ {x′ ∈ A′ : x ∈ R(a) ∩ A}.

If a′ ∈ A′ then R′(a′) := R(a) ∪ {a′} (= {a, a′}).

Note that the number of equivalence classes in both the approximation spaces
is the same. Define the map φ : R → R′ as φ(D1,D2) := (D′

1,D
′
2), where

D′
1 := D1 ∪ {x′ ∈ A′ : x ∈ D1 ∩ A} and D′

2 := D2 ∪ {x′ ∈ A′ : x ∈ D2 ∩ A}.
Then φ is an order isomorphism.

Since R and RS for any approximation space (U,R) form Kleene algebras,
Theorem 14 can easily be extended to Kleene algebras as follows.

Theorem 15. Let (U,R) be an approximation space. There exists an approxi-
mation space (U ′, R′) such that R corresponding to (U,R) is Kleene isomorphic
to RS ′ (= R′) corresponding to (U ′, R′).

Proof. Consider (U ′, R′) and φ as in Theorem 14. φ is a lattice isomorphism,
as the restriction of φ to the completely join irreducible elements of the lattices
D[2] and D′[2] is an order isomorphism (using Proposition 4 and Lemma 1). Let
us now show that φ(∼ (D1,D2)) =∼ (φ(D1,D2)). To avoid confusion, we follow
these notations: for X ⊆ U we use Xc1 for the complement in U and Xc2 for
the complement in U ′.
Now, φ(∼ (D1,D2)) = φ(Dc1

2 ,Dc1
1 ) = ((Dc1

2 )′, (Dc1
1 )′). By definition of φ, we

have:

(Dc1
2 )′ = Dc1

2 ∪ {x′ ∈ A′ : x ∈ Dc1
2 ∩ A}.

(Dc1
1 )′ = Dc1

1 ∪ {x′ ∈ A′ : x ∈ Dc1
1 ∩ A}.

Claim:
(Dc1

2 )′ = (D′
2)

c2 , and (Dc1
1 )′ = (D′

1)
c2 .

Proof of Claim: Let us first prove that (Dc1
2 )′ = (D′

2)
c2 . Note that

(Dc1
2 )′ = Dc1

2 ∪ {x′ ∈ A′ : x ∈ Dc1
2 ∩ A}, and

(D′
2)

c2 = (D2 ∪ {x′ : x ∈ D2 ∩ A})c2 = (D2)c2 ∩ ({x′ ∈ A′ : x ∈ D2 ∩ A})c2 .
Let X := {x′ ∈ A′ : x ∈ Dc1

2 ∩ A} and Y := {x′ ∈ A′ : x ∈ D2 ∩ A}.
Consider a ∈ (Dc1

2 )′ = Dc1
2 ∪ X.

Case 1 a ∈ Dc1
2 :

As D2 ⊆ U , Dc1
2 ⊆ Dc2

2 . Hence a ∈ Dc2
2 . As Dc1

2 ⊆ U , a /∈ A′, whence a ∈ Y c2 .
So a ∈ (D′

2)
c2 .
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Case 2 a ∈ X:
a = x′, where x ∈ Dc1

2 ∩ A. As, x′ ∈ R′(x) and Dc2
2 is the union of equivalence

classes, in particular it contains R′(x). So a = x′ ∈ Dc2
2 .

x ∈ Dc1
2 implies x /∈ D2. Hence a = x′ ∈ Y c2 . So a ∈ (D′

2)
c2 .

Conversely, let a ∈ (D′
2)

c2 = (D2)c2 ∩ Y c2 .
Case 1 a ∈ U :
a ∈ Dc2

2 implies that a ∈ Dc1
2 . Hence a ∈ (Dc1

2 )′.
Case 2 a ∈ A′:
a ∈ Y c2 implies a ∈ {x′ ∈ A′ : x ∈ Dc1

2 ∩ A}. Hence a ∈ (Dc1
2 )′.

Similar arguments as above show that (Dc1
1 )′ = (D′

1)
c2 .

Proof of Theorem 15:
φ(∼ (D1,D2)) = φ(Dc1

2 ,Dc1
1 ) = ((Dc1

2 )′, (Dc1
1 )′) = ((D′

2)
c2 , (D′

1)
c2) =∼

φ(D1,D2).
Hence φ is a Kleene isomorphism.

It is now not hard to see the correspondence between a complete atomic Boolean
algebra and rough sets in an approximation space.

Theorem 16. Let B be a complete atomic Boolean algebra.

(i) There exists an approximation space (U,R) such that
(a) B ∼= D.
(b) B[2] is Kleene isomorphic to R.

(ii) There exists an approximation space (U ′, R′) such that B[2] is Kleene iso-
morphic to RS ′.

Proof. Let U denote the collection of all atoms of B, and R the identity relation
on U . (U,R) is the required approximation space.

Thus we get Theorem 7(ii): given a Kleene algebra K, there exists an approx-
imation space (U,R) such that K can be embedded into RS. In other words,
every Kleene algebra is isomorphic to an algebra of rough sets in a Pawlak
approximation space.

2.3 Kleene Logic: 3-Valued Semantics

The De Morgan negation operator with the Kleene property (cf. Definition 13), is
referred to as the Kleene negation. In literature, one finds various generalizations
of the classical (Boolean) negation, including the De Morgan and Kleene nega-
tions. It is natural to ask the following question: do these generalized negations
arise from (or can be described by) the Boolean negation? The representation
result above (Theorem 7) for Kleene algebras shows that Kleene algebras always
arise from Boolean algebras, thus answering the above question in the affirmative
for the Kleene negation.

Representation of lattice-based algebras as algebras in which objects are pairs
of sets, has proved to be of significance in the study of semantics for the logic
corresponding to the class of algebras. For instance, such a representation of De
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Morgan algebras leads to Dunn’s well-known 4-valued semantics of De Morgan
logic. In a similar way, the above representation results for Kleene algebras help
us in the study of semantics for the logic LK corresponding to the class of
Kleene algebras. LK is the De Morgan consequence system [27] with the negation
operator satisfying the Kleene axiom: α ∧ ∼ α � β ∨ ∼ β. We show that LK is
sound and complete with respect to a 3-valued as well as a rough set semantics,
making use of the representation results.

As mentioned earlier, Moisil in 1941 (cf. [17]) proved that B[2] forms a 3-
valued LM algebra. So, while discussing the logic corresponding to the structures
B[2], one is naturally led to 3-valued �Lukasiewicz logic. Varlet (cf. [11]) noted the
equivalence between regular double Stone algebras and 3-valued LM algebras,
whence B[2] can be given the structure of a regular double Stone algebra as
well. Here, due to Proposition 2 and Theorem 7(i), we focus on B[2] as a Kleene
algebra, and study the (propositional) logic corresponding to the class of Kleene
algebras and the structures B[2]. We denote this system as LK , and present it
in this section.

Our approach to the study is motivated by Dunn’s 4-valued semantics of the
De Morgan consequence system [27]. The 4-valued semantics arises from the fact
that each element of a De Morgan algebra can be looked upon as a pair of sets.
In our case, we have observed in Sect. 2.1 as a consequence of Theorem 7(i),
that each element of a Kleene algebra can also be looked upon as a pair of sets.
As demonstrated in Example 3 above, the Kleene algebra 3 ∼= 2[2]. We exploit
the fact that 3, in particular, can be represented as a Kleene algebra of pairs of
sets, to get completeness of the logic LK with respect to a 3-valued semantics.

The Kleene axiom α ∧ ∼ α � β ∨ ∼ β, given by Kalman [43], was stud-
ied by Dunn [27,28] in the context of examining 3-valued semantics for the
first degree fragment (no nested implications) of a variety of logics including
the semi-relevant logic RM . He showed that the De Morgan consequence sys-
tem coupled with the Kleene axiom (the resulting consequence relation being
denoted as �Kalman), is sound and complete with respect to a semantic conse-
quence relation (denoted |=3R

0,1) defined on 3R, the right hand chain of the De
Morgan lattice 4 given in Fig. 11. 3R is the side of 4 in which the elements
are interpreted as t(rue), f(alse) and b(oth), and |=3R

0,1 essentially incorporates
truth and falsity preservation by valuations in its definition. He called this con-
sequence system, the Kalman consequence system. The completeness result for
the Kalman consequence system is obtained considering all 4-valued valuations
restricted to 3R: the proof makes explicit reference to valuations on 4.

The logic LK (K for Kalman and Kleene) that we are considering in our
work, is the Kalman consequence system with slight modifications. LK is shown
to be sound and complete with respect to a 3-valued semantics that is based
on the same idea underlying the consequence relation |=3R

0,1, viz. that of truth as
well as falsity preservation. However, the definitions and proofs in this case, do
not refer to 4.

Let us present LK . The logic LK is build upon the logic BDLL by adding
following rules and postulates.
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n =∼ n b =∼ b

f =∼ t

t =∼ f

Fig. 11. De Morgan lattice 4

Definition 15. (LK- postulates)

1.
α � β

∼ β �∼ α (Contraposition).
2. ∼ α∧ ∼ β �∼ (α ∨ β) (∨-linearity).
3. α � � (Top) .
4. ⊥ � α (Bottom) .
5. � �∼ ⊥ (Nor).
6. α �∼∼ α.
7. ∼∼ α � α.
8. α ∧ ∼ α � β ∨ ∼ β (Kalman/Kleene).

Let us now consider any Kleene algebra (K,∨,∧,∼, 0, 1). We first define
valuations on K.

Definition 16. A map v : F → K is called a valuation on K, if it satisfies the
following properties for any α, β ∈ F .

1. v(α ∨ β) = v(α) ∨ v(β).
2. v(α ∧ β) = v(α) ∧ v(β).
3. v(∼ α) =∼ v(α).
4. v(⊥) = 0.
5. v(�) = 1.

A consequent α � β is valid in K under the valuation v, if v(α) ≤ v(β). If the
consequent is valid under all valuations on K, then it is valid in K. Let A be a
class of Kleene algebras. If the consequent α � β is valid in each algebra of A,
then we say α � β is valid in A, and denote it as α �A β.

Let AK denote the class of all Kleene algebras. We have, in the classical
manner,
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Theorem 17. α �LK
β if and only if α �AK

β, for any α, β ∈ F .

We now focus on valuations on the Kleene algebra B[2]. For α ∈ F , v(α) is a
pair of the form (a, b), a, b ∈ B. Suppose for β ∈ F , v(β) := (c, d), c, d ∈ B. By
definition, the consequent α � β is valid in B[2] under v, when v(α) ≤ v(β), i.e.,
(a, b) ≤ (c, d), or a ≤ c and b ≤ d.

Let AKB[2] denote the class of Kleene algebras formed by the sets B[2], for
all Boolean algebras B.

Theorem 18. α �AK
β if and only if α �A

KB[2] β, for any α, β ∈ F .

Proof. Let α �A
KB[2] β. Consider any Kleene algebra (K,∨,∧,∼, 0, 1), and let v

be a valuation on K. By Theorem 7(i), there exists a Boolean algebra B such that
K is embedded in B[2]. Let φ denote the embedding. It is a routine verification
that φ ◦ v is a valuation on B[2]. The other direction is trivial, as AKB[2] is a
subclass of AK .

On the other hand, as observed earlier, the structure B[2] is embeddable in
the Kleene algebra formed by P(U)[2] for some set U , utilizing Stone’s represen-
tation. Hence if v is a valuation on B[2], it can be be extended to a valuation on
P(U)[2]. Let AKP(U)[2] denote the class of Kleene algebras of the form P(U)[2],
for all sets U . So, we get from Theorem 18 the following.

Corollary 1. α �AK
β if and only if α �A

KP(U)[2]
β, for any α, β ∈ F .

Following [27], we now consider semantic consequence relations defined by val-
uations v : F → 3 on the Kleene algebra 3. Let us re-label the elements of 3 as
f, u, t, having the standard truth value connotations.

Definition 17. Let α, β ∈ F .

α �t β if and only if, if v(α) = t then v(β) = t (Truthpreservation).
α �f β if and only if, if v(β) = f then v(α) = f (Falsitypreservation).
α �t,f β if and only if, α �t β and α �f β.

We adopt �t,f as the semantic consequence relation for the logic LK . Note that
the consequence relation �t is the consequence relation used in [73] to interpret
the strong Kleene logic. In case of Dunn’s 4-valued semantics, the consequence
relations �t, �f and �t,f are defined using valuations on 4. As shown in [27],
all the three turn out to be equivalent. Observe that for valuations on 3 that
are being considered here, the consequence relations �t, �f and �t,f are not
equivalent: α ∧ ∼ α �t β, but α ∧ ∼ α �f β; β �f α ∨ ∼ α, but β �t α ∨ ∼ α.

Theorem 19. α �A
KP(U)[2]

β if and only if α �t,f β, for any α, β ∈ F .

Proof. Let α �A
KP(U)[2]

β, and v : F → 3 be a valuation. By Example 3 and
comments above, 3 is embeddable in (in fact, isomorphic to) the Kleene algebra
of P(U)[2] for some set U . If the embedding is denoted by φ, φ ◦ v is a valuation
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on P(U)[2]. Then (φ ◦ v)(α) ≤ (φ ◦ v)(β) implies v(α) ≤ v(β). Thus if v(α) = t,
we have v(β) = t, and if v(β) = f , then also v(α) = f .
Now, let α �t,f β. Let U be a set, and P(U)[2] be the corresponding Kleene
algebra. Let v be a valuation on P(U)[2] – we need to show v(α) ≤ v(β). For
any γ ∈ F with v(γ) := (A,B), A,B ⊆ U, and for each x ∈ U , define a map
vx : F → 3 as

vx(γ) :=

⎧
⎨

⎩

t if x ∈ A
u if x ∈ B \ A
f if x /∈ B.

We show that vx is a valuation.
Consider any γ, δ ∈ F , with v(γ) := (A,B) and v(δ) := (C,D), A,B,C,D ⊆ U .

1. vx(γ ∧ δ) = vx(γ) ∧ vx(δ).
Note that v(γ ∧ δ) = (A ∩ C,B ∩ D).
Case 1 vx(γ) = t and vx(δ) = t: Then x ∈ A ∩ C, and we have vx(γ ∧ δ) =
t = vx(γ) ∧ vx(δ).
Case 2 vx(γ) = t and vx(δ) = u: x ∈ A, x ∈ D and x /∈ C, which imply
x /∈ A ∩ C but x ∈ B ∩ D. Hence vx(γ ∧ δ) = u = vx(γ) ∧ vx(δ).
Case 3 vx(γ) = t and vx(δ) = f : x ∈ A, x /∈ D, which imply x /∈ B ∩ D.
Hence vx(γ ∧ δ) = f = vx(γ) ∧ vx(δ).
Case 4 vx(γ) = u and vx(δ) = f : x /∈ A but x ∈ B and x /∈ D, which imply
x /∈ B ∩ D. Hence vx(γ ∧ δ) = f = vx(γ) ∧ vx(δ).
Case 5 vx(γ) = u, vx(δ) = u: x ∈ B but x /∈ A and x ∈ D but x /∈ C. So,
x ∈ B ∩ D and x /∈ A ∩ C. Hence vx(γ ∧ δ) = u = vx(γ) ∧ vx(δ).
Case 6 vx(γ) = f , vx(δ) = f : x /∈ B and x /∈ D. So, x /∈ B ∩ D. Hence
vx(γ ∧ δ) = f = vx(γ) ∧ vx(δ).

2. vx(γ ∨ δ) = vx(γ) ∨ vx(δ).
Observe that v(γ ∨ δ) = (A ∪ C,B ∪ D).
Case 1 vx(γ) = t and vx(δ) = t: Then x ∈ A, x ∈ C, which imply x ∈ A ∪ C.
Hence vx(γ ∨ δ) = t = vx(γ) ∨ vx(δ).
Case 2 vx(γ) = t and vx(δ) = u: x ∈ A, x ∈ D and x /∈ C, in any way
x ∈ A ∪ C . Hence vx(γ ∨ δ) = t = vx(γ) ∨ vx(δ).
Case 3 vx(γ) = t and vx(δ) = f : x ∈ A, x /∈ D, which imply x ∈ A∪C. Hence
vx(γ ∨ δ) = t = vx(γ) ∨ vx(δ).
Case 4 vx(γ) = u and vx(δ) = f : x /∈ A but x ∈ B and x /∈ D, which imply
x /∈ A ∪ C but x ∈ B ∪ D. Hence vx(γ ∨ δ) = u = vx(γ) ∨ vx(δ).
Case 5 vx(γ) = u, vx(δ) = u: x ∈ B but x /∈ A and x ∈ D but x /∈ C. So,
x ∈ B ∪ D and x /∈ A ∪ C. Hence vx(γ ∨ δ) = u = vx(γ) ∨ vx(δ).
Case 6 vx(γ) = f , vx(δ) = f : x /∈ B and x /∈ D. So, x /∈ B ∪ D. Hence
vx(γ ∧ δ) = f = vx(γ) ∧ vx(δ).

3. vx(∼ γ) =∼ vx(γ).
Note that v(∼ γ) = (Bc, Ac).
Case 1 vx(γ) = t: Then x ∈ A, i.e. x /∈ Ac. Hence vx(∼ γ) = f =∼ vx(γ).
Case 2 vx(γ) = u: x /∈ A but x ∈ B. So x ∈ Ac and x /∈ Bc. Hence vx(∼ γ) =
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u =∼ vx(γ).
Case 3 vx(γ) = f : x /∈ B, i.e. x ∈ Bc. So vx(∼ γ) = t =∼ vx(γ).

Hence vx is a valuation in 3. Now let us show that v(α) ≤ v(β). Let v(α) :=
(A′, B′), v(β) := (C ′,D′), and x ∈ A′. Then vx(α) = t, and as α �t,f β, by
definition, vx(β) = t. This implies x ∈ C ′, whence A′ ⊆ C ′.
On the other hand, if x /∈ D′, vx(β) = f . Hence vx(α) = f , so that x /∈ B′,
giving B′ ⊆ D′.

Note that the above proof cannot be applied on the Kleene algebra B[2] instead
of P(U)[2], as we have used set representations explicitly.

An immediate consequence of Theorem 17, Corollary 1 and Theorem 19 is

Theorem 20. α �LK
β if and only if α �t,f β, for any α, β ∈ F .

2.4 Rough Set Semantics for LK and the Kleene Algebra 3

Now, one can apply the Theorem 16 to get a rough set semantics for the logic
LK . Let AKRS denote the class containing the collections RS of rough sets over
all possible approximation spaces (U,R). Then using Theorems 16 and 17, we
have:

Theorem 21. (Rough Set Semantics) For any α, β ∈ F ,

(i) α �AK
β if and only if α �AKRS β,

(ii) α �LK
β if and only if α �AKRS β.

Thus, using Theorem 20, we can formally link the 3-valued semantics being
considered here, and rough sets.

Theorem 22. For any α, β ∈ F , α �AKRS β if and only if α �t,f β.

We would now like to explicate the relationship between rough sets and the 3-
valued semantics of the logic LK indicated in the above theorem. For this, let us
again mention the interpretations yielded by the lower and upper approximations
of a set A in an approximation space (U,R) (cf. Sect. 1).

1. x certainly belongs to A, if x ∈ LA, i.e. all objects which are indiscernible to
x are in A.

2. x certainly does not belong to A, if x /∈ UA, i.e. all objects which are indis-
cernible to x are not in A.

3. Belongingness of x to A is not certain, but possible, if x ∈ UA but x /∈ LA. In
rough set terminology, this is the case when x is in the boundary of A: some
objects indiscernible to x are in A, while some others, also indiscernible to x,
are in Ac.
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Consider a formula α in LK , and let v be a valuation in RS for some approx-
imation space (U,R) such that v(α) := (LA,UA), A ⊆ U . Let x ∈ U . We define
the following semantic consequence relations.

v, x �RS
t α if and only if x ∈ LA.

v, x �RS
f α if and only if x /∈ UA.

v, x �RS
u α if and only if x /∈ LA, x ∈ UA.

Then v, x �RS
t α captures the interpretation 1., v, x �RS

f α captures the inter-
pretation 2. and v, x �RS

u α captures the interpretation 3..
Next, let us define the following relations.
α �RS

t β if and only if v, x �RS
t α implies v, x �RS

t β, for all valuations v in RS
and x ∈ U .
α �RS

f β if and only if v, x �RS
f β implies v, x �RS

f α, for all valuations v in RS
and x ∈ U .
α �RS

t,f β if and only if α �RS
t β and α �RS

f β.
Now we link the syntax and semantics.

Definition 18. Let α � β be a consequent.

– α � β is valid in an approximation space (U,R), if and only if α �RS
t,f β.

– α � β is valid in a class F of approximation spaces if and only if α � β is
valid in all approximation spaces (U,R) ∈ F .

Theorem 23. α �AKRS β if and only if α � β is valid in the class of all
approximation spaces.

Proof. Let α �AKRS β. Let (U,R) be an approximation space, and v be a valu-
ation in RS with v(α) := (LA,UA) and v(β) := (LB,UB), A,B ⊆ U .
By the assumption, LA ⊆ LB and UA ⊆ UB. Let us first show that α �RS

t β. So,
let x ∈ U and v, x �RS

t α, i.e., x ∈ LA. But we have LA ⊆ LB, hence v, x �RS
t β.

Now let us show that α �RS
f β. So let y ∈ U such that v, y �RS

f β, i.e., y /∈ UB.
But we have UA ⊆ UB, hence y /∈ UA, i.e., v, y �RS

f α.
Now, suppose α � β is valid in the class of all approximation spaces. We want
to show that α �AKRS β. Let v be a valuation in RS as taken above. We have
to show that LA ⊆ LB and UA ⊆ UB. Let x ∈ LA, i.e., v, x �RS

t α. Hence by
our assumption, v, x �RS

t β, i.e., x ∈ LB. So LA ⊆ LB. Now, let y /∈ UB, i.e.,
v, y �RS

f β. By our assumption, v, y �RS
f α, i.e., y /∈ UA.

Furthermore, let us spell out the natural connections of the Kleene algebra
3 with rough sets. Observe that 3, being isomorphic to 2[2] (as noted earlier),
can also be viewed as a collection of rough sets in an approximation space, due
to Theorem 16(ii).

Proposition 5. There exists an approximation space (U,R) such that 3 ∼= RS.

Proof. Let U := {x, y} and consider the equivalence relation R := U × U on U .
The correspondence is depicted in Fig. 12.
Note that we also have (∅, U) = (Ly,Uy) =∼ (Ly,Uy).
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f =∼ t

u =∼ u

t =∼ f

3 := ∼= RS:=

(∅, ∅) = (L∅,U∅)
=∼ (LU,UU)

(∅, U) = (Lx,Ux)
=∼ (Lx,Ux)

(U, U) = (LU,UU) =∼ (L∅,U∅)

Fig. 12. 3 ∼= RS

3 Perp Semantics of Some Negations in Classical Rough
Set-Theoretic Structures

Several classical negations have been described in terms of rough sets through
algebraic representation results, e.g. Kleene negation (cf. Sect. 2.1) or double
Stone negation with regularity (cf. [19]). In particular, for a given approximation
space (U,R), the collections R of generalized rough sets and RS of rough sets
on an approximation space (U,R) form Kleene, Stone, dual Stone and regular
double Stone algebras (cf. Sect. 1). More precisely, recall that if we define the
unary operators ∼,¬1,¬2 on RS as:

∼ (LA,UA) := ((UA)c, (LA)c),
¬1(LA,UA) := ((UA)c, (UA)c),
¬2(LA,UA) := ((LA)c, (LA)c), A ⊆ U,

then ∼ defines a Kleene negation, ¬1,¬2 define Stone and dual Stone nega-
tions respectively. Moreover, negations ¬1,¬2 are regular in the sense that, if
¬1(LA,UA) = ¬1(LB,UB) and ¬2(LA,UA) = ¬2(LB,UB) then (LA,UA) =
(LB,UB), for any A,B ⊆ U . Our interest is in studying the logical behavior of
these negations, i.e. in a semantic analysis of these negations.

We follow Dunn’s approach for the study, as briefly outlined in Sect. 1.4. We
prove correspondence and completeness results of the classical negations men-
tioned above, with respect to perp, dual of perp and the ‘combined semantics’
involving perp and the dual of perp. More precisely, the negations we consider
are those with the Kleene, Stone, and dual Stone with regularity properties.

We have organized this Section as follows. In Sect. 3.1, we present the pre-
liminaries of perp semantics, and establish correspondence and completeness
results for logics with negations having the Kleene and Stone properties in cer-
tain classes of compatibility frames. The perp semantics obtained for the logic
LK for Kleene algebras discussed in Sect. 2, thus imparts a semantics to the logic
other than (but equivalent to) the algebraic, rough set and 3-valued semantics.
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Preliminaries of the dual semantics are presented in Sect. 3.2, followed by a
study of the dual of Kleene and Stone properties in exhaustive frames. We fur-
ther prove correspondence and completeness results. Section 3.3 begins with the
preliminaries on the united semantics. We combine Kleene property with its
dual, Stone property with its dual, and study their semantical behavior in K−
frames in this section. A perp semantics for the logic of regular double Stone
algebras is obtained, thus imparting this logic also with a semantics other than
the rough set semantics.

The preliminaries used in this Section are taken from [29].
The content of this section is partly based on the article [51].

3.1 Semantics in Kite of Negations

In modal logic, the system K is minimal amongst all normal modal systems.
Similarly Dunn [29] identifies the logic Ki which is minimal with respect to perp
semantics (defined below).

The logic Ki is built upon the logic BDLL (cf. Sect. 1), by adding the
following rules and postulates.

1.
α � β

∼ β �∼ α (Contraposition)
2. ∼ α∧ ∼ β �∼ (α ∨ β) (∨-linearity).
3. � �∼ ⊥ (Nor).

Definition 19. A compatibility frame is a triple (W,C,≤) with the following
properties.

1. (W,≤) is a partially ordered set.
2. C is a binary relation on W such that for x, y, x′, y′ ∈ W, if x′ ≤ x, y′ ≤ y

and xCy then x′Cy′.

C is called a compatibility relation on W .
A perp frame is a tuple (W,⊥,≤), where ⊥, the perp relation on W , is the

complement of the compatibility relation C.

As in [29], we do not distinguish between compatibility and perp frames, and
present the results in the section in terms of the compatibility relation.

Definition 20. A relation � between points of W and propositional variables in
P is called an evaluation, if it satisfies the hereditary condition:

– if x � p and x ≤ y then y � p, for any x, y ∈ W .

Recursively, an evaluation � can be extended to F as follows. Let x ∈ W .

1. x � α ∧ β if and only if x � α and x � β.
2. x � α ∨ β if and only if x � α or x � β.
3. x � �.
4. x � ⊥.
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5. x �∼ α if and only if for all y ∈ W, xCy implies that y � α.

Then one can easily show that � satisfies the hereditary condition for all formulae
in F . Thus, for each formula α in F , an evaluation � gives a subset of W that
is upward closed in the partially ordered set (W,≤). (X ⊆ W is upward closed
or a cone, if x ∈ X and x ≤ y, y ∈ W, imply y ∈ X.)

For the compatibility frame F := (W,C,≤), the pair (F,�) for an evaluation
� is called a model. The notion of validity is introduced next in the following
(usual) manner.

– A consequent α � β is valid in a model (F,�), denoted as α �(F,�) β, if and
only if, if x � α then x � β, for each x ∈ W .

– α � β is valid in the compatibility frame F, denoted as α �F β, if and only if
α �(F,�) β for every model (F,�).

– Let F denote a class of compatibility frames. α � β is valid in F, denoted as
α �F β, if and only if α �F β for every frame F belonging to F.

In [29] it has been proved that Ki is the minimal logic which is sound and
complete with respect to the class of all compatibility frames. Further, Dunn [24,
26,29] established various correspondence and completeness results with respect
to perp semantics and arrived at a kite of negations, commonly known as ‘Dunn’s
Kite of Negations’ (cf. Fig. 13). Dunn then extended this kite to the ’Lopsided
Kite of Negations’ (cf. Fig. 14).

∼∼ a ≤ a

De Morgan

a∧ ∼ a = 0

Intutionistic

a ≤∼∼ a Minimal

Ortho

a ≤ b ⇒∼ b ≤∼ a Galois

a ≤ b ⇒∼ b ≤∼ a Preminimal

Fig. 13. Dunn’s Kite of Negations
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∼∼ a ≤ a

De Morgan
a∧ ∼ a = 0

Intuitionistic

a ∧ b ≤ c ⇒ a∧ ∼ c ≤∼ b

Minimal(Johansson)

a ≤∼∼ a Quasi − Minimal(Dunn′sMinimal)

∼ a∧ ∼ b ≤∼ (a ∨ b) Preminimal

Ortho

Fig. 14. Lopsided Kite of Negations

Frame completeness results for various logics with negation have been proved
using the canonical frames for the logics. Let us give the definitions for the
canonical frame. Let Λ denote any extension of the logic Ki.

Definition 21. A set P of sentences in a logic Λ is called a prime theory if

1. α � β holds and α ∈ P , then β ∈ P .
2. α, β ∈ P then α ∧ β ∈ P .
3. � ∈ P and ⊥ /∈ P .
4. α ∨ β ∈ P implies α ∈ P or β ∈ P .

Let Wc be the collection of all prime theories of Λ. Define a relation Cc on
Wc as P1CcP2 if and only if, for all sentences α of F , ∼ α ∈ P1 implies α /∈ P2.
The tuple (Wc, Cc,⊆) is the canonical frame for Λ.
A logic Λ is called canonical, if its canonical frame is a frame for Λ.

Now, let us consider algebraic structures corresponding to the logic Ki.

Definition 22. A Ki-algebra is a structure (K,∨,∧,∼, 0, 1) such that for all
a, b ∈ K,

1. (K,∨,∧, 0, 1) is a bounded distributive lattice.
2. a ≤ b ⇒∼ b ≤∼ a.
3. ∼ a∧ ∼ b ≤∼ (a ∨ b).
4. ∼ 0 = 1.

Let us denote by AKi
the class of all Ki-algebras. The algebraic semantics of the

logic Ki is defined in the standard way with the help of valuations v : P → K
on any Ki-algebra K (P is the set of propositional variables of Ki) extended (in
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the usual way) to the set of all Ki-formulas. A sequent α � β is called true in a
Ki-algebra K under the valuation v, if v(α) ≤ v(β). α � β is valid in a class of
Ki-algebras if it is true in every Ki-algebra belonging to the class, under every
valuation. Validity of α � β in AKi

is denoted as α �AKi
β.

Theorem 24. (Soundness and Completeness) α �Ki
β if and only if

α �AKi
β.

In the following, we shall encounter different enhancements of the logic Ki, and
obtain algebraic completeness as for Ki above, as well as completeness with
respect to classes of frames for the systems.

Now, let us consider the Kleene property α ∧ ∼ α � β ∨ ∼ β. We provide a
characterization for negations to satisfy this property in a compatibility frame,
and prove canonicity.

Theorem 25. α ∧ ∼ α � β ∨ ∼ β is valid in a compatibility frame, if and only
if the compatibility relation satisfies the following first order property:

∀x(xCx ∨ ∀y(xCy → y ≤ x)). (*)

Moreover, canonicity holds.

Proof. Consider any compatibility frame (W,C,≤), let (∗) hold, and let x ∈ W .
Suppose xCx, then x � α ∧ ∼ α, and trivially, if x � α ∧ ∼ α then x � β ∨ ∼ β.

Now suppose ∀y(xCy → y ≤ x) is true. Let x � β and xCz. Then z ≤ x,
whence z � β. So, by definition x �∼ β. Hence x � β ∨ ∼ β. Hence in any case
if x � α ∧ ∼ α then x � β ∨ ∼ β.

Let (∗) not hold. This implies that there exists x in W such that not(xCx)
and there exists y in W such that xCy and y � x. Take such a pair x, y from
W . Let us define, for any z, w ∈ W ,

z � p if and only if x ≤ z and not(xCz),
w � q if and only if y ≤ w.

We show that � is an evaluation (cf. Definition 20). Let z � p and z ≤ z′. Then
x ≤ z′. If xCz′, then by the frame condition on C we have

x ≤ x, z ≤ z′xCz′ imply xCz,

which is a contradiction to the fact that z � p.
Furthermore, x � p, as x ≤ x and not(xCx). We also have x �∼ p: if xCw for
any w ∈ W then by definition, w � p. Hence, x �∼ p and so x � p ∧ ∼ p.
On the other hand, x � q as y � x. By the assumption, xCy and y � q, hence
x �∼ q. So, we have x � p ∧ ∼ p but x � q ∨ ∼ q.

Canonicity :
Let not(PCcP ). Then, by definition of Cc, there exists an α ∈ F such that α,
∼ α ∈ P . But this implies that α ∧ ∼ α ∈ P . Hence for all β ∈ F , β ∨ ∼ β ∈ P .
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So, for all β, either β ∈ P or ∼ β ∈ P .
Now let PCcQ and β ∈ Q. Then ∼ β /∈ P . But as from above, not(PCcP ), we
have β ∈ P . So, Q ⊆ P .

Hence a negation with the Kleene property can be treated as a modal operator.
Let us recall the following from Sect. 2. The logic LK contains Ki along with the
postulates (1) α �∼∼ α, (2) ∼∼ α � α and (3) α∧ ∼ α � β∨ ∼ β of Definition
15. It has been shown that the logic LK is sound and complete with respect to
class of Kleene algebras. Note that the class of all Ki − algebras satisfying De
Morgan and Kleene axioms coincides with the class of all Kleene algebras. We
now present a perp semantics for the logic LK .

The consequents α �∼∼ α and ∼∼ α � α have been characterized by Dunn
(for e.g., [29]) and Restall [66] respectively as follows.

Theorem 26.

1. α �∼∼ α is valid in the class of all compatibility frames satisfying the follow-
ing frame condition:

∀x∀y(xCy → yCx).

2. ∼∼ α � α is valid in the class of all compatibility frames satisfying the frame
condition:

∀x∃y(xCy ∧ ∀z(yCz → z ≤ x)).

From Theorem 25, the correspondence and completeness for the logic Ki with
Kleene property have been obtained. On combining the properties for the classes
of frames corresponding to the De Morgan and Kleene property, we get the
following definition.

Definition 23. A compatibility frame (W,C,≤) is called a Kleene frame if it
satisfies the frame conditions

1. ∀x∀y(xCy → yCx).
2. ∀x∃y(xCy ∧ ∀z(yCz → z ≤ x)).
3. ∀x(xCx ∨ ∀y(xCy → y ≤ x)).

An example of a Kleene frame is given by the following.

Example 5. Let W := {a, b, c}. Let us define

(i) a partial order ≤ on U as:

a ≤ a, c ≤ a, c ≤ c and b ≤ b.

(ii) a relation C on U as:

aCc, bCb, cCc, cCa.
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By definition of compatibility relation: if x ≤ x′, y ≤ y′ and x′Cy′ then xCy. We
have:

c ≤ c, c ≤ a and cCa ⇒ cCc.

c ≤ c, a ≤ a and cCa ⇒ cCa.

a ≤ a, c ≤ c and aCc ⇒ aCc.

c ≤ a, c ≤ c and aCc ⇒ cCc.

c ≤ c, c ≤ c and cCc ⇒ cCc.

b ≤ b, b ≤ b and bCb ⇒ bCb.

Hence (W,C,≤) is a compatibility frame. Let us verify whether (W,C,≤) is a
Kleene frame.
1. ∀x∀y(xCy → yCx).

C is symmetric.

2. ∀x∃y(xCy ∧ ∀z(yCz → z ≤ x)).

aCc, cCc and cCa ⇒ c, a ≤ a.

bCb and bCb ⇒ b ≤ b.

cCa and aCc ⇒ c ≤ c.

3. ∀x(xCx ∨ ∀y(xCy → y ≤ x)).

not(aCa) but aCc and c ≤ a.

Also we have bCb and cCc.
Hence (W,C,≤) is a Kleene frame.

Denote by FK , the class of all Kleene frames. We have then arrived at

Theorem 27. The following are all equivalent, for any α, β ∈ F .

(a) α �LK
β.

(b) α �AK
β.

(c) α �RSK
β.

(d) α �t,f β.
(e) α �FK

β.

Hence, the Kleene negation achieves a new position in Dunn’s Lopsided Kite of
Negations (Fig. 15).

In [29], an intuitionistic negation is defined as one having the Absurd (a∧ ∼
a = 0) along with Minimal (Johansson) property (a ∧ b ≤ c ⇒ a∧ ∼ c ≤∼
b) properties. Now, the usual definition of pseudo complement in a bounded
distributive lattice L is:

∼ a := max{c ∈ L : a ∧ c = 0}, a ∈ L. (∗)
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∼∼ a ≤ a

De Morgan

a∧ ∼ a = 0
Intuitionistic

a ∧ b ≤ c ⇒ a∧ ∼ c ≤∼ b

Minimal(Johansson)

a ≤∼∼ a Quasi − Minimal(Dunn′sMinimal)

∼ a∧ ∼ b ≤∼ (a ∨ b) Preminimal

a∧ ∼ a ≤ b∨ ∼ b

Kleene

Ortho

Fig. 15. Enhanced lopsided kite of negations

Before proceeding to the logic, we note through the results below that intuition-
istic negation defined as Absurd with Minimal (Johansson) negation coincides
with the pseudo complement defined in (∗).

Proposition 6. Let (K,∨,∧,∼, 0, 1) be a Ki − algebra with the following. For
all a, b, c ∈ K,

1. a∧ ∼ a = 0.
2. a ∧ b ≤ c ⇒ a∧ ∼ c ≤∼ b.

Then ∼ a = max{c ∈ K : a ∧ c = 0}.

Proof. Using 2: if a ∧ z = 0, then z ≤∼ a. By 1: we have a∧ ∼ a = 0 hence
∼ a = max{c ∈ K : a ∧ c = 0}.

Proposition 7. Let (K,∨,∧,∼, 0, 1) be a bounded distributive pseudo comple-
mented lattice, then for all a, b, c ∈ K,

1. a∧ ∼ a = 0.
2. a ∧ b ≤ c ⇒ a∧ ∼ c ≤∼ b.

Proof. Let us prove 2 only. Let a ∧ b ≤ c, hence a ∧ b∧ ∼ c ≤ c∧ ∼ c = 0. Using
property of pseudo complement, we have a∧ ∼ c ≤∼ b.

Hence a Stone algebra can be defined as a Ki − algebra with Absurd, Mini-
mal (Johansson) and Stone property (∼ a∨ ∼∼ a = 1). Let us first prove a
correspondence result for Stone property independently.
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Theorem 28. � �∼ α∨ ∼∼ α is valid in a frame if and only if the compatibility
relation on the frame satisfies the following first order property:

∀x∀y1∀y2(xCy1 ∧ xCy2 → (y1Cy2 ∧ y2Cy1)). (*)

Moreover, the logic Ki along with the axiom � �∼ α∨ ∼∼ α, is canonical.

Proof. Let (∗) hold in any compatibility frame (W,C,≤).
We want to show that for any x ∈ W , x �∼ α∨ ∼∼ α.
On the contrary, let us assume x �∼ α∨ ∼∼ α, i.e., x �∼ α and x �∼∼ α.
x �∼ α implies there exists y1 such that xCy1 and y1 � α.
x �∼∼ α implies there exists y2 such that xCy2 and y2 �∼ α.
As, (∗) holds, we have y1Cy2 and y2Cy1. But y2Cy1 and y1 � α imply y2 �∼ α
which is a contradiction. Hence, x �∼ α∨ ∼∼ α.
Now suppose (∗) does not hold.
This means ∃x∃y1∃y2((xCy1 ∧ xCy2) ∧ (not(y1Cy2) ∨ not(y2Cy1))). Assume
not(y1Cy2) is true and define,
z � p if and only if y2 ≤ z and not(y1Cz).
Let us first show that the relation � is well defined, i.e. hereditary. So let z � p
and z ≤ z′, hence, y2 ≤ z′. If y1Cz′ then using the frame condition we have
y1Cz, which is a contradiction.
We have x �∼ p as xCy2 and y2 � p (as not(y1Cy2)). Also, x �∼∼ p as xCy1
and y1Cz imply z � p.
Hence we have x �∼ p∨ ∼∼ p.
Canonicity :
First observe that for any prime theory P and any formula α of this logic,
∼ α∨ ∼∼ α ∈ P , which implies either ∼ α ∈ P or ∼∼ α ∈ P .
Now let PCcQ1 and PCcQ2, for any prime theories P , Q1 and Q2. We want to
show that Q1CcQ2 and Q2CcQ1. Let us show Q1CcQ2.
Let ∼ α ∈ Q1 but we have PCcQ1 hence ∼∼ α /∈ P . This means ∼ α ∈ P . We
also have PCcQ2 which will give us α /∈ Q2. Hence Q1CcQ2.
Similarly one can show Q2CcQ1.

The characterizations of Absurd and Minimal (Johansson) properties are given
in [24,29].

Theorem 29. ([24,29])

1. The rule
α ∧ β � γ

α∧ ∼ γ �∼ β is valid in a compatibility frame if and only if the
following frame condition holds:

∀x∀y(xCy → ∃z(x ≤ z ∧ y ≤ z ∧ xCz)).

2. α∧ ∼ α � ⊥ is valid, precisely in the class of all compatibility frames satisfying
the frame condition:

∀x(xCx).
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Moreover, canonicity holds in respective cases.
Hence Stone negation can be visualized as ‘impossibility’ as well as modal oper-
ator. Let LS denote the logic Ki along with following rules and postulates.

1.
α ∧ β � γ

α∧ ∼ γ �∼ β.
2. α∧ ∼ α � ⊥.
3. � �∼ α∨ ∼∼ α.

Definition 24. Let us call a compatibility frame (W,C,≤) a Stone frame if it
satisfies the frame conditions:

1. ∀x∀y(xCy → ∃z(x ≤ z ∧ y ≤ z ∧ xCz)).
2. ∀x(xCx).
3. ∀x∀y1∀y2(xCy1 ∧ xCy2 → (y1Cy2 ∧ y2Cy1)).

Let us provide an example of such a frame.
Example 6. Let us consider the poset as in Example 5. Define the relation C on
U as:

aCa, aCc, bCb, cCc, cCa.

As in Example 5, we can easily show that the structure (W,C,≤) is a compati-
bility frame. Let us show that it is a Stone frame.
1. ∀x∀y(xCy → ∃z(x ≤ z ∧ y ≤ z ∧ xCz)).

aCa and a ≤ a, aCa.

aCc and c ≤ a, a ≤ a, aCa.

bCb and b ≤ b, bCb.

cCc and c ≤ c, cCc.

cCa and a ≤ a, c ≤ a, cCa.

2. ∀x(xCx).

C is reflexive relation.

3. ∀x∀y1∀y2(xCy1 ∧ xCy2 → (y1Cy2 ∧ y2Cy1)).

aCa, aCcand cCa, aCc.

cCc, cCa and and cCa, aCc.

Hence the frame (W,C,≤) is a Stone frame.
Let us denote by FS , the class of all Stone frames, and let AS denote the class
of all Stone algebras. Then we can conclude the following.
Theorem 30. For any α, β ∈ F . The following are equivalent.

(i) α �LS
β.

(ii) α �AS
β.

(iii) α �FS
β.

So, we can conclude that Stone negation can be positioned (Fig. 16) in Dunn’s
Lopsided Kite of Negations.
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3.2 Semantics in Dual Kite of Negations

Perp semantics is defined using compatibility frames. Dunn shows [29] that the
dual of these negations in the kite of negations can be studied via dual of com-
patibility frames, namely exhaustive frames (cf. Definition 26 below). Through
the semantics in exhaustive frames, it has been shown that the negations in the
dual Lopsided kite of negations (Fig. 17) can be treated as modal operators. But
in this case, modalities are interpreted as ‘unnecessity’. Let us first present the
minimal logic in this framework.

The logic Ku contains all the postulates and rules of the logic BDLL (cf.
Sect. 1) along with:

1.
α � β

¬β � ¬α (Contraposition)
2. ¬(α ∧ β) � ¬α ∨ ¬β (∧-linearity).
3. ¬� � ⊥ (dual-Nor).

The algebraic semantics of the logic Ku is given by the class of all Ku −algebras
which can be defined as follows.

Definition 25. A Ku−algebra is a structure (K,∨,∧,¬, 0, 1) with the following
properties.

1. (K,∨,∧, 0, 1) is a bounded distributive lattice.
2. ¬(a ∧ b) = ¬a ∨ ¬b.
3. a ≤ b ⇒ ¬b ≤ ¬a.

∼∼ a ≤ a

De Morgan

a∧ ∼ a = 0
Intuitionistic

a ∧ b ≤ c ⇒ a∧ ∼ c ≤∼ b

Minimal(Johansson)

a ≤∼∼ a Quasi − Minimal(Dunn′sMinimal)

∼ a∧ ∼ b ≤∼ (a ∨ b) Preminimal

∼ a∨ ∼∼ a = 1
Stone

Ortho

Fig. 16. Enhanced Lopsided Kite of Negations
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dual Ortho

a ∨ ¬a = 1

dual Intuitionistic

c ≤ a ∨ b ⇒ ¬b ≤ a ∨ ¬c

dual Minimal(Johansson)

a ≤ ¬¬a

dual De Morgan

¬¬a ≤ a

dual Quasi Minimal

a ≤ b ⇒ ¬b ≤ ¬a

dual Preminimal

Fig. 17. Dual Lopsided Kite of Negations

4. ¬1 = 0.

It is observed in [29], that dual of compatibility frames are exhaustive frames.
In fact, any compatibility frame is an exhaustive frame, but semantics when
considering the interpretation of impossibility is studied in compatibility frames,
while semantics when considering unnecessity is studied in exhaustive frames.

Definition 26. An exhaustive frame is triple (W,R,≤) which satisfies the fol-
lowing conditions.

1. (W,≤) is a partially ordered set.
2. ≤ ◦R◦ ≤−1⊆ R.

Definition 27. A relation � between points of W and propositional variables in
P is called an evaluation , if it satisfies the backward hereditary condition:

– if x � p and y ≤ x then y � p, x, y ∈ W .

The evaluation relation � can be recursively extended to the set F as in the
previous section. Let x ∈ W .

1. x � α ∧ β if and only if x � α and x � β.
2. x � α ∨ β if and only if x � α or x � β.
3. x � �.
4. x � ⊥.
5. x � ¬α if and only if ∃y(xRy ∧ y � α).
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Then one can easily show that � satisfies the backward hereditary condition for
all formulas in F . Thus, for each formula α in F , an evaluation � gives a subset
of W that is downward closed in the partially ordered set (W,≤). (X ⊆ W is
downward closed , if x ∈ X and y ≤ x, y ∈ W, imply y ∈ X.) The notion of
validity is as in the previous section.
It has been proved by Dunn in [29] that Ku is the minimal logic which is sound
and complete with respect to the class of all exhaustive frames. The completeness
results in this case, are also proved using the canonical model. Let us provide
the definition. Let Λ be any extension of the logic Ku.

