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Preface to the Second Edition

The praise of the first edition of the book by many readers encouraged us to prepare
the present second edition. We express our deep gratitude to all those readers for
their remarks and suggestions – in this edition we have tried to take into account all
of them as much as possible, and as well to come up with their wishes to include
some problems to be solved, together with their solutions or at least sufficient hints
to solve them.

As its previous edition, this book is intended for undergraduate students, physics
teachers, students in high schools, researchers and general readers interested to
know what physics is about together with its latest developments and discoveries.

Thinking about the book to be useful also as a textbook, totally or in part, we
have added several new topics with the latest findings in those fields. For instance,
the recent discovery of gravitational waves, as one of the most important
achievements of modern physical sciences, is presented in Chap. 10. At the end of
Chaps. 1–11 some problems are included with their solutions or hints how to solve
them given at the end of the book. Those problems are useful for a complementary
understanding of the theories and their implication. However, for non-specialized
readers it is recommended to bypass, at least in their first-time reading, the problems
as well as the mathematical details.

The added new topics also provide connections among the subjects treated in
different chapters. For instance, the wobble of some stars interacting with their
planets, as explained by the two body Kepler problem, helps to detect invisible
companions, by using Doppler spectroscopy of the star light. The Clapeyron–
Clausius equation helps to understand the development of life at dark, deep and hot
oceanic vents at high pressures, as well as why the hot Earth nucleus is solid. The
creation of the magnetosphere is explained as due to the deviation of the solar wind
by the Earth magnetic field. A reference to the former experiments is made in order
to resolve the loophole appeared there and to support, thanks to more recent
experiments, the occurrence of quantum entanglement, and to show the validity
of the violation of Bell inequalities as a genuine quantum phenomenon.
Gravitational lensing, as well as the correction of time for GPS satellites, as the
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technical applications of special and general relativity, are explained. Some earlier
figures have been improved and new ones were added.

Our special thanks go to François Englert, Igal Galili, and Markku Oksanen for
their valuable comments and advice.

Helsinki, Finland Masud Chaichian
La Habana, Cuba Hugo Perez Rojas
Helsinki, Finland Anca Tureanu
May 2021
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Preface to the First Edition

This book is the outcome of many lectures, seminars, and colloquia the authors
have given on different occasions to different audiences in several countries over a
long period of time and the experience and feedback obtained from them. With a
wide range of readers in mind, some topics have been presented in twofold form,
both descriptively and more formally.

This book is intended not only for first to second year undergraduate students, as
a complement to specialized textbooks but also for physics teachers and students in
high schools. At the same time, it is addressed to researchers and scientists in other
fields, including engineers and general readers interested in acquiring an overview
of modern physics. A minimal mathematical background, up to elementary cal-
culus, matrix algebra and vector analysis, is required. However, mathematical
technicalities have not been stressed, and long calculations have been avoided. The
basic and most important ideas have been presented with a view to introducing the
physical concepts in a pedagogical way. Since some specific topics of modern
physics, particularly those related to quantum theory, are an important ingredient of
student courses nowadays, the first five chapters on classical physics are presented
keeping in mind their connection to modern physics whenever possible.

In most chapters, historical facts are included. Several themes are discussed
which are sometimes omitted in basic courses on physics. For instance, the relation
between entropy and information, exchange energy and ferromagnetism, super-
conductivity and the relation between phase transitions and spontaneous symmetry
breaking, chirality, the fundamental C, P, and T invariances, paradoxes of quantum
theory, the problem of measurement in quantum mechanics, quantum statistics and
specific heat in solids, quantum Hall effect, graphene, general relativity and cos-
mology, CP violation, Casimir and Aharonov–Bohm effects, causality, unitarity,
spontaneous symmetry breaking and the Standard Model, inflation, baryogenesis,
and nucleosynthesis, ending with a chapter on the relationship between physics and
life, including biological chiral symmetry breaking.

To non-specialized readers it is recommended to bypass, at least on a first
reading, the mathematical content of sections and subsections 1.8, 1.9, 2.5, 3.11,
4.5, 6.7, 6.8.1, 7.3, 7.4.1, 8.2, 10.3, and 10.5.
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During the preparation of this book the authors have benefited greatly from
discussions with many of their colleagues and students, to whom we are indebted. It
is a pleasure to express our gratitude in particular to Cristian Armendariz-Picon,
Alexander D. Dolgov, François Englert, Josef Kluson, Vladimir M. Mostepanenko,
Viatcheslav Mukhanov, Markku Oksanen, Roberto Sussmann, and Ruibin Zhang
for their stimulating suggestions and comments, while our special thanks go to
Tiberiu Harko, Peter Prešnajder and Daniel Radu, to whom we are most grateful for
their valuable advice in improving an initial version of the manuscript.

Helsinki, Finland Masud Chaichian
La Habana, Cuba Hugo Perez Rojas
Helsinki, Finland Anca Tureanu
March 2013
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Chapter 1
Gravitation and Newton’s Laws

Our Sun is a star of intermediate size with a set of major planets describing closed
orbits around it. These are Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus,
and Neptune. Pluto, considered the Solar System’s ninth planet until 2006, was
reclassified by the International Astronomical Union as a dwarf planet, due to its very
small mass, together with other trans-Neptunian objects (Haumea, Makemake, Eris,
Sedna, and others) recently discovered in that zone, called the Kuiper belt. Except for
Mercury and Venus, all planets and even certain dwarf planets have satellites. Some
of them, like theMoon and a few of the Jovian satellites, are relatively large. Between
Mars and Jupiter, there are a lot of small planets or asteroids moving in a wide zone,
the largest one beingCeres, classified as a dwarf planet. Other distinguishedmembers
of the Solar System are the comets, such as the well-known comet bearing the name
of Halley. It seems that most comets originate in the Kuiper belt.

The Sun is located approximately 30,000 light-years (1 light-year = 9.4× 1012

km) from the Galactic Centre, around which it makes a complete turn at a speed
of nearly 250km/s in approximately 250 million years. The number of stars in our
galaxy is estimated to be of the order of 1011, classified by age, size, and state of
evolution: young, old, red giants, white dwarfs, etc. (Fig. 1.1).

In fact, our galaxy, the Milky Way, is one member of a large family estimated
to contain of the order of 1013 galaxies. These are scattered across what we call
the visible Universe, which seems to be in expansion after some initial event. The
galaxies are moving away from each other like dots painted on an inflating rubber
balloon.

At the present time, our knowledge of the Universe and the laws governing it is
increasing daily. Today we possess a vast knowledge of our planetary system, stellar
evolution, and the composition and dynamics of our own galaxy, not to mention
millions of other galaxies. Even the existence of several extra-solar planetary systems
has been deduced from the discovery of planets orbiting around 51 Pegasi, 47 Ursae
Majoris, and several other stars. But barely five centuries ago, we only knew about
the existence of the Sun, the Moon, five planets (Mercury, Venus, Mars, Jupiter, and
Saturn), some comets, and the visible stars. For thousands of years, people had gazed
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2 1 Gravitation and Newton’s Laws

Fig. 1.1 The Andromeda galaxy, at a distance of two million light-years from our own galaxy.
They are similar in size.

intrigued at those celestial objects, watching as they moved across the background
of fixed stars, without knowing what they were, nor why they were moving like that.

The discovery of the mechanism underlying the planetary motion, the starting
point for our knowledge of the fundamental laws of physics, required a prolonged
effort, lasting several centuries. Sometimes scientific knowledge took steps forward,
but subsequently went back to erroneous concepts. However, fighting against the
established dogma and sometimes going against their own prior beliefs, passionate
scholars finally discovered the scientific truth. In this way, the mechanism guiding
planetary motions was revealed, and the first basic chapter of physics began to be
written: the science of mechanics.

1.1 From Pythagoras to the Middle Ages

Pythagoras of Samos (c. 580–c. 500 BCE) was the founder of a mystic school,
where philosophy, science, and religion were blended together. For the Pythagorean
school, numbers had a magical meaning. The Cosmos for Pythagoras was formed
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by the spherical Earth at the centre, with the Sun, the Moon and the planets fixed to
concentric spheres which rotated around it. Each of these celestial bodies produced
a specific musical sound in the air, but only the master, Pythagoras himself, had the
gift of hearing the music of the spheres.

Philolaus (c. 470–c. 385BCE), a disciple of Pythagoras, attributed to the Earth one
motion, not around its axis, but around some external point in space, where there was
a central fire. Between the Earth and the central fire, Philolaus assumed the existence
of an invisible planet, Antichthon, a sort of “counter-Earth”. Antichthon revolved in
such a way that it could not be seen, because it was always away from the Greek
hemisphere. The central fire could not be seen from the Greek world either, and with
its shadow Antichthon protected other distant lands from being burned. Antichthon,
the Earth, the Sun, the Moon, and the other known planets Mercury, Venus, Mars,
Jupiter, and Saturn revolved in concentric orbits around the central fire. The fixed
stars were located on a fixed sphere behind all the above celestial bodies.

Heraclides of Pontus (c. 390–c. 310 BCE) took the next step in the Pythagorean
conception of the Cosmos. He admitted the rotation of the Earth around its axis, and
that the Sun and the Moon revolved around the Earth in concentric orbits. Mercury
and Venus revolved around the Sun, and beyond the Sun, Mars, Jupiter, and Saturn
also revolved around the Earth (Fig. 1.2).

Around the year when Heraclides died, Aristarchus (c. 310–c. 230 BCE) was born
in Samos. From him, only a brief treatise has reached us:On the Sizes and Distances
from the Sun and the Moon. In another book, Aristarchus claimed that the centre
of the Universe was the Sun and not the Earth. Although this treatise has been lost,
the ideas expressed in it are known through Archimedes and Plutarch. In one of his
books Archimedes states: “He [Aristarchus] assumed the stars and the Sun as fixed,

Fig. 1.2 The system of
Heraclides.
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but that the Earth moves around the Sun in a circle, the Sun lying in the middle of
the orbit.” Plutarch also quotes Aristarchus as claiming that: “The sky is quiet and
the Earth revolves in an oblique orbit, and also revolves around its axis.”

Aristarchus was recognized by posterity as a very talented man, and one of the
most prominent astronomers of his day, but in spite of this, his heliocentric system
was ignored for seventeen centuries, supplanted by a complicated and absurd system
first conceived by Apollonius of Perga in the third century BCE, later developed
by Hipparchus of Rhodes in the next century, and finally completed by Ptolemy of
Alexandria (c. 70–c. 147 CE).

The Earth’s sphericity was accepted as a fact from the time of Pythagoras, and
its dimensions were estimated with great accuracy by another Greek scholar Eratos-
thenes of Cyrene, in the third century BCE. He read in a papyrus scroll that, in
the city of Swenet (known nowadays as Aswan), almost on the Tropic of Cancer, in
the south of Egypt, on the day corresponding to our 21 June (summer solstice), a
rod nailed vertically on the ground did not cast any shadow at noon. He decided to
see whether the same phenomenon would occur in Alexandria on that day, but soon
discovered that this was not the case: at noon, the rod did cast some shadow. If the
Earth had been flat, neither rods would have cast a shadow on that day, assuming the
Sun rays to be parallel. But if in Alexandria the rod cast some shadow, and in Swenet
not, the Earth could not be flat, but had to be curved.

It is believed that Eratosthenes paid some money to a man to measure the distance
between Swenet and Alexandria by walking between the two cities. The result was
equivalent to approximately 800km. On the other hand, if we imagine the rods to
extend down to the Earth’s centre, the shadow indicated that the angle α between
them was about 7◦ (Fig. 1.3). Then, establishing the proportionality

360

7
= x

800
,

the result is approximately x = 40, 000 km, which would be the length of the circum-
ference of the Earth if it were a perfect sphere. The value obtained by Eratosthenes
was a little less (0.5% smaller).

It is astonishing that, using very rudimentary instruments, angles measured from
the shadows cast by rods nailed on the ground, and lengths measured by the steps
of a man walking a long distance (but having otherwise an exceptional interest in
observation and experimentation), Eratosthenes was able to obtain such an accurate
result for the size of the Earth, and so long ago, in fact, twenty-two centuries ago.
He was the first person known to have measured the size of the Earth. We know at
present that, due to the flattening of the Earth near the poles, the length of a meridian
is shorter than the length of the equator. Later, Hipparchus measured the distance
from the Moon to the Earth as 30.25 Earth diameters, making an error of only 0.3%.

But let us return to Ptolemy’s system (Fig. 1.4). The reasons why it prevailed over
Aristarchus’ heliocentric system, are very complex. Some blame can probably be laid
on Plato and Aristotle, but mainly the latter. Aristotle deeply influenced philosoph-
ical and ecclesiastic thinking up to modern times. Neither Plato nor Aristotle had a
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Fig. 1.3 Eratosthenes concluded that the shape of the Earth was a sphere. He used the fact that,
when two rods were nailed vertically on the ground, one in the ancient Swenet and the other in
Alexandria, at the noon of the day corresponding to our 21 June, the second cast a shadow while
the first did not.

Fig. 1.4 The system of the
world according to Ptolemy.
The Earth was the centre of
the Universe and the planets
were fixed to spheres, each
one rotating around some
axis, which was supported
on another sphere which in
turn rotated around some
axis, and so on.
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profound knowledge of astronomy, but they adopted the geocentric system because
it was in better agreement with their philosophical beliefs, and their preference for a
pro-slavery society. Their cosmology was subordinated to their political and philo-
sophical ideas: they separated mind from matter and the Earth from the sky. And
these ideas remained, and were adopted by ecclesiastic philosophy, until the work
begun by Copernicus, Kepler, and Galileo and completed by Newton imposed a new
way of thinking, where the angels who moved the spheres were no longer strictly
necessary.

The systemproposed by Ptolemy (Fig. 1.4) neededmore than 39wheels or spheres
to explain the complicatedmotion of the planets and theSun.When the kingAlphonse
X of Castile, nicknamed the Wise (1221–1284 CE), who had a deep interest in
astronomy, learned about the Ptolemaic system, he exclaimed: “If only the Almighty
had consultedme before starting theCreation, I would have recommended something
simpler.”

In spite of this, the tables devised by Ptolemy for calculating the motion of the
planets were very precise and were used, together with the fixed stars catalog of
Hipparchus, as a guide for navigation by Christopher Columbus and Vasco da Gama.
This teaches us an important lesson: an incorrect theory may be useful within the
framework of its compatibility with the results of observation and experimentation.

In the Middle Ages, most knowledge accumulated by the Ancient Greeks had
been forgotten, with very few exceptions, and even the idea of the Earth’s sphericity
was effaced from people’s minds.

1.2 Copernicus, Kepler, and Galileo

In the fifteenth century, a Polish astronomer, Nicolaus Copernicus (1473–1543)
brought Ptolemy’s system to crisis by proposing a heliocentric system. Coperni-
cus assumed the Sun (more exactly, a point near the Sun) to be the centre of the
Earth’s orbit and the centre of the planetary system. He considered that the Earth
(around which revolved the Moon), as well as the rest of the planets, rotated around
that point near the Sun describing circular orbits (Fig. 1.5). Actually, he rediscovered
the system that Aristarchus had proposed in ancient times. Copernicus delayed the
publication of his book containing the details of his system until the last few days
of his life, apparently so as not to contradict the official science of the ecclesiastics.
His system allowed a description of the planetary motion that was at least as good
as the one which was based on Ptolemaic spheres. But his work irritated many of his
contemporaries. The Catholic Church outlawed his book in 1616, and also Martin
Luther rejected it, as being in contradiction with the Bible.

The next step was taken by Johannes Kepler, born in 1571 in Weil, Germany.
Kepler soon proved to be giftedwith a singular talent formathematics and astronomy,
and became an enthusiastic defender of the Copernican system. One day in the
year of 1595, he got a sudden insight. From the Ancient Greeks, it was known
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Fig. 1.5 The system of the world according to Copernicus. The Sun was at the centre of the
planetary system, and around a point very near to it revolved the Earth and the rest of the planets,
all describing circular orbits.

that there are five regular polyhedra: tetrahedron, cube, octahedron, dodecahedron,
and icosahedron—the so-called “Platonic solids” of antiquity. Each of these can be
inscribed in a sphere. Similarly, there were five spaces among the known planets.
Kepler guessed that the numbers might be related in some way. That idea became
fixed in his mind and he started to work to prove it.

He conceived of an outer sphere associated with Saturn, and circumscribed in a
cube. Between the cube and the tetrahedron came the sphere of Jupiter. Between the
tetrahedron and the dodecahedron was the sphere of Mars. Between the dodecahe-
dron and the icosahedron was the sphere of Earth. Between the icosahedron and the
octahedron, the sphere of Venus. And finally, within the octahedron came the sphere
of Mercury (Fig. 1.6). He soon started to compare his model with observational data.
As it was known at that time that the distances from the planets to the Sun were not
fixed, he imagined the planetary spheres as having a certain thickness, so that the
inner wall corresponded to the minimum distance and the outer wall to the maximum
distance.

Kepler was convinced a priori that the planetary orbits must fit his model. So
when he started to do the calculations and realized that something was wrong, he
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Fig. 1.6 Kepler’s system of spheres and inscribed regular Platonic solids.

attributed the discrepancies to the poor reliability of the Copernican data. Therefore
he turned to the only man who had more precise data about planetary positions: the
Danish astronomer Tycho Brahe (1546–1601), living at that time in Prague, who had
devoted 35years to performing exact measurements of the positions of the planets
and stars.

Tycho Brahe conceived of a systemwhich, although geocentric, differed from that
of Ptolemy and borrowed some elements from the Copernican system. He assumed
that the other planets revolved around the Sun, but that the Sun and theMoon revolved
around the Earth (Fig. 1.7).

In an attempt to demonstrate the validity of his model, he made very accurate
observations of the positions of the planets with respect to the background of fixed
stars. Brahe was a first-rate experimenter and observer. For more than 20years he
gathered the data of his observations, which were finally used by Kepler to deduce
the laws of planetary motion.

Kepler believed in circular orbits, and to test his model, he used Brahe’s observa-
tions of the positions of Mars. He found agreement with the circle up to a point, but
the next observation did not fit that curve. So Kepler hesitated. The difference was
8min of arc. What was wrong? Could it be his model? Could it be the observations
made by Brahe? In the end, he accepted the outstanding quality of Brahe’s measure-
ments, and after many attempts, finally concluded that the orbit was elliptical. At
this juncture, he was able to formulate three basic laws of planetary motion:

1. All planets describe ellipses around the Sun, which is placed at one of the foci;
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Fig. 1.7 Tycho Brahe’s system. The Earth is the centre of the Universe, but the other planets rotate
around the Sun, while this in turn moves around the Earth.

t1

t2

t '2

t '1
aphelionperihelion s

Fig. 1.8 The radius vector or imaginary line joining a planet with the Sun, sweeps out equal areas
in equal intervals of time; when the planet is near the Sun, at perihelion, it moves faster than when
it is at the other extreme of the orbit, at aphelion.

2. The radius vector or imaginary line which joins a planet to the Sun sweeps out
equal areas in equal intervals of time. Consequently, when the planet is nearest
to the Sun (at the point called perihelion), it moves faster than when it is at the
other extreme of the orbit, called aphelion (Fig. 1.8);

3. The squares of the periods of revolution of planets around the Sun are proportional
to the cubes of the semi-major axis of the elliptical orbit.

Galileo Galilei (1564–1642) was a contemporary of Kepler and also a friend. At
the age of 26, he became professor ofmathematics at Pisa,where he stayed until 1592.
His disagreement with Aristotle’s ideas, and especially the claim that a heavy body
falls faster than a light one, caused him some personal persecution, and he moved
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to the University of Padua as professor of mathematics. Meanwhile, his fame as a
teacher spread all over Europe. In 1608, Hans Lippershey, a Dutch optician, invented
a rudimentary telescope, as a result of a chance observation by an apprentice. Galileo
learnt about this invention in 1609, and by 1610, he had already built a telescope.
The first version had a magnifying factor of 3, but he improved it in time to a factor
of 30. This enabled him to make many fundamental discoveries. He observed that
the number of fixed stars was much greater than what could be seen by the naked
eye, and he also found that the planets appeared as luminous disks.

In the case of Venus, Galileo discovered phases like those of the Moon. And he
found that four satellites revolved around Jupiter. Galileo’s observations with the
telescope provided definite support for the Copernican system. He became famous
also for his experiments with falling bodies and his investigations into the motion of
a pendulum.

Galileo’s work provoked a negative reaction, because it had brought Ptolemy’s
system into crisis. This left only two alternatives for explaining the phases of Venus:
either Brahe’s geocentric system or the Copernican system. The latter definitely went
against the ecclesiastical dogma. The Church had created scholasticism, a mixture
of religion and Aristotelian philosophy, which claimed to support the faith with
elements of rational thinking.

But the Church also had an instrument of repression in the form of the Holy
Inquisition, set up to punish any crime against the faith. When Galileo was 36, in
1600, the Dominican friar and outstanding scholar Giordano Bruno (1548–1600)
was burned at the stake. He had committed the unforgivable crimes of declaring that
he accepted the Copernican ideas of planetary motion, and holding opinions contrary
to the Catholic faith (Figs. 1.9, 1.10 ).

Fig. 1.9 Nicolaus
Copernicus. His model was
presented in his book De
Revolutionibus Orbium
Coelestium (On the
Revolutions of Celestial
Spheres), published thanks to
the efforts of his collaborator
Rheticus. This book was
considered by the Church as
heresy, and its publication
was forbidden because it
went against Ptolemy’s
system and its theological
implications.
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Fig. 1.10 Johannes Kepler
was named “legislator of the
firmament” for his laws of
planetary motion, deduced as
a result of long and patient
work, using the extremely
precise data gathered by
Tycho Brahe.

When Galileo made his first astronomical discoveries, Bruno’s fate was still fresh
in his mind. Now he was becoming more and more convinced of the truth of the
Copernican system, even though it was in conflict with official science, based on
Ptolemy’s system. The reaction of the Florentine astronomer Francesco Sizzi, when
he learned about the discovery of Jupiter’s satellites, was therefore no surprise: The
satellites are not visible to the naked eye, and for that reason they cannot influence
the Earth. They are therefore useless, so they do not exist.

On the one hand,Galileo’s discoveries put him in a position of high prestige among
many contemporaries, but on the other, he was attracting an increasing number of
opponents. The support given by his discoveries to the Copernican theory and his
attacks onAristotelian philosophy aroused the anger of his enemies. In 1616, possibly
under threat of imprisonment and torture, hewas ordered by theChurch “to relinquish
altogether the said opinion that the Sun is the centre of the world and immovable
[. . .] not henceforth to hold, teach or defend it in anyway.” Galileo acquiesced before
the decrees and was allowed to return to Pisa. The Church was afraid to weaken
its position by accepting facts opposed to the established Christian–Aristotelian–
Ptolemaic doctrine.

In 1623, one of his friends, Cardinal Maffeo Barberini, became Pope Urban VIII,
and Galileo received assurances of pontifical good will. Considering that the decree
of 1616 would no longer be enforced, he wrote his bookDialogues on the Ptolemaic
and Copernican Systems. But he faced an ever increasing number of enemies, and
even the Pope became convinced that Galileo had tricked him. Galileo was called for
trial under suspicion of heresy before the Inquisition at the age of 67. He was forced
to retract under oath his beliefs about the Copernican system (Fig. 1.11).
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Fig. 1.11 Tycho Brahe.
Although his system of
planetary motion was wrong,
his very precise observations
of the planetary positions
enabled Kepler to formulate
his laws.

Later, a legend was concocted that Galileo, after abjuring, pronounced in low
voice the words And yet it moves, referring to the Earth’s motion around the Sun.
That is, in spite of any court and any dogma, it was not possible to deny this physical
fact, the objective reality of Earth’s motion. However, it is interesting that Galileo
never accepted the elliptical orbits discovered by Kepler; he believed only in circular
orbits.

Among the most important achievements of Galileo, one must mention his laws
of falling bodies, which can be resumed in two statements:

1. All bodies fall in vacuum with the same acceleration. That is, if we let one sheet
of paper, one ball of lead, and a piece of wood fall simultaneously in vacuum,
they will fall with the same acceleration;

2. All bodies fall in vacuum with uniformly accelerated motion. This means that
their acceleration is constant, that is, their velocity increases in proportion to the
time elapsed from the moment the bodies started to fall.

The work initiated by Copernicus, Kepler, and Galileo was completed by Isaac
Newton. He was born in 1642, the year in which Galileo died, and lived until 1727
(Fig. 1.12).

1.3 Newton and Modern Science

One day, Edmund Halley visited his friend Newton after a discussion with Robert
Hooke and Christopher Wren, in which Hooke had claimed that he was able to
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Fig. 1.12 Galileo Galilei.
He discovered, among other
things, four satellites of
Jupiter and the phases of
Venus, using a telescope of
his own improved design. He
enunciated the basic laws of
falling bodies. His works
stirred the antagonistic
attitude of the ecclesiastical
authorities, and he was
forced to stand trial and to
abjure his beliefs about the
Copernican system.

explain planetary motions on the basis of an attractive force, inversely proportional
to the square of the distance. When asked his opinion about it, Newton replied that
he had already demonstrated that the trajectory of a body under such a central force
was an ellipse.

Newton subsequently sent his calculations to Halley, and after looking through
the manuscript, Halley convinced Newton to write in detail about the problem, since
it could provide an explanation for the complicated motion of the whole planetary
system. And this is howNewton started to write hisPhilosophiae Naturalis Principia
Mathematica, a monograph which produced a revolution in modern science.

In the first book Newton stated his laws of motion, which owed much to Galileo,
and laid their mechanical foundations. He deducedKepler’s laws by assuming a force
inversely proportional to the square of the distance, and demonstrated that according
to this law the mass of a homogeneous sphere can be considered as concentrated at
its centre.

The second book is devoted tomotion in a viscousmedium, and it is the first known
study of the motion of real fluids. In this book Newton dealt with wave motion and
even with wave diffraction.

In the third book Newton studied the motion of the satellites around their planets,
and of the planets around the Sun, due to the force of gravity. He estimated the density
of the Earth as between 5 and 6 times that of water (the presently accepted value is
5.5), and with this value he calculated the masses of the Sun and the planets. He went
on to give a quantitative explanation for the flattened shape of the Earth. Newton
demonstrated that, for that shape of the Earth, the gravitational force exerted by the
Sun would not behave as if all its mass were concentrated at its centre, but that its
axis would describe a conical motion due to the action of the Sun: this phenomenon
is known as the precession of the equinoxes.
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Fig. 1.13 Isaac Newton. His
scientific work marks the
beginning of physics as a
modern science. His
formulation of the laws of
mechanics and universal
gravitation laid the basis for
explaining planetary motion
and obtaining the Kepler
laws. His work in optics, as
well as in mathematics, was
also remarkable, and he
invented the differential and
integral calculus
independently of his
contemporary Gottfried
Leibniz.

Although Newton used the differential and integral calculus (which he invented
himself, independently of Gottfried Leibniz) to get his results, he justified them in
his book by using the methods of classical Greek geometry. One of the most practical
consequences of his workwas to supply a calculational procedure for determining the
orbit of the Moon and the planets with much greater accuracy than ever before, using
a minimum number of observations. Only three observations were enough to predict
the future position of a planet over a long period of time. A confirmation of this was
given by his friend Edmund Halley, who predicted the return of the comet which
bears his name. Some other very important confirmations appeared in the nineteenth
and twentieth centuries due to Le Verrier and Lowell, who predicted the existence
of the then undiscovered planets Neptune and Pluto, deducing their existence from
the perturbations they produced on other planetary motions.

The theory of gravitation conceived by Newton, together with all his other con-
tributions to modern astronomy, marked the end of the Aristotelian world adopted
by the scholastics and challenged by Copernicus. Instead of a Universe composed
of perfect spheres moved by angels, Newton proposed a mechanism of planetary
motion which was the consequence of a simple physical law, without need for the
continuous application of direct holy action (Fig. 1.13).

1.4 Newton’s Laws

Newton established the following three laws as the basis of mechanics:
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1. Every body continues in its state of rest or in uniform motion in a straight line
unless it is compelled to change that state by forces acting on it;

2. The rate of change of momentum is proportional to the applied force, and it is in
the direction in which the force acts;

3. To every action there is always opposed an equal reaction.

In the second law, momentum is defined as the product of the mass and the velocity
of the body.

1.4.1 Newton’s First Law

Newton’s first law is known as the law or principle of inertia. It can only be verified
approximately, since to do it exactly, a completely free body would be required
(without external forces), and this would be impossible to achieve. But in any case it
has a great value, since it establishes a limiting law, that is, a propertywhich, although
never exactly satisfied, is nevertheless satisfied more and more accurately, as the
conditions of experimentation or observation approach the required ideal conditions.

As an example, an iron ball rolling along the street would move forward a little
way, but would soon come to a stop. However, the same ball rolling on a polished
surface like glass, would travel a greater distance, and in the first part of its trajectory,
it wouldmove uniformly along a straight line. Furthermore, the length of its trajectory
would be longer if the friction between the ball and the surface (and between the ball
and air) could be reduced. The only applied force is friction (acting in the opposite
direction to the motion of the ball). The weight of the body acts perpendicular to the
surface, and it is balanced by the reaction force of the surface.

1.4.2 Newton’s Second Law

Newton’s second law, known also as the fundamental principle of dynamics, states
the proportionality between the acceleration a and the force F acting on a given
body:

F = ma. (1.1)

The constant of proportionality m is called mass. The mass can be interpreted as a
measure of the inertia of the body. The larger the mass, the larger the force required
to produce a given acceleration on a given body. The smaller the mass of a body,
the larger the acceleration it would get when a given force is applied, and obviously,
the more quickly it would reach high speeds. In modern physics this is observed
with elementary particles: much less energy (and force) is required to accelerate
electrons than to accelerate protons or heavy nuclei. On the other hand, photons
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(light quanta) move at the highest possible velocity (the speed of light, which is
about 300,000km/s), since they behave as massless particles (see Chap. 5).

But let us return to the second law. Its extraordinary value is due essentially to
the fact that, if the interaction law is known for two bodies, from the mathematical
expression for the mutual forces exerted it is possible to obtain their trajectories.

For instance, in the case of the Sun and a planet, as mentioned above, Newton
established that a mutual force of attraction is exerted between them, a manifestation
of universal gravitation. That force is directed along the line joining their centres,
and it is proportional to the product of their masses and inversely proportional to the
square of the distance between them. That is,

F = −GMm

r2
r0, (1.2)

where M and m are the masses of the Sun and planet, respectively, r is the distance
between their centres, G is a constant whose value depends on the system of units
used, and r0 is a unit vector along r. F is a central force, that is, its direction always
passes through a point which is the so-called centre of forces (in this case, it is a
point inside the Sun).

Then, taking into account the fact that acceleration is a measure of the instanta-
neous rate of change of velocity with respect to time (the time derivative of velocity)
and that in turn velocity is the rate of change of the position of the planet (time
derivative of position), we have a mathematical problem that is easily solved (at least
in principle) using differential calculus. Since acceleration is the second derivative
with respect to time of the position vector of the planet with respect to the Sun, we
can write:

m
d2r
dt2

= −GMmr0
r2

. (1.3)

This differential equation can be solved using the fact that the solar mass M is much
greater than that of the planet m. The solution tells us that the orbit described by the
planet is a conic section in which the Sun is placed at one of the foci. The type of
orbit depends on the total energy of the body.

If the energy is negative, we have elliptical orbits (in the case of aminimum energy
value, the ellipse degenerates into a circular orbit). If the energy is zero, the orbits are
parabolic. Here we consider the total energy as the sum of the potential and kinetic
energies, so that the zero corresponds to the case in which these are equal in absolute
value; as we shall see later, in this case the potential energy is negative. Finally, for
positive energies we have hyperbolic orbits.

The known planets describe elliptic orbits, but some comets coming from outer
space describe parabolic or hyperbolic orbits. In that case, they get close to the Sun,
move around it, and later disappear for ever. For most known comets, like Halley’s,
the orbit is elliptical but highly eccentric (i.e., very flattened).

As pointed out earlier, the application of Newtonian mechanics to the study of
planetary motion gave astronomers an exceptionally important tool for the calcu-
lation of planetary orbits. But from the methodological point of view, Newtonian
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mechanics was of transcendental importance in modern science, since for the first
time in physics a theory was established from which it was possible to predict con-
sequences compatible with the results of observation. In that sense, Newton closed
a circle which was initiated by Brahe, and which was continued by Kepler when he
derived the laws of planetary motion from the data of Brahe’s observations. New-
ton showed that such laws could be obtained by starting from very general physical
principles: the equations of mechanics and the gravitational force between bodies.

For observers at rest or in uniformmotion along a straight line, the laws ofmechan-
ics are the same. But the validity of Newton’s laws depends on the acceleration of
the observer: they do not hold equally for observers who are accelerated in different
ways. For that reason it became necessary to introduce the concept of frame of refer-
ence, in particular, the concept of inertial frame, in which Newton’s laws are valid.
An inertial frame is something more than a system of reference; it includes the time,
i.e., some clock. A simple geometrical change of coordinates does not change the
frame of reference. We shall return to inertial frames in Sect. 1.7.

Vectors. We have already spoken about vectors indicating the position of the planets,
andwhen discussing forces, velocities, and accelerations. Implicitly we have referred
to the vectorial nature of these quantities. In order to characterize vectors, it is not
sufficient to use simple numbers or scalars indicating their magnitude or absolute
value. For vectors, besides the magnitude or modulus, we need to indicate their
direction. Vectors are represented by arrows whose length and direction represent
the magnitude and direction of the vector, respectively.

For instance, when referring to the velocity of a body, it is not enough to say
how many meters per second it moves. We must also specify in which direction it is
moving. A body that falls has a velocity which increases proportionally to the time
elapsed, and its direction is vertical, from up to down. We represent that velocity as
a vertical vector of increasing magnitude, with its end pointing downward.

Sometimes vectors are used to indicate the position of a point that moves with
respect to another one taken as fixed. This is the case of the radius vector, to which
we referred when describing Kepler’s laws. The origin of the radius vector is at the
Sun and the end is at the planet that moves.

Two parallel vectors, A and B, are simply summed, and the sum has the same
direction as the added vectors. If they are parallel and of opposite directions, their
sum is a vector of modulus equal to the difference of the moduli of the given vectors
and its direction is that of the vector of larger modulus.

If two vectors A and B are not parallel, but have different orientations, their sum
is geometrically a third vector obtained by displacing B parallel to itself so that its
origin coincides with the end of A, and then, by joining the origin of A with the end
of B we get the sum A + B of the two vectors.
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Given a system of orthogonal coordinates Oxyz, the vector A can be written in
terms of its three components along the coordinate axes,A = (Ax , Ay, Az), obtained
from the projection of the vector on them. The modulus of A is given by

A =
√
A2
x + A2

y + A2
z ,

where Ax = A cosα, Ay = A cosβ, Az = A cos γ, with α,β, γ being the angles
between A and the axes Ox , Oy, and Oz, respectively. Thus, a vector in three
dimensions is defined by an ordered set of three numbers, which are its components.
Let us define the unit vectors

i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1).

One can write
A = Ax i + Ayj + Azk.

In the same way,
B = Bx i + Byj + Bzk,

and their sum is obviously

A + B = (Ax + Bx )i + (Ay + By)j + (Az + Bz)k.

An important vector is the position vector,

r = x i + yj + zk,

of any arbitrarily chosen point with respect to the system of coordinates Oxyz.
Mechanical quantities such as displacements, velocities, accelerations, forces,

etc., are to be summed in accordance with this procedure of vectorial or geometri-
cal sum.

If two forces have opposite directions but equal moduli, their vector sum is a null
vector, that is, a vector of modulus zero. However, that does not necessarily mean
that the physical effect is canceled: if the forces are applied at different points, both
of them will have a mechanical effect. Opposite forces are responsible for static
equilibrium—for instance, for a body having the weight G lying on a table. The
weight G is applied to the table and the reaction of the table R = −G is applied to
the body. Opposite forces of equal modulus also appear in dynamics, as in the case
of the Sun and a planet: their mutual action is expressed by opposite forces, but the
forces are applied at different points, on the Sun and on the planet: the vector sum
of the forces is zero, nevertheless they produce the motion of the bodies.

Given two vectors A and B, their scalar product is a number obtained by mul-
tiplying together the modulus of each vector by the cosine of the angle formed by
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their directions. Usually, the scalar product is represented by means of a dot between
the two vectors:

A · B = AB cosα. (1.4)

The scalar product of two vectors can also be expressed as the product of themodulus
of one of the vectors by the projection of the other on it. The scalar product is
commutative, A · B = B · A. Moreover, A · A = A2, that is, the modulus squared
of a vector is given by the scalar product of the vector with itself. If A and B are
perpendicular, thenA · B = 0. If c is a number, it is obvious that (cA) · B = c(A · B).

The unit vectors satisfy the properties

i · i = j · j = k · k = 1

and
i · j = j · k = k · i = 0.

Then one can write the scalar product in the form

A · B = Ax Bx + Ay By + Az Bz . (1.5)

The scalar product is particularly useful in expressing the work performed by a
force on a particle that describes an arbitrary trajectory between two points, P0 and P .
At each point of the curve the force forms an angle with the tangent to the curve at the
point. The total work performed by the force can be calculated in the following way:
divide the curve into segments at the points 1, 2, 3, etc., and draw the corresponding
chords �S1,�S2,�S3 as vectors that join the points P0, P1, P2, P3, etc. Then take
the value of the force at an arbitrary point inside each of these segments. Let F1, F2,
F3, etc., be the values of the force at such points (Fig. 1.14). Then take the sum of
the scalar products:

F1 · �S1 + F2 · �S2 + . . . + Fn · �Sn. (1.6)

When the number of the points of the division tends to infinity, such that the modulus
of the largest of the vectors �Si tends to zero, the work done by the force is obtained
as

W = lim
�Si→0

∞∑
i=1

Fi · �Si. (1.7)

Fig. 1.14 The scalar product
is used, for example, for
calculating the work
performed by a force.
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This is represented by the symbol

W =
∫

P0P
F · dS , (1.8)

which is called the line integral between P0 and P .
The vector product (or cross product) of two vectors is a new vector, obtained by

performing a mathematical operation on them. To illustrate it, let A and B be two
vectors in a plane (Fig. 1.15). DecomposeB into two other vectors,B1 andB2 (whose
sum is B). The vector B1 is in the direction of A, while the vector B2 is perpendicular
to A. We now define a third vector that we call the vector product of A by B, denoted
by A × B, whose characteristics are:

1. Its modulus is the product of the moduli of A and B2. In other words, it is equal
to the product of the moduli of A and B with the sine of the angle between them,
AB sinα;

2. Its direction is perpendicular to the plane spanned by A and B and is determined
as follows. If the direction of rotation to superpose A on B is indicated by the
index, middle, ring, and little fingers of the right hand (as shown in Fig. 1.15), then
the thumb indicates the direction of A × B (assuming that the angle α between
the vectors is smaller than 180◦).

Fig. 1.15 a The vector product of two vectors A and B is a third vector, perpendicular to A and B,
whose modulus is the product of the moduli of A and B with the sine of the angle between them,
or equivalently, the product of the modulus of one of them with the projection of the other on the
direction perpendicular to the first. The direction of the vector product is given by the right-hand
rule as shown in the figure. b The mirror image does not satisfy the definition for the vector product
of two vectors, but obeys a left-hand rule, since the image of the right hand is the left hand.
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Strictly speaking, the vector product of two vectors is not a true vector, but a
pseudovector, since the mirror image does not satisfy the previous definition, but the
left-hand rule, which is obviously not equivalent to it: the mirror image of the right
hand is the left hand.

Consequently, the product B × A gives a vector of the samemodulus but opposite
direction to A × B. This is an interesting result: the vector product is not commuta-
tive, but rather one can write B × A + A × B = 0, meaning that the vector product
is anticommutative. In particular, A × A = 0 = B × B. This property can be gener-
alized to higher dimensional spaces, and leads to the definition of exterior algebras
or Grassmann algebras (see Chap. 7).

For the unit vectors, we have the properties:

i × i = j × j = k × k = 0

and
i × j = k, j × k = i, k × i = j .

Since the product is anticommutative, if we exchange the pair on the left, the sign is
changed on the right. In terms of components, we get

A × B = (Ay Bz − Az By)i + (Az Bx − Ax Bz)j + (Ax By − Ay Bx )k. (1.9)

It is easily seen that the vector product vanishes if the vectors are parallel.

Transformations of vectors. Vector components transform like coordinates. For
instance, under a rotation of the system of coordinates, the components Ax , Ay, Az

transform like the coordinates x, y, z. Under a positive (counterclockwise) rota-
tion of angle θ around the z-axis, the position vector of a point P , expressed as
r = x i + yj + zk in the original system, is transformed in the rotated system to
r′ = x ′i′ + y′j′ + z′k, where the new coordinates x ′, y′, z′ are given by the product
of the rotation matrix R with the initial vector r. The unit vectors in the rotated
system are i′, j′, whereas k does not change. The rotation matrix is an array of 3 × 3
numbers in three rows and three columns. The components of a matrix are labeled
by two indices (i, j), where the first identifies the row and the second indicates the
column. The rotated vector r′ is the product of the rotation matrix R with the original
vector r. For the particular rotation of angle θ around the z-axis, wewrite this product
as

⎛
⎝
x ′
y′
z′

⎞
⎠ =

⎛
⎝

cos θ sin θ 0
− sin θ cos θ 0

0 0 1

⎞
⎠

⎛
⎝
x
y
z

⎞
⎠. (1.10)

Under this rotation, the components of a vector A transform as
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A′
x = Ax cos θ + Ay sin θ,

A′
y = −Ax sin θ + Ay cos θ,

A′
z = Az .

Under an inversion of the coordinate axis, (x, y, z) → (x, y,−z), the vector
A transforms as (Ax , Ay, Az) → (Ax , Ay,−Az). A pseudovector P transforms
under rotations like the coordinates, but under an inversion, it remains the same,
(Px , Py, Pz) → (Px , Py, Pz).

There is an alternative way of writing the previous ‘vector’ rotation. If we now
denote the indices of components along x, y, z by i = 1, 2, 3, respectively, we may
write the vector components as Ai . Further, we shall write the matrix R in terms of
its elements as Ri j (row i and column j). Then, for instance,

A′
3 =

∑
j

R3 j A j = R31A1 + R32A2 + R33A3.

In what follows, we adopt Einstein’s summation convention: if a term contains the
same index twice, the summation over all values of that index is to be understood.
Thus, A′

3 = R3 j A j means the sum over j , as j ranges over 1, 2, 3. (From now
on, we shall use the indices x, y, z as an alternative to 1, 2, 3, understanding the
correspondence x → 1, y → 2, z → 3.)

Tensors. The dyadic product AB of two vectors A and B is a quantity with the
property that

(AB) · C = A(B · C). (1.11)

The result is a vector in the direction A, since B · C is a scalar. As

(AB) · (cC) = c[(AB)·C)]

and

(AB) · (C + D) = (AB) · C + (AB) · D,

the quantity AB is called a linear operator, or tensor, and (1.11) is a linear function of
C. A tensor is a quantitywhose components transform as a product of the coordinates.
For instance, the component Txy of a tensor T transforms as the product xy. The unit
tensor is the dyadic I = ii + jj + kk. It is easy to check that I · A = A. In three-
dimensional space, a second rank tensor can be written in the form

T = Txx ii + Txy ij + Txz ik (1.12)

+ Tyx ji + Tyyjj + Tyzjk

+ Tzxki + Tzykj + Tzzkk.
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However, it is simpler to write it in the matrix form

T =
⎛
⎝
Txx Txy Txz
Tyx Tyy Tyz

Tzx Tzy Tzz

⎞
⎠. (1.13)

By using the numerical indices i, j = 1, 2, 3, we may write the general component
of T as Ti j . A tensor is symmetric if Ti j = Tji , and antisymmetric if Ti j = −Tji .
An arbitrary tensor can be written as the sum of a symmetric and an antisymmetric
tensor.

