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Abstract. The semantic web provides access to an increasing number
of linked datasets expressed in RDF. One feature of these datasets is that
they are not constrained by a schema. Such schema could be very useful
as it helps users understand the structure of the entities and can ease
the exploitation of the dataset. Several works have proposed clustering-
based schema discovery approaches which provide good quality schema,
but their ability to process very large RDF datasets is still a challenge.
In this work, we address the problem of automatic schema discovery,
focusing on scalability issues. We introduce an approach, relying on a
scalable density-based clustering algorithm, which provides the classes
composing the schema of a large dataset. We propose a novel distribution
method which splits the initial dataset into subsets, and we provide a
scalable design of our algorithm to process these subsets efficiently in
parallel. We present a thorough experimental evaluation showing the
effectiveness of our proposal.
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1 Introduction

The web of data represents a huge information space consisting of an increasing
number of interlinked datasets described using languages proposed by the W3C
such as RDF, RDFS and OWL. The Resource Description Framework (RDF)1

is a standard model for data creation and publication on the web, while RDF
Schema (RDFS)2 was introduced to define a vocabulary which can be used to
describe an RDF dataset. The Ontology Web Language (OWL)3 is designed to
represent rich and complex knowledge related to an RDF dataset. OWL docu-
ments are known as ontologies.

One important feature of such datasets is that they contain both the data
and the schema describing the data. A good practice for the dataset publisher
is to provide schema related declarations, such as the VoID’s predicates4, which
capture various metadata describing a source. These declarations help the users

1 RDF: https://www.w3.org/RDF/.
2 RDFS: https://www.w3.org/TR/rdf-schema/.
3 OWL: https://www.w3.org/OWL/.
4 VoID: The Vocabulary of Interlinked Datasets.
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understand the nature of the entities within an RDF dataset. However, these
schema-related declarations are not mandatory, and they are not always pro-
vided. As a consequence, the schema may be incomplete or missing. Further-
more, even if the schema is provided, data are not constrained by this schema:
resources of the same type may be described by property sets which are different
from those specified in the schema.

The lack of schema offers a high flexibility while creating interlinked datasets,
but can also limit their use. Indeed, it is not easy to query or explore a dataset
without any knowledge about its resources, classes or properties. The exploitation
of an RDF dataset would be straightforward with a schema describing the data.
In the context of web data, a schema is viewed as a guide easing the exploitation
of the RDF dataset, and not as a structural constraint over the data.

Several works have focused on schema discovery for RDF datasets. Some of
these works rely on clustering algorithms to automatically extract the under-
lying schema of an RDF dataset [9,17,18]. These approaches explore instance-
level data in order to infer a schema providing the classes and properties which
describe the instances in the dataset. While these schema discovery approaches
succeed in providing a good quality schema, their scalability is still an open
issue as they rely on costly clustering algorithms. The use of such algorithms for
discovering the underlying schema of massive datasets remains challenging due
to their complexity.

In our work, we have addressed this scalability issue. Our goal is to propose
a schema discovery approach suitable for very large datasets. To this end, we
introduce in this paper a scalable density-based clustering algorithm specifically
designed for schema discovery in large RDF datasets. Our approach parallelizes
the clustering process and ensures that the result is the same as the one provided
by a sequential algorithm. The main contributions presented in this paper are
the followings:

– A novel distribution method dividing the initial dataset into subsets which can
be processed efficiently in parallel, as well as an optimization of this method
which limits the size of the subsets, thus limiting the number of comparisons
among entities during the clustering.

– A parallel clustering algorithm suitable for a distributed environment which
limits the costly information exchange operations between the calculating
nodes.

– A scalable implementation of our algorithm based on the distributed process-
ing framework Apache Spark[29], with the source code available online5.

– A thorough experimental evaluation illustrating both the quality of the dis-
covered classes and the performances of our approach.

This paper is organized as follows. The motivation behind our proposal is
presented in Sect. 2. A global overview of our approach is provided in Sect. 3.
Data distribution is detailed in Sect. 4, and neighbor identification is described
in Sect. 5. Section 6 presents the local clustering process and Sect. 7 describes the
5 https://github.com/BOUHAMOUM/SC-DBSCAN.

https://github.com/BOUHAMOUM/SC-DBSCAN
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merging stage which produces the final clustering result. Experimental results
are presented in Sect. 8. Section 9 discusses the existing approaches for schema
discovery. Finally, Sect. 10 concludes the paper and presents our future works.

2 Motivation

In the web of data, datasets are created using the languages proposed by the
W3C such as the RDF language. They include both the data and the schema
describing them. However, this latter is a description of the entities in the
dataset, but not a constraint on their properties. The schema can be defined
partially, or even missing. Besides, the entities of a given class are not con-
strained by the structure of their class. Indeed, an entity belonging to a given
class does not necessarily have all the properties defined for this class, and can
even have some properties which are not defined in this class. Furthermore, two
entities belonging to the same class do not necessarily have the same properties.

The nature of the RDF language offers a high flexibility when creating
datasets. However, it makes the exploitation of these datasets difficult, as it
is not obvious to understand their content.

Schema discovery approaches aim at providing a schema describing an RDF
dataset, which can be useful for various data processing and data management
tasks. Examples of such tasks are the followings:

Providing Applications with a Global View of an RDF Dataset. The
discovered schema provides a summary of the classes corresponding to the enti-
ties in the dataset. This overview can be used to understand the content of an
RDF dataset and to assess its fitness for the specific information requirements
of a given application.

Interlinking RDF Datasets. One key feature of RDF datasets is that they
include links to other datasets, which enables the navigation in the web of data.
These links are represented by owl:sameAs6 properties, and their determina-
tion is known as interlinking. Some tools have been proposed to perform this
task, such as Knofuss7 or Silk8, which were used to link Yago [21] to DBpe-
dia [3]. These tools require type and property information about the datasets
in order to generate the appropriate owl:sameAs links between them. The dis-
covered schema provides this information and could therefore be very useful for
interlinking datasets.

Querying RDF Datasets. The lack of information about the classes, proper-
ties and resources contained in RDF datasets makes their interrogation difficult.
Indeed, this information is required in order to formulate a query in the lan-
guages used for querying RDF datasets such as Sparql [30]. A schema describing
the underlying structure of the data provides this information and such schema

6 sameAs: https://www.w3.org/2001/sw/wiki/SameAs.
7 Knofuss: https://technologies.kmi.open.ac.uk/knofuss.
8 Silk: http://silkframework.org/.

https://www.w3.org/2001/sw/wiki/SameAs
https://technologies.kmi.open.ac.uk/knofuss
http://silkframework.org/
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would considerably ease query formulation. It could even be used to develop
tools that assist user while formulating the queries, such as the one proposed
in [8]. In addition, providing a schema describing a dataset allows the creation
of an index over the entities to accelerate query answering. The schema could
also enable the selection of the relevant sources while executing a query over a
distributed dataset.

