
Chapter 10
General Relativity and Cosmology

The general theory of relativity is considered to be Albert Einstein’s masterpiece in
theoretical physics. In contrast with special relativity, where scientists like Hendrik
Lorentz and Henri Poincaré worked in parallel, motivated by the unsolved physical
problems existing at the beginning of the twentieth century (for instance, motion with
respect to the æther and the negative result of the Michelson–Morley experiment),
there was no such motivation for general relativity. With the exception of an anomaly
in the precession of Mercury’s orbit, the Newtonian theory of gravitation did not
manifest symptoms of obsolescence.

The general theory of relativity was constructed by Einstein in a purely deduc-
tive form, using as basic postulates the principles of covariance and equivalence.
A suitable mathematical tool had just been invented, thanks to the works of the
Italian mathematicians Gregorio Ricci-Curbastro (1853–1925) and Tullio Levi-
Civita (1873–1941), who had developed the so-called absolute differential calculus.
Einstein was introduced to the formal aspects of non-Euclidean geometry by his
friend, the mathematician Marcel Grossmann (1878–1936).

In the summer of 1915, Einstein was invited by David Hilbert (1862–1943), an
outstanding mathematician, to visit Göttingen in order to lecture on his work on
the theory of gravitation. In November 1915, independently, Einstein and Hilbert
presented the equations of the gravitational field, which Hilbert had derived by
variational principle. Therefore, the gravitational field action is customarily called
Einstein–Hilbert action. However, the scheme of general relativity was developed by
Einstein, therefore the new theory of gravity is Einstein’s general relativity.

The final version of the theory was published by Einstein in 1916. The most
spectacular confirmation was obtained in 1919, when Arthur Eddington (1882–1944)
together with a team observed the bending of light from a distant star as it passed
close by the Sun during a solar eclipse. This and other predictions of general relativity
were subsequently confirmed in several experiments, making it an essential tool in
cosmological research.
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340 10 General Relativity and Cosmology

10.1 Principle of Equivalence and General Relativity

It is customary to distinguish between two forms of the principle of equivalence,
referred to as weak and strong. The weak principle of equivalence establishes the
equality of the inertial and gravitational masses. The inertial mass mi of a body is
the coefficient of the acceleration a in Newton’s second law:

F = mia. (10.1)

The gravitational mass of the same body, for example, in its interaction with the Earth,
is the one which appears in the expression for the force of gravitational attraction,
i.e.,

F = −GMmg

r2
r0, (10.2)

between, say, the Earth, of mass M , and the body of interest, of mass mg . The unit
vector r0 is along the line joining the body with the Earth’s centre. We have the
equivalence between these two masses expressed by means of the equality mi = mg .
As a consequence, the acceleration due to gravity is the same for all bodies, if air
resistance is neglected.

Imagine an elevator falling freely. An observer inside it would feel weightless. If
the observer has a ball and lets go of it, without pushing it in any way, it will hang in the
air, falling together with the system. When falling freely under the action of gravity,
everything happens for the observer as if gravity were zero inside the elevator. For an
observer inside an artificial satellite, this produces the effect of feeling weightless.

Returning to the elevator, if we accelerated it, for instance, by doubling the acceler-
ation produced by the Earth attraction, our observer would feel weight in the opposite
direction, that is, he would feel attracted toward the ceiling, as though there were a
gravitational field in that direction. We see in this way that an accelerated system and
a gravitational field produce similar effects, or in other words, motion in accelerated
systems is equivalent to motion produced by a gravitational field (Fig. 10.1).

If the elevator were to ascend with some acceleration g′, however, the observer of
mass m would experience an increase in weight by an amount mg′. That is, it would
seem as though the Earth’s gravitational field had increased, and the observer’s weight
would now be m(g + g′), instead of mg. In conclusion, a local equivalence exists
(that is, in a small region of space) between an accelerated reference frame and a
gravitational field.

The strong principle of equivalence establishes that in every gravitational field, an
elevator falling freely turns locally into a system in which the laws of physics are the
same as in special relativity, that is, in an inertial system. The case is the same for an
artificial satellite, in which the weightlessness effect is produced as a consequence of
the satellite falling continuously toward the Earth as it moves around its orbit (as we
pointed out in Chap. 1, the closed orbits result from the combination of this free-fall
effect with a large enough tangential velocity).
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Fig. 10.1 For an observer inside an elevator falling freely under the action of gravity, the gravi-
tational field force acting on him is canceled, and he feels as though he is floating or weightless.
If the elevator is accelerated with twice the acceleration due to gravity, the observer inside feels a
force equal to the Earth’s gravity acting on him, but directed toward the ceiling of the elevator.

Fig. 10.2 For a very large
elevator falling freely, the
forces F1,F2,F3 are not
parallel, whence the elevator
tends to adopt the form of an
arch.

So both the falling elevator and the satellite can be treated as inertial systems,
if their dimensions are small (strictly, pointlike). In the same way the Earth could
be considered as an inertial system with respect to the Sun if its dimensions were
negligibly small. In the case of the Earth, the fact of not being pointlike causes the
tidal forces due to the solar attraction (there are also tidal forces due to the Moon).
The atmospheric and oceanic masses are more sensitive to the tidal forces.

It is easy to understand the origin of tidal forces if we consider an extremely large
elevator (Fig. 10.2). Its centre of mass M moves with the acceleration due to gravity,
and falls freely. But the forces exerted on the ends E and E ′ are not parallel to the
one which acts on M , since, due to the curvature of the Earth’s surface, F1, F2, F3

are directed toward the Earth’s centre, whence the elevator tends to adopt the form
of an arch.

Similarly, the trajectory followed by the Earth in its motion around the Sun (with-
out considering the effect of the Moon) corresponds to a pointlike mass located at the
Earth’s centre of mass. The centre of mass behaves like a freely falling body during
its motion. But because of the Earth’s extension, the points distant from the centre
of mass do not rigorously follow the free-falling motion. The result is that a small
residual force is exerted on them by the Sun, producing tides. It must be emphasized,
however, that the most notable tides are produced by the Moon, and have a similar
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origin. For artificial satellites, this tidal effect is very small, and it can be neglected in
the first approximation. One can thus consider that the satellite satisfies the condition
of the principle of equivalence: for observers inside it, there the Earth’s gravitational
field vanishes.

10.2 Gravitational Field and Geometry

The potential of the gravitational field near the surface of the Earth is

V (r) = −GM

r
, (10.3)

where r is the Earth’s radius, G is the constant of gravitation, and M is the Earth’s
mass.

Imagine now the following Gedanken experiment: suppose that at some height l
with respect to some reference system on the Earth’s surface we have an electron and
a positron at rest. The mass of each is m. The potential energy of the two particles at
that height, putting l � r , is

E = −2mGM

r + l
= −2mGM

r

1

1 + l
r

≈ 2mV

(
1 − l

r

)
= 2m(V + �V ), (10.4)

where �V = GMl/r2. If the two particles now fall to the Earth’s surface, their
potential energy decreases to 2mV , and their kinetic energy will be equal to 2m�V . If
now the electron and positron annihilate to produce two photons of angular frequency
ω, the following equation will be satisfied:

2�ω = 2mc2 + 2m�V . (10.5)

That is, the energy of the two photons will be equal to the sum of the rest energy of
the electron and positron, plus their kinetic energy. We assume that the velocity of
these particles is not very large, so that we can use the approximation

mc2√
1 − v2/c2

≈ mc2 + 1

2
mv2,

where 1
2mv2 = m�V . Now, by means of a suitable mirror, let the two photons be

reflected back up to the initial level of height l. At this height l, let the two photons
create the electron–positron pair again. The pair will be at rest, since otherwise
there would be a gain of energy in the cyclic process, implying the possibility of
constructing a perpetual motor of the second kind.

