
Transactions on

Large-Scale
Data- and Knowledge-
Centered Systems XLVILN

CS
 1

24
10

Abdelkader Hameurlain • A Min Tjoa
Editors-in-Chief

Jo
ur

na
l S

ub
lin

e

Lecture Notes in Computer Science 12410

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this series at http://www.springer.com/series/8637

http://www.springer.com/series/8637

Abdelkader Hameurlain •

A Min Tjoa (Eds.)

Transactions on
Large-Scale
Data- and Knowledge-
Centered Systems XLVI

123

Editors-in-Chief
Abdelkader Hameurlain
IRIT, Paul Sabatier University
Toulouse, France

A Min Tjoa
IFS, Vienna University of Technology
Vienna, Austria

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISSN 1869-1994 ISSN 2510-4942 (electronic)
Transactions on Large-Scale Data- and Knowledge-Centered Systems
ISBN 978-3-662-62385-5 ISBN 978-3-662-62386-2 (eBook)
https://doi.org/10.1007/978-3-662-62386-2

© Springer-Verlag GmbH Germany, part of Springer Nature 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer-Verlag GmbH, DE
part of Springer Nature
The registered company address is: Heidelberger Platz 3, 14197 Berlin, Germany

https://doi.org/10.1007/978-3-662-62386-2

Preface

This volume contains six fully revised selected regular papers, covering a wide range of
very hot topics in the fields of scalable and elastic framework for genomic data
management, medical data cloud federations, mining sequential frequent patterns,
scalable schema discovery, load shedding, and selectivity estimation using linked
Bayesian networks.

We would like to sincerely thank the Editorial Board for thoroughly refereeing the
submitted papers and ensuring the high quality of this volume. Special thanks go to
Gabriela Wagner for her availability and her valuable work in the realization of this
TLDKS volume.

August 2020 Abdelkader Hameurlain
A Min Tjoa

Organization

Editors-in-Chief

Abdelkader Hameurlain Paul Sabatier University, IRIT, France
A Min Tjoa Technical University of Vienna, IFS, Austria

Editorial Board

Reza Akbarinia Inria, France
Dagmar Auer FAW, Austria
Djamal Benslimane Claude Bernard University Lyon 1, France
Stéphane Bressan National University of Singapore, Singapore
Mirel Cosulschi University of Craiova, Romania
Dirk Draheim Tallinn University of Technology, Estonia
Johann Eder University of Klagenfurt (AAU), Austria
Anastasios Gounaris Aristotle University of Thessaloniki, Greece
Theo Härder Technical University of Kaiserslautern, Germany
Sergio Ilarri University of Zaragoza, Spain
Petar Jovanovic Universitat Politècnica de Catalunya, BarcelonaTech,

Spain
Aida Kamišalić Latifić University of Maribor, Slovenia
Dieter Kranzlmüller Ludwig-Maximilians-Universität München, Germany
Philippe Lamarre INSA Lyon, France
Lenka Lhotská Technical University of Prague, Czech Republic
Vladimir Marik Technical University of Prague, Czech Republic
Jorge Martinez Gil Software Competence Center Hagenberg, Austria
Franck Morvan Paul Sabatier University, IRIT, France
Torben Bach Pedersen Aalborg University, Denmark
Günther Pernul University of Regensburg, Germany
Soror Sahri Paris Descartes University, LIPADE, France
Shaoyi Yin Paul Sabatier University, France
Feng (George) Yu Youngstown State University, USA

Contents

Extracting Insights: A Data Centre Architecture Approach in Million
Genome Era . 1

Tariq Abdullah and Ahmed Ahmet

Dynamic Estimation and Grid Partitioning Approach for Multi-objective
Optimization Problems in Medical Cloud Federations 32

Trung-Dung Le, Verena Kantere, and Laurent d’Orazio

Temporal Pattern Mining for E-commerce Dataset. 67
Mohamad Kanaan, Remy Cazabet, and Hamamache Kheddouci

Scalable Schema Discovery for RDF Data . 91
Redouane Bouhamoum, Zoubida Kedad, and Stéphane Lopes

Load-Aware Shedding in Stream Processing Systems 121
Nicoló Rivetti, Yann Busnel, and Leonardo Querzoni

Selectivity Estimation with Attribute Value Dependencies Using Linked
Bayesian Networks . 154

Max Halford, Philippe Saint-Pierre, and Franck Morvan

Author Index . 189

Extracting Insights: A Data Centre
Architecture Approach in Million

Genome Era

Tariq Abdullah(B) and Ahmed Ahmet

University of Derby, Derby, UK
t.abdullah@derby.ac.uk, a.ahmet1@unimail.derby.ac.uk

Abstract. Advances in high throughput sequencing technologies have
resulted in a drastic reduction in genome sequencing price and led to an
exponential growth in the generation of genomic sequencing data. The
genomics data is often stored on shared repositories and is both hetero-
geneous and unstructured in nature. It is both technically and culturally
residing in big data domain due to the challenges of volume, velocity and
variety.

Appropriate data storage and management, processing and analytic
models are required to meet the growing challenges of genomic and clin-
ical data. Existing research on the storage, management and analyses of
genomic and clinical data do not provide a comprehensive solution, either
providing Hadoop based solution lacking a robust computing solution for
data mining and knowledge discovery, or a distributed in memory solu-
tion that are effective in reducing runtime but lack robustness on data
store, resource management, reservation, and scheduling.

In this paper, we present a scalable and elastic framework for genomic
data storage, management, and processing that addresses the weaknesses
of existing approaches. Fundamental to our framework is a distributed
resource management system with a plug and play NoSQL component
and an in-memory, distributed computing framework with machine learn-
ing and visualisation plugin tools. We evaluated Avro, CSV, HBase,
ORC, Parquet datastores and benchmark their performance. A case
study of machine learning based genotype clustering is presented to
demonstrate and evaluate the effectiveness of the presented framework.
The results show an overall performance improvement of the genomics
data analysis pipeline by 49% from existing approaches. Finally, we make
recommendations on the state of the art technology and tools for effective
architecture approaches for the management and knowledge discovery
from large datasets.

1 Introduction

Since the completion of the Human Genomic Project in 2003, genomic and clini-
cal data have seen continuous and unsustainable growth [3]. The human genome
project took 10 years and a budget of $2.7 billion to be completed. Advances in
c© Springer-Verlag GmbH Germany, part of Springer Nature 2020
A. Hameurlain and A M. Tjoa (Eds.): TLDKS XLVI, LNCS 12410, pp. 1–31, 2020.
https://doi.org/10.1007/978-3-662-62386-2_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-62386-2_1&domain=pdf
https://doi.org/10.1007/978-3-662-62386-2_1

2 T. Abdullah and A. Ahmet

Next-Generation Sequencing (NGS) technologies have led to an unprecedented
generation of genomics data [33,48,56]. NGS is a massively parallel genome
sequencing technology delivering high throughput genome sequences (a generic
NGS genome sequencing pipeline is depicted in Fig. 1). WGS and NGS sequenc-
ing technologies enable the inclusion of rare or even somatic mutations in the
analysis, thus increasing the feature space by orders of magnitude and require
a massively parallel approach to genomics data processing [53]. These break-
throughs in high-throughput sequencing over low-throughput sequencing, such as
Sanger sequencing, have led to the price of sequencing to decrease dramatically1.
The cost of Sequencing Genome illustrates how the adoption of NGS technology,
starting in January 2008, led to an impressive drop in cost per genome. Before
NGS technology [33], Sangar sequencing (first generation) technology was widely
used2. Comparing the price trend to Moore’s law we can see how the bottleneck
in DNA analysis has shifted from sequencing to storage and processing of gen-
erated data. European Bioinformatics Institute (EBI) genomics data repository
has a doubling time of 12 months across all data resources [10]. As of Septem-
ber 2017, EBI capacity stood at 120 Petabytes, they anticipate this figure to
reach exabytes by 2022. Researchers are no longer dependent on their research
laboratories for accessing genomic data. They rely on continuously growing data
made available from various institutions on the cloud [9,10,16]. This alleviates
constraints on local computing infrastructure. The challenges associated with
genomic data generation put the management and analysis of genomic data in
the big data domain.

WGS (Whole Genome Sequencing) technology has transformed the process of
recording an individual’s genetic code from a decade-long, billion-dollar, global
endeavour to a week-long, $1000 service [12]. A single genome can vary from
700 MB to 200 GB. It is estimated that between 100million and 2 billion human
genomes could have been sequenced and 2–40 exabytes of data storage would
be required. The computing resources for storing and processing this data will
soon exceed those of Twitter and YouTube [7]. The 1000 genome project has
deposited two times more raw data into NCBI’s GenBank during its first 6
months than all the previous sequences deposited in the last 30 years [53]. This
exponential growth in genomics data has resulted in an extraordinary volume of
data generated at an unprecedented velocity from current and ongoing genomic
projects [57]. The volume of genomics data is expected soon overtake social
media, astronomy and social science [54]. Genomic data is mostly unstructured,
recorded in a variety of data formats and require specialized platforms for effi-
ciently managing, extracting insights, knowledge discovery and unlocking value
from the deluge of genomic data are some of the key challenges for this domain.

The design and development of efficient and scalable computational plat-
forms for meeting the above-mentioned challenges have lagged behind our abil-
ity to generate data [57]. A number of different approaches have been investi-
gated that range from highly connected, customized server-based solutions [26]

1 https://www.sevenbridges.com/rabixbeta/.
2 www.sanger.ac.uk.

https://www.sevenbridges.com/rabixbeta/
www.sanger.ac.uk

Extracting Insights 3

Fig. 1. NGS genomic data generation pipeline

to open-source Apache tools based platforms such as HDFS storage and com-
puting architectures [14,30,35,39,43,49,50]. These studies focused on analysing
different aspect of genomics data like variant annotation [39], alignment [43,50]
genomics data quality control [49], general workflow management [51] and single
nucleotide polymorphism calling [30]. They aimed to significantly speed up the
batch-oriented analytic pipeline.

High-throughput sequencing has led to Genome-wide Association Studies
(GWAS) that enabled researchers to determine the locations of variants between
individuals [38]. The likelihood of groundbreaking discoveries in medical science
and new medical insights like identification of unique disease contributing vari-
ants is now a real prospect [8,15].

Recent trends on the availability and reduced price of high-performance com-
puting (HPC) have enabled new efficient in-memory computing frameworks to
displace previously dominated batch-oriented frameworks for compute-intensive
genomics data analytics. In in-memory approaches [4,11,36], an analytic pipeline
reads the whole/part of genomics dataset (structured or unstructured) from stor-
age for each analytic cycle. Reading data in this way is counterproductive and
makes genomics data analysis inefficient with increased runtime and disk I/O
bottlenecks. This overhead is a further complicating factor as genomic data is
available in a compressed format. Compression pipeline parallelization [22] may
relieve some of the overheads but does not address the inefficiency of reading
data from storage every time.

To efficiently carry out knowledge discovery in genomics data, such as per-
sonalized healthcare, a platform requires a data warehouse with the ability to
aggregate a multitude of structured and unstructured data that can be processed
and analysed for value, delivering a complete medical view of the patient. This
may include biological traits, environmental exposures and behaviours of each
patient. However, this data may differ in nature, require different storage schema
and distributed across diverse storage silos in medical health and bioinformatic
organizations. These heterogeneous datasets must be integrated into a storage
server for efficient data storage management and analysis.

4 T. Abdullah and A. Ahmet

Table 1. Existing studies for genomics data analysis

Study Infrastructure Strengths Weaknesses

AzureBLAST Windows Azure,

BLAST, Azure Queues

Parallel computing,

Distributed messaging

No in-memory computing,

No storage infrastructure,

No visualisation support

CloudBurst Amazon’s EC2, Apache

Hadoop

Parallel computing No in-memory computing,

Distributed Storage, No

visualisation support

BioPig MapReduce, Apache

Pig

Parallel Computing,

High-level data flow

abstraction

No in-memory computing,

No storage infrastructure,

No visualisation support

Bowtie aligner Amazon EC2, Amazon

S3

Parallel computing No in-memory computing,

No storage infrastructure,

No visualisation support

Crossbow Amazon Web Services,

Apache Hadoop,

Bowtie, SOAPsnp

Parallel computing,

Distributed storage

No in-memory computing,

No visualisation support

VariantSpark Apache Spark, Spark’s

MLlib, Apache Hadoop

In-memory computing,

Parallel Computing

No storage infrastructure,

No visualisation support

SparkSeq Apache Spark In-memory computing,

Parallel computing

No storage infrastructure,

Lack of visualisation

ADAM Apache Spark, Apache

Parquet

In-memory computing,

Parallel computing, SQL

query engine

No visualisation support,

No distributed storage

GenAp Apache Spark, Spark

SQL

In-memory computing,

Parallel computing,

Distributed SQL engine

No analytic support, No

visualisation support

SeqPig Apache Hadoop

(MapReduce), Apache

Pig

Parallel computing,

High-level data flow

abstraction

No in-memory computing,

No storage infrastructure,

No visualisation support

This work is an extension of our work [1] that proposed an in-memory com-
puting approach in combination with a stateful storage infrastructure [Apache
HBase] to meet the challenges of analysing genomics data. In this paper, we first
present a scalable, elastic framework for genomic data storage, management,
and processing for reducing the inefficient data read and disk I/O bottlenecks.
Fundamental to this framework is a distributed resource management system
with a plug and play NoSQL database components and is optimized for genomic
data storage and retrieval. Secondly, the framework provides a distributed, elas-
tic and intelligent in-memory computing approach that can integrate plug and
play machine learning libraries and visualisation tools. Thirdly, we evaluate and
benchmark the performance of the leading NoSQL databases (Apache Avro,
HBase, ORC and Parquet datastores) on a variety of tasks which tests the stor-
age and analytic components. Fourthly, a case study of machine learning based
genotype clustering is presented to demonstrate and evaluate the effectiveness of
our distributed, elastic, intelligent in-memory computing approach. Lastly, we
make recommendations on tools and technologies for effective management of
genomic data, knowledge discovery and extracting insights from it.

Extracting Insights 5

The paper is organized as follows: Sect. 2 provides a review of the state of the
art genomics data storage, retrieval and processing approaches and a summary
of issues and research gaps. The proposed framework and its components are
explained in Sect. 3. A case study, “Genomics variant analysis”, for evaluating
the presented framework is explained in Sect. 3.4. A detailed discussion of the
experimental results is provided in Sect. 4. This section also details the exper-
imental setup and the dataset used for generating these results. The paper is
concluded in Sect. 5 with future works.

2 Literature Review

The literature review focuses on identifying the gaps in the existing approaches
for genomics data storage, retrieval and analysis pipelines. Due to the substantial
drop in the sequencing cost, it is now economical to generate studies with cohort
sizes previously reserved for larger consortia such as the 1000 genome project
[9]. Many genomic data analysis platforms [29,30,32,37,50,52] are mostly batch
processing systems, optimized for one pass batch processing without any support
for interactive and/or ad hoc querying on the genomics data. CloudBurst [50]
employs MapReduce for mapping single-end next-generation sequencing data to
reference genomes. AzureBLAST [32] is a parallel Blast engine on the Windows
Azure cloud platform for finding regions of local similarity between sequences3.
BioPig [37] performs sequence analysis on large scale sequencing datasets using
Hadoop and Apache Pig. Crossbow [30] performs human genome alignment
and single nucleotide polymorphism detection on Hadoop based cluster. Bowtie
aligner [29] aligns short DNA sequence reads to the human genome.

MapReduce based approaches transform data into ‘key-value pairs’ that can
then be distributed between multiple nodes across a commodity computer clus-
ter according to the size of a problem and these approaches are widespread in
bioinformatics [19,21,25,30,46,47,50,55]. This is especially the case for sequence
analysis tasks, such as read mapping [50], duplicate removal [25] and variant
calling [30] as well as genome-wide analysis study based tasks [19,21]. Unfortu-
nately, the MapReduce paradigm is not always the optimal solution, specifically
for bioinformatics or machine learning applications that require iterative in-
memory computation. Specifically, Hadoop is relying extensively on hard disk
input-output operations (Disk IO), and this has proven to be a bottleneck in
processing speed. Some studies [4,28,36,52] attempted to reduce or eliminate
disk I/O operations by keeping data in memory. VariantSpark [4], performed a
range of genome-based analysis tasks on VCF files, applied the K-means clus-
tering algorithm for determining population structure from the 1000 genome
project. SparkSeq [36] was developed for high-throughput sequence data analy-
sis and supports filtering of reads, summarizing genomics features and statistical
analysis using ADAM (a general purposes genomics framework and a set of for-
mats and APIs as well as processing stage implementations for genomics data)
[34]. While the speedup of ADAM over traditional methods was impressive (50
3 http://blast.ncbi.nlm.nih.gov/Blast.cgi.

http://blast.ncbi.nlm.nih.gov/Blast.cgi

6 T. Abdullah and A. Ahmet

fold speedup), being limited by constraints within this general genomics frame-
work can hamper performance. GenAp [28] provides a distributed SQL interface
for genomics data by modifying Spark SQL. SeqPig [52] is a set of scripts for
automatically generating MapReduce job for large sequencing datasets and uses
Hadoop-BAM for reading input BAM files. Data provenance of bioinformatics
workflows on PROV-DM model for re-executing the workflows in a more planned
and controlled way [13]. Whereas, PostgresSQL [41] and Neo4J [42] are used for
storing provenance data about the workflow execution for bioinformatics work-
flows, the raw data is not stored in both these approaches. NoSQL datastore [2]
and document-oriented NoSQL datastore [17] to store and maintain persistency
of genomics data. All these approaches lack a strategy for conceptually repre-
senting the data model associated with NoSQL datastores [40]. These approaches
are summarised in Table 1.

Majority of the surveyed approaches read data from disk, try to opti-
mally analyse the data in each read using a distributed, in-memory computing
framework and lack a distributed data management/storage solution or visu-
alisation platform simultaneously [14,30,35,39,43,49,50]. Some of the surveyed
approaches do address computing and storage challenges, however, they don’t
have visualisation tools and plug-and-play machine learning libraries. Further-
more, these approaches don’t consider the pre-processing of genomics data due
to the unstructured nature of the genomics data and, therefore, result in further
runtime overhead.

2.1 Genomics Data File Formats

The generation and processing of genomics data is generally classified into four
categories: sequence data, annotations data, quantitative data and read align-
ments. Each of these genomics data categories has several specialised file formats
(refer Table 2). Sequence data represents the nucleotide sequence of a chromo-
some, contig or transcript. Annotations data is the identification of features such
as genes, SNPs, transcripts, with their locations of individual genes of sequences.
Quantitative data are values associated with the chromosomal position. Read
alignments are records where the sequence’s place in the genome has been found
using alignment tools. Table 2 shows a list of most widely used file formats in
their aforementioned categories.

Figure 1 illustrates the key stages of NGS genomics data generation pipeline,
from initial clinical samples to Variant Call Format (VCF) data and the uti-
lization of some commonly used tools and file formats. Genomic sequencing and
analysis pipelines comprise of sequencing, sequence alignment and variant call-
ing stages. The process starts with samples of genetic information (like DNA,
RNA or miRNA). Sequencing phase produces information containing fragments
of DNA sequences, sequence letters with quality score. The Sequence alignment
phase involves an aligner which is used to align the sequence fragments with
the reference genome. Alignment phase can be broken down into two steps: 1)
indexing the reference genome 2) Aligning the reads to the reference genome.
Sequencing and Sequence alignment produces a DNA sequence for an individual

Extracting Insights 7

Table 2. Genomics data file formats

Annotations Read alignment Sequence data Quantitative data

BED Axt BAM bedGraph
bigBed bigPsl SAM barChart
bigGenePred bigMaf CRAM bigBarChart
bigNarrowPeak bigChain FASTA bigWig
GFF Chain FASTAQ GenePred
GTF HAL EMBL WIG
Interact MAF GCG-RSF
BigInteract Net GenBank

PSL VCF

but modern analysis pipelines don’t stop there, the final phase, called Vari-
ant Calling, involves producing a set of variant calls for the individuals. This
involves finding variants in the individual’s sequence compared to the reference.
The human genome comprises approximately 3 billion base-pairs of which 99.9%
are similar. A single human genome sequenced at 30x coverage would produce
∼200 GB of data. A variant file containing only a list of mutations would include
approximately 3 million variants which would equal to ∼130 MB in size [9].

The field of genomics is still evolving and a genomics file format convention
is not yet established. The most widely used formats for sequencing data are
tab-separated text files like FASTQ, FASTA, BAM, SAM and VCF [18,23,45].

3 Proposed Framework

This section outlines the proposed framework, its different components and the
interaction between them (refer Fig. 3). The proposed framework provides a
cloud-based, scalable, elastic genomic data storage, management, and processing
for reducing the inefficient data read and disk I/O bottlenecks with a plug and
play NoSQL database component that is optimized for genomic data storage
and retrieval.

By placing genomics data files in a cloud-based distributed storage, we can
perform parallel operations on the genomics data, keep intermediate results in-
memory, query the genomics data without processing each time and can remove
unnecessary disk I/O from the analytic pipeline. The in-memory intermediate
results allow data to be requested much more quickly, rather than sending data
back to the disk and making new requests. This in-memory approach, coupled
with data parallelism, allows vast amounts of data to be processed in a signif-
icantly improved manner when compared to traditional distributed computing
approaches (refer Sect. 4).

8 T. Abdullah and A. Ahmet

Fig. 2. Proposed framework

The framework presented here significantly extends our previous work [1] -
that stored and analysed genomic data in one format only. It offers a complete
data warehousing solution for a scalable and elastic data centre architecture and
can store and analyse different genomics data formats (refer Sect. 2.1). It also
has a distributed, intelligent in-memory computing component that can integrate
plug-and-play machine learning libraries and visualisation tools for interactive
data analytics visual tool.

The framework makes genomics data analysis efficient and reduces the pro-
cessing latencies by transforming unstructured genomics data into a structured
format removing the need to transform data with each new analytic task. This
combined with distributed in-memory computing and reduces disk I/O bottle-
necks. This also enables to aggregate a multitude of structured and unstructured
data that can be processed and analysed for value, delivering a complete medical
view of the patient. This may include biological traits, environmental exposures
and behaviours of each patient. It also enables the organizations managing that
lack the scalable, elastic storage and management system to keep up with rapidly
expanding genomic data volumes and types.

Our framework is a distributed, scalable, fault-tolerant approach for storage,
management and efficient analysis of genomics data. It’s capable of handling
both structured and unstructured genomics data which make up the full range
of common biological (genomics) data types. In the remainder of this section,
we explain the following three layers of our framework and interaction between
them (refer Fig. 2)

1. Data Centre Services
2. Data Centre Middleware
3. Data Centre Infrastructure

Extracting Insights 9

By placing genomics data files in a cloud-based distributed storage, we can per-
form parallel operations and keep intermediate results in-memory while also
query the unstructured genomics data without processing it each time, this
removes unnecessary disk I/O from analytic pipeline. Intermediate results are
kept in-memory to allow data to be requested much more quickly, rather than
sending data back to disk and making new requests. This in-memory approach
coupled with data parallelism allows vast amounts of data to be processed in a
significantly improved manner when compared to traditional distributed com-
puting approaches (refer Sect. 4).

3.1 Data Centre Services

This layer represents the services available to the user and is the point of inter-
action between user and framework. This is the top layer of our framework and
provides three key services that enable the efficient storage, management and
analysis of genomics data: 1) Data acquisition and Storage, 2) Data Analysis
and 3) Data visualisation.

Data Acquisition
Genomics data comes in many formats for the various data types (refer Sect. 2.1).
These are usually large plain text files and are available as compressed files.
These files contain a header section and multiple value rows and are ideal for
parallel processing. In the data acquisition phase, original genomics data is first
transferred into the storage server (a cloud-based distributed storage system).
The content of these files is first extracted and then fed to the extract, transform
and load (ETL) module. The ETL component reads input genomics data files,
applies a parallel, in-memory approach for transforming the data and provides
the unstructured genomic data with a defined structure. After this stage, we can
perform parallel in-memory processing operations on this data and can query
without extracting the data from large unstructured genomic files each time.
The implementation details of the genomics ETL module are further explained
in Sect. 3.4.

Data Storage
Genomics data is unstructured (due to its variety of formats), non-relational,
immutable, increasingly large in volume, high velocity and distributed in dif-
ferent geographic regions across the globe. This unstructured genomic data is
transformed into a structured format in the data acquisition phase and stored
in a NoSQL database.

This approach enables clinical/pharma research to query genomics data like
any other data. Furthermore, the write-once approach also eliminates the need to
read large unstructured genomic source files with each genomic data processing
task and results in improving performance over the existing approaches that read
genomic data from source for each analytic operation/cycle [29,31,32,37,50,52].

10 T. Abdullah and A. Ahmet

This approach to storing genomic data also provides a scalable fault-tolerant
data storage and efficient data retrieval mechanism. The fault tolerance is pro-
vided by replicated storage. In the case of one region failure, the replicated data
can easily be accessed and retrieved. Furthermore, it also provides scalable data
distribution so that there is no need to move data from one geographic region
to another region and thus avoids expensive data transfer (further explained in
Sect. 3.2).

Crucial to data storage is a plug-in-play NoSQL datastore which will provide
stateful storage for the transformed data obtained from ETL. The plug-in-play
nature of this component will enable the utilization of different types of datas-
tores for genomics, clinical/pharma, biomedical imaging from clinical and labo-
ratory instrumentation, electronic medical records, wearables data and historical
medical records.

Genomic Data Analyser
Genomic data can be analysed for knowledge discovery such as determining the
role of genes in causing or preventing a disease, analysing patient’s genetic mak-
ing for personalised medicine, genome variation analysis, genotype clustering,
gene expression microarrays, chromosome variations or gene linkage analysis.

In our framework, the genomic data analyser sits at the core and can perform
any of the genomic data analysis tasks after data is successfully transformed into
a NoSQL data store. It integrates machine learning libraries for analysing the
genomic data. A typical end-to-end genomic data analysis pipeline is depicted
in Fig. 3. Crucial to our approach, the analysis pipeline runs on a computing
cluster with two key components, namely, fault-tolerant data parallelism and
distributed in-memory processing. The ability to process and keep intermediate
results in memory enables us to address I/O bottleneck. Another benefit of our
approach is the reduced pre-processing time due to our data acquisition and
storage approach.

The required genomic data is queried from a NoSQL datastore and ready
for the analysis phase. The analysis phase applies the particular analysis algo-
rithm(s) on the pre-processed loaded data. The genomics data analyser uses a
fault-tolerant parallel in-memory computing cluster that can be used for batch
and continuous near-real-time streaming jobs. The data acquisition is integrated
as a module within the framework and are not limited to a specific type of analy-
sis or a particular algorithm and can implement any algorithm for genomic data
analysis. The plugin tools and library services of the genomic data analyser are
explained in Fig. 2. The different algorithm categories that can be applied for
genomic and clinical data analysis are:

– Classification and Regression: Linear models (logistic regression, linear
regression and SVMs), Naive Bayes, Decision Trees, Gradient-Boosted and
Random Forest Trees, Isotonic regression, Deep learning

Extracting Insights 11

Fig. 3. Genomic data analytic pipeline

– Collaborative Filtering: Alternating Least Squares (ALS)
– Decomposition: Singular Value Decomposition (SVD), Principal Compo-

nent Analysis (PCA)
– Clustering: K-means, Power Iteration Clustering, Latent Dirichlet Alloca-

tion, Gaussian Mixture

Examples of genomics data analysis using classification or regression algorithms
include SVM for identification of functional RNA genes [6], Random forests to
predict phenotypic effects of nucleotide polymorphisms [24]. Clustering algo-
rithm K-means has been utilised for population-scale clustering of genotype
information [4]. Deep learning has been utilised on variant calling tasks [44]
and image to genetic diagnosis [20].

The list above provides some example categories of machine learning ana-
lytics that can be utilised with genomics data. Our framework is not limited
to these algorithms and other algorithms can easily be integrated for analysing
genomic and clinical data. The ability to access a varied list of supervised and
unsupervised of algorithms increases the scope of analysis for genomic data.

Data Visualisation
Data visualisation is a web-based, language-independent component for data
ingestion, exploration and visualisation. It is connected to both the analysis
pipeline and the data storage server. We look at the two possible platforms for
this component: Jupyter Notebook and Apache Zeppelin. Both can act as an
interpreter for connecting to a variety of programming languages for backend
data connectivity and visualisation. Jupyter Notebooks supports PySpark. Zep-
pelin is a Spark-based tool and naturally integrate with Apache Spark. Apache
Zeppelin has the added advantages of integrating well with other big data tools
such as Hadoop, HBase and Cassandra and provides support for PostgreSQL
and Elastic Search.

A common weakness of the existing approaches (refer Sect. 2) is the lack
of visualisation platforms. Even with genomics data analysis, little to no value

12 T. Abdullah and A. Ahmet

Table 3. Comparison of NoSQL datastores

Datastore Type Strengths Weaknesses

Avro Row-Based Schema evolution supported,

Support for add update & delete

fields, Good language

interoperability, Data

Serialization & split support,

Good compression options,

Suitable for JSON, Compatible

with Kafka & Druid

Poor Spark support, Avro

being a row-based format may

lead to slow query speed

Parquet Column-oriented Support schema optimisation,

Query speed & reduce disk I/O,

Good compression options,

Support nested types in columns,

Very good split support,

Compatible with Spark, Arrow,

Drill & Impala

Parquet file writes run out of

memory if (number of

partitions) times (block size)

exceeds available memory

ORC Column-oriented Nested Data Types, Supports

indexing, ACID transaction

guarantees, Handle streaming

data, Caching on the client side,

Excellent split support,

Compatible with Hive & Presto

Schema is partially-embedded

in data

HBase Column-oriented Highly distributed, Fault

tolerance, Schema-less, Fail over

support & load sharing, SQL

query API through Hive,

Row-level atomicity

Single point of failure because

of master-slave architecture,

No Transaction support

can be obtained from unreadable information. By coupling analytic and storage
components with a visualisation platform, the large volumes of data can be made
comprehensible to end-user for valuable insights.

3.2 Data Centre Middleware

The data centre middleware layer enables a distributed, scalable and fault-
tolerance for storage, management and efficient analysis of genomics data. This
layer addresses the challenges of high processing time and the need for scal-
able data storage. It is capable of handling both structured and unstructured
genomics data which make up the full range of common genomics data types.
The services layer is built on top of a middleware that enables a distributed, scal-
able and fault-tolerance computing and storage for the management and analysis
of genomics data. This layer consists of a storage server and computing cluster
which provide distributed resource management and storage and distributed in-
memory computing framework (Fig. 2).

Extracting Insights 13

Table 4. Data store compression codecs

Features Snappy Deflate GZip ZLib

Splittability Support Avro, Paraquet, ORC Avro Paraquet ORC

Tool Support Avro, Paraquet, ORC, HBase Avro Paraquet, HBase ORC

Design Emphasis High compression Speed Compression Compression Compression

Lossless compression Lossless Lossless Lossless Lossless

Storage Server
Storage server forms a key component of our framework. Unlike most traditional
genomic data processing pipelines, we take a write-once and read-many approach
to genomic data for ensuring its persistence. Genomic data is unstructured and
massive in size, requiring a storage schema that caters for the volume, velocity
and veracity of the generated data. The unstructured genomic data is read once
from the input sources and written into distributed structured compact datasets.
This approach enables the analysis pipeline to access data at a fraction of the
time it would take read from the original datasets.

Genomics and clinical data are commonly available in unstructured formats.
There is a diverse selection of NoSQL datastore available for different genomics
and clinical data. Data are available in different levels of granularity rang-
ing from key-value pairs, document-oriented, column/row format and even in
graph database format. In key-value format, a byte array containing a value is
addressed to a unique key. With this approach, scalability is emphasized over
consistency. Document stores are schemaless, typically storing data in formats
such as JSON and XML and have key-value pairs within a document. Document-
oriented stores should be used to take advantage of the schemaless model. Col-
umn NoSQL stores are hybrid column/row and employ a massively distributed
architecture. This approach enables massive scalability with improved read/write
performance on large datasets. Graph databases emphasis the efficient manage-
ment of strongly linked data, where operations on relationships can be made
more efficient. The operations that are normally expensive, like recursive joins,
can be replaced by traversals. Columnar NoSQL data stores are the preferred
option for storing genomic data and provide a solution for scalability and query
requirements.

Our storage server supports plug-in-play NoSQL datastores and is not lim-
ited to one particular type of NoSQL datastore. We evaluated Apache HBase
(column-oriented, key-value store), Parquet (columnar storage), ORC (columnar
storage), Avro (row-based format). All three Hadoop storage formats (Parquet,
ORC and Avro) can provide significant space utilization savings in the form of
compression, leading to reduced I/O in the analytic pipeline (Table 3).

Our storage server also allows the integration of relational databases to enable
queries for extracting indexed data and perform further queries/operations
and supports distributed datastores that meet the demands of high scalabil-
ity and fault tolerance in the management and analysis of massive amounts
of genomics/clinical data. The data is stored in a versioned format and any

14 T. Abdullah and A. Ahmet

incremental changes in data can easily be tracked. This is very useful for time
series data and can easily handle incremental changes in genomics data. It also
provides the ability to make small reads, concurrent read/write and the incre-
mental updates.

Splittability is an important feature for any datastore for computing frame-
works with data parallelism as it affects the ability to partition read data. Hav-
ing non-splittable chunks of data on a node prevents us from partitioning this
data across a computing cluster, preventing efficient utilization of our executor
resources.

Splittability of each of the compression codec available with the shortlisted
storage solutions is summarised in Table 4. Snappy, Deflate and GZIP do not
support splittability when used to compress plain text files but support split-
tability in a container format such as Hadoop file formats. ZLIB is only codec
that splittable with plain text files. Splittability support on a distributed storage
solution such as Hadoop is referred to as block-level compression. This is inter-
nal to the file format where individual blocks of data are compressed, allowing
splittability with generally non-supportive codecs. Typical genomic analytic jobs
on Spark Hadoop cluster are IO-bound, not CPU bound, so light and splittable
compression codec will lead to improved run time performance.

Computing Cluster
Computing cluster is the foundation for data acquisition and genomics data
analyser. It’s built on top of high performance computing cluster which provides
access to a collection of many nodes which are connected via a fast interconnected
network file system and provides access processor cores and RAM.

To meet the challenges of genomics data outlined in Sect. 2, the computing
cluster provides horizontal scalability and fault-tolerance to address the chal-
lenges of volume and velocity of genomics data and in-memory computing frame-
work to reduce the disk I/O during analysis.

3.3 Data Centre Infrastructure Service

We have a cloud-based computing and storage cluster form our infrastructure
layer. A cloud based approach gives us access to a large amount of on-demand
resources, enabling us to increase the size of computing and storage cluster easily.
Cloud computing is much more scalable and cost-efficient solution. A core enabler
of cloud computing, virtualization technology facilitates maximum utilization of
hardware and investment [5], allowing us to access massive resources at affordable
prices. Advances in the robustness of distributed computing and parallelised
programming also adds fault-tolerance to our cloud-based solution [56].

The infrastructure layer is composed of high-performance computing (HPC)
cluster, scalable block & object storage cluster and high throughput network. A
scalable object and block storage underpin the storage server in the middleware,
enabling a highly distributed and fault tolerant storage service that’s able to
efficiently deal with the massive amounts of unstructured genomic and structured

Extracting Insights 15

Fig. 4. Sample VCF File structure

clinical data. HPC cluster provides sufficient memory and core resources for
the utilization of an in-memory and highly fault-tolerant distributed analytic
pipeline.

3.4 Genomics Variant Analysis: A Case Study

We evaluated our framework with a genomic variant analysis case study.
Genomic variant analysis detects genomics mutations related to a particular dis-
order in a human genome. This provides the quintessential challenges associated
with genomics data and will test the in-memory, distributed and fault-tolerance
of the proposed framework. Although this case study focuses on VCF file for-
mat, the framework can be used to handle all different file formats discussed
in Sect. 2.1 and can integrate with existing clinical/pharma system. Genomic
variant data is stored in VCF file format.

In this case study, we cluster individuals using the genotype information in
VCF files. We implement two approaches, clustering with NoSQL (abbreviated
as CwNoSQL) and clustering with VCF (abbreviated as CwVCF). Both these
approaches involve parsing VCF data and either first writing the data to a
NoSQL storage and then having the analyser access the variant data from NoSQL
storage (clustering with NoSQL) or passing it straight to analyser (clustering
with VCF), before performing the clustering operation. In the remainder of this
section, we explain the sequence of the steps taken in implementing the case
study for evaluating our framework.

Genotype clustering of variant data in VCF files involves the following steps:
1) acquiring genomics data and executing ETL module in data acquisition 2)
pre-processing transformed data for clustering algorithm in VCF Data Pre-
Processing and 3) genotype clustering using a clustering algorithm. These steps
are explained further in the following sections.

Data Acquisition. Input VCF files are initially loaded into the genomics stor-
age server. The genomics ETL module reads each VCF file as a text file and
processes all the files row-by-row while skipping the header lines starting with
“##” (refer Fig. 4). Individual field values are obtained by tab splitting a vari-
ant line from input files. The first eight columns in VCF file format contain the

16 T. Abdullah and A. Ahmet

CHROM (the chromosome), POS (starting position of the variant), ID (external
identifier tags), REF (the reference position in the genome), ALT (the vari-
ant itself), QUAL (quality metrics), FILTER (quality control check indicators).
The INFO field (variant-specific annotation information filed) is used by genome
sequencing annotation tools to store vectors of annotations. The eighth column
acts as the key to values from sample-specific data. All individual sample-specific
data begins from the ninth column. There is no limit to the number of samples
or annotations that can be contained in a VCF file. Each row in VCF has values
attributed to the corresponding column in a VCF file. Sample columns depend
on cohort size and are treated as individual columns in NoSQL datastore. This
will enable fast lookup during pre-processing.

VCF Data Pre-processing. Following the data acquisition step, VCF data
undergoes pre-processing. This step involves a number of transformations on the
data in order to obtain the feature vectors required for executing genotype clus-
tering. These transformations are based on the genotype pre-processing transfor-
mation steps [4]. The pre-processing stage for CwNoSQL and CwVCF differ with
the latter having variant data read from VCF file directly while CwNoSQL will
have the transformed data (refer Sect. 3.1) in NoSQL read. For CwVCF variant
data is read line-by-line from the source and stored in arrays of to Resilient Dis-
tributed Datasets (RDDs). The RDDs allow creating an immutable distributed
collection of objects across cluster providing fault-tolerance parallelized data.
Tuples of values and their corresponding sample headers Table 5 are created
using Spark’s ‘zip’ function. This produces an array of elements containing key-
value pairs (KVP) of sample and its header. KVPs that represent alleles are
kept while other data are removed. The custom function converts KVP allele
from strings in the form of ‘0—1’ to doubles representing the hamming distance
to the reference where a 0 is a no variant, 1 is heterozygous variant and a 2
is a homozygous variant. KVP with a value of 0, which represent a no variant
data point, are removed as the data will be converted to sparse vectors in later
steps. To further reduce the size of data we remove further data points that will
contribute little end task. This can optionally include removing variants present
in only one individual. This is done by removing arrays with a length of one as
the length of this array represents the number of individuals that have the vari-
ant. To obtain arrays of alleles for each individual, we firstly zip array from the
previous step with an ID to obtain ordered arrays of alleles. Spark’s ‘flatMap’
is used to flatten arrays into KVPs. Key is the individual IDs while the value is
the tuple of variant ID and variant information. The final step is to group these
KVPs using individual IDs obtaining sparse vectors.

Genotype Clustering. For genotype clustering, we utilised Spark’s MLlib
which provides a variety of algorithms (refer Sect. 3.1) including K-means clus-
tering algorithm. K-means model is fitted on all the features obtained in Sect. 3.4
using k = 4 centroids and t = 100 iterations. K-means is an unsupervised

Extracting Insights 17

Table 5. VCF file header explained

Header Description

CHROM The chromosome

Samples Number of samples

Samples Sample name

POS Reference position from position 1 of the 1st base

ID Semicolon separated list of unique identifiers

Ref Reference base represented as A, C, G, T, N

QUAL Phred scale assertion quality score for in ALT

ALT Comma separated list of alternate non-reference alleles from a sample

AC Allele count in genotype, for each ALT allele, in the same order as listed

AF Allele frequency for each ALT allele

AN Total number of alleles in called genotype

clustering algorithm and starts by randomly defining k centroids and proceeds
to iteratively execute the following two tasks:

1. Using Euclidean distance, each data point is allocated to the nearest centroid
2. Minimizing the mean value of cluster centroids with cluster data points

The re-grouping process continues until no new improvements can be performed.
K-means algorithm is relatively efficient with the complexity of O(tkn), where
n is numbers of objects.

4 Empirical Performance Evaluation

In this section, we first present details of our experimental setup followed by
the empirical performance evaluation. This set of results focus on evaluating
and benchmarking storage and analytic components of the framework. The
experiments focus on evaluating the performance of our framework on extract,
transform and load, compression, datastore read, random data lookup, task
parallelism, data splitting, partition support and genotype clustering. We also

Table 6. Data-write comparison with data stores at varying storage intervals

Datastores Write time (seconds)
20% 40% 60% 80% 100%

HBase 521.4 1028.1 2309.9 3393.2 4737.7
Parquet 113.2 221.3 260.6 367.2 456.6
ORC 125.5 239.4 330.5 384.6 480.6
Avro 107.4 188.9 279.6 365.6 453.2
Text (CSV) 246.7 492.1 716.0 883.6 1178.6

18 T. Abdullah and A. Ahmet

Table 7. Data read comparison

Datastore Time (mm:ss)
Chromosome 22 Chromosome 1

HBase 00:27 06:52
Parquet 00:17 00:23
ORC 00:18 00:35
Avro 00:28 00:48
VCF 01:14 10:57
CSV 00:34 05:01

compare our framework with VariantSpark on genotype clustering task and con-
clude this section with recommendations on specific components for the proposed
framework.

4.1 Experimental Setup

This section explains the implementation and experimental details for evaluating
the presented framework. The results evaluate all the stages of our framework
from reading input data files, transforming the data into a structured format,
transforming and storing the data in the storage server, implementing analytics
algorithm(s) on the pre-processed data and interactively representing the results.

Evaluation Parameters. The performance of the storage server for trans-
forming and managing genomics data is measured with the following aspects: 1)
extract, transform and load performance (a key omnipresent task for genomics
data volume and velocity), 2) read performance which delves into datastore per-
formance in querying, 3) random data lookup which provides a snapshot of data-
store lookup latency, 4) data splitting and partition support probing datastore
scalability and fault-tolerance.

To evaluate the framework’s analytic components we evaluated the following
tasks: 1) ETL that tested compute engine’s scalability and fault-tolerance 2) data
sorting (a key test for computing component as it involves many of the transfor-
mations that are present in analytic tasks, testing parallelism, in-memory and
I/O performance), 3) genotype clustering as it provides the most complete test
of the analytic and storage components of the proposed framework. Scalability
and performance of the framework are evaluated by increasing the number of
computing cores from 8–80.

Dataset. The result reported in this paper are obtained using phase 14 and
phase 35 datasets from the 1000 genome project. The total size of Phase 1 and
4 http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20110521/.
5 http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/.

http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20110521/
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/

Extracting Insights 19

Phase 3 data, in their raw uncompressed VCF format, are approximately 161 GB
and 770 GB. It contains 84.4 million variants [9] for 1092 and 2504 individuals
respectively, these samples are from 26 populations and belong to five super
populations as African (AFR), American (AMR), East Asian (EAS), European
(EUR) and South Asian (SAS) [9].

Compute Cloud. The experiments were conducted on a compute cluster con-
sisting of 88 CPUs and 176 GB RAM. These cluster resources are obtained from
the University of Derby compute cloud. This cluster is composed of servers
equipped with Intel Xeon processors where each processor consists of 6 phys-
ical cores and is running a 64-bit instruction set. The compute cluster is running
OpenStack Icehouse with Ubuntu 14.0.4 LTS. All nodes are interconnected via
a Network File System (NFS) using a dedicated 10 GB/s Ethernet link and
switches to share data between the servers.

It is important to note here that our framework is robust and can run on
any computing and storage cluster configuration. The computing resources used
for these experiments do not represent a minimum or maximum requirement for
using our framework. These resources can be extended or reduced as required
for a particular experiment.

ETL Performance. We evaluate extract transform and load performance of
the framework on multiple datastores in 20% dataset load intervals. We looked
at five potential datastore solutions: Apache HBase, Apache Parquet, Apache
ORC and Apache Avro. These are compared to the original VCF file format
and standard CSV format. We compared the performance of these datastores by
bulk loading phase 3 chromosome-1 uncompressed VCF dataset

Results in Table 6 demonstrate the ETL performance of Avro, Parquet and
ORC which were approximately 10 times quicker than HBase and less than half
of the time for CSV, with Avro and Parquet having 27 and 24 s over ORC. Avro
is a row-based datastore that provides it with an edge over other datastores
on write operations as it is quicker to append records. For the Hadoop storage
formats, we can parse the VCF file for the variants to a dataframe, a Spark

Table 8. Datastore compression comparison

Datastore Size on disk (GB)

HBase 70.4
Parquet 5.9
ORC 3.6
Avro 4.9
CSV 66.7
VCF 65.7

20 T. Abdullah and A. Ahmet

(a) Data Sorting Comparison (b) Random Data Lookup Comparison

Fig. 5. Data sorting and random data lookup comparison

distributed data structure. This is then written to the storage format with a
function RDD write function. HBase requires additionally mapping each variant
to an HBase put object which increases runtime. Spark’s native support for
writing dataframes to Hadoop storage formats greatly simplifies the process of
writing data.

Data Compression Performance. We investigated the compression perfor-
mance for each of the datastores. Apache Parquet, ORC and Avro formats offer
a variety of data compression options. Avro supports Snappy and Deflate com-
pression, while Parquet supports Snappy and GZIP and ORC supports Snappy
and ZLIB. ORC, Avro and Parquet consumed only 5.5%, 7.5% and 9% of the
original VCF file disk space respectively while HBase and CSV exceeded 100% of
original disk space (refer Table 8). ORC outperformed Parquet and Avro by 39%
and 27% respectively. ORC outperforms both because it’s default compression
codec ZLib, provides better compression ratios compared to Parquet’s Snappy
and Avro’s Deflate.

Datastore Read Performance. We compared the time for reading the data
and counting the number of records in each dataset for all the NoSQL datastores
(Apache Parquet, Apache ORC, Apache Avro, Apache HBase) and VCF file
format. Table 7 displays read performance for the aforementioned datastores.
Parquet and ORC provided the best time followed by HBase and Avro with
VCF file read last. All three Hadoop data formats benefit from compression
but it’s the columnar data storage that gives Parquet and ORC the edge in
data retrieval. It enables efficient lookup of a subset of columns, reducing I/O.
Parquet and ORC are optimized for write-once-read-many strategy.

Data Sorting Performance. This task is one of the most important oper-
ations that requires moving data across nodes in the cluster. Sorting a large
volume of data requires moving all the data across the network, testing the
scalability and fault- tolerance of the computing cluster and disk I/O. In an in-
memory computing framework, shuffle operation predicates nearly all distributed

Extracting Insights 21

Table 9. Task parallelism with varying data partitions

Number of data partitions Number of allocated CPUs
36 45 54

9 12:38 12:53 12:14
18 12:31 13:05 12:27
36 12:11 11:51 11:53
72 10:50 10:24 10:13

144 09:24 09:13 08:57
288 07:43 07:34 07:34
576 08:36 08:34 08:26

1152 09:02 08:52 08:33

processing workloads as it tests the parallelism, fault-tolerance and in-memory
performance of the computing framework. Unlike MapReduce, Spark’s sorting
involves no reduction of data along the pipeline, making it more challenging.

We found Parquet had a 3 and 8 s over ORC and Avro (refer Fig. 5a). VCF
and CSV lagged far behind the Hadoop datastores and HBase fared even worse.
Although both VCF and CSV are row-based text files, Spark’s built-in support
for reading CSV data provided CSV with performance boost over VCF. These
results are in line with datastore read comparison and show the edge columnar
datastores have over row-based Avro, VCF and CSV when querying data.

Random Data Lookup Performance. We investigated random data lookup
for each of the datastores. Using a compound key, in this case, the ‘pos’ iden-
tifier in the variant data (refer Fig. 4), we retrieved a variant record in phase 3
chromosome 1 dataset (65.7 GB). Figure 5b depicts results with Parquet ahead
of ORC and Avro by 44 and 45 s, followed by a big gap with HBase, VCF and
CSV. For row-based Avro and CSV, individual records can only be looked up
using a brute force scan of the read data. Columnar datastores like Parquet
and ORC, on the other hand, are optimized for data lookup, taking advantage
of predicate and projection pushdown which translate to the efficient manner
in which columnar datastores can filter and omit unnecessary data from table
scans or queries in large volumes of stored data.

Task Parallelism Performance. With a distributed computing and storage
server, resources are not utilised efficiently when the level of parallelism is not
sufficient for each job. The input data is divided into partitions for parallel in-
memory processing. These partitions are granular chunks of data that cannot
span across multiple nodes on the cluster. Apache Spark’s default setting is
configured to create one partition for each HDFS block from input files which
is set to 64 MB by default. However, the block size is not fixed and can vary

22 T. Abdullah and A. Ahmet

Fig. 6. Data load runtime with varying executors

depending on the cluster size. Spark reads data into an RDD from the nodes
that are close to it for minimizing network traffic and disk IO.

Creating too few partitions will lead to less concurrency and data skewing
that will result in performance bottlenecks. Similarly, creating too many parti-
tions can also to lead to increased runtime due to task scheduling overhead.

To evaluate task parallelism, we executed experiments with a varying number
of partitions and executor allocations for our input genomics data using VCF
data ETL process. We read phase-3 chromosome-1 VCF dataset split into 130
individual VCF files (65.7 GB), transform and write the data to parquet format.
In these experiments, we varied the number of partitions between 9 and 1152
and the number of executors are varied between 9 to 54.

We found all executor allocations performed poorly with 9, 18 and 36 par-
titions but performance doubled from 36 to 72 and 72 to 144 (refer Table 9).
The best performance was observed with 288 partitions and followed by 576
and 1152. These results show the number of partitions and core allocation
greatly affects the parallelism of a task and ultimately the runtime performance.

Table 10. Datastore compression codecs

Compression
codec

Splittability
support

Tool support Design emphasis

Snappy Avro, Paraquet,
ORC

Avro, Paraquet,
ORC, HBase

Compression speed

Deflate Avro Avro Compression ratio
GZip No Paraquet, HBase Compression ratio
ZLib ORC ORC Compression ratio

Extracting Insights 23

Fig. 7. Genotype clustering comparison with data storage

Having too few partitions will lead to less concurrency and data skewing which
will result in performance bottlenecks. Having too many partitions can also to
lead to increased runtime due to task scheduling overhead.

Spark is optimized to create partitions from data stored in nearby nodes.
The partitions are also located on worker nodes that execute tasks. The optimal
executor memory allocation strategy for spark jobs was 2 GB memory per execu-
tor. It was also observed that this memory footprint increases with increasing
genome coverage depth. Picking the optimal number of partitions also depend
on cluster size and resource allocation.

We also evaluated the scalability of the proposed framework using a vary-
ing number of executors using ETL operation. We observed runtime dropped
approximately 24% with 9–18 executors, 14% with 18–27 and 11% with 27–36
executors before starting to plateau with 36–54 executors (refer Fig. 6). The
ETL operation involves reading a large number of files distributed over storage
server and executing numerous Spark transformations that test key aspects of
computing server parallelism.

Data Splitting and Partition Support. Splittability is important for com-
puting frameworks with data parallelism as it affects our ability to partition our
data. In essence, if a datastore does not support splittable chunks of data on a
node, this will prevent us from partitioning this data using and limit the efficient
utilization resource allocated to a task.

Table 10 displays the splittability for each of the compression codecs. Snappy,
Deflate and GZIP are not splittable when compressing plain text files but sup-
port splittability if in a container format such as Avro, Parquet or ORC, while

24 T. Abdullah and A. Ahmet

ZLIB is splittable with plain text also. This is referred to as Block-level com-
pression, which is internal to the file format where individual blocks of data are
compressed. With Block-level compression, the compressed file remains split-
table even if we have a generally non-splittable compression codec like Snappy,
Deflate or GZIP. Typical big data jobs on compute cluster are I/O bound, not
CPU bound, so a fast, splittable compression codec will lead to improved per-
formance.

Snappy aims for very high compression speed with sufficient compression
ratio. GZIP is a compression codec based on the DEFLATE algorithm, a combi-
nation of LZ77 and Huffman Coding. GZIP is designed to excel at compression
ratio, though it does utilise more CPU resources than Snappy and generally
slower compression speed than Snappy.

Datastore Genotype Clustering. We compared the performance of HBase,
Parquet, ORC, Avro, VCF and CSV on the task of population-scale clustering
using genotype information in VCF files. We utilised 1000 Genome Phase 3
Chromosome 1 (65.7 GB) split into 130 individual VCF files and allocated 36
cores and 72 GB of memory (refer Fig. 7). We found ORC, Parquet and Avro
performed with similar times. Though ORC recorded the lowest runtime, all four
displayed very close performance, with 11 s between ORC and Avro. These were
followed by HBase, VCF and CSV, also displaying similar times but significantly
higher than ORC, Parquet and Avro.