The above tasks are examples among many others to illustrate the usefulness
of a schema describing an RDF dataset, and to show why schema discovery and
understanding data have been identified as key challenges in data management [1].

3 Overview of the Approach

Our scalable schema discovery approach aims to extract a schema that captures
the structure of the entities contained in a large RDF dataset, which cannot
be managed by the existing approaches due to their complexity. The approach
consists in extracting the implicit classes of the entities as well as the properties
describing these classes.

In this section, we present some preliminary definitions used throughout the
paper and we introduce the general principle of our proposal.

An RDF dataset D is a set of RDF(S)/OWL triples D ⊆ (R ∪ B) × P ×
(R∪B ∪L), where R, B, P and L represent resources, blank nodes (anonymous
resources), properties and literals respectively. A dataset can be seen as a graph
where vertices represent resources, blank nodes and literals, and where edges
represent properties.

Example 1. Figure 1 presents an example of RDF dataset. The vertices repre-
sented as ovals are the resources, the ones represented as rectangles are literals.
Each edge represents a property, and its label corresponds to the property name.
For example, the resource e1 is described by the following triples:

〈e1, id, 01〉
〈e1, name,Ester〉
〈e1, authorOf, e5〉

In the sequel, for the sake of brevity, the properties name, id, publish, gender,
title, conference, year, rank will be respectively replaced by p1, p2, p3, . . . , p8.

In such a dataset, an entity e is either a resource or a blank node, that is,
e ∈ R ∪ B. We introduce a function denoted by which returns the properties
of an entity. It is defined as follows:

: R ∪ B → P
e �→ {p ∈ P | 〈e, p, o〉 ∈ D}

Example 2. The entities e1, e2, . . . , e7 extracted from the example of Fig. 1 are
described as follows:
e1 = {p1, p2, p3}, e2 = {p1, p2, p3, p4}, e3 = {p2, p3, p4}, e4 = {p2, p5, p6, p7},
e5 = {p2, p5, p6}, e6 = {p1, p2, p5, p8}, e7 = {p2, p5, p7}.
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Fig. 1. An example of RDF dataset describing authors, publications and conferences

Similarly to the concept of class in data modeling, a class in an RDF dataset
represents a set of individuals sharing some properties. The aim of our approach
is to discover the implicit schema by grouping entities having similar structures,
i.e. entities described by similar properties. The resulting groups represent the
classes of the implicit schema describing the dataset.

Definition 1. A schema S describing a dataset D is composed of a set of classes
{C1, . . . , Cn}, where each Ci is described by a set of properties {pi

1, . . . , p
i
m}.

The similarity between entities could be evaluated using any index that mea-
sures the similarity between finite sets such as Sørensen-Dice index [12], Overlap
indexes [2] and Jaccard Index [16]. In our context, the properties describing the
entities represent the finite sets. Two entities are similar if they share a number
of properties which is equal to or higher than a given threshold. In our work, we
evaluate the similarity between two entities ei and ej using the Jaccard index,
which is defined as the size of the intersection of the property sets divided by
the size of their union [16]:

J(ei, ej) =
|ei ∩ ej |
|ei ∪ ej |
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The similarity value is comprised between 0 and 1. Two entities ei and ej

are similar if J(ei, ej) ≥ ε, where ε is a given similarity threshold. The Jaccard
index has been used in several schema discovery approaches [9,17,18], leading
to a good quality schema.

Having defined the concepts used in our paper, we now introduce an overview
of our proposal. We designed a distributed density-based clustering algorithm
implemented using a big data technology which efficiently manages large RDF
datasets. The parallel execution of a density-based clustering algorithm is not
straightforward and raises several issues:

– how to distribute the data over several computing nodes when the size of the
dataset makes the clustering impossible on a single node?

– how to form the clusters from the distributed dataset? And how to limit
the information exchanged between the computing nodes during this process,
given that the neighbors of the entities are distributed?

– how to ensure that the parallel clustering algorithm provides the same result
as a sequential one?

To address these issues, the initial dataset is split into subsets in order to
enable the parallel clustering of the entities. The clustering is performed on each
subsets, and local clusters are created. These latter are then merged to provide
the final result. Despite its distributed design, our algorithm provides the same
clustering result as the sequential DBSCAN algorithm [10]. The final clusters
represent the classes of the schema describing the considered dataset.

Figure 2 gives an overview of our approach, focusing on the parallelization
of the processes and the communications among the computing nodes.

Fig. 2. Overview of our schema discovery approach

In the data distribution phase, chunks of entities are created according to
the properties describing the data. Each chunk contains entities sharing some
common properties; these entities are therefore likely to be similar. Our distri-
bution method ensures that all the similar entities are grouped together in at
least one chunk, such that two similar entities will be compared at least once.
This way, all the relevant comparisons will be performed during the clustering
of the chunks.
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Once the chunks are created, the neighborhood of the entities is identified
within each chunk. Then for each entity, the lists of its neighbors, which could
be distributed over several chunks, are consolidated into one list by exchanging
information between the computing nodes. During this stage, entities having
dense neighborhoods, called core entities, are identified.

Based on the entities having a dense neighborhood, the local clusters are
built in each chunk according to the density principle. To create a local cluster,
we start with an arbitrary entity having a dense neighborhood and we retrieve
all its similar entities. Then, their neighbors which have dense neighborhoods
are retrieved and recursively added to the local cluster.

Finally, the clusters which have elements distributed over several chunks and
belonging to distinct local clusters are built. These local clusters are merged to
form the final clusters. Two clusters are merged if they share a core entity.

To achieve good performances, our proposal is implemented using Spark, an
open source distributed computing framework with (mostly) in-memory data
processing engine suitable for processing large datasets [29]. As it is always the
case of distributed computing frameworks, the operations that need communi-
cations between nodes are costly. Some operations within Spark trigger an event
known as a shuffle. The shuffle is Spark’s mechanism for re-distributing data.
It involves copying data across executors and machines, making it a complex
and costly operation. As explained above, we have proposed a novel distribution
method which both reduces communications between nodes and minimizes the
need of Spark’s shuffle operations.

The concepts and algorithms of our scalable schema discovery approach are
detailed in the following sections.