In a similar way we can define tensors of third rank as Ti jk , etc. For us, the most
interesting third rank tensor is the completely antisymmetric unit tensor εi jk , called
the Levi-Civita tensor. (Actually, it is a pseudotensor, because it behaves as a tensor
except under the inversion of coordinates.) Its components are as follows: zero, if
at least two indices are equal; +1, if the permutation of the (unequal) indices i jk
is even (i.e. 123, 312, 231), and −1, if the permutation of the indices is odd (i.e.,
213, 321, 132).

Let us consider two vectors represented by their components A j and Bk . If we
write the product of εi jk with these vectors, and sum over j and k, we get

Ci = εi jk A j Bk, (1.14)

i.e.,

C1 = ε123A2B3 + ε132A3B2,

C2 = ε231A3B1 + ε213A1B3,

C3 = ε312A1B2 + ε213A2B1.

Hence,Ci = (A2B3 − A3B2, A3B1 − A1B3, A1B2 − A2B1); in otherwords,Ci with
i = 1, 2, 3 are the components of the vector product A × B.

Thus, the vector product C = A × B can be written in components as Ci =
1
2 εi jkTjk , where Tjk are the components of the antisymmetric tensor T:

T =
⎛
⎝

0 C2 −C3

−C2 0 C1

C3 −C1 0

⎞
⎠. (1.15)

The pseudovector C is called the dual pseudovector of the tensor T.
Very important physical quantities are usually expressed as vector products.

Examples are the angular momentum L, or the magnetic field B. The vector product
will also be used in the expression (1.27) for the velocity written in a rotating system
of coordinates, and it is useful to remember in these cases that it is a pseudovector,
i.e., the dual of an antisymmetric tensor.
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Fig. 1.16 Angular
momentum of a satellite S
that moves around the Earth
E . The angular momentum
is L = r × p.

For a satellite of mass m that moves around the Earth, we can assume its velocity
at each instant to be the sum of two vectors: a component along the radius vector
and another perpendicular to it, contained in the plane of the orbit. The angular
momentum of the satellite around the Earth (Fig. 1.16) is given by the cross product
of the radius vector r of the satellite with respect to the Earth with the momentum
p = mv of the satellite:

L = r × p. (1.16)

1.4.3 Planetary Motion in Newton’s Theory

It is instructive to analyze the motion of a planet around the Sun (or of the Moon
around the Earth) as a consequence of Newton’s second law.

Assume that at a given instant the momentum of the planet is p = mv around the
Sun. If the gravitational attraction could be switched off at that precise moment, the
planet would continue to move uniformly in a straight line, that is, with a constant
momentum p. In the time interval�t elapsed between two adjacent positions 1 and 2,
the planet suffers a change in its momentum due to the action of the Sun’s attractive
force F.

This change is represented by a vector�p = F�t along the direction of the force
exerted by the Sun on the planet (Fig. 1.17). Then at the point 2, the momentum of
the planet becomes p + �p. The process is reiterated at successive points so that the
resulting trajectory is a curve. This is due to the action at each instant of the force F
that causes the planet to “fall” continuously toward the Sun.

As another example, assume that we let a stone fall freely, starting from a rest
position: its initial velocity is zero, but because of the Earth’s gravitational attraction,
it acquires a momentum �p that increases proportionally with time, and points in
the same direction as the force exerted by the Earth on the stone.

If the stone is thrown far away, it carries an initial momentum p = mv (where m
is the mass of the stone and v its velocity). This initial momentum combines with the
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p2=p1+Δp

p1

1Δp

S

2

Fig. 1.17 The Sun exerts a continuous force on the planet producing an increase in its linear
momentum by the amount�p between two successive positions 1 and 2. This vector�p is directed
along the radius vector joining the planet to the Sun.

momentum�p due to the Earth’s gravitational attraction and results in an apparently
parabolic trajectory (Figs. 1.18 and 1.19).

We would like to stress the important difference between the case of the object
that is thrown vertically upward and the one which is put on a terrestrial orbit. In
the first case, the initial momentum points in the same direction as the applied force
and (unless it moves with a velocity greater than the escape velocity), the object will

Fig. 1.18 If the air resistance is neglected, the trajectory described by a stone thrown in the way
shown in the figure is approximately a parabolic arc.

Fig. 1.19 Strictly speaking, the trajectory described by a body thrown like the one in the previous
figure is an arc of a very eccentric ellipse, in which the centre of the Earth is one of the foci.
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return to Earth, following the vertical. In the second case, the initial momentum p of
the object (for example, a satellite) forms some angle (different from 0 or 2π) with
the direction of the vertical, or with the radius vector r of the satellite with respect
to the centre of the Earth. In our case, to carry out the motion of a satellite in orbit
around the Earth, its angular momentum L = r × p with respect to the centre of the
Earth E must be different from zero (Fig. 1.16). For the case of motion along the
vertical, the angular momentum is zero and there is no orbital motion.

An important property of the angular momentum for the case of a satellite orbiting
the Earth, or a planet revolving around the Sun, is that its value is a non-vanishing
constant, that is, it does not vary with time because the force acting here is a central
force: its direction passes always through a fixed point, the centre of forces.

1.4.4 Newton’s Third Law

Newton’s third law is satisfied for the mutual gravitational attraction between the
Sun and the planets, and for the planets among themselves. The force with which
the Sun attracts the Earth is applied to the Earth, but a force equal and opposite is
exerted by the Earth on the Sun, and both are directed along the line joining their
centres. Action and reaction are always applied at different points.

Another example is provided by one body placed on top of another. A brick on a
table exerts an action equal to its weight, and the table exerts on the brick an equal and
opposite force. If the brick is put on a spring mattress, the mattress will be deformed,
and partially flattened. Finally, if it is put on a stretched newspaper, held with both
hands, this will probably break and the brick will fall to the floor. The newspaper
would not be able to react with a force equal and opposite to the weight of the brick,
and would therefore break. This would not occur if instead of the brick we placed
a lighter body on the newspaper (for example, a coin). We see from these examples
that, in general, the action produces some deformation of the body on which it acts,
forcing it to give back an equal and opposite reaction, and that there exists a limiting
value for the action force, when the body breaks.

In the two previous cases we have examples of action at a distance and of action by
contact. The first is typical of the classical conception of the gravitational interaction
between bodies, which was replaced later by the concept of field, as an intermediate
agent for the interaction, propagating with finite speed. This will be discussed in
more detail in later chapters.

Newton’s third law should be interpreted with care in the atomic world, because
of the finite velocity of propagation of the interactions. For instance, two charged
particles inmotion exert mutual forces of attraction or repulsion, but at a given instant
the force exerted on one of the particles is determined by the position of the other at
some previous instant, and the effect of its new position will be felt some time later.

Newton’s third law can be considered as a manifestation of a much more general
law. In fact, the expression action ↔ reaction does not necessarily establish their
equality, but rather the relation stimulus–response, in which the second is opposed to
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the first one. This can be found in all fields of physics. For instance, in electromagnetic
theory, it is found that, when a magnetic field varies near a conductor, an electric
current is induced on the latter (Faraday’s law). But this electric current in turn creates
a magnetic field which acts oppositely to the applied field (Lenz law). Furthermore,
an electric charge in a medium creates an electric field, attracting charges of opposite
sign, and the net effect is a screening of the charge and the field created by it.

In thermodynamics, that general law is expressed by Le Chatelier’s principle: if
some external actions are applied to a system in equilibrium, and if these tend to
alter it, some reactions originate in the system which tend to compensate the external
actions and take the system to a new state of equilibrium. For instance, if we heat a jar
with a match at some point, the jar alters its state of equilibrium. However, the heat
spreads across its mass cooling the hot point, and after some time, the jar reaches a
new state of equilibrium at a uniform temperature higher than before because of the
absorbed heat.

1.5 Conservation Laws

Starting from Newton’s laws, and on the basis of a simple hypothesis about the
interaction forces between the particles, it is possible to establish three conservation
laws:

1. Conservation of linear momentum;
2. Conservation of angular momentum;
3. Conservation of energy.

The conservation of these quantities is usually accepted as valid in all fields of
physics, and they can be derived as a consequence of the basic symmetry properties
of space and time. Thus, the conservation of linear momentum is a consequence of
the homogeneity of space, the conservation of the angular momentum is due to the
isotropy of space (meaning that all the directions of space are equivalent for a given
physical system, i.e., its properties do not vary when it is rotated as a whole), and the
conservation of energy is a consequence of the homogeneity of time (in other words,
the evolution of a system with respect to time, starting from an initial instant t0, is
the same for any value of t0). This correspondence between symmetry properties
and conservation laws is extremely general and crops up again in other theories,
particularly in microscopic physics. The ultimate understanding of these relations
was given by the German Jewish mathematician Emmy Noether (1882–1935), in the
theorem which bears her name and which turned out to be one of the most influential
works for the development of theoretical physics in the twentieth century.
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1.5.1 Conservation of Linear Momentum

It is easy to demonstrate that for a system of particles under no external influences,
the total linear momentum (the sum of the linear momenta of all the particles) is
conserved when Newton’s third law is satisfied. Put another way, the total linear
momentum is conserved if the action and the reaction are equal in modulus but act
in opposite directions.

It may happen that one or both interacting particles emit some radiation. In that
case one must attribute some momentum to the radiation field in order that the linear
momentum be conserved.When the radiation is assumed to be composed of quantum
particles (for example, photons), the law of conservation of linear momentum is
restored by including newly created particles carrying a certain amount of linear
momentum.

We shall refer to an example from macroscopic physics. If we shoot a gun, the
bullet, having a small mass, leaves the gun at a speed of several meters per second.
The gun moves back in the opposite direction at a lower speed (at the moment of
shooting we can neglect the action of the force exerted by the Earth’s gravitational
field). If m is the mass and v the speed of the bullet, and if M and V are the mass
and speed of the gun, we find that MV = −mv. So the momentum acquired by the
bullet is the same (but of opposite sign) as that acquired by the gun. The sum of two
quantities equal in modulus but with opposite directions is zero, which was the initial
value of the total linear momentum.

But what happens if we fix the gun to a solid wall? In this case the gun does not
move back, the wall stops it. But now the conditions have changed. An external force
is exerted on the gun, since it has been fixed to the wall, and this in turn is fixed to
the Earth.

This means that the Earth should move back with a speed which, when multiplied
by its mass, yields a momentum equal in modulus but opposite to that carried by
the bullet. Let us suppose that the bullet has a mass of 100g, and that its speed is
100m/s = 104 cm/s. The mass M of the Earth is 5.98 × 1027 g. From the equation
MV = −mv, we find that, after the gun is fired, the Earth should recoil with a speed
of the order of 10−20 cm/s. For all practical purposes, this is zero.

Something similar happens if we throw a rubber ball against a wall. The ball
bounces and comes back with a velocity of approximately the same modulus, but in
the opposite direction. Apparently, the linear momentum is not conserved, but the
ball has subtracted a certain amount of momentum from the wall, or from the Earth,
which recoils with insignificant velocity.

We should emphasize that, in the previous example, the velocity of the ball bounc-
ing off the wall has opposite direction to what it had before the collision, but its
modulus is actually somewhat smaller. The wall did not give back all the incident
momentum, but absorbed a part of it. An extreme case occurs if we throw a ball of
clay against the wall. In this case the ball does not rebound. All the linear momentum
of the ball is transmitted to the wall, and as it is fixed to the Earth, its resulting change
of motion is not perceptible. But if the wall were supported by wheels that could
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move without friction, it would start to move with the colliding ball of clay stuck on
it. Its speed would be easily obtained: if M is its mass, and m and v are the mass and
velocity of the ball of clay, we conclude that the modulus of the velocity of the wall
V would be

V = v
m

m + M
. (1.17)

Conservation of Linear Momentum and the Mössbauer Effect. The previous
example of the gun fixed to the Earth (that does not recoil) has an interesting analogy
in nuclear physics, in the so-called Mössbauer effect. In this case, the gun is an
atomic nucleus, and the bullet is the gamma radiation emitted by it. The gamma
radiation emitted by a nucleus has a constant frequency, but when the nucleus is
able to move, as happens in a gas, we have a case similar to the first example of the
recoiling gun. The nucleus recoils when emitting the gamma radiation. This causes a
range of frequencies to be observed, within a certain bandwidth�ω, that is, there are
many values of the frequency in such an interval and a continuous set of frequencies
is observed due to the different values of the energy lost by the recoil of the nucleus.
The frequency no longer has a precise value, but lies in an interval of possible values,
which we may call the imprecision or error.

However, in certain crystals (for example, iridium 197 and iron 57) phenomena
occur as in the example of the gun fixed to the Earth, since the emitting nucleus
is effectively fixed to the crystal (which does not recoil significantly). Then the
frequency of the emitted radiation has an extraordinarily narrow band width �ω. In
the case of iron 57, the band width divided by the frequency ω is of the order of
�ω/ω ∼ 3 × 10−13. This is equivalent in units of time to an error of one second in
an interval of 30,000years.

As can be seen from this, the Mössbauer effect can be used to make very precise
measurements of frequency.

1.5.2 Conservation of Angular Momentum

For the case of motion under the action of a central force (directed along the radius
vector joining the planet with the Sun), angular momentum is conserved: it does not
vary with time. Referring again to Fig. 1.16 of a satellite around the Earth, the change
�p in the linear momentum that the satellite acquires by the action of the terrestrial
gravity force is always directed along r. For that reason it does not contribute to the
angular momentum, which is due only to the component p2 perpendicular to r.

If r decreases, p2 increases so that the product L = rp2 remains constant. This is
equivalent to the statement of Kepler’s second law, which is nothing but an expres-
sion of the conservation of angular momentum. The planets move faster when they
approach the Sun (the radius vector diminishes) than when they are more distant.
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In addition to the angular momentum due to the orbital motion around the Sun,
the planets have an angular momentum due to the rotation around their axis. This
creates a magnetic field due to the rotation of electric charges inside them.

Something similar takes place in the atomic world. An electron in an atom has
some intrinsic angular momentum or spin that is retained even if it moves outside
the atom, although it would not be correct to imagine the electron as a sphere that
rotates around its axis.

The spin angular momentum is measured in terms of a unit � which is the Planck
constant h divided by 2π, and whose value is 1.05 × 10−27 erg · s. Electrons, protons,
neutrons, neutrinos, and other particles have spin equal to 1/2 of this unit. Photons
have spin equal to 1 and π mesons have spin 0.

Particles with spin 1/2 (or any half-integer) are called fermions, in honour of
the Italian physicist Enrico Fermi (1901–1954), and they obey Pauli’s exclusion
principle, formulated in 1925 by Wolfgang Pauli (1900–1958). Pauli’s principle
states that at most one fermion can exist in a given quantum state. On the other
hand, if a particle has integer spin, it is called a boson, in honour of the Indian
physicist Satyendra Nath Bose (1894–1974). Bosons do not obey the Pauli principle;
consequently, in a given quantum state can exist an arbitrary number of bosons.

The angular momentum of an isolated system of particles is also conserved if the
particles exert equal and opposite forces on one another.

As in the case of the linear momentum, it may happen that a particle loses a
certain amount of angular momentum, which is carried by a newly created particle.
This is the case of an electron in an atom: upon jumping from some level of energy to
another one, it loses a certain amount of angular momentum, but the emitted photon
carries precisely the missing angular momentum.

When neutron decay was investigated, it was observed that the resulting particles
were a proton and an electron. Since the neutron had a spin angular momentum equal
to 1/2, the same as the proton and the electron, it was a mystery why the total spin
of the resulting particles was not 1/2. Furthermore, the energy was not conserved
either. Then, in 1931, Pauli proposed the existence of a neutral particle that carries
missing spin and energy. This particle was called neutrino and was assumed to have
spin 1/2. Although it took more than 20years, the existence of the neutrino was
finally demonstrated in the laboratory. It took so long because neutrinos are particles
whose interaction with matter is very weak. Neutrinos and weak interactions will be
discussed in Chaps. 5, 9, 10, and 11.

1.5.3 Conservation of Energy

For a body of mass m that moves with speed v, its kinetic energy is 1
2mv2. Unlike

the linear momentum and the angular momentum, which are vectorial, the kinetic
energy does not depend on the direction of motion.

Another form of energy is potential energy. If the same body of mass m is placed
at a certain height h above the Earth, we say that it has a potential energy mgh with
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respect to the surface of the Earth (g is the acceleration due to the Earth’s gravity,
with the value 9.8 m/s2), that is to say, this potential energy is equal to the product
of the weight by the height. If the object falls freely, the potential energy diminishes
due to the decreasing height with respect to the floor. But on the other hand, the body
acquires an increasing speed: the decrease in potential energy produces an increase
in kinetic energy, in such way that their sum is constant:

1

2
mv2 + mgz = const. = mgh,

where z is the height at any instant between themoment when the object was released
and the moment when it touched the Earth.

For a planet of massm that moves around the Sun, for example, its kinetic energy,
denoted by T , is:

T = 1

2
m(v2

r + v2
l ) , (1.18)

where vr is its radial speed, directed along the radius that joins the planet with the
Sun, and vl is the velocity perpendicular to the radius vector. The potential energy
(which is equal to the energy required to bring the planet from infinity to the point
where it is located) is denoted by V and is equal to

V = −GMm

r
. (1.19)

Here, G is the universal constant of gravitation, M is the solar mass, r is the distance
from the planet to the Sun (or from the centre of the planet to the centre of mass of
the Sun–planet system, which is a point located in the Sun). The negative sign of the
potential energy is due to the fact that the force between the planet and the Sun is
attractive and the energy required to bring it from infinity to its present position is
negative: it is not necessary to waste energy, because the Sun gives up this energy
through its attractive force. The total energy would thus be

E = T + V = 1

2
m(v2

r + v2
l ) − GMm

r
. (1.20)

But as the angular momentum L = mvlr is constant, one can write

vl = L/mr, (1.21)

and the energy of the planet around the Sun is given by an expression that depends
on the radius and the radial velocity. For a given value of the angular momentum,
one has

E = m
v2
r

2
+ L2

2mr2
− GMm

r
, (1.22)
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and this is equivalent to the energy in case of the motion of a particle of mass m in
one dimension, with a potential energy given by

U = L2

2mr2
− GMm

r
, (1.23)

called effective potential energy. If we represent graphicallyU as a function of r , we
get the curve shown in Fig. 1.20. If the angular momentum L = 0, thenU = V , and
the graph is shown in Fig. 1.21.

Let us now analyze the case in which the angular momentum L is different from
zero. If we put U = E1 (E1 is a straight line parallel to the r axis in Fig. 1.20), we
get two intersection points, r1 and r2, between the curve U and the line E1, if E1 is
negative. The points on the curve below the straight line correspond to the positions
of the planet that are physically possible: the radial kinetic energy for them is positive,
since Trad = E1 −U . This means that the distance of the planet from the Sun could
take any value between r1 and r2, which are respectively the minimum (perihelion)
and maximum (aphelion) distances from the Sun. This is the case of elliptical orbits,
and themotion occurs in a finite region of space. That is, the radius oscillates between
the values r1 and r2 as the planet moves around the Sun in its elliptical trajectory.

For the minimum energy value E2, there is only one point of contact with the
curveU , that is, only one value r = r0. The planet is always at a fixed distance from
the Sun, so the orbit is a circle.

In these examples, as already pointed out, the total energy is always negative. If
the total energy is zero, that is, if the effective potential energyU is numerically equal

Fig. 1.20 The effective potential energyU (r) of a planet in its motion around the Sun. For negative
total energies E1, motion is possible between the distances r1 and r2 (elliptical motion). The min-
imum value of the energy is E2, corresponding to a circular orbit of radius r0. For zero energy
E = 0, the motion would be parabolic, between r3 and r = ∞. For energies E > 0, the trajectories
would be hyperbolas.
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Fig. 1.21 If the angular
momentum is zero, the
potential energy, plotted as a
function of the distance r of
the planet to the Sun, has the
form shown in the figure. In
this case, only a linear
motion of the bodies is
possible, as in the case of
bodies that fall vertically.

to the kinetic energy, there is only one point of intersection between the horizontal
axis and the curve U . The body could come from infinity and approach a minimum
distance r from the Sun, and then move away to infinity again. This motion corre-
sponds to a parabolic orbit. This is valid for any body in free space, which being at
rest, or almost at rest, starts to feel the gravitational field of the Sun.

A similar situation occurs if the total energy E is positive, but in this case the orbit
is a hyperbola.

Some comets follow a parabolic or hyperbolic trajectory around the Sun, that is,
they approach it and later move away to infinity, never returning to the solar system.
A similar orbit will be described by any arbitrarily distant body with positive energy
as it approaches the Sun.

Even light does not circumvent the gravitational attraction law. Classical electro-
dynamics establishes that light has energy and momentum. Thus, light from a distant
star, when passing near the Sun, is expected to be deviated from the straight line,
describing a hyperbolic-like trajectory. Such light bending was suggested to occur
by Henry Cavendish (1731–1810), using Newton’s corpuscular theory of light, and
was later calculated by Johann Georg von Soldner (1776–1833). Einstein’s first cal-
culations in 1911 (based on the gravitational time dilation) were in agreement with
Soldner’s results, but in 1915 he proved that the total relativistic effect, which took
into account also the warping of space by massive bodies, was actually twice his
earlier calculated value (see Chap.10).

Returning to our example, if the angular momentum is zero, U = V . This is the
case for a body thrown vertically upward. If r0 is the Earth radius, the body could
reach a height r1, and then fall back to the Earth’s surface.

Let us imagine what would happen if a hypothetical hole were dug through the
Earth, along one of its diameters. Then the body could pass through the centre of
the Earth, where it would arrive with the maximum kinetic energy. After crossing
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Fig. 1.22 If it were possible
to make a hole right through
the Earth, passing through its
centre, a particle thrown
down the hole would
oscillate permanently
between the two ends of the
diameter.

the centre, it would exit through the opposite end, reaching a position entirely sym-
metrical in the land of the antipodes. In principle, it would then come back to its
starting point and thereafter oscillate indefinitely (Fig. 1.22). Its orbit would be a
linear oscillator. At a point inside the Earth at a distance r from its centre, the force
of gravity exerted on a body of mass m falling down the hole is the force produced
by a sphere of radius r (due to Gauss’s law). If ρ is the average Earth density, this
mass is M ′ = 4πr3ρ/3, leading to a force F = 4πGmρr/3.

In reality, it is not technically feasible to make such a hole through the centre of
the Earth, due to the inner structure of the planet and its dynamical nature. Moreover,
other factors must be considered, such as the friction between air and the moving
body, which would heat up the body and damp the oscillations. The imagined exper-
iment might be feasible inside an artificial satellite orbiting Earth in the vacuum of
space.

If the body comes from infinity with an energy greater than or equal to zero (and
L = 0), it will move toward the centre of forces (for example, the Earth) until it is
stopped by the Earth’s surface, at a distance r from the centre of forces.

What would happen in the case of a repulsive force? If the force is repulsive, the
potential energy is positive, resulting in an effective potential that looks like the one
depicted in Fig. 1.23. The total energy is always positive and the resulting orbits are
hyperbolas.

A problem of this type occurs in the case of relative motion of electric charges of
equal sign. This is interesting in connectionwith the famous experiment performedby
Ernest Rutherford (1871–1937), in which a sheet of gold was bombarded with alpha
particles (positively charged helium nuclei). By studying their deviations (assuming
that the particles describe hyperbolic orbits), Rutherford proposed a planetary model
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Fig. 1.23 For a positive
potential, the total energy
can be only positive. A
positive potential occurs
when particles repel each
other, as in the case of an
atomic nucleus interacting
with alpha particles.

of the atom in which the nucleus was positively charged. We shall return to this point
in Chap.6.

If the sum of the kinetic and potential energies is constant, we say that the energy
is conserved or that the system is conservative. This is the case for planets in their
motion around the Sun, or for a falling object, until some instant when it hits the
Earth. At the moment of impact, all the kinetic energy of the body is dissipated in
the form of vibrations (for example, sound), elastic deformations, friction, and heat
produced by friction.

1.6 Degrees of Freedom

A particle moving freely has three degrees of freedom—it can move independently
in the three directions of space.

A pendulum oscillating in a plane has only one degree of freedom, which is the
angle formed between the suspending cord and the vertical (Fig. 1.24).

Two free particles have six degrees of freedom, three for each. But if the particles
are fixed to the ends of a bar, they lose one degree of freedom, and retain five: the three
directions of space in which the bar can move, and the two angles which indicate its
inclination say, around its midpoint (Fig. 1.25).

Fig. 1.24 A pendulum that
oscillates in a plane has only
one degree of freedom: the
angle θ.
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Fig. 1.25 Two particles
joined by a rigid bar have
five degrees of freedom: the
three directions of space in
which their centre of mass
can move, and the two angles
determining the positions of
the particles with respect to
it. This is almost the case for
diatomic molecules,
although for them the “bar”
is not completely rigid, and
can oscillate longitudinally.
Therefore, diatomic
molecules have six degrees
of freedom.

We shall discuss the mechanism of energy dissipation by using the example of
the pendulum. We consider the pendulum as a mass hanging by a thread tied to a
nail. When the pendulum oscillates, an enormous number of molecules of air (each
of them having three degrees of freedom) collide with it. When the thread moves
relative to the nail at the point of contact, it collides with a very large number of
constituent particles of the nail (atoms and ions forming the lattice of the metal, and
electrons). Energy dissipation in the pendulum (and in other physical systems) is
related to the energy transfer from a system with very few degrees of freedom to
other systems with a very large number of degrees of freedom, and the energy is in
this case disordered.

The energy absorbed by a system with a very large number of degrees of freedom
increases its internal energy. We shall consider this problem in more detail in the
next chapter.

1.7 Inertial and Non-inertial Systems

Asmentioned earlier, in order to describe the position andmotion of a body, classical
mechanics needs the concept of frames of reference. Such a frame could be a system
of three perpendicular axes and a clock to measure the time. The origin O could be
fixed to some body (Fig. 1.26).

For instance, in order to describe the Earth’s motion around the Sun, the origin of
the system of coordinates could be at the centre of the Sun. A frame of reference is
said to be inertial if a free particle (on which no force acts) is at rest or moves with
constant velocity along a straight line with respect to the frame (assuming that the
other two laws of Newton are also valid). This definition is not free from difficulties,
but it is very useful. Given an inertial frame of reference S, all the frames S′, S′′, etc.
moving with respect to S with uniform motion along a straight line are also inertial.
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Fig. 1.26 A frame of reference is characterized by three perpendicular axes along which the three
spatial coordinates x, y, z are measured, and a clock with which the time t is measured.

When we travel in a car and it accelerates abruptly, we feel a force pushing us
back. If we brake, a force pushes us forward. If we follow a curved road in the car,
a force pushes us outward (centrifugal force). All these are so-called inertial forces
which appear in non-inertial frames of reference.

If the car accelerates, a pendulum will move away from the vertical line to some
angle α. The same deviation α would occur in other cars if pendulums were placed
in them when these cars move with respect to the first with the same acceleration,
although different speeds. We thus conclude that the laws of mechanics (indicated
by the verticality of the thread of the pendulum at rest with respect to the car) are
not satisfied in a non-inertial frame, because fictitious forces, called inertial forces,
appear. Furthermore, the laws of mechanics would not be valid in any frame of
reference moving with constant velocity with respect to the first, non-inertial frame.

For such frames, some other set of mechanical laws is valid, modified by the
inertial forces. Then the question arises: does a frame of reference exist in which
the laws of mechanics are actually satisfied, if in fact one could have an enormous
variety of frames of references?

In classical mechanics, we assume the existence of an absolute frame of reference
in which Newton’s laws are satisfied. They would also be satisfied for all the systems
in uniform motion with regard to the absolute frame. Furthermore, an absolute time
is assumed: in all the inertial frames the time is measured with the same universal
clock.

Moreover, classicalmechanics assumes that the interactionbetweenparticles takes
place instantaneously. In such conditions, Galileo’s relativity principle is satisfied.
This states that the laws of mechanics are the same in all inertial systems. The princi-
ple implies that Galileo’s transformations (1.24) are used when we want to describe
the position of a particle with respect to two different inertial systems (Fig. 1.27).

If (x, y, z) are the numbers giving the position of a particle at some time t in the
system S, and (x ′, y′, z′) the position at the same time t = t ′ in the system S′ moving
with respect to S with the speed V along the x-axis, as shown in the figure, then the
following equations hold between the two sets of numbers:

x ′ = x − V t, y′ = y, z′ = z, t ′ = t. (1.24)
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Fig. 1.27 Position of a particle P with respect to two systems of coordinates S(x, y, z) and
S′(x ′, y′, z′). If S′ moves along x with uniform velocity V = (V, 0, 0), the coordinates of a point
P in the two systems are related by the Galilean transformation r′ = r − Vt . Both are inertial
systems.

This is a Galilean transformation. As we shall see in Chap.5, these transformations
are not satisfied by electromagnetic phenomena (in otherwords,Maxwell’s equations
are not covariant with respect to these transformations), nor indeed by any kind of
physical phenomenon, although they are approximately valid for bodies moving at
small velocities.

The need for a new principle of relativity in physics led to Einstein’s principle of
relativity, as we shall see in Chap.5.

It is important to be able to compare two reference systems, the first S at rest
and the second, non-inertial, S′ rotating around an arbitrary axis at angular velocity
ω radians per second (Fig. 1.28). The angular velocity is represented by a vector ω
directed along the axis of rotation, as specified by the right-hand rule (Fig. 1.29). If
we consider a vector A fixed to S′ and forming an angle θ with the rotation axis,
as shown in the figure, the change in A during the time interval from t to t + �t is
given by

Fig. 1.28 Variation of a
vector rotating around an
axis with angular velocity ω
in the time interval �t .

A sinθ

θ

ω

ωΔt
ΔA

A(t)

0

A(t + Δt)
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�A = A(t + �t) − A(t) = Aω�t sin θ u , (1.25)

where u is a unit vector perpendicular to bothω and A. When�t → 0, one can write
the derivative of A with respect to t as the vector product

dA
dt

= ω × A. (1.26)

One can write the velocity of a particle indicated by the position vectors r and r′ in S
and S′, respectively, considered as the time derivative of the position vector relative
to each of the two systems, as

dr
dt

= dr′

dt
+ ω × r. (1.27)

A similar expression for a rotated vector can be obtained from (1.10). If we assume
an infinitesimal rotation of amplitude dθ such that cos dθ ≈ 1 and sin dθ ≈ dθ, using
(1.10) we obtain dr′ = dr − dθ × r. Dividing by dt and defining ω = dθ/dt , one
gets (1.27). It follows that one can interpret the derivative operator with respect to
time as transforming in agreement with the law (1.27). The second derivative or
acceleration is

d2r
dt2

= dr′2

dt2
+ 2ω × dr

dt
+ ω × ω × r. (1.28)

From (1.28), for a body of mass m in S acted upon by a force F, we can write in S′

d2r′

dt2
= dr2

dt2
− 2ω × dr

dt
− ω × ω × r. (1.29)

Two inertial forces appear, if one multiplies (1.29) by the mass m: the centrifugal
force, −mω × ω × r, which acts in such a way as to move the body away from the
axis of rotation, and the Coriolis force, −2mω × dr

dt .
A good example of a non-inertial system is the Earth. Because of its rotation,

inertial forces appear, such as the centrifugal force which, together with the grav-
itational force, has produced the flattening of the Earth along the polar axis. The
centrifugal force adds vectorially to the gravitational force, and the resultant is a
vector which, at every point on the Earth, is directed along the vertical (if we neglect
local irregularities), that is to say, it lies perpendicular to the Earth’s surface.

TheCoriolis force deflects the direction of bodiesmovingwith respect to the Earth
in a direction perpendicular to their velocities and to the Earth’s axis of rotation. This
force has a strong influence on the motion of large air masses; it is responsible for the
fact that cyclones and tornados rotate counterclockwise in the northern hemisphere
and clockwise in the southern hemisphere.

The local equivalence between inertial forces and gravitational field was a basic
element in the formulation of a relativistic theory of gravitation, which was due to
Albert Einstein, and is discussed in Chap.10.
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Fig. 1.29 A body in rotation with respect to the system of reference S. The system S′ is fixed with
respect to the body and is said to be non-inertial. The body rotates around the axis y′. The centre
of the coordinate axes in S′, denoted by O ′, is at distance R from O . The change in the position of
any of its points in some time interval dt is given in S by the vector dri = dR + dθ × r′

i .

1.8 Rigid Bodies

A rigid body is a system of particles tightly bound in such a way that there is no
relative motion among them. Under normal conditions, within certain pressure and
temperature limits, bodies made out of metal, glass, stone, etc., can be considered
rigid. Let us assume a system of coordinates centred at a point O ′ and fixed with
respect to the rigid body. We shall call M = ∑

mi the total mass of the body. The
masses mi are located at the points r ′

i , where i = 1, 2, . . . , n. The vector

Q =
∑

i mir′
i

M
, (1.30)

with origin at O ′, determines a point called the centre of mass of the rigid body. If
we consider the origin of the coordinate system S′ to be placed at the centre of mass
of the body, then Q = 0. As a consequence,

∑
i mir′

i = 0.
We assume that the body is moving along the x axis, and that at the same time it

rotates with the angular velocity ω around the y′ axis. As earlier, the time-dependent
vector R fixes the position of O ′ with respect to O . An arbitrary point P of the rigid
body is determined by the vector r with respect to O and by r′ with respect to O ′.

An equation similar to (1.27) can be derived in the case of the rigid body, for each
particle composing it, seen from both the rest system of reference S and the moving
one S′. The particles have a common angular velocity ω. Denoting dri/dt = vi and
dR/dt = V, the velocity of a particle in a rigid body rotating around the y′ axis can
be written

vi = V + ω × r′
i . (1.31)

The velocity vi is called the absolute velocity of the particle P . Recall that the system
S′ is fixed with respect to the rigid body, therefore the vectors r′

i are constant and
dr′

i/dt = v′
i = 0.
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Using the relation (1.31), we can find the expression for the kinetic energy of the
rigid body as seen from the rest frame:

T =
∑

miv
2
i =

∑ 1

2
m1V

2 +
∑

miV · (ω × r′
i ) + 1

2

∑
mi (ω × r′

i )
2

= 1

2
MV 2 + 1

2

∑
mi [ω2r ′2

i − (ω · r′
i )
2], (1.32)

where in the second term on the right we have used the equality
∑

miV · (ω ×
r′
i ) = (V × ω) · ∑

mir′
i = 0, since

∑
mir′

i = 0. In the third term, the squared vector
product was expanded. The kinetic energy thus comprises two terms, the first being
related to the translational motion of the body along the x-axis, and the second
containing the kinetic energy of rotation. If we denote by θ the angle formed by ω
and r′

i , the energy of rotation in (1.32) can be written as

1

2

∑
mi (ω

2r ′2
i − (ω · r′

i )
2) = 1

2

∑
miω

2r ′2
i sin2 θ = 1

2

∑
mi (x

′2
i + z′2

i )ω2,

where I = ∑
mi (x ′2

i + z′2
i ) is called the moment of inertia of the body around its

axis of rotation. Actually, in the general case when the rigid body moves around a
point, it can be shown that its axial moments of inertia are the diagonal components
of a tensor, the inertia tensor, with the expression

Ilk =
∑
i

mi (r′2
i δlk − x ′

l x
′
k),

where k, l = 1, 2, 3. If Ilk is multiplied by the dyadic tensor ωlωk , the kinetic energy
of rotation can be written in the form

Trot = 1

2
ω · I · ω.

Returning to our body in motion around the y′ axis, we see that the last term in
(1.32) can be written as

1

2

∑
mi (ω × r′

i ) · (ω × r′
i ) = 1

2
ω · L, (1.33)

1

2

∑
mi (ω × r′

i ) · (ω × r′
i ) = 1

2
ω ·

∑
mi

(
r ′2
i ω − (ω · r′

i )r
′
i

) = 1

2
ω · L, (1.34)

where we have used the permutation of the × and · products in the first term and

L =
∑

mir′
i × (ω × r′

i )
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is the rotating body’s angular momentum around the y′ axis. Let us consider the
simple case inwhich the body has rotational symmetry aroundω. The term of interest
is the moment of inertia of the body around the y′ axis, viz., I22 = ∑

mi (x ′2 + z′2).
The moment of inertia with respect to the axis of rotation can also be defined as the
angular momentum divided by the angular velocity, I = L/ω, and conversely, given
the moment of inertia tensor, the angular momentum can be written as L = I · ω.

We define the torque applied to a rigid body composed of a set of particles labeled
by i to beN = ∑

i r′
i × Fi , where r′

i are the position vectors with respect to the centre
of mass and Fi are the external forces. Then the rotation of the body around an axis
passing through it is described by the equation

dL/dt = N, (1.35)

whereL = ∑
Li is the total angular momentum of the set of particles. Themotion of

the centre of mass is given by MV̇ = F, where F = ∑
i Fi is the sum of the external

forces acting on the particles. In the case of central forces, where r′
i is parallel to the

force Fi exerted on the particle i , we have dL/dt = 0, and the angular momentum
is conserved. More details about rigid bodies can be found in the books mentioned
in the bibliography.

1.9 The Principle of Least Action

The principle of least action states that, when a mechanical system evolves from an
initial state 1 to a final state 2, it does so in such a way that some quantity, called
the action, takes an extreme value when the system follows the actual or dynamic
trajectory. This extreme value is in general a minimum (but it can be a maximum
in some special cases). This principle is like a principle of economics in the field of
mechanics.

But the action is not a directly observable quantity, like energy and momentum.
To define the action, we first define the Lagrangian L of a system of particles as a
function obtained by subtracting the potential energy from the kinetic energy:

L = T − V . (1.36)

(The customary notation for the Lagrangian is L , like that for the angular momentum,
so one has to be careful not to confound the two!) For a particle with massm moving
in a direction x with velocity v ≡ ẋ in a potential V (x), it is

L = 1

2
mẋ2 − V (x).

As ẋ and x are functions of time, one can write L = L(ẋ(t), x(t)). Then the action
S is defined as the integral of L evaluated along arbitrary trajectories x(t) between
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two given times t1 and t2:

S[x(t)] =
∫ t2

t1

L[x(t), ẋ(t)]dt. (1.37)

The action S is said to be a functional, since it takes as input a function of time, and
returns a real number. The previous definition of action is easily extended to the case
of N generalized coordinates x(t) → qi (t), i = 1, . . . , N , and to the case in which
L depends explicitly on time. If the mathematical conditions are established for the
action to be a minimum (in general, an extremum), a set of differential equations
is obtained from the Lagrangian which determine the dynamical trajectory, and are
called the Euler–Lagrange equations, in honour of Leonhard Euler (1707–1783) and
Joseph-Louis Lagrange (1736–1813):

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0. (1.38)

Here, q̇i are the velocities (or generalized velocities, like the angular speed vθ =
dθ/dt) andqi are the coordinates (or generalized coordinates, like the angles θ andϕ).
These equations are the same as those obtained by starting out with Newton’s laws.

For instance, for a free particle moving in one dimension x with the speed v, the
Lagrangian is L = 1

2mv2. But as L does not depend explicitly on x , it follows from
(1.38) that

m
dv

dt
= 0 , (1.39)

with the solution v = constant.
Consider two positions of a planet, P1 and P2, on its orbit around the Sun S. If the

variation of the action is calculated between P1 and P2 when the planet follows the
usual elliptical trajectory and when it is constrained to follow the straight line P1P2,
one finds that the action is smaller for the elliptical trajectory P1CP2. Moreover, it
remains smaller than any other value obtained by varying the trajectories between
P1 and P2 (Fig. 1.30).

By calling q(t) the solution for which S is an extremum, which we assume to
be a minimum, this means that S increases when q(t) is replaced by a function
of the form q(t) + δq(t), where δq(t) is any function, called the variation of q(t),
satisfying the condition δq(t1) = δq(t2) = 0. The variation of a constant is obviously
zero. The straight line trajectory in (Fig. 1.30) is of the form q(t) + δq(t), where q(t)
is the dynamical trajectory. The variation vanishes at the extreme points, δq(t (P1) =
δq(t (P2) = 0 (Fig. 1.30).

If two Lagrangians differ by a total derivative with respect to time of a function
of the generalized coordinates and time L ′(q, q̇, t) − L(q, q̇, t) = d

dt f (q, t), then
these Lagrangians describe the same system. This is so because the variation of the
action is the same for both Lagrangians in the interval t2, t1, since it does not depend
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Fig. 1.30 The action takes a
minimum value along the
dynamic trajectory P1CP2.
For another trajectory, like
the straight line P1P2, its
value would be larger.

on the quantities f (q(t1), t1) and f (q(t2), t2), which are constants whose variation
is zero.

The principle of least action is of the utmost importance in all branches of physics,
and it was first formulated by Pierre-Louis Moreau de Maupertuis (1698–1759), and
in more complete form by William Rowan Hamilton (1805–1865).

A similar principle exists in optics for the trajectory followed by light when
it propagates through a medium. This is Fermat’s principle, established by Pierre
Fermat (1601–1665). The principle states that, when light travels from one point to
another in a medium, it does it in such a way that the required time has an extremum
value, generally a minimum, although it could be a maximum.

Principles of least action have great importance in modern theoretical physics.

Lagrange Equations and Planetary Motion. Consider again the case of a planet
moving around the Sun. To describe its motion, it is convenient to use polar coordi-
nates with the pole located at the Sun. Remember that the force exerted by the Sun
on the planet is a vector F = −GMmr0/r2. The polar coordinates are

x = r cos θ, y = r sin θ , (1.40)

where r, θ are the radius vector and the angle with respect to the polar axis, respec-
tively. The velocities along and perpendicular to r are given by

vr = ṙ = dr/dt, vl = r θ̇ = rdθ/dt. (1.41)

The Lagrangian for the planet is the difference between the kinetic energy T and the
potential energy V , that is,

L = 1

2
m(ṙ2 + r2θ̇2) + GMm

r
. (1.42)

Since θ does not appear explicitly in L (only θ̇ appears), the first Lagrange equation,
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d

dt

∂L

∂θ̇
− ∂L

∂θ
= 0,

leads to the following equation:

d(mr2θ̇)

dt
= 0 , (1.43)

that is to say, mr2θ̇ = C = const., which is the law of conservation of angular
momentum (in this example only, we denote the value of the conserved angular
momentum by C , not to confuse it with the Lagrangian). If θ̇ = C/mr2 is substi-
tuted into the expression for the total energy, T + V , we find that

E = 1

2
mṙ2 + C2

2mr2
− GMm

r
. (1.44)

This in turn implies that

ṙ = dr

dt
=

√
2

m

[
E + GMm

r
− C2

2mr2

]
.

By combining ṙ and θ̇, one obtains an equation for r as a function of θ, which is the
parametric equation of the orbit:

dθ = Cdr/r2√
2m[E + GMm/r − C2/2m r2] ,

leading, upon integration, to

θ = arccos
C/r − GMm2/C√
2mE + G2M2 m4/C2

. (1.45)

If we make the notations d = C2/GMm2, ε = √
1 + 2EC2/G2M2 m3, we can

finally write the equation for the orbit as the typical equation of a conic:

r = d

1 + ε cos θ
, (1.46)

where ε is the eccentricity. If E < 0, then ε < 1 and the orbit is elliptic. If E = 0,
then ε = 1 and the orbit is parabolic. If E > 0, then ε > 1 and the orbit is hyperbolic.
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1.10 Hamilton Equations

Instead of using generalized coordinates and velocities to describe the motion of a
physical systemwith N degrees of freedom, it is sometimes easier to use coordinates
and momenta, as an independent set of N pairs of canonical coordinates. If L is
the Lagrangian of a system, considered as a function of the coordinates qi , the
velocities q̇i , and the time t , where i = 1, 2, . . . , N , one can write the Lagrangian’s
total differential in terms of the generalized coordinates and velocities as

dL =
N∑
i=1

∂L

∂qi
dqi +

N∑
i=1

∂L

∂q̇i
dq̇i + ∂L

∂t
dt.