The frequency ω′ of the two photons at the height l is different from the frequency
ω at the level of the Earth’s surface, and should satisfy
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2�ω′ = 2mc2. (10.6)

Comparing (10.5) and (10.6), we deduce that

ω − ω′

ω′ = �V

c2
. (10.7)

So the frequency of the radiation varies in a gravitational field. Since �V is positive
in our case, (10.7) implies that radiation emitted away from the surface of the Earth
has frequency diminished by an amount

�ω = ω − ω′ = �V

c2
ω, (10.8)

where in writing the second equality we have assumed that ω and ω′ are much larger
than their difference.

Assume that a source on the Earth emits radiation at some frequency. The observer
at some height will measure a lower frequency, i.e., shifted toward the red. This
effect was measured for the first time by the American physicists Robert Pound and
Glen Rebka in 1960, using a source of γ rays and the Mössbauer effect. These and
other experiments reached an accuracy of 7 × 10−5. In 2010, a much more exact
measurement of the gravitational red shift based on quantum interference of matter
waves within an accuracy of 7 × 10−9 was reported by H. Müller, A. Peters, and
S. Chu.

Let us now examine the phenomenon from the wave point of view. If the frequency
varies in a gravitational field, this should be caused by a time dilation. Actually, if
a train of waves is sent from the Earth’s surface, containing n complete oscillations
during the time T1, the relation between the angular frequency and the interval T1 is

T1 = 2πn/ω. (10.9)

The angular frequency of the same train of waves at the height l can be measured by
dividing n by the duration of the train. The number obtained, ω′, is different from ω,
and this means that the interval T2 that corresponds to n oscillations is

T2 = 2πn/ω′. (10.10)

From (10.8) to (10.10), it follows that

T2 − T1

T1
= �V

c2
. (10.11)

That is, a clock at a height l measures for the duration of the wave train an interval
of time longer than a clock located at the Earth’s surface, and T2 = (1 + �V/c2)T1.
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Fig. 10.3 Spacetime
diagram of the propagation
of a wave train in the
gravitational field of the
Earth from its surface to
some height l. The duration
of the wave train is different
for observers located at the
two points.
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A clock on the Earth goes more slowly than another one placed at some height
above the Earth’s surface. In general, a clock located in a gravitational field goes
more slowly than another clock located where the field is zero.

Let us draw a picture in which we mark on the horizontal axis x the height
above the Earth and on the vertical axis the time t (Fig. 10.3). The event marked
as 1 corresponds to the origin of the wave train as measured by the observer on the
Earth. The event 1′ corresponds to the origin of the train as measured by a second
observer located at the height l. Similarly, the point 2 marks the end of the wave
train as measured by the terrestrial observer, and 2′ the same event as measured by
the second observer. The lines 11′ and 22′ are the graphs of the propagation of the
origin and the end of the wave train in spacetime. But as we have seen, the duration
of the train, considered as the segments 12 = T1, 1′2′ = T2, are different for the two
observers:

T2 > T1. (10.12)

On the other hand, the lines 11′ and 22′ should be parallel, since they correspond to
the same phenomenon (the propagation of the signal) in a static gravitational field
(it does not vary in time), and they differ only in that they have been measured by
two different observers.

But the figure 11′2′2 is not a parallelogram. The only solution to this paradox is
that, in the presence of a gravitational field, the spacetime is curved. Hence, instead
of taking the axes x, t on a plane, they must be taken on a curved surface. Then, by
redefining the condition of parallelism on the surface, the lines 11′ and 22′ can be
made to satisfy it on this surface.

A fundamental consequence of the general theory of relativity is that the effect of
a gravitational field is described by spacetime curvature. Let us compare a plane and
a curved surface like the surface of a sphere. Mark two points in the plane. Geometry
demonstrates that the geodesic or shortest distance between those two points is the
straight line segment joining them. In the geometry of the plane, the geodesics are
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straight lines extending across the whole plane toward infinity. Three points that are
not aligned determine a triangle, the sum of whose internal angles is 180◦. In other
words, we can say that the plane is a two-dimensional Euclidean space.

Considering the same problem on the surface of the sphere leads to the conclusion
that the geodesics are arcs of great circles (a great circle on the spherical surface is
one whose centre coincides with the centre of the sphere). On the sphere, geodesics
are finite in extent, and so is the total area of the sphere. Furthermore, a triangle on
the spherical surface has the property that the sum of its internal angles is greater
than 180◦. The spherical surface is an example of a two-dimensional non-Euclidean
space.

If α, β, and γ are the internal angles of a spherical triangle, A the area of this
triangle, and R the radius of the sphere, we have the relation

A

R2
= α + β + γ − π. (10.13)

If A is kept constant and R tends to infinity, (10.13) gives the planar limit

α + β + γ = π. (10.14)

On the other hand, from (10.13), one can define the reciprocal of the square of the
radius of the sphere, K = 1/R2, by

K = α + β + γ − π

A
. (10.15)

If the area A tends to zero in the expression (10.15), the resulting expression allows
us to define the curvature in the neighbourhood of any point on the surface as

K = lim
A→0

α + β + γ − π

A
, (10.16)

i.e., the excess over π of the sum of the internal angles of a triangle divided by the
area of such triangle, in the limit of the area going to zero.

At a given point the curvature can be positive, zero, or negative. For example, K is
positive everywhere in the case of a sphere, zero in the case of a plane, and negative
on a saddle-shaped surface (Fig. 10.4).

Our intuition suggests that the three-dimensional physical space has the geometric
properties resulting from generalizing the plane by adding one more dimension to
obtain a three-dimensional Euclidean space. In this case, if we start from a point and
move along a geodesic, that is, in a straight line, we move away from our starting
point toward infinity.

In contrast, if our three-dimensional physical space had the geometrical properties
which result from the generalization of the spherical surface to three dimensions, the
geodesics would be closed curves. In contrast, if the geometry of space were of saddle
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K > 0 K = 0 K < 0

Fig. 10.4 A sphere has positive curvature, the plane has zero curvature, and a saddle-shaped surface
has negative curvature.

type (negative curvature), the geodesics would not be closed, but open curves, and
they would extend toward infinity.

According to general relativity, the planets, in their orbital motion around the Sun,
describe geodesics in a four-dimensional curved spacetime, which is deformed by
the mass of the Sun. In addition, when the rays of light emitted by a distant star pass
close to the Sun, they follow a geodesic curve and hence deviate from the straight
line trajectory. By defining b = cL/E , where L is the angular momentum of the
beam and E its energy, the shifted angle is given approximately by

δφ = 4GM⊙/bc2,

where M⊙ is the mass of the Sun. Notice that b has dimension of length. The effect
is 1.75′′ for light coming from distant stars and grazing the Sun’s limb.

Actually, according to classical Newtonian mechanics and special relativity, some
deviation of the light rays would be expected near the large solar mass, and it is not
difficult to calculate this effect, which has been mentioned also in Sect. 1.5.3. But
general relativity predicts a result twice as large, and this was confirmed by the
observations made later by Eddington and other observers. The doubling of the
deviation can be explained only in the framework of the general relativity, as a
consequence of the curvature of space. It is found from the solution of the equation
of motion for a light ray (the so-called eikonal equation) in a centrally symmetric
gravitational field.