4 Distributing Data over Computing Nodes

The distribution of data plays an important role in the parallelization of our
algorithm. The initial dataset is first divided into chunks which could be clustered
in parallel by the computing nodes. Our novel distribution principle ensures
that there is no overhead communication between the computing processes, and
that clustering a chunk does not require any data located in other chunks. As
a consequence, we ensure that there are no useless data transfers between the
computing nodes. The distribution method must ensure that enough information
is provided to merge the clusters that span across several chunks; in our proposal,
the replicated entities are used to perform the merging.

In this section, we first show how to split the initial dataset into chunks while
meeting the above requirements. As the initial data distribution may create
chunks having a size which exceeds the capacity of a calculating node, we then
explain how to further decompose such large chunks.

4.1 Initial Distribution

The intuition behind our proposal is to group all similar entities sharing some
common properties into chunks. Indeed, according to the similarity index, two
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entities are similar if they share a number of properties higher than a given
threshold. Entities that could be similar are grouped together in at least one
chunk, and will be compared during the computation of their neighborhood.
Comparisons of entities inside each chunk will be performed later. If two given
entities are not grouped together in any of the resulting chunks, this means that
they are not similar.

A chunk of data is defined as follows:

Definition 2. A chunk for a set of properties P ⊆ P denoted by [P ] is a subset
of entities having the properties of P in their description: e ∈ [P ] =⇒ P ⊆ e

Entities have to be distributed across several chunks to be efficiently clus-
tered. We first describe a naive assignment of entities to chunks in order to give
the idea behind the distribution principle. Then, an optimization is detailed.

The naive approach consists in assigning the entities according to all the
properties describing them. An entity e described by the properties e =
{p1, p2, . . . , pn} will be assigned to the chunks [p1], [p2], . . . , [pn]. In other words,
e is grouped with all the entities that share at least one property with e.

Definition 3. With the Naive Assignment, each entity is assigned to the chunks
for each of its properties:

∀e,∀p ∈ e, e is assigned to [p].

Proposition 1. (Naive Assignment Soundness). With the Naive Assignment,
two similar entities will be grouped into at least one common chunk, i.e. all
required comparisons will be performed at least once.

Proof. According to our similarity index, two similar entities must have at least
one property in common. Using the Naive Assignment, they will be assigned to
at least one common chunk.

The Naive Assignment suffers from an important drawback. Two similar
entities could be grouped redundantly many times. For example, the entities
e1 = {p1, p2, p3} and e2 = {p1, p2, p3, p4} will be both assigned to the chunks
[p1], [p2], [p3] and consequently, they will be compared three times.

In our approach, we do not consider all the properties while assigning the
entities to the chunks to limit the number of duplications and reduce the cost
of the comparison process. To this end, we introduce the notion of dissimilarity
threshold, which represents the number of properties to consider in order to
decide whether this entity could be similar to any other one. The assignment
is defined in two steps. Firstly, we calculate for each entity its dissimilarity
threshold, which allows to choose the number of chunks an entity has to be
assigned to. Secondly, we assume that a total order relation is defined on the
properties; the chunks to which the entities are assigned are chosen according to
this order.

For example, let us consider e2 = {p1, p2, p3, p4} and ε = 0.7. If e2 differs
from any other entity by more than two properties, the other entity can not be
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similar to e2. For instance, an entity e′ = {p3, p4, p5} will not be similar to e2
because e2 \ e′ = {p1, p2} has two elements. We will show that it is sufficient
to assign e2 to the chunks [p1] and [p2] to ensure that all its similar entities are
within these chunks. The entities which are not assigned to these chunks can not
be similar to e2.

However, properties can not be selected randomly, otherwise, this will pre-
vent similar entities to be grouped in the same chunks and compared later. For
example, let us consider the similar entities e2 and e3 where e2 = {p1, p2, p3, p4}
and e3 = {p2, p3, p4}. Assuming that the similarity threshold is ε = 0.7, and
considering the dissimilarity threshold, the entity e2 can be assigned to [p1], [p2]
and e3 only to [p3]. e2 and e3 are not grouped in a chunk even though they are
similar. We can see that randomly assigning these entities does not guarantee
that they are compared even if they are similar. This problem can be solved by
defining a total order on the properties and selecting the properties according to
this order. By assigning the entities according to an order in this example, the
entity e3 would be assigned to [p2] instead of [p3]. Therefore, e2 and e3 would
be grouped in the chunk [p2] and compared during the computation of their
neighborhood.

We will now formalize these intuitions. Let us introduce a proposition, which
expresses that if the properties of two entities differ to a certain extent, these
entities can not be similar.

Proposition 2. Let e1 and e2 be two entities. If |e1 \ e2| ≥ |e1| − ε × |e1|� + 1
then e1 and e2 can not be similar.

Proof. Suppose that |e1\e2| ≥ |e1|−ε×|e1|�+1. We have |e1\e2| = |e1|−|e1∩e2|.
Thus, |e1| − |e1 ∩ e2| ≥ |e1| − ε × |e1|� + 1. By eliminating |e1| on both sides,
we obtain |e1 ∩ e2| ≤ ε × |e1|� − 1 which implies that |e1 ∩ e2| < ε × |e1|�.
According to the definition of the Jaccard similarity index, this formula implies
that e1 and e2 can not be similar.

We now define the notion of dissimilarity threshold for an entity e. Note
that the dissimilarity threshold as defined in our work is based on the Jaccard
similarity index. Using another index would require to propose another definition
of this threshold based on this index.

Definition 4. The dissimilarity threshold for an entity e is the number dt(e) =
|e| − ε × |e|� + 1.

The following definition presents the optimized assignment.

Definition 5. Let <P be a total order on the properties describing a dataset,
and let e be an entity with e = {p1, p2, . . . , pn} and pi <P pi+1 for 1 ≤ i < n.
With the optimized assignment, an entity e is assigned to the chunks [p1], [p2],
. . . , [pdt(e)]. We denote by ch(e) the set of properties {p1, p2, . . . , pdt(e)}.
Proposition 3. With the optimized assignment, all the comparisons required
for the clustering will be performed at least once.
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Proof. We have to show that if two entities are similar, they are both assigned
to at least one common chunk. Let e1 and e2 be two similar entities. We have
|e1 ∩ e2| ÷ |e1 ∪ e2| ≥ ε. Thus, |e1 ∩ e2| ≥ ε × |e1 ∪ e2| which implies that
|e1 ∩ e2| ≥ ε× |e1|� and |e1 ∩ e2| ≥ ε× |e2|�. This implies that |e1| − |e1 ∩ e2| ≤
|e1|−ε×|e1|�. As |e1 \e2| = |e1|− |e1 ∩e2|, we obtain |e1 \e2| ≤ |e1|−ε×|e1|�.
As |ch(e1)| = dt(e1) > |e1| − ε × |e1|�, we have ch(e1) ∩ e2 �= ∅.