These results demonstrate the edge ORC, Parquet and Avro in analytic tasks
which process a subset of columns or rows. For genotype clustering, instead of
parsing VCF or CSV files row by row and executing transformations to obtain
columns of genotype sample data (refer Sect. 3.4), we can query pre-processed
columns in ORC, Parquet and Avro and skip key transformations. This advan-
tage combined with efficient compression means NoSQL datastore can poten-
tially read 18x less data with substantially less expensive processing required for
an analytic task such as genotype clustering.

Comparison with VariantSpark. Unlike the VariantSpark implementa-
tion, our genotype clustering approach (clustering-Parquet) does not perform
direct transformations on VCF files, rather, we parse VCF data and store in
the genomics storage server once. Our approach, clustering with Parquet was
markedly faster than VariantSpark (refer Fig. 8). This approach resulted in per-
formance gains in genotype pre-processing.

Genomic data in VCF files are unstructured, VariantSpark parses this data
line by line for every analytic task. Whereas, in out framework, we parse the
VCF data once, giving it structure and optimizing for genotype query tasks,
and store it into our genomics storage server. This means that all data reads will
be quicker with our genomics datastore as we can efficiently lookup whole sample
columns from datastore and avoid reading all the data, row by row, and executing
costly transformations described in Sect. 3.4. These costly transformations are
executed once during data acquisition and stored in datastore, making them

Extracting Insights 25

(a) Phase 1 Chromosome 22 (b) Phase 3 Chromosome 22

Fig. 8. Genotype clustering comparison with VariantSpark

available for future analysis. Another key benefit of our approach is that the
analysis results are stored in the genomics storage server and are not discarded
as in VariantSpark. Our approach yields long-term benefits, as we don’t need
to parse VCF files for each analytic task on the genomics dataset. Another
advantage of storing the parsed VCF data into our genomics storage server
is massive scalability and a drastic reduction in disk utilization as a result of
efficient compression. Crucially, a columnar NoSQL datastore approach enables
us to scale horizontally on commodity hardware and partitioning across multiple
servers. With growing data and increasing storage demand, we can add nodes
to the existing server.

Results Discussion and Recommendations. In this section, we provide a
discussion of our findings on the case study findings and provide key recommen-
dations for the proposed framework architecture. In our case study, we utilised
Apache Spark for computing framework and Apache Hadoop and plug-and-play
NoSQL datastore for storage server. Spark offers a distributed, fault-tolerant, in-
memory computing framework to meet the challenges of genomics data. Spark
integrates naturally with Apache Hadoop and utilises Hadoop’s YARN in cluster
mode. We utilised HDFS for the backbone of the storage server and a foundation
to the genomic datastore. Hadoop’s YARN also served as a resource manager for
Spark computing framework. The combination of Hadoop and Spark is a proven
recipe for massively scalable and fault-tolerant computing and storage.

Selecting the right datastore for a storage server should be based on the
following considerations: write performance, partial/full read performance, disk
utilization, splittability, data compression performance and tool support. Datas-
tores that are not splittable should be avoided as this will prevent the utilization
of compression codecs.

We recommend choosing a columnar datastore such as Parquet or ORC over
row-based formats Avro or CSV or any text-based dataset format like VCF.
Parquet and ORC have demonstrated superior performance over other datas-
tores in datastore read, data sorting, random data lookup, data splittability and

26 T. Abdullah and A. Ahmet

genotype clustering. Parquet has an edge in random data lookup while perfor-
mance on other tasks is roughly in line with ORC. ORC produced the best disk
utilization performance beating both Avro and Parquet.

Another important aspect to look at is the support for schema evolution.
Avro, Parquet and ORC all provide some form of schema evolution. ORC has
better support for schema evolution compared to Parquet, but Avro offers excel-
lent schema evolution support due to the inherent mechanism utilised to describe
data using JSON. Avro’s ability to manage schema evolution allows updates to
components independently, for fast-growing and evolving data such as genomics
data, it offers a solution with low risk of incompatibility.

Generally, if the dataset samples are wide and involve write-heavy workloads,
a row-based format such as Avro is the best approach. For a narrower dataset
with ready-heavy analytic workloads, a columnar approach is recommended.
Sometimes Hadoop users may be committed to a column-based format but as
they start getting into a project, the I/O pattern starts to shift towards a more
write-heavy presence. In that case, it might be better to switch over to row-based
storage (Avro) but add indexes that provide better read performance.

Different Hadoop tools also have different affinities for Avro, ORC and Par-
quet. ORC is commonly used with Apache Hive (managed by Hortonworks).
Therefore, ORC data tends to congregate in companies that run the Horton-
works Data Platform (HDP). Presto is also affiliated with ORC files. Similarly,
Parquet is commonly used with Impala, and since Impala is a Cloudera project,
it’s commonly found in companies that use Cloudera’s Distribution of Hadoop
(CDH). Parquet is also used in Apache Drill, which is MapR‘s favored SQL-
on-Hadoop solution; Arrow, the file-format championed by Dremio; and Apache
Spark, everybody’s favourite big data engine that does a little of everything.

Avro, by comparison, is the file format often found in Apache Kafka clusters,
according to Nexla. Avro is also the favoured big data file format used by Druid
(the high-performance big data storage and compute platform). What file format
you use to for data storage in your big data solution is important, but it’s just
one consideration among many.

Genomics datasets have high disk utilization due to the vast volume of data
and data replication of distributed storage platform. To add further scalability to
existing storage tools we recommend efficient compression, enabling a significant
reduction in disk utilization by up to 18 times for VCF datasets. The reduced
disk utilization addresses another key genomics data bottleneck of disk I/O in
the analytic pipeline. This leads to further improvement in runtime and data
lookup latency. ORC outperformed both Avro and Parquet on compression and
is the clear choice in this area. Based on our experiments, columnar datastores
such as Apache ORC and Apache Parquet demonstrated an excellent balance
between efficient data read, random data lookup, data ingestion, compression
and scalable data analytics. It was also observed that datastores with indexing
support made data retrieval easier. Table 8 summarises the disk utilisation for
each data store.

Extracting Insights 27

5 Conclusions and Future Work

In this paper, we present a framework for efficiently tackling the challenges of
genomics data on a Big data infrastructure. Unstructured genomic data is read
from sources once, transformed, given structure and stored in optimized datas-
tore. Medical and clinical data exist in a multitude of formats and repositories.
Storage solutions that can accommodate heterogeneous genomic and clinical
data will be key in developing analytic capabilities for producing a personalized
treatment. Utilizing a NoSQL datastore on top of a highly proven distributed
storage management framework ensures our approach can provide massive scal-
ability with high fault tolerance.

Genotype clustering is presented as a case study for evaluating our stor-
age server and compute framework. The results demonstrate superior perfor-
mance over existing approaches which utilise architectures that do not effectively
address storage and computing challenges of genomics data.

We evaluated datastores for storage server and found columnar storage for-
mats such as Parquet and ORC provided the best read performance over row-
based format Avro and column-oriented HBase. Flexible compression options
from ORC, Avro and Parquet can provide significant disk utilization improve-
ment. Spark was reading at least 10 times less data versus HBase and VCF
file format. More efficient compression is important in reducing IO and resource
utilization.

These results lead us to determine Parquet being the most suitable for scal-
able genomics data analytics. While Parquet and ORC are more computationally
expensive in writing, Parquet provides the most promising data lookup latency.

In our future work, we plan to use state of the art deep learning algorithms
with the proposed framework on a GPU cluster utilizing a variety of genomics,
clinical and health data for healthcare prediction tasks. Recent advances have
made deep learning one of the hottest technology trends [27] even surpass-
ing human-level performance on certain classification and regression tasks. We
believe deep learning will play an increasingly important role in the process of
extracting value from genomics data.

Appendix A

In this section we provide detailed setup for the experiments conducted in geno-
type clustering case study. All experiments were conducted on Derby University
IaaS platform. These experiments can be replicated on any cloud service or on-
premise data centre architecture.

Resource Infrastructure. The cluster utilised for experiments consisted of
11 nodes with 8 CPU, 16 GB RAM and 200 GB Disk each providing a total of
88 processors, 176 GB RAM and 2.2 TB of disk. Infrastructure is interconnected
with a Network File System (NFS) using a dedicated 10 GB/s ethernet link
and switches to share data between the servers. In our experiments, we refer to
allocated computing cores as executors.

28 T. Abdullah and A. Ahmet

Software Infrastructure. Each node ran Openstack Icehouse on Ubuntu
14.0.4 Server 64-bit. We utilised the following tools which populated the frame-
work: Apache Hadoop 2.7.3, Apache Spark 2.1.1, Apache HBase 1.2.1, Apache
Zeppelin 0.7.2, Java 1.8 and Scala 2.11 on every node. Each slave node ran yarn
manager, HDFS data node and spark worker service for all experiments. Some
of the experiments required HBase service. With a total of 11 nodes, we utilised
1 master and 10 slave node architecture (refer Fig. 9).

Fig. 9. Cluster architecture: implementation view

Dataset and Source Code. Experiment result were obtained using variant
data available in VCF files from phase 16 and phase 37 datasets of the 1000
genome project. We are unable to release the full source code from this study as
we are currently utilizing it in a related study and to develop it as a product.

References

1. Abdullah, T., Ahmet, A.: Genomics analyser: a big data framework for analysing
genomics data. In: Proceedings of the Fourth IEEE/ACM International Conference
on Big Data Computing, Applications and Technologies, pp. 189–197 (2017)

2. Bateman, A., Wood, M.: Cloud computing. Bioinformatics 25(12), 1475 (2009)
3. Benson, D.A., Karsch-Mizrachi, I., Lipman, D.J., Ostell, J., Sayers, E.W.: Gen-

Bank. Nucl. Acids Res. 37(Database), D26–D31 (2009)
4. Brien, A.R.O., Saunders, N.F.W., Guo, Y., Buske, F.A., Scott, R.J., Bauer, D.C.:

VariantSpark: population scale clustering of genotype information. BMC Genomics
16, 1–9 (2015)

5. Shaffer, C.: Next-generation sequencing outpaces expectations. Nat. Biotechnol.
25 (2007)

6. Carter, R.J., Dubchak, I., Holbrook, S.R.: A computational approach to identify
genes for functional RNAs in genomic sequences. Nucl. Acids Res. 29(19), 3928–
3938 (2001)

6 http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20110521/.
7 http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/.

http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20110521/
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/

Extracting Insights 29

7. Hayden, E.C.: Genome researchers raise alarm over big data. Nature (2015)
8. Chen, X., Jorgenson, E., Cheung, S.: New tools for functional genomic analysis.

Drug Discov. Today 14(15), 754–760 (2009)
9. The 1000 Genome Project Consortium: A global reference for human genetic vari-

ations. Nature 256, 68–78 (2015)
10. Cook, C.E., Bergman, M.T., Cochrane, G., Apweiler, R., Birney, E.: The European

bioinformatics institute in 2017: data coordination and integration. Nucl. Acids
Res. 29(19), 3928–3938 (2017)

11. Coonrod, E., Margraf, R., Russell, A., Voelkerding, K., Reese, M.: Clinical analysis
of genome next-generation sequencing data using the Omicia platform. Expert.
Rev. Mol. Diagn. 13(6), 529–540 (2013)

12. Davies, K.: The 1,000 Dollar Genome - The Revolution in DNA Sequencing and
the New Era of Personalized Medicine. Free Press (2010)

13. de Paula, R., Holanda, M., Gomes, L.S.A., Lifschitz, S., Walter, M.E.M.T.: Prove-
nance in bioinformatics workflows. In: BMC Bioinformatics Workshops (2013)

14. Decap, D., Reumers, J., Herzeel, C., Costanza, P., Fostier, J.: Halvade: scalable
sequence analysis with MapReduce. Bioinformatics 31(15), 2482–2488 (2015)

15. Ding, L., Wendl, M., Koboldt, D., Mardis, E.: Analysis of next-generation genomic
data in cancer: accomplishments and challenges. Hum. Mol. Genet. 19(2), 188–196
(2010)

16. EMBL-EBI. EMBL-EBI annual scientific report 2013. Technical report, EMBL-
European Bioinformatics Institute (2014)

17. Borozan, I., et al.: CaPSID: a bioinformatics platform for computational pathogen
sequence identification in human genome and transcriptomes. BMC Bioinform. 13,
1–11 (2012)

18. National Center for Biotechnology Information. File format guide, U.S. National
Library of Medicine. https://www.ncbi.nlm.nih.gov/sra/docs/submitformats/

19. Guo, X., Meng, Y., Yu, N., Pan, Y.: Cloud computing for detecting high-order
genome-wide epistatic interaction via dynamic clustering. BMC Bioinform. 15(1),
102 (2014)

20. Gurovich,,Y., et al.: DeepGestalt-identifying rare genetic syndromes using deep
learning. arXiv preprint arXiv:1801.07637 (2018)

21. Huang, H., Tata, S., Prill, R.J.: BlueSNP. R package for highly scalable genome-
wide association studies using Hadoop clusters. Bioinformatics 29(1), 135–136
(2013)

22. Huang, L., Kruger, J., Sczyrba, A.: Analyzing large scale genomic data on the
cloud with Sparkhit. Bioinformatics 34(9), 1457–1465 (2017)

23. Data — 1000 Genomes. IGSR: The International Genome Sample Resource.
https://www.internationalgenome.org/data

24. Tian, J., Wu, N., Guo, X., Guo, J., Zhang, J., Fan, Y.: Predicting the phenotypic
effects of non-synonymous single nucleotide polymorphisms based on support vec-
tor machines. BMC Bioinform. 8, 450–546 (2007)

25. Jourdren, L., Bernard, M., Dillies, M.A.L., Crom, S.: Eoulsan. A cloud computing-
based framework facilitating high throughput sequencing analyses. Bioinformatics
28(11), 1542–1543 (2012)

26. Kelly, B.J., et al.: Churchill: an ultra-fast, deterministic, highly scalable and bal-
anced parallelization strategy for the discovery of human genetic variation in clin-
ical and population-scale genomics. Genome Biol. 16(1), 6 (2015)

27. Klinger, J., Mateos-Garcia, J.C., Stathoulopoulos, K.: Deep learning, deep change?
Mapping the development of the artificial intelligence general purpose technology.
Mapp. Dev. Artif. Intell. Gen. Purp. Technol. (2018)

https://www.ncbi.nlm.nih.gov/sra/docs/submitformats/
http://arxiv.org/abs/1801.07637
https://www.internationalgenome.org/data

30 T. Abdullah and A. Ahmet

28. Kozanitis, C., Patterson, D.A.: GenAP: a distributed SQL interface for genomic
data. BMC Bioinformat. 17(63) (2016)

29. Langmead, B., Trapnell, C., Pop, M., Salzberg, S.L.: Ultrafast and memory-efficient
alignment of short DNA sequences to the human genome. Genome Biol. 10, R25
(2009). https://doi.org/10.1186/gb-2009-10-3-r25

30. Langmead, B., Schatz, M.C., Lin, J., Pop, M., Salzberg, S.L.: Searching for SNPs
with cloud computing. Genome Biol. 10(11), 134:1–134:10 (2009)

31. Langmead, B., Schatz, M.C., Lin, J., Pop, M., Salzberg, S.L.: Searching for SNPs
with cloud computing. Genome Biol. 10(11), R134 (2009)

32. Lu, W., Jackson, J., Barga, R.: AzureBlast: a case study of developing science
applications on the cloud. In: 19th ACM International Symposium on High Per-
formance Distributed Computing, pp. 413–420 (2010)

33. Mardis, E.R.: The impact of next-generation sequencing technology on genetics.
Trends Genet. 24(3), 133–141 (2008)

34. Massie, M., et al.: Adam: genomics formats and processing patterns for cloud scale
computing. Technical report UCB/EECS-2013-207, EECS Department, University
of California, Berkeley, December 2013

35. Mohammed, E.A., Far, B.H., Naugler, C.: Applications of the MapReduce pro-
gramming framework to clinical big data analysis: current landscape and future
trends. BioData Min. 7(1), 1–23 (2014)

36. Wiewiorka, M.S., Messina, A., Pacholewska, A., Maffioletti, S., Gawrysiak, P.,
Okoniewski, M.J.: SparkSeq: fast, scalable and cloud-ready tool for the interactive
genomic data analysis with nucleotide precision. Bioinformatics 15(30), 2652–2653
(2014)

37. Nordberg, H., Bhatia, K., Wang, K., Wang, Z.: BioPig: a Hadoop-based analytic
toolkit for large-scale sequence data. Bioinformatics 29(23), 3014–3019 (2013)

38. Norrgard, K.: Genetic variation and disease: GWAS. Nat. Educ. 1(1), 87(2008)
39. O’Connor, B.D., Merriman, B., Nelson, S.F.: SeqWare query engine: storing and

searching sequence data in the cloud. BMC Bioinform. 11(Suppl. 12), S2 (2010)
40. Oliveira, J.H., Holanda, M., Guimaraes, V., Hondo, F., Filho, W.: Data modeling

for NoSQL based on document. In: Second Annual International Symposium on
Information Management and Big Data, pp. 129–135 (2015)

41. Pinheiro, R., Holanda, M., Arujo, A., Walter, M.E.M.T., Lifschitz, S.: Automatic
capture of provenance data in genome project workflows. In: IEEE International
Conference on Bioinformatics and Biomedicine (BIBM), pp. 15–21 (2013)

42. Pinherio, R., Holanda, M., Araujo, A., Walter, M.E.M.t., Lifschitz., S.: Storing
provenance data of genome project workflows using graph databases. In: IEEE
International Conference on Bioinformatics and Biomedicine (BIBM), pp. 16–22
(2014)

43. Pireddu, L., Leo, S., Zanetti, G.: Seal: a distributed short read mapping and dupli-
cate removal tool. Bioinformatics 27(15), 2159–2160 (2011)

44. Poplin, R., et al.: A universal SNP and small-indel variant caller using deep neural
networks. Nat. Biotechnol. 36(10), 983–987 (2018)

45. 1000 Genomes Project. Data types and file formats
46. Zou, Q., Li, X.B., Jiang, W.R., Lin, Z.Y., Li, G.L., Chen, K.: Survey of MapReduce

frame operation in bioinformatics. Brief. Bioinform. 15, 637–647 (2014)
47. Qiu, J., et al.: Hybrid cloud and cluster computing paradigms for life science appli-

cations. BMC Bioinform. 11(12), 1–6 (2010). BioMed Central
48. Quail, M.A., et al.: A tale of three next generation sequencing platforms: com-

parison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC
Genomics 13(1), 1–13 (2012). BioMed Central

https://doi.org/10.1186/gb-2009-10-3-r25

Extracting Insights 31

49. Robinson, T., Killcoyne, S., Bressler, R., Boyle, J.: SAMQA: error classification
and validation of high-throughput sequenced read data. BMC Genomics 12, 419
(2011)

50. Schatz, M.C.: Cloudburst: highly sensitive read mapping with MapReduce. Bioin-
formatics 25(11), 1363–1369 (2009)

51. Schoenherr, S., Forer, L., Weissensteiner, H., Specht, G., Kronenberg, F., Kloss-
Brandstaetter, A.: Cloudgene: a graphical execution platform for MapReduce pro-
grams on private and public clouds. BMC Bioinform. 13(1), 200 (2012)

52. Schumacher, A., et al.: SeqPig: simple and scalable scripting for large sequencing
data sets in Hadoop. Bioinformatics 30(1), 119–120 (2014)

53. Stein, L.D.: The case for cloud computing in genome informatics. Genome Biol.
11(5), 207 (2010)

54. Stephens, Z.D., et al.: Big data: astronomical or genomical? PLoS Biol. 13(7),
e1002195 (2015)

55. Taylor, R.C.: An overview of the Hadoop/MapReduce/HBase framework and
its current applications in bioinformatics. BMC Bioinform. 11(S12), S1 (2010).
Springer

56. Wong, K.-C., Zhang, Z.: SNPdryad: predicting deleterious nonsynonymous human
SNPs using only orthologous protein sequences. Bioinformatics 30(8), 1112–1119
(2014)

57. Yin, Z., Lan, H., Tan, G., Lu, M., Vasilakos, A., Liu, W.: Computing platforms for
big biological data analytics: perspectives and challenges. Comput. Struct. Biotech-
nol. J. 15, 403–411 (2017)

Dynamic Estimation and Grid
Partitioning Approach for Multi-objective
Optimization Problems in Medical Cloud

Federations

Trung-Dung Le1(B) , Verena Kantere2 , and Laurent d’Orazio1

1 Univ Rennes, 2 rue du Thabor - CS 46510 - 35065 Rennes CEDEX, Rennes, France
{trung-dung.le,laurent.dorazio}@irisa.fr

2 University of Ottawa, 75 Laurier Ave E, Ottawa, ON K1N 6N5, Canada
vkantere@uOttawa.ca

Abstract. Data sharing is important in the medical domain. Sharing
data allows large-scale analysis with many data sources to provide more
accurate results. Cloud federations can leverage sharing medical data
stored in different cloud platforms, such as Amazon, Microsoft, etc.
The pay-as-you-go model in cloud federations raises important issues of
Multi-Objective Optimization Problems (MOOP) related to users’ pref-
erences, such as response time, money, etc. However, optimizing a query
in a cloud federation is complex with increasing the variety, especially
due to a wide range of communications and pricing models. The variety
of virtual machines configuration also leverages the high complexity in
generating the space of candidate solutions. Indeed, in such a context,
it is difficult to provide accurate estimations and optimal solutions to
make relevant decisions. The first challenge is how to estimate accurate
parameter values for MOOPs in a cloud federation consisting of different
sites. To address the accurate estimation of parameter values problem, we
present the Dynamic Regression Algorithm (DREAM). DREAM focuses
on reducing the size of historical data while maintaining the estima-
tion accuracy. The second challenge is how to find an approximate opti-
mal solution in MOOPs using an efficient Multi-Objective Optimization
algorithm. To address the problem of finding an approximate optimal
solution, we present Non-dominated Sorting Genetic Algorithms based
on Grid partitioning (NSGA-G) for MOOPs. The proposed algorithm is
integrated into the Intelligent Resource Scheduler, a solution for hetero-
geneous databases, to solve MOOP in cloud federations. We validate our
algorithms with experiments on a decision support benchmark.

Keywords: Cloud computing · Multiple Linear Regression · Cloud
federations · Genetic algorithm · Non-dominated Sorting Genetic
Algorithm

c© Springer-Verlag GmbH Germany, part of Springer Nature 2020
A. Hameurlain and A M. Tjoa (Eds.): TLDKS XLVI, LNCS 12410, pp. 32–66, 2020.
https://doi.org/10.1007/978-3-662-62386-2_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-62386-2_2&domain=pdf
http://orcid.org/0000-0001-9560-1180
http://orcid.org/0000-0002-3586-9406
http://orcid.org/0000-0001-8614-1848
https://doi.org/10.1007/978-3-662-62386-2_2

DREAM and NSGA-G for MOOPs in Medical Cloud Federations 33

1 Introduction

Cloud federation is a paradigm of interconnecting the cloud environments of
more than one service providers for multiple purposes of commercial, service
quality, and user’s requirements [35]. Besides of vendor lock-in and provider
integration, a cloud federation has several types of heterogeneity and variabil-
ity in the cloud environment, such as wide-range communications and pricing
models.

Cloud federations can be seen as a major progress in cloud computing, in
particular for the medical domain. Indeed, sharing medical data would improve
healthcare. Federating resources makes it possible to access any information even
on distributed hospital data on several sites. Besides, it enables to access larger
volumes of data on more patients and thus provide finer statistics.

For example, patient A has just come back from a tropical country B. He has
a rare disease from there. The hospital cannot recognize his disease. The clinic in
country B records some cases like his. However, the two databases of the hospital
and the clinic are not in the same database engine, or cloud provider. If a cloud
federation exists to interconnect the two clouds, his disease could be recognized
and he can have a treatment soon.

In cloud federations, pay-as-you-go models and elasticity thus raise an impor-
tant issue in terms of Multi-Objective Optimization Problems (MOOPs) accord-
ing to users preferences, such as time, money, quality, etc. However, MOOPs in
a cloud federation are hard to solve due to issues of heterogeneity, and variabil-
ity of the cloud environment, and high complexity in generating the space of
candidate solutions.

Let’s consider a query Q in a example below.

Example 1. A query Q in the medical domain, based on TPC-H1 query 3 and 4:

SELECT p.UID , p.PatientID , s.PatientName ,
p.PatientBrithDate , p.PatientSex ,
p.EthnicGroup , p.SmokingStatus ,
s.PatientAge , s.PatientWeight ,
s.PatientSize , i.GeneralName ,
i.GeneralValues , q.UID ,
q.SequenceTags , q.SequenceVRs ,
q.SequenceNames , q.SequenceValues
FROM Patient p, GeneralInfoTable i,
Study s, SequenceAttributes q
WHERE p.UID = s.UID AND p.UID = i.UID
AND p.UID = q.UID AND p.PatientSex = ’M’
AND p.SmokingStatus = ’NO’ AND s.PatientAge >= x
AND q.SequenceNames
LIKE ’%X-ray%’

1 http://www.tpc.org/tpch/.

http://www.tpc.org/tpch/

34 T.-D. Le et al.

Table 1. Multiple Objectives for Query Execution Plans

QEP VMs Price ($/60 min) Time (min) Monetary ($)

QEP1 20 0.02 60 0.4

QEP2 80 0.02 22 0.59

QEP3 50 0.02 26 0.43

This query is transformed into a logical query plan using logical operation,
such as select, project, join, etc. Depending on the physical operators, a query
optimizer generates a query execution plan to execute a logical plan. Actually,
various Query Execution Plans (QEPs) are generated with respect to the number
of nodes, their capacity in terms of CPU, memory and disk and the pricing model.
Table 1 presents an example of possible QEPs for Q. Choosing an execution plan
is a trade-off between objectives such as the response time or the monetary cost,
and depends on users’ preferences: a user A may prefer minimizing his budget
(QEP1); a user B may want the lowest response time (QEP2); a user C may
look for a trade-off between time and money (QEP3).

Assuming that the query is processed on Amazon EC2. The master consists
of a m2.4xlarge instance (8 virtual cores with 68.4 GB of RAM). Workers consist
of m3.2xlarge instances (8 virtual cores and with 30 GB of RAM). If the pool of
resources is 70 VCPU with 260 GB of memory, the number of QEPs is thus 70
× 260 = 18,200. The problem is then how to search and optimize such a query
in a real environment, when the pool of resources is more variable, with respect
to multiple dimensions (response time, monetary cost, etc.). Since generating
QEPs maybe infeasible due to high complexity, we aim to find an approximate
optimal solution.

In this paper, we address several challenges for the development of medical
data management in cloud federations. The first challenge is how to estimate
accurate parameter values for MOOPs without precise knowledge of the exe-
cution environment in a cloud federation consisting of different sites. The exe-
cution environment may consist of various hardware and systems. In addition,
it also depends on the variety of physical machines, load evolution and wide-
range communications. As a consequence, the estimation process is complex.
The second challenge is how to find an approximate optimal solution in MOOPs
using an efficient Multi-Objective Optimization algorithm. Indeed, MOOPs
could be solved by Multi-Objective Optimization algorithms or the Weighted
Sum Model (WSM) [24] or be converted to a Single-Objective Optimization
Problem (SOOP). However, SOOPs cannot adequately represent MOOPs [23].
Also, MOOPs leads to find solutions by Pareto dominance techniques. Since
generating a Pareto-optimal front is often infeasible due to high complexity [55],
MOOPs need an approximate optimal solution calculated by Pareto dominance
techniques.

The estimation process can be classified into two classes: without [39,42,50]
and with machine learning algorithms [17]. In a cloud federation with variability

DREAM and NSGA-G for MOOPs in Medical Cloud Federations 35

and different systems, cost functions may be quite complex. In the first class,
cost models introduced to build an optimal group of queries [39] are limited to
MapReduce [12]. Besides, a PostgreSQL cost model [50] aims to predict query
execution time for this specific relational DBMS. Moreover, OptEx [42] pro-
vides estimated job completion times for Spark2 with respect to the size of the
input dataset, the number of iterations, the number of nodes composing the
underlying cloud. These works mention the estimation of only execution time
for a job, and not for other metrics, such as monetary cost. Meanwhile, various
machine learning techniques are applied to estimate execution time in recent
research [2,21,46,51]. They predict the execution time by many machine learn-
ing algorithms. They treat the database system as a black box and try to learn
a query running time prediction model using the total information for training
and testing in the model building process. It may lead to the use of expired
information. In addition, most of these solutions solve the optimization problem
with a scalar cost value and do not consider multi-objective problems.

A well known Pareto dominance technique to solve the high complexity
of MOOP is Evolutionary Multiobjective Optimization (EMO). Among EMO
approaches, Non-dominated Sorting Genetic Algorithms (NSGAs) [14,15] have
lower computational complexity than other EMO approaches [15]. However,
these algorithms still have high computational complexity. We presented Non-
dominated Sorting Genetic Algorithm based on Grid partitioning (NSGA-G) [36]
to improve both computation time and qualities of NSGAs. It has more advan-
tages than other NSGAs. Two versions of NSGA-G will be shown to compromise
computation and quality.

In this paper, we introduce a medical system on a cloud federation called
Medical Data Management System (MIDAS). It is based on the Intelligent
Resource Scheduler (IReS) [17], an open source platform for complex analytics
workflows executed over multi-engine environments. In particular, we focus on:
(1) a dynamic estimation and (2) a Non-dominated Sorting Genetic Algorithm
for Multi-Objective Optimization Problems. The first contribution is Dynamic
linear REgression AlgorithM (DREAM) to provide accurate estimation with low
computational cost. DREAM is then implemented and validated with experi-
ments on a decision support benchmark (TPC-H benchmark). The second contri-
bution is Non-dominated Sorting Genetic Algorithm based on Grid partitioning
(NSGA-G) to improve both quality and computational efficiency of NSGAs, and
also provides an alternative for Pareto-optimal of MOOPs. NSGA-Gs are vali-
dated through experiments on DTLZ problems [16] and compared with NSGA-
II [15], NSGA-III [14], and the others in Generational Distance [49], Inverted
Generational Distance [9], and Maximum Pareto Front Error [48] statistic.

This paper is an extended version of [36,37]. In particular, they are grouped
together to become a system, MIDAS. Besides, the theory of NSGA-G in [36]
is expanded to two versions: NSGA-G using Min point and using Random met-
ric. The remaining of this paper is organized as follows. Section 2 presents
the research background. DREAM is presented in Sect. 3. Section 4 shows

2 https://spark.apache.org/.

https://spark.apache.org/

36 T.-D. Le et al.

NSGA-G. Section 5 presents experiments to validate DREAM and NSGA-Gs.
Finally, Sect. 6 concludes this paper and lists some perspectives.

2 Background

In this section, we introduce an architecture of the system, concepts and tech-
niques, allowing us to implement the proposed medical data management on
a cloud federation. First of all, an overview of the Medical Data Management
System (MIDAS) and the benefits of cloud federation where our system is built
on are introduced. After that, an open source platform, which helps our system
managing and executing workflows over multi-engine environments is described.
The concept of Pareto plan set related to Multi-Objective Optimization Problem
(MOOP) in MIDAS is then defined. In addition, Multiple Linear Regression
and Non-dominated Sorting Genetic Algorithm are also introduced as the basic
foundation of our proposed algorithms for MOOP.

2.1 Cloud Federation

This section shows the definition and the example related to a cloud federation. A
cloud federation enables to interconnect different cloud computing environments.
Cloud computing [3] allows to access on demand and configurable resources,
which can be quickly made available with minimal maintenance. According to the
pay-as-you-go pricing model, customers only pay for resources (storage and com-
puting) that they use. Cloud Service Providers (CSP) supply a pool of resources,
development platforms and services. There are many CSPs on the market, such
as Amazon, Google and Microsoft, etc., with different services and pricing mod-
els. For example, Table 2 shows the pricing of instances in two cloud providers
in 2019. The price of Amazon instances are lower than the price of Microsoft
instances, but the price of Amazon is without storage. Hence, depending on the
demand of a query, the monetary cost is low or high at a specific provider.

In the medical domain, cloud federation may lead to query data across differ-
ent clouds. A demand query running in that cloud federation could be concerned
about the price of time and money of the execution query. It is a Multi-Objective
Optimization Problem (MOOP). For example, federating resources makes it pos-
sible to access any information on a person with distributed hospital data on
various sites. Various big data management system could be used to manage the
medical data, which has the 3Vs characteristics of Big Data [1]: high volume,
high variety, and high velocity. The data also stores that belong in different
clouds are shown in Fig. 1. This example shows that the data can be stored in
three different clouds, such as Amazon Web Services, Microsoft Azure, Google
Cloud Platform. Pay-as-you-go models in clouds lead to solving Multi-Objective
Optimization Problem to find a Query Execution Plan (QEP) according to users
preferences, such as time, money, quality, etc. MOOPs often use Pareto domi-
nance techniques in finding an optimal solution.

DREAM and NSGA-G for MOOPs in Medical Cloud Federations 37

Hive
engine

Hive

PostgreSQL
engine

PostgreSQL

Spark
engine

Spark

Amazon Web Services

Microsoft Azure Google Cloud Platform

Data
DataClinic

Hospital

Laboratory of Medical
Analyzes

Data

Fig. 1. Motivating Example on using cloud federation.

Table 2. Example of instances pricing in 2019.

Provider Machine vCPU Memory (GiB) Storage (GB) Price ($/hour)

Amazon a1.medium 1 2 EBS-Only 0.0255

a1.large 2 4 EBS-Only 0.0510

a1.xlarge 4 8 EBS-Only 0.1020

a1.2xlarge 8 16 EBS-Only 0.2040

a1.4xlarge 16 32 EBS-Only 0.4080

Microsoft B1S 1 1 2 0.0104

B1MS 1 2 4 0.0208

B2S 2 4 8 0.0416

B2MS 2 8 16 0.0832

B4MS 4 16 32 0.1660

B8MS 8 32 64 0.3330

2.2 Pareto Plan Set

Pareto dominance techniques are often used in Multi-Objective Optimization
Problem (MOOP), such as Evolutionary Multiobjective Optimization (EMO) [14,
15,27,31,44,53,54]. In the vast space of candidate solutions of Multi-Objective
Optimization Problem (MOOP), a candidate solution may be not better than
another one because of trade-off between various objective values. Pareto sets are
used in this situation to optimize a Multi-Objective Optimization Problem.

In particular, in a query processing problem, let a query q be an information
request from databases, presented by a set of tables. A Query Execution Plan
(QEP), denoted by p, is the evaluation of a query that can be passed to the
executor. The set of QEPs is denoted by symbol P. The set of operators is

38 T.-D. Le et al.

denoted by O. A QEP, p, can be divided into two sub-plans p1 and p2 if p is
the result of function Combine(p1, p2, o), where o ∈ O.

The execution cost of a QEP depends on parameters, which values are not
known at the optimization time. A vector x denotes parameters value and the
parameter space X is the set of all possible parameter vectors x. N is denoted
as the set of n cost metrics. We can compare QEPs according to n cost metrics
which are processed with respect to the parameter vector x and cost functions
cn(p,x). Let denote C as the set of cost function c.

Let p1, p2 ∈ P, p1 dominates p2 if the cost values according to each cost
metric of plan p1 is less than or equal to the corresponding values of plan p2 in
all the space of parameter X . That is to say:

C(p1,X) � C(p2,X) | ∀n ∈ N,∀x ∈ X : cn(p1, x) ≤ cn(p2, x). (1)

The function Dom(p1, p2) ⊆ X yields the parameter space region where p1
dominates p2 [47]:

Dom(p1, p2) = {x ∈ X | ∀n ∈ N : cn(p1, x) ≤ cn(p2, x)}. (2)

Assume that in the area x ∈ A,A ⊆ X , p1 dominates p2, C(p1,A) � C(p2,A),
Dom(p1, p2) = A ⊆ X . p1 strictly dominates p2 if all values for the cost
functions of p1 are less than the corresponding values for p2 [47], i.e.

StriDom(p1, p2) = {x ∈ X | ∀n ∈ N : cn(p1, x) < cn(p2, x)}. (3)

A Pareto region of a plan is a space of parameters where there is no alternative
plan has lower cost than it [47]:

PaReg(p) = X \ (
⋃

p∗∈P
StriDom(p∗, p)). (4)

2.3 IReS

Cloud federation model needs to integrate cloud services from multiple cloud
providers. It raises an important issue in terms of heterogeneous database engines
in various clouds. Among various heterogeneous database system described
in Table 3, IReS platform considers both heterogeneous systems and Multi-
Objective Optimization Problem in clouds.

Intelligent Multi-Engine Resource Scheduler (IReS) [17] is an open source
platform for managing, executing and monitoring complex analytics workflows.
IReS provides a method of optimizing cost-based workflows and customizable
resource management of diverse execution and various storage engines. Espe-
cially, IReS platform helps us to organize data in the multiple clouds as a cloud
federation. Interface is the first module which is designed to receive informa-
tion on data and operators, as shown in Fig. 4. The second module is Mod-
elling, as shown in Fig. 4, is used to predict the execution time by a model
chosen by comparing machine learning algorithms. For example, Least squared

DREAM and NSGA-G for MOOPs in Medical Cloud Federations 39

Table 3. Recent heterogeneous database system researches.

Research Heterogeneous MOOP

Proteus [28] � ×
Polystore Query rewriting [40] � ×
BigDAWG Polystore System [18] � ×
ClooudMdsQL [32,33] � ×
MuSQLE [22] � ×
MISO [38] � ×
Polybase [11] � ×
Estoscada [6] � ×
IReS � �

regression [41], Bagging predictors [5], Multilayer Perceptron in WEKA frame-
work3 are used to build the cost model in Modelling module. The module
tests many algorithms and the best model with the smallest error is selected.
It guarantees the predicted values as the best one for estimating process. Next
module, Multi-Objective Optimizer, optimizes Multi-Objective Query Pro-
cessing (MOQP) and generates a Pareto QEP set. In Multi-Objective problem,
the objectives are the cost functions user concerned, such as the execution time,
monetary, intermediate data, etc. Multi-Objective Optimization algorithms can
be applied to the Multi-Objective Optimizer. For instance, the algorithms
based on Pareto dominance techniques [10,14,15,27,31,36,44,53,54] are solu-
tions for Multi-objective Optimization problems. Finally, the system selects the
best QEP based on user query policy and Pareto set. The final QEP is run on
multiple engines, as shown in Fig. 4.

2.4 Multiple Linear Regression

In many database management systems, predicting cost values is useful in opti-
mization process [50]. Recent researches have been exploring the statistical
machine learning approaches to build predictive models for this task. They often
use historical data to train and test the cost model as a Single-Objective Prob-
lem (SOP). Besides, Linear Regression is an useful class of models in science and
engineering [43]. In this section, we describe the background of this model.

This model is used in the situation in which a cost value, c, is a function
of one or more independent variables x1, x2, ..., and xL. For example, execution
time c is a function of data size x1 of first element in join operator and data size
x2 of second element in that join operator.

Given a sample of c values with their associated values of xi, i = 1, 2, ..., L.
We focus in the estimation the relationship between c and the independent vari-
ables x1, x2, ..., and xL based on this sample. Cost function c of Multiple Linear
Regression (MLR) model [43] is defined as follows:
3 https://www.cs.waikato.ac.nz/ml/weka/.

https://www.cs.waikato.ac.nz/ml/weka/

40 T.-D. Le et al.

c = β0 + β1x1 + ... + βLxL + ε, (5)

where βl, l = 0, ..., L, are unknown coefficients, xl, l = 1, ..., L, are the indepen-
dent variables, e.g., size of data, computer configuration, etc., c is cost function
values and ε is random error following normal distribution N (0, σ2) with zero
mean and variance σ2. The fitted equation is defined by:

ĉ = β̂0 + β̂1x1 + ... + β̂LxL. (6)

Example 2. A query Q [37] could be expressed as follows:

SELECT p.PatientSex , i.GeneralNames
FROM Patient p, GeneralInfo i
WHERE p.UID = i.UID

where Patient table is stored in cloud A and uses Hive [45] database engine4,
while GeneralInfo table is in cloud B with PostgreSQL database engine5. This
scenario leads to concern two metrics of monetary cost and execution time cost.
We can use the cost functions which depend on the size of tables of Patient and
GeneralInfo. Besides, the configuration and pricing of virtual machines cloud A
and B are different. Hence, the cost functions depend on the size of tables and
the number of virtual machines in cloud A and B.

ĉti = β̂t0 + β̂t1xPa + β̂t2xGe + β̂t3xnodeA + β̂t4xnodeB

ĉmo = β̂m0 + β̂m1xPa + β̂m2xGe + β̂m3xnodeA + β̂m4xnodeB

where ĉti, ĉmo are execution time and monetary cost function; xPa, xGe are the
size of Patient and GeneralInfo tables, respectively, and xnodeA, xnodeB are the
number of virtual machines created to run query Q.

There are M historical data, each of them associates with a response cm,
which can be predicted by a fitted value ĉm calculated from corresponding xlm

as follows:
ĉm = β̂0 + β̂1x1m + ... + β̂LxLm;m = 1, ...,M. (7)

Let denote

A =

⎡

⎢⎢⎢⎢⎣

1 x11 x21 ... xL1

1 x12 x22 ... xL2

.

.
1 x1M x2M ... xLM

⎤

⎥⎥⎥⎥⎦
, (8)

C =

⎡

⎢⎢⎢⎢⎣

c1
c2
.
.

cM

⎤

⎥⎥⎥⎥⎦
, (9)

4 http://hive.apache.org/.
5 https://www.postgresql.org/.

http://hive.apache.org/
https://www.postgresql.org/

DREAM and NSGA-G for MOOPs in Medical Cloud Federations 41

Non-dominated Sorting Filter Front

Pt

Qt

F1

F2

F3

F4

F3

Pt+1

Rt

Fig. 2. NSGA-II and NSGA-III procedure [14,15].

B =

⎡

⎢⎢⎢⎢⎣

β̂0

β̂1

.

.

β̂L

⎤

⎥⎥⎥⎥⎦
. (10)

To minimize the Sum Square Error (SSE), defined by:

SSE =
M∑

m=1

(cm − ĉm)2, (11)

the solution for B is retrieved by:

B = (ATA)−1ATC. (12)

2.5 NSGA

After having the prediction cost values of MOOPs, we need to use Multi-
Objective Optimization algorithms to find an optimal solution.

Among Multi-objective Optimization algorithm classes, Evolutionary Multi-
objective Optimization (EMO) shows their advantages in searching and opti-
mizing for the MOOPs [10]. Among EMO approaches, Non-dominated Sorting
Genetic Algorithms provide low computational complexity of non-dominated
sorting, O(MN2) of NSGAs [14,15] comparing to O(MN3) of other Evolution-
ary Multi-Objective Optimization (EMO), where M is the number of objectives
and N is the population size.

NSGA Process. Initially, NSGAs start with a population P0 consisting of
N solutions. In MOOPs, a population represents a set of candidate solutions.

42 T.-D. Le et al.

The size of P0 is smaller than the number of all candidate solutions. Each solu-
tion is on a specific rank or non-domination level (any solution in level 1 is not
dominated, any solution in level 2 is dominated by one or more solutions in level
1 and so on). At first, the offspring population Q0 containing N solutions, is
created by the binary tournament selection and mutation operators [13]. Where
the binary tournament selection is a method of selecting an individual from a
population of individuals in a genetic algorithm, and the mutation operation is
a method to choose a neighboring individual in the locality of the current indi-
vidual. Secondly, a population R0 = P0 ∪ Q0 with the size of 2N will be divided
into subpopulations based on the order of Pareto dominance. The appropriate
N members from R0 will be chosen for the next generation. The non-dominated
sorting based on usual domination principle [8] is first used, which classifies R0

into different non-domination levels (F1, F2 and so on). After that, a parent
population of next-generation P1 is selected in R0 from level 1 to level k so that
the size of P1 = N and so on.

The difference among NSGA-II, NSGA-III and other NSGAs is the way to
select members in the last level Fl. To keep the diversity, NSGA-II [15] and
SPEA-II [54] use crowding distance among solutions in their selection. NSGA-II
procedure is not suitable for MOO problems and the crowding distance operator
needs to be replaced for better performance [26,34]. Hence, when the population
has a high-density area, higher than others, NSGA-II prefers the solution which
is located in a less crowded region.

On the other hand, MOEA/D [53] decomposes a multiple objectives problem
into various scalar optimization subproblems. The diversity of solutions depends
on the scalar objectives. However, the number of neighborhoods needs to be
declared before running the algorithm. In addition, the estimation of good neigh-
borhood is not mentioned. The diversity is considered as the selected solution
associated with these different sub-problems. Experimental results in [14] show
various versions of MOEA/D approaches which fail to maintain a good distri-
bution of points.

An Evolutionary Many-Objective Optimization Algorithm Using Reference-
point Based Non-Dominated Sorting Approach [14] (NSGA-III) uses different
directions to maintain the diversity of solutions. NSGA-III replaces the crowd-
ing distance operator by comparing solutions. Each solution is associated to a
reference point [14], which impacts the execution time to built the reference
points in each generation. The diversity of NSGA-III is better than the others,
but the execution time is very high. For instance, with two objectives and two
divisions, three reference points will be created, (0.0, 1.0), (1.0, 0.0) and (0.5,
0.5), as shown in Fig. 3. After selection process, the diversity of population is
better than NSGA-II with solutions close to three reference points. However,
comparing all solutions to each reference point makes the computation time of
NSGA-III very high.

In addition, NSGAs often compare all solutions to choose good solutions in
Fl. Therefore, when the number of solutions or objectives is significant, the time
for calculating and comparing is considerable.

DREAM and NSGA-G for MOOPs in Medical Cloud Federations 43

0.25 0.5 0.75 1.00.0

0.25

0.5

0.75

1.0

Time

Monetary

QEP1

QEP2

Fig. 3. An example of using the crowing distance in NSGA-II.

Application. In some cases, some objectives are homogeneous. In the reason of
the homogeneity between the multi-objectives functions, removing an objective
do not affect to the final results of MOO problem. In other cases, the objectives
may be contradictory. For example, the monetary is proportional to the execu-
tion time in the same virtual machine configuration in a cloud. However, cloud
providers usually leases computing resources that are typically charged based
on a per time quantum pricing scheme [30]. The solutions represent the trade-
offs between time and money. Hence, the execution time and the monetary cost
cannot be homogeneous.

As a consequence, the multi-objective problem cannot be reduced to a mono-
objective problem. Moreover, if we want to reduce the MOO to a mono-objective
optimization, we should have a policy to group all objectives by the Weighted
Sum Model (WSM) [24]. However, estimating the weights corresponding to dif-
ferent objectives in this model is also a multi-objective problem.

In addition, MOO problems could be solved by MOO algorithms or
WSM [24]. However, MOO algorithms are selected thanks to their advantages
when comparing with WSM. The optimal solution of WSM could be unaccept-
able, because of an inappropriate setting of the coefficients [20]. Furthermore, the
research in [29] proves that a small change in weights may result in significant
changes in the objective vectors and significantly different weights may produce
nearly similar objective vectors. Moreover, if WSM changes, a new optimization
process will be required.

In conclusion, MOOP approaches leads to using Pareto dominance tech-
niques. A pareto-optimal front is often infeasible [55]. NSGAs show the advantage
in searching a Pareto solution for MOOP in less computational complexity than
other EMO [15]. However, they should be improved the quality to solve MOOP
when the number of objectives is significant.

44 T.-D. Le et al.

2.6 Motivation

In the context of medical data management, the background of concepts and
techniques related to cloud federations, we introduce a medical system on a
cloud federation called Medical Data Management System (MIDAS). It is based
on the Intelligent Resource Scheduler (IReS) [17], an open source platform for
complex analytics work-flows executed over multi-engine environments.

MIDAS. It is a medical data management system for cloud federation. The pro-
posal aims to provide query processing strategies to integrate existing information
systems (with their associated cloud provider and data management system) for
clinics and hospitals. Figure 4 presents an overview of the system. Integrating the
system within a cloud federation allows to choose the best strategy for MOQP.
MIDAS can be developed based on the platform which can execute over multi-
engine environments on clouds. Figure 4 also shows an example of MIDAS, where
three database engines are installed and run in three clouds of different providers.

We choose IReS platform to consider the advantage as shown in Table 3. IReS
platform is installed in every machine in MIDAS. The different cloud resource
pools allow the system to run in the most appropriate infrastructure environ-
ments. The system can optimize workflows between different data sources on
different clouds, such as Amazon Web Services6, Microsoft Azure7 and Google
Cloud Platform8. The proposed system is developed based on the Intelligent
Resource Scheduler (IReS) for complex analytics workflows executed over multi-
engine environments on a cloud federation.

Machine Learning Algorithm. The machine learning algorithms in IReS need
entire training datasets to estimate the running costs, which are calculated by
determining the cost of processing a job. It may lead to use expired information.
Hence, the proposal algorithm aims to improve the accuracy of estimated values
with low computational cost. Our proposed method is integrated into IReS to pre-
dict the cost values with low computational cost in MOQP of a cloud environment.

Multi-Objective Optimization. In addition, MOQP could be solved
by Multi-Objective Optimization algorithms or the Weighted Sum Model
(WSM) [24]. However, Multi-Objective Optimization algorithms may be selected
thanks to their advantages when comparing with WSM. The optimal solution
of WSM could be not acceptable, because of an inappropriate setting of the
coefficients [20]. Furthermore, the research in [29] proves that a small change
in weights may result in significant changes in the objective vectors and signifi-
cantly different weights may produce nearly similar objective vectors. Moreover,
if WSM changes, a new optimization process will be required. Hence, our sys-
tem applies a Multi-Objective Optimization algorithm to the Multi-Objective
6 https://aws.amazon.com/.
7 https://azure.microsoft.com/.
8 https://cloud.google.com/.

https://aws.amazon.com/
https://azure.microsoft.com/
https://cloud.google.com/

DREAM and NSGA-G for MOOPs in Medical Cloud Federations 45

Interface

User query
policy

Modelling

Generating
QEP

Hive
engine

Multi-Objective
Optimizer

Hive

A Query

PostgreSQL
engine

PostgreSQL

Spark
engine

Spark

Amazon Web Services

Microsoft Azure Google Cloud
Platform

IReS

DREAM

Fig. 4. Architecture of MIDAS [37].

Optimizer to find a Pareto-optimal solution. When the WSM changes, the final
result just is determined by using the Pareto-optimal set at the final step.

Furthermore, generating a Pareto-optimal front is often infeasible due to
high complexity [55]. MOOPs leads to finding an approximate optimal solution
by Pareto dominance techniques. A well known approach to solve the high com-
plexity of MOOP is Evolutionary Multiobjective Optimization (EMO). Among
EMO approaches, Non-dominated Sorting Genetic Algorithms (NSGAs) [14,15]
have lower computational complexity than other EMO approaches [15]. How-
ever, this algorithm still has high computational complexity. We need to find an
approach to improve the computational complexity and quality of NSGAs.

In conclusion, our solutions aim to improve the accuracy of cost value pre-
diction with low computational cost and to solve MOQP by Multi-Objective
Optimization algorithm in a cloud federation environment. Besides, we also find
a method to search and optimize MOOPs by finding an approximate optimal
solution in the high complexity of generating a Pareto-optimal front.

3 Dynamic Regression Algorithm

The first technique in MIDAS relates to the estimation of accurate cost values in
the variable environment of a cloud federation. Most of cost models [19,39,50]
depend on the size of data. Hence, our cost functions are functions of the size of

46 T.-D. Le et al.

data. In particular, cost function and fitted value of Multiple Linear Regression
model are previously defined in Sect. 2.4. The bigger M for sets {cm, xlm} is, the
more accurate MLR model usually is. However, the computer is slowing down
when M is too big.

Furthermore, the target of Multi-Objective Query Processing is the Multi-
Objective Optimization Problem [53], which is defined by:

minimize(F (x) = (f1(x), f2(x)..., fK(x))T), (13)

where x = (x1, ..., xL)T ∈ Ω ⊆ R
L is an L-dimensional vector of decision vari-

ables, Ω is the decision (variable) space and F is the objective vector function,
which contains K real value functions.

In general, it is hard to find a point in Ω that minimizes all the objectives
together. Pareto optimality is defined by trade-offs among the objectives. If
there is no point x ∈ Ω such that F (x) dominates F (x∗), x∗ ∈ Ω, x∗ is called
Pareto optimal and F (x∗) is called a Pareto optimal vector. Set of all Pareto
optimal points is the Pareto set. A Pareto front is a set of all Pareto optimal
objective vectors. Generating the Pareto-optimal front can be computationally
expensive [55]. In cloud environment, the number of equivalent query execution
plans is multiplied.

Example 3. Assuming that a query is processed on Amazon EC2. If the pool of
resources includes 70 vCPUs and 260 GB of memory, we assume that a configu-
ration to execute a query plan is created by the number of vCPUs and the size of
memory which is the multiple of 1 GB. In particular, a configuration can be 01
vCPU and 260 GB of memory and the others is 70 vCPUs and 01 GB of memory.
Hence, the combination of different configurations to execute this query would
be 70 * 260 = 18,200.

Example 3 shows that a query plan can generate multiple equivalent QEPs in
cloud environment. The smaller M for sets {cm, xlm} is, the faster speed for the
estimation cost process of Multi-Objective Query Processing for a QEP is. In the
system of computationally expensiveness in cloud environment as in Example 3,
a small reduction of computation for an equivalent QEP estimation will become
significant for a large number of equivalent QEPs estimation.