The geodesic curves described by the planets according to general relativity are
not ellipses (as predicted by Newtonian mechanics), but more complicated curves in
the form of almost-ellipses whose major axes precess around their focus (Fig. 10.5).
An anomalous effect of this sort had been known since the nineteenth century in
the orbit of Mercury. The observed precession of Mercury’s perihelion (the point
of closest approach to the Sun on the orbit) is 574" (arc-seconds) per century. The
gravitational tugs of other planets, calculated by Newton’s theory, could explain
a precession of about 531". The origin of such a difference was not known. The
calculations performed by Einstein in 1915 in the framework of general relativity
provided the extra amount of + 43", in perfect agreement with the observed data.
This was the first observational fact explained by the theory of general relativity. The
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Fig. 10.5 The true
trajectories of the planets
around the Sun are
precessing ellipses, resulting
in curves in the shape of
rosettes. This precession
effect is very small, and is
more perceptible in the case
of Mercury owing to its
proximity to the Sun.

effect is more perceptible in Mercury’s orbit because of its high eccentricity and its
proximity to the Sun, but other planets display it in smaller amounts. In particular,
for the Earth, this effect is about 3.84" per century.

It is interesting to note that, according to general relativity, a body moving with
some velocity V in a gravitational field is under the action of two forces: one
corresponding to the usual gravitational attraction of Newtonian mechanics, and
another one perpendicular to its velocity. This has a close analogy with the elec-
tromagnetic case, in which a charged particle in motion suffers the action of the
Lorentz force, with two components: the electric force, independent of the velocity
of the particle, and the magnetic force, perpendicular to its velocity. The additional
force exerted by the gravitational field on a particle in motion in that field is the
analog of the magnetic force. This second gravitational force is not very significant
for low velocities since, as in the magnetic case, the term describing it contains the
factor V/c.

According to the principle of equivalence, this second force of gravity corresponds
more properly to the Coriolis force, appearing in a rotating (non-inertial) system of
reference as a force perpendicular to the velocity of a particle moving in such a
system.

General relativity also predicts that massive rotating bodies “drag” spacetime in
their vicinity. This effect was first derived from general relativity by Josef Lense
(1890–1985) and Hans Thirring (1888–1976) in 1918, and is also known as the
Lense–Thirring effect.

Lensing effect. The lensing effect is due to the deflection of light coming from
a distant object by a massive body. For small angles, it can be expressed as θ =
4GM�/bc2, where b = cL/E (see Sect. 10.2). Since the light is made up of photons,
for which p = E/c, we have L = Er/c, which implies b = r , where r is the shortest
distance from the photon beam to the body’s centre. Thus, one can write

θ = 2rg/r. (10.17)
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Fig. 10.6 a For perfect alignment of the observer, lens, and star we get a complete Einstein ring. b
If this is not the case, only part of a ring will be observed. c An interesting example of the latter case
is the Canarias ring, discovered by Margherita Bettinelli et al. in the constellation of the Sculptor
in 2016. The maximal intensities are indicated by A, B, and C. The lens is a massive galaxy with
redshift z = 0.581, and the source is also a galaxy, with z = 1.165. The ring covers around 300◦.

Consider a massive object, which may be a star or a galaxy, and call it the lens.
This is located between the observer and a still more distant star (galaxy). When it
passes near the lens, light coming from this last object can be bent round toward the
eye of the observer. This gravitational lensing phenomenon was first mentioned in
1924 by the physicist Orest Chwolson (1852–1934) in Saint Petersburg, and treated
quantitatively by Albert Einstein in 1936. If the object, the lens, and the observer are
perfectly aligned, the image of the body will be a circular ring, known as an Einstein
ring, centred on the lens (Figs. 10.6).

GPS time correction due to general relativistic effects. GPS (Global Positioning
System) satellites form a global navigation system. Each carries a very accurate
atomic clock that provides geolocation and time information to a GPS receiver. GPS
satellites are located at a height of approximately 26600 km from the centre of
the Earth, and describe two full orbits every sidereal day. For a position accuracy
of �x = 15 m, the time aboard GPS satellites must be known to an accuracy of
�t = �x/c = 50 × 10−9 s. The time measured by the satellite clocks must therefore
be corrected due to effects from special and general relativity.

To calculate the relativistic effects on the time measured by a clock aboard a GPS
satellite, which runs faster than a clock on Earth surface, we must compare the proper
times measured on the satellite and on the Earth’s surface. We take the Earth’s mass
to be 5.924 × 1027 g and its radius to be R = 6378 km. We need the velocities of
the satellite v and the Earth’s surface V , as well as rg , to write the proper time at
the satellite in the form dτS = ds/c, where ds is obtained from the Schwarzschild
metric (10.18). We should set r constant as well as θ = π/2. Then, as v = rdφ/dt ,
we have −r2dφ2/c2 = −(v2/c2)dt2 and

dτS =
√

1 − rg
r

− v2

c2
dt, (10.18)

where the denominator of the third term in (10.28) has been approximated by one,
i.e., dr2/(1 − rg

r ) ≈ dr2, since it would only contribute to a small second order term.
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(Note that, if rg is neglected in (10.18), one is left with the special relativistic proper
time relation in terms of v/c.) For the proper time at the Earth’s surface, we have

dτE =
√

1 − rg
R

− V 2

c2
dt. (10.19)

Setting ε = rg/r + v2/c2 and η = rg/R + V 2/c2, we obtain an expression of the
form

dτS

dτE
=

√
1 − ε√
1 − η

,

for the ratio of the proper times on the satellite and on Earth, where ε and η are very
small quantities compared to 1.

Approximating by dτS
dτE

= (1 − ε/2)(1 + η/2), and neglecting square terms, we
get dτS − dτE = (−ε/2 + η/2)dτE . From this, we can integrate dτ over the interval
of time to be corrected in one day. It is calculated as a problem below, leading to a
value of 38 × 10−6 s.

10.3 Affine Connection and Metric Tensor

We saw in Chap. 5 how the concept of interval is used to characterize the distance
between two events in spacetime. This concept remains valid in general relativity, and
in fact the whole mathematical formulation of this theory starts from the expression
for the infinitesimal interval between two events. In special relativity, if two events
A and B have the spacetime coordinates A = (x, y, z, ct) and B = (x + dx, y +
dy, z + dz, ct + cdt), the interval would have the form

ds2
AB = c2dt2 − dx2 − dy2 − dz2. (10.20)

Observe that the coefficients of the squares of the differentials of the coordinates
are the constant numbers (1,−1,−1,−1). It is customary to refer to (10.20) as the
expression for the interval in the flat spacetime, and to call the set of four numbers
(1,−1,−1,−1) the Minkowski metric. With the notation introduced in Sect. 5.8, in
the case of general relativity, the interval between events A and B would have the
general form

ds2
AB = g00dx

2
0 + g11dx

2
1 + g22dx

2
2 + g33dx

2
3 + 2g12dx1dx2 + 2g23dx2dx3 + · · · ,

(10.21)
with ten general, spacetime-dependent coefficients gμν = gμν(x), where μ, ν =
0, 1, 2, 3, and by x we denote the spacetime four-vector xμ. In weak gravitational
fields, gμν approach their special relativity values, i.e., the Minkowski metric. The
quantities gμν = gμν(x) form a mathematical entity, the metric tensor of spacetime.
Recall that a tensor is an object which transforms as the product of vectors. The
metric tensor is symmetric, i.e., gμν = gνμ.
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As a consequence of the curvature of spacetime, systems of curvilinear coordi-
nates are more convenient. Recall also the contravariant quantities, transforming like
the coordinate differentials dxμ = (dx0, dx1, dx2, dx3), and covariant quantities,
transforming like the partial derivatives ∂

∂xμ = (
∂

∂x0 ,
∂

∂x1 ,
∂

∂x2 ,
∂

∂x3

)
, where by xμ we

denote the generalized coordinate. As examples of curvilinear coordinates, we have
cylindrical coordinates xμ = ct, ρ, ϕ, z, and spherical coordinates xμ = ct, r, θ, ϕ.
A typical case of a covariant vector is the vector formed by the derivative of a scalar
function f with respect to the (contravariant) coordinates:

∂ f (x)

∂xμ
.