We can show likewise that ch(e2) ∩ e1 �= ∅. Consequently, ch(e1) and ch(e2)
contain both an element of e1 ∩ e2.

If there is a total order on the set of properties, we can choose the infimum
of e1 ∩ e2 for ch(e1) and ch(e2). In this case, ch(e1) ∩ ch(e2) �= ∅. This means
that at least one chunk will contain both e1 and e2.

In our work, we propose to order the properties according to their selectivity.
The selectivity of a property is one minus the ratio of the number of entities
described by this property, over the total number of entities. A high selectivity
means that few entities are described by the property. In our approach, the
properties are ordered from the most to the least selective. This will lead to
chunks that are less dense. More meaningless comparisons will then be skipped
and the clustering of each chunk will be more efficient.

Example 3. Let us consider a dataset D described by the set of properties P =
{pi | i ∈ [1, 8]} and containing the set of entities {ei | i ∈ [1, 7]} where each
entity is described by:
e1 = {p1, p2, p3}, e2 = {p1, p2, p3, p4}, e3 = {p2, p3, p4}, e4 = {p2, p5, p6, p7},
e5 = {p2, p5, p6}, e6 = {p1, p2, p5, p8}, e7 = {p2, p5, p7}.

In our example, the similarity threshold is set to ε = 0.7. With respect to
their selectivity, the order on the properties is p8 <P p4 <P p6 <P p7 <P p1 <P
p3 <P p5 <P p2. Distributing the entities over the chunks with the optimized
assignment provides the result presented in Fig. 3.

Fig. 3. Distributing the dataset D over data chunks

For example, the dissimilarity index of the entity e2 is equal to dt(e2) =
4−0.7× 4�+1 = 2. The two most selective properties describing e2 are p1 and
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p4, e2 is therefore assigned to [p1] and [p4]. This assignment ensures that e2 is
grouped with each of its neighbors at least once, and therefore will be compared
to each of them at least once (e2 is grouped with its neighbors e1 and e3 in
chunks [p1] and [p4] respectively).

Both the empty chunks and the ones containing a single entity such as [p2]
and [p8] are deleted.

Algorithm 1 formalizes the data distribution stage. It requires the similarity
threshold ε, used to compute the dissimilarity threshold, and to define the chunks
ch(e) for each entity e.

Algorithm 1. Distributing Entities
Input: the dataset D, the similarity threshold ε
1: for all entity e in D do in parallel
2: for all property p in ch(e) do
3: [p] = [p] ∪ {e}
4: end for
5: end for
6: Merge the chunks generated by the parallel execution for the same properties
7: return the chunks

The computation of the assignment of each entity (line 1–5) is performed in
parallel on the computing nodes. The partial chunks are then merged to obtain
the final chunks.

The distribution process may result in some chunks which are too large to
be clustered by a single node. This will require a further partitioning, described
in the following section.

4.2 Managing Big Chunks

Since a chunk [p] contains a set of entities described by the property p, the
number of entities within [p] could exceed the computing capacity of a single
node which prevents the execution of the clustering. In that case, each large
chunk [p] is further divided according to other properties.

We introduce the capacity parameter which determines whether a chunk is
exceeding the computing capacity of a single node.

In the case of a large chunk [p] that contains a number of entities higher
than capacity, the algorithm creates sub-chunks for each property describing
the entities within [p] except p, then assigns each entity in [p] to a sub-chunk if
it is described by the property used to generate the sub-chunk:

∀e ∈ [p],∀pi ∈ e, [{p, pi}] = [{p, pi}] ∪ {e}
Recursively, the size of all the resulting chunks is evaluated and those exceed-

ing the capacity of a node are divided until all the chunks have a number of
entities lower than the computation capacity of a single node.
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At the end of this process, chunks of the initial dataset are created, all of
them having a number of entities that could be efficiently clustered by a single
node. The distribution of entities over chunks does not require any information
sharing between the nodes.

Example 4. For example, if the capacity of a node is 3 and if we consider the
chunk [p2] = {e1, e2, e3, e4, e5} of the previous example, its size is greater than the
capacity. [p2] will be further divided into sub-chunks, for example [p2, p1] = {e2}
and [p2, p3] = {e1, e2}.

Algorithm 2 evaluates the size of each chunk and divides those exceeding the
capacity. This method is applied recursively until the size of all the chunks is
lower than the capacity parameter.

Algorithm 2. Splitting Big Chunks
Input: chs: the chunks, cap: the capacity of computing nodes
1: for all [P ] ∈ chs | |[P ]| > cap do in parallel
2: for all e ∈ [P ] do
3: for all pi ∈ e \ P do
4: [P ∪ {pi}] = [P ∪ {pi}] ∪ {e}
5: end for
6: end for
7: end for
8: Merge the chunks generated by the parallel execution for the same properties
9: return the chunks

Once the chunks have been generated, the computation of the entities neigh-
borhoods will be performed on each of them. This process is described in the
following section.

5 Core Identification

In a clustering algorithm, data points which are close to each other are grouped
together. Our approach is density-based and the notion of “closeness” is related
to the one of density of an entity’s neighborhood. In order to form a cluster from
a given entity, the neighborhood of this entity has to contain a sufficient number
of points; in other words, the density of its neighborhood has to exceed a given
density threshold. This section describes the identification of entities having a
dense neighborhood.

Let us first recall some definitions used by the DBSCAN algorithm [10].

Definition 6. The ε-neighborhood of an entity e is the set of entities which are
similar to e with a threshold of ε.

neighborhoodε(e) = {ei ∈ D | J(e, ei) ≥ ε}
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According to the ε-neighborhood of the entities, three kinds of points are
distinguished: core entities with at least minPts entities in their ε-neighborhood,
border entities, which are not core entities but have at least one core entity in
their ε-neighborhood, and noise entities which have no core entity in their ε-
neighborhood. Noise points are not assigned to a cluster.

Definition 7. An entity e is a core entity if the number of entities within its
ε-neighborhood is greater than the density threshold minPts,
i.e. |neighborhoodε(e)| ≥ minPts.

Once the ε-neighborhood is computed for each entity, the core entities are
identified. However, as the data is partitioned in chunks in our approach, the
neighborhood of entities may span across several chunks. In such case, the num-
ber of neighbors of each entity can not be computed only from one chunk.

Example 5. If we set minPts to 2 in our example, the entity e2 that has e1 and e3
in its neighborhood is a core entity. But after the assignment to the chunks, the
neighborhood of e2 is distributed over the chunks p1 and p4. If the comparisons
between entities are done within each chunk independently, the number of e2’s
neighbors in each chunk does not exceed minPts and e2 is not considered as a
core.