By definition,
pi = ∂L/∂q̇i

are the generalized momenta (also called canonically conjugated momenta). Recall-
ing the Euler–Lagrange equations, it follows that

dL =
N∑
i=1

ṗi dqi +
N∑
i=1

pidq̇i + ∂L

∂t
dt. (1.47)

We can write
∑

pidq̇i = d
( ∑

pi q̇i
)

− ∑
q̇i dpi . Then, reorganizing the terms and

defining

H =
N∑
i=1

pi q̇i − L

as the Hamiltonian function, such that

dH = −
N∑
i=1

ṗi dqi +
N∑
i=1

q̇i dpi − ∂L

∂t
dt, (1.48)

we conclude that

q̇i = ∂H/∂ pi , ṗi = −∂H/∂qi , i = 1, 2, . . . , N . (1.49)

We also obtain the equation
∂H/∂t = −∂L/∂t.

If the Lagrangian does not depend explicitly on time, the Hamiltonian does not
depend on it either. Then H is a constant of motion, similar to the total energy.
Equations (1.49) are called Hamilton’s equations. They constitute a set of 2N first
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order differential equations, equivalent to the set of N Euler–Lagrange equations of
second order.

We consider as an example the harmonic oscillator of mass m and elastic con-
stant k, described by the Lagrangian

L = 1

2
mq̇2 − 1

2
kq2.

The velocity can be written as q̇ = p/m. The Hamiltonian is then

H = 1

2m
p2 + 1

2
kq2 ,

which is the expression for the total energy. The Hamilton equations are

q̇ = p/m, ṗ = −kq.

Taking the derivative with respect to time of the first and substituting the result into
the second, we get the equation

q̈ = − k

m
q ,

whose general solution is
q = A cos(ωt + ϕ),

where ω = √
k/m, A is the amplitude, and ϕ is an arbitrary angle (initial conditions

must be given for fixing the values of A and ϕ). The same equation and solution can
be obtained using the Euler–Lagrange equation. We find

m
d2q

dt2
+ kq = 0, (1.50)

which is the same equation as above. The harmonic oscillator is very important in
all areas of physics. For instance, consider a massive particle whose potential energy
V (x) has a minimum x0, where the particle is in a state of mechanical equilibrium.
If the expansion around x0 has the form V (x) = V0 + 1

2V
′′(0)(x − x0)2 + ..., and

if the particle is pushed out of equilibrium and then allowed to move freely, it will
behave as an oscillator.

The Hamiltonian formalism is of exceptional importance, mainly in connection
with the transformation of a set of canonical coordinates pi , qi to another Pi , Qi .
We can consider the mechanical motion of a system as a canonical transformation of
coordinates from some initial conditions to the set of canonical coordinates at some
arbitrary instant t . It is possible to obtain a fundamental differential equation for the
action S, the so-called Hamilton–Jacobi equation, whose solution allows us to find
the equations of motion.
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One can define a phase space, determined by the set pi , qi . The volume in phase
space is invariant under canonical transformations. In this way, the phase space is an
essential tool when dealing with systems having a very large number of particles, as
it happens in statistical mechanics. The Hamiltonian formalism is also essential in
quantum theory (see Chaps. 6 and 7).

Poisson Brackets. It is often necessary to define functions of the coordinates, the
momenta, and the time, f = f (qi , pi , t). The total derivative with respect to time is

d f

dt
= ∂ f

∂t
+

∑
i

(
∂ f

∂qi
q̇i + ∂ f

∂ pi
ṗi

)
. (1.51)

Recalling the Hamilton equations, we can write

d f

dt
= ∂ f

∂t
+ {H, f } , (1.52)

where

{H, f } =
∑
i

(
∂H

∂ pi

∂ f

∂qi
− ∂H

∂qi

∂ f

∂ pi

)

is called the Poisson bracket of H and f . If f does not depend explicitly on time
and {H, f } = 0, then f is called a constant of the motion. Among other reasons,
the Poisson brackets are important because of their similarity with commutators in
quantum mechanics, as we shall see in Chap.6.

Let us consider as an example the Poisson bracket of the component of the angular
momentum Lz = xpy − ypx with the Hamiltonian H = p2

2m + V (x, y, z):

{H, Lz} = {V, Lz} = y
∂V

∂x
− x

∂V

∂y
. (1.53)

Then Lz (like Lx and Ly) is not in general a constant of the motion. But if V (r) is the
potential associatedwith a central force, then Lx , Ly , and Lz , together with L2, are all
constants of the motion. The reader can check this by means of a simple calculation.
If V = V (z), that is, if the potential is independent of the x and y coordinates, whence
there is rotational symmetry around the z axis, then {V, Lz}=0, and Lz is a constant
of the motion.

1.11 Complements on Gravity and Planetary Motion

Gravity obeys the principle of superposition. The total gravitational force exerted
on a body, say, the Moon, is the vector sum of the forces exerted by the Earth (FE ),
the Sun (FS), Venus (FV ), and all other celestial bodies, so that the total force acting
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Fig. 1.31 The gravitational
potential created by a
spherical shell of radius r at
a point P taken on the x axis
is the same as if the whole
mass of the shell were
concentrated at its centre O .
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on the Moon is F = FE + FS + FV + . . .. These forces are, in general, functions
of the coordinates and time. The same can be said with regard to other bodies, for
instance, the Earth, on which the Sun and all other planets act. An example of the
observable effects of the gravitational attraction of both the Sun and the Moon on
the Earth are the tides. Tides are especially important for the oceans and atmosphere,
and depend on the relative positions of the Sun and the Moon with respect to the
Earth. Tides are maximal when the three bodies are aligned, as happens at full and
new Moon, and minimal during the crescent and last quarter phases, when the Sun
and the Moon lie in orthogonal directions with respect to the Earth.

Gravitational force produced by a spherical shell. We shall show that: (i) a spher-
ical shell of uniform thickness and density attracts a point particle outside it as if its
mass were concentrated in its centre; (ii) inside the spherical shell, the gravitational
force is zero (Fig. 1.31). Suppose the spherical shell has radius r and thickness δr
and consider a point P on the x-axis. Let us denote by R the distance from P to the
centre of the sphere O .

We start by calculating the gravitational potential V at P , and from that, the
gravitational force per unit mass, g = −∂V/∂R. To this end, we first calculate the
gravitational potential created by a ring of radius y, generated by the rotation of a
spherical arc of length ds around Ox .

We assume a constant volume density of mass ρ and surface density μ = ρδr .
From the figure we note that the surface area of the ring on the sphere is d A =
2πyds and its mass is δM = δμd A. Assume also that all points of the ring are at the
same distance h from P , where h2 = y2 + (R − x)2, while r2 = x2 + y2 and R are
constants.

Finally, we express the total potential in terms of an integral over h between limits
R − r and R + r for P outside the sphere and between limits r − R and r + R, for
P inside the spherical shell. All our reasoning will concern the plane (x, y), but by
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rotational symmetry it is valid for all planes passing through the x axis, that is, for
all points of the ring. The gravitational potential created at P is

dVs = −2πGμyds

h
. (1.54)

Here ds = √
dx2 + dy2, and the radius r joining the centre of the arc to the centre

of the sphere O forms an angle α with the x axis, while the angle formed by ds and
dy is also α, since ds is perpendicular to the radius r .

As x = r cosα and y = r sinα, we have dx = −ydα and dy = xdα, which
implies ds = rdα. Now, since h2 = y2 + (R − x)2, we have

h2 = y2 + R2 − 2Rx + x2 = R2 − 2Rx + r2. (1.55)

As r and R are constants, by differentiating (1.55) with respect to x , it follows that
hdh = −Rdx . Notice also that ds = rdα, and we get the chain of equalities

yds = r2 sinαdα = −rdx = rhdh/R. (1.56)

Thus, we write the potential created by the ring at P as

dVs = −2πGμrdh

R
. (1.57)

When P is outside the spherical shell, as in case i), by integrating over h to get

∫ R+r

R−r
dh = 2r,

we find

Vs = −4πμr2G

R
= −GMs

R
, (1.58)

where Ms = 4πμr2 is the mass of the spherical shell, which behaves with respect
to P as if all its mass were concentrated in its centre, and this is valid also for the
gravitational field gs = −∂Vs/∂R = −GMs/R2.

For a solid homogeneous sphere of radius r0, substitutingμ = ρdr and integrating
between (0, r0), (1.58) implies

V = −4πρr30G

3 h
= −GM

R
, (1.59)

where M = 4πρr30/3 is the mass of the sphere. The gravitational field is g =
−∂V/∂R = −GM/R2.
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For P inside the spherical shell, as in case ii), the integral over h must be taken
between the limits r − R ≤ h ≤ r + R and we get

∫ r+R

r−R
dh = (r + R) − (r − R) = 2R. (1.60)

This term cancels the denominator R in the potential, making the potential indepen-
dent of the interior point where its value is calculated.Multiplying both the numerator
and denominator of (1.57) by r , we obtain

Vs = −4πμr2G

r
= −GMs

r
, (1.61)

which is independent of the point P and thus a constant. Hence, the corresponding
gravitational force per unit mass will be g = −∂Vs/∂R = 0.

Deviation of bodies and light by the gravitational force.Consider a free particle of
massm and velocity v very far from the Sun. Its momentum is p = mv. The distance
between the direction of the momentum and the centre of the Sun is denoted by d and
called the impact parameter. The kinetic energy of the particle is E = mv2/2 > 0 and
its angular momentum is L = mvd. As the particle approaches the Sun, it is deviated
from the straight line, and having positive energy, it must describe a hyperbolic
trajectory. We would like to calculate the angle of deviation of the particle from the
straight line in terms of E and L . The expression obtained will be applied to a proton
(of mass m = 1.6 × 10−24 g) traveling at 1/3 the speed of light, and to a massless
particle (a photon), traveling at the speed of light c, passing by the Sun’s limb (or
edge), where d = 6.96 × 1010 cm is the Sun’s radius and M� ≈ 1.98 × 1033 g is its
mass.

We start from the expression for the angle of a hyperbolic motion in polar coor-
dinates. We consider the branch located in the Cartesian halfplane x < 0, which is
symmetric with respect to the x-axis. The equation for the asymptotes is given by
taking r → ∞ in (1.56) for a planetary orbit (the pole is taken at the focus S in
Fig. 1.32), yielding the angle

�θ = arccos
−GMm2/L√

2mE + G2M2 m4/L2
. (1.62)

The total deviation from the straight line is 2δφ = π − 2�θ, leading to

δφ = π

2
− �θ = arcsin

GMm2/L√
2mE + G2M2 m4/L2

. (1.63)

We assume that m is small enough to make the second term in the denominator
negligible compared to the first. Then, we replace m by 2E/v2 in the remaining
terms to obtain
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Fig. 1.32 Deviation of the
trajectory of a particle
having positive energy by the
action of a gravitational field,
according to Newtonian
theory.
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δφ = arcsin
2GM

v3 L/E
. (1.64)

As φ is usually very small, we can approximate sin φ ≈ φ. Finally, the total deviation
is

2δφ = 4GM

v3 L/E
. (1.65)

Recall that, at large distances from the Sun, E = 1
2mv2 and L = mvd. Thus,

v3 L/E = 2v2d. (1.66)

Note that, after substituting in (1.65), the result is that 2δφ is independent of the
value of the particle mass.

By substituting values for the proton case, we get

2δφ = 2GM

v2d
= 2 × 6.67 × 1.98 × 1025

6.96 × 1030
= 3.79 × 10−5rad. (1.67)

As 1◦ = 3600′′, using the conversion of units

rad

π
= deg

180
,

we get finally 2δφ = 7.8′′. Formally, for the photon, in the limit m → 0, we take
v = c in (1.67), and find 2δφ = 7.8′′/9 = 0.87′′. This is in accord with von Soldner’s
(1776–1833) calculation of 1804, but is exactly half the angle predicted by general
relativity for the deflection of the light coming from a distant star and passing by the
limb of the Sun, viz., 2δφ = 1.75′′ (see Sect. 10.2).

Velocity and acceleration in plane polar coordinates. In plane polar coordinates,
the position of a particle is given by a vector r and the angle θ, where r is expressed
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in terms of the unit vectors in Cartesian coordinates i, j as

r = x i + yj, (1.68)

with x = r cos θ, y = r sin θ, and r = √
x2 + y2, θ = arctan y/x . Let us find the

expressions for the velocity and acceleration expressed in terms of the unit vectors
r0, θ0 in polar coordinates and show that the components of the velocity are vr = ṙ
and vθ = r θ̇, respectively, while those of the acceleration are ar = (r̈ − r θ̇2) and
aθ = (r θ̈ + 2ṙ θ̇).

We shall write (1.68) as

r = r(cos θi + sin θj) = rr0, (1.69)

where r0 = cos θi + sin θj. Recall that θ0 = − sin θi + cos θj is the unit vector in
the direction θ, and the relation

θ0 = d

dθ
r0, dθ0/dθ = −r0.

Differentiating r with respect to time, we get the velocity as v = dr/dt , and the
acceleration as a = dv/dt , and we have finally

dr
dt

= v = ṙr0 + r(dr0/dθ)θ̇ = ṙr0 + r θ̇θ0. (1.70)

Differentiating v with respect to time, the acceleration is found to be

a = (r̈ − r θ̇2)r0 + (r θ̈ + 2ṙ θ̇)θ0, (1.71)

Note that the radial acceleration has two terms, ar = r̈ − v2
θ/r , where the first is

the acceleration of the modulus of r and the second, written in terms of vθ, is the
centripetal acceleration, which is directed along r0, and is due to the existence of a
nonzero angular velocity of rotation. Multiplied by m, the centripetal acceleration
yields the centripetal force. If the accelerated particle is acted on by an external force
F along r, it is also parallel to the vector r0, and its acceleration is also along r0.
The acceleration along θ0 vanishes, that is, it is r θ̈ + 2ṙ θ̇ = 0, which is equivalent
to saying that

d

dt
(r2θ̇) = 0. (1.72)

This implies that the so-called areolar velocity r2θ̇ = const , leading to the sec-
ond Kepler law, which is equivalent to the conservation of angular momentum
L = mr2θ̇ = const . It should be emphasized that, if the component of the accel-
eration vector along θ0 vanishes, this does not imply that the angular acceleration θ̈
vanishes. This occurs only if the orbit is circular.
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Two bodies in motion due to gravitational force. Consider two bodies of masses
m1 and m2 and position vectors r1 and r2, respectively, with respect to a given
system of coordinates. Let us assume that the two bodies attract each other through a
gravitational force obtained fromapotentialV (r) = −Gm1m2/r , where r = r2 − r1
is the position vector of the second body with respect to the first. We shall write down
the equations of motion and the total energy and discuss the motion of the system.
This is a complement to the discussion of the Kepler problem earlier in Sects. 1.5
and 1.9.

We call the total mass m1 + m2 = M . The centre of mass of the system is given
by the vector

R = (m1r1 + m2r2)
M

. (1.73)

We wish to express the initial vectors r1 and r2 in terms of R and r.
From the expressions for r and R in terms of r1, r2, it is easy to obtain

r1 = (R − m2r/M), r2 = (R + m1r/M). (1.74)

The force is F = −∂U (r)/∂r = −Gm1m2r0/r2, where r0 = r/r is a unit vector.
As this does not depend on R, the acceleration of the centre of mass R̈ = 0. Thus,
the centre of mass behaves as a free particle, and by Newton’s first law, there is an
inertial system in which it is at rest. We can take it as the origin of the coordinates,
namely take R = 0, leading to

r1 = −(m2/M)r, r2 = (m1/M)r. (1.75)

The equations of motion can be written

m1r̈1 = −F, m2r̈2 = F. (1.76)

The position vectors and also the accelerations of the two bodies are taken in opposite
directionswith respect to the centre ofmass. Inserting (1.75) in either of the equations
(1.76) and defining μ = m1m2/M as the reduced mass, we get

μr̈ = F. (1.77)

The solution is (1.46), expressed in terms of the masses μ and M as follows. The
angular momentum is L = μṙ2θ̇ and the energy is E = T + V , which is negative
for elliptic (in particular, circular) motion, and we assume this is so in the present
case. Here, the kinetic energy is T = μṙ2 = T1 + T2, where

T1 = 1

2
(m1ṙ21), T2 = 1

2
(m2ṙ22). (1.78)

That is, by taking d = L2/GMμ2 and ε = √
1 + 2EL2/G2M2μ3, we obtain
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r(t) = d

1 + ε cos θ(t)
. (1.79)

Thus, r1 = −(m2/M)r(t) and r2 = (m1/M)r(t) define two ellipses (in particular,
circles) of different sizes, the two bodies rotating one around the other, in such a
way that along their rotation motion their position vectors with regard to the centre
of mass are aligned in opposite directions. The explicit dependence of r, θ on time
would require additional equations.

In the problems proposed for this chapter, we apply the above results to obtain
the location of the centre of mass of the Earth–Sun and Jupiter–Sun systems. In the
second case, it is seen that the Sun “wobbles” significantly. Observed in other stars,
such a “wobble” could lead to the discovery of extrasolar planets.

A clue about the formation of planetary rings. A ring is the result of the natural
evolution of a cloud of particles (like rocks and ice) in the gravitational field of a
central body like a planet or a star, when it loses energy in inelastic interparticle
collisions while angular momentum is conserved. The particles here are assumed to
be located within the Roche limit, an approximate distance limiting a region inside
which any satellite rock may break up under the tidal effects exerted by the planet
or star. It is assumed that a planet of mass M and radius r0 is surrounded by a cloud
of particles having a total mass m  M , at an average distance r � r0. The cloud
has a total energy E and angular momentum L, due to its rotation around an axis,
which we will take to be the z-axis. It continuously loses internal energy due to
inelastic collisions, so that, although its angular momentum L is conserved, its total
energy decreases. In a simplified version of the problem, it can be shown that there
is a maximum energy which can be lost by the system, and that once this has been
lost, the material must lie in a circular ring around the star (although not necessarily
uniformly distributed).

One must consider two symmetries: the central symmetry due to the gravitational
force exerted by the planet or star, and directed toward its centre, plus the axial
symmetry of the body due to its rotation around its z-axis. Consider two particles
having masses, positions, and velocities m j , r j , v j , respectively, with j = 1, 2, and
angular momenta L1 = h + n and L2 = h − n, where h ‖ L and n ⊥ L. We assume
that to a good approximation almost all particles can be paired off in such a way as to
have the properties discussed above, this exhausting most of the particles contained
in the initial cloud. The remaining unpaired particles should lose their n angular
momentum in collisionswith the formed ring.Wealso assume that,whennot involved
in a collision, each particle follows a Keplerian orbit as discussed in Sect. 1.5.3 and
that their total angular momentum is 2h = L1 + L2. Note that the motion along L
is responsible for the fact that n �= 0. As a consequence, the energy lost by friction,
conserving angular momentum, is due to a decrease in the kinetic energy along L .
The motions are finally confined to a ring in the x, y plane (the axial symmetry
becomes dominant). As the mass is not necessarily uniformly distributed in the ring,
some parts of it may become centres of force, leading afterwards to the formation of
satellites (or planets).
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One can write

Li = mi (ri⊥ + ri‖) × (ṙ i⊥ + ṙ i‖) (1.80)

= mi [(ri⊥ × ṙ i⊥) + (ri⊥ × ṙ i‖ + ri‖ × ṙ i⊥)]. (1.81)

Obviously, the term ri‖ × ṙ i‖ = 0, but mi (ri⊥ × ṙ i⊥) = h �= 0, and assuming r2‖ =
−r1‖ as well as ṙ2‖ = −ṙ1‖, the term (ri⊥ × ṙ i‖ + ri‖ × ṙ i⊥) = ±n, respectively,
for i = 1, 2.

The initial kinetic energy of the particle i is Ti = 1
2mi (ṙ2i⊥ + ṙ2i‖), and due to

friction, the parallel components decrease, and finally, ṙ i‖ = 0, as well as ri‖ = 0.
In consequence, the two particles describe elliptic orbits in the plane orthogonal to
L containing the centre of forces (the centre of the star). A further decrease in the
energy is achieved when the velocity vector ṙ i⊥, which lies in the plane of the orbit,
loses its component parallel to ri⊥, and is reduced to the perpendicular component,
whence ri⊥ · ṙ i⊥ = 0: the orbit becomes a circle. What is valid for the case of two
particles can be extended to all the rest of the particles.

For circular motion of a planet in a gravitational field, as the effective potential
U has a mimimum (see Sect. 1.5.3), it leads to the equality between the moduli of
the centripetal and gravitational forces:

mv2

r
= GMm

r2
.

This in turn implies
1

2
mv2 = GMm

2r
.

Thus, the total energy E = T +U is

E = −GMm

2r
. (1.82)

Assuming that the total initial energy is E I = ∑
i mi (ṙ2i⊥ + ṙ2i‖) − GMmi

ri
(< 0), the

final energy is EF = −∑
i
GMmi
2r ′

i⊥
, which corresponds to circular particle trajectories.

Thus, the maximum energy loss is

E I − EF =
∑
i

(
mi (ṙ2i⊥ + ṙ2i‖) − GMmi

ri

)
+

∑
i

GMmi

2r ′
i⊥

,
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where EF < E I , since the system has lost energy and both quantities are negative.
Obviously,

∣∣EF
∣∣ >

∣∣E I
∣∣, because the modulus of the energy for the circular orbits

is greater than the modulus of the negative energy corresponding to elliptical orbits
(See Fig. 1.20). It should be pointed out that, when the system lies in a plane, friction
may continue, and loss of energy will lead to an increase in the radius of the orbit
around the star or planet, since the angular momentum is conserved.

1.12 Advice for Solving Problems

Dimensionality. It is essential in solving problems to consider dimensionality, which
is the relation between a physical quantity and a set of fundamental quantities called
basic dimensions. These are the mass (M), length (L), and time (T ). The dimen-
sionality is usually represented by denoting the quantity in brackets. For instance,
the dimension of force is [F] = MLT−2. Then we can find the dimensions of
the gravity constant G. We have for the force of gravity [Fg] = [G]M2L−2. Then
[G] = M−1L3T−2. In the CGS system it is 6.674 · 10−8 cm3/g · s2, and in the IS
system, it is 6.674 · 10−11 m3/kg · s2. Throughout our book, we use mainly CGS
units, but units in another systems are sometimes used as well.

Symmetry and conservation laws. The laws of symmetry determine which quan-
tities are conserved, and this often allows one to find a simpler way for solving a
problem. For instance, as pointed out in Sect. 1.5, the conservation of linear and
angular momentum arise from the space translation and rotation symmetries of a
physical system, respectively, and the conservation of energy, from homogeneity
under time translation.

A simplified problem. Sometimes, we encounter a problem that is difficult to solve,
but where there is a similar problem that is simpler, for instance, because there is
an additional symmetry, and can be easily solved. In that case, one can get a lot of
information by solving the simpler problem. This is the case for instance, when the
closed orbit of a body around its centre of forces is an ellipse of small eccentricity. The
discussion of the problem for a circular orbit is considerably simpler and provides
important information. In this case, the radial kinetic energy is much less than the
centripetal energy, namely mṙ2  L2/2mr2. This can be seen from the effective
potential (1.23), which we rewrite here

U (r) = L2/2mr2 − GM�m/r.
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It reaches its minimum for a value of r given by ∂U (r)/∂r = 0. This leads to the
equality between the centripetal and gravitational forces for circular orbits, viz.,

mv2/r = GMm/r2. (1.83)

The small eccentricity of most planets justifies assuming circular orbits as a first
approximation. Apart fromMercury, whose eccentricity is ε = 0.2056, other planets
have smaller values. The highest among the other planets is Mars with ε = 0.0934,
followed by Saturn with ε = 0.0541. For Jupiter and Uranus they are respectively
ε = 0.0484 and ε = 0.0472. The Earth has ε = 0.0167, and Neptune and Venus,
the smallest values, viz., ε = 0.0086 and ε = 0.0068, respectively. Due to mutual
interactions, these values change slowly with time.

Similarity. Recall that, if the Lagrangian is multiplied by an arbitrary factor, the
equations of motion are not altered. Let us assume that the potential energy is a
homogeneous function of the coordinates. This happens in several cases. Suppose
now thatwemultiply all coordinates by the same constantα.We have for the potential
energy

U (αr1,αr2, . . . ,αrn) = αkU (r1, r2, . . . , rn), (1.84)

where k is the degree of homogeneity of the function U . If all coordinates are mul-
tiplied by α and time is multiplied by another constant β, the kinetic energy term is
multiplied by the constantα2/β2. To have a unique factormultiplying the Lagrangian
and unaltered equations of motion, we must have α2/β2 = αk . This implies that
β = α1− 1

2 k .
The scales of time and space satisfy the relationship

t ′/t = (l ′/ l)1−
1
2 k (1.85)

Other quantities give rise to similar relationships. For example, for velocities, ener-
gies, and angular momenta,

v′/v = (l ′/ l)
1
2 k, E ′/E = (l ′/ l)k, L ′/L = (l ′/ l)1+

1
2 k . (1.86)

For a uniform field, k = 1 and then t ′/t = √
l ′/ l. For the oscillator we have k =

2, so the period does not depend on the oscillation amplitude. In the case of the
Newtonian gravitational potential, k = −1, with the result t ′/t = (l ′/ l)3/2, which
implies Kepler’s third law: the squares of the periods of revolution of the planets
vary as the cubes of their mean distances from the Sun.
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Problems

Problem 1.1 The total energy E of the harmonic oscillator is the sum of its kinetic
energy K = 1

2mẋ2 and its potential energy V = 1
2kx

2. Using the general solution
for the coordinate (see Sect. 1.11), show that the total energy can be written as

E = K + V = 1

2
mẋ2 + 1

2
kx2 = 1

2
k A2, (1.87)

where the amplitude A = √
2E/k. Then find out at which points the potential and

kinetic energies obtain their maximal and minimal values.

Problem 1.2 Circular orbits: oscillatory projection and angular momentum. We
have already found that, for circular orbits, planets move at constant speeds v =√
GM�/r , where r is the distance between the centres of the planet and the Sun, G

is the gravitational constant, and M� is the solar mass. As we have seen, the total
energy of the moving planet is E = GM�m/2r . (a) Show that the projection of the
position of the planet (treated as a point) on a diameter of the orbit behaves as an
oscillator of frequency ω = √

GM�/r3. (b) Show that the angular momentum of the
planet can be written L = m

√
GM�mr = GM�m3/2/(2|E |)1/2.

Problem 1.3 The Venusian year. The semimajor axis of the Earth’s orbit is approxi-
mately 1.496 × 1011 m. For Venus the semimajor axis is 1.0800 × 1011 m. Calculate
the period of rotation TV of Venus around the Sun in years (for the Earth it is TE = 1).
Hint: Use Kepler’s third law.

Problem 1.4 Locate the centre of mass of (a) the Sun–Earth system, (b) the Sun–
Jupiter system. (a) For the Sun–Earth system, take m1 = M� = 1.988 × 1033 g as
the Sun’s mass, m2 = 5.98 × 1027 g as the Earth’s mass, and r = 1 AU, where the
astronomical unit is 1 AU ∼ 150 × 106 km, i.e., the mean distance between the
centres of the Earth and Sun. (b) For the Sun–Jupiter system, take mJ = 1.8 × 1030

g as the mass of Jupiter and 5.2 AU as the mean distance of Jupiter from the Sun.
Using (1.75), find α = m2/M� and the reduced mass m, and from it the location of
the centre of mass of each system relative to the centre of the Sun.

Problem 1.5 The Sun’s wobble due to Jupiter. One way of detecting planets orbiting
other stars is by observing the way those stars wobble due to their motion around
the star–planet centre of mass. This can be done because the wobble causes a shift in
the frequency of its light. The idea was first proposed in 1952 by Otto Struve (1897–
1963), but the technology was not yet refined enough. In more recent times, advances
in Doppler spectroscopy are such that an increase in the velocity of the emitting body
of δv ∼ 1 ms−1, and even less, in the direction of the observer on Earth, is enough
to be detected. Consider the system Sun–Jupiter, and find the velocity of rotation
around its centre of mass of (i) the Sun and (ii) Jupiter.
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Problem 1.6 Simple estimate of the galactic mass. The Sun is at an approximate
distance of R = 27 200 light-years (lyr) from the centre of theMilkyWay and it takes
a time T = 170 000 yr to complete a closed orbit.We approximate the orbit by a circle
of radius R. Themean distance of the Earth from the Sun is 1 AU = 149.6 × 106 km,
or approximately = 150 × 106 km. Find: (a) the mass of the Milky Way contained
inside the sphere circumscribed by the solar orbit, in units of solar mass, and (b) the
total mass of the Milky Way, assuming that the galaxy is spherically shaped and has
a uniform density, and that the Sun is located at a distance of R = 0.55RG , where
RG is the average galactic radius. Note that one year is approximately 3.15 × 107 s.

Problem 1.7A train pulled by gravity? Two cities are connected by a tunnel of length
320 km which can be interpreted geometrically as the chord of a great circle through
the Earth’s surface. A train can move due to the gravitational force, and by assuming
a constant Earth density ρ, it moves as a harmonic oscillator, as discussed earlier.
(We are ignoring friction forces.) Calculate the speed of the train at the point where it
reaches its maximum value. Let M and mT be the masses of the Earth and the train,
respectively, and assume the Earth’s radius to be R = 6350 km.

Problem 1.8 Due to the decrease in the frequency of rotation of the Earth produced
by tidal friction effects, the length of the day has increased and the spin angular
momentum SE , due to rotation around its axis, has slightly decreased. Let theMoon’s
angular momentum on its orbit around the Earth be LM . One expects SE + LM = LT

to be conserved. a) Calculate SE by assuming the Earth to be a homogeneous sphere
of constant density ρ and radius R. b) The decrease in the spin SE of the Earth is
compensated by the increase in LM so that LT remains constant. Thus, the Moon
is receding. Assume circular motion and estimate how much the Moon recedes
each year by taking the average increase in the length of the day every year to
be δT = 1.75 × 10−5s.
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Chapter 2
Entropy, Statistical Physics,
and Information

What is entropy? This term is used with several meanings in science and technology.
For a chemist, “it is a function of the state of a thermodynamic system”, whereas
a physicist would say that “it is a measure of the disorder of a given system”, and
a communications engineer would come with a very different idea, since for him
entropy would be “the average information transmitted or received in a series of
messages”.

The concept of entropy was introduced in thermodynamics in 1864 by Rudolf
(1822–1888) as a quantity relating to a thermodynamic system that does not vary in
a reversible cyclic process, but always increases in every irreversible process, being
a function of the state of the system.

In 1872, Ludwig Boltzmann (1844–1906), in his work on the kinetic theory of
gases, started out by assuming the molecular structure of matter and then applied
the laws of classical mechanics and the methods of probability theory to give a
statistical interpretation of entropy. Through his famous H theorem, he introduced
a microscopic interpretation of macroscopic irreversibility. In essence, the function
H defined by Boltzmann was identifiable as the negative of the entropy of Clausius,
i.e., H = −S.

Thus, the concept of entropy, subtle from a thermodynamic point of view, acquired
a new life in the theory of Boltzmann. One would expect that, after Boltzmann’s
work, the understanding of the thermodynamic properties of matter would be clearer
in the minds of his scientific contemporaries, but very frequently new ideas are
not widely accepted without resistance, and Boltzmann’s work on the molecular
kinetic theory came under heavy attack by some of his contemporaries, like the
outstanding physicists ErnstMach (1838–1916) andWilhelmOstwald (1853–1932).
They objected to the atomic–molecular theory and argued that a physical theory
should deal only with macroscopically observable quantities, whence the concept of
atoms should be rejected.

In 1898, Boltzmann wrote: “I am conscious of being only an individual struggling
weakly against the streamof time.” Subject to increasing depressions, aggravated also
by an apparent loss of memory, Boltzmann committed suicide in 1906.
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The statistical entropy introduced by Boltzmann served as a basis for later devel-
opments of this concept within the framework of statistical physics, and it must be
said that, following the invention of quantum mechanics, it fitted the new quantum
formalism admirably.

In 1948, Claude Shannon (1916–2001), when studying the transmission of infor-
mation through a channel in the presence of noise, introduced a quantity which, in
line with Boltzmann’s ideas, formally reproduced the expression for the entropy in
statistical mechanics.

Shannon planned to baptize this new quantity with the name information, but as
this word was already widely used, he preferred uncertainty. However, John von
Neumann (1903–1957) suggested to Shannon to use the name entropy:

You must call it entropy for two reasons: In the first place, your uncertainty function has
already been introduced in statistical mechanics with the denomination of entropy, so that
it has already such a name; in the second place, and even more importantly, nobody knows
what the entropy actually is, so in a debate you always will have the advantage.

Some time later, Léon Brillouin (1889–1969) found the relation between Shannon’s
entropy and the entropy of Clausius and Boltzmann. He thus contributed to clarifying
an old andwidely discussed problem that dated from the previous century: the famous
paradox of Maxwell’s Demon.

2.1 Thermodynamic Approach

Let us see some useful definitions. In any system one can define macroscopic
parameters which characterize it, such as the pressure, density, volume, etc. Those
determined by the positions of bodies external to the system are called external
parameters. These include the volume, or magnetic, electric, or gravitational fields
created by external sources. Those depending on the spatial distribution or themotion
of the particles making up the system are called internal parameters. These include
the density, pressure, magnetization, etc.

The set of independentmacroscopic parameters determines the state of the system,
and the quantities which, independently of the previous history of the system, are
determined by the state of the system at a given instant are called state parameters.
If the state parameters are constant in time and there are no stationary currents
whatsoever owing to the action of external sources, then the system is said to be in a
state of thermodynamic equilibrium. Thermodynamic parameters are defined to be
those that characterize a system in thermodynamic equilibrium.

If the thermodynamic parameters are independent of mass or the number of parti-
cles, they are called intensive parameters (for instance, pressure, temperature, etc.);
those proportional to the mass and the number of particles are said to be additive or
extensive parameters (for instance, volume, energy, entropy, etc.).

A system is said to be isolated if it does not exchange energyormatterwith external
bodies. Then a principle is usually postulated which establishes that, in the course
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of time, an isolated system always reaches a state of thermodynamical equilibrium
and can never depart spontaneously from it. (This principle is not considered to be
valid for the Universe as a whole.)

Another principle (sometimes called the zeroth principle), establishes the exis-
tence of temperature as a parameter characterizing the state of thermodynamic equi-
librium of a system, by the reason that the temperature is the same for all its sub-
systems. Suppose that two bodies A and B in thermodynamic equilibrium are put in
thermal contact (they can exchange energy without changing the external parame-
ters). Then there are two possibilities: either they remain the same without changing
their thermodynamic states, or some alterations are produced in their equilibrium
states, leading finally to a new state of equilibrium. Then it is said that, the temper-
ature was the same between the two bodies in the first case, and that it was different
in the second. Moreover, by transitivity, if two systems are in thermal equilibrium
with a third system, then they are in thermal equilibrium with each other.

Thermodynamics is then based on three laws which we now state.

2.1.1 First Law of Thermodynamics

This law establishes the conservation of energy in thermodynamic systems. It states
that every increase in the internal energy of a system is produced in one of two ways
(or both): (a) by means of work performed on the system and/or (b) by means of heat
absorbed by it.

In order to give or take work from a system, its external parameters, such as the
volume or applied external electric or magnetic fields, must be varied. In order to
give or take heat from a body, thermal contact must be established with another body,
without necessarily varying its external parameters.

The first principle of thermodynamics is expressed by the relation:

dU = δQ + δW, (2.1)

where dU is the infinitesimal variation of the internal energy and δQ and δW are
respectively infinitesimal increments of heat and work given to the system.

Thedifferent notation for the increments is due to the fact thatdU ismathematically
an exact differential. Thermodynamically speaking, this means that the internal
energy U is a function of the specific conditions of the thermodynamic state at a
given instant and is independent of the history of the system.

On the other hand, it does not make sense to ask how much heat or how much
work a system has under given conditions. Heat and work are actually forms of
energy exchange between a body and its environment, and δQ and δW are not exact
differentials: they depend on the history of the body, that is, on the previous states
of the body.
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2.1.2 Second Law of Thermodynamics

The second law deals with an asymmetry of the transformation of heat into work and
vice versa. In contrast to the work performed on a system, which may be transformed
directly into other forms of energy (electric, elastic, potential in the presence of a
field), heat is transferred only to increase the internal energy of a system, unless it is
first converted into work.

A system that converts heat into work is shown in Fig. 2.1. The subsystem M
subtracts heat from a source A at temperature T and transfers work W to a receiver
B, in such a way that M performs a cyclic process, that is, M starts from an initial
state and returns to it at the end, after subtracting the heat Q and transferring the
work W . This can only happen if M delivers a part Q′ of the absorbed heat Q to a
thermal system C whose temperature is T ′ < T . In other words,

W = Q − Q′, (2.2)

where Q′ is referred to as the compensation heat. Then one can state that it is impos-
sible to transform heat into work in a cyclic process without compensation. Having
two sources at different temperatures T > T ′ is a necessary condition.

This leads to the idea of an irreversible process as a transition from a state A to
another state B such that the reverse process B → A involves the transformation
of heat into work without compensation. Since the latter is forbidden, such reverse
processes are not found in Nature, although we will see later that, from the statistical
point of view it would be more exact to say that such reverse processes have an
extraordinarily small probability of occurrence.

In contrast, a reversible process would be one whose reverse does not involve
the transformation of heat into work without compensation. Actually, reversible
processes occur in Nature only approximately. The principle previously stated can be
included in the formulation of the second law of thermodynamics, which establishes

Fig. 2.1 Outline of a heat
engine. One must have
T > T ′.
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the impossibility of completely converting some amount of heat into work by means
of a cyclic process by extracting it from a source of heat at uniform temperature.
The process requires two sources at different temperatures, and a transfer of heat of
compensation from the hot one to the cold one.

But one could also formulate the second law by establishing the existence of a new
function of state, the entropy, which increases to reach a maximum in any isolated
system. The entropy variation in an infinitesimal process in which a certain amount
of heat δQ is absorbed at an absolute temperature T is given by

dS ≥ δQ

T
, (2.3)

where the equality sign is valid if the process is quasi-static, and the strict inequality
sign is valid if it is non-static. (A quasi-static process occurs so slowly that the
system can be considered to be in equilibrium at each instant. Otherwise it is said to
be non-static.)

When we speak about absolute temperature, we refer to the Kelvin scale of tem-
perature, established by William Thomson, Lord Kelvin (1824–1907), which can be
justified on thermodynamic grounds, and whose zero is at −273.15 ◦C. Then the
absolute temperature is equal to the temperature in centigrade increased by 273.15.

2.1.3 Third Law of Thermodynamics

Finally, we state the third law of thermodynamics, which establishes that, if the
absolute temperature of a system tends to zero, its entropy has a minimum value,
which can be zero. (Actually, zero entropy cannot be attained in practice, since this
is the entropy of the ideal crystal which is an abstract model.) As a consequence of
the third law, it can be demonstrated that the absolute zero of temperature cannot be
reached.

2.1.4 Thermodynamic Potentials

In addition to the internal energyU and the entropy S, there are some other quantities
which are functions of the thermodynamical state. Among these are the thermody-
namic potentials.

The internal energyU is a thermodynamic potential. It is a function of the entropy
and volume, U = U (S, V ). As δQ = TdS and δW = −pdV , we have

dU = TdS − pdV .

Other thermodynamic potentials are:
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• The Helmholtz free energy,
F = U − T S.

It is a function of the temperature and the volume, F = F(T, V ), such that dF =
−SdT − pdV . The work done on a body in an isothermal irreversible process is
equal to the change in its free energy.

• The enthalpy or heat function,

H = U + pV .

The quantity of heat gained by a body in processes occurring at constant pressure
is equal to the change in the heat function. The enthalpy H is a function of the
entropy and the pressure, H = H(S, p) and we have dH = TdS + Vdp.

• The Gibbs free energy (sometimes called free enthalpy, especially in chemistry),
thus called in honour of Josiah Willard Gibbs (1839–1903),

G = U − T S + pV .

This is a thermodynamic function G = G(T, p) of the temperature and the pres-
sure, and dG = −SdT + Vdp. If there are other external parameters, say, a mag-
netic field B, the conjugated internal parameter is the magnetic moment of the
system M, and G will also depend on that, i.e., G = G(T, p, M). Then one has
dG = −SdT + Vdp + B · dM.

These quantities are called thermodynamic potentials because they reach their
extrema in the state of thermodynamical equilibrium.This is similarwith themechan-
ical equilibrium, which is achieved for extremum values of the potential energy.

2.2 Statistical Approach

First, we must point out that any macroscopic body is composed of an enormous
number of molecules, atoms, or ions. In fact, one mole of any gas contains 6.023 ×
1023 molecules. This gigantic quantity is known as Avogadro’s number, in honour of
the Italian physicist Amedeo Avogadro (1776–1856). Secondly, we must recall that
the dimensions of the molecules in simple gases are of the order of one angstrom
(1 Å = 10−8 cm).

For the following discussion, we consider as a model a box that contains a gas
made up of the same kind of molecules (e.g., O2 or N2). We say that the gas is ideal if
the molecules interact weakly among themselves and with the walls of the box. (The
meaning of ‘weakly’ is relative here.) We assume further that the gas has low density
and that the mean free path, or average distance traveled by a molecule between two
collisions, is large as compared with the sizes of the molecules.
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Fig. 2.2 The molecules are
distributed approximately
uniformly in the two halves
of the box, but the numbers n
and n′ fluctuate continually.

State of Equilibrium and Fluctuations. For further simplification, we assume that
our gas is isolated, whichmeans that the external world does not influence themotion
of themolecules. This gas is a system in thermodynamic equilibriumwhen its macro-
scopic properties (pressure, density) do not vary in time. Otherwise the system is in
a non-equilibrium state.

More rigorously, it would be better to say that, in equilibrium, the average values
of these quantities donot vary in time, because precisemeasurementswould show that
all these quantities do actually fluctuate due to the chaotic motions of the molecules.
For instance, if there is a total of N molecules inside the box, and if we assume our
box is divided into two equal parts by an imaginary wall or partition, wemight expect
there to be N/2 molecules in each half. However, what we would actually find is
that, if n and n′ are the numbers of molecules in each half box, these numbers will
change in time, fluctuating continually around the value N/2, but always satisfying
the obvious condition (see Fig. 2.2):

n + n′ = N . (2.4)

A simple example serves to illustrate these ideas. Assume that there are N = 4
molecules in the box. Actually, when we consider a small number of molecules, it
has nomeaning to speak about a thermodynamic system, equilibrium, etc. The reader
should accept these examples only as oversimplified models to help understand the
behaviour of the system when the number of particles is increased. Let us see in how
many ways the four molecules can be distributed in the two halves, and evaluate the
corresponding probabilities.

Let us count the molecules from one to four and construct Table 2.1 with the
various possibilities. We indicate with an R the fact that a molecule is on the right,
and with an L that it is on the left. That is, for four molecules there are two situations
in which all of them are concentrated in one of the two halves of the box, eight
situations in which there are three in one half and one in the other, and six in which
they are distributed symmetrically.

It is easy to see that the numbers of distributions ofmolecules in the box is obtained
from the binomial coefficients (combinations). The possible situations for N = 6 and
N = 8 are shown in Tables 2.2 and 2.3.
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Table 2.1 Counting possible distributions of four molecules in a box with partition.

Molecules Possible distributions

1 2 3 4 n n′ Total

R R R R 4 0 1

R R R L

R R L R

R L R R 3 1 4

L R R R

R R L L

R L R L

R L L R

L R L R 2 2 6

L R R L

L L R R

R L L L

L R L L

L L R L 1 3 4

L L L R

L L L L 0 4 1

Total 16

Table 2.2 Counting possible distributions of six molecules in a box with partition.

N = 6

Possible distributions

n n′ Total

6 0 1

5 1 6

4 2 15

3 3 20

2 4 15

1 5 6

0 6 1

Total 64

From these tables, one can see that, as N increases:

1. The situations in which all the molecules accumulate in one half of the box
are less frequent. The relative frequencies, or equivalently, the probabilities are,
respectively, for N = 4, 6, 8: 1/8, 1/32, 1/128, . . .