The most important idea is to estimate MLR quality by using the coefficient
of determination. The coefficient of determination [43] is defined by:

R2 = 1 − SSE/SST, (14)

where SSE is the sum of squared errors and SST represents the amount of
total variation corresponding to the predictor variable X. Hence, R2 shows the
proportion of variation in cost given by the Multiple Linear Regression model of
variable X. For example, the model gives R2 = 0.75 of time response cost, it can
be concluded that 3/4 of the variation in time response values can be explained
by the linear relationship between the input variables and time response
cost. Table 4 presents an example of MLR with different number of measures.
The smallest dataset is M = L + 2 = 4 [43], where M is the size of previous

DREAM and NSGA-G for MOOPs in Medical Cloud Federations 47

Table 4. Using MLR in different size of dataset [37].

Cost x1 x2 M R2

20.640 0.4916 0.2977

15.557 0.6313 0.0482

20.971 0.9481 0.8232

24.878 0.4855 2.7056 4 0.7571

23.274 0.0125 2.7268 5 0.7705

30.216 0.9029 2.6456 6 0.8371

29.978 0.7233 3.0640 7 0.8788

31.702 0.8749 4.2847 8 0.8876

20.860 0.3354 2.1082 9 0.8751

32.836 0.8521 4.8217 10 0.8945

data and L is the number of variables in Eq. (5). In general, R2 increases in par-
allel with M . In particular, R2 should be greater than 0.8 to provide a sufficient
quality of service level. As a consequence, M should be greater than 5 to provide
enough accuracy. Hence, when the system requires the minimum values of R2 is
equal to 0.8, M > 6 is not recommended. In general, R2 still rises up when M
goes up. Therefore, we need to determine the model which is sufficient suitable
by the coefficient of determination.

Training set DREAM

coefficient of
determination

New training
set Modelling

Fig. 5. DREAM module [37].

Our motivation is to provide accurate estimation while reducing the number
of previous measures based on R2. We thus propose DREAM as a solution
for cloud federation and their inherent variance, as shown in Fig. 5. DREAM
uses the training set to test the size of new training dataset. It depends on
the predefined coefficient of determination. The new training set is generated in
order to have the updated value and avoid using the expired information. With
the new training set, Modelling uses fewer data in the building model process
than the original approach does.

Cost modeling without machine learning [39,42,50] often uses the size of data
to estimate the execution time for the specific system. Besides, the machine learn-
ing approach [17] can use any information to estimate the cost value. Hence, our
algorithm uses the size of data as variables of DREAM. In (6), ĉ is the cost value,
which needs to be estimated in MOQP, and x1, x2, . . . are the information of
system, such as size of input data, the number of nodes, the type of virtual

48 T.-D. Le et al.

Algorithm 1. Calculate the predict value of multi-cost function [37]
1: function EstimateCostValue(R2

require, X, Mmax)
2: for n = 1 to N do
3: R2

n ← ∅ //with all cost function
4: end for
5: m = L + 2 //at least m = L + 2
6: while (any R2

n < R2
n−require) and m < Mmax do

7: for ĉn(p) ⊆ ĉN(p) do
8: R2

n = 1 − SSE/SST
9: ĉn = β̂n0 + β̂n1x1 + ... + β̂nLxL

10: end for
11: m = m + 1
12: end while
13: return ĉN(p)
14: end function

machines. If R2 ≥ R2
require, where R2

requires is predefined by users, the model
is reliable. In contrast, it is necessary to increase the number of set value. Algo-
rithm 1 shows a scheme as an example of increasing value set: m = m + 1.

In this paper, we focus on the accuracy of execution time estimation with
the low computational cost in MOQP. The original optimization approach in
IReS uses Weighted Sum Model (WSM) [24] with user policy to find the best
candidate solution. However, the optimal solution of WSM could be not accept-
able, because of an inappropriate setting of the coefficients [20]. Besides, Multi-
Objective Optimization algorithms have more advantages than WSM [20,29].
They lead to find solutions by Pareto dominance techniques. However, generat-
ing a Pareto-optimal front is often infeasible due to high complexity [55]. One
of well known Multi-Objective Optimization algorithm class is Non-dominated
Sorting Algorithms (NSGAs). Hence, after having a set of predicted cost func-
tion values for each query plan, a Multi-Objective Optimization algorithm, such
as NSGA-G [36] is applied to determine a Pareto query execution plan set. At
the final step, the weight sum model S and the constraint B associated with the
user policy are used to return the best QEP for the given query [24]. In particu-
lar, the most meaningful plan will be selected by comparing function values with
weight parameters between ĉn [24] at the final step, as shown in Algorithm2.
Figure 6 shows the different between two MOQP approaches.

4 Non-dominated Sorting Genetic Algorithm Based on
Grid Partitioning

After having the prediction cost values of MOOPs by DREAM, we need to use
Multi-Objective Optimization algorithms to find an optimal solution. Hence,
the second technique relates to looking for an efficient approach for searching
and optimizing in MIDAS is introduced in this section. NSGAs [14,15] are well

DREAM and NSGA-G for MOOPs in Medical Cloud Federations 49

Initial
Population

Objective
values

Fitness
Distribution

Genetic
Operation

Insert Parent

Satisfied
Termination

Criteria?

Termination
Population

All Candidates

Weighted Sum
Model Values

Comparing
Scalar Values

Weighted Sum
Model Values

Comparing
Scalar Value

The best QEP

The best QEP

Multi-Objecitve Optimization based
on Genetic Algorithm

Multi-Objecitve Optimization
based on Weighted Sum Model

Fig. 6. Comparing two MOQP approaches [37]

Algorithm 2. Select the best query plan in P [37]
1: function BestInPareto(P,S,B)
2: PB ← p ∈ P|∀n ≤ |B| : cn(p) ≤ Bn

3: if PB �= ∅ then
4: return p ∈ PB |C(p) = min(WeightSum(PB ,S))
5: else
6: return p ∈ P|C(p) = min(WeightSum(P,S))
7: end if
8: end function

known approaches to optimize MOOPs. Our previous work [36] proposed Non-
dominated Sorting Genetic Algorithm based on Grid partitioning (NSGA-G) to
improve both diversity and convergence of NSGAs while having an efficient com-
putation time by reducing the space of selected good solutions in the truncating
process. NSGA-G is an algorithm based on genetic algorithms (GAs). The con-
vergence of GAs is discussed in [7]. The difference between many GAs is the
qualities of diversity and convergence. We will describe the strategy to improve
the qualities of NSGAs while having an efficient computation time as below.

At the tth generation of Non-dominated Sorting Genetic Algorithms, Pt rep-
resents the parent population with N size and Qt is offspring population with
N members created by Pt. Rt = Pt ∪ Qt is a group in which N members will be
selected for Pt+1.

Our algorithms are developed based on the MLR described above using xi

for size of data and ci for the metric cost, such as the execution time, energy
consumption, etc.

50 T.-D. Le et al.

Algorithm 3. Main process [14,15].
1: function Iterate(Population)
2: Offsprings ← ∅
3: while Offsprings.size < populationSize do
4: Parent = Selection(Population)
5: Offsprings = Offsprings ∪ Evolve(Parent)
6: end while
7: Population = Population ∪ Offsprings
8: Population = Truncate(Population)
9: return Population

10: end function

Algorithm 4. Non-dominated Sorting [14].
Require: R
1: function Sorting(R)
2: RinRank ← ∅
3: rank = 1
4: remaining ← R
5: while RisNotEmpty do
6: Front ← non − dominatedPopulation(remaining, rank)
7: remaining = remaining \ Front
8: RinRank = RinRank ∪ Front
9: rank + +

10: end while
11: return RinRank
12: end function

4.1 Main Process

This section describes more details about the main process of NSGAs. Algo-
rithm 3 shows the steps of the processing. First, the Offspring is initialized in
Line 2. The size of Offspring equals to the size of Population, i.e., N . Hence, a
parent is selected from the population and evolved to become a new offspring.
A new population with the size of 2N is created from Offspring and the old
population. After that, the function Truncate will cut off the new population to
reduce the members to the size of N , as shown in Line 8.

4.2 Non-dominated Sorting

Before the truncating process, the solutions in the population with a size of 2N
should be sorted in multiple fronts with their ranking, as shown in Algorithm4.
First, the Non-dominated sorting operator generates the first Pareto set in a
population of 2N solutions. Its rank is 1. After that, the process is repeated
until the remain population is empty. Finally, 2N solutions are divided into
various fronts with their ranks.

DREAM and NSGA-G for MOOPs in Medical Cloud Federations 51

0.25 0.5 0.75 1.00.0

0.25

0.5

0.75

1.0

Grid Max Point

Grid Min Point

Group
Time

Monetary

Fig. 7. An example of using Grid points.

Algorithm 5. Filter front in NSGA-G using Min point. [36]

1: function Filter(Fl, M = N − ∑l−1
j=1 Fj)

2: updateIdealPoint()
3: updateIdealMaxPoint()
4: translateByIdealPoint()
5: normalizeByMinMax()
6: createGroups
7: while | Fl |> M do
8: selectRandomGroup()
9: removeMaxSolutionInGroup()

10: end while
11: return Fl

12: end function

4.3 Filter Front Process

NSGA-G Using Min Point. NSGA-G finds the nearest smaller and bigger
grid point for each solution. For example, Fig. 7 shows an example of a two-
objective problem. If the unit of the grid point is 0.25 (the size of grid is 4) and
the solution with two-objective value is [0.35, 0.65], the closest Grid Min Point
is [0.25, 0.5] and the nearest Grid Max Point is [0.5, 0.75].

The first strategy avoids computing multiple objective cost values of all solu-
tions in the population, the space is divided into multiple small groups by Grid Min
Point and Grid Max Point, as shown in Fig. 7. Each group has one Grid Min Point,
the nearest smaller point and one Grid Max Point, the nearest bigger point. Only
solutions in a group are calculated and compared. The solution has the smallest
distance to the nearest smaller point in a group will be added to Pt+1.

In this way, in any loop, we do not need to calculate the crowding-distance val-
ues or estimate the smallest distance from solutions to the reference points among
all members in the last front, as shown in Fig. 7. In any loop, it is not necessary to
compare solutions among all members in Fl, as F3 in Fig. 2. The second strategy
chooses randomly a group. The characteristic of diversity is maintained by this

52 T.-D. Le et al.

Algorithm 6. Filter front in NSGA-G using Random metric.
1: function Filter(Fl, M = N − ∑l−1

j=1 Fj)
2: updateIdealPoint()
3: updateIdealMaxPoint()
4: translateByIdealPoint()
5: normalizeByMinMax()
6: createGroups
7: while | Fl |> M do
8: selectRandomGroup()
9: selectRandomMetric()

10: removeWorstSolutionInGroup()
11: end while
12: return Fl

13: end function

strategy. Both strategies are proposed to improve the qualities of our algorithm.
Algorithm 5 shows the strategy to select N − ∑l−1

j=1 Fj members in Fl.
The two lines 2 and 3 in Algorithm5 determine the new origin coordinates

and the maximum objective values of all solutions, respectively. After that, they
will be normalized in a range of [0, 1]. All solutions will be in different groups,
depending on the coefficient of the grid. The most important characteristic of
this algorithm is randomly selecting the group like NSGA-III to keep the diver-
sity characteristic and remove the solution among members of that group. This
selection helps to avoid comparing and calculating the maximum objectives in
all solutions.

To estimate the quality of the proposed algorithm, three qualities, Genera-
tional Distance [49], Inverted Generational Distance [9] and the Maximum Pareto
Front Error [48], are used.

NSGA-G Using Random Metric. In MOOP, when the number of objectives
is significant, any function used to compare solutions leads to high computation.
NSGA-G using Min point uses Grid partition to reduce the number in groups, but
it still needs a function to group all objectives value to a scalar value. In order to
decrease the execution time, this section proposes a random method to compare
solutions among a group. This approach does not generate any reference point or
an intermediate function to estimate the value of solutions. The natural metric
values are chosen randomly to remove the worst solution in the different groups.

All the steps in this algorithm are similar to NSGA-G using Min point, as
shown from Line 2 to Line 6. Loop While has one more step of choosing metric
randomly. Function selectRandomMetric is used to select a natural metric among
the objectives in MOOP. The important characteristics of this algorithm are
randomly selecting the group like NSGA-G and using natural metric among
various objectives. It aims to keep the diversity characteristic, and reduce the
comparing time. This selection helps to avoid using an intermediate function in
comparing and calculating the values of solutions.

DREAM and NSGA-G for MOOPs in Medical Cloud Federations 53

0.25 0.5 0.75 1.00.0

0.25

0.5

0.75

1.0

Fig. 8. A simple front group.

4.4 Selecting the Size of Grid

The proposed approach uses Grid partitioning to guarantee that the solutions
are distributed in all the solution space. Assuming that there is a problem with
N objectives. The last front should remove k solutions. By normalizing the space
of solution in the range of [0, 1] and dividing that range to n segments, a solution
belongs to one of nN groups in that space. In terms of Non-dominated principle,
a group including a solution in that space have many other groups which contain
Non-dominated solutions. These groups are called Non-dominated groups. All the
groups in this situation make a set groups, called front group.

The proposed idea is to keep the diversity characteristic of the genetic algo-
rithm by generating k groups and removing k solutions. Hence, the ideal front
group is designed so that it has k groups.

Simple Front Group. From a group in the normalizing space in range of [0, 1],
a simple plane covers it and includes Non-dominated groups. In the space of N
axes, the number of groups is nN . Hence, the simple front group is the simple
plane. The number of groups in that front group is nN−1. Therefore, if the last
front needs to remove k solutions, the number of grid n is determined as follows

n = 	k 1
N−1
. (15)

For example, Fig. 8 shows a problem with 3 objectives. In each axis coordinate,
the size of grid is 4, and the maximum number of groups in all space of N axis
coordinates is 43. A simple front group includes 43−1 = 16 groups. If the last
front needs to remove 15 solutions, the number of grid when we choose simple
front group is n = 	k 1

N−1
 = 4.

54 T.-D. Le et al.

0.25 0.5 0.75 1.00.0

0.25

0.5

0.75

1.0

Fig. 9. A max front group.

Max Front Group. From a group in the normalizing space in range of [0, 1],
a simple plane covers it and includes Non-dominated groups. In the space of N
axis coordinates, the number of groups is nN . Max front group has the largest
number of groups includes N planes. Hence, the number of groups in Max front
group is nN − (n − 1)N . Therefore, if the last front needs to remove k solution,
the number of grid n is determined as follows

nN − (n − 1)N = k. (16)

For instance, Fig. 9 shows a problems with 3 objectives. In each axis coordinate,
the size of grid is 4, the maximum number of groups in all space of N axis
coordinates is 43. Max front group includes 43 − 33 = 64 − 27 = 37 groups.

5 Validation

5.1 DREAM

The previous section introduces two algorithms for the Multi-Objective Opti-
mization Problem in MIDAS. DREAM and NSGA-G have been implemented
on top of IReS platform. They have been validated with experiments.

Implementation. Our experiments are executed on Galactica private cloud9

with a cluster of three machines. Each node has four 2.4 GHz CPU, 80 GiB
Disk, 8 GiB memory and runs 64-bit platform Linux Ubuntu 16.04.2 LTS. The
system uses Hadoop 2.7.310, Hive 2.1.1, PostgreSQL 9.5.14, Spark 2.2.0 and Java
OpenJDK Runtime Environment 1.8.0. IReS platform is used to manage data
in multiple database engine and deploy the algorithms.
9 https://horizon.isima.fr/.

10 http://hadoop.apache.org/.

https://horizon.isima.fr/
http://hadoop.apache.org/

DREAM and NSGA-G for MOOPs in Medical Cloud Federations 55

Table 5. Comparison of mean relative error with 100MiB TPC-H dataset [37].

Query BMLN BML2N BML3N BML DREAM

12 0.265 0.459 0.220 0.485 0.146

13 0.434 0.517 0.381 0.358 0.258

14 0.373 0.340 0.335 0.358 0.319

17 0.404 0.396 0.267 0.965 0.119

Table 6. Comparison of mean relative error with 1GiB TPC-H dataset [37].

Query BMLN BML2N BML3N BML DREAM

12 0.349 0.854 0.341 0.480 0.335

13 0.396 0.843 0.457 0.487 0.349

14 0.468 0.664 0.539 0.790 0.318

17 0.620 0.611 0.681 0.970 0.536

Experiments. TPC-H benchmark with two datasets of 100 MB and 1 GB is
used to have experiments with DREAM. Experiments with TPC-H benchmark
are executed in a multi-engine environment consisting of Hive and PostgreSQL
deployed on Galactica private cloud. In TPC-H benchmark, the queries related
to two tables are 12, 13, 14 and 17. These queries with two tables in two different
databases, such as Hive and PostgreSQL, are studied.

Results. To estimate the quality of price models which are estimated by
DREAM in comparison with other algorithms, Mean Relative Error (MRE),
a metric used in [2] is used and described as below:

1
M

i=1∑

M

|ĉi − ci|
ci

, (17)

where M is the number of testing queries, ĉi and ci are the predict and actual exe-
cution time of testing queries, respectively. IReS platform uses multiple machine
learning algorithms in their model, such as Least squared regression, Bagging
predictors, Multilayer Perceptron.

In IReS model building process, IReS tests many algorithms and the best
model with the smallest error is selected. It guarantees the predicted values as
the best one for estimating process. DREAM is compared to the Best Machine
Learning model (BML) in IReS platform with many observation window (N , 2N ,
3N and no limit of history data). The smallest size of a window, N = L+2 [43],
where L is the number of variables, is the minimum data set DREAM requires.

As shown in Table 5 and 6, MRE of DREAM are the smallest values between
various observation windows. In our experiments, the size of historical data,
which DREAM uses, are small, around N .

56 T.-D. Le et al.

5.2 NSGA-G

Various earlier studies on Multiple Objective Evolutionary Algorithms (MOEAs)
introduce test problems which are either simple or not scalable. DTLZ test prob-
lems [16] are useful in various research activities on MOEAs, e.g., testing the
performance of a new MOEA, comparing different MOEAs and a better under-
standing of MOEAs. The proposed algorithm is experimented on DTLZ test
problems with other famous NSGAs to show advantages in convergence, diver-
sity and execution time.

Implementation. Our experiments use Multiobjective Evolutionary Algo-
rithms (MOEA)11 framework in Open JDK Java 1.8. All experiments are run
on a machine with following parameters: Intel(R) core(TM) i7-6600U CPU @
2.60 GHz × 4, 16 GB RAM.

Experiments. For fair comparison and evaluation, the same parameters are
used, such as Simulated binary crossover [13] (30), Polynomial mutation [13]
(20), max evaluations (10000) and populations (100) for eMOEA [10], NSGA-
II, MOEA/D [53], NSGA-III and NSGA-G12, during 50 independent running
to solve two types of problems in DTLZ test problems [16] with m objectives,
m ∈ [5, 10]. These algorithms use the same population size N = 100 and the
maximum evaluation M = 10000. We apply Simple front group approach, Eq. 15,
to determine the grid in both of NSGA-Gs with Min point and Random metric
experiments. We use the Generational Distance (GD) [49], Inverted Genera-
tional Distance (IGD) [9] and the Maximum Pareto Front Error (MPFE) [48] to
compare the quality of NSGA-Gs to other NSGAs.

GD measures how far the evolved solution set is from the true Pareto
front [52], as shown in following:

GD =

√∑n
i=1 d2i
n

, (18)

where dj = min
j

||f(xi)−PFtrue(xj)|| shows the distance objective space between

solution xi and the nearest member in the true Pareto front (PFtrue), and n is
the number of solutions in the approximation front. Lower value of GD represents
a better quality of an algorithm.

IGD is a metric to estimate the approximation quality of the Pareto front
obtained by MOO algorithms [4], which can measure both convergence and diver-
sity in a sense. IGD is shown in the following equation [52]:

IGD =

∑
v∈PFtrue

d(v,X)
|PFtrue| , (19)

11 http://moeaframework.org/.
12 https://gitlab.inria.fr/trle/moea.

http://moeaframework.org/
https://gitlab.inria.fr/trle/moea

DREAM and NSGA-G for MOOPs in Medical Cloud Federations 57

where X is the set of non-dominated solutions in the approximation front,
d(v,X) presents the minimum Euclidean distance between a point v in PFtrue

and the points in X. Lower value of IDG represents the approximate front getting
close to PFtrue, and not missing any part of the whole PFtrue.

MPFE shows the most significant distance between the individuals in Pareto
front and the solutions in the approximation front [52]. This metric is shown in
the following equation:

MPFE = max
i

di. (20)

In all tables show the experiments, the darkest mark value show the least value
in various algorithm experiments, and the brighter mark value is the second least
value among them.

Study on Test Problems. In this section, we use DTLZs, and WFG [25] test
problem to experiment NSGA-Gs. Advantages of two versions of NSGA-G are
present in Table 7, 8, 9, 10, 11, and 12. Metrics, such as GD, IDG, MPFE, are used
to estimate the qualities of the different algorithms. These experiments compare
both of NSGA-Gs with Min point and Random metric to other algorithms.

Table 7. Generational Distance

m eMOEA NSGA-R NSGA-II MOEA/D NSGA-III NSGA-G

DTLZ1 5 2.595e-01 4.418e-01 2.251e+01 4.264e-01 3.090e+00 1.977e-01

DTLZ3 5 1.861e-01 5.528e-02 1.130e+00 8.650e-02 3.079e-01 1.678e-02

WFG1 5 1.133e-03 9.748e-04 6.923e-03 6.908e-03 3.218e-03 7.617e-04

WFG3 5 4.027e-04 0.000e+00 2.549e-03 1.941e-03 2.011e-03 1.061e-05

DTLZ1 6 2.903e+00 2.137e+00 9.131e+01 1.820e+00 6.839e+00 4.907e-01

DTLZ3 6 2.226e+01 1.332e+01 1.252e+02 1.760e+01 2.389e+01 5.457e+00

WFG1 6 1.207e-03 8.842e-04 8.000e-03 6.753e-03 3.559e-03 7.417e-04

WFG3 6 4.104e-04 0.000e+00 2.523e-03 1.639e-03 1.800e-03 5.384e-05

DTLZ1 7 7.790e-01 8.949e-01 2.228e+01 2.601e-01 1.407e+00 8.201e-02

DTLZ3 7 1.719e-01 4.449e-02 1.309e+00 3.610e-02 1.619e-01 5.628e-03

WFG1 7 1.048e-03 8.219e-04 6.825e-03 5.613e-03 3.891e-03 6.405e-04

WFG3 7 4.011e-04 3.055e-06 2.390e-03 1.871e-03 1.665e-03 5.926e-05

DTLZ1 8 5.823e+00 5.851e+00 1.130e+02 1.276e+00 9.933e+00 4.660e-01

DTLZ3 8 2.071e+01 1.941e+01 1.604e+02 1.355e+01 3.001e+01 4.757e+00

WFG1 8 1.377e-03 9.406e-04 9.023e-03 7.659e-03 4.454e-03 6.469e-04

WFG3 8 3.655e-04 2.689e-05 1.692e-03 1.301e-03 9.662e-04 6.578e-05

DTLZ1 9 8.374e-01 3.626e+00 3.074e+01 3.544e-01 2.772e+00 1.003e-01

DTLZ3 9 4.673e-02 7.112e-02 6.293e-01 8.922e-03 1.052e-01 2.843e-03

WFG1 9 1.309e-03 8.924e-04 8.882e-03 7.551e-03 4.020e-03 6.816e-04

WFG3 9 3.597e-04 2.576e-05 1.298e-03 1.208e-03 7.634e-04 5.365e-05

DTLZ1 10 7.375e-01 1.519e+00 2.091e+01 2.705e-01 2.207e+00 3.021e-02

DTLZ3 10 4.785e-02 1.116e-01 6.793e-01 7.345e-03 1.118e-01 2.939e-03

WFG1 10 1.369e-03 1.385e-03 8.551e-03 6.364e-03 3.648e-03 6.692e-04

WFG3 10 3.259e-04 0.000e+00 1.196e-03 1.265e-03 6.945e-04 4.352e-05

58 T.-D. Le et al.

Table 8. Average compute time in Generational Distance experiment

m eMOEA NSGA-R NSGA-II MOEA/D NSGA-III NSGA-G

DTLZ1 5 3.604e+01 6.642e+01 5.508e+01 2.000e+02 2.241e+02 6.366e+01

DTLZ3 5 5.398e+01 6.440e+01 7.074e+01 1.870e+02 2.714e+02 6.212e+01

WFG1 5 1.379e+02 6.658e+01 6.636e+01 1.899e+02 2.594e+02 6.720e+01

WFG3 5 8.562e+02 8.162e+01 6.074e+01 1.864e+02 3.077e+02 8.370e+01

DTLZ1 6 4.552e+01 5.582e+01 5.632e+01 1.918e+02 1.662e+02 5.672e+01

DTLZ3 6 9.340e+01 6.572e+01 6.362e+01 1.971e+02 1.783e+02 6.638e+01

WFG1 6 1.961e+02 9.826e+01 7.392e+01 2.049e+02 2.157e+02 7.286e+01

WFG3 6 1.083e+03 7.580e+01 6.642e+01 1.967e+02 2.384e+02 7.782e+01

DTLZ1 7 6.206e+01 5.834e+01 6.208e+01 2.290e+02 1.621e+02 5.964e+01

DTLZ3 7 1.568e+02 6.992e+01 7.024e+01 2.405e+02 1.817e+02 7.022e+01

WFG1 7 2.585e+02 7.806e+01 8.042e+01 2.473e+02 2.085e+02 7.810e+01

WFG3 7 1.469e+03 8.030e+01 9.184e+01 2.896e+02 2.821e+02 9.950e+01

DTLZ1 8 8.762e+01 5.998e+01 6.640e+01 2.450e+02 2.327e+02 6.244e+01

DTLZ3 8 2.235e+02 7.618e+01 7.652e+01 2.536e+02 2.535e+02 7.424e+01

WFG1 8 3.100e+02 8.034e+01 8.710e+01 2.625e+02 2.924e+02 8.206e+01

WFG3 8 1.464e+03 7.912e+01 7.772e+01 2.542e+02 3.268e+02 8.346e+01

DTLZ1 9 1.157e+02 6.264e+01 7.034e+01 2.524e+02 3.095e+02 6.590e+01

DTLZ3 9 2.978e+02 7.694e+01 8.422e+01 2.678e+02 3.422e+02 7.828e+01

WFG1 9 3.846e+02 8.442e+01 9.426e+01 2.731e+02 3.844e+02 8.668e+01

WFG3 9 1.677e+03 8.954e+01 8.166e+01 2.595e+02 4.373e+02 8.642e+01

DTLZ1 10 1.527e+02 6.510e+01 7.584e+01 2.740e+02 4.204e+02 6.874e+01

DTLZ3 10 3.860e+02 8.132e+01 8.916e+01 2.883e+02 4.641e+02 8.370e+01

WFG1 10 4.747e+02 8.996e+01 1.005e+02 2.941e+02 5.175e+02 9.272e+01

WFG3 10 1.881e+03 8.576e+01 8.640e+01 2.802e+02 6.035e+02 9.128e+01

Table 9. Inverted Generational Distance

m eMOEA NSGA-R NSGA-II MOEA/D NSGA-III NSGA-G

DTLZ1 5 3.437e-01 1.027e+00 3.741e+01 6.226e-01 3.465e+00 4.637e-01

DTLZ3 5 5.568e-01 4.794e-01 3.576e+00 3.969e-01 1.098e+00 1.589e-01

WFG1 5 1.298e-01 2.924e-01 1.234e-01 7.202e-02 1.365e-01 2.906e-01

WFG3 5 4.167e-02 3.850e-01 1.272e-01 1.417e-01 7.899e-02 3.987e-01

DTLZ1 6 4.975e+00 6.617e+00 2.469e+02 2.903e+00 9.524e+00 2.688e+00

DTLZ3 6 1.131e+02 4.698e+01 5.199e+02 4.207e+01 8.253e+01 2.761e+01

WFG1 6 1.722e-01 3.705e-01 1.531e-01 7.460e-02 1.596e-01 3.341e-01

WFG3 6 5.367e-02 5.424e-01 1.488e-01 1.630e-01 1.065e-01 5.146e-01

DTLZ1 7 7.034e-01 4.042e+00 1.938e+01 4.718e-01 7.695e-01 8.458e-01

DTLZ3 7 7.320e-01 4.310e-01 4.852e+00 2.878e-01 3.826e-01 2.524e-01

WFG1 7 1.437e-01 3.547e-01 1.371e-01 7.114e-02 1.403e-01 3.199e-01

WFG3 7 6.134e-02 6.325e-01 1.573e-01 1.705e-01 1.169e-01 6.122e-01

DTLZ1 8 1.234e+01 1.212e+01 4.166e+02 3.101e+00 1.073e+01 2.849e+00

DTLZ3 8 1.501e+02 6.557e+01 7.623e+02 3.720e+01 1.011e+02 2.665e+01

WFG1 8 1.284e-01 3.186e-01 1.251e-01 6.956e-02 1.238e-01 2.692e-01

WFG3 8 6.487e-02 6.477e-01 1.593e-01 1.704e-01 1.115e-01 6.094e-01

DTLZ1 9 4.009e-01 3.676e+00 5.490e+00 3.932e-01 6.185e-01 5.747e-01

DTLZ3 9 3.029e-01 4.578e-01 1.713e+00 2.398e-01 2.584e-01 2.401e-01

WFG1 9 1.167e-01 2.921e-01 1.193e-01 6.477e-02 1.131e-01 2.561e-01

WFG3 9 6.758e-02 6.897e-01 1.621e-01 1.675e-01 1.078e-01 6.237e-01

DTLZ1 10 9.350e-01 9.074e+00 1.357e+01 6.061e-01 1.499e+00 1.028e+00

DTLZ3 10 4.368e-01 5.440e-01 2.368e+00 2.000e-01 3.965e-01 1.912e-01

WFG1 10 1.147e-01 3.043e-01 1.167e-01 6.273e-02 1.102e-01 2.671e-01

WFG3 10 6.759e-02 6.676e-01 1.670e-01 1.696e-01 1.043e-01 6.102e-01

DREAM and NSGA-G for MOOPs in Medical Cloud Federations 59

Table 10. Average compute time in Inverted Generational Distance experiment

m eMOEA NSGA-R NSGA-II MOEA/D NSGA-III NSGA-G

DTLZ1 5 3.384e+01 5.500e+01 5.176e+01 1.840e+02 2.139e+02 5.276e+01

DTLZ3 5 9.490e+01 8.072e+01 5.954e+01 2.942e+02 2.803e+02 6.146e+01

WFG1 5 1.453e+02 7.752e+01 8.710e+01 1.957e+02 2.988e+02 8.220e+01

WFG3 5 9.067e+02 8.638e+01 5.950e+01 2.087e+02 3.137e+02 8.416e+01

DTLZ1 6 4.982e+01 6.264e+01 5.860e+01 2.209e+02 1.894e+02 6.534e+01

DTLZ3 6 9.604e+01 6.984e+01 6.554e+01 2.182e+02 1.958e+02 7.078e+01

WFG1 6 2.188e+02 8.088e+01 7.810e+01 2.452e+02 2.282e+02 8.362e+01

WFG3 6 2.601e+03 9.036e+01 6.638e+01 3.200e+02 3.094e+02 1.215e+02

DTLZ1 7 6.754e+01 5.880e+01 6.122e+01 2.517e+02 1.620e+02 6.066e+01

DTLZ3 7 1.587e+02 7.172e+01 6.986e+01 2.525e+02 1.798e+02 7.168e+01

WFG1 7 2.579e+02 7.696e+01 8.294e+01 2.587e+02 2.185e+02 7.768e+01

WFG3 7 1.272e+03 7.836e+01 7.194e+01 2.487e+02 2.284e+02 8.888e+01

DTLZ1 8 8.430e+01 5.996e+01 6.610e+01 2.537e+02 2.322e+02 6.328e+01

DTLZ3 8 2.358e+02 7.418e+01 7.808e+01 2.608e+02 2.535e+02 7.446e+01

WFG1 8 3.158e+02 7.960e+01 8.682e+01 2.704e+02 2.903e+02 8.344e+01

WFG3 8 1.432e+03 8.044e+01 7.712e+01 2.513e+02 3.242e+02 8.364e+01

DTLZ1 9 1.237e+02 6.278e+01 6.978e+01 2.563e+02 3.120e+02 6.646e+01

DTLZ3 9 3.174e+02 7.882e+01 8.330e+01 2.721e+02 3.418e+02 7.838e+01

WFG1 9 3.827e+02 8.586e+01 9.338e+01 2.718e+02 3.837e+02 8.594e+01

WFG3 9 1.696e+03 8.290e+01 8.142e+01 2.607e+02 4.369e+02 8.654e+01

DTLZ1 10 1.436e+02 6.472e+01 7.536e+01 2.753e+02 4.187e+02 6.876e+01

DTLZ3 10 4.003e+02 8.566e+01 8.872e+01 2.897e+02 4.572e+02 8.270e+01

WFG1 10 4.635e+02 8.924e+01 1.008e+02 2.915e+02 5.137e+02 9.116e+01

WFG3 10 1.902e+03 8.662e+01 8.612e+01 2.802e+02 6.022e+02 9.028e+01

Table 11. Maximum Pareto Front Error

m eMOEA NSGA-R NSGA-II MOEA/D NSGA-III NSGA-G

DTLZ1 5 2.008e+01 1.195e+01 8.083e+02 1.765e+01 3.548e+02 4.912e+00

DTLZ3 5 1.079e+01 1.564e+00 2.545e+01 1.604e+00 1.546e+01 5.798e-01

WFG1 5 1.332e-01 1.763e-02 2.620e-01 2.042e-01 1.709e-01 1.588e-02

WFG3 5 1.583e-01 0.000e+00 9.601e-02 6.763e-02 1.139e-01 0.000e+00

DTLZ1 6 2.937e+02 5.789e+01 1.583e+03 5.168e+01 3.920e+02 7.665e+00

DTLZ3 6 1.045e+03 2.861e+02 1.825e+03 1.913e+02 7.048e+02 7.409e+01

WFG1 6 2.288e-01 1.619e-02 3.790e-01 3.086e-01 2.649e-01 1.372e-02

WFG3 6 1.690e-01 0.000e+00 1.090e-01 7.179e-02 9.973e-02 2.058e-03

DTLZ1 7 1.193e+02 4.205e+01 8.990e+02 9.095e+00 1.081e+02 2.998e+00

DTLZ3 7 1.138e+01 2.539e+00 1.768e+01 3.267e-01 4.447e+00 1.286e-01

WFG1 7 2.461e-01 1.443e-02 3.670e-01 2.775e-01 2.428e-01 1.545e-02

WFG3 7 1.630e-01 6.556e-04 1.017e-01 6.336e-02 7.499e-02 2.411e-03

DTLZ1 8 4.798e+02 2.375e+02 1.982e+03 4.991e+01 5.619e+02 8.178e+00

DTLZ3 8 1.458e+03 3.881e+02 2.152e+03 1.856e+02 9.085e+02 6.259e+01

WFG1 8 2.722e-01 1.486e-02 4.113e-01 3.155e-01 3.020e-01 1.039e-02

WFG3 8 1.499e-01 0.000e+00 9.124e-02 5.919e-02 6.697e-02 2.380e-03

DTLZ1 9 1.732e+02 1.234e+02 9.926e+02 1.264e+01 3.271e+02 1.976e+00

DTLZ3 9 7.820e+00 3.242e+00 1.899e+01 2.121e-01 6.489e+00 9.978e-02

WFG1 9 2.388e-01 1.108e-02 3.644e-01 2.316e-01 2.435e-01 7.929e-03

WFG3 9 1.516e-01 4.995e-04 8.803e-02 5.787e-02 8.046e-02 1.736e-03

DTLZ1 10 1.097e+02 1.138e+02 9.838e+02 8.148e+00 3.040e+02 2.231e+00

DTLZ3 10 6.727e+00 2.405e+00 1.556e+01 1.584e-01 5.933e+00 7.632e-02

WFG1 10 3.030e-01 1.372e-02 4.268e-01 2.544e-01 3.118e-01 9.250e-03

WFG3 10 1.468e-01 3.964e-04 7.328e-02 5.557e-02 6.889e-02 2.378e-03

60 T.-D. Le et al.

Table 12. Average compute time in Maximum Pareto Front Error experiment

m eMOEA NSGA-R NSGA-II MOEA/D NSGA-III NSGA-G

DTLZ1 5 4.128e+01 5.408e+01 5.408e+01 2.401e+02 2.308e+02 5.522e+01

DTLZ3 5 5.676e+01 6.470e+01 5.944e+01 2.074e+02 2.982e+02 6.294e+01

WFG1 5 1.623e+02 8.048e+01 7.232e+01 2.239e+02 2.815e+02 7.082e+01

WFG3 5 9.397e+02 7.952e+01 6.154e+01 2.043e+02 3.174e+02 1.023e+02

DTLZ1 6 4.550e+01 5.556e+01 5.634e+01 1.924e+02 1.662e+02 5.686e+01

DTLZ3 6 9.168e+01 6.554e+01 6.418e+01 1.985e+02 1.787e+02 6.656e+01

WFG1 6 1.958e+02 7.512e+01 7.434e+01 2.072e+02 2.170e+02 7.650e+01

WFG3 6 1.136e+03 7.774e+01 6.724e+01 1.967e+02 2.406e+02 7.916e+01

DTLZ1 7 8.734e+01 6.188e+01 6.164e+01 2.453e+02 2.058e+02 6.204e+01

DTLZ3 7 1.622e+02 7.046e+01 7.170e+01 2.699e+02 1.812e+02 8.968e+01

WFG1 7 2.674e+02 8.156e+01 8.470e+01 2.574e+02 2.154e+02 8.036e+01

WFG3 7 1.461e+03 8.358e+01 7.426e+01 2.546e+02 2.334e+02 8.180e+01

DTLZ1 8 8.920e+01 6.054e+01 6.592e+01 2.443e+02 2.349e+02 6.252e+01

DTLZ3 8 2.360e+02 7.318e+01 7.644e+01 2.536e+02 2.555e+02 7.426e+01

WFG1 8 4.476e+02 7.960e+01 8.678e+01 2.612e+02 2.932e+02 8.164e+01

WFG3 8 1.482e+03 8.250e+01 7.690e+01 2.497e+02 3.244e+02 8.380e+01

DTLZ1 9 1.031e+02 6.208e+01 6.984e+01 2.514e+02 3.068e+02 6.554e+01

DTLZ3 9 3.043e+02 7.924e+01 8.222e+01 2.634e+02 3.368e+02 7.806e+01

WFG1 9 3.935e+02 8.856e+01 9.290e+01 2.700e+02 3.807e+02 8.676e+01

WFG3 9 1.660e+03 9.016e+01 8.028e+01 2.594e+02 4.347e+02 8.622e+01

DTLZ1 10 1.507e+02 6.436e+01 7.442e+01 2.728e+02 4.151e+02 6.830e+01

DTLZ3 10 3.933e+02 8.494e+01 8.852e+01 2.865e+02 4.593e+02 8.244e+01

WFG1 10 4.769e+02 9.296e+01 9.974e+01 2.904e+02 5.110e+02 9.182e+01

WFG3 10 1.875e+03 8.474e+01 8.594e+01 2.784e+02 6.013e+02 9.096e+01

First, two versions of NSGA-G often show that they are faster than the other
algorithms in all experiments of average computation time, Table 8, 10, and 12.

Second, NSGA-Gs are also better than other NSGAs in terms of quality in
GD and MPFE experiments, as shown in Table 7, and 11. Except for the IDG
experiment, as shown in Table 9 the quality of NSGA-G with Random metric
is not as good as other ones. However, the fastest algorithm among NSGAs is
often NSGA-G with random metric. It can be accepted for the trade-off between
quality and computation time.

Study on the Evaluation. In the previous experiments, we survey algorithms
with various problems and the constant number of max evaluation. This section
selects a specific problem and shows the observation of algorithms while the pro-
cess is running. In particular, we choose DTLZ3 problem with eight objectives,
called DTLZ3-8. Besides, we focus on reducing the execution time of NSGAs algo-
rithm. Hence, this section compares two versions of NSGA-G algorithms to others

DREAM and NSGA-G for MOOPs in Medical Cloud Federations 61

in NSGA class, such as NSGA-II and NSGA-III. Two versions of NSGA-G with
Min point and Random metric are called NSGA-G and NSGA-R, respectively.

NSGA-G NSGA-R NSGA-II NSGA-III

Fig. 10. Inverted Generational Distance of 4 algorithms with DTLZ3-8.

The results in Fig. 10 and 11 show that two versions of NSGA-G are faster
than others. Both their convergence and diversity are better than NSGA-II and
NSGA-III.

In conclusion, NSGA-Gs often show better quality and faster execution time
in most cases, such as DTLZs, WFGs. One main conclusion of these experiments
is that NSGA-G with a Random metric is often the least expensive in terms of
computation.

62 T.-D. Le et al.

NSGA-G NSGA-R NSGA-II NSGA-III

Fig. 11. Execution time of 4 algorithms with DTLZ3-8.

6 Conclusion

This paper is about medical data management in cloud federation. It introduces
Dynamic Regression Algorithm (DREAM) as a part of MIDAS and on top of
IReS, an open source platform for complex analytics work-flows executed over
multi-engine environments. DREAM aims to address variance in a cloud feder-
ation and to provide accurate estimation for MOQP. Experiment results with
DREAM and TPC-H benchmark are quite promising with respect to existing
solutions. Further more, we introduce Non-dominated Sorting Algorithms based
on Grid partitioning (NSGA-G) in searching and optimization MOOP. We vali-
dated NSGA-Gs with DTLZ, WFG test problems, and MOEA framework. The
experiments show that NSGA-Gs often show better quality and faster execution
time than other NSGAs in most cases, such as DTLZs, WFGs. One main con-
clusion of these experiments is that NSGA-G with a Random metric is often the
least expensive in terms of computation.

In the future, we plan to validate our proposal with more cloud providers (and
their associated pricing model and services) and data management systems. We
will also define new strategies to choose QEPs in a Pareto Set. Further more,
the size of population in each generation iterate is constant in many NSGAs.

DREAM and NSGA-G for MOOPs in Medical Cloud Federations 63

The suitable value of population size is still a question of NSGAs. Future works
include a deeper study on the impact of the size of the population.

References

1. Abadi, D., et al.: The Beckman report on database research. J. Commun. ACM
59(2), 92–99 (2016)

2. Akdere, M., Çetintemel, U., Riondato, M., Upfal, E., Zdonik, S.B.: Learning-based
query performance modeling and prediction. In: 2012 IEEE 28th International
Conference on Data Engineering, Washington, DC, pp. 390–401 (2012)

3. Armbrust, M., et al.: A view of cloud computing. Commun. ACM 53(4), 50–58
(2010)

4. Bezerra, L.C.T., López-Ibáñez, M., Stützle, T.: An empirical assessment of the
properties of inverted generational distance on multi- and many-objective opti-
mization. In: Trautmann, H., Rudolph, G., Klamroth, K., Schütze, O., Wiecek,
M., Jin, Y., Grimme, C. (eds.) EMO 2017. LNCS, vol. 10173, pp. 31–45. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-54157-0 3

5. Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996)
6. Bugiotti, F., Bursztyn, D., Deutsch, A., Ileana, I., Manolescu, I.: Invisible glue: scal-

able self-tuning multi-stores. In: Conference on Innovative Data Systems Research
(CIDR), Asilomar, CA, USA (2015)

7. Cerf, R.: Asymptotic convergence of genetic algorithms. In: Advances in Applied
Probability, vol. 30, no. 2, pp. 521–550. Cambridge University Press (1998)

8. Chankong, V., Haimes, Y.Y.: Multiobjective Decision Making: Theory and
Methodology, North-Holland Series in System Science and Engineering, North Hol-
land (1983)

9. Coello, C.A.C., Cortés, N.C.: Solving multiobjective optimization problems using
an artificial immune system. Genet. Program. Evolvable Mach. 6, 163–190 (2005)

10. Coello, C.A.C., Lamont, G.B., Veldhuizen, D.A.V.: Evolutionary Algorithms for
Solving Multi-objective Problems. Genetic and Evolutionary Computation, 2nd
edn., pp. I-XXI, 1-800. Springer, New York (2007). https://doi.org/10.1007/978-
0-387-36797-2. ISBN 978-0-387-33254-3

11. DeWitt, D.J., et al.: Split query processing in polybase. In: Proceedings of the
2013 ACM SIGMOD International Conference on Management of Data (SIGMOD
2013), pp. 1255–1266. Association for Computing Machinery, New York (2013)

12. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
Commun. ACM 51(1), 107–113 (2008)

13. Deb, K., Agrawal, R.B.: Simulated binary crossover for continuous search space.
Complex Syst. 9, 1–34 (1994)

14. Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using
reference-point-based nondominated sorting approach, Part I: solving problems
with box constraints. IEEE Trans. Evol. Comput. 18(4), 577–601 (2014)

15. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

16. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable test problems for evolu-
tionary multiobjective optimization. In: Abraham, A., Jain, L., Goldberg, R. (eds.)
Evolutionary Multiobjective Optimization. Advanced Information and Knowl-
edge Processing, pp. 105–145. Springer, London (2005). https://doi.org/10.1007/
1-84628-137-7 6

https://doi.org/10.1007/978-3-319-54157-0_3
https://doi.org/10.1007/978-0-387-36797-2
https://doi.org/10.1007/978-0-387-36797-2
https://doi.org/10.1007/1-84628-137-7_6
https://doi.org/10.1007/1-84628-137-7_6

64 T.-D. Le et al.

17. Doka, K., Papailiou, N., Tsoumakos, D., Mantas, C., Koziris, N.: IReS: intelligent,
multi-engine resource scheduler for big data analytics workflows. In: Proceedings of
the: ACM SIGMOD International Conference on Management of Data (SIGMOD
2015), pp. 1451–1456. ACM, New York (2015)

18. Elmore, A., et al.: A demonstration of the BigDAWG polystore system. Proc.
VLDB Endow. 8(12), 1908–1911 (2015)

19. Fard, H.M., Prodan, R., Barrionuevo, J.J.D., Fahringer, T.: A multi-objective app-
roach for workflow scheduling in heterogeneous environments. In: 12th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing (ccgrid 2012),
Ottawa, ON, pp. 300–309 (2012)

20. Fonseca, C.M., Fleming, P.J.: An overview of evolutionary algorithms in multiob-
jective optimization. Evol. Comput. 3(1), 1–16 (1995)

21. Ganapathi, A., et al.: Predicting multiple metrics for queries: better decisions
enabled by machine learning. In: 2009 IEEE 25th International Conference on
Data Engineering, Shanghai, pp. 592–603(2009)

22. Giannakouris, V., Papailiou, N., Tsoumakos, D., Koziris, N.: MuSQLE: distributed
SQL query execution over multiple engine environments. In: 2016 IEEE Interna-
tional Conference on Big Data (Big Data), Washington, DC, pp. 452–461 (2016)

23. Glaßer, C., Reitwießner, C., Schmitz, H., Witek, M.: Approximability and hardness
in multi-objective optimization. In: Ferreira, F., Löwe, B., Mayordomo, E., Mendes
Gomes, L. (eds.) CiE 2010. LNCS, vol. 6158, pp. 180–189. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-13962-8 20

24. Helff, F., Gruenwald, L., D’Orazio, L.: Weighted sum model for multi-objective
query optimization for mobile-cloud database environments. In: EDBT/ICDT
Workshops (2016)

25. Huband, S., Hingston, P., Barone, L., While, L.: A review of multiobjective test
problems and a scalable test problem toolkit. IEEE Trans. Evol. Comput. 10(5),
447–506 (2006)

26. Ishibuchi, H., Masuda, H., Nojima, Y.: Sensitivity of performance evaluation results
by inverted generational distance to reference points. In: IEEE Congress on Evo-
lutionary Computation (CEC), pp. 1107–1114, July 2016

27. Jain, H., Deb, K.: An evolutionary many-objective optimization algorithm using
reference-point based nondominated sorting approach, Part II: handling constraints
and extending to an adaptive approach. IEEE Trans. Evol. Comput. 18(4), 602–
622 (2014)

28. Karpathiotakis, M., Alagiannis, I., Ailamaki, A.: Fast queries over heterogeneous
data through engine customization. Proc. VLDB Endow. 9(12), 972–983 (2016)

29. Khan, S.A., Rehman, S.: Iterative non-deterministic algorithms in on-shore wind
farm design: a brief survey. Renew. Sustain. Energy Rev. 19, 370–384 (2013)

30. Kllapi, H., Sitaridi, E., Tsangaris, M.M., Ioannidis, Y.: Schedule optimization for
data processing flows on the cloud. In: Proceedings of the 2011 International Con-
ference on Management of Data - SIGMOD 2011, pp. 289 (2011)

31. Knowles, J., Corne, D.: The Pareto archived evolution strategy: a new baseline
algorithm for Pareto multiobjective optimisation. In: Proceedings of the 1999
Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), Washing-
ton, DC, USA, vol. 1, pp. 98–105 (1999)

32. Kolev, B., Bondiombouy, C., Valduriez, P., Jimenez-Peris, R., Pau, R., Pereira,
J.: The CloudMdsQL multistore system. In: Proceedings of the 2016 International
Conference on Management of Data (SIGMOD 2016), pp. 2113–2116. Association
for Computing Machinery, New York (2016)

https://doi.org/10.1007/978-3-642-13962-8_20

DREAM and NSGA-G for MOOPs in Medical Cloud Federations 65

33. Kolev, B., Valduriez, P., Bondiombouy, C., Jiménez-Peris, R., Pau, R., Pereira, J.:
CloudMdsQL: querying heterogeneous cloud data stores with a common language.
Distrib. Parallel Database 34(4), 463–503 (2016)

34. Köppen, M., Yoshida, K.: Substitute distance assignments in NSGA-II for han-
dling many-objective optimization problems. In: Obayashi, S., Deb, K., Poloni,
C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 727–741.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70928-2 55

35. Kurze, T., Klems, M., Bermbach, D., Lenk, A., Tai, S., Kunze, M.: Cloud federa-
tion. In: The Second International Conference on Cloud Computing, GRIDs, and
Virtualization, pp. 32–38 (2011)

36. Le, T.-D., Kantere, V., D’Orazio, L.: An efficient multi-objective genetic algorithm
for cloud computing: NSGA-G. In: IEEE International Conference on Big Data,
Big Data 2018, Seattle, WA, USA, 10–13 December, pp. 3883–3888 (2018)

37. Le, T.-D., Kantere, V., D’Orazio, L.: Dynamic estimation for medical data manage-
ment in a cloud federation. In: Proceedings of the Workshops of the EDBT/ICDT
2019 Joint Conference, EDBT/ICDT 2019, Lisbon, Portugal, 26 March 2019 (2019)

38. LeFevre, J., Sankaranarayanan, J., Hacigümüs, H., Tatemura, J., Polyzotis, N.,
Carey, M.J.: MISO: souping up big data query processing with a multistore system.
In: SIGMOD Conference 2014 , pp. 1591–1602 (2014)

39. Nykiel, T., Potamias, M., Mishra, C., Kollios, G., Koudas, N.: MRShare: sharing
across multiple queries in MapReduce. PVLDB 3, 494–505 (2010)

40. Papakonstantinou, Y.: Polystore query rewriting: the challenges of variety. In:
EDBT/ICDT Workshops (2016)

41. Rousseeuw, P.J., Leroy, A.M.: Robust Regression and Outlier Detection. Wiley,
New York (1987)

42. Sidhanta, S., Golab, W., Mukhopadhyay, S.: OptEx: a deadline-aware cost opti-
mization model for spark. In: 16th IEEE/ACM International Symposium on Clus-
ter, Cloud and Grid Computing (CCGrid), Cartagena, pp. 193–202 (2016)

43. Soong, T.T.: Fundamentals of Probability and Statistics for Engineers. Wiley, New
York (2004)

44. Srinivas, N., Deb, K.: Muiltiobjective optimization using nondominated sorting in
genetic algorithms. Evol. Comput. 2(3), 221–248 (1994)

45. Thusoo, A., et al.: Hive - a petabyte scale data warehouse using Hadoop. In: 2010
IEEE 26th International Conference on Data Engineering (ICDE 2010), pp. 996–
1005 (2010)

46. Tozer, S., Brecht, T., Aboulnaga, A.: Q-Cop: avoiding bad query mixes to minimize
client timeouts under heavy loads. In: 2010 IEEE 26th International Conference
on Data Engineering (ICDE 2010), Long Beach, CA, pp. 397–408 (2010)

47. Trummer, L., Koch, C.: Multi-objective parametric query optimization. Commun.
ACM 60(10), 81–89 (2017)

48. Veldhuizen, D.A.V.: Multiobjective evolutionary algorithms: classifications, anal-
yses, and new innovations. Ph.D. thesis, Department of Electrical and Computer
Engineering. Graduate School of Engineering. Air Force Institute of Technology,
Wright-Patterson AFB, Ohio (1999)

49. Veldhuizen, D.A.V., Lamont, G.B.: Evolutionary computation and convergence
to a pareto front. In: Late Breaking Papers at the Genetic Programming 1998
Conference, pp. 221–228 (1998)

50. Wu, W., Chi, Y., Zhu, S., Tatemura, J., Hacigümüs, H., Naughton, J.F.: Predicting
query execution time: are optimizer cost models really unusable? In: 2013 IEEE
29th International Conference on Data Engineering (ICDE), Brisbane, QLD, pp.
1081–1092 (2013)

https://doi.org/10.1007/978-3-540-70928-2_55

66 T.-D. Le et al.

51. Xiong, P., Chi, Y., Zhu, S., Tatemura, J., Pu, C., HacigümüŞ, H.: ActiveSLA: a
profit-oriented admission control framework for Database-as-a-Service providers.
In: Proceedings of the 2nd ACM Symposium on Cloud Computing, SOCC 2011
(2011)

52. Yen, G.G., He, Z.: Performance metrics ensemble for multiobjective evolutionary
algorithms. IEEE Trans. Evol. Comput. 18, 131–144 (2013)

53. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on
decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

54. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: improving the strength pareto evo-
lutionary algorithm, TIK-Report. 103 (2001)

55. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Fonseca, V.G.D.: Perfor-
mance assessment of multiobjective optimizers: an analysis and review. IEEE
Trans. Evol. Comput. 7(2), 117–132 (2003)

Temporal Pattern Mining
for E-commerce Dataset

Mohamad Kanaan1(B), Remy Cazabet2, and Hamamache Kheddouci2

1 Sistema-Strategy, Lyon, France
mohamad.kanaan@sistema-strategy.com

2 Claude Bernard University Lyon 1, LIRIS Lab, Lyon, France
{remy.cazabet,hamamache.kheddouci}@univ-lyon1.fr

Abstract. Over the last few years, several data mining algorithms have
been developed to understand customers’ behaviors in e-commerce plat-
forms. They aim to extract knowledge and predict future actions on the
website. In this paper we present three algorithms: SEPM−, SEPM+
and SEPM++ (Sequential Event Pattern Mining), for mining sequen-
tial frequent patterns. Our goal is to mine clickstream data to extract
and analyze useful sequential patterns of clicks. For this purpose, we aug-
ment the vertical representation of patterns with additional information
about the items’ duration. Then based on this representation, we propose
the necessary algorithms to mine sequential frequent patterns with the
average duration of each of their items. Also, the direction of durations’
variation in the sequence is taken into account by the algorithms. This
duration is used as a proxy of the interest of the user in the content of the
page. Finally, we categorize the resulting patterns and we prove that they
are more discriminating than the standard ones. Our approach is tested
on real data, and patterns found are analyzed to extract users’ discrim-
inatory behaviors. The experimental results on both real and synthetic
datasets indicate that our algorithms are efficient and scalable.