In our approach, core identification is a two-stage process, as illustrated by
Fig. 2b.

In the first step, the ε-neighborhood of each entity is calculated in parallel
within each chunk. Calculating the ε-neighborhood of the entities represents the
most expensive operation in a density-based clustering algorithm since it requires
comparing all the possible pairs of entities. Our algorithm operates on chunks
containing a number of entities small enough to allow a fast execution and to skip
a number of meaningless comparisons. Moreover, this operation is parallelized
over the calculating nodes to provide the best performances. In the second step,
the neighbors discovered in each chunk are grouped by entity, and the list of the
corresponding neighbors of each entity in the whole dataset is built. The core
entities are the ones having a number of neighbors greater or equal to minPts.

Example 6. With minPts = 2, the cores identified in Example 3 are e2 and
e4. For example, the algorithm finds that the neighbors of e2 are e1 and e3
respectively belonging to the chunks [p1] and [p4]. Then, these lists are merged
to provide the complete list of e2’s neighbors: neighborhoodε(e2) = {e1, e3}.
Finally, e2 is identified as a core entity because the number of entities within its
neighborhood is equal to minPts.

Algorithm 3 describes the core identification stage, executed in parallel with-
ing each chunk.

This algorithm provides the list of neighbors of each entity in each chunk
(lines 1–5) and then merges the lists (line 6). The lists of neighbors for each
entity are exchanged between the calculating nodes in order to group each entity
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Algorithm 3. Core Identification
Input: chs: the chunks, ε: the similarity threshold, minPts: the density threshold
1: for all [P ] ∈ chs do in parallel
2: for all e ∈ [P ] do
3: neighborhoodε(e) = {ei ∈ [P ] | J(e, ei) ≥ ε}
4: end for
5: end for
6: Merge the local neighborhoods to compute the complete list of neighbors of each

entity
7: for all e ∈ D do
8: if |neighborhoodε(e)| ≥ minPts then
9: cores = cores ∪ {e}

10: end if
11: end for
12: return cores

with all its neighbors. Then, the algorithm tags the entities having a number of
neighbors greater than or equal to minPts as core entities (line 7–11).

Having computed the neighborhood of each entity and identified the core enti-
ties, the clustering is performed locally in each chunk. This process is described
in the following section.

6 Local Clustering

During the local clustering, clusters are computed in each chunk. A local cluster
contains entities which are similar inside a chunk.

The clustering stage is executed in parallel in the different chunks indepen-
dently; the distribution strategy ensures that the clustering within a chunk does
not require any data from any other chunk. This minimizes the costly overhead
communications between the chunks and speeds up the clustering stage.

In a density-based clustering algorithm, the clusters are built according to
the density-reachable principle, introduced by the DBSCAN algorithm [10]. The
corresponding definitions are presented hereafter.

Definition 8. An entity e is directly density-reachable from an entity e′ wrt. ε
and minPts if and only if e′ is a core entity and e is in its ε-neighborhood, i.e.
|neighborhoodε(e′)| ≥ minPts and e ∈ neighborhoodε(e′).

Definition 9. An entity e is density-reachable from an entity e′ wrt. ε and
minPts if there is a chain of entities e1, . . . , ez, e1 = e′, ez = e such that ei+1

is directly density-reachable from ei,∀i ∈ {1, . . . , z}.
The clusters are built based on the core entities. As the neighborhood of

entities have been computed and the core entities identified, all the required
information is available to generate the clusters locally in each chunk. Only
core entities will generate clusters by adding their neighbors as elements of the
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clusters. Other entities will be either borders in some core’s neighborhood, or
noise entities.

For each core entity e, a cluster C containing e and its neighbors is cre-
ated. The core entities within the ε-neighborhood of e are then retrieved and
their neighbors are added to the cluster C. The neighbors of the cores in C are
recursively added to the cluster until the expansion stops on border entities.

Figure 2c shows the parallelization of this operation; the clustering is per-
formed on each chunk independently from the others and provides a local clus-
tering result.

Example 7. Clustering the chunks obtained in Example 3 based on the cores
identified in Example 6 provides the result presented in Fig. 4. The clusters are
denoted by the ids of the chunks followed by an index. In our example, four local
clusters are built, cp1.1, cp4.1, cp6.1 and cp7.1 respectively within the chunks p1,
p4, p6 and p7.

The core entity e2 in the chunks [p1] and [p4] forms a cluster within each
chunk by grouping all the entities that are density-reachable from e2. The same
principle is applied for all the core entities in the other chunks. To prevent
ambiguity, the clusters are annotated by the ids of the chunks followed by an
index. An entity which do not belong to any cluster, such as e6, could be assigned
to a cluster during the merging stage if it belongs to a cluster in another chunk,
or could remain a noise entity.

Fig. 4. Building local clusters in each chunk

Algorithm 4 computes the clusters in every chunk generated in the previous
stage. It iterates over the core entities previously identified and creates for each
one a cluster containing the core entity and its neighbors (line 6). The algorithm
then checks among the added neighbors those which are cores, and adds their
neighbors to the cluster (lines 7–9). The algorithm recursively adds the neighbors
of the cores to the current cluster until all its cores are checked and the expansion
stops on border entities. The same operation is repeated with another core which
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has not been visited yet, until all the cores are clustered. The final output of the
algorithm is the set of local clusters.

Algorithm 4. Local Clustering
Input: chs: the chunks, cores: the core entities
1: for all [P ] ∈ chs do in parallel
2: is-visited = ∅
3: for all e ∈ [P ] do
4: if e ∈ cores and e �∈ is-visited then
5: is-visited = isVisited ∪ {e}
6: Create a new cluster C = {e} ∪ neighborhoodε(e)
7: for all e′ ∈ C | e′ ∈ cores and e′ �∈ is-visited do
8: C = C ∪ {e′} ∪ neighborhoodε(e

′)
9: end for

10: end if
11: local-clusters = local-clusters ∪ C
12: end for
13: end for
14: return local-clusters

In the next section, we will show how to build the final clusters from the
local ones.

7 Global Merging

The merging stage aims to identify the clusters than span across several chunks,
and to merge the corresponding local clusters to build the final result. As we can
see in Fig. 2, the merging is processed in a single node and provides the final
clustering result.

In our approach, similarly to density-based clustering algorithms, an entity e
is assigned to a cluster Ci if e is density-reachable from a core entity in Ci. If
this same entity e is also in another local cluster Cj , this means that e is also
density-reachable from a core entity in Cj . If e is a core, it represents a bridge
between the entities in the clusters Ci and Cj making them density-reachable
from one another.