2. The cases for which the molecules distribute symmetrically are also less frequent.
The probabilities are, respectively: 3/8, 5/16, 35/128, …; however, the probabili-
ties of situations in which the numbers of molecules in both halves are the same
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Table 2.3 Counting possible distributions of eight molecules in a box with partition.

N = 8

Possible distributions

n n′ Total

8 0 1

7 1 8

6 2 28

5 3 56

4 4 70

3 5 56

2 6 28

1 7 8

0 8 1

Total 256

or differ relatively little from the average N/2 increases with increasing N . Thus,
for example, for N = 4, we have:

• 6 cases of symmetric distribution,
• 8 cases in which n or n′ differ from N/2 (2 molecules) by N/4 (1 molecule),
• Total 14 cases.

To this group of 14 cases, there corresponds a probability of 14/16 = 0.875. But
for N = 8, we find that there are:

• 70 situations with symmetric distribution,
• 112 situations in which n or n′ differ from N/2 by less than N/4 (2 molecules),
• 56 situations in which n or n′ differ from N/2 (4 molecules) by N/4 (2
molecules),

• Total 238 cases.

The probability of occurrence of one of these 238 cases is: 238/256 = 0.930.

If similar calculations are carried out for N = 12, we obtain a probability of
987/1024 = 0.964. It can be shown that, as N increases, the quantity q increases
according to

n − N/2

N
= 1/2q , q = 1, 2, 3 . . . , (2.5)

making the relative fluctuations smaller and smaller.
For N extremely large, we have

(
n − N

2

)
/N ≈ N−1/2. (2.6)
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This means that the number n will fluctuate closely around N/2. Thus, if N is of the
order of 1018 molecules, the fluctuations in n are of the order 109 molecules, and the
relative quotient is

109/1018 = 10−9. (2.7)

In our previous analysis, we calculated the probability as the quotient of the number
of favourable cases divided by the total number of possible cases. But one could
proceed directly, using the elementary methods of probability theory.

Actually, if the probability of finding a molecule on the right is p, while on the
left it is q, and if V is the volume of the box, we have (since p + q = 1)

p = (V/2)

V
= 1

2
= q. (2.8)

Then, according to the binomial theorem, the probability of having n molecules on
the right and n′ on the left is

Pn,n′ = N !
n!(N − n)! p

nqN−n . (2.9)

In particular, the probability that they all accumulate on the right is

PN ,0 = 2−N . (2.10)

For N = 100, PN ,0 ∼ 10−30. To get an idea of how unbelievably small this number
is, we introduce the hypothesis that each of our molecular situations has a duration of
10−7 s. The accumulation of all the molecules on one side would occur, on average,
once every

1030 × 10−7 = 1023 s. (2.11)

There are 3.15 × 107 s in one year. This means that the order of magnitude of the
period of time between two such accumulations (recurrence) is 1015 years. The
calculated age of theUniverse is five orders ofmagnitude smaller, since it is estimated
to be of order 1010 years!

It must be emphasized that we have chosen a modest number of molecules for our
calculation. The reader may repeat the calculations for the case of 1 cm3 of nitrogen
gas under standard environmental conditions (temperature of 25 ◦C and pressure of
100kPa), in which case N = 2.5 × 1019 molecules. The number then obtained for
the probability according to (2.10) is considerably smaller. In fact, for all practical
purposes, it is zero.

Assume now that the gas is prepared as shown in Fig. 2.3, that is, all the molecules
are concentrated in the right half, while the left half is empty. Although these con-
ditions are impossible to achieve exactly in the laboratory, one could achieve a rea-
sonable approximation. If at a given instant the partition gate opens, both the right
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Fig. 2.3 a The molecules
are concentrated in the left
half. b After removal of the
partition, they are allowed to
move throughout the whole
volume. The probability that
they spontaneously return to
occupy only the left half
decreases exponentially with
the number of molecules.

a

b

Fig. 2.4 A sequence of
events whose probability of
occurrence is extraordinarily
small. It would be equal to
the probability of the reverse
of an irreversible process.
Those who seek the
perpetuum mobile have a
similar probability of
success.

and left volumes will become available to all the molecules, and in a short time the
gas will be distributed uniformly in the box, reaching equilibrium.

We have seen that the probability for the molecules to return spontaneously to
their original position is a number so extraordinarily small that, in order to observe
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that phenomenon, such a long interval of time would be required that the present
calculated age of the Universe could be neglected in comparison. A phenomenon or
process like the one in the previous example, where the probability of the reverse
process is negligibly small, is said to be irreversible (Fig. 2.4).

Themacroscopic world has the special feature that all the processes that occur in it
are irreversible; for instance, the conductionof heat and electric current, diffusion, etc.
In the systems accessible to human experience and observation, equilibrium is only
attained approximately in some cases, and then only for short intervals of time.

2.3 Entropy and Statistical Physics

To give a more exact description of the behaviour of a macroscopic system like the
ideal gas from our previous example, we need to know the probability of finding the
system in its available microscopic states under given conditions. The microscopic
states are quantum states and have to be characterized accordingly, in which case one
usually takes the energy as the fundamental quantity (and not the position, which
was the quantity used in the classical approach of our previous example). As a matter
of fact, in a more rigorous treatment of classical statistical mechanics, the energy is
also utilized as a fundamental quantity.

Thus, instead of characterizing the microscopic configuration of the system by
giving the number of molecules that have a given speed and position (within certain
intervals), a set of possible molecular states E1, E2, E3, . . . , Ep, . . . is specified. A
given energy corresponds to each state, and may be common to several states (in
this case, we say the that these states are degenerate with respect to the energy).
Then, a microscopic state of the system could be described by giving the number of
molecules in each molecular state, e.g., (2, 3, 0, . . . , 5, . . .).

A more detailed analysis of this problem would require us, among other things, to
consider the so-called property of indistinguishability attributed to identical particles
in the atomic and subatomic world. In addition, depending on the value of the spin
quantum number (or intrinsic angular momentum), which is either an integer or a
half-integer, particles manifest completely different properties, and they are said to
obey Bose–Einstein or Fermi–Dirac statistics, respectively.

Any number of particles of integer spin can be simultaneously in a given quantum
state, but for particles of half integer spin, each quantum state can be occupied by
one particle or none at all, in accordance with Pauli’s exclusion principle.

At high temperatures and low pressures the particles can be described by means
of the so-called Maxwell–Boltzmann statistics, which is almost equivalent to con-
sidering them as distinguishable, leading to a limiting case of the Bose–Einstein and
Fermi–Dirac statistics. We say almost, because some other factors must be intro-
duced which can be justified only within the framework of quantum theory. This is
because in classical statistics, based on amodel of distinguishable particles, the addi-
tivity of thermodynamic quantities like the entropymust be conserved. (For example,
under the same conditions, if the energy, the volume, and the number of particles is
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multiplied by some constant number, the resulting entropy is expected to be multi-
plied by the same number.) Otherwise, it leads to the famous Gibbs paradox, which
goes as follows: when the expression for the entropy is written in classical statistics,
for a system of N identical particles, it is necessary to divide by N !, which is the
number of permutations of the N particles, in order to satisfy the above-mentioned
property of additivity. But this factor N ! can be justified rigorously only within the
theory of identical particles in quantum mechanics (see Chap.6) and it has no place
in classical mechanics.

But let us return to our original purpose of introducing the concept of entropy
in quantum statistics. According to the different distributions of molecules in the
molecular states, or cells, there is an enormous number of possible microstates for
the system. To each of thesemicrostateswe could assign a probability Pi . The entropy
of the system is then defined by means of the expression

S = −k
∑
i

Pi ln Pi , (2.12)

where k is Boltzmann’s constant, which is approximately 1.38 × 10−16 erg/K. In
(2.12) the sum runs over all possiblemicrostates allowed to the systemand compatible
with the given macroscopic conditions. It can be shown that this expression can be
identified with the entropy as defined in thermodynamics.

When the system is in a specified state i with certainty (Pi = 1, Pk �=i = 0), it is
natural to assume that it hasmaximumorder orminimumdisorder. Such a casewould
occur in the absence of thermal motion, in other words, at zero absolute temperature.

Actually, it is impossible to isolate a system from all external influence, and
absolute zero is unattainable. One could, however, say that, if T is very near zero,
the system will tend to occupy just a few states close to one state called the ground
state, and as a consequence, S will tend to zero (because Pi = 1 and ln 1 = 0), which
justifies the third law of thermodynamics. As a matter of fact, in some cases there
are reasons to expect the entropy to tend to a constant value S0 when T tends to zero.

For an isolated system, equilibrium is reached when the system has equal prob-
ability of being found in each of its accessible states. If there are N allowed states,
the probability of finding the system in any one of them is 1/N . Then (2.12) leads to

S = −kN
1

N
ln

1

N
= k ln N , (2.13)

and the entropy is proportional to the logarithm of the number of accessible states.
Since the probability of finding the system in each of the N accessible states is

the same, one could say that the disorder of the system is maximum. Under such
conditions, the entropy is a maximum.

One could take the entropy as a measure of the disorder of the system. If there
were some states with probability greater than others, it is not difficult to see that the
entropy and the disorder would be lower than in equilibrium.

http://dx.doi.org/10.1007/978-3-662-62313-8_6
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As an example, let us choose a system with two accessible states, A and B. When
the probabilities of finding the system in these two states are equal (PA = PB = 1/2),
the entropy is given by

Se = k ln 2 = 0.693k. (2.14)

If the probabilities are not equal, for instance, PA = 1/4 and PB = 3/4, its entropy is

Sne = −k(1/4 ln 1/4 + 3/4 ln 3/4) = 0.612k. (2.15)

As a consequence,
Se > Sne. (2.16)

When the probabilities Pi are not equal and vary in time, it is possible to prove that the
entropy S defined in (2.12) also varies in time, but in such way that it never decreases
for an isolated system. This result is well known in statistical physics and goes by
the name of the Boltzmann H theorem. It was demonstrated by Ludwig Boltzmann
for a gas, starting from his famous kinetic equation, and it gives a microscopic model
for irreversibility, based on a probabilistic description of the system.

2.4 Temperature and Chemical Potential

The system in equilibrium we shall consider here is a gas in a box which has been
partitioned as in the discussion above. The total entropy S must be a maximum,
with the total energy E and the number of particles N being constant. We then
have: S = S1 + S2, E = E1 + E2, N = N1 + N2, where S1, E1, N2 and S2, E2, N2

are the entropy, energy, and number of particles of subsystems 1 and 2, respectively.
If there is an energy exchange between the subsystems 1 and 2, the relation δE1 +
δE2 = 0must be satisfied. Furthermore, since S reaches amaximum upon the energy
exchange, we can write

dS = ∂S1
∂E1

δE1 + ∂S2
∂E2

δE2 = 0. (2.17)

For constant energy, δE1 = −δE2, consequently

∂S1
∂E1

= ∂S2
∂E2

. (2.18)

The quantity ∂S/∂E = β = 1/T characterizes the equilibrium when there is an
energy exchange between two bodies, and T represents the common absolute tem-
perature of the two bodies.

Similarly, we can define the quantity ∂S/∂N = μ/T to characterize the equilib-
rium when there is an exchange of particles. The quantity μ is called the chemical
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potential. It can be shown that the chemical potential is the Gibbs free energy per
particle, μ = G/N .

In this case, the thermodynamic potentials contain an additional term dependent
on dN . We write

dF = −SdT − pdV + μdN , dG = −SdT + Vdp + μdN .

Note that, as V and S are extensive variables, we can write them as V = Nv and
S = Ns, where v and s are the volume and entropy per particle, respectively. We
then have

dG = N (−sdT + vdp) + μdN .

But as dμ = −sdT + vdp, we have dG = d(μN ), or G = μN .

2.5 Statistical Mechanics

When we think of a thermodynamic system like the one described above, it is impos-
sible to find a mechanical interpretation of its behaviour because it has such an
enormous number of degrees of freedom. Let us consider the case of an ideal gas
of N molecules. The system’s phase space has 3N coordinates and 3N momenta.
At each instant, the configuration of the gas can be represented by a point in phase
space. The point is continuously moving around and maps out all the available phase
space (Fig. 2.5).

For example, let us consider the simple case of an isolated “gas” with two
molecules of equal mass m and total energy E (see Fig. 2.6). Then, we can write

E = p21 + p22
2m

, (2.19)

[p]

[q]

P ΔΓs

Fig. 2.5 Schematic representation of phase space.Along the horizontal axiswe have the coordinates
(configuration space) and along the vertical axis, the momenta (momentum space). The region of
phase space allowed to the system is denoted by��S . The time evolution of the system is represented
by a point describing a curve inside��S . After a large enough time the curve passes at an arbitrarily
small distance of any point inside ��S . This is the content of the so-called ergodic hypothesis.
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Fig. 2.6 Two molecules of mass m move in one dimension along a line of length L with momenta
p1, p2 respectively. The allowed phase space is the product of the configuration space L2 by the
space of momenta, which is a circle bounded by the circumference p21 + p22 = 2mE .

where p21 = p21x + p21y + p21z and p22 = p22x + p22y + p22z . In otherwords, themomen-

tum space has six dimensions and the energy defines a hypersphere of radius
√
2mE .

As the energy is constant, this last requirement constrains the point representing the
system to move only on the hyperspherical surface in momentum subspace. The
six-dimensional coordinate space, or configuration space as it is usually called, is
determined by the volume. If we assume that the molecules are inside a cubic con-
tainer of side L , then as the molecules can move freely, the available space is the
whole volume of the container. Therefore, the total available volume for the two
molecules is represented by all the interior points of a six-dimensional box of side
L . The total phase space has twelve dimensions, and the system is represented by
a point whose projection in configuration space lies inside the six-dimensional box,
while its projection in momentum space lies on the hypersphere mentioned above.

For N molecules there is a similar situation with the corresponding generalization
in phase space. Let us assume an ideal gas of volume V , temperature T , and pressure
p. In this case, we can imagine a gigantic set made of an infinite number of similar
systems, all of them in the macroscopic state of the originally given system. In a
sense, this set describes our ignorance about the (microscopic) state of the given
system. Following Gibbs, we refer to this set as the ensemble representation of the
gas. The idea of an ensemble is as follows: consider the simple case of throwing a die,
and imagine that we wish to know the probability of getting a given face, for example
a 3. One way to find it out is to throw the die a large number of times and calculate
the probability over a long period of time (determined by the number of throws).
Alternatively, we can throw a large number of identical dice at the same time, and
calculate the probabilities on that set at any instant t . This set of dice would be the
ensemble of the original die. If instead of a die, we have a given physical system,
we can think of a huge number of imaginary copies of that system such that all the
copies replicate the macroscopic characteristics of the original system but differ in
the microscopic configuration compatible with the macroscopic one. In other words,
the components of the ensemble have the same characteristics regarding the external
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parameters (volume, applied fields, etc.) and internal parameters (pressure, temper-
ature, etc.) but differ in the microstates occupied at any given instant. We define
a phase space, given by a hypervolume with 3N dimensions in the coordinate or
configuration space, and by a region in momentum hyperspace with 3N dimensions.
This region in momentum space is defined by a series of spherical shells correspond-
ing to the different possible values of the energy. For a member of the ensemble of
given energy E , its representative point lies on the hypersurface of energy E .

As the ensemble has a large set of representative points, it also covers a very
large region in phase space. We thus define the density ρ = ρ(E) characterizing the
distribution of representative points in phase space.

2.5.1 Canonical Ensemble

Of particular importance is the canonical ensemble, which describes a system which
exchanges energywith a large “heat bath”, such that the temperature remains constant
in the process. The corresponding density is expressed as

ρ(p, q) = 1

Z
e−E/kT , (2.20)

where Z is a constant called partition function. The energy E = E(p, q) varies due
to the exchange with the other system at constant temperature. The mean energy U ,
that is, the average of E over the ensemble:

U = 1

Z

∫
Ee−E/kT d�S, (2.21)

is constant. In (2.21), the single integral symbol actually denotes a multiple integral
over all 6N degrees of freedom, and d�S = ∏

i dpidqi . The constant Z is defined
such that the integral of the density ρ(E) over all phase space is unity:

∫
e−E/kTd�S = Z . (2.22)

Then ρ can be interpreted as a probability density. In other words, ρd�S is the
probability of finding elements of an ensemble inside a region of phase space d�S .
The volume in phase space�S has dimensions of angularmomentum to the power 3N .
The integral in (2.21) can be written as an integral over the energy by performing
a coordinate transformation and replacing d�S = ∏

i dpidqi by the integral over
(d�S/dE)dE. Then W (E) = ρ(E)d�S/dE gives us the distribution of elements in
the ensemblewith energies between E and E + dE. Based on the reasoning presented
in this chapter, when N is large, the value of the energy does not vary appreciably
aroundU , andW (E) has a sharp maximum aroundU . From the mean value theorem
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of integral calculus, it can be shown that there is an energy interval �E around U
such that

W (U )�E = 1. (2.23)

This implies

1

Z
e−U/kT��S = 1, (2.24)

where ��S = (d�S/dE)�E is the phase space volume available to the ensemble
representing the system (Fig. 2.5) in the energy interval �E . It is proportional to the
number of quantum states in that interval of energy.

Equation (2.23) shows that for large N , the distribution of states with energy
around U is approximately constant, meaning that each of the possible microstates,
whose total number is ��S , is equally probable. Consequently, we can write the
entropy:

S = k ln��S. (2.25)

Using (2.24) and (2.25), we get

S = k ln Z + U

T
. (2.26)

From (2.26)weget F = U − T S,where F = −kT ln Z is theHelmholtz free energy.
Tracing back the expressions of Z andU in terms ofρ(E), i.e. using (2.21) and (2.22),
we re-write the entropy as

S = −k
1

N !
∫

ρ ln ρd�S. (2.27)

We must recall that the factor 1/N ! in the classical formula is required to guarantee
the additive property of the entropy, and it appears in this form only in the description
of systems whose particles do not interact among themselves (like the ideal gas). If
the particles interact, this factor is replaced by other expressions, sometimes very
complicated.

Let us illustrate the abovewith a simple example of an ideal gas. The total energy is

E = 1

2m

[
p21x + p21y + p21z + p22x + · · · + p2Nz

]
, (2.28)

and we wish to calculate the entropy using formula (2.27)
We can simplify the calculation by using the Gaussian integral

∫ ∞

−∞
e−ax2dx =

√
π

a
.
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From the normalization condition (2.22), we find that the integral becomes a product
of 6N integrals, of which 3N correspond to the coordinates. Upon integration, each
molecule contributes a factor V in configuration space, resulting in the end in an
overall factor V N . In momentum space we have 3N Gaussian integrals, with each
molecule contributing a factor (2πmkT )3/2, resulting in a total of (2πmkT )3N/2. To
guarantee the additivity property mentioned above, we must include the factor 1/N !.
In quantum mechanics, due to Heisenberg’s uncertainty relation, a particle in the
phase space is not described by one point, but by a cell of minimum volume (2π�)3.
This is due to the fact that we cannot in principle know with perfect accuracy both
the position, and the momentum of the microparticle (we shall elaborate more on this
issue in Chap.6). For our present purpose, in order to establish the correspondence
with the number of quantum mechanical states we have to divide d�S in (2.22) by
(2π�)3N . Thus,

V N

λ3N N ! = Z . (2.29)

The quantity λ = 2π�/(2πmkT )1/2 has the dimension of length and is called de
Broglie thermal wavelength. Let us estimate its value, for instance, for the hydro-
gen molecule of mass m ∼ 10−24 g. We recall that h = 2π� = 6.63 × 10−27 erg · s,
Boltzmann’s constant is equal to 1.38 × 10−16 erg/K, and consider the value of λ at
room temperature, i.e., T = 300 K. Substituting in these values, we find that

λ � 10−8cm = 1 Å. (2.30)

Another characteristic length for a gas is the average distance between molecules
d = (V/N )1/3. For an ideal gas with 3 × 1019 molecules per cm3, it is approximately
d = 30 Å. When d � λ, the gas behaves classically, as in the previous example.
Quantum properties arise when d � λ. This happens if T is taken to be 100 times
smaller, for instance T = 1–3 K. At such low temperatures dilute gases may exhibit
Bose–Einstein condensation, while more dense matter may display superfluidity or
superconductivity (see Chaps. 3 and 8).

The average energy U can be found using the second Gaussian integral,

∫ ∞

−∞
x2e−ax2dx = 1

2

√
π

a3
. (2.31)

From (2.21) and (2.29), we get the contribution of N integrals (3kT/2 for each).
Finally, we obtain

U = 3

2
NkT (2.32)

as the caloric equation of state for the ideal gas.
If we divide U by 3N , we get an average energy of kT/2 per degree of free-

dom. Actually, this average energy corresponds to each coordinate or momentum
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component contributing a quadratic term to the total energy of the system, and it is
named the theorem of equipartition of energy, valid for classical thermodynamics.
In the quantum regime it is not valid.

Let us introduce the heat capacity at constant volume as a thermodynamical
quantity which measures the change of internal energy with regard to temperature.
From (2.32), for the ideal gas, it has the expression CV = ∂U

∂T = 3
2Nk. The internal

energy and the heat capacity are proportional to mass, and U and CV are assumed
implicitly to refer to some amount of mass. It is called specific heat the heat capacity
per unit mass, using the same symbol CV . If we use as unit of mass the mass of
one mole (the molecular weight expressed in grams), which contains NA molecules,
where NA isAvogadro’s number,we denote the specific heat byCv .We call kNA = R.

We must emphasize that the model of a gas as a set of free point-like molecules
is too restrictive, and in most real gases extra degrees of freedom must be introduced
since they play a significant role. Thus, for air in normal conditions of pressure and
temperature, Cv = 5

2 R, which is due to the fact that air is composed of diatomic
molecules, having 5 degrees of freedom (the kinetic energy of rotation of molecules
contributes also to the specific heat).

For simple atomic solids, there are three extra oscillatory degrees of freedom,
leading at room temperature to Cv = 3R, which is the so-called Dulong–Petit law,
due to Pierre L. Dulong (1785–1838) and Alexis T. Petit (1791–1820). At low tem-
peratures, quantum phenomena play a fundamental role, and for solids, as T → 0,
Cv → 0 proportionally to T 3.

Let us discuss in more detail the integration procedure in phase space and the
probability density as a function of energy. To this end, let us consider first a problem
of N -dimensional geometry. We want to show that in a sphere with an arbitrary
number of dimensions N , most of the volume tends to concentrate in a surface layer
with decreasing thickness (in fact, approaching zero as N increases!). The volume of
a sphere in N dimensions can be expressed in general as VN = KN RN , where R is the
radius and KN = π N/2/�(N/2 + 1), where for N an integer, the Gamma function
is defined as �(N ) = (N − 1)!. Let us consider the volume of the spherical shell
Vc = KN RN − KN (x R)N , where x is close to but strictly less than 1, i.e., x < 1.
The relative volume is

Vc

VN
= KN RN − KN (x R)N

KN RN
= 1 − xN . (2.33)

Assuming x = 0.9 and taking N = 32, we get xN < 0.04. For N of the order of
1023, we can take x extremely close to 1, and still get xN ∼ 0.

Let us come back to our problem above. For a given value of the energy E , the
expression (2.28) defines a hypersphere of radius (2mE)1/2 in the momentum space
with 3N dimensions. Integratingwith the help of hyperspherical coordinates,we have
3N − 1 angles and one radial coordinate. The 3N − 1 angles can be integrated to
give a constant C3N = (2π)3N/2/�(3N/2), where for large N , 3N/2 can always be
approximated by an integer. The radial coordinate contribution is a factor E

3N
2 −1dE.

For example, in two-dimensional polar coordinates, there is a polar angle θ and
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the radial coordinate r . The latter contributes the factor rdr , while C2 = 2π . In
spherical coordinates, the polar angle θ and the azimuthal angle ϕ contribute the
factor C3 = 4π , while the radial part is r2dr (in 3N dimensions the radial part

is r3N−1dr ). Then d�s
dE = DC3N E

3N
2 −1, where D = 1

N !
(

(2m)3/2V
(2π�)3

)N
. The probability

density as a function of energy is

W (E) = C ′
3N E

3N
2 −1e−E/kT , (2.34)

where C ′
3N = C3N D/Z . The maximum of W (E) is at the point

Emax =
(
3N

2
− 1

)
kT . (2.35)

As N increases, the difference between the mean value of the energy given by (2.32)
and the maximum energy can be neglected.

To study the behaviour ofW (E) around Emax, let E = xEmax. We shall study the
relative distribution

WN (E)

WN (Emax)
= fN (x), (2.36)

where fN (x) = x
3
2 N−1e−( 3

2 N−1)(x−1). The function fN (x) vanishes for both small and
large values of x , and it has a maximum at x = 1. This maximum becomes sharper
as N increases, as shown in Fig. 2.7. This is expected, considering the behaviour of
the volume of a hypersphere as N increases, as mentioned above.

Let us obtain expressions for ��S and �E . We can proceed from (2.24) and
neglect unity as compared to 3N/2, whence

λ3N

V N
N !e−3N/2��S = 1. (2.37)

Using Stirling’s formula, ln N ! � N ln N − N , we can write the entropy of the ideal
gas as S = k ln��S , which yields

Fig. 2.7 The function fN (x)
has a peak that becomes
sharper as N increases. This
means that the probability of
values different values from
Emax decreases with
increasing N .
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S = 3

2
Nk(1 − ln λ2) + kN ln

eV

N
. (2.38)

From (2.23), by taking the average energy to be U = (
3N
2 − 1

)
kT and neglecting

unity subtracted from 3N/2 once again, we obtain with the help of (2.29) and (2.34),

2e−3N/2(3N/2)3N/2�E

�(3N/2)kT
= 1. (2.39)

Using Stirling’s formula, N ! ∼ (
N
e

)N 1√
2πN

, we have

�E = kT
(3N/2)!e3N/2

2(3N/2)3N/2
� kT

N 1/2
. (2.40)

In other words, the energy curve width is �E � kT
N 1/2 and, as shown below, �E/kT

is of the order of magnitude of the relative energy fluctuations �U/U (where
�U = √〈(E −U )2〉 = √〈E2〉 −U 2). The last result is understood better if we
assume the system as composed by N subsystems. In particular, each subsystem
can be a molecule. The subsystems are considered as independent from the sta-
tistical point of view, and we use the labels i, j, m for denoting them, where
i, j, m = 1, 2, . . . , N . Notice that, due to the statistical independence, the energy
of a molecule minus its mean energy, Ei −Ui = δEi , is independent of the same
quantity for other molecules, E j −Uj = δE j . If we fix one of them, say δEi , and
multiply by all the possible positive and negative values of the other, δE j , for each
positive product δEiδE j there will exist a negative one, −δEiδE j , and the sum
of all of them is zero. Thus, we may state that 〈δEiδE j 〉 = 0 for i �= j . However,
〈δE2

i 〉 > 0.
We have

〈(E −U )2〉 =
〈∑

i j

(Ei −Ui )(E j −Uj )

〉

=
〈∑

i

(E2
i − 2EiUi +U 2

i )

〉

= N (〈E2
m −U 2

m)〉.

Thus,�U/U = √
(〈E2

m〉 −U 2
m)/N 1/2Um , sinceU = NUm . It can be shownbyusing

theMaxwell distribution below, for instance, that E2
m = 15k2T 2/4 andUm = 3kT/2

are respectively the average square energy and mean energy per molecule. Thus,
�U/U = √

2/3N−1/2. For 1 cm3 of an ideal gas at room temperature T ∼ 300 K,
N ∼ 1019, we have �E ∼ 10−23 erg, which is 1017 times smaller than the electron
rest energy.
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As we have seen, the ideal gas is an excellent example from which we may learn
about many thermodynamical facts. For it is valid the so-called equation of state. For
an ideal gas in equilibrium, if p is its pressure, V is its volume, N the number of
molecules and T its temperature, the equation of state is

pV = NkT .

However, for real gaseswemust take into account the interactions betweenmolecules,
and the fact that they have actually a finite volume. This would lead to more exact
equations of state, for example,

(
p + a

V 2

)
(V − b) = NkT,

where the quantity a accounts for the molecular cohesive forces, and b is due to
the molecular volume. This equation bears the name of Johannes van der Waals
(1837–1923).

2.5.2 Maxwell Distribution

If the system under study is onemolecule in equilibrium with the rest of the system,
the energy is now E = (p2x + p2y + p2z )/2m, and the volume element in phase space
is d�S = dpxdpydpzdxdydz. The probability of finding the representative point of
the system in this element of volume d�S is

ρd�S = e−E/kT d�S∫
e−E/kT d�S

. (2.41)

From this we get the density

ρ(p, r) =
(

1

2πmkT

)3/2 1

V
e− E

kT . (2.42)

The mean energy per molecule is

u =
∫

E ρ(E)d�S = 3kT

2
, (2.43)

and for N molecules, this yields U = Nu = 3NkT
2 .

If we wish to express the probability in terms of the modulus of the velocity

v =
√
p2x + p2y + p2z /m, we find the probability density
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Fig. 2.8 The Maxwell
velocity distribution.

p( )

0
mp= 2kT/m

p(v) =
( m

2πkT

)3/2
4πv2e−mv2/2kT , (2.44)

which is represented in Fig. 2.8. The maximum of p(v) gives the most probable
velocity as

vmp = √
2kT/m,

whereas the root mean square (RMS) velocity is

vRMS =
√

v̄2 =
(∫ ∞

0
v2 p(v) dv

)1/2

= √
3kT/m.

The various characteristic velocities of molecules grow with temperature. To get
an idea about orders ofmagnitude, for nitrogen (N2) at room temperature T = 300K,
with the mass of one molecule about 5 · 10−23 g, one finds vRMS ≈ 500 m/s, which
is of the order of the sound speed in the gas.

2.5.3 Grand Canonical Ensemble

Ifwe assume that the systemunder study also exchanges particleswith a large system,
we must use the so-called grand canonical ensemble, whose density is:

ρ(p, q) = 1

Z e−(E−μN )/kT . (2.45)

where μ is the chemical potential and Z = ∑∞
N=0 e

μN/kT Z(N ) is named grand
partition function. Here, Z(N ) is the partition function for a system of N particles.
Usually � = −kT lnZ is called the grand potential, thermodynamically defined as
� = U − T S − μN . In the case of the grand canonical ensemble, the mean number
of particles is constant. The mean energy U , which is the average of E over the
ensemble, is now
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U = 1

Z
∑
N j

1

N j !
∫

Ee−(E−μN j )/kT d�S, (2.46)

where we sum over the number of particles N j , which varies in the different systems
of the ensemble. The grand canonical ensemble is particularly important in the study
of the Fermi–Dirac andBose–Einstein distributions, whichwe shall obtain in Chap. 8
by using a different method.

2.6 Entropy and Information

For a source which is able to send N messages or symbols with the probabilities
P1, . . . , PN , ClaudeShannonhad the idea of introducing ameasure of the information
gained (or lost through uncertainty) when one of the messages is received, by the
function he called entropy. We represent this function by the symbol I , because it
corresponds to the function that we now call information:

I = −k
N∑
i=1

Pi ln Pi , (2.47)

where k is an arbitrary constant,whichmaybe theBoltzmann constant or ln 2 depend-
ing on the units used to measure the entropy (either thermodynamic units or bits).

If the N messages are equally probable, Pi = 1/N and one can write

I = k ln N . (2.48)

This formula allows us to understand the notion of information as a lack of uncer-
tainty, when we consider the occurrence of a certain number of possible events,
whether or not they are messages.

Initially there is no information, I = 0, and the uncertainty is large, depending
on N . That is, the larger N , the larger the number of possible alternatives. When
receiving a message or event, the information is I = k ln N . This quantity could be
interpreted as a measure of the decrease in uncertainty with respect to the initial
conditions after choosing one message or event out of N possibilities.

If the final situation does not lead to the knowledge of one specific event, but to
some set of them NI , which implies the reduction of the possible outcomes from N
to NI < N , the information gained or uncertainty lost is I = k ln N/NI .

John von Neumann made the observation that Shannon’s ideas, were rooted in
the assertion made by Boltzmann in 1894, that the entropy is related to information
loss, since it is determined by the number of possible alternatives of microstates
allowed to a physical system after all the macroscopic observable information about
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such a system has been obtained. But the relation between Shannon’s entropy or
information, and the entropy in statistical physics or thermodynamics was clarified
by Léon Brillouin, in a way we discuss below.

Assume a physical system is in an initial state with N0 equally probable available
states such its information and its entropy are, respectively,

I0 = 0, S0 = k ln N0.

If now we get information from the system, e.g., by reducing the number of available
states to NI , the obtained information and the entropy are:

II = k ln N0 − k ln NI , SI = k ln NI .

If the states available to the system are not equally probable (which occurs,
for example, if the system is in equilibrium with a thermal bath at constant
temperature T ), its initial entropy is

S0 = −k
∑

Pi ln Pi . (2.49)

After getting information about the system, the probability of the accessible states
changes to q1, q2, q3, . . ., whence the information obtained is

Ii = −k
∑

Pi ln Pi + k
∑

qi ln qi , (2.50)

and its final entropy is

S f = −k
∑

qi ln qi . (2.51)

In any event, it follows that the information obtained is equal to the decrease in
entropy

Ii = S0 − S f , (2.52)

or

S f = S0 − Ii . (2.53)

In other words, any increase in information we have from a given system, starting
from a given state, implies a decrease in its entropy.

For example, for a gas that contains N molecules, it can be shown that its entropy
depends on its volume V according to the expression

S0 = kN ln V + S(T ), (2.54)
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where S(T ) is a function of the temperature T . If T is fixed and the volume is reduced
by one half, its entropy becomes

S f = kN ln V/2 + S(T ). (2.55)

The decrease in entropy is

S0 − S f = kN ln 2. (2.56)

It is immediately clear that, by reducing the volume by one half, more information
(or less uncertainty) is obtained about the position of themolecules. This information
can be readily measured assuming once again that the molecules are allowed to be
in either of the two halves in 2N different ways.

Knowing that all the molecules are accumulated in one of the two halves, the
occurrence of one of the 2N possible situations gives then

II = k ln 2N = kN ln 2. (2.57)

2.7 Maxwell’s Demon and Perpetuum Mobile

At the end of his book Theory of Heat, published in 1871, Maxwell wrote that, if
there were a creature or demon within a box containing air (for example, the box
divided in two portions A and B by a partition with a small hole and a gate), and if
the demon had the ability to see the molecules, then by opening and closing the gate
he could allow the slowest molecules to pass from B to A and the fastest from A
to B (Fig. 2.9). This would raise the temperature in B and decrease it in A, without
expending any work, in contradiction with the second law of thermodynamics.

Fig. 2.9 Maxwell’s demon.
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Fig. 2.10 Trajectory of a
Brownian particle.

This is the paradox ofMaxwell’s demon, considered as a mechanical or electronic
system, capable of bringing about some specific increase in order by selecting from
several possible options based on some previously obtained information. It attracted
the attention of several generations of physicists and mathematicians, among whom
one must mention in particular the names of Marian Smoluchowski (1872–1917),
Leó Szilárd (1898–1964), Norbert Wiener (1894–1964), John Clarke Slater (1900–
1976), and Léon Brillouin (1889–1969).

The latter gave the following solution for the paradox: since the system is assumed
to be in equilibrium, black body radiation is present inside the gas. This makes it
impossible to distinguish any object distributed isotropically inside the box. Then,
in order to be able to see a molecule, the demon needs to illuminate it with radiation
at a temperature higher than that of the gas. The demon is informed about the speed
of the molecule and opens or closes the gate accordingly. In the process, there is a
decrease in the entropy of the gas, but the radiation at higher temperature, after being
absorbed by the eye of the demon (a photodetector), at lower temperature, increases
its entropy. The net result is not a decrease but an increase in the entropy of the
system as a whole (gas + radiation + demon).

We see that Maxwell’s demon cannot achieve its objective of creating a difference
of temperatures in the two halves of the box, that would permit the operation of a
thermal motor, starting from a system in equilibrium. But it is possible to conceive
of other systems which, not operating exactly at the molecular level, would take
advantage of fluctuations. As we have seen, such fluctuations are a consequence of
the thermal motion of the molecules.

For instance, if we observe grains of pollen suspended in water with a powerful
microscope, they are seen to describe chaotic trajectories. This is called Brownian
motion (Fig. 2.10), after its discoverer, the botanist Robert Brown (1773–1858), and
it is due to the collisions of the water molecules with the suspended particles.
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The Brownian particle is bigger than the molecules. Thus, at each time t , it suffers
a large number of random collisions, leading to some average velocity, but moving in
a random direction. If the velocity of the particle is denoted by v = ṙ, where r is the
position vector with regard to some coordinate system, the dynamical description of
its motion is given by the so-called Langevin equation, in honour of Paul Langevin
(1872–1946):

v̇ = −γ v + A(t), (2.58)

where the first term at the right is the friction force per unit mass and γ is a con-
stant. The quantity A(t) is the random force (also per unit mass) whose average, in
magnitude and direction, is zero. Equation (2.58) is a stochastic equation. In contrast
to the dynamical systems discussed in Chap.1, which had well-defined trajectories,
here the random nature of the force acting on some mass m leads to a stochastic
motion (random variables are used to describe stochastic processes). For instance,
one can only predict the average squared distance. For long periods of time, one finds
〈r2〉 = 6kT t/mγ .

Diffusion describes the spread of particles by means of random motion (like
Brownian motion). A typical example is found in the spread of droplets of ink in
water. Particles move stochastically from regions of higher density to regions of
lower density. If the density of particles is n(r, t), it obeys the diffusion equation:

∂n

∂t
= D∇2n, (2.59)

where ∇2 = ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2 (in one dimension it can be taken simply
as ∇2 = ∂2/∂x2) and D is the diffusion coefficient.

The solution of (2.59) is

n(r, t) = 1√
4πDt

e− r2

4Dt , (2.60)

which is a Gaussian describing the spread of particles in space as time goes by. With
this distribution, we find the average of the squared distance as

〈r2〉 =
∫

r2n(r, t)dr = 6Dt. (2.61)

Since (2.58) and (2.59) describe the same process, we obtain the diffusion coefficient
as D = kT/mγ .

Brownian motion and other stochastic processes can be described by path inte-
grals, which are multiple integrals defined over an infinite number of variables.
However, this goes beyond the scope of the present book.

Similarly to Brownian motion, in a highly sensitive mirror galvanometer in the
absence of a current, the position of the reflected ray oscillates on the scale because
the plane of the mirror also oscillates chaotically as a consequence of molecular
collisions, and this leads to fluctuating pressure (Fig. 2.11).
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Fig. 2.11 Brownian motion
in a mirror galvanometer.

Fig. 2.12 The
Smoluchowski–Feynman
motor.

Consider now the mechanical rectifier depicted in Fig. 2.12, as suggested by
Marian Smoluchowski and Richard Feynman. It consists of a shaft with a pad-
dle wheel at one end and a ratchet wheel at the other. A pawl allows it to rotate only
in one direction. A thread is being wound around the axis with a small weight, for
instance, an ant, hanging from it.

We assume that the paddle and the ratchet wheels are at the same temperature.
Due to the fluctuations, one would expect the paddle wheel to be able to acquire
enough energy to cause the ratchet wheel to rotate, lifting the weight. But then also
with the same frequency, due to the fluctuations, the pawl would get enough energy
to rise, allowing opposite rotations of the ratchet wheel. Since at a given temperature
the probability that the paddle wheel acquires some rotation energy is equal to the
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probability that the pawl acquires the same amount of elastic energy to rise and allow
the ratchet wheel to rotate in the opposite direction, the net result is that no rotation
takes place. The machine cannot operate.

Now, if the temperature of the paddlewheel is greater than that of the ratchetwheel,
the probability that the paddle wheel will acquire the necessary energy to move and
raise the pawl (according to statistical physics), is greater than the probability that
the pawl will rise spontaneously to allow free motion. The net result is that there is
rectified motion, i.e., rotation. The machine works, but now its operation is allowed
by the second law of thermodynamics.

There is a very interesting electronic analog. The characteristic curve intensity–
voltage of an ideal diode is given by two half lines, one horizontal and another
forming some angle with the vertical, meeting at the origin. Such an ideal diode
would be able to rectify the thermal noise, or fluctuating voltage, produced between
the extremes of a resistance, whose mean squared variation is given by the Nyquist
formula:

V 2
R = 4RkT� f. (2.62)

Here R is the resistance, k is Boltzmann’s constant, T is the absolute temperature,
and� f is the bandwidth over which the fluctuating voltage is observed. The quantity
V 2
R gives a measure of the amplitude of fluctuations, and obviously increases with

temperature.
But the above-mentioned characteristic curve does not correspond to any real

semiconductor diode. The curve (Fig. 2.13) for a real diode can only be used to
rectify the voltage above a certain threshold. Below that threshold, there is current
in both directions. The thermal voltage of a resistance at the same temperature as the
diode would give on average zero current, in analogy with the mechanical rectifier
machine which on the average produces zero rotation, due to the Brownian motion
of the paddle wheel. Again the perpetual motor fails.

But if the source of thermal noise warms up, the amplitude of the fluctuations
in the voltage could exceed the thermodynamic threshold of the diode, and noise
would be rectified, but this time with two different temperatures, in agreement with
the second law of thermodynamics.

Fig. 2.13 Characteristic
curve of a semiconductor
diode. A similar picture
corresponds to the
Smoluchowski–Feynman
mechanical rectifier, by
plotting the angular
frequency as function of the
applied torque.
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The presumed perpetual motors or perpetuum mobile considered above started
out from conditions at equilibrium. In non-equilibrium systems, such motors can
operate, for example, by using two thermal sources at different temperatures. One
can conceive still of other systems in which the non-equilibrium is less evident, as
in the case of a liquid and its vapour.

If we have a liquid in the presence of its vapour, there are vapour molecules
colliding continuously with the liquid phase, and some of them remain in it. At the
same time, within the liquid, some molecules reach energies high enough to leave
it, and pass into the vapour phase. The equilibrium settles down when, on average,
the number of condensing molecules is the same as the number of evaporating ones.
Otherwise there is no equilibrium.

If there are more evaporating molecules than condensing ones, we have an inter-
esting situation. If some liquid is put on a dry surface, it rapidly begins to evaporate,
and in the process the liquid cools. This is because the molecules subtract energy
when evaporating, in an amount greater than the average energy of the liquid that
remains without evaporating.

There is a very interesting toy, which appears at first glance to be a perpetual
motor, based on this property. It is the so-called Chinese duck, which consists of a
glass bottle of suitable shape, as shown in Fig. 2.14, fixed to a metal stand in such
a way that it can rotate in a vertical plane. Inside the toy there is a volatile liquid.
The neck is inclined at several degrees with respect to the vertical in the position of
equilibrium.

The head of the duck is covered with cotton wool. If this wool becomes wet,
by submerging the beak in a glass of water, the duck begins to move continuously,
lifting its neck up to the normal position, then returning to drink water, and doing so
indefinitely, apparently behaving as a perpetual motor.

The explanation of the motion of the duck goes as follows: when evaporating, the
water from the cotton wool in the head cools down the head and the vapour pressure
of the volatile liquid inside the duck decreases, raising the level of the liquid in the
neck. This leads to a displacement of the centre of gravity, and the duck thus leans

Fig. 2.14 Scheme of the
Chinese duck.
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forward until it sinks its beak into the water. In the process, the lower end of the neck
has risen on the surface of the liquid in the bottle, and the pressure is equalized in the
head and body. This allows the liquid to flow back to the body, leading to a backward
displacement of the centre of gravity, and the duck straightens itself once more.

In environmental conditions of high humidity the motion slows down, and may
even stop. If the toy is put under a glass bell jar it stops completely, but as soon as
the bell jar is removed, it starts to move.

The Smoluchowsky–Feynman motor as well as the Chinese duck suggest that
a Maxwell demon can operate in a non-equilibrium system. Such is the case for
biological systems. The cell membranes select some substances to be absorbed, and
reject others, acting like a true demon; but one can justify this, because biological
processes take place essentially in out-of-equilibrium conditions, and this allows
living organisms to get information about the environment around them by physical
or chemical means.