Keywords: E-commerce · Customer behavior · Data mining ·
Sequential frequent pattern

1 Introduction

Electronic (e)-commerce can be defined as the use of electronic media for carrying
out commercial transactions to exchange goods or services. It has revolutionized
retail by reducing the distance between stores and customers. Nowadays, cus-
tomers’ choices are no longer limited to products proposed in their regions. They
can purchase from any international store, anywhere and anytime, by using an
e-commerce website. This attractivity has significantly increased the e-commerce
web sites’ visitors, motivating e-sellers to improve their websites and to propose
more personalized products, by better understanding the behaviors of their cus-
tomers. These behaviors are very complex since they are influenced by various
factors, e.g., the customers’ profile (age, gender, country, job, ...), the services
c© Springer-Verlag GmbH Germany, part of Springer Nature 2020
A. Hameurlain and A M. Tjoa (Eds.): TLDKS XLVI, LNCS 12410, pp. 67–90, 2020.
https://doi.org/10.1007/978-3-662-62386-2_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-62386-2_3&domain=pdf
https://doi.org/10.1007/978-3-662-62386-2_3

68 M. Kanaan et al.

proposed (payment method, product diversity, delivery method, ...), and so on.
Understanding these behaviors help e-sellers to recommend relevant products,
predict future purchases, and ensure products’ availability. To further improve
their website performances, e-sellers want to know how customers purchase prod-
ucts, how they navigate through the product catalogs, or even why they abandon
some purchase processes.

To achieve this goal, many tools have been developed to trace the users’
actions (click, view, add to cart, purchase, etc.). These traces are commonly
known as clickstreams. Then, by using some data mining techniques, click-
streams are mined to extract useful knowledge. Some well-known data min-
ing techniques used for this purpose are: pattern mining [15,25], trend discov-
ery [22,38], customers clustering and classification [2,6,11], collaborative filtering
in recommending systems [28,29,37] and purchase prediction [20,26,41].

In this paper, our goal is to discover how the users navigate through a website
to find their products. We, therefore, extract frequent discriminatory behaviors,
and we analyze their skeletons.

These frequent discriminatory behaviors can be present in clickstreams as
sequential frequent patterns. A sequential pattern is an ordered, common, and
frequent sequence of actions (items) that lead to a specific action (e.g., purchase
or abandon). An example of sequential pattern can be: {if a customer buy a
printer → he is likely to buy a cartridge right after}.

In previous years, several sequential pattern mining algorithms [15,25] have
been proposed. They are designed to mine only inputs containing the labels of
items. However, clickstreams do not contain only items labels, but also contain
the items’ duration. This duration represents the time spent by a user on a page,
and it can be used as a proxy of user interest in the content of the page. A user
could be more interested in a product that he has viewed for 4 min than another
product that he has viewed for 5 s.

We decide to take this duration into account and integrate it into the mining
process, to make the extracted patterns more significant. Therefore, two aspects
are taken into consideration: the order of browsed products and the time spent
by customers on consulted pages. The order is used to keep the sequential nature
of data, and the duration to make the patterns more meaningful. The objective
is to find the sequence of products consulted frequently with the average
duration time spent on each product.

This paper is organized as follows. Section 2 presents a state of the art of the
frequent pattern mining literature. The problem is reformulated in Sect. 3 and
in Sect. 4 a new algorithm is developed to mine sequential event pattern. The
experimental results are shown in Sect. 5, before concluding in Sect. 6.

1.1 Motivations

E-sellers know that their customers are all different, but they also know that
there are regularities in their product searching. Understanding these subtleties
can help them to personalize their website according to their customers’ profiles,
and propose new commercial offers.

Temporal Pattern Mining for E-commerce Dataset 69

In this paper, our main goal is to provide e-sellers with appropriate techniques
to acquire knowledge of their data by designing the necessary tools to extract
their customers’ behaviors. For example, some of these discriminatory behaviors
can be:

1. classic behavior : customers consult the same sequence of products and spent
pretty much the same time on them before purchasing a product

2. observer behavior : customers, before focusing on their main products, con-
sult some related “accessories” (e.g., mobile phone accessories before mobile
phones, printer cartridges before printers, ...)

3. comparator behavior : customers consult several times the same products to
compare the properties of each of them

4. research behavior: customers check the product catalog randomly without
purchase intention

These behaviors can be modeled as sequential frequent patterns that contain
a sequence of products consulted in the same order several times. Many algo-
rithms are proposed to mine the sequential frequent patterns where patterns are
represented by only a sequence of the label. In these algorithms, the duration
is not used during mining patterns. However, this duration can be very helpful
for the analysis of usages. It is an important factor that can be used to reflect
discriminatory behaviors. In our work, we choose to integrate the duration into
these patterns. It will make them more talkative and allow an easier matching
between patterns and their discriminatory behaviors than the classic ones.

1.2 Contribution

This work is an extension of our previous work [21], in which we proposed SEPM
(Sequential Event Pattern Mining). SEPM is able to extract the sequential pat-
terns with the average duration of their items. Nevertheless, an important tempo-
ral factor was not taken into account: the direction of variation of this duration.
In addition to the work done in [21], we show here how the variation of duration
is integrated into the representation of patterns, and into the mining process,
and how this variation may help to detect more discriminatory patterns. Also,
we detail the algorithms and we propose a multi-threaded version.

So, in this paper, our goal remains the same with a difference in how patterns
are modeled and mined. They become more discriminatory. We pay more atten-
tion to the variation of their duration during the mining process to preserve the
shape of the temporal sequence. Our tests show that taking this variation into
account can help to obtain better results and more interpretable patterns.

2 Related Work

The sequence mining task was proposed for the first time in [1] as a problem
of mining customers’ sales transactions in order to discover frequent sequences
of purchase constrained by a user-specified minimum support. Later on, it has

70 M. Kanaan et al.

been used in several fields of application: medical treatments [5,18,35], webpage
clickstream [19,27,31,34,40], telephone calls [42], DNA sequences [23,36], and
so on and so forth. These different applications motivated researchers in the field
to improve existing algorithms (e.g., on execution time, memory consumption,
...) and to propose related methods able to answer a slightly different question,
highlighting different aspects of the data (closed sequential patterns [12,17],
maximal sequential patterns [13,16,24], ...). In our work, we are interested in
the sequential pattern mining problem.

Numerous sequence mining algorithms have been developed (e.g., [15,25]) as
extensions of the sequential pattern problem, to solve problems specific to an
application case. All these sequential patterns mining algorithms have the same
input and output but the difference is in their mining technique. Their common
goal is to find all possible and valid sequential frequent patterns. Given a set of
sequences and a support threshold minSupp (user-specified minimum support),
the goal is to find the subsequences that appear at least in minSupp sequences.
One of the first proposed algorithms is GSP [33], which uses a breadth-first
search to explore the candidate space and extract the patterns level by level. It
is based on the AprioriAll algorithm [1]. It starts by scanning the input database
to extract all frequent sequences containing one frequent item called 1−pattern.
Then, using these patterns, it generates those containing two frequent items
(“the 2−patterns”), and so on until no new pattern is found. (k)-patterns found
at level k are used to generate the (k + 1)-patterns in the next level (k + 1).
The GSP algorithm has two main objectives: candidate generation and sup-
port counting. At level (k + 1), GSP starts by generating all (k + 1)-candidates
(potential pattern) from the (k)-patterns. They are called candidates because
we do not know yet their supports and therefore we do not know if they respect
the frequency constraint or not. After the candidate generation step, the sup-
port counting task is performed, in which all candidates’ supports are calculated.
Those who have supported greater than or equal to minSupp become patterns
and the others are rejected. These two tasks are repeated at each level until no
new pattern is found. During the support counting task, GSP makes multiple
passes over the database in order to verify and count the appearances of patterns
in all sequences. This task may take a long execution time (caused by the mul-
tiple passes) and may consume a lot of memory as we need to keep the original
database in memory.

To overcome this drawback, in [39] a vertical format to represent the patterns
has been used. A new algorithm called SPADE is also proposed, which can be
used in BFS (breadth-first search) or DFS (depth-first search) to mine sequential
patterns. The patterns’ positions in the original database are saved in a vertical
table called IDList. This table contains the id of sequences and the positions
in these sequences where the pattern appears. SPADE executes two main tasks
at each level of pattern exploring: candidate generation and support counting.
To generate a new candidate, two patterns are joined if they have the same
sequence of items except the last one. For example, p1 = {A,B,C} can join
p2 = {A,B,D} and this join operation will produce the following candidates:

Temporal Pattern Mining for E-commerce Dataset 71

c1 = {A,B,C,D}, c2 = {A,B,D,C}, and c3 = {A,B,CD}. Finally, SPADE
computes the support of all candidates and keep those who respect the frequency
constraint. It continues to repeat the generation of new candidates until no new
pattern is found. One of SPADE’s strong points lies in the computing of the
patterns’ supports. This operation can be accomplished just by checking the
vertical table of the pattern. As we mentioned before, this table contains the
id of the sequences where the pattern is. Therefore, the support is equal to the
number of distinct sequence IDs. Unlike GSP, SPADE does not need to re-scan
the original database anymore for that reason. The architecture of our proposed
algorithm is inspired by these algorithms.

Other algorithms such as PrefixSpan [32] and SPAM [7] are proposed later.
PrefixSpan is a pattern-growth algorithm in which the sequence database is
recursively projected into a set of smaller projected sequence databases and
each one of them will grow by exploring locally frequent fragments. PrefixSpan
starts by generating a search tree starting from an empty root node. Each child
node in the search tree extends its parent node’s sequence with items in addition
then PrefixSpan explores the tree search space using a depth-first search. A total
order on the item is used to never generate duplicate sequences in the search
tree. SPAM represents sequences by using a vertical bit-vectors. It also explores
the search space in a depth-first strategy with some pruning mechanisms. It is
efficient especially with very long sequences.

For a few years, many temporal sequential patterns algorithms are pro-
posed. One of those is IEMiner [30], that mines frequent temporal patterns
from interval-based events. Each event in the discovered patterns has a tem-
poral relation (defined by Allen’s interval algebra [4]) with all the others. Two
sequences of events are equal only if they have the same sequence of labels and
the same sequence of temporal relations. The duration is not a determining fac-
tor in the proposed mining process. Other works [9,21] take the duration into
consideration, but without paying attention to its variation in a sequence.

We believe that the sequence of durations is also important to represent a
pattern, as it gives the pattern more information (by adding the duration as a
new dimension into the pattern representation) and allows the detection of more
discriminating ones.

3 Problem Reformulation

As previously described, our goal is to mine the discriminatory frequent behav-
iors of users on e-commerce websites. These behaviors can be found in the form of
sequential patterns with duration in the clickstream. A sequential pattern is
composed of a frequent sequence of consulted items that may represent a specific
frequent behavior (purchase, abandon, random navigation, ...). For example, a
sequential pattern can be composed of several items consulted in the same order
{Samsung note 5 → Samsung note 3 → Samsung note 4} before purchasing.
The consultation time spent on each of these items is crucial since it can indicate
whether the user is susceptible to being interested in the page (product) or not.

72 M. Kanaan et al.

Thereby, we propose to include this duration into the mining process. Patterns
will, therefore, consist of the sequence of items’ labels and of the average time
spent on those items. Following [39], we adopt a vertical representation of the
dataset and patterns, allowing a more efficient discovery process.

Definition 1. (event). An event E is represented by a couple (label, duration),
where label is the event label and duration is its duration.

Definition 2. (event list). A list of sequential events SE = {E1, E2, ..., En}
is a list of events sorted by their starting time. A canonical representation of SE
can be obtained by merging all its labels in the order of their appearance in SE
(e.g., in Table 1, SE with SID = 3 can be represented by <ABDE>).

We ignore the starting time of the event, considered less informative as the
duration in our case.

Each SE is identified in the original dataset by a unique identifier called
SID, and each of its events E has also an internal unique identifier called EID
(an integer representing the position of E in SE). The length of SE, denoted
by |SE|, is equal to the number of its events.

We assume that a total order exists on items denoted by ≺, which defines
the order between events in the sequential event list. We note E1 ≺ E2, if
{E1, E2} ∈ SEi and E1.EID < E2.EID (in other word, the event E1 starts
before the event E2 in the sequential event list Ei).

Table 1. Example database of event lists and patterns detected

SID Events (Label, Duration) Event list (Labeleid)

1 E1 (A, 3), E2 (B, 6) EL1 = A1 → B2 → C3 → E4

E3 (C, 7), E4 (E, 9)

2 E1 (A, 5), E2 (B, 8) EL2 = A1 → B2 → C3

E3 (C, 9)

3 E1 (A, 3), E2 (B, 4) EL3 = A1 → B2 → D3 → E4

E3 (D, 1), E4 (E, 3)

4 E1 (A, 7), E2 (B, 8) EL4 = A1 → B2 → D3

E3 (D, 3)

Definition 3. (subsequence). SE′ = {E′
1, E

′
2, ..., E

′
n} is called a subsequence

of SE = {E1, E2, ..., Em}, denoted by SE′ ⊆ SE, if and only if there exists
an injective function f: SE′.events → SE.events, such as (1) ∀E′

i ∈ SE′ →
f(E′

i) ∈ SE, (2) E′
i.label = f(E′

i).label, and (3) ∀{E′
i, E

′
j} ∈ SE′, if E′

i ≺ E′
j →

f(E′
i) ≺ f(E′

j). For example, {B,E} ⊂ EL3, EL2 ⊂ EL1 and EL2 � EL3 can
be deduced from Table 1.

Definition 4. (pattern). A k-pattern is a frequent k-subsequence, where k
is its number of events (k = pattern.|items|).

Temporal Pattern Mining for E-commerce Dataset 73

Table 2. Example of IDListExt built from Table 1 with minSupp = 2 (duration in
minute)

A
SID EID IDuration
1 1 3
2 1 5
3 1 3
4 1 7
INeighbors: { B, C, D, E }

B
SID EID IDuration
1 2 6
2 2 8
3 2 4
4 2 8
INeighbors: { C, D, E }

C
SID EID IDuration
1 3 7
2 3 9

INeighbors: {∅}

D
SID EID IDuration
3 3 1
4 3 3

INeighbors: {∅}

E
SID EID IDuration
1 4 9
3 4 3

INeighbors: {∅}

Following [39], we represent the pattern in vertical format. A pattern, in the
standard vertical format, has (1) labels: the sequence of its items’ label, and (2)
IDList: the list of positions (in the original dataset) where the pattern appears.
Each position Pos in an IDList is a couple of one SID and a list of EID. This
vertical representation allows quick computing of the pattern’s support which
can be done by counting the number of all distinct SID in the IDList of the
pattern.

A valid pattern is constrained as follows:

1. frequency constraint: support(pattern) ≥ minSupp, where minSupp is a
user-specified minimum support threshold

2. event order constraint: ∀{EIDi, EIDj} ∈ Pos, if EIDi < EIDj then EIDi

should appear before EIDj in the list of EID in Pos

In our case, the pattern’s items should be coupled with the average dura-
tion spent on them. So, each item it in a pattern p should be coupled with a
duration. This duration dit is equal to the average of the time spent on it in all
sequences where p appears. We choose to maintain dit during the mining pro-
cess. To achieve this goal, we augment the standard vertical representation by
introducing IDListExt, an augmented vertical representation containing IDu-
rations, IFlags, and INeighbors in addition.

Definition 5. (IDListExt). An extension of IDList, which contains in addi-
tion: (1) IDurations: list of durations, (2) IFlags: list of flags, and (3) INeighbors:
list of neighboring items.

Definition 6. (IDurations). List of durations of the last item of the pattern
in each position where the pattern appears.

To avoid data duplication, only the duration of the last item in the pattern is kept
in the IDurations of this pattern. To obtain the durations of the other items

74 M. Kanaan et al.

of the pattern, we can compute them from the parent pattern of the pattern in
question. Refer to the Sect. 4 for more details.

Definition 7. (Duration). The duration dit of an item it in a pattern p can
be defined as:

dit =
∑n

i=1(duration of [it] in [SEi])
p.|SID| (1)

where (1) it ∈ SEi and (2) p ⊆ SEi. For example, from Table 1, the pattern {A,
B} can be represented with flags and durations by PAB={(A+, 4.5) (B, 6.5)}.
With this representation, we can see that users spend on average 6.5min on page
B, when they consult page A before.

Definition 8. (IFlags). List of flag for each item indicating if the duration of
an item is longer or shorter than the previous one in the same pattern.

To make the difference between two patterns P1 and P2 that have the same
sequence of labels but a difference in the variation of durations, we choose to
add a flag to each item in the pattern. This flag can have a value of “none”, “+”
or “−” according to the following rules: given a pattern p = {(Ii,Di)(Ij ,Dj)},
we set flag(Ii) to:

1. “+”: if (Dj − Di) ≥ minGap
2. “−”: if (Dj − Di) < minGap
3. “none”: if Ii is the last item

where minGap is a user-specified minimum gap threshold between consecutive
items. For example, the patterns P1 = {(A, 2)(B, 4)(C, 6)} and P2 =

{
(A, 9)

(B, 4)(C, 6)
}

can be represented with flags by P1 = {(A+, 2)(B+, 4)(C, 6)} and
P2 = {(A−, 9)(B+, 4)(C, 6)} respectively for minGap = 1.

Two patterns having the same sequence of items’ labels but a difference in the
variation of duration should not be equal. This ensures that all patterns found
have the same variation in duration. For example, from Table 1, P1={(B+, 6)
(E, 9)} 	= P2={(B-, 4) (E, 3)}, where P1 appears in sequence with SID=1 and
P2 appears in sequence with SID = 3. We notice that Pi == Pj if and only if,
the sequence of labels and flags in Pi is equal to the sequence of labels and flags
in Pj respectively.

Definition 9. (INeighbors). List of frequent items that appear after the last
item of the pattern in the database. These neighbors are used in the candidate
generation and avoid the generation of false candidates For example, in Table 1,
for minSupp = 2, the neighbors of A are {< B, freq = 4 >,< C, freq = 2 >,
< D, freq = 2 >,< E, freq = 2 >}, and those of B are {< C, freq = 2 >,<
D, freq = 2 >}.

A canonical representation of pattern can be obtained by merging all its fre-
quent items (in the same order of its appearance) such as every item has a label, a
flag and an average duration. Two patterns k−P1 and k−P2 are equal if they have
the same sequence of label, and flags such as: (1) P1.|items| = P2.|items| = k,
and for any 1 ≤ i ≤ k, we have (2) P1.Itemi.label = P2.Itemi.label and (3)
P1.Itemi.f lag = P2.Itemi.f lag.

Temporal Pattern Mining for E-commerce Dataset 75

4 Sequential Event Pattern Mining

Let D = {SE1, ..., SEn} be an input database of SE, minSupp a user-specified
minimum support threshold. The goal is to find all sequential patterns appearing
at least in minSupp sequences in D, and including the average duration of their
items. In this section, we describe our proposed algorithms to (1) build the
IDListExt of all frequent events and (2) extract the sequential patterns. These
algorithms are inspired by the algorithm proposed in [21] called Sequential Event
Pattern Mining (SEPM).

Three extended algorithms are proposed for the mining: SEPM− (Algo-
rithm 5) for mining sequential patterns without duration, SEPM+ (Algo-
rithm 1) for mining sequential patterns with duration, and SEPM++ (Algo-
rithm 2) for mining sequential patterns with duration in parallel (multithread).
All these algorithms use the Depth-First Search to mine the patterns. Refer to
the Appendix A for more details.

4.1 Build the List of IDListExt

Algorithm 3 is proposed to build the IDListExt of each frequent event in the
database. It starts by scanning the database to obtain all single frequent events
freqEvents (infrequent events can be removed from the database to accelerate
the second scan). Then, a second scan is performed to build the IDListExt of
each frequent event. The last operation will remove all infrequent neighbors from
all INeighbor.

4.2 SEPM Without Duration

Algorithm 5, called SEPM−, is proposed to extract patterns without duration.
The resulting patterns are used to improve the utility of duration (refer to Sect.5
for more details). SEPM− starts by generating the list of candidates. Then, it
computes the frequency of each candidate, and if it is greater then or equal to the
minSupp the candidate becomes a pattern. For all (k)-patterns generated, the
SEPM− repeats the process to explore the (k + 1)-patterns. This recursive pro-
cess is repeated until all patterns are found. An intersection ∩ between two IDLis-
tExt is performed to retrieve the positions of the candidate generated. At the
beginning of the intersection step, all the common SID (between the two IDLis-
tExt) are computed. Then for each of them, we search in neighbor.IDListExt,
the minimum EID which is greater than the max EID in the pattern.IDListExt.
If this minimum exists, it means that the candidate exists in the sequence with
id equal to SID.

4.3 SEPM with Duration

Algorithm 5, called SEPM+, is proposed to extract patterns with duration.
It has the same steps as the previous Algorithm 5 except the intersection ∩

76 M. Kanaan et al.

between the IDListExt. Here, the intersection can generate patterns (from 0 to
2) according to the variation in the duration at each common SID. Items’ flags of
the patterns are used to encode the duration variation. When a pattern joins its
neighbor, the variation between the duration of this neighbor and the duration
of the last item in the pattern in each common SID will determine the flag of
the last item in the pattern (before the addition of the neighbor to the pattern).
For example, joining {A + B + C} with {D} can produce {∅},{A + B + C + D},
and/or {A + B + C −D}.

Algorithm 1: SEPM+
Input: Pattern: pattern
Input: User-specified threshold: minSupp
Input: Set of IDListExt: ν

1 save(pattern)
2 forall the neighbor ∈ pattern.INeighbors do
3 IDListExt ← pattern.IDListExt ∩ ν.find(neighbor).IDListExt
4 if IDListExt.|SID| ≥ minSupp then
5 newPatterns ←

createPatternsWithDuration(pattern, neighbor, IDListExt)
6 forall the newPattern ∈ newPatterns do
7 SEPM+(newPattern) // recursive call

8 end

9 end

10 end

An example is shown in Fig. 1. It shows how patterns and their ID-Lists are
generated from a dataset.

4.4 SEPM with Parallel Mining Process

Algorithm 2, called SEPM++, is proposed to extract patterns with duration
in parallel to accelerate the mining process. The number of threads used can
be adjusted according to the number of available processing units. The output
is the same as for SEPM+. At the beginning a thread pool is created at line
1, then all 1-patterns are extracted at line 2. After that, a task is created for
each 1-pattern and added to the task list of the thread pool at line 3–6. When
a task is added, it will be directly executed by the first available thread. A
thread generates all possible patterns from the 1-pattern of a given task (like
in SEPM+). Finally, the execution of the SEPM++ will be paused as long as
there are running threads and unprocessed tasks at line 7.

Temporal Pattern Mining for E-commerce Dataset 77

A
SID EID IDura on
1 1 5
2 1 3

INeighbors: {B, C}
Pa ern: <A(4)>

B
SID EID IDura on
1 2 7
2 3 8
3 2 2
4 2 3

INeighbors: {C}
Pa ern: <B(5)>

C
SID EID IDura on
1 3 9
2 2 4
3 3 7

INeighbors: {Ø}
Pa ern: <C(6.67)>

D
SID EID IDura on
3 1 4
4 1 6

INeighbors: {B}
Pa ern: <D(5)>

Ø

AB
SID EID IDura on
1 2 7
2 3 8

INeighbors: {B, C}
Pa ern: <A+(4) B(7.5)>

AC
SID EID IDura on
1 3 9
2 2 4

INeighbors: {B, C}
Pa ern: <A+(4) C(6.5)>

BC
SID EID IDura on
1 3 9
3 3 7

INeighbors: {B, C}
Pa ern: <B+(4.5) C(8)>

DB
SID EID IDura on
3 2 2
4 2 3

INeighbors: {B, C}
Pa ern: <D-(5) B(2.5)>

Dataset

A(5) B(7) C(9)

A(3) C(4) B(8)

D(4) B(2) C(7)

D(6) B(3) E(9)

SEPM+

Fig. 1. Tree showing the pattern tree extracted from the dataset in this figure.

Algorithm 2: SEPM++
Input: User-specified threshold: minSupp
Input: Number of threads: nbThread
Input: Set of IDListExt: ν // of all frequent events

1 t pool ← create a pool of nbThread threads
2 1 patterns ← build all 1-pattern from ν
3 forall the pattern ∈ 1 patterns do
4 task ← create a task from pattern
5 pool.add task(task)

6 end
7 wait all thread pool
8 shutdonw all threads in pool

5 Experimental Results

Our proposed algorithms was applied (1) on several real e-commerce datasets
to demonstrate the relevance of the mined patterns and (2) on synthetic
datasets to prove their efficiency and scalability. All experiments were performed
on a computer with Core-i5 with 5 physical cores, running on Windows 10 and
16 GB of RAM.

5.1 Datasets

In this section, we describe the two categories of datasets used in our experi-
ments, and how they are constructed.

78 M. Kanaan et al.

1. E-commerce dataset The first category includes three datasets extracted from
real e-commerce websites [3,8,10]. Each dataset contains a set of users’ actions on
products called clickstreams. Actions can be (depending on the dataset): click,
view, query, or purchase. We choose to keep only click and purchase actions
as they are common to the three datasets. It is worth noting that actions are
performed only on product pages, actions on the other pages of the website
(FAQ, contact-us, etc.) are not provided. Actions are grouped by sessions where
each session belongs to a single user and has a couple of unique identifiers and
timestamps. Actions are sorted by their starting time.

In order to apply our algorithms to these datasets, we need to clean them
from noises beforehand. These noises can be due to bugs in the tracing tool,
errors while loading pages, etc. They can cause several problems such as non-
closed sessions (long time between two consecutive actions), consecutive clicks
on the same product, etc.

In our experiments, we choose to set a maximum duration on a page to five
minutes. Any value exceeding this threshold will be trimmed to the threshold
value. Durations will therefore always be greater than zero and smaller than
five minutes. For experimental reasons, this value is set to five minutes which
equal to the third quartile (75th percentile) of the values of the durations in the
datasets. In an ideal case, detect outliers algorithms should be used to eliminate
the outliers without having to set a maximum duration value. We have not
addressed this point as it was not our priority in this paper.

After cleaning, clickstreams should be converted into sequential event data.
Every session is converted into an event-list and every click in a session is con-
verted into an event attached to its corresponding event-list. The duration of an
event Ei is defined as the time between the beginning of two consecutive events
(Ei and Ei+1) in the same session. All the clicks durations in a session can be
obtained except for the duration of the last one. This duration is replaced by
the average duration of all clicks in the current session.

Table 3 contains some statistics about the three clickstream datasets, and
Table 4 contains the number and length of patterns founded by SEPM+ in each
dataset.

Table 3. Summary of properties of the e-commerce datasets. E: Events. SE: Sequential
events

Dataset |SE| |E| |Distinct E| Mean E in SE Session with purchase

CIKM 238k 2,121k 75k 3.11 12k

YooChoose 670k 3,87k 45k 3.77 410k

AliBaba 1,119k 13,966k 4,085k 6.46 630k

Sample file (1,119k line)

Temporal Pattern Mining for E-commerce Dataset 79

Table 4. Statistics of patterns found using SEPM+ in each dataset. The number
of patterns found may be different from those found by SEPM as the representation
of patterns is different. Datasets contain sessions with and without purchase. The
number of patterns found with SEPM+ is not equal to that found by SEPM as the
representation of patterns is not the same

Dataset minSupp Nb patterns Max length

CIKM 0.01% 23,221 4

YooChoose 0.01% 26,807 8

AliBaba 0.01% 8,461 6

2. Synthetic dataset The synthetic dataset was generated using IBM data quest
generator. They are used to study the effect of varying properties of the input
database on the execution time. The generation of datasets can be controlled
through several parameters:

– ncrust (number of customers in the database) to vary the number of event
lists (i.e. D)

– slen (average of transactions per customer) to vary the number of events per
list (i.e. L)

– nitems (the number of different items available) to vary the number of types
(labels) of events (i.e. T)

Three synthetic datasets are generated by varying each parameter.

– For D, we set minSupp to 10% and we vary D between 250k and 400k (dataset
SYN1-4).

– For L, minSupp is set to 10% and L is varied between 8 and 15 (dataset
SYN5-8).

– For T , minSupp is set to 5% and T is varied between 3 and 10 (dataset
SYN9-12). Table 5 shows some statistics about the three synthetic datasets
generated.

– Lastly, dataset SYN13 was generated to evaluate the performance of the
algorithms with respect to the minSupp.

5.2 Categorization

Some of the 4-patterns found are presented in Table 7. We can observe that these
patterns are more instructive than those containing only labels since they also
contain the duration. To benefit from these resulting patterns and to analyze
them, we propose to categorize them. We notice that durations are not always
equivalent, they are different from an item to another in the same pattern (see
Table 7). We also notice a difference in the variation of the duration in the same
pattern. Based on these two observations, we decide to categorize the patterns

80 M. Kanaan et al.

Table 5. A summary of the synthetic datasets. E: Events. SE: Sequential events

Dataset |SE| |E| |Distinct E| Mean E in SE

SYN1 250k 7,630k 3,240 30

SYN2 300k 9,160k 3,240 30

SYN3 350k 10,680k 3,240 30

SYN4 400k 12,215k 3,240 30

SYN5 300k 7,080k 3,240 25

SYN6 300k 9,160k 3,240 30

SYN7 300k 12,200k 3,240 40

SYN8 300k 14,220k 3,240 50

SYN9 300k 9,160k 2,250 30

SYN10 300k 9,160k 4,350 30

SYN11 300k 9,160k 5,490 30

SYN12 300k 9,160k 6,140 30

SYN13 300k 9,160k 3,240 30

according to two properties: the standard deviation of durations called sd, and
the number of variations of durations called variation, such as:

sdp =

√∑lp
i=1(di − υ)2

lp
(2)

where lp is the length of pattern p, di is the duration of its ith item, and υ is
the mean of all durations in p,

variationp =
lp−1∑

i=1

(diff(flagi, f lagi+1)) (3)

where flagi is the flag of the ith item in p and diff(x, y) is equal to 0 if x is
equal to y and 1 otherwise.

To detect abnormal behaviors, we use two user-specified thresholds
maxV ariation and maxSD to filter them. In our tests, we set maxV ariation
to 10, maxSD to 2, and we keep only patterns with minimum of 4 items. Algo-
rithm 8 describes the main categorization steps and Table 6 shows some statistics
on the different categories detected.

Based on these categories, mining techniques could be applied1 to better
understand the customers’ behaviors. E.g., customers can be categorized based
on frequent pattern categories in their sessions, and then each customer’s profile
can be treated separately. Various customers’ demographic data could be com-
bined with the patterns categories to recommend more personalized websites.
1 These mining techniques are not addressed in our work because of the lack of public

data containing this information.

Temporal Pattern Mining for E-commerce Dataset 81

Table 6. Statistics on the resulting categories. var = i means variation is equal to i. A
sample file is used for AliBaba dataset

Dataset var = 0 var = 1 var = 2 var = 3 . . . Abnormal

CIKM 12,539 6,170 4,200 115 . . . 23

YooChoose 16,734 8,127 551 448 . . . 119

AliBaba 5,091 1,304 660 525 . . . 145

Table 7. Example of 4-patterns found

Label of product (duration in minutes)

9344+(3.17) → 9344−(4.5) → 3599+(1.99) → 14458(5)

3785+(0.69) → 32320+(2.8) → 8848+(4) → 35358(5)

4352300−(2.04) → 2790543+(0.17) → 5051027+(0.47) → 2859111(1.58)

4960783+(0.17) → 2081505+(0.15) → 2020265+(0.21) → 4614885(0.22)

5.3 Discriminatory Patterns

In this section, we evaluate the effectiveness of patterns with duration mined with
SEPM+. The goal in this experiment is to prove that by using the duration, we
can make the patterns more discriminating than those without duration. In this
experiment, we use SEPM+ and SEPM−2 to detect patterns with duration and
patterns without duration respectively.

Preparing the Patterns. We start by splitting the clickstream into two groups: the
first one containing users’ sessions with at least one purchase and the second one
those who do not contain any purchase. Then, by using SEPM+ and SEPM−, we
mine the patterns in each group. With each algorithm, we obtain patterns that
lead to a purchase called P+ and patterns that do not lead to a purchase called
P−. For the correct use of these patterns, the non-discriminatory patterns called
Pnon disc should be removed. Pnon disc are the patterns that exist in both P+
and P−. So, the goal is to prove that by using SEPM+, the non-discriminatory
patterns detected with SEPM− become discriminatory by adding the duration.

For example, given a pattern Pnon disc1 = {A,B} which exists in both P+
and P−, it is difficult to assume whether Pnon disc1 represents purchase behav-
iors or not, since patterns are represented by only labels (results of SEPM−).
Contrariwise, with our proposed algorithm SEPM+, the duration added to the
patterns will be used to separate the patterns that have the same sequence of
the label but not the same sequence of flags (see Fig. 2).

2 Any other classic sequential pattern mining algorithm (like SPADE, SPAM, etc.)
that can be used since they all have the same output/patterns.

82 M. Kanaan et al.

P+ P-

P+ P-

{A,B,C}

{A+(1), B+(1.5), C(2)} {A-(4), B-(3), C(1)}

SEPM-

SEPM+

Fig. 2. {A, B} is a non-discriminatory pattern in SEPM−, but it is not the case in
SEPM+ as the patterns are represented differently

Effectiveness. To measure the added duration in discrimination power, we start
by (1) removing all patterns that have only one item as they are not very rel-
evant in the analysis. Then (2) we detect patterns Pnon disc in SEPM− that
exist in both P+ and P− (see Fig. 2). Finally, (3) we will verify if Pnon disc

(found previously) exist in P+ or P− of SEPM+. By doing that, we check if the
non-discriminatory patterns rejected by SEPM− become discriminatory with
SEPM+.

Results. Table 8 shows the results of this experiment. As we can see, all non-
discriminatory patterns rejected by an algorithm without duration (during the
analysis phase) become discriminatory with SEPM+. It proves that we success-
fully transform non-discriminatory patterns into discriminatory ones by adding
the duration into the pattern representation.

Temporal Pattern Mining for E-commerce Dataset 83

Table 8. Effectiveness of the added duration, where effectiveness is the percentage
of non-discriminatory patterns rejected by SEPM− and kept by SEPM+

Algorithm used Parameters & results CIKM YooChoose AliBaba

SEPM+/SEPM− MinSupp 4 SE 4 SE 4 SE

SEPM+/SEPM− MinGap 1.5 min 1.5 min 1.5 min

SEPM+ NbPatterns(with purchase) 5k 93k 14k

SEPM+ NbPatterns(without purchase) 72k 209k 13k

SEPM− NbPatterns(with purchase) 5k 175k 22k

SEPM− NbPatterns(without purchase) 87k 282k 18k

SEPM+ Pnon disc (rejected) 8% 2% 1%

SEPM− Pnon disc 88% 31% 9%

Effectiveness 98% 97% 99%

Sample file (150k line)

5.4 Performances

In this section, we apply seven algorithms (SEPM, SPEM[−,+,++], PrefixS-
pan, SPAM, and SPADE) on synthetic datasets. The source codes of algorithms
(PrefixSpan, SPAM, and SPADE) are provided by [14]. Figures 3, 4, and 5
shows the time response of these algorithms according to some dimensions of
the dataset. In all test except the last one, 5 threads are used to run SEPM++.
Figure 6 shows the response time of these algorithms when minSupp varies and
Fig. 7 shows the response time of SEPM++ according to the number of threads

250 300 350 400

5

10

15

20

Database Size (in Thousand)

R
es
po

ns
e
T
im

e
(i
n
Se

co
nd

)

Database length (dataset SYN1-4) with minSupp=10%

SEPM
SEPM-
SEPM+
SEPM++
PrefixSpan

SPAM
SPADE

Fig. 3. The effect of varying the length of the database

84 M. Kanaan et al.

used. As we can see, in all cases, our proposed algorithms behave in the same
way as the other algorithms when properties of the database change. Results
show that our algorithms behave correctly according to the different types of
databases.

8 10 12 14

0

10

20

30

40

50

Average number of events per list

R
es
po

ns
e
T
im

e
(i
n
Se

co
nd

)

Number of events per list (dataset SYN5-8) with minSupp=10%

SEPM
SEPM-
SEPM+
SEPM++
PrefixSpan

SPAM
SPADE

Fig. 4. The effect of varying the number of events per list

4 6 8 10

5

10

15

20

25

Number of event labels

R
es
po

ns
e
T
im

e
(i
n
Se

co
nd

)

Label of events (dataset SYN9-12) with minSupp=5%

SEPM
SEPM-
SEPM+
SEPM++
PrefixSpan

SPAM
SPADE

Fig. 5. The effect of varying the number of event labels

Temporal Pattern Mining for E-commerce Dataset 85

1 1.5 2 2.5 3
0

20

40

60

80

100

120

minSupp (in %)

R
es
po

ns
e
T
im

e
(i
n
Se

co
nd

)

Minimum support (dataset SYN13)

SEPM
SEPM-
SEPM+
SEPM++
PrefixSpan

SPAM
SPADE

Fig. 6. Effect of varying the minSupp

1 2 3 4 5

150

200

250

300

nbThreads

R
es
po

ns
e
T
im

e
(i
n
Se

co
nd

)

Multithreading (dataset SYN13) with minSupp=0.5%

SEPM++

Fig. 7. Effect of varying the number of threads

6 Conclusion

E-sellers attempt to understand their customers’ behaviors and discover how
they navigate through their e-commerce website, why they select a particular
product, or even why they abandon their purchasing process. We believe that the

86 M. Kanaan et al.

duration taken by a customer to check a product on an e-commerce website is
crucial to understand its preferences and this duration can be used as a proxy of
the interest of the customer. Motivated by this idea, we have added this duration
to patterns, and we have proposed two algorithms to mine sequential patterns
including the average duration of their items.

We show that the resulting patterns are useful for discovering hidden rela-
tionships between products. We also categorized patterns to simplify their inter-
pretations and detect discriminatory behaviors. Experimental results on real
and synthetic datasets show the efficiency and the scalability of our proposed
algorithms.

A Appendix

Algorithm 3: Build all IDListExt
Input: Event List: db
Output: Set of IDListExt: ν

1 freqEvents ← all labels of frequent items
2 forall the el ∈ db do
3 antecedents ← ∅, EID ← 1
4 forall the e ∈ el.events do
5 if freqEvents contains e.label then
6 IDListExt ← ν.findOrCreateIDListExt(e.label)
7 IDListExt.add(el.SID, EID, e.duration)
8 add e.label to all IDListExt.INeighbor in antecedents
9 antecedents ← antecedents ∪ IDListExt

10 EID ← EID + 1

11 end

12 end

13 end
14 remove infrequent neighbors from all INeighbors

Algorithm 4: SEPM Main
Input: Set of IDListExt: ν
Input: User-specified threshold: minSupp

1 patterns ← build 1-pattern from ν
2 forall the p ∈ patterns do
3 <SEPM-/SEPM+>(p, minSupp, ν)
4 end

Temporal Pattern Mining for E-commerce Dataset 87

Algorithm 5: SEPM-
Input: Pattern: pattern
Input: User-specified threshold: minSupp
Input: Set of IDListExt: ν

1 save(pattern)
2 forall the neighbor ∈ pattern.INeighbors do
3 IDListExt ← pattern.IDListExt ∩ ν.find(neighbor).IDListExt
4 if IDListExt.|SID| ≥ minSupp then
5 newPattern ← createPattern(pattern, neighbor, IDListExt)
6 SEPM-(newPattern) // recursive call

7 end

8 end

Algorithm 6: SEPM+
Input: Pattern: pattern
Input: User-specified threshold: minSupp
Input: Set of IDListExt: ν

1 save(pattern)
2 forall the neighbor ∈ pattern.INeighbors do
3 IDListExt ← pattern.IDListExt ∩ ν.find(neighbor).IDListExt
4 if IDListExt.|SID| ≥ minSupp then
5 newPatterns ←

createPatternsWithDuration(pattern, neighbor, IDListExt)
6 forall the newPattern ∈ newPatterns do
7 SEPM+(newPattern) // recursive call

8 end

9 end

10 end

Algorithm 7: SEPM++
Input: User-specified threshold: minSupp
Input: Number of threads: nbThread
Input: Set of IDListExt: ν // of all frequent events

1 t pool ← create a pool of nbThread threads
2 1 patterns ← build all 1-pattern from ν
3 forall the pattern ∈ 1 patterns do
4 task ← create a task from pattern
5 pool.add task(task)

6 end
7 wait all thread pool
8 shutdonw all threads in pool

88 M. Kanaan et al.

Algorithm 8: Categorization
Input: Patterns: patterns
Input: User-specified threshold: maxSD
Input: User-specified threshold: maxV ariation

1 categories ← ∅
2 forall the pattern ∈ patterns do
3 pV ariation ← pattern.variation()
4 pSD ← pattern.sd()
5 index ← −1
6 if pV ariation < maxV ariation and pSD < maxSD then
7 index ← find category(npV ariation)
8 else
9 index ← 0 // First category is reserved to the abnormal

patterns

10 end
11 add pattern to categories[index]

12 end

References

1. Agrawal, R., Srikant, R.: Mining sequential patterns. In: ICDE, p. 3. IEEE (1995)
2. Alborzi, M., Khanbabaei, M.: Using data mining and neural networks techniques

to propose a new hybrid customer behaviour analysis and credit scoring model
in banking services based on a developed RFM analysis method. Int. J. Bus. Inf.
Syst. 23(1), 1–22 (2016)

3. Alibaba: (dataset) user behavior data from Taobao for recommendation (2018).
https://tianchi.aliyun.com/dataset/dataDetail?dataId=649

4. Allen, J.F.: Maintaining knowledge about temporal intervals. Commun. ACM 26,
832–843 (1983)

5. Alzahrani, M.Y., Mazarbhuiya, F.A.: Discovering sequential patterns from medical
datasets. In: 2016 International Conference on Computational Science and Com-
putational Intelligence (CSCI), pp. 70–74. IEEE (2016)

6. Ansari, A., Riasi, A.: Customer clustering using a combination of fuzzy c-means
and genetic algorithms. Int. J. Bus. Manage. 11(7), 59 (2016)

7. Ayres, J., Flannick, J., Gehrke, J., Yiu, T.: Sequential pattern mining using a
bitmap representation. In: Proceedings of the Eighth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 429–435. ACM (2002)

8. Ben-Shimon, D., Tsikinovsky, A., Friedmann, M., Shapira, B., Rokach, L., Hoerle,
J.: RecSys challenge 2015 and the YOOCHOOSE dataset. In Proceedings of the
9th ACM Conference on Recommender Systems, pp. 357–358. ACM (2015)

9. Chen, K.-Y., Jaysawal, B.P., Huang, J.-W., Wu, Y.-B.: Mining frequent time
interval-based event with duration patterns from temporal database. In: 2014 Inter-
national Conference on Data Science and Advanced Analytics (DSAA), pp. 548–
554. IEEE (2014)

10. CIKM: (dataset) CIKM CUP 2016 track 2: Personalized e-commerce search chal-
lenge (2016). https://competitions.codalab.org/competitions/11161

https://tianchi.aliyun.com/dataset/dataDetail?dataId=649
https://competitions.codalab.org/competitions/11161

Temporal Pattern Mining for E-commerce Dataset 89

11. Dursun, A., Caber, M.: Using data mining techniques for profiling profitable hotel
customers: an application of RFM analysis. Tour. Manage. Perspect. 18, 153–160
(2016)

12. Fournier-Viger, P., Gomariz, A., Campos, M., Thomas, R.: Fast vertical min-
ing of sequential patterns using co-occurrence information. In: Tseng, V.S., Ho,
T.B., Zhou, Z.-H., Chen, A.L.P., Kao, H.-Y. (eds.) PAKDD 2014. LNCS (LNAI),
vol. 8443, pp. 40–52. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
06608-0 4

13. Fournier-Viger, P., Wu, C.-W., Gomariz, A., Tseng, V.S.: VMSP: efficient vertical
mining of maximal sequential patterns. In: Sokolova, M., van Beek, P. (eds.) AI
2014. LNCS (LNAI), vol. 8436, pp. 83–94. Springer, Cham (2014). https://doi.org/
10.1007/978-3-319-06483-3 8

14. Fournier-Viger, P., et al.: The SPMF open-source data mining library version 2.
In: Berendt, B., et al. (eds.) ECML PKDD 2016. LNCS (LNAI), vol. 9853, pp.
36–40. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46131-1 8

15. Fournier-Viger, P., Lin, C.-W., Kiran, R.U., Koh, Y.S., Thomas, R.: A survey of
sequential pattern mining. Data Sci. Pattern Recogn. 1(1), 54–77 (2017)

16. Garćıa-Hernández, R.A., Mart́ınez-Trinidad, J.F., Carrasco-Ochoa, J.A.: A new
algorithm for fast discovery of maximal sequential patterns in a document collec-
tion. In: Gelbukh, A. (ed.) CICLing 2006. LNCS, vol. 3878, pp. 514–523. Springer,
Heidelberg (2006). https://doi.org/10.1007/11671299 53

17. Gomariz, A., Campos, M., Marin, R., Goethals, B.: ClaSP: an efficient algorithm
for mining frequent closed sequences. In: Pei, J., Tseng, V.S., Cao, L., Motoda,
H., Xu, G. (eds.) PAKDD 2013. LNCS (LNAI), vol. 7818, pp. 50–61. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-37453-1 5

18. Huaulmé, A., Voros, S., Riffaud, L., Forestier, G., Moreau-Gaudry, A., Jannin, P.:
Distinguishing surgical behavior by sequential pattern discovery. J. Biomed. Inf.
67, 34–41 (2017)

19. Jagan, S., Rajagopalan, S.P.: A survey on web personalization of web usage mining.
Int. Res. J. Eng. Technol. 2(1), 6–12 (2015)

20. Jia, R., Li, R., Yu, M., Wang, S.: E-commerce purchase prediction approach by
user behavior data. In: 2017 International Conference on Computer, Information
and Telecommunication Systems (CITS), pp. 1–5. IEEE (2017)

21. Kanaan, M., Kheddouci, H.: Mining patterns with durations from e-commerce
dataset. In: Aiello, L.M., Cherifi, C., Cherifi, H., Lambiotte, R., Lió, P., Rocha,
L.M. (eds.) COMPLEX NETWORKS 2018. SCI, vol. 812, pp. 603–615. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-05411-3 49

22. Kontostathis, A., Galitsky, L.M., Pottenger, W.M., Roy, S., Phelps, D.J.: A survey
of emerging trend detection in textual data mining. In: Berry, M.W. (eds.) Survey
of Text Mining, pp. 185–224. Springer, New York (2004). https://doi.org/10.1007/
978-1-4757-4305-0 9

23. Liao, V.C.-C., Chen, M.-S.: DFSP: a Depth-First SPelling algorithm for sequential
pattern mining of biological sequences. Knowl. Inf. Syst. 38(3), 623–639 (2013).
https://doi.org/10.1007/s10115-012-0602-x

24. Lin, N.P., Hao, W.-H., Chen, H.-J., Chueh, H.-E., Chang, C.-I., et al.: Fast mining
of closed sequential patterns. WSEAS Trans. Comput. 7(3), 1–7 (2008)

25. Mabroukeh, N.R., Ezeife, C.I.: A taxonomy of sequential pattern mining algo-
rithms. ACM Comput. Surv. (CSUR) 43(1), 3 (2010)

26. Mart́ınez, A., Schmuck, C., Pereverzyev Jr., S., Pirker, C., Haltmeier, M.:
A machine learning framework for customer purchase prediction in the non-
contractual setting. Eur. J. Oper. Res. 281(3), 588–596 (2018)

https://doi.org/10.1007/978-3-319-06608-0_4
https://doi.org/10.1007/978-3-319-06608-0_4
https://doi.org/10.1007/978-3-319-06483-3_8
https://doi.org/10.1007/978-3-319-06483-3_8
https://doi.org/10.1007/978-3-319-46131-1_8
https://doi.org/10.1007/11671299_53
https://doi.org/10.1007/978-3-642-37453-1_5
https://doi.org/10.1007/978-3-030-05411-3_49
https://doi.org/10.1007/978-1-4757-4305-0_9
https://doi.org/10.1007/978-1-4757-4305-0_9
https://doi.org/10.1007/s10115-012-0602-x

90 M. Kanaan et al.

27. Mobasher, B., Dai, H., Luo, T., Nakagawa, M.: Using sequential and non-sequential
patterns in predictive web usage mining tasks. In: 2002 IEEE International Con-
ference on Data Mining. Proceedings, pp. 669–672. IEEE (2002)

28. Najafabadi, M.K., Mahrin, M.N.R., Chuprat, S., Sarkan, H.M.: Improving the
accuracy of collaborative filtering recommendations using clustering and associa-
tion rules mining on implicit data. Comput. Hum. Behav. 67, 113–128 (2017)

29. Neysiani, B.S., Soltani, N., Mofidi, R., Nadimi-Shahraki, M.H.: Improve perfor-
mance of association rule-based collaborative filtering recommendation systems
using genetic algorithm. Int. J. Inf. Technol. Comput. Sci. 2, 48–55 (2019)

30. Patel, D., Hsu, W., Lee, M.L.: Mining relationships among interval-based events for
classification. In: Proceedings of the 2008 ACM SIGMOD International Conference
on Management of Data, pp. 393–404. ACM (2008)

31. Patil, S.S., Khandagale, H.P.: Survey paper on enhancing web navigation usability
using web usage mining techniques. Int. J. Mod. Trends Eng. Res. (IJMTER)
3(02), 594–599 (2016)

32. Pei, J., et al.: Mining sequential patterns by pattern-growth: the PrefixSpan app-
roach. IEEE Trans. Knowl. Data Eng. 16(11), 1424–1440 (2004)

33. Srikant, R., Agrawal, R.: Mining sequential patterns: generalizations and perfor-
mance improvements. In: Apers, P., Bouzeghoub, M., Gardarin, G. (eds.) EDBT
1996. LNCS, vol. 1057, pp. 1–17. Springer, Heidelberg (1996). https://doi.org/10.
1007/BFb0014140

34. Srivastava, J., Cooley, R., Deshpande, M., Tan, P.-N.: Web usage mining: discov-
ery and applications of usage patterns from web data. ACM SIGKDD Explor.
Newslett. 1(2), 12–23 (2000)

35. Tóth, K., Kósa, I., Vathy-Fogarassy, Á.: Frequent treatment sequence mining from
medical databases. Stud. Health Technol. Inf. 236, 211–218 (2017)

36. Wang, K., Xu, Y., Yu, J.X.: Scalable sequential pattern mining for biological
sequences. In Proceedings of the Thirteenth ACM International Conference on
Information and Knowledge Management, pp. 178–187. ACM (2004)

37. Wu, Y., Ester, M.: FLAME: a probabilistic model combining aspect based opinion
mining and collaborative filtering. In: Proceedings of the Eighth ACM International
Conference on Web Search and Data Mining, pp. 199–208. ACM (2015)

38. Yates, A., Kolcz, A., Goharian, N., Frieder, O.: Effects of sampling on Twitter
trend detection. In: Proceedings of the Tenth International Conference on Lan-
guage Resources and Evaluation, LREC 2016, pp. 2998–3005 (2016)

39. Zaki, M.J.: SPADE: an efficient algorithm for mining frequent sequences. Machine
learning 42(1–2), 31–60 (2001). https://doi.org/10.1023/A:1007652502315

40. Zaman, T.S., Islam, N., Ahmed, C.F., Jeong, B.S.: iWAP: a single pass approach
for web access sequential pattern mining. GSTF J. Comput. (JoC) 2(1), 1–6 (2018)

41. Zeng, M., Cao, H., Chen, M., Li, Y.: User behaviour modeling, recommendations,
and purchase prediction during shopping festivals. Electron. Markets 29(2), 263–
274 (2018). https://doi.org/10.1007/s12525-018-0311-8

42. Zignani, M., Quadri, C., Del Vicario, M., Gaito, S., Rossi, G.P.: Temporal com-
munication motifs in mobile cohesive groups. In: Cherifi, C., Cherifi, H., Karsai,
M., Musolesi, M. (eds.) COMPLEX NETWORKS 2017 2017. SCI, vol. 689, pp.
490–501. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-72150-7 40

https://doi.org/10.1007/BFb0014140
https://doi.org/10.1007/BFb0014140
https://doi.org/10.1023/A:1007652502315
https://doi.org/10.1007/s12525-018-0311-8
https://doi.org/10.1007/978-3-319-72150-7_40

Scalable Schema Discovery for RDF Data

Redouane Bouhamoum(B), Zoubida Kedad, and Stéphane Lopes

DAVID lab., University of Versailles Saint-Quentin-en-Yvelines, Versailles, France
{redouane.bouhamoum,zoubida.kedad,stephane.lopes}@uvsq.fr

Abstract. The semantic web provides access to an increasing number
of linked datasets expressed in RDF. One feature of these datasets is that
they are not constrained by a schema. Such schema could be very useful
as it helps users understand the structure of the entities and can ease
the exploitation of the dataset. Several works have proposed clustering-
based schema discovery approaches which provide good quality schema,
but their ability to process very large RDF datasets is still a challenge.
In this work, we address the problem of automatic schema discovery,
focusing on scalability issues. We introduce an approach, relying on a
scalable density-based clustering algorithm, which provides the classes
composing the schema of a large dataset. We propose a novel distribution
method which splits the initial dataset into subsets, and we provide a
scalable design of our algorithm to process these subsets efficiently in
parallel. We present a thorough experimental evaluation showing the
effectiveness of our proposal.