Let Wc be the collection of all prime theories of Λ. Define a relation Rc on
Wc as PRcQ if and only if, for all sentences α , ¬α /∈ P implies α ∈ Q. The
tuple (Wc, Rc,⊇) is the canonical frame for Λ.
A logic Λ is called canonical, if its canonical frame is a frame for Λ.

The dual of Kleene property a ∧ ∼ a ≤ b ∨ ∼ b is itself. For the study in
exhaustive frames, we change the notation of negation as ¬. As the De Morgan
negation provides a dual isomorphism on the base distributive lattice, dual of
De Morgan algebra (lattice) is itself and hence dual of Kleene algebra is itself.

In this section we first show that the logic Ku along with Kleene property
is sound and complete with respect to a class of exhaustive frames, i.e., Kleene
negation can be visualized as a modal (unnecessity) operator. It turns out that
the same first order property as in Theorem 25 is used for characterization.

Theorem 31. α ∧ ¬α � β ∨ ¬β is valid in an exhaustive frame, if and only if
the frame satisfies the following first order property:

∀x(xRx ∨ ∀y(xRy → y ≤ x)). (*)

The canonical frame for the logic Ku + α ∧ ¬α � β ∨ ¬β satisfies (∗).

Proof. Consider any exhaustive frame (W,R,≤), let (∗) hold, and let x ∈ W .
Suppose xRx, then x � β ∨ ¬β. Hence, trivially if x � α∧ ∼ α then x � β∨ ∼ β.

Now suppose ∀y(xRy → y ≤ x) is true. Let x � α and xRy. Then y ≤ x. This
implies y � α using backward hereditary property. Hence x � α ∧ ¬α. Trivially
then, if x � α∧ ∼ α then x � β∨ ∼ β.
Let (∗) not hold.
This implies ∃x(not(xRx) ∧ ∃y(xRy ∧ y � x)). Let us define, for any z, w ∈ W ,

z � p if and only if z ≤ x.

w � q if and only if xRw.

We show that � is an evaluation. Let z � q and z′ ≤ z. Using frame condition:
x ≤ x, xRz and z ≤−1 z′ imply xRz′. So, z′ � q.

Furthermore, x � p, as x ≤ x. We also have x � ¬p: ∃y such that xRy and
y � x. So x � p ∧ ¬p.
On the other hand, x � q as not(xRx). Let z such that xRz hence using definition
of � we have x � ¬q. So, we have x � p ∧ ¬p but x � q ∨ ¬q.
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Canonicity :
Let not(PRcP ). By definition of Rc, then there exists an α ∈ F such that α, ¬α
/∈ P , but then α ∨ ¬α /∈ P . Hence for all β ∈ F , β ∧ ¬β /∈ P . So, for all β, either
β /∈ P or ¬β /∈ P .
Now let PRcQ and let β /∈ Q. Hence ¬β ∈ P but then from above β /∈ P . So,
P ⊆ Q.

Now, consider the logic LK′ which contains all the rules and postulates of Ku

along with the following postulates:

1. ¬¬α � α.
2. α � ¬¬α.
3. α ∧ ¬α � β ∨ ¬β.

The characterization of the postulates ¬¬α � α and α � ¬¬α in an exhaustive
frame is given by Dunn in [29].

Theorem 32 ([29]).

1. α � ¬¬α is valid in an exhaustive frame (W,R,≤) if and only if the frame
satisfies the following frame condition:

∀x∃y(xRy ∧ ∀z(yRz → z ≤ x)).

2. ¬¬α � α is valid in an exhaustive frame (W,R,≤) if and only if the frame
satisfies the following frame condition:

∀x∀y(xRy → yRx).

Moreover, canonicity holds in respective cases.

Definition 28. Let us call an exhaustive frame (W,R,≤) a dual Kleene frame if
it satisfies the same conditions as a Kleene frame, only in terms of the exhaustive
relation R, i.e. we have,

1. ∀x∀y(xRy → yRx).
2. ∀x∃y(xRy ∧ ∀z(yRz → z ≤ x)).
3. ∀x(xRx ∨ ∀y(xRy → y ≤ x)).

Example 7. Consider the Kleene frame as in Example 5. It is easy to check that
(W,C,≤) is also a dual Kleene frame. In other words, C is also an exhaustive
relation on W .

Definition 29. Let us call an algebra K := (K,∨,∧,¬, 0, 1), a dual Kleene
algebra if it satisfies the following conditions. For all a, b ∈ K,

1. (K,∨,∧,¬, 0, 1) is a Ku-algebra.
2. ¬¬a ≤ a.
3. a ≤ ¬¬a.
4. a ∧ ¬a ≤ b ∨ ¬b.
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It is easy to show that any dual Kleene algebra is a Kleene algebra (via the
transformation ¬ �→∼), and any Kleene algebra is a dual Kleene algebra (via
the transformation ∼�→ ¬). Hence the class AK′ , of all dual Kleene algebras
coincides with the class AK of all Kleene algebras (via, ¬ ↔∼).

Denote by FDK , the class of all dual Kleene frames. Let α be a formula in the
logic LK′ . Let us denote by α∗, the formula in the logic LK which is obtained
from α on replacing each occurrence of ¬ by ∼.
We have then arrived at

Theorem 33. The following are all equivalent, for any α, β ∈ F .

(a) α �LK′ β.
(b) α∗ �LK

β∗.
(c) α∗ �AK

β∗.
(d) α∗ �RSK

β∗.
(e) α∗ �t,f β∗.
(f) α∗ �FK

β∗.
(g) α �FDK

β.
(h) α �AK′ β.

The dual of pseudo complement in a distributive lattice L is the dual pseudo
complement, defined as follows:

¬a := min{c ∈ L : a ∨ c = 1}, a ∈ L.

Before proceeding, let us note the equivalence between dual Intuitionistic nega-
tion in the dual Kite of negations, and the dual pseudo complement. The proof
of the following proposition is very similar to that of Propositions 6 and 7.

Proposition 8. Let (K,∨,∧,¬, 0, 1) be a distributive lattice with a unary oper-
ator ¬. The following are equivalent.

1. (K,∨,∧,¬, 0, 1) is a Ku − algebra which satisfies the dual Intuitionistic and
dual minimal (Johansson) properties.

2. (K,∨,∧,¬, 0, 1) is a dual pseudo complemented lattice.

Thus a dual Stone algebra is a Ku-algebra with negation satisfying dual Intu-
itionistic, dual minimal (Johansson) and double Stone (¬a∧¬¬a = 0) properties.

The characterization for the dual Intuitionistic property is given in [29].

Theorem 34. (Dunn [29]).

1. � � α ∨ ¬α is valid in an exhaustive frame if and only if the frame satisfies
the following first order condition:

∀x(xRx).

2. The rule
γ � α ∨ β

¬β � α ∨ ¬γ is valid in an exhaustive frame if and only if the frame
satisfies the following first order condition:

∀x∀y(xRy → ∃z(x ≤ z ∧ y ≤ z ∧ xRz)).
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Now, let us characterize dual pseudo complement in an exhaustive frame.

Theorem 35. ¬α ∧ ¬¬α � ⊥ is valid in an exhaustive frame if and only if the
frame satisfies the following first order property:

∀x∀y1∀y2(xRy1 ∧ xRy2 → (y1Ry2 ∧ y2Ry1)). (*)

Moreover, it is canonical.

Proof. Let (∗) hold in an exhaustive frame (W,R,≤) and let x ∈ W.
We want to show that x � ¬α ∧ ¬¬α. Suppose x � ¬α ∧ ¬¬α, this implies
x � ¬α and x � ¬¬α. Hence there exist y1, y2 such that xRy1, xRy2 and y1 � α,
y2 � ¬α. As (∗) holds, y2Ry1. But then y2 � ¬α, which is a contradiction. Hence,
x � ¬α ∧ ¬¬α.
Suppose (∗) does not hold.
This means ∃x∃y1∃y2((xRy1 ∧ xRy2) ∧ (not(y1Ry2) ∨ not(y2Ry1))). Assume
not(y1Ry2) and define,
z � p if and only if y1Rz.
Then � is well-defined: let z � p and z′ ≤ z, then using the property of exhaus-
tive frames we have,

y1 ≤ y1, y1Rz and z ≥ z′ imply y1Rz′.

Hence z′ � p.
Now, clearly we have

1. x � ¬p, as, xRy2 and y2 � p.
2. x � ¬¬p as, xRy1 and y1 � ¬p.

Hence x � ¬p ∧ ¬¬p. So, ¬p ∧ ¬¬p � ⊥ is not valid in (W,R,≤).

Canonicity:
First observe that for any prime theory P and any formula α, ¬α ∧ ¬¬α /∈ P ,
as we have assumed our logic contains ¬α ∧ ¬¬α � ⊥. This implies ¬α /∈ P or
¬¬α /∈ P .
Now let PRcQ1 and PRcQ2. We want to show that Q1RcQ2 and Q2RcQ1. Let
us show Q1RcQ2:
So, let ¬α /∈ Q1 but we have PRcQ1 hence ¬¬α ∈ P . This means ¬α /∈ P . We
also have PRcQ2 which will give us α ∈ Q2. Hence Q1RcQ2.
Similarly one can show Q2RcQ1.

Let LDS denote the logic Ku along with following rules and postulates.

1.
γ � α ∨ β

¬β � α ∨ ¬γ.
2. � � α ∨ ¬α.
3. ¬α ∧ ¬¬α � ⊥.

Definition 30. Let us call an exhaustive frame (W,R,≤) a dual Stone frame if
it satisfies the following frame conditions,



174 A. Kumar

1. ∀x∀y(xRy → ∃z(x ≤ z ∧ y ≤ z ∧ xRz)).
2. ∀x(xRx).
3. ∀x∀y1∀y2(xRy1 ∧ xRy2 → (y1Ry2 ∧ y2Ry1)).

Example 8. Let us consider the structure (W,C,≤) as in Example 5. It can be
easily shown that the structure (W,R,≤) is a dual Stone frame, i.e., C is an
exhaustive relation as well.

Let us denote by FDS , the class of all dual Stone frames, and let ADS denote
the class of dual Stone an abstract algebra. Then we can conclude the following.

Theorem 36. For any α, β ∈ F , the following are equivalent.

(a) α �LDS
β.

(b) α �ADS
β.

(c) α �FDS
β.

Let us end this section with the note that dual Kleene and dual Stone negations
can be given positions in Dunn’s dual (Lopsided) Kite of Negation (Fig. 18).

dual Ortho

a ∨ ¬a = 1

dual Intutionistic

c ≤ a ∨ b ⇒ ¬b ≤ a ∨ ¬c

dual Minimal(Johansson)

a ≤ ¬¬a

dual De Morgan

¬¬a ≤ a

dual Quasi Minimal

a ≤ b ⇒ ¬a ≤ ¬b

dual Preminimal

¬a ∧ ¬¬a = 0
dual Stone

a ∧ ¬a ≤ b ∨ ¬b

dual Kleene

Fig. 18. Enhanced Dual Lopsided Kite of Negations

3.3 Semantics in United Kite of Negations

Dunn further provided a uniform semantics for combining both the kites to give
the ‘united kite’ (Fig. 19). Let us first provide the rules and postulates of the
minimal logic in this context. Let K− be the logic which contains the logic BDLL
along with the following postulates and rules.



A Study of Algebras and Logics of Rough Sets 175

dual-Ort

dual-Min

dual-Ort

dual-Qua

dual-DeM MinDeM

Ort

K−(Pre + dual − Pre)

Qua

Fig. 19. Dunn’s United Kite of Negations

1. ∼ α∧ ∼ β �∼ (α ∨ β).
2. � �∼ ⊥.
3. ¬(α ∧ β) � ¬α ∨ ¬β.
4. ¬� � ⊥.

5.
α � β

∼ β �∼ α.

6.
α � β

¬β � ¬α.
7. ∼ α ∧ ¬β � ¬(α ∨ β).
8. ∼ (α ∧ β) �∼ α ∨ ¬β.

The semantics of the logic K− is defined in a K− frame, which is a triple
(W,R,≤) with the following properties.

1. (W,≤) is a partially ordered set.
2. ≤−1 ◦R ⊆ R◦ ≤.
3. ≤ ◦R ⊆ R◦ ≤−1.

The semantic clauses are as in the previous sections. Let us recall Definition 20.

Definition 31. A relation � between points of W and propositional variables in
P is called an evaluation, if it satisfies the forward hereditary condition:

– if x � p and x ≤ y then y � p, for all x, y ∈ W .

Analogous to previous sections, an evaluation can be extended to F . Let x ∈ W .

1. x � α ∧ β if and only if x � α and x � β.
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2. x � α ∨ β if and only if x � α or x � β.
3. x � �.
4. x � ⊥.
5. x �∼ α if and only if ∀y(xRy → y � α).
6. x � ¬α if and only if ∃y(xRy ∧ y � α).

It can be easily seen that the (forward) hereditary condition is satisfied by all
formulas in F . Let us denote by R¬ := R◦ ≤ and R∼ := R◦ ≤−1. The semantic
clauses for ∼ and ¬ can be re-defined in terms of R¬ and R∼:

Lemma 3. [29] For any x ∈ W ,

1. x �∼ α if and only if ∀y(xR∼y → y � α).
2. x � ¬α if and only if ∃y(xR¬y ∧ y � α).

Let us define the canonical model for the logic K−. Let P be a prime theory,
and consider the two sets: P¬ := {α : ¬α /∈ P} and P∼ := {α :∼ α /∈ P}. In
[29], the triple (Wc, Rc,⊆c) is shown to be a K− frame and called the canonical
model for the logic K−, where Wc is the collection of all prime theories, ⊆c is
the inclusion and Rc is defined as follows: PRcQ if and only if P¬ ⊆ Q ⊆ P∼.
The following lemma concerning prime theories is proved in [29].

Lemma 4.

1. Assume that P¬ ⊆ Q. Then there exists a prime theory S such that PRcS
and S ⊆ Q, i.e., PRC¬Q.

2. Assume that Q ⊆ P∼. Then there exists a prime theory S such that PRcS
and Q ⊆ S, i.e., PRC∼Q.

The logic K− is sound and complete with respect to the class of all K−−algebras,
which are defined as follows:

Definition 32. A K− − algebra is a structure (K,∨,∧,∼,¬, 0, 1) with the fol-
lowing properties.

1. (K,∨,∧, 0, 1) is a bounded distributive lattice.
2. ∼ (a ∨ b) =∼ a∧ ∼ b.
3. ∼ 0 = 1.
4. a ≤ b ⇒∼ b ≤∼ a.
5. ¬(a ∧ b) = ¬a ∨ ¬b.
6. a ≤ b ⇒ ¬b ≤ ¬a.
7. ¬1 = 0.
8. (∼ a ∧ ¬b) ≤ ¬(a ∨ b).
9. ∼ (a ∧ b) ≤ (∼ a ∨ ¬b).

In this section, we investigate the Kleene property α ∧ ∼ α � β ∨ ∼ β and
its dual α ∧ ¬α � β ∨ ¬β in K− frames.
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Theorem 37. α∧ ∼ α � β∨ ∼ β is valid in a K− frame (W,R,≤) if and only
if the K− frame satisfies the following condition:

∀x(xR∼x ∨ ∀y(xR∼y → y ≤ x)). (*)

Moreover, canonicity holds.

Proof. The proof of the ‘if’ part of this theorem is very similar to the proof of
Theorem 25. Let us present the proof of the ‘only if’ part.
Let (∗) not hold in a K− frame (W,R,≤).
This implies ∃x(not(xR∼x)∧∃y(xR∼y∧y � x)). Let us define, for any z, w ∈ W ,

z � p if and only if x ≤ z and not(xR∼z),
w � q if and only if y ≤ w.

Let us show that � is indeed an evaluation. Let z � p and z ≤ z′. Then x ≤ z′. If
xR∼z′, then by the definition of R∼, there exists z′′ such that xRz′′ and z′ ≤ z′′.
We have z ≤ z′ ≤ z′′ which implies xR∼z. which is a contradiction to the fact
that z � p.

Now, analogous to the proof of Theorem 25, it is easy to establish that
x � p ∧ ∼ p but x � q ∨ ∼ q.

Canonicity:
We have to show that in the canonical frame,

∀P (PRc∼P ∨ ∀Q(PRc∼Q → Q ⊆ P )).

So, let not(PRc∼P ).
Assume P ⊆ P∼. Then using Lemma 4, PRc∼P , which is a contradiction.

Hence P � P∼. There exists a formula α ∈ F such that α ∈ P but α /∈ P∼. But
α /∈ P∼ imply ∼ α ∈ P . We have α∧ ∼ α ∈ P . Hence for any β ∈ F we have
either β ∈ P or ∼ β ∈ P .

Let PRc∼Q. There exists Q′ such that PRcQ
′ and Q′ ⊇ Q.

Now, let γ ∈ Q – this implies γ ∈ Q′. But as PRcQ
′ we have γ ∈ P∼. Hence

∼ γ /∈ P . Hence γ ∈ P .

Theorem 38. α ∧ ¬α � β ∨ ¬β is valid in a K− frame (W,R,≤) if and only if
the K− frame satisfies the following first order condition:

∀x(xR¬x ∨ ∀y(xR¬y → x ≤ y)). (*)

Moreover, the canonical model satisfies this frame condition.

Proof. Assume (∗) holds in a K− frame (W,R,≤).
Let x ∈ W , xR¬x, and x � β. So x � ¬β. Hence x � β ∨ ∼ β. So, if x � α ∧ ∼ α
then x � β ∨ ∼ β is vacuously true.
Let ∀y(xR¬y → x ≤ y) be true. Let x � α∧¬α i.e. x � α and x � ¬α. But x � ¬α
implies there exists y such that xR¬y and y � α. Using hereditary property of
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the semantic consequence relation, we have x � α which is a contradiction. Hence
x � α ∧ ¬α. So, vacuously x � β ∨ ∼ β.
Let us assume (∗) does not hold.
This implies ∃x(not(xR¬x)∧∃y(xR¬y∧x � y)). Let us define, for any z, w ∈ W ,

z � p if and only if x ≤ z.

w � q if and only if xR¬w.

Similar to the proof of Theorem 31, one can easily show that � is indeed an
evaluation and x � p ∧ ¬p but x � q ∨ ¬q.

Canonicity:
Let not(PRc¬P ).

Assume P¬ ⊆ P . Then using Lemma 4, PRc¬P , which is a contradiction.
Hence P¬ � P . There exists a formula α ∈ F such that α ∈ P¬ but α /∈ P . But
α ∈ P¬ imply ¬α /∈ P . We have α∨¬α /∈ P . Hence for any β ∈ F we have either
β /∈ P or ¬β /∈ P .

Let PRc¬Q. There exists Q′ such that PRcQ
′ and Q′ ⊆ Q.

Now, Let γ /∈ Q which implies γ /∈ Q′. But as PRcQ
′ we have γ /∈ P¬. So

¬γ ∈ P , which means γ /∈ P . Hence P ⊆ Q.

Hence we have the following.

Theorem 39.

1. The logic K− + α∧ ∼ α � β∨ ∼ β + α ∧ ¬α � β ∨ ¬β is sound and
complete with respect to the class of all K− frames which satisfy the first
order conditions ∀x(xR∼x∨∀y(xR∼y → y ≤ x)) and ∀x(xR¬x∨∀y(xR¬y →
x ≤ y)).

2. K− + α∧ ∼ α � β∨ ∼ β is sound and complete with respect to the class of all
K− −algebras satisfying the property a ∧ ∼ a ≤ b ∨ ∼ b and a∧¬a ≤ b∨¬b.

Definition 33. A K− − algebra (K,∨,∧,∼,¬, 0, 1) is called a double Kleene
algebra if it satisfies the following properties.

(i) a ≤∼∼ a, ¬¬a ≤ a.
(ii) ∼∼ a ≤ a, a ≤ ¬¬a.
(iii) a∧ ∼ a ≤ b∨ ∼ b, a ∧ ¬a ≤ b ∨ ¬b.

Definition 34. A K− frame (W,R,≤) is called a double Kleene frame if it
satisfies the following properties.

(i) ∀x∀y(xR∼y → yR∼x), ∀x∀y(xR¬y → yR¬x).
(ii) ∀x∃y(xR∼y ∧ ∀z(yR∼z → z ≤ x)), ∀x∃y(xR¬y ∧ ∀z(yR¬z → x ≤ z)).
(iii) ∀x(xR∼x ∨ ∀y(xR∼y → y ≤ x)), ∀x(xR¬x ∨ ∀y(xR¬y → x ≤ y))

Let FdoubleK and AdoubleK denote the classes of all double Kleene frames and
double Kleene algebras respectively.
Now consider the logic LdoubleK , which is Ku along with the following rules and
postulates.
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(i) α �∼∼ α, ¬¬α � α.
(ii) ∼∼ α ≤ α, α ≤ ¬¬α.
(iii) α∧ ∼ α ≤ β∨ ∼ β, α ∧ ¬α ≤ β ∨ ¬β.

Then we have

Theorem 40. For any α, β ∈ F , the following are equivalent.

1. α �LdoubleK
β.

2. α �FdoubleK
β.

3. α �AdoubleK
β.

The positions of Kleene negation and its dual in the united kite can be seen in
Fig. 20.

dual-Ort

dual-Min

dual-Ort

dual-Qua

dual-DeM

dual-Kleene

MinDeM

Ort

K−(Pre + dual − Pre)

Qua

Kleene

Fig. 20. Dunn’s United Kite of Negations

The rough set representation of the class of regular double Stone algebras was
obtained by Comer [19]. A sequent calculus for the logic of regular double Stone
algebra and its rough set semantics was provided by Dai ([20], cf. Banerjee and
Khan [6]). In this section we present another semantics for the logic of regular
double Stone algebras. In Sect. 1, we defined these algebras. They can be re-
defined using the K− − algebras.

Theorem 41. Let (K,∨,∧,∼,¬, 0, 1) be a bounded distributive lattice with
unary operators ∼,¬. The following are equivalent.

1. (K,∨,∧,∼,¬, 0, 1) is a regular double Stone algebra.
2. (K,∨,∧,∼,¬, 0, 1) is a K− −algebra with the following properties: ∀a, b ∈ K,

(i) a ∧ ∼ a = 0.
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(ii) a ∧ b ≤ c ⇒ a ∧ ∼ c ≤∼ b.
(iii) ∼ a ∨ ∼∼ a = 1.
(iv) a ∨ ¬a = 1.
(v) c ≤ a ∨ b ⇒ ¬b ≤ a ∨ ¬c.
(vi) ¬a ∧ ¬¬a = 0.
(vii) a ∧ ¬a ≤ b ∨ ∼ b (regularity).

Proof. Combining the proofs of Propositions 6, 7 and 8, we get the results.

Now let us characterize Stone, dual Stone and regularity properties in a K−
frame.

Theorem 42. � �∼ α ∨ ∼∼ α is valid in a K− frame (W,R,≤) if and only if
the K− frame satisfies the following first order property:

∀x∀y1∀y2(xR∼y1 ∧ xR∼y2 → (y1R∼y2 ∧ y2R∼y1)). (*)

Moreover, it is canonical.

Proof. Let us prove the ‘only if’ part of this theorem.
Let (∗) not hold in a K− frame (W,R,≤).
This means ∃x∃y1∃y2((xR∼y1∧xR∼y2)∧(not(y1R∼y2)∨not(y2R∼y1))). Assume
not(y1R∼y2) is true and define, ’z � p if and only if y2 ≤ z and not(y1R∼z)’.
Let us first show that the relation � is well defined, i.e., hereditary. So let z � p
and z ≤ z′, hence, y2 ≤ z′. If y1R∼z′ then there exists z′′ such that y1Rz′′ and
z′′ ≤−1 z′ (z′ ≤ z′′). But we already have z ≤ z′. Hence y1R∼z, which is a
contradiction to the fact that z � p.
We have: x �∼ p as xCy2 and y2 � p (as not(y1Cy2)). Also, x �∼∼ p as xCy1
and y1Cz imply z � p. Hence we have x �∼ p ∨ ∼∼ p.

Canonicity:
Let us show that the canonical model satisfies the frame condition. For any prime
theories P , Q1 and Q2, let PRc∼Q1 and PRc∼Q2. Our claim is Q1Rc∼Q2 and
Q2Rc∼Q1. Let us show Q1Rc∼Q2, the other will follow similarly.

1. PRc∼Q1, i.e., PRc◦ ⊆−1 Q1 implies there exists P1 such that PRcP1 and
P1 ⊇ Q1. By definition of Rc, we have PRcP1 implies P¬ ⊆ P1 ⊆ P∼.

2. PRc∼Q2 implies that there exists P2 such that PRcP2 and P2 ⊇ Q2. By
definition of Rc, PRcP2 implies P¬ ⊆ P2 ⊆ P∼.

Let us show that Q2 ⊆ Q1∼. Let α /∈ Q1∼.

⇒∼ α ∈ Q1,⇒∼ α ∈ P1

⇒∼ α ∈ P∼,⇒∼∼ α /∈ P

⇒∼ α ∈ P,⇒ α /∈ P∼

⇒ α /∈ P2,⇒ α /∈ Q2.

Hence Q2 ⊆ Q1∼. Using Lemma 4, we have Q1Rc∼Q2.
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Theorem 43. ¬α ∧ ¬¬α � ⊥ is characterized by the condition
∀x∀y1∀y2(xR¬y1 ∧ xR¬y2 → (y1R¬y2 ∧ y2R¬y1))
in a K− frame. This frame condition is also canonical.

Proof. Let the frame condition not hold in a K− frame (W,R,≤).
This means ∃x∃y1∃y2((xR¬y1 ∧xR¬y2)∧ (not(y1R¬y2)∨not(y2R¬y1)). Assume
not(y1R¬y2) and define
z � p if and only if y1R¬z.
Then x � ¬p ∧ ¬¬p. Hence ¬p ∧ ¬¬p � ⊥ is not valid.
The other direction of this theorem is very similar to the proof of Theorem 35.

Canonicity:
Let us show that the canonical model satisfies the frame condition:

∀P∀Q1∀Q2(PRc¬Q1 ∧ PRc¬Q2 → (Q1Rc¬Q2 ∧ Q2Rc¬Q1)).

Let P,Q1, Q2 ∈ Wc such that PRc¬Q1 and PRc¬Q2. PRc¬Q1 implies that
there exists a prime theory P1 such that PRcP1 and P1 ⊆ Q1. Let us show that
Q1Rc¬Q2. In other words, in view of Lemma 4, we have to show that Q1¬ ⊆ Q2.
Let α ∈ Q1¬.

⇒ ¬α /∈ Q1 ⇒ ¬α /∈ P1

⇒ ¬α /∈ P¬ = {β : ¬β /∈ P}
⇒ ¬¬α ∈ P.

But we have for any β ∈ F either ¬β /∈ P or ¬¬β /∈ P . Hence we have ¬α /∈ P .

α ∈ P¬ and PRc¬Q2, hence α ∈ Q2.

Hence we have Q1¬ ⊆ Q2.

The enhanced united kite of negations with Stone and dual Stone negations can
be seen in Fig. 21.

Theorem 44. (Regularity) α ∧ ¬α � β ∨ ∼ β is valid in a K− frame (W,R,≤)
if and only if the K− frame satisfies the following first order property:

∀x((∀y(xR¬y → x ≤ y)) ∨ (∀z(xR∼z → z ≤ x))). (*)

Moreover, it is canonical.

Proof. Let (∗) hold in any K− frame (W,R,≤), and let x ∈ W .
Assume ∀y(xR¬y → x ≤ y) is true. Let us show that x � α∧¬α. Assume x � α.
Let xR¬y, then by our assumption x ≤ y. Hence using hereditary property of �,
y � α. So x � ¬α, whereby x � α ∧ ¬α.
Now let ∀z(xR∼y → z ≤ x) be true. Let us show that x � β∨ ∼ β. Let x � β.
Let xR∼z, then by our assumption z ≤ x. Using hereditary property of � again,
we have z � β, hence x �∼ β. We have x � β∨ ∼ β.
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Fig. 21. Enhanced Dunn’s United Kite of Negations

In either case, if x � α ∧ ∼ α then x � β ∨ ∼ β holds, i.e. α ∧ ¬α � β∨ ∼ β
is valid.
Now, let (∗) not hold. Then ∃x((∃y1(xR¬y1 ∧x � y1))∧ (∃y2(xR∼y2 ∧y2 � x))).
Let us define � as:

y � p if and only if x ≤ y,

z � q if and only if z � x.

Let us show that � is a well defined consequence relation.
(1) Let y � p and y ≤ y′. Then x ≤ y ≤ y′. Hence y′ � p.
(2) Let z � q and z ≤ z′. If z′

� q then by definition of � we would have z′ ≤ x.
Hence z ≤ z′ ≤ x, which implies z � q contradicting our assumption.
Now let us show that x � p ∧ ¬p. x � p using the definition of �. As (∗) not
hold, we have y1 in W such that xR¬y1 and x � y1. By definition y1 � p. Hence
x � ¬p.
Let us show that x � q ∨ ∼ q. As x ≤ x, hence x � q. We also have an element
y2 in W such that xR∼y2 and y2 � x. Hence x �∼ q. So x � q ∨ ∼ q.

Canonicity:
Let us show that the canonical frame (Wc, Rc,⊆) also satisfies the frame condi-
tion (∗), i.e., it satisfies:

∀P (∀Q(PRc¬Q → P ⊆ Q) ∨ (∀Q′(PRc∼Q′ → Q′ ⊆ P ))).

So let P ∈ Wc and suppose there exists a prime theory Q such that Q(PRc¬Q∧
P � Q). Let us show that ∀Q′(PRc∼Q′ → Q′ ⊆ P ).
P � Q implies there exists a formula α ∈ P and α /∈ Q. PRc¬Q implies existence
of a prime theory Q1 such that PRcQ1 and Q1 ⊆ Q. Hence α /∈ Q1. So, α /∈ P¬,
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but then by definition of P¬, ¬α ∈ P . Hence α ∧ ¬α ∈ P . By our assumption
α ∧ ¬α � β∨ ∼ β. Hence for any formula β we have either β ∈ P or ∼ β ∈ P .

Now let PRc∼Q′. Our claim is Q′ ⊆ P . So, let γ ∈ Q′. By definition, PRc∼Q′

if and only if P (Rc◦ ⊆−1)Q′ which implies existence of a prime theory Q′
1 such

that PRcQ
′
1 and Q′

1 ⊇ Q′. Hence γ ∈ Q′
1. But Q′

1 ⊆ P∼. γ ∈ P∼ implies
∼ γ /∈ P . Hence γ ∈ P . Finally we have established Q′ ⊆ P .

Hence canonicity holds.

Now, let LRDSA be the logic which contains all axioms and postulates of the
logic K− along with the following rules and postulates.

(i) α ∧ ∼ α � ⊥.

(ii)
α ∧ β � γ

α ∧ ∼ γ ≤∼ β.
(iii) � �∼ α ∨ ∼∼ α.
(iv) α ∨ ¬α � ⊥.

(v)
γ � α ∨ β

¬β � α ∨ ¬γ.
(vi) ¬α ∧ ¬¬α � ⊥.
(vii) α ∧ ¬α � β ∨ ∼ β (Regularity).

Now, let us denote by ARDSA the class of all regular double Stone algebras,
RRDSA the class of all regular double Stone algebras of the form B[2], where
B is a Boolean algebra and RSRDSA the class of all RS considered as regular
double Stone algebras.

Definition 35. We call a K− frame (W,R,≤) a regular double Stone frame if
it satisfies the following first order conditions.

1. ∀x∀y(xR∼y → yR∼x).
2. ∀x(xR∼x).
3. ∀x∀y1∀y2(xR∼y1 ∧ xR∼y2 → (y1R∼y2 ∧ y2R∼y1)).
4. ∀x∀y(xR¬y → yR¬x).
5. ∀x(xR¬x).
6. ∀x∀y1∀y2(xR¬y1 ∧ xR¬y2 → (y1R¬y2 ∧ y2R¬y1)).
7. ∀x((∀y(xR¬y → x ≤ y)) ∨ (∀z(xR∼z → z ≤ x))).

Let us denote by FRDSA the class of all regular double Stone frames.

Theorem 45. For any α, β ∈ F , the following are equivalent.

1. α �LRDSA
β.

2. α �ARDSA
β.

3. α �RRDSA
β.

4. α �RSRDSA
β.

5. α �FRDSA
β.

So it appears that a negation having the Stone and dual Stone with regularity
property would occupy a node in the ‘intersection’ of the lopsided kite and its
dual.
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4 Discrete Dualities for Kleene, Stone, Double Stone
and Regular double Stone Algebras

Stone’s representation theorem for Boolean algebras led to the emergence of
duality theory (cf. e.g. [10]). Some well known duality results are the following.

1. Jónsson-Tarski duality between modal algebras and Kripke frames.
2. Esakia duality between Heyting algebras and Esakia spaces.
3. Priestley duality between distributive lattices (Heyting algebras, Topological

Boolean algebra) and Priestley spaces.

Duality results present advantages in both the fields of logic and algebra. On
the one hand, these provide representations of various algebras in terms of set
lattices. On the other hand, one obtains either of the algebraic or relational
semantics of some logics from the other.

Note that the above-mentioned duality results are topological. Or�lowska and
Rewitzky in [55–57] have discussed various duality results in which topology is
not involved. They have termed these results as ‘discrete dualities’. Let us discuss
the steps to establish discrete duality, following [56,57]. Let Alg be a class of
algebras and Frm a class of frames.

1. For each A ∈ Alg, associate a frame CFrame(A) ∈ Frm (the canonical
frame of A).

2. For each F ∈ Frm, associate an algebra CAlg(F) ∈ Alg (the complex algebra
of F).

3. Prove the following representation theorems.
(a) For each A ∈ Alg, there exists an embedding from A to

CAlg(CFrame)(A).
(b) For each F ∈ Frm, there exists an embedding from F to

CFrame(CAlg)(F).

In this section, we establish duality results between the following.

(i) Class AK of all Kleene algebras and class FK of all Kleene frames.
(ii) Class AK′ of all dual Kleene algebras and class FDK of all dual Kleene

frames.
(iii) Class AS of all Stone algebras and class FS of all Stone frames.
(iv) Class ADS of all double Stone algebras and class FDS of all dual Stone

frames.
(v) Class AK′ of all double Kleene algebras and class FDK of all double Kleene

frames.
(vi) Class ARDSA of all regular double Stone Algebras and class FRDSA of all

regular double Stone frames.

It is worth mentioning here that in [31], Düntsch and Or�lowska obtained dual-
ity results between double Stone and regular double Stone algebras and certain
classes of partially ordered sets. In this section, we also present duality results
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for double Stone and regular double Stone algebras and certain classes of par-
tially ordered sets, but those involving an additional relation, namely the classes
of compatibility, exhaustive and K− frames. One must also mention that Dunn
obtained various representation results of lattice based algebras (with negation)
in [24,26,29], induced by perp semantics. We obtain the representations in the
framework of discrete duality introduced by Or�lwska and Rewitzky. In the dis-
crete duality representation results of certain classes of frames are obtained as
well.

In this section, by an embedding between algebras, we mean a one-one and
structure preserving map. Let (W,R,≤) and (W ′, R′,≤′) be frames. A map
φ : W → W ′ is called an embedding if for any a, b ∈ W ,

(a) a ≤ b if and only if φ(a) ≤′ φ(b).
(b) aRb if and only if φ(a)R′φ(b).

Let us recall the following for a given partially ordered set (U,≤).

(i) X ⊆ U is called an upward closed set if x ∈ X and x ≤ y then y ∈ X.
(ii) X ⊆ U is called a downward closed set if x ∈ X and y ≤ x then y ∈ X.

We provide complete details in the proofs of results in Sect. 4.1. Proofs of
results in Sects. 4.2 and 4.3 can be obtained similarly.

4.1 Dualities Arising from Compatibility Frames

Let (U,≤) be a poset and let KU be the collection of all upward closed subsets
of U . Then it is well known that KU is a bounded distributive lattice, where join
and meet are given by set theoretic union and intersection respectively. ∅ and U
are the bottom and top elements respectively.

It is interesting to see how a compatibility frame (U,C,≤) enhances the
structure
(KU ,∪,∩, ∅, U). Let A ∈ KU and define ∼ A := {x ∈ U : ∀y(xCy → y /∈ A)}.
Using the definition of compatibility frame, one can show that ∼ is a well defined
operation on KU . In fact ∼ satisfies the following properties. For all A,B ∈ KU ,

1. A ⊆ B ⇒ ∼ B ⊆∼ A.
2. ∼ (A ∪ B) =∼ A∩ ∼ B.
3. ∼ ∅ = U .

Hence (KU ,∪,∩, ∅, U) is a Ki − algebra.
Now, let (K,∨,∧,∼, 0, 1) be a Ki − algebra. Let us consider the set UK which
is the collection of all prime filters of K. Define a binary relation CK on UK as
follows. For P,Q ∈ UK ,

PCKQ if and only if for all a ∈ K,∼ a ∈ P ⇒ a /∈ Q.

It is shown by Dunn [24] that the tuple (UK , CK ,⊆) is a compatibility frame.



186 A. Kumar

Definition 36. [24]

1. Let (K,∨,∧,∼, 0, 1) be a Ki − algebra. The structure (UK , CK ,⊆) is called
the canonical frame for K.

2. Let (U,C,≤) be a compatibility frame. The structure (KU ,∪,∩,∼, ∅, U) is
called the complex algebra of the frame (U,C,≤).

Now, let us establish the duality results for the Ki − algebras.

Theorem 46. Let K := (K,∨,∧,∼, 0, 1) be a Ki −algebra. There exists a com-
patibility frame (W,C,≤) such that K can be embedded into the complex algebra
of (W,C,≤).

The proof of this theorem uses the usual technique of prime filters (cf. e.g.
[24,29]). Let us sketch the proof to clarify the context.

Proof. Let us consider the set UK of all prime filters of the distributive lattice
K. We have mentioned that the tuple (UK , CK ,⊆) is a compatibility frame.
Now take the complex algebra of this canonical frame (KUK

,∪,∩, ∅, UK). Let us
define a map h : K → KUK

as follows. For a ∈ K,

h(a) := {P ∈ UK : a ∈ P}.

h is proved in literature to be well defined, one-one, and to preserve the join,
meet operations of K. Let us prove that h(∼ a) =∼ h(a). By definition h(∼
a) := {P ∈ UK :∼ a ∈ P} and ∼ h(a) = {P : ∀Q(PCcQ → Q /∈ h(a))}.
Let P ∈ h(∼ a), i.e. ∼ a ∈ P . Let PCKQ. But then ∼ a ∈ P implies a /∈ Q, i.e.
Q /∈ h(a).
Now let P ∈∼ h(a). We want to show that ∼ a ∈ P . On the contrary, let us
assume ∼ a /∈ P . Consider the filter a ↑. Define the set Q∗ := {x ∈ K :∼ x ∈ P}.
We show that Q∗ is an ideal. Let x ∈ Q∗ and b ≤ x. Then ∼ x ≤∼ b. As P
is a filter, b ∈ Q∗. Now let x, b ∈ Q∗, we have ∼ (x ∨ b) ≤∼ x ∧ ∼ b. Hence
∼ (x ∨ b) ∈ P . So, x ∨ b ∈ Q∗.
We also have a ↑ ∩Q∗ = ∅ as, if x ∈ a ↑ ∩Q∗ then a ≤ x and ∼ x ∈ P . But
a ≤ x ⇒∼ x ≤∼ a hence ∼ a ∈ P , which is a contradiction. Now by prime filter
theorem, there exists a prime filter Q such that a ↑⊆ Q and Q ∩ Q∗ = ∅.

Hence we have shown the existence of a prime filter Q such that PCKQ and
Q ∈ h(a), which is a contradiction.

Theorem 47. Let (W,C,≤) be a compatibility frame. Then there exists a Ki −
algebra K := (K,∨,∧,∼, 0, 1) such that (W,C,≤) can be embedded into the
canonical frame of K.

Proof. Consider the complex algebra (KW ,∪,∩, ∅,W ) of the compatibility frame
(W,C,≤). KW is a Ki − algebra as mentioned earlier. Let us define a map
φ : W → WKW

as:

φ(a) := {C ∈ KW : a ∈ C}, a ∈ W.
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It has been proved in literature that φ is an order embedding (cf. e.g. [56]).
Let us prove that aCb if and only if φ(a)CKW

φ(b).
Let aCb and ∼ C ∈ φ(a). a ∈∼ C implies b /∈ C, i.e., C /∈ φ(b). Hence
φ(a)CKW

φ(b).
Now, let not(aCb). Consider the set C := {z ∈ W : not(aCz)}. It can be
shown that C is an upward closed set. Clearly, ∼ C ∈ φ(a) and C ∈ φ(b). So,
not(φ(a)CKW

φ(b)).

Like the correspondence results presented in the earlier sections, one can eas-
ily establish correspondence results between classes of compatibility frames and
classes of complex algebras. For the class of Kleene frames, we obtain the fol-
lowing, by mimicking the proofs of Theorems 25 and 26.

Proposition 9. Let (W,C,≤) be a compatibility frame. Its complex algebra is
a Kleene algebra if and only if (W,C,≤) is a Kleene frame.

Lemma 5. Let K := (K,∨,∧,∼, 0, 1) be a Kleene algebra. Then its canonical
frame is a Kleene frame.

Now, we obtain the duality result for Kleene algebras.

Theorem 48. Let K := (K,∨,∧,∼, 0, 1) be a Kleene algebra. Then there exists
a compatibility frame (W,C,≤) such that K can be embedded into the complex
algebra of (W,C,≤).

Proof. Let K be a Kleene algebra. Consider the canonical frame of K. Then
using Lemma 5, (UK , CK ,⊆) is a Kleene frame. Hence using Proposition 9, its
complex algebra is a Kleene algebra. The mapping h in the proof of Theorem 46
is the required embedding.

Now, let us analyze the above result from the perspective of rough set theory. By
definition, assuming (U,R) is an approximation space, a rough set is an ordered
pair (LX,UX) for some X ⊆ U . Theorem 48 says that elements of a Kleene
algebra can be also looked upon as sets, where Kleene negation is defined by a
compatibility relation. Let us illustrate this through an example.

Example 9. Let U := {a, b, c}, define a relation R on U as, aRa, aRb, bRb,
bRa and cRc. Then (U,R) is an equivalence relation. RS = {(∅, ∅),
(∅, ab), (ab, ab), (c, c), (c, U), (U,U)}. Recall from Sect. 2, RS is a Kleene alge-
bra, where ∼ (LA,UA) := ((UA)c, (LA)c). The Hasse diagram of RS is given in
Fig. 21. Prime filters of RS are given by:
P1 = {(∅, ab) =∼ (c, U), (ab, ab) =∼ (c, c), (c, U) =∼ (∅, ab), (U,U) =∼ (∅, ∅)}.
P2 = {(c, c) =∼ (ab, ab), (c, U) =∼ (∅, ab), (U,U) =∼ (∅, ∅)}.
P3 = {(ab, ab) =∼ (c, c), (U,U) =∼ (∅, ∅)}.
By definition of C, we have: P1CP3, P2CP2, P3CP3, P3CP1. Now, h(∅, ∅) = ∅,
h(c, c) = {P2}, h(∅, ab) = {P1}, h(c, U) = {P1, P2}, h(ab, ab) = {P1, P3},
h(U,U) = {P1, P2, P3}.
Illustration of the isomorphism is given in Fig. 22.
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(U, U) =∼ (∅, ∅)

(ab, ab)
=∼ (c, c)

(∅, ab)
=∼ (c, U)

(c, U)
=∼ (∅, ab)

(∅, ∅) =∼ (U, U)

(c, c)
=∼ (ab, ab)

{P1, P2, P3} =∼ ∅

{P1, P3}
∼ {P2} =

{P1}
∼ {P1, P2} =

{P1, P2} =∼ {P1}

∅ =∼ {P1, P2, P3}

{P2} =∼ {P1, P3}

Fig. 22. RS ↪→ KWK

Theorem 49. Let (W,C,≤) be a Kleene frame. Then there exists a Kleene alge-
bra K := (K,∨,∧,∼, 0, 1) such that (W,C,≤) can be embedded into the canonical
frame of K.

Proof. Let (W,C,≤) be a Kleene frame. Then using Proposition 9, the com-
plex algebra (KW ,∪,∩,∼, ∅, U) is a Kleene algebra. Now, Lemma 5 states that
(WKW

, CKW
,⊆) is a Kleene frame. The map φ in the proof of Theorem 47 is the

required embedding.

Let us illustrate this theorem through an example.

Example 10. Let us recall the Kleene frame (W,C,≤) given in Example 5. Let
W := {a, b, c}. The partial order ≤ on U is defined as:

a ≤ a, c ≤ a, c ≤ c and b ≤ b.

The compatibility relation C on U is defined as:

aCc, bCb, cCc, cCa.

Let us list all the upward closed sets of the poset (W,≤).
C0 = ∅, C1 = {a}, C2 = {b}, C3 = {a, c}, C4 = {a, b}, C5 = W .
KW = {C0, C1, C2, C3, C4, C5}. Let us now turn to the operator ∼, which is
defined as:

∼ Ci := {x ∈ W : ∀y(xCy → y /∈ Ci)}.

∼ C0 = C5, ∼ C1 = C4, ∼ C2 = C3, ∼ C3 = C2, ∼ C4 = C1, ∼ C5 = C0.
The Hasse diagram of the Kleene algebra (KW ,∪,∩,∼, ∅,W ) is given in Fig. 23.
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C5 =∼ C0

C4 =∼ C1

C2 =∼ C3

C3 =∼ C2

C0 =∼ C5

C1 =∼ C4

Fig. 23. (KW , ∪, ∩, ∼, ∅, W )

Now the map, Φ : W → WKW
given as

Φ(a) := {C1, C3, C4, C5}.

Φ(b) := {C2, C4, C5}.

Φ(c) := {C3, C5}.

is the embedding of the structure (W,C,≤) into (WKW
, CKW

,⊆). The embed-
ding Φ can be depicted as in Fig. 24.

We get similar results for Stone algebras and frames.

c

a

b

cCc

bCb

aCccCa

Φ(c) := {C3, C5}

Φ(a) := {C1, C3, C4, C5}

Φ(b)

Φ(c)CKW Φ(c)

Φ(b)CKW Φ(b)

Φ(a)CKW Φ(c)
Φ(c)CKW Φ(a)

Fig. 24. (W, C, ≤) ↪→ (WKW , CKW , ⊆)
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Proposition 10. Let (U,C,≤) be a compatibility frame. Then its complex alge-
bra is a Stone algebra if and only if (U,C,≤) is a Stone frame.

Lemma 6. Let K := (K,∨,∧,∼, 0, 1) be a Stone algebra. Then its canonical
frame is a Stone frame.

Theorem 50. Let S := (S,∨,∧,∼, 0, 1) be a Stone algebra. Then there exists
a compatibility frame (W,C,≤) such that S can be embedded into the complex
algebra of (W,C,≤).