Another example of a covariant quantity is the metric tensor gμν . Given a contravari-
ant vector, (A0, A1, A2, A3), we can transform it to a covariant one by multiplying
it by the matrix formed by the metric tensor. We write Aμ = ∑

ν gμν Aν , but from
now on we drop the summation symbol, understanding that when repeated indices
appear, like ν in the previous expression, we sum over them. This is Einstein’s sum-
mation convention, introduced by Albert Einstein in his general relativity paper of
1916. We define δν

μ to be the unit four-dimensional tensor, or Kronecker symbol,
with all components equal to zero but with units down the main diagonal. Then the
contravariant metric tensor gμλ satisfies the property

gμλgλν = δμ
ν .

The task of defining the derivative of a vector with respect to the coordinates is
more complicated. We must bear in mind that the variation of each of the components
of a vector depends also on the other components. That is, this derivative which we
will represent by ∇λ, and is called the covariant derivative, or affine connection (an
affine transformation has the general form y = ax + b), has two terms:

∇λA
μ = ∂Aμ

∂xλ
+ �

μ
ηλA

η, (10.22)

where �
μ
ηλ = gμξ�ξηλ. Note that �

μ
ηλ and �ξηλ are not tensors. They are called

Christoffel symbols, and are defined in terms of gμν by the relation

�ξηλ = 1

2

(
∂gξη

∂xλ
+ ∂gξλ

∂xη
− ∂gλη

∂xξ

)
. (10.23)

We would like to point out the analogy between (10.22) and (1.27). The latter equa-
tion can be written as dx ′

i/dt = dxi/dt − εi jkω j xk , and expresses the transformation
of the velocity of a body from an inertial to a rotating (non-inertial) frame in Newto-
nian mechanics. Actually, (10.22) contains a generalization of (1.27), as a covariant
derivative since, due to the principle of equivalence, the rotating system is equivalent
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(locally) to a gravitational field. Incidentally, covariant derivatives related to gauge
transformations are defined also in the theory of Yang–Mills fields (see Chap. 11).

The metric tensor gμν(x) describes the gravitational field in the general theory
of relativity. If a falling elevator is used as a system of reference, in such a system
the interval between two very close events will take the form (10.20). That is, by
making a transformation of coordinates to such a system, the expression (10.21)
takes the form (10.20), and the Einstein metric becomes locally Minkowskian. We
say ‘locally’ since this transformation is only valid in an infinitesimally small region.
The point is that a gravitational field can only be made to vanish in the neighbourhood
of a given point. As pointed out by Einstein:

In the immediate vicinity of an observer that falls freely in a gravitational field, the gravita-
tional field does not exist.

This establishes an essential difference between a real gravitational field and a
fictitious one (created by a non-inertial system). The fictitious gravitational field can
simply be eliminated at all spacetime points by making an appropriate transformation
of coordinates. A real gravitational field cannot be eliminated in this way.

Starting from the metric tensor gμν (and its contravariant associated tensor gλη),
it is possible to build other mathematical entities, such as the Riemann–Christoffel
tensor Rμνλη, the Ricci tensor Rμν , which describes the curvature of spacetime, and
the scalar curvature R = gμνRμν . The tensor Rμν is defined by

Rμν = ∂�η
μν

∂xη
− ∂�η

μη

∂xν
+ �η

μν�
λ
ηλ − �λ

μη�
η

νλ, (10.24)

and the scalar curvature is R = gμνRμν . Remark that in general relativity the tensors
are covariant under general coordinate transformations. A non-vanishing Riemann
tensor is the covariant criterion to define a curved spacetime, as this tensor is identi-
cally zero for the flat Minkowski spacetime.

A distribution of matter or radiation is described in general relativity by means
of another mathematical entity: the energy–momentum tensor Tμν . For a relativistic
fluid in thermal equilibrium having pressure p, energy density ε, and velocity four
vector uμ, one finds:

Tμν = (p + ε)
uμuν

c2
− pgμν. (10.25)

10.4 Gravitational Field Equations

The gravitational field equations in general relativity, named Einstein’s equations,
establish a relation between the geometrical properties of the spacetime, expressed by
the metric tensor gμν , the Ricci tensor Rμν , and the spacetime curvature R on the one
hand, and the distribution of mass and energy, represented by the energy–momentum
tensor of matter, Tμν , on the other hand:
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Rμν − 1

2
gμνR = 8πG

c4
Tμν, (10.26)

where G is the gravitational constant. Einstein’s equations for the gravitational field
are analogous to Maxwell’s equations in classical electrodynamics. There are, how-
ever, three important differences:

1. Maxwell’s equations apply to inertial systems. The equations of the gravitational
field apply to arbitrarily moving systems;

2. Maxwell’s equations do not contain the equations of motion of the charges which
produce the electromagnetic field. However, the gravitational field equations pro-
vide the equations of motion for the particles producing the field;

3. Maxwell’s equations are linear differential equations in the electromagnetic poten-
tial Aμ(x), while the gravitational field equations are highly non-linear in gμν(x),
whose components represent the generalized gravitational potential.

In particular, from the latter feature, in the quantum version of the theory, we would
expect the gravitons or quanta of the gravitational field (the gravitational analog of
photons) to be able to split and generate other gravitons. Photons, on the other hand,
do not split into pairs of photons (in vacuum), in standard quantum electrodynamics.
Moreover, there is an analogy between the Lorentz force in electromagnetism and
the gravitational force on a moving mass, as pointed out previously. If we denote
h = −g00 and if we define the three-dimensional vector g with components gi =
g0i/g00, where i = 1, 2, 3, for a constant gravitational field (the components of the
metric tensor do not depend on time), one can write this force as

F = mc2√
1 − V 2/c2

{
−∇ ln

√
h + √

h
v
c

× (∇ × g)
}

. (10.27)

For small velocities, the first term corresponds to the well-known force of gravity,
and it is the analog of the electrostatic attraction, while the second term depends on
the velocity, as does the magnetic force, and it is equal to the Coriolis force in a
rotating system with angular velocity � = c

2

√
h∇ × g. But for the latter to become

significant, e.g., in the case of the planets, they would have to move at high speed,
comparable with the speed of light.

In addition, as for the electromagnetic field, there should be gravitational waves,
that is, deformations of the spacetime geometry propagating at the speed of light.
But even for very massive astronomical objects, the amount of gravitational energy
radiated is extremely small. For example, for a system of binary stars, the radiation
emitted in a year would be 10−12 of the total energy of the system. The so-called
Hulse–Taylor binary is a pair of stars, one of which is a pulsar. They each have
masses around 1.4 M⊙ and the distance between them is around 2 × 106 km, of the
order of the Sun’s diameter. They are expected to radiate 1022 times the gravitational
energy radiated by the Earth–Sun system. This causes the stars to gradually move
closer together, in what is known as an inspiral, and this has an effect on the observed
pulsar’s signals.
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Russell Hulse (b. 1950) and Joseph Taylor (b. 1941) were awarded the Nobel
Prize in 1993 for their measurements which led to the discovery of the first binary
pulsar, and allowed them to show that the gravitational radiation predicted by general
relativity matched the results of these observations with a precision within 0.2%. This
was the first indirect evidence for gravitational energy radiation, which is understood
as a wave phenomenon.

Observation of Gravitational Waves

The search for direct evidence of gravitational waves lead to a great success, using
mainly detectors based on laser interferometry, like LIGO on Earth ground (Laser
Interferometer Gravitational Wave Observatory) in Livingstone, Louisiana, and the
Hanford Site in the state of Washington. The Laser Interferometer Space Antenna
(LISA) is designed to detect gravitational waves at frequencies not observable by
ground based interferometry, and planned to operate in the near future. LISA is a
giant interferometer, composed of three satellites forming an equilateral triangle with
the sides 2.5 million km long.