Keywords: Schema discovery · RDF Data · Clustering · Big Data

1 Introduction

The web of data represents a huge information space consisting of an increasing
number of interlinked datasets described using languages proposed by the W3C
such as RDF, RDFS and OWL. The Resource Description Framework (RDF)1

is a standard model for data creation and publication on the web, while RDF
Schema (RDFS)2 was introduced to define a vocabulary which can be used to
describe an RDF dataset. The Ontology Web Language (OWL)3 is designed to
represent rich and complex knowledge related to an RDF dataset. OWL docu-
ments are known as ontologies.

One important feature of such datasets is that they contain both the data
and the schema describing the data. A good practice for the dataset publisher
is to provide schema related declarations, such as the VoID’s predicates4, which
capture various metadata describing a source. These declarations help the users

1 RDF: https://www.w3.org/RDF/.
2 RDFS: https://www.w3.org/TR/rdf-schema/.
3 OWL: https://www.w3.org/OWL/.
4 VoID: The Vocabulary of Interlinked Datasets.

c© Springer-Verlag GmbH Germany, part of Springer Nature 2020
A. Hameurlain and A M. Tjoa (Eds.): TLDKS XLVI, LNCS 12410, pp. 91–120, 2020.
https://doi.org/10.1007/978-3-662-62386-2_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-62386-2_4&domain=pdf
https://www.w3.org/RDF/
https://www.w3.org/TR/rdf-schema/
https://www.w3.org/OWL/
http://vocab.deri.ie/void/
https://doi.org/10.1007/978-3-662-62386-2_4

92 R. Bouhamoum et al.

understand the nature of the entities within an RDF dataset. However, these
schema-related declarations are not mandatory, and they are not always pro-
vided. As a consequence, the schema may be incomplete or missing. Further-
more, even if the schema is provided, data are not constrained by this schema:
resources of the same type may be described by property sets which are different
from those specified in the schema.

The lack of schema offers a high flexibility while creating interlinked datasets,
but can also limit their use. Indeed, it is not easy to query or explore a dataset
without any knowledge about its resources, classes or properties. The exploitation
of an RDF dataset would be straightforward with a schema describing the data.
In the context of web data, a schema is viewed as a guide easing the exploitation
of the RDF dataset, and not as a structural constraint over the data.

Several works have focused on schema discovery for RDF datasets. Some of
these works rely on clustering algorithms to automatically extract the under-
lying schema of an RDF dataset [9,17,18]. These approaches explore instance-
level data in order to infer a schema providing the classes and properties which
describe the instances in the dataset. While these schema discovery approaches
succeed in providing a good quality schema, their scalability is still an open
issue as they rely on costly clustering algorithms. The use of such algorithms for
discovering the underlying schema of massive datasets remains challenging due
to their complexity.

In our work, we have addressed this scalability issue. Our goal is to propose
a schema discovery approach suitable for very large datasets. To this end, we
introduce in this paper a scalable density-based clustering algorithm specifically
designed for schema discovery in large RDF datasets. Our approach parallelizes
the clustering process and ensures that the result is the same as the one provided
by a sequential algorithm. The main contributions presented in this paper are
the followings:

– A novel distribution method dividing the initial dataset into subsets which can
be processed efficiently in parallel, as well as an optimization of this method
which limits the size of the subsets, thus limiting the number of comparisons
among entities during the clustering.

– A parallel clustering algorithm suitable for a distributed environment which
limits the costly information exchange operations between the calculating
nodes.

– A scalable implementation of our algorithm based on the distributed process-
ing framework Apache Spark[29], with the source code available online5.

– A thorough experimental evaluation illustrating both the quality of the dis-
covered classes and the performances of our approach.

This paper is organized as follows. The motivation behind our proposal is
presented in Sect. 2. A global overview of our approach is provided in Sect. 3.
Data distribution is detailed in Sect. 4, and neighbor identification is described
in Sect. 5. Section 6 presents the local clustering process and Sect. 7 describes the
5 https://github.com/BOUHAMOUM/SC-DBSCAN.

https://github.com/BOUHAMOUM/SC-DBSCAN

Scalable Schema Discovery for RDF Data 93

merging stage which produces the final clustering result. Experimental results
are presented in Sect. 8. Section 9 discusses the existing approaches for schema
discovery. Finally, Sect. 10 concludes the paper and presents our future works.

2 Motivation

In the web of data, datasets are created using the languages proposed by the
W3C such as the RDF language. They include both the data and the schema
describing them. However, this latter is a description of the entities in the
dataset, but not a constraint on their properties. The schema can be defined
partially, or even missing. Besides, the entities of a given class are not con-
strained by the structure of their class. Indeed, an entity belonging to a given
class does not necessarily have all the properties defined for this class, and can
even have some properties which are not defined in this class. Furthermore, two
entities belonging to the same class do not necessarily have the same properties.

The nature of the RDF language offers a high flexibility when creating
datasets. However, it makes the exploitation of these datasets difficult, as it
is not obvious to understand their content.

Schema discovery approaches aim at providing a schema describing an RDF
dataset, which can be useful for various data processing and data management
tasks. Examples of such tasks are the followings:

Providing Applications with a Global View of an RDF Dataset. The
discovered schema provides a summary of the classes corresponding to the enti-
ties in the dataset. This overview can be used to understand the content of an
RDF dataset and to assess its fitness for the specific information requirements
of a given application.

Interlinking RDF Datasets. One key feature of RDF datasets is that they
include links to other datasets, which enables the navigation in the web of data.
These links are represented by owl:sameAs6 properties, and their determina-
tion is known as interlinking. Some tools have been proposed to perform this
task, such as Knofuss7 or Silk8, which were used to link Yago [21] to DBpe-
dia [3]. These tools require type and property information about the datasets
in order to generate the appropriate owl:sameAs links between them. The dis-
covered schema provides this information and could therefore be very useful for
interlinking datasets.

Querying RDF Datasets. The lack of information about the classes, proper-
ties and resources contained in RDF datasets makes their interrogation difficult.
Indeed, this information is required in order to formulate a query in the lan-
guages used for querying RDF datasets such as Sparql [30]. A schema describing
the underlying structure of the data provides this information and such schema

6 sameAs: https://www.w3.org/2001/sw/wiki/SameAs.
7 Knofuss: https://technologies.kmi.open.ac.uk/knofuss.
8 Silk: http://silkframework.org/.

https://www.w3.org/2001/sw/wiki/SameAs
https://technologies.kmi.open.ac.uk/knofuss
http://silkframework.org/

94 R. Bouhamoum et al.

would considerably ease query formulation. It could even be used to develop
tools that assist user while formulating the queries, such as the one proposed
in [8]. In addition, providing a schema describing a dataset allows the creation
of an index over the entities to accelerate query answering. The schema could
also enable the selection of the relevant sources while executing a query over a
distributed dataset.

The above tasks are examples among many others to illustrate the usefulness
of a schema describing an RDF dataset, and to show why schema discovery and
understanding data have been identified as key challenges in data management [1].

3 Overview of the Approach

Our scalable schema discovery approach aims to extract a schema that captures
the structure of the entities contained in a large RDF dataset, which cannot
be managed by the existing approaches due to their complexity. The approach
consists in extracting the implicit classes of the entities as well as the properties
describing these classes.

In this section, we present some preliminary definitions used throughout the
paper and we introduce the general principle of our proposal.

An RDF dataset D is a set of RDF(S)/OWL triples D ⊆ (R ∪ B) × P ×
(R∪B ∪L), where R, B, P and L represent resources, blank nodes (anonymous
resources), properties and literals respectively. A dataset can be seen as a graph
where vertices represent resources, blank nodes and literals, and where edges
represent properties.

Example 1. Figure 1 presents an example of RDF dataset. The vertices repre-
sented as ovals are the resources, the ones represented as rectangles are literals.
Each edge represents a property, and its label corresponds to the property name.
For example, the resource e1 is described by the following triples:

〈e1, id, 01〉
〈e1, name,Ester〉
〈e1, authorOf, e5〉

In the sequel, for the sake of brevity, the properties name, id, publish, gender,
title, conference, year, rank will be respectively replaced by p1, p2, p3, . . . , p8.

In such a dataset, an entity e is either a resource or a blank node, that is,
e ∈ R ∪ B. We introduce a function denoted by which returns the properties
of an entity. It is defined as follows:

: R ∪ B → P
e �→ {p ∈ P | 〈e, p, o〉 ∈ D}

Example 2. The entities e1, e2, . . . , e7 extracted from the example of Fig. 1 are
described as follows:
e1 = {p1, p2, p3}, e2 = {p1, p2, p3, p4}, e3 = {p2, p3, p4}, e4 = {p2, p5, p6, p7},
e5 = {p2, p5, p6}, e6 = {p1, p2, p5, p8}, e7 = {p2, p5, p7}.

Scalable Schema Discovery for RDF Data 95

Fig. 1. An example of RDF dataset describing authors, publications and conferences

Similarly to the concept of class in data modeling, a class in an RDF dataset
represents a set of individuals sharing some properties. The aim of our approach
is to discover the implicit schema by grouping entities having similar structures,
i.e. entities described by similar properties. The resulting groups represent the
classes of the implicit schema describing the dataset.

Definition 1. A schema S describing a dataset D is composed of a set of classes
{C1, . . . , Cn}, where each Ci is described by a set of properties {pi

1, . . . , p
i
m}.

The similarity between entities could be evaluated using any index that mea-
sures the similarity between finite sets such as Sørensen-Dice index [12], Overlap
indexes [2] and Jaccard Index [16]. In our context, the properties describing the
entities represent the finite sets. Two entities are similar if they share a number
of properties which is equal to or higher than a given threshold. In our work, we
evaluate the similarity between two entities ei and ej using the Jaccard index,
which is defined as the size of the intersection of the property sets divided by
the size of their union [16]:

J(ei, ej) =
|ei ∩ ej |
|ei ∪ ej |

96 R. Bouhamoum et al.

The similarity value is comprised between 0 and 1. Two entities ei and ej

are similar if J(ei, ej) ≥ ε, where ε is a given similarity threshold. The Jaccard
index has been used in several schema discovery approaches [9,17,18], leading
to a good quality schema.

Having defined the concepts used in our paper, we now introduce an overview
of our proposal. We designed a distributed density-based clustering algorithm
implemented using a big data technology which efficiently manages large RDF
datasets. The parallel execution of a density-based clustering algorithm is not
straightforward and raises several issues:

– how to distribute the data over several computing nodes when the size of the
dataset makes the clustering impossible on a single node?

– how to form the clusters from the distributed dataset? And how to limit
the information exchanged between the computing nodes during this process,
given that the neighbors of the entities are distributed?

– how to ensure that the parallel clustering algorithm provides the same result
as a sequential one?

To address these issues, the initial dataset is split into subsets in order to
enable the parallel clustering of the entities. The clustering is performed on each
subsets, and local clusters are created. These latter are then merged to provide
the final result. Despite its distributed design, our algorithm provides the same
clustering result as the sequential DBSCAN algorithm [10]. The final clusters
represent the classes of the schema describing the considered dataset.

Figure 2 gives an overview of our approach, focusing on the parallelization
of the processes and the communications among the computing nodes.

Fig. 2. Overview of our schema discovery approach

In the data distribution phase, chunks of entities are created according to
the properties describing the data. Each chunk contains entities sharing some
common properties; these entities are therefore likely to be similar. Our distri-
bution method ensures that all the similar entities are grouped together in at
least one chunk, such that two similar entities will be compared at least once.
This way, all the relevant comparisons will be performed during the clustering
of the chunks.

Scalable Schema Discovery for RDF Data 97

Once the chunks are created, the neighborhood of the entities is identified
within each chunk. Then for each entity, the lists of its neighbors, which could
be distributed over several chunks, are consolidated into one list by exchanging
information between the computing nodes. During this stage, entities having
dense neighborhoods, called core entities, are identified.

Based on the entities having a dense neighborhood, the local clusters are
built in each chunk according to the density principle. To create a local cluster,
we start with an arbitrary entity having a dense neighborhood and we retrieve
all its similar entities. Then, their neighbors which have dense neighborhoods
are retrieved and recursively added to the local cluster.

Finally, the clusters which have elements distributed over several chunks and
belonging to distinct local clusters are built. These local clusters are merged to
form the final clusters. Two clusters are merged if they share a core entity.

To achieve good performances, our proposal is implemented using Spark, an
open source distributed computing framework with (mostly) in-memory data
processing engine suitable for processing large datasets [29]. As it is always the
case of distributed computing frameworks, the operations that need communi-
cations between nodes are costly. Some operations within Spark trigger an event
known as a shuffle. The shuffle is Spark’s mechanism for re-distributing data.
It involves copying data across executors and machines, making it a complex
and costly operation. As explained above, we have proposed a novel distribution
method which both reduces communications between nodes and minimizes the
need of Spark’s shuffle operations.

The concepts and algorithms of our scalable schema discovery approach are
detailed in the following sections.

4 Distributing Data over Computing Nodes

The distribution of data plays an important role in the parallelization of our
algorithm. The initial dataset is first divided into chunks which could be clustered
in parallel by the computing nodes. Our novel distribution principle ensures
that there is no overhead communication between the computing processes, and
that clustering a chunk does not require any data located in other chunks. As
a consequence, we ensure that there are no useless data transfers between the
computing nodes. The distribution method must ensure that enough information
is provided to merge the clusters that span across several chunks; in our proposal,
the replicated entities are used to perform the merging.

In this section, we first show how to split the initial dataset into chunks while
meeting the above requirements. As the initial data distribution may create
chunks having a size which exceeds the capacity of a calculating node, we then
explain how to further decompose such large chunks.

4.1 Initial Distribution

The intuition behind our proposal is to group all similar entities sharing some
common properties into chunks. Indeed, according to the similarity index, two

98 R. Bouhamoum et al.

entities are similar if they share a number of properties higher than a given
threshold. Entities that could be similar are grouped together in at least one
chunk, and will be compared during the computation of their neighborhood.
Comparisons of entities inside each chunk will be performed later. If two given
entities are not grouped together in any of the resulting chunks, this means that
they are not similar.

A chunk of data is defined as follows:

Definition 2. A chunk for a set of properties P ⊆ P denoted by [P] is a subset
of entities having the properties of P in their description: e ∈ [P] =⇒ P ⊆ e

Entities have to be distributed across several chunks to be efficiently clus-
tered. We first describe a naive assignment of entities to chunks in order to give
the idea behind the distribution principle. Then, an optimization is detailed.

The naive approach consists in assigning the entities according to all the
properties describing them. An entity e described by the properties e =
{p1, p2, . . . , pn} will be assigned to the chunks [p1], [p2], . . . , [pn]. In other words,
e is grouped with all the entities that share at least one property with e.

Definition 3. With the Naive Assignment, each entity is assigned to the chunks
for each of its properties:

∀e,∀p ∈ e, e is assigned to [p].

Proposition 1. (Naive Assignment Soundness). With the Naive Assignment,
two similar entities will be grouped into at least one common chunk, i.e. all
required comparisons will be performed at least once.

Proof. According to our similarity index, two similar entities must have at least
one property in common. Using the Naive Assignment, they will be assigned to
at least one common chunk.

The Naive Assignment suffers from an important drawback. Two similar
entities could be grouped redundantly many times. For example, the entities
e1 = {p1, p2, p3} and e2 = {p1, p2, p3, p4} will be both assigned to the chunks
[p1], [p2], [p3] and consequently, they will be compared three times.

In our approach, we do not consider all the properties while assigning the
entities to the chunks to limit the number of duplications and reduce the cost
of the comparison process. To this end, we introduce the notion of dissimilarity
threshold, which represents the number of properties to consider in order to
decide whether this entity could be similar to any other one. The assignment
is defined in two steps. Firstly, we calculate for each entity its dissimilarity
threshold, which allows to choose the number of chunks an entity has to be
assigned to. Secondly, we assume that a total order relation is defined on the
properties; the chunks to which the entities are assigned are chosen according to
this order.

For example, let us consider e2 = {p1, p2, p3, p4} and ε = 0.7. If e2 differs
from any other entity by more than two properties, the other entity can not be

Scalable Schema Discovery for RDF Data 99

similar to e2. For instance, an entity e′ = {p3, p4, p5} will not be similar to e2
because e2 \ e′ = {p1, p2} has two elements. We will show that it is sufficient
to assign e2 to the chunks [p1] and [p2] to ensure that all its similar entities are
within these chunks. The entities which are not assigned to these chunks can not
be similar to e2.

However, properties can not be selected randomly, otherwise, this will pre-
vent similar entities to be grouped in the same chunks and compared later. For
example, let us consider the similar entities e2 and e3 where e2 = {p1, p2, p3, p4}
and e3 = {p2, p3, p4}. Assuming that the similarity threshold is ε = 0.7, and
considering the dissimilarity threshold, the entity e2 can be assigned to [p1], [p2]
and e3 only to [p3]. e2 and e3 are not grouped in a chunk even though they are
similar. We can see that randomly assigning these entities does not guarantee
that they are compared even if they are similar. This problem can be solved by
defining a total order on the properties and selecting the properties according to
this order. By assigning the entities according to an order in this example, the
entity e3 would be assigned to [p2] instead of [p3]. Therefore, e2 and e3 would
be grouped in the chunk [p2] and compared during the computation of their
neighborhood.

We will now formalize these intuitions. Let us introduce a proposition, which
expresses that if the properties of two entities differ to a certain extent, these
entities can not be similar.

Proposition 2. Let e1 and e2 be two entities. If |e1 \ e2| ≥ |e1| − ε × |e1|� + 1
then e1 and e2 can not be similar.

Proof. Suppose that |e1\e2| ≥ |e1|−ε×|e1|�+1. We have |e1\e2| = |e1|−|e1∩e2|.
Thus, |e1| − |e1 ∩ e2| ≥ |e1| − ε × |e1|� + 1. By eliminating |e1| on both sides,
we obtain |e1 ∩ e2| ≤ ε × |e1|� − 1 which implies that |e1 ∩ e2| < ε × |e1|�.
According to the definition of the Jaccard similarity index, this formula implies
that e1 and e2 can not be similar.

We now define the notion of dissimilarity threshold for an entity e. Note
that the dissimilarity threshold as defined in our work is based on the Jaccard
similarity index. Using another index would require to propose another definition
of this threshold based on this index.

Definition 4. The dissimilarity threshold for an entity e is the number dt(e) =
|e| − ε × |e|� + 1.

The following definition presents the optimized assignment.

Definition 5. Let <P be a total order on the properties describing a dataset,
and let e be an entity with e = {p1, p2, . . . , pn} and pi <P pi+1 for 1 ≤ i < n.
With the optimized assignment, an entity e is assigned to the chunks [p1], [p2],
. . . , [pdt(e)]. We denote by ch(e) the set of properties {p1, p2, . . . , pdt(e)}.
Proposition 3. With the optimized assignment, all the comparisons required
for the clustering will be performed at least once.

100 R. Bouhamoum et al.

Proof. We have to show that if two entities are similar, they are both assigned
to at least one common chunk. Let e1 and e2 be two similar entities. We have
|e1 ∩ e2| ÷ |e1 ∪ e2| ≥ ε. Thus, |e1 ∩ e2| ≥ ε × |e1 ∪ e2| which implies that
|e1 ∩ e2| ≥ ε× |e1|� and |e1 ∩ e2| ≥ ε× |e2|�. This implies that |e1| − |e1 ∩ e2| ≤
|e1|−ε×|e1|�. As |e1 \e2| = |e1|− |e1 ∩e2|, we obtain |e1 \e2| ≤ |e1|−ε×|e1|�.
As |ch(e1)| = dt(e1) > |e1| − ε × |e1|�, we have ch(e1) ∩ e2 �= ∅.

We can show likewise that ch(e2) ∩ e1 �= ∅. Consequently, ch(e1) and ch(e2)
contain both an element of e1 ∩ e2.

If there is a total order on the set of properties, we can choose the infimum
of e1 ∩ e2 for ch(e1) and ch(e2). In this case, ch(e1) ∩ ch(e2) �= ∅. This means
that at least one chunk will contain both e1 and e2.

In our work, we propose to order the properties according to their selectivity.
The selectivity of a property is one minus the ratio of the number of entities
described by this property, over the total number of entities. A high selectivity
means that few entities are described by the property. In our approach, the
properties are ordered from the most to the least selective. This will lead to
chunks that are less dense. More meaningless comparisons will then be skipped
and the clustering of each chunk will be more efficient.

Example 3. Let us consider a dataset D described by the set of properties P =
{pi | i ∈ [1, 8]} and containing the set of entities {ei | i ∈ [1, 7]} where each
entity is described by:
e1 = {p1, p2, p3}, e2 = {p1, p2, p3, p4}, e3 = {p2, p3, p4}, e4 = {p2, p5, p6, p7},
e5 = {p2, p5, p6}, e6 = {p1, p2, p5, p8}, e7 = {p2, p5, p7}.

In our example, the similarity threshold is set to ε = 0.7. With respect to
their selectivity, the order on the properties is p8 <P p4 <P p6 <P p7 <P p1 <P
p3 <P p5 <P p2. Distributing the entities over the chunks with the optimized
assignment provides the result presented in Fig. 3.

Fig. 3. Distributing the dataset D over data chunks

For example, the dissimilarity index of the entity e2 is equal to dt(e2) =
4−0.7× 4�+1 = 2. The two most selective properties describing e2 are p1 and

Scalable Schema Discovery for RDF Data 101

p4, e2 is therefore assigned to [p1] and [p4]. This assignment ensures that e2 is
grouped with each of its neighbors at least once, and therefore will be compared
to each of them at least once (e2 is grouped with its neighbors e1 and e3 in
chunks [p1] and [p4] respectively).

Both the empty chunks and the ones containing a single entity such as [p2]
and [p8] are deleted.

Algorithm 1 formalizes the data distribution stage. It requires the similarity
threshold ε, used to compute the dissimilarity threshold, and to define the chunks
ch(e) for each entity e.

Algorithm 1. Distributing Entities
Input: the dataset D, the similarity threshold ε
1: for all entity e in D do in parallel
2: for all property p in ch(e) do
3: [p] = [p] ∪ {e}
4: end for
5: end for
6: Merge the chunks generated by the parallel execution for the same properties
7: return the chunks

The computation of the assignment of each entity (line 1–5) is performed in
parallel on the computing nodes. The partial chunks are then merged to obtain
the final chunks.

The distribution process may result in some chunks which are too large to
be clustered by a single node. This will require a further partitioning, described
in the following section.

4.2 Managing Big Chunks

Since a chunk [p] contains a set of entities described by the property p, the
number of entities within [p] could exceed the computing capacity of a single
node which prevents the execution of the clustering. In that case, each large
chunk [p] is further divided according to other properties.

We introduce the capacity parameter which determines whether a chunk is
exceeding the computing capacity of a single node.

In the case of a large chunk [p] that contains a number of entities higher
than capacity, the algorithm creates sub-chunks for each property describing
the entities within [p] except p, then assigns each entity in [p] to a sub-chunk if
it is described by the property used to generate the sub-chunk:

∀e ∈ [p],∀pi ∈ e, [{p, pi}] = [{p, pi}] ∪ {e}
Recursively, the size of all the resulting chunks is evaluated and those exceed-

ing the capacity of a node are divided until all the chunks have a number of
entities lower than the computation capacity of a single node.

102 R. Bouhamoum et al.

At the end of this process, chunks of the initial dataset are created, all of
them having a number of entities that could be efficiently clustered by a single
node. The distribution of entities over chunks does not require any information
sharing between the nodes.

Example 4. For example, if the capacity of a node is 3 and if we consider the
chunk [p2] = {e1, e2, e3, e4, e5} of the previous example, its size is greater than the
capacity. [p2] will be further divided into sub-chunks, for example [p2, p1] = {e2}
and [p2, p3] = {e1, e2}.

Algorithm 2 evaluates the size of each chunk and divides those exceeding the
capacity. This method is applied recursively until the size of all the chunks is
lower than the capacity parameter.

Algorithm 2. Splitting Big Chunks
Input: chs: the chunks, cap: the capacity of computing nodes
1: for all [P] ∈ chs | |[P]| > cap do in parallel
2: for all e ∈ [P] do
3: for all pi ∈ e \ P do
4: [P ∪ {pi}] = [P ∪ {pi}] ∪ {e}
5: end for
6: end for
7: end for
8: Merge the chunks generated by the parallel execution for the same properties
9: return the chunks

Once the chunks have been generated, the computation of the entities neigh-
borhoods will be performed on each of them. This process is described in the
following section.

5 Core Identification

In a clustering algorithm, data points which are close to each other are grouped
together. Our approach is density-based and the notion of “closeness” is related
to the one of density of an entity’s neighborhood. In order to form a cluster from
a given entity, the neighborhood of this entity has to contain a sufficient number
of points; in other words, the density of its neighborhood has to exceed a given
density threshold. This section describes the identification of entities having a
dense neighborhood.

Let us first recall some definitions used by the DBSCAN algorithm [10].

Definition 6. The ε-neighborhood of an entity e is the set of entities which are
similar to e with a threshold of ε.

neighborhoodε(e) = {ei ∈ D | J(e, ei) ≥ ε}

Scalable Schema Discovery for RDF Data 103

According to the ε-neighborhood of the entities, three kinds of points are
distinguished: core entities with at least minPts entities in their ε-neighborhood,
border entities, which are not core entities but have at least one core entity in
their ε-neighborhood, and noise entities which have no core entity in their ε-
neighborhood. Noise points are not assigned to a cluster.

Definition 7. An entity e is a core entity if the number of entities within its
ε-neighborhood is greater than the density threshold minPts,
i.e. |neighborhoodε(e)| ≥ minPts.

Once the ε-neighborhood is computed for each entity, the core entities are
identified. However, as the data is partitioned in chunks in our approach, the
neighborhood of entities may span across several chunks. In such case, the num-
ber of neighbors of each entity can not be computed only from one chunk.

Example 5. If we set minPts to 2 in our example, the entity e2 that has e1 and e3
in its neighborhood is a core entity. But after the assignment to the chunks, the
neighborhood of e2 is distributed over the chunks p1 and p4. If the comparisons
between entities are done within each chunk independently, the number of e2’s
neighbors in each chunk does not exceed minPts and e2 is not considered as a
core.

In our approach, core identification is a two-stage process, as illustrated by
Fig. 2b.

In the first step, the ε-neighborhood of each entity is calculated in parallel
within each chunk. Calculating the ε-neighborhood of the entities represents the
most expensive operation in a density-based clustering algorithm since it requires
comparing all the possible pairs of entities. Our algorithm operates on chunks
containing a number of entities small enough to allow a fast execution and to skip
a number of meaningless comparisons. Moreover, this operation is parallelized
over the calculating nodes to provide the best performances. In the second step,
the neighbors discovered in each chunk are grouped by entity, and the list of the
corresponding neighbors of each entity in the whole dataset is built. The core
entities are the ones having a number of neighbors greater or equal to minPts.

Example 6. With minPts = 2, the cores identified in Example 3 are e2 and
e4. For example, the algorithm finds that the neighbors of e2 are e1 and e3
respectively belonging to the chunks [p1] and [p4]. Then, these lists are merged
to provide the complete list of e2’s neighbors: neighborhoodε(e2) = {e1, e3}.
Finally, e2 is identified as a core entity because the number of entities within its
neighborhood is equal to minPts.

Algorithm 3 describes the core identification stage, executed in parallel with-
ing each chunk.

This algorithm provides the list of neighbors of each entity in each chunk
(lines 1–5) and then merges the lists (line 6). The lists of neighbors for each
entity are exchanged between the calculating nodes in order to group each entity

104 R. Bouhamoum et al.

Algorithm 3. Core Identification
Input: chs: the chunks, ε: the similarity threshold, minPts: the density threshold
1: for all [P] ∈ chs do in parallel
2: for all e ∈ [P] do
3: neighborhoodε(e) = {ei ∈ [P] | J(e, ei) ≥ ε}
4: end for
5: end for
6: Merge the local neighborhoods to compute the complete list of neighbors of each

entity
7: for all e ∈ D do
8: if |neighborhoodε(e)| ≥ minPts then
9: cores = cores ∪ {e}

10: end if
11: end for
12: return cores

with all its neighbors. Then, the algorithm tags the entities having a number of
neighbors greater than or equal to minPts as core entities (line 7–11).

Having computed the neighborhood of each entity and identified the core enti-
ties, the clustering is performed locally in each chunk. This process is described
in the following section.

6 Local Clustering

During the local clustering, clusters are computed in each chunk. A local cluster
contains entities which are similar inside a chunk.

The clustering stage is executed in parallel in the different chunks indepen-
dently; the distribution strategy ensures that the clustering within a chunk does
not require any data from any other chunk. This minimizes the costly overhead
communications between the chunks and speeds up the clustering stage.

In a density-based clustering algorithm, the clusters are built according to
the density-reachable principle, introduced by the DBSCAN algorithm [10]. The
corresponding definitions are presented hereafter.

Definition 8. An entity e is directly density-reachable from an entity e′ wrt. ε
and minPts if and only if e′ is a core entity and e is in its ε-neighborhood, i.e.
|neighborhoodε(e′)| ≥ minPts and e ∈ neighborhoodε(e′).

Definition 9. An entity e is density-reachable from an entity e′ wrt. ε and
minPts if there is a chain of entities e1, . . . , ez, e1 = e′, ez = e such that ei+1

is directly density-reachable from ei,∀i ∈ {1, . . . , z}.
The clusters are built based on the core entities. As the neighborhood of

entities have been computed and the core entities identified, all the required
information is available to generate the clusters locally in each chunk. Only
core entities will generate clusters by adding their neighbors as elements of the

Scalable Schema Discovery for RDF Data 105

clusters. Other entities will be either borders in some core’s neighborhood, or
noise entities.

For each core entity e, a cluster C containing e and its neighbors is cre-
ated. The core entities within the ε-neighborhood of e are then retrieved and
their neighbors are added to the cluster C. The neighbors of the cores in C are
recursively added to the cluster until the expansion stops on border entities.

Figure 2c shows the parallelization of this operation; the clustering is per-
formed on each chunk independently from the others and provides a local clus-
tering result.

Example 7. Clustering the chunks obtained in Example 3 based on the cores
identified in Example 6 provides the result presented in Fig. 4. The clusters are
denoted by the ids of the chunks followed by an index. In our example, four local
clusters are built, cp1.1, cp4.1, cp6.1 and cp7.1 respectively within the chunks p1,
p4, p6 and p7.

The core entity e2 in the chunks [p1] and [p4] forms a cluster within each
chunk by grouping all the entities that are density-reachable from e2. The same
principle is applied for all the core entities in the other chunks. To prevent
ambiguity, the clusters are annotated by the ids of the chunks followed by an
index. An entity which do not belong to any cluster, such as e6, could be assigned
to a cluster during the merging stage if it belongs to a cluster in another chunk,
or could remain a noise entity.

Fig. 4. Building local clusters in each chunk

Algorithm 4 computes the clusters in every chunk generated in the previous
stage. It iterates over the core entities previously identified and creates for each
one a cluster containing the core entity and its neighbors (line 6). The algorithm
then checks among the added neighbors those which are cores, and adds their
neighbors to the cluster (lines 7–9). The algorithm recursively adds the neighbors
of the cores to the current cluster until all its cores are checked and the expansion
stops on border entities. The same operation is repeated with another core which

106 R. Bouhamoum et al.

has not been visited yet, until all the cores are clustered. The final output of the
algorithm is the set of local clusters.

Algorithm 4. Local Clustering
Input: chs: the chunks, cores: the core entities
1: for all [P] ∈ chs do in parallel
2: is-visited = ∅
3: for all e ∈ [P] do
4: if e ∈ cores and e �∈ is-visited then
5: is-visited = isVisited ∪ {e}
6: Create a new cluster C = {e} ∪ neighborhoodε(e)
7: for all e′ ∈ C | e′ ∈ cores and e′ �∈ is-visited do
8: C = C ∪ {e′} ∪ neighborhoodε(e

′)
9: end for

10: end if
11: local-clusters = local-clusters ∪ C
12: end for
13: end for
14: return local-clusters

In the next section, we will show how to build the final clusters from the
local ones.

7 Global Merging

The merging stage aims to identify the clusters than span across several chunks,
and to merge the corresponding local clusters to build the final result. As we can
see in Fig. 2, the merging is processed in a single node and provides the final
clustering result.

In our approach, similarly to density-based clustering algorithms, an entity e
is assigned to a cluster Ci if e is density-reachable from a core entity in Ci. If
this same entity e is also in another local cluster Cj , this means that e is also
density-reachable from a core entity in Cj . If e is a core, it represents a bridge
between the entities in the clusters Ci and Cj making them density-reachable
from one another.

Figure 5 gives an overview of this principle; core entities are represented in
orange and border entities in green. As shown in this figure, the entities within
the clusters C1 and C2 are density-reachable from the common core entity ei,
which makes all of them density-reachable. Therefore, these entities should be
assigned to the same cluster. In that case, the local clusters are merged.

The merging stage identifies the clusters than span across different chunks by
finding the local clusters that share a common core entity and by merging them.
If a border entity is assigned to different clusters during the clustering stage, it
would be randomly assigned to one of these clusters during the merging stage.

Scalable Schema Discovery for RDF Data 107

Fig. 5. An illustration of the cluster merging principle (Color figure online)

All the entities which are not assigned to a cluster are considered as noise. This
process provides the final clusters, ensuring that the same clusters as DBSCAN
are generated.

Example 8. Figure 6 presents the final clusters obtained by merging the local
clusters of Example 7. For instance, the clusters cp1.1 and cp4.1 are merged
since they share a common core entity e2. The resulting final clusters repre-
sent the classes of the schema. The properties of these classes are the union of
the properties describing the entities within a cluster (Class1 = {p1, p2, p3, p4}
and Class2 = {p2, p5, p6, p7}). Noise entities such as e6 are considered as not
representative enough to generate a class in the extracted schema.

This descriptive schema shows that the RDF dataset contains instances of the
class author described by the set of properties {publish, id, name, grade} and
the class publication described by the properties {id, title, conference, year}.

Fig. 6. The final clusters corresponding to the classes of the discovered schema for the
dataset D

Algorithm 5 describes the cluster merging process. Two clusters are merged
if they share a core entity. The merging algorithm therefore iterates over core
entities (lines 2–6). For each core, clusters containing this core are identified
(line 3) then merged (line 5). This final step is executed on one computing node
and is not parallelized.

108 R. Bouhamoum et al.

Algorithm 5. Global Merging
Input: localClusters: the local clusters, cores: the core entities
1: clusters ← localClusters
2: for all e ∈ D | e ∈ cores do
3: lce = {C ∈ clusters | e ∈ C}
4: clusters = clusters \ lce ∪ (∪C∈lceC)
5: end for
6: return clusters

8 Experiments

This section presents our experiments to show the effectiveness of our approach
both in terms of quality and runtime.

We have first evaluated the quality of the discovered schema. We have consid-
ered a dataset including type definitions and we have used them as the ground
truth. We have compared the discovered classes with those provided by the
dataset, and we have computed the precision and the recall for each discovered
class.

We have evaluated the scalability by showing the capacity of our algorithm
to cluster large RDF datasets and studying its behavior on various datasets.

We have measured the algorithm Speed-Up to show the execution time
improvement when increasing the number of computing nodes. We have also
studied the efficiency when applied to real datasets.

Finally, we have compared the performances of our approach to the ones of
NG-DBSCAN, an existing density-based clustering algorithm also implemented
using Spark.

All the experiments have been conducted on a cluster running Ubuntu Linux
consisting of 5 nodes (1 master and 4 slaves), each one equipped with 30 GB
of RAM, a 12-core CPU. Our implementation relies on the Apache Spark 2.0
framework.

In our experiments, we have used the Jaccard index to evaluate the similarity
between the entities. Where not otherwise mentioned, parameters are set as
follows: ε to 0.8, minPts to 3 and capacity to 9000.

8.1 The Datasets

To evaluate the scalability of our approach, we have first used synthetic data
generated using “IBM Quest Synthetic Data Generator” [15]. This well known
generator was heavily used in the data mining community to evaluate the per-
formances of frequent itemset mining algorithms. In our context, the generator
produces the properties of each entity that will be used in our experiments, and
allows to tune their characteristics.

The variable characteristics of the data considered in our experiments are (i)
the size of the dataset to study the scalability of our algorithm, (ii) the total

Scalable Schema Discovery for RDF Data 109

number of properties describing the dataset and (iii) the average number of
dimensions (properties) of the entities.

Beside synthetic data, we have used real RDF datasets of different sizes
extracted from DBpedia9. DBpedia is a project aiming to extract structured
content from the information created in the Wikipedia project and to make it
available on the web. DBpedia allows users to semantically query relationships
and properties of Wikipedia resources, including links to other related datasets.
DBpedia is split into different subsets according to the language used.

In our evaluations, we have extracted from DBpedia subsets of patterns which
represent all the existing combinations of properties describing the entities in the
dataset. A pattern represents a combination of properties for which there is at
least one instance in the dataset. Entities having exactly the same property sets
are represented by a single pattern. To extract the patterns, we have used the
approach proposed in [7]. Considering patterns instead of entities reduces the
size of the input data and helps speeding up the clustering.

We have used DBpediaEn (1.23 million patterns), DBpediaFr (626 381 pat-
terns), DBpediaEs (529 434 patterns), DBpediaNl (268 603 patterns), DBpedi-
aUk (129 762 patterns) and DBpediaAr (63 000 patterns).

We have extracted from DBpedia the entities for which a type (class) has
been defined, and we have considered them as the ground truth for evaluating
the quality of the schema. In our evaluations, we have considered the entities
having the following types: Aircraft, Artist, Athlete, Book, Disease, Newspaper,
Region and TelevisionStation. These entities represent a reference to which the
generated clusters are compared.

8.2 Evaluation of the Schema Quality

We have clustered the entities within DBpedia using our algorithm without
considering the types of the entities. We have set MinPts to 1, as we consider
that at least two entities sharing similar properties are required to form a class.
We have run our algorithms with several values of ε, ranging between 0.5 and
0.7. In the context of RDF datasets, ε represents the threshold ratio of shared
properties required for two entities to be considered as neighbors.

The discovered classes are annotated with the most frequent type label asso-
ciated to its entities.

Finally, we have evaluated the precision and the recall for each class. In our
work, the precision and the recall are evaluated based on the comparison of the
classes generated by our approach for the entities to the types of these entities
as declared in the initial dataset. We have evaluated for each class both the
precision and the recall. Each of the bar charts a, b and c of Fig. 7 shows, for a
specific value of ε, both the precision and the recall.

The results presented in Fig. 7 show that our approach is able to detect
all the considered classes of the entities within the dataset with good precision

9 http://downloads.dbpedia.org/3.9/.

http://downloads.dbpedia.org/3.9/

110 R. Bouhamoum et al.

and recall when the value of ε is well defined (Fig. 7b). The recall of the class
Aircraft is lower because the entities having this type are very heterogeneous.

Fig. 7. Quality of the extracted classes for different values of ε (ε = 0.5 (a), ε = 0.65
(b), ε = 0.7 (c))

In some cases, the entities within different classes can be described by similar
property sets, they are therefore merged in a more general class. For instance,
the classes Artist and Athlete were grouped into a more general class Person,
as shown in Fig. 7a. For a higher value of ε (Fig. 7b), a higher number of
shared properties is required for two entities to be considered as similar and the
classes Artist and Athlete are both generated. When the value of ε is higher, the
recall of some types decreases (Fig. 7c). As these types contain heterogeneous
entities described by different properties, they were not considered as similar
and therefore not grouped into the same cluster. A higher value of ε makes the
algorithm more sensitive to small differences which can lead to similar entities
assigned to different clusters and decrease the quality of the schema.

To conclude the experiments on the quality of the resulting classes, recall
that clustering a dataset using our approach provides the same result as using

Scalable Schema Discovery for RDF Data 111

the sequential DBSCAN algorithm. Previous works have shown that extracting
a schema from an RDF dataset using DBSCAN provides a good quality result,
with good precision and recall, and detects classes which were not declared in
the dataset [18]. These results are in line with the ones provided in this section.

The following sections are devoted to our experiments for evaluating the
performances of our approach when applied to large datasets, which is the main
focus of the present paper.

8.3 Scalability

We have first evaluated the scalability or our approach using several synthetic
datasets of different sizes. Additionally, we have studied the behavior of our algo-
rithms on datasets with different characteristics: (i) datasets containing entities
of different dimensions (10, 20, 30 and 40 properties per entity) and (ii) datasets
where entities are described by different numbers of properties. We have also
evaluated the speed-up of our approach with different configurations of the com-
puting cluster, i.e. for different numbers of worker nodes. Finally, we have applied
our algorithm on real datasets to illustrate its performances.

Figure 8 shows the algorithm runtime as a function of the dataset size for
datasets having in average 10, 20, 30, and 40 properties in the description of
their entities.

The results show the effectiveness of our algorithm to cluster large datasets,
as it is able to cluster a dataset containing more than 5 million entities in 18 min,
for a dataset containing entities described by an average of 10 properties.

The results are explained by the fact that during the distribution stage,
chunks that contain a number of entities which does not exceed the calculating
capacity of the cluster’s nodes are created. Thus, each node executes clustering
tasks by computing the similarity on a number of entities which does not require
a high execution time. In addition, some meaningless comparisons are avoided
while determining the neighborhood of each entity, since entities are compared
only if they are grouped in the same chunk. Each node calculates efficiently the ε-
neighborhood of the entities and the partial clusters in each chunk. Furthermore,
the computations are distributed over the nodes of the clusters to minimize the
communications overhead between the nodes, i.e. by avoiding the costly Spark’s
shuffle operations.

When the size of the dataset increases, the process requires more time. As the
distribution stage produces a high number of chunks, each calculating node has
to manage many more chunks. In addition, the chunks contain a higher number
of entities and can be split recursively to generate chunks having a size which is
lower than the capacity of the calculating nodes. This drop in the performance
is more visible when the calculation’s limits of the cluster are reached. This limit
is reached at different levels according to the characteristics of the datasets as
we can see in Fig. 8.

112 R. Bouhamoum et al.

0 1 2 3 4 5 6

0

0.5

1

1.5

2

Dataset’s Size (in millions)

E
xe
cu

ti
on

ti
m
e
(s

×1
04
)

10 properties
20 properties
30 properties
40 properties

Fig. 8. Evaluating the scalability of our approach on different synthetic datasets

The same happens when the number of dimensions (i.e. properties) of the
entities increase: this increases the number of entities within the chunks as the
entities are distributed according to the properties, and also increases the number
of chunks. We observe that the curves have the same behavior, but the limit is
reached for different dataset’s size. The limit is reached for a size of 5.8 M entities
for datasets where entities are described by 10, 20 and 30 properties, while it
is reached for a size of 2.8 M for datasets where entities are described by 40
properties.

We have studied the impact of the total number of properties describing the
dataset. Figure 9 shows the execution time for datasets described by a number
of properties that varies between 10k and 80k.

The experiments show that when the number of properties increases, the exe-
cution time decreases. Having a higher number of properties implies generating
more chunks and getting a better distribution of the entities. This also produces
smaller chunks, which do not require further partitioning. This accelerates the
distribution and the clustering stages.

We have also studied the speed-up and the impact of the number of worker
nodes in the Spark cluster on its execution time. These evaluations were con-
ducted on a cluster composed of 1 master equipped with 4 GB of RAM, 4 core
CPU. The number of workers varies from 2 to 8 and each worker is equipped
with 16 GB of RAM and 6 cores CPU.

Scalable Schema Discovery for RDF Data 113

0.5 1 1.5 2 2.5 3
0

100

200

300

400

500

600

Dataset’s Size (in millions)

E
xe
cu

ti
on

ti
m
e
(s
)

10k
20k
40k
80k

Fig. 9. Evaluating the impact of the number of properties on the execution time

Figure 10 shows the algorithm’s speed-up as the number of worker nodes
varies, considering datasets of a size between 500 000 and 3 000 000 entities.

2 3 4 5 6 7 8

1

1.5

2

2.5

3

3.5

Number of worker nodes

Sp
ee
d-
U
p

0.5 Millions
1.6 Millions
2 Millions
3 Millions

Fig. 10. Evaluating the speed-up for different cluster configurations

The experiments show that better performances and faster clustering are
obtained when adding more worker nodes to the computing cluster. The obtained
results demonstrate that our algorithm is scalable despite the size of the datasets.

Finally, we have evaluated the efficiency of our approach on real datasets.
Figure 11 shows the ability to cluster real datasets, such as DBpedia English

114 R. Bouhamoum et al.

which is a large RDF source from which we have extracted more than 1 million
patterns.

EN FR ES NL UK AR
0

200

400

600

800

1,000

1,200

1,400 1,344

678

448

185

66 49

E
xe
cu

ti
on

T
im

e
(s
)

Datasets: DBpedia’s Versions

Fig. 11. Evaluating the execution time for clustering the DBpedia dataset

These results obtained from the experiments indicate that our approach is
scalable and suitable for large datasets with various characteristics. The time
needed to compute the clustering in the different experiments was always in
the order of minutes, demonstrating that our approach is efficient in several
scenarios.

8.4 Comparison with NG-DBSCAN

We have compared our approach to NG-DBSCAN, an existing clustering algo-
rithm [19]. NG-DBSCAN is one of the recent parallel versions of DBSCAN that
provides good performances. In addition, it was implemented using the Apache
Spark framework and compared to other scalable density-based clustering algo-
rithms. Besides, unlike other scalable versions of DBSCAN such as MR-DBSCAN
and RP-DBSCAN, it can be applied on RDF datasets. We have used the source
code provided by the authors and available online10.

Figure 12 presents the logarithmic function of the execution time needed by
both algorithms to cluster datasets of different sizes. We use the logarithmic scale
to represent the execution time because the gap between the performances of the
two algorithms is important and it prevents us from comparing their behaviours.

10 https://github.com/alessandrolulli/gdbscan.

https://github.com/alessandrolulli/gdbscan

Scalable Schema Discovery for RDF Data 115

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
Dataset’s Size (in millions)

our approach
NG-DBSCAN

10

102

103

104

E
xe
cu

ti
on

ti
m
e
(s
)

Fig. 12. Comparing our clustering algorithm with NG-DBSCAN

Our results show that both curves have a similar shape, and that our app-
roach always outperforms NG-DBSCAN. This is due to the fact that the imple-
mentation of NG-DBSCAN applies many shuffle operations, which increases the
communication cost and therefore, the execution time of the algorithm. On the
other hand, our algorithm smartly distributes the data so as to reduce the cost
of communication between the worker nodes during the computation of the clus-
ters, thus considerably reducing the execution time.

As a conclusion, the results obtained throughout the different experiments
shown that our proposal performs well both in term of quality of the generated
classes and the runtime speed of the generation process. It allows performing
fast density-based clustering on large synthetic or real datasets and provides
a good quality result, with good precision and recall of the detected classes
describing the dataset. Moreover, our algorithm speeds up and provides better
performances when more computing nodes are added to the Spark cluster which
makes it scalable to very large datasets. In addition, unlike the existing scal-
able implementations of DBSCAN, it provides the same clustering result as the
one which would be generated by the sequential DBSCAN algorithm. Finally,
it outperforms NG-DBSCAN, a recent density-based clustering algorithm that
provides good performances.

9 Related Work

Several approaches have been proposed for schema discovery in RDF datasets.
Some of these approaches have used clustering algorithms to group similar enti-
ties in order to form the classes representing the schema. Among these works, the

116 R. Bouhamoum et al.

approaches presented in [17,18] have used density-based clustering algorithms
and have adapted them to generate classes and links between them. The app-
roach described in [9] relies on hierarchical clustering for generating the under-
lying types in an RDF dataset. The work presented in [27] uses the FP-Growth
algorithm to find the most frequent properties describing a schema based on
the classes chosen by the user. These approaches have not dealt with scalability
issues, and most of them do not scale up to process very large datasets.

Some approaches have specifically addressed the scalability of schema dis-
covery [4,5,24], providing algorithms capable of managing large datasets imple-
mented using a big data technology such as Hadoop [28] or Spark [29]. However,
unlike our approach, these algorithms rely on type declarations to group entities
into classes, and then provide a representative schema to help understand the
data. Such approaches can not be used when these declarations are not provided
in the dataset. To the best of our knowledge, there is no proposal addressing
schema discovery for massive RDF datasets without the assumption that type
declarations are provided in the dataset.

In a previous work, we have addressed the problem of scalability for automatic
schema discovery [7]. We have introduced an approach to reduce the size of the
input RDF dataset by building a condensed representation composed of all the
existing combinations of properties in the dataset. The clustering is performed
on the condensed representation instead of the initial dataset. However, in the
case of very heterogeneous datasets, the size of the condensed representation
remained too large and the use of a clustering algorithm was too costly. We
have introduced and used the notion of naive assignment in previous work [6],
but this partitioning resulted in a high number of meaningless comparisons as
a given pair of entities is compared several times. With respect to our previous
work, this paper has the following enhancements: (i) a new formalization of the
concepts, (ii) a complete rewriting of the algorithms and descriptions, (iii) a
novel distribution principle leading to significant improvement of performances,
(iv) an extensive experimental study.

Our clustering algorithm is inspired by DBSCAN, which is well suited to the
requirements of RDF datasets. This is mainly because it produces clusters of
arbitrary shape, which is important in our context where entities of the same
type can be described by heterogeneous property sets. Furthermore, it does not
require as an input the number of resulting clusters, and it detects noise points
which are not important enough to form a class. However, the main weakness of
DBSCAN is its computational complexity which is O(n2), where n is the number
of data points.

Many works have proposed approaches to scale-up the DBSCAN algorithm
by parallelizing its execution. Some of these algorithms are based on a random
split of the data. In PDSDBSCAN [22], the data is partitioned randomly, and the
clustering is applied in each partition in parallel by comparing the entities in one
partition with the whole dataset. S-DBSCAN [20] merges the clusters that have
close centers. The approach proposed in [25] merges the clusters that intersect
with each other based on the centers and the radius of the clusters. In [13],

Scalable Schema Discovery for RDF Data 117

after partitioning the data and calculating the local clusters, a range is defined
for each partition, and the points outside this range are considered as seeds to
merge the local clusters. Algorithms based on a random split of the data achieve
a fast clustering, but at the cost of a lower accuracy; they produce a schema of
a lower quality compared to other existing approaches. The ε-neighborhood of
the entities is computed in random sub-sets, neighbors in different partitions are
therefore not discovered. In addition, the merging relies on features such as the
cluster’s center and does not ensure that the result is the same as the one of the
DBSCAN algorithm.

Some works propose algorithms such as MR-DBSCAN [14] and RDD-
DBSCAN [23] which partition the data using Binary Space Partitioning (BSP)
[11], duplicate the frontiers of each partition into the neighboring partitions and
generate the clusters. The clusters are finally merged if they share some entities.
However, approaches using Binary Space Partitioning lose their efficiency when
applied to data with high dimensionality such as RDF datasets.

RP-DBSCAN [26] combines different techniques, as it consists in randomly
partitioning cells of data, then creating a graph using BSP to accelerate the
neighbors search in each partition. Finally, it merges the clusters found in each
partition to provide the final clusters. As it uses a cell-based grid structure,
this algorithm can not be applied on RDF datasets because it is impossible to
represent an RDF dataset in such n-dimensional space. Moreover, the quality
of the resulting clusters depends on a given parameter ρ and does not always
ensure that the clustering is the same as the one of DBSCAN.