It is already known that for an approximation space (U,R) the collection RS of
rough sets forms a Stone algebra, where Stone negation ∼ is defined as:
∼ (LX,UX) := ((UX)c, (UX)c), X ⊆ U .
Let us take a re-look at Example 9.

Example 11. Consider the approximation space of Example 9. Let us re-write
the prime filters.
P1 = {(∅, ab), (ab, ab) =∼ (c, c), (c, U), (U,U) =∼ (∅, ∅)}.
P2 = {(c, c) =∼ (ab, ab) =∼ (∅, ab), (c, U), (U,U) =∼ (∅, ∅)}.
P3 = {(ab, ab) =∼ (c, c), (U,U) =∼ (∅, ∅)}.
By definition of C, we have: P1CP1, P1CP3, P2CP2, P3CP3, P3CP1.
Now, h(∅, ∅) = ∅, h(c, c) = {P2}, h(∅, ab) = {P1}, h(c, U) = {P1, P2}, h(ab, ab) =
{P1, P3}, h(U,U) = {P1, P2, P3}.
Illustration of the isomorphism is given in Fig. 25.

(U, U) =∼ (∅, ∅)

(ab, ab)
=∼ (c, c)

(∅, ab)

(c, U)

(∅, ∅) =∼ (U, U)

(c, c)
=∼ (ab, ab)

=∼ (∅, ab)

{P1, P2, P3} =∼ ∅

{P1, P3}
∼ {P2} =

{P1}

{P1, P2}

∅ =∼ {P1, P2, P3}

{P2} =∼ {P1, P3}
=∼ {P1}

Fig. 25. RS ↪→ KWK
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Theorem 51. Let (W,C,≤) be a Stone frame. Then there exists a Stone algebra
S := (S,∨,∧,∼, 0, 1) such that (W,C,≤) can be embedded into the canonical
frame of S.

Example 12. Let us re-consider the compatibility frame (W,C,≤) of Example 6.
The upward closed sets of the poset (W,≤) are as given there.
Now KW = {C0, C1, C2, C3, C4, C5}. The negation operator ∼ defined as:

∼ Ci := {x ∈ W : ∀y(xCy → y /∈ Ci)},

gives ∼ C0 = C5, ∼ C1 = C2, ∼ C2 = C3, ∼ C3 = C2, ∼ C4 = C0, ∼ C5 = C0.
The Hasse diagram of the Stone algebra (KW ,∪,∩,∼, ∅,W ) is given in Fig. 26.

C5 =∼ C0

C4

∼ C1 =∼ C3 = C2

C3 =∼ C2

C0 =∼ C5 =∼ C4

C1

Fig. 26. (KW , ∪, ∩, ∼, ∅, W )

The map Φ : W → WKW
given as:

Φ(a) := {C1, C3, C4, C5}.

Φ(b) := {C2, C4, C5}.

Φ(c) := {C3, C5}.

is the embedding of the structure (W,C,≤) into (WKW
, CKW

,⊆). The pictorial
representation of this embedding is given in Fig. 27.
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c

a

b

cCc

aCa

bCb

aCccCa

Φ(c) := {C3, C5}

Φ(a) := {C1, C3, C4, C5}

Φ(b)

Φ(c)CKW Φ(c)

Φ(a)CKW Φ(a)

Φ(b)CKW Φ(b)

Φ(a)CKW Φ(c)
Φ(c)CKW Φ(a)

Fig. 27. (W, C, ≤) ↪→ (WKW , CKW , ⊆)

4.2 Dualities Arising from Exhaustive Frames

This section is very much similar to the previous one. So, we just state the results
and omit the proofs. Given a poset (W,≤), let us denote by KW the collection
of all downward closed sets of (W,≤). It is well known that KW is a bounded
distributive lattice. Let (W,R,≤) be an exhaustive frame. Define ¬ : KW → KW

as:
¬A := {x ∈ U : ∃y(xRy ∧ y /∈ A)}, A ∈ KW .

Then the structure (KW ,∨,∧,¬, 0, 1) is a Ku −algebra, and is called the canon-
ical algebra of the frame (W,R,≤).
On the other hand, let (K,∨,∧,¬, 0, 1) be a Ku − algebra. Let us consider the
set WK which is the collection of all prime filters of K. Define a binary relation
RK on WK as follows. For P,Q ∈ WK ,

PRKQ if and only if for all a ∈ K if ¬a /∈ P then a ∈ Q.

It has been shown by Dunn [29] that the structure (WK , RK ,⊇) is an exhaustive
frame. We call the structure (WK , RK ,⊇) the canonical frame of the Ku−algebra
(K,∨,∧,¬, 0, 1).
Let us state the duality results for classes of Ku-algebras and exhaustive frames.

Theorem 52.

(a) Let K := (K,∨,∧,¬, 0, 1) be a Ku−algebra. Then there exists an exhaustive
frame (W,R,≤) such that K can be embedded into the complex algebra of
(W,R,≤).

(b) Let (W,R,≤) be an exhaustive frame. Then there exists a Ku − algebra
K := (K,∨,∧,¬, 0, 1) such that (W,R,≤) can be embedded into canonical
frame of K.
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Proof. Let us simply mention the embeddings.

(a) The map φ : K → KWK
defined as

φ(a) := {P ∈ WK : a ∈ P}, a ∈ K,

is the required embedding.
(b) The map ψ : W → WKW

defined as

ψ(x) := {D ∈ KW : x /∈ D}, x ∈ W,

is the required embedding.

Proposition 11. Let (W,R,≤) be an exhaustive frame. Then its complex alge-
bra is a dual Kleene algebra if and only if the exhaustive frame (W,R,≤) is dual
Kleene.

Theorem 53.

(i) Let K := (K,∨,∧,¬, 0, 1) be a dual Kleene algebra. Then there exists an
exhaustive frame (W,C,≤) such that K can be embedded into the complex
algebra of (W,R,≤).

(ii) Let (W,R,≤) be a dual Kleene frame. Then there exists a dual Kleene alge-
bra K := (K,∨,∧,¬, 0, 1) such that (W,R,≤) can be embedded into the
canonical frame of K.

For an illustration of part (i) of this theorem, we refer to Example 9, and note
that ∼ and ¬ are the same.

Proposition 12. Let (W,R,≤) be an exhaustive frame. Then its complex alge-
bra is a dual Stone algebra if and only if the frame (W,R,≤) is a dual Stone
frame.

Theorem 54. Let D := (D,∨,∧,¬, 0, 1) be a dual Stone algebra. Then there
exists an exhaustive frame (W,R,≤) such that D can be embedded into the com-
plex algebra of (W,R,≤).

The collection RS of rough sets for an approximation space (U,R) forms a dual
Stone algebra, the dual Stone negation ¬ being defined as:
¬(LX,UX) := ((LX)c, (LX)c), X ⊆ U .

Example 13. Let us consider the approximation space of Example 6. The prime
filters are given as follows. (We are re-writing the prime filters to emphasize the
negation ¬).
P1 = {(∅, ab), (ab, ab) = ¬(c, c) = ¬(c, U), (c, U), (U,U) = ¬(∅, ∅) = ¬(∅, ab)}.
P2 = {(c, c) = ¬(ab, ab), (c, U), (U,U) = ¬(∅, ∅) = ¬(∅, ab)}.
P3 = {(ab, ab) = ¬(c, c) = ¬(c, U), (U,U) = ¬(∅, ∅) = ¬(∅, ab)}.
By definition of R, we have: P1RP1, P1RP3, P2RP2, P3RP3, P3RP1. Now,
h(∅, ∅) = ∅, h(c, c) = {P2}, h(∅, ab) = {P1}, h(c, U) = {P1, P2}, h(ab, ab) =
{P1, P3}, h(U,U) = {P1, P2, P3}. Pictorial representation of the isomorphism is
given in Fig. 28.



194 A. Kumar

(U, U) = ¬(∅, ∅) = ¬(∅, ab)

(ab, ab)
= ¬(c, c) = ¬(c, U)

(∅, ab)

(c, U)

(∅, ∅) = ¬(U, U)

(c, c)
= ¬(ab, ab)

{P1, P2, P3} = ¬∅ = ¬{P1}

{P1, P3}
¬{P2} =

{P1}

{P1, P2}

∅ = ¬{P1, P2, P3}

{P2}
= ¬{P1, P3}

Fig. 28. D ↪→ KWD

Theorem 55. Let (W,C,≤) be a dual Stone frame. Then there exists a dual
Stone algebra D := (D,∨,∧,¬, 0, 1) such that (W,R,≤) can be embedded into
the canonical frame of D.

4.3 Dualities Arising from K− Frames

This section is also very similar to Sect. 4.1, and we just state the results without
proofs. Let (U,R,≤) be a K− frame. Let us recall that KU denotes the collection
of all upward closed sets. Define unary maps ∼,¬ : KU → KU as:

∼ A := {x ∈ U : ∀y(xRy → y /∈ A)}
¬A := {x ∈ U : ∃y(xRy ∧ y /∈ A)}.

That the operators ∼,¬ are well defined can be seen using the properties of K−
frames. Moreover, it can be easily seen that the structure (KU ,∪,∩,∼,¬, ∅, U)
is a K−-algebra. In fact the structure (KU ,∪,∩,∼,¬, ∅, U) is called the complex
algebra of the K− frame (U,R,≤). The other way around, let (K,∨,∧,∼,¬, 0, 1)
be a K−-algebra. Let UK be the collection of all prime filters of the distributive
lattice K. Let P ∈ UK , and let us denote by P∼, the set {a ∈ K :∼ a /∈ P},
and P¬, the set {a ∈ K : ¬a /∈ P}. Define a relation Rc on UK as: PRcQ if
and only if P¬ ⊆ Q ⊆ P∼. Then (UK , Rc,⊆) is a K− frame and is called the
canonical frame of the K−-algebra K. Before proceeding to the duality results,
let us recall Lemma 4. Although this lemma was proved by Dunn in the context
of logic, one can easily provide the proof in the algebraic context.

Lemma 7. Let P and Q be prime filters such that P¬ ⊆ Q. Then there exists a
prime filter S such that PRcS and S ⊆ Q.

Lemma 8. Let P and Q be prime filters such that Q ⊆ P∼. Then there exists
a prime filter S such that PRcS and Q ⊆ S.
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Theorem 56. Let K := (K,∨,∧,∼,¬, 0, 1) be a K−-algebra. Then there exists
a frame (W,R,≤) such that K can be embedded into the complex algebra of
(W,R,≤).

Proof. Let us consider the set UK of all prime filters of the distributive lattice
K. The tuple (UK , Rc,⊆) is a K− frame. Now consider the complex algebra
(KUK

,∪,∩, ∅, UK) of this canonical frame. Take the usual map h : K → KUK

defined for any a ∈ K as

h(a) := {P ∈ UK : a ∈ P}.

Let us prove that

1. h(∼ a) =∼ h(a),
2. h(¬a) = ¬h(a).

1. By definition h(∼ a) := {P ∈ UK :∼ a ∈ P} and ∼ h(a) = {P : ∀Q(PRcQ →
Q /∈ h(a))}. Let P ∈ h(∼ a). This imply ∼ a ∈ P , but then ∼ a ∈ P imply
a /∈ P∼. Let PRcQ then using definition of Rc we have Q /∈ h(a).

Let P ∈∼ h(a). We want to show that ∼ a ∈ P . On the contrary, let us
assume ∼ a /∈ P . Consider the filter a ↑. Consider the set P c

∼. As done for
Theorem 46, it can be shown that P c

∼ is an ideal.
Also a ↑ ∩P c

∼ = ∅ as, if x ∈ a ↑ ∩P c
∼ then a ≤ x and ∼ x ∈ P . But

a ≤ x ⇒∼ x ≤∼ a and hence ∼ a ∈ P – which is a contradiction.
Hence we have a ↑ ∩P c

∼ = ∅. Now using the prime filter theorem, there exists
a prime filter Q such that a ↑⊆ Q and Q ∩ P c

∼ = ∅. Thus Q ⊆ P∼. Now using
Lemma 8, we have the existence of a prime filter S such that PRcS and Q ⊆ S.

Hence we have shown the existence of a prime filter S such that PRcS and
S ∈ h(a), which is a contradiction.
2. Let P ∈ ¬h(a). This implies ∃Q(PRcQ ∧ a /∈ Q). a /∈ Q ⇒ a /∈ P¬ ⇒ ¬a ∈ P .
Conversely, let P ∈ h(¬a), which means ¬a ∈ P . It can be easily shown that P¬
is a filter and a /∈ P¬. Hence there exists a prime filter Q such that a /∈ Q and
P¬ ⊆ Q. So, using Lemma 8, we have the required prime filter.

Theorem 57. Let (W,R,≤) be a K− frame. Then there exists a K−-algebra,
K := (K,∨,∧,∼,¬, 0, 1) such that (W,R,≤) can be embedded into the canonical
frame of K.

Proof. Consider the complex algebra (KW ,∪,∩,∼,¬, ∅,W ) of the K− frame
(W,R,≤). Then KW is a K−-algebra. Let us define a map φ : W → WKW

as:

φ(a) := {C ∈ KW : a ∈ C}, a ∈ W.

Let us show that aRb if and only if φ(a)Rcφ(b).
Let aRb. C ∈ φ(a)¬ implies ¬C /∈ φ(a). But a /∈ ¬C implies b ∈ C. Now, let
C /∈ φ(a)∼. This implies a ∈∼ C and b /∈ C. Hence φ(a)¬ ⊆ φ(b) ⊆ φ(a)∼.
Let not(φ(a)Rcφ(b)). Assume φ(a)¬ � φ(b) and C ∈ φ(a)¬, C /∈ φ(b). C ∈ φ(a)¬
implies a /∈ ¬C. So if aRb then b ∈ C which is a contradiction. Hence not(aRb).
Similarly, one can show not(aRb), if φ(b) � φ(a)∼.
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The correspondence and completeness results proved in Theorems 37 and 38 can
be re-phrased in terms of set algebras.
Theorem 58.

1. Let (U,R,≤) be a K− frame. Then its complex algebra is a double Kleene
algebra if and only if (U,R,≤) is a double Kleene frame.

2. Let K := (K,∨,∧,∼,¬, 0, 1) be a double Kleene algebra. Then its canonical
frame is a double Kleene frame.

Now, the duality results can be established via the following.
Theorem 59.

1. Let K := (K,∨,∧,∼,¬, 0, 1) be a double Kleene algebra. Then there exists a
K− frame (W,R,≤) such that K can be embedded into the complex algebra of
(W,R,≤).

2. Let (W,R,≤) be a double Kleene frame. Then there exists a double Kleene
algebra K := (K,∨,∧,∼,¬, 0, 1) such that (W,R,≤) can be embedded into the
canonical frame of K.

Similar duality results can be established in case of regular double Stone algebras.

Theorem 60.

1. Let (U,R,≤) be a K− frame. Then its complex algebra is a regular double
Stone algebra if and only if (U,R,≤) is a regular double Stone frame.

2. Let K := (K,∨,∧,∼,¬, 0, 1) be a regular double Stone algebra. Then its
canonical frame is a regular double Stone frame.

Duality results can be stated as follows.
Theorem 61.

1. Let K := (K,∨,∧,∼,¬, 0, 1) be a regular double Stone algebra. Then there
exists a K− frame (W,R,≤) such that K can be embedded into the complex
algebra of (W,R,≤).

2. Let (W,R,≤) be a regular double Stone frame. Then there exists a regular
double Stone algebra K := (K,∨,∧,∼,¬, 0, 1) such that (W,R,≤) can be
embedded into canonical frame of K.

RS for an approximation space (U,R) forms a regular double Stone algebra as
well, where Stone negation ∼ and dual stone negation ¬ are defined as:
∼ (LX,UX) := ((UX)c, (UX)c), and ¬(LX,UX) := ((LX)c, (LX)c),X ⊆ U .

Example 14. Let us consider the approximation space of Example 9. Note that
for a prime filter P , P¬ := {a : ¬a /∈ P} and P∼ := {a :∼ a /∈ P}.
P1¬ = {(ab, ab), (U,U)} and P1∼ = {(∅, ab), (ab, ab), (c, U), (U,U)}.
P2¬ = {(c, c), (c, U), (U,U)} = P2∼ and
P3¬ = {(ab, ab), (U,U)} and P3∼ = {(∅, ab), (ab, ab), (c, U), (U,U)}.
The relation R can be obtained as:

P1RP1, P1RP3, P2RP2, P3RP1 and P3RP3.

Pictorial representation of the isomorphism is as in Fig. 22.
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5 Granule-Based Rough Sets from Quasi Order-
Generated Covering-Based Approximation Spaces,
Algebras and Representations

The essence of classical rough set theory is to approximate a set X in an approxi-
mation space (U,R) with the help of ‘granules’, where a granule is an equivalence
class in the domain U . It is thus that, as mentioned in previous sections, the
lower and upper approximation operators are defined with the help of these
granules:

LX :=
⋃

{[x] : [x] ⊆ X},

UX :=
⋃

{[x] : [x] ∩ X �= ∅} =
⋃

{[x] : x ∈ X}, (∗)

where [x] is the equivalence class containing the element x of U . Moreover, unions
of the granules give the definable sets. These sets are termed so, because they are
exactly describable by the two approximation operators: X is definable, if and
only if X = LX = UX. The simplest definable sets are the equivalence classes.
One can represent L and U in terms of definable sets as well. Let D denote the
collection of all definable sets.

LX :=
⋃

{D ∈ D : D ⊆ X},

UX :=
⋂

{D ∈ D : X ⊆ D}. (∗∗)

Hence, the lower approximation is the largest definable set contained in X, while
the upper approximation of X is the smallest definable set which contains X.
The representation in (∗∗) shows the topological importance of L and U. In fact,
L is an interior operator on the power set P(U), while U is a closure operator on
P(U). Moreover, L and U are dual to each other, hence they generate the same
(clopen) topology. Definable sets are the only open (closed) sets in this topology.

In practice however, granules may not be disjoint, or may not arise from an
equivalence relation. It is interesting to see how a set may be approximated by
granules in these general situations. A lot of ground has been covered in the
study of generalized approximation spaces (cf. [69]), and we have a number of
different notions of approximations of sets, for instance, by Yao [77–80]. In this
work, we ask the following question. Consider a set U and a collection of granules
{Oi : i ∈ Λ} such that

⋃
i∈Λ Oi = U . How should a set X(⊆ U) be approximated

in the (generalized) approximation space (U, {Oi : i ∈ Λ})? We put forth the
following natural requirements from a pair of operators L,U : P(U) → P(U)
that we would like to call (respectively) the lower and upper approximations in
(U, {Oi : i ∈ Λ}).

1. For X ⊆ U , LX ⊆ X ⊆ UX.
2. If O is a granule, then the lower and upper approximations of O are O itself,

i.e., LO = O and UO = O.
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3. For X ⊆ U , further approximations of its lower and upper approximations
do not lead to anything new, i.e.

LLX = LX,UUX = UX, and
ULX = LX, LUX = UX.

In the classical case (cf. (∗), (∗∗)), L and U do, in fact, satisfy 1 2, 3.
Our interest in this section lies in the algebraic studies of generalized rough

set theory, where the set approximations are defined through granules in the
approximation space, and satisfy at least properties 1-3 above. There are at
least two ways to generalize classical rough set theory: replacing the equivalence
relation by a different binary relation (e.g. a tolerance), or replacing the partition
due to the equivalence relation by a different collection of subsets of the domain
(e.g. a covering). A lot of work has been done on algebraic structures of rough sets
based on binary relations, a bulk of it by Järvinen (e.g. [40]). On the other hand,
there is work, for instance by Bonikowski [12], on algebraic structures formed
in covering-based approximation spaces. Ours is an amalgamation of these two
lines of work.

We have organized this section as follows. In Sect. 5.1 we introduce a pair of
approximation operators L,U in ‘quasi order-generated covering-based approxi-
mation spaces (QOCAS)’, and study their algebraic and topological properties.
In Sect. 5.2 we study the algebraic structures of definable sets in QOCAS, the
rough set theoretic view of some classical results in this regard, and finally, a
representation theorem for the class of completely distributive lattices in which
the set of completely join irreducible elements is join dense. In the context of
completely distributive lattices, we should mention the work in [22,84], with the
observation that the approximation operators studied in these papers are differ-
ent from the ones considered here. In Sect. 5.3 we establish relationships between
the collection RS of rough sets and the collection R of generalized rough sets in
QOCAS. We study the algebraic behavior of the collections of rough sets in Sect.
5.4. This study culminates in a representation result for completely distributive
Heyting algebras in which the set of completely join irreducible elements is join
dense. We end the section by observing connections of the notions presented
here, to the dominance-based rough set approach.

The content of this section is based on the articles [48,49].

5.1 Granule-Based Definition of Rough Sets in QOCAS

A pair (U, C) is called a covering-based approximation space, when U is a non-
empty set and C is a covering of U , i.e. it is a non-empty subset of P(U) such
that

⋃
C = U . Now elements of C may be considered as granules, and we would

like to have lower and upper approximation operators L,U on (U, C) that satisfy
the properties 1-3 mentioned in the previous section. L and U have been defined
in several ways in literature (cf. [69], or [53]), and it is interestingly observed by
Samanta and Chakraborty in [70] that none of them capture all of 1, 2 and 3
together.
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In this section, we consider coverings generated by quasi orders. Formally, let
U be a set and R a quasi order on U . The family {R(x) : x ∈ U} forms a covering
of U , where R(x) := {y ∈ U : xRy}, i.e. R(x) is the R-neighbourhood of x in
U . So, given (U,R), one gets a covering-based approximation space (U, {R(x) :
x ∈ U}). Let us call such covering-based approximation spaces quasi order-
generated covering-based approximation spaces (QOCAS), and for simplicity, use
the denotation (U,R) in place of (U, {R(x) : x ∈ U}). It is clear that one also
has the converse: a covering-based approximation space (U, C) gives rise to a
QOCAS (U, {RC(x) : x ∈ U}), considering RC(x) := ∩{C ∈ C : x ∈ C}. In line
with the expressions of L,U in (*), treating R-neighbourhoods as granules, one
obtains definitions of the lower and upper approximation operators in a QOCAS
as follows.

Definition 37. For any X ⊆ U , L,U : P(U) → P(U) are such that

LX :=
⋃

{R(x) : R(x) ⊆ X},

UX :=
⋃

{R(x) : x ∈ X}. (∗∗∗)

As in the classical case, RS := {(LX,UX) : X ⊆ U} then gives the collection of
rough sets in the QOCAS (U,R).

We observe that some of the properties of the classical approximation oper-
ators hold here as well. Before proceeding, let us note the following lemma.

Lemma 9. (cf. [42,85]). R is a quasi order on a set U if and only if y ∈ R(x)
implies R(y) ⊆ R(x), for any x, y ∈ U .

Let (U,R) be a QOCAS.

Proposition 13. For any X,Y ⊆ U , L and U satisfy the following properties.

1. L(U) = U and L(∅) = ∅.
2. U(U) = U and U(∅) = ∅ .
3. L(X) ⊆ X ⊆ U(X).
4. LL(X) = L(X) and LU(X) = U(X).
5. UU(X) = U(X) and UL(X) = L(X).
6. L(X ∩ Y ) = L(X) ∩ L(Y ) and U(X ∪ Y ) = U(X) ∪ U(Y ).
7. L(X) ∪ L(Y ) ⊆ L(X ∪ Y ) and U(X ∩ Y ) ⊆ U(X) ∩ U(Y ).
8. L(X) = X if and only if U(X) = X.
9. The pair (L,U) forms a Galois connection on the poset (P(U),⊆): UA ⊆ B

if and only if A ⊆ LB, for any A,B ⊆ U .

Proof. 1. Let x ∈ U , so R(x) ⊆ U . Hence L(U) = U . For each x ∈ U , R(x) �= ∅,
Hence L(∅) = ∅.
2. As R is reflexive, hence U(U) = U . Clearly using the definition, we have
U(∅) = ∅.
3. From the definition of L, clearly we have L(X) ⊆ X. Reflexivity of R shows
that X ⊆ U(X).
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4. We already have LL(X) ⊆ L(X). Let x ∈ L(X), hence there exists y such
that x ∈ R(y) and R(y) ⊆ X but then R(x) ⊆ R(y). Hence R(x) ⊆ L(X). So,
LL(X) = L(X).

We have LU(X) ⊆ U(X). Let x ∈ U(X). Using the definition, there exists y
such that x ∈ R(y) and R(y) ⊆ U(X). x ∈ R(y) implies R(x) ⊆ R(y) ⊆ U(X).
Hence LU(X) = U(X).
5. UU(X) ⊇ U(X). Now, let x ∈ UU(X), hence x ∈ R(x) ⊆ U(X). Hence
UU(X) = U(X).

We already have UL(X) ⊇ L(X). Now, let x ∈ UL(X), hence x ∈ R(x) ⊆
L(X). Hence UL(X) = L(X).
6. Let x ∈ L(X) ∩ L(Y ), hence R(x) ⊆ X ∩ Y . Now let x ∈ U(X ∪ Y ) Using the
definition, there exists y such that x ∈ R(y) and y ∈ X ∪ Y . Other directions
are trivial.
7. Using monotone property of L and U, we have the desired result.
8. Let LX = X. Hence we have X = LX = ULX = UX.
9. Let us show that UA ⊆ B if and only if A ⊆ LB. We have:

UA ⊆ B ⇒ LUA ⊆ LB ⇒ UA ⊆ LB ⇒ A ⊆ UA ⊆ LB.

A ⊆ LB ⇒ UA ⊆ ULB ⇒ UA ⊆ LB ⇒ UA ⊆ LB ⊆ B.

That L and U so defined, satisfy all the properties 1-3 required of approxi-
mation with granules, follows from the above proposition. Let us illustrate the
definitions and properties through an example.

Example 15. Let U := {a, b, c, d} and C := {{a, b, c}, {b}, {c}, {c, d}} be a cover-
ing of U . Then RC(a) = {a, b, c}, RC(b) = {b}, RC(c) = {c} and RC(d) = {c, d}.
For X ⊆ U , L(X), U(X) are then given by Table 1.

Table 1. .

X L(X) U(X) X L(X) U(X)

∅ ∅ ∅ ac c abc

a ∅ abc ad ∅ U

b b b bd b bcd

c c c abc abc abc

d ∅ cd bcd bcd bcd

ab b abc abd b U

bc bc bc acd c U

cd cd cd U U U

Observation 1. Consider X := {b} in Example 15, then U(X) = {b}, but
{b} �= {a, b} = (L({a, c, d}))c = (L({b}c))c, hence (L,U) are not dual operators.
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As we have seen, classical approximation operators have granule-based as well
as topological representations. The operators defined through (∗∗∗) also have a
topological representation. This is due to the well-known one-one correspondence
between Alexandrov topologies and quasi orders on any set U . Indeed, the family
{R(x) : x ∈ U} for a quasi order R on U forms a minimal basis for an Alexandrov
topology on U . Let us denote this topology by TR. When R is a quasi order, so
is R−1. So, TR−1 also generates an Alexandrov topology.

Corollary 2. L is the interior operator in the topology TR, while U is the closure
operator in TR−1 . Hence, alternatively, L and U may be defined, for any X ⊆ U ,
as

LX :=
⋃

{D ∈ TR : D ⊆ X},

UX :=
⋂

{D ∈ TR : X ⊆ D}.

Note the analogy with the topological definitions (∗∗) of L,U in classical rough
set theory. The above representation of L,U indicates that we are approximating
subsets of U in the bitopological space (U, TR, TR−1). For D ∈ TR, we have LD =
D and UD = D. Further, using the fact that L and U generate dual topologies,
we have LX = X if and only if UX = X, for any subset X of U (cf. Proposition
13). So, we take definable sets here to be exactly the open sets in the topological
space (U, TR), or closed sets in the topological space (U, TR−1). Following our
notational convention, D is the set of all definable sets in the QOCAS (U,R),
but note that D is just the same as TR. It is also clear that when R is an
equivalence relation on U , R = R−1, whence TR = TR−1 , and L and U coincide
with the classical lower and upper approximation operators.

Now, we give a comparison between L, U, and other operators in literature
that are defined using a quasi order. The operators in 1-4 below are from [64],
while those in 5 are from [85]. Let (U, C) be a covering based approximation
space.

1. L1(X) := {x ∈ U : RC(x) ⊆ X},
U1(X) := {x ∈ U : RC(x) ∩ X �= ∅}.

2. L2(X) := {x ∈ U : ∃u(u ∈ RC(x) ∧ RC(u) ⊆ X)},
U2(X) := {x ∈ U : ∀u(u ∈ RC(x) → RC ∩ X �= ∅)}.

3. L3(X) := {x ∈ U : ∀u(x ∈ RC(u) → RC(u) ⊆ X)},
U3(X) := ∪{RC(x) : RC(x) ∩ X �= ∅}.

4. L4(X) := {x ∈ U : ∀u(x ∈ RC(u) → u ∈ X)},
U4(X) := ∪{RC(x) : x ∈ X}.

(L1, U1) − (L4, U4) are dual operator pairs. There is a non-dual operator pair
defined using RC(x) also.

5. L5(X) := ∪{C ∈ C : C ⊆ X},
U5(X) := L5(X) ∪ (∪{RC(x) : x ∈ (X \ L5(X))})

= ∪{RC(x) : x ∈ X}.



202 A. Kumar

Proposition 14. Let (U, C) be a covering-based approximation space and
X ⊆ U .

1. L1 = L.
2. L ⊆ L2.
3. L3(X) ⊆ L(X) and U(X) ⊆ U3(X).
4. U4 = U.
5. L5(X) ⊆ L(X) and U5 = U.

Let us show that containment of L5 inside L can be proper, i.e., L5 is different
from L.

Example 16. Let U := {a, b, c, d} and C := {{a, b, c}, {b, c}, {c, d}}. Then
RC(a) = {a, b, c}, RC(b) = {b, c}, RC(c) = {c}, RC(d) = {c, d}.
Let X = {c}, then L5X = ∅ but LX = X = {c}.

We show through the following example that U1, U2 and L4 are not comparable
with U and L respectively.

Example 17. Let U := {a, b, c, d} and C := {{a, b, c}, {b, c}, {c}, {c, d}}. Then
RC(a) = {a, b, c}, RC(b) = {b, c}, RC(c) = {c}, RC(d) = {c, d}.

Let X := {a, b, c}. Then U({a, b, c}) = {a, b, c} and U1({a, b, c}) = U =
U2({a, b, c}). So, here U(X) ⊆ U1(X) = U2(X). But if we consider X := {a, d},
then U({a, d}) = U , while U1({a, d}) = {a, d}, and U2({a, d}) = ∅. Hence, in
this case, U1(X) ⊆ U(X), as well as U2(X) ⊆ U(X). So U and U1, U2 are not
comparable.

Again consider X := {a, b, c}. Then L({a, b, c}) = {a, b, c} and L4({a, b, c}) =
{a, b}. So, L4(X) ⊆ L(X). But taking X := {a, d} as before, we find L({a, d}) =
∅, while L4({a, d}) = {a, d}. So, L(X) ⊆ L4(X), in this case. Hence L and L4

are not comparable either.

Observation 2. Thus (L,U) is comparable only with (L3, U3) and (L5, U5), and
is better than either as a pair of approximations.

5.2 Classical Algebraic Structures Represented Through the
Collection of Definable Sets in QOCAS

We focus now on the algebraic structures formed by definable sets in a QOCAS,
and representation results obtained in terms of definable sets for certain classes
of lattices. In other words, we see how some classical algebraic structures may
be viewed as definable sets in some QOCAS.

Recall that, for a QOCAS (U,R), definable sets forming the collection D,
and open sets in the topology TR are identical. Hence each representation result
presented in this section has a topological interpretation. We shall also be using
D and TR interchangeably in the following. In this context, it should be noted
that even though some of the results given here may be known already, we are
re-presenting them in the context of rough sets.

Let us begin with a well-known result about algebras of open sets in a topo-
logical space.
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Theorem 62. [65] The lattice of open sets of a topological space is a Heyting
algebra. Conversely, any Heyting algebra is embeddable into the Heyting algebra
of open sets of some topological space.

In Theorem 64 below, we note that any Heyting algebra is, in fact, embeddable
into the Heyting algebra of open sets of some Alexandrov topological space.
Observe that, in particular, D(= TR) is a Heyting algebra.

When C := {R(x) : x ∈ U} is a partition of U , we know that (D,∪,∩,c , ∅, U)
forms a complete atomic Boolean algebra in which each equivalence class is an
atom, and any definable set in (U,R) is the union of some atoms (c denotes
the set-theoretic complement in D). Moreover, every complete atomic Boolean
algebra is isomorphic to the Boolean algebra formed by the collection of definable
sets in some classical approximation space (based on an equivalence relation). In
this context, we address a natural question for any QOCAS (U,R): under what
conditions on granules, is (D,∪,∩,c , ∅, U) a Boolean algebra? One can prove the
following.

Proposition 15. (D,∪,∩,c , ∅, U) forms a Boolean algebra, if and only if
{R(x) : x ∈ U} forms a partition of U .

Proof. Suppose {R(x) : x ∈ U} forms a partition of U . As definable sets are
unions of some R(x)’s, D is just the classical collection of definable sets, and as
is well-known, (D,∪,∩,c , ∅, U) is a Boolean algebra.
Conversely, let (D,∪,∩,c , ∅, U) be a Boolean algebra, and suppose that the col-
lection {R(x) : x ∈ U} is not a partition of U . Then there exist x, y ∈ U such
that x �= y, R(x) �= R(y) and R(x) ∩ R(y) �= ∅. So there is z in U such that
z ∈ R(x)∩R(y). Thus R(z) ⊆ R(x) and R(z) ⊆ R(y). As R(x) �= R(y), we must
have one of R(z) � R(x) and R(z) � R(y). Suppose R(z) � R(x). Consider the
pseudo-complement R(z)+ and dual pseudo-complement R(z)− of R(z), viz.

R(z)+ := ∪{D ∈ D : D ∩ R(z) = ∅},
R(z)− := ∩{D ∈ D : D ∪ R(z) = U}.

Let D ∈ D such that D ∩ R(z) = ∅. This implies x /∈ D. Indeed, if x ∈ D,
R(x) ⊆ D. So, R(z) ⊆ R(x) implies that D ∩ R(z) = R(z) �= ∅, a contradiction.
Hence x /∈ R(z)+.
Now let D ∈ D such that D ∪ R(z) = U . As R(z) � R(x), x /∈ R(z). So x ∈ D,
whence x ∈ R(z)−.
Thus R(z)+ �= R(z)−. But as (D,∪,∩,c , ∅, U) is a Boolean algebra, the pseudo-
complement and dual pseudo-complement of an element are the same (as its
complement). So this gives a contradiction.

We now proceed to investigate what structure, in general, D forms here.
First, we observe from [65] that elements of any distributive lattice or Heyting
algebra, may be regarded as definable sets in some QOCAS. As mentioned in
Sect. 5.1, if C is an arbitrary covering of U , we get a QOCAS (U,RC) considering
the relation RC such that RC(x) = ∩{C ∈ C : x ∈ C}, x ∈ U .
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Theorem 63. Let L := (L,∨,∧, 0, 1) be a distributive lattice. There exists a
QOCAS (U,R) such that L can be embedded into the lattice of its definable sets.

Let us give a sketch of the proof, as we shall use the constructions involved in it
in the sequel.

Proof. Let U be the set of all prime filters of L, and for each a ∈ L, let Ca :=
{Δ ∈ U : a ∈ Δ}. Then, clearly, C := {Ca : a ∈ L} is a covering for U .
So (U,RC) is a QOCAS. Now for Δ ∈ U , RC(Δ) =

⋂
{Ca ∈ C : Δ ∈ Ca} =⋂

{Ca ∈ C : a ∈ Δ}. Thus definable sets, and in particular, Ca, a ∈ L, are open
sets in the Alexandrov topology TRC . Define a map h : L −→ D, as h(a) := Ca.
h is shown to be a lattice embedding.

Moreover, we have the following for any Heyting algebra.

Theorem 64. For any Heyting algebra L := (L,∨,∧,→, 0, 1), there exists a
QOCAS such that L can be embedded into the Heyting algebra of its definable
sets.

Proof. We take (U,RC), as in the proof of Theorem 63. Apart from the Alexan-
drov topology TRC on U generated by {RC(Δ) : Δ ∈ U} as subbasis, there is a
topology T on U considering {Ca : a ∈ L} as subbasis. Note that in the topolog-
ical space (U, TRC ), Ca is an open set for each a ∈ L. Hence TRC is finer than T .
Now we know that any topological space on U , and hence T , forms a Heyting
algebra with set union and intersection, and the operation → defined as

X → Y := I(Xc ∪ Y ), X, Y ⊆ U,

I being the topological interior. It is shown in [65] that given a Heyting algebra
L, the map h as in the proof of Theorem 63, i.e. h : L −→ D such that h(a) :=
Ca, a ∈ L, is an embedding into the Heyting algebra of open sets of the topology
T . In other words, it is proved that h(a → b) = h(a) → h(b) = IT (h(a)c ∪ h(b)),
where IT is the interior with respect to T . In the same lines, we can show here
for the topology TRC , that h(a → b) = h(a) → h(b) = ITRC (h(a)c ∪ h(b)). So h
provides a (Heyting) embedding into D.

So what kind of algebras are exactly determined by the collection D of defin-
able sets? Theorem 65 below answers the question. To get to the result, we first
recall the following.

Definition 38. Let L := (L,∨,∧, 0, 1) be a complete lattice. A filter Δ of a
complete lattice L is said to be complete, if and only if ai ∈ Δ, for all i ∈ I,
implies ∧i∈Iai ∈ Δ. Further, a complete filter is said to be completely prime,
provided ∨i∈Iai ∈ Δ implies ai ∈ Δ, for some i ∈ I.

Recall from Sect. 1 that JL denotes the set of all completely join irreducible
elements of a complete lattice L.
The granules R(x), x ∈ U, of a QOCAS (U,R) form a minimal basis for the
topology TR(= D). Hence the completely join irreducible elements of D are the
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R(x)’s. So each element in D, i.e. any definable set, is the join of completely join
irreducible elements. In other words, D forms a completely distributive lattice
in which JD is join dense.

One can prove the following.

Proposition 16. Let L := (L,∨,∧, 0, 1) be a completely distributive lattice in
which JL is join dense. Then there is a set of complete and completely prime
filters which separates the points of L.

Proof. Let a ∈ JL and consider a ↑:= {b ∈ L : a ≤ b}. Let {bi}i ∈ I ⊆ a ↑,
where I is some index set. Then a ≤ bi, for all i ∈ I. This implies that a ≤ ∧bi.
Hence ∧bi ∈ a ↑. Now let ∨bi ∈ a ↑. This implies a ≤ ∨bi. Using complete join
irreducibility of a, we get a ≤ bi, for some i. Hence bi ∈ a ↑, for some i. Let a, b ∈
L such that a � b. By the assumption of the proposition, a = ∨{ai : ai ∈ JL}
and b = ∨{bi : bi ∈ JL}. So ai � b, for some i, and thus a ∈ ai ↑ but b /∈ ai ↑.
{c ↑: c ∈ JL} is then the required set of filters.

Proposition 16 applies, in particular, to the lattice formed by D. We now get a
representation of these kinds of completely distributive lattices.

Theorem 65. Let L := (L,∨,∧, 0, 1) be a completely distributive lattice in
which JL is join dense. Then there exists a QOCAS (U,R) such that L is iso-
morphic to the lattice of its definable sets.

Proof. By Proposition 16, there exists a set of complete and completely prime
filters which separates the points of L. So, let U be such a set of filters. The proof
now follows the lines of that for Theorem 63, considering this set U as the domain
of the approximation space. The map h : L −→ D is a lattice homomorphism.
Using the fact that U contains filters which are complete and completely prime,
the collection {Ca : a ∈ L} forms a complete lattice with respect to set union
and intersection. Hence D = {Ca : a ∈ L}, and it follows that h is onto. That
h is one-one follows from the fact that U separates the points of L. Moreover,
h(0) = ∅ and h(1) = U . Hence h is the required isomorphism.

5.3 The Collections R and RS of Rough Sets in a QOCAS:
Relationships

In this section, we study the collection RS := {(LX,UX) : X ⊆ U} of rough
sets, and the collection R := {(D1,D2) : D1 ⊆ D2, D1,D2 ∈ D} of ‘generalized’
rough sets in a QOCAS (U,R). Let us recall that R has been considered in the
classical rough set context in [4]. As the collection D of definable sets in (U,R)
is the same as the collection of open sets of the topology TR, R may be viewed
as a collection of ordered pairs of open sets of TR, i.e., R ⊆ TR × TR. Now, we
already have RS ⊆ R. When C is a partition, it is observed in [5] that R and
RS are equivalent if and only if each equivalence class of (U, C) contains at least
two elements. In other words, for any pair (D1,D2) of definable sets in R, there
is X(⊆ U) such that the lower approximation of X, L(X) = D1 and the upper
approximation of X, U(X) = D2, if and only if |D2 \ D1| �= 1. On investigating
the situation here, in [48] we find that the same condition works here as well.
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Theorem 66. R = RS, if and only if |D2 \ D1| �= 1 for every (D1,D2) ∈ R.

Proof. First let us assume R = RS.
Suppose the condition of the theorem does not hold. Then there exist D1,D2 ∈
D such that D1 ⊆ D2, and |D2 \ D1| = 1. Let D1 = ∪y∈Z1R(y) and D2 =
∪z∈Z2R(z), where Z1, Z2 ⊆ U . Now, D1 ⊆ D2, and |D2 \ D1| = 1 imply that
there is x ∈ D2 such that x /∈ D1. x ∈ D2 means x ∈ R(z) for some z ∈ Z2. If
x �= z, then z ∈ D1, and so R(z) ⊆ D1. This implies that x ∈ D1, a contradiction
to our assumption. Hence if x ∈ R(z) ⊆ D2, z = x. Now suppose there is X ⊆ U
such that L(X) = D1 and U(X) = D2. U(X) = D2 implies x ∈ X: otherwise,
x ∈ U(X) = ∪{R(z) : z ∈ X} = D2 implies there is z ∈ X ⊆ D2 such that
x ∈ R(z), a contradiction. Hence x ∈ X. We also have L(X) = D1, hence
L(X) = D1 ⊆ X ⊆ U(X) = D2 reduces to L(X) = D1 = X = U(X) = D2, a
contradiction to the assumption that |D2 \ D1| = 1.
Conversely, let us assume that the condition of the theorem holds, and let
(D1,D2) ∈ R. Let D2 = ∪y∈W R(y), where W ⊆ U is such that, for all y, z ∈ W
with y �= z, neither of R(y) ⊆ R(z) or R(z) ⊆ R(y) holds. Note that we can
always find such W ⊆ U . Let Z := {y ∈ W : y /∈ D1}. Now, let us consider
X := D1 ∪ Z. We claim that L(X) = D1 and U(X) = D2.
Let us first prove that L(X) = D1. As D1 ⊆ X, L(D1) = D1 ⊆ L(X). Now, let
x ∈ L(X). Then R(x) ⊆ X.
Case 1: If R(x) ⊆ D1, we have nothing to prove.
Case 2: Assume R(x) � D1. Then we have two subcases.
Subcase 1: If R(x) ⊆ Z, then x = y for some y ∈ Z. Observe that the condition
of the theorem implies that

|R(w)| ≥ 2, for all w ∈ U.

Hence, |R(y)| ≥ 2, which implies that there exists some z �= y such that z ∈ R(y).
This implies R(z) ⊆ R(y), which is a contradiction. Hence this subcase is ruled
out.
Subcase 2: Now, assume there are two disjoint non-empty sets A and B such
that A ∪ B = R(x), and A ⊆ D1, B ⊆ Z. Clearly x /∈ A, otherwise x ∈ A ⊆ D1

would imply R(x) ⊆ D1, a contradiction to our assumption. Hence x ∈ B ⊆ Z
and so x = y for some y ∈ Z. As D1 and Z are disjoint, R(x) \ D1 = B ⊆ Z. By
the condition of the theorem, B = R(x) \ D1 = R(x) \ (D1 ∩ R(x)), has at least
two elements. Hence there is z ∈ B and z �= x. This implies that z ∈ R(x), and
hence R(z) ⊆ R(x), which is a contradiction to the fact that z, x ∈ Z.

Hence case 2 is ruled out and we have R(x) ⊆ D1. Thus L(X) = D1.
Let us prove that U(X) = D2. We already have X ⊆ D2, which implies

U(X) ⊆ U(D2) = D2. Now let x ∈ D2. Then there exists a y where y ∈ W , such
that x ∈ R(y). If y ∈ D1, then x ∈ R(y) ⊆ D1. If y /∈ D1, then y ∈ Z. This
implies that R(y) ⊆ U(Z) ⊆ U(X), and hence x ∈ U(X). So, U(X) = D2.

Let us illustrate the above theorem through an example.
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Example 18. Let us recall Example 15. It is clear that the condition of the the-
orem is violated: (∅, RC(b)) = (∅, b) ∈ R. So there is no X ⊆ U , such that
L(X) = ∅ and U(X) = {b}.
We can make another interesting point through this example. Let us consider
X := {a, b} and Y := {c, d}. Then L(X) ∪ L(Y ) = {b, c, d}, U(X) ∪ U(Y ) =
{a, b, c, d}, and (L(X) ∪ L(Y ),U(X) ∪ U(Y )) ∈ R. This pair also violates the
condition of the theorem, and so there does not exist any Z(⊆ U) such that
L(X)∪L(Y ) = L(Z) and U(X)∪U(Y ) = U(Z). Note that this is contrary to the
case in classical rough set theory, when C is a partition of U (cf. [4,5]).

As we noted while proving Theorem 66, the condition of the theorem implies
that |R(x)| ≥ 2, for all x ∈ U . Let us show through an example that the converse
need not hold, i.e. |R(x)| ≥ 2, for all x ∈ U , does not imply the condition of
Theorem 66.

Example 19. Let U := {a, b, c, d, e} and C := {{a, b, c}, {b, c}, {d, e}}. Then
RC(a) = {a, b, c}, RC(b) = {b, c}, RC(c) = {b, c}, RC(d) = {d, e} and RC(e) =
{d, e}. Note that for all x ∈ U RC(x) ≥ 2 , but it does not satisfy the condition
of the theorem: consider the pair (RC(b), RC(a)) in R.

We consider the natural order ≤ on RS and R inherited from P(U)×P(U), viz.
for any (D1,D2), (D3,D4) ∈ R (or RS), (D1,D2) ≤ (D3,D4) if and only if D1 ⊆
D3 and D2 ⊆ D4. Even though R and RS may not coincide for an approximation
space (U,R), we now proceed to prove that there exists an approximation space
(U ′, R′) such that R and R′ (corresponding to (U ′, R′)) are order isomorphic
and R′ = RS ′.