Figure 5 gives an overview of this principle; core entities are represented in
orange and border entities in green. As shown in this figure, the entities within
the clusters C1 and C2 are density-reachable from the common core entity ei,
which makes all of them density-reachable. Therefore, these entities should be
assigned to the same cluster. In that case, the local clusters are merged.

The merging stage identifies the clusters than span across different chunks by
finding the local clusters that share a common core entity and by merging them.
If a border entity is assigned to different clusters during the clustering stage, it
would be randomly assigned to one of these clusters during the merging stage.
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Fig. 5. An illustration of the cluster merging principle (Color figure online)

All the entities which are not assigned to a cluster are considered as noise. This
process provides the final clusters, ensuring that the same clusters as DBSCAN
are generated.

Example 8. Figure 6 presents the final clusters obtained by merging the local
clusters of Example 7. For instance, the clusters cp1.1 and cp4.1 are merged
since they share a common core entity e2. The resulting final clusters repre-
sent the classes of the schema. The properties of these classes are the union of
the properties describing the entities within a cluster (Class1 = {p1, p2, p3, p4}
and Class2 = {p2, p5, p6, p7}). Noise entities such as e6 are considered as not
representative enough to generate a class in the extracted schema.

This descriptive schema shows that the RDF dataset contains instances of the
class author described by the set of properties {publish, id, name, grade} and
the class publication described by the properties {id, title, conference, year}.

Fig. 6. The final clusters corresponding to the classes of the discovered schema for the
dataset D

Algorithm 5 describes the cluster merging process. Two clusters are merged
if they share a core entity. The merging algorithm therefore iterates over core
entities (lines 2–6). For each core, clusters containing this core are identified
(line 3) then merged (line 5). This final step is executed on one computing node
and is not parallelized.
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Algorithm 5. Global Merging
Input: localClusters: the local clusters, cores: the core entities
1: clusters ← localClusters
2: for all e ∈ D | e ∈ cores do
3: lce = {C ∈ clusters | e ∈ C}
4: clusters = clusters \ lce ∪ (∪C∈lceC)
5: end for
6: return clusters

8 Experiments

This section presents our experiments to show the effectiveness of our approach
both in terms of quality and runtime.

We have first evaluated the quality of the discovered schema. We have consid-
ered a dataset including type definitions and we have used them as the ground
truth. We have compared the discovered classes with those provided by the
dataset, and we have computed the precision and the recall for each discovered
class.

We have evaluated the scalability by showing the capacity of our algorithm
to cluster large RDF datasets and studying its behavior on various datasets.

We have measured the algorithm Speed-Up to show the execution time
improvement when increasing the number of computing nodes. We have also
studied the efficiency when applied to real datasets.

Finally, we have compared the performances of our approach to the ones of
NG-DBSCAN, an existing density-based clustering algorithm also implemented
using Spark.

All the experiments have been conducted on a cluster running Ubuntu Linux
consisting of 5 nodes (1 master and 4 slaves), each one equipped with 30 GB
of RAM, a 12-core CPU. Our implementation relies on the Apache Spark 2.0
framework.

In our experiments, we have used the Jaccard index to evaluate the similarity
between the entities. Where not otherwise mentioned, parameters are set as
follows: ε to 0.8, minPts to 3 and capacity to 9000.

8.1 The Datasets

To evaluate the scalability of our approach, we have first used synthetic data
generated using “IBM Quest Synthetic Data Generator” [15]. This well known
generator was heavily used in the data mining community to evaluate the per-
formances of frequent itemset mining algorithms. In our context, the generator
produces the properties of each entity that will be used in our experiments, and
allows to tune their characteristics.

The variable characteristics of the data considered in our experiments are (i)
the size of the dataset to study the scalability of our algorithm, (ii) the total
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number of properties describing the dataset and (iii) the average number of
dimensions (properties) of the entities.

Beside synthetic data, we have used real RDF datasets of different sizes
extracted from DBpedia9. DBpedia is a project aiming to extract structured
content from the information created in the Wikipedia project and to make it
available on the web. DBpedia allows users to semantically query relationships
and properties of Wikipedia resources, including links to other related datasets.
DBpedia is split into different subsets according to the language used.

In our evaluations, we have extracted from DBpedia subsets of patterns which
represent all the existing combinations of properties describing the entities in the
dataset. A pattern represents a combination of properties for which there is at
least one instance in the dataset. Entities having exactly the same property sets
are represented by a single pattern. To extract the patterns, we have used the
approach proposed in [7]. Considering patterns instead of entities reduces the
size of the input data and helps speeding up the clustering.

We have used DBpediaEn (1.23 million patterns), DBpediaFr (626 381 pat-
terns), DBpediaEs (529 434 patterns), DBpediaNl (268 603 patterns), DBpedi-
aUk (129 762 patterns) and DBpediaAr (63 000 patterns).

We have extracted from DBpedia the entities for which a type (class) has
been defined, and we have considered them as the ground truth for evaluating
the quality of the schema. In our evaluations, we have considered the entities
having the following types: Aircraft, Artist, Athlete, Book, Disease, Newspaper,
Region and TelevisionStation. These entities represent a reference to which the
generated clusters are compared.

8.2 Evaluation of the Schema Quality

We have clustered the entities within DBpedia using our algorithm without
considering the types of the entities. We have set MinPts to 1, as we consider
that at least two entities sharing similar properties are required to form a class.
We have run our algorithms with several values of ε, ranging between 0.5 and
0.7. In the context of RDF datasets, ε represents the threshold ratio of shared
properties required for two entities to be considered as neighbors.

The discovered classes are annotated with the most frequent type label asso-
ciated to its entities.

Finally, we have evaluated the precision and the recall for each class. In our
work, the precision and the recall are evaluated based on the comparison of the
classes generated by our approach for the entities to the types of these entities
as declared in the initial dataset. We have evaluated for each class both the
precision and the recall. Each of the bar charts a, b and c of Fig. 7 shows, for a
specific value of ε, both the precision and the recall.

The results presented in Fig. 7 show that our approach is able to detect
all the considered classes of the entities within the dataset with good precision

9 http://downloads.dbpedia.org/3.9/.

http://downloads.dbpedia.org/3.9/
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and recall when the value of ε is well defined (Fig. 7b). The recall of the class
Aircraft is lower because the entities having this type are very heterogeneous.