Finally, some graph based approaches have been proposed such as NG-
DBSCAN [19], which comprises two steps: first, it computes the ε-graph by com-
paring each point with k randomly selected points and adding an edge between
the closest ones. Second, it considers the edges having the highest number of
neighbors as the cluster’s root and all the elements connected to this root are
assigned to the same cluster. However, unlike our approach, NG-DBSCAN pro-
vides a probabilistic result which is different from the one provided by DBSCAN;
this reduces the quality of the resulting schema. In addition, building the neigh-
bor graph for large datasets is a costly operation.

10 Conclusion

In this paper, we have proposed an approach that automatically extracts the
underlying schema of a large RDF dataset. It relies on a novel distributed algo-
rithm for density-based clustering which groups the similar entities into clusters
and produces the same result as the DBSCAN algorithm. The resulting clusters
represent the classes of the schema.

We have implemented our algorithm using Spark, a big data technology offer-
ing a fast distributed execution of the algorithm and allowing to cluster mas-
sive datasets containing millions of entities. We have shown through detailed
experiments that our algorithm provides a schema of good quality, and scales
up to very large datasets, outperforming existing similar clustering algorithms.

118 R. Bouhamoum et al.

We have used both synthetically generated datasets and real datasets extracted
from DBpedia.

The schema discovery approach proposed in this paper has been designed for
RDF data; however, it can be adapted and applied to data sources described
using other formats such as Json or XML, where the entities are irregular and
do not have a defined structure.

In our future works, we will enrich the generated schema by extracting links
between the classes and constraints on the properties. We will also improve
our approach by automatically detecting the most appropriate values of the
parameters, such as the capacity parameter according to the configuration of
computing nodes. Schema evolution is also an important issue to be tackled
in our future works; once the schema is generated, appropriate algorithms are
required to keep the schema consistent with the dataset over time, as data is
added or deleted.

References

1. Abiteboul, S., et al.: Research directions for principles of data management
(Dagstuhl perspectives workshop 16151). Dagstuhl Manifestos 7(1), 1–29 (2018)

2. Alcalde, C., Burusco, A.: Study of the relevance of objects and attributes of L-
fuzzy contexts using overlap indexes. In: Medina, J., et al. (eds.) IPMU 2018.
CCIS, vol. 853, pp. 537–548. Springer, Cham (2018). https://doi.org/10.1007/978-
3-319-91473-2 46

3. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia:
a nucleus for a web of open data. In: Aberer, K., et al. (eds.) ASWC/ISWC -2007.
LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-76298-0 52

4. Baazizi, M.A., Lahmar, H.B., Colazzo, D., Ghelli, G., Sartiani, C.: Schema infer-
ence for massive JSON datasets. In: Proceeding of the 20th International Confer-
ence on Extending Database Technology (EDBT), pp. 222–233 (2017)

5. Baazizi, M.-A., Colazzo, D., Ghelli, G., Sartiani, C.: Parametric schema inference
for massive JSON datasets. VLDB J. 28(4), 497–521 (2019). https://doi.org/10.
1007/s00778-018-0532-7

6. Bouhamoum, R., Kedad, Z., Lopes, S.: Schema discovery in large web data sources.
In: proceeding of the 1st International Conference on Big Data and Cybersecurity
Intelligence (BDCSIntell) (2018)

7. Bouhamoum, R., Kellou-Menouer, K.K., Lopes, S., Kedad, Z.: Scaling up schema
discovery approaches. In: Proceeding of the 34th International Conference on Data
Engineering Workshops (ICDEW), pp. 84–89. IEEE (2018)

8. Campina, S., Perry, T.E., Ceccarelli, D., Delbru, R., Tummarello, G.: Introduc-
ing RDF graph summary with application to assisted SPARQL formulation. In:
Proceeding of the 23rd International Workshop on Database and Expert Systems
Applications (DEXA), pp. 261–266. IEEE (2012)

9. Christodoulou, K., Paton, N.W., Fernandes, A.A.A.: Structure inference for linked
data sources using clustering. In: Hameurlain, A., Küng, J., Wagner, R., Bianchini,
D., De Antonellis, V., De Virgilio, R. (eds.) Transactions on Large-Scale Data- and
Knowledge-Centered Systems XIX. LNCS, vol. 8990, pp. 1–25. Springer, Heidel-
berg (2015). https://doi.org/10.1007/978-3-662-46562-2 1

https://doi.org/10.1007/978-3-319-91473-2_46
https://doi.org/10.1007/978-3-319-91473-2_46
https://doi.org/10.1007/978-3-540-76298-0_52
https://doi.org/10.1007/978-3-540-76298-0_52
https://doi.org/10.1007/s00778-018-0532-7
https://doi.org/10.1007/s00778-018-0532-7
https://doi.org/10.1007/978-3-662-46562-2_1

Scalable Schema Discovery for RDF Data 119

10. Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discov-
ering clusters in large spatial databases with noise. In: Proceeding of the Second
International Conference on Knowledge Discovery and Data Mining (KDD), pp.
226–231. AAAI Press (1996)

11. Fuchs, H., Kedem, Z.M., Naylor, B.F.: On visible surface generation by a priori tree
structures. In: Proceedings of the 7th Annual Conference on Computer Graphics
and Interactive Techniques (SIGGRAPH) pp. 124–133. ACM Press (1980)

12. Gragera Aguaza, A., Suppakitpaisarn, V.: Relaxed triangle inequality ratio of the
Sørensen-dice and Tversky indexes. Theoret. Comput. Sci. 718, 37–45 (2017)

13. Han, D., Agrawal, A., Liao, W., Choudhary, A.: A novel scalable DBSCAN algo-
rithm with spark. In: Proceeding of the 29th International Parallel and Distributed
Processing Symposium Workshops (IPDPSW), pp. 1393–1402. IEEE (2016)

14. He, Y., Tan, H., Luo, W., Feng, S., Fan, J.: MR-DBSCAN: a scalable MapReduce-
based DBSCAN algorithm for heavily skewed data. Front. Comput. Sci. 8(1),
83–99 (2014). https://doi.org/10.1007/s11704-013-3158-3. Proceeding of the 27th
International Parallel and Distributed Processing Symposium Workshops (IPDPS).
Springer, Berlin, Heidelberg

15. IBM: IBM quest synthetic data generator. https://sourceforge.net/projects/
ibmquestdatagen/ (2015). Accessed 1 Oct 2018

16. Jaccard, P.: The distribution of flora in the Alpine zone. New Phytologist 11(2),
37–50 (1912)

17. Kellou-Menouer, K., Kedad, Z.: Schema discovery in RDF data sources. In: Johan-
nesson, P., Lee, M.L., Liddle, S.W., Opdahl, A.L., López, Ó.P. (eds.) ER 2015.
LNCS, vol. 9381, pp. 481–495. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-25264-3 36

18. Kellou-Menouer, K., Kedad, Z.: A self-adaptive and incremental approach for
data profiling in the semantic web. In: Hameurlain, A., Küng, J., Wagner, R.
(eds.) Transactions on Large-Scale Data- and Knowledge-Centered Systems XXIX.
LNCS, vol. 10120, pp. 108–133. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-54037-4 4

19. Lulli, A., Dell’Amico, M., Michiardi, P., Ricci, L.: NG-DBSCAN: scalable density-
based clustering for arbitrary data. Proc. VLDB Endow. 10(3), 157–168 (2016).
https://doi.org/10.14778/3021924.3021932

20. Luo, G., Luo, X., Gooch, T.F.: A parallel DBSCAN algorithm based on spark. In:
Proceeding of the 6th International Conference on Big Data and Cloud Computing
(BDCloud), pp. 548–553. IEEE (2016)

21. Suchanek, F.M., Kasneci, G., Weikum, G.: YAGO: a core of semantic knowledge.
In: Proceedings of the 16th International Conference on World Wide Web (WWW),
pp. 697–706. ACM Press (2007)

22. Patwary, M.M.A., Palsetia, D., Agrawal, A., Liao, W.K., Manne, F., Choudhary,
A.: A new scalable parallel DBSCAN algorithm using the disjoint-set data struc-
ture. In: Proceedings of the International Conference on High Performance Com-
puting, Networking, Storage and Analysis (SC), pp. 1–11. IEEE (2012)

23. Patwary, M.M.A., Palsetia, D., Agrawal, A., Liao, W.K., Manne, F., Choudhary,
A.: DBSCAN on resilient distributed datasets. In: Proceedings of the International
Conference on High Performance Computing and Simulation (HPCS), pp. 531–540.
IEEE (2015)

24. Sevilla Ruiz, D., Morales, S.F., Garćıa Molina, J.: Inferring versioned schemas from
NoSQL databases and its applications. In: Johannesson, P., Lee, M.L., Liddle,
S.W., Opdahl, A.L., López, Ó.P. (eds.) ER 2015. LNCS, vol. 9381, pp. 467–480.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25264-3 35

https://doi.org/10.1007/s11704-013-3158-3
https://sourceforge.net/projects/ibmquestdatagen/
https://sourceforge.net/projects/ibmquestdatagen/
https://doi.org/10.1007/978-3-319-25264-3_36
https://doi.org/10.1007/978-3-319-25264-3_36
https://doi.org/10.1007/978-3-662-54037-4_4
https://doi.org/10.1007/978-3-662-54037-4_4
https://doi.org/10.14778/3021924.3021932
https://doi.org/10.1007/978-3-319-25264-3_35

120 R. Bouhamoum et al.

25. Savvas, I.K., Tselios, D.: Parallelizing DBSCAN algorithm using MPI. In: Proceed-
ing of the 25th International Conference on Enabling Technologies: Infrastructure
for Collaborative Enterprises (WETICE), pp. 77–82. IEEE (2016)

26. Song, H., Lee, J.G.: RP-DBSCAN: A superfast parallel DBSCAN algorithm based
on random partitioning. In: Proceedings of the International Conference on Man-
agement of Data (SIGMOD), pp. 1173–1187. ACM (2018)

27. Issa, S., Paris, P.-H., Hamdi, F., Si-Said Cherfi, S.: Revealing the conceptual
schemas of RDF datasets. In: Giorgini, P., Weber, B. (eds.) CAiSE 2019. LNCS,
vol. 11483, pp. 312–327. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-21290-2 20

28. The Apache Software Foundation: Apache Hadoop. https://hadoop.apache.org/
(2018). Accessed 20 Oct 2018

29. The Apache Software Foundation: Apache Spark. https://spark.apache.org (2018).
Accessed 20 Oct 2018

30. W3C: SPARQL query language for RDF. https://www.w3.org/TR/rdf-sparql-
query/ (2013). Accessed 01 Aug 2020

https://doi.org/10.1007/978-3-030-21290-2_20
https://doi.org/10.1007/978-3-030-21290-2_20
https://hadoop.apache.org/
https://spark.apache.org
https://www.w3.org/TR/rdf-sparql-query/
https://www.w3.org/TR/rdf-sparql-query/

Load-Aware Shedding in Stream
Processing Systems

Nicoló Rivetti1, Yann Busnel2, and Leonardo Querzoni3(B)

1 Rome, Italy
2 IMT Atlantique, IRISA, Rennes, France

yann.busnel@imt-atlantique.fr
3 DIAG, Sapienza University of Rome, Rome, Italy

querzoni@diag.uniroma1.it

Abstract. Distributed stream processing systems are today gaining
momentum as a tool to perform analytics on continuous data streams.
Load shedding is a technique used to handle unpredictable spikes in the
input load whenever available computing resources are not adequately
provisioned. In this paper, we propose Load-Aware Shedding (LAS), a
novel load shedding solution that, unlike previous works, does not rely
neither on a pre-defined cost model nor on any assumption on the tuple
execution duration. Leveraging sketches, LAS efficiently estimates the
execution duration of each tuple with small error bounds and uses this
knowledge to proactively shed input streams at any operator to limiting
queuing latencies while dropping as few tuples as possible. We provide
a theoretical analysis proving that LAS is an (ε, δ)-approximation of the
optimal online load shedder. Furthermore, through an extensive practical
evaluation based on simulations and a prototype, we evaluate its impact
on stream processing applications.

Keywords: Load-shedding · Stream processing · Data streaming ·
Distributed systems

1 Introduction

Distributed stream processing systems (DSPS) and Complex Event Processing
(CEP) are today considered as a mainstream technology to build architectures
for the real-time analysis of big data. An application running in a DSPS, or a
query executed by a CEP engine, is typically modeled as a directed acyclic graph
(a topology) where data operators, represented by nodes, are interconnected by
streams of tuples containing data to be analyzed, the directed edges. The success

This work has been partially funded by the MIUR SCN-00064 project RoMA and by
Sapienza University of Rome through the project RM11916B75A3293D.
A preliminary short version of this work appeared in the Proceedings of the 10th ACM
International Conference on Distributed and Event-based Systems.
N. Rivetti—Independent researcher.

c© Springer-Verlag GmbH Germany, part of Springer Nature 2020
A. Hameurlain and A M. Tjoa (Eds.): TLDKS XLVI, LNCS 12410, pp. 121–153, 2020.
https://doi.org/10.1007/978-3-662-62386-2_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-62386-2_5&domain=pdf
http://orcid.org/0000-0002-8711-4216
https://doi.org/10.1007/978-3-662-62386-2_5

122 N. Rivetti et al.

of such systems can be traced back to their ability to run complex applications
at scale on clusters of commodity hardware or in the cloud.

Correctly provisioning computing resources for DSPS or CEP engines how-
ever is far from being a trivial task. System designers need to take into account
several factors: the computational complexity of the operators, the overhead
induced by the framework, and the characteristics of the input streams. This
latter aspect is often the most critical, as input data streams may unpredictably
change over time both in rate and in content. Over-provisioning is not economi-
cally sensible, thus system designers are today moving toward approaches based
on elastic scalability [11], where an underlying infrastructure can tune at runtime
the available resources in response to changes in the workload. This represents a
desirable solution when coupled with on-demand provisioning offered by many
cloud platforms, but still may be affected by transient overloads [3], caused for
example by unexpected load spikes, that could temporarily degrade performance
below the desired SLA.

Bursty input load represents a problem for both DSPS and CEP engines as it
may create unpredictable bottlenecks within the system that lead to an increase
in queuing latencies, pushing the system in a state where it cannot deliver the
expected quality of service (typically expressed in terms of tuple completion
latency). Load shedding is generally considered a practical approach to handle
bursty traffic. It consists of dropping a subset of incoming tuples as soon as a
bottleneck is detected in the system. As such, load shedding is a solution that
is complementary [24] and must coexist with resource shaping techniques (like
elastic scaling), rather than being an alternative.

Existing load shedding solutions either randomly drop tuples when bottlenecks
are detected [1] or apply a pre-defined model of the application and its input that
allows them to deterministically take the best shedding decision [25]. In any case,
all the existing solutions assume that incoming tuples all impose the same com-
putational load. However, such assumption does not hold for many practical use
cases; tuple execution duration, in fact, may depend on the tuple content itself.
This is often the case whenever the receiving operator implements a logic with
branches where only a subset of the incoming tuples travels through every sin-
gle branch. If the computation associated with each branch generates different
loads, then the execution duration will change from tuple to tuple. A tuple with a
large execution duration may delay the execution of subsequent tuples in the same
stream, thus increasing queuing latencies. If further tuples are enqueued with large
execution durations, this may bring to the emergence of a bottleneck.

As an example, consider the reach of a tweet, i.e., the number of users that may
receive the re-tweets of a given tweet. This computation entails counting the num-
ber of users that have a direct and un-direct follower relationship (until a given
depth) with the tweet author. Then, depending on the size of the subgraph rooted
in the author node, the execution times vary. For instance, in our experiments the
execution time belongs to the interval [0.01, 70] ms, the most frequent execution
time was 65 ms, while the average per execution time was 20 ms. In the experi-
mental evaluation, we provide a second use-case exhibiting the same phenomena.

Load-Aware Shedding in Stream Processing Systems 123

Based on this simple observation, we introduce Load-Aware Shedding (LAS),
a novel solution for load shedding in DSPS (or CEP engines) engines. LAS gets
rid of the aforementioned assumptions and provides efficient shedding aimed at
matching given queuing latency targets while dropping as few tuples as possible.
To reach this goal LAS leverages a smart combination of sketch data structures to
efficiently collect at runtime information on the time needed to compute tuples.
This information is used to build and maintain, at runtime, a cost model that is
then exploited to take decisions on when input tuples must be shed. LAS has been
designed as a flexible solution that can be applied on a per-operator basis, thus
allowing developers to target specific critical stream paths in their applications.
The proposed solution provides predictable per operator queuing latencies, an
extremely important feature in several application scenarios where the stream
processing system is expected to deliver results to users in a quasi-real-time
fashion. Furthermore, LAS implements an efficient load shedding solution that
perfectly fits the characteristics of settings where scarce resources are available
(e.g. fog-computing). Finally, LAS can be complemented by an output quality
model that allows blocking it from dropping tuples that may significantly degrade
the final output quality.

The contributions provided by this paper are:

– the introduction of LAS, the first solution for load shedding in DSPS (or CEP
engines) that proactively drops tuples to avoid bottlenecks without requiring
a predefined cost model and without any assumption on the distribution of
tuples;

– a theoretical analysis of LAS that points out how it is an (ε, δ)-approximation
of the optimal online shedding algorithm;

– an experimental evaluation that illustrates how LAS can provide predictable
queuing latencies that approximate a given threshold while dropping a small
fraction of the incoming tuples.

Below, the next section states the system model we consider. Afterward,
Sect. 3 details LAS whose behavior is then theoretically analyzed in Sect. 4.
Section 5 reports on our experimental evaluation and Sect. 6 analyzes the related
works. Finally, Sect. 7 concludes the paper.

2 System Model and Problem Definition

We consider a distributed stream processing system (DSPS) or Complex Event
Processing (CEP) engine deployed on a cluster where several computing nodes
exchange data through messages sent over a network (Table 1). The stream
processing application (or query) executed by the DSPS (or CEP engine) can
be represented by a topology : a directed acyclic graph interconnecting operators,
represented by vertices, with data streams (DS), represented by edges. Each
topology contains at least a source, i.e., an operator connected only through
outbound DSs, and a sink, i.e., an operator connected only to inbound DSs.

124 N. Rivetti et al.

Table 1. Symbols used in the text.

Symbol Description

t Tuple

σ Stream of tuples

[n] Universe of possible tuples

ft Number of occurrences of t in σ

w(t) Execution duration of tuple t on operator O

q(i) Queuing latency of the i-th tuple of the stream

D(j) Set of dropped tuples

d(j) Number of dropped tuples

Q(j) Average queuing latency

τ Average queuing latency threshold

̂C Estimation of the total operator execution duration

F Count Min sketch that tracks tuple frequencies

W Count Min sketch that tracks tuple cumulated execution durations

N Window size parameter

S Snapshot

η Relative error between consecutive snapshots

μ Error threshold

Data injected by the source is encapsulated in units called tuples (or events)
and each data stream is an unbounded sequence of tuples. Without loss of gener-
ality, here we assume that each tuple t is a finite set of key/value pairs that can
be customized to represent complex data structures. To simplify the discussion,
in the rest of this work, we deal with streams of unary tuples each representing
a single non-negative integer value.

For the sake of clarity, and without loss of generality, here we restrict our
model to a topology with an operator LS (load shedder) that decides which
tuples of its outbound DS σ consumed by a downstream operator O shall be
dropped. The actual positioning of LS within a real topology may be tuned,
depending on where bottlenecks are expected to appear within the topology
itself. Nevertheless, we assume that LS is never deployed as a source or sink
in any topology. Tuples in σ are drawn from a large universe [n] = {1, . . . , n}
and are ordered, i.e., σ = 〈t1, . . . , tm〉. Therefore [m] = 1, . . . , m is the index
sequence associated with the m tuples contained in the stream σ. Both m and
n are unknown. We denote with ft the unknown frequency of tuple t, i.e., the
number of occurrences1 of t in σ.

We assume that the execution duration of tuple t on operator O, denoted
as w(t), depends on the content of the tuple t. We simplify the model assuming

1 In the data streaming literature, the frequency is the number of occurrences not
divided by time, which differs from the classical (physics) definition [17].

Load-Aware Shedding in Stream Processing Systems 125

that w depends on a single, fixed and known attribute value of tuple t. Cases in
which this assumption does not hold, e.g. w depends on multiple attributes can
be simply treated by concatenating their values and considering them as a sin-
gle multiplexed attribute [5,7,15]. The probability distribution of such attribute
values, as well as the function w are unknown, may differ from operator to oper-
ator and may change over time. However, we assume that subsequent changes
are interleaved by a large enough time frame such that an algorithm may have a
reasonable amount of time to adapt. On the other hand, the input throughput
of the stream may vary, even with a large magnitude, at any time.

Let q(i) be the queuing latency of the i-th tuple of the stream, i.e., the
time spent by the i-th tuple in the inbound buffer of operator O before being
processed. Let us denote as D(j) ⊆ [j], j ≤ m, the set of dropped tuples in a
stream of length m, i.e., dropped tuples are thus represented in D(j) by their
indices in [j] ⊆ [m]. Moreover, let d(j) ≤ j ≤ m be the number of dropped
tuples in a stream prefix of length j, i.e., d(j) = |D(j)|. Then we can define the
average queuing latency as: Q(j) =

∑
i∈[j]\D(j) q(i)/(j − d(j)) for all j ∈ [m].

The goal of the load shedder is to maintain at any point in the stream the
average queuing latency smaller than a given threshold τ by dropping as few
tuples as possible. The quality of the shedder can be evaluated both by comparing
the resulting Q(j) against τ and by measuring the number of dropped tuples d(j).
More formally, the load shedding problem can be defined as follows2.

Problem 1 (Load Shedding). Given a data stream σ = 〈t1, . . . , tm〉, find the
smallest set D(j) such that

∀j ∈ [m] \ D(j), Q(j) ≤ τ.

3 Load Aware Shedding

This section introduces the Load-Aware Shedding algorithm by first providing
an overview, then detailing some background knowledge, and finally describing
the details of its functioning.

3.1 Overview

Load-Aware Shedding (LAS) is based on a simple, yet effective, idea: if we assume
to know the execution duration w(t) of each tuple t on the operator, then we can
foresee the queuing time for each tuple of the operator input stream and then
drop all tuples that will cause the queuing latency threshold τ to be violated.
However, the value of w(t) is generally unknown. A possible solution to this
problem is to build a static cost model for tuple execution duration and then
use it to proactively shed load. However, building an accurate cost model usually
requires a large amount of a priori knowledge on the system. Furthermore, once

2 This is not the only possible definition of the load shedding problem. Other variants
are briefly discussed in Sect. 6.

126 N. Rivetti et al.

a model has been built, it can be hard to handle changes in the system or input
stream characteristics at runtime.

LAS overcomes these issues by building and maintaining at run-time a cost
model for tuple execution durations. It takes shedding decision based on the esti-
mation Ĉ of the total execution duration of the operator: C =

∑
i∈[m]\D(m) w(ti).

To do so, LAS computes an estimation ŵ(t) of the execution duration w(t) of
each tuple t. Then, it computes the sum of the estimated execution durations of
the tuples assigned to the operator, i.e., Ĉ =

∑
i∈[m]\D(m) ŵ(t). At the arrival of

the i-th tuple, subtracting from Ĉ the (physical) time elapsed from the emission
of the first tuple provides us with an estimation q̂(i) of the queuing latency q(i)
for the current tuple.

To enable this approach, LAS builds a sketch on the operator (i.e., a memory
efficient data structure) that will track the execution duration of the tuples it
processes. Using a sketch allows LAS to efficiently track this data independently
from the amount of possibly different tuples handled by the operator. When
a change in the stream or operator characteristics affects the tuples execution
durations w(t), i.e., the sketch content changes, the operator will forward an
updated version to the load shedder, which will then be able to (again) correctly
estimate the tuples execution durations. This solution does not require any a
priori knowledge on the stream or system and is designed to continuously adapt
to changes in the input stream or on the operator characteristics.

Shedding tuples from an incoming stream has in general a negative impact on
the stream processing output quality. LAS approach is focussed on discarding
tuples whose contribution to operator overload is larger, independently from
their content. This approach is meaningful only under the assumption that the
contribution to the stream output is the same for each input tuple. Applications,
where this assumption does not hold, can be managed in LAS by building up
a model for output degradation caused by shedding and then using this model
to check for any candidate tuple if its contribution to the output quality is
compatible with a given constraint.

3.2 Background

2-Universal Hash Functions—Our algorithm uses hash functions randomly
picked from a 2-universal hash functions family. A collection H of hash functions
h : {1, . . . , n} → {0, . . . , c} is said to be 2-universal if for every two different
items x, y ∈ [n], for any h ∈ H, P{h(x) = h(y)} ≤ 1

c , which is the probability
of collision obtained if the hash function assigned truly random values to any
x ∈ [n]. Carter and Wegman [4] provide an efficient method to build large families
of hash functions approximating the 2-universality property.

Count Min Sketch Algorithm—Cormode and Muthukrishnan have introduced
in [6] the Count Min sketch that provides, for each item t in the input stream
an (ε, δ)-additive-approximation f̂t of the frequency ft. The Count Min sketch
consists of a two-dimensional matrix F of size r × c, where r =

⌈
log 1

δ

⌉
and

c =
⌈

e
ε

⌉
. Each row is associated with a different 2-universal hash function hi :

Load-Aware Shedding in Stream Processing Systems 127

c
1 2 3 4

r
2
1

c
1 2 3 4

W

〈 ,W〉

O

LAS

Ĉ

〈 , W〉

LS
〈tuple〉 | 〈tuple, Ĉ〉

〈 ,W〉

〈Δ〉 A

B

C

D

E

Fig. 1. Load-Aware Shedding design with r = 2 (δ = 0.25), c = 4 (ε = 0.70).

[n] → [c]. When the Count Min algorithm reads sample t from the input stream,
it updates each row: ∀i ∈ [r],F [i, hi(t)] ← F [i, hi(t)] + 1. Thus, the cell value is
the sum of the frequencies of all the items mapped to that cell. Upon request
of ft estimation, the algorithm returns the smallest cell value among the cells
associated with t: f̂t = mini∈[r]{F [i, hi(t)]}.

Fed with a stream of m items, the space complexity of this algorithm is
O(1ε log 1

δ (log m + log n)) bits, while update and query time complexities are
O(log 1/δ). The Count Min algorithm guarantees that the following bound holds
on the estimation accuracy for each item read from the input stream: P{|f̂t −
ft| ≥ ε(m − ft)} ≤ δ, while ft ≤ f̂t is always true.

This algorithm can be easily generalized to provide (ε, δ)-additive-
approximation of point queries on a stream of updates, i.e., a stream where each
item t carries a positive integer update value vt. When the Count Min algorithm
reads the pair 〈t, v〉 from the input stream, the update routine changes as follows:
∀i ∈ [r],F [i, hi(t)] ← F [i, hi(t)] + v.

3.3 LAS Design

The operator stores two Count Min sketch matrices (Fig. 1A): the first one,
denoted as F , tracks the tuple frequencies ft; the second one, denoted as W,
tracks the tuple cumulated execution durations Wt = w(t) × ft. Both Count
Min matrices share the same sizes, controlled by parameters ε and δ, and hash
functions. The latter is the generalized version of the Count Min (Sect. 3.2)
where the update value is the tuple execution duration when processed by the
instance (i.e., v = w(t)). The operator updates (Listing 3.1 lines 24–27) both
matrices after each tuple execution.

The operator is modeled as a finite state machine (Fig. 2) with two states:
START and STABILIZING. The START state lasts as long as the operator
has executed N tuples, where N is a user defined window size parameter. The
transition to the STABILIZING state (Fig. 2A) triggers the creation of a new
snapshot S. A snapshot is a matrix of size r × c where ∀i ∈ [r], j ∈ [c] : S[i, j] =
W[i, j]/F [i, j] (Listing 3.1 lines 15–16). We say that the F and W matrices are

128 N. Rivetti et al.

stable when the relative error η between the previous snapshot and the cur-
rent one is smaller than a parameter μ, i.e.,

η =

∑
∀i,j |S[i, j] − W[i,j]

F [i,j]) |
∑

∀i,j S[i, j]
≤ μ (1)

is satisfied. Then, each time the operator has executed N tuples (Listing 3.1
lines 17–23), it checks whether Eq. 1 is satisfied. (i) In the negative case S is
updated (Fig. 2B). (ii) In the positive case, the operator sends the F and W
matrices to the load shedder (Fig. 1B), resets their content, and moves back to
the START state (Fig. 2C). This approach allows to limit the amount of data
sent from the operator to LS, and resembles what was proposed in [12].

There is a delay between any change in w(t) and when LS receives the
updated F and W matrices. This introduces a skew in the cumulated execution
duration estimated by LS. To compensate this skew, we introduce a synchroniza-
tion mechanism that kicks in whenever the LS receives a new pair of matrices
from the operator.

Load-Aware Shedding in Stream Processing Systems 129

start stabilizing

execute N tuples
create snapshot S

execute N tuples ∧ relative error η ≤ μ
send and W to scheduler and reset them

execute N tuples ∧
relative error η > μ
update snapshot SA

B

C

Fig. 2. Operator finite state machine.

Send RUN

NOP

synhcronization request
sent

received reply
resynchronize Ĉ

received and W
update local and W A

B

C

D

Fig. 3. Load shedder LS finite state machine.

The LS (Fig. 1C) maintains the estimated cumulated execution duration of
the operator Ĉ and a pair of initially empty matrices 〈F ,W〉. LS is modeled
as a finite state machine (Fig. 3) with three states: NOP, SEND, and RUN.
The LS executes the code reported in Listing 3.2. In particular, every time a
new tuple t arrives at the LS, the function shed is executed. The LS starts in
the NOP state where no action is performed (Listing 3.2 lines 15–17). Here we
assume that in this initial phase, i.e., when the topology has just been deployed,
no load shedding is required. When LS receives the first pair 〈F ,W〉 of matrices
(Fig. 3A), it moves into the SEND state and updates its local pair of matrices
(Listing 3.2 lines 7–9). While being in the SEND states, LS sends to O the
current cumulated execution duration estimation Ĉ (Fig. 1D) piggybacking it
with the first tuple t that is not dropped (Listing 3.2 lines 22–24) and moves in
the RUN state (Fig. 3B). This information is used to synchronize the LS with
O and remove the skew between O’s cumulated execution duration C and the
estimation Ĉ at LS. O replies to this request (Fig. 1E) with the difference Δ = C−
Ĉ (Listing 3.1 lines 11–13). When the load shedder receives the synchronization
reply (Fig. 3C) it updates its estimation Ĉ + Δ (Listing 3.2 lines 11–13).

130 N. Rivetti et al.

In the RUN state, the load shedder computes, for each tuple t, the esti-
mated queuing latency q̂(i) as the difference between the operator estimated
execution duration Ĉ and the time elapsed from the emission of the first tuple
(Listing 3.2 line 17). It then checks if the estimated queuing latency for t satisfies
the CheckLatency method (Listing 3.2 line 18).

This method encapsulates the logic for checking if a desired condition on
queuing latencies is violated or not. In this paper, as stated in Sect. 2, we aim
at maintaining the average queuing latency below a threshold τ . Then, Check-
Latency tries to add q̂ to the current average queuing latency (Listing 3.2
lines 28). If the result is larger than τ (i), it simply returns true; otherwise (ii),
it updates its local value for the average queuing latency and returns false (List-
ing 3.2 lines 30–32). Note that different goals, based on the queuing latency, can
be defined and encapsulated within CheckLatency, e.g., maintain the abso-
lute per-tuple queuing latency below τ , or maintain the average queuing latency
calculated on a sliding window below τ [21].

Load-Aware Shedding in Stream Processing Systems 131

Function CheckUtility evaluates the impact the output quality would
incur by dropping t. This function encapsulates optional requirements on the
maximum acceptable quality drop as defined by the semantics of the applica-
tion. Considering that the quality definition is application dependent, we don’t
provide here a specific implementation. However, we assume that, independently
of the implementation, it will return true if the t can be dropped with an accept-
able quality loss.

If both CheckLatency(q̂) and CheckUtility(t) return true (i) the load
shedder returns true as well, i.e., tuple t must be dropped. Otherwise (ii), the
operator estimated execution duration Ĉ is updated with the estimated tuple
execution duration ŵ(t), increased by a factor 1+ ε to mitigate potential under-
estimations3, and the load shedder returns false (Listing 3.2 line 25), i.e., the
tuple must not be dropped. Finally, if the load shedder receives a new pair
〈F ,W〉 of matrices (Fig. 3D), it will update its local pair of matrices and move
to the SEND state (Listing 3.2 lines 7–9).

Now we will discuss the complexity of LAS.4

Theorem 1 (Time complexity of LAS). For each tuple read from the input
stream, the time complexity of LAS for the operator and the load shedder is
O(log 1/δ).

Theorem 2 (Space Complexity of LAS). The space complexity of LAS for
the operator and load shedder is

O
(

1
ε

log
1
δ
(log m + log n)

)

bits.

Theorem 3 (Communication complexity of LAS). The communication
complexity of LAS is of O (

m
N

)
messages and

O
(

m

N

(
1
ε

log
1
δ
(log m + log n) + log m

))

bits.

Note that the communication cost is low with respect to the stream size since
the window size N should be chosen such that N � 1 (e.g., in our tests we have
N = 1024).

4 Theoretical Analysis

This section provides an analysis of the quality of the shedding performed by
LAS in two steps. First, we study the correctness and optimality of the shedding
algorithm, under full knowledge assumption (i.e., the shedding strategy is aware
of the exact execution duration wt for each tuple t). Then, in Sect. 4.2, we

3 This correction factor derives from the fact that ŵ(t) is a (ε, δ)-approximation of
w(t) as shown in Sect. 4.

4 For readability reasons, proofs of these theorems are available in Appendix A.

132 N. Rivetti et al.

provide a probabilistic analysis of the mechanism that LAS uses to estimate the
tuple execution durations. For the sake of simplicity, in both sections, we assume
CheckUtility always returns true. The proofs of the theorem are available in
Appendix A.

4.1 Correctness of LAS

We suppose that tuples cannot be preempted, that is they must be processed
uninterruptedly on the available operator instance. As mentioned before, in this
analysis we assume that the execution duration w(t) is known for each tuple t.
Finally, given our system model, we consider the problem of minimizing d, the
number of dropped tuples, while guaranteeing that the average queuing latency
Q(t) will be upper-bounded by τ , ∀t ∈ σ. The solution must work online, thus
the decision of enqueueing or dropping a tuple has to be made only resorting to
knowledge about tuples received so far in the stream.

Let OPT be the online algorithm that provides the optimal solution to
Problem 1. We denote with Dσ

OPT (resp. dσ
OPT) the set of dropped tuple indices

(resp. the number of dropped tuples) produced by the OPT algorithm fed by
stream σ (cf., Sect. 2). We also denote with dσ

LAS the number of dropped tuples
produced by LAS introduced in Sect. 3.3 fed with the same stream σ.

Theorem 4 (Correctness and Optimality of LAS). For any σ, we have
dσ
LAS = dσ

OPT and ∀t ∈ σ, Q
σ

LAS(t) ≤ τ .

This theorem establishes that LAS is optimal, given that its execution time
is the same as that of the optimal OPT algorithm. Moreover, it is correct in the
sense of the Definition 1 proposed in Sect. 2, namely that its average queuing
latency will not exceed the predetermined threshold τ .

4.2 Execution Time Estimation

In this section, we analyze the approximation made on execution duration w(t)
for each tuple t when the assumption of full knowledge is removed. LAS uses
two matrices, F and W, to estimate the execution time w(t) of each tuple sub-
mitted to the operator. By the Count Min sketch algorithm (cf., Sect. 3.2) and
Listing 3.1, we have that for any t ∈ [n] and each row i ∈ [r],

F [i][hi(t)](m) = ft +
n∑

u=1,u �=t

fu1{hi(u)=hi(t)},

and

W[i][hi(t)](m) = ftwt +
n∑

u=1,u �=t

fuwu1{hi(u)=hi(t)}.

Load-Aware Shedding in Stream Processing Systems 133

Let us denote respectively by wmin and wmax the minimum and the maximum
execution time of the items. For sake of clarity in the following equations, we
denote the ratio

Vi,t = W[i][hi(t)]/F [i][hi(t)].

We have trivially

wmin ≤ Vi,t ≤ wmax.

We define S =
∑n

�=1 w�. We then have

Theorem 5

E{Vi,t} =
S − wt

n − 1
− k(S − nwt)

n(n − 1)

(

1 −
(

1 − 1
k

)n)

.

The proof of this theorem is available in appendix. First, it important to note
that this result does not depend on m. Moreover, we easily understand that the
formula proposed in this last theorem may seem rather uninformative. Thus,
we propose to present a numeric application of it to take the measure of the
potential use of it for an end-user.

We take for instance k = 55, n = 4096 and the distinct values of wu equal
to 1, 2, 3, . . . , 64, each item being present 64 times in the input stream, we get
for t = 1, . . . , 64, E{Vi,t} ∈ [32.08, 32.92]. Note also from above that we have
1 ≤ Vi,t = W[i][hi(t)]/F [i][hi(t)] ≤ 64.

From the Markov inequality, we have, for every x > 0,

P{Vi,t ≥ x} ≤ E{Vi,t}
x

.

By taking x = 64a, with a ∈ [0.6, 1), we obtain

P{Vi,t ≥ 64a} ≤ E{Vi,t}
64a

≤ 33
64a

.

Recall that r denotes the number of rows of the system; we then have by the
independence of the h functions,

P{ min
i=1,...,r

(Vi,t) ≥ 64a}

= (P{Vi,t ≥ 64a})r ≤
(

33
64a

)r

.

By taking for instance a = 3/4 and r = 10, we get

P{ min
i=1,...,r

(Vi,t)) ≥ 48} ≤
(

11
16

)10

≤ 0.024.

134 N. Rivetti et al.

5 Experimental Evaluation

In this section, we evaluate the performance obtained by using LAS to perform
load shedding. We first describe the general setting used to run the tests and
then discuss the results obtained through simulations (Sect. 5.2) and with a
prototype of LAS integrated within Apache Storm (Sect. 5.3).

5.1 Setup

Datasets—In our tests we consider both synthetic and real datasets. Synthetic
datasets are built as streams of integer values (items) representing the values
of the tuple attribute driving the execution duration when processed on the
operator. We consider streams of m = 32,768 tuples, each containing a value
chosen among n = 4,096 distinct items. Streams have been generated using the
Uniform and Zipfian distributions with different values of α ∈ {0.5, 1.0, 1.5, 2.0,
2.5, 3.0}, denoted respectively as Zipf-0.5, Zipf-1.0, Zipf-1.5, Zipf-2.0, Zipf-2.5,
and Zipf-3.0. We define wn as the number of distinct execution duration values
that the tuples can have. These wn values are selected at a constant distance in
the interval [wmin, wmax]. We ran experiments with wn{1, 2, · · · , 64}, however,
due to space constraints, we only report results for wn = 64, and with wmax ∈
{0.1, 0.2 · · · , 51.2} ms. Tests performed with different values for wn did not show
unexpected deviations from what is reported in this section. Unless otherwise
specified, the frequency distribution is Zipf-1.0 and the stream parameters are
set to wn = 64, wmin = 0.1 ms and wmax = 6.4 ms; this means that the wn = 64
execution durations are picked in the set {0.1, 0.2, · · · , 6.4} ms.

Let W be the average execution duration of the stream tuples, then the
stream maximum theoretical input throughput sustainable by the setup is equal
to 1/W . When fed with an input throughput smaller than 1/W the system will
be over-provisioned (i.e., possible underutilization of computing resources). Con-
versely, an input throughput larger than 1/W will result in an underprovisioned
system. We refer to the ratio between the maximum theoretical input throughput
and the actual input throughput as the percentage of underprovisioning that,
unless otherwise stated, was set to 25%.

To generate 100 different streams, we randomize the association between the
wn execution duration values and the n distinct items: for each of the wn exe-
cution duration values, we pick uniformly at random n/wn different values in
[n] that will be associated to that execution duration value. This means that
the 100 different streams we use in our tests do not share the same associa-
tion between execution duration and item as well as the association between
frequency and execution duration (thus each stream has also a different average
execution duration W). Each of these permutations has been run with 50 dif-
ferent seeds to randomize the stream ordering and the generation of the hash
functions used by LAS. This means that each single experiment reports the mean
outcome of 5,000 independent runs.

We considered two types of constraints defined on the queuing latency:

Load-Aware Shedding in Stream Processing Systems 135

ABS(τ): requires that the queuing latency per tuple does not exceed τ millisec-
onds: ∀i ∈ [m] \ D, q(i) ≤ τ .

AVG(τ): requires that the total average queuing latency does not exceed τ mil-
liseconds: ∀i ∈ [m] \ D,Q(i) ≤ τ .

While not being a realistic requirement, the straightforwardness of the ABS(τ)
constraint allowed us to grasp a better insight of the mechanisms of the algo-
rithm. However, in this section, we only show results for the AVG(6.4) constraint
as is it a much more sensible requirement with respect to a real setting.

The LAS operator window size parameter N , the tolerance parameter μ
and the number of rows of the F and W matrices δ were set to N = 1024,
μ = 0.05 and δ = 0.1 (i.e., r = 4 rows) respectively. By default, the LAS precision
parameter (i.e., the number of columns of the F and W matrices) was set to
ε = 0.05 (i.e., c = 54 columns), however in one of the test we evaluated LAS
performance using several values: ε ∈ [0.001, 1.0]. To evaluate LAS performance
without other external factors, in all our experiments we set CheckUtility to
always return true.

For the real data, we used a dataset containing a stream of preprocessed
tweets related to the 2014 European elections. Among other information, the
tweets are enriched with a field mention containing the entities mentioned in
the tweet. These entities can be easily classified into politicians, media, and
others. We consider the first 500,000 tweets, mentioning roughly n = 35,000
distinct entities and where the most frequent entity has an empirical probability
of occurrence equal to 0.065.

Tested Algorithms—We compare LAS performance against three other algo-
rithms:

Base Line. The Base Linealgorithm takes as input the percentage of under-
provisioning and drops at random an equivalent fraction of the tuples.

Straw-Man. The Straw-Manalgorithm uses the same shedding strategy of LAS,
however, it uses the average execution duration W as the estimated execution
duration ŵ(t) for each tuple t.

Full Knowledge. The Full Knowledgealgorithm uses the same shedding strat-
egy of LAS, however, it feeds it with the exact execution duration wt for each
tuple t as they were provided by an omniscient oracle.

Evaluation Metrics—The evaluation metrics we used are:

– the dropped ratio: α = d/m.
– the ratio of tuples dropped by algorithm alg with respect to Base Line:

λ = (dalg − dBase Line)/dBase Line. In the following, we refer to this metric as
shedding ratio.

– the average queuing latency: Q =
∑

i∈[m]\D q(i)/(m − d).
– the average completion latency, i.e., the average time it takes for a tuple

from the moment it is injected by the source in the topology, till the moment
operator O concludes its processing.

136 N. Rivetti et al.

Whenever applicable we provide the maximum, mean, and minimum figures over
the 5,000 runs.

5.2 Simulation Results

In this section, we analyze, through a simulator built ad-hoc for this study, the
sensitivity of LAS while varying several characteristics of the input load. The
simulator faithfully simulates the execution of LAS and the other algorithms
and simulates the execution of each tuple t on O doing busy waiting for w(t)
milliseconds.

(a) Average queuing latency Q

(b) Dropped ratio α

Fig. 4. LAS performance varying the amount of underprovisioning.

Input Throughput—Figure 4 shows the average queuing latency Q (top) and
dropped ratio α (bottom) as a function of the percentage of under-provisioning
ranging from 90% to −10% (i.e., the system is 10% overprovisioned with respect

Load-Aware Shedding in Stream Processing Systems 137

(a) Average queuing latency Q

(b) Shedding ratio λ

(a) Average queuing latency Q

(b) Shedding ratio λ

Fig. 5. LAS performance varying the threshold τ .

to the average input throughput). As expected, in this latter case all algo-
rithms perform at the same level as load shedding is superfluous. In all the
other cases both Base Lineand Straw-Mando not shed enough load and induce
a huge amount of exceeding queuing latency. On the other hand, LAS average
queuing latency is quite close to the required value of τ = 6.4 ms, even if this
threshold is violated in some of the tests. Finally, Full Knowledgealways abide by
the constraint and is even able to produce a much lower average queuing latency
while dropping no more tuples that the competing solutions. Comparing the two
plots we can see that the resulting average queuing latency is strongly linked to
which tuples are dropped. In particular, Base Lineand Straw-Manshed the same
amount of tuples, LAS slightly more and Full Knowledgeis in the middle. This
result corroborates our initial claim that dropping tuples based on the load they
impose allows designing more effective load shedding strategies.

138 N. Rivetti et al.

(a) Average queuing latency Q

(b) Shedding ratio λ

Fig. 6. LAS performance varying the maximum execution duration value wmax.

Threshold τ—Figure 5 shows the average queuing latency Q (top) and shedding
ratio λ (bottom) as a function of the τ threshold. Notice that with τ = 0 we do
not allow any queuing, while with τ = 6.4 we allow at least a queuing latency
equal to the maximum execution duration wmax. In other words, we believe
that with τ < 6.4 the constraint is strongly conservative, thus representing a
difficult scenario for any load shedding solution. Since Base Linedoes not take
into account the latency constraint τ it always drops the same amount of tuples
and achieves a constant average queueing latency. For this reason, Fig. 5b reports
the shedding ratio λ achieved by Full Knowledge, LAS, and Straw-Managainst
Base Line. The horizontal segments in Fig. 5b represent the distinct values for
τ . As the graph shows Full Knowledgealways perfectly approaches the latency
threshold, but for τ ≥ 12.8 where it is slightly smaller. Straw-Manperforms
reasonably well when the threshold is very small, but this is a consequence
of the fact that it drops a large number of tuples when compared with Base
Lineas can be seen by Fig. 5b. However, as τ becomes larger (i.e., τ ≥ 0.8)

Load-Aware Shedding in Stream Processing Systems 139

(a) Average queuing latency Q

(b) Shedding ratio λ

Fig. 7. LAS performance varying the frequency probability distributions.

Straw-Manaverage queuing latency quickly grows and approaches the one from
Base Lineas it starts to drop the same amount of tuples. LAS, in the same
setting, performs largely better, with the average queuing latency that for large
values of τ approaches the one provided by Full Knowledge. While delivering
this performance LAS drops a slightly larger amount of tuples compared to
Full Knowledge, to account for the approximation in calculating tuple execution
durations.

Maximum Execution Duration Value wmax—Figure 6 shows the average
queuing latency Q (top) and dropped ratio λ (bottom) as a function of the
maximum execution duration value wmax. Notice that in this test we varied
the value for τ setting it equal to wmax. Accordingly, Fig. 6a shows horizontal
lines that mark the different thresholds τ . As the two graphs show, the behavior
for LAS is rather consistent while varying wmax; this means that LAS can be
employed in widely different settings where the load imposed by tuples in the

140 N. Rivetti et al.

(a) Average queuing latency Q

(b) Dropped ratio α

Fig. 8. LAS performance varying the precision parameter ε.

operator is not easily predictable. The price paid for this flexibility is in the
shedding ratio that, as shown in Fig. 6b, is always positive.

Frequency Probability Distributions—Figure 7 shows the average queuing
latency Q (top) and dropped ratio λ (bottom) as a function of the input fre-
quency distribution. As Fig. 7a shows Straw-Manand Base Lineperform invari-
ably bad with any distribution. The span between the best and worst perfor-
mance per run increases as we move from a uniform distribution to more skewed
distributions as the latter may present extreme cases where tuple latencies match
their frequencies in a way that is particularly favorable or unfavorable for these
two solutions. Conversely, LAS performance improves the more the frequency
distribution is skewed. This result stems from the fact that the sketch data
structures tracing tuple execution durations perform at their best on strongly
skewed distribution, rather than on uniform ones. This result is confirmed by
the shedding ratio (Fig. 7b) that decreases, on average, as α for the distribution
increases.

Load-Aware Shedding in Stream Processing Systems 141

Fig. 9. Simulator time-series.

Precision Parameter ε—Figure 8 shows the average queuing latency Q (top)
and dropped ratio α (bottom) as a function of the precision parameter ε. This
parameter controls the trade-off between the precision and the space complexity
of the sketches maintained by LAS. As a consequence, it has an impact on
LAS performance. In particular, for large values of ε (left side of the graph), the
sketch data structures are extremely small, thus the estimation ŵ(t) is extremely
unreliable. The corrective factor 1 + ε (see Listing 3.2 line 21) in this case is so
large that it pushes LAS to largely overestimate the execution duration of each
tuple. As a consequence LAS drops a large number of tuples while delivering
average queuing latencies that are close to 0. By decreasing the value of ε (i.e.,
ε ≤ 0.1), sketches become larger and their estimation more reliable. In this
configuration LAS performs at its best delivering average queuing latencies that
are always below or equal to the threshold τ = 6.4 while dropping a smaller
number of tuples. The dotted lines in both graphs represent the performance of
Full Knowledgeand are provided as a reference.

142 N. Rivetti et al.

Time Series—Figure 9 shows the average queuing latency Q (top) and dropped
ratio α (bottom) as the stream unfolds (x-axis). Both metrics are computed on
a jumping window of 4.000 tuples, i.e., each dot represents the mean queuing
latency Q or the dropped ratio α computed on the previous 4.000 tuples. Notice
that the points for Straw-Man, LAS and Full Knowledgerelated to the same
value of the x-axis are artificially shifted to improve readability. In this test,
we set τ = 64 ms. The input stream is made of 140, 000 tuples and is divided
into phases, from a A through G, each lasting 20, 000 tuples. At the beginning
of each phase we inject an abrupt change in the input stream throughput and
distribution, as well as in w(t) as follows:

phase A: the input throughput is set according to the provisioning (i.e., 0%
underprovisioning);

phase B: the input throughput is increased to induce 50% of underprovisioning;
phase C: same as phase A;
phase D: we swap the most frequent tuple t with a less frequent tuple t′ such

that w(t′) = wmax, inducing an abrupt change in the tuple values frequency
distribution and in the average execution duration W ;

phase E: the input throughput is reduced to induce 50% of overprovisioning;
phase F: the input throughput is increased back to 0% underprovisioning and

we also double the execution duration w(t) for each tuple, simulating a change
in the operator resource availability;

phase G: same as phase A.

As the graphs show, during phase A the queuing latencies of LAS and
Straw-Mandiverge: while LAS quickly approaches the performance provided by
Full Knowledge, Straw-Manaverage queuing latencies quickly grow. In the same
timespan, both Full Knowledgeand LAS drop slightly more tuples than Straw-
Man. All the three solutions correctly manage phase B: their average queuing
latencies see slight changes, while, correctly, they start to drop larger amounts
of tuples to compensate for the increased input throughput. The transition to
phase C brings the system back in the initial configuration, while in phase D the
change in the tuple frequency distribution is managed very differently by each
solution: both Full Knowledgeand LAS compensate this change by starting to
drop more tuples, but still maintaining the average queuing latency close to the
desired threshold τ . Conversely, Straw-Mancannot handle such change, and its
performance incurs a strong deterioration as it drops still the same amount of
tuples. In phase E the system is strongly overprovisioned, and, as it was expected,
all three solutions perform equally well as no tuple needs to be dropped. The
transition to phase F is extremely abrupt as the input throughput is brought
back to the equivalent of 0% of underprovisioning, but the cost to handle each
tuple on the operator is doubled. At the beginning of this phase, both Straw-
Manand LAS perform badly, with queuing latencies that are largely above τ .
However, while the phase unfolds LAS quickly updates its data structures and
converges toward the given threshold, while Straw-Mandiverges as tuples con-
tinue to be enqueued on the operator worsening the bottleneck effect. Bringing
back the tuple execution durations to the initial values in phase G has little

Load-Aware Shedding in Stream Processing Systems 143

Fig. 10. Prototype time-series

effect on LAS, while the bottleneck created by Straw-Mancannot be recovered
as it continues to drop an insufficient number of tuples.

5.3 Prototype

To evaluate the impact of LAS on real applications we implemented it as a
bolt within the Apache Storm [27] framework. We have deployed our cluster on
Microsoft Azure cloud service, using a Standard Tier A4 VM (4 cores and 7 GB
of RAM) for each worker node, each with a single available slot.

The test topology is made of a source (spout) and two operators (bolts) LS
and O. The source generates (reads) the synthetic (real) input stream and emits
the tuples consumed by bolt LS. Bolt LS uses either Straw-Man, LAS or Full
Knowledgeto perform the load shedding on its outbound data stream consumed
by bolt O. Finally operator O implements the logic.

144 N. Rivetti et al.

Fig. 11. Prototype use case

Time Series—In this test we ran the simulator using the same synthetic load
used for the time series discussed in the previous section. The goal of this test
is to show how our simulated tests capture the main characteristic of a real run.
Notice, however, that plots in Fig. 10 report the average completion latency per
tuple instead of the queuing latency. This is due to the difficulties in correctly
measuring queuing latencies in Storm. Furthermore, the completion latency is,
from a practical point of view, a more significant metric as it can be directly
perceived on the output. From this standpoint, the results, depicted in Fig. 10,
report the same qualitative behavior already discussed with Fig. 9. Two main
differences are worth to be discussed: firstly, the behaviors exposed by the shed-
ding solution in response to phase transitions in the input load are in general
shifted in time (with respect to the same effects reported in Fig. 9) as a conse-
quence of the general overhead induced by the software stack. Secondly, several
data points for Straw-Manare missing in phases E and G. This is a consequence
of failed tuples that start to appear as soon as the number of enqueued tuples is

Load-Aware Shedding in Stream Processing Systems 145

too large to be managed by Storm. While this may appear as a sort of “implicit”
load shedding imposed by Storm, we decided not to consider these tuples in the
metric calculation as they have not been dropped as a consequence of a decision
taken by the Straw-Manload shedder.