Theorem 67. Let (U,R) be an approximation space such that there are defin-
able sets D1,D2 ∈ D with D1 ⊂ D2 and |D2 \ D1| = 1. Then there exists an
approximation space (U ′, R′) such that the collection D′ of its definable sets is
lattice isomorphic to D and, for all D′

1,D
′
2 ∈ D′ with D′

1 ⊂ D′
2, |D′

2 \ D′
1| �= 1.

Proof. Let S := {(D1,D2) : D1,D2 ∈ D and D1 ⊂ D2 and |D2 \ D1| = 1}.
Now, corresponding to S, we consider another set

S ′ := {x ∈ U : (D1,D2) ∈ S and x ∈ D2 but x /∈ D1}.

Let S ′′ be a disjoint copy of S ′: S ′′ := {x′ : x ∈ S ′}, and U ′ := U ∪ S ′′. We next
define a quasi order on U ′. For each x′ ∈ U ′,

R′(x′) :=
{

R(x′) ∪ {y′ ∈ S ′′ : y ∈ R(x′) ∩ S ′}, if x′ ∈ U
R′(x) = R(x) ∪ {y′ ∈ S ′′ : y ∈ R(x) ∩ S ′}, if x′ ∈ S ′′ for x ∈ S ′.

Let us show R′ is a quasi order. For that, it is enough to show that y′ ∈ R′(x′)
if and only if R′(y′) ⊆ R′(x′), for all x′ ∈ U ′. If R′(y′) ⊆ R′(x′), by definition of
R′, y′ ∈ R′(x′).
Conversely, let y′ ∈ R′(x′). If x′ ∈ U , there are two cases.
Case 1: y′ ∈ R(x′). Then R(y′) ⊆ R(x′) and also R(y′) ∩ S ′ ⊆ R(x′) ∩ S ′. Hence
R′(y′) ⊆ R′(x′).
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Case 2: y′ ∈ S ′′ such that y ∈ R(x′) ∩ S ′. Then R′(y′) = R′(y) = R(y) ∪ {z′ ∈
S ′′ : z ∈ R(y) ∩ S ′} and R(y) ⊆ R(x′). Hence R′(y′) ⊆ R′(x′).
If x′ ∈ S ′′, R′(x′) = R′(x) for x ∈ S ′. It can be proved similarly as above that
R′(y′) ⊆ R′(x′).
Then clearly, (U ′, R′ := {R′(x′) : x′ ∈ U ′}) is a QOCAS.

Let D′ denote the collection of definable sets corresponding to (U ′, R′).
Observe that if D′ ∈ D′ then D′ \ S ′′ ∈ D. Now suppose, if possible, there
are D′

1,D
′
2 ∈ D′ such that D′

1 ⊂ D′
2 and |D′

2 \ D′
1| = 1. Then there is x′ ∈ U ′

such that x′ ∈ D′
2, and x′ /∈ D′

1. Let x′ ∈ U . Then x′ ∈ D′
2 \ S ′′, x′ /∈ D′

1 \ S ′′

and D′
1 \ S ′′ ⊆ D′

2 \ S ′′ with |(D′
2 \ S ′′) \ (D′

1 \ S ′′)| = 1. Hence x′ ∈ S ′. But
then by the definition of R′, there is x′′ ∈ S ′′ such that R′(x′) = R′(x′′), which
means that x′′, x′ ∈ D′

2 and x′′, x′ /∈ D′
1. So |D′

2 \ D′
1| �= 1, a contradiction to

our assumption. Now if x′ ∈ S ′′ then there is an x ∈ S ′ such that R′(x) = R′(x′)
and so x, x′ ∈ D′

2 and x, x′ /∈ D′
1. Hence |D′

2 \ D′
1| �= 1, again a contradiction.

Consider the collections JD,JD′ of the completely join irreducible elements of D
and D′ respectively. Then JD = {R(x) : x ∈ U} and JD′ = {R′(x′) : x′ ∈ U ′}.
Let us define a map φ : JD −→ JD′ such that

φ(R(x)) := R′(x), x ∈ U.

We show that φ is an order isomorphism.
Let R(x), R(y) ∈ JD and R(x) ⊆ R(y). Then R(x) ∩ S ′ ⊆ R(y) ∩ S ′, and
{y′ ∈ S ′′ : y ∈ R(x) ∩ S ′} ⊆ {y′ ∈ S ′′ : y ∈ R(y) ∩ S ′}. By definition of R′,
R′(x) ⊆ R′(y).
If R′(x′), R′(y′) ∈ JD′ and R′(x′) ⊆ R′(y′) then with a similar argument as
above, we can prove that R(x′′) ⊆ R(y′′), where x′′, y′′ are x or x′ and y or
y′ respectively according as x′, y′ ∈ U , or x′, y′ ∈ S ′′: in the former case x′′ =
x′, y′′ = y′ and in the latter, x′′ = x, y′′ = y where x′, y′ are copies of x, y ∈ S ′

respectively.
φ is onto: let R′(x′) ∈ JD′ . If x′ ∈ U , then φ(R(x′)) = R′(x′). If x′ ∈ S ′′,
R′(x′) = R′(x), where x′ is the copy of x ∈ S ′, and φ(R(x)) = R′(x).
Now, every element of D and D′ can be written as a join of elements from
JD,JD′ respectively. So we consider the natural extension of φ : JD −→ JD′ to
the map φ : D −→ D′ defined as

φ(D) := ∪{φ(R(x)) : R(x) ⊆ D},

where D := ∪{R(x) : R(x) ⊆ D}. Hence, using Lemma 1, φ is a lattice isomor-
phism.

Using Theorems 66 and 67, we get the following corollary.
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Corollary 3. For every approximation space (U,R), there exists an approxima-
tion space (U ′, R′) with the following properties.

(i) R′ = RS ′, i.e. for each (D′
1,D

′
2) ∈ R′, there exists an X ⊆ U ′ with LX =

D′
1 and UX = D′

2.
(ii) R and R′ are order isomorphic.

Let us illustrate Theorem 67 and Corollary 3 through the following example.

Example 20. Let U := {a, b}. Let us define a relation R on U as: R(a) := ab = U
and R(b) := b. Then R is a quasi order on U .

D = {∅, b, U}.

R = {(∅, ∅), (∅, b), (∅, U), (b, b), (b, U), (U,U)}.

The Hasse diagram of (D,⊆) and (R,≤) is given in Fig. 29.

U

b

∅

(D, ⊆) =

(b, U)

(∅, U)

(∅, b)

(b, b)

(U, U)

(∅, ∅)

(R, ≤) =

Fig. 29. Hasse diagram of ordered structures (D, ⊆) and (R, ≤)

S = {(∅, b), (b, U)}, S ′ = {a, b} and S ′′ := {a′, b′}. So U ′ := U ∪ {a′, b′} =
{a, b, a′, b′}. R′(a) = aa′bb′ = R′(a′) = U,R′(b) = bb′ = R′(b′).

D′ = {∅, bb′, U ′}.

R′ = {(∅, ∅), (∅, bb′), (∅, U ′), (bb′, bb′), (bb′, U ′), (U ′, U ′)}.

A pictorial representation of the ordered structures R and R′ is given in Fig. 30.
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(b, U)

(∅, U)

(∅, b)

(b, b)

(U, U)

(∅, ∅)

(bb′, U ′) =
(Labb′,Uabb′)

(Lab′,Uab′)
(∅, U ′) =

(∅, bb′) = (Lb′,Ub′)

(bb′, bb′)
= (Lbb′,Ubb′)

(U ′, U ′) = (LU ′,UU ′)

(∅, ∅) = (L∅,U∅)

Fig. 30. R ∼= R′ = RS ′

Note that
(∅, bb′) = (Lb′,Ub′) = (Lb,Ub),
(∅, U ′) = (Lab′,Uab′) = (La′b,Ua′b) = (La′b′,Ua′b′) = (Lab,Uab) = (La,Ua) =
(La′,Ua′) = (Laa′,Uaa′) = (Laa′b,Uaa′b) = (Laa′b′,Uaa′b′),
(bb′, U ′) = (Labb′,Uabb′) = (La′bb′,Ua′bb′),
(U ′, U ′) = (LU ′,UU ′) = (LU,UU).
Hence R′ = RS ′. It is easy to see that (R,≤) and (R′,≤) are order isomorphic.

Let us end this section with the following observation. Consider the QOCAS
(U,R) and (U,R−1). As TR and TR−1 are dual topologies on U , they are
order(dually) isomorphic. Hence we have the following.

Proposition 17. Let R (RS) and R′ (RS ′) be the collections of generalized
rough sets corresponding to QOCAS (U,R) and (U,R−1) respectively. Then R
(RS) and R′ (RS ′) are dual isomorphic via the map (X,Y ) ↪→ (Y c,Xc).

5.4 Algebraic Structures of R and RS
It has been shown earlier that D forms a Heyting algebra and completely dis-
tributive lattice. These structures can also be induced in R.

Proposition 18. (R,∪,∩, (∅, ∅), (U,U)) is a complete lattice, where, for
(D1,D2), (D′

1,D
′
2) ∈ R,

(D1,D2) ∪ (D′
1,D

′
2) := (D1 ∪ D′

1,D2 ∪ D′
2),

(D1,D2) ∩ (D′
1,D

′
2) := (D1 ∩ D′

1,D2 ∩ D′
2).
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In fact, R forms a complete sublattice of P(U) × P(U), and so a completely
distributive lattice, whence a Heyting algebra. More explicitly, we have

Proposition 19. (R,∪,∩,⇒, (∅, ∅), (U,U)) is a Heyting algebra, with
(D1,D2) ⇒ (D′

1,D
′
2) := ∪{(D,D′) ∈ R : (D1,D2) ∩ (D,D′) ⊆ (D′

1,D
′
2)},

for (D1,D2), (D′
1,D

′
2) ∈ R.

In particular, R is a pseudo-complemented lattice, where the pseudo-complement
of (D1,D2) ∈ R is given by

∼s (D1,D2) := (∼ D2,∼ D2),

where ∼ D2 is the pseudo-complement of D2 in the Heyting algebra D.

So in the case when the condition of Theorem 66 is satisfied, RS forms a com-
pletely distributive lattice. But we can show through an example that, in some
cases, RS may not even form a lattice with respect to ≤.

Example 21. Let U := {a, b, c, d, e}, R(a) := {a, d, e}, R(b) := {b, d, e}, R(c) :=
{c, d}, R(d) := {d} and R(e) := {d, e}. (U, {R(x) : x ∈ U}) is a
QOCAS, and RS for this approximation space is given in Table 2. Now

Table 2. RS for QOCAS (U, R) in Example 21

X (LX,UX) X (LX,UX)

∅ (∅, ∅) abc (∅, U)

a (∅, ade) bcd (cd, bcde)

b (∅, bde) cde (cde, cde)

c (∅, cd) abd (d, abde)

d (d, d) abe (∅, abde)

e (∅, de) acd (cd, acde)

ab (∅, abde) ade (ade, ade)

bc (∅, bcde) bce (∅, bcde)

cd (cd, cd) bde (bde, bde)

de (de, de) ace (∅, acde)

ac (∅, acde) abcd (cd, U)

ad (d, ade) bcde (bcde, bcde)

ae (∅, ade) abce (∅, U)

bd (d, bde) abde (abde, abde)

be (∅, bde) acde (acde, acde)

ce (∅, cde) U (U, U)

consider (cd, cd), (∅, de) ∈ RS. One may observe from the table that the set
{(cde, cde), (cd, acde), (cd, bcde), (cd, U), (bcde, bcde), (acde, acde)} gives all the
upper bounds of {(cd, cd), (∅, de)}, and that it does not have a least element
in RS. Hence (RS,≤) is not a lattice.
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Table 3. RS for QOCAS (U, R) in Example 22

X (LX,UX) X (LX,UX)

∅ (∅, ∅) ac (c, abc)

a (∅, abc) ad (∅, U)

b (b, b) bd (b, bcd)

c (c, c) abc (abc, abc)

d (∅, cd) bcd (bcd, bcd)

ab (b, abc) abd (b, U)

bc (bc, bc) acd (cd, U)

cd (cd, cd) U (U, U)

One can, in fact, provide a condition different from that in Theorem 66, under
which RS becomes a lattice.

Proposition 20. Let (U,R) be a QOCAS such that the operators L,U have the
following property:

if LA = LB andUA = UB then A = B, for all A,B ⊆ U. (�)

Then (RS,∨,∧, (∅, ∅), (U,U)) is a distributive lattice, where,

(LA,UA) ∨ (LB,UB) := (L(A ∪ B),U(A ∪ B)),

(LA,UA) ∧ (LB,UB) := (L(A ∩ B),U(A ∩ B)).

Proof. That ∨ and ∧ are well-defined operators, follows from the property (�).
Now using Definition 3, it is easy to establish that (RS,∨,∧, (∅, ∅), (U,U)) is a
distributive lattice.

The following example uses Proposition 20 to show that the condition of
Theorem 66 is not necessary for RS to form a (completely distributive) lattice.

Example 22. Let U := {a, b, c, d} and let R(a) = {a, b, c}, R(b) = {b}, R(c) =
{c} and R(d) = {c, d}. Then (U, {R(x) : x ∈ U}) is a QOCAS. RS for the
approximation space (U,R) is then given by Table 3. From the table, it is
easy to check that whenever LA = LB and UA = UB then A = B. Hence
(RS,∨,∧, (∅, ∅), (U,U)) is a distributive lattice, where ∨ and ∧ are defined as in
Proposition 20. As RS is finite, it is completely distributive. But R �= RS.
Now, let R and RS denote respectively the collections of sets R and RS for dif-
ferent approximation spaces. Then Corollary 3 gives a well-defined and one-one
correspondence between R and RS quotiented by order isomorphism. However,
note that this correspondence is not onto, due to the observation that (RS,≤)
may fail to be a lattice (cf. Example 21). So one may think of R as being properly
embedded in RS, up to order isomorphism.
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Now, let us abstract the construction generalized rough sets. It is well known
that, if A is an abstract algebraic structure then A×A is also an algebraic struc-
ture of the same type as A. We have seen that the collection D of definable sets
in a QOCAS (U,R) forms a Heyting algebra and completely distributive lattice
in which the set JD = {R(x) : x ∈ U} of completely join irreducible elements is
join dense. From D, we have the set R := {(D1,D2) : D1 ⊆ D2, D1,D2 ∈ D}.

Now, let us abstract this construction to the cases when L := (L,∨,∧, 0, 1)
is a

1. Heyting algebra, and
2. completely distributive lattice in which JL is join dense.

Consider the set

L[2] := {(a, b) ∈ L × L : a ≤ b}.

Let us define join and meet on L[2] componentwise as,

(a, b) ∨ (c, d) = (a ∨ c, b ∨ d),

(a, b) ∧ (c, d) = (a ∧ c, b ∧ d),

where (a, b), (c, d) ∈ L[2]. Also, (0, 0), (1, 1) are bounds of L[2].
Hence RL := (L[2],∨,∧, (0, 0), (1, 1)) is a bounded distributive lattice. In this
section we study the enhanced structure of RL, when L is considered to be
Heyting algebra, and also when it is a completely distributive lattice in which
the set of join irreducible elements is join dense. Note that in the case when
B is a Boolean algebra, B[2] may not form a Boolean algebra. But it can be
shown to form a 3-valued �Lukasiewicz algebra, pre-rough algebra and double
Stone Algebra [11]. In case L is a Heyting algebra, RL also forms a Heyting
algebra. This is established by the following theorem.

Theorem 68. Let H := (H,∨,∧,→, 0, 1) be a Heyting algebra. Then R→
H :=

(RH ,→), where for all (a, b), (c, d) ∈ H [2],

(a, b) → (c, d) := ((a → c) ∧ (b → d), b → d),

is a Heyting algebra.

Proof. Let us show that (a, b) → (c, d) = max{(e, f) ∈ H [2] : (a, b) ∧ (e, f) ≤
(c, d)} = ((a → c) ∧ (b → d), b → d).
Let (e, f) ∈ H [2] such that (a, b) ∧ (e, f) ≤ (c, d). Then a ∧ e ≤ c and b ∧ f ≤ d.
These imply e ≤ a → c and f ≤ b → d. But we already have e ≤ f , hence
e ≤ (a → c) ∧ (b → d). So (e, f) ≤ ((a → c) ∧ (b → d), b → d).
Now, ((a → c) ∧ (b → d), b → d) ∧ (a, b) = ((a → c) ∧ (b → d) ∧ a, (b → d) ∧ b).
But (a → c) ∧ a ≤ c and (b → d) ∧ b ≤ d. Hence (a → c) ∧ (b → d) ∧ a ≤ c and
((a → c) ∧ (b → d) ∧ a, (b → d) ∧ b) ≤ (c, d).
Thus (a, b) → (c, d) = ((a → c) ∧ (b → d), b → d) and R→

H = (RH ,→) is a
Heyting algebra.
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Proposition 21. Let H := (H,∨,∧,→, 0, 1) be a Heyting algebra. Then H can
be embedded in R→

H via the map a ↪→ (a, a).

Proof. Let φ : H → H [2], defined as, φ(a) := (a, a), a ∈ H. Let us show
that φ(a → b) = (a → b, a → b) = (a, a) → (b, b). Now, (a, a) → (b, b) =∨

{(c, d) : (a, a) ∧ (c, d) ≤ (b, b)}. We already have a ∧ (a → b) ≤ b. Moreover,
if (a, a) ∧ (c, d) ≤ (b, b) then a ∧ c ≤ b and a ∧ d ≤ b. Hence c ≤ a → b and
d ≤ a → b, i.e. (c, d) ≤ (a → b, a → b).

So, φ(a → b) = (a → b, a → b) = (a, a) → (b, b) = φ(a) → φ(b).

In other words, the Heyting algebra H is isomorphic to the subalgebra of the
Heyting algebra R→

H formed by the set H ′ := {(a, a) : a ∈ H}.
Moreover, we also have

Lemma 10.

1. Let H1 be embeddable into Heyting algebra H2. Then RH1 is embeddable into
RH2 .

2. Let H1 and H2 be isomorphic Heyting algebras. Then RH1 and RH2 are
isomorphic as Heyting algebras.

Proof. Let φ be the given embedding (isomorphism). Then the map Φ : H
[2]
1 →

H
[2]
2 given as

Φ(a, b) := (φ(a), φ(b))

is the required embedding (isomorphism).

Similar results can be proved for a completely distributive lattice in which the
set of join irreducible elements is join dense.

Proposition 22. RL := (L[2],∨,∧, (0, 0), (1, 1)) is a completely distributive lat-
tice in which the set JRL

of its completely join irreducible elements is join dense.
JRL

is the collection of pairs of the form (0, a), (a, a), a ∈ JL.

Proof. Let us show that for a ∈ JL, (0, a) is a completely join irreducible element
of RL. Indeed, let (0, a) = ∨i∈Λ(ai, bi). This implies that for all i ∈ Λ, ai = 0, and
a = ∨i∈Λbi implies that a = bj , for some j ∈ Λ. Hence (0, a) = (0, bj) = (aj , bj).
Let us next show that for each a ∈ JL, (a, a) is a completely join irreducible
element of RL. Let (a, a) = ∨i∈Λ(ai, bi). Then a = ∨i∈Λai, implying that a = aj ,
for some j ∈ Λ. We also have a = ∨i∈Λbi. So for each i ∈ Λ, bi ≤ a, but this
means a = aj ≤ bj ≤ a. Hence (a, a) = (aj , bj), for some j ∈ Λ.

Moreover, these are the only completely join irreducible elements of RL.
Now, let (a, b) ∈ L[2]. a, b ∈ L imply a = ∨i∈Λai and b = ∨j∈Λ′bj , for some
ai, bj ∈ JL. Hence, (a, b) = ∨i∈Λ(ai, ai) ∨ ∨j∈Λ′(0, bj).

Observation 3.

(i) L is order embeddable into RL via the map a ↪→ (a, a), a ∈ L.
(ii) Clearly, for any QOCAS (U,R), the set of completely join irreducible ele-

ments of R is given by JR = {(∅, R(x)), (R(x), R(x)) : x ∈ U}.
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That the above abstractions of R are correct, is established by the following
result.

Theorem 69.

1. Let H := (H,∨,∧,→, 0, 1) be a Heyting algebra. Then there exists a QOCAS
(U,R) such that R→

H is embeddable into R.
2. Let L := (L,∨,∧, 0, 1) be a completely distributive lattice in which JL is join

dense. Then there exists a QOCAS (U,R) such that RL is isomorphic to R.

Proof. 1. Let (U,R) be the approximation space as in the proof of Theorem
64. We have seen in the proof of the theorem that the map h : H −→ D
defined as h(a) := Ca = {Δ ∈ U : a ∈ Δ} is an embedding. Now, let R be the
corresponding collection of rough sets in (U,R). Define a map φ : RH −→ R as
φ(a, b) := (h(a), h(b)). We have seen in Theorem 64 that h is an embedding. Let
us show that φ is also an embedding.
As h distributes over join and meet, so does φ. Now φ((a, b) → (c, d)) = φ((a →
c) ∧ (b → d), (b → d)) = (h(a → c) ∧ h(b → d), h(b → d)). As h distributes over
→, we have φ((a, b) → (c, d)) = ((h(a) → h(c))∧ (h(b) → h(d)), (h(b) → h(d)) =
((h(a), h(b)) → (h(c), h(d)) = φ(a, b) → φ(c, d).
Now let φ(a, b) = φ(c, d). This implies that h(a) = h(c), h(b) = h(d) and as h is
one-one, we have a = c, b = d. So (a, b) = (c, d), whence φ is one-one.
2. Take the approximation space and map h as in the proof of Theorem 65. As
h is an isomorphism, it is not difficult to see that the map φ defined as in part
1 above, is also an isomorphism.

In fact, using Corollary 3, we have

Corollary 4.

1. R→
H is isomorphic to a subalgebra of RS ′ for some approximation space

(U ′, R′).
2. RL is isomorphic to RS ′ for an approximation space (U ′, R′).

For a Heyting algebra H := (H,∨,∧,→, 0, 1), let us consider H1 := {(0, a) :
a ∈ H} and H2 := {(a, a) : a ∈ H}.

Proposition 23.

1. H1 forms a Heyting algebra H1 that is not a subalgebra of R→
H .

2. H2 forms a Heyting subalgebra H2 of R→
H .

3. H1
∼= H2.

4. R→
H

∼= RH1
∼= RH2 .

Proof. 1. Let (0, a), (0, b) ∈ H1. (0, a) →H1 (0, b) = max{(0, c) ∈ H1 : (0, c) ∧
(0, a) ≤ (0, b)} = (0, a → b). But in R→

H , (0, a) → (0, b) = ((0 → 0) ∧ (a →
b), a → b) = (a → b, a → b). Hence the Heyting algebra H1 induced on the set
H1 by H is not a subalgebra of R→

H .
2. Let (a, a), (b, b) ∈ H2. (a, a) →H2 (b, b) = max{(c, c) ∈ H2 : (c, c) ∧ (a, a) ≤
(b, b)} = (a → a, b → b). In R→

H also, (a, a) → (b, b) = ((a → b) ∧ (a → b), a →
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b) = (a → b, a → b). Hence H2, the Heyting algebra induced on the set H2 by
H, is a subalgebra of R→

H .
3. The map (0, a) ↪→ (a, a) is the required isomorphism.
4. The map (a, b) ↪→ ((a, a), (b, b)), from R→

H to RH2 is the required isomorphism.
RH1

∼= RH2 follows from part 3 and Lemma 10.

Now, let us discuss the variants of the above results in the context of a completely
distributive lattice in which the set of completely join irreducible elements is join
dense.

For any completely distributive lattice L := (L,∨,∧, 0, 1) in which JL is join
dense, let JR1 := {(0, a) : a ∈ JL} and JR2 := {(a, a) : a ∈ JL}. So JRL

=
JR1 ∪JR2 . Let L1 := (L1 := {(0, a) : a ∈ L},∨,∧, (0, 0), (0, 1)) be the sublattice
generated by JR1 , and L2 := (L2 := {(a, a) : a ∈ L},∨,∧, (0, 0), (1, 1)) that
generated by JR2 . L1 and L2 are isomorphic via the map (0, a) ↪→ (a, a), a ∈ L.
Further, L1 and L2 are complete sublattices of RL, hence they are also com-
pletely distributive. The sets of completely join irreducible elements of L1 and L2

are just JR1 and JR2 respectively, and these are also join dense in the respective
lattices.

Now we can construct the lattices RL1 and RL2 on the sets L
[2]
1 and L

[2]
2 as

before, and obtain the following result. Observe that any pair (a, b) ∈ L[2] can
be identified with the pair ((a, a), (b, b)) ∈ L

[2]
2 .

Theorem 70.

(a) Let L := (L,∨,∧, 0, 1) be a completely distributive lattice in which JL is
join dense. Then RL

∼= RL2
∼= RL1 .

(b) Let L := (L,∨,∧, 0, 1) be a complete lattice. Then the following are equiva-
lent.
(i) There exists a completely distributive sublattice L1 of L in which JL1

is join dense such that L ∼= RL1 .
(ii) There exists an approximation space (U,R) such that L ∼= R.

Proof. Let us sketch the proof of (b). (i) implies (ii), by using Theorem 69.
Now, assume (ii) and let φ : R −→ L be the given isomorphism. Applying
part (a), we have R = RD ∼= RL1

∼= RL2 , where L1 := {(∅,D) : D ∈ D}
and L2 := {(D,D) : D ∈ D}. Hence through the isomorphism φ, we have
L ∼= Rφ(L1)

∼= Rφ(L2).

We have seen that in an approximation space (U, C) definable sets D forms
a Heyting algebra. Further any Heyting algebra can be embedded into definable
sets D for some approximation space (U, C) Theorem 64. And from Observation
3, definable set D is isomorphic to a sublattice of set of rough sets R via map
D ↪→ (D,D), hence also we have the following representation result for Heyting
algebras.

Theorem 71. For any Heyting algebra L := (L,∨,∧,→, 0, 1), there exists a
QOCAS (U ′, R′) such that L is isomorphic to a subalgebra of the Heyting algebra
RS ′.
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Proof. Let us take the approximation space (U,R) as in the proof of Theorem
64. Note that the map in question is φ : L −→ R given by

φ(a) := (h(a), h(a)), a ∈ L.

We just need to verify that φ is a Heyting homomorphism, i.e. {(h(a), h(a)) :
a ∈ L} forms a Heyting subalgebra of R. In particular, we show that φ(a →
b) = φ(a) → φ(b). For that, consider
(h(a), h(a)) → (h(b), h(b))

=
⋃

{(D,D′) ∈ R : D ∩ h(a) ⊆ h(b),D′ ∩ h(a) ⊆ h(b)}

=
⋃

{(D′,D′) ∈ R : D′ ∩ h(a) ⊆ h(b)}.

But D′ ∩ h(a) ⊆ h(b) implies D′ ⊆ h(a) → h(b). Hence, we have
(h(a), h(a)) → (h(b), h(b))

=
⋃

{(D,D′) ∈ R : D ∩ h(a) ⊆ h(b),D′ ∩ h(a) ⊆ h(b)}

=
⋃

{(D′,D′) ∈ R : D′ ∩ h(a) ⊆ h(b)}
= (h(a) → h(b), h(a) → h(b))
= (h(a → b), h(a → b)).

Now, by Corollary 3, there exists an approximation space (U ′, R′) such that R
is lattice isomorphic to R′ and R′ = RS ′. Further, as R and R′ are Heyting
algebras, they are Heyting isomorphic also. Hence we have the result.

Note that if L, in particular, is a complete Heyting algebra, Theorem 71 does
not guarantee that the image of L under the map φ in the proof would be a
complete Heyting subalgebra of R. This is because the set {h(a) : a ∈ L} may
not form a complete lattice. However, we can obtain a representation result for
the class of all completely distributive Heyting algebras L in which JL is join
dense. Before proceeding further, let us note that Lemma 1 and Corollary 3
can easily be extended to the case of completely distributive Heyting algebras,
because relative pseudo-complement is defined via the order of the algebras.

Theorem 72. Let L := (L,∨,∧,→, 0, 1) be a completely distributive Heyting
algebra in which JL is join dense. Then there is a QOCAS (U ′, R′) such that L
is isomorphic to a complete subalgebra of the Heyting algebra RS ′.

Proof. Define a relation R on the set JL as,

xRy if and only if y ≤ x, x, y ∈ JL.

Clearly R is a quasi order on JL, so that {R(x) : x ∈ JL} is a covering for
JL. Consider the approximation space (JL, {R(x) : x ∈ JL}). Hence com-
pletely join irreducible elements of R for the approximation space (JL, {R(x) :
x ∈ JL}) are just the elements in the sets J1 := {(∅, R(x)) : x ∈ JL} and
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J2 := {(R(x), R(x)) : x ∈ JL}. Let us define a map φ : JL −→ J2 as

φ(x) := (R(x), R(x)), x ∈ JL.

It is easy to see that φ is an order-preserving bijection. Now consider the subal-
gebra R2 := {(D,D) : D ∈ D} of R generated by J2 in the approximation space
(JL, {R(x) : x ∈ JL}). R2 is, in fact, a complete Heyting subalgebra of R; J2 is
the set of completely join irreducible elements of R2.
Extend the map φ to φ : L −→ R2 as in Lemma 1:

φ(x) :=
∨

y∈JL(x)
φ(y), x ∈ L.

Then φ is a Heyting isomorphism. Finally, using Corollary 3, we have the result.

Note that in the above proof, if instead of the map φ : JL −→ J2, we define the
map ψ : JL → J1 as

ψ(x) := (∅, R(x)), x ∈ JL,

then the corresponding extension map ψ : L −→ R1 := {(∅,D) : D ∈ D} is also
a lattice isomorphism. But it is easy to check that R1 may not be a Heyting
subalgebra of R.

5.5 Connections with Dominance-Based Rough Set Approach

We end this section by observing a connection between the basic notions of
the dominance-based rough set approach (DRSA) [35] and our granule-based
approach to generalized rough sets. Consider an information table (U,Q, V, f),
where U is a finite set of objects, Q a finite set of attributes or criteria,
V :=

⋃
q∈Q Vq, the set of attribute-values with Vq giving the values for the

criterion q. f : U × Q → V is the assignment function such that f(x, q) ∈ Vq. Q
is taken to consist of a set C of condition criteria and a decision criterion d. It
is assumed that the domain Vq of any criterion q ∈ Q is a set of real numbers.
Each q ∈ Q induces an ‘outranking’ relation �q on U such that the following
relation holds:

x �q y, if and only if f(x, q) ≥ f(y, q).

x �q y means that x is at least as good as y with respect to the criterion q.
For any set P (⊆ C) of conditional criteria and objects x, y ∈ U , we say x
dominates y with respect to P , denoted by xDP y, if x is better than y on every
criterion belonging to P , i.e., x �q y, for all q ∈ P . This dominance relation DP

is reflexive and transitive. For any x ∈ U , let

D+
P (x) := {y ∈ U : yDP x}, and

D−
P (x) := {y ∈ U : xDP y}.
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D+
P (x) and D−

P (x) represent the sets of P − dominating and P − dominated
objects with respect to x ∈ U , respectively.
Now, let us look at the above from our perspective. Firstly, D+

P is a quasi order
on U , and hence (U,D+

P ) is a QOCAS. Similarly, D−
P defines the QOCAS (U, C−

P ),
and D−

P (x), x ∈ U, are granules therein. Thus an information table (U,Q, V, f)
gives rise to QOCAS (U,D+

P ), (U,D−
P ) through the dominance relations DP ,

P ⊆ C. The algebraic structures formed by the definable sets in these QOCAS,
therefore, are given by the study here. It should be mentioned that our approach
to the study of algebraic structures is quite different from that in [37].

The notion of definable sets in a QOCAS gets a significant interpreta-
tion in DRSA. Consider (U,D+

P ) as above, and assume that Vd := {1, . . . , n},
so that it induces a partition Cl on U , viz. Cl := {Clt : t ∈ Vd}, where
Clt := {x ∈ U : f(x, d) = t}. The equivalence classes Clt may also be assumed
to be preference-ordered according to the increasing order of class indices, i.e.,
for all r, s ∈ Vd such that r ≥ s, the objects from Clr are strictly preferred to
the objects from Cls. One then defines upward unions and downward unions of
equivalence classes respectively as:

Cl≥t := ∪s≥tCls, Cl≤t := ∪s≤tCls, t = 1, . . . , n.

Objects in Cl≥t are those belonging to the class Clt or to a more preferred class,
while Cl≤t is the set of objects belonging to Clt or to less preferred classes.
Now there is a notion of inconsistency defined in DRSA, when an object x ∈ U
belongs to the upward union of classes Cl≥t , t = 2, . . . , n, with some ambiguity,
viz. when one of the following two conditions hold:

1. x belongs to class Clt or better, but it is P − dominated by an object y
belonging to a class worse than Clt, i.e., x ∈ Cl≥t but D+

P (x) ∩ Cl≤t−1 �= ∅.
2. x belongs to a class worse than Clt, but it P−dominates an object y belonging

to class Clt or better, i.e., x /∈ Cl≥t but D−
P (x) ∩ Cl≤t−1 �= ∅.

One finds that the lower and upper approximations of Cl≥t in (U, C+
P ), viz.

L(Cl≥t ) := {x ∈ U : D+
P (x) ⊆ Cl≥t } and

U(Cl≥t ) := {x ∈ U : D−
P (x) ∩ Cl≥t �= ∅} = ∪{D+

P (x) : x ∈ Cl≥t },

give, respectively, the sets of all objects belonging to Cl≥t without any ambiguity,
and that of all those objects belonging to Cl≥t with or without ambiguity. Then
it can be seen that the classes Cl≥t that are definable in (U,D+

P ), are exactly
those classes such that no object of U belongs to them with any ambiguity (i.e.
the ones with L(Cl≥t ) = Cl≥t .

6 Negations and Logics of Rough Sets from QOCAS

Let us recall the examples of 3-valued LM algebras constructed by Moisil (cf.
[17]). Let B be a Boolean algebra and define operators ¬ and L on B[2] respec-
tively as, ¬(a, b) := (bc, ac) and L(a, b) := (a, a), a, b ∈ B, where c is the Boolean
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negation in B. Then the structure B[2] enhanced with ¬ and L is a 3-valued
LM algebra. Let us also recall that such operators on B[2] lead to examples of
pre-rough algebras studied by Banerjee and Chakraborty [4]. We have seen in
Sect. 5 that for a QOCAS, the collection D of definable sets forms a distributive
lattice, Heyting algebra and completely distributive lattice in which the set JD
of completely join irreducible elements is join dense. Moreover, the collection
R also inherits these structures. It is interesting to see how the unary oper-
ator L defined on the set R behaves, when R is considered as a distributive
lattice, Heyting algebra or completely distributive lattice in which JR is join
dense. Abstraction of these properties leads us to introduce the classes of rough
lattices, rough Heyting algebras and complete rough lattices. Moreover, we pro-
vide the representation of these structures in terms of rough sets. We discuss
corresponding logics and present a rough set semantics for them.

We also pursue another line of work here. The Boolean negation induces
various negations on the set B[2], such as De Morgan, Kleene, intuitionistic
and dual intuitionistic negation. It is natural to ask the following questions.
What kind of unary operators are induced by intuitionistic and dual intuitionistic
negations on the set L[2], when L is considered to be a distributive pseudo and
dual pseudo complemented lattice respectively? Can these unary operators be
called ‘negations’? To answer the latter, we again follow Dunn’s approach to
the study of negations. We introduce some unary operators via the intuitionistic
and dual intuitionistic negations, study their properties, and then characterize
them in the classes of compatibility frames and exhaustive frames. One is able
to demonstrate that these negations occupy new positions in Dunn’s kite and
its dual kite.

We have organized this section as follows. In Sect. 6.1 we introduce two unary
operators I, C and study their interactions with distributive lattices, Heyting
algebras and completely distributive lattices in which the set of join irreducible
elements is join dense. Moreover, we prove rough set representation of the classes
of rough lattices, rough Heyting algebras and complete rough lattices. In Sect.
6.2, we discuss two logics, one which is based on the distributive lattice logic
(DLL) extended with two modal operators, and another based on MIPC intro-
duced by Prior (cf. [7]). Further, due to the representation results proved earlier,
we obtain a rough set semantics for these logics. In the final section (Sect. 6.3),
we study the new negations defined with the help of intuitionistic and dual
intuitionistic negations.

6.1 R and RS with Operators

Let B := (B,∨,∧,c , 0, 1) be a Boolean algebra. Although the set B[2] was first
studied by Moisil in the context of 3-valued LM algebras, as mentioned in Sect. 1,
extensive research on algebras based on the set B[2] in case B is complete and
atomic, has been done by Banerjee and Chakraborty [3–5] in the context of
rough set theory.
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Let (U,R) be a classical approximation space, and consider the collection
R := {(D1,D2) : D1 ⊆ D2, D1,D2 ∈ D}, i.e. the set D[2]. Define operators
L,M : R −→ R as

L(D1,D2) := (D1,D1),M(D1,D2) := (D2,D2).

The motivation of defining L,M in the context of rough set theory is that when
R = RS := {(LX,UX) : X ⊆ U}, the operators L and M extract respec-
tively, the lower and upper approximations of the set concerned: L(LX,UX) =
(LX, LX); M(LX,UX) = (UX,UX), X ⊆ U .

It is shown by Banerjee and Chakraborty in [4] that the structure
(R,∨,∧,¬, L, (∅, ∅), (U,U)) is a pre-rough algebra, where ¬ is the De Morgan
negation on R (cf. Sect. 1). In the same paper, representation of pre-rough
algebras has also been proved. Further, Banerjee and Chakraborty extended
the structure of a pre-rough algebra to define a rough algebra, and obtained its
rough set representation. Later, it was observed by Banerjee that the rough set
representation of pre-rough algebras can also be obtained.

In this section we follow the same line of work, in the generalized scenario of
a QOCAS.

Let (U,R) be a QOCAS. Taking cues from the work of Moisil as well as
Banerjee and Chakraborty, we define two unary operators I and C on R as
follows.

I(D1,D2) := (D1,D1); C(D1,D2) := (D2,D2), D1,D2 ∈ D.

In Sect. 5, we found that in the general set-up of a Heyting algebra and
an arbitrary completely distributive lattice L having join-dense JL, RL and
R→

L abstract R. Now let L be a bounded distributive lattice. One may define
operators I and C on RL as

I(a, b) := (a, a); C(a, b) := (b, b), a, b ∈ L.

Let us denote by RIC
L and RIC respectively, the lattices RL and R enhanced

with the operators I, C. To represent an algebra in terms of RS, we need the
following theorem, which is obtained as an easy extension of Theorem 67 and
Corollary 3 to the case of RIC .

Theorem 73. Let (U,R) be a QOCAS. There exists a QOCAS (U ′, R′) such
that R′ = RS ′ and RIC corresponding to (U,R) is isomorphic to R′IC corre-
sponding to (U ′, R′).

In the following section we study the enhanced algebraic structure RIC
L , where

L is a bounded distributive lattice.

Now, recall that when L is a bounded distributive lattice, RL :=
(L[2],∨,∧, (0, 0), (1, 1)) is also a bounded distributive lattice, where, for all
(a, b), (c, d) ∈ L[2] we have,

(a, b) ∨ (c, d) := (a ∨ c, b ∨ d),
(a, b) ∧ (c, d) := (a ∧ c, b ∧ d),
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and (0, 0) and (1, 1) are top and bottom elements respectively.
Let us first state some properties of I and C on RL.

Proposition 24. For (a, b), (c, d) ∈ L[2], I and C satisfy the following proper-
ties.

1. I((a, b) ∧ (c, d)) = I(a, b) ∧ I(c, d), C((a, b) ∨ (c, d)) = C(a, b) ∨ C(c, d).
2. I((a, b) ∨ (c, d)) = I(a, b) ∨ I(c, d), C((a, b) ∧ (c, d)) = C(a, b) ∧ C(c, d).
3. I(a, b) ≤ (a, b), (a, b) ≤ C(a, b).
4. I(1, 1) = (1, 1), C(0, 0) = (0, 0).
5. II(a, b) = I(a, b) and CC(a, b) = C(a, b).
6. IC(a, b) = C(a, b) and CI(a, b) = I(a, b).
7. I(a, b) ≤ I(c, d) and C(a, b) ≤ C(c, d) imply (a, b) ≤ (c, d).

In particular, I and C are homomorphisms on the lattice RL. Now, let us abstract
the above properties to define a new algebraic structure, viz. a rough lattice.

Definition 39. L := (L,∨,∧, I, C, 0, 1) is said to be a rough lattice, provided
(L,∨,∧, 0, 1) is a bounded distributive lattice and I, C are unary operators on L
that satisfy the following properties.

1. I(a ∧ b) = Ia ∧ Ib, C(a ∨ b) = Ca ∨ Cb.
2. I(a ∨ b) = Ia ∨ Ib, C(a ∧ b) = Ca ∧ Cb.
3. Ia ≤ a, a ≤ Ca.
4. I1 = 1, C0 = 0.
5. IIa = Ia and CCa = Ca.
6. ICa = Ca and CIa = Ia.
7. Ia ≤ Ib and Ca ≤ Cb imply a ≤ b.

Note that in particular, any pre-rough algebra is a rough lattice. Moreover, for
any bounded distributive lattice L, the structure RIC

L is a rough lattice. In
particular, for any QOCAS RIC is a rough lattice.
We now show that any rough lattice L := (L,∨,∧, I, C, 0, 1) gives rise to another
rough lattice, denoted ICI′C′

L as follows.
Consider the set ICL := {(Ia, Ca) : a ∈ L}. Following the theme of this section,
let us define operators I ′, C ′ on the sublattice ICL := (IC,∨,∧, (0, 0), (1, 1)) of
L × L as

I ′(Ia, Ca) := (Ia, Ia);C ′(Ia, Ca) := (Ca,Ca), for any (Ia, Ca) ∈ ICL.

As (Ia, Ia) = (IIa, CIa) and (Ca,Ca) = (ICa,CCa), we obtain that I ′, C ′ are
well-defined. Then we have

Proposition 25. Let L := (L,∨,∧, I, C, 0, 1) be a rough lattice. ICI′C′
L is a

rough lattice, where ICI′C′
L denotes the lattice ICL enhanced with the operators

I ′ and C ′.

Proof. Let (Ia, Ca), (Ib, Cb) ∈ ICL.
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1. I ′((Ia, Ca) ∧ (Ib, Cb)) = I ′(Ia ∧ Ib, Ca ∧ Cb) = I ′(I(a ∧ b), C(a ∧ b))
= (I(a ∧ b), I(a ∧ b)) = I ′(Ia, Ca) ∧ I ′(Ib, Cb).
C ′((Ia, Ca) ∨ (Ib, Cb)) = C ′(Ia ∨ Ib, Ca ∨ Cb) = C ′(I(a ∨ b), C(a ∨ b))
= (C(a ∨ b), C(a ∨ b)) = C ′(Ia, Ca) ∨ C ′(Ib, Cb)

2. I ′((Ia, Ca) ∨ (Ib, Cb)) = I ′(Ia ∨ Ib, Ca ∨ Cb) = I ′(I(a ∨ b), C(a ∨ b))
= (I(a ∨ b), I(a ∨ b)) = I ′(Ia, Ca) ∨ I ′(Ib, Cb). C ′((Ia, Ca) ∧ (Ib, Cb))
= C ′(Ia ∧ Ib, Ca ∧ Cb) = C ′(I(a ∧ b), C(a ∧ b))
= (C(a ∧ b), C(a ∧ b)) = C ′(Ia, Ca) ∧ I ′(Ib, Cb).

3. I ′(Ia, Ca) = (Ia, Ia) ≤ (Ia, Ca) and (Ia, Ca) ≤ (Ca,Ca) = C ′(Ia, Ca).
4. I ′(1, 1) = (I1, I1) = (1, 1) and C ′(0, 0) = (C0, C0) = (0, 0).
5. I ′I ′(Ia, Ca) = I ′(Ia, Ia) = (Ia, Ia) = I ′(Ia, Ca) and C ′C ′(Ia, Ca)

= C ′(Ca,Ca) = (Ca,Ca) = C ′(Ia, Ca).
6. I ′C ′(Ia, Ca) = I ′(Ca,Ca) = (Ca,Ca) = C ′(Ia, Ca) and C ′I ′(Ia, Ca)

= C ′(Ia, Ia) = (Ia, Ia) = I ′(Ia, Ca).
7. Let I ′(Ia, Ca) ≤ I ′(Ib, Cb) and C ′(Ia, Ca) ≤ C ′(Ib, Cb). These imply

(Ia, Ia) ≤ (Ib, Ib) and (Ca,Ca) ≤ (Cb,Cb). Hence, Ia ≤ Ib and Ca ≤ Cb,
but this means (Ia, Ca) ≤ (Ib, Cb).

Further, we prove the following.

Proposition 26. Every rough lattice L := (L,∨,∧, I, C, 0, 1) is isomorphic to
the lattice ICI′C′

L .

Proof. Let us define a map φ : L −→ ICL as

φ(a) := (Ia, Ca), a ∈ L.

Let us show that φ is the required map.
(1) φ(a ∨ b) = (I(a ∨ b), C(a ∨ b)) = (Ia ∨ Ib, Ca ∨ Cb) = (Ia, Ca) ∨ (Ib, Cb) =
φ(a) ∨ φ(b).
(2) φ(a ∧ b) = (I(a ∧ b), C(a ∧ b)) = (Ia ∧ Ib, Ca ∧ Cb) = (Ia, Ca) ∧ (Ib, Cb) =
φ(a) ∧ φ(b).
(3) φ(Ia) = (IIa, CIa) = (Ia, Ia) = I ′(Ia, Ca) = I ′φ(a).
(4) φ(Ca) = (ICa,CCa) = (Ca,Ca) = C ′(Ia, Ca) = C ′φ(a).
(5) φ(a) = φ(b) implies (Ia, Ca) = (Ib, Cb). Hence Ia = Ib and Ca = Cb.
Using 7, we have a = b. Clearly φ is an onto map, making φ a bijection.
Hence φ is the required isomorphism.

Let us provide another construction of a rough lattice from a given rough lattice
L := (L,∨,∧, I, C, 0, 1). Consider the set DL := {a ∈ L : Ia = a}. As CIa = Ia
and ICa = Ca, DL = {a ∈ L : Ca = a} also. Moreover, as IIa = Ia and
CCa = Ca, DL = {Ia : a ∈ L} = {Ca : a ∈ L}. Thus ICL ⊆ D

[2]
L .

Note that in case of a pre-rough algebra, the set DL forms a Boolean algebra.
Here, one observes the following.

Proposition 27. For a rough lattice L := (L,∨,∧, I, C, 0, 1), DL forms a
bounded distributive sublattice of L.
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Proof. Let a, b ∈ DL. Now a ∨ b ∈ L. Let us show that a ∨ b ∈ DL. I(a ∨ b) =
Ia ∨ Ib = a ∨ b. Hence a ∨ b ∈ DL. With similar lines a ∧ b ∈ DL. As, I(0) = 0
and I(1) = 1, we have 0 and 1 are lower and upper bounds of DL respectively.