Fig. 7. Quality of the extracted classes for different values of ε (ε = 0.5 (a), ε = 0.65
(b), ε = 0.7 (c))

In some cases, the entities within different classes can be described by similar
property sets, they are therefore merged in a more general class. For instance,
the classes Artist and Athlete were grouped into a more general class Person,
as shown in Fig. 7a. For a higher value of ε (Fig. 7b), a higher number of
shared properties is required for two entities to be considered as similar and the
classes Artist and Athlete are both generated. When the value of ε is higher, the
recall of some types decreases (Fig. 7c). As these types contain heterogeneous
entities described by different properties, they were not considered as similar
and therefore not grouped into the same cluster. A higher value of ε makes the
algorithm more sensitive to small differences which can lead to similar entities
assigned to different clusters and decrease the quality of the schema.

To conclude the experiments on the quality of the resulting classes, recall
that clustering a dataset using our approach provides the same result as using
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the sequential DBSCAN algorithm. Previous works have shown that extracting
a schema from an RDF dataset using DBSCAN provides a good quality result,
with good precision and recall, and detects classes which were not declared in
the dataset [18]. These results are in line with the ones provided in this section.

The following sections are devoted to our experiments for evaluating the
performances of our approach when applied to large datasets, which is the main
focus of the present paper.

8.3 Scalability

We have first evaluated the scalability or our approach using several synthetic
datasets of different sizes. Additionally, we have studied the behavior of our algo-
rithms on datasets with different characteristics: (i) datasets containing entities
of different dimensions (10, 20, 30 and 40 properties per entity) and (ii) datasets
where entities are described by different numbers of properties. We have also
evaluated the speed-up of our approach with different configurations of the com-
puting cluster, i.e. for different numbers of worker nodes. Finally, we have applied
our algorithm on real datasets to illustrate its performances.

Figure 8 shows the algorithm runtime as a function of the dataset size for
datasets having in average 10, 20, 30, and 40 properties in the description of
their entities.

The results show the effectiveness of our algorithm to cluster large datasets,
as it is able to cluster a dataset containing more than 5 million entities in 18 min,
for a dataset containing entities described by an average of 10 properties.

The results are explained by the fact that during the distribution stage,
chunks that contain a number of entities which does not exceed the calculating
capacity of the cluster’s nodes are created. Thus, each node executes clustering
tasks by computing the similarity on a number of entities which does not require
a high execution time. In addition, some meaningless comparisons are avoided
while determining the neighborhood of each entity, since entities are compared
only if they are grouped in the same chunk. Each node calculates efficiently the ε-
neighborhood of the entities and the partial clusters in each chunk. Furthermore,
the computations are distributed over the nodes of the clusters to minimize the
communications overhead between the nodes, i.e. by avoiding the costly Spark’s
shuffle operations.

When the size of the dataset increases, the process requires more time. As the
distribution stage produces a high number of chunks, each calculating node has
to manage many more chunks. In addition, the chunks contain a higher number
of entities and can be split recursively to generate chunks having a size which is
lower than the capacity of the calculating nodes. This drop in the performance
is more visible when the calculation’s limits of the cluster are reached. This limit
is reached at different levels according to the characteristics of the datasets as
we can see in Fig. 8.
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Fig. 8. Evaluating the scalability of our approach on different synthetic datasets

The same happens when the number of dimensions (i.e. properties) of the
entities increase: this increases the number of entities within the chunks as the
entities are distributed according to the properties, and also increases the number
of chunks. We observe that the curves have the same behavior, but the limit is
reached for different dataset’s size. The limit is reached for a size of 5.8 M entities
for datasets where entities are described by 10, 20 and 30 properties, while it
is reached for a size of 2.8 M for datasets where entities are described by 40
properties.

We have studied the impact of the total number of properties describing the
dataset. Figure 9 shows the execution time for datasets described by a number
of properties that varies between 10k and 80k.

The experiments show that when the number of properties increases, the exe-
cution time decreases. Having a higher number of properties implies generating
more chunks and getting a better distribution of the entities. This also produces
smaller chunks, which do not require further partitioning. This accelerates the
distribution and the clustering stages.

We have also studied the speed-up and the impact of the number of worker
nodes in the Spark cluster on its execution time. These evaluations were con-
ducted on a cluster composed of 1 master equipped with 4 GB of RAM, 4 core
CPU. The number of workers varies from 2 to 8 and each worker is equipped
with 16 GB of RAM and 6 cores CPU.
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Fig. 9. Evaluating the impact of the number of properties on the execution time

Figure 10 shows the algorithm’s speed-up as the number of worker nodes
varies, considering datasets of a size between 500 000 and 3 000 000 entities.
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Fig. 10. Evaluating the speed-up for different cluster configurations

The experiments show that better performances and faster clustering are
obtained when adding more worker nodes to the computing cluster. The obtained
results demonstrate that our algorithm is scalable despite the size of the datasets.

Finally, we have evaluated the efficiency of our approach on real datasets.
Figure 11 shows the ability to cluster real datasets, such as DBpedia English



114 R. Bouhamoum et al.

which is a large RDF source from which we have extracted more than 1 million
patterns.
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Fig. 11. Evaluating the execution time for clustering the DBpedia dataset

These results obtained from the experiments indicate that our approach is
scalable and suitable for large datasets with various characteristics. The time
needed to compute the clustering in the different experiments was always in
the order of minutes, demonstrating that our approach is efficient in several
scenarios.

8.4 Comparison with NG-DBSCAN

We have compared our approach to NG-DBSCAN, an existing clustering algo-
rithm [19]. NG-DBSCAN is one of the recent parallel versions of DBSCAN that
provides good performances. In addition, it was implemented using the Apache
Spark framework and compared to other scalable density-based clustering algo-
rithms. Besides, unlike other scalable versions of DBSCAN such as MR-DBSCAN
and RP-DBSCAN, it can be applied on RDF datasets. We have used the source
code provided by the authors and available online10.

Figure 12 presents the logarithmic function of the execution time needed by
both algorithms to cluster datasets of different sizes. We use the logarithmic scale
to represent the execution time because the gap between the performances of the
two algorithms is important and it prevents us from comparing their behaviours.

10 https://github.com/alessandrolulli/gdbscan.

https://github.com/alessandrolulli/gdbscan
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Fig. 12. Comparing our clustering algorithm with NG-DBSCAN

Our results show that both curves have a similar shape, and that our app-
roach always outperforms NG-DBSCAN. This is due to the fact that the imple-
mentation of NG-DBSCAN applies many shuffle operations, which increases the
communication cost and therefore, the execution time of the algorithm. On the
other hand, our algorithm smartly distributes the data so as to reduce the cost
of communication between the worker nodes during the computation of the clus-
ters, thus considerably reducing the execution time.