Simple Application with Real Dataset—In this test we pretended to run a
simple application on a real dataset: for each tweet of the twitter dataset men-
tioned in Sect. 5.1 we want to gather some statistics and decorate the outgoing
tuples with some additional information. However, the statistics and additional
information differ depending on which class the entities mentioned in each tweet
belong. We assumed that this leads to a long execution duration for media (e.g.,
possibly caused by access to an external DB to gather historical data), an aver-
age execution duration for politicians and a fast execution duration for others
(e.g., possibly because these tweets are not decorated). We modeled execution
durations with 25 ms, 5 ms, and 1 ms of busy waiting respectively. Each of the
500, 000 tweets may contain more than one mention, leading to wn = 110 dif-
ferent execution duration values from wmin = 1 ms to wmax = 152 ms, among
which the most frequent (36% of the stream) execution duration is 1 ms. The
average execution time W is equal to 9.7 ms, the threshold τ is set to 32 ms and
the under-provisioning is set to 0%.

Figure 11 reports the average completion latency (top) and dropped ratio
λ (bottom) as the stream unfolds. As the plots show, LAS provides completion
latencies that are extremely close to Full Knowledge, dropping a similar amount
of tuples. Conversely, Straw-Mancompletion latencies are at least one order of
magnitude larger. This is a consequence of the fact that in the given setting
Straw-Mandoes not drop tuples, while Full Knowledgeand LAS drop on average
a steady amount of tuples ranging from 5% to 10% of the stream. These results
confirm the effectiveness of LAS in keeping close control on queuing latencies
(and thus provide more predictable performance) at the cost of dropping a frac-
tion of the input load.

6 Related Work

Aurora [1] is the first stream processing system where shedding has been pro-
posed as a technique to deal with bursty input traffic. Aurora employs two differ-
ent kinds of shedding, the first and better detailed being random tuple dropping
at strategic places in the application topology to satisfy QoS constraints.

A large number of works proposed solutions aimed at reducing the impact of
load shedding on the quality of the system output. These solutions fall under the
name of semantic load shedding, as drop policies are linked to the significance of
each tuple with respect to the computation results. Tatbul et al. first introduced
in [26] the idea of semantic load shedding. Babcock et al. in [2] provided an
approach tailored to aggregation queries. Tatbul et al. in [25] ported the concept
of semantic load shedding in the realm of DSPS. GrubJoin [8] is a solution
tailored for shedding load in multiway windowed stream joins while minimizing
output degradation. Finally, Kalyvianaki et al. in [14] contextualized the problem

146 N. Rivetti et al.

to the realm of federated DSPS, and provided a solution for shedding fairness.
Several solutions assume that the utility of an event depends on the event type
and its frequency in the input event stream [26], i.e. they assume a static model
for quality degradation; other works propose solutions to build and maintain at
runtime a model for event utility [16,18]. All the previous works are based on
the same goal, i.e., to reduce the impact of load shedding on the semantics of
the queries deployed in the stream processing system, while avoiding overloads.
We believe that avoiding excessive degradation in the performance of the DSPS
and in the semantics of the deployed query output are two orthogonal facets
of the load shedding problem. In our work, we did not consider the latter and
focused on the former while including in our solution the possibility to limit
output quality degradation.

A different approach has been proposed in [20], with a system that builds
summaries of dropped tuples to later produce approximate evaluations of queries.
The idea is that such approximate results may provide users with useful infor-
mation about the contribution of dropped tuples. A similar approach is adopted
in StreamApprox [19] where the authors designed an online stratified reservoir
sampling algorithm to produce approximate output with rigorous error bounds.
A similar approach was also adopted in [28].

A classical control theory approach based on a closed control loop with feed-
back has been considered in [13,29,30]. In all these works the focus is on the
design of the loop controller, while data is shed using a simple random selection
strategy. In all these cases the goal is to reactively feed the stream processing
engine system with a bounded tuple rate, without proactively considering how
much load these tuples will generate.

Finally, a few works have recently appeared that address the problem of shed-
ding load in Complex Event Processing (CEP) applications [9,10,22,23,31]. While
these solution leverage techniques similar to those discussed in the previous para-
graphs, they provide specific adaptations to the CEP context where intput load
can be shed both in the form of events and partial pattern matches.

7 Conclusions

In this paper, we introduced Load-Aware Shedding (LAS), a novel solution for
load shedding in DSPS. LAS exploits a characteristic of many stream-based
applications, i.e., the fact that load on operators depends both on the input rate
and on the content of tuples, to smartly drop tuples and avoid the appearance
of performance bottlenecks. In particular, LAS leverages sketch data structures
to efficiently collect at runtime information on the operator load characteristics
and then use this information to implement a load shedding policy aimed at
maintaining the average queuing latencies close to a given threshold. Through
a theoretical analysis, we proved that LAS is an (ε, δ)-approximation of the
optimal algorithm. Furthermore, we extensively tested LAS both in a simulated
setting, studying its sensitivity to changes of several characteristics of the input
load, and with a prototype implementation integrated within the Apache Storm

Load-Aware Shedding in Stream Processing Systems 147

DSPS. Our tests confirm that by taking into account the specific load imposed
by each tuple, LAS can provide performance that closely approaches a given
target, while dropping a limited number of tuples.

A Theoretical Analysis

Data streaming algorithms strongly rely on pseudo-random functions that map
elements of the stream to uniformly distributed image values to keep the essential
information of the input stream, regardless of the stream elements frequency
distribution.

This appendix extends with the proofs the theoretical analysis of the quality
of the shedding performed by LAS in two steps provided in Sect. 4 as well as
the complexities presented in Sect. 3.

First we study the correctness and optimality of the shedding algorithm,
under full knowledge assumption (i.e., the shedding strategy is aware of the
exact execution duration wt for each tuple t). Then, in Appendix A.3, we provide
a probabilistic analysis of the mechanism that LAS uses to estimate the tuple
execution durations.

A.1 Time, Space and Communication Complexities

In this section we provide the proofs of the time, space and communication
complexities presented in Sect. 3.

Theorem 1 [Time complexity of LAS]. For each tuple read from the input
stream, the time complexity of LAS for the operator and the load shedder is
O(log 1/δ).

Proof. By Listing 3.1, for each tuple read from the input stream, the algorithm
increments an entry per row of both the F and W matrices. Since each has
log 1/δ rows, the resulting update time complexity is O(log 1/δ). By Listing 3.2,
for each submitted tuple, the scheduler has to retrieve the estimated execution
duration for the submitted tuple. This operation requires to read entry per row
of both the F and W matrices. Since each has log 1/δ rows, the resulting query
time complexity is O(log 1/δ).

Theorem 2 [Space Complexity of LAS]. The space complexity of LAS for the
operator and load shedder is O (

1
ε log 1

δ (log m + log n)
)

bits.

Proof. The operator stores two matrices of size log(1δ) × e
ε of counters of size

log m. In addition, it also stores a hash function with a domain of size n. Then
the space complexity of LAS on the operator is O (

1
ε log 1

δ (log m + log n)
)

bits.
The load shedder stores the same matrices, as well as a scalar. Then the space
complexity of LAS on the load shedder is also O (

1
ε log 1

δ (log m + log n)
)

bits.

148 N. Rivetti et al.

Theorem 3 [Communication complexity of LAS]. The communication com-
plexity of LAS is of O (

m
N

)
messages and O (

m
N

(
1
ε log 1

δ (log m + log n) + log m
))

bits.

Proof. After executing N tuples, the operator may send the F and W matrices
to the load shedder.

This generates a communication cost of O (
m
N

1
ε log 1

δ (log m + log n)
)

bits via
O (

m
N

)
messages. When the load shedder receives these matrices, the synchro-

nization mechanism kicks in and triggers a round trip communication (half of
which is piggybacked by the tuples) with the operator. The communication cost
of the synchronization mechanism is O (

m
N

)
messages and O (

m
N log m

)
bits.

Note that the communication cost is low with respect to the stream size since
the window size N should be chosen such that N � 1 (e.g., in our tests we have
N = 1024).

A.2 Correctness of LAS

We suppose that tuples cannot be preempted, that is they must be processed
uninterruptedly on the available operator instance. As mentioned before, in this
analysis we assume that the execution duration w(t) is known for each tuple t.
Finally, given our system model, we consider the problem of minimizing d, the
number of dropped tuples, while guaranteeing that the average queuing latency
Q(t) will be upper-bounded by τ , ∀t ∈ σ. The solution must work online, thus
the decision of enqueueing or dropping a tuple has to be made only resorting to
knowledge about tuples received so far in the stream.

Let OPT be the online algorithm that provides the optimal solution to Prob-
lem 1. We denote with Dσ

OPT (resp. dσ
OPT) the set of dropped tuple indices (resp.

the number of dropped tuples) produced by the OPT algorithm fed by stream σ
(cf., Sect. 2). We also denote with dσ

LAS the number of dropped tuples produced
by LAS introduced in Sect. 3.3 fed with the same stream σ.

Theorem 4 [Correctness and Optimality of LAS]. For any σ, we have dσ
LAS =

dσ
OPT and ∀t ∈ σ, Q

σ

LAS(t) ≤ τ .

Proof. Given a stream σ, consider the sets of indices of tuples dropped by respec-
tively OPT and LAS, namely Dσ

OPT and Dσ
LAS. Below, we prove by contradiction

that dσ
LAS = dσ

OPT .
Assume that dσ

LAS > dσ
OPT . Without loss of generality, we denote i1, . . . , idσ

LAS

the ordered indices in Dσ
LAS , and j1, . . . , jdσ

OP T
the ordered indices in Dσ

OPT .
Let us define a as the largest natural integer such that ∀
 ≤ a, i� = j� (i.e.,
i1 = j1, . . . , ia = ja). Thus, we have ia+1 �= ja+1.

– Assume that ia+1 < ja+1. Then, according to Sect. 3.3, the ia+1-th tuple of
σ has been dropped by LAS as the method Check returned true. Thus, as
ia+1 /∈ Dσ

OPT , the OPT run has enqueued this tuple violating the constraint
τ . But this is in contradiction with the definition of OPT.

Load-Aware Shedding in Stream Processing Systems 149

– Assume now that ia+1 > ja+1. The fact that LAS does not drop the ja+1

tuple means that Check returns false, thus that tuple does not violate the
constraint on τ . However, as OPT is optimal, it may drop some tuples for
which Check is false, just because this allows it to drop an overall lower
number of tuples. Therefore, if it drops this ja+1 tuple, it means that OPT
knows the future evolution of the stream and takes a decision on this knowl-
edge. But, by assumption, OPT is an online algorithm, and the contradiction
follows.

Then, we have that ia+1 = ja+1. By induction, we iterate this reasoning for
all the remaining indices from a+1 to dσ

OPT . We then obtain that Dσ
OPT ⊆ Dσ

LAS .
As by assumption dσ

OPT < dσ
LAS , we have that ∃
 ∈ Dσ

LAS \ Dσ
OPT such that

 has been dropped by LAS. This means that, with the same tuple index prefix
shared by OPT and LAS, the method Check returned true when evaluated on

, and OPT would violate the condition on τ by enqueuing it. That leads to a
contradiction. Then, Dσ

LAS \ Dσ
OPT = ∅, and dσ

OPT = dσ
LAS .

Furthermore, by construction, LAS never enqueues a tuple that violates the
condition on τ because Check would return true.

Consequently, ∀t ∈ σ,Q
σ

LAS(t) ≤ τ , which concludes the proof.

A.3 Execution Time Estimation

In this section, we analyze the approximation made on execution duration w(t)
for each tuple t when the assumption of full knowledge is removed. LAS uses
two matrices, F and W, to estimate the execution time w(t) of each tuple sub-
mitted to the operator. By the Count Min sketch algorithm (cf., Sect. 3.2) and
Listing 3.1, we have that for any t ∈ [n] and for each row i ∈ [r],

F [i][hi(t)](m) =
n∑

u=1

fu1{hi(u)=hi(t)}

= ft +
n∑

u=1,u �=t

fu1{hi(u)=hi(t)}.

and

W[i][hi(t)](m) = ftwt +
n∑

u=1,u �=t

fuwu1{hi(u)=hi(t)},

Let us denote respectively by wmin and wmax the minimum and the maximum
execution time of the items. We have trivially

wmin ≤ W[i][hi(t)]
F [i][hi(t)]

≤ wmax.

We define S =
∑n

�=1 w�. We then have

150 N. Rivetti et al.

Theorem 5

E{W[i][hi(t)]/F [i][hi(t)]}

=
S − wt

n − 1
− k(S − nwt)

n(n − 1)

(

1 −
(

1 − 1
k

)n)

.

It important to note that this result does not depend on m.

Proof. For any t = 1, . . . , n,
 = 0, . . . , n − 1 and A ∈ U�(t), we introduce the
event B(t,
, A) defined by

B(t,
,A) = {hi(u) = hi(t), ∀u ∈ A and
hi(u) �= hi(t), ∀u ∈ {1, . . . , n} \ (A ∪ {t})}.

From the independence of the hash function hi, we have

P{B(t,
, A)} =
(

1
k

)� (

1 − 1
k

)n−1−�

.

Let us consider the ratio

Vi,t = W[i][hi(t)]/F [i][hi(t)].

For any i = 0, . . . , n, we define

R�(t) =
{

ftwt +
∑

u∈A fuwu

ft +
∑

u∈A fu
, A ∈ U�(t)

}

.

We have R0(t) = {wt}. We introduce the set R(t) defined by

R(t) =
n−1⋃

�=0

R�(t).

Thus with probability 1,

W[i][hi(t)]/F [i][hi(t)] ∈ R(t).

Let x ∈ R(t). We have

P{Vi,t = x}

=
n−1∑

�=0

∑

A∈U�(t)

P{Vi,t = x | B(t,
, A)}P{B(t,
, A)}

=
n−1∑

�=0

(
1
k

)� (

1 − 1
k

)n−1−� ∑

A∈U�(t)

1{x=X(t,A)}.

Load-Aware Shedding in Stream Processing Systems 151

where X(t, A) is the fraction:

X(t, A) =
ftwt +

∑
u∈A fuwu

ft +
∑

u∈A fu

Thus

E{Vi,t}

=
n−1∑

�=0

(
1
k

)� (

1 − 1
k

)n−1−� ∑

A∈U�(t)

∑

x∈R(t)

x1{x=X(t,A)}

=
n−1∑

�=0

(
1
k

)� (

1 − 1
k

)n−1−� ∑

A∈U�(t)

X(t, A).

Let us assume that all the fu are equal, that is for each u, we have fu = m/n.
The experimental evaluation tends to show that the worst case scenario of input
streams is exhibited when all the items show the same number of occurrences in
the input stream. We get

P{Vi,t = x}

=
n−1∑

�=0

(
1
k

)� (

1 − 1
k

)n−1−� ∑

A∈U�(t)

1{x=
wt+

∑
u∈A wu

�+1 }

that concludes the proof. ��

References

1. Abadi, D.J., et al.: Aurora: a new model and architecture for data stream man-
agement. Int. J. Very Large Data Bases (VLDB J.) 12(2), 120–139 (2003)

2. Babcock, B., Datar, M., Motwani, R.: Load shedding for aggregation queries over
data streams. In: Proceedings of the 20th International Conference on Data Engi-
neering (ICDE 2004), pp. 350–361. IEEE (2004)

3. Borkowski, M., Hochreiner, C., Schulte, S.: Minimizing cost by reducing scaling
operations in distributed stream processing. Proc. VLDB Endow. 12(7), 724–737
(2019)

4. Carter, J.L., Wegman, M.N.: Universal classes of hash functions. J. Comput. Syst.
Sci. 18, 143–154 (1979)

5. Cormode., G.: Sketch techniques for approximate query processing. In: Synposes
for Approximate Query Processing: Samples, Histograms, Wavelets and Sketches,
Foundations and Trends in Databases. NOW Publishers (2011)

6. Cormode, G., Muthukrishnan, S.: An improved data stream summary: the count-
min sketch and its applications. J. Algorithms 55, 58–75 (2005)

7. Dobra, A., Garofalakis, M., Gehrke, J., Rastogi, R.: Sketch-based multi-query
processing over data streams. In: Bertino, E., et al. (eds.) EDBT 2004. LNCS,
vol. 2992, pp. 551–568. Springer, Heidelberg (2004). https://doi.org/10.1007/978-
3-540-24741-8 32

https://doi.org/10.1007/978-3-540-24741-8_32
https://doi.org/10.1007/978-3-540-24741-8_32

152 N. Rivetti et al.

8. Gedik, B., Wu, K., Yu, P.S., Liu, L.: GrubJoin: an adaptive, multi-way, windowed
stream join with time correlation-aware CPU load shedding. IEEE Trans. Knowl.
Data Eng. 19(10), 1363–1380 (2007)

9. He, Y., Barman, S., Naughton, J.F.: On load shedding in complex event processing.
arXiv preprint arXiv:1312.4283 (2013)

10. He, Y., Barman, S., Naughton, J.F.: On load shedding in complex event processing.
In: Proceedings of the 17th International Conference on Database Theory (ICDT
2014), pp. 213–224 (2014). OpenProceedings.org

11. Heinze, T., Aniello, L., Querzoni, L., Jerzak, Z.: Cloud-based data stream pro-
cessing. In: Proceedings of the 8th ACM International Conference on Distributed
Event-Based Systems (DEBS 2014), pp. 238–245. ACM (2014)

12. Ilarri, S., Wolfson, O., Mena, E., Illarramendi, A., Sistla, P.: A query processor
for prediction-based monitoring of data streams. In: Proceedings of the 12th Inter-
national Conference on Extending Database Technology: Advances in Database
Technology, EDBT 2009, pp. 415–426. Association for Computing Machinery, New
York (2009)

13. Kalyvianaki, E., Charalambous, T., Fiscato, M., Pietzuch, P.: Overload manage-
ment in data stream processing systems with latency guarantees. In: 7th IEEE
International Workshop on Feedback Computing (Feedback Computing 2012)
(2012)

14. Kalyvianaki, E., Fiscato, M., Salonidis, T., Pietzuch, P.: THEMIS: fairness in fed-
erated stream processing under overload. In: Proceedings of the 2016 International
Conference on Management of Data, pp. 541–553. ACM (2016)

15. Kammoun, A.: Enhancing stream processing and complex event processing sys-
tems. Ph.D. thesis, Université Jean Monnet, Saint-Etienne (2019)

16. Katsipoulakis, N.R., Labrinidis, A., Chrysanthis, P.K.: Concept-driven load shed-
ding: reducing size and error of voluminous and variable data streams. In: 2018
IEEE International Conference on Big Data (Big Data), pp. 418–427 (2018)

17. Muthukrishnan, S.: Data Streams: Algorithms and Applications. Now Publishers
Inc. (2005)

18. Olston, C., Jiang, J., Widom, J.: Adaptive filters for continuous queries over dis-
tributed data streams. In: Proceedings of the 2003 ACM SIGMOD International
Conference on Management of Data, SIGMOD 2003, pp. 563–574. Association for
Computing Machinery, New York (2003)

19. Quoc, D.L., Chen, R., Bhatotia, P., Fetzer, C., Hilt, V., Strufe, T.: StreamApprox:
approximate computing for stream analytics. In: Proceedings of the 18th ACM/I-
FIP/USENIX Middleware Conference, Middleware 2017, pp. 185–197. Association
for Computing Machinery, New York (2017)

20. Reiss, F., Hellerstein, J.M.: Data triage: an adaptive architecture for load shedding
in TelegraphCQ. In: Proceedings of the 21st International Conference on Data
Engineering (ICDE 2005), pp. 155–156. IEEE (2005)

21. Rivetti, N., Busnel, Y., Mostefaoui, A.: Efficiently summarizing data streams over
sliding windows. In: Proceedings of the 14th IEEE International Symposium on
Network Computing and Applications (NCA 2015), Boston, USA, Best Student
Paper Award, September 2015

22. Slo, A., Bhowmik, S., Flaig, A., Rothermel, K.: pSPICE: partial match shedding
for complex event processing. In: 2019 IEEE International Conference on Big Data
(Big Data), pp. 372–382. IEEE (2019)

23. Slo, A., Bhowmik, S., Rothermel, K.: eSPICE: probabilistic load shedding from
input event streams in complex event processing. In: Proceedings of the 20th Inter-
national Middleware Conference, pp. 215–227 (2019)

http://arxiv.org/abs/1312.4283
http://www.OpenProceedings.org

Load-Aware Shedding in Stream Processing Systems 153

24. Stanoi, I., Mihaila, G., Palpanas, T., Lang, C.: WhiteWater: distributed processing
of fast streams. IEEE Trans. Knowl. Data Eng. 19(9), 1214–1226 (2007)

25. Tatbul, N., Çetintemel, U., Zdonik, S.: Staying fit: efficient load shedding tech-
niques for distributed stream processing. In: Proceedings of the 33rd International
Conference on Very Large Data Bases, pp. 159–170. VLDB Endowment (2007)

26. Tatbul, N., Çetintemel, U., Zdonik, S., Cherniack, M., Stonebraker, M.: Load shed-
ding in a data stream manager. In: Proceedings of the 29th International Confer-
ence on Very Large Data Bases (VLDB 2003), pp. 309–320. VLDB Endowment
(2003)

27. The Apache Software Foundation. Apache Storm. http://storm.apache.org
28. Tok, W.H., Bressan, S., Lee., M.-L.: A stratified approach to progressive approx-

imate joins. In: Proceedings of the 11th International Conference on Extending
Database Technology: Advances in Database Technology, EDBT 2008, pp. 582–
593. Association for Computing Machinery, New York (2008)

29. Tu, Y.-C., Liu, S., Prabhakar, S., Yao, B.: Load shedding in stream databases: a
control-based approach. In: Proceedings of the 32nd International Conference on
Very Large Data Bases (VLDB 2006), pp. 787–798. VLDB Endowment (2006)

30. Zhang, Y., Huang, C., Huang, C.: A novel adaptive load shedding scheme for data
stream processing. In: Future Generation Communication and Networking (FGCN
2007), pp. 378–384. IEEE (2007)

31. Zhao, B., Viet Hung, N.Q., Weidlich, M.: Load shedding for complex event pro-
cessing: input-based and state-based techniques. In: 2020 IEEE 36th International
Conference on Data Engineering (ICDE), Dallas, TX, USA, pp. 1093–1104 (2020).
https://doi.org/10.1109/ICDE48307.2020.00099

http://storm.apache.org
https://doi.org/10.1109/ICDE48307.2020.00099

Selectivity Estimation with Attribute
Value Dependencies Using Linked

Bayesian Networks

Max Halford1,2(B), Philippe Saint-Pierre1, and Franck Morvan2

1 IMT Laboratory, Paul Sabatier University, Toulouse, France
maxhalford25@gmail.com

2 IRIT Laboratory, Paul Sabatier University, Toulouse, France

Abstract. Relational query optimisers rely on cost models to choose
between different query execution plans. Selectivity estimates are known
to be a crucial input to the cost model. In practice, standard selectivity
estimation procedures are prone to large errors. This is mostly because
they rely on the so-called attribute value independence and join uni-
formity assumptions. Therefore, multidimensional methods have been
proposed to capture dependencies between two or more attributes both
within and across relations. However, these methods require a large com-
putational cost which makes them unusable in practice. We propose a
method based on Bayesian networks that is able to capture cross-relation
attribute value dependencies with little overhead. Our proposal is based
on the assumption that dependencies between attributes are preserved
when joins are involved. Furthermore, we introduce a parameter for trad-
ing between estimation accuracy and computational cost. We validate
our work by comparing it with other relevant methods on a large work-
load derived from the JOB and TPC-DS benchmarks. Our results show
that our method is an order of magnitude more efficient than existing
methods, whilst maintaining a high level of accuracy.

1 Introduction

A query optimiser is responsible for providing a good query execution plan
(QEP) for incoming database queries. To achieve this, the optimiser relies on
a cost model, which tells the optimiser how much a given QEP will cost. The
cost model’s estimates are in large part based on the selectivity estimates of each
operator inside a QEP [21]. The issue is that selectivity estimation is a difficult
task. In practice, huge mistakes are not exceptions but rather the norm [30].
In turn, this leads the cost model to produce cost estimates that can be wrong
by several orders of magnitude [22]. The errors made by the cost model will
inevitably result in using QEPs that are far from optimal in terms of memory
usage and running time. Moreover, the cost model may also be used by other
systems in addition to the query optimiser. For instance, service-level agreement
(SLA) negotiation frameworks are based on the assumption that the cost of each

c© Springer-Verlag GmbH Germany, part of Springer Nature 2020
A. Hameurlain and A Min Tjoa (Eds.): TLDKS XLVI, LNCS 12410, pp. 154–188, 2020.
https://doi.org/10.1007/978-3-662-62386-2_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-62386-2_6&domain=pdf
https://doi.org/10.1007/978-3-662-62386-2_6

Selectivity Estimation with Attribute Value Dependencies 155

query can accurately be estimated by the cost model [49]. Cost models are also
used for admission control (should the query be run or not?), query schedul-
ing (when to run a query?), progress monitoring (how long will a query?), and
system sizing (how many resources should be allocated to run the query?) [48].
Errors made by the cost model may thus have far reaching consequences. Such
errors are for the most part due to the inaccuracy of the selectivity estimates.

Selectivity estimates are usually wrong because of the many simplifying
assumptions that are made by the cost model. These assumptions are known
to be unverified in practice. Nonetheless, they allow the use of simple methods
that have a low computational complexity. For example, the attribute value inde-
pendence (AVI) assumption, which states that attributes are independent with
each other, is ubiquitous. This justifies the widespread use of one-dimensional
histograms for storing the distribution of attribute values. Another assump-
tion which is omnipresent is the join uniformity assumption, which states that
attributes preserve their distribution when they are part of a join. Although
this is a major source of error, it rationalises the use of simple formulas that
surmise uniformity [43]. Producing accurate selectivity estimates whilst preserv-
ing a low computational overhead is thus still an open research problem, even
though many methods from various approaches have been proposed.

The standard approach to selectivity estimation is to build a statistical syn-
opsis of the database. The synopsis is built at downtime and is used by the
cost model when the query optimiser invokes it. The synopsis is composed of
statistics that summarise each relation along with its attributes. Unidimensional
constructs, e.g., histograms [20], can be used to summarise single attributes, but
cannot dependencies between attributes. Multidimensional methods, e.g., multi-
variate histograms [38], can be used to summarise the distribution of two or more
attributes. However, their spatial requirement grows exponentially with the num-
ber of attributes. Moreover, they often require a non-trivial construction phase
that takes an inordinate amount of time. Another approach is to use sampling,
where the idea is to run a query on a sample of the database and extrapolate
the selectivity [10]. Sampling works very well for single relations. The problem
is that sampling is difficult to apply in the case of joins. This is because the
join of sampled relations has a high probability of being empty [7]. A different
approach altogether is to acknowledge that the cost model is mostly wrong, and
instead learn from its mistakes so as not to reproduce them. The most successful
method in this approach is DB2’s so called learning optimiser (LEO) [44]. Such
a memorising approach can thus be used in conjunction with any cost model.
Although they are appealing, memorising approaches do not help in any mat-
ter when queries that have not been seen in the past are issued. What’s more,
they are complementary to other methods. Finally, statistical approaches based
on conditional distributions seem to strike the right balance between selectivity
estimation accuracy and computational requirements [17]. A conditional distri-
bution is a way of modifying a distribution of values based on the knowledge
of another value – called the conditioning value. For example, if the values of
attribute B depend on those of A, then we can write P (A,B) = P (B|A)×P (A).
Conditional distributions can be organised in a so-called Bayesian network [24].

156 M. Halford et al.

Bayesian networks thus factorise a multidimensional distribution into a product
of lower dimensional ones. If well chosen, these factorisations can preserve most
of the information whilst consuming much less space. In [17], we proposed to use
Bayesian networks to capture attribute value dependencies inside each relation of
a database. The issue with Bayesian networks is their computational cost [12]. To
alleviate this issue, we restricted our networks to possess tree topologies, which
leads to simpler algorithms that have the benefit in linear time. The downside
of using tree topologies is that our networks capture less dependencies than a
general network. However, we showed in our benchmarks that our method was
able to improve the overall selectivity estimation accuracy at a very reasonable
cost. The downside of our work in [17] is that it completely ignores dependencies
between attributes of different relations, which we address in the present work.

Bayesian networks that capture attribute value dependencies across relations
have also been proposed. [16] were the first to apply them for selectivity estima-
tion. However, they used off-the-shelf algorithms that are standard for working
with Bayesian networks, but which are costly and impractical in constrained envi-
ronments. [45] extended the work of [16] to address the computational cost issues.
Indeed, they proposed various constraints on the network structure of each rela-
tion’s Bayesian network that reduced the overall complexity. However, this still
results in a global Bayesian network with a complex structure, which requires a
costly inference algorithm in order to produce selectivity estimates. Although the
methods from [16] and [45] enable a competitive accuracy, they both incur a costly
construction phase and are too slow at producing selectivity estimates. In light of
this, our goal is to capture attribute value dependencies across relations with as
little an overhead as possible. With this in mind, our method thus consists in mea-
suring the distribution of a carefully selected set of attributes before and after a
join. We do so by performing a small amount of offline joins that exploits the topol-
ogy of the relations. Effectively, we make use of the fact that joins mainly occur on
primary/foreign key relationships, and thus warp the attribute values distribution
in a predictable way. The contributions of our paper are as follows: (1) we intro-
duce a new assumption which simultaneously softens the attribute value indepen-
dence and join uniformity assumption, (2) based on our assumption, we propose
an algorithm for connecting individual Bayesian networks together into what we
call a linked Bayesian network, (3) we show how such a linked Bayesian network
can be used to efficiently estimate query selectivities both within and between rela-
tions, and (4) we introduce a parameter which allows us to generalise the trade-offs
induced by existing methods based on Bayesian networks.

The rest of the paper is organised as follows. Section 2 presents the related
work. Section 3 introduces some notions related to Bayesian networks and sum-
marises the work we did in [17]. Section 3.3 introduces the methodology for
combining individual Bayesian networks using the topology of a database’s rela-
tions. In Sect. 4, we compare our proposal with other methods on an extensive
workload derived from the JOB [30] and TPC-DS [40] benchmarks. Finally,
Sect. 5 concludes the paper and hints to potential follow-ups.

Selectivity Estimation with Attribute Value Dependencies 157

2 Related Work

Ever since the seminal work of Selinger et al. [43], query optimisation has largely
relied on the use of cost models. Because the most important part of the cost
model is the selectivity estimation module [31], a lot of good efforts have been
made across the decades. [27] first proposed the use of histograms to approximate
the distribution P (x) of a single attribute x. Since then, a lot of work has gone
into developing optimal histograms [20] that have been used ubiquitously in
cutting edge cost models. Smooth versions of histograms, e.g., kernel density
estimators (KDEs) [4] and wavelets [35], have also been proposed. However, these
methods are based on single attributes, and as such lose in accuracy what they
gain in computational efficiency. Indeed, there is no way to capture a dependency
between two attributes x and y if one only has unidimensional distributions P (x)
and P (y) available, regardless of their accuracy.

Multidimensional distributions, i.e., P (X1, . . . , Xn), are a way to catch
dependencies between attributes. Methods based on such distributions are nat-
urally more accurate because they soften the AVI assumption. However, they
require a large amount of computational resources which hinders their use in
high-throughput settings. [38] first formalised the use of equi-depth multidi-
mensional histograms and introduced an efficient construction algorithm. [42]
proposed another construction algorithm based on Hilbert curves. Multidimen-
sional KDEs have also been proposed [18], with somewhat the same complexity
guarantees. In search for efficiency, [5] offered a workload-aware method where
the idea is to only build histograms for attributes that are often queried together.
Even though methods based on multidimensional distributions are costly, they
are implemented in some database systems and are used when specified by a
database administrator. However, these methods do not help whatsoever in cap-
turing dependencies across relations, which is probably the biggest issue cost
models have to deal with.

Sampling methods have also been proposed to perform selectivity estima-
tion. The idea is to run a query on a sample of the database and extrapolate
the selectivity [10]. Sampling works very well for single relations and has been
adopted by some commercial database systems. However, off the shelf sampling
procedures suffer from the fact that the join of sampled relations has a high prob-
ability of being empty [7]; in other words a join has to be materialised before
sampling can be done. This issue can be alleviated by the use of correlated sam-
pling [47], where a deterministic hash function is used to ensure that samples
from different relations will match with each other. Another technique is to use
indexes when available [32], but this is only realistic for in-memory databases.
[1] also proposed heuristics for maintaining statistics of join synopses. Over-
all, sampling is an elegant selectivity estimation method, not least because it
can handle complex predicates which statistical summaries cannot (e.g., regex
queries). However, sampling necessarily incurs a high computational cost. Indeed
even if the samples are obtained at downtime, they still have to be loaded in
memory during the query optimisation phase.

158 M. Halford et al.

Throughout the years, a lot of proposals have been made to relax the sim-
plifying assumptions from [43]. All of these require compromises in terms of
accuracy, speed, and memory usage. The general consensus is that each method
shines in a particular use case, and thus combining different methods might be a
good approach. [34] formalised this idea by using a maximum entropy approach.
Recently, [37] proposed combining sampling and synopses. Another approach
altogether is to “give up” on the cost model and instead memorise the worst
mistakes it makes so as not to reproduce them in the future [44]. There have
also been proposals that make use of machine learning [2,23,25,33], where a
supervised learning algorithm is taught to predict selectivities based on features
derived from a given query and the database’s metadata. Recently, deep learning
methods have been proposed to extract features that don’t require rules written
by humans. One of the most prominent papers that advocates the use of deep
learning for selectivity estimation can be found in [26]. They proposed a neural
network architecture, which they dubbed MSCN for multi-set convolutional net-
work. Although approaches based on supervised machine learning have had great
success in other domains, their performance for query selectivity estimation isn’t
competitive enough, yet.

Approaches that exploit attribute correlations in order to avoid storing redun-
dant information have also been proposed. For example, [14] proposes to build
a statistical interaction model that allows to determine a relevant subset of
multidimensional histograms to build. In other words, they propose to build his-
tograms when attributes are correlated, and to make the AVI assumption if not.
Bayesian networks can be seen through the same lens of exploiting redundant
information. Essentially, they factorise the full probability distribution into a set
of conditional distributions. A conditional distribution between two attributes
implies a hierarchy whereby one of the attributes determines to some extent the
other. Formally, a Bayesian network is a directed acyclic graph (DAG) where
each node is an attribute and each arrow implies a conditional dependency.
They can be used to summarise a probability distribution by breaking it up into
smaller pieces. In comparison with the supervised learning based methods men-
tioned in the previous paragraph, Bayesian networks are an unsupervised learn-
ing method. What this means is that they directly learn by looking at the data,
whereas supervised methods require a workload of queries and outputs in order
to learn. In [17], we proposed to use Bayesian networks for capturing attribute
value dependencies inside individual relations. [16] and [45] both proposed meth-
ods for using Bayesian networks to capture attribute value dependencies between
different relations. Although this leads to more accurate selectivity estimates, it
requires much more computation time and is infeasible in practice. This is due to
the fact that they require the use of expensive belief propagation algorithms for
performing inference. Meanwhile, our method is much faster because it restricts
each Bayesian network to a tree topology, which allows the use of the variable
elimination algorithm. However, our method completely ignores dependencies
between attributes of different relations. Our goal in this paper is to reconcile
both approaches. Effectively, we want to keep the computational benefits of

Selectivity Estimation with Attribute Value Dependencies 159

building and using individual Bayesian networks, but at the same time we want
our method to capture some dependencies across relations.

3 Methodology

3.1 Preliminary Work

In [17], we developed a methodology for constructing Bayesian networks to model
the distribution of attribute values inside each relation of a database. A Bayesian
network is a probabilistic model. As such, it is used for approximating the prob-
ability distribution of a dataset. The particularity of a Bayesian network is that
it uses a directed acyclic graph (DAG) in order to do so. The graph contains one
node per variable, whilst each directed edge represents a conditional dependency
between two variables. Therefore, the graph is a factorisation of the full joint
distribution:

P (X1, . . . , Xn) �
∏

Xi∈X
P (Xi |Parents(Xi)) (1)

The joint distribution P (X1, . . . , Xn) is the probability distribution over the
entire set of attributes {X1, . . . , Xn}. Meanwhile, Parents(Xi) stands for the
attributes that condition the value of Xi. The distribution P (Xi |Parents(Xi))
is thus the conditional distribution of attribute Xi’s value. In practice, the full
distribution is inordinately large, and is unknown to us. However, the total of
the sizes of the conditional distributions P (Xi |Parents(Xi)) is much smaller.

Using standard rules of probability, such as Bayes’ rule and the law of total
probability [24], we are able to derive from a Bayesian network any selectiv-
ity estimation problem by converting a logical query into a product of condi-
tional probabilities. Note, however, that a Bayesian network is necessarily an
approximation of the full probability distribution because it makes assumptions
about the generating process of the data. Finding the right graph structure of a
Bayesian network is called structure learning [24].

This is usually done by maximising a scoring function, which is an expen-
sive process that scales super-exponentially with the number of variables [12].
Approximate search methods as well as integer programming solutions have been
proposed [3]. In our work in [17], we proposed to use the Chow-Liu algorithm
[11]. This algorithm has the property of finding the best tree structure where
nodes are restricted to have at most one parent. The obtained tree is the best
in the sense of maximum likelihood estimation. In addition to this property, the
Chow-Liu algorithm only runs in O(p2) time, where p is the number of variables,
and is simple to implement. It works by first computing the mutual information
between each pair of variables, which can be seen as the strength of the relation
between two variables.

The next step is to find the maximum spanning tree (MST) using the
mutual information, and thus to derive a directed graph approximating the joint

160 M. Halford et al.

probability distribution. We propose an inference process based on variable elimi-
nation algorithm [13] since inference can be done in linear time for tree. Our exper-
iments indicated that competitors approach are much slower. Note that our infer-
ence process can further be accelerated using the Steiner tree problem [19].

In [17], we proposed a simple method which consists in building one Bayesian
network per relation. On the one hand, this has the benefit of greatly reducing
the computational burden in comparison with a single large Bayesian network,
as is done in [16] and [45]. On the other hand, it ignores dependencies between
attributes of different relations. We will now discuss how we can improve our
work from [17] in order to capture some dependencies across relations.

3.2 Handling Conditional Dependencies over Joins

The task of selectivity estimation is to determine the selectivity of a query over a
set of attributes Xi that to a set of relations Rj . By making the AVI assumption,
this comes down to measuring individual attribute distributions and multiplying
them together, as so:

P (X1, . . . , Xn) �
∏

Rj

(∏

Xi∈Rj

P (Xi)
)

(2)

The methodology from [17] models the attribute distribution value of a
database by building a tree-shaped Bayesian network for each relation. For effi-
ciency reasons it purposefully only captures dependencies between attributes of
a single relation. As such, it ignores the many dependencies that exist between
attributes of different relations and that are the bane of cost models. Essentially,
this method boils down to factorising the full probability distribution as so:

P (X1, . . . , Xn) �
∏

Rj

(∏

Xi∈Rj

P (Xi |Parent(Xi))
)

(3)

where {X1, . . . , Xn} is the entire set of attributes over all relations and
Xi ∈ Rj are the attributes that belong to relation Rj . Parent(Xi) denotes
the attribute on which the distribution of Xi is conditioned – because each
Bayesian network is tree-shaped, each attribute excluding the root has a single
parent. Although the work from [17] ignores dependencies between attributes of
different relations, it is still much more relevant that the common assumption
of full attribute value independence. Our goal in this paper is to model the full
probability distribution by taking into account dependencies between attributes
of different relations, which can represented as:

P (X1, . . . , Xn) �
∏

Xi

P (Xi |Parent(Xi)) (4)

Note that Eq. 4 captures more information than Eq. 2. Modeling the data by
taking into account conditional dependencies thus guarantees that the resulting
selectivity estimates are at least as accurate as when assuming independence

Selectivity Estimation with Attribute Value Dependencies 161

between attributes. In [17], we made the assumption that attribute values of
different relations are independent. Additionally, we assumed that each attribute
value distribution remains the same when the relation it belongs to is joined with
another relation. This is called the join uniformity assumption and is a huge
source of error. Indeed, the distributions of an attribute’s values before and after
a join are not necessarily the same. For instance, imagine an e-commerce website
where registered customers are stored in a database alongside with purchases.
Each customer can make zero or more purchases whilst each purchase is made
by exactly one customer. Some customers might be registered on the website but
might not have made a purchase. If the customers and purchases relations are
joined together, then the customers who have not made any purchase will not be
included in the join. Therefore, the attributes from the customers relation will
have different value distributions when joined with the purchases relation. Note
however that the attribute value distributions from the purchases relation will
not be modified. This stems from the fact that the join between the customers
and purchases relations is a one-to-many join. We will now explain how we can
use this property to capture attribute value dependencies across relations.

Let us assume we have two relations R and S that share a primary/foreign
key relationship. That is, S contains a foreign key which references the primary
key of R. This means that each tuple from R can be joined with zero or more
tuples from S. A direct consequence is that the size of the join R �� S is equal
to |S|. The join uniformity assumptions implies that the probability for a tuple
r from relation R to be present in R �� S follows a uniform distribution. In
statistical terms, that is:

P (r ∈ R �� S) ∼ U(
1

|R|) (5)

Consequently, the expected number of times each tuple from R will be part of
R �� S is |S|

|R| . Let us now denote by PR(A) the value distribution of attribute A in
relation R. We will also define PR��S(A) as the value distribution of attribute A
in join R �� S. The join uniformity assumption thus implies that the distribution
of A’s values before and after R is joined with S are equal:

PR(A) = PR��S(A) (6)

Furthermore, assume we have found and built the following factorised distri-
bution over attributes A, B, and C from relation R:

PR(A,B,C) � PR(A |B) × PR(B |C) × PR(C) (7)

If we hold the join uniformity assumption to be true, then we can use the
factorised distribution to estimate selectivities for queries involving A, B and
C when R is joined with S without any further modification. The issue is that
this is an idealised situation that has no reason to occur in practice. On the
contrary, it is likely are that some tuples from R will be more or less present
than others. However, we may assume that after the join the attribute value

162 M. Halford et al.

dependencies implied by our factorisation remain valid within each relation. We
call this the attribute value dependency preservation assumption. The idea is
that if attributes A, B and C are dependent in a certain way in relation R, then
there is not much reason to believe that these dependencies will disappear once
R is joined with S. Although this may not necessarily always occur in practice,
it is still a much softer assumption than those usually made by cost models.

To illustrate, let us consider a toy database composed of the follow-
ing relations: customers with attributes {nationality, hair, salary}, shops with
attributes {name, city, size}, purchases with attributes {day of week}. More-
over, assume that the purchases relation has two foreign keys, one that references
the primary key of customers and another which that of shops. The purchases
relation can thus be seen as a fact table whilst customers and shops can be
viewed as dimension tables. represented in table. In what follows we will use
the shorthand C the customers relation, S for the shops relation, and P for the
purchases relation.

In the customers relation, there are Swedish customers and a lot of them
have blond hair. We might capture this property in a Bayesian network with the
conditional distribution PC(hair |nationality), which indicates that hair colour
is influenced by nationality. We could suppose that the fact that Swedish peo-
ple have blond hair is still true once the customers relation is joined with the
purchases relation. In other words, the hair colour shouldn’t change the rate
at which Swedish customers make purchases. However, we may rightly assume
that the number of purchases will change according to the nationality of each
customer. Mathematically, we are saying the following:

PC��P (hair, nationality) = PC(hair |nationality) × PC��P (nationality) (8)

In other words, because we assume that PC(hair |nationality) is equal
to PC��P (hair |nationality), then we know PC��P (hair, nationality) – i.e., we
assume that their conditional distribution remains unchanged after the join. An
immediate consequence is that we get to know the PC��P (hair) distribution for
free. Indeed, by summing over the nationalities, we obtain:

PC��P (hair) =
∑

nationality

PC(hair |nationality) × PC��P (nationality) (9)

To demonstrate why our assumption is useful for the purpose of selectivity
estimation, let us use the example data in Tables 1 and 2.

Let us say we wish to know how many purchases are made by customers who
are both blond and Swedish. The straightforward way to do this is to count the
number of times “Blond” and “Swedish” appear together within the join C �� P :

PC��P (hair = Blond, nationality = Swedish) =
5
7

(10)

Selectivity Estimation with Attribute Value Dependencies 163

Table 1. Customers relation

Customer Nationality Hair

1 Swedish Blond

2 Swedish Blond

3 Swedish Brown

4 American Blond

5 American Brown

Table 2. Purchases relation, which con-
tains a foreign key that is related to the
primary key of the customers relation

Shop Customer

1 1

2 1

3 1

4 1

5 2

6 3

7 5

The fraction 5
7 is the true amount of purchases that were made by Swedish

customers with blond hair – said otherwise this is the selectivity of the query.
Obtaining it requires scanning the rows resulting from the join of C with P .
In practice this can be very burdensome, especially when queries involve many
relations. If we assume that the join uniformity assumption holds – in other words
we assume that the value distributions of nationality and hair do not change –
then we can simply reuse the Bayesian network of the customers relation:

PC��P (Blond, Swedish) � PC(Blond |Swedish) × PC(Swedish)

� 2
3

× 3
5

� 2
5

(11)

In this case, making the join uniformity independence assumption makes us
underestimate the true selectivity by 44% (1 − 2

5 × 7
5). Some of this error is due

to the fact that the nationality attribute values are not distributed in the same
way once C and P are joined – indeed in this toy example Swedish customers
make more purchases than American ones. However, if we know the distribution
of the nationality attribute values, i.e., PC��P (nationality), then we can enhance
our estimate in the following manner:

PC��P (Blond, Swedish) � PC(Blond |Swedish) × PC��P (Swedish)

� 2
3

× 6
7

� 4
7

(12)

Now our underestimate has shrunk to 20%. The only difference with the
previous equation is that we have replaced PC(Swedish) with PC��P (Swedish).
Note that we did not have to precompute PC��P (Blond, Swedish). Indeed, we
assumed that the dependency between nationality and hair doesn’t change once

164 M. Halford et al.

C and P are joined, which stems from our dependency preservation assumption.
Note that, in our toy example, the assumption is slightly wrong because blond
customers have a higher purchase rate than brown haired ones, regardless of
the nationality. Regardless, our assumption is still much softer than the join
uniformity and attribute value independence assumptions.

Our assumption is softer than the join uniformity assumption because it
allows attribute value distributions to change after a join. Statistically speaking,
instead of assuming that tuples appear in a join following a uniform distribution,
we are saying that the distribution of the tuples is conditioned on a particu-
lar attribute (e.g., the nationality of the customers dictates the distribution of
the customers in the join between shops and customers). We also assume that
attribute value dependencies with each relation are preserved through joins (e.g.,
hair colour is still dependent on nationality). The insight is that in a factorised
distribution, the top-most attribute is part of any query. For instance, in the
distribution P (A |B)×P (B |C)×P (C), every query involving any combination
of A, B, and C will necessarily involve P (C). We will now see how our newly
introduced attribute value dependency preservation assumption can be used to
link Bayesian networks from different relations together, and as such relax the
join uniformity and attribute value independence assumptions at the same time.

3.3 Linking Bayesian Networks

As explained in the previous subsection, if a purchases relation has a foreign
key that references a primary key of another relation named customers, then
the distribution of purchases’ attribute values will not change after joining cus-
tomers and purchases. However the distribution of customers’ attribute values
will change if purchases’ foreign key is skewed, which is always the case to some
degree. If we use the method proposed by [17], then the Bayesian network built
on customers would not be accurate when estimating selectivities for queries
involving customers and purchases. This is because it would assume the distri-
butions of the attribute values from customers are preserved after the join, which
is a consequence of the join uniformity assumption. Moreover, because of the AVI
assumption, we would not be capturing the existing dependencies between cus-
tomers’s attributes and purchases’s attributes because their respective attributes
are assumed to be independent with those of the opposite relation. On the other
hand, if we join customers and purchases and build a Bayesian network on top
of the join, then we will capture the cross-relation attribute value dependencies,
but at too high a computational cost [16,45]. Up to now, we have only men-
tioned the case where there one join occurs, but the same kind of issues occur
for many-way joins – including star-joins and chain-joins.

If the attribute value distributions of customers and purchases are estimated
using Bayesian networks that possess a tree structure, then we only have to
include the dependencies of a subset of customers’s attributes with those of
purchases. Specifically, we only have to include the root attribute of customers’s
Bayesian network into that of of purchases. Indeed, because customers’s Bayesian
network is a tree, then all of its nodes are necessarily linked to the root. If we

Selectivity Estimation with Attribute Value Dependencies 165

know the distribution of the root attribute’s values after customers is joined
with purchases, then, by making the attribute value dependency preservation
assumption earlier introduced, we automatically obtain the distribution of the
rest of customers’s attribute. In other words, if the distribution of an attribute’s
values is modified when the relation it belongs to is joined with another rela-
tion, then we assume that all the attributes that depend on it have their value
distributions modified in the exact same manner. This is another way of saying
that the conditional distributions remain the same.

We will show how this works on our toy database consisting of relations
customers, shops, and purchases. Following the methodology from [17], we would
have built one Bayesian network per relation. Each Bayesian network would
necessarily have been a tree as a consequence of using the Chow-Liu algorithm
[11]. Depending on the specifics of the data, we might have obtained the Bayesian
networks shown in Fig. 1.

Day of weekNationality

Hair Salary

Name

City Size

Fig. 1. Separate Bayesian networks of customers, shops, and purchases

Furthermore, let us consider the following SQL query:

SELECT *

FROM customers, shops, purchases

WHERE customers.id = purchases.customer_id

AND shops.id = purchases.shop_id

AND customers.nationality = 'Japanese'

AND customers.hair = 'Dark'

AND shops.name = 'Izumi'

If we were to estimate the amount of tuples that satisfy the above query using
the Bayesian networks from Fig. 1, then we would estimate the query selectivity
in the following manner:

P (Dark, Japanese, Izumi) = PC(Dark |Japanese)
× PC(Japanese)
× PS(Izumi)

(13)

On the one hand, the conditional distribution PC(Dark |Japanese) captures
the fact that Japanese people tend to have dark hair inside the customers rela-
tion. Graphically this is represented by the arrow that points from the “Nation-
ality” node to the “Hair” node in Fig. 1. On the other hand, our estimate
ignores the fact that shops in Japan, including “Izumi”, are mostly frequented

166 M. Halford et al.

by Japanese people. The reason why is that we have one Bayesian network per
relation, instead of a global network spanning all relations, and are thus not
able to capture this dependency. Regardless of the missed dependency, this sim-
ple method is still more accurate than assuming total independence. Indeed the
AVI assumption would neglect the dependency between hair and nationality,
even though both attributes are part of the same relation. Meanwhile assuming
relational independence is convenient because it only requires capturing depen-
dencies within relations, but it discards the dependency between nationality
and city. We propose to capture said dependency by adding nodes from the
Bayesian networks of customers and shops to the Bayesian network of purchases.
Specifically, for reasons that will become clear further on, we add the roots of
the Bayesian networks of customers and shops (i.e., nationality and name) to
the Bayesian network of purchases. This results in the linked Bayesian network
shown in Fig. 2.

Nationality

Day of week
NameNationality

Hair Salary
Name

City Size

Fig. 2. Linked Bayesian network of customers, shops, and purchases

In this new configuration, we still have one Bayesian network per relation.
The difference is that the Bayesian network of purchases includes the root
attributes of both customers and shops’s Bayesian networks. In other words,
we have joined the purchases relation with the customers and shops and we
have then built a Bayesian network for purchases that now includes attributes
from customers and shops. A linked Bayesian network is thus a set of separate
Bayesian networks where some of the attributes are duplicated in two related
networks. In practice, this means that we now know the distribution of the
nationality and name attribute values once the relations they belong to have
been joined with purchases. Meanwhile, we also know their distributions when
these relations are not joined with purchases. In other words, we store two dis-
tributions for each root attribute, one before the join and one afterwards. The
distribution of a root attribute in a Bayesian network is nothing more than a
one-dimensional histogram. This means that storing two distributions for each
root attribute doesn’t incur any significant memory burden.