Does this mean that the second law of thermodynamics is universal? Not neces-
sarily. What one can say is that, on the terrestrial scale and even at the scale of the
visible Universe, we have not found any contradiction. But of course, this does not
validate the hypothesis of the so-called thermal death of theUniverse, which assumes
that increasing entropy will lead the whole Universe to a final state of equilibrium
after a long enough interval of time. The present cosmology is much more dynamic
(see Chaps. 10 and 11) and does not support this idea.

On the basis of the discussion above, we would advise those who seek perpetual
motion to abandon their task. Although the possibility of success is not denied sta-
tistically, its probability is so low that, in order to produce a favourable fluctuation
allowing them to achieve their aim, they would have to wait an interval of time given
by a figure so incredibly large that it escapes the realms of human understanding.

Landauer’s principle andMaxwell’s demon. Closely related to Maxwell’s demon
and the erasure of information is Landauer’s principle, first suggested in 1961 by
Rolf Landauer (1927–1999). This states that there is a minimum possible amount
of energy required to erase one bit of information, known as the Landauer limit
kT ln 2. Some physicists consider Landauer’s principle to give compelling reason
why Maxwell’s demon cannot work. The demon would need to erase (or forget)
the information it used to select the molecules after each operation, and this would
release heat and increase the entropy, more than counterbalancing the entropy lost
by the demon, getting information in each observation.

Another way of presenting Landauer’s principle is to state that, if an observer
loses information about a physical system, the observer loses the ability to extract
work from that system. If no information is erased, computation may in principle
be achieved in a thermodynamically reversible form, and require no release of heat.
This is of importance in the study of reversible computing.

http://dx.doi.org/10.1007/978-3-662-62313-8_10
http://dx.doi.org/10.1007/978-3-662-62313-8_11
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2.8 First Order Phase Transitions

The chemical potentials and the temperature play an important role in the study of
two phases in equilibrium through a first order phase transition, characterized by a
discontinuous change in the macroscopic parameters, like volume. Examples are the
liquid–solid or liquid–gas transitions. Under some special conditions, when the two-
phase curves intersect, the three phases, solid, liquid and gas, coexist in equilibrium.
This occurs for water: the triple point for water is at 0.01 ◦C. The zero of the Kelvin
scale is taken at −273.16 ◦C from this point.

Let us consider the case of two phases, labeled 1 and 2. Equilibrium requires
that they have equal temperatures T1 = T2 and chemical potentials μ1 = μ2. Since
the chemical potential is the Gibbs free energy per particle μ = G/N and dμ =
−sdT + vdp, where s and v are the entropy and volume per particle, respectively,
the equality of the chemical potentials implies

− (s1 − s2)dT + (v1 − v2)dp = 0. (2.63)

Note that �h = h1 − h2 = T (s1 − s2) is the latent heat or enthalpy change (per
particle) in the phase transition (the change in its internal energy) and �v = v1 − v2
is the change in its volume per particle. For a first order phase transition, in a p − T
diagram, the curve separating the two phases is known as the coexistence curve. We
shall find the differential equation giving the slope of that curve in terms of �H
and �V . This is the so-called Clausius–Clapeyron equation, that is, the equation
p = f (�H,�V, T ).

First, we multiply (2.63) by T . For a given amount of substance of N units
(for instance, N moles), we multiply by N and write T N (s1 − s2) = T (S1 − S2) =
T�S = �H , and also T N (v1 − v2) = T (V1 − V2) = T�V . Finally, we write

dp

dT
= �H

T�V
, (2.64)

which is the Clausius–Clapeyron equation.
We integrate (2.64) in the particular case of a liquid–gas transition. Call their

volumes VL , VG , respectively, so that VG � VL and VG = RT/p per mol (assume
the ideal gas equation of state pV = RT ). The pressure is obtained as

p = const. e−�H/RT . (2.65)

Notice from (2.65) that the pressure increases with increasing T and vice versa. In
high mountains, where the atmospheric pressure is significantly lower than 100 kPa,
water boils below 100 ◦C. For high pressures, the boiling temperature of water is
increased (see Problem 2.5 below).

We would like at this point to mention some physical reasons which would make
it unrealistic to dig a hole right through the Earth, passing through its centre, as



2.8 First Order Phase Transitions 97

mentioned in Chap. 1. If we drop a stone through such a hypothetic hole, for example,
down to an average of 40Km, it will fall through the rigid outer crust (which is thicker
for continents and thinner for oceans). After that it will encounter the hot mantle,
made primarily of solid but plastically flowing matter, the temperature increasing
up to hundreds of degrees centigrade. Deeper still, it will find a liquid outer core,
and a solid inner core, with temperatures increasing from a few thousand degrees
in the liquid outer core, up to the extremely hot solid core at 5700 K, of the same
order as the temperature of the Sun’s photosphere. This core is conjectured to be
composed mainly of an iron–nickel alloy around 70 and 20%, respectively (and
also probably gold, platinum, and other heavy elements). Studies of the solid–liquid
phase transition show that iron can solidify at such high temperatures, which occur
at the high pressures in the Earth’s core, estimated as being in the range 339–360
gigapascals (from 3.3 to 3.6 million atmospheres). The solid inner core is slowly
growing at the expense of the liquid outer core at the boundary. This is due to the
gradual cooling of the Earth’s interior (which is estimated as 100 ◦C every billion
years). We can conclude that the high pressures and temperatures in the mantle and
core would prevent any possibility of digging a stable hole passing through the centre
of the Earth.

Themeaningof δQ, δW notbeing exactdifferentials. Starting from the expressions
for the internal energy U = nCV T and the equation of state for an ideal gas pV =
nRT (where n is the number of moles, R = NAk, and k = 1, 38 · 10−16 erg/K is the
Boltzmann constant), it will be shown that the quantities �Q, �W in (2.1), for a
finite process, depend on the path followed by the system when it passes from the
initial state 1 with internal energy U1 to the final state 2 with internal energy U2.

The change in internal energy is �U = U2 −U1. As mentioned earlier, since Q
andW are not generally functions of the thermodynamic state, the quantities δQ, δW
are not exact differentials.

Assume that the transition 1 → 2 occurs in two steps: first an isobaric process from
the initial state p1, V1, T1 to an intermediate state characterized by values p1, V2, T ′,
then an isochoric process (constant volume) from the intermediate state, to the final
state p2, V2, T2. We want to show that, whereas �Q, �W are dependent on the
intermediate step, the thermodynamic variables U and S do not depend on it.

The work done on the system in the isobaric step is

δW1 = −p1

∫ V2

V1

dV = −p1(V2 − V1) = −nR(T ′ − T1) (2.66)

and the heat received is

δQ1 = nCp(T
′ − T1). (2.67)

http://dx.doi.org/10.1007/978-3-662-62313-8_1
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The second process is isochoric from the intermediate state, characterized by the
values p1, V2, T ′, to the final state, p2, V2, T2, where T2 > T ′. The amount of heat
given to the system is equal to its increase in internal energy:

δQ2 = nCV (T2 − T ′). (2.68)

The total heat supplied to the system is

δQT = δQ1 + δQ2 = nCp(T
′ − T1) + nCV (T2 − T ′), (2.69)

where Cp is the specific heat at constant pressure. The total work done on the system
is

δWT = −nR(T ′ − T1), (2.70)

which is negative, since theworkwas actually done by the system.Note that both δQT

and δWT depend on the intermediate state. But, since Cp − CV = R, the increase in
internal energy is

�U = δWT + δQT (2.71)

= −nR(T ′ − T1) + nCp(T
′ − T1) + nCV (T2 − T ′)

= nCV (T2 − T1),

and depends only on the initial and final states. The increase in entropy is

�S =
∫ 2

1

dU + pdV

T
= nCp ln

T ′

T1
+ nCV ln

T2
T ′ = ln

(
T2
T1

)nCV

+ ln

(
V2

V1

)nR

.

(2.72)
The last expression follows by using the proportionality T ′/T1 = V2/V1. We also
see that �S does not depend on the intermediate state, which is what we expected.

Problems

Problem 2.1 The temperature of an ideal gas expanding freely in a partially empty
recipient. An insulated chamber is divided into two boxes, as shown in Fig. 2.3a. The
left half, whose volume is V1, contains an ideal gas at temperature T0, while the right
half, of volume V2, is empty. After removal of the partition, the gas flows through
it, and the system comes to equilibrium. No heat is exchanged with the walls. (a)
What is the final temperature of the gas? (b) Show that the gas expansion process is
irreversible. Hint: Calculate the change in entropy.

Problem 2.2 Show that, at constant temperature T , the work done by a system is
equal to the change in its Helmholtz free energy.
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Problem 2.3 Show that, at constant pressure p, the heat exchange δQ = TdS of a
system is equal to the change in enthalpy.

Problem 2.4One mol of a monoatomic ideal gas initially at temperature T0 expands
from volume V0 to volume 2V0, (a) at constant temperature, (b) at constant pressure.
Calculate the work of expansion and the heat absorbed by the gas in each case.

Problem 2.5Where would sea water boil at 400 ◦C? Assuming that the temperature
at which water boils at the ocean surface is 100 ◦C, where the pressure is one atmo-
sphere, find how deep in the ocean we must go for raising the boiling temperature
of water to 400 ◦C. The latent heat of vaporization for water is �H = 40 700 J/mol
and R = 8.31 J/mol·K.
Problem 2.6 Calculate the free energy of the ideal gas starting from (2.29). Use this
to obtain the entropy and the internal energy.
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Chapter 3
Electromagnetism and Maxwell’s
Equations

It is said that, around 600 BCE, Thales of Miletus already knew that amber, when
rubbed, attracts pieces of straw. Our word for electricity comes from the Greek word
elektron, which means amber.

The study of electricity and magnetism began at the beginning of the seventeenth
century, starting with William Gilbert (1544–1603), Queen Elizabeth’s physician,
Otto von Guericke (1602–1686), Stephen Gray (1666–1736), who discovered the
conduction of electricity, Charles François Dufay (1698–1739), who was the first to
mention two kinds of electricity, EwaldGeorg vonKleist (1700–1748) and Pieter van
Musschenbroeck (1692–1761), inventors of the Leyden jar. The American Benjamin
Franklin (1706–1790) brought various contributors, especially the invention of the
lightning-rod. Charles Coulomb (1736–1806) established that electrical forces obey
an inverse square law, similar to the gravitational force discovered by Newton. The
same law was also discovered by Henry Cavendish, a contemporary of Coulomb.
Luigi Galvani (1737–1798) discovered the reaction of frog muscles to electrical
stimulation, and Alessandro Volta (1745–1827) made the first battery.

The relation between electricity and magnetism was found for the first time by
Hans Christian Oersted (1777–1851) in Copenhagen. He discovered that an electric
current affected the direction of a magnetized needle. An immediate consequence
was the invention of the electromagnet byWilliamSturgeon (1783–1850) in 1823 and
its improvement by Joseph Henry (1797–1878) in 1831, which led to the realization
of the telegraph and the electric motor.

From the theoretical point of view, the discovery made by Oersted provided the
background for the work done by André-Marie Ampère (1775–1836), Carl Friedrich
Gauss (1777–1855), andGeorgSimonOhm(1787–1854).Until that time only central
forces were known, and the appearance of new forces with directional properties (the
magnetic force was perpendicular to the line joining the magnetic pole with a wire
carrying a current) opened the way for consideration of a vectorial physical theory,
where direction, as well as distance, played an essential role (Figs. 3.1 and 3.2).
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Fig. 3.1 Michael Faraday,
English physicist and
chemist. Among his various
contributions to science are
the introduction of the
concept of lines of force, the
laws of electrolysis, and the
discovery of electromagnetic
induction.

In 1831, the complementary relation between electricity and magnetism was dis-
covered byMichael Faraday (1791–1867), not accidentally as it happened to Oersted
but by carefully planned experiments. Faraday found that, by moving a conducting
wire in a suitable way in a magnetic field, it was possible to generate an electric
current.

In this way, electricity and magnetism were found to be interrelated, and the
science of electromagnetism was born. The discovery made by Faraday had tran-
scendent applications many years later with the invention of generators. This started
the electrical utilities industry. However, Faradaywas hardly interested in those prob-
lems. He wanted to find a relation between the forces or physical agents known at
that time: electricity, magnetism, heat, and light. The physical ideas of field and lines
of force were established by Faraday in intuitive form, and subsequently put onto a
more formal foundation by Maxwell.

James Clerk Maxwell (1831–1879) was one of the most outstanding physicists
of the nineteenth century. He developed the mathematical theory of Saturn’s rings
at the age of 24, and also made fundamental contributions to the kinetic theory of
gases and thermodynamics. In his most important work, A Treatise on Electricity
and Magnetism, he completed the program begun by Faraday, devising a system of
equations that describes electromagnetic phenomena in mathematical language.

In particular, Maxwell’s theory shows that light is an electromagnetic wave, in full
agreement, at least for a certain time, with Thomas Young (1773–1829), Augustin
Jean Fresnel (1788–1827), and other followers of Christiaan Huygens (1629–1695),
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Fig. 3.2 It was the Scottish
physicist James Clerk
Maxwell who established
electromagnetism as a
science. Not only did he
unify magnetism and
electricity, but he also
predicted the existence of
electromagnetic waves.
Apart from that, Maxwell
made other important
contributions to physics,
especially to the kinetic
theory of gases.

and against those who acknowledged the Newtonian corpuscular theory. Maxwell’s
theory predicted the existence of electromagnetic waves, and these were discovered
by Heinrich Hertz (1857–1894) in his laboratory in 1888, providing the founda-
tions for future radio telecommunication, due to Alexander Popov (1859–1905) and
Guglielmo Marconi (1874–1937).

Asmentioned above, many experiments in electricity made it clear that there were
two kinds of electric charges, referred to as positive and negative. This fact led to the
formulation of Coulomb’s law.

3.1 Coulomb’s Law

Two electric charges are subjected to mutual forces, which could be attractive (if the
charges have opposite signs, one + and one −) or repulsive (if the charges have the
same sign, both+ or both−). For two electrically charged bodies with charges q1 and
q2, such that the distance between their centres is r , the mutual force is proportional
to the product of the charges q1 and q2 and inversely proportional to the square of
the distance r between them:

F = Cq1q2
r2

r0, (3.1)
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where C is a constant of proportionality depending on the system of units used and
r0 is the unit vector along r. We shall use the CGS electrostatic system, or esu, in
which C = 1.

The direction of the electric forces is depicted in Fig. 3.3. The mutual force is
attractive if q1 and q2 have opposite signs and repulsive if they have the same sign.
If the charges are at rest, or if they move at very small velocities (compared with the
speed of light), F1 and F2 have opposite directions. At each moment, they satisfy
Newton’s third law. If the charges move at velocities near the velocity of light, the
mutual forces are no longer given by the expression (3.1).

The electron carries the smallest measured quantity of negative electric charge
(equal and opposite in sign to that of the proton), e = −4.803 × 10−10 esu. How-
ever, there is increasing evidence that protons, neutrons,π mesons, and other particles
which interact strongly (hadrons) are composed of other subparticles called quarks,
whose electric charge is±2e/3 or±e/3. Since quarks have never been observed iso-
lated, it is believed that they must always form part of the above-mentioned hadrons.
They are said to be confined to the regions of space occupied by the hadrons. We
shall discuss this issue in some detail in Chap.11.

Assume we have a body with an electric charge q, and we place another charge q ′
at any point in the space around q (Fig. 3.4). Then the charge q ′ is subjected to a force
of attraction or repulsion, depending on the relative signs of q and q ′. Obviously, q ′
will also exert a force on q. If we assume that the mass of the body with the charge
q ′ is very small compared to the mass of the body charged with q, then q ′ will not
influence q appreciably. However, in this case, the force that q exerts on q ′, divided

Fig. 3.3 The force exerted
between two charges is
attractive if they have
opposite sign and repulsive if
they have the same sign.

Fig. 3.4 The field created by a positive charge q at a point P is a vector whose direction is indicated
in the figure and whose magnitude is equal to the charge divided by the square of its distance to the
point P . The field constitutes a physically measurable entity, and the interaction of the charge q ′
with the field E produced by q leads to the resulting force F = q ′E.
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Fig. 3.5 At each point in
space around a charge q
there exists an electric field
produced by this charge.

Fig. 3.6 Lines of force
between two electric charges
q, q ′ equal in modulus but
with opposite signs.

by q ′ is a very important quantity:

E = F
q ′ = q

r2
r0. (3.2)

E is called the electric field generated by the charge q and has the same or opposite
direction to F, depending on the sign of q. For a positive charge q, the field at
a point P is represented as in Fig. 3.4, outward from the charge q. If the charge
were −q, the field would point toward the charge.

At each point in space around a charge q, one could imagine a vector representing
the electric field applied at that point (Fig. 3.5). Multiplying the intensity of the field
at a point by the charge located there, we obtain the force exerted on the charge.

For two equal charges of opposite signs, the resultant field is indicated in Fig. 3.6.
The field is oriented at each point along the tangents to certain curves. These curves
are called lines of force, and their density increases where the field is stronger (the
number of lines per unit area is proportional to the strength of E) (Figs. 3.5 and 3.6).

In Fig. 3.6, for example, if the charge q ′ is not kept fixed, it will move toward q by
the action of the attractive force exerted by q. We could say that the charge q ′, when
held fixed, has a certain amount of potential energy with respect to q (similarly to
the case of a mass m near the Earth, which has some potential energy with respect
to it).
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If we divide the potential energy by q ′, we obtain a quantity called the electric
potential, which characterizes the electrical properties of the medium around it.

3.2 Electrostatic and Gravitational Fields

Up to this point, we have mentioned electric fields of charges either at rest or moving
very slowly. If we refer to charges at rest, it is more appropriate to talk about elec-
trostatic fields. For moving charges, especially when their velocity is comparable to
that of light, some other considerations will be required.

It is interesting to compare the electrostatic and gravitational forces. There are
important analogies between them, themost important being that both forces decrease
as the inverse of the square of the distance. In modern physics, such forces are said
to be long-range forces.

However, there are also three essential differences between them:

1. The gravitational charge coincides with the mass of the body, while the electric
charge is not related to the mass. For instance, the positron and the proton have
equal electric charges, but the proton is about 1,840 times more massive than
the positron;

2. There are electric charges of opposite polarity which attract each other, but when
they have the same sign they repel each other. In contrast, all masses have the
same sign for all bodies, and the gravitational force is always attractive. An
electric charge placed in a medium attracts charges of opposite sign which tend
to distribute around it, producing a screening effect which decreases its action
on other charges. The gravitational force, on the other hand, cannot be screened;

3. The electric charge is conserved in any process, while the mass is not necessarily
conserved.

We shall illustrate this with an example depicted in Fig. 3.7. When an electron
and a positron of equal mass and opposite charge collide, they may annihilate mutu-
ally, giving rise to two photons. Although the photons have zero charge, the total
electric charge has been conserved, because initially the net charge was also zero
e + (−e) = 0. The total mass was 2m at the beginning and zero at the end (since the
photon’s mass is zero). However, the total energy is conserved. If the process occurs
inside a closed box where the two photons are kept moving around, for instance, by
continuously reflecting them in mirrors, then for an external observer the mass does
not change (it is the same before and after the annihilation). This is due to the fact
that, although the mass of the photons is zero, their energy E is different from zero.
According to special and general relativity (see Chaps. 5 and 10), if the photons are
kept moving around within the box, their external effect is equivalent to that of a
mass 2E/c2 = 2m, from the formula E = mc2.
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Fig. 3.7 An electron e− and
a positron e+, with masses
different from zero, collide
and annihilate to produce
two photons of zero mass. In
the process, the electric
charge is conserved but the
mass is not. However, if the
photons are kept reflecting
by suitable mirrors inside a
body, e.g., an artificial
satellite, then for an external
observer the mass does not
change, since the energy of
the photons divided by c2 is
equivalent to the mass of the
initial particles.

3.3 Conductors, Semiconductors, and Insulators

Almost everybody knows by experience that metals are good conductors of electric-
ity, which means to say that the electric charges move easily through them. For this
reason, they are called conductors.

Other substances like glass, rubber, and plastics are poor conductors, and we call
them insulators. There is a set of substances, like germanium and silicon, that have
intermediate properties, and these are called semiconductors.

In order for charges inside a conductor to move permanently in some direction
producing an electric current, it is necessary to apply an electric field, or equivalently,
to establish a potential difference between two points. When connecting the+ and−
terminals of a dry battery with a wire, a current of intensity I flows from the positive
to the negative pole. The electrons, which are the charge carriers in a metal, move in
exactly the opposite direction (Fig. 3.8).

Due to theirmotion, the electrons collidewith one another andwith the ionic lattice
inside the metal. Friction, and the corresponding increase in metal temperature, will
develop a resistance to the current flow. Under similar conditions, some metals (for
example copper and silver) are characterized by having a low resistance to an electric
current,while othermetals, like tungsten, have ahigh resistance. For this reason,when
a current flows through a tungsten wire, its temperature increases, and the wire can
become incandescent. The high melting point of tungsten and its chemical inertness
allow it to be used for lamp filaments in industry.
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Fig. 3.8 By convention it is assumed that the current flows through a conductor from the positive to
the negative terminal of the battery. However, the electrons, as charge carriers, move in the opposite
direction, from the negative toward the positive terminal.

3.4 Magnetic Fields

Magnetism is familiar to everybody, and we know that magnets have two poles,
called north and south. A magnetized needle suspended by a thread orients itself
from north to south, following the direction of the Earth’s magnetic field (Fig. 3.9).
When two magnets are brought together, we observe that like poles repel each other,
while unlike poles attract.

The Earth is a giantmagnetwith amagnetic south pole in the northern hemisphere,
and a magnetic north pole in the southern hemisphere. These attract the north and
south poles of a compass needle, respectively. The Earth’s magnetic field is produced
by the rotation of charges in its core. In fact, the magnetic north and south have
oscillated and swapped places several times during the evolution of the Earth. This
magnetic field, whose strength lies in the range 0.25–0.65 G, protects the Earth’s
surface from incoming particles in the solar wind, which is a stream of electrically
charged particles released from the upper atmosphere of the Sun. The solar wind
is a plasma consisting mainly of electrons, protons, and alpha particles, and their
interactionwith theEarth’smagnetic field produceswhat is called themagnetosphere.
In the inner magnetosphere, there are two belts called the Van Allen radiation belts
(Fig. 3.9) which consist of charged particles surrounding the Earth in doughnut-
shaped regions, trapped by the Earth’s magnetic field. They spiral along the magnetic
lines of force from pole to pole and may produce auroras. Most of the particles are
thought to come from the solar wind but some may also be from cosmic rays. The
inner belt contains electrons and some protons, the outer mainly protons. Ions and
antiprotons may also be found in the belts.

When a magnet is divided into two parts, two magnets are obtained. In other
words, any attempts to isolate the north and south poles of a magnet are unsuccessful.
However small the piece removed from the initial magnet, a new magnet will always
be obtained with both north and south poles.

Analogous to the case of an electric charge with a surrounding electric field, there
exists a magnetic field around a magnet. If another magnet is placed at any point in
space, a force will be exerted which may be attractive or repulsive, depending on the
position of the magnet’s poles relative to the field.

One can also speak of magnetic lines of force, which emerge from the north pole
and end in the south pole of the magnet. Does an electric current have an effect on
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Magnetopause 

Bow Shock 

Magnetotail 

Van Allen 
    Belts

Fig. 3.9 a A magnetized needle lies along the north–south direction following the lines of force
created by the Earth’s magnetic field. b The solar wind is also deflected by it, creating the magne-
tosphere. In its inner region are located the Van Allen belts, where incoming particles from the Sun
are trapped. They spiral along the magnetic lines of force from pole to pole. The magnetopause is
the boundary between the Earth’s magnetic field and the solar wind, where the pressures of the two
systems are equal, whereas the magnetotail is the region of the magnetosphere swept back by the
solar wind in the direction away from the Sun. Curved arrows indicate cusps with small magnetic
fields through which solar wind particles can enter the Earth’s magnetosphere.

Fig. 3.10 An electric
current creates a magnetic
field around it which orients
a needle in the way shown
here.

a magnet? The answer is affirmative. This phenomenon discovered by Oersted is
easily observed by placing a needle near a wire carrying a direct current (Fig. 3.10).

Circular lines of force appear around the wire, with the magnetic field B oriented
along their tangents. The magnetic field grows stronger if the current increases, and
for a given current, B weakens with increasing distance from the wire.

Current-carrying solenoids behave like magnets, with definite north and south
poles. In fact, the magnetic properties of magnets are due to small currents produced
by the motion of electrons in the atoms or molecules of the magnetic substance, or
due to the intrinsic magnetic moment of the electrons. Having an intrinsic angular
momentum or spin, each electron behaves like a small magnet, and the interaction
between these “microscopic magnets” may lead to a macroscopic magnetic field.
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3.5 Magnetic Flux

Magnetic lines of force are represented like electric lines of force, so that the number
of lines per unit area is proportional to the strength of the magnetic field. In regions
where the field is stronger, the density of lines of force will be higher, and conversely.
The magnetic flux is a useful concept, which we shall introduce now.

Consider a point P in space where the magnetic field is B, and a small surface
S which contains that point. Decompose B into one component tangent to S and
another perpendicular to it, denoted by Bn . The latter is the one which is of interest
here. The magnetic flux � is equal to the product of Bn and S (Fig. 3.11).

For the loop depicted in Fig. 3.12, we can calculate the flux by dividing the sub-
tended surface into smaller surfaces.When the flux through each of the small surfaces
is calculated and added up, we get the flux through the loop. An exact procedure for
calculating this flux is to consider the so-called surface integral. If �Si is the area of
each of the N surfaces into which the initial surface has been divided, the flux is

� =
N∑

i=1

Bni�Si , (3.3)

where Bni is the value of the normal component of B in the region�Si . In the limit as
the area �Si approaches zero in (3.3), the flux is represented by the surface integral
of B on S:

� =
∫

S
BndS. (3.4)

The elementary surfaces �Si can be given a vectorial representation by multiplying
them by a unit vector along their normals. Then (3.3) can be expressed as the scalar
product of the vector B and the vectorial area element �Si,

Fig. 3.11 The magnetic flux
through a small surface is
equal to the product of the
component of the field
perpendicular to the surface
times its area.

Fig. 3.12 For a surface in
which the magnetic field B is
not constant, its area can be
divided into small regions
�Si and the flux calculated
through each of them. The
total flux is the sum of all the
partial fluxes when all �Si
tend to zero.
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� =
N∑

i=1

Bi · �Si . (3.5)

Consequently, one can write (3.4) in the form

� =
∫

S
B · dS. (3.6)

The integral extends over the whole surface S.

3.6 Maxwell’s Equations

We learned so far about the intimate relationship between electricity and mag-
netism. The rigorous analysis performed byMaxwell, based on the works of Faraday,
Ampère, Gauss, etc., led him to the formulation of four basic equations which govern
all electromagnetic phenomena at the classical level.

It is convenient to distinguish these laws in two cases: when the charges and
fields are in vacuum (here we are speaking about the classical vacuum, which we
may define as the absence of macroscopic matter; the quantum vacuum is a more
complex entity); or when they are immersed in a medium. In what follows we shall
refer to the Maxwell equations when the charges, currents, and fields are in vacuum.
Later, we shall analyze the effects of a medium on the electric and magnetic fields.

Wedenote the electric andmagnetic fields byE andB, respectively. It is convenient
to mention at this point that, similarly to the definition of magnetic flux through a
surface, we can consider the electric flux produced by the electric field E through a
surface S.

3.6.1 Gauss’s Law for Electric Fields

Let us consider the first Maxwell equation, which is the well-known Gauss law,
establishing that the flux of the electric field vector through a closed surface around
a charge is proportional to the value of that charge:

∮

S
E · dS = 4πq. (3.7)

Here the integral extends over a closed surface.
If the surface is a sphere, it is very easy to calculate the integral in (3.7) in the

case where the charge is concentrated at the centre: the flux is equal to the area of
the sphere multiplied by the magnitude of the field E , and (3.7) gives

4πr2E = 4πq, (3.8)
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whence
E = q

r2
, (3.9)

which is the field created by a point-like charge q at a distance r . We could obtain the
same expression from (3.1) and (3.2) with C = 1, since Gauss’s law is the integral
version of Coulomb’s law.

Similarly for a sphere of radius R with charge q, if we calculated the flux of the
vectorE through a sphere of radius r > R, wewould get a similar expression to (3.9).
This is equivalent to the case in which the charge of the sphere is concentrated at its
centre, for r > R. If the sphere has an inner charge q ′ distributed uniformly in its
volume andwe calculate the electric field at a point r1 < R, we get similar expressions
to (3.8) and (3.9), but with q replaced by the charge q ′ inside the sphere of radius r1.

The same situation occurs with a static gravitational field, for whichGauss’s law is
also valid. At the end of the first chapter, we assumed that we could make a hole right
through the Earth, passing through its centre, and discussed the motion of an object
through that hole. The gravitational attraction on the object diminishes with the dis-
tance to the Earth’s centre, because each point of the object is attracted by the mass of
the Earth included in a sphere concentric with the Earth and with radius determined
by the position of the object at each instant. The gravitational effect on the body due to
the mass of the Earth outside such a sphere is zero. In the centre of the Earth the grav-
itational field is zero, but the object continues its motion because of its kinetic energy.

If the interaction law were not inversely proportional to the square of the distance,
Gauss’s law would not be valid. As pointed out previously, Gauss’s law is entirely
equivalent to Coulomb’s law (3.1). However, it should be pointed out that for a space
with a different number of dimensions than three, Coulomb’s law would have a
different r -dependence, due to the different expressions for the surface.

In our analysis, we have assumed the charged sphere to be placed in vacuum
(although the sphere is actually a medium) and we have not said anything about its
composition (metallic or non-metallic). If the charged sphere contained free charges
within it, it could not be metallic, since in this case the charge is distributed at its
surface, and the electric field inside would be zero.

3.6.2 Gauss’s Law for Magnetism

Maxwell’s second equation establishes that the magnetic flux through a closed sur-
face is zero: ∮

S
B · dS = 0. (3.10)

This is equivalent to the statement that there are no free magnetic charges. Free
magnetic charges, so-called magnetic monopoles, have not been found in Nature.
Theoretically, Paul Dirac considered a model of electrodynamics containing such
objects. The definition of the magnetic field as the curl of a vector potential A, i.e.
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Fig. 3.13 A wire loop creates a magnetic field as shown in a. A set of loops as in b behave as a
magnet. This kind of cylindrical coil of wire is called a solenoid.

B = ∇ × A, and the new equation∇ · B = m, wherem is the magnetic charge of the
monopole, are not completely compatible.1 The vector potential A of the monopole
has a singular (divergent) line or string, from infinity up to the point where the
monopole is located. This corresponds to the idea of the monopole as a solenoid
which is infinitely long and infinitesimally thin. When the quantization condition is
imposed, it leads to the equation

em

�c
= n

2
,

where e is the electric charge and n is an integer. Thus, the very existence of the
Dirac monopole implies the quantization of electric charge. In modern gauge field
theories the existence of monopoles is theoretically admissible. But so far, there is
no experimental evidence for them.

In 2009, was reported the existence of magnetic monopoles as quasi-particles
in materials called spin-ices (see the discussion of ferromagnetism below; quasi-
particles exist only in condensed matter). Usually, in other media, since there are no
free magnetic charges or monopoles, there are no pure sources of magnetic lines.
A current-carrying loop creates a magnetic field and the lines of force are closed as
shown in Fig. 3.13.

At this point we must observe that the existence of an elementary unit charge
also implies that the electric flux through a closed surface around a charge q must
be quantized (it must be an integer multiple of e). The magnetic flux through an
open surface also appears to be quantized. In quantum mechanics we find that, for
charges in a magnetic field B, there is a characteristic length r0 = √

�c/eB and a
characteristic area S0 = r20 = �c/eB orthogonal to the field B. The flux across such
an area is quantized,

�=BS0=�c/e.

This suggests that flux quanta may be found, but for these to be observable, manifest
quantum conditions are required, as in superconductivity. However, the observed
flux quanta correspond to paired electrons, � = �c/2e.

1For readers not familiar with vector calculus, the divergence and curl are defined in Sect. 5.8.
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3.6.3 Faraday’s Law

Faraday’s law represents the third Maxwell equation. However, before discussing it,
we must recall the concept of electromotive force. If we consider a charge moving
arbitrarily in a closed circuit abca under the action of an electric field E, the work
done by the unit of charge when moving around abca in a given direction, is called
the electromotive force. Remark that the electromotive force is not really a force, but
rather a voltage. Since the force per unit charge is the electric field, the electromotive
force can be obtained if the electric field is known at each point of the curve abca
(Fig. 3.14).

Assume that the charge moves round the curve abca in the direction indicated by
the arrow, i.e., counterclockwise, which we call the positive direction. Let us divide
the curve into small arcs and take the corresponding chords as elementary vectors
�li in the direction of rotation. If the electric field is Ei on the element of arc �li ,
the electromotive force is approximately given by the sum of the scalar products∑

i Ei · �li , with the sum extending over all the segments of the closed curve abca.
Now, the electromotive force is the limit of such a sum as �li approaches zero:

E = lim
�li→0

∑
Ei · �li . (3.11)

This limit is the line integral of E along the curve abca and it is written as

E =
∫

abca
E · dl. (3.12)

Faraday’s law establishes that, if in the region of space where we have considered
the curve abca there is amagnetic field variable in time, and if�abca = ∫

S B · dS is the
flux of this magnetic field through the area bounded by abca, then an electromotive
force is produced in the circuit, proportional to the rate of change of the magnetic
flux:

E = −1

c

∂�abca

∂t
, (3.13)

Fig. 3.14 An electric charge moving round the circuit abca under the action of an electric field E
performs work. If this work is divided by the charge, the result is called the electromotive force in
the circuit abca.
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where c is the speed of light. Thus, the change in flux per unit time produces an
electromotive force. So, if the number of magnetic lines of force which cross the
area S bounded by abca varies in time, an electromotive force is created in the curve
abca, and the same would occur along any other curve bounding an area containing
a time-varying magnetic field. It should be emphasized that, if we have a change in
time of the magnetic flux in a region of space where there is no electric circuit, an
electric field is still induced in that region of space. This electric field has closed
lines, since there are no electric charges producing it.

The negative sign in (3.13) accounts for an interesting phenomenon. If the flux
through the area S is growing, an electromotive force will be induced in the negative
direction, leading to the appearance of an electric current in the same direction. But
this current will in turn create a magnetic field in such a direction that its flux through
S will tend to oppose the change of flux produced by the external field through this
surface. This is Lenz’s law.

3.6.4 Ampère–Maxwell Law

Maxwell’s fourth equation establishes a relation between the magnetic field and the
current producing it. According to Ampère’s law, a current I creates a magnetic field
B around it (Fig. 3.15).

For an infinitely long conducting wire, the magnetic lines of force are concentric
circles centred around the wire. The relation between the current I and the mag-
netic field B is given by the proportionality between the line integral of B around an
arbitrary contour abca and the current crossing the surface S bounded by abca:

∫

abca
B · dl = 4π

c
I. (3.14)

If the conducting wire can be considered as an infinitely long straight line and abca
is a circle of radius R, the field B is tangent to this circle at each of its points. Then
from (3.14), we obtain

2πRB = 4π

c
I,

leading to

Fig. 3.15 Ampère’s law: the
magnetic field B created by
an infinitely long linear
current I is tangent to the
magnetic lines of force,
which are circles centred on
the conducting wire.
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B = 2I

Rc
. (3.15)

The expression (3.15) gives the intensity of the magnetic field at a distance R from
a conducting wire carrying a current I . But the expression (3.14) is valid only if the
electric field flux through the surface S bounded by abca does not vary in time. If
there is an electric field flux variable in time through S, it also contributes to the
magnetic field B, and (3.14) must be rewritten as

∫

abca
B · dl = 4π

c
I + 1

c

∂

∂t

∫

S
E · dS, (3.16)

where the term

1

c

∂

∂t

∫

S
E · dS (3.17)

expresses the rate of change of the electric field flux through the surface S bounded
by the curve abca.

The term (3.17) was introduced by Maxwell, who called it the displacement
current. It establishes a symmetric relationship between (3.13) and (3.16) under the
interchange of E and B. This symmetry is not perfect, since in (3.13) the magnetic
field flux appears with a minus sign. Even more importantly, in (3.13) there is no
magnetic current, and this is valid for most media, where magnetic monopoles do
not exist. (In the new media in which monopole quasi-particles have been reported,
(3.13) must be suitably corrected.)

Maxwell’s equations must all be considered simultaneously to obtain the electric
and magnetic fields created by given charge and current distributions. If charges and
currents are zero, Maxwell’s equations lead to the electromagnetic wave equations,
which we shall see in Chap. 4.

3.7 Lorentz Force

We now consider the force exerted on a moving charged particle by external electric
and magnetic fields. If the velocity of the particle is v and the electric and magnetic
fields are E and B, respectively, this force has the form

F = q

(
E + 1

c
v × B

)
. (3.18)

The expression (3.18) is called the Lorentz force: its electric component is propor-
tional to the electric field, whereas the magnetic component is proportional to the
vector product of the velocity of the particle and the field B.
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In particular, if there is no magnetic field, the Lorentz force is purely electric,
F = qE. For instance, an attractive Coulomb force is exerted between an electron
and a proton, and has the expression:

F = −q2

r2
. (3.19)

where −q is the charge of the electron (equal in modulus to that of the proton) and
r is the distance between them. If we multiply (3.19) by a unit vector along the line
joining the two particles, we have the vector expression for the Coulomb force as in
(3.1). If we consider the problem of the motion of an electron around the nucleus due
to this force, we have a problem equivalent to Kepler’s, and we obtain the planetary
model of the atom due to Rutherford.

But this model has a difficulty, as a consequence of the laws of electrodynam-
ics described by Maxwell’s equations. The electron would radiate electromagnetic
energywhenmoving around the nucleus andwould finally fall onto it. In other words,
such an atom would be unstable, and for that reason alternative mechanisms had to
be found in order to describe it. This led to the invention of quantum mechanics,
in which new ideas and concepts are introduced to solve the problem of the atom’s
stability, drastically changing our classical conceptions about the dynamics of atomic
and subatomic particles.

If the electric field is zero, the force is purely magnetic. A charge q in a magnetic
field B would be subject to a force

F = q
v
c

× B. (3.20)

The most general motion produced by such a force is a helix (Fig. 3.16). If B is
constant, the helix is the result of a circular motion perpendicular to B and a linear
uniform motion parallel to it. Because of this motion, the charged particle emits
radiation. The motion of charges in magnetic fields and the consequent production
of radiation plays an important role in the particle accelerators of high energy physics
laboratories, and also at cosmic scale in several cases, for instance, in objects like
pulsars.

Let us consider the last two Maxwell equations, referring to charges in motion.
A positive charge moving with velocity v as indicated by the arrow (Fig. 3.17) can
be considered as a current element that flows in the direction of v and creates a
magnetic field shown in the figure (right hand rule: if the thumb gives the direction
of the current, the other fingers indicate the direction of the created field). If the
charge is negative, its motion is equivalent to a current in the opposite direction, and
the magnetic field created will also be in the opposite direction to the previous case.
But in both cases, the moving charge produces an electric field around it.

On the other hand, a positive charge moving in a magnetic field B, as we have
already seen, would describe a circle (or a helix), with the direction of rotation as
indicated in Fig. 3.18 (left hand rule: if the thumb gives the direction of the field,
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Fig. 3.16 An electric charge
in a magnetic field follows a
circular path. If the charge
initially has a velocity
component parallel to the
field, the resulting trajectory
is a helix.

Fig. 3.17 An electric charge
in motion is an elementary
current that creates a
magnetic field around it, as
indicated in the figure.

Fig. 3.18 A charge moving
in an applied magnetic field
B creates a magnetic field b
whose flux through the
surface bounded by the orbit
is opposed to the flux of B.

the other fingers indicate the direction of the current). Due to its motion, the charge
creates amagnetic fieldbwhose flux through the area bounded by the orbit is opposed
to the flux of B. If the charge is negative, it will rotate in the opposite direction, but
the magnetic field created by the effective current will still give a flux through the
orbit that will oppose that of the applied field B.

Before ending our brief discussion of Maxwell’s equations, we should point out
that it is possible to give a mechanical description to the basic equations of electro-
magnetism. One could consider two interacting systems: the charged particles and
fields. In these systems theLagrangian formulation described at the end of theChap. 1
contains a term for the particles, another term for the fields, and a third term for the
interaction between particles and fields. The particles would have coordinates x, y, z
and the fields are described by functional coordinates which are the so-called vector
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potential A(r, t) and the scalar potential φ(r, t). The fields E and B are related to
the potentials by the expressions

E = −∇φ + 1

c

∂A
∂t

, B = ∇ × A.

If the value of the electromagnetic field is known, one set of Euler–Lagrange equa-
tions will give the expression of the Lorentz force as equations of motion for the
charges. If the distribution of the charges is known, the other system of Euler–
Lagrange equations will give the expressions for the fields E and B in terms of A and
φ. Maxwell’s equations are interpreted in this way as the equations of motion of the
electromagnetic field. This Lagrangian approach must be formulated in the frame-
work of the special theory of relativity (see Chap.5), but its detailed presentation is
outside the scope of the present book.

Motion of a charged particle in a constant magnetic field. We start from the
Lorentz force in the case of zero electric field (3.20) and study in more detail the
motion of a particle of charge e in a constant magnetic field B along the z axis, when
the initial velocity of the charge is not parallel to B. This can be written

F = ṗ = e

c
v × B. (3.21)

By writing p = mv = m(ivx + jvy + kvz), calculating the vector product ev × B =
eB(ivy − jvx ), and calling ω = eB/mc, then equating terms, we get

v̇x = ωvy, (3.22)

v̇y = −ωvx ,

v̇z = 0,

fromwhich it is clear that vx = v⊥ cos(ωt), vy = v⊥ sin(ωt), and vz = const , where

v⊥ =
√

v2
x + v2

y . This implies motion along a cylindrical spiral, and for vz = 0, it

reduces to a circle in the plane orthogonal to B. The rotation is counterclockwise if
the charge is positive, and clockwise if it is negative. The components of the velocities
vx , vy depend on the magnetic field through the frequency

ω = eB/mc. (3.23)

As a result, the total energy of the oscillating particle can be written as E =
m(v2

⊥ + v2
z )/2,which does not depend on B. However, its frequencyω is by definition

B dependent. We shall see in Chap.6 that, in the quantum case, the energy is propor-
tional to ω, this being the quantum oscillator. The radius of the circle described by
the charged particle in coordinate space depends on B−1, since x = (v⊥/ω) sin(ωt)
and y = (v⊥/ω) cos(ωt), leading to
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r = v⊥(mc/eB). (3.24)

One obtains the same result for r by equating the centripetal and Lorentz forces
mv2

⊥/r = ev⊥B/c. The present problem is interesting in connection with several
applications. For instance, in the case of motion in an inhomogeneous magnetic
field, one may deduce the trajectory approximately by considering the field to be
sectionally constant. The rotating charged particles, being accelerated, emit radiation
(synchrotron radiation), and this is present in the Van Allen radiation belts in which
particles spiral around magnetic lines of force.

Inmany applications, charged particlesmove in the presence of bothmagnetic and
electric fields. This is used in the mass spectrometer, which separates ions according
to theirmass-to-charge ratio, and in the cyclotron,which is a device that can accelerate
charged particles to very high speeds. The high energy particles produced are then
used to collide with other particles or among themselves, depending on the aim of
the experiment.

3.8 Fields in a Medium

The electric dipole moment is a very important concept needed to understand the
behaviour of electric and magnetic fields in a medium. If in a region of the field
there are charges q1, q2, . . . , qn of positive or negative sign, whose position vectors
with respect to the origin O of some system of reference Oxyz are r1, r2, . . . , rn ,
respectively (Fig. 3.19), the electric dipole moment is defined as the vector

p = q1r1 + q2r2 + . . . + qnrn. (3.25)

The case in which there are two equal and opposite charges is very important. Here,
the electric dipole moment is independent of the position of the coordinate origin O .
Actually, this is true for any number of charges if their total sum is zero. In atoms,
if the distribution of charges is symmetric, they do not have a dipole moment. When
atoms are placed in a strong enough electric field, the charge distribution inside them
becomes significantly distorted, creating an atomic dipole moment. The same would
occur with molecules in an electric field. However, there are some molecules, like
those of water, which in normal conditions have a permanent dipole moment, giving
rise to special properties under the action of external electric fields.