As a conclusion, the results obtained throughout the different experiments
shown that our proposal performs well both in term of quality of the generated
classes and the runtime speed of the generation process. It allows performing
fast density-based clustering on large synthetic or real datasets and provides
a good quality result, with good precision and recall of the detected classes
describing the dataset. Moreover, our algorithm speeds up and provides better
performances when more computing nodes are added to the Spark cluster which
makes it scalable to very large datasets. In addition, unlike the existing scal-
able implementations of DBSCAN, it provides the same clustering result as the
one which would be generated by the sequential DBSCAN algorithm. Finally,
it outperforms NG-DBSCAN, a recent density-based clustering algorithm that
provides good performances.

9 Related Work

Several approaches have been proposed for schema discovery in RDF datasets.
Some of these approaches have used clustering algorithms to group similar enti-
ties in order to form the classes representing the schema. Among these works, the
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approaches presented in [17,18] have used density-based clustering algorithms
and have adapted them to generate classes and links between them. The app-
roach described in [9] relies on hierarchical clustering for generating the under-
lying types in an RDF dataset. The work presented in [27] uses the FP-Growth
algorithm to find the most frequent properties describing a schema based on
the classes chosen by the user. These approaches have not dealt with scalability
issues, and most of them do not scale up to process very large datasets.

Some approaches have specifically addressed the scalability of schema dis-
covery [4,5,24], providing algorithms capable of managing large datasets imple-
mented using a big data technology such as Hadoop [28] or Spark [29]. However,
unlike our approach, these algorithms rely on type declarations to group entities
into classes, and then provide a representative schema to help understand the
data. Such approaches can not be used when these declarations are not provided
in the dataset. To the best of our knowledge, there is no proposal addressing
schema discovery for massive RDF datasets without the assumption that type
declarations are provided in the dataset.

In a previous work, we have addressed the problem of scalability for automatic
schema discovery [7]. We have introduced an approach to reduce the size of the
input RDF dataset by building a condensed representation composed of all the
existing combinations of properties in the dataset. The clustering is performed
on the condensed representation instead of the initial dataset. However, in the
case of very heterogeneous datasets, the size of the condensed representation
remained too large and the use of a clustering algorithm was too costly. We
have introduced and used the notion of naive assignment in previous work [6],
but this partitioning resulted in a high number of meaningless comparisons as
a given pair of entities is compared several times. With respect to our previous
work, this paper has the following enhancements: (i) a new formalization of the
concepts, (ii) a complete rewriting of the algorithms and descriptions, (iii) a
novel distribution principle leading to significant improvement of performances,
(iv) an extensive experimental study.

Our clustering algorithm is inspired by DBSCAN, which is well suited to the
requirements of RDF datasets. This is mainly because it produces clusters of
arbitrary shape, which is important in our context where entities of the same
type can be described by heterogeneous property sets. Furthermore, it does not
require as an input the number of resulting clusters, and it detects noise points
which are not important enough to form a class. However, the main weakness of
DBSCAN is its computational complexity which is O(n2), where n is the number
of data points.

Many works have proposed approaches to scale-up the DBSCAN algorithm
by parallelizing its execution. Some of these algorithms are based on a random
split of the data. In PDSDBSCAN [22], the data is partitioned randomly, and the
clustering is applied in each partition in parallel by comparing the entities in one
partition with the whole dataset. S-DBSCAN [20] merges the clusters that have
close centers. The approach proposed in [25] merges the clusters that intersect
with each other based on the centers and the radius of the clusters. In [13],
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after partitioning the data and calculating the local clusters, a range is defined
for each partition, and the points outside this range are considered as seeds to
merge the local clusters. Algorithms based on a random split of the data achieve
a fast clustering, but at the cost of a lower accuracy; they produce a schema of
a lower quality compared to other existing approaches. The ε-neighborhood of
the entities is computed in random sub-sets, neighbors in different partitions are
therefore not discovered. In addition, the merging relies on features such as the
cluster’s center and does not ensure that the result is the same as the one of the
DBSCAN algorithm.

Some works propose algorithms such as MR-DBSCAN [14] and RDD-
DBSCAN [23] which partition the data using Binary Space Partitioning (BSP)
[11], duplicate the frontiers of each partition into the neighboring partitions and
generate the clusters. The clusters are finally merged if they share some entities.
However, approaches using Binary Space Partitioning lose their efficiency when
applied to data with high dimensionality such as RDF datasets.

RP-DBSCAN [26] combines different techniques, as it consists in randomly
partitioning cells of data, then creating a graph using BSP to accelerate the
neighbors search in each partition. Finally, it merges the clusters found in each
partition to provide the final clusters. As it uses a cell-based grid structure,
this algorithm can not be applied on RDF datasets because it is impossible to
represent an RDF dataset in such n-dimensional space. Moreover, the quality
of the resulting clusters depends on a given parameter ρ and does not always
ensure that the clustering is the same as the one of DBSCAN.

Finally, some graph based approaches have been proposed such as NG-
DBSCAN [19], which comprises two steps: first, it computes the ε-graph by com-
paring each point with k randomly selected points and adding an edge between
the closest ones. Second, it considers the edges having the highest number of
neighbors as the cluster’s root and all the elements connected to this root are
assigned to the same cluster. However, unlike our approach, NG-DBSCAN pro-
vides a probabilistic result which is different from the one provided by DBSCAN;
this reduces the quality of the resulting schema. In addition, building the neigh-
bor graph for large datasets is a costly operation.

10 Conclusion

In this paper, we have proposed an approach that automatically extracts the
underlying schema of a large RDF dataset. It relies on a novel distributed algo-
rithm for density-based clustering which groups the similar entities into clusters
and produces the same result as the DBSCAN algorithm. The resulting clusters
represent the classes of the schema.

We have implemented our algorithm using Spark, a big data technology offer-
ing a fast distributed execution of the algorithm and allowing to cluster mas-
sive datasets containing millions of entities. We have shown through detailed
experiments that our algorithm provides a schema of good quality, and scales
up to very large datasets, outperforming existing similar clustering algorithms.
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We have used both synthetically generated datasets and real datasets extracted
from DBpedia.

The schema discovery approach proposed in this paper has been designed for
RDF data; however, it can be adapted and applied to data sources described
using other formats such as Json or XML, where the entities are irregular and
do not have a defined structure.

In our future works, we will enrich the generated schema by extracting links
between the classes and constraints on the properties. We will also improve
our approach by automatically detecting the most appropriate values of the
parameters, such as the capacity parameter according to the configuration of
computing nodes. Schema evolution is also an important issue to be tackled
in our future works; once the schema is generated, appropriate algorithms are
required to keep the schema consistent with the dataset over time, as data is
added or deleted.
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