So RI′C′
DL

is a rough lattice. The following proposition is analogous to (represen-
tation) Theorem 2 which was in the context of pre-rough algebras.

Proposition 28. Every rough lattice L := (L,∨,∧, I, C, 0, 1) is embeddable into
RI′C′

DL
.

Proof. Let us consider the composition of the map φ in Proposition 26 and the
inclusion map from ICL into D

[2]
L . This gives the required embedding.

Now, let us take a re-look at rough sets from a QOCAS, in the context of
rough lattices.

Observation 4. Let (U,R) be a QOCAS. Then D is a bounded distributive
lattice. Hence R = RD, and as mentioned earlier, RIC is a rough lattice. Now,
let us see how the rough lattices RI′C′

DR and ICI′C′
R behave: what are the respective

base sets DR, ICR?
DR = {(D,D) : D ∈ D} and D[2]

R = {((D,D), (D′,D)′) : D ⊆ D′}. Moreover,
ICR = {(I(D1,D2), C(D1,D2)) : D1 ⊆ D2} = {((D1,D1), (D2,D2)) : D1 ⊆
D2}.
So note that, D[2]

R = ICR. Observe also that RIC is embeddable into RI′C′
DR via

the map
(D1,D2) ↪→ ((D1,D1), (D2,D2)).

Let us end this section with the rough set representation of rough lattices. Note
that Lemma 10 can easily be extended to the case of distributive lattices.

Theorem 74 (Rough Set Representation). Let L := (L,∨,∧, I, C, 0, 1) be a
rough lattice.

1. There exists an approximation space (U,R) such that L can be embedded in
RIC .

2. There exists an approximation space (U,R) such that L can be embedded in
RSIC .

Proof. 1. Let us consider the distributive sublattice DL of L. Following Theorem
63, there exists an approximation space (U,R) such that DL is embeddable into
the lattice D of definable sets (via a ↪→ h(a)). Hence using the note above, RDL

is embeddable into generalized rough sets R (via (a, b) ↪→ (h(a), h(b))). Now,
the map: Φ : L → RIC defined as, Φ(a) := (h(Ia), h(Ca)) is the desired embed-
ding. In particular, let us show that Φ preserves I: Φ(Ia) = (h(IIa), h(CIa)) =
(h(Ia), h(Ia)) = IΦ(a).
2. Using Theorem 73, we have the desired result.
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Now, let H := (H,∨,∧,→, 0, 1) be a Heyting algebra. In this section we
study the algebraic structure of the set H [2]. In Theorem 68, we observed that
RH also forms a Heyting algebra, where relative pseudo complement ‘→’ on H [2]

is defined as follows for (a, b), (c, d) ∈ H [2]:

(a, b) → (c, d) := ((a → c) ∧ (b → d), b → d).

As H is a Heyting algebra, it is a bounded distributive lattice. So, all the results of
the previous section (Sect. 6.1) apply to the Heyting algebra H. It is interesting
to see how I and C interact with → of RH . The following proposition is an
extension of Proposition 24.

Proposition 29. For (a, b), (c, d) ∈ H [2], I and C satisfy the following proper-
ties.

1. I((a, b) → (c, d)) = (I(a, b) → I(c, d)) ∧ (C(a, b) → C(c, d)).
2. C((a, b) → (c, d)) = C(a, b) → C(c, d)

Proof. 1. I((a, b) → (c, d)) = I((a → c) ∧ (b → d), (b → d)) = ((a → c) ∧ (b →
d), (a → c) ∧ (b → d)) = (a → c, a → c) ∧ (b → d, b → d) = (I(a, b) →
I(c, d)) ∧ (C(a, b) → C(c, d)).

2. C((a, b) → (c, d)) = C((a → c) ∧ (b → d), (b → d)) = (b → d, b → d) =
(b, b) → (d, d) = C(a, b) → C(c, d).

Let us abstract these properties to an arbitrary Heyting algebra, and introduce
the notion of a rough Heyting algebra.

Definition 40. H := (H,∨,∧,→, I, C, 0, 1) is said to be a rough Heyting alge-
bra, provided (H,∨,∧,→, 0, 1) is a rough lattice and I, C satisfy the following
properties.

1. I(a → b) = (Ia → Ib) ∧ (Ca → Cb).
2. C(a → b) = Ca → Cb.

Observe that for any Heyting algebra H := (H,∨,∧,→, 0, 1), RIC
H is a rough

Heyting algebra. In particular for any QOCAS, RIC is a rough Heyting algebra.
Let us digress a little at this point, and show the connection between rough

Heyting algebras and T−rough algebras for any finite poset T := (T,≤), the
latter introduced by Sanjuan [71] in the context of classical rough set theory.

Definition 41 [71]. Given a finite poset T := (T,≤), an abstract algebra
(H,∨,∧,→, (πt)t∈T , 0, 1) is called a T-rough algebra provided the following con-
ditions are satisfied.

1. (H,∨,∧,→, 0, 1) is a Heyting algebra.
2. πt : H → H such that, for any x, y ∈ H and t, u, v ∈ T

(a) πt(x ∨ y) = πtx ∨ πty,
(b) πt(x ∧ y) = πtx ∧ πty,
(c) πtπux = πux,
(d) πt(0) = 0,



226 A. Kumar

(e) πt(x) ∨ ¬πt(x) = 1, where ¬x := x → 0,
(f) πt(x → y) =

∧
v≥t(πv(x) → πv(y)),

(g)
∧

v≥t πv(x) ∨ x = x.

Now, let us consider a QOCAS (U,R) and consider the rough Heyting algebra
RIC

H . With the ordering I ≤ C, the structure T := ({I, C},≤) is a poset (in
fact a chain). The rough Heyting algebra RIC

H satisfies all the axioms of {I, C}-
rough algebra except the axioms g and Boolean property e of I and C.

Returning to rough Heyting algebras, we prove the following.

Lemma 11. Let H and H′ be isomorphic Heyting algebras. Then RIC
H and R′IC

H

are isomorphic.

Proof. As, H and H′ are isomorphic, and let φ be that isomorphism. Hence
using Lemma 10, RH and RH′ are isomorphic as Heyting algebras via the
map Φ(a, b) := (φ(a), φ(b)). Φ can be extended to the required isomorphism,
as Φ(I(a, b)) = Φ(a, a) = (φ(a), φ(a)) = IΦ(a, b).

Example 23. Let H := {0, a, b, c, d, 1}, and consider the lattice H (with domain
H), depicted in Fig. 31.

d

Cb = Ca = b = Id = Ib

a

c

Cd = C1 = 1 = Cc = I1

C0 = I0 = 0 = Ia = Ic

Fig. 31. H

Being a finite distributive lattice, H is also a Heyting algebra. Let us define the
unary operators I and C as:

I0 = 0, Ia = 0, Ib = b, Ic = 0, Id = b and 1 = 1.
C0 = 0, Ca = b, Cb = b, Cc = 1, Cd = 1 and C1 = 1.
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Now let us prove that the structure (H,∨,∧,→, I, C, 0, 1) is a rough Heyting
algebra.

1. I(x ∨ y) = Ix ∨ Iy, I(x ∧ y) = Ix ∧ Iy:
Let y = 0, then I0 = 0. I(x ∨ 0) = I(0 ∨ x) = Ix = I0 ∨ Ix. I(x ∧ 0) =
I(0 ∧ x) = I0 = 0 = I0 ∧ Ix Now, let y = a, then Ia = 0. For a ≤ x we have:
I(a ∨ x) = Ix = Ia ∨ Ix and I(a ∧ x) = Ia = Ia ∧ Ix.
Let y = b, then Ib = b. For b ≤ x : I(b ∨ x) = Ix = b ∨ Ix and I(b ∧
x) = Ib = b ∧ Ix. Moreover, I(b ∨ c) = Id = b = b ∨ b = Ic ∨ Ib and
I(b ∧ c) = Ia = 0 = b ∨ 0 = Ib ∧ Ic.
Let y = c, then Ic = 0. For c ≤ x: I(c∨x) = Ix = 0∨ Ix and I(c∧x) = Ic =
0 = Ic ∧ Ix. As above, I(b ∨ c) = Ic ∨ Ib and I(b ∧ c) = Ic ∧ Ib.
Let y = d, then Id = b. I(d∨1) = I1 = Id∨I1 and I(d∧1) = Id = b = Id∧I1.

2. C(x ∨ y) = Cx ∨ Cy, C(x ∧ y) = Cx ∧ Cy:
Let y = 0, then C0 = 0. C(x ∨ 0) = C(0 ∨ x) = C(x) = C0 ∨ Cx. C(x ∧ 0) =
C(0 ∧ x) = C(0) = 0 = C0 ∧ Cx.
Now, let y = a, then Ca = b. For a ≤ x we have: C(a ∨ x) = Cx = Ca ∨ Cx
and C(a ∧ x) = Ca = b = Ca ∧ Cx .
Let y = b, then Cb = b. For b ≤ x : C(b ∨ x) = Cx = b ∨ Cx and C(b ∧
x) = Cb = b ∧ Cx. Moreover, C(b ∨ c) = Cd = 1 = 1 ∨ b = Cc ∨ Cb and
C(b ∧ c) = Ca = b = b ∨ 1 = Cb ∧ Cc.
Let y = c, then Cc = 1. For c ≤ x: C(c ∨ x) = Cx = 1 = Cc ∨ Cx and
C(c ∧ x) = Cc = 1 = 1 ∧ 1 = Cc ∧ Cx. As above, C(b ∨ c) = Cb ∨ Cc and
C(b ∧ c) = Cc ∧ Cb.
Let y = d, then Cd = 1. C(d ∨ 1) = C1 = Cd ∨ C1 and C(d ∧ 1) = Cd = 1 =
Cd ∧ C1.

3. Clearly, by the definition of I and C, we have Ix ≤ x and x ≤ Cx.
4. I1 = 1 and C0 = 0.
5. II0 = I0 = 0, IIa = I0 = 0 = Ia, IIb = Ib = b, IIc = I0 = 0 = Ic,

IId = Ib = b = Id, II1 = I1 = 1.
CC0 = C0 = 0, CCa = Cb = b = Cb, CCb = Cb = b, CCc = C1 = 1 = Cc,
CCd = C1 = 1 = Cd, CC1 = C1 = 1.

6. CI0 = C0 = 0 = I0, CIa = C0 = 0 = Ia, CIb = Cb = b = Ib, CIc = C0 =
0 = Ic, CId = Cb = b = Id, CI1 = 1 = I1.
IC0 = C0 = 0, ICa = Ib = b = Cb, ICb = Ib = b = Cb, ICc = I1 = 1 = Cc,
ICd = I1 = 1 = Cd, IC1 = C1 = 1.

7. Regularity: Ix ≤ Iy and Cx ≤ Cy imply x ≤ y is trivial.
8. I(x → y) = (Ix → Iy) ∧ (Cx → Cy):

Let y = 0, then I(0 → x) = I1 = 1. Also I0 → Ix = 1 and C0 → Cx = 1.
Hence I(0 → x) = (I0 → Ix) ∧ (C0 → Cx).
Let a ≤ x. Then I(a → x) = 1 and (0 =)Ia → Ix = 1 and (b =)Ca → Cx = 1
Hence I(a → x) = (Ia → Ix) ∧ (Ca → Cx). Moreover I(a → 0) = 0 and
Ia → I0 = 1 and Ca → C0 = 0. Hence I(a → 0) = (Ia → I0) ∧ (Ca → C0).
Let b ≤ x. Then I(b → x) = 1 and (b =)Ib → Ix = 1 and (b =)Cb → Cx = 1
Hence I(b → x) = (Ib → Ix) ∧ (Cb → Cx). Moreover I(b → 0) = 0 and
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Ib → I0 = 0 and Cb → C0 = 0. Hence I(b → 0) = (Ib → I0) ∧ (Cb → C0).
Also I(b → c) = Ic = 0 and Ib → Ic = 0 and Cb → Cc = 1. Hence
I(b → c) = (Ib → Ic) ∧ (Cb → Cc).
Let c ≤ x. Then I(c → x) = 1 and (0 =)Ic → Ix = 1 and (1 =)Cc → Cx = 1
Hence I(c → x) = (Ic → Ix) ∧ (Cc → Cx). Moreover I(c → 0) = 0 and
Ic → I0 = 1 and Cc → C0 = 0. Hence I(c → 0) = (Ic → I0) ∧ (Cc → C0).
Also I(c → b) = Ib = b and Ic → Ib = 1 and Cc → Cb = b. Hence
I(c → b) = (Ic → Ib) ∧ (Cc → Cb).
Now, I(d → 1) = 1 and (b =)Id → I1 = 1 and (1 =)Cc → C1 = 1 Hence
I(d → 1) = (Id → I1) ∧ (Cd → C1). Moreover I(d → 0) = 0 and (b =)Id →
I0 = 0 and Cd → C0 = 0. Hence I(d → 0) = (Id → I0) ∧ (Cd → C0).
Also I(d → b) = Ib = b and Id → Ib = 1 and Cd → Cb = b. Hence
I(d → b) = (Id → Ib) ∧ (Cd → Cb). I(d → c) = Ic = 0 and Id → Ic = 0 and
Cd → Cc = 1. Hence I(d → c) = (Id → Ic) ∧ (Cd → Cc).
Now let us consider 1 → x. But 1 → x = x, so I(1 → x) = Ix. I1 → Ix = Ix
and C1 → Cx = Cx. But we already have Ix ≤ Cx. Hence I(1 → x) =
(I1 → Ix) ∧ (C1 → Cx).

9. C(x → y) = Cx → Cy:
Let x = 0, then C(0 → x) = C1 = 1 and C0 → Cx = 1. Hence C(0 → x) =
C0 → Cx.
Let a ≤ x. Then C(a → x) = 1, (b =)Ca → Cx = 1. Moreover, C(a → 0) = 0
and Ca → C0 = 0. Hence C(a → 0) = Ca → C0.
Let b ≤ x. Then C(b → x) = 1 and (b =)Cb → Cx = 1. Hence C(b →
x) = Cb → Cx. Moreover, C(b → 0) = 0 and Cb → C0 = 0. Hence C(b →
0) = Cb → C0. Also C(b → c) = Cc = 1 and Cb → Cc = 1. Hence
C(b → c) = Cb → Cc.
Let c ≤ x. Then C(c → x) = 1 and (1 =)Cc → Cx = 1. Hence C(c →
x) = Cc → Cx. Moreover, C(c → 0) = 0 and Cc → C0 = 0. Hence C(c →
0) = Cc → C0. Also C(c → b) = Cb = b and Cc → Cb = b. Hence
C(c → c) = Cc → Cb.
C(d → 1) = 1 and (1 =)Cd → C1 = 1. Hence C(d → 1) = Cd → C1.
Moreover, C(d → 0) = 0 and (1 =)Cd → C0 = 0. Hence C(d → 0) =
Cd → C0. Also C(d → b) = Cb = b and (1 =)Cd → Cb = b. Hence
C(d → b) = Cd → Cb. C(d → c) = Cc = 1 and Cd → Cc = 1. Hence
C(d → c) = Cd → Cc.
C(d → a) = Ca = b and Cd → Ca = 1 → b = b. Hence C(d → a) = Cd →
Ca.
Now let us consider 1 → x. But 1 → x = x, so C(1 → x) = Cx and
C1 → Cx = Cx. Hence C(1 → x) = C1 → Cx.

Now consider the sets DH := {a ∈ L : Ia = a} and ICH = {(Ia, Ca) : a ∈ H}
for any rough Heyting algebra H. Analogous to the observations in the previous
section, we obtain.

Proposition 30. 1. DH forms a Heyting subalgebra of H.
2. ICH is a Heyting subalgebra of RDH

.
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Proof. 1. a, b ∈ DH , C(a → b) = C(a) → C(b) = a → b. Hence DH also forms a
Heyting algebra.
2. (Ia, Ca) → (Ib, Cb) := ((Ia → Ib) ∧ (Ca → Cb), Ca → Cb), but by the
definition of rough Heyting algebra, we have ((Ia → Ib) ∧ (Ca → Cb), Ca →
Cb) = (I(a → b), C(a → b))(∈ ICH). Hence ICH also forms a Heyting algebra.

Recall I ′ and C ′ as defined in the previous section.

I ′(Ia, Ca) := (Ia, Ia);C ′(Ia, Ca) := (Ca,Ca), for any (Ia, Ca) ∈ ICH .

Let us see how I ′ and C ′ interact with the Heyting algebra ICH .
C ′((Ia, Ca) → (Ib, Cb)) = C ′(((Ia → Ib) ∧ (Ca → Cb), Ca → Cb)) = (Ca →
Cb,Ca → Cb) = C ′(Ia, Ca) → C ′(Ib, Cb).
I ′((Ia, Ca) → (Ib, Cb)) = I ′(((Ia → Ib) ∧ (Ca → Cb), Ca → Cb)) = ((Ia →
Ib) ∧ (Ca → Cb), (Ia → Ib) ∧ (Ca → Cb)).
(I ′(Ia, Ca) → I ′(Ib, Cb)) ∧ (C ′(Ia, Ca) → C ′(Ib, Cb)) = ((Ia, Ia) → (Ib, Ib)) ∧
((Ca,Ca) → (Cb,Cb)) = (Ia → Ib, Ia → Ib) ∧ (Ca → Cb,Ca → Cb) = ((Ia →
Ib) ∧ (Ca → Cb), (Ia → Ib) ∧ (Ca → Cb)).
So for all x, y ∈ ICH we have I ′(x → y) = (I ′x → I ′y) ∧ (C ′x → C ′y), and
C ′(x → y) = C ′x → C ′y.
Hence we have the following proposition.

Proposition 31. ICI′C′
H , the lattice ICH enhanced with the operators I ′ and

C ′, is a rough Heyting algebra. Further, H is isomorphic to ICI′C′
H via the map

a ↪→ (Ia, Ca).

Proof. Let us consider the map φ defined in Proposition 26, which is defined as
φ(a) := (Ia, Ca). We have proved that φ is a rough lattice isomorphism, let us
prove that φ also preserves →.
φ(a → b) = (I(a → b), C(a → b)) = ((Ia → Ib) ∧ (Ca → Cb), Ca → Cb)) =
(Ia, Ca) → (Ib, Cb) = φ(a) → φ(b).

Example 24. In Example 23, DH = {a ∈ H : Ia = a} = {a ∈ H : Ca = a} =
{0, b, 1}. Hence D

[2]
H = {(0, 0), (0, b), (0, 1), (b, b), (b, 1), (1, 1)}.

ICH = {(Ix,Cx) : x ∈ H} = {(I0, C0), (Ia, Ca), (Ib, Cb), (Ic, Cc), (Id, Cd),
(I1, C1)} = {(0, 0), (0, b), (b, b), (0, 1), (b, 1), (1, 1)}.
Hence D

[2]
H = ICH , and H is isomorphic to ICI′C′

via the map φ given as:

φ(0) = (I0, C0) = (0, 0)
φ(a) = (Ia, Ca) = (0, b)
φ(b) = (Ib, Cb) = (b, b)
φ(c) = (Ic, Cc) = (0, 1)
φ(d) = (Id, Cd) = (b, 1)
φ(1) = (I1, C1) = (1, 1).
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Theorem 75. (Rough Set Representation)

1. Let H := (H,∨,∧,→, I, C, 0, 1) be a rough Heyting algebra. Then there exists
an approximation space (U,R) such that H can be (Heyting) embedded in
RIC .

2. Let H := (H,∨,∧,→, I, C, 0, 1) be a rough Heyting algebra. Then there exists
an approximation space (U,R) such that H can be (Heyting) embedded in
RSIC .

Proof. Let H be a rough Heyting algebra. In particular, H is a Heyting alge-
bra. Consider the approximation space as in Theorem 64. Then the map
(a, b) ↪→ (h(a), h(b)) provides an embedding of RDH

into R. φ : H → RIC

given as φ(a) := (h(Ia), h(Ca)), serves as the required embedding, as in the case
of Theorem 74. Let us show that φ preserves the implication →:
φ(a → b) = (h(I(a → b)), h(C(a → b))) = (h((Ia → Ib) ∧ (Ca →
Cb)), h(Ca → Cb)) = ((h(Ia) → h(Ib)) ∧ (h(Ca) → h(Cb)), h(Ca) → h(Cb)) =
(h(Ia), h(Ca)) → (h(Ib), h(Cb)) = φ(a) → φ(b).

Example 25. Let us consider the rough Heyting algebra H := (H,∨,∧,→
, I, C, 0, 1) as in Example 23, then DH = {0, b, 1}. The prime filters of DH

are give as:
P1 = {b, 1} and P2 = {1}.

Now let U := {P1, P2}. Then h(0) = ∅, h(b) = {P1}, h(1) = {P1, P2}. Using
the construction of Theorem 64, RC(P1) = {P1} and RC(P2) = {P1, P2}. Hence
(U,RC) is a QOCAS. The isomorphism of the lattices DH and collection of
definable sets D corresponding to the QOCAS (U,RC) can be depicted as in
Fig. 32. Now D and DH are isomorphic as Heyting algebras. Hence using Lemma
11, the structures RIC

D = RIC and RIC
DH

are isomorphic. Using Theorem 75 the
rough Heyting algebra H can be embedded into the the rough Heyting algebra
RIC

DH
. The illustration of this embedding φ is already given in Example 24. Hence

the rough Heyting algebra H is embeddable into RIC . Let us explicitly mention
this embedding Φ.

Φ(0) = (h(I0), h(C0)) = (∅, ∅)
Φ(a) = (h(Ia), h(Ca)) = (∅, {P1})
Φ(b) = (h(Ib), h(Cb)) = ({P1}, {P1})
Φ(c) = (h(Ic), h(Cc)) = (∅, U)
Φ(c) = (h(Id), h(Cd)) = ({P1}, U})
Φ(c) = (h(I1), h(C1)) = (U,U)

The pictorial representation of this isomorphism is given in Fig. 33.
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Fig. 33. H ∼= RIC

In Sect. 5, we have seen that the lattice RL, where L is a completely dis-
tributive lattice in which JL is join dense, abstracts R. In this section, we follow
the same lines of study as in the previous section, and investigate the enhanced
structure RIC

L . Let us first extend Proposition 24 to this case, i.e. when L is a
completely distributive lattice in which JL is join dense.

Proposition 32. For (a, b), (ai, bi) ∈ RIC
L , i ∈ Λ, Λ being any index set, I, C

satisfy the following properties.

(i) I(∧i∈Λ(ai, bi)) = ∧i∈ΛI(ai, bi), C(∨i∈Λ(ai, bi)) = ∨i∈ΛC(ai, bi).
(ii) I(∨i∈Λ(ai, bi)) = ∨i∈ΛI(ai, bi), C(∧i∈Λ(ai, bi)) = ∧i∈ΛC(ai, bi).
(iii) I(a, b) ≤ (a, b), (a, b) ≤ C(a, b).
(iv) I(1, 1) = (1, 1), C(0, 0) = (0, 0).
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(v) II(a, b) = I(a, b), CC(a, b) = C(a, b).
(vi) IC(a, b) = C(a, b), CI(a, b) = I(a, b).
(vii) I(a1, b1) ≤ I(a2, b2) and C(a1, b1) ≤ C(a2, b2) imply (a1, b1) ≤ (a2, b2).

Further, it is not difficult to see that

Theorem 76. For any completely distributive lattice L := (L,∨,∧, 0, 1) in
which JL is join dense, there exists a QOCAS (U ′, R′) such that RIC

L is iso-
morphic to RS ′IC .

Proof. The map φ : L[2] −→ R in the proof of Theorem 69(2), viz. φ(a, b) :=
(h(a), h(b)), a, b ∈ L, works here as an isomorphism as well. This is because,
for the additional operators I, C, we have, φ(I(a, b)) = φ(a, a) = (h(a), h(a)) =
I(h(a), h(b)) = Iφ(a, b) and similarly φ(C(a, b)) = Cφ(a, b).
Now using Theorem 73, we get the desired QOCAS.

It may be worth mentioning here that we can take a re-look at the lattice RL2

defined in Sect. 5.4, through the operators I, C. Observe that the set ICL2 :=
{(I(a, b), C(a, b)) : (a, b) ∈ L[2]} is just L

[2]
2 . Moreover, Theorem 70 can be

extended to the case where all the lattices involved are enhanced with the I, C
operators. So, for instance, RIC

L
∼= RIC

L2
.

Abstracting from the above observations, let us introduce the following lattice
structure.

Definition 42. L := (L,∨,∧, I, C, 0, 1) is said to be a complete rough lattice,
provided (L,∨,∧, 0, 1) is a completely distributive lattice in which JL is join
dense, and I, C are unary operators on L that satisfy the following properties.

(i) I(∧i∈Λai) = ∧i∈ΛI(ai), C(∨i∈Λai) = ∨i∈ΛC(ai).
(ii) I(∨i∈Λai) = ∨i∈ΛI(ai), C(∧i∈Λai) = ∧i∈ΛC(ai).
(iii) Ia ≤ a, a ≤ Ca.
(iv) I1 = 1, C0 = 0.
(v) IIa = Ia and CCa = Ca.
(vi) ICa = Ca and CIa = Ia.
(vii) Ia ≤ Ib and Ca ≤ Cb imply a ≤ b.

So RIC , for any QOCAS (U,R), and RIC
L are both complete rough lattices.

Another example of a complete rough lattice is obtained by again considering
the set DL := {a ∈ L : Ia = a}. We see that DL := (DL,∨,∧, 0, 1) is a complete
sublattice of L, where join and meet are inherited from L. Further, we have

Proposition 33. DL is a completely distributive lattice in which the set JDL

of completely join irreducible elements is join dense.

Proof. DL being a complete sublattice of L, is also a completely distributive
lattice. Now, let us characterize the completely join irreducible elements of DL.
Let a ∈ JL, and suppose Ca = ∨i∈Λai, ai ∈ DL, for all i ∈ Λ. As a ≤ Ca,
a = Ca ∧ a = ∨i∈Λai ∧ a = ∨i∈Λ(ai ∧ a). a ∈ JL implies that a = a ∧ ai, for
some i ∈ Λ. So a ≤ ai, and Ca ≤ Cai = ai. But we already have Cai ≤ Ca,
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whence Ca = ai, for some i ∈ Λ. Hence Ca is a completely join irreducible
element of DL. Now let a ∈ DL. As a ∈ L, there is an index set Λ such that
a = ∨i∈Λai, ai ∈ JL. So Ca = a = ∨i∈ΛCai, and for each i ∈ Λ, Cai is a
completely join irreducible element of DL. Hence JDL

= {Ca : a ∈ JL} is join
dense in DL.

Using Proposition 32, we may then conclude that RIC
DL

forms a complete rough
lattice.

Yet another example comes from the set ICL := {(Ia, Ca) : a ∈ L}, for a
complete rough lattice L. It is easy to see that ICL forms a complete sublattice
ICL := (ICL,∨,∧, (0, 0), (1, 1)) of the lattice L × L. Further, we have

Proposition 34. ICL is a completely distributive lattice in which the set JICL

of completely join irreducible elements is join dense.

Proof. It is easy to verify that ICL is a complete sublattice of L × L, and hence
a completely distributive lattice. Now let us characterize the completely join
irreducible elements of ICL. Let a ∈ JL and suppose (Ia, Ca) = ∨i∈Λ(Iai, Cai).
Then (Ia, Ca) = (∨i∈ΛIai,∨i∈ΛCai) = (I(∨i∈Λai), C(∨i∈Λai)), using (ii) of
Definition 42. But (vii) of the definition then implies that a = ∨ai. As a ∈ JL,
a = ai for some i ∈ Λ, hence Ia = Iai and Ca = Cai. So (Ia, Ca) = (Iai, Cai).
Hence, (Ia, Ca) is completely join irreducible in IC. Similarly, using the fact
that JL is join dense in L, one can show that JICL

is join dense in ICL.

Following the theme of this section, let us state the following proposition, whose
proof is that of Proposition 26, extended to showing that the embedding φ
preserves arbitrary joins and meets.

Proposition 35. ICI′C′
L , the lattice ICL enhanced with the operators I ′ and

C ′, is a complete rough lattice. Further, L is isomorphic to ICI′C′
L , via the map

a ↪→ (Ia, Ca).

We have ICL ⊆ D
[2]
L . The inclusion of ICL in D

[2]
L gives us a natural embed-

ding of ICI′C′
L into RIC

DL
. But then by Theorem 76, there exists a QOCAS (U ′, R′)

such that RIC
DL

is isomorphic to RS ′IC . Hence using Proposition 35, we have

Theorem 77. For any complete rough lattice L, there exists a QOCAS (U,R)
such that L can be embedded into RSIC .

There is a clear case when the embedding turns into an isomorphism. If for
any (a, b) ∈ D

[2]
L there exists a c ∈ L such that Ic = a,Cc = b, then (a, b) ∈ IC.

If this condition is true for all (a, b) ∈ D
[2]
L , we get IC = D

[2]
L . Hence we have

Theorem 78. Let L := (L,∨,∧, I, C, 0, 1) be a complete rough lattice such that
for each (a, b) ∈ D

[2]
L , there exists a c ∈ L with Ic = a,Cc = b. Then there exists

a QOCAS (U,R) such that L is isomorphic to RSIC .

Proof. If the condition of the theorem is satisfied, L ∼= ICI′C′ ∼= RIC
DL

. But for
RIC

DL
, there exists an approximation space (U,R) (cf. Theorem 76) such that

RIC
DL

is isomorphic to RSIC .



234 A. Kumar

6.2 Logics of Rough Sets from QOCAS

In this section, we study logics for rough set structures defined in the previous
section, and, through the representation results proved therein, obtain rough set
semantics for the logics.

Let us first define the logic LR for rough lattices through the following.
The set of propositional variables, P := p, q, r, ....
Propositional constants: �,⊥.
The set of formulas, F is given by the scheme:= � | ⊥ | p | φ ∨ ψ | φ ∧ ψ | �φ |
�φ.

Rules and Postulates of LR:

1. Rules and postulates of the logic BDLL (cf. Sect. 1).
2. �α � α, α � �α.
3. �α ∧ �β � �(α ∧ β), �(α ∧ β) � �α ∧ �β.
4. �(α ∧ β) � �α ∧ �β, �α ∧ �β � �(α ∧ β)
5. � � ��, �⊥ � ⊥.
6. �α � ��α, ��α � �α.
7. �α � ��α, ��α � �α.

8.
α � β

�α � �β,
α � β

�α � �β

9.
�α � �β,�α � �β

α � β .

Let L be a rough lattice. Let v : P → L be a mapping, then recursively, v
can easily be extended to the set of all formulas, as,

v(α ∨ β) = v(α) ∨ v(β).
v(α ∧ β) = v(α) ∧ v(β).
v(�α) = Iv(α), v(�α) = Cv(α).

The pair (L, v) is a called a model. A sequent α �LR
β is called true in a model

(L, v) if v(α) ≤ v(β). α �LR
β is valid in a class of models if it is true in every

model belonging to the class. Moreover, α �LR
β is valid if it is true in each

model.

Theorem 79. (Soundness and Completeness)

1. The system LR is sound with respect to all models.
2. Let α �LR

β be true in all models (L, v). Then α �LR
β is derivable in the

logical system LR.

Proof. The proof of soundness is direct, and that of completeness uses the stan-
dard algebraic technique employing the Lindenbaum-Tarski algebra of the logic.

Using representation Theorem 74 for rough lattices, we therefore obtain

Theorem 80. (Rough Set Semantics)
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1. The sequent α �LR
β is valid in the class of all rough lattices if and only if it

is valid in the class of all rough lattices formed by QOCAS.
2. If α �LR

β is valid in the class of all rough lattices formed by QOCAS then
it is derivable in LR.

Now, let us define the logic for rough Heyting algebras. It is well known that
Heyting algebras give the algebraic semantics of intuitionistic logic. The Hilbert
style axiomatic calculus of the intuitionistic system IPC (cf. e.g. [8]) is given by
the following syntax and rules.
The set of propositional variables P := p, q, r, ...
Propositional constants: �,⊥.
Logical connectives:= ∨,∧,→.
The set of formulas F is given by the scheme:= � | ⊥ | p | α∨β | α∧β | α → β.
The axioms and rule of inference of IPC are as follows.
Axioms:

1. α → (β → α).
2. (α → (β → γ) → ((α → β) → (α → γ)).
3. (α ∧ β) → α.
4. (α ∧ β) → β.
5. α → (β → (α ∧ β)).
6. α → α ∨ β.
7. β → α ∨ β.
8. (α → β) → ((β → γ) → (α ∨ γ → β)).
9. ⊥ → α.

The only rule of inference is Modus Ponens (MP): From α and α → β infer β.
In the following, we recall in brief, the algebraic semantics of IPC. Let H :=
(H,∨,∧,→, 0, 1) be a Heyting algebra. Let v : P → H. Extend this map v to ṽ
to the set F of all formulas as usual. A formula α is valid in a Heyting algebra
if and only if v(α) = 1, for all valuations v. A formula α is valid in a class of
Heyting algebras if it is valid in all Heyting algebras belonging to that class.
Let H be the class of all Heyting algebras. α is valid in H, is denoted by �H α.
The following soundness and completeness theorem is obtained in a standard
manner.

Theorem 81. (Soundness and Completeness) �IPC α if and only if �H α.

Adding modalities to IPC, started from Prior’s philosophical work in 1957. He
studied this by the name of MIPC. We refer to [7] for its presentation. Two
connectives � and � are added to the syntax of IPC, and MIPC is defined as
the logic which contains IPC, the following axioms:

�α → α α → �α

�α ∧ �β → �(α ∧ β) �(α ∨ β) → �α ∨ �β

�α → ��α ��α → �α

�(α → β) → (�α → �β)
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and the rule of Necessitation: α/�α.
Monadic Heyting algebras, first studied by Monteiro and Varsavsky (cf. [7]), are
the algebraic models of Prior’s MIPC. Let us provide the definition of monadic
Heyting algebra; in the following we use the same notation as in [7].

Definition 43. An abstract algebra (H,∨,∧,→,∀,∃, 0, 1), in brief (H,∀,∃), is
a monadic Heyting algebra if (H,∨,∧,→, 0, 1) is a Heyting algebra and ∀,∃ are
unary operators on H which satisfy the following properties: ∀a, b ∈ H,

1. ∀a ≤ a a ≤ ∃a
2. ∀(a ∧ b) = ∀a ∧ ∀b ∃(a ∨ b) = ∃a ∨ ∃b
3. ∀1 = 1 ∃0 = 0
4. ∀∃a = ∃a ∃∀a = ∀a
5. ∃(∃a ∧ b) = ∃(a ∧ b)

Note that monadic Heyting algebras have also been studied in the name of bi-
topological pseudo-Boolean algebras by Ono [54] and Suzuki [72].

Observation 5. Any rough Heyting algebra is, in particular, a monadic Heyting
algebra.

Now, let us define the logic, LroughInt for rough Heyting algebras. Similar to
MIPC, we add two modalities �, � to the syntax of IPC. Rules and axioms
of LroughInt are as follows.

1. Rules and axioms of IPC.
2. �α → α.
3. α → �α.
4. � → ��.
5. �⊥ → ⊥.
6. �(α ∨ β) → �α ∨ �β.
7. �α ∧ �β → �(α ∧ β).
8. �(α ∨ β) → �α ∨ �β.
9. �α ∧ �β → �(α ∧ β).

10. �(α → β) ↔ (�α → �β).
11. �(α → β) ↔ ((�α → �β) ∧ (�α → �β)).
12. �α → ��α, ��α → �α.
13. �α → ��α, ��α → �α.

14.
α → β

�α → �β,
α → β

�α → �β

15.
�α → �β,�α → �β

α → β .

In view of Observation 5, we have the following theorem.

Theorem 82. If �MIPC α then �LroughInt
α.

Let H := (H,∨,∧,→, I, C, 0, 1) be a rough Heyting algebra. Let v : P → H.
Extend this map v to ṽ on all formulas as usual.
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1. ṽ(α ∨ β) = ṽ(α) ∨ ṽ(β).
2. ṽ(α ∧ β) = ṽ(α) ∧ ṽ(β).
3. ṽ(α → β) = ṽ(α) → ṽ(β).
4. ṽ(�α) = Iṽ(α).
5. ṽ(�α) = Cṽ(α).
6. ṽ(⊥) = 0.
7. ṽ(�) = 1.

As before, we have the following definitions. A formula α is valid in a rough
Heyting algebra if and only if v(α) = 1, for all valuations v. A formula α is valid
in a class of rough Heyting algebras if it is valid in all Heyting algebras belonging
to that class. Let RH denote the class of all rough Heyting algebras. α is valid in
RH, is denoted by �RH α. The following soundness and completeness theorems
are then obtained in the standard manner.

Theorem 83. (Soundness and Completeness) �LroughInt
α if and only if

�RH α.

Now, let us recall Theorem 75, which states that given any rough Heyting algebra
H, there exists an approximation space (U,R) such that H can be embedded
into RIC . So if α is valid in the class of all rough Heyting algebras, it is also
valid in the class of all rough Heyting algebras formed by QOCAS. Moreover,
we have

Theorem 84. (Rough Set Semantics)

1. �RH α if and only if α is valid in the class of all rough Heyting algebras formed
by QOCAS.

2. If α is valid in the class of all rough Heyting algebras formed by QOCAS then
�LroughInt

α.

6.3 New Negations from Pseudo Negation

Let B be a Boolean algebra. The set B[2] forms various structures by induc-
ing various negations by the Boolean negation. In literature, there is a work of
Vakarelov, where he constructed strong negation with the help of pseudo nega-
tion, while constructing the algebraic model of constructive logic with strong
negation. In this section we follow the same lines of work. We define unary
operators with the help of pseudo complement and dual pseudo complement
and establish correspondence results in classes of compatibility and exhaustive
frames.

We have seen in Sect. 5 that for a given QOCAS (U,R), the collection of
definable sets D is a pseudo complemented lattice. In the classical case definable
sets form a Boolean algebra, which induces many non-classical negations. It is
natural to ask here ’what kind of unary operators are induced by the pseudo
complement?’. We have already noted that the pseudo complement ∼ on D
induces the pseudo complement (∼) on R as
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∼ (D1,D2) := (∼ D2,∼ D2), D1,D2 ∈ D. Motivated by the Vakarelov con-
struction, we consider the following unary operations on RL for a given pseudo
complemented lattice L := (L,∨,∧,∼, 0, 1): ∼1,∼2,∼3: RL → RL, (a, b) ∈ RL,

∼1 (a, b) := (∼ b,∼ a).

∼2 (a, b) := (∼ b,∼ b).

∼3 (a, b) := (∼ a,∼ a).

Can we call these unary operations, negations? Again, we follow Dunn’s model
of negations, and to answer the question show that these unary operations can
be characterized by compatibility frames or can be looked upon as perp. Let us
discuss some properties of ∼1,∼2,∼3 in the following proposition.

Proposition 36. Let L := (L,∨,∧,∼, 0, 1) be a pseudo complemented lattice.
Then for all x, y ∈ L[2],

1. ∼1 satisfies the following properties.
(a) x ≤ y ⇒∼1 y ≤∼1 x.
(b) x ≤∼1∼1 x.
(c) ∼1∼1∼1 x =∼1 x
(d) x ∧ y = 0 ⇒ x ≤∼1 y.

2. ∼2 is a pseudo complement on RL.
3. ∼3 satisfies the following properties.

(a) x ≤ y ⇒∼3 y ≤∼3 x.
(b) ∼3∼3∼3 x =∼3 x.
(c) x ∧ y = 0 ⇒ x ≤∼3 y.

Proof. 1. a) Let (a, b) ≤ (c, d). We have a ≤ c and b ≤ d. But then ∼ c ≤∼ a
and ∼ d ≤∼ b. Hence we have ∼1 (c, d) = (∼ d,∼ c) ≤ (∼ b,∼ a) =∼1 (a, b).
b) As, a ≤∼∼ a and b ≤∼∼ b, hence we have (a, b) ≤ (∼∼ a,∼∼ b) =∼1∼1

(a, b).
c) ∼ a =∼∼∼ a and ∼ b =∼∼∼ b , we have (∼ b,∼ a) = (∼∼∼ b,∼∼∼ a). So,
we have ∼1 (a, b) =∼1∼1∼1 (a, b).
d) Let (a, b)∧ (c, d) = (0, 0). This implies a∧ c = 0 and b∧d = 0 . Hence a ≤∼ c
and b ≤∼ d. But a ≤ b gives a ≤∼ d. c ≤ d implies ∼ d ≤∼ c, hence b ≤∼ c. So,
(a, b) ≤ (∼ d,∼ c) =∼1 (c, d).
2. Follows from Proposition 19.
3. a) Let (a, b) ≤ (c, d). This implies a ≤ c and b ≤ d. But then ∼ c ≤∼ a, Hence
we have ∼3 (c, d) ≤∼3 (a, b).
b) ∼ a =∼∼∼ a. So, we have ∼3 (a, b) = (∼ a,∼ a) = (∼∼∼ a,∼∼∼
a) =∼3∼3∼3 (a, b).
c) Let (a, b)∧ (c, d) = (0, 0). This implies a∧ c = 0 and b∧ d = 0 . Hence a ≤∼ c
and b ≤∼ d ≤∼ c. So, (a, b) ≤ (∼ c,∼ c) =∼3 (c, d)

Let us show through some examples that these unary operations do not satisfy
some typical properties of negations.
1. ∼3 does not satisfy x ≤∼3∼3 x.
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Example 26. Let us recall Example 20, ∼3 (∅, U) = (∼ ∅,∼ ∅) = (U,U). More-
over, ∼3∼3 ((∅, U) =∼3 (U,U) = (∅, ∅). But (∅, U) � (∅, ∅).

2. It is possible that ∼i∼i x � x, i = 1,3.

Example 27. In Example 20, ∼1 (∅, b) = (∼ b, U) = (∅, U) and ∼1∼1 (∅, b) =∼1

(∅, U) = (∅, U). But ∼1∼1 (∅, b) = (∅, U) � (∅, b).
∼3 (b, b) = (∼ b,∼ b) = (∅, ∅) and ∼3∼3 (b, b) =∼3 (∼ b,∼ b) =∼3 (∅, ∅) =
(U,U). But ∼3∼3 (b, b) = (U,U) � (b, b).

3. x ∧ y ≤ z � x∧ ∼i z ≤∼i y, i = 1,3.

Example 28. From Example 20, we have (∅, U)∧(b, b) ≤ (∅, b), ∼1 (∅, b) = (∅, U),
and ∼1 (b, b) = (∅, ∅). Hence (∅, U)∧ ∼1 (∅, b) = (∅, U) �∼1 (b, b) = (∅, ∅).

Moreover, we also have ∼3 (∅, b) = (U,U) and ∼3 (b, b) = (∅, ∅). Hence
(∅, U)∧ ∼3 (∅, b) = (∅, U) �∼3 (b, b) = (∅, ∅).

It is well known that the logic Ki is sound with respect to all compatibility
frames (cf. Sect. 3). The axiom α �∼∼ α is characterized by Dunn in [29]. Let
us prove correspondence results for ∼∼∼ α �∼ α and ∼ α �∼∼∼ α.

Theorem 85. ∼ α �∼∼∼ α is valid in a compatibility frame if and only if the
frame satisfies the following first order condition.

∀x∀y(xCy → ∃w(yCw ∧ ∀w′(wCw′ → xCw′))). (*)

Proof. Let (U,C,≤) be a compatibility frame and let (∗) hold. Let x �∼ α, x ∈
U , then our claim is x �∼∼∼ α.
So, let xCy. As (∗) holds, there exists w such that (yCw∧∀w′(wCw′ → xCw′)).
So, if wCw′ then xCw′. But as x �∼ α, hence w′

� α. We have w �∼ α. As
yCw, hence y �∼∼ α. y was chosen arbitrary, so, x �∼∼∼ α.
Now, let (∗) not hold. This implies

∃x∃y(xCy ∧ ∀w(yCw → ∃w′(wCw′ ∧ not(xCw′))).

Define, z � p if and only if not(xCz). Let z � p and z ≤ z′. If xCz′, then x ≤ x,
xCz′ and z ≤ z′ ⇒ xCz, which is a contradiction. Hence not(xCz′) (i.e., z′ � p)
and � is indeed an evaluation.
It is clear that x �∼ p. Let yCw. This implies there exists w′ such that wCw′

and not(xCw′). Hence w′ � p. wCw′ implies that w �∼ p. As, w was chosen
arbitrary such that yCw, hence y �∼∼ p. Finally, we have x �∼∼∼ p. Hence
(∗) holds.

Theorem 86. ∼∼∼ α �∼ α is valid in a compatibility frame if and only if the
following frame condition holds.

∀x∀y(xCy → ∃z(xCz ∧ ∀z′(zCz′ → ∃z′′(z′Cz′′ ∧ y ≤ z′′)))). (*)
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Proof. Let (∗) hold in a given compatibility frame (U,C,≤). Let x �∼∼∼ α, x ∈
U . We want to show that x �∼ α.
So, let xCy. Our claim is y � α.
But as (∗) holds, hence we have:

∃z(xCz ∧ ∀z′(zCz′ → ∃z′′(z′Cz′′ ∧ y ≤ z′′))). (1)

We have the following. As xCz and x �∼∼∼ α, z �∼∼ α. This implies there
exists w such that zCw and w �∼ α.
As (1) holds, there exists w′ such that wCw′ and y ≤ w′. But then w �∼ α and
wCw′ imply w′

� α. So y � α, and ∼∼∼ α �∼ α is valid.
Now let (∗) not hold. This means,

∃x∃y(xCy ∧ ∀z(xCz → ∃z′(zCz′ ∧ ∀z′′(z′Cz′′ → y � z′′)))).

Define, w � p if and only if y ≤ w.
Let us show that x �∼∼∼ p. So, let xCz.
Hence there exists z′ such that zCz′ and ∀z′′(z′Cz′′ → y � z′′). So we have, by
definition of �, z′′

� p for all such z′′.
Hence z′ �∼ p and z �∼∼ p. So we have x �∼∼∼ p.
Clearly, we have x �∼ p, as xCy and y � p.

The characterization of the rule
α ∧ β � γ

α∧ ∼ γ �∼ β is provided by Dunn (in [29],
Theorem 2.13), and characterized by the first order condition ∀x∀y(xCy →

∃z(x ≤ z ∧ y ≤ z ∧ xCz)). The rule
α ∧ β � ⊥
α �∼ β is the special case of the rule

α ∧ β � γ

α∧ ∼ γ �∼ β, when we replace γ by ⊥, as mentioned in [29]. We note the char-

acterization of the rule
α ∧ β � ⊥
α �∼ β in the following.