If we multiply p by the number of dipoles per unit volume N , we obtain a vector
called the polarization density,

P = Np.

The dipole moment p and the polarization density P change if an electric field
E is applied. For not very intense fields, in a linear, homogeneous and isotropic
medium such as a dielectric (insulating substance of polarizable molecules), there
is a linear relation between P and E. The constant of proportionality is called the
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electric susceptibility χe:
P = χeE. (3.26)

Consider a positive charge Q embedded in a dielectric, for instance, water. The
charge Q attracts the polarized water molecules and they distribute as shown in
Fig. 3.20. At some distance from Q, the net charge inside a surface S is not Q, but
is modified by an additional charge, because of the dielectric polarization. A test
charge q placed on the surface S would detect a smaller charge than Q.

The effective field at a distance R from Q would be the vector

D = E + 4πP, (3.27)

where E is a vector with the magnitude E = Q/R2, and 4πP is an additional field
due to the net charge included in the sphere of radius R, because of the polarization
around Q. The vectorD is the effective electric field, called the electric displacement.
The expression (3.27) is still valid when the medium is not a dielectric.

Similarly,magnetic dipolemomentsµ exist, associatedwith either spin or a closed
current. In the latter case, the magnetic dipole moment is defined as the product of
the current and the vector area bounded by it, all divided by the speed of light c
(Fig. 3.21):

µ = Ia
c

. (3.28)

Fig. 3.19 A system of
charges whose positions are
referred to the coordinate
system Oxyz by means of
their position vectors relative
to the origin.

Fig. 3.20 A charge Q in a
polarized medium attracts
the molecules as indicated in
the figure. In a spherical
surface S centred at the
charge Q, the net charge
included differs from the
value of Q.
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Fig. 3.21 A magnetic moment vector µ = Ia/c is associated with a circular current I of vector
area a.

The electric and magnetic dipole moments play similar roles in the study of
the properties of matter: a closed current behaves like a magnet, and the magnetic
moment is a physical quantitywhich characterizes the intensity of thismagnet. Under
the action of a magnetic field B, the dipole orients itself parallel to the field.

Consider an electron on its orbit around the nucleus. Associated with this motion
is a dipole orbital moment

µL = e

2mc
L, (3.29)

where e is the electron charge, m is its mass, c is the speed of light, and L is the
electron’s orbital angular momentum. Moreover, the electron has also an intrinsic
angular momentum or spin S which leads to a magnetic moment. This is a quantum
effect:

µS = egs
mc

S, (3.30)

where S = ±�/2 and gs ∼ 2.002 is the gyromagnetic ratio of the electron. The
customary unit for elementary magnetic momenta is the Bohr magneton,

μB = e�

2mc
= 9.274 × 10−21erg G−1.

The total magnetic moment of the electron is

µ = e

2mc
(L + 2S).

Asimilar expression to (3.30)would give the protonmagneticmoment, but as itsmass
Mp is much greater than m (Mp ∼ 1840m), it has a magnetic moment three orders
of magnitude smaller than the electron. In the low energy (non-relativistic) case of
electron motion inside an atom placed in a magnetic field, two independent magnetic
moments appear, orbital and spin, interacting with each other and contributing to the
total energy of the electron in the atom. These two contributions, play an important
role in determining the magnetic properties of matter.

Similarly to the electric polarization, the magnetization M is defined by
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Fig. 3.22 A current I in a medium creates a magnetic field H which results from the sum of the
magnetic fieldB and the field created by the induced elementary currents (or alignedmagnets) in the
medium. The net effect of these elementary magnets is to create a field 4πM opposed (or parallel)
to B. The effective field is H = B − 4πM.

M = Nµ, (3.31)

where N is the number of elementary currents (or particles bearing a magnetic
moment) per unit volume.

The magnetization (in diamagnetic and paramagnetic media) depends linearly on
the field B, i.e.,

M = χmB. (3.32)

The constantχm is called themagnetic susceptibility, being positive for paramagnetic
materials and negative for diamagnetic ones. Usually χm is small, giving rise to a
correspondingly weak magnetization.

Let us consider a current I creating a magnetic field B at a point of space. If
we now introduce a magnetic body, there is an additional contribution from the
magnetization M in the form of an ‘effective current’. This leads to an effective field
which is defined as

H = B − 4πM. (3.33)

The reason for this is the following: the field B induces elementary currents in the
medium that determine the onset of some magnetization M. The net result is that
the field would not have anymore its initial value B at the given point. The effective
field is H given by (3.33), where 4πM is the field created by the elementary currents
induced in the medium by the external field B, originally created by the macroscopic
current I (Fig. 3.22).

3.9 Magnetic Properties

We have seen in the previous section that the action of an external magnetic field on a
medium depends on the existence or non-existence of permanent magnetic moments
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in the medium, as happens in ferromagnetic or paramagnetic substances. In the latter
case we have what is called a diamagnetic medium.

The alignment of the electron magnetic moment parallel to the applied external
field determines the paramagnetic and ferromagnetic properties. But the electron,
due to its electric charge, tends to move in a circular orbit leading to a current that
also creates an elementary magnetic moment opposed to the applied field.

Dependingon the characteristics of the electronic states of the substance, oneof the
above-mentioned effects will dominate over the other, giving rise to the macroscopic
magnetic properties of the materials.

3.9.1 Diamagnetism

As a result of the action of the external field, a magnetic moment M of opposite
direction to B is created, and the magnetic susceptibility is therefore negative. This
arises because the external field induces elementary currents in the substance. The
external field also acts independently on the spinmagneticmoments, but the net effect
of this action on the system of electrons of a diamagnetic medium is negligible, as
compared to the effect produced by the orbital motion of the charges.

FromLenz’s law, the field created by themoving charges is opposed to the applied
external field B. Inside the substance, the magnetic field decreases and the medium
expels the magnetic lines of force. The magnetic lines of force within a diamagnetic
substance have opposite direction to the external field B, and the net result of embed-
ding a diamagnetic substance in a magnetic field B is the expulsion of the lines of
force (Fig. 3.23a).

The phenomenon of diamagnetism is particularly important in superconductors,
described later on.

3.9.2 Paramagnetism

In some substances there exist permanent magnetic dipoles associated with the elec-
tron spin. Under the action of an external magnetic field B, the magnetic dipoles
line up parallel to the field. This effect is referred to as paramagnetism. Not all the
dipoles are aligned parallel to the field, since the ordering action of the magnetic
field is opposed by the disordering action of thermal motions, which increases with
temperature.

In the presence of a paramagnetic medium, the lines of force of the external fieldB
tend to concentrate inside the substance (Fig. 3.23b). If the magnetic field is switched
off, the dipoles become disordered again and the substance does not retain magnetic
properties.



3.9 Magnetic Properties 125

Fig. 3.23 a A diamagnetic body placed in a magnetic field expels the lines of force. b A param-
agnetic body placed in a magnetic field attracts the lines of force and tends to concentrate them
inside it.

3.9.3 Ferromagnetism

In some substances there is a spontaneous tendency for parallel neighbouring spins to
couple. This is a purely quantum effect (see Chap.6). The effect can be represented as
the product of a quantity J , the so-called exchange integral, times the scalar product
of the spins si · s j , leading to the creation of elementary dipoles, similar to what
happens in the case of an externally applied aligning field. This effect leads to the
phenomenon known as ferromagnetism. When a magnetizing field H is applied to
a ferromagnetic substance, the substance acquires a macroscopic magnetization M
parallel to the field. When the external field H is removed, the substance preserves
some magnetization M and behaves as a permanent dipole, like a common magnet.

In a ferromagnetic substance there are elementary regions or domainswith sponta-
neous magnetization (Fig. 3.24a). Ferromagnetic materials exhibit the phenomenon
of hysteresis, which is depicted in Fig. 3.24b. If an external magnetic field H is
applied, the domains align themselves with H up to some maximum value called
saturation magnetization MS . If H decreases, the ferromagnet maintains some mag-
netization, and evenwhen themagnetizingfieldH becomes zero, part of the alignment
is retained, as a memory, and would staymagnetized indefinitely. To demagnetize the
ferromagnet, it would be necessary to apply amagnetic field in the opposite direction.
For a large enough negative field −H, we can reach a negative saturation magneti-
zation −MS . The change in magnetization from −MS to MS follows a similar path
to the previous one, from negative to positive magnetization, closing the cycle of
hysteresis. (The element of memory in a hard disk drive is based on this effect). If
the temperature is increased, the ferromagnetic property disappears at some temper-
ature Tc characteristic of each ferromagnetic substance. For T > Tc the behaviour is
paramagnetic. This critical temperature Tc is called the Curie temperature, in honour
of Pierre Curie (1859–1906).
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Fig. 3.24 a In a ferromagnetic material there are domains with spontaneous magnetization. Under
an external field, the magnetic moments of the domains line up parallel to the applied field. If
the external field is turned off, the ferromagnetic substance retains the acquired magnetization and
behaves as a permanent dipole. b Hysteresis loop for a ferromagnet.

As the temperature is decreased, the magnetic susceptibility of a ferromagnetic
substance varies, becoming infinite at the Curie temperature Tc. Furthermore, a spon-
taneous magnetization M appears in the substance even in the absence of an external
field. Here occurs a phenomenon called a second order phase transition. The ferro-
magnetic substance reaches its minimal energy, or ground state (see Chap. 6), when
all dipoles are oriented in one direction, at a nonzero value of its magnetization (see
the sections on phase transitions and spontaneous symmetry breaking below).

3.9.4 Ferrimagnetism, Antiferromagnetism, and Magnetic
Frustration

In some substances, a fraction of the magnetic moments become aligned in the
opposite direction to the field, giving rise to ferrimagnetism (antiparallel magnetic
moments not equal to those parallel to the field), with a net magnetization in the
absence of an external field, and also antiferromagnetism (equal antiparallel and
parallel moments), with vanishing total magnetization if no external field is applied
(Fig. 3.25). The antiparallel ordering may be explained from the negative sign of the
exchange integral J (see Chap.6). Antiferromagnetic substances under the action of
an external magnetic field may display ferrimagnetic behaviour due to a net differ-
ence between the magnetizations of the parallel and antiparallel lattices. In contrast
to the usual ferromagnetic case, in which the ground state is non-degenerate, antifer-
romagnetic materials may have a degenerate (non-unique) ground state. For instance,
in a rectangular lattice one can order the spins pairwise, but in a triangular one, this
is not possible and magnetic frustration occurs. Frustration is also understood as the
inability of the system to find a single ground state (Fig. 3.26).
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Fig. 3.25 In
antiferromagnetic
substances, equal parallel
and antiparallel magnets are
disposed at alternate points
in the lattice. The four
neighbours of a dipole have
opposite directions, leading
to a zero net magnetization
in the absence of an external
field.

Fig. 3.26 In a frustrated
antiferromagnet lattice,
neighbouring dipoles have
several possible orientations,
leading to a degenerate
ground state.

3.9.5 Spin Ices and Monopoles

There are materials called spin ices consisting of tetrahedra of ions. Each ion has
a non-zero spin, and the interactions between neighbouring ions are such that two
of them point inside and two outside, which is a similar structure to ordinary ice,
where the oxygen atom has two neighbouring hydrogens nearby, and two further
away, since they belong to another molecule. This leads to some residual entropy in
ice, as pointed out by Linus Pauling in 1935.

Spin ices are frustrated ferromagnets. It is the strong local crystal field that pro-
duces the frustration, and not the nearest-neighbour interaction, as it is in antiferro-
magnets.

In condensed matter at low temperature, elementary quantum excitations above
the ground state are called quasi-particles, since they behave like particles carrying
quantized amounts of energy, momentum, electric charge, and spin. For instance,
the local electric charge defect creates a ‘hole’ which behaves like a positive particle
in a semiconductor. In the case of spin ices in magnetic fields, monopoles were
proposed in 2008. It allowed to account for a mysterious phase transition observed
experimentally and understood afterwards as a liquid–gas transition of the magnetic
monopoles. Later experiments were reported in 2009 inwhich themagneticmoments
lined up in tube-like structures resembling Dirac strings. At the end of each tube, a
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defect formed, with a magnetic field that looked like that of a monopole. Monopoles
were found to interact through a Coulomb-type potential and to carry a ‘magnetic
charge’.

3.10 Second Order Phase Transitions

As seen in Sect. 8.8, first order phase transitions occur, for instance, when ice melts
and transforms into water, or when water transforms into vapour. There is a discon-
tinuous change in the ordering of the atoms of the substance, and also a change in
its volume or in the specific volume v, which is the total volume V divided by the
number of molecules N . In second order phase transitions there is no discontinuous
change in the state of the substance or in its specific volume. However, there is a
sudden internal reordering. In general, in a second order phase transition, there is an
increase in order and a change in the internal symmetry of the substance with the
arising of an order parameter.

This is the case for ferromagnetic substances. At temperatures equal to or lower
than the Curie temperature, they exhibit a reordering of their internal symmetry, since
all the magnetic moments within the domains become parallel to a given direction
and an order parameter arises: the magnetization M. The ferromagnetic substance,
when cooled below the critical temperature of the phase transition Tc, passes discon-
tinuously from the disordered (paramagnetic) phase in which M = 0 to the ordered
(ferromagnetic) phase in which M �= 0, and it remains in this phase for all tempera-
tures T < Tc.

The phenomenon called ferroelectricity and ferroelectricmaterials are analogous
to ferromagnetism and ferromagnetic materials. In the case of ferroelectric materials,
the elementary dipoles are not paired spins, but elementary cells (domains) in the
crystal structure which have a spontaneous electric polarization. When ferroelectric
materials are cooled below a certain temperature Tc, they manifest a macroscopic
permanent (remanent) electric polarization, with the order parameter P �= 0, similar
to ferromagnetic materials.

3.11 Spontaneous Symmetry Breaking

Spontaneous magnetization or electric polarization (in magnetic or electric domains)
leads to the idea of spontaneous symmetry breaking, a very important concept in
modern physics, closely connected to phase transitions. We shall consider the Gibbs
free energy G per unit volume of a ferromagnetic substance. One can write it as a
function of temperature T and magnetization M , at constant pressure, and expand it
in powers of M = √

M2 as

G(T, M) = G(T, 0) + α0M + α1M
2 + β0M

3 + β1M
4 + · · · . (3.34)
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We neglect the terms of order higher than M4. It can also be proved that, if the
states with M = 0 and M �= 0 have different symmetry, then α0 = 0. For a second
order phase transition (like ferromagnetism), we must also have β0 = 0. We define
the quantity G1 = G(T, M) − G(T, 0). The condition for having an extremum for
α0 = β0 = 0 is

∂G1

∂M
= 2α1M + 4β1M

3 = 0. (3.35)

Then we get two solutions:

M = 0 and M2 = − α1

2β1
. (3.36)

If α1 > 0, the solution M = 0 corresponds to a minimum, since ∂2G1
∂M2 = 2α1 > 0.

But if α1 < 0 and β1 > 0, the solution M = 0 corresponds to a maximum, and there
is a minimum in M0, where

M2
0 = − α1

2β1
. (3.37)

The ground state exhibits a spontaneous magnetization M0 which corresponds to the
minimum of the Gibbs free energy: there is spontaneous symmetry breaking, since
the equilibrium does not correspond to the symmetrical case M = 0, but to M �= 0.
Figure3.27 depicts the approximate form of G1(T, M).

As G1 depends on temperature, the value of M corresponding to the minimum
decreases upon heating. In general,α1 = f (T )(T − Tc), where f (Tc) > 0, i.e., there
is some critical temperature at which the symmetry is restored (the spontaneous
magnetization vanishes), and that is the Curie temperature Tc.

The case of ferroelectricity is quite similar to ferromagnetism, with the magneti-
zation M replaced by the electric polarization P , but for somematerials with β0 �= 0.
We shall see that this case may lead to a first order phase transition, if β0 < 0. (This
happens, e.g., in BaTiO3.) We have

G1(T, P) = α1P
2 + β0P

3 + β1P
4 + · · · . (3.38)

Fig. 3.27 The Gibbs free
energy of a ferromagnet has
its minimum at a nonzero
value of the magnetization
M0.

G1

M

T0> T1> T2
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Fig. 3.28 The Gibbs free
energy G1 versus electric
polarization in a first order
transition.

G1

P

T>Tc

T>T0

T0

Tc

The quantity α1 usually vanishes at some temperature T0 and has thus the form
α1 = 1

2γ (T − T0), but we have the same physical behaviour forα1 = 1
2γ

′(T 2 − T 2
0 ).

In this case, the condition for extremum is

∂G1

∂P
= γ (T − T0)P + 3β0P

2 + 4β1P
3 = 0. (3.39)

Starting from (3.39), which is a third degree equation, we can discuss the dependence
of the symmetry breaking parameter P on temperature. At T = T0, the symmetric
phase is metastable: we have a maximum for P = 0 and a minimum at some point
P = P0 �= 0. As the temperature is increased, the value of the symmetry-breaking
parameter decreases and theminimumofG1 increases in such away that there are two
points of intersection ofG1 with the P axis. These two points approach each other and
coincide at the critical temperature Tc > T0. For T > Tc, the nonsymmetric phase
becomes metastable. The system becomes paraelectric (Fig. 3.28). Similarly, as both
phases (symmetric and nonsymmetric) have the same free energy, when decreasing
the temperature to Tc, there is a sudden symmetry breaking in some regions of the
material, where a nonzero polarization arises spontaneously.

3.12 Superconductivity

At the beginning of this chapter, we referred briefly to the properties of some sub-
stances with regard to electrical conductivity. In particular, we mentioned electrical
resistance as a consequence of opposition to the motion of charge carriers through
the metal.

A notable property of many metals and alloys is that the electrical resistance falls
abruptly at low temperatures. This phenomenon was observed for the first time by
Heike Kamerlingh-Onnes (1853–1926) in Leyden in 1911, when studying the resis-
tance of mercury at liquid helium temperature. Near 4K, the resistance of mercury
diminished abruptly and became practically zero: the mercury had become a super-
conductor. Actually, all superconductors have exactly zero resistivity to low applied
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currents. We must remark that superconductivity is not a classical phenomenon.
Like ferromagnetism and atomic spectral lines, superconductivity is a quantum phe-
nomenon.

In a superconductor the current could flow for almost indefinite time. In some
cases, this time has been calculated to be of the order of 100,000 years, and even
more.

The superconductive property appears at different temperatures in different sub-
stances. For instance, for certain alloys of niobium, aluminum, and germanium it
appears at 21K, and for some semiconductors, at 0.01K.

In a superconductor, an ordered phase appears when going down to temperatures
below a critical value Tc. This is characterized by the formation of a very large
number of opposite spin electron pairs (called Cooper pairs), which move almost
freely through the substance. This model of superconductivity is called BCS theory
after a famous paper by John Bardeen (1908–1991), Leon N. Cooper (b. 1930), and
John Robert Schrieffer (1931–2019) in 1957. Bardeen, Cooper, and Schrieffer were
awarded the Nobel Prize in 1972 for this theory.2 Superconductivity, like ferromag-
netism and ferroelectricity, is another case of spontaneous symmetry breaking, and
one can consider a model of free energy showing the features pointed out above –
the Ginzburg–Landau model, due to Lev Landau (1908–1968) and Vitaly Ginzburg
(1916–2009). In this case the order parameter would be the ‘condensate of Cooper
pairs’ rather than the magnetization.

3.13 Meissner Effect: Type I and II Superconductors

In 1933, Walther Meissner (1882–1974) and Robert Ochsenfeld (1901–1993) dis-
covered that, if a superconductor material cools down in a magnetic field, the mag-
netic lines of force are expelled outside the superconductor for temperatures equal
to or lower than Tc. The material behaves as if the magnetic field were zero inside
(Fig. 3.29). However, the magnetic field is not strictly zero at the surface of the
superconductor, but decreases quickly with the depth until it vanishes inside.

The Meissner–Ochsenfeld effect is different in superconductors of types I and II.
For type I superconductors there is only one critical field Hc at which the material
ceases abruptly to be a superconductor and becomes resistive. Elementary supercon-
ductors, such as aluminium and lead, are typical type I superconductors. In type II
superconductors, if the field is increased to H > Hc1, there is a gradual transition
from the superconducting to the normal state in an increasing magnetic field, since
normal and superconducting regions are mixed, up to a second critical field Hc2,
where superconductivity is destroyed.

2Incidentally, John Bardeen is the only person who received twice the Nobel Prize in Physics. First
time, he shared the prize with William Shockley and Walter Brattain in 1956, for the invention of
the transistor.
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Fig. 3.29 The
Meissner–Ochsenfeld effect.
If a superconducting material
is cooled in a magnetic field,
the lines of force are expelled
from the superconductor.

In 1986, K.A. Muller and J.G. Bednorz from IBM reported a superconducting
effect at relatively high temperatures (40K) in a compound of the form La2−x Srx
CuO4, x = 0.15. Later, C.W. Chu found the effect at even higher temperatures
(Tc = 92 K) in the compound YBa2Cu3O7−δ . These discoveries and the prospect
of finding the superconducting effect at even higher temperatures promise revolu-
tionary consequences for future technology.

All high-temperature superconductors are type II superconductors. They usually
manifest themselves as superconductors at higher temperatures and magnetic fields
than type I superconductors, and this allows them to conduct higher currents. Type
II superconductors are usually made of metal alloys or complex oxide ceramics, and
are mostly complex copper oxide ceramics. However, in 2008, Hideo Hosono and
colleagues from the Tokyo Institute of Technology found lanthanum oxygen fluorine
iron arsenide (LaO1−xFxFeAs) to be a superconductorwith a high critical temperature
of 26K. The discovery inspired international research on iron-based superconductors
and the critical temperature was raised to 55K. The superconductive phase transition
is usually of first order for type I, and of second order for type II.

3.14 Appendix of Formulas

In this chapter we use only CGS units. Let us recall some properties of vectors.
We define the operators nabla ∇ = i ∂

∂x + j ∂
∂y + k ∂

∂z and Laplacian � = ∇ · ∇ =
∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 . Since r = ix + jy + kz and r = √
x2 + y2 + z2, the action of ∇

on r as a scalar product gives its divergence as a scalar, viz., ∇ · r = 3, whereas its
action on the scalar r gives its gradient ∇r = (ix + jy + kz)/r = r/r = r0. From
this, whenever r �= 0,
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�

(
1

r

)
= ∇ · ∇

(
1

r

)
= ∇ ·

(−r
r3

)
(3.40)

= −∇ · r
r3

+ 3r · ∇r

r4
= − 3

r3
+ 3

r3
= 0.

Usually, the Gauss law is written as ∇ · E = 4πρ, where ρ is the charge density.
Recall also the so-called divergence theorem, which states that the integral of the
divergence of a vector A taken within a volume V bounded by a closed surface S is
equal to its flux through the boundary surface:

∫

V
∇ · A d3x =

∮

S
A · dS. (3.41)

Thus, if V (r) = e/r is the potential from which the electric field E = −∇V (r) =
er/r3 is obtained, we have

∫
∇ · E dV =

∮
E · dS. (3.42)

If we assume the charge e to be located at the coordinate origin, the flux of the electric
field E through a spherical surface of radius R is

∮
E · dS = 4πe.

However, due to (3.40), the integrand on the left-hand side of (3.42) vanishes at all
points, except at the coordinate origin. We conclude that

∇ · E = e∇ · (r/r3) = 4πeδ(r),

where δ(r) is called the Dirac delta function, which is not a function in the usual
sense, but a functional. It is characterized by the properties

δ(0) = ∞

and for r �= 0, δ(r) = 0, while for an infinite volume V , if g(r) is a continuous
function, we have ∫

V
g(r)δ(r)dr = g(0),

and in particular, for g(r) ≡ 1, we have

∫

V
δ(r)dr = 1.

These properties are not satisfied by any ordinary function. The Dirac delta function
will be defined in another way in Chap. 4.
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Problems

Problem 3.1 A sphere of radius R carries a charge Q distributed uniformly through-
out its volume. Calculate (a) the charge density; (b) the electric field inside and
outside the sphere. Use Gauss’ theorem.

Problem 3.2 In a polarizable medium (as is shown in Fig. 3.20) a static charge q
produces a screened electric field of the form

E = qe−λr

r2
r0, (3.43)

where r0 is the unit vector along r , and λ is a constant, namely the inverse of the
Debye length. Find the charge density at every point of the medium.

Problem 3.3 A cosmic ray electron moves at a speed 2.5 × 10−2 times the speed of
light (c = 3 × 1010 cm s−1) in a direction perpendicular to the Earth’s magnetic field
and interacts with it at a height where B= 0.1 G. Calculate the radius of the circle
described and the frequency of rotation.

Problem 3.4 A cylindrical wire of permeability μ carries a steady current I . If the
radius of the wire is R, find the observable magnetic field inside and outside the wire.

Problem 3.5 What is the difference, if any, between the geometry of the electric field
lines generated by an electric charge as in (3.2) and those generated by a magnetic
field through Faraday’s law?

Problem 3.6 A rectangular coil with N loops, length a, and width b rotates with
frequency f in a magnetic field B. Show that a current arises in the coil that is driven
by an electromotive force

E = 2πN f baB sin(2π f t).
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Chapter 4
Electromagnetic Waves

In the previous chapter we saw that an electric charge at rest creates a surrounding
static field. A charge moving with constant velocity creates a constant electromag-
netic field displacing with the charge. However, an accelerated charge produces a
field of a different nature: a radiation field, which propagates far from its source and
becomes independent of it. A charge moving at constant velocity is displaced with
its field, but does not emit radiation. Charge acceleration is a necessary and sufficient
condition for the generation of electromagnetic radiation.We shall see later that radi-
ation behaves in dual form, as waves and as particles (photons), but this chapter will
deal mainly with the wave behaviour of radiation.

Around an accelerated charge, one can identify a set of surfaces moving at the
velocity of light, called wave fronts. In fact, each point of the wave front behaves as
a generator of new waves. If we assume that the wave front is stopped by a screen
with two perforated holes, the radiation passing through these holes behaves like two
independent point sources which generate new waves.

It is interesting to mention the important case of the so-called dipole radiation.
This is the case, e.g., of an oscillating charge whose velocity is small compared with
the speed of light. If p is the dipole moment, the emitted power (energy per unit time)
is given by the expression

dE

dt
= 2

3c3
p̈2, (4.1)

where c is the speed of light and the dots over symbols denote time derivatives, so
that p̈ is the second derivative of p with respect to time.

Light is the most common form of electromagnetic radiation. Newton made
profound investigations of the behaviour of light, and assumed that it was com-
posed of corpuscles emitted by the bodies. On the other hand, Christiaan Huygens
(1629–1695),Augustin-JeanFresnel (1788–1827), ThomasYoung (1773–1829), and
Gustav Kirchhoff (1824–1887) were the creators of the wave hypothesis, because
the phenomena of interference and diffraction that they studied are manifestations
of wave motion.
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For a long time, however, because of Newton’s prestige, the corpuscular hypoth-
esis had wide acceptance among physicists, as compared with the wave hypothesis,
in spite of the evidence of the phenomena which demonstrated the wave nature of
light.

In the second half of the nineteenth century, the electromagnetic theory elabo-
rated by Maxwell, and the experiments performed by Hertz, demonstrated the elec-
tromagnetic nature of light. However, the existence of the æther was accepted as the
propagating medium for such waves. At the beginning of the twentieth century, as a
consequence of the special theory of relativity, Einstein proved that the luminiferous
æther hypothesis was not needed. In addition, his successful quantum explanation of
the photoelectric effect meant a partial return to the corpuscular model, but keeping
the wave model alive, in a dual way. We shall return to this point in Chap.6, which
is connected to the origin of quantum mechanics.

4.1 Waves in a Medium and in Æther

The idea of the æther to support electromagnetic waves propagating in vacuum
originated from the analogy with the elastic wave propagation in a medium (solid,
liquid, or gas).

The propagation of longitudinal waves is typical of gases, like, for example, sound
propagating in air. Although the molecules move continuously in all directions, one
could imagine wave propagation as a succession of compressions and dilations of
the gas along the direction of wave motion.

Sound propagation is a regular and systematic motion in which the compressions
and dilations are transmitted successively from one part of the gaseous medium to its
immediate neighbour, without the individual molecules moving along the wave. This
is different from the randommotion of individual molecules with different velocities
in all directions of space.

In solid bodies, in addition to longitudinal waves, transverse waves also propa-
gate: the material points in the medium oscillate perpendicularly to the direction of
propagation. These transverse waves propagate with a different velocity compared
to the longitudinal ones (Fig. 4.1).

Transverse waves on the surface of a liquid can be observed when an object
is thrown into it. The wave propagates, but each particle of the medium oscillates

Fig. 4.1 Longitudinal and transverse waves. In the first case, the oscillatory motion is produced in
the direction of propagation of the wave, and in the second, perpendicular to it.
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Fig. 4.2 Polarized transverse waves. The oscillations are produced either all in a plane that contains
the directionof polarization, as represented in (a), or in different planes (the points oscillate in various
directions in the plane perpendicular to the direction of propagation of the wave), as shown in (b).

perpendicularly to the direction of propagation of the wave, without any motion of
the particles in the direction of the wave (Fig. 4.2).

In transverse waves, all the points of the medium can oscillate in the same plane,
and the wave is said to be linearly polarized. However, it may also happen that the
points of the medium oscillate, describing circles or ellipses in planes perpendicular
to the direction of propagation. These waves are said to be circularly or elliptically
polarized, respectively.

The analogy with the propagation of elastic waves motivated many nineteenth
century physicists to postulate the existence of the æther, which was assumed to
be an immaterial fluid filling the empty space between the bodies and serving as a
medium to support the propagation of light. However, because light was composed
of transverse waves, to eliminate the possibility of longitudinal waves, they had
to assume that the æther had greater rigidity than steel (among other necessary
properties).

4.2 Electromagnetic Waves and Maxwell’s Equations

As mentioned above, the nature of light as an electromagnetic wave became evident
after the theoretical work performed by Maxwell, and confirmed experimentally by
Hertz.

A linearly polarized wave, for instance, is described by two oscillating electric
and magnetic fields perpendicular to each other (Fig. 4.3). At each point where the
wave propagates we can assume an electric vector that oscillates from positive to
negative values, and another, magnetic vector, perpendicular to it, performing similar
oscillations. In the case of a circularly or elliptically polarized wave, these vectors
would describe circles or ellipses, respectively, in planes perpendicular to the plane
of wave propagation (Fig. 4.4).

The frequency ν of the electromagnetic wave is the number of oscillations per
second made by these vectors at each point. The angular frequency ω = 2πν is also
widely used. There is a relation between the wavelength λ, the frequency ν, and the
speed of light c, viz.,

λ = c

ν
. (4.2)
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Fig. 4.3 In an electromagnetic wave, the electric and magnetic vectors oscillate perpendicularly to
each other, and to the direction of propagation. The figure illustrates a linearly polarized wave.

Fig. 4.4 The electric field vector of a circularly polarized electromagnetic wave: a right-handed
polarization; b left-handed polarization.

The speed of light (and of all other electromagnetic waves) in vacuum is a universal
constant, approximately equal to 300,000km/s.

There is, then, an inverse relationship between wavelength and frequency. The
unit of frequency (one cycle or oscillation per second) is the hertz, in honour of the
German physicist Heinrich Hertz (1857–1894).

A radio wave of frequency 600 kHz (or 600,000 Hz) has the wavelength

λ = 500m.

For a frequency of 20MHz (20 × 106 Hz) the wavelength will be

λ = 15m.

Visible light frequencies are considerably higher, of the order of hundreds of
terahertz (1 terahertz (THz) = 1012 hertz). Red corresponds to about 400 THz and
violet to 600 THz. Visible light wavelengths are around 4,000Å for violet and around
7,500 Å for the extreme red, where one angstrom (Å) is 10−10 m or 10−8 cm.

The angstrom characterizes the dimensions of the atom very well. For instance,
the diameter of a hydrogen atom (assumed spherical) is about one Å. Thus, the wave-
lengths of visible light are several thousand times greater than the atomic dimensions.

A typical wavelength of very soft X rays or the extreme ultraviolet (EUV) is about
of 100 Å, corresponding to a frequency of 1016 Hz. Hard X rays have wavelengths
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of the order of 0.1 Å, corresponding to a frequency of 1019 Hz. Gamma rays with
even higher frequencies and smaller wavelengths are also observed, for example, in
electron–positron annihilation: e+ + e− → 2γ.

4.2.1 Wave Propagation

In Chap.3 we introduced Maxwell’s equation in integral form. They can be written
as well in differential form, using some theorems of calculus. Gauss’s laws for the
electric and magnetic fields read:

∇ · E = 4πρ, (4.3)

∇ · B = 0,

while the Maxwell–Faraday and Maxwell–Ampère equations are, respectively:

∇ × E = −1

c

∂B
∂t

, (4.4)

∇ × B = 1

c

∂E
∂t

+ 4π

c
J,

with the notations of the Chap. 3. In the absence of currents and charges, the last
two Maxwell equations, which contain time derivatives, can be re-written as wave
equations for the fields E and B. Let us assume that the fields E and B vary in space
only on the x-axis. In this case, the wave equations deduced from (4.4) are

∂2E
∂x2

= 1

c2
∂2E
∂t2

,
∂2B
∂x2

= 1

c2
∂2B
∂t2

. (4.5)

These two equations can be obtained from a more general wave equation, involving
the vector potential A, and it is easily proved from its solutions that E and B are
orthogonal, E = B × uk, where uk is the unit vector of the direction of propagation.

The more general solution for E (for B we have a similar solution), is

E = e[f (x − ct) + g(x + ct)], (4.6)

where e is a constant vector. (Notice that the equations (4.5) and the general solution
(4.6) do not change in form if the sign of the coordinates x, y, z, or time t, is changed.
The equations are said to be covariant under the parity transformation P and the time
reversal transformation T , which will be detailed in Chap. 7.) If we consider g = 0
and x > 0, the resulting equation (4.6) describes a wave propagating from present (or
past) to future. This is called progressing solution. Let us consider two points, x and
x + �x, and the times t and t + �t corresponding to two positions of the wavefront,
and determine the relation between �x and �t, that is, how much should the wave
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advance so that the value of ef (x − ct) does not change. We have

(x + �x) − c(t + �t) = x − ct, (4.7)

i.e.,�x = c�t. If f = 0 and g �= 0, and x > 0, we obtain a regressing solution, going
backward in time, since the condition would now be

(x + �x) + c(t + �t) = x + ct, (4.8)

or �x = −c�t. Obviously, as there is no evidence of such a wave, we must have
g = 0. Therefore, we neglect the regressing wave by using an argument from every-
day experience, which is very close to the notion of irreversibility discussed in
Chap.2. This means that we assume an arrow of time in choosing the physically
appropriate solutions of the electromagnetic wave equation. In the next chapter, we
shall see that, if we have a signal propagating with a speed faster than c, such a signal
would be seen by some observers to travel to the past, violating causality.

As a simple example of a progressing wave, let us consider a sinusoidal wave

E(x, t) = e sin(kx − ωt). (4.9)

This expression describes a wave propagating at the speed of light whenever the
following relation is satisfied:

k = ω

c
. (4.10)

The quantity k = 2π/λ is equal to the number of wavelengths contained in 2π units
of distance. This is called the wave number. To each value of λ there corresponds
one value of k, and vice versa. For a wave propagating in three dimensions, one
can define a wave vector, k = (2π/λ)uk. The argument of the oscillatory function
would then be k · r − ωt. However, for simplicity, in what follows we shall consider
propagation in one dimension only.

4.2.2 Coherence

Wenowconsider a source of light emittingmonochromatic radiation, that is, radiation
of a precise frequency. If at the same instant, two different points of the source with
coordinates x1 and x2 emit radiation, the quantity kx − ωt will not be the same for
the emitted waves. We define the phase difference to be the quantity

(kx1 − ωt) − (kx2 − ωt) = k(x1 − x2). (4.11)

If k(x1 − x2) = �ϕ, where �ϕ = const., there is stationary interference. If �ϕ = 0
(or 2πn, where n = 1, 2, . . .), the two rays interfere constructively, leading to a
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stronger amplitude. If �ϕ = π(2n + 1), the two rays interfere destructively and the
amplitudes cancel each other. Between these values, there are several possibilities
for the stationary interference. If k(x1 − x2) �= const., the waves are said to be inco-
herent.

A phase difference could also occur when the rays are emitted at different instants,
t1 and t2. In general, we have

(kx1 − ωt1) − (kx2 − ωt2) = �ϕ, (4.12)

and the condition of coherence is again �ϕ = const.
The coherence when �ϕ = 0 is especially important. Most light sources pro-

duce incoherent radiation. However, at the beginning of the 1960s, the laser (Light
Amplification by Stimulated Emission of Radiation) was invented as a result of the
work of Charles Hard Townes (1915–2015) in the United States, and Nikolai Basov
(1922–2001) and Alexandr Prokhorov (1916–2002) in Russia. They were awarded
the 1964 Nobel Prize in Physics for this work.

The laser is a source of monochromatic coherent (constructive, �ϕ = 2π) light.
The basic principles of lasers can be understood from the laws of emission and
absorption of radiation discovered by Albert Einstein in 1917. We shall return to the
basic principles of lasers in Chap.6.

4.3 Generation of Electromagnetic Waves

4.3.1 Retarded Potentials

If ρ(r′) is the electric charge density at the point r′ of coordinates (x′, y′, z′) of a body
at rest, it creates an electric potential at a point r of coordinates (x, y, z) of the form

φ(r) =
∫

V

ρ(r′)
R

dr′,

where R = |r − r′| and V is the volume of the charged body. The electric field is
obtained as E = −∇φ(r). By defining the Laplacian operator as � = ∂2/∂x2 +
∂2/∂y2 + ∂2/∂z2, we obtain

∇ · E = −�φ = 4πρ(r),

which is the first Maxwell equation in differential form.
If the electric potential is generated by a time-dependent charge density ρ(r, t),

the previous Maxwell equation becomes
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(
� − 1

c2
∂2

∂t2

)
φ = −4πρ(r, t).

Its solution is obtained by integrating on the volume V the potential created at r by
the density of charge ρ = ρ

(
r′, t − R

c

)
. The result is the retarded potential φ(r, t)

propagating from past to the future, and a similar equation may be written for the
vector potential A(r, t) in terms of the current density j(r′, t − R/c):

φ(r, t) =
∫

V

ρ(r′, t − R/c)

R
dr′, (4.13)

A(r, t) =
∫

V

j(r′, t − R/c)

R
dr′. (4.14)

Here, t′ < t and t − t′ = R
c is precisely the time during which the electromagnetic

field spreads from point r′ to point r. Besides retarded solutions, the Maxwell
equations possess unphysical advanced potential solutions evolving backward in
time with t′ > t, or t′ − t = R

c , determined by taking ρ = ρ
(
r′, t + R

c

)
. The advanced

solutions are discarded, as we explained previously.
Equations (4.13) and (4.14) can be used to find the potentials and the correspond-

ing electric and magnetic fields created at a point (r, t) by a single charge moving
arbitrarily. The expressions for E and B consist of two terms: at large distances the
first one is proportional to the charge velocity and varies as 1/R2, while the second,
proportional to the charge acceleration, varies as 1/R. This last term is related to
the radiation of electromagnetic waves by the charge. In the wave zone, far from
external time-dependent charges and currents, and restricted to some finite volume,
the electromagnetic field behaves as plane electromagnetic waves.

4.3.2 Mechanisms Generating Electromagnetic Waves

Radio waves are generated by electronic means using a special amplifier circuit
and an antenna. The conducting electron gas of the metallic antenna oscillates at the
frequency of an oscillating field generated by an electronic device. As a consequence,
it emits radiation waves which propagate through the atmosphere.

The atmosphere is not necessary for the propagation of these waves because, like
light, they can propagate in vacuum. Radio waves can be reflected by the ionosphere
containing charged ions, and this property is sometimes utilized for radio transmis-
sions between very distant points. A vacuum tube device called a magnetron is used
to generate microwaves. Magnetron tubes produce electron oscillations by means of
a combination of electric and magnetic fields.

Everybody knows that visible light can be generated in several ways: by means
of chemical reactions as in combustion, by heating a body as in a filament lamp, etc.
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One can also produce light by accelerating electrons in very intense magnetic fields,
and in nuclear fission and fusion, etc.

X rays can be generated in collisions between a high energy electron beam and
a metallic target. Gamma rays are produced in quantum transitions within atomic
nuclei, or by accelerating electrons to very high energies, and also in collisions and
disintegrations of elementary particles, etc.

A continuum background of ‘breaking radiation’, or bremsstrahlung, that can
reach frequencies of 1024 Hz is produced in particle accelerators. This corresponds
to wavelengths of the order of 10−14 cm. So, the electromagnetic spectrum extends
from wavelengths of thousands of kilometers to the short X or gamma rays that are
10−23 times smaller; or considered from the opposite point of view, from frequencies
30Hz (VLFW, Very Low Frequency Waves) in certain radio waves, to over 1024 Hz
for X and gamma radiation produced in some particle accelerators.

However, very long waves may exist, say of wavelength 1,000km, or frequency
lower 30Hz, and the low frequency limit gives constant fields. For example, let us
assume a wave of frequency equal to 1/3,600 Hz (which makes one oscillation per
hour). To a good approximation, such a field can be considered constant over an
interval of a few seconds. And similarly, any constant field can be considered as a
low frequency wave, in the limit as the frequency tends to zero.

There are also gamma rays of frequency higher than 1024 Hz. On this scale, visible
light covers a narrow bandwidth in the region from 1014 to 1015 Hz.

4.4 Wave Properties

4.4.1 Interference

We have already mentioned the phenomenon of interference when we discussed
coherence. We return to this phenomenon by considering two waves propagating in
the same direction in a medium. The effects of the two oscillatory motions add up,
and the two extreme situations are depicted in Fig. 4.5. In the case a the resulting
wave oscillates with greater amplitude since its motion is produced by the sum of the
two oscillations, which are said to be in phase (there is no phase difference between
them). In such a situation we say that there is constructive interference. In the case b,
on the other hand, the points do not oscillate at all, being under the action of opposite
effects (the waves are out of phase). The whole oscillatory motion vanishes, as there
is destructive interference.

Let us examine the case of two waves, 1 and 2, oscillating in the same plane, but
forming an angle θ between their directions of propagation, as depicted in Fig. 4.6.
If the two waves are in phase at some point P, at the point Q along the direction of
wave 2, the phase difference between the two waves will be �ϕ = 2πx/λ, where d
is the distance between the points P and Q, x = d sin θ, and λ is the wavelength.
The waves are in phase (interfere constructively) whenever
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Fig. 4.5 Interference
between two waves,
constructive in (a) and
destructive in (b).

Fig. 4.6 For two parallel
coherent beams, forming an
angle θ, if they are in phase at
point P the phase difference
at point Q, at a distance d
from P, is �φ = 2π

λ d sin θ.

d sin θ = ±nλ, n = 0, 1, 2...,

and are out of phase (interfere destructively) when

d sin θ = ±(2n + 1)λ/2.

In this case, the phase difference is due to a difference in the path length.
By using the Euler formula eix = cos x + i sin x, it is useful to express a wave as

the real part of a complex exponential, i.e A cos(kx − ωt) = A Re ei(kx−ωt). Thus, we
may work with complex exponential expressions, with the understanding that at the
end, we take the real part of the resulting complex number. This will be useful also
when we speak about the intensity of the wave.

Let us consider the case of interference of two light waves in space, described by
their electric field components:

E1(r, t) = e1(r)ei[ϕ1(r)−ωt]

and
E2(r, t) = e2(r)ei[ϕ2(r)−ωt].

Both waves, E1(r, t) and E2(r, t), are assumed to have the same polarization. This
means that e1 and e2 are parallel vectors. Their common direction is defined by a
unit vector u, which gives the direction of the linear polarization (see Sect. 4.4.3).
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Fig. 4.7 Young’s double-slit
experiment.