Selectivity Estimation with Attribute Value Dependencies 167

The configuration shown in Fig. 2 has two immediate benefits over the one
presented in Fig. 1. First of all, we are now able to determine if the percentage
of Japanese in the purchases relation is different from the one in the customers
relation. Indeed, we do not have to assume the distribution remains the same
after the join now that we know the distribution of nationality’s values when
customers is joined with purchases. A key observation is that we get to know
something about the distribution of the hair attribute values when customers is
joined with purchases. That is to say, because we know how the distribution of
nationality attribute values changes after the join, then we also know something
about the hair attribute values because both attributes are dependent within the
customers relation. This stems from the fact that we assume that the conditional
distribution P (hair |nationality) is preserved after the join. Mathematically this
translates to:

PC��P (hair, nationality) = PC(hair |nationality)PC��P (nationality) (14)

Although, in practice, we expect the dependency preservation assumption
to not always be verified, we argue that it is a much weaker assumption than
assuming total relational independence. The second benefit is that we can now
take into account the fact the Japanese people typically shop in Japanese shops,
even though the involved attributes belong to relations that are not directly
related. This happens because the name attribute is now part of purchases’s
Bayesian network as well as that of shops. Formally the query selectivity can
now be expressed as so:

PC��P��S(Dark, Japanese, Izumi) = PC(Dark |Japanese)
× PP��S(Izumi |Japanese)
× PC��P (Japanese)

(15)

Let us now consider the following SQL query where the only difference with
the previous query is that are filtering by city instead of by name:

SELECT *

FROM customers, shops, purchases

WHERE customers.id = purchases.customer_id

AND shops.id = purchases.shop_id

AND customers.nationality = 'Japanese'

AND customers.hair = 'Dark'

AND shops.city = 'Osaka'

In this case, our linked Bayesian network would estimate the selectivity as so:

P (Dark, Japanese,Osaka) = PC(Dark |Japanese)

×
∑

name

PP��S(Osaka |name)PP (name |Japanese)

× PC��P (Japanese)
(16)

168 M. Halford et al.

This is a simple application of Bayesian network arithmetic [24]. The reason
why there is a sum is that we have to take into account all the shops that are
located in Osaka because none of them in particular has been specified in the
SQL query. Note that our linked Bayesian network is still capable of estimating
selectivities when only a single relation is involved. For example, we only need
to use PP (nationality) when the customers relation is joined with purchases
relation. If only the customers relation is involved in a query, then we can simply
use PC(nationality) instead of PP (nationality). We discuss these two points in
further detail in Subsect. 3.5.

Linked Bayesian networks thus combine the benefits of independent Bayesian
networks, while having the benefit of softening the join uniformity assumption
as well as the attribute value independence assumption. We will now discuss how
one may obtain a linked Bayesian network in an efficient manner.

3.4 Building Linked Bayesian Networks

A linked Bayesian network is essentially a set of Bayesian networks. Indeed,
our method consists in taking individual Bayesian networks and linking them
together in order to obtain one single Bayesian network. This linking process is
detailed in the next subsection. In our case, by only including the root attribute
of each relation into the Bayesian network of its parent relation, we ensure that
the final network necessarily has a tree topology. Performing inference on a
Bayesian network with a tree topology can be done in linear time using the sum-
product algorithm [29]. Building a linked Bayesian network involves building the
Bayesian networks of each relation in a particular order. Indeed, in our example,
we first have to build the Bayesian networks of the customers and shops relations
in order to determine the roots that are to be included in the Bayesian network
of the purchases relation. To build the purchases Bayesian network, we first have
to join the root attributes (i.e., nationality and name) of the first two Bayesian
networks (i.e., customers and shops) with the purchases relation. Naturally, per-
forming joins incurs an added computational cost. However, we argue that joins
are unavoidable if one is to capture attribute value dependencies across relations.
Indeed, if joins are disallowed whatsoever, then there is basically no hope of mea-
suring dependencies between attributes of different relations. Our methodology
requires performing one left-join per primary/foreign key relationship, whilst
only requiring to include one attribute per join, which is as cost-effective as
possible.

The specifics of the procedure we used to build the linked Bayesian network
are given in Algorithm 1. We assume the algorithm is given a set of relations.
In addition, the algorithm is provided with the set of primary/foreign key rela-
tionships in the database (e.g., purchases has a foreign key that references cus-
tomers’ primary key and another that references shops’s primary key). This set
of primary/foreign key relationships can easily be extracted from any database’s
metadata. The idea is to go through the set of relations and check if the Bayesian
networks of the dependent relations have been built. In this implementation a
while loop is used to go through the relations in their topological order, from

Selectivity Estimation with Attribute Value Dependencies 169

bottom to top. The Bayesian networks are built using the BuildBN function,
which was presented in [17]. The BuildBN function works in three steps: 1. Build
a fully-connected, undirected weighted graph, where each node is an attribute
and each vertex’s weight is the mutual information between two attributes. 2.
Find the maximum spanning tree (MST) of the graph. 3. Orient the MST in
order to obtain a tree by choosing a root.

The BuildBN function produces a Bayesian network with a tree topology
called a Chow-Liu tree [11]. This tree has the property of being the tree which
stores the maximum amount of information out of all the legal trees. In our
algorithm, the first pass of the while loop will build the Bayesian networks of
the relations that have no dependencies whatsoever (e.g., those who’s primary
key isn’t referenced by any foreign key). The next pass will build the Bayesian
networks of the relations that contain primary keys referenced by the foreign
keys of the relations covered in the first pass. The algorithm will necessarily
terminate once each relation has an associated Bayesian network; it will take as
many steps as there are relations in the database.

Algorithm 1. Linked Bayesian networks construction
1: function BuildLinkedBN(relations, relationships)
2: lbn ← {}
3: built ← {} � Records which relations have been processed
4: while |lbn| < |relations| do
5: queue ← relations \ built � Relations which don’t have a BN
6: for each relation ∈ queue do
7: if relationships[relation] \ built = ∅ then
8: for each child ∈ relationships[relation] do
9: relation ← relation �� child.root

10: end for
11: end if
12: lbn ← lbn ∪ BuildBN(relation)
13: built ← built ∪ relation
14: end for
15: end while
16: return lbn
17: end function

Note that we can potentially use parallelism to speed-up the execution of
Algorithm 1. Indeed, by using a priority queue and a worker pool, we can spawn
processes in parallel to build the networks in the correct order. However, we
consider this an implementation detail and did not take the time to implement
it in our benchmark. Furthermore, this would have skewed our comparison with
other methods. A linked Bayesian network doesn’t require much more additional
space in with respect to the method from [17]. Indeed, a linked Bayesian net-
work is nothing more than a set of separate Bayesian networks where some of
the attributes are duplicated in two related networks. Once a linked Bayesian

170 M. Halford et al.

network has been built, it can be used to produce selectivity estimates. That is,
given a linked Bayesian network, we want to be able to estimate the selectivity of
an arbitrary SQL query. An efficient algorithm is required to perform so-called
inference when many attributes are involved, which is the topic of the following
subsection.

3.5 Selectivity Estimation

The algorithm for producing selectivity estimates using linked Bayesian networks
is based on the selectivity estimation algorithm proposed in [17]. The key insight
is that we can fuse linked Bayesian networks into a single Bayesian network.
Indeed, in our building process we have to make sure to include the root attribute
of each relation’s Bayesian network into its parent Bayesian’s network. This
allows to link each pair of adjacent Bayesian networks together via their shared
attribute. In Fig. 2, these implicit links are represented with dotted lines. The
purchases and customers relation have in common the nationality attribute,
whereas the shops and purchases relations have in common the name attribute.
The resulting “stiched” network is necessarily a tree because each individual
Bayesian network is a tree and each shared attribute is located at the root of
each child network.

Algorithm 2. Selectivity estimation using a linked Bayesian network
1: function InferSelectivity(lbn, query)
2: relations ← ExtractRelations(query)
3: relevant ← PruneLinkedBN(lbn, relations)
4: linked ← LinkNetworks(relevant)
5: selectivity ← ApplySumProduct(linked)
6: return selectivity
7: end function

The pseudocode for producing selectivity estimates is given in Algorithm 2.
The first step of the selectivity estimation algorithm is to identify which relations
are involved in a given query. Indeed each SQL query will usually involve a subset
of relations, and thus we only need to use the Bayesian networks that pertain to
said subset. The PruneLinkedBN thus takes care of removing the unnecessary
Bayesian networks from the entire set of Bayesian networks. Naturally, in prac-
tice, and depending on implementation details, this may involve simply loading
in memory the necessary Bayesian networks. In any case, the next step is to con-
nect the networks into a single one. This necessitates looping over the Bayesian
networks in topological order – in the same exact fashion as Algorithm 1 – and
linking them along the way. Linking two Bayesian networks together simply
involves replacing the attribute they have in common with the child Bayesian
network. For instance, in Fig. 2, the nationality attribute from the purchases
Bayesian network will be replaced by the customers Bayesian network. This is

Selectivity Estimation with Attribute Value Dependencies 171

because we are interested in the distribution of the attributes after the join, not
before. The resulting tree thus approximates the distribution of attribute values
inside the (customers �� purchases �� shops) join instead of estimating selectiv-
ities inside each relation independently, as is done in textbook cost models. The
result of this linking process is exemplified in Fig. 3, which shows the unrolled
version of the linked Bayesian network shown in Fig. 2. Finally, once the Bayesian
networks have been linked together, the sum-product algorithm [29] can be used
to output the desired selectivity. In fact, this final step is exactly the same as
the one described in Sect. 3.3 of [17].

Our method for estimating selectivities is very efficient. The main reason is
because we only to apply the sum-product algorithm once, whereas [17] has to
apply once per relation involved in the query at hand. This difference is made
clear when comparing Eqs. 2 and 4. Furthermore, the sum-product algorithm is
much more efficient in the case of trees than the clique tree algorithm from [45].
We confirm these insights in the benchmarks section.

Nationality

HairSalary Day of week Name

City Size

Fig. 3. Unrolled version of Fig. 2

3.6 Including More Than Just the Roots

Our model assumes that the dependencies between attribute values within a rela-
tion are preserved when a join occurs. Indeed we assume that tuples are uniformly
distributed inside a join given each value in the root attribute. One may wonder
why we have to stop at the root. Indeed, it turns out that we can include more
attributes in addition to the root of each child Bayesian network when building
a parent Bayesian network. For example, consider the linked Bayesian network
shown in Fig. 4. In this configuration we include the salary attribute as well as
the nationality attribute in the Bayesian network of the purchases relation. By
doing so we obtain a new conditional distribution P (salary|nationality) which
tells us the dependence between salary and nationality after customers has been
joined with purchases.

172 M. Halford et al.

Nationality

Salary Day of weekNationality

Hair Salary

Fig. 4. Linked Bayesian network of customers and purchases

The linked Bayesian network shown in Fig. 4 is valid because we can unroll it
in order to obtain a single tree, just as we did earlier on when we only included the
nationality attribute. However, the salary attribute can be included in the pur-
chases Bayesian network only because of the fact that the nationality attribute
is included as well. Indeed, if the nationality attribute was not included, then
linking customers and purchases together would have resulted in a Bayesian net-
work which would not necessarily be a tree. In this case, we would not be able
to compute P (salary |nationality) in purchases’s Bayesian network. In other
words, a node can be included in a parent Bayesian network only if all of its
conditioning attributes are included as well. Assuming a child Bayesian network
has n nodes, then we can include a number k ∈ {0, . . . , n} of its nodes in the
parent Bayesian network. If k = 0, then we simply keep each Bayesian network
separate, which brings us back to the methodology from [17]. If k = 1, then we
only include the root of each child Bayesian network, which is the case we have
discussed up to now. If k = n, then we will include all the child’s attributes in
the parent BN, which is somewhat similar to the global methods presented in
[16] and [45]. On the one hand, increasing k will produce larger parent Bayesian
networks that capture more attribute value dependencies but also incur a higher
computational cost. On the other hand, lower values of k will necessitate less
computation but will assume more strongly that dependencies are preserved
through joins. The k parameter is thus a practical parameter for compromising
between selectivity estimation accuracy and computational requirements. Notice
that different values of k can be used for each pair of relations. For instance,
we might want to increase k if we notice that the cost model makes very bad
estimates for a certain relation. This can be decided upon as deemed fit, be it
manually or via automated DBA [46].

3.7 Summary

The method we propose attempts to generalise existing selectivity estimation
methods based on Bayesian networks. Following the methodology from [17],
we build one Bayesian network per relation using Chow-Liu trees. The only

Selectivity Estimation with Attribute Value Dependencies 173

difference is that we include a set of attributes from the child relations into
the Bayesian network associated with each parent relation. The set of included
attributes depends on a chosen parameter k and the structure of each child rela-
tion’s Bayesian network. Many distributions can be obtained for free because
of the fact that each Bayesian network is a tree in which the root attribute
conditions the rest of the attributes. This requires assuming that attribute value
dependencies are preserved through joins. This assumption, although not always
necessarily true, is much softer than the join uniformity as well as the attribute
value independence assumptions. The resulting Bayesian networks are thus able
to capture attribute value dependencies across relations, as well as inside individ-
ual relations. Although our method requires performing joins offline, we argue
that joins are unavoidable if one is to capture any cross-relation dependency
whatsoever. The major benefit of our method is that it only requires includ-
ing a single attribute per join, and yet it brings a great deal of information for
free through transitivity thanks to our newly introduced assumption. Moreover,
our method can still benefit from the efficient selectivity estimation procedure
presented in [17] because of the preserved tree structure. Finally, our method is
able to generalise existing methods based on Bayesian networks through a single
parameter which determines the amount of dependency to measure between the
attributes of relations that share a primary/foreign key relationship.

4 Evaluation

4.1 Experimental Setup

We evaluate our proposal on an extensive workload derived from the JOB bench-
mark [30]. The JOB benchmark consists of 113 SQL queries, along with an
accompanying dataset extracted from the IMDb website. The dataset consists
of non-synthetic data, whereas other benchmarks such as TPC-DS [40] are based
on synthetic data. The dataset is challenging because it contains skewed distribu-
tions and exhibits many correlations between attributes, both across and inside
relations. The JOB benchmark is now an established and reliable standard for
evaluating and comparing cost models. The dataset and the queries are publicly
available1. In addition, we have made a Docker image available for easing future
endeavours in the field2, as well as code used in our experiments3.

During the query optimisation phase, the cost model has to estimate the
selectivity of each query execution plan (QEP) enumerated by the query opti-
miser. Query optimisers usually build QEPs in a bottom-up fashion [6]. Initially,
the cost model will have to estimate selectivities for simple QEPs that involve a
single relation. It will then be asked to estimate selectivities for larger QEPs
involving multiple joins and predicates. We decided to mimic this situation
by enumerating all the possible sub-queries for each of the JOB benchmark’s

1 JOB dataset and queries: https://github.com/gregrahn/join-order-benchmark/.
2 Docker image: https://github.com/MaxHalford/postgres-job-docker.
3 Method source code: https://github.com/MaxHalford/tldks-2020.

https://github.com/gregrahn/join-order-benchmark/
https://github.com/MaxHalford/postgres-job-docker
https://github.com/MaxHalford/tldks-2020

174 M. Halford et al.

queries, as detailed in [8]. For example, if a query pertains to 4 relations, we
will enumerate all the possible sub-queries involving 1, 2, 3, and all 4 relations.
We also enumerate through all the combinations of filter conditions. To do so,
we represented each query as a graph with each node being an attribute and
each edge a join. We then simply had to retrieve all the so-called induced sub-
graphs, which are all the subgraphs that can be made up from a given graph.
Each induced subgraph was then converted back to a valid SQL statement. This
procedure only takes a few minutes and yields a fairly large amount of queries;
indeed a total of 5,122,790 subqueries can be generated for the JOB bench-
mark’s 113 queries. Tables 3 and 4 provide an overview of the contents of our
workload.

Table 3. Query spread per
number of join conditions

Joins Amount

0 889

1–5 177,309

6–10 1,175,120

11–15 2,060,614

16–20 1,320,681

21–25 388,177

Table 4. Query spread per number of filter
conditions

Filters Amount

1 261,440

2 763,392

3 1,301,840

4 1,380,329

5 923,481

6 384,285

7 94,855

8 12,496

9 672

The general goal of our experiments is to detail the pros and cons of our
method with respect to the textbook approach from [43] and some state-of-the-
art methods that we were able to implement. Most industrial databases still
resort to using textbook approaches, which are thus important to be compared
with. Specifically our experiments solely focus on the selectivity estimation mod-
ule, not on the final query execution time. We assume that improving the selec-
tivity estimates will necessarily have a beneficial impact on the accuracy of the
cost model and thus on the query execution time. Naturally, the estimation has
to remain reasonable. This seems to be a view shared by many in the query
optimisation community [30]. Indeed, many papers that deal with selectivity
estimation, both established and new, do not measure the impact on the final
query execution [9,15,41,42,45,47].

We compared our proposal with a few promising state-of-the-art methods as
well as the cardinality estimation module from the PostgreSQL database sys-
tem. PostgreSQL’s cardinality estimation module is a fair baseline as it is a
textbook implementation of the decades old ideas from [43]. We used version
10.5 of PostgreSQL and did not tinker with the default settings. Additionally,
we did not bother with building indexes, as these have no consequence on the

Selectivity Estimation with Attribute Value Dependencies 175

selectivity estimation module. A viable selectivity estimation method should be
at least as accurate as PostgreSQL, without introducing too much of a com-
putational cost increase. We implemented basic random sampling [39], which
consists in executing a given query on a sample of each relation in order to
extrapolate a selectivity estimate. Basic random sampling is simple to imple-
ment, but isn’t suited for queries that involve joins because of the empty-join
problem, as explained in Sect. 2. However many sampling methods that take into
account the empty-join problem have been proposed. We implemented one such
method, namely correlated sampling [47]. Correlated sampling works by hashing
related primary and foreign keys and discards the tuples of linked relation where
the hashes disagree. We also implemented MSCN, which is the deep learning
method that is presented in [26]. Finally we implemented the Bayesian network
approach from [45]. The latter method differs from ours in that it is a global
approach that builds one single Bayesian networks over the entire set of rela-
tions. Although a global approach is able to capture more correlations than ours,
it require more computation. We compared our method with different values for
the k parameter presented in Sect. 3.6. Note that choosing k = 0 is equivalent to
using the method from [17]. Increasing k is expected to improve the accuracy of
the selectivity estimates but deteriorates the computational performance. The
k parameter can thus be used to trade between accuracy and computational
resources depending on the use case and the constraints of the environment.

4.2 Selectivity Estimation Accuracy

We first measured the accuracy of the selectivity estimates for each method by
comparing their estimates with the true selectivity. The true selectivity can be
obtained by executing the query and counting the number of tuples in the result.
The appropriate metric for such a comparison is called the q-error [31,36], and
is defined as so:

q(y, ŷ) =
max(y, ŷ)
min(y, ŷ)

(17)

where y is the true selectivity and ŷ is the estimated selectivity. The q-
error thus simply measures the multiplicative error between the estimate and
the truth. The q-error has the property of being symmetric, and will thus be
the same whether ŷ is an underestimation or an overestimation. Moreover the
q-error is scale agnostic (e.g., 8

3 = 24
9), which helps in comparing errors over

results with different scales.
Figure 5 shows the q-errors made by each method for all the queries of the

workload derived from the JOB benchmark. The y axis represents the q-error
associated with each query. Meanwhile the x axis denotes the amount of queries
that have less than a given q-error. For instance, PostgreSQL managed to esti-
mate the selectivity of two million queries with a q-error of less than 10 for
each query. The curves thus give us a detailed view into the distribution of the
q-errors for each method. While the curves seem to exhibit a linear trend, one

176 M. Halford et al.

1 1M 2M 3M 4M 5M
Number of queries

100

101

102

103
q-
er
ro
rs

Sorted q-errors by method

PostgreSQL
Random sampling
Correlated sampling
MSCN
Global Bayesian network
Independent Bayesian networks
Linked Bayesian network with k = 1
Linked Bayesian network with k = 2

Fig. 5. Sorted q-errors for all queries by method on the JOB workload

must note that the scale of the y axis is logarithmic. The figure gives us a global
idea of the accuracy of each method in comparison with the others. The mean,
maximum, and meaningful quantiles of the q-errors are given in Table 5.

Table 5. q-error statistics for each method on the JOB workload

Median 90th 95th 99th Max Average

PostgreSQL 7.32 77.01 185.84 707.21 10906.17 77.01

Sampling 4.79 16.45 33.17 81.34 1018.43 12.71

Correlated sampling 3.83 9.63 12.63 22.72 214.1 5.79

MSCN 2.99 6.12 7.47 12.49 110.56 3.89

Global BN 1.95 2.92 3.22 4.01 7.45 1.99

Independent BN 4.0 15.36 32.9 76.91 820.46 11.82

Linked BN k = 1 2.41 5.03 6.15 8.07 21.09 2.79

Linked BN k = 2 2.13 3.7 4.26 5.23 12.6 2.3

The overall worst method is the cost model used by PostgreSQL. This isn’t
a surprise, as it assumes total independence between attributes, both within
and between relations. It is interesting to notice that the q-errors made by Post-
greSQL’s cost model can be extremely high, sometimes even reaching the tens of
thousands. In this case, the query optimiser is nothing short from blind because
the selectivity estimates are extremely unreliable. Although this doesn’t nec-
essarily mean that the query optimiser will not be able to find a good query

Selectivity Estimation with Attribute Value Dependencies 177

execution plan, it does imply that finding a good execution plan would be down
to luck [31]. One may even wonder if estimating a selectivity by picking a random
number between 0 and 1 might do better. Using our method with k equal to 0
is equivalent to the methodology proposed by [17]. Indeed, if no attributes are
shared by the Bayesian networks of each relation, then it is as if we considered
attribute value dependencies within each relation but not between relations.
As expected, the performance is similar to that of random sampling because
both methods capture dependencies within a relation but not between relations.
Correlated sampling performs a bit better because it is a join-aware sampling
method. However, the rest of the implemented methods seems to be more pre-
cise by an order of magnitude. The deep learning method, MSCN, outperforms
correlated sampling, but it isn’t as performant as the Bayesian networks. How-
ever, it can probably reach a better level of performance by tuning some of
the many parameters that it exposes. Meanwhile, the method we proposed with
k = 1 means that we include the root attribute of each child relation within the
Bayesian network of each parent relation. This brings to the table the benefits
detailed in Sect. 3. If k = 2, then an additional attribute from each child relation
is included with the Bayesian network of each parent relation. We can see on
Fig. 6 that the global accuracy increases with k, which is what one would expect.
The most accurate method overall is the global Bayesian network presented in
[45]. However, our method with k = 2 is not far off. This makes the case that
our attribute value dependency preservation assumption is a realistic one.

We have also benchmarked the methods on the TPC-DS benchmark. In con-
trast to the IMDb dataset used in the JOB benchmark, the TPC-DS dataset
is synthetic. By nature, it contains less attribute dependencies than would be
expected in a realistic use case. The TPC-DS dataset is therefore less realis-
tic than the JOB benchmark. To produce a workload as we did for the JOB
benchmark, we have taken the 30 first queries that are provided with the TPC-
DS dataset and have generated all possible sub-queries. This led to a total
1,414,593 queries. The amount of joins went from 2 to 15. The overall results
are shown in Table 6. As expected, the q-errors for the TPC-DS benchmark are
better across the board because the dataset exhibits less correlations between
attributes. Nonetheless, the rankings between the methods remains somewhat
the same. Our method very slightly outperforms the global Bayesian network,
but we believe that this is just an implementation artifact. In any case, our
method is much more accurate than any method that assumes independence
between attributes of different relations. Even so, a viable selectivity estimation
method also has to be able to produce estimates in a very short amount of time,
which is a point we will now discuss.

178 M. Halford et al.

1 200k 400k 600k 800k 1M 1.2M 1.4M
Number of queries

100

101

102

103
q-
er
ro
rs

Sorted q-errors by method

PostgreSQL
Random sampling
Correlated sampling
MSCN
Global Bayesian network
Independent Bayesian networks
Linked Bayesian network with k = 1
Linked Bayesian network with k = 2

Fig. 6. Sorted q-errors for all queries by method on the TPC-DS workload

Table 6. q-error statistics for each method on the TPC-DS workload

Median 90th 95th 99th Max Average

PostgreSQL 1.23 43.4 138.05 1025.49 82898.28 91.46

Sampling 3.69 13.39 26.34 66.83 669.58 9.87

Correlated sampling 2.89 8.24 10.63 19.32 170.63 4.51

MSCN 1.82 4.23 5.32 9.24 78.01 2.54

Global BN 1.03 1.17 1.23 1.33 1.49 1.06

Independent BN 2.5 13.59 33.87 89.22 597.0 9.12

Linked BN k = 1 1.04 1.38 1.54 1.74 1.94 1.11

Linked BN k = 2 1.05 1.26 1.35 1.47 1.6 1.08

4.3 Inference Time

Naturally, we next sought to measure how fast each method was at producing
selectivity estimates. In a high throughput environment, the query optimiser
isn’t allowed to spend much time searching for an efficient QEP. In addition
to using the cost model, the query optimiser also has to enumerate potential
query execution plans and pick one of them [6]. Thus, only a fraction of the
short amount of time allocated to the query optimiser can actually be consumed
by the cost model. This means that any viable selectivity estimation has to be
extremely efficient, and is probably the main reason why current cost models
are kept simple. We call the amount of time necessary to produce a selectivity
estimate the inference time. During our experiments we recorded the inference
time for each query and for each model. The results shown in Table 7 show

Selectivity Estimation with Attribute Value Dependencies 179

the average inference time for each method, aggregated by the number of joins
present in each query.

Table 7. Average inference time in milliseconds for each method with respect to the
number of joins on the JOB workload

No joins 1 join 2 to 5 joins 6 joins or more

PostgreSQL 2.3 ± 1.1 2.6 ± 1.4 3.6 ± 1.3 8.4 ± 3.1

Sampling 19.6 ± 5.4 36.2 ± 6.8 120.2 ± 5.9 268.4 ± 8.7

Correlated sampling 20.4 ± 4.9 155.7 ± 3.2 280.6 ± 7.1 493.4 ± 9.9

MSCN 135.9 ± 12.1 312.2 ± 24.4 343.3 ± 27.4 387.6 ± 29.2

Global BN 84.3 ± 2.1 116.1 ± 2.9 145.8 ± 4.4 236.1 ± 3.8

Independent BN 8.3 ± 1.8 10.9 ± 1.3 12.6 ± 2.4 12.1 ± 3.2

Linked BN k = 1 9.5 ± 1.9 12.8 ± 1.6 14.1 ± 2.8 15.2 ± 3.4

Linked BN k = 2 10.1 ± 1.4 12.9 ± 1.5 14.3 ± 2.1 16.4 ± 2.9

It is important to mention that the inference time measured for PostgreSQL
is simply the time it takes the database to execute the ANALYZE statement for
each query. This thus includes the optimisation time, on top of the time spent
at estimating selectivities. Even though they are already by far the best, the
numbers displayed in our benchmark for PostgreSQL are pessimistic and are
expected to be much lower in practice. It is also worth mentioning that we
implemented the rest of the methods in Python, which is an interpreted language
and thus slower than compiled languages such as C, in which PostgreSQL is
written. If these methods were implemented in optimised C they would naturally
be much faster. However, what matters here is the relative differences between
each method, not the absolute ones.

We can clearly see from the results in Table 7 that the global Bayesian net-
work loses in speed what it gains in accuracy. This is because it uses a complex
inference method called the clique-tree algorithm, which is the standard app-
roach for Bayesian networks with arbitrary topologies. Although it is the most
accurate method, it is much slower than our method, regardless of the k param-
eter we use. What’s more, the inference time of our method doesn’t increase
dramatically when the number of joins increases. This is due to the fact that we
use a lightweight inference algorithm called variable elimination [13] also used
by [17]. The inference algorithm scales well because we are able to merge the
Bayesian networks of each relation into a single tree. We can also see that cor-
related sampling is relatively slow method, although its accuracy is competitive
as shown in the previous subsection. MSCN is the slowest method overall in our
benchmark. This may be attributed to the fact that we implemented it from
scratch because no implementation was provided by its authors, and therefore
do not have the insights that they might have. We argue that even though our
method is not as accurate as the method proposed by [45], it is much faster and

180 M. Halford et al.

is thus more likely to be used in practice. Naturally, we also have to take into
account the amount of time it requires to build our method, as well as how much
storage space it requires.

4.4 Construction Time and Space

The cost model uses metadata that is typically obtained when the database
isn’t being used. This is done in order not to compute it in real time during
the query optimisation phase. This metadata has to be refreshed every so often
in order for the cost model to use relevant figures. Typically, the metadata has
to be refreshed when the underlying data distributions change significantly. For
instance, if attributes become correlated when new data is inserted, then the
metadata has to be refreshed to take this into account. Therefore, the amount
of time it takes to collect the necessary information is rather important, as
ideally we would like to refresh the metadata as often as possible. Additionally,
any viable selectivity estimation method crucially has to make do with a little
amount of storage space. Indeed, spatial complexity is a major reason why most
methods proposed in the literature are not being used in practice. These two
computational requirements highlight the dilemma that cost models have to
face: they have to be accurate whilst running with a very low footprint. Most
multidimensional methods that have been proposed are utterly useless when it
comes to their performance in this regard.

Table 8. Computational requirements of the construction phase per method on the
JOB workload

Construction time Storage size

PostgreSQL 5 s 12 KB

Sampling 7 s 276 MB

Correlated sampling 32 s 293 MB

MSCN 15 min 8 s 37 MB

Global BN 24 min 45 s 429 KB

Independent BN 55 s 217 KB

Linked BN k = 1 2 min 3 s 322 KB

Linked BN k = 2 2 min 8 s 464 KB

Table 8 summarises the computational requirements of the methods we com-
pared. The results explain why PostgreSQL – and most database engines for
that matter – stick to using simplistic methods. Indeed, in our measurements
PostgreSQL is both the fastest method as well the lightest one. PostgreSQL’s
cost model makes many simplifying assumptions and thus only has to build
and store one-dimensional histograms, which can be done extremely rapidly.
The sampling methods are quite fast in comparison with the methods based on

Selectivity Estimation with Attribute Value Dependencies 181

Bayesian networks. This isn’t surprising, as they only require sampling the rela-
tions and then storing the samples. Indeed, most of the building time involves
persisting the samples on the disk. On the other hand, sampling methods require
a relatively large amount of space because they do not apply any summarising
whatsoever (note that their storage size are given in terms of megabytes, not
kilobytes). Correlated sampling takes more time than basic sampling because it
has to scan primary and foreign keys in order to avoid the empty join problem.
MSCN construction time is moderate, and naturally depends on the amount
of data it is trained on. In this case we trained it for 20 epochs of stochastic
gradient descent.

All of the methods based on Bayesian networks take more time to build
than the two sampling methods, which is as expected. They make up in storage
requirements and in inference time. The global Bayesian network takes a very
large amount of time to build, which is in accordance with the results from
[45]. In comparison, our method is much faster. This is a logical consequence
of the fact that we only build one Bayesian network per relation. Additionally,
each Bayesian network has a tree topology, which means that each conditional
probability distribution we need to store is a two-way table. The sudden jump
in building time between k = 0 and k = 1 is due to the need to compute joins
when k > 0. However, note that the jump is much smaller between k = 1 and
k = 2. The reason is that the joins don’t have to be repeated for each additional
attribute included in every parent Bayesian network.

5 Conclusion

During the query optimisation phase, a cost model is invoked by the query opti-
miser to estimate the cost of query execution plans. In this context, the selectiv-
ity of operators is a crucial input to the cost model [30]. Inaccurate selectivity
estimates lead to bad cost estimates which in turn have a negative impact on
the overall running time of a query. Moreover, errors in selectivity estimation
grow exponentially throughout a query execution plan [22]. Selectivity estima-
tion is still an open research problem, even though many proposals have been
made. This is down to the fact that the requirements in terms of computational
resources are extremely tight, and one thus has to compromise between accuracy
and efficiency.

Our method is based on Bayesian networks, which are a promising way to
solve the aforementioned compromise. Although the use of Bayesian networks for
selectivity estimation isn’t new, previous propositions entail a prohibitive build-
ing cost and inference time. In order to address these issues, we extend the work
of [17] to include the measurement of dependencies between attributes of differ-
ent relations. We show how we can soften the relational independence assump-
tion without requiring an inordinate amount of computational resources. We
validate our method by comparing it with other methods on an extensive work-
load derived from the JOB [30] and the TPC-DS [40] benchmarks. Our results
show that our method is only slightly less accurate than the global Bayesian

182 M. Halford et al.

network from [45], whilst being an order of magnitude less costly to build and
execute. Additionally, our method is more accurate than join-aware sampling,
whilst requiring significantly less storage and computational requirements. In
comparison with other methods which make more simplifying assumptions, our
method is notably more accurate, whilst offering very reasonable guarantees in
terms of computational time and space. In future work, we wish to extend our
method to accommodate for specific operators such as GROUP BYs, as well as
verify the benefits of our method in terms of overall query response time as
perceived by a query issuer.

6 Appendix

6.1 Preliminary works

The following is an unabbreviated version of the subsection on our our pre-
liminary subsection. It contains additional examples that help to get a better
understanding, but that were considered too lengthy to be part of the main
article.

In [17], we developed a methodology for constructing Bayesian networks to
model the distribution of attribute values inside each relation of a database. Once
the Bayesian networks are constructed, we used to produce selectivity estimates
by converting a logical operator tree at hand into a probabilistic formula of sums
and products. In what follows, we will give an overview of Bayesian networks.
We will also explain the compromises we made in order to produce a method
that is both reasonably accurate as well as efficient.

A Bayesian network is a probabilistic model. As such, it is used for approxi-
mating the probability distribution of a dataset. The particularity of a Bayesian
network is that it uses a directed acyclic graph (DAG) in order to do so. The
graph contains one node per variable, whilst each directed edge represents a
conditional dependency between two variables. For instance, if nodes A and B
are connected with an edge that points from A to B, then this stands for the
conditional distribution P (B |A). A Bayesian network is a product of many such
conditional dependencies, which formally is:

P (X1, . . . , Xn) �
∏

Xi∈X
P (Xi |Parents(Xi)) (18)

The term, P (X1, . . . , Xn) is the probability distribution over the entire set
of attributes {X1, . . . , Xn}. Meanwhile, Parents(Xi) stands for the attributes
that condition the value of Xi. The distribution P (Xi |Parents(Xi)) is thus the
conditional distribution of attribute Xi’s value. In practice, the full distribution
is inordinately large, and is unknown to us. However, the total of the sizes of
the conditional distributions P (Xi |Parents(Xi)) is much smaller. Indeed, for
discrete attributes, each conditional distribution is a (p + 1)-way table, where
p is the number of parents |Parent(Xi)|. If an attribute hair is conditioned by
a single other attribute nationality, then that conditional relationship can be
stored in a two-way table, as shown in Table 9.

Selectivity Estimation with Attribute Value Dependencies 183

Table 9. Conditional distribution P (hair | nationality)

Blond Brown Dark

American 0.3 0.4 0.3

Japanese 0.05 0.1 0.85

Swedish 0.7 0.2 0.1

Meanwhile, if the nationality attribute is not conditioned by any other
attribute, then we can represent with a one-dimensional distribution, which is
represented in Table 10.

Table 10. Distribution P (nationality)

American Japanese Swedish

0.2 0.5 0.3

Assume the cost model is asked by the query optimiser to determine the
fraction of tuples where hair equals “Blond” and nationality equals “Swedish”.
This can be obtained by applying Bayes’ rule:

P (hair = Blond, nationality = Swedish) = P (Blond |Swedish) × P (Swedish)
= 0.7 × 0.3
= 0.21

(19)

Note that we do not have directly access to the distribution of the hair
attribute. Indeed we only have the conditional distribution P (hair |nationality).
However, we can obtain P (hair) by marginalising over the nationality attribute.
For instance, if we want to obtain the fraction of tuples where hair equals
“Blond”:

P (hair = Blond) =
∑

nationality

P (Blond, nationality)

=
∑

nationality

P (Blond |nationality) × P (nationality)

= 0.3 × 0.2︸ ︷︷ ︸
P (Blond,American)

+ 0.05 × 0.5︸ ︷︷ ︸
P (Blond,Japanese)

+ 0.7 × 0.3︸ ︷︷ ︸
P (Blond,Swedish)

= 0.295
(20)

184 M. Halford et al.

With a Bayesian network, we are thus able to answer any selectivity estima-
tion problem by converting a logical query into a mathematical formula follow-
ing standard rules of probability [24]. Note, however, that a Bayesian network
is necessarily an approximation of the full probability distribution because it
makes assumptions about the generating process of the data. Finding the right
graph structure of a Bayesian network is called structure learning [24]. This is
usually done using a scoring function, which estimates the amount of informa-
tion memorised by a network with a given structure. The time required to run
an exhaustive search which maximises the scoring function is super-exponential
with the number of variables [12]. Approximate search methods as well as inte-
ger programming solutions have been proposed [3], but they still require a large
amount of time to run and have brittle performance guarantees. In our work in
[17], we proposed to use the Chow-Liu algorithm [11]. This algorithm has the
property of finding the best tree structure where nodes are restricted to have
at most one parent. The obtained tree is the best in the sense of maximum
likelihood estimation. In other words, it is the tree that memorises the most
the given data. This is an important property, because for the purpose of selec-
tivity estimation we are not interested in having a model that generalises well,
but rather one that is good at memorising the data that it is shown. This is
explained in further details in Sect. 4.1 of [16]. In addition to this property, the
Chow-Liu algorithm only runs in O(p2) time, where p is the number of variables,
and is simple to implement. It works by first computing the mutual information
between each pair of variables, which is defined as so:

MI(Xi,Xj) =
∑

xi∈Xi

∑

xj∈Xj

P (xi, xj) × log(
P (xi, xj)

P (xi)P (xj)
) (21)

The mutual information can be seen as the strength of the relation between
two variables, whether it be linear or not. The distribution P (Xi,Xj) contains
the occurrence counts of each pair (xi, xj) in a relation R. It can be obtained
with a SELECT COUNT(*) FROM R GROUP BY Xi, Xj statement in SQL. The dis-
tributions P (Xi) and P (Xj) can be obtained by marginalising over P (Xi,Xj)
with respect to the other attribute. Once the mutual information for each pair
of attributes is computed, they are organised into a fully connected weighted
graph, as shown in Fig. 7:

The next step is to find the maximum spanning tree (MST) of the graph,
which is the spanning tree whose sum of edge weights is maximal. A spanning tree
is a subset of p− 1 edges that forms a tree. Finding the maximum spanning tree
can be done in O(p log(p)) time, for example, by using Kruskal’s algorithm [28].
The maximum spanning tree is then turned into a directed graph by choosing a
root attribute. The choice of the root attribute does not matter because mutual
information is symmetric. The result of applying this procedure to the graph
from Fig. 7 is shown in Fig. 8.

Once the structure of a Bayesian network has been decided upon, it can be
used to answer probabilistic queries. This is usually referred to as inference.
Inference for Bayesian networks is known to be NP-hard [12]. Exact inference as

Selectivity Estimation with Attribute Value Dependencies 185

nationality

country city

eye colour hair colour

0.55
0.34

0.11
0.59

0.68

0.03 0.25
0.01 0.22

0.10

Fig. 7. Mutual information amounts for five attributes

city

country

nationality

eye colour hair colour

Fig. 8. Maximum spanning tree of Fig. 7

well as approximate methods have been proposed. The most basic inference algo-
rithm is called the variable elimination algorithm [13] and is an exact inference
algorithm. It works by explicitly writing the inference equation defined by the
Bayesian network’s structures, and then moving the sum and product operators
around in order to “eliminate” repetitive calculations. In the case of trees, this
can be done in linear time, which is the main reason why we constrained our
Bayesian networks to have tree topologies in [17]. Many other inference algo-
rithms exist; this includes belief propagation (used in [45]), linear programming,
sampling methods, and variational inference. However, our experiments indi-
cated that all of these were much slower than the variable elimination algorithm
in the case of trees. Our inference process can further be accelerated by identify-
ing branches of the Bayesian network that do not pertain to a particular query.
This identification process is called the Steiner tree problem [19].

In [17], we proposed a simple method which consists in building one Bayesian
network per relation. We used the Bayesian networks to estimate the selectivity
of queries inside their respectful relations. On the one hand, this has the benefit

186 M. Halford et al.

of greatly reducing the computational burden in comparison with a single large
Bayesian network, as is done in [16] and [45]. On the other hand, it ignores
dependencies between attributes of different relations. We will now discuss how
we can improve our work from [17] in order to capture some dependencies across
relations.

References

1. Acharya, S., Gibbons, P.B., Poosala, V., Ramaswamy, S.: Join synopses for approx-
imate query answering. In: ACM SIGMOD Record, vol. 28, pp. 275–286. ACM
(1999)

2. Akdere, M., Çetintemel, U., Riondato, M., Upfal, E., Zdonik, S.B.: Learning-based
query performance modeling and prediction. In: IEEE 28th International Confer-
ence on Data Engineering (ICDE), pp. 390–401. IEEE (2012)

3. Bartlett, M., Cussens, J.: Integer linear programming for the Bayesian network
structure learning problem. Artif. Intell. 244, 258–271 (2017)

4. Blohsfeld, B., Korus, D., Seeger, B.: A comparison of selectivity estimators for
range queries on metric attributes. In: ACM SIGMOD Record, vol. 28, pp. 239–
250. ACM (1999)

5. Bruno, N., Chaudhuri, S., Gravano, L.: STHoles: a multidimensional workload-
aware histogram. In: ACM SIGMOD Record, vol. 30, pp. 211–222. ACM (2001)

6. Chaudhuri, S.: An overview of query optimization in relational systems. In: Pro-
ceedings of the Seventeenth ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems, pp. 34–43. ACM (1998)

7. Chaudhuri, S., Motwani, R., Narasayya, V.: On random sampling over joins. In:
ACM SIGMOD Record, vol. 28, pp. 263–274. ACM (1999)

8. Chaudhuri, S., Narasayya, V., Ramamurthy, R.: Exact cardinality query optimiza-
tion for optimizer testing. Proc. VLDB Endowment 2(1), 994–1005 (2009)

9. Chen, C.M., Roussopoulos, N.: Adaptive selectivity estimation using query feed-
back, vol. 23. ACM (1994)

10. Chen, Y., Yi, K.: Two-level sampling for join size estimation. In: Proceedings of
the 2017 ACM International Conference on Management of Data, pp. 759–774.
ACM (2017)

11. Chow, C., Liu, C.: Approximating discrete probability distributions with depen-
dence trees. IEEE Trans. Inf. Theory 14(3), 462–467 (1968)

12. Cooper, G.F.: The computational complexity of probabilistic inference using
Bayesian belief networks. Artif. Intell. 42(2–3), 393–405 (1990)

13. Cowell, R.G., Dawid, P., Lauritzen, S.L., Spiegelhalter, D.J.: Probabilistic Net-
works and Expert Systems: Exact Computational Methods for Bayesian Networks.
Springer, New York (2006). https://doi.org/10.1007/b97670

14. Deshpande, A., Garofalakis, M., Rastogi, R.: Independence is good: dependency-
based histogram synopses for high-dimensional data. ACM SIGMOD Record 30(2),
199–210 (2001)

15. Dutt, A., Wang, C., Nazi, A., Kandula, S., Narasayya, V., Chaudhuri, S.: Selectiv-
ity estimation for range predicates using lightweight models. Proc. VLDB Endow-
ment 12(9), 1044–1057 (2019)

16. Getoor, L., Taskar, B., Koller, D.: Selectivity estimation using probabilistic models.
In: ACM SIGMOD Record, vol. 30, pp. 461–472. ACM (2001)

https://doi.org/10.1007/b97670

Selectivity Estimation with Attribute Value Dependencies 187

17. Halford, M., Saint-Pierre, P., Morvan, F.: An approach based on Bayesian networks
for query selectivity estimation. In: Li, G., Yang, J., Gama, J., Natwichai, J., Tong,
Y. (eds.) DASFAA 2019. LNCS, vol. 11447, pp. 3–19. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-18579-4 1

18. Heimel, M., Kiefer, M., Markl, V.: Self-tuning, GPU-accelerated kernel density
models for multidimensional selectivity estimation. In: Proceedings of the 2015
ACM SIGMOD International Conference on Management of Data, pp. 1477–1492.
ACM (2015)

19. Hwang, F.K., Richards, D.S., Winter, P.: The Steiner Tree Problem, vol. 53. Else-
vier, North-Holland (1992)

20. Ioannidis, Y.: The history of histograms (abridged). In: Proceedings 2003 VLDB
Conference, pp. 19–30. Elsevier (2003)

21. Ioannidis, Y.E.: Query optimization. ACM Comput. Surv. (CSUR) 28(1), 121–123
(1996)

22. Ioannidis, Y.E., Christodoulakis, S.: On the propagation of errors in the size of
join results, vol. 20. ACM (1991)

23. Ivanov, O., Bartunov, S.: Adaptive cardinality estimation. arXiv preprint
arXiv:1711.08330 (2017)

24. Jensen, F.V., et al.: An Introduction to Bayesian Networks, vol. 210. UCL press,
London (1996)

25. Kipf, A., Kipf, T., Radke, B., Leis, V., Boncz, P., Kemper, A.: Learned cardinalities:
estimating correlated joins with deep learning. arXiv preprint arXiv:1809.00677
(2018)

26. Kipf, A., et al.: Estimating cardinalities with deep sketches. In: Proceedings of the
2019 International Conference on Management of Data, pp. 1937–1940 (2019)

27. Kooi, R.P.: The optimization of queries in relational databases (1981)
28. Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling sales-

man problem. Proc. Am. Math. Soc. 7(1), 48–50 (1956)
29. Kschischang, F.R., Frey, B.J., Loeliger, H.A., et al.: Factor graphs and the sum-

product algorithm. IEEE Trans. Inf. Theory 47(2), 498–519 (2001)
30. Leis, V., Gubichev, A., Mirchev, A., Boncz, P., Kemper, A., Neumann, T.: How

good are query optimizers, really? Proc. VLDB Endowment 9(3), 204–215 (2015)
31. Leis, V., et al.: Query optimization through the looking glass, and what we found

running the join order benchmark. VLDB J. 27, 643–668 (2018)
32. Leis, V., Radke, B., Gubichev, A., Kemper, A., Neumann, T.: Cardinality estima-

tion done right: index-based join sampling. In: CIDR (2017)
33. Liu, H., Xu, M., Yu, Z., Corvinelli, V., Zuzarte, C.: Cardinality estimation using

neural networks. In: Proceedings of the 25th Annual International Conference on
Computer Science and Software Engineering, pp. 53–59. IBM Corp. (2015)

34. Markl, V., Haas, P.J., Kutsch, M., Megiddo, N., Srivastava, U., Tran, T.M.: Con-
sistent selectivity estimation via maximum entropy. VLDB J. 16(1), 55–76 (2007)

35. Matias, Y., Vitter, J.S., Wang, M.: Wavelet-based histograms for selectivity esti-
mation. In: ACM SIGMOD Record, vol. 27, pp. 448–459. ACM (1998)

36. Moerkotte, G., Neumann, T., Steidl, G.: Preventing bad plans by bounding the
impact of cardinality estimation errors. Proc. VLDB Endowment 2(1), 982–993
(2009)

37. Müller, M., Moerkotte, G., Kolb, O.: Improved selectivity estimation by combining
knowledge from sampling and synopses. Proc. VLDB Endowment 11(9), 1016–1028
(2018)

38. Muralikrishna, M., DeWitt, D.J.: Equi-depth multidimensional histograms. In:
ACM SIGMOD Record, vol. 17, pp. 28–36. ACM (1988)

https://doi.org/10.1007/978-3-030-18579-4_1
http://arxiv.org/abs/1711.08330
http://arxiv.org/abs/1809.00677

188 M. Halford et al.

39. Olken, F., Rotem, D.: Simple random sampling from relational databases (1986)
40. Poess, M., Smith, B., Kollar, L., Larson, P.: TPC-DS, taking decision support

benchmarking to the next level. In: Proceedings of the 2002 ACM SIGMOD Inter-
national Conference on Management of Data, pp. 582–587 (2002)

41. Poosala, V., Haas, P.J., Ioannidis, Y.E., Shekita, E.J.: Improved histograms for
selectivity estimation of range predicates. In: ACM SIGMOD Record, vol. 25, pp.
294–305. ACM (1996)

42. Poosala, V., Ioannidis, Y.E.: Selectivity estimation without the attribute value
independence assumption. VLDB 97, 486–495 (1997)

43. Selinger, P.G., Astrahan, M.M., Chamberlin, D.D., Lorie, R.A., Price, T.G.: Access
path selection in a relational database management system. In: Proceedings of the
1979 ACM SIGMOD International Conference on Management of Data, pp. 23–34.
ACM (1979)

44. Stillger, M., Lohman, G.M., Markl, V., Kandil, M.: Leo-DB2’s learning optimizer.
VLDB 1, 19–28 (2001)

45. Tzoumas, K., Deshpande, A., Jensen, C.S.: Lightweight graphical models for selec-
tivity estimation without independence assumptions. Proc. VLDB Endowment
4(11), 852–863 (2011)

46. Van Aken, D., Pavlo, A., Gordon, G.J., Zhang, B.: Automatic database manage-
ment system tuning through large-scale machine learning. In: Proceedings of the
2017 ACM International Conference on Management of Data, pp. 1009–1024. ACM
(2017)

47. Vengerov, D., Menck, A.C., Zait, M., Chakkappen, S.P.: Join size estimation sub-
ject to filter conditions. Proc. VLDB Endowment 8(12), 1530–1541 (2015)

48. Wu, W., Chi, Y., Zhu, S., Tatemura, J., Hacigümüs, H., Naughton, J.F.: Predict-
ing query execution time: are optimizer cost models really unusable? In: IEEE
29th International Conference on Data Engineering (ICDE), pp. 1081–1092. IEEE
(2013)

49. Yin, S., Hameurlain, A., Morvan, F.: SLA definition for multi-tenant DBMS and
its impact on query optimization. IEEE Trans. Knowl. Data Eng. 30, 2213–2226
(2018)

Author Index

Abdullah, Tariq 1
Ahmet, Ahmed 1

Bouhamoum, Redouane 91
Busnel, Yann 121

Cazabet, Remy 67

d’Orazio, Laurent 32

Halford, Max 154

Kanaan, Mohamad 67
Kantere, Verena 32

Kedad, Zoubida 91
Kheddouci, Hamamache 67

Le, Trung-Dung 32
Lopes, Stéphane 91

Morvan, Franck 154

Querzoni, Leonardo 121

Rivetti, Nicoló 121

Saint-Pierre, Philippe 154

	Preface
	Organization
	Contents
	Extracting Insights: A Data Centre Architecture Approach in Million Genome Era
	1 Introduction
	2 Literature Review
	2.1 Genomics Data File Formats

	3 Proposed Framework
	3.1 Data Centre Services
	3.2 Data Centre Middleware
	3.3 Data Centre Infrastructure Service
	3.4 Genomics Variant Analysis: A Case Study

	4 Empirical Performance Evaluation
	4.1 Experimental Setup

	5 Conclusions and Future Work
	References

	Dynamic Estimation and Grid Partitioning Approach for Multi-objective Optimization Problems in Medical Cloud Federations
	1 Introduction
	2 Background
	2.1 Cloud Federation
	2.2 Pareto Plan Set
	2.3 IReS
	2.4 Multiple Linear Regression
	2.5 NSGA
	2.6 Motivation

	3 Dynamic Regression Algorithm
	4 Non-dominated Sorting Genetic Algorithm Based on Grid Partitioning
	4.1 Main Process
	4.2 Non-dominated Sorting
	4.3 Filter Front Process
	4.4 Selecting the Size of Grid

	5 Validation
	5.1 DREAM
	5.2 NSGA-G

	6 Conclusion
	References

	Temporal Pattern Mining for E-commerce Dataset
	1 Introduction
	1.1 Motivations
	1.2 Contribution

	2 Related Work
	3 Problem Reformulation
	4 Sequential Event Pattern Mining
	4.1 Build the List of IDListExt
	4.2 SEPM Without Duration
	4.3 SEPM with Duration
	4.4 SEPM with Parallel Mining Process

	5 Experimental Results
	5.1 Datasets
	5.2 Categorization
	5.3 Discriminatory Patterns
	5.4 Performances

	6 Conclusion
	A Appendix
	References

	Scalable Schema Discovery for RDF Data
	1 Introduction
	2 Motivation
	3 Overview of the Approach
	4 Distributing Data over Computing Nodes
	4.1 Initial Distribution
	4.2 Managing Big Chunks

	5 Core Identification
	6 Local Clustering
	7 Global Merging
	8 Experiments
	8.1 The Datasets
	8.2 Evaluation of the Schema Quality
	8.3 Scalability
	8.4 Comparison with NG-DBSCAN

	9 Related Work
	10 Conclusion
	References

	Load-Aware Shedding in Stream Processing Systems
	1 Introduction
	2 System Model and Problem Definition
	3 Load Aware Shedding
	3.1 Overview
	3.2 Background
	3.3 LAS Design

	4 Theoretical Analysis
	4.1 Correctness of LAS
	4.2 Execution Time Estimation

	5 Experimental Evaluation
	5.1 Setup
	5.2 Simulation Results
	5.3 Prototype

	6 Related Work
	7 Conclusions
	A Theoretical Analysis
	A.1 Time, Space and Communication Complexities
	A.2 Correctness of LAS
	A.3 Execution Time Estimation

	References

	Selectivity Estimation with Attribute Value Dependencies Using Linked Bayesian Networks
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Preliminary Work
	3.2 Handling Conditional Dependencies over Joins
	3.3 Linking Bayesian Networks
	3.4 Building Linked Bayesian Networks
	3.5 Selectivity Estimation
	3.6 Including More Than Just the Roots
	3.7 Summary

	4 Evaluation
	4.1 Experimental Setup
	4.2 Selectivity Estimation Accuracy
	4.3 Inference Time
	4.4 Construction Time and Space

	5 Conclusion
	6 Appendix
	6.1 Preliminary works

	References

	Author Index