As a gravitational wave passes through matter, a distortion in space-time pro-
duced by the gravitational wave leads to a tiny lengthening or contraction of objects,
like the arms of an interferometer. This makes interferometry-based devices partic-
ularly useful for the detection of such waves. A modified Michelson interferometer
is used to measure gravitational-wave strain through the difference in length of its
orthogonal arms. LIGO is the largest interferometer ever built and the most sensi-
tive detector, possessing a measurement sensitivity of about one part in 5 × 1022.
Each arm is formed by two mirrors, acting as test masses, separated by a dis-
tance Lx = Ly = L = 4 km. When a gravitational wave passes, it alters the arm
lengths such that the measured difference is �L = δLx − δLy = h(t)L , where h
is the gravitational-wave strain amplitude projected onto the detector. This length
variation produces a phase difference between the two light beams returning to the
splitter, transmitting an optical signal proportional to the gravitational-wave strain
to the output photodetector.

When a gravitational wave enters, one of the arms of the interferometer is length-
ened. Mirrors placed near the beam splitter cause multiple reflections of the laser
beam, increasing the distance traveled in each arm to 1120 km. This system of mirrors
forms an optical resonator known as a Fabry–Pérot cavity. The output is the signal
coming from the interference of the two beams, showing the shape of the incoming
gravitational wave.

Up to 2015, evidence for black holes could only be obtained through electromag-
netic signals, although evidence for the radiation of gravitational waves was pro-
vided by the Hulse–Taylor observations. However, the merging of two black holes
by detection of the emitted gravitational waves was first observed on 14 September
2015. LIGO reported the observation of a signal corresponding to the wave predicted
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by general relativity for the merger of two black holes with masses 29M� and 36M�
about 1.3 billion light years away. The final black hole mass was estimated to be of
order 62M�. The difference of 3M� was radiated as gravitational waves. A second
set of gravitational waves was reported in December 2015. They represented the
merger of two black holes about 1.4 billion light years aways, with masses of about
14.2 and 7.5 solar masses, yielding a final black hole of around 20.8 solar masses,
with one solar mass radiated away as gravitational waves. In 2017, the Nobel Prize
in Physics was awarded to Rainer Weiss (b. 1932), Kip Thorne (b. 1940), and Barry
Barish (b. 1936) “for decisive contributions to the LIGO detector and the observation
of gravitational waves”.

On 17 August 2017, scientists also witnessed a process in which two neutron
stars spiralled into each other and merged, producing a black hole. The event was
first detected by the gravitational waves this generated. Scientists immediately knew
it was due to two spiralling neutron stars, which were already emitting radiation
before they merged. The radiation was detected by 70 observatories around the world,
ranging from gamma ray detectors to radio telescopes. They confirmed several key
astrophysical models, and revealed the birthplace of some heavy elements like gold
and platinum. Above all, they were able to further test general theory of relativity.

10.5 Cosmology

If Einstein’s equations (10.26) are solved for a gravitational field produced in vacuum
by a body of mass M with spherical symmetry, and such that the metric does not
depend on time and is asymptotically flat, the interval ds2 is given by the expression
obtained by Karl Schwarzschild (1873–1916) in 1915:

ds2 =
(

1 − rg
r

)
c2dt2 − r2(sin2 θdϕ2 + dθ2) − dr2

1 − rg
r

, (10.28)

where rg = 2GM/c2 is the Schwarzschild radius of a spherical body of mass M .
For r = rg , g00 = 0 and g11 → ∞ with the formation of the so-called event horizon
of a black hole. An event horizon is a boundary in spacetime beyond which events
cannot affect an outside observer. Such a region of spacetime is called a black hole.
In 2020, the British mathematician Roger Penrose was awarded the Nobel Prize in
Physics “for the discovery that black hole formation is a robust prediction of the
general theory of relativity”.

The Russian physicist Alexander A. Friedmann (1888–1925) studied the Einstein
equations as applied to the Universe, assuming a homogeneous and isotropic density,
and he concluded that there are two possible solutions: the closed and the open mod-
els. The latter leads to a perpetual expansion. At the boundary between the open
and the closed models, there is the flat solution. Physically, the condition for open,
closed, or flat Universe is determined by the density (of matter or energy).
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If the distance between two galaxies is taken as d(t) = R(t)d0, their relative speed
can be written as v = [Ṙ(t)/R(t)]d(t), i.e., the speed is proportional to the separation
between the two galaxies, with a proportionality factor H(t) = Ṙ(t)/R(t) which is
called the Hubble parameter. Its present value is usually represented by H0 and called
Hubble’s constant. We call R(t) the cosmic scale factor, and here we take it to be
dimensionless, while d0 has the dimension of length. Below we shall consider R(t)
frequently as containing implicitly the d0 factor and having dimensions of length.
Concerning H(t), it has the dimension of inverse time.

We shall discuss the problem of the motion of a galaxy by using the Newtonian
mechanics of Chap. 1, but taking into account Hubble’s law. Let us consider the mass
of the galaxy as m, under the gravitational attraction of the rest of the Universe, of
mass M . As M � m, one has M + m � M and the total energy is

1

2
mv2 − GMm

r
= E . (10.29)

Let us write v = Ṙ(t) = H(t)R(t) and r = R, where H(t) is the Hubble parameter
and R is the radius of the Universe. For a spherical mass distribution, the total mass is
M = 4

3πR3ρ, where ρ is the average mass density of the Universe, and we substitute
this expression into (10.29). This gives

Ṙ2(t)

2
− 4πρGR2(t)

3
= E

m
= −K

2
. (10.30)

This is a non-relativistic way of obtaining Einstein’s equation from the Friedmann
model for the expansion of the homogeneous and isotropic Universe. The latter
is identical to the one obtained using the relativistic formalism starting from the
Robertson–Walker metric, which is a metric compatible with the conditions of homo-
geneity and isotropy (these conditions are sometimes called cosmological principle):

ds2 = c2dt2 − R2(t)

[
dr2

1 − kr2
+ r2(dθ2 + sin2 θdϕ2)

]
. (10.31)

Here k = −1, 0, 1 correspond to open, flat, and closed cosmologies, respectively.
Observe that K in (10.30) has the dimension of the square of a velocity, while k
in (10.31) is dimensionless, because R(t) has the dimension of length, and r is
dimensionless. Then we have K ∼ kc2. According to (10.30), the critical condition
to bring the expansion asymptotically to a halt occurs for k = 0, that is to say, for
the density

ρc = 3H 2

8πG
. (10.32)

With the present-day value of the Hubble parameter, H0, the value of ρc is of the
order of 10−29g cm−3.
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But the Robertson–Walker metric does not tell us anything about the time
dependence of the scale factor R(t). To obtain this information, one must solve not
only the Einstein equations, that is, (10.30) and (10.34) below, but also the equation of
conservation of energy and the equation of state. Let us discuss the simplest case of a
flat Universe. If we expand R(t) in a power series around the reference time t0, taken as
the present time, we get R(t) = R(t0)[1 + H0(t − t0) − 1

2q(t0)H 2
0 (t − t0)2 + · · · ],

where the so-called deceleration parameter is given by

q(t) = − R̈(t)R(t)

Ṙ2(t)
. (10.33)

This quantity was estimated to be of the order of −0.5 at present, indicating that the
expansion of the Universe is accelerated. The value of the deceleration parameter is
a major topic in the present day cosmological research.