The field resulting from the superposition of the two waves is

E(r, t) = E1(r, t) + E2(r, t). (4.15)

The intensity I is defined as the energy flux density, which is proportional to the
square of the field, E2. Thus, the intensity of light at a point r is given by the square
of the modulus of the complex field E(r, t):

I(r) = c

4π
E(r, t)E∗(r, t) = I1(r) + I2(r) + 2

√
I1(r)I2(r) cos(ϕ1(r) − ϕ2(r)),

(4.16)
where I1(r) = c

4π e21(r) and I2(r) = c
4π e22(r). We have maximal interference when

�ϕ = ϕ1(r) − ϕ2(r) = ±2πn, (4.17)

where n is a natural number. For I1 = I2, the maximum intensity is I = 4I1. The
minima result when

�ϕ = ±(2n + 1)π, (4.18)

and for I1 = I2 the minima have zero intensity.
A famous experiment by Thomas Young (1773–1829) was crucial for the accep-

tance of light as a wave, in the beginning of the nineteenth century. To this day,
Young’s double-slit experiment is the prototype for interference observation of any
waves. The setup is as in Fig. 4.7. Let us consider, along with Young, a source of
monochromatic light, such that the beam of light falls on two slits, S1 and S2, sep-
arated by a distance a. The resulting beams on the other side of the pierced screen,
being separated from a common beam, are thus coherent, which is essential for inter-
ference to take place. Another screen is placed at a distance R from the first one,
such that R � a, and is used for the visualization of the interference pattern. Let us
consider an arbitrary point P on the latter screen and calculate the intensity of light
at that point. According to (4.16), where we take the two beams to have the same
amplitude e1 = e2 = e, the result will be:
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I(P) = 4I0 cos
2 �ϕ(P)

2
, (4.19)

where I0 is the intensity at the centre of the visualization screen C and �ϕ(P) is the
difference of phase at the pointP between the two beams coming from the slits S1 and
S2. Since these beams are split from a single one, the only source for the difference
of phase is the path difference, which can be easily calculated. We denote by y the
distance between the point P and the centre of the screen P0. The path difference in
the notation of Fig. 4.7 is S2Q. Remark that for R � a, the angle ̂S1QS2 approaches
a right angle, and ̂S2S1Q = ̂P0OP = θ. Then the path difference δ = S2Q turns out
to be, in our approximation:

δ = a sin θ ≈ a tan θ ≈ a
y

R
. (4.20)

Recall the formulas (4.17) and (4.18) for the formation of a maximum or a minimum
of intensity, respectively. The phase difference between the two beams in the double-
slit setup is

�ϕ = 2π

λ
δ, (4.21)

which, plugged into (4.17) and (4.18), tells us that if the path difference is an integer
multiple of the wavelength, δ = ±nλ, the interference is constructive, while if δ =
±(n + 1/2)λ, the interference is destructive. This conditions, together with (4.20),
give the location y on the screen of the interference maxima and minima.

The interference pattern which appears on the visualization screen, not far from
the optical axis, will be formed of bright fringes alternating with dark fringes. At the
point P0, where the difference of path is zero, appears of course a bright fringe.

Remark that the interference pattern depends on the wavelength of the light. If
one uses white light, the maxima for different colours will be formed at different
points, and thus the pattern will show all the colours of the spectrum. At the centre
there will be a bright fringe for all colours, i.e. a white spot, but the next red bright
fringe will be further from the centre than the corresponding fringe for violet, with
all the other colours in between them (Fig. 4.8).

4.4.2 Diffraction

Interference and diffraction are basically the same phenomenon, but it is commonly
understood that interference involves few sources of light, while diffraction involves
a large number of them. Diffraction is produced when light passes near the edges of
some object, for instance, slits in an opaque screen. Due to diffraction, the region of
geometrical shadow is not dark, but covered by diffraction fringes.

There are two main approximations to this complex phenomenon: the Fraunhofer
approximation, which applies to the field far from the source (border or slit) and the



4.4 Wave Properties 149

Fig. 4.8 Interference pattern in the double-slit experiment with green light and with white light.

Fresnel approximation, which applies to the field near the source. We shall discuss
here the Fraunhofer case, and start with the problem of the diffraction through a
rectangular slit.

Let us consider a parallel beam ofmonochromatic waves, passing perpendicularly
to a rectangular slit on a screen, whose centre O is taken as the origin of a system
of coordinates Oxyz. The beam propagates along x. The slit has width D along the y
axis and length G along the z axis. A section through the slit is presented in Fig. 4.9.
According to Huygens’ principle, every point of a light front becomes secondary
source, producing spherical waves. Thus, the field EP created at the point P of a
second screen parallel to the first one, located at a distance R � D, G from it, is
given by the superposition of all the secondary waves produced at each point of the
slit. The problem becomes an interference one, in which we consider each point of
the extended rectangular slit as a secondary source—like a Young experiment with
an infinity of slits!

Let us start with the vector E = e0 ei(ωt−k·r), where e0 is the source amplitude,
which is considered to be the same for all the secondary sources (the incident beam
is parallel). For clarity, let us consider for the moment that we observe the diffracted
light in the vertical plane, at an angle θ, i.e. at the points P(R, y, 0), such that
sin θ = y/R. Taking as reference the pathwhichpasses through the centre of the slitO,
all the other pathswill be shorter or longer than it by a distance δ(y′) = y′ sin θ = y′ y

R ,
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Fig. 4.9 Path differences in the single-slit diffraction. The point P(R, y, 0)would be far at the right,
measured at the second screen located at a distance R from the first (not represented on this figure).
The beam forming the angle θ with the x axis looks as made of parallel rays at short distances from
the slit, but it converges at P.

where y′ is the coordinate of the secondary source (Fig. 4.9). The diffracted field at
the point P is obtained by the summation of all these contributions:

EP(R, x, y) = e0ei(ωt−ϕ)

∫ D
2

− D
2

∫ G
2

− G
2

eik(yy′+zz′)/Rdy′dz′. (4.22)

By defining the angles α(y) = kyD/2R and β(z) = kzG/2R, we easily obtain

EP(R, x, y) = ADG
sinα

α

sin β

β
ei(ωt−ϕ), (4.23)

where A is a constant whose expression can be straightforwardly found.
For the points on the x-axis,α = β = 0. In the limitα → 0 we have sinα/α → 1

and similarly for β. Thus, at the point P0 of the screen the magnitude of the field will
be E(P0) = ADGei(ωt−ϕ) and the corresponding intensity of light I0 is proportional
to (ADG)2.

The light intensity at an arbitrary point P can be written in terms of I0 as:

IP = I0
sin2 α

α2

sin2 β

β2
, (4.24)

and the diffraction pattern will be given by the maxima and minima of the function

F(α) = sin2 α

α2
.

As F(0) = 1, while for any other values of α holds the relation sinα < α, we con-
clude that for α = 0 there is an absolute maximum, and this occurs when y = 0.
As F(α) ≥ 0, the minima are expected to be located at points where sinα = 0, that
is, whenever α = ±nπ, for n = 1, 2.... Other extrema are obtained by taking the
derivative:
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Fig. 4.10 The intensity of light plotted against the angle θ in the diffraction pattern. The charac-
teristic width is approximately 2λ/D.

dF

dα
= 2

sinα

α

α cosα − sinα

α2
= 0. (4.25)

Thus, there are other extrema for tanα = α. We conclude that the second maxima
are located at points with |α| < 3π/2. Notice that

F

(
3π

2

)

 4

9π2
∼ 0.045.

The second maxima of intensity are near five per cent of the principal one. Other
maxima are even smaller.

In the case D � G, the slit behaves as infinitely long along the z axis. Thus β = 0
and sin β/β = 1. The problem becomes two-dimensional, since only the x and y axes
are involved. The field reduces to

EP(R, x, y) = ADG
sinα

α
ei(ωt−ϕ), (4.26)

and the intensity is I = I0 sin2 α/α2. The problem is reduced to the xy-plane and
we may write α = πD sin θ/λ, the angle θ having the same significance as above.
For small θ we have α ∼ 2πDθ/λ. The diffraction pattern intensity is depicted in
Fig. 4.10.

By combining the previous results on interference and diffraction, for monochro-
matic light, it can be shown that in the two-slit interference the intensity on the second
screen can be written in a more complete form as

I(θ) = 4I20
sin2 α

α2
cos2

(
πd sin θ

λ

)
. (4.27)

The resulting curve is depicted at the centre of Fig. 4.11.
If one looks at a light source through the slit formed by joining two adjacent

fingers, fringes can be observed. These result from the diffraction phenomenon. The
intensity of the diffraction pattern has the form indicated in Fig. 4.10.
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Fig. 4.11 The intensities of the diffraction patterns that would appear on the second screen when S1
or S2 are opened alternatively is represented by dotted lines. When both slits are opened at the same
time, only the pattern represented at the centre (not drawn to scale) is produced. The variation of the
intensity is indicated with respect to the angle θ. The angular separation between the interference
fringes is of the order of λ/a, and the characteristic width of the main pattern is 2λ/D.

Fig. 4.12 Diffraction of
sound waves from the voice
of a person A approaching a
corner. The voice is heard by
another person R that cannot
see him.

The interference and diffraction phenomena occur not only for electromagnetic
waves, but for any type of wave. For instance, for sound waves, whose wavelength
is of the order of one meter, the diffraction occurs at the boundary of any common
object. Thus, if a person A approaches a street corner and speaks (Fig. 4.12), his
voice can be heard by another person R, even though R is coming from an orthogonal
direction and is not visible toA. The soundwaves fromA’s voice have been diffracted
through a significant angle and arrive atRwith enough intensity to be perceived. This
does not happen for light waves, whose diffraction angle would be extremely small.

4.4.3 Polarization

Wehavementioned already the polarization in earlier paragraphs, as a constant vector
characterizing the oscillation of the waves in a certain direction. In this section we
shall explain in more detail this property of electromagnetic waves.

Let us define the electric vector of a plane wave as

E = Re(e eiϕ). (4.28)

If e = e1 + ie2 is a complex vector and we demand that its square e2 be real, we must
have e2 = e21 − e22 + 2ie1 · e2 such that e1 · e2 = 0, that is e1 and e2 are perpendicular.
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Fig. 4.13 Two circular
polarizations taken in
opposite directions can
generate a linear polarization
as illustrated in the figure.
The horizontal components
cancel each other and the
vertical ones are added. By a
similar procedure, an elliptic
polarization can be
generated.

E E

We assume that e1 is along the x axis and e2 is along the y axis. Obviously,

Ex = e1 cosϕ, Ey = ±e2 sinϕ. (4.29)

The sign in front of e2 depends either on the direction chosen for e2, or on the phase
ϕ. We may assume the phase ϕ = ωt − kzz as corresponding to a wave propagating
along the z-axis. Thus, (4.29) indicates that in the xy-plane the polarization vector
describes an ellipse of semiaxes e1 and e2, orthogonal to the propagation axis, since
we have

E2
x

e21
+ E2

y

e22
= 1. (4.30)

The wave is said to be elliptically polarized. For e1 = e2 we get a circle, and it is
said that the wave is circularly polarized. The ratio of the components of the original
complex amplitude of the wave is Ex

Ey
= ±i for, respectively, positive (counterclock-

wise) and negative (clockwise) rotations. If either e1 or e2 is zero, we have a linearly
polarized, or plane polarized wave.

We may define the circular polarization unit vectors as

e± = 1√
2
(e1 ∓ ie2). (4.31)

ThenRe(e+eiϕ) = 1√
2
(e1 cosφ + e2 sinϕ).We observe that it represents awavewith

positive circular polarization. The sumof two opposite circular polarizations e+ + e−
gives a linear polarization

√
2e1. They can be also linearly combined to give elliptical

polarizations (see Fig. 4.13).
There exist so-called optically active media, in which the left- and right-hand cir-

cularly polarized light have different speeds of propagation, consequently different
indices of refraction, nL and nR. This phenomenon is known as circular birefrin-
gence. Such media are said to be chiral, which means that the molecules cannot
be superposed on their mirror images by a combination of rotations and transla-
tions. In other words, the parity symmetry is broken in the medium. Suppose that
a beam of monochromatic linearly polarized light is directed on such a medium.
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The linear polarization is the superposition of the two circular polarizations, which
propagate with different speeds, but have the same frequency ω. As a result, the left-
and right-hand polarizations will have different wave lengths, namely λL,R = λ

nL,R
,

where λ = c/ω is the wavelength in vacuum. Due to the difference in speed, there
appears a phase difference between the two circular polarizations �φ = 2πL�n

λ
,

where �n = nL − nR and L is the width of optically active material traversed by the
light. As a result, the superposition of the two circular polarization remains linearly
polarized, but the plane of polarization is rotated by the amount �φ/2.

Optical activity can be also induced in certain media by the application of a static
magnetic field B and then the phenomenon is called Faraday effect. It occurs in
a variety of media, like condensed matter, plasma, and in interstellar space. The
angle of rotation of the polarization plane β is proportional to the projection of the
magnetic field on the direction of propagation of the electromagnetic wave in that
medium, namely β = νBL, where L is the width of the region where the magnetic
field and the wave interact and ν is the Verdet constant. If the Verdet constant is
positive, it corresponds to an R-rotation (counterclockwise) if the wave propagation
is parallel to the magnetic field, and to an L-rotation (clockwise) when the direction
of propagation is anti-parallel. In a plasma, β is proportional to the charge density
and changes its sign if the sign of the charge is changed.

In addition to the transverse (linear, circular, and elliptical) polarizations, in a
medium composed of electrically charged particles, as a plasma, there can be also
longitudinally polarizedwaves (their polarization vector is parallel to thewave vector
k). Longitudinal waves are purely electrostatic. In vacuum, only transverse waves
propagate.

4.4.4 Spectral Composition

To each colour there corresponds a frequency, and in the visible region, to each
frequency there corresponds a colour. Both the visible and the invisible radiation
received from the Sun are mixtures of many frequencies.

From the mathematical point of view, a fixed frequency (monochromatic) wave
extends from the past infinity to the future infinity (Fig. 4.14). If we plot the ampli-
tude versus frequency, the spectrum of a monochromatic wave is a point (Fig. 4.15).
A wave with a constant frequency ω0 between the instants t1 and t2, and zero before
and after, can be written as a superposition of many waves with different frequencies
(Fig. 4.16). Between−∞ and t1 and between t2 and+∞, the waves interfere destruc-
tively, but between t1 and t2 the set of waves of different frequencies is arranged in
such a way that only the frequency ω0 survives (Fig. 4.17).

A pulse like the one depicted in Fig. 4.18 can be described as a superposition
of an infinite number of waves of different frequencies. The spectrum is shown in
Fig. 4.19, and the shorter the pulse, the broader the spectrum curve.
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Fig. 4.14 A wave of fixed
frequency (monochromatic)
extends in time from −∞ to
+∞.

Fig. 4.15 Spectrum of a
monochromatic wave.

Fig. 4.16 Discrete spectrum
corresponding to a wave of
finite duration of the type
illustrated in the Fig. 4.17.

Fig. 4.17 A wave of
constant frequency and finite
duration between the instants
t1 and t2.

One can establish that, if �t = t2 − t1 is the duration of the pulse and �ω is
the spectral width or the frequency interval required to represent the pulse as a
superposition of waves, the following relation is satisfied:

�ω�t ≈ 1. (4.32)

For a fixed frequency, the bandwidth is �ω = 0. Then, since �ω ≈ 1/�t, in order
to have�ω = 0, we must have�t = ∞. Analogously, if the pulse is extremely short
�t ≈ 0, its representation requires an infinite bandwidth.
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Fig. 4.18 Pulse of radiation.

Fig. 4.19 Continuous
spectrum of frequencies
corresponding to the pulse of
Fig. 4.18.

Fig. 4.20 A pure wave of
wavelength λ propagating in
space extends from −∞ to
+∞.

Fig. 4.21 A wave in space
extending from x2 to x1.

Similar reasoning can be made for a wave in space. Mathematically, an oscillation
of wavelength λ is assumed to extend from −∞ to +∞ (Fig. 4.20). If the wave
extends only between x1 and x2, one can represent it as a superposition of a large
number of waves of different wavelengths (Fig. 4.21). Then, in full analogy with the
relation (4.32), one could write

�k�x ≈ 1. (4.33)

That is, a wave of fixed wavelength λ has �k = 0, and it is obtained by taking
�x → ∞ in the relation �k ≈ 1/�x. Conversely, a very short pulse of extension
�x ≈ 0 requires a very large interval �k.

In Chap.5, we shall see that the set (x, y, z, ict) are spacetime coordinates in
the Minkowski four-dimensional space. In addition, the set (px, py, pz, iE/c) are the
components of a four-momentum vector, as are �(kx, ky, kz, iω/c). But momenta
and coordinates are conjugate dynamical variables. Thus, (4.32) and (4.33) suggest
that analogous relations can be expected to hold in a form of wave mechanics, such
as quantum mechanics. The analogous relations to (4.32) and (4.33) lead to the
Heisenberg uncertainty principle, as we shall see in Chap. 6.
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4.5 Fourier Series and Integrals

Most of the previous results can be understoodmore clearlymathematically bymeans
of the theory of Fourier series and Fourier integrals.

Given an arbitrary function f (x) defined on some interval (−l ≤ x ≤ l), one can
write it as a series of sine and cosine functions:

f (x) = b0
2

+
∞∑

n=1

ansin
nπx

l
+

∞∑
n=1

bncos
nπx

l
, (4.34)

where

b0 = 1

l

∫ l

−l
f (ξ)dξ,

an = 1

l

∫ l

−l
f (ξ)sin

nπξ

l
dξ, bn = 1

l

∫ l

−l
f (ξ)cos

nπξ

l
dξ.

In (4.34), we have an expansion of f (x) in Fourier series on the given interval. In the
interval (l ≤ x ≤ 3l), the series (4.34) reproduces the value of the function f (x) in
(−l ≤ x ≤ l), and so on. That is, (4.34) represents a periodic function. If we use the
exponential representation of sine and cosine by means of the Euler formula

eiθ = cosθ + i sinθ,

we can write the Fourier series as

f (x) =
∞∑

n=−∞
cneinπx/l, cn = 1

2l

∫ l

−l
f (ξ)e−inπξ/ldξ. (4.35)

If l → ∞, the sum (4.35) converges to an integral. It is customary towrite the function
f (x) and its Fourier transform f̃ (k) as

f (x) = 1√
2π

∫ ∞

−∞
f̃ (k)eikxdk, (4.36)

f̃ (k) = 1√
2π

∫ ∞

−∞
f (ξ)e−ikξdξ.

From here it is easy to understand that, if f (t) represents a radiation pulse at a
given instant, its spectral composition will be given by its Fourier transform:

f̃ (ω) = 1√
2π

∫ ∞

−∞
f (t)eiωtdt. (4.37)
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Similarly, if we simultaneously consider the position and time, the wave can be
written in terms of its Fourier transform f̃ (k,ω) as

f (x, t) = 1

2π

∫ ∞

−∞

∫ ∞

−∞
f̃ (k,ω)ei(kx−ωt)dkdω. (4.38)

Suppose now that f̃ (k,ω) = 1, i.e., the spectrum is constant: all values of wave
numbers and frequencies contribute the same weight. It follows that

f (x, t) = 1

2π

∫ ∞

−∞

∫ ∞

−∞
ei(kx−ωt)dkdω = 2πδ(x)δ(t), (4.39)

where the function

δ(z) = 1

2π

∫ ∞

−∞
eikzdk

is the so-called Dirac delta function, which satisfies

∫ ∞

−∞
δ(z)dz = 1,

∫ ∞

−∞
δ(z − z0)g(z)dz = g(z0).

Thus, (4.39) represents a pulse of infinite amplitude in space and time, at the point
x and at the instant t.

In contrast, a spectral density f̃ (k,ω) = δ(k − k0)δ(ω − ω0) would give a plane
wave with wave number k0 and frequency ω0, f (x, t) = 1

2π ei(k0x−ω0t).
In three dimensions, the delta function is easily defined if we replace kx by k · r =

kxx + kyy + kzz, and integrate over kx, ky, and kz:

δ(r) = 1

(2π)3

∫ ∞

−∞
eik·r dkxdkydkz.

Let us consider the (spatial) Fourier transform of the Coulomb field created by
a point charge e located at the centre of coordinates. This is a three-dimensional
transform and the procedure is similar to the one-dimensional case. The charge
density is ρ = eδ(r), since the charge is precisely localized, and the scalar potential
φ satisfies the Poisson equation

�φ(r) = −4πρ(r), (4.40)

which can be deduced from Gauss’s law, ∇ · E(r) = 4πρ(r).
Let us write φ in terms of its Fourier transform φ̃(k). We have:

φ(r) = 1

(2π)3/2

∫ ∞

−∞
eik·rφ̃(k)dk, (4.41)
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where dk = dkxdkydkz . If we apply the Laplacian operator (divergence of the gradi-
ent, � = ∇ · ∇) to both sides of (4.41), we obtain

�φ(r) = − 1

(2π)3/2

∫ ∞

−∞
k2eik·rφ̃(k)dk. (4.42)

From here we deduce that �̃φ(k) = −k2φ̃(k).
Now, by taking the Fourier transform of both sides of (4.40) we get

�̃φ(k) = − 1

(2π)3/2

∫ ∞

−∞
4πeδ(r)e−ik·rdr = −

√
2

π
e. (4.43)

Finally,

φ̃(k) =
√

2

π

e

k2
. (4.44)

By applying the gradient to the result, we obtain the Fourier transform of the electric
field:

Ẽ(k) = −ie

√
1

π

k
k2

. (4.45)

Thus, the Fourier transform of the electric field is a longitudinal vector, as it is
also in coordinate space where E(r) = −er/r3. One interprets this as a longitudinal
polarization of the electromagnetic field. Notice that the above Fourier expressions
(4.44) and (4.45) of the Coulomb field do not refer to propagating waves – it is
assumed that ω = 0 (the field is static).

4.6 Reflection and Refraction

The well-known laws of light reflection and refraction can be deduced by starting
from Fermat’s principle, which establishes that in propagating between two points
A and B, light takes such a trajectory that the elapsed time is a minimum (or a
maximum). If the light ray trajectory touches the surface of another medium from
which it is reflected, it is very easy to prove that the minimum time corresponds to
the case when the angles of incidence and reflection as measured with respect to the
normal to the surface are equal:

i = r. (4.46)

Let us consider the plane AOB that contains the points A and B (Fig. 4.22). By taking
B′ to be the symmetric point of B with respect to the plane of reflection, it is easy
to see that AOB′ = AOB is the minimum trajectory. Any other point C would give a
longer trajectory ACB′. Then, since the velocity of light is constant, the smaller the
trajectory, the shorter the travel time, and the actual trajectory is AOB.
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Fig. 4.22 Trajectory of a ray of light between two points A and B when the light is reflected (a)
and when it is transmitted by refraction (b). In the first case the light moves with the same velocity
along its trajectory, since it is in the same medium 1, although it touches the surface or interface
separating the medium 1 from the medium 2. In the second case, the light travels the part AO of its
trajectory in the first medium and the part OB in the second, and its velocity is different in the two
media.

Something similar occurs with refraction. We consider the simple case of two
isotropic media (in anisotropic media the speed of light is not the same in all direc-
tions). If the speed of light is v1 in medium 1 and v2 in medium 2, we find that the
relation

sin i

sin r
= v1

v2
(4.47)

is the one that minimizes the travel time between points A and B (Fig. 4.22). This
can easily be demonstrated by the reader.

The quantity n21 = v1/v2 is called the index of refraction of the medium 2 with
respect to the medium 1. When we speak about the index of refraction of a medium,
it is assumed that the first medium is the vacuum, that is, the ratio of the velocity
of light in vacuum c to the velocity of light in the medium, i.e., n = c/v. In some
materials, charged particles can travel faster than v = c/n, but still slower than c.
They produce a shock wave called Cherenkov radiation.

Total internal reflection. Let us assume a light beam that propagates in the medium
1 and is incident on the surface of the medium 2, where it is partially reflected and
partially refracted. If the index of refraction of the first medium is larger than that of
the second, n1 > n2, this means that, as sin i/ sin r = n2/n1, there exists an incident
angle i0 such that r = π/2. In other words, sin i0 = n2/n1. For i > i0, sin r is purely
imaginary. The refracted wave propagates only parallel to the surface. The ratio of
the electric vectors of the incident (i) and reflected (r′) waves is Ei/Er′ = 1. Thus,
the incident energy is equal to the reflected one. As there is no energy flow across the
surface, the wave energy is totally reflected. The total internal reflection is exploited
in several technical applications, for instance, in optical fibers.
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4.7 Dispersion of Light

Finally, we mention briefly the phenomenon of light dispersion. For radiation propa-
gating in vacuum, we have c = ω/k for all frequencies. But in a medium like water,
air, glass, etc., the speed of wave propagation depends on the frequency. This is
equivalent to saying that the angular frequency ω is a more complicated function of
k than the above linear relation satisfied in vacuum. In this case, the medium is said
to be dispersive, and each frequency has a different speed of propagation. Radiation
of different frequencies passing from one medium to another is deflected by some
angle in such a way that, the greater the speed in the medium, the larger the deflection
angle, as we saw before. This is why we observe the seven colours of the spectrum
when light passes through a prism or through drops of water in a rainbow.

The group velocity is a number characterizing the velocity of propagation of a
wave train in a dispersive medium:

vg = ∂ω/∂k. (4.48)

The quantity vp = ω/k is called the phase velocity.
Let us see the difference between group velocity and phase velocity in a qualitative

way. We shall refer to Fig. 4.18. The phase velocity corresponds to the inner wave
and the group velocity to the pulse propagation. It is not difficult to imagine a pulse
moving at some velocity and carrying within it a wave moving at a different velocity
whichmay bemuch greater than that of the pulse. This wave appears at the beginning
of the pulse and disappears at the end.

For a gas of electrons of density N , of the kind occurring in the ionosphere in
an oversimplified model, the index of refraction squared (n2 = εr , where εr is the
relative electric permittivity of the medium) is a complex number:

n2 = 1 + Ne2

m

1

(ω2
0 − ω2) − iωγ

, (4.49)

where m is the mass of the electron, i is the imaginary unit and ω0 and γ are charac-
teristic parameters of the medium. It can be shown that, for values of the frequency
ω < ω0, the real part of n2 is greater than unity and grows up to a maximum at a
point ω � ω0, and it is zero at ω = ω0, while for ω0 < ω, it is smaller than unity. An
anomalous dispersion occurs, in which the electromagnetic radiation is absorbed.
The absorption is given by the imaginary part of n2, which is proportional to γω. It
increases from ω � ω0, having a maximum at ω � ω0.

In that interval of values of ω around ω0, the group velocity does not represent
the velocity of propagation of the signal transporting the energy (in that region,
vg may become greater than c). This was demonstrated by Arnold Sommerfeld
and Léon Brillouin, invalidating the claims that a group velocity greater than c,
when ω is close to ω0, means the transport of energy at a speed greater than that
of light, which would go against Einstein’s special relativity theory. Sommerfeld
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and Brillouin demonstrated precisely the opposite: the velocity of propagation of the
signal (information transfer) never exceeds the value c. This also applies to more
recent experiments with laser beams propagating through some media, for which
vg > c.

4.8 Black Body Radiation

When a piece of iron is heated by fire, it begins to take on a reddish colour, then
becomes incandescent red, and finally white. We observe that as the temperature
increases, its colour varies. This corresponds to the fact that the frequency of the
radiation emitted also increases.

However, it is not correct to say the frequency, since it actually emits radiation
over a broad band of frequencies. A proportionality exists between the frequency of
maximum intensity and the absolute temperature. In other words, the incandescent
red iron looks red because it emits more red light than any other colour.

Several nineteenth century physicists, among whom we should mention Gus-
tav Kirchhoff (1824–1887), Ludwig Boltzmann (1844–1906), John William Strutt,
known as Lord Rayleigh (1842–1919),WilhelmWien (1864–1928),Walther Nernst
(1864–1941), and James Jeans (1877–1946), studied the emission of radiation by a
black body.

A black body absorbs all incident radiation, i.e., it does not reflect any radiation.
For instance, a good model of a black body is a closed cavity within an object,
such as a gasoline can. Any radiation that enters through its opening suffers internal
reflections, and is finally absorbed by the walls (Fig. 4.23).

The study of radiation emitted by a black body when it is heated up is of great
theoretical interest, since the black body is also a perfect emitter.

The black body behaves similarly to a piece of iron (which can to a certain extent
be considered as a black body), in the sense that the frequency of the emitted radiation
of maximum intensity is proportional to the absolute temperature.

Figure4.24 depicts the energy density emitted by a black body as a function of
frequency for the temperatures T1,T2, and T3. It is observed that themaximum energy
increases with temperature, in such a manner that the maximum occurs at increasing
frequencies. The frequency is actually proportional to the absolute temperature, i.e.,
νmax/T = const., according to Wien’s law.

The shape of the curves in Fig. 4.24 implies a serious contradiction with the
theories accepted at the end of the nineteenth century, although on the other hand, it
leads to entirely logical conclusions.

The established theory assumed that the black body radiation (in today’s language,
the photon gas) was a thermodynamic system, similar to an ideal gas composed of
oscillators. Furthermore, by applying the established principles of thermodynamics
(in particular, the so-called principle of equipartition of energy, which attributes an
equal energy E = kT/2 to each degree of freedom), it followed that the total energy
of the black body radiation would be infinite.
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Fig. 4.23 An object
containing a cavity, like a
gasoline can, gives a good
idea of a black body. The
incident radiation suffers
multiple reflections and
internal absorptions, and is
finally absorbed completely.

Fig. 4.24 Energy density of
a black body at different
absolute temperatures T1, T2,
and T3. The maximum is
reached at some frequency
which is proportional to the
temperature, according to
Wien’s law.

U

ν

T1

T2

T3

T1<T2<T3

Fig. 4.25 The dotted lines
represent the empirical
Rayleigh–Jeans and Wien
laws. The dark line
represents the Planck law.

This was absurd, since it would mean that, by heating a body, it could be made
to emit an infinite amount of energy, a fact that was demonstrated experimentally to
be false. On the other hand, the conclusions of the established theory were valid for
low frequencies. In other words, according to experimental results, there was a good
correspondence with the predictions of classical thermodynamics for low frequency
radiation: the energy density of black body radiation increased with frequency (the
Rayleigh–Jeans law). However, as the frequency increased a maximum occurred,
and then the energy density decreased (Fig. 4.25).
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Wien identified an empirical law that described the behaviour at high frequen-
cies very well. To reconcile the predictions of Rayleigh–Jeans with those of Wien,
Max Planck (1858–1947) introduced a revolutionary hypothesis: that radiation is not
continuously emitted and absorbed by the bodies. For radiation of frequency ν, the
energy can be emitted in amounts proportional to hν, i.e.

E = nhν, (4.50)

where n = 1, 2, . . . , and h is Planck’s constant with value 6.628 × 10−27 erg · s.
Starting from this hypothesis, Planck deduced a law that interpolated between the

Rayleigh–Jeans and Wien laws, and was entirely compatible with the experimental
results:

U (ν, T ) = 8π

c3
hν3

ehν/kT − 1
. (4.51)

However, Planck’s hypothesis contained a new feature, the quantization of radiation
energy, that Planck himself did not accept, and later led to a partial return to the
corpuscular hypothesis regarding the nature of light. This partial return was triggered
byEinstein in his explanation of the photoelectric effect. This effect concerns electron
emission by metals illuminated by radiation of frequency greater than or equal to
some threshold frequency. For radiation below the threshold frequency, there is no
electron current, although the radiation intensity may be high. On the other hand,
even with very weak intensity of the incident radiation, if the frequency is greater
than or equal to the threshold frequency, there is an electron current due to electrons
emitted by the metal.

To explain this effect, Einstein assumed that the radiation energywas concentrated
in the form of granules or quanta of energy according to the law E = hν, following
Planck’s hypothesis in a more advanced form. Therefore, the electron could only
absorb energy in multiples of hν.

If the work needed to extract an electron is W then, since E is greater than or
equal to W , the ejected electron moves with a kinetic energy

T = hν − W. (4.52)

When the radiation intensity increases, the number of emitted electrons also increases
as long as the frequency is greater than the threshold frequency ν0 = W/h. For lower
frequencies than ν0, even for very intense radiation, electrons are not emitted, since
T would be negative.

Einstein’s idea was a partial return to the corpuscular model of light, because the
granules of light or photons have an energy proportional to their frequency. The dual
wave–particle property is inherent in the new theory of the microscopic world which,
after the work by Planck and Einstein, brought quantum theory into existence.
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Problems

Problem 4.1 Consider the double slit experiment with green light λ = 5460 Å.
Assume that the slits are separated by d = 0.1 mm, and the screen is at D = 20 cm.
What is the angular position of i) the first minimum? ii) the fifth maximum?

Problem 4.2 Integrate (4.51) over ν and obtain the so-called Stefan–Boltzmann law,
which gives the total energy density of black body radiation at temperature T .

Problem 4.3 Black body radiation may be considered as a gas of free massless
particles, viz., photons, assumed to be in equilibrium at temperature T (see Chap.8
for more detail), with chemical potential μ = 0. It is easily seen from (4.50) and
(4.51) that the average density of photons in the frequency interval (ν, ν + dν) can
be written as dN (ν) = dU (ν, T )/hν. Hence,

N = 8πV

π2c3

∫ ∞

0

ν2dν

ehν/kT − 1
= 0.244

(
kT

�c

)3

. (4.53)

(i) Assuming the Sun’s surface to be a black body at a temperature of about 6000 K,
calculate the photon density near it.
(ii) Using the results in Chap.2, find an expression for the free energy density
F = U − TS of black body radiation, where the entropy density is S = −∂F/∂T .
Calculate also the heat capacity at constant volume CV = ∂U/∂T .
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Chapter 5
Special Theory of Relativity

Albert Einstein was born in Ulm, Bavaria, on 14 March 1879. The outstanding
relevance of Einstein’s work for modern science is recognized in the words of the
Russian physicist Igor E. Tamm:

To consider Einstein as the most outstanding physicist of the twentieth century would be,
perhaps, to underestimate him. To be fair, he can only be compared with Newton. Newton
and Einstein represent the summits of human progress in the understanding of Nature, the
summits that dominate a period of 300 years of development of the exact sciences. And in
spite of the distance in time, there is a close affinity between them.

The name of Einstein is mainly associated with the theory of relativity. However, we
owe him much other work that also significantly influenced the evolution of physics
throughout the twentieth century. His theoretical investigation of Brownian motion
served as the basis for the experimental work done by Jean Perrin (1870–1942) to
determine precisely Avogadro’s number. This in turn provided definite evidence in
favour of theMaxwell–Boltzmann kinetic theory. Einstein’s theory of the photoelec-
tric effect introduced the revolutionary idea that electromagnetic radiation had a dual
behaviour as wave and corpuscle, taking the first steps toward quantum theory. The
papers dealing with these three topics were published by him in 1905. In 2005, the
scientific community celebrated the centennial anniversary of this ‘marvellous year’.

In 1917, one year after the publication of his most celebrated work, the general
theory of relativity, he investigated the emission and absorption of radiation bymatter,
making an important contribution to the quantum theory of radiation.

Einstein’s scientific work in his later years (he passed away on 18 April 1955)
was dedicated to elaborating a unified theory of the electromagnetic and gravitational
fields.Althoughhis initial goalwas not achieved, the unification ideawas successfully
re-born within the modern quantum theory of fields (Fig. 5.1).
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Fig. 5.1 Albert Einstein.

5.1 Postulates of Special Relativity

When Einstein was 15 years old, he often wondered what would happen if a person
tried to catch a ray of light. The young Einstein probably established a parallel with
another question that was easier to answer: What would happen if one tried to catch
a bullet shot by a gun?

The answer to this question would be: in order to do it, he would have to travel in
a vehicle moving at the same velocity as the projectile. In this way, he would move
beside it, being at rest with respect to the projectile. It would then be sufficient to
stretc.h out his arm and take the projectile in his hand, whence his motion would
continue without change. However, for the ray of light, Einstein got the answer 10
years later, in 1905, and it was negative: a person could never reach such a speed,
and even moving at very high speed, say 150,000km/s, the light would always move
at the same speed, c = 300,000km/s, with respect to him.

The reader may wonder whether this means that the fact of moving with respect to
a light source does not produce any physical effect on the light observed. The answer
is that there is indeed some influence. If the source moves away from the observer,
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the colour of the light changes: the light shifts toward red or, put another way, the
observed frequency of the wave diminishes. If the source approaches him, the light
shifts toward violet, i.e., its frequency increases.

But the answer given by Einstein to the question he asked himself in his ado-
lescence had far-reaching implications, since it produced deep modifications to the
concepts of space and time that everyone had accepted since Newton, and put an
end to a set of internal contradictions in the physics of the nineteenth century. These
were mainly due to the hypothesized existence of the so-called luminiferous æther,
which was hypothesized to be an imponderable fluid filling the empty space between
bodies, and considered to be the medium supporting the propagation of light waves.

Let us recall the importance of inertial frames of reference in classical mechanics
and reconsider the validity of Galileo’s principle of relativity, which establishes
that the laws of mechanics are the same in all inertial frames. This means that the
oscillations of a pendulum, for instance, in an inertial frame, are similar in any other
frame moving at constant velocity with regard to it. A consequence of Galileo’s
principle of relativity and of the notions of absolute time and space were the Galileo
transformations (1.24). The equations of mechanics, like those governing the motion
of a planet around the Sun under the action of Newton’s gravitational force, do not
change in form, i.e., they are said to be covariant under such a transformation. From
this it follows that, if an objectmoveswith velocityVwith respect to an inertial frame,
and if this frame in turnmoves with velocityV′ with respect to another inertial frame,
the velocity of the object with respect to this second frame satisfies the velocity sum
lawV′′ = V + V′, that is, the principle of relativity ofGalileo implies the additivity of
the velocities when the motions are considered as referred to several inertial frames.

On the other hand, in the case of electromagnetic phenomena, Galileo’s principle
of relativity is not valid. In particular, it is not satisfiedby light propagation.Maxwell’s
equations and the electromagnetic wave equation are not covariant under Galileo’s
transformations. For this reason, the existence of an absolute frame of reference was
hypothesized, and it was assumed that electromagnetic waves would move in the
luminiferous æther at the velocity of 300,000km/s. It was expected that light would
have different velocities if measured in a frame at rest or moving with respect to
the æther, and also that the result would be different if the velocity of light were
measured by an observer moving in the same sense as the Earth’s rotation or along
a perpendicular direction.

Experiments of this kind were performed at the end of the nineteenth century,
the most famous being the Michelson–Morley experiment, devised by Albert A.
Michelson (1852–1931) and Edward W. Morley (1838–1923), but leading to neg-
ative results: the effect due to the expected difference in the velocities of light along
and perpendicular to the Earth’s rotation was not found. The physics community thus
had to come to terms with the following facts:
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1. Newtonian mechanics and Galileo’s principle of relativity were valid (verified
in mechanical experiments and astronomical observations);

2. The laws that govern electromagnetic phenomena (described by the Maxwell
equations) were also valid, and verified experimentally. But these equations did
not satisfy the Galilean relativity principle and hence it was expected that the
speed of lightwould be different for an observer at rest and an observer inmotion;

3. The experiments carried out in order to measure such a difference of velocities
gave negative answers, as if the speed of light were the same for both observers.

Apparently the statements 1, 2, and 3 could not all be valid simultaneously in the
theoretical framework of the epoch, and Einstein proposed to solve this contradiction
in 1905 by formulating two basic principles or postulates:

1. The speed of the light emitted by a source is the same for all observers, whatever
their state of motion;

2. The laws of physics (including electromagnetic phenomena) are valid in all
inertial frames.

In his considerations Einstein implicitly admitted another postulate, of no less impor-
tance: the transformations of spacetime coordinates between inertial frames should
be linear transformations, as the Galilean transformations.

Hence, Einstein generalized the Galilean principle of relativity to all physical
phenomena, including electromagnetic phenomena, and in this way it became clear
that, by assuming the validity of his two postulates, all the previously mentioned
contradictions would disappear.

Einstein arrived at these conclusions on purely theoretical arguments. At that time
he was employed in the Office of Patents at Bern, Switzerland. He once declared that
he did not know at that time about the results of the Michelson–Morley experiment.

The differences between Einstein’s and Galileo’s principles of relativity had
remarkable consequences. Not only was the controversial luminiferous æther no
longer necessary, but there was no reason to assume its existence. Further, the validity
of his postulates also implied the disappearance of the concepts of absolute space and
absolute time as independent entities in Newtonian mechanics: space and time now
formed a combined entity, called spacetime, in which they were intimately related,
and the fundamental laws of physics could be written as mathematical expressions
in a four-dimensional space.

Einstein created a new mechanics such that, when the speeds of the particles are
small compared with the speed of light c, it coincides with Newtonian mechanics,
while it differs greatly for velocities close to c. These ideas were initially rejected
by many physicists, but they were finally accepted when they faced the evidence of
their experimental confirmation.

One crucial consequence of Einstein’s postulates is the relativity of simultaneity.
In order to illustrate it, let us consider a hypothetical train travelling at a very high
velocity (in order for the effect to be noticeable, the train must move at a velocity
comparable to c). This is illustrated in Fig. 5.2, where two observers are considered,
for whom the speed of light is the same, inside the train and outside it.
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Fig. 5.2 For the observer T , the light signal arrives first at the end O ′, then at E ′. For the observer
M it arrives at both points, E and O , simultaneously. From this, we conclude that time elapses
differently for the two observers.

For the observer M who is sitting in the train, a light signal emitted by the lamp F
located at the middle of the train would reach both ends of the train simultaneously.
That is, provided with adequate detectors, he could check that the light arrives at the
same instant at the points O and E .

But for the observer T located in the railway station, things occur in a different
manner. When the ray travelling toward the right reaches the end of the train, this
point will be in the position E ′; the light travelling toward the left will arrive at the
other end at the point O ′. Bearing in mind that the distance FE ′ is greater than FO ′,
for the observer T the light will arrive first at O ′, then at E ′. That is, for him the two
events are not simultaneous.

Michelson interferometer. TheMichelson–Morley experiments sought to detect the
hypothesized motion of light relative to the luminiferous æther, but such a motion
was never found. The idea was that a difference in the speeds of monochromatic
light along and perpendicular to the horizontally moving interferometer arm would
be detected from the interference pattern. This negative result gave experimental
support to the basic postulates of special relativity, as formulated by Einstein. Inter-
estingly, Michelson interferometry (see Fig. (5.3)) also played a fundamental role
in the experimental observation of a much more elusive prediction, of general rel-
ativity: gravitational waves. Gravitational waves were finally detected using laser
interferometry as an essential experimental tool in LIGO (see Chap. 10).

5.2 Lorentz Transformations

We have already seen in the first chapter that a frame of reference is determined
by a system of three coordinate axes, to fix the position of the objects with respect
to them, and a clock in order to measure the time at which the events occur. In
classical mechanics, a single clock serves for all frames of reference. In relativistic,
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Fig. 5.3 The Michelson interferometer. Invented by Albert Abraham Michelson, it uses a beam-
splitter to split the light from a source into two beams, which are directed in the two arms of the
interferometer. Each of these is reflected back toward the beamsplitter, which then combines their
amplitudes. The detector registers the interference pattern.

mechanics, each frame requires an appropriate clock. The clocks in different frames
of reference run differently.

Let us assume a frame of reference K , and consider two events: the departure of
a light signal from a point A and the arrival of that signal at another point B. The
coordinates of the first event in such a reference frame would be (including time as
a fourth coordinate):

x1, y1, z1, t1,

and those of the second event:
x2, y2, z2, t2.