Theorem 87. The rule
α ∧ β � ⊥
α �∼ β is valid in a compatibility frame if and only

if the frame satisfies

∀x∀y(xCy → ∃z(x ≤ z ∧ y ≤ z)). (*)

Proof. Let (∗) hold in a compatibility frame (W,C,≤). Let the consequent
α ∧ β � ⊥ be valid, and let x � α, x ∈ W . Then we have x � β. Now let
xCy. As (∗) holds, we have, ∃z(x ≤ z ∧ y ≤ z).
x ≤ z implies z � α. This implies z � β, as α ∧ β � ⊥.
As y ≤ z, we have y � β.
Hence x �∼ β. So, the given rule is valid.
Let (∗) not hold. Then we have:

∃x∃y(xCy ∧ ∀z(x � z ∨ y � z)).
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Let us define w � p if and only if x ≤ w, and w′ � q if and only if y ≤ w′.
Clearly for any w, we have w � p ∧ q. But x ≤ x, so x � p. Also, we have xCy
and y � q. Hence x �∼ q.

The enhanced Kite of negations is given in Fig. 34.

a ≤∼∼ a

a ≤ b ⇒∼ b ≤∼ a

∼∼ a ≤ a

a∧ ∼ a = 0

a ∧ b ≤ c ⇒ a∧ ∼ c ≤∼ b

Ortho

a ∧ b = 0 ⇒ a ≤∼ b

∼ a ≤∼∼∼ a ∼∼∼ a ≤∼ a

Fig. 34. Enhanced kite of negations

Let (U,R) be a QOCAS. Then the collection of definable sets D forms a dual
pseudo complemented lattice, where dual pseudo complement (¬) is defined as:

¬D := min{D′ : D ∪ D′ = U}, D ∈ D.

This dual pseudo complement induces a dual pseudo complement on R as:

¬dpseudo(D1,D2) := (¬D1,¬D1), D1,D2 ∈ D.

In fact, the above is true for any dual pseudo complemented lattice, as we see
in the following.

Proposition 37. Let L := (L,∨,∧,¬, 0, 1) be a dual pseudo complemented lat-
tice. Then RL is a dual pseudo complemented lattice, where dual pseudo com-
plement (¬) is defined as:

¬(a, b) := (¬a,¬a).

Proof. Our claim is ¬(a, b) = min{(c, d) : (a, b) ∨ (c, d) = (1, 1)} = (¬a,¬a).
Indeed, we have (a, b) ∨ ¬(a, b) = (a, b) ∨ (¬a,¬a) = (a ∨ ¬a, b ∨ ¬a) = (1, 1).
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Now, let (a, b)∨ (c, d) = (1, 1). This implies (a∨ c, b∨d) = (1, 1). Hence a∨ c = 1
and b ∨ d = 1, but this gives us ¬a ≤ c and ¬b ≤ d. Hence (¬a,¬a) ≤ (c, d).
Hence the claim.

Following the theme of this section, we consider the following unary operations
on RL for a given dual pseudo complemented lattice L := (L,∨,∧,¬, 0, 1):
¬1,¬2,¬3 : RL → RL are defined for (a, b) ∈ RL as

¬1(a, b) := (¬b,¬a).
¬2(a, b) := (¬b,¬b).
¬3(a, b) := (¬a,¬a).

Some properties of ¬1,¬2,¬3 are given below.

Proposition 38. Let L := (L,∨,∧,¬, 0, 1) be a bounded distributive dual
pseudo complemented lattice and x, y ∈ L[2].

1. ¬1 satisfies the following properties.
(a) x ≤ y ⇒ ¬1y ≤ ¬1x.
(b) ¬1¬1x ≤ x.
(c) ¬1¬1¬1x = ¬1x.
(d) x ∨ y = 1 ⇒ ¬x ≤ y.

2. ¬2 satisfies the following properties:
(a) x ≤ y ⇒ ¬3y ≤ ¬3x.
(b) ¬3¬3¬3x = ¬3x.
(c) x ∨ y = 1 ⇒ ¬x ≤ y.

3. ¬3 is a dual pseudo negation on RH .

Proofs are dual to those presented for Proposition 36.
We now prove correspondence results for ¬¬¬α � ¬α and ¬α � ¬¬¬α. The

same first order conditions for compatibility frames are used for characteriza-
tions.

Theorem 88. ¬¬¬α � ¬α is valid in an exhaustive frame if and only if the
frame satisfies the following first order condition.

∀x∀y(xRy → ∃w(yRw ∧ ∀w′(wRw′ → xRw′))). (*)

Proof. Let (U,R,≤) be an exhaustive frame and (∗) hold. Let x � ¬¬¬α, x ∈ U .

⇒ ∃y(xRy ∧ y � ¬¬α).
⇒ ∀w(yRw ⇒ w � ¬α). (B)
⇒ ∃w′(wRw′ ∧ w′

� α), for all such w. (C)

Claim: x � ¬α.
As (∗) holds and xRy, we have ∃w(yRw ∧ ∀w′(wRw′ → xRw′)).
Using (B) and (C) we have w � ¬α, and there is w′ such that w′

� α and wRw′.
But wRw′ imply xRw′. Hence x � ¬α.
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Now, let (∗) not hold. This implies:

∃x∃y(xRy ∧ ∀w(yRw → ∃w′(wRw′ ∧ not(xRw′)))).

Define, z � p if and only if xRz. Let z � p and z′ ≤ z. We have x ≤ x and xRz
and z ≥ z′; this implies xRz′. Hence � is well defined.
It is clear that x � ¬p. Let us prove that x � ¬¬¬p. Note that y � ¬¬p, as if
yRw then ∃ a w′ such that wRw′ and not(xRw′), i.e., w′

� p. Hence w � ¬p
and y � ¬¬p. Finally, we have x � ¬¬¬p. Hence (∗) holds.

Theorem 89. ¬α � ¬¬¬α is valid in an exhaustive frame if and only if the
following frame condition holds.

∀x∀y(xRy → ∃z(xRz ∧ ∀z′(zCz′ → ∃z′′(z′Rz′′ ∧ y ≤ z′′)))). (*)

Proof. Let (∗) hold in an exhaustive frame (W,R,≤). Let x � ¬α, x ∈ W .

⇒ ∃y(xRy ∧ y � α).

Claim: x � ¬¬¬α, i.e., there exists x′ such that xRx′ and x′
� ¬¬α.

As xRy and (∗) holds, hence we have:

∃z(xRz ∧ ∀z′(zRz′ → ∃z′′(z′Rz′′ ∧ y ≤ z′′))).

We show z � ¬¬α. Let zRz′.
This shows that there is z′′ such that z′Rz′′ and y ≤ z′′. Thus z′′

� α, as y � α.
So z′ � ¬α, whence z � ¬¬α.
Now let (∗) not hold. So,

∃x∃y(xRy ∧ ∀z(xRz → ∃z′(zRz′ ∧ ∀z′′(z′Rz′′ → y � z′′)))).

Define, w � p if and only if y � w. � is well defined: if w � p and w′ ≤ w, then
y � w′. Clearly, we have x � ¬p as xRy and y � p.
We show x � ¬¬¬p. So let xRz and we show z � ¬¬p. Now by our assumption,
there exists z′ such that zRz′, and for all z′′ such that z′Rz′′ we have z′′ � p.
Hence z′

� ¬p. So, z � ¬¬p and x � ¬¬¬p.

Theorem 90. The rule
� � α ∨ β

¬β � α is valid in an exhaustive frame if and only if
the frame satisfies

∀x∀y(xRy → ∃z(x ≤ z ∧ y ≤ z)). (*)

Proof. Let (∗) hold in an exhaustive frame (W,R,≤). Let the consequent � �
α ∨ β be valid, i.e., for any x in W , we have x � α ∨ β. Let x � ¬β, hence there
exists y in W such that xRy and y � β. As (∗) holds, there exists z in W such
that x ≤ z and y ≤ z. We have, using backward hereditary property, z � β.
Hence z � α and x � α.
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Let (∗) not hold. So we have:

∃x∃y(xRy ∧ ∀z(x � z ∨ y � z)).

Let us define w � p if and only if x � w, and w′ � q if and only if y � w′.
Clearly for any w in W , we have w � p ∨ q. Also, we have xRy and y � q, hence
x � ¬q. But x ≤ x, so x � p.

The enhanced dual kite of negations is given in Fig. 35.

Dual Ortho

a ∨ ¬a = 1

c ≤ a ∨ b ⇒ ¬b ≤ a ∨ ¬c

a ≤ ¬¬a

¬¬a ≤ a

a ≤ b ⇒ ¬b ≤ ¬a

a ∨ b = 1 ⇒ ¬b ≤ a

¬a ≤ ¬¬¬a¬¬¬a ≤ ¬a

Fig. 35. Enhanced dual lopsided kite of negations

7 Conclusions and Future Work

Our work in this paper involves three aspects related to rough set theory.

1. Algebraic and logical aspects of classical rough set theory.
2. Algebraic and logical aspects of a generalization of rough set theory.
3. Semantic analysis of some negations appearing in classical and generalized

rough set structures.

7.1 Summary and Conclusions

Let us present the summary and conclusions, sectionwise.
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Section 2

1. Variety of Kleene algebras is generated by the 3 element Kleene algebra.
Using this fact, a structural theorem for Kleene algebras has been proved,
which asserts that an element of a Kleene algebra can be looked upon as a
monotone ordered pair of sets. It is shown that the Kleene negations in Kleene
algebras are definable using the Boolean negation.

2. A logic LK is presented, which is sound and complete with respect to the class
of all Kleene algebras. We consider a 3-valued semantic consequence relation
�t,f , with respect to which LK is proved to be sound and complete.

3. Rough set representation of Kleene algebras is obtained, through which we
get a rough set semantics for the logic LK as well.

4. Algebraic semantics, 3-valued semantics and rough set semantics for the logic
LK are equivalent.

5. The Kleene algebra 3 plays the same fundamental role among the class of
Kleene algebras and the logic LK , as that played by the Boolean algebra 2
among the class of all Boolean algebras and classical propositional logic.

Section 3

1. Perp semantics for the logic LK for Kleene algebras and the logic LS for
Stone algebras is presented. As a result, the Kleene and Stone negations can
be treated as modal operators, and moreover, yield new positions in Dunn’s
lopsided kite of negations.

2. Characterization and completeness results for the logic LK and logic of dual
Stone algebras is given in exhaustive frames. Hence, Dunn’s dual lopsided
kite of negations is enhanced with new positions occupied by dual Kleene
and dual Stone negations.

3. Semantics of the logic LRDSA of regular double Stone algebras is given with
respect to K− frames. Negations in LRDSA can thus be looked upon as modal
operators. Moreover, the rough set semantics and semantics in K− frames for
LRDSA become equivalent.

Section 4

Discrete duality between a number of classes of algebras and frames is provided.
More precisely, the duality results are obtained between the classes of Kleene,
dual Kleene, Stone, double Stone, double Kleene, regular double Stone algebras
and the corresponding classes of frames defined in the section. As a consequence,
we obtain representations for all the above classes of algebras in terms of alge-
bras based on set lattices.

Section 5

1. A a granule based definition of lower and upper approximation operators in a
generalized approximation space (QOCAS) is given, which appears to capture
the essence of ‘approximation by granule’ in an approximation space, as in
classical rough set theory.
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2. Topologically, definable sets for a QOCAS are open sets in an Alexandrov
topological space (generated by a quasi order).

3. Algebraically, the collection of definable sets for a QOCAS forms a distributive
lattice, Heyting algebra as well as a completely distributive lattice in which
the set of join irreducible elements is join dense.

4. For a given QOCAS, the collection RS of rough sets may not form a lattice,
but the collection R of generalized rough sets always forms a distributive
lattice, in fact a Heyting algebra, and a completely distributive lattice in
which the set of join irreducible elements is join dense.

5. We observe that the Heyting algebras and completely distributive lattices in
which the set of join irreducible elements is join dense, abstract the algebraic
structures formed by the collections R and RS of QOCAS.

6. We obtain rough set representations of the classes of Heyting algebras, and
Heyting algebras based on completely distributive lattices in which the set of
join irreducible elements is join dense.

Section 6

1. The algebraic structures formed by R and RS, as presented in Sect. 5, are
enhanced by introducing two unary operators I and C. Abstraction of the
resulting structures leads to the introduction of rough lattices, rough Heyting
algebras and complete rough lattices.

2. Rough set representations of these new classes of algebras are provided.
3. A logic LR, which is an extension of the system BDLL, is shown to be

sound and complete with respect to the class of all rough lattices. Due to the
rough set representation result for this class of algebras, we obtain a rough
set semantics for the logic LR also.

4. We extend Priors’ MIPC to the logic LroughInt, to observe that it is sound
and complete with respect to the class of all rough Heyting algebras. Rough
set semantics for LroughInt is also provided.

5. A number of unary operators induced on rough set structures by pseudo com-
plement and dual pseudo complement are studied. It is shown that these can
be characterized in the framework of either compatibility frames or exhaustive
frames. Hence these can be considered as negations, interpreted as impossibil-
ity or unnecessity operators. New positions are achieved in Dunn’s lopsided
kite and dual kite of negations.

7.2 Future Work

In Sect. 2, we provided a structural theorem for the class of Kleene algebras.
For any approximation space (U,R), the collection R of generalized rough sets,
when considered as a Kleene algebra, is isomorphic to 3I for some index set I.
This also leads to an embedding of a given Kleene algebra into the collectionRS
of rough sets for some approximation space. It is natural to enquire, what is the
class K of Kleene algebras such that each K ∈ K is isomorphic to RS for some
approximation space?
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We have introduced the notion of a double Kleene algebra in Sect. 3. Prop-
erties of the structure need to be explored further. Immediate questions could
be regarding representations of this class, possibly with some known class of
algebras, or by some class of rough set structures. Rough lattices, rough Heyting
algebras and their logics are introduced in Sect. 6. These should be subject to
further study, in particular regarding relationships with other known systems.

Various negations arising from pseudo complement and dual pseudo comple-
ment have been characterized in compatibility or exhaustive frames in Sect. 6.
However, the following questions on canonicity remain open. (a) The canonicity
of the logics Ki+ ∼ α �∼∼∼ α and Ki+ ∼∼∼ α �∼ α with respect to classes
of compatibility frames. (b) The canonicity of the logics Ku + ¬α � ¬¬¬α and
Ku + ¬¬¬α � ¬α with respect to classes of exhaustive frames.
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Abstract. Pawlakian spaces rely on an equivalence relation which rep-
resent indiscernibility. As a generalization of these spaces, some approx-
imation spaces have appeared that are not based on an equivalence rela-
tion but on a tolerance relation that represents similarity. These spaces
preserve the property of the Pawlakian space that the union of the base
sets gives out the universe. However, they give up the requirement that
the base sets are pairwise disjoint. The base sets are generated in a way
where for each object, the objects that are similar to the given object, are
taken. This means that the similarity to a given object is considered. In
the worst case, it can happen that the number of base sets equals those
of objects in the universe. This significantly increases the computational
resource need of the set approximation process and limits the efficient use
of them in large databases. To overcome this problem, a possible solu-
tion is presented in this dissertation. The space is called similarity-based
rough sets where the system of base sets is generated by the correlation
clustering. Therefore, the real similarity is taken into consideration not
the similarity to a distinguished object. The space generated this way, on
the one hand, represents the interpreted similarity properly and on the
other hand, reduces the number of base sets to a manageable size. This
work deals with the properties and applicability of this space, presenting
all the advantages that can be gained from the correlation clustering.

Keywords: Rough set theory · Correlation clustering · Set
approximation · Representatives · Similarity

1 Introduction

Nowadays the amount of data is growing exponentially. However, data are often
incomplete or inconsistent. There can be many reasons if a value is missing.
For example, it can be unknown, unassigned or even inapplicable. Inconsistency
occurs when the data are contradictory. These issues can cause some undesirable
events (bad prediction, inappropriate decision making, etc). In computer science,
there are numerous ways to handle these kinds of inaccuracies.

Rough set theory can be considered as a rather new field in computer science.
Its fundamentals were proposed by professor Pawlak in the 80’s [42,43,45]. The
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pawlakian spaces handle the uncertainty among the data with a relation that is
based on the indiscernibility of objects. In many cases, based on the available
knowledge, two objects cannot be distinguished from each other. Two arbitrary
objects can be treated as indiscernible if all of their considered, relevant proper-
ties are the same. This indiscernibility can be modeled by an equivalence relation
which represents our background knowledge or its limits. It can affect the mem-
bership relation by making the judgment on this relation uncertain. It makes a
set vague because a decision about a certain object has an effect on the decisions
about all the objects that are indiscernible from the given object. This uncer-
tainty can be represented by set-approximation tools. If one wants to extract as
much useful information as possible from large-scale information systems, then it
is inevitable to handle the indiscernibility. Rough set theory tries to answer how
certain sets can be characterized or if a given object belongs to a set generated
by some property.

In the last 40 years, many generalizations of the original pawlakian spaces
saw the light of day. In some cases, the equivalence relation, which can usually
be too strict for practical applications, is replaced with a tolerance relation
representing similarity [24,46,49]. Many rough set models exist that are based
on the probability theory [26,44,50,56,57]. Last but not least, the hybridization
with fuzzy set theory needs to be mentioned [18,19,55].

Data mining became a very important and growing field in computer science
due to the incredible increase in data. Data mining is a technique by which useful
information can be extracted automatically from a large amount of data. Its goal
is to search for new and useful patterns, which could otherwise remain unknown,
in data repositories. Data mining methods can be applied in many areas of life.
With its help, one can answer questions like: is it true that if a customer buys
diapers then they will also buy beer. Naturally, not every information retrieval
task can be considered as data mining. For instance, searching for records by a
database system or finding certain web pages by a web search engine are tasks
of the information retrieval field.

There are 3 main steps of data mining: pre-processing, knowledge discov-
ery (data mining) and post-processing. The goal of pre-processing is to convert
the raw data into an appropriate format. Its basic steps contain the following:
uniting the data coming from different sources, cleaning the data from noise
and redundancy and choosing the records and variables that are essentials in
the given task. After the first main step, the data mining algorithm gets the
pre-processed data as its input. The result is a pattern, a model or sometimes
one can just say “knowledge”. However, these patterns can be uninterpretable or
useless in their format. That is why the so-called post-processing is needed which
helps the decision-making with various visualization and evaluation techniques.

Rough set theory can be crucial in data sciences [10,30,47,51,52] because
handling the uncertainty is necessary in case of a large amount of data. In the
field of data pre-processing, there are many methods based on rough set theory.

Discretization is a process where a continuous variable is converted to a nom-
inal one by applying a set of cuts to the domain of the original attribute and
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treating each interval as a discrete value. Important rough set-based discretiza-
tion techniques can be seen in [31,41].

The so-called feature selection is a process where the irrelevant features
(attributes) are discarded from the system. With an increasing number of
attributes, the execution time and the resource requirements of an algorithm
also increase. The rough set-based feature selection methods rest on the concept
reduct. Essentially, a reduct is a minimal subset of features that generates the
same granulation of the universe as that induced by all features [29,53,54].

Another very important pre-processing task is the so-called instance selection.
In data mining, the supervised learning methods (e.q., classification) divide the
input dataset into two parts: training and test data. The models can be taught
by the training set, while with the help of the test dataset it can be evaluated.
The aim of the instance selection is to reduce the number of examples in order
to bring down the size of the training set. As a result, a new training set can
be obtained by which the efficiency of the system can be improved. A rough
set-based technique is described in [12].

Naturally, rough set theory can be applied not only in pre-processing. In
many data mining techniques, it proved to be very useful. For example decision
rule induction [25,27], association rule mining [17,28], clustering [48] etc.

Pawlakian spaces rely on an equivalence relation which represent indiscerni-
bility. As a generalization of these spaces, some approximation spaces have
appeared that are not based on an equivalence relation but on a tolerance relation
that represents similarity. These spaces preserve the property of the Pawlakian
space that the union of the base sets gives out the universe. However, they give
up the requirement that the base sets are pairwise disjoint. The base sets are
generated in a way where for each object, the objects that are similar to the given
object, are taken. This means that the similarity to a given object is considered.
In the worst case, it can happen that the number of base sets equals those of
objects in the universe. This significantly increases the computational resource
need of the set approximation process and limits the efficient use of them in large
databases. To overcome this problem, a possible solution is presented in this dis-
sertation. The space is called similarity-based rough sets [36] where the system
of base sets is generated by the correlation clustering. Therefore, the real similar-
ity is taken into consideration not the similarity to a distinguished object. The
space generated this way, on the one hand, represents the interpreted similarity
properly and on the other hand, reduces the number of base sets to a manage-
able size. This work deals with the properties and applicability of this space,
presenting all the advantages that can be gained from the correlation clustering.
The structure of the dissertation is the following. In Sect. 2, the fundamentals
of rough set theory and some of the main types of approximation spaces are
presented. In the second chapter, the similarity-based rough sets approximation
space is introduced. In this chapter, some of its tools and improvements are also
presented [5–7,35,37]. Similarity-based rough sets was applied to graphs so with
its help graphs can be approximated as well. This work is presented in Sect. 11.
This method can be used in the field of feature selection.



Similarity-based Rough Sets and Its Applications in Data Mining 255

2 Theoretical Background

In this chapter, the basic notations and techniques are introduced which are the
basis of this dissertation. In the first subsection, the fundamentals of rough set
theory is presented and then some of its possible generalizations. The collected
definitions and methods are not part of the work of the author of this dissertation.
They are merely required to understand the ideas presented in this dissertation.

In practice, a set is a collection of objects and it is uniquely identified by its
members. It means that if one would like to decide, whether an object belongs to
this set, then a precise answer can be given which is yes or no. A good example
is the set of numbers which are divisible by 3 because it can be decided if an
arbitrary number is divisible by 3 or not. Of course, it is required that one knows
how to use the modulo operation. This fact can be considered as a background
knowledge and it allows someone to decide if a number belongs to the given
set. Naturally, not everybody knows how to use the modulo operation for each
number. Some second graders may not be able to divide numbers greater than
100. They would not be able to decide if 142 is divisible by 3. For them, 142 is
neither divisible nor indivisible by 3. So there is some uncertainty (vagueness)
based on their background knowledge. Rough set theory was proposed by profes-
sor Pawlak in 1982 [42]. The theory offers a way to handle vagueness determined
by some background knowledge. Each object of a universe can be described by
a set of attribute values. If two objects have the same known attribute values,
then these objects cannot be distinguished. The indiscernibility generated in this
way is the mathematical basis of rough set theory.

Definition 1. A general approximation space is an ordered 5-tuple 〈U,B,D, l, u〉
where:

– U �= ∅ is the universe of objects
– B is the set of base sets for which the following properties hold:

• B �= ∅
• if B ∈ B then B ⊆ U and B �= ∅

– D is the set of definable sets which can be given by an inductive definition
whose base is {∅} ∪ B

– l, u : 2U → D form an approximation pair

Definition 2. The set of definable sets D can be given by the following inductive
definition.

1. B ⊆ D;
2. ∅ ∈ D;
3. if D1,D2 ∈ D, then D1 ∪ D2 ∈ D.

The members of the Boole algebra generated by B appear as definable sets.

The set D defines how the background knowledge represented by the base
sets can be used.

Many interesting properties can be checked on approximation pairs. Here,
the following properties are examined (full description can be seen in [16,20]):
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Definition 3. – Monotonicity: l and u are said to be monotone if S ⊆ S′ then
l(S) ⊆ l(S′) and u(S) ⊆ u(S′)

– Weak approximation property: ∀S ∈ 2U : l(S) ⊆ u(S)
– Strong approximation property: ∀S ∈ 2U : l(S) ⊆ S ⊆ u(S)
– Normality of l: l(∅) = ∅
– Normality of u: u(∅) = ∅
Definition 4. The functions l, u form a Pawlakian approximation pair 〈l, u〉 if
the followings are true for an arbitrary set S:

1. l(S) =
⋃{B | B ∈ B and B ⊆ S};

2. u(S) =
⋃{B | B ∈ B and B ∩ S �= ∅}.

In this dissertation, only Pawlakian approximation pairs are used.

Theorem 1. All of the properties described in Definition 3 are true for the
Pawlakian approximation pair

Definition 5. A general approximation space is a Pawlakian approximation
space if the set of base sets is the following: B = {B | B ⊆ U, and x, y ∈
B if xRy}, where R is an equivalence relation on U . The approximation pair is
a Pawlakian approximation pair.

A Pawlakian approximation space [42,43,45] can be characterized as an
ordered pair 〈U,R〉 where U is the same as in the case of a general approxi-
mation space. R is an equivalence relation on U . R is an equivalence relation
based on the indiscernibility of objects. The system of base sets represents the
background knowledge or its limit. The functions l and u give the lower and
upper approximation of a set. The lower approximation contains objects that
surely belong to the set, and the upper approximation contains objects that
possibly belong to the set.

A rough set can be defined in several ways. In a general sense, it can be
treated as an orthopair [13] which means it is a pair of sets such that the two
sets are disjoint. The other possible way is when it is considered as a pair of
sets such that one of them is a subset of the other. In the case of approximation
spaces, both definitions are commonly used in the literature. If the rough set
corresponding to the set S is considered as an orthopair, then it is defined as〈
l(S), l(S)

〉
, where S is the complement of S. In the other case, it can be given

as 〈l(S), u(S)〉.
Definition 6. The set NEG(S) = l(S) is called the negative region of the set
S.

A rough set can also be characterized numerically by the accuracy of the approx-
imation.
Definition 7. Let U be finite, then αS is called the accuracy of the approxima-
tion (|| denotes the cardinality),

αS =
|l(S)|
|u(S)|

Naturally 0 ≤ α ≤ 1.
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Definition 8. A set S is crisp if αS = 1.

In many real-world applications, information on objects are stored in datasets
or databases. Datasets can be given by an information system, which is a pair
IS = (U,A), where U is a set of objects called the universe and A is a set
of attributes. Let a : U → Va be a function, where Va denotes the domain of
attribute a. An information system can be represented by a table, where each
row contains data on an entity of the universe, and the columns represent the
attributes. Any pair (x, a), where x ∈ U and a ∈ A in the table is a cell whose
value is a(x).

Table 1 shows a very simple information system containing 8 rows. Each of
them represents a patient and each has 3 attributes: headache, body tempera-
ture, and muscle pain. The base sets contain patients with the same symptoms
(which means they are indiscernible from each other) and it is the following:

B = {{x1} , {x2} , {x3} , {x4} , {x5, x7} , {x6, x8}}
Based on some background knowledge, let the patients x1, x2 and x5 have the

flu. Let S be the following set of these patients: {x1, x2, x5}. The approximation
of the set S is the following:

– l(S) = {{x1} , {x2}}
– u(S) = {{x1} , {x2} , {x5, x7}}

Here, l(S) relates to patients that surely have the flu. Patient x5 is not in the
lower approximation because there is one other patient, x7, who is indiscernible
from x5, and there is no information about, whether x7 has the flu or not. So
the base set {x5, x7} can only be in the upper approximation.

Table 1. Information system

Object Headache Body temp Muscle pain

x1 YES Normal NO
x2 YES High YES
x3 YES Very high YES
x4 NO Normal NO
x5 NO High YES
x6 NO Very high YES
x7 NO High YES
x8 NO Very High YES

The indiscernibility modeled by an equivalence relation represents a sort
of limit of our knowledge embedded in an information system (or background
knowledge). Indiscernibility has an effect on the membership relation. In some
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situation, it makes our judgment of the membership relation uncertain – making
the set vague – because a decision about a given object affects the decision about
all the other objects which are indiscernible from the given object.

In practical applications not only the indiscernible objects must be handled
in the same way but also those that are similar to each other based on some
property. (Irrelevant differences for the purpose of the given applications should
not be taken into account.) Over the years, many new approximation spaces
have been created as the generalization of the original Pawlakian space [33]. The
main difference between these kinds of approximation spaces (with a Pawlakian
approximation pair) lies in the base sets (members of B). Only four main kinds of
approximation spaces are mentioned in this dissertation: the original Pawlakian;
covering generated by a tolerance relation; general covering; general (partial).

Pawlakian approximation spaces have been generalized using tolerance rela-
tions that are based on similarity. These relations are symmetric and reflexive
but not necessarily transitive.

Covering-based approximation spaces generated by tolerance relations [49]
generalize Pawlakian approximation spaces in the following points.

Definition 9. A general approximation space is a covering-based approximation
space generated by a tolerance relation if there is a tolerance relation R such that
B = {[x] | x ∈ U}, where [x] = {y | y ∈ U, xRy}.

In these covering spaces, a base set contains objects that are similar to a dis-
tinguished member. This means that the similarity to a given element generates
the system of base sets.
General covering approximation spaces [58,59] are not necessarily based a toler-
ance.

Definition 10. A general approximation space is a general covering approxi-
mation space if

⋃
B = U .

In these covering spaces a property generates the system of base sets.
In the case of general (partial) approximation spaces [15] the last requirement

is also given up: any family B of nonempty subsets of U can be a set of base
sets. In these spaces also some property generates the system of base sets, but
there is also a lack of information due to partiality.

Why is the system of base sets important from the theoretical point of view?
Because it represents a sort of limit of our knowledge embedded in an information
system. Sometimes it makes the judgment of the membership relation uncertain
– thus making the set vague – because a decision about a given object affects
the decision about all the other objects that are in the same base set.

The main source of uncertainty is in our background knowledge. Let S be a
subset of U , and x, y ∈ U . What can be said about y with respect to x?

1. In an original Pawlakian space:
– if x ∈ l(S) (i.e. x is surely a member of S), then y ∈ S for all y, xRy;
– if x ∈ u(S) \ l(S) (i.e. x is possibly a member of S), then y may be

a member of S for all y, xRy (it means that there are y1, y2 such that
xRy1, y1 ∈ S, and xRy2, y2 /∈ S);
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– if x ∈ l(S)(= U \ u(S)) (i.e. x is surely not a member of S), then y /∈ S
for all y, xRy.

This means that if an object x is in the lower approximation of some set S,
then all the objects that are indiscernible from x are in S as well. If an object
x is in the boundary region of S, then there is at least one object which is
indiscernible from x and a member of S and also there is at least one object
which is indiscernible from x and not a member of S. If an object x is in the
negative region of S, then none the objects that are indiscernible from x are
in S.

2. In a covering space generated by a tolerance relation R:
– if x ∈ l(S) (i.e. x is surely a member of S), then y ∈ S for all y, y ∈ [x′]

where x′ ∈ [x] and [x′] ∈ {B | B ∈ B and B ⊆ S};
– if x ∈ ⋃

({B | B ∈ B and B ∩ S �= ∅} \ {B | B ∈ B and B ⊆ S}) (i.e. x
is possibly a member of S), then there is an x′ and a base set [x′] such
that x ∈ [x′], [x′] ∩ S �= ∅, [x′] �⊆ S and y may be a member of S for all
y ∈ [x′];

– if x ∈ l(S)(= U \ u(S)) (i.e. x is surely not a member of S), then y /∈ S
for all y, xRy.

3. In a general covering space:
– if x ∈ l(S) (i.e. x is surely a member of S), then there is a base set B,

such that x ∈ B and B ∈ {B | B ∈ B and B ⊆ S})therefore y ∈ S for all
y ∈ B ;

– if x ∈ ⋃
({B | B ∈ B and B ∩ S �= ∅} \ {B | B ∈ B and B ⊆ S}) (i.e. x

is possibly a member of S), then there is a base set B such that x ∈ B,
B ∩ S �= ∅ and B �⊆ S therefore y may be a member of the set S for all
y ∈ B;

– if x ∈ l(S)(= U \ u(S)) (i.e. x is surely not a member of S), then there is
a base set B such that B ∩ S = ∅ therefore y /∈ S for all y ∈ B.

4. In a general partial space:
– if x ∈ l(S) (i.e. x is surely a member of S), then there is a base set B,

such that x ∈ B and B ∈ {B | B ∈ B and B ⊆ S})therefore y ∈ S for all
y ∈ B ;

– if x ∈ ⋃
({B | B ∈ B and B ∩ S �= ∅} \ {B | B ∈ B and B ⊆ S}) (i.e. x

is possibly a member of S), then there is a base set B such that x ∈ B,
B ∩ S �= ∅ and B �⊆ S therefore y may be a member of the set S for all
y ∈ B;

– if x ∈ l(S) (i.e. x is surely not a member of S), then there is a base set B
such that B ∩ S = ∅ therefore y /∈ S for all y ∈ B;

– otherwise nothing is known about x (i.e. there is no base set B such that
x ∈ B), therefore nothing can be said about y with respect to x.

In the dissertation, there is a strict distinction between the general covering
spaces and the covering spaces generated by a tolerance relation. This distinction
is based on the observation that, although spaces generated by tolerance relations
are covering ones, not all covering space can be generated by some tolerance
relation. The main reason for this is the symmetric property of the tolerance
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relation and that in spaces generated by the tolerance relation each base set has
at least one generator object. If R is a tolerance relation on U , then the system
of base sets is B = {[x] | x ∈ U}, where [x] = {y | y ∈ U, xRy} (x is the
generator object of [x]). In support of this statement, the followings highlight
the difference between the general and the tolerance-based covering spaces.

1. At first, it is shown that in some cases, a tolerance relation generated by a
covering does not necessarily generate the same base sets. Let B a general
covering. The tolerance relation R� generated by the B is as follows: xR�y if
there is B ∈ B such that x, y ∈ B.
(a) Base set-loss: Suppose that B has B1, B2 members (B1, B2 ⊆ U) such

that B2 ⊆ B1. In this case, the base set B2 is not created by the toler-
ance relation R�, since every member of B2 generates at least B1. This
makes the approximation of certain sets less efficient. Generally speaking,
a tolerance relation R� (generated by a covering) cannot generate base
sets, that are part of the general covering, where B2 ⊆ B1. On the left
side of Fig. 1 some base sets of a general covering space can be seen. On
the right, some members of the base sets generated by the covering based
on R� can be seen. (For the sake of simplicity, only a few base sets are
shown in both figures, so the union of the base set does not give out U).
In the case of the Pawlakian definition of the lower approximation of the
set S, the space generated by the tolerance relation R� contains members
of B3 but does not contain members of B2, and the general covering space
contains both the members of B2 and B3. This happens because B2 does
not appear at all among the base sets generated by the tolerance relation
R�. So in this case, the general covering space gave a finer approximation.

(b) Base set-gain: Let B1 and B2 be some members of the general covering
B such that their intersection is not empty. Such a pair does not exist
only if the base sets are pairwise disjoint. In this case, however, the R�

relation (generated by the general covering space) becomes an equivalence
relation and it generates the classical Pawlakian space. Let us suppose
that B1 ∪ B2 /∈ B and that B1 ∪ B2 does not have a common member
with the other members of B. Let x ∈ B1∩B2. Based on the R� tolerance
relation, the set of objects similar to x is B1 ∪B2. Therefore, B1 ∪B2 is a
member of the system of base set generated by R�. The appearance of this
base set (in the case of the Pawlakian approximation pair) significantly
modifies the upper approximation, consequently, it degrades the efficiency
of the approximation. On the left side of Fig. 2 some base sets of a general
covering space can be seen. On the right, some members of the base sets
generated by the covering based on R� can be seen. (For the sake of
simplicity, only a few base sets are shown in both figures, so the union
of the base set does not give out U). If one wants to define the upper
approximation of the set S (using a Pawlakian type approximation), then
B2 will not be a subset of the upper approximation in the case of the
general covering. However, it will be a subset of the system of base sets
generated by the R� tolerance relation because B1 ∪B2 appears as a base
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set. So, the upper approximation became larger in the case of the space
generated by R� which increases the uncertainty relative to the set S.

2. Secondly, it is shown that there is a general covering space for which there is no
tolerance relation that generates the same base sets that are the members of
the general covering. Indirectly, suppose that B is a general covering space and
R is a tolerance relation that generates exactly the member of B. Let U be the
universe of the general covering, x ∈ U , {x} ∈ B, B1, B2 ∈ B be two base sets
which are different from the base set {x} such that {x} = B1 ∩ B2. If B1, B2

are generated by the tolerance relation R, then there must be some y, z ∈ U
such that B1 = {u | u ∈ U, yRu}, and B2 = {u | u ∈ U, zRu} (y, z are the
generator objects of B1 and B2 respectively). As B1 and B2 are different from
the base set {x}, x �= y and x �= z. The base set {x} is a singleton, therefore
its generator object must be x, so [x] = {u | u ∈ U, xRu} = {x}. yRx and
zRx hold because x ∈ B1 and x ∈ B2. Due to the similarity of the tolerance
relation R, xRy and xRz also hold. This means that y, z ∈ [x](= {x}) which
is a contradiction.

Boundary regions are also essential in the representation of uncertainty. In
[13] the authors showed that theoretically different boundary regions can be
introduced into a general partial approximation space 〈U,B,DB, l, u〉:
1. b1(S) = u(S) \ l(S);
2. b2(S) =

⋃
({B | B ∈ B and B ∩ S �= ∅} \ {B | B ∈ B and B ⊆ S});

3. b3(S) =
⋃ Cb(S), where Cb(S) = {B | B ∈ B, B ∩ S �= ∅, and B �⊆ S}.

In original Pawlakian spaces there is no difference between the aforemen-
tioned boundary regions, i.e. if 〈U,B,DB, l, u〉 is an original Pawlakian space
characterized by an ordered pair 〈U,R〉, then b1(S) = b2(S) = b3(S) for all
S ⊆ U . In general case, the boundary regions defined according to the first point
are not definable sets necessarily, therefore this definition cannot be used in gen-
eral approximations spaces where one wants to rely on only definable sets. If there
are only finite number of base sets (i.e. B is finite), then the sets b2(S), b3(S)
are definable for all S ⊆ U . Some important connections between different types
of boundary regions were showed in [13,14]:

– b1(S) ⊆ b2(S) ⊆ u(S);
– b1(S) = b2(S) if and only if b2(S) ∩ l(S) = ∅;
– if B is one-layered (i.e. the base sets are pairwise disjoint), then there is no

difference between different types of boundary regions, i.e.
• b1(S) = b2(S) = b3(S);
• b1(S) is definable;
• bi(S) ∩ l(S) = ∅, where i = 1, 2, 3;
• u(S) = l(S) ∪ bi(S), where i = 1, 2, 3.

Notice that only lower and upper approximations (and so only background
and embedded knowledge represented by base sets) are used, and in a finite
one-layered case there is no real difference between different types of boundary
regions.
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Fig. 1. Base set-loss

Fig. 2. Base set-gain

The next step is to make clear the ‘nature’, the usage and the influences of
background (and embedded) knowledge.

1. In the original Pawlakian case, the limit of our knowledge appears explicitly:
base sets consist of indiscernible objects, there is no way to distinguish them
from each other.

2. In covering structures generated by tolerance relations, a base set contains
objects which are similar to a given object, and therefore they are treated in
the same way. Being similar to a given object is a property, but it is a very
special (not a general) one, it is generated by the tolerance relation.

3. In general covering spaces, base sets can be considered as the representations
of real properties, and it is supposed that all objects have at least one (known,
represented) property. Objects with the same property (members of a base
set) are handled in the same way. (The system of base sets cannot be generated
by tolerance relations in some cases.)

4. General partial spaces are similar to general covering ones, but it is not sup-
posed that all objects have at least one property represented by a base set. In
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practical cases information systems are not total, there is no relevant infor-
mation about an object: it may be in our database but some information is
missing, and so it does not have any property represented by a base set.

Some problems appear in different cases. In practical applications indiscerni-
bility (as an equivalence relation) may be too strong. In the case of a huge
number of objects if there is a reflexive and symmetric relation, then it may be
difficult to decide whether it is transitive. Covering spaces generated by toler-
ance relations give possibilities to use only reflexive and symmetric relations,
but to many base sets appear, (each object generate a base set). These base
sets are not about similarity (in general), but only about the similarity to given
objects (to their generators). In general covering and partial spaces, there is no
room for similarity, these spaces rely on only common properties of objects. A
pairwise disjoint system of base sets generated from a covering space (relying on
a tolerance relation or a family of properties) or a general partial space is not
a real solution: it is difficult to give any meaning represented by received base
sets and too many small base sets appear, therefore the system may become
very close to classical set theory. If every base set is a singleton (contains only
one member), then the lower and upper approximation of any set will coincide.
Therefore, every set will be crisp in this case.

As mentioned earlier, in practical applications indiscernibility can be too
strong. Sometimes the similarity of objects is enough. From a mathematical
point of view, it can be modeled by a tolerance relation. In computer science,
correlation clustering a typical method that uses a tolerance relation. So a natu-
ral question arises: can the clusters (gained by the correlation clustering) repre-
sent the system of base sets? If so, then how do they modify the approximation
space? In the next chapter, a new approximation space is presented that tries to
answer the previous question.

3 Similarity-based Rough Sets1

Some covering approximation spaces use tolerance relations, which represent
similarity, (described in Sect. 2) instead of equivalence relations, but the usage
of these relations is very special. It emphasizes the similarity to a given object
and not the similarity of objects ‘in general’. One can recognize this feature
when they try to understand the precise meaning of the answer coming from
an approximation relying on a covering approximation space (based on a toler-
ance relation). If one is interested in whether x ∈ S (where S is the set to be
approximated), then there are three possible answers2 (see Fig. 3):

– if x ∈ l(S) (i.e. x is surely a member of S), then y ∈ S for all y, y ∈ [x′] where
x′ ∈ [x] and [x′] ∈ {B | B ∈ B and B ⊆ S};

1 The work described in this chapter was based on [5–7,21,35–38].
2 The formal definition of these answers can also be seen in the first chapter but for

better readability, they are also listed here again focusing on covering approximation
spaces based on a tolerance relation.
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Fig. 3. Some base sets in covering (based on a tolerance relation) cases

– if x ∈ ⋃
({B | B ∈ B and B ∩ S �= ∅} \ {B | B ∈ B and B ⊆ S}) (i.e. x

is possibly a member of S), then there is an x′ and a base set [x′] such that
x ∈ [x′], [x′] ∩ S �= ∅, [x′] �⊆ S and y may be a member of S for all y ∈ [x′];

– if x ∈ l(S)(= U \ u(S)) (i.e. x is surely not a member of S), then y /∈ S for
all y, xRy.

Some practical problems of covering approximation spaces based on a toler-
ance relation:

1. The former answers show, that generally the lower and upper approximations
are not close in the following sense (see Fig. 4):
(a) If x ∈ l(S), then it cannot be said that [x] ⊆ S.
(b) If x ∈ u(S), then it cannot be said that [y] ∩ S �= ∅ for all y ∈ [x].

2. The number of base sets is not more than the number of members of U , so
there are too many base sets for practical applications.

If one wants to avoid these problems, then a Pawlakian approximation space
can be generated by constructing a system of disjoint base sets [13] (see Fig. 5).
If there are two base sets B1, B2, such that B1 ∩ B2 �= ∅, then they can be
substituted with the following three sets: B1 \ B2, B2 \ B1, B1 ∩ B2. Applying
this iteratively the reduction can be got. Although, it is not a real solution from
the practical point of view. The base sets can become too small for practical
applications. The smaller the base sets are, the closer the system gets to the
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classical set theory. (If all base sets are singleton, then there is no difference
between the approximation space and classical set theory)

In rough set theory, the members of a given base set share some common
properties.

– In Pawlak’s original space all members of a given base set have the same
attributes (i.e. they have the same properties with respect to the represented
knowledge).

– In covering approximation spaces based on a tolerance relation, all members
of a given base set are similar to a distinguished object (which is used to
generate the given base set).

A further generalization is possible: general (partial) Pawlakian approxima-
tion spaces can be obtained by the generalization of the set of base sets:

– let B be an arbitrary nonempty set of nonempty subsets of U .

These spaces are Pawlakian in the sense that they use Pawlakian definition of
definable sets and approximation pairs. This generalization is very useful because
a base set can be taken as a collection of objects with a given property, and one
can use very different properties to define different base sets. The members of
the base set can be handled in the same way relying on their common property.
In this case there is no way to give a corresponding relation which can generate
base sets (similarly to covering approximation spaces), so a general (partial)
Pawlakian approximation space can be characterized only by the pair 〈U,B〉,
since the lower and upper approximations of a subset of U are determined by
the members of B. However, any system of base sets induces a tolerance relation
R on U : xRy if there is a base set B ∈ B such that x, y ∈ B. If this relation is
used to get the system of base sets, the result can be totally different from our
original base system (see Fig. 6).

In Fig. 6 x is in the intersection of B1 and B2 (B1 and B2 are defined by
some properties). It means that it has common properties with all yi and zi,
where i = 1, 2, 3. So if some x ∈ B1 ∩ B2 it means that:

– xRy for all y ∈ B1

– xRz for all z ∈ B2

Therefore the base set generated by x is the following: [x] = B1 ∪ B2 (In this
example only two base sets were used, but it is the same when there are more.)

When one would like to define the base sets, then the background knowledge
embedded in a given information system is used. In the case of a Pawlakian
space, two objects are called indiscernible if all of their known attribute values
are the same. In many cases covering spaces rely on a tolerance relation based
similarity. As it was mentioned earlier, some problems can come up using these
covering spaces. A base set contains members that are similar to a distinguished
member. This means that these spaces do not consider the similarity itself but
the similarity with respect to a distinguished object. If correlation clustering
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Fig. 4. In covering (based on a tolerance relation) the lower and upper approximations
are not closed

(a) Covering (b) Partition

Fig. 5. Covering (based on a tolerance relation) and its reduction to a partition

(described in Sect. 4) is used, based on the tolerance relation, a partition of
the universe is obtained. The clusters contain objects which are mostly similar
to each other (not just to a distinguished member). So the partition can be
understood as a system of base sets. As a result, a new approximation space
appears which uses the same tolerance relation as the aforementioned covering
spaces and has the following features:

– the similarity of objects relying on their properties (and not the similarity to
a distinguished object) plays a crucial role in the definition of base sets;
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Fig. 6. Base sets by properties of objects

– the system of base sets consists of disjoint sets, so the lower and upper approx-
imation are closed;

– only the necessary number of base sets appears (in applications, an acceptable
number of base sets must be used);

– the size of base sets is not too small, or too big.

The formal definition can be seen here:

Definition 11.

B = {B | B ⊆ U, and x, y ∈ B if p(x) = p(y)},

where p is the partition gained from the correlation clustering.

Singleton clusters sets represent very little information (its member is only
similar to itself). Without increasing the number of conflicts, its member cannot
be considered similar to any object. So, they always require an individual deci-
sion. By deleting the singletons, a partial system of base sets can be defined. In
Sect. 7 a method is proposed

4 Correlation Clustering

Cluster analysis is a widely used technique in data mining. Our goal is to create
groups in which objects are more similar to each other than to those in other
groups. Usually, the similarity and dissimilarity are based on the attribute values
describing the objects. Although there are some cases when the objects cannot be
described by numbers, but something about their similarity or dissimilarity can
still be stated. Think of humans for example. It is hard to detail someone’s looks
by a number, but one still makes statements whether two persons are similar to
each other or not. Of course, these opinions are dependent on the persons. Some
can treat two random persons as similar, while others treat them dissimilar. If
one wants to formulate the similarity and dissimilarity by using mathematics,
then a tolerance relation is needed. If this relation holds for two objects, then
they are similar. If this relation does not hold, then they are dissimilar. Of course,
each object is similar to itself, so the relation needs to be reflexive, and it is easy
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to show, that it also needs to be symmetric. But one cannot go any further, e.g.
the transitivity does not hold necessarily.