Together with (10.30) we must consider the other Einstein equation,

R̈(t) = −4πG

3
R(t)

(
ρ + 3p

c2

)
. (10.34)

For ρ > 0 and p > 0, the acceleration R̈ is negative, and consistent with a positive
deceleration. But as will be pointed out later, dark energy may provide a negative
value for the factor (ρ + 3p/c2), producing an accelerated expansion of the Universe.
We postpone the discussion of this case and continue with the solutions for standard
cosmology. We denote � = ρ/ρc. Then we can write (10.30) in terms of the Hubble
parameter as follows:

H 2(� − 1) = K R−2(t). (10.35)

If one assumes the pressure to be negligible compared with the density, that is to say
p � 0, simple solutions of the Friedmann model are found. In the flat case (k = 0,
q0 < 0.5, � = 1), one has

R(t) = [3GM/π ]1/3t2/3, H = 2/3t. (10.36)

In the closed case (k = +1, q0 > 0, � > 1), the Universe has a finite volume, but
it is unbounded (this corresponds to the previously mentioned space which can be
regarded as a generalization of the spherical surface to three dimensions). In such a
case, one obtains solutions in terms of a parameter η, defined by dη = R(t)dt :

R(η) = (2GM/3πc2)(1 − cos η), t (η) = (2GM/3πc3)(η − sin η). (10.37)

In both the open (k = −1, � < 1) and the flat cases, the Universe is infinite and
unbounded. In the open case, one has
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R(η) = (2GM/3πc2)(cosh η − 1), t (η) = (2GM/3πc3)(sinh η − η).

(10.38)
In none of the three cases is the Universe static, and it should be either expanding
or contracting. Expansion is interpreted as meaning that the galaxies separate with
increasing speed because their mutual separation increases. But if this occurs, there
should be a redshift in the spectra of light coming from remote galaxies. The effect
was observed for the first time in 1912 by Vesto Slipher (1875–1969) at the Lowell
Observatory in Flagstaff, Arizona.

If νE is the emitted frequency and νO the observed one, the redshift is measured
by a quantity z = (νE/νO) − 1. If νE > νO , the light is redshifted and z > 0. In the
opposite case, if νE < νO , then z < 0, and the spectrum is shifted to the blue.

Edwin Hubble (1889–1953) discovered that the distances to the far-away galaxies
are roughly proportional with their redshifts, which is now known as Hubble’s law.
Hubble reached this conclusion by interpreting his own measurements of galaxy
distances and the galactic redshift measurements of Slipher. George Lemaître (1894–
1966) had been the first to report this result in 1927 and to propose the theory of
the expansion of the Universe. As pointed out before, as our Universe expands,
the galaxies recede from each other with increasing speed. This expansion suggests
that there was necessarily an initial moment in which all the matter composing
these galaxies, and all intergalactic matter, was concentrated in a small region of the
Universe. A great explosion, the Big Bang, occurred at some time around 10 to 20
billion years ago. The most recent estimate by the Planck collaboration for the age of
the Universe, i.e. the time since the Big Bang, is 13.79 billion years. The Big Bang
theory was proposed by Lemaître in 1931, but the term Big Bang was coined later.

Over the last few decades a theory has been proposed on the hypothesis that, in
the early stages of the Universe, there was an exponential expansion. This phase was
called inflation in the 1980s. It has been suggested that this could be described by
a coupling between the gravitational field and some scalar field which is displaced
from its equilibrium configuration. This point will be discussed further in Chap. 11.

With regard to the distribution of galaxies, moving away from each other in all
space directions, observations indicate that they are grouped into clusters or super-
clusters, separated by empty space, with a cellular distribution. This in turn suggests
a three-dimensional structure of these clusters separated by empty space, with some
regularity, on a gigantic scale of 390 million light-years, in a form similar to a hon-
eycomb.

The temperature of the primeval fireball in which the matter composing our visible
Universe was concentrated was extraordinarily large, of the order of 1032 K, but it
would have decreased quickly to values between 1010 and 109 K a few seconds after
the Big Bang. This stage is said to be radiation dominated, because the density of the
radiation was significantly greater than the density of matter. For instance, the photon
density was much higher than the baryon density. As the initial ball cooled down in
the process of expansion, the atoms of the light elements would have condensed out,
while heavier atoms would have formed later inside the stars.

With the expansion of the Universe, the average temperature has decreased, and
the whole system has cooled down, going through a matter-dominated era, when
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most of the energy of the Universe was concentrated in the masses of the nuclear
particles. At present, the Universe is dominated by dark energy, which drives the
cosmic acceleration.

As a result of this cosmological process, one may expect some fingerprint of the
radiation-dominated era during the first stages after the Big Bang. George Gamow
(1904–1968) predicted the existence of a background radiation, corresponding to a
black body at very low temperatures. In 1964, Arno Allan Penzias (b. 1933) and
Robert Woodrow Wilson (b. 1936) discovered this fossil radiation, a discovery for
which they were awarded the Nobel Prize in 1978. The background radiation comes
from all directions of space and it corresponds to a black body radiation at a tem-
perature of about 2.725 K. It is called the cosmic microwave background (CMB).
This radiation has a density of 4.40 × 10−34 g/cm3, while the density of matter is of
the order of 10−29 g/cm3, that is, 105 times greater. For a certain time this justified
the claim that we live in a matter-dominated era. At the present time, this view has
changed due to current hypotheses about dark matter and dark energy, which we
shall come back to in Sect. 10.6.2.

10.6 Gravitational Radius and Collapse

The idea of escape velocity is well known: it is the minimum velocity one must give
a body so that it can escape from the Earth’s gravitational field. If one neglects air
resistance, the problem reduces to solving the equation in which the total energy of
the particle in the gravitational field is equal to zero, viz.,

1

2
mv2 − GMm

r
= E = 0. (10.39)

Taking M and r as the Earth’s mass and radius, this gives

v =
√

2GM

r
. (10.40)

If the Earth’s radius decreased to one quarter (but keeping the same total mass), the
escape velocity is doubled. But one can also consider the opposite problem: to which
radius would we have to compress the Earth to reach a given value of the escape
velocity? Let us suppose v = c, the speed of light. Then the value obtained for the
radius R is the gravitational or Schwarzschild radius mentioned above,

R = 2GM

c2
≡ rg. (10.41)
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For M of the order of the Earth’s mass (6 × 1027 g), R ≈ 0.9 cm. So if the Earth’s
mass were compressed to such an incredibly small size, no object could escape from
inside, and only light emitted vertically would be able to get outside.

For a radius smaller than this value of R, the Earth would be transformed into a
black hole, and even light could not escape from it. A black hole would absorb all
the substance and radiation in its surrounding space. The existence of black holes,
which we have argued mainly from non-relativistic mechanics, is a consequence
of the general theory of relativity. For every body of mass M, a corresponding
gravitational radius can be calculated by dividing its mass M (multiplied by the
gravitational constant G), by the square of the speed of light. We have already seen
that the Earth’s gravitational radius is of the order of 0.45 cm. A similar calculation
carried out for the Sun would give a sphere of radius about 3 km. Assuming a spherical
shape and density ρ, its mass would be M = 4

3πR3ρ. Then

R = 8π

3c2
GR3ρ, (10.42)

which implies that ρ = 3c2/(8πGR2), that is, the density required to achieve the
gravitational radius condition decreases as the reciprocal of the square of the radius.
In other words, the larger the mass, the smaller the density required to achieve the
gravitational radius condition. For instance, for our galaxy, if we assume a mass 1044

g (that is 1011 times that of the Sun, whose mass is about 2 × 1033 g), the gravitational
radius is

R ≈ 1011 km, (10.43)

which is about a hundredth of a light-year (one light-year is approximately 9.4 ×
1012 km). The radius of our galaxy is about 55,000 light-years, i.e., ∼5.2 × 1017 km.
The gravitational radius would be reached by reducing the galactic radius to one
millionth of its present size.

If for the Universe we estimate a mass of 1080 times the proton mass, that is, about
1056 g, the corresponding gravitational radius would be of the order of 1010 light-
years. This is of the same order as the estimated radius of the Universe, the distance
of the most remote cosmic objects. It has thus been speculated that the whole of our
visible Universe is a black hole. Such an idea is in contradiction with the current
cosmology.

If a star explodes in a supernova, its nucleus may be compressed to such a density
that it becomes a neutron star, with a density of about 1015 g/cm3. If its mass is greater
than 2.5 times the mass of the Sun, gravity dominates over any other force resisting
the compression. A gravitational collapse then occurs leading to the formation of a
black hole. The gravitational radius determines the so-called event horizon. All the
radiation and matter surrounding it would be absorbed by the black hole, and it would
disappear below the horizon (Fig. 10.7). An observer inside a black hole (if it could
survive the forces generated inside) could find out about what happens outside, but
could never communicate with external observers, since it would be impossible to
send out a signal.
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Fig. 10.7 Light from a distant star is deviated by a heavy body, which deforms spacetime around it
(part of it is represented schematically by a two-dimensional mattress). A black hole captures light
as well as matter incident on it.

Under such extreme conditions in which the gravitational force becomes so large,
classical ideas cease to be valid, and we are in a situation similar to that of atomic
theory as described by classical electrodynamics, according to which the atom would
disappear in a collapse. Under such extreme conditions, quantum effects would thus
enter the game in a predominant way.

Stephen Hawking (1942–2018) suggested in 1974 that black holes can evaporate
in a gas of photons and other particles, by a quantum mechanism: the tunnel effect.
In Chap. 7, we saw that particle and antiparticle pairs are created and annihilated
spontaneously in vacuum. The process of pair formation has a characteristic time,
given by the Heisenberg uncertainty principle:

τ = h/E, (10.44)

where E is the energy required for pair formation. Associated with the black hole,
there is also a characteristic time τ ′ given by

τ ′ = R

c
, (10.45)

where R = 2GM/c2 is the gravitational radius of the black hole. If τ ′ < τ , the pair
production process may be possible, at the expense of the mass (energy) of the
black hole, and one particle of the pair can tunnel out of the black hole. The black
hole temperature is inversely proportional to its mass and it would radiate energy
proportionally to the fourth power of the temperature. Jacob Bekenstein (1947–2015)
conjectured in 1972 that the area of the event horizon is proportional to the black hole
entropy. This is intuitively comprehensible if one remembers that, when two black
holes of masses M1 and M2 (and radii r1 and r2) join together, the area of the event
horizon of the resulting black hole is always larger than the sum of the areas of the
original black holes, because (r1 + r2)

2 > r2
1 + r2

2 . As we see, the horizon surface
area always grows with mass. In his work on black hole radiation of 1974, Hawking
confirmed Bekenstein’s conjecture and fixed the proportionality constant.
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Fig. 10.8 MERLIN imaging
of relativistic jets in the
microquasar GRS1915+105,
which is an X-ray binary
system assumed to be
composed of a rotating black
hole and a normal star. The
black hole has an accretion
disk fed by gas from the star.
It was the first known
galactic source which ejects
material with apparently
superluminal velocities. This
seems to be due to a
relativistic effect known as
Doppler boosting, produced
by jets of particles moving
with the speed of 0.9c
(Courtesy of Fender et al.,
University of Manchester,
Jodrell Bank Centre for
Astrophysics).
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Let us assume then that the entropy of a black hole is proportional to the area of the
event horizon, S = k A. But A = k ′R2 = 4k ′G2M2/c4, where k and k ′ are constants
of proportionality. Then S ∼ U 2, withU the internal energy, which is proportional to
the mass M . From this, one has 1/T = ∂S/∂U ∼ U , and evidently T ∼ 1/M . From
here we deduce that a big black hole will radiate less than a small one, according to
the law 1/M4, since the radiation power is proportional to T 4 ∼ 1/M4. A black hole
is a system which loses information. If the black hole is in a pure quantum state when
it begins, as it radiates thermal energy, it will pass to a mixed state with consequent
loss of quantum coherence. This hypothesis is due to Hawking.

It is believed that the first indirect observation of a black hole was the binary
system GRO J1655-40, assumed to comprise a black hole and a star, like the system
GRS1915+105 (Fig. 10.8). Orbiting around the black hole, there is an accretion
disk made up of material fed to it by the normal star, and this disk radiates in the
X-ray region. Both binary systems are galactic ‘microquasars’ and may provide a
link between the supermassive black holes which are believed to power extragalactic
quasars and more local, accreting black hole systems.

In 2008, astrophysicists found compelling evidence that a supermassive black
hole, called Sagittario, of more than 4 million solar masses is located at the centre
of the Milky Way. Supermassive black holes were subsequently found at the centre
of all known galaxies.
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Fig. 10.9 A wormhole is a shortcut between separate regions of spacetime.

It has been suggested that instead of an infinite compression, the substance
contained inside the black hole may emerge in another region of the spacetime.
This would lead to a white hole, which would be a black hole running backward in
time. In other words, gravitational collapse might cause an interconnection between
two remote regions of spacetime.

10.6.1 Wormholes

The hypothetical bridges between separate regions of spacetime are called worm-
holes. These would be shortcuts between areas of space otherwise separated by long
distances (Fig. 10.9). The wormhole would have two mouths (which are spheres in
3D space) and a throat between them. Standard theory indicates that they would not
generally be stable. To be stable, or traversable, some exotic matter with negative
energy density would be required in the throat. But this point remains open, since
the assumption of extra dimensions would provide new scenarios. It should be noted
that, although faster-than-light speeds remain forbidden locally, through a wormhole,
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even moving at speeds smaller than c, it would be possible to connect two events
A, B by an interval of time τ < tAB, where tAB = lAB/c and lAB is the distance across
standard space. This leads to an effective faster-than-light communication. Even time
travel seems possible through wormholes.

10.6.2 Dark Matter, Dark Energy, and Accelerated
Expansion

In an open Universe there would be perpetual expansion, whereas in a closed one
the expansions and contractions would alternate in huge cycles. The time required
for each of these cycles defies all imagination.

We have seen from (10.32) how to find ρc. The most recent value measured for the
Hubble constant H0 is 67.8 km/s Mpc−1, where 1 Mpc = 3.26 × 106 light-years. The
critical density ρc is of order 10−29 g/cm3. There is strong evidence, most recently
from the Planck space mission, that the observable Universe is flat, i.e. ρ = ρc, which
is consistent with inflationary models. But the flatness implies the existence of dark
matter and dark energy, in significant amounts compared to the usual matter.

At present, dark matter appears to be an unavoidable hypothesis, providing some
missing matter needed to explain the observed rotational velocities of galaxies, orbital
velocities of galaxies in clusters, gravitational lensing of background objects by
galaxy clusters, and other observable phenomena.

Most dark matter does not interact with electromagnetic radiation. It is thus trans-
parent. However, there is not yet any satisfactory model for dark matter. For instance,
it could be that some as-yet undiscovered weakly interacting particles were created
during the Big Bang and today remain in significantly large amounts to account for
the dark matter. The name of weakly interacting massive particles (WIMPs) has
been suggested for some of these candidates for dark matter, assuming that it is
nonbaryonic, i.e., that it contains no atoms. In addition to WIMPs, the nonbaryonic
candidates for dark matter include neutrinos and hypothetical particles such as axions
or supersymmetric particles (see Chap. 11).