If a human and a mouse are taken, then due to their inner structure they are
similar. This is the reason why mice are used in drug experiments. Moreover, a
human and a Paris doll are similar due to their shape. This is the reason why
these dolls are used in show-windows. But there is no similarity between a mouse
and a doll except that both are similar to the same object. Correlation clustering
is a clustering technique based on a tolerance relation [8,9,60].

Our task is to find an R ⊆ U ×U equivalence relation closest to the tolerance
relation. A (partial) tolerance relation R [32,49] can be represented by a matrix
M . Let matrix M = (mij) be the matrix of the partial relation R of similarity:
mij = 1 whenever objects i and j are similar, mij = −1 whenever objects i and
j are dissimilar, and mij = 0 otherwise.

A relation is partial if there exist two elements (i, j) such that mij = 0.
It means that if there is an arbitrary relation R ⊆ U × U , then there are two
sets of pairs. Let Rtrue be the set of those pairs of elements for which the R
holds, and Rfalse be the one for which R does not hold. If R is partial then
Rtrue ∪ Rfalse ⊆ U × U . If R is total then Rtrue ∪ Rfalse = U × U .

A partition of a set S is a function p : S → N. Objects x, y ∈ S are in the
same cluster at partitioning p, if p(x) = p(y).

The cost function counts the negative cases i.e. it gives the number of cases
whenever two dissimilar objects are in the same cluster, or two similar objects
are in different clusters. The cost function of a partition p and a relation RM

with matrix M is

f(p,M) =
1
2

∑

i<j

(mij + abs(mij)) −
∑

i<j

δp(i)p(j)mij ,

where δ is the Knockecker delta symbol [39]. For a fixed relation, the partition
with the minimal cost function value is called optimal. Solving a correlation
clustering problem is equivalent to minimizing its cost function, for the fixed
relation. If the value of this optimal cost function is 0, the partition is called
perfect. Given the R and R the value f is called the distance of the two relations.
The partition given this way generates an equivalence relation. This relation can
be considered as the closest to the tolerance relation.

It is easy to check that the solution cannot be generally perfect for a toler-
ance relation (based on similarity). Consider the simplest such case, given three
objects x, y and z, and x is similar to both y and z, but y and z are dissimilar.
In this situation, the following 5 partitions can be given:

{{x, y, z} , {{x, y} , {z}} , {{x, z} , {y}} , {{y, z} , {x}} , {{x} , {y} , {z}}} .

In every of one them there is at least 1 conflict.
The number of partitions can be given by the Bell number [1], which grows

exponentially. Hence, in general—even in the case of some dozens of objects—the
optimal partition cannot be determined in a reasonable time, thus a search algo-
rithm that produces a quasi-optimal partition would be more useful in practical
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cases. However, in practical examples, it gives us the right to handle objects,
which are in the same class, the same way.

5 Comparison Between Covering Based on a Tolerance
Relation and Similarity-based Rough Sets

As mentioned in the previous subsection, in these covering based spaces there
can be too many base sets. Naturally, this can be very problematic if the dataset
is huge because the approximation process can take a lot of time. Therefore,
in practice, these spaces can be a little bit slow. So a natural question arises.
How fast can the approximation be with similarity-based rough sets? In [36]
a comparison between covering (based on a tolerance relation) spaces (and its
disjoint variant) and similarity-based rough sets can be seen.

The execution time of the approximation process can be seen in Fig. 7. The
axis x represents the number of points, and the axis y represents the execution
time in milliseconds. The points here were chosen randomly.

Fig. 7. Execution time

If one takes a look at the figure, then it can be seen that the approximation
by covering (based on a tolerance relation) is the slowest. This was expected
because there are a lot of base sets to work with. Between the disjoint covering
and the correlation clustering, there is no significant difference. Nevertheless, as
the number of points increases, the correlation clustering gives the fastest way
to approximate. It is an interesting fact that there is such a great difference
between the covering (based on a tolerance relation) and its disjoint variant.
Despite the fact that a disjoint covering has the largest number of base sets,
their cardinality is much less (most of them are singleton) than that of covering
based on a tolerance relation.
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Fig. 8. The clusters

It is also interesting how the lower and upper approximation would look like
in the case of similarity-based rough sets. A test was run with 100 random points
on a two-dimensional space.

The base of the tolerance relation (based on similarity) was the Euclidean
distance of these objects (d). A similarity (SIMM) and a dissimilarity threshold
(DIFF ) were defined (SIMM < DIFF ). SIMM was set to 50 and DIFF was
set to 90. The tolerance relation R can be given this way for any objects x, y:

xRy =

⎧
⎪⎨

⎪⎩

+1 d(x, y) ≤ SIMM

−1 d(x, y) > DIFF

0 otherwise
(1)

Figure 8 represents the clusters (base sets) created by the correlation clus-
tering. The set to be approximated is shown in Fig. 9. The members of this set
are denoted by the × symbols, and the other members are denoted by the cross
symbol. The members were chosen randomly.

The approximation generated by the correlation clustering is displayed in
Fig. 10/A. The cardinality of the base sets is relatively great so the lower approxi-
mation consists of only a few members. (Only the members denoted by the empty
circle and filled diamond are in the set.)

The approximation generated by the covering (based on a tolerance relation)
is shown in Fig. 10/B. Like in correlation clustering the lower approximation con-
sists of only a few members. The two lower approximations have some difference,
but they only differ in a set which has two members.

Between the upper approximations, a significant difference can be seen. The
upper approximation defined by covering (based on a tolerance relation) contains
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many more objects, almost twice as much as the one defined by correlation
clustering.

The approximation generated by the disjoint covering is shown in Fig. 10/C.
It can be seen that among the methods this generated the finest approximation
(lower and upper approximation coincide). The reason is that almost all base
sets are singletons. As mentioned before, if there were only singleton clusters,
one would get the common set theory back.

6 Search Algorithms3

In a reasonable time, correlation clustering can only be solved by using
search/optimization algorithms due to its NP-hard property. However, each algo-
rithm can provide different clusters. So the system of base sets can also be dif-
ferent. It is a natural question to ask how the search algorithms can affect the
structure of the base sets. As the approximation based on correlation clustering
is a completely new way of approximating sets, so it is crucial to use the best
possible search algorithm. In this section, some widely-known search algorithms
are shown and also a comparison of how they work in the case of similarity-based
rough sets [38].

Fig. 9. The set to be approximated

The following list shows the used algorithms in the experiments. Each of them
can be downloaded from [3] and their description can be seen in Appendix A:

3 The work described in this section was based on [38].
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A. The lower (left) and upper (right) approximation by correlation clustering

B. The lower (left) and upper (right) approximation by covering (based on a tolerance relation)

C. The lower (left) and upper (right) approximation by disjoint covering

Fig. 10. The outputs of the approximations by the software
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– Hill Climbing Algorithm
– Stochastic Hill Climbing Algorithm
– Tabu Search
– Simulated Annealing
– Parallel Tempering
– Genetic Algorithm
– Bees Algorithm
– Particle Swarm Optimization
– Firefly Algorithm

To compare the algorithms, the following values were computed:

– Number of singleton clusters
– Standard deviation of the base set sizes
– The range of the base set sizes
– Execution time of the algorithm

Here, the cardinality of a base set is referred to as its size. As previously
mentioned, singleton clusters mean little information. The greater their number
is, the more unclear the information based on our knowledge becomes. For a
search algorithm, the most optimal is, if it provides the least number of these
clusters to have a precise result of the system.

The sizes of the base sets are also worth to be checked. For set approxima-
tions, it is more suitable if the sizes do not vary much. So the standard deviation
of the base set sizes should be minimized as well as the range of the base set
sizes.

An important parameter is the execution time of the search algorithms. It is
especially crucial when there are a huge number of objects.

6.1 Results

Similarity-based rough sets always requires a tolerance relation which represents
similarity. In the experiments, random graphs were only used to define these
tolerance relations.

Most of the algorithms have many parameters, and changing them can result
in different outputs. Many possible combinations were tried during the research.
Dozens of tables were generated and these tables are not present in this dis-
sertation, but they can be downloaded from the following link: https://bit.ly/
2sO4UoD.

For comparing the parameters, the same graph (with 100 points, p = 0.6)
were used for each algorithm. Each algorithm was run three times to exclude the
randomness. In each case, the optimal parameter combination was the one that
minimized the above mentioned 4 values. If the differences between the standard
deviations, the ranges and the numbers of singletons were not significant, then
the judgment was made by the execution time.

In this part of the experiments, Erdős-Rényi graphs were used [22,23]. This
random graph generating method is very simple. Its pseudo-code can be seen in

https://bit.ly/2sO4UoD
https://bit.ly/2sO4UoD
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Algorithm 1. Erdős-Rényi random graph generating method
1: procedure Generate(p)
2: for i = 1, . . . , N do
3: for j = 1, . . . , N do
4: Generate a random x value between 0 and 1
5: if x < p then
6: There is an edge between objects i and j
7: end if
8: end for
9: end for

10: end procedure

Algorithm1. In the experiments, the following values were used p = 0.5, p = 0.6
and p = 0.7. Half of the generated edges denoted the similarity between the two
objects and half of them the difference. Naturally, any other kind of graph can
be used. 100, 200, 300 and 400 points were generated. For each test case, each
algorithm was run 3 times on the same graphs, then the averages of the values,
described in Sect. 6, were determined. The results can be seen in the following
tables and can be downloaded from the following link: https://bit.ly/2sOqMA6.

From Table 2 the average standard deviations of the base set sizes can be read.
Even for a small number of points, the differences are apparent. The simulated
annealing provided the best result in most cases. Its parallel version has almost
the same output. The bees algorithm also returned a rather acceptable result.

Table 2. Average standard deviations of the base set sizes for Erdős-Rényi graphs

Points HC SHC TABU SA PT GE BEE PSO FF

200 q = 0.5 37 31 32 13 12 40 15 34 27
400 q = 0.5 63 61 51 15 24 82 21 66 49
200 q = 0.6 37 35 37 18 19 39 15 35 31
400 q = 0.6 69 63 61 21 23 83 26 65 49
200 q = 0.7 37 31 26 18 20 38 15 39 30
400 q = 0.7 68 61 66 14 19 78 18 63 55

In Table 3 the distance of the sizes of the biggest and the smallest base sets
can be seen. The values show almost the same tendency as in the last table. The
simulated annealing, the parallel tempering, and the bees algorithm proved to
be the most acceptable. For 400 points, the other algorithms provided twice or
three times as large values as the other 3 which is not suitable.

In Table 4 the average numbers of singletons are listed. Here, the differences
are not so significant as before. The number of points does not affect it very
much.

https://bit.ly/2sOqMA6
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Table 3. Average ranges of the base set sizes for Erdős-Rényi graphs

Points HC SHC TABU SA PT GE BEE PSO FF

200 q= 0.5 105 92 80 48 45 98 49 92 82
400 q= 0.5 176 189 144 57 78 213 65 186 193
200 q= 0.6 105 94 97 46 46 98 47 89 92
400 q= 0.6 192 173 178 87 62 209 81 193 197
200 q= 0.7 104 94 74 52 64 104 49 104 88
400 q= 0.7 198 179 191 50 53 228 81 186 210

Table 4. Average numbers of singletons for Erdős-Rényi graphs

Points HC SHC TABU SA PT GE BEE PSO FF

200 q = 0.5 0 0 0 1 0 1 0 1 1
400 q = 0.5 0 0 0 2 2 2 0 2 7
200 q = 0.6 1 1 1 1 1 1 0 1 2
400 q = 0.6 0 0 0 3 3 1 1 1 3
200 q = 0.7 1 0 0 1 1 1 0 1 2
400 q = 0.7 0 1 0 2 3 1 1 1 4

Table 5. Average execution time for Erdős-Rényi graphs

Points HC SHC TABU SA PT GE BEE PSO FF

200 q = 0.5 5 7 163 3 16 82 53 569 274

400 q = 0.5 142 181 1549 6 39 360 247 7971 1167

200 q = 0.6 4 6 170 3 17 91 66 734 317

400 q = 0.6 156 248 1665 6 40 457 274 8611 1287

200 q = 0.7 3 8 156 3 17 87 59 818 283

400 q = 0.7 138 256 1652 7 43 404 284 9878 1336

In Table 5 the average run-time of the algorithms can be seen in seconds.
The values here vary the most. The simulated annealing was the least affected
by the increasing number of points. For 200 points, the hill climbing algorithm
and its stochastic version provided the fastest output. Although, as soon as the
number of points was increased, they could not compete with the simulated
annealing. For 400 points, the simulated annealing was more than 20–35 times
faster than the other two. The particle swarm optimization was the slowest of
all the algorithms. For a huge number of points, it is pointless to be used.

In this part of our experiments, random two-dimensional points were gener-
ated. The tolerance relation (based on similarity) is defined in equation 1. 100,
150, 200, 300, 500 points were generated and each algorithm was run 3 times for
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each point set and calculated the averages of the values described in Sect. 6. In
the following tables, the results can be seen.

In Table 6 the average standard deviations of the base set sizes can be seen.
In the case of a small number of points, the difference was not so considerable,
but it became larger as the number of points was increased. In every case, the
simulated annealing provided the most acceptable result. Interestingly, the par-
allel tempering fell short against the simulated annealing for a small number of
points. However, in the 500 points test case the difference was negligible. Local
search algorithms (hill climbing, its variant, tabu search) were rather good for a
small number of points. In almost every situation, the firefly algorithm, genetic
algorithm and particle swarm optimization provided the worst result.

Table 6. Average standard deviations of the base set sizes

Points HC SHC TABU SA PT GE BEE PSO FF

100 7.6 8.1 7.5 7.1 7.6 8.9 7.6 7.7 7.6
150 11.8 10.2 10.4 7 11 14.5 8.7 12.2 11.5
200 13.1 16.2 12.8 10.3 13.2 17.8 12.7 13.8 13.3
300 25.7 28.9 27.2 17.1 18.4 31.4 23 29.1 28.9
500 46.6 34.4 39.4 26.5 27 51.4 34.2 47.8 48.4

Table 7 shows the ranges of the base set sizes. The outcome was quite similar
as in the previous table. For a small number of points, the difference was not so
high. For 500 points, it can be more noticeable. Like before, the firefly algorithm,
genetic algorithm and particle swarm optimization ended up in the last places,
and simulated annealing proved to be the most optimal.

Table 7. Average ranges of the base set sizes

Points HC SHC TABU SA PT GE BEE PSO FF

100 23 24 22 21 26 23 23 26 23

150 27 25 35 20 31 37 21 37 33

200 38 38 38 30 41 47 37 40 35

300 67 68 70 48 61 74 64 71 68

500 111 94 99 73 81 119 103 117 116

Table 8 shows how many singleton clusters appeared. The results were quite
the same in all cases. It is interesting that most of the algorithms were not
affected by the increasing number of points. In the 500 points test case, some
differences can be observed. In this case, the simulated annealing and its parallel
version provided a rather inadequate result compared to the others. However,
this difference was not so high.
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Table 8. Average numbers of singletons

Points HC SHC TABU SA PT GE BEE PSO FF

100 1 1 0 0 0 0 0 0 1
150 1 1 2 0 1 2 0 2 2
200 1 1 0 0 0 1 0 1 2
300 0 1 1 2 1 0 0 1 3
500 2 1 0 5 4 1 3 1 5

In Table 9 the average execution time is listed in seconds. As expected, these
values were the most dependent on the number of points. For less than 200
points, the hill climbing algorithm and its stochastic variant provided the fastest
run-time. However, after 200 points they could not compete with the simulated
annealing which could find the quasi-optimal partition in less than 5 seconds for
each test case. The parallel tempering also proved to be quite fast, but not as fast
as its single-threaded variant. The other algorithms executed in an unreasonable
time which is unacceptable for a great number of points. Especially the particle
swarm optimization proved to be very slow, it finished running after 3.5 h for
500 points.

The experiments showed that the simulated annealing proved to be the best
choice. In almost every test case, it provided the most suitable result. However,
its most important property is that it was the least affected by the increasing
number of points, so it can also finish in a reasonable time even for large amounts
of points.

Table 9. Average execution time

Points HC SHC TABU SA PT GE BEE PSO FF

100 0.2 0.3 15.6 1.1 5.4 15.7 15.5 32.5 54.1
150 0.5 0.4 43.5 0.7 7.3 14.5 11.9 130.8 58.3
200 6.4 9.5 172.4 3 16.8 92.7 66.3 564 281.1
300 40.1 43.5 647.4 4.7 25.2 207 161.1 1937.8 579.6
500 69.4 108.5 3550 3 50.8 207.4 135.9 13251 612.3

7 Similarity-based Rough Sets with Annotation4

Singleton clusters represent very little information because the system could not
consider their members similar to any other objects without increasing the value
of the cost function (see in Sect. 4). As they mean little information, they can be

4 The work described in this section was based on [37].



278 D. Nagy

left out. If the singleton clusters are not considered, then a partial system of base
sets can be generated from the partition. Sometimes it can happen that an object
does not belong to any cluster because the system could not consider it similar to
any other objects based on the background information. This does not mean that
this object is only similar to itself, but without proper information, the system
could not insert it into any cluster in order not to increase the number of conflicts.
In medical applications, it can occur that a patient has a similar disease as some
other patients but has different data in the information system. In this case, the
search algorithm would consider this patient different from the others and so the
patient would not belong to any non-singleton cluster. Although, a doctor or an
expert could recognize that the patient could belong to a non-singleton cluster.
The original partial space was defined by the correlation clustering. However, the
user has some background knowledge. They can use this knowledge to help the
system by inserting the members of some singletons into base sets (non-singleton
clusters). With the help of the annotation process, the user can put their own
knowledge into the system. It also decreases the partiality by decreasing the
number of singletons. After the annotation, a new approximation space appears.

Let S be the set to be approximated, {x} a singleton gained from the cor-
relation clustering and B a base set. The following cases can happen with the
base set B after the annotation if B ⊆ l(S):

– If x ∈ S, then B′ = {x} ∪ B and B′ ⊆ l(S) This way the approximation of
the set S becomes more precise.

– If x /∈ S, then B′ = {x} ∪ B and B′ ⊆ u(S) but B′ �⊆ l(S) This increases the
uncertainty relative to the set S.

The following cases can happen with the base set B after the annotation if
B ⊆ u(S):

– If x ∈ S, then B′ = {x} ∪ B and B′ ⊆ u(S)
– If x /∈ S, then B′ = {x} ∪ B and B′ ⊆ u(S)

The following cases can happen with the base set B after the annotation if
B ⊆ u(S) \ l(S):

– If x ∈ S, then B′ = {x} ∪ B and B′ ⊆ u(S) \ l(S)
– If x /∈ S, then B′ = {x} ∪ B and B′ ⊆ u(S) \ l(S)

In both cases, the upper approximation and the boundary region become
larger. It can be said that the annotation depends on the set to be approximated.
It could be useful if:

– x ∈ S, then the user could only choose from those B base sets which are in
l(S).

– x /∈ S, then the user could only choose from those B base sets which are in
l(u(S)), where u(S) denotes the complement of the upper approximation.
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This relative annotation looks very promising.
The order of the annotation is also worth to be checked. If the members

x1, x2 of 2 different singletons were to be inserted into the same base set B, then
the following question needs to be answered. Is it still relevant to insert x2 into
B after putting x1 into B?

– If the answer is yes, then the two members are interchangeable. This means
that x1, x2 has some sort of similarity that was hidden in the tolerance relation
(based on similarity).

– If the answer is no, then the two members are not interchangeable. This means
that annotating x1 makes it irrelevant to insert x2 into B.

In a real-world application, it can happen that an attribute value of an object
is missing. This means that it can be unknown, unassigned or inapplicable (i.e.
maiden name of a male). Coping with these data is usually a hard task. In many
cases, these values are often substituted. It is common to replace a missing value
with the mean or the most frequent value. Typically this gives a rather good
result in many situations. In early-stage diabetes, it is not unusual that only the
blood sugar level is higher than the normal level. If this value is missing for a
patient, then it should not be replaced by the mean because the mean can be the
normal blood sugar level. After the substitution, this patient can be treated as
a healthy one. This type of substitution does not consider the information of an
object itself but the information of a collection of objects, therefore it can lead
to a false conclusion. The following method is proposed to handle missing data.
If an object has a missing attribute value, then it cannot be treated as similar
to any other object, so this entity forms a cluster alone. As mentioned earlier,
these clusters cannot be treated as base sets. However, with the annotation, the
user has the possibility to decide whether an object with missing data is similar
to other objects or not. The user has some background knowledge that can be
used this way to cope with the missing values. In this case, the information of
an object itself is considered.

7.1 Annotation with Random Points

In this subsection, a possible example of the annotation process is shown. In
the following figures, 20 points can be seen. The tolerance relation (based on
similarity) is defined in Eq. 1. The similarity threshold SIMM was set to 50,
and DIFF was set to 90. On the left side of Fig. 11/A the clusters generated
by the correlation clustering can be seen. The singleton clusters contain the
objects denoted by the  symbol, the � symbol and the � symbol. Some points
were selected for approximation. The members of this set are denoted by the ×
symbols, and the other members are denoted by the star symbol. The members
were chosen randomly. This set can be seen on the right side of Fig. 11/A. In
Fig. 11/B the reader can see the lower and upper approximation defined by the
base sets gained from clustering after leaving the singletons out. The members of
two singletons were inserted into two different base sets. The singleton denoted
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A. Clusters (left) and the set to be approximated (right)

B. The lower (left) and upper (right) approximation by clustering

C. The lower (left) and upper (right) approximation by clustering with annotation

Fig. 11. Annotation with random points
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by the  symbol was merged with the base set denoted by the � symbol. The
base set denoted by the � symbol was extended with the singleton denoted by
the � symbol. The result of the annotation can be seen in Fig. 11/C. None of the
members of the chosen singletons were members of the set to be approximated.
This is the reason why the lower approximation became the empty set, and the
upper approximation had more members.

8 Tools of the Annotation5

Annotation is a very useful improvement of the similarity-based rough sets space
because it creates a possible interaction between the system and the user. Nat-
urally, this process is based on the user’s expertise as they have to override the
decision made by the system. Of course, this does not mean that there should not
be any help or suggestions provided by the system itself. Two main techniques
are introduced in the next part of the dissertation. The first one is a graphical
method which tries to give a visual representation of the tolerance relation based
on similarity. If two objects are close in this representation, then this indicates
that those two objects should be treated as similar. If a member of a singleton
is close to a base set, then maybe they should be merged. The second method
is a mathematical way that aims to find those members in each cluster that can
represent the entire cluster. During the computations, only the representative
members should be considered. This way a lot of time and resources can be
saved.

It is sometimes possible that there are more than one suitable base sets
into which the user should insert the member of a singleton. In this case, the
recommended base set should be the one whose representative member is the
most similar to the member of the given singleton. In this way, there is no need
to compare it to each member of each base set.

The annotation process can also be qualified as relevant or irrelevant regard-
ing how it changes the representatives.

1. Relevant: After inserting a member of a singleton into a base set B, the
representative member of the new base set B′ is changed. In this case, some
real information is implemented into the system. Let us assume that the
objects are members of political parties and the representative members are
the leaders of these parties. The annotation process is when a new member
is elected to a party. If the annotation is relevant, then it means that the
balance of the party has changed, and a new leader rises.

2. Irrelevant: After inserting a member of a singleton into a base set B, the
representative member of the new base set B′ is unchanged. In this case, the
implemented information is not relevant because it does not alter the base
sets gained from the correlation clustering.

5 The work described in this section was based on [5–7,35].
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Fig. 12. Tolerance relation based on GCD.

In either case, the annotation can modify the set of possible representatives.
As conclusion, one can say that if after the annotation something was changed,
then the user had some useful information that was not embedded in the toler-
ance relation (based on similarity).

8.1 Visualization of Tolerance Relations6

Correlation clustering is based on similarity which can be represented by a tol-
erance relation. Visualizing these tolerance relations is sometimes problematic.
In this chapter, an algorithm is presented [5] which can display similarity (based
on a tolerance relation) in such a way that the user can easily interpret it. In
the next paragraph, it can be seen why it is difficult to visualize these kinds
of relations and why it is important to have a proper algorithm that can solve
this issue. Let us suppose that two natural numbers are similar if their greatest
common divisor is greater than 1. 1 is assumed to be similar to itself. And they
are treated dissimilar if their greatest common divisor is 1. The analysis of this
problem and its surprising solution can be found in [4].

If one takes this relation on numbers 1, 2, . . . , 10, then the picture on the
left in Fig. 12 can be constructed. Here the circles representing the numbers are
positioned on a circle, to make it easy to connect the numbers. In this picture,
the similarity is denoted by solid lines and the dissimilarity by dashed ones.
Even though each number is similar to itself (except for 1), it is not displayed
in the figure. This picture is transparent, but imagine a similar picture denoting
the tolerance relation of numbers 1, 2, . . . , 100! Why not leave out the dashed
lines? The picture on right in Fig. 12 shows only the similarities. It is slightly
more understandable, but it is hard to see the nexus. If the numbers are reposi-
tioned, everything becomes clearer. The numbers on the left of the circle have no
similarities in the picture on the left of Fig. 13, and one can easily discover the
groups 2-4-6-8-10, 3-6-9, 5-10. If the circle is disposed, the structure can become
even clearer. The software yEd produced the picture in Fig. 13 on the right.

Numbers are easy to compare. However, it is not certain that 2 random
objects are comparable. Or they are comparable, but nobody compared them
yet. Hence, the relation can be partial. This means that there are three cases:
6 The work described in this section was based on [5].
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Fig. 13. Repositioned tolerance relation of GCD

two objects can be similar, dissimilar, or neutral. This can be visualized with
three colors or three types of lines. If the lines for neutrality are not drawn, then
the solid and dashed lines are enough.

In some graph visualization methods (force-directed graph) edges are mod-
eled by springs, and the nodes are electrically charged particles. In these meth-
ods, the similarity (the edge between two nodes) is handled with springs, and
the dissimilarity (the absence of the edge between two nodes) is handled with
electricity. The graphs visualized with these methods are sparse graphs, i.e. the
number of edges is a linear function of the number of nodes.

In this case, three different kinds of springs are used according to the three
different values of the partial tolerance relation. With these three values, the
graph of this relation is a dense one (all pairs of nodes are somehow connected),
i.e. the number of edges is a quadratic function of the number of nodes.

A physical metaphor is used to give a quasi-optimal solution of correlation
clustering, where similar objects attract each other and dissimilar objects repulse
each other. The same is used here, but the objects are not grouped but arranged
on the plane (or in space). The requirements are:

– similar objects get close, and
– dissimilar objects get far from each other.

Néda et al. presented a model using electric particles to solve the problem of
correlation clustering in [40]. In this model, the particles could move on a circle
based on the superposition of the forces acting on the particle.

Here, imaginary springs are used. Each node of the graph moves by the
superposition of the forces of its springs. To simplify the problem in this section
total tolerance relations are used, i.e. any pair of objects are comparable (similar
or dissimilar). To get a suitable location for each of the objects, the following
constraints are defined:

– it is not appropriate, if some object hides the others, so an optimal (minimal)
distance (SIMM) is fixed for similar objects,
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Fig. 14. Spring functions

– to get a finite picture, an optimal distance (DIFF ) is determined for dissim-
ilar objects.

It can be translated this for springs: there are short springs for similar objects
and long springs for dissimilar objects. By Hooke’s law, the force needed to
extend or compress a spring by some distance d is proportional to that distance:
F = kd.

Some placement of the objects can be treated as a network of these short
and long springs. If two similar object (connected by a short spring) are closer
than SIMM , then they repulse, and if they are farther than SIMM , then
they attract each other. For the long springs, the same hold, but with DIFF
instead of SIMM , as Fig. 14 shows. Therefore, two functions are introduced:
f(d) = (SIMM − |d|) and f ′(d) = (DIFF − |d|), where d is the (distance)
vector between two objects.

The periodic (sinusoidal) motion of a mass is used on a spring. One wants
to get a location of objects and not a motion, so some attenuation is needed,
a negative feedback. After some trial, the cube of the distance was found to be
similar to Coulomb’s rule in some sense. Finally, the resultant is the superposition
of the forces:

Fi =
∑

j

f(dij)dij

|dij|3 +
∑

l

f ′(dil)dil

|dil|3 (2)

Here, the first part is summing for the objects similar, and the second part is
for the objects dissimilar to object i.

Some relations are partial, where there are no constraints on the unrelated
objects. It means that they can be at any distance from each other, so they
can be positioned at the same place and partially or totally hide each other, or
they can be very far from each other, so the picture can become very big. To
solve these problems, a new spring function f̂ is introduced for the third type of
springs (used for undefined values). This function is similar to the modified f ′,
but the optimal distance is the interval [SIMM,DIFF ]. If d < SIMM then
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f̂(d) > 0, and if d > DIFF , then f̂(d) < 0, i.e. for small distances it repulses
and for big distances it attracts.

After presenting the algorithm and its background, it is time to show it in
practice. The algorithm (by László Aszalós) can be downloaded from https://
github.com/aszalosl/visualize_tolerance

The resulting image for some simple, but typical tolerance relation is shown.
The first example is the snake, where adjacent objects are similar, and the others
are dissimilar. One could think that the result is a straight line. Although the
left side of Fig. 15 shows that this theory does not hold. If the dissimilar objects
get too far from each other, then they attract, so an arch appears. In case of
a non-defined relation for non-adjacent objects, a different image is obtained,
because these objects do not repulse each other, so the snake can move in any
direction, as right side of Fig. 15 shows.
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Fig. 15. Total and partial snake.

Figure 16 shows some total trees. Here each non-leaf node has exactly three
successors. In the first two pictures, the non-adjacent nodes are dissimilar, and
in the last one, the non-adjacent nodes are unrelated. The tree on the left is
totally symmetric (if the difference of the size of nodes is omitted according to
one and two digits). But not every run gives such a nice picture. The middle one
was generated with the same parameters as the left one, but the nodes 8 and 13
got to the wrong place at the beginning, and since this layout is stable, these
nodes cannot escape. In the last picture the non-adjacent nodes, since unrelated,
do not need to get far from the other nodes, e.g. nodes 3 and 4 comply with the
minimal distance constraint, so they are in a stable state.

Of course, the shapes of these pictures can be formed by changing the values
of parameters SIMM , DIFF . Several combinations were tested, to get specious
pictures, e.g. in the case of Fig. 17. Here, the GCD relation was presented but
did not connect the similar nodes. From the numbers, the reader can reconstruct
these lines. The result of the correlation clustering for a few nodes gives a par-
tition where each prime number (plus the 1) has a cluster, and each number
gets into its smallest prime divisor’s cluster. Although, the collision of nodes is
inappropriate (when they partly hide each other), but in this case, it clarifies
the picture.

https://github.com/aszalosl/visualize_tolerance
https://github.com/aszalosl/visualize_tolerance
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Fig. 16. Total trees.

In the middle of the picture are the even numbers. On the right are the
multiplies of three. 5 is just below 25 (it can be known from the data of the
image), as 7 is below 49. As the multiplicity of the divisors is not counted, the
power of primes get to almost the same position (as 5 and 7 have shown). On
the edge of the picture are the large prime numbers, because they differ from
every other number, and as they are dissimilar to each other, they are positioned
uniformly. It is worth to examine the subtleties of the picture: 35 is positioned
between the numbers of clusters of 5 and 7, but it is slightly moved towards
the even numbers because there are eight similar number (five numbers are
divisible by five and three are divisible by seven), and three similar numbers in
the cluster of 3. Similarly, the number 50 is slightly moved towards the numbers
of the cluster of 5 and the number 48 towards the numbers of the cluster of 3.
By zooming the picture, other subtleties could be explored, too.
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Fig. 17. Visualization of the relation GCD.

Finally let us consider a picture that does not use abstract concepts of number
theory, but comes from real life. Figure 18 denotes the members of two depart-
ments. Two researchers are treated as similar, if they are co-authors, and dis-
similar if there is no such third person who is co-author to both. Of course, this
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is a partial tolerance relation, because if x-y and y-z are pairwise similar, but
x and z are not similar, then one cannot say that they are dissimilar according
to the definition. Numbers 1-10 and 11-19 denote the members of the depart-
ments, respectively. The center of the picture is empty, hence the research areas
are orthogonal. The numbers of the second department have higher densities, so
their publication is stricter in the same themes mostly by the same co-authors.
The numbers of the second department can be grouped into three clusters, and
there are not many relations between these clusters.

Researchers 5, 6, 9 and 13 usually publish alone or with external colleagues,
hence it is no wonder that they are alone in the picture. Researchers 1, 2, 7 and
8 wrote a common article, so they construct a strong core. As they publish with
other authors too; they are positioned more widely on the picture according
to the repulsion of other co-authors. From this group, 1 and 2 are the only
co-authors of 4. Moreover 4 is the regular co-author of 10 and has no other co-
author. Hence 7 and 8 repulse 10, who gets far from 4, and the attraction of 10
moves 4 away from its other co-authors. In the case of the other department,
there is an attraction between 12 and 19 (they moved toward each other), but
the chain of co-authors generates a repulsion, so they cannot get any closer.

This simple method could visualize complex systems. In this model, neither
the quality and quantity of the common publications nor the date of these pub-
lications were taken into account.
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Fig. 18. Research activities of two departments.

8.2 Representative Members7

Instead of examining the entire population, polls usually only survey a small
sample. This can be done because the results obtained are very close to what
one would get by examining the entire population. However, the sample should
be selected carefully. Many people think that the larger the sample, the better
which is not true. The sample is representative in some respects, i.e., the specific
properties are as similar in the sample as in the entire population. The sample

7 The work described in this section was based on [6,7,21,35].



288 D. Nagy

can be representative in one aspect, while not representative in another. There
are various standard methods for determining a sample.

If the population is significantly inhomogeneous, i.e. it has high variability
according to the survey, then the stratified (random) sampling can be used. In
this case, the population is divided into several sub-populations (strata), where
these sub-populations are homogeneous according to the examined criteria. From
a homogeneous strata, the individuals can be randomly selected to be sampled
(i.e., the representative of the group), typically in proportion to the size of the
group.

If an object can be represented with a vector of numbers, the difference of
vectors belonging to each object can be considered, where this difference/dis-
tance usually meets the requirements of metrics. Using this distance function,
many clustering methods have been developed over the last sixty years. The
most well-known is the k-means method in which a cluster is represented by
its centre (one representative). The k-medoids algorithm is a version of this k-
means method, and it replaces the cluster with the sample element closest to
the cluster centre. The CURE method (clustering using representatives) goes
one step further, replacing non-ellipsoid clusters with a maximum c sample ele-
ments. The k-means algorithm can be used in the k-nearest neighbours (k-NN)
classification algorithm, where newly added objects are categorized into an exist-
ing cluster/class. Since comparing the new elements with all stored elements in
a large database is a time costly task, by replacing the elements of the clusters
with some of their representatives the complexity of the classification of new
elements can be significantly reduced.

Polls cannot ask too many questions from a person because their patience
is finite. However, there are cases where one leaves behind a lot of information.
Think for example our medical cards, our data stored at different kinds of service
providers, or our digital footprint on the social network. In these cases, it is not
worth transforming this information into a unified form in order to be able to
define the differences between the data of objects. It is much easier to directly
decide for two given objects whether they are similar or not.

In this section, a mathematical method is presented which—having an exist-
ing partition and tolerance relation (based on similarity)—determines which is
the most typical object in a given cluster, i.e. which one can be considered rep-
resentative. A real number, a rank is assigned to each of these objects which
determines the “representativeness” of the objects.

Here, two possible ways of choosing the representatives are proposed.

8.3 First Method8

In this method, an object is called a representative if it is similar to most and
different from the least of the members in its group.

For any member x four values are stored:

– α - the number of elements that are similar to x and are in the same cluster.
8 The work described in this section was based on [21].
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– β - the number of elements that are different from x and are the same cluster.
– γ - the number of elements that are similar to x and are in different clusters.
– δ - the number of elements that are different from x and are in different

clusters.

Figure 19 shows a very simple example to the method. In this example, the
tolerance relation (based on similarity) is based on the Euclidean distance of the
objects. The smaller circle denotes the similarity threshold and the greater one
denotes the difference threshold. For member A the four values are:

– α = 3. Because there are four members (A,B,C) that are similar to A.
– β = 2. Because there are two members (E and F ) that are different from A.
– γ = 2. Because there are two members (H and G) that are similar to A and

are in a different cluster;
– δ = 3 Because there are three members (J , K and L) that are different from

A and are in a different cluster.

Fig. 19. α and β values for the member A

In the first case, a member can be considered a possible representative if the
following fraction (rank) is maximal:

r1 =
αw − βv

α + β + 1
v, w ∈ R, v, w ≥ 1, w ≥ v (3)

In the second case, a member can be considered a possible representative if
the following fraction (rank) is maximal:

r2 =
αw − βv

α + β + u ∗ γ + 1
u, v, w ∈ R, v, w ≥ 1, w ≥ v (4)

If two arbitrary objects have the same r2 value, then the δ value decides.
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The values r1 and r2 show how much an object represents a given cluster.
In the case of r1, only the similarities and differences in the given cluster are
considered. Its value is high if the object is similar to the others in the cluster
which means that there are only a few elements that are different from the given
object. r2 takes into account every cluster. The r2 value of an object is high if
it is similar to most of the elements in the same cluster and there are very few
objects that are similar to the given object but are in different clusters. Those
cases, when the object is similar to an element that is in a different cluster, are
punished. That is why the γ value is only in the denominator. In some cases, it
can happen that the similarity and the difference cannot be taken with the same
weights. In the formulas, the u, v, w denote these weights.

The first method can be used when the members of the other groups do
not matter. For example, let us assume that the objects are patients. Here the
similarity is based on sharing some common symptoms. If the patient, who is the
most similar to the others, needs to be found, then the patients from the other
groups are irrelevant. For instance, if the task is to find a new possible way to
cure a certain disease that a group of patients has, then it can be useful to test
it on the representative patient first. In this case, the other group of patients
is not relevant because they have different symptoms. The second method can
be used when the members of the other groups matter. Let’s assume that the
objects are members of a political party. The similarity here can be based on
the political view. Two politicians can be treated as similar if they share the
same idea and different if they have different opinions. The leader of a party is
expected to be similar to the others in the same party but different from the
members of the other parties. Another good but a little extreme example is if
the objects are members of an organized crime family. Two gangsters are similar
if they like each other and different if they do not. The boss of the family should
be liked in the family but disliked in the other families.

Fig. 20. Difference between r1 and r2 maximization
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Section 8.3 shows the difference between the two methods. In the left side
of the figure, the first method was used. Member A was the representative of
cluster1, because there are seven objects that are similar to A and no such ones
that are different from A (α = 7, β = 0, γ = 2, δ = 2, v = 2, w = 2, u = 1). So its
r1 value is maximal. In the right side of the figure, the second method was used.
Here the member F was the representative of cluster1. Its r1 is less than that of
member A, because it has only 6 similar objects. However, the r2 value is higher
than that of member A, because it has no such objects that are similar to it
and are in a different cluster, while the member A has 2 objects (I, J) that are
similar to it and are in cluster2 (α = 6, β = 0, γ = 0, δ = 2, v = 2, w = 2, u = 1).

The method was introduced because it is very simple and it can be easily
used. However, every member has the same vote. It means that each object
decreases or increases the rank of the other members exactly the same. Let us
assume that object A and B,C are in different clusters and A is different from
B and C. Let us also assume that the rank of B is much higher than that of C.
In this method, B and C decrease the rank of A and this decrease is the same
in both cases, even though that the rank of B is much higher than that of C (B
should decrease it much more). To solve this issue, another method is proposed.

8.4 Second method – Ranking Algorithm9

In this section, a method is shown on how to describe relations using signed
graphs. Each element in a relation is a vertex of the graph and two vertices are
connected with an edge if and only if their two corresponding elements are in
relation.

In the case of graphs, one can speak of the distance between two vertices (as
the shortest path between the two vertices), but it carries much less information
than the difference between two large vectors. Therefore, the similarity informa-
tion should already be included in the graph, so the graph will correspond to
a tolerance relation (based on similarity). As there are usually partial tolerance
relations (based on similarity) in practice, there will be edges in the graph that
denote the similarity and there will be ones that denote the dissimilarity. The
partiality is represented by missing edges.

For example, links between individual websites or citations between scien-
tific articles define a directed graph, i.e. a partial tolerance relation (based on
similarity), but there is no representation of the dissimilarity.

Google’s PageRank algorithm [2] is a great example of a ranking system
on directed graphs. Considering the web pages (vertices) and the links between
them (edges) as a directed graph, the boundary distribution of the random walk
on the graph gives the rank of each page. For example, if the web page p is more
likely to be accessed than the web page q, then the rank of p will be higher than
that of q and will be ranked higher in the hit list. Here, if a page with a low
rank refers to a page with a high rank, or a novice author refers to a well-known
author in his article, it raises the rank of the page/author to a higher rank,

9 The work described in this section was based on [6,7].
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but—through a non-symmetrical relation—this reference has no effect on the
rank of the page/author with the lower rank.

However, if the graph is not directed, the edge between the two vertices affect
the rank of both vertices. Since similarity is represented by a tolerance relation
(reflexive, symmetric, but not necessarily transitive), the associated graph is not
directed.

Fig. 21. Simple ranking problems

Let’s see our (naive) expectations of a ranking method. In Fig. 21 on the left,
there are three vertices (A, B and C) in a common cluster. In this figure, a cluster
is represented by vertices of the same colour, while the similarity of vertices is
denoted by a solid, and the difference by a dashed line. Because in this sub-
graph each element is similar to each other, the same rankings are expected due
to symmetry. In the middle graph of Fig. 21—where D, E and F are in a common
cluster—a difference appears. This graph is called a minimal frustrated graph,
because there is no such partition of vertices where similar elements are common,
and different elements are clustered separately. In this graph, vertex D has only
similar vertices, while vertices E and F both have similar and also different
vertices. The fact that an object differs from an object in its own cluster reduces
the rank of the object/vertex and thus the chance of being a representative of
the cluster. Conversely, if an object is similar to an object in its cluster, then
this increases its rank. Based on these, this cluster will be represented by vertex
D because it has the highest rank. Moreover—according to the symmetry—the
rank of vertices E and F should be the same.

Finally, take the graph on the right side of Fig. 21. Here, the vertices were
divided into two clusters: {G, H} and {I}. The fact that the vertices of G and
I are similar, but are found in different clusters also reduces the rank of both
vertices, because similarity to vertices in other clusters means deviation from the
idealized characteristics of the group. The vertex h is similar to vertex G which
belongs to H’s cluster, and H is different from the vertex I belongs to another
cluster. This latter also raises the rank of the vertex H and hence H becomes
the representative of its own cluster. In the other cluster, the only vertex will be
the representative.

Based on the examples above, the similar objects of the same cluster and
dissimilar objects of other clusters can be called the fosterer of the object, while
the similar objects of different clusters and dissimilar objects of the same cluster
can be called the adversary of the object. The fosterer objects help an object
become a representative, while the adversary objects prevent it from happening.

Here, a list can be seen of what is expected from the rankings.
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– Be symmetric, that is, if two vertices have the same number of vertices of
the same rank in the same type of relation (fosterer or adversary), then their
rank is the same.

– The rank of a particular item is immediately raised if:
• one of its fosterer object increases in rank, or
• one of its adversary object falls in rank, or
• a new fosterer object appears.

– The rank of a particular item is immediately reduced if:
• one of its adversary object increases in rank, or
• one of its fosterer object falls in rank, or
• a new adversary object appears.

– It does not directly change the rank of a particular item if:
• another object that is not compared to it or is incomparable, appears in

any cluster, or
• the rank of such an object changes.

If a new object that is dissimilar to the current object, but similar to another
object of the cluster, is added to this cluster, then it raises the rank of objects
that are similar to it. This will have a ripple effect on objects that are similar to
objects that are similar to the new object, and so on. Therefore, if this should
be represented by an algorithm, then an iterative method, that would escalate
these effects step by step, would be needed. On the other hand, since almost
every object is related to every object, the rank of all objects should be treated
altogether.

The Ranking Method. Let U denote the set of objects/vertices, and for
simplicity, denote the objects with numbers: U = {1, 2, . . . , n}. The set of clusters
means a partition. This partition is interpreted as a function—denoted by p—
that assigns a number to each object, so p : U → N. The objects x and y
are in the same cluster, if p(x) = p(y); and they are in different clusters, if
p(x) �= p(y). Our tolerance relation (based on similarity) is a (possibly partial)
tolerance relation R—that is reflexive, symmetric, but not necessarily transitive.

Social Ranking. A similar approach as PageRank or as various evaluation
sites is used (accommodations, restaurants, marketplaces), where the rankings of
individual websites, hotels, restaurants are summed up by aggregating individual
ratings.

The rank of each object could be taken as the difference between the number
of fosterer and adversary objects, but a more sophisticated method would be
more appropriate in practice. There is a significant difference between the cases
where an adversary object is the representative of another cluster, or it just a
marginal object there. In the former case, it decreases the rank of the current
object to a greater extent. A value proportional to the rank of the adversary or
fosterer objects could define a good amount by which the rank of the current
object can be decreased or increased.
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The rank of object i is determined by its relation to all objects. Let mij

indicate the relation (fosterer or adversary) between objects i and j. Each object
is considered with its rank as weights, and so the following relation needs to be
solved for values ri: ri =

∑
j mij · rj for all i ∈ U .

These equations combine to R = MR in matrix notation.
So that different values mij must not be used from task to task–depending

on its size– a constant c is introduced to normalise the values mij . This changes
the previous relation as follows ri =

∑
j(c · mij) · rj , but it can be transformed

to ri = c · ∑
j mij · rj , which gives us R = cMR. If one takes the reciprocal of

c to be denoted by λ, then a known relation: MR = λR appears, i.e. R is an
eigenvector of the matrix M .

Taking into account the ideas from the previous chapter, the normalized value
mij should be 1 for fosterer objects, −1 for adversary objects, and 0 for all other
cases (where the tolerance relation is partial).

According to the much-cited example, a bald man does not resemble a hairy
man, although an uprooted hairline does not change a person. As a person can
have up to two million hairlines, the linear model of this example is reduced to
only four states. Here 1 (bald) and 4 (hairy) correspond to the two end states,
while 2 and 3 are two intermediate states. 1 and 2 are in a common cluster, and
so are 3 and 4. Figure 22 shows two graphs demonstrating this problem, where
clusters are denoted by assigning different shades to the vertices. The similari-
ties (denoted by solid lines) are the same in both cases, but the dissimilarities
(denoted by dashed lines) have changed: dissimilarity appears between the sec-
ond neighbours in the latter case. Hence, the first graph/relation is partial, and
the second is total.