However, certain astronomical objects may constitute the dark matter, but escape
detection. For instance, brown dwarf stars with very small mass or black hole rem-
nants of an early generation of stars would be similarly invisible. A small fraction
of this hypothetical dark matter is referred to as MACHO an acronym for massive
(astrophysical) compact halo object, made up of baryonic matter. Yet a large fraction
of the dark matter has to be of a non-baryonic nature.

At present it is believed that ordinary matter constitutes only around 4.9% of the
mass of the Universe, whereas dark matter would make up 26.8%, and the remaining
68.3% is thought to be due to dark energy. These percentages have varied over the
last few years, since some measurements have been refined.

Since 1997, observations of supernovas of type Ia, which are excellent standard
candles for measuring cosmological distances, suggest that the expansion of the
Universe is actually accelerating. The Nobel Prize in Physics in 2011 was awarded
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to Saul Perlmutter (b. 1959), Brian Schmidt (b. 1967), and Adam Riess (b. 1969) for
their discovery of the accelerated expansion of the Universe. This cannot be explained
on the basis of the present gravitational interaction, and it requires an assumption of
additional energies able to act as a repulsive force, for instance, whence the idea of
dark energy. Such dark energy is assumed to be transparent.

The quantum vacuum was suggested in 1967 by Yakov Zel′dovich (1914–1987)
as a candidate for dark energy, but present estimates give an extremely large figure
for this, not compatible with what is expected by observation.

Let us consider the amount of dark energy inside a cylindrical cavity with a
piston. The energy associated with a change of volume dV is dE = −pdV. If ρE is
the energy density, we have dE = ρEdV. Thus, ρE = −p. The vacuum pressure is
minus its energy density. In ordinary matter, we usually have |p| � ρE . This leads us
to conclude that dark energy is essentially relativistic, able to interact in a repulsive
way with ordinary matter. This would give a negative pressure term in the Einstein
equations.

When Einstein wrote his equations, there was no knowledge of the expansion of
the Universe. Hence, to make a static Universe from his model, Einstein introduced
a cosmological constant. For years, this cosmological constant was taken as zero by
cosmologists. The quantum vacuum effect is equivalent to assuming a nonvanishing
cosmological constant.

Other researchers work with models based on appropriate scalar fields, called
quintessence, able to generate similar effects. The problem is still open.

10.7 Gravitation and Quantum Effects

If we combine the constant of gravitation G, the reduced Planck constant �, and the
speed of light c, it is possible to estimate the order of magnitude at which quantum
gravity phenomena are likely to manifest themselves. The combination with the
dimension of length is

lP =
√
G�

c3
≈ 10−33 cm. (10.46)

This is the so-called Planck length. It indicates the order of distances at which quan-
tum gravitational effects are expected to appear. Starting from this value, it is possible
to derive a number with dimensions of mass, named the Planck mass:

mP =
√
c�

G
≈ 10−4 g. (10.47)

The Planck mass can be interpreted as the mass of a body whose reduced
Compton wavelength (characteristic of relativistic quantum effects) is equal to its
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Schwarzschild or gravitational radius:

�

mPc
= 2

GmP

c2
,

which leads to the above expression for mP . This mass has a macroscopic value, and
can be used to obtain the equivalent energy

EP = mPc
2 =

√
c5�

G
≈ 1016erg ≈ 1019 GeV. (10.48)

This energy is so large that the gravitational field can give rise to the spontaneous
creation of particle–antiparticle pairs. The average temperature associated with that
energy is 1032 K which is believed to be the initial temperature of the primeval fireball
from which the Big Bang was produced.

10.8 Cosmic Numbers

As pointed out earlier, the mass of the visible Universe is estimated as being 1080

times the proton mass. This is an incredibly large number. Other very large numbers
(called cosmic numbers) appear in the physics of the microscopic as well as the
macroscopic world. The first cosmic number is the ratio of the electromagnetic and
gravitational forces exerted between an electron and a proton. Letting Fe and FG be
the moduli of these forces, one has

Fe = e2

r2
, FG = Gmpme

r2
, (10.49)

where e is the electron charge, G the constant of gravitation, and mp and me the
proton and electron masses. The first cosmic number N1 is then

N1 = Fe

FG
= e2

Gmpme
= 0.23 × 1040. (10.50)

Being the ratio of two forces, it is a dimensionless number.
The second cosmic number is the quotient of the radius of the Universe L and the

proton radius rP . The number L is of order 1010 light-years, and one light-year is
� 1018 cm, so that L ≈ 1028 cm. On the other hand, rP � 10−13 cm. Dividing L by
rP , one obtains the second cosmic number

N2 = L

rP
≈ 1040. (10.51)
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The coincidence in the orders of magnitude of the two numbers is very striking,
and Dirac suggested that there should be some relation between them. Now, as L
increases with time, N2 also increases, and if there is a relation between N2 and N1,
the latter should vary with time. There is no evidence that e2, me, or mp vary with
time, so this would leave open the possibility that G might be time-dependent. This
topic remains open to speculation.

Problems

Problem 10.1 Calculate the relativistic effects on time measured by a clock on a
GPS satellite, which runs faster than a clock on the Earth’s surface, and show that it
amounts to around 38 × 10−6 s per day.

Problem 10.2 Starting from dl2 = (1 − rg/r)−1dr2 + r2(sin2 θdϕ2 + dθ2), which
is the spatial part of ds2 in the expression (10.28) for the metric outside a spherically
symmetric gravitating body, (i) find an expression for the radial distance (l2 − l1)
between two circles of radii r1 and r2 concentric to the body’s centre, in this geometry;
and (ii) obtain the limit r2 > r1 � rg . (iii) Apply to the case r1 = 7 × 108 m, which
is the order of the average solar radius, r2 = 5.8 × 1010 m, which is of the order of
the average radius of Mercury’s orbit, and rg = 3 × 103 m, which is approximately
the Sun’s gravitational radius.

Problem 10.3 On an intuitive quantum mechanical basis, justify the Hawking–
Bekenstein expression for the black hole temperature T = �c3

8πGMk (up to a constant
factor).

Problem 10.4 Once a black hole has formed, its mass is extremely unevenly dis-
tributed within it. The usual concept of density applies more to the body under-
going gravitational collapse, so the density to which we refer in the present and
following problems corresponds to the density of the collapsing body rather than
to the resulting black hole. In any case, these problems serve to show the scales
involved in black holes. As an example, calculate the size and density of the black
hole at the centre of our Galaxy, called Sagittarius A∗, estimated to have a mass
M = 4 × 106M� ∼ 8 × 1036 kg.

Problem 10.5 Calculate the Schwarzschild radius for a black hole with density equal
to that of (a) water, (b) the estimated density of (normal) matter in the Universe, which
is 10−29 g/cm3.

Problem 10.6 The Hawking–Bekenstein black hole entropy formula is S = k A
4l2

,

where l =
√

G�

c3 is the Planck length and A = 4πR2 = 16πG2M2/c4 is the area

of the event horizon, since R = 2GM/c2 is the gravitational radius. Use this to
calculate the black hole temperature and internal energy.

Problem 10.7 Calculate the black hole heat capacity.
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Fig. 10.10 We assume a
perfect alignment and hence
a complete Einstein ring.
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Problem 10.8 Einstein ring due to a lens star. If the distance and mass of the
lens are approximately known, along with the distance to the more remote object,
the radius of the Einstein ring can be calculated. Consider a lens mass similar to
the Sun’s mass, and assume the distance from the observer to the remote star to be
H = 60 kpc. Assume also that the lens is located at a distance H/3 from the observer.
Calculate the Einstein ring radius r assuming a perfect alignment. (1 parsec= 3.2616
lyr ≈ 3.0857 × 1016m) (Fig. 10.10).
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