Fig. 22. Two simple symmetric linear model

Two matrices based on the relations and partitions for each graph are:

M1 =

⎛

⎜
⎜
⎝

1 1 0 1
1 1 −1 0
0 −1 1 1
1 0 1 1

⎞

⎟
⎟
⎠ and M2 =

⎛

⎜
⎜
⎝

1 1 1 1
1 1 −1 1
1 −1 1 1
1 1 1 1

⎞

⎟
⎟
⎠
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The only adversary relation is between 2 and 3, because they are similar, but
are in different clusters. In the first case, 1–3 and 2–4 are not comparable, so
the corresponding values of the matrix are 0. In the second case, these pairs
of objects are dissimilar, but they are in different clusters, so these are fosterer
relations.

Calculating the eigenvalues and eigenvectors for the first graph, the following
is obtained:

r1 r2 r3 r4 λ
0.7071 0.7071 0.3344 0.1368 2.4142
0.5000 −0.5000 0.6770 −0.5873 −0.4142
0.0000 0.0000 −0.6230 −0.6938 2.4132
0.5000 −0.5000 −0.2041 0.3939 −0.4142

The graph is symmetric, so it is expected, that r1 = r4 and r2 = r3. Unfor-
tunately, none of the eigenvectors satisfy this. Therefore, another method is
needed.

Power-Method. The algorithm of von Mises [34] for a diagonal matrix M
results in the biggest eigenvalue (with the highest absolute value), and the cor-
responding eigenvector. The method starts with an arbitrary vector R0 that in
our case should be 1 = (1, . . . , 1)T . Then Rk+1 is determined as follows: the rank
vector Rk is multiplied by the matrix M and normalized as shown by (5).

Rk+1 ← MRk

||MRk|| (5)

Unfortunately, this iteration is converges slowly, but it is easy to use even for
large sparse matrices. This is why it is used in PageRank implementation. If
Ri ≈ Ri+1, the method is stopped and the values in the vector Ri are considered
the rank of the objects. If matrix M has an eigenvalue that is strictly greater in
magnitude than its other eigenvalues, then Ri converges.

If this method is applied to the matrices shown in Fig. 22, then the result
are: R = (1, 0.414, 0.414, 1)T and R = (1, 0.618, 0.618, 1)T , where r1 = r4 and
r2 = r3 as it was expected. These values also fit to the naive ideas: for the first
graph, for object 1 both objects 2 and 4 are fosterers, while object 1 is a fosterer
and object 2 is an adversary for object 2. So the expected relation r1 > r2 is
fulfilled. In the second case, when there are more fosterer relations, the rank
gained is also higher for objects 2 and 3.

Summarising it gives:

Rk+1 ← MRk

||MRk|| ≈ Mk+11
||Mk+11||

If k is a power of 2, then the same values can be calculated by repeated squaring
using the following recurrence relation:

B1 ← M and Ni+1 ← NiBi

||NiBi|| (6)
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Algorithm 2. Python implementation of the ranking method

def power_method (M, eps = 1e −9):
N = M
R = np . ones ( ( l en (M) , ) )
N2 = N@N
N2 /= m = np .max(N2@R)
while np . l i n a l g . norm(N@R − N2@R) > eps :

N, N2 = N2 , N2@N2
N2 /= np .max(N2@R)

return N2

Table 10. Ranking numbers. . .

A) 1, . . . , 12 in a common cluster.
1 2 3 4 5 6 7 8 9 10 11 12

−0.62 0.97 0.06 0.97 −0.32 1.00 −0.62 0.97 0.06 0.89 −0.62 1.00
B) 1, . . . , 100 in a common cluster.

1 2 3 4 5 6 7 8 9 10 11 12 . . .

−0.55 0.99 −0.03 0.99 −0.28 1.00 −0.37 0.99 −0.03 0.95 −0.44 1.00 . . .
C) 1, . . . , 12 using optimal partition.
[1] [2] [3] [5] [7] [11]

1 2 4 6 8 10 12 3 9 5 7 11

1.00 1.00 1.00 0.73 1.00 0.84 0.73 0.73 0.73 0.84 1.00 1.00
D) 1, . . . , 15 using optimal partition.
[1] [2] [3] [5] [7] [11] [13]

[1] [2] [3] [5] [7] [11] [13]

1 2 4 6 8 10 12 14 3 9 15 5 7 11 13

1.00 1.00 1.00 0.67 1 0.79 0.67 0.86 0.79 0.79 0.54 0.79 0.86 1.00 1.00
E) 1, . . . , 12 using common cluster and the weakened relation.

1 2 3 4 5 6 7 8 9 10 11 12

−0.53 1.00 0.06 0.83 −0.34 0.68 −0.53 0.70 −0.17 0.42 −0.53 0.81
F) 1, . . . , 12 using optimal partition and the weakened relation.
[1] [2] [3] [5] [7] [13]

1 2 4 6 8 10 12 3 9 5 7 11

1.00 1.00 0.89 0.53 0.83 0.53 0.62 0.77 0.88 0.89 1.00 1.00

If Ni1 ≈ Ni+11, then let R ← Ni1. Not surprisingly, the two calculations give
the same result.

Based on these, it is not difficult to write the ranking program in Python
using the services of the Numpy package (Algorithm 2). Remark, that for Numpy,
the operator @ is the matrix multiplication operation.

Figure 23 shows how each value ri changes for a random matrix M . Here, the
axis x represents the number of applications of (6), while the axis y represents
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Fig. 23. Changes in the rank of the objects in a random tolerance relation

the current values of the ranks. Due to normalisation, the highest rank is always
1, but as it can be seen from the chart, the rank of the objects changes from
time to time. The algorithm is terminated when the ranks cease changing.

Ranks of Numbers. As there is no standard tolerance relation (based on
similarity) for larger databases, the various clustering/classification methods are
usually tested on random graphs [39]. Here the following relation is used: let two
numbers be similar if they have a non-trivial common divisor, i.e. gcd(x, y) > 1,
where x, y ∈ N

+. 1 is considered to be similar to itself. Then 4R6 and 6R9 are
fulfilled (the common divisors are 2 and 3), but 4R9 is not, so this relation is
not transitive. If someone is interested in the correlation clustering of numbers
1, . . . , n, it can be easily formulated if n < 111 546 435, otherwise the situation
becomes complicated [4].

In the following, the rank of each element is determined by using the optimal
clustering of the set of numbers, except in the first case, where the numbers
1, . . . , 12 are placed in a common cluster.

As there is a single cluster in the Eq. (6), the matrix M can be replaced in
the calculation with the matrix of the relation R in Fig. 24. In this matrix R, the
relation between the numbers i and j is given by the jth number from the ith row:
similar numbers are denoted by 1, dissimilar numbers by −1. 12 and 6 are similar
to the multiples of 2 and 3, these are eight numbers including themselves and
different from four of them (1, 5, 7, and 11). The powers of 2 are similar to every
even number (six numbers) and different from all odd numbers (six numbers).
The powers of 3 (itself and 9) are similar to four numbers and different from
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R =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
-1 1 -1 1 -1 1 -1 1 -1 1 -1 1
-1 -1 1 -1 -1 1 -1 -1 1 -1 -1 1
-1 1 -1 1 -1 1 -1 1 -1 1 -1 1
-1 -1 -1 -1 1 -1 -1 -1 -1 1 -1 -1
-1 1 1 1 -1 1 -1 1 1 1 -1 1
-1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1
-1 1 -1 1 -1 1 -1 1 -1 1 -1 1
-1 -1 1 -1 -1 1 -1 -1 1 -1 -1 1
-1 1 -1 1 1 1 -1 1 -1 1 -1 1
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1
-1 1 1 1 -1 1 -1 1 1 1 -1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 -1 1 1 1 1 1 -1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 -1 1 1
1 1 -1 1 1 1 1 1 -1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 -1 1 1 1 1 1 -1
1 1 1 1 -1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 -1 1 1 1 1 1 -1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Fig. 24. Tolerance relation (based on similarity) on numbers 1, . . . , 12, and the suitable
matrix based on the optimal partition.

eight numbers. 5 is similar to its duplicate, but there is no such number for
7 and 11 and for 1. Because in each case the numbers mentioned together are
similar to the same numbers, so—according to the symmetry—their rank is the
same (Table 10/A). In this table, the ranks are rounded to the closest hundreds,
to fit on the page.

If one does the same calculation for numbers 1, . . . , 100 (Table 10/B), then
the numbers will typically increase. There are many more even numbers which
will increase the rank of even numbers, but they have the opposite effect on the
rank of powers of 3. In this set, there are numbers similar to 7 or 11, so their
rank increases; and there are more such numbers for 7, so its rank grows more.

Consider the partition of natural numbers obtained by correlation clustering
[4]. The largest such cluster is the set of even numbers. This is followed by a set
of odd numbers divisible by 3; next, the set of numbers which are divisible by
5, but not by 3 or 2, and so on. This can be formulated as [2] = {x ∈ U : 2|x},
[3] = {x ∈ U : 3|x}\ [2], [5] = {x ∈ U : 5|x}\ [2] \ [3], . . . . Of course, each prime
number may have one cluster.

If the fosterer and adversary objects are considered based on the optimal
partition and the tolerance relation (based on similarity) R in Fig. 24, then the
matrix M presented in Fig. 24 is obtained. The partition mentioned above is
optimal because it minimises the number of negative numbers in the matrix M .
This, of course, also has an impact on rankings. While keeping the numbers in a
common cluster, multiple ranks were negative due to dissimilarities, by using the
optimal partition each cluster as a cluster by applying similarity (Table 10/C).
For singletons (containing big primes and 1) the rank 1.0 is a proper value, as
there are no similar numbers. In the set of even numbers, the rank of the powers
of two will also be 1.0, as they are similar to all even numbers, and cluster [2] has
only even numbers, and all even numbers are here. Numbers with other divisors
will have similar numbers in other clusters. The more prime divisors a number
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Table 11. Rank of numbers 1, . . . , 1000 using the optimal partition

x r(x) r′(x)

1 1.0 1.0

2 1.0 1.0

3 0.71587172 0.79465596

5 0.78447065 0.81182099

7 0.82770503 0.84160798

11 0.88038405 0.88841938

13 0.89607481 0.90279018

17 0.91498232 0.91946078

4 1.0 0.8102978

6 0.75571551 0.55292589

8 1.0 0.71548803

10 0.85121315 0.5761841

R′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
-1 1 -1 1 -1 1 -1 1 -1 1 -1 1
-1 -1 1 -1 -1 1 -1 -1 1 -1 -1 1
-1 1 -1 1 -1 0 -1 1 -1 0 -1 1
-1 -1 -1 -1 1 -1 -1 -1 -1 1 -1 -1
-1 1 1 0 -1 1 -1 0 0 0 -1 1
-1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1
-1 1 -1 1 -1 0 -1 1 -1 0 -1 0
-1 -1 1 -1 -1 0 -1 -1 1 -1 -1 0
-1 1 -1 0 1 0 -1 0 -1 1 -1 0
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1
-1 1 1 1 -1 1 -1 0 0 0 -1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 -1 1 1 1 1 1 -1
1 1 1 1 1 0 1 1 1 0 1 1
1 1 1 1 1 1 1 1 1 -1 1 1
1 1 -1 0 1 1 1 0 0 0 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 0 1 1 1 0 1 0
1 1 1 1 1 0 1 1 1 1 1 0
1 1 1 0 -1 0 1 0 1 1 1 0
1 1 1 1 1 1 1 1 1 1 1 1
1 1 -1 1 1 1 1 0 0 0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Fig. 25. Weakened tolerance relation (based on similarity) on numbers 1, . . . , 12, and
the suitable matrix based on the optimal partition.

has, the more clusters contain similar numbers, so its rank will be reduced. In
cluster [3], the rank of the powers of three will be the highest, but it will not
reach level 1.0, because there are nearly as many numbers that are dividable by
3—that is, similar—in cluster [2], as in cluster [3].

If the method on numbers 1, . . . , 15 is applied instead of on numbers 1, . . . , 12,
then the ranks change (Table 10/D). The rank of 7 fell, as its adversary number
(14) appeared. As number 15 is an adversary for both 5 and 10, it reduces the
rank of both of them. The reader may be wondering how these ranks look when
there are more numbers, e.g. 1 . . . , 1000 (Table 11, column r). Perhaps it is clear
from above that in the case of an optimal clustering, the representatives of the
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individual clusters come from the powers of primes. Each power of a prime is
given the same rank because it is completely symmetrical in terms of similarity.

Weakening the Tolerance Relation. The method was also executed on a
different relation. Here two numbers are similar if one of the numbers is a divisor
of the other number instead of the existence of a real common divisor. The partial
relation here is made from a complete relation. If two numbers were dissimilar at
the original tolerance relation, they will be dissimilar at the weakened relation,
too. Moreover, numbers 4 and 6 were similar before, but not anymore. Therefore,
the relation holds less often.

At first glance in Table 10/E the ranks of 2, 4, 8 are different, as well as
ranks of 3 and 9. Once there is only one cluster, it is sufficient to count how
many positive and negative values are in each row of the first matrix in Fig. 25.
The number 2 is similar to every even number, that is, to every object in its
cluster [2], and there are no other similar numbers anywhere else. The number 4
is similar to half of the numbers of its cluster, but not dissimilar to any numbers
in this cluster. The number 8 is similar to a quarter of the numbers of its cluster,
etc. The fact that some ones were replaced with zeros, the symmetry disappears.
The numbers 1, 7 and 11 are dissimilar from all the other numbers in this case,
so now they have the same (negative) rank.

An interesting question can be to see what happens if the previous optimal
partition (Table 10/F) is taken. The previous asymmetry remains. The primes
have the highest rank, and the powers of primes have lower ranks. To see this
tendency, let’s see the outcome of ranking 1, . . . , 1000 (Table 11, column of r′).

If the optimal partition of tolerance relation R is applied to the weakened
tolerance relation R′ (Table 10/F), the number of negative numbers in matrix M
will also be significantly reduced. However, because of the change in the relation,
the symmetry within the clusters is severely damaged which also affects the
rankings. Therefore, when some ranks weaken in the [2] cluster, this may affect
elements in other clusters. If there exist fosterer elements in other clusters, these
will in turn increase in rank.

Which partition could be optimal for this weakened relation? The number of
similar and dissimilar numbers in the clusters should be taken into consideration
according to some given number. If the difference between these numbers not in
their cluster is maximal, by moving the actual number to the maximal cluster,
a better partition will be obtained. Let U = {1, . . . , 1000}, and n = 75, which
is 3 · 52. With the original relation R, [2] contains 267 numbers that are similar
to n (which are divisible by 3 or 5), and 233 which are dissimilar to it. [3]
contains 167 similar numbers (all of them divisible by 3) and [5] contains 67
similar numbers. At the weakened relation R′, the previously dissimilar numbers
remain dissimilar, and in [2] there are no divisors of 75, just its even multiples.
These, by definition, are similar to it, so [2] contains 6 members, similar to 75.
In [3] there are three divisors of 75 (including itself), as well as 6 of its odd
multiples, so [3] contains 9 similar numbers. In [5] there are two divisors of 75
and it does not contain any of its multiples (because any multiple needs to have
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Fig. 26. Multiple representatives are needed

a prime divisor 3, so it would either be in [3], or in [2] if the number is even). If
the difference between similar and dissimilar numbers is taken for each cluster,
this will be maximal in the number’s cluster, as here for [3]. This means that
this kind of partition is stable for R′, and with a very high probability that it is
the optimal partition, but this needs to be proven.

8.5 Selecting the Representatives10

In many applications, however, it might not be enough to have only one repre-
sentative in each set of objects. Figure 26 shows a very simple example of this
problem. Clearly object A has the highest r value so it is the most representative
object of the set. However, it is only similar to objects B, C, D, E, F and G
and does not have any kind of connections with the rest of the objects. So the
aforementioned property for samples is not satisfied as object A alone cannot
represent the entire set.

Three possible ways are offered to generate more than one representative from
which only the third option proves to be appropriate for real-world applications.
A representative member x is said to cover the member y if x is similar to y.

1. The user gives a threshold value k. Then k percent of random objects are
treated as representatives.

2. The user gives an interval for the rank values. If the rank of an object is in
this interval, then it is considered as a representative.

3. Use an algorithm based on similarity to generate the necessary number of
representatives.

The main issue with the first option is that the user must have some knowl-
edge about the given set to choose an optimal k value. Due to randomness,
critical information may get disregarded. Another problem is that sometimes
one object can be enough to represent the whole set, but the user forces the
system to choose additional representatives.

10 The work described in this section was based on [35].
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Similar problems arise with the second option. It can be hard to choose a
proper interval. A more important issue is that the first few points selected will
always be the ones with the highest rank. This way, some of the representatives
may be picked from an already covered set of points. This is redundant, and
some of the points may be left uncovered.

The pseudo-code of the third option can be seen in Algorithm 3. The input of
the function is a set of data points D and the output is the set of representatives
REP . It is an iterative method, in each step the algorithm keeps a record of the
covered objects (i.e. the objects that are similar to one of the representatives)
which is empty in the first iteration (line 6). In every iteration, the object with
the highest rank is selected from the uncovered objects (line 10–15). In line 16-
20, the data points, that are covered by the currently selected representative,
are inserted into the set C. At the end of each step, the chosen representative
is moved into the set REP . The algorithm stops when there are no uncovered
members left.

The strength of the method is that it uses the similarity between objects, and
so it generates the optimal number of representatives. The other two methods
can create too few or too many representatives. Another advantage is that it does
not need any user-defined parameters. The algorithm can be treated as a directed
sampling method which can be a very powerful tool in many applications.

A political party contains members that share a common political ideology.
However, in some parties, it can happen that even though the members follow
the same vision, there are some disagreements. So the group can be divided into
smaller groups. In this case, one politician is not enough to represent the entire
party. The aforementioned algorithm could be a solution as it takes into account
the variety of the members.

Figure 8.5 presents the steps of the algorithm for the data set shown in Fig. 26.
The grey ellipses contain the covered objects by a chosen representative member.
In the first step, object A is chosen. In the second step, objects B, C, D, E, F and
G are not considered as they are covered by A. The second method, mentioned at
the beginning of this section, could have chosen B or G as possible representatives
because they have the second-highest r value. Naturally, it is pointless to select
them because the object A makes it redundant (both of them are similar to A).
After four steps, the algorithm finishes and the four representatives are objects
A, K, H, I. It can be easily seen that these 4 members share the diversity of
the original data set.
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2petS1petS

4petS3petS

Fig. 27. The execution of the algorithm

9 Approximation Pairs Based on Representatives11

As mentioned before, samples and representatives play a very important role in
data mining. In Sect. 8.2 some possible ways were shown to select representatives
for a group of objects. The importance of the representatives lies in reducing
the execution time of the algorithms. So a natural question can be: can the
representatives be used in the set-approximation process?

In the next two sections, two new approaches are introduced which try to
answer the previous question.

1. Approximation Pairs Based on Similarity-based Rough Sets
2. Set-based Approximation Pairs

11 The work described in this chapter was based on [6,35].
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Algorithm 3. Selecting representatives
1: function Select Representatives(D)
2: REP ← ∅
3: for each p ∈ D do
4: calculate the rank of point p
5: end for
6: C ← ∅
7: while C �= D do
8: max ← − inf
9: maxp ← None

10: for each p ∈ (D \ C) do
11: if rank of point p > max then
12: max ← rank of point p
13: maxp ← p
14: end if
15: end for
16: for each p ∈ (D \ C) do
17: if maxp covers p then
18: C ← C ∪ {p}
19: end if
20: end for
21: REP ← REP ∪ {maxp}
22: end while
23: return REP
24: end function

10 Approximation Pairs Based on Similarity-based
Rough Sets12

Similarity-based rough sets is an approximation space which is based on the
partition generated by correlation clustering. The lower approximation of a set
S is the union of those base sets that are subsets of S. To get these base sets,
every point in each base set must be considered. It can be a time-consuming
task if the number of points is high. The effectiveness of the representatives lies
in situations when the number of objects is very large. It can be practical to use
the power of representatives in the approximation process. For each base set,
let us consider only its representatives. Let B ∈ B be a base set, and REP (B)
be the set of its representatives. The approximation functions are defined as the
following:

– lr(S) =
⋃{B | B ∈ B and ∀x ∈ REP (B) : x ∈ S};

– ur(S) =
⋃{B | B ∈ B and ∃x ∈ REP (B) : x ∈ S}.

This way, the lower approximation of a set S becomes the union of those
base sets for which every representative is a member of S. A base set belongs

12 The work described in this section was based on [35].
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to the upper approximation if at least one of its representatives is in the set
S. Naturally, the certainty of the lower approximation might be lost, but as
the number of points is increasing a lot of resources can be saved. This a very
important feature for which it can be worth giving up the certainty property.

Fig. 28. Approximation based on representatives

In Fig. 28 a simple example is provided for the method. The base sets are
denoted by solid-line rectangles, and the set to be approximated (S) is denoted by
a grey ellipse. For each base set, the black circles symbolise the representatives.

The approximation of the set S is the following based on the representatives:

– lr(S) = B2 ∪ B6

– ur(S) = B1 ∪ B2 ∪ B3 ∪ B6

The approximation of the set S is the following based on the classical approx-
imation pair:

– l(S) = B2 ∪ B6

– u(S) = B1 ∪ B2 ∪ B3 ∪ B5 ∪ B6

The lower approximation is the same in both cases which is, of course, not
necessary. The upper approximation differs in one base set (B5). When there is a
huge number of points and there are several sets to be approximated, approxima-
tion using representatives is recommended. In this case, the method can reduce
the run-time of the approximation significantly. Determining the approximation
with the classical functions 32 objects needed to be considered. Using the pro-
posed method, only 13 of them had to be tested, so almost 60% of the original
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points were left-out. Of course, with 32 to 13 points is not a significant change,
but in the case of millions of objects, it can be very useful. Working with only
the representatives, time and resources can always be saved, because it is sure
that the number of representatives is less than that of U . Proving this is very
straightforward. Naturally, there cannot be more representatives than objects in
the universe. Their numbers cannot be equal either because it could only hap-
pen if every object were a representative which implies that every cluster was
singleton. Using this system is pointless because the system of base sets is empty
(every singleton cluster is discarded).

10.1 Set-Based Approximation Pairs13

In this subsection, two other new possible approximation pairs are proposed
based on the representatives. Let REP (S) denote the set of representatives of
any arbitrary set S.

The two proposed approximation pairs can be given as 〈l, u1〉 and 〈l, u2〉,
where

l(S) =
⋃

x∈REP (S)
[x]⊆S

{[x]}

u1(S) =
⋃

x∈REP (S)

{[x]}

u2(S) =
⋃

x∈REP (S)
‖[x]∩S‖>‖[x]\S‖

{[x]}

In this space, a base set contains objects that are similar to a given repre-
sentative, so each of them generates a base set. The representatives depend on
the set to be approximated and so does the system of base sets. As a result, the
base sets change as the set changes (they are relative to the set).

Figure 29 shows how the lower and upper approximation of a set S looks like
based on 〈l, u1〉 and 〈l, u2〉. In the middle, the lower approximation can be seen.
On the left side, the upper approximation based on u1 is shown and the right
figure illustrates the upper approximation based on u2 500 points were generated
randomly in the unit square. The set to be approximated forms a triangle and its
points are marked with larger squares. The base of the tolerance relation (based
on similarity) was the Manhattan distance of these objects (d) this time. A
similarity (SIMM) and a dissimilarity threshold (DIFF ) were defined. SIMM
was set to 0.1 and DIFF was set to 0.2. The objects that are similar to an
object x are denoted by circles in Fig. 29. The colours of the circles refer to the
process of approximation. The environments of the first representatives (objects
that are similar to it) are represented by darker circles while the environments
of the later representatives are represented by brighter ones.
13 The work described in this section was based on [6].
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Fig. 29. Three different set approximations of a triangle

The topmost circle—in the left picture—contains 4 objects from the set S,
but 3 of them are similar to a former representative. The remaining one becomes
a representative. However, this object is very similar to many non-set objects, so
this circle is not included in the right picture, as this object is not a representative
in this case.

10.2 Properties of Approximation

Proposition 1. None of the aforementioned approximation pairs are monotone.

Proof. The first counterexample is presented in Fig. 31. In the figures, the solid/-
dashed edge between nodes x and y denotes that the relation xRy holds/does
not hold, respectively. If there is no edge between some nodes, then the given
relation is partial [32,49], and the two nodes that aren’t connected are neither
similar nor dissimilar, i.e. they are incomparable or not have been compared yet.
The ranks of the objects are for the two given sets:

S: 〈0.126, 0.626, 0.626, 0.126,−1.000, 0.547, 0.547〉,
S′: 〈0.126, 0.626, 0.626, 0.126, 1.000, 0.547, 0.547〉.

In the case of the set S r1 = r4 < r2 = r3, henceforth one possible REP (S)
can be {2, 4}, where [2] = {1, 2, 3, 5} and [4] = {3, 4, 5, 7}. Object 4 is similar to
5 and 7, and 2 is similar to 5, hence l(S) = ∅.

In the case of the set S′ r1 = r4 < r2 = r3 < r5, and object 5 which
covers every member of S′, so object 5 becomes the only representative. Hence
l(S′) = {1, 2, 3, 4, 5}, thus l(S) ⊆ l(S′) holds.

However, although S ⊆ S′ u1(S) �⊆ u1(S′), where u1(S) = {1, 2, 3, 4, 5, 7}
and u1(S′) = {1, 2, 3, 4, 5}. This proves that the approximation pair 〈l, u1〉 is not
monotone.

To disprove the monotonicity of function u2 a different counterexample is
needed. Figure 30 show this tolerance relation and the sets S and S′. The ranks
of the objects in this case are:

S: 〈0.585, 0.759, 0.698, 0.668,-1.000,-0.009, 0.318〉,
S′: 〈0.585, 0.759, 0.698, 0.668, 1.000,-0.009, 0.318〉.
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Fig. 30. Monotonicity does not hold for u2.

Fig. 31. Monotonicity does not hold for u1.

For ranks in S r2 > r3 > r4 > r1, so at first the sizes of sets [2]∩S = {1, 2, 3}
and [2] \ S = {5, 6} need to be checked . The first of the two sets is bigger,
so 2 ∈ REP (S). The set S \ [2] only contains object 4, so the sizes of the sets
[4]∩S = {3, 4} and [4]\S = {5} need to be checked. Again, the first is the bigger
set, so 4 ∈ REP (S). Therefore u2(S) = [2] ∪ [4] = {1, 2, 3, 4, 5, 6}. Summarising
this: S ⊆ S′ but u2(S) �⊆ u2(S′). Hence, the approximation pair 〈l, u2〉 is not
monotone, too.

Proposition 2. The weak approximation property holds for both approximation
pairs.
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Proof. In both cases, the functions use the same representatives based on the
same order of ranks. Therefore the lower approximation cannot be a larger set
than the upper approximation.

Proposition 3. For 〈l, u1〉 the strong approximation property holds.

Proof. By definition l(S) ⊆ S is always true. In the case of u1, every member of
the set S is covered by at least one of the representatives. Thus S ⊆ u1(S) is
also true.

Proposition 4. For 〈l, u2〉 the strong approximation property does not hold.

Proof. In Fig. 32 an example can be seen that contradicts this property. The
ranks of the objects are the following:

r = 〈1.00, 0.85, 0.36, 0.36, 0.65, 0.55,−0.32,−0.80,−0.11, −0.11, −0.40〉.

Hence the possible representatives of the set S are the objects 1 and 7, where
[1] = {1, 2, 3, 4, 5, 6} and [7] = {6, 7, 8, 9, 10, 11}. The upper approximation of the
set S is u2(S) = {1, 2, 3, 4, 5, 6}, because [7]∩S = {6, 7, 8} and [7]\S = {9, 10, 11},
therefore object 7 cannot be a representative of S. So S �⊆ u2(S), meaning that
the strong approximation is not necessarily true.

Fig. 32. Strong approximation property does not hold for the second approximation
pair

Proposition 5. The normality of the lower and upper approximation holds.

Proof. The representatives are selected from the members of the set. If S = ∅
then there are no representatives, so l(S) = u1(S) = u2(S) = ∅. So the nor-
mality of the lower approximation holds because an empty set does not have
any representative members. The same holds for the normality of the upper
approximation.
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11 A Novel Area of Application – Graph Approximation
on Similarity-based Rough Sets

Rough set theory is a possible way to handle uncertainty using set-
approximations. Similarity-based rough sets is a new way for the same prob-
lem and it is based on the similarity of objects. A tolerance relation (based on
similarity) can be represented by a signed graph. This graph is complete if the
relation is total, and it is not complete if the relation is partial. Because of the
symmetry, it must be an undirected graph. Due to the reflexivity, every vertex
in the graph has a self-loop edge. If two objects are similar, then a positive edge
runs between them, and if they are different, then the edge is negative. Every
graph can be represented by a set that contains ordered pairs. In this case, it
can be represented by a set of 3-tuples. If a similarity graph can be treated as a
set, then a natural question arises: can this graph be also approximated? In this
chapter, a possible way is shown to define the lower and upper approximation
of a graph and also how this method can be applied in data pre-processing.

The graph in Fig. 33 can be represented by the following set:
⎧
⎨

⎩

〈A,A,+〉 , 〈B,B,+〉 , 〈C,C,+〉 , 〈D,D,+〉 , 〈A,B,+〉 , 〈A,C,+〉 ,
〈A,D,−〉 , 〈B,A,+〉 , 〈B,D,−〉 , 〈B,E,−〉 , 〈C,A,+〉 , 〈C,D,+〉 ,
〈D,A,−〉 , 〈D,B,−〉 , 〈D,C,+〉 , 〈E,B,−〉

⎫
⎬

⎭

Fig. 33. A tolerance relation (based on similarity) represented by a signed graph

The main goal of this part of the dissertation is to extend the principles of
similarity-based rough sets to graphs that represent tolerance relation (based on
similarity). As mentioned before, from the theoretical point of view, a Pawlakian
approximation space can be characterized by an ordered pair 〈U,R〉, where U
denotes the universe (a nonempty set of objects) and R denotes an equivalence
relation based on indiscernibility. In the similarity-based rough sets, R is a tol-
erance relation (based on similarity). In the case of graph approximation, the
universe is a complete undirected signed graph in which every node is connected
to every node by 2 edges (one positive and one negative) and every node has
also 2 self-loop edges. Formally G = U × U × {+,−}.
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Let G1 ⊆ G (G1 �= G) be a graph representing an arbitrary tolerance relation
(based on similarity). This graph defines the background knowledge. The relation
R is also defined by G1. For all objects x, y ∈ U if (x, y,+), then the objects are
similar and if (x, y,−),then they are different. In rough set theory (and also in
its similarity-based version), the base sets provide the background knowledge.
Here, there are base graphs, and they represent the same. The system of base
graphs is also determined by the correlation clustering, and it can be given by
the following formula:

Definition 12.

BG = {g | g ⊆ G1, and 〈x, y, s〉 ∈ g if p(x) = p(y) and s ∈ {+,−}}
where p is the partition gained from the correlation clustering.

Definition 13. Let G2 ⊆ G1 be an arbitrary subgraph of G1. The lower and
upper approximation of G2 can be given by the following way:

l(G2) =
⋃

{g | g ∈ BG and g ⊆ G2}

u(G2) =
⋃

{g | g ∈ BG and g ∩ G2 �= ∅}
The lower approximation is the disjoint union of those base graphs that are

subgraphs of G2. The upper approximation is the disjoint union of those base
graphs for which there exists a graph which is a subgraph of both G1 and G2.

Definition 14. The accuracy of the approximation can be calculated by the fol-
lowing fraction, where N(G) denotes the number of self-loop edges in an arbitrary
graph G:

αG2 =
|l(G2)/2| − N(l(G2))
|u(G2)/2| − N(u(G2))

Graph approximation uses the same concepts as the set approximation. How-
ever, it is a stricter method, as it takes into consideration not only the objects
but the edges too.

12 Attribute Reduction with Graph Approximation

The three main steps of data mining are pre-processing, knowledge discovery and
post-processing. Data pre-processing is a very important step in the data mining
process which involves transforming raw data into an understandable format.
Real-world data is often incomplete, inconsistent, noisy, and is likely to contain
many errors. Data pre-processing is a method of resolving such issues. One of the
main issues with raw data is that there can be too many attributes. So a natural
question can be if some of these attributes can be removed from the system
preserving its basic properties (whether some attributes can be considered as
superfluous). In this subsection, a method is proposed to measure the dependency
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between two attributes (or set of attributes). If this dependency value is above
a threshold, then one of the attributes can be removed. Let IS = (U,A) an
information system and A′, A′′ ⊆ A two sets of attributes. Let G1 be the graph
representing the tolerance relation (based on similarity), which is based on the
attribute set A′. Let G2 be the graph representing the tolerance relation (based
on similarity) which is based on the attribute set A′′. To measure the dependency
between A′ and A′′ the following method is proposed:

1. Determine the system of base graphs based on G1;
2. Approximate G2using the base graphs defined in the first step;
3. Calculate the accuracy of approximation;
4. If the accuracy is higher than a threshold, then A′′ can be treated as super-

fluous.

Fig. 34. G1 graph representing a tolerance relation (based on similarity) based on a
set of attributes

Fig. 35. The base graphs generated by the correlation clustering

In the following figures, a very simple example is shown with 14 objects.
In Fig. 34 a graph can be seen, which denotes a similarity-based on a set of
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attributes. In the figure, the solid lines denote the similarity, while the dashed
ones denote the difference between objects. In Fig. 35 the base graphs can be
observed which were generated by the correlation clustering. In this example,
there are three base graphs.

Fig. 36. G2 graph representing a tolerance relation (based on similarity) based on a
set of attributes with the same objects

Figure 36 shows another graph, which also illustrates another set of
attributes. It is important that the similarity is based on the same objects as
before. The difference between G1 and G2 is negligible. It can be observed only
in 4 edges. Between objects A and H, the negative edge was replaced by a posi-
tive one. Between objects K and N , the edge was deleted as well as between D
and G. Between A and B the positive edge was changed to negative.

Fig. 37. The lower approximation of G2

In Fig. 37 the lower approximation and in Fig. 38 the upper approximation
can be seen. It is interesting that even though there are only slight differences
between the two graphs the lower approximation contains only the two smallest
base graphs. The reason is that graph approximation is stricter because it takes
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Fig. 38. The upper approximation of G2

into consideration the edges. As objects A and B became different, the base
graph containing them cannot be in the lower approximation, only in the upper
approximation.

The accuracy of the approximation is: αG2 = 14
29 = 0.48

This means that based on G1 the percentage of the available information
about G2 is only 48% even though they are almost equivalent. This method
takes into account the real similarity among objects; therefore it can give appro-
priate results in situations, where other algorithms proved to be a dead end. For
example, in mathematical statistics a common method to measure the depen-
dency between attributes is correlation. Although, it works only if there is a
linear relationship between the attributes. Our proposed method can work in
various applications for any type of relationship.

13 Summary

The main result of my research was developing a completely new approxima-
tion space which was based on a tolerance relation (based on similarity). In
this space, the system of base sets is generated by the correlation clustering.
Correlation is a clustering technique that is based on a tolerance relation. The
proposed space has many good qualities and it is different from the covering
spaces induced by a tolerance relation (based on similarity). The main differ-
ence between our space and these covering spaces is that ours considers the real
similarity among the objects while the covering spaces generated by a tolerance
relation only consider similarity to a distinguished member. An algorithm was
successfully developed, based on physics, by which tolerance relations (based
on similarity) can easily be visualized. In data mining, to reduce the execution
time of an algorithm, it is common to use samples. A sample contains points
from the original data set. There are numerous ways to choose a part of the
input data set which can be treated as a sample. However, in every method,
it is crucial that the chosen objects must represent the entire population. In
this case, representativeness means that the specific properties are as similar in
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the sample as in the entire set. Without this property, important information
might be disregarded. In this dissertation, a method was provided to generate
the representatives of a given set. One of the good properties of this algorithm
is that it chooses the necessary number (not too small or big) of representatives.
The importance of the representatives lies in reducing the execution time of
the algorithms. In our research, it was applied to set approximation. The lower
approximation of a set is the union of those base sets that are subsets of the
given set. In order to get these base sets, every object in each base set must be
considered. It can be a time-consuming task if the number of points is high. In
this situation, it could be helpful to consider only the representatives for each
base set. New approximation pairs have also been proposed based on the repre-
sentatives. Feature selection is an important part of machine learning. Feature
selection refers to the process of reducing the number of attributes in a dataset,
or of finding the most meaningful attributes. This process improves the quality
of the model and it also makes the model more efficient. In the last section of
the dissertation, our graph-approximation method is described. It is based on
the fact that any tolerance relation (based on similarity) can be represented by a
signed graph and any graph can be represented by a set. Therefore the proposed
method (similarity-based rough sets) can be used for graphs as well. In the last
part of this work, a possible way is shown to use graph approximation in feature
selection.

Acknowledgement. This work was supported by the construction EFOP-3.6.3-
VEKOP-16-2017-00002. The project was supported by the European Union, co-
financed by the European Social Fund.

Appendix A Algorithms

Between 2006 and 2016, “Advanced Search Methods” was a compulsory subject
for some Computer Science master students. Initially, students learned about the
well known NP-hard problems (SAT, NLP, TSP, etc.) and various popular opti-
mization methods. Later, to help some physicists from University Babes-Bolyai
in Cluj, one co-author began to research the problem of correlation clustering.
This problem can easily be formulated (which equivalence relation is the closest
to a given tolerance relation?), can be quickly understood, is freely scalable, but
NP-hard, and if there are more than 15 objects in a general case an approxi-
mate solution can only be provided. That is why this problem got a central role
from 2010. In this year, the students with the co-author’s lead implemented the
learned algorithms, and used correlation clustering to test and compare them.
There were several didactic goals of this development: they worked as a team,
where the leader changed from algorithm to algorithm, whose duty was to dis-
tribute the subtasks among the others and compose/finalize their work. The
implementations together gave thousand of LOCs, so the students got experi-
ence with a real-life size problem. When designing this system as a framework,
the OOP principles were of principal importance, to be able to apply it for other
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optimization problems. The system was completed with several refactorisations
and extended with methods developed directly for correlation clustering, and sev-
eral special data structures which allowed to run programs several magnitudes
faster. Finally, the full source of the whole system with detailed explanations was
published at the Hungarian Digital Textbook Repository [3]. According to the
students’ requests, the system was written in Java. Jason Brownlee published a
similar book using Ruby [11].

In the next subsections, there is some brief information about the used algo-
rithms and their parameters. The whole descriptions can also be seen in [3].

A.1 Hill Climbing Algorithm

This method is very well-known. Each state in the search plane represents a
partition. A state is considered better than another state if its number of conflicts
is less than that of the other state. In each step, it is checked, whether there is
a better state in the neighborhood of the actual state. If there is not, then the
algorithm stops. If there is, then the next step goes from this point.

A.2 Stochastic Hill Climbing Algorithm

The original hill climbing search is greedy, it always moves to the best neigh-
bor. Stochastic hill climbing is a variant, where the algorithm chooses from the
neighbors in proportion to their goodness, allowing the algorithm to move in a
worse direction as well.

A.3 Tabu Search

Each state in the search plane represents a partition like in the previous algo-
rithms. The tabu search defines a list of banned states or directions to where it
cannot move at a time. This is called a tabu list or memory. There are many
types of memories. In the experiments, a short-term memory was used with a
size of 50.

The neighborhood of the actual state consists of banned and permitted states.
In each step, there are two possibilities:

– If one of the neighbors is so good that it is better than the best state so
far, then it should go there even if it is banned. This is called the aspirant
condition.

– The algorithm moves to the best-permitted neighbor of the actual state.

If the new state is better than the best state so far, then this state will be the
new best. The previous state will also be added to the tabu list, so the algorithm
could not go backwards immediately. If the list is full, then the last state will
be deleted. The algorithm stops if it reaches the 1000th step and it returns the
best state.
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A.4 Simulated Annealing

Each state in the search plane represents a partition. In each step, the algorithm
chooses a neighbor of the actual state. Let f denote the number of conflicts
in the actual state and f ′ denote the number of conflicts in the neighbor. If
f ′ < f , then the algorithm moves to the neighbor. If not, then it chooses this
state with the probability of ef−f′

T . The value T is the temperature value which
is a crucial parameter. It should decrease in each step. Determining the starting
temperature value is a hard task. The common method for the issue is heating.
In each temperature (starting from 1), 500 attempts are made to move to a
neighbor, and the number of successful movements are counted. If the ratio of
the number of successful movements and the number of attempts reaches 0.99,
then the heating procedure stops, otherwise the temperature value is increased.
After the heating, the annealing (search) step comes. It is important that how
much time the algorithm spends in each temperature value. A minimal step
count was defined and it increases each time the temperature is decreased until
it reaches a maximal value when the algorithm stops and returns the best state.
The minimal step count was set to 100 and the maximal was set to 1000. The
temperature values are always decreased by 97%.

A.5 Parallel Tempering

The simulated annealing runs on a single thread. This is a parallelized version,
where threads can cooperate. In this method, 3 threads were used.

A.6 Genetic Algorithm

In this algorithm, each partition is represented by an entity. In each search step,
there is a population of entities with a size of 100. In the beginning, each entity
represents a random partition. This population contains the actual generation
of entities and the best entities from the old generation. In each step, the best
25 entities stay in the population. The rest of the spaces are filled with the
descendants of the entities of the old generation. In step 1, the algorithm defines
the new generation. Step 2 is the reproduction step. A descendant is created in
this step with the crossover of 2 parent entities. In the experiments, one-point
crossover was used. For the crossover, not a random or the best element is chosen
but an element from a set defined by a parameter. The size of this set was 4.
After step 2, each child entity goes through a mutation phase (step 3) whose
probability was 2/3. After each child entity is created, the actual generation
is overwritten by the new generation, and the algorithm goes back to step 1.
The algorithm stops when it reaches the 2000th generation and returns the best
entity of the population.

A.7 Bees Algorithm

This algorithm is based on the society of honey bees. Each partition is repre-
sented by a “bee”. There are two types of bees: scout bees and recruit bees. Scout
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bees scout the area and they report back to the hive about their findings. Then
the necessary number (in proportion to the goodness of the finding) of recruit
bees go to the area to forage. In this case, the scouts are scattered across the
search plane and recruit bees were assigned only to the best of them. These
bees are called elites. The rest of the scout bees wander in the plane. It changes
dynamically which scout bees are considered as elite and how many recruits are
assigned to them. The recruits search around the elite bee to which they were
assigned, and if they find a better state, then the scout bees move to that posi-
tion. In the experiments, the number of scout bees was set to 50 and the number
of elites was 5 and 1000 recruit bees follow the elites. In the beginning, the scout
bees start from a random position. The algorithm stops when it reaches the
2000th step and it returns the partition represented by the best bee.

A.8 Particle Swarm Optimization

In this algorithm, each partition is represented by an insect (particle). Each
insect knows its best position and the best position of the swarm. The size of
the swarm was set to 50. In each step, each insect moves in the search plane. In
the beginning, the insects start from a random position. There are 3 possibilities
for them to move:

– Randomly move
– Move towards its best position
– Move toward the best position of the swarm

The possibilities of the moves was set to 0.2, 0.3, 0.5 respectively. After
reaching the 6000th step, the algorithm stops and returns the insect with the
best position.

A.9 Firefly Algorithm

In this algorithm, each partition is represented by a firefly. The fireflies are unisex
and their brightnesses are proportionate to the goodness of the partition they
represent. In the beginning, the fireflies start from a random position, and in
each step, each firefly moves to its brightest neighbor. If the brightest neighbor
of a firefly is itself, then it moves randomly. Brightness is dependent on the
distance of the insects. The intensity of a firefly is defined by the following
formula: Id = I0

1+γd2 , where I0 denotes the starting intensity, γ is the absorption
coefficient (was set to 0.03) and d is the distance between the two fireflies. After
10000 steps the algorithm stops, and the result is the partition that is represented
by the brightest firefly. The number of fireflies was set to 50.

Appendix B Software

I developed a program that helps us approximate different types of sets using the
proposed new approximation space (similarity-based rough sets). The software
can be downloaded from: https://github.com/Nagy-David/Similarity-Based-
Rough-Sets. For giving the input datasets, the user has two options:

https://github.com/Nagy-David/Similarity-Based-Rough-Sets
https://github.com/Nagy-David/Similarity-Based-Rough-Sets
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1. Generating random coordinate points
2. Reading a dataset from a file

1. Random Points
The user gives the number of points, and then the points are generated in a 2-
dimensional interval which is also given by the user In this option, the base of
the tolerance relation (representing the similarity) is the Euclidean distance of
the objects (d). A similarity (SIMM) and a dissimilarity threshold (DIFF )
were defined. The tolerance relation R can be given this way for any objects
x, y:

xRy =

⎧
⎪⎨

⎪⎩

+1 d(x, y) ≤ SIMM

−1 d(x, y) > DIFF

0 otherwise
(7)

2. Continuous Data
Each row represents a single entity. In the software, there is an option to
normalize the data in the way described below. Let A be an attribute and v
the value to be normalized. After the normalization:

v =
v − min(A)

max(A) − min(A)
(8)

The similarity is defined in two steps.
(a) step: Let A1, A2 . . . An be some attributes, t1, t2 . . . tn be threshold values

and x, y be two objects. Let z(Ai) denote the attribute value of Ai for
any object (i = 1 . . . n). If ∃i ∈ {1 . . . n} : |x(Ai) − y(Ai)| ≥ ti, then the
objects x and y are treated as different.

(b) step: If the condition in the first step does not hold, then the tolerance
relation R can be defined in the following way for any objects x, y using
a similarity threshold SIMM and a dissimilarity threshold DIFF :

xRy =

⎧
⎪⎨

⎪⎩

+1 d(x, y) ≤ SIMM

−1 d(x, y) > DIFF

0 otherwise
(9)

The d “distance” value is calculated for any objects x, y by the following
method:

d(x, y) =

√
√
√
√

n∑

i=1

(x(Ai) − y(Ai))
2 (10)

The necessity of the first step can be explained by the following simple
example. Let us assume that the objects are patients. Two patients may
differ only in the blood pressure level and the other attribute values are
relatively close to one another. So the distance between these two entities
can be a small value. However, the patients cannot be treated as simi-
lar because a high blood pressure level can indicate an illness. This fact
remains hidden without the first step, because the similarity value can be
small for the two patients. The same holds for normalized data.
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After getting the input points the software runs a search/optimization algorithm
that finds a quasi-optimal partition. As mentioned earlier, the singleton clusters
mean little information, so the software leaves them out and creates the system
of base sets. After defining the base sets, the user can select a set of points for
approximation.

In the software. the user has the option to insert the members of the left-
out singleton clusters to any base set. Two singleton clusters cannot be merged
together due to the tolerance relation based on similarity (their members are
different). It was mentioned earlier that there are two types of singletons:

– Its member is different from most of the objects so it forms a cluster alone.
– Due to the background knowledge the system decided that this object cannot

be a member of any other group.

The software does not examine for a singleton to which type it belongs, so
there is no mandatory annotation for any singleton. It is up to the user to decide.
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