Then these numbers must satisfy

(x2 − x1)
2 + (y2 − y1)

2 + (z2 − z1)
2 − c2(t2 − t1)

2 = 0. (5.1)

We can see this easily, since the distance between A and B is
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Fig. 5.4 Two inertial
reference frames K and K ′
oriented so that their x and x ′
axes coincide. The frame K ′
moves with constant velocity
V with respect to K . Two
events A and B have
coordinates (x1, y1, z1, t1)
and (x2, y2, z2, t2) in the
frame K , and (x ′

1, y
′
1, z

′
1, t

′
1)

and (x ′
2, y

′
2, z

′
2, t

′
2) in K ′.

d =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2, (5.2)

and the interval of time between the two events is

�t = t2 − t1. (5.3)

As the signal propagates at the speed of light, we have

d = c�t, (5.4)

which can be re-written in the form (5.1).
If the events are now measured in another frame of reference K ′ moving with

velocity V with regard to K , in this new frame the two events will have the coordi-
nates:

x ′
1, y

′
1, z

′
1, t

′
1 and x ′

2, y
′
2, z

′
2, t

′
2,

and they should satisfy the equation

(x ′
2 − x ′

1)
2 + (y′

2 − y′
1)

2 + (z′
2 − z′

1)
2 − c2(t ′2 − t ′1)

2 = 0. (5.5)

Let us assume that K ′ moves parallel to the x axis with the constant speed V with
respect to the frame K (Fig. 5.4). In order that the relations (5.1) and (5.5) be satisfied
by the coordinates of the events in the K and K ′ frames, they should be related by a
linear transformation, the so-called Lorentz transformation (or FitzGerald–Lorentz
transformation), whose initial formulation was proposed by George F. FitzGerald
(1851–1901) and Hendrik A. Lorentz (1853–1928), in an attempt to interpret the
Michelson–Morley experiment as a contraction of all bodies parallel to their direction
of motion:
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x ′ = x − V t
√
1 − V 2/c2

,

y′ = y,
z′ = z,

t ′ = t − (V/c2)x
√
1 − V 2/c2

.

(5.6)

This is the transformation which replaces the Galilean transformation (1.24) in
Einstein’s theory of relativity.

If x ′
1, y

′
1, z

′
1, t

′
1, and x ′

2, y
′
2, z

′
2, t

′
2 are replaced by their expressions in terms of

x1, y1, z1, t1, and x2, y2, z2, t2 according to (5.6), then (5.5) is converted to (5.1).
This means that the expression (5.1) is invariant under the transformations (5.6),
which depend on the velocity V .

For small velocities compared with the speed of light, the Lorentz transformation
(5.6) can be approximated by the Galilean transformation

x ′ = x − Vt,

y′ = y,

z′ = z,

t ′ = t.

The Lorentz transformations are a consequence of the constancy of the speed of light
in all the inertial frames, and of the linearity of the coordinate transformations.

If two events, which we shall call 1 and 2, are not related by the departure and
arrival of a light signal, then their coordinates would not satisfy the equality (5.1),
and we would have one of the two possibilities:

S212 > 0, or S212 < 0, (5.7)

where
S212 = c2(t2 − t1)

2 − (x2 − x1)
2 − (y2 − y1)

2 − (z2 − z1)
2

is called the spacetime interval. If we calculate the interval between the two events
observed from the frame K ′, its value is the same as the one calculated for the
frame K .

By applying the Lorentz transformation to the coordinates of the events 1 and 2,
one can check that S12 does not change. The interval between two events is the same
for all inertial frames. It is a relativistic invariant.

Given two events 1 and 2, if S212 > 0, it is called a time-like interval, and the two
events can be causally connected, i.e., they can be related to each other by means of
a signal travelling at lower speed than light. In particular, it is always possible to find
a reference frame in which the two events occur at the same point of space.

As an example, let us suppose that a traveller throws some object through a win-
dowof a train, and five seconds later, throws another object through the samewindow.
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For an external observer, the two events occurred at different points of space and at
different times. For the traveller, the two events occurred at the same point of space,
but at different times. The interval between the two events is time-like.

If S212 < 0, the interval is said to be space-like. The two events cannot then be
related causally, since the spatial distance between the two points at which they occur
is greater than the product of the velocity of light by the difference of time between
them:

(x2 − x1)
2 + (y2 − y1)

2 + (z2 − z1)
2 > c(t − t1)

2. (5.8)

When the interval between two events is space-like, it is always possible to find a
frame of reference in which the two events occur at the same instant of time, although
at different points.

There is still the possibility that S12 = 0, in which case the interval is called
light-like, since the two spacetime points can be related by a light signal.

The interval between two events in spacetime is a generalization of the distance
between two points in ordinary space. In Euclidean geometry, the distance |PQ| of
two points P = (x1, y1) and Q = (x2, y2) in a plane is expressed as a sum of squares
by the theorem of Pythagoras:

(PQ)2 = (x1 − x2)
2 + (y1 − y2)

2. (5.9)

The generalization to higher dimensions is also a sumof squares. For example, for two
points P = (x1, y1, z1,w1) and Q = (x2, y2, z2,w2) in four-dimensional Euclidean
space:

(PQ)2 = (x1 − x2)
2 + (y1 − y2)

2 + (z1 − z2)
2 + (w1 − w2)

2. (5.10)

In spacetime, the formula for the distance or interval between two points P =
(x1, y1, z1, ct1) and Q = (x2, y2, z2, ct2) is the following:

(PQ)2 = S12 = c2(t1 − t2)
2 − (x1 − x2)

2 − (y1 − y2)
2 − (z1 − z2)

2.

The space is said to be pseudo-Euclidean. For this reason the interval can be either
positive, negative, or zero.

In the case of the Euclidean plane, if we fix the point P and vary the point Q, so
that (PQ)2 = const., the resulting curve will be a circle. In the pseudo-Euclidean
plane, for (PQ)2 = const. �= 0 the resulting curve will be a hyperbola determined
by the equation:

(PQ)2 = c2(t1 − t2)
2 − (x1 − x2)

2 = const. �= 0.
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Fig. 5.5 Representation of the light cone with respect to the event O in a system with two space
(x1, x2) and one time (t) coordinates. The events within the light cone are divided into two classes:
absolute past and absolute future. The events located outside the cone are absolutely separated from
O . Their intervals with respect to O are space-like.

5.3 Light Cone and Causality

If we choose some event as coordinate origin (we represented only two space coor-
dinates in Fig. 5.5 for simplicity), the events that are separated from such an event
by an interval S2 = 0, would satisfy the equation

x2 − c2t2 = 0, where x2 = x21 + x22 , (5.11)

that is, √
x21 + x22 = ±ct, (5.12)

which gives a cone passing through the coordinate origin. In the four-dimensional
spacetime, we have a higher-dimensional cone, called the light cone. All the events
that one can connect to O by means of a light signal lie on the surface of this cone.
The spacetime trajectories of all massless particles, such as photons, gravitons, etc.,
all lie on this cone.

The events inside the cone are separated from O by time-like intervals. For these,
x2 − c2t2 < 0 and a causal relation between them and the origin is possible. Those
corresponding to t > 0 form the absolute future, and there is no reference frame in
which they could occur simultaneously with the event taking place at O (t = 0). For
t < 0, we have the events that correspond to the absolute past.

The concepts of absolute future and absolute past are not strictly derived from
the basic postulates of special relativity, but are introduced from outside with the
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Fig. 5.6 Although the
events b, c are absolutely
separated from O , their light
cones intersect with that of
O , so the consequences of b,
c could be known by O at
future times corresponding
to the events O ′, O ′′.

implicit notion of an arrow of time, which we already encountered in studying the
solution of the electromagnetic wave equations, when we discarded the regressing
solutions (see Chap. 4). The existence of this direction of time implies that time has
a special feature, as compared to spatial coordinates.

The points outside the light cone are separated from O by means of space-like
intervals. If x and t are the coordinates of such a point, then c2t2 − x2 < 0. They
correspond to events absolutely separated from O . It is possible to find a reference
frame in which space-like separated events occur simultaneously with O . In Fig. 5.6,
for example, the events b and c are simultaneous with O . Suppose that the event O
corresponds to “I am here now”. It is not possible for me to know about the events b,
c, etc., occurring simultaneously with me now. But O can be informed about their
consequences, since the light cone originating, say, at b intersects my light cone, and
all the events which are consequences of b and which correspond to this region of
intersection can be related causally with my future positions in spacetime O ′, O ′′,
etc., whence I can be informed about such events.

Wehave repeatedlymentioned the idea of a causal connection between two events:
two events can be causally connected if they lie inside or on each other’s light cone
surface. Thus, the notion of causality is rigorously formulated in special relativity.
Any observable process must obey causality. In the relativistic formulation of quan-
tum theory, causality is one of the fundamental requirements.

5.4 Contraction of Lengths

Consider a rod of length �′ fixed relative to the frame K ′, which is moving with
respect to K with the velocity V (Fig. 5.7). The rod lies parallel to the axes x , x ′.
We denote by 1 the event of observing the left end of the rod from the frame K . The
coordinates are x1, y1, z1, t1. The event of observing the right end of the rod from
K is denoted by 2. The coordinates would be x2, y1, z1, t1. The two observations are
made simultaneously in K , since we wish to know the length of the rod in this frame.
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Fig. 5.7 The rod whose ends 1 and 2 are fixed to the frame K ′. In order to measure its length from
K , its ends 1 and 2 are observed at the same instant according to the clocks of K . The conclusion
of the observers of K is that the length of the rod is shorter than when it was at rest. However, an
observer in K ′ would justify this result with the following argument: for him the twomeasurements,
according to the clocks of K ′, were not made simultaneously.

According to (5.6), we have:

x ′
1 = x1 − V t1√

1 − V 2/c2
,

x ′
2 = x2 − V t1√

1 − V 2/c2
.

(5.13)

Subtracting the second relation from the first, we find

x ′
2 − x ′

1 = x2 − x1√
1 − V 2/c2

. (5.14)

But x ′
2 − x ′

1 = �′ is the length of the rod in the frame K ′, so the length observed in
the frame K is shorter:

x2 − x1 = � =
√
1 − V 2/c2�′, (5.15)

since
√
1 − V 2/c2 < 1. We observe that the length of the moving rod seems to

contract along the direction of motion.

5.5 Time Dilation: Proper Time

Consider now a clock fixed to the frame K ′, which is to be compared with various
clocks in the frame K (Fig. 5.8). By an inverse Lorentz transformation, we find:
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Fig. 5.8 The observer in K concludes that the moving clock m in K ′ is running slowly. This
happens because, when the moving clock started, it was synchronized with a clock n fixed in K .
After passing by another clock q fixed in K , the latter concludes that the moving clock lags. The
observer in K ′ considers that the clocks n and q in K with which the time of the moving clock has
been compared were wrongly synchronized.

t = t ′ + (V/c2)x ′
√
1 − V 2/c2

. (5.16)

Suppose the clock is fixed relative to K ′, having the space coordinates x ′
1, 0, 0, and

we observe it at time t ′1. In K , this time will correspond to t1 given by

t1 = t ′1 + (V/c2)x ′
1√

1 − V 2/c2
. (5.17)

When the clock in K ′ indicates the time t ′2, in K we have

t2 = t ′2 + (V/c2)x ′
1√

1 − V 2/c2
. (5.18)

Subtracting one expression from the other, it follows that

t2 − t1 = t ′2 − t ′1√
1 − V 2/c2

. (5.19)

The interval of time t2 − t1 is greater than t ′2 − t ′1. If t ′1 corresponds to the event the
clock in K ′ indicates 12:00 noon and t ′2 to the event the clock in K ′ indicates 12:05
p.m., then the time interval of five minutes in K ′ is estimated by the observers in K
to correspond to a longer interval. If

√
1 − V 2/c2 = 1/2, i.e., V ∼ 0.87c, it will be
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ten minutes in K . The conclusion of the observers in K is that moving clocks run
slower than those at rest.

For the observers in K , the lengths of the objects parallel to the direction ofmotion
in the moving frame are contracted and the clocks lag. But for the observers in the
moving frame K ′, they are at rest and the moving frame is K , so they would be
expected to arrive at similar conclusions, since both are inertial frames. How can this
apparent paradox be explained?

Let us consider the case of length contraction. The events corresponding to
the observation of the ends of the moving rod by observers in the frame K are
(x1, y1, z1, t1) and (x2, y1, z1, t1). They determine a space-like interval

S212 = −(x2 − x1)
2. (5.20)

But the two events are not simultaneous for an observer located in the frame K ′.
They occur at different instants t ′1, t ′2 given by

t ′1 = t1 − (V/c2)x1√
1 − V 2/c2

,

t ′2 = t1 − (V/c2)x2√
1 − V 2/c2

.

(5.21)

As x2 > x1, it follows that t ′1 > t ′2, and for observers in the frame K ′, it seems that
the position of the end 1 of the rod was measured after the position of the end 2.
Viewed from the K ′ frame, the positions of the observers in the K frame would be

x ′
1 = x1 − V t1√

1 − V 2/c2
,

x ′
2 = x2 − V t1√

1 − V 2/c2
.

(5.22)

The interval between the two events, as measured in K ′, turns out to be

S′2
12 = c2(t ′2 − t ′1)

2 − (x ′
2 − x ′

1)
2 = −(x2 − x1)

2 = S212. (5.23)

From this it is concluded that the observers in both frames obtain the same values
for the measurements of the relativistic invariants (in this case, the interval). But the
length and the time separately are not relativistic invariants, and they cannot give the
same values when measured from the two frames.

Something similar occurs with time dilation. In this case it is important to note that
the asymmetry of the measurement in the two frames lies in the fact that one moving
clock in K ′ is compared with several clocks located in K . The observer travelling
with the moving clock K ′ concludes that the discrepancy in the measurement of time
with respect to the clocks in the frame K occurs because the clocks are not properly
synchronized.
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If the moving frame K ′ where the moving clock is located were to stop, it would
indeed appear to be retarded with respect to the clocks of the frame K . This is not
in contradiction with the equivalence of the two inertial frames mentioned earlier.
When the frame K ′ decelerates in order to stop, it ceases to be an inertial frame and
is no longer equivalent to K . In order to compare the two clocks at the same point
and at the same time, it is necessary to accelerate K positively or K ′ negatively, and
thus the clocks lose their synchronization.

The time measured in the frame of reference in which the clock is at rest is called
proper time.We observed in the last example that the interval of proper time is shorter
than the interval measured by a fixed observer. This leads to the twin paradox: if one
of two twins leaves the Earth at a velocity close to that of light, when he returns after
many years, he will appear much younger than his brother who remained on Earth.

The phenomenon of time dilation has not been verified for human beings, but
for elementary particles. For instance, for μ mesons (or muons), the mean lifetime
is about 2 × 10−6 s. If they move at velocities close to c, their average lifetime is
prolonged by several orders of magnitude. If they are produced by cosmic rays in
the upper atmosphere and if their energy is high enough, they can be observed at sea
level as a result of time dilation. This allowed their discovery in 1936, in cosmic rays
experiments.

5.6 Addition of Velocities

The impossibility of exceeding the speed of light is a consequence of Einstein’s
postulates. This is easily derived from the law of addition of velocities in relativistic
mechanics. Taking the relations

x = x ′ + V t ′
√
1 − V 2/c2

, t = t ′ + (V/c2)x ′
√
1 − V 2/c2

, (5.24)

after differentiating them with respect to (x ′, t ′), let us divide the first equation by
the second. It follows that

Vx = V ′
x + V

1 + VV ′
x/c

2
, (5.25)

where Vx = dx
dt represents the velocity of a particle with respect to the rest frame K ,

while V ′
x = dx ′

dt ′ represents the velocity of the same particle, but measured from the
moving frame K ′.

For V � c, the denominator approaches unity and we get approximately

Vx ≈ V ′
x + V . (5.26)
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This is the law of composition of velocities of classical mechanics. But from (5.25),
if the particle moves at high speed with respect to K ′, for instance, V ′

x = c/2, and
the frame K ′ in turn also moves at the same velocity V = c/2 with respect to K , one
has

V = c/2 + c/2

1 + 1/4
= 4

5
c, (5.27)

which is smaller than c.
But even by taking V ′

x = c and V = c, it would not be possible to exceed the
speed of light. The result would be

Vx = c + c

1 + c2/c2
= c. (5.28)

That is, even if K ′ moved at the velocity of light with respect to K and the particle
also moved at the velocity of light with respect to K ′, its velocity with respect to K
would be precisely the velocity of the light. We see that it is not possible by means
of the relativistic law of composition of velocities to exceed the speed of light c by
summing velocities that are smaller than or equal to c.

5.7 Relativistic Four-Vectors

One of the most interesting geometrical consequences of the Lorentz transforma-
tions is that the transformations of the space and time coordinates are geometrically
equivalent to a rotation in a four-dimensional space called spacetime or Minkowski
space, in honour of Hermann Minkowski (1864–1909) who was the first to observe
that Einstein’s relativity theory requires us to consider time as a fourth dimension.

In the Euclidean geometry of the plane, if a vector has components (a, b) in a
frame of coordinates (x, y), in another frame of coordinates (x ′, y′) forming an angle
α with the first, it will have coordinates (a′, b′) given by

a′ = a cosα + b sin α,

b′ = −a sin α + b cosα.
(5.29)

whence a′2 + b′2 = a2 + b2.
In the theory of relativity, changing the description of an interval between two

events from a frame of reference K to another K ′ means changing an interval with
components (x2 − x1, y2 − y1, z2 − z1, c(t2 − t1)) to another one with components
(x

′
2 − x

′
1, y

′
2 − y

′
1, z

′
2 − z

′
1, c(t

′
2 − t ′1)) bymeans of a transformation similar to (5.29).

To do this, let us make the change of variable τ = ict and consider the angle as
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Fig. 5.9 Minkowski diagram. The Lorentz transformation from the system K to the system K ′ can
be represented geometrically as a rotation of the axes x and ct through the angle α = arctan V/c, as
illustrated in the figure. Here, V is the relative speed between the two systems, in the x directions.
The grid of hyperbolas represent the curves with the property c2t2 − x2 = const., for different
values of the constant. The straight lines x ′ = const. are parallel to the ct ′ axis, and the straight
lines ct ′ = const. are parallel to the x ′ axis in the oblique-angled system of coordinates.

cos iα = 1
√
1 − V 2/c2

,

sin iα = iV/c
√
1 − V 2/c2

.

(5.30)

Then
x2 − x1 = (x ′

2 − x ′
1) cos iα + (τ ′

2 − τ ′
1) sin iα,

y2 − y1 = y′
2 − y′

1,

z2 − z1 = z′
2 − z′

1,

τ2 − τ1 = −(x ′
2 − x ′

1) sin iα + (τ ′
2 − τ ′

1) cos iα .

(5.31)

The transformations for x2 − x1 and τ2 − τ1 in (5.31) are similar to those in (5.6).
The difference lies in the imaginary character of the variable τ = ict and in the fact
that sin iα and cos iα are not actually trigonometric, but hyperbolic functions. Then
we may write

cos2 iα − sin2 iα = 1, (5.32)

but it is better to write this relation in terms of hyperbolic functions as

cosh2 α − sinh2 α = 1,

recalling the definitions cosh α = (eα + e−α)/2, sinh α = (eα − e−α)/2. The trans-
formation (5.31), which is another way of writing the Lorentz transformation, leaves
the interval S12 invariant, and we have a rotation through an imaginary angle in
Minkowski space (Fig. 5.9).

All the physical quantities in the theory of relativitymust have definite transforma-
tion properties, being scalars, vectors, tensors, etc., under Lorentz transformations.
This means new relations between quantities that were apparently independent in
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non-relativistic physics, just like the new relations between space and time, which
were not present in the mechanics of Galileo and Newton.

5.8 Electrodynamics in Relativistically Covariant
Formalism

In the light of these concepts from special relativity, we now return to some points
fromChap.3. In the first place, we should note the importance of the electromagnetic
field four-vector. Thus, for a system of electric charges in vacuum, we can define
a vector, the vector potential A, from which the magnetic field B is obtained by
applying to it a vector operator, called curl or rotor.

The curl of a vector can be defined by starting with a differential operator ∇,
which is formed by taking the partial derivatives with respect to the coordinates
x, y, z, multiplied respectively by the unit vectors e1, e2, e3 along these axes, and
summed afterwards. Then the vector product of this operator with the vectorA is the
magnetic field B. That is, starting from

∇ = e1
∂

∂x
+ e2

∂

∂e
+ e3

∂

∂z

and
A = e1Ax + e2Ay + e3Az,

we define

B = rot A = ∇ × A

= e1

(
∂Az

∂y
− ∂Ay

∂z

)
+ e2

(
∂Ax

∂z
− ∂Az

∂x

)
+ e3

(
∂Ay

∂x
− ∂Ax

∂y

)
.

(5.33)

It is also important to recall the concept of gradient of a scalar function, since the
electrostatic field is defined as the gradient of the scalar potential φ, viz.,

grad φ = ∇φ = e1
∂φ

∂x
+ e2

∂φ

∂y
+ e3

∂φ

∂z
. (5.34)

Then the electric field is defined in general as

E = −1

c

∂A
∂t

− ∇φ . (5.35)

In electrodynamics, the potentials A and φ form the four-vector of the electromag-
netic field, with components A1 = Ax , A2 = Ay , A3 = Az , A4 = iφ. Then we can
write E in the form
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E = 1

i

[
e1

(
∂A1

∂τ
− ∂A4

∂x

)
+ e2

(
∂A2

∂τ
− ∂A4

∂y

)
+ e3

(
∂A3

∂τ
− ∂A4

∂z

)]
. (5.36)

The expression (5.36) is a way of writing (5.35) so that it has a form similar to (5.33).
In this way we illustrate the fact that the components of the vectors E and B are the
elements of a more complex mathematical entity, called the electromagnetic field
tensor, which we represent by means of a four-dimensional antisymmetric matrix:

Fμν =

⎛

⎜⎜
⎝

0 −Bz By i Ex

Bz 0 −Bx i Ey

−By Bx 0 i Ez

−i Ex −i Ey −i Ez 0

⎞

⎟⎟
⎠ , (5.37)

where μ, ν = 1, 2, 3, 4. This tensor is the fundamental physical quantity describ-
ing the electromagnetic field in vacuum. The electric field E is the spatial vector
with components E j = i F4 j , whereas the magnetic field B is the pseudovector with
components Bi = 1

2εi jk Fjk , where j, k = 1, 2, 3. From the properties of Fμν under
Lorentz transformations, the interdependence of the electric and magnetic fields can
be found. Actually, these are characterized in general by the relativistic invariants

E2 − B2 = invariant, E · B = invariant. (5.38)

For instance, if E and B are perpendicular in some frame of reference (so that
E · B = 0), they will be perpendicular in any other frame of reference.

On the other hand, if in one frame there is only an electric field (E �= 0 andB = 0),
in another frame of reference, a magnetic field B′ may also appear, but in the new
frame, the new vectors E′ and B′ must satisfy the condition

E′2 − B′2 = E2. (5.39)

Similarly, if in the initial frame there is only a magnetic field B, in another frame of
reference we should observe electric and magnetic fields E′ and B′, but satisfying
the condition

E′2 − B′2 = −B2. (5.40)

The four-vector Aμ = (A1, A2, A3, A4) is usually not observable, but the com-
ponents of the field tensor Fμν , i.e., E and B, are observable. If one adds to the
four-vector Aμ the four-gradient of a Lorentz-scalar function f of coordinates and
time, the value of Fμν , that is, the values of E and B, do not change. This means that
if we carry out the transformation
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A′
1 → A1 + ∂ f

∂x
,

A′
2 → A2 + ∂ f

∂y
,

A′
3 → A3 + ∂ f

∂z
,

A′
4 → A4 + ∂ f

∂x4
= i

(
φ − 1

c

∂ f

∂t

)
,

(5.41)

and substitute A′
1, A

′
2, A

′
3, A

′
4 into (5.33) and (5.36), the same values for E and B are

obtained as by using A1, A2, A3, A4.
This property is called gauge invariance, and it is very important in modern

physics.
Let us remark at this point that there is another way for defining the four-vectors

and tensors in special relativity. One may avoid the imaginary fourth-component by
using the so-called covariant and contravariant quantities (we shall encounter them
again in Chap.10 in a more general case). A contravariant four-vector is written
as Aμ = (A0, A1, A2, A3) = (A0,A). Its covariant partner is Aμ, with the property
A0 = A0 and Ai = −Ai , with i = 1, 2, 3. The scalar product of two four-vectors Aμ

and Bμ is given by

AμBμ = A0B0 + A1B1 + A2B2 + A3B3 = A0B0 − A1B1 − A2B2 − A3B3.

A covariant four-vector is obtained from its contravariant expression by multiplying
it by the metric tensor gμν , where g00 = 1, g11 = g22 = g33 = −1 and gμν = 0, for
μ �= ν. Thus,

Aμ = gμν A
ν,

where sumover repeated indices is assumed. Similarly,wemaydefine how to get con-
travariant four-vectors from the covariant ones. The scalar product may be written as
AμBμ = gμν AμBν . The correspondence with the imaginary components is simple:
A0 = A0 = A4/ i , whereas the spatial components are the same as the contravariant
ones A1,2,3 = A1,2,3.

Four-vectors and tensors in the imaginary fourth-component notation are some-
times easier to handle. Also, they appear in Euclidean field theories (as temperature
quantum field theory), and it is useful to be familiar with both notations.

5.9 Energy and Momentum

The momentum of a free particle of mass m moving at a velocity V is defined in the
special theory of relativity as
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p = mV
√
1 − V 2/c2

, (5.42)

and its energy as

E = mc2
√
1 − V 2/c2

. (5.43)

The two quantities form a four-vector Pμ = (
px , py, pz, i

E
c

)
, with

P2
μ = p2 − E2

c2
= −m2c2, (5.44)

from which we obtain
E = c

√
p2 + m2c2. (5.45)

For low velocities V � c, so that
√
1 − V 2/c2 ≈ 1, the expressions (5.42) and (5.43)

yield the non-relativistic momentum

p = mV,

and energy

E = mc2 + mV 2

2
, (5.46)

that is, the rest energy mc2 plus the expression for the kinetic energy of Newtonian
mechanics. For V = 0, we have the expression

E = mc2, (5.47)

which relates the mass of a body at rest with its energy content. This expression is
probably the most widely known consequence of the theory of relativity.

The largest amount of energy that a body is able to produce (for example, when
it is transformed completely into radiation) is equal to the product of its mass and
the square of the speed of light. This relation explains the production of enormous
amounts of energy in nuclear fission processes (division of an atomic nucleus), in
which a certain excess of the initial mass of the nucleus when compared to the sum
of the masses of the final nuclei is totally converted into radiation energy.

But there are some other processes, such as particle–antiparticle pair creation,
to which we will refer subsequently in more detail, in which a photon, which is
massless, but has high enough energy, when passing near an atomic nucleus or
through a magnetic field, disappears, while producing two new particles, an electron
and a positron. For the process to occur, the energy of the photon should be greater
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than or equal to twice the rest energy of the electron (the mass of the positron is equal
to the electron mass, and therefore, its rest energy is equal to that of the electron),
that is

Ephoton ≥ 2mc2, (5.48)

where m is the electron mass.

5.10 Photons

From the expressions (5.42) and (5.43) for the energy and momentum of a particle
in relativistic mechanics, one deduces the relationship

p = E

c2
V. (5.49)

This expression is the analog of the non-relativistic expression

p = mV, (5.50)

with the mass m replaced by the ratio E/c2. If the particle moves at the speed of
light, we have

p = E

c
n, (5.51)

wheren is the unit vector in the direction ofmotion. Introducing (5.51) into (5.44), we
observe thatm = 0 for a particle moving at the speed of light. This is understandable,
if we recall that the particle moves at the maximum possible velocity. If it had a
nonzero mass, then the greater its velocity, the more difficult it would be to accelerate
it, that is, to increase its velocity, and in fact it could not reach the speed of light.

We have already referred to the behaviour of electromagnetic radiation as waves
and as particles, which we called photons. The particle character is more easily
observable for high frequencies, as in the X and gamma rays.

Photons are typical relativistic particles, whose mass is zero. But their corpuscu-
lar character is relative, since the frequency of the radiation coming from a lamp,
measured by an external observer, depends on the velocity of the lamp relative to
the observer. For instance, if it emits red light, and approaches the observer at high
velocity, the light could appear to be yellow, blue, etc., depending on its velocity.
If the lamp approaches the observer at almost the speed of light, the observer will
detect photons of X or gamma rays. This is a relativistic effect, and radiation of
low frequency emitted by a lamp can be seen by an observer as having very high
frequency (where the corpuscular character dominates) if the lamp approaches the
observer at a velocity close to c. The opposite effect occurs if the lamp moves away
from the observer.
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Fig. 5.10 Right (R) and left
(L) circular polarizations of
the photon. In the first case,
the spin direction is parallel
to its momentum k. In the
second, they are antiparallel.

Let us analyze the characteristics of the photon in vacuum in more detail. The
condition of gauge invariance, combined with the fact that it moves at the speed of
light, implies that the photon has only two transverse degrees of freedom, which
correspond to the two possible polarizations (for instance, left- and right-circular)
of an electromagnetic wave, in the wave version of the electromagnetic radiation
phenomenon (Fig. 5.10).

On the other hand, the photon has an intrinsic angular momentum or spin equal
to 1 (in units of the Planck constant �, as already mentioned). For any particle, one
can define a quantity proportional to the projection of the spin on the direction of
momentum, namely the helicity:

H = S · p
|p| .

For massless particles, the helicity is a relativistic invariant. When the relativistic
particle has zero mass, its momentum and spin direction can only be parallel or
antiparallel. This means that the helicity can have only two values, and we interpret
them as characterizing two degrees of freedom. For a photon, these are identified
with the two transverse circular polarizations.

A particle similar to the photon, but with mass different from zero, would move
at a lower velocity than c, and in addition to the two transverse degrees of freedom,
it would have a third one, corresponding to a longitudinal polarization.

If the radiation propagates in a medium, for instance in a plasma, these longitu-
dinal oscillations may appear, since the radiation acquires an effective mass, and the
velocity of propagation of the waves is less than the speed of light in vacuum.

5.11 Neutrinos

Neutrinos were considered for years as purely relativistic particles, that is, with
zero rest mass. They differ from photons, which are bosons (have integer spin �),
because neutrinos are fermions (have half-integer spin �/2). However, in recent
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Fig. 5.11 For the neutrino,
the spin is related to the
momentum direction as in
a left-hand screw (L), while
for the antineutrino, the
relation is as in a right-hand
screw (R).

years observations of so-called neutrino oscillations suggest that they may have a
very small mass.

Such oscillations have beenmeasured experimentally, indicating amass of around
∼10−5 of the electron mass (see Chap.11). However, for the moment we shall con-
sider the neutrinos to be massless, as is done in the Standard Model of particle
physics. The neutrino spin is related to its momentum as shown in Fig. 5.11. The
neutrino is said to have left helicity (L), while the antineutrino has right helicity (R).
For spinors, or spin 1/2-fermions, the values of the helicity can be H = ±�/2. The
plus sign corresponds to R and the minus sign to L .

It is easy to understand that such a massless neutrino cannot change its helicity,
since that would be equivalent to reversing its direction of motion, and to do that,
it would be necessary to be at rest at some moment, or in some reference frame.
Neutrinos are found in Nature only with negative helicity, or left-handed. They are
chiral particles. We shall return in more detail to chirality in Chap.11.

Antineutrinos are produced in beta decay and their R helicity is related to parity
non-conservation, which we shall discuss in Chap. 9.

5.12 Tachyons and Superluminal Signals

Is it actually forbidden by the special theory of relativity for particles to move faster
than light? We have seen that particles moving at lower speeds than c will have
a speed lower than c in any frame of reference. This is a consequence of the law
of composition of velocities (5.25). If v > c, the expressions for the energy and
momentum (5.43) and (5.42) can be real if the mass m is a pure imaginary number
m = iM .

At the end of the 1950s, it was suggested that the existence of superluminal
particles, called tachyons, would not contradict special relativity.

However, there is no evidence for tachyons as observable particles.We shall see in
Chap.7 that quantum theory assumes the existence of non-observable virtual parti-
cleswhich are not necessarily confined by the light cone, and theirmomentum/energy
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G G

a b

H
H

B

B
A

A

Fig. 5.12 (a) If G has a superluminal source, a signal sent in A is seen by H as if it traveled to the
past when it is received at B. (b) The events as seen by H .

Fig. 5.13 If F also has a
superluminal source, and
when the signal sent by G
from A is received at B, he
sends a signal in the opposite
direction, the latter is
received by G before the
signal is emitted from A.
Thus, G could influence his
past.

H

G

A

C

B

F

relation may correspond to a higher speed than c. But virtual particles do not carry
energy at an observable speed higher than c.

However, if we assume the existence of a superluminal ‘signal’, this could transmit
information to the past, violating causality. This was argued cogently by Roger
Penrose (b. 1931). Consider an observerG emitting a superluminal signal at the point
A of his world line. Another observer H , which coincided with G before sending the
signal and moved after that with velocity V ≤ c (Fig. 5.12a) would observe that the
signal arrived at B before having been emitted, and thus travelled backward in time.
From the point of view of the observer H , the diagram is as shown in Fig. 5.12b.

If now a third observer F , moving in the opposite direction to G (Fig. 5.13), also
emits a superluminal signal just at the moment when the signal sent by G is received
at B, but in the opposite direction, this signal would arrive at a point C on the world
line of G before being emitted at A. In this way G would have influenced his own
past.

Let us justify some of these conclusions by using the expressions for the Lorentz
transformations of spacetime coordinates. We assume that the observer H sees G as
moving to the left with velocity−V and F as moving to the right with velocityV. We
assume also that, at the moment when the superluminal signal with velocity Vg > c
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is sent by G from the point A, the spacetime coordinate origins of the three frames
coincide. For G, the point A has coordinates (0, 0). Let us denote the coordinates
of the signal’s arrival at B by (x, t = x/Vg). The two events (separated by a space-
like interval) have coordinates (0, 0) and (x ′, t ′) in the frame of H , where, defining
γ = 1/

√
1 − V 2/c2,

x ′ = γ x

(
1 − V

Vg

)
, t ′ = γ

x

Vg

(
1 − VVg

c2

)
. (5.52)

If we assume VVg > c2, then t ′ < 0. Then H concludes that the superluminal signal
arrived at B before it was emitted. If the observer F sends a superluminal signal from
B in the opposite space direction, also with velocity Vg , it is easy to show by similar
reasoning that it is received atC at some time t < 0, before being sent from A. In this
way, G can influence his own past. This precludes observable superluminal signals,
since theywould violate Einstein causality.An equivalent problemwith superluminal
signals appears in general relativity, in connection with the hypothetical wormholes,
but this topic is purely speculative.

5.13 The Lagrangian for a Particle in an Electromagnetic
Field

Equations (5.42), (5.43) canbeobtained from theLagrangian in relativisticmechanics.
For a free particle, we define the action as

S = −mc
∫ 2

1
ds, (5.53)

whereds = √
1 − V 2/c2dt is the infinitesimal space-time interval. For theLagrangian

of the free particle, we get L = −mc2
√
1 − V 2/c2, and from this, equations (5.42),

(5.43) follow immediately since p = ∂L/∂v, and E = p · v − L .
In the presence of an electromagnetic field Aμ, the action of the particle contains

the additional term e
c

∫
Aμdxμ = e

c

∫
Aμ(dxμ/dt)dt , where dxμ/dt = (v, ic). The

new Lagrangian is

L = −mc2
√
1 − V 2/c2 + e

c
A · v − eφ, (5.54)

from which the generalized momentum is P = ∂L
∂v , whence

P = mv
√
1 − V 2/c2

+ e

c
A = p + e

c
A. (5.55)
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We can get the Hamiltonian from H = v · ∂L/∂v − L , and after substituting the
appropriate terms we have

H = mc2
√
1 − V 2/c2

+ eφ. (5.56)

Note that the Hamiltonian does not contain the term A, so it does not depend on the
magnetic field. We conclude that

(
H − eφ

c

)2

= m2c2 +
(
P − e

c
A

)2
. (5.57)

Replacing theHamiltonian by the energy, we get an expression for the total energy
of a charged particle of mass m in an electric potential φ = e′

r . We shall assume that
it is created by another particle of mass M � m. Then, denoting the product of their
charges by K = ee′, the energy is

E = c
√
p2 + m2c2 + K

r
. (5.58)

If we use polar coordinates in a plane, we have p2 = p2r + L2/r2, where L is the
angular momentum, and we can find the equation of motion of the particle of mass
m. It can be shown that, for the case Lc > |K |, the curve is given by the expression

r = c2 L2 − K 2

EK + c
√
L2E2 − m2c2(L2c2 − K 2) cos

(
φ
√
1 − K 2/c2 L2

) . (5.59)

If E < mc2, the trajectory is confined to finite values of r , but it can never be closed.
Defining θ = φ

√
1 − K 2/c2L2, if φ takes values in (0, 2π), the range of θ is smaller,

in (0, 2π
√
1 − K 2/c2L2). Thus, the radial frequency is smaller than the angular

frequency, and the motion is in the form of a rosette, i.e., like a precessing elliptic
curve. If E > mc2, the trajectory is open, like a precessing hyperbolic curve.

Problems

Problem 5.1Write down the inverse of the Lorentz transformation (5.6).

Problem 5.2 Doppler effect. Consider an electromagnetic wave propagating in a
frame of reference K0 in which the source is at rest. Its electric field is

E = e ei(k1x+k2 y+k3z−ω0t).
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To describe the propagation of light, the phase term must be a relativistic scalar,
which is the scalar product of two four-vectors, the coordinate four-vector x, y, z, ict
and the wave four-vector with components ki , i = 1, 2, 3, and k4 = iω/c, where
ω = (k21 + k22 + k23)

1/2c. The frequency of the light wave is measured by an observer
moving with velocity V relative to the light source. We consider the observer to
be moving parallel to the x axis, and we can write the component k1 = k cosα =
ω
c cosα. Find the observed frequency ω as a function of the source frequency ω0 in
the rest frame, the velocities V and c, and the direction of the wave vector α.

Problem 5.3 Consider a particle of mass M at rest which decays spontaneously into
two particles of masses m1 and m2. Since they are moving, their energies are bigger
than their rest energies, E1 ≥ m1c2, E2 ≥ m2c2. Conservation of energy implies

Mc2 = E1 + E2. (5.60)

Momentum must be conserved, as well as energy, in the decay. Find the expressions
for E1 and E2 in terms of the masses M , m1, and m2.

Problem 5.4 The Sun’s core is estimated to have a radius 1/5 of the solar radius.
Its volume is expected to be roughly (1/5)3 of the total volume of the Sun, which is
V� = 1.422 × 1018 km3. Estimate the equivalent mass of the radiation enclosed if
its temperature is ∼ 1.36 × 107 K.

Problem 5.5 Assume that (5.59) is valid for a relativistic Keplerian problem, that is,
for the case of a gravitational field. This is an approximation, since the problem should
actually be solved in the framework of general relativity (see Chap. 10). However,
the present approximation is assumed for the moment to be special relativity plus
Newtonian gravity. For the motion of a photon, we takem = 0 everywhere except in
the quantity K = −GMm. Calculate the deviation from a straight line for a photon
of energy E > 0 coming from a distant star and passing close by the limb of the Sun,
of mass M�.

Hint:Write K = −GME/c2, that is, treat the photon as a particle interactingwith
the gravitational field via an “effective gravitational mass" E/c2. (This is not strictly
rigorous andwe shall use it only in the present problem.)By calling rg = 2GM/c2 the
Sun’s gravitational radius, we obtain K = −Erg/2, leading to K 2/c2L2 = r2g/4R

2�.
The motion is actually an open precessing hyperbolic motion, since the argument of
the curve is such that, when the polar angle φ varies from 0 to 2π , it sweeps through
an angle less than 2π , but since the difference is only a very small amount, namely,
∼ 2πr2g/R

2�, it can be approximated by a hyperbolic motion.
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Chapter 6
Atoms and Quantum Theory

In the twentieth century began a new era for physics by modifying ideas established
in previous centuries. The concepts of space and time were changed drastically by
special relativity, while quantum behaviour and the dual nature of radiation were dis-
covered. In Chap. 4 was described how the investigations on black body radiation and
the photoelectric effect opened the way to understanding the quantum properties of
the atomic world, which were first revealed by studying the emission and absorption
of electromagnetic radiation.

While the wave nature of light had been demonstrated beyond doubt in a large
number of experiments, in some new phenomena light appeared to have a corpus-
cular structure. The situation turned still more paradoxical when it became clear
that, conversely, particles making up atomic structure, such as electrons, manifestly
showed wave properties. Such wave–corpuscle duality was a characteristic of the
atomic world.

It became clear later that it was not possible to determine simultaneously and with
arbitrarily high precision the momentum and position of an atomic particle, e.g., the
electron. A new form of mechanics had to be invented: quantum mechanics.

6.1 Motion of a Particle

Classically the motion of a particle is described by giving its position and its velocity
(or its momentum) at any moment of time and, in principle, there is nothing to stop
us from knowing where it is and how much momentum it has at each instant of time.
But for a particle of the atomic world, this is not possible. To illustrate this point, it
is preferable to start from two experiments.

First Experiment. Assume that we have fine sand and a screen with two small holes,
in the form indicated in the Fig. 6.1. On a screen below it, we measure the probability
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part of Springer Nature 2021
M. Chaichian et al., Basic Concepts in Physics, Undergraduate Lecture Notes in Physics,
https://doi.org/10.1007/978-3-662-62313-8_6

197

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-62313-8_6&domain=pdf
https://doi.org/10.1007/978-3-662-62313-8_6


198 6 Atoms and Quantum Theory

Fig. 6.1 The probability of
arrival of the grains of sand
on the screen is P1, if hole 2
is closed, and P2 if hole 1 is
closed. When both holes are
open, it is P12 = P1 + P2.

P2

P12

P1

of arrival of the grains of sand when the two holes are open. We observe that they
form a small hill of sand. If we are interested in the probability in a direction x (say,
along a straight line on the screen, parallel to the line passing through both holes, as
indicated in the figure), we will get the curve P12. If we now close hole 2, a hill will
be formed below hole 1, and the corresponding probability along the line joining the
holes will be the curve P1. The same analysis for the case in which 1 is closed and
2 is kept open would give a similar hill under hole 2 and the curve P2.

The result of the experiment when the holes are open alternatively is the same as
when both are open simultaneously. Furthermore, at each point,

P12 = P1 + P2. (6.1)

Second Experiment. Suppose that a similar experiment is done with electrons, as
in Fig. 6.2. Now, an “electron hill” would not form on the screen, but it would be
possible in principle to measure the probability of arrival at each point, with adequate
detectors.

If hole 2 is closed, we have the curve of probability P1 along x (very similar to
the one corresponding to the diffraction of light by a slit). If we close 1, we have the
probability P2. If both are open, we obtain the curve P12. But now

P12 �= P1 + P2. (6.2)

When both slits are open, there is interference (a typical wave phenomenon) between
the possible trajectories of the electron through each one of the holes. Which slit did
the electron pass through? Through 1? Through 2? Through both? We can only state
from the results of this experiment that the electron did not have a definite trajectory.

The description of the particles of the atomic world requires the inevitable use
of objects that can be named in general apparatus, obeying the laws of classical
mechanics, which are used to make the measurements of the physical quantities. The
above-mentioned wall can be considered as one such piece of apparatus that mea-
sures throughwhich hole the electron passes, and themore precise this measurement,
the more uncertain the corresponding momentum, or the velocity.

This can be expressed as follows: quantummechanicsmust be formulated in terms
of principles essentially different from classical mechanics. For instance, in quantum
mechanics there is no such concept as the path of a particle. This is a consequence of
the uncertainty principle, formulated by Werner Heisenberg (1901–1976) in 1927.
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Fig. 6.2 In the case of light
or electrons, if we repeat
experiment 1 by using an
adequate wall, we find that
P12 �= P1 + P2.

P12

P2P1

This principle also establishes that every measurement destroys part of our knowl-
edge of a system that was obtained by previousmeasurements. As Heisenberg argued
in his original paper, if �x is the uncertainty in measuring the position along x , and
�px is the uncertainty in measuring simultaneously the conjugate momentum, their
product is such that �px�x ∼ h, where h is the Planck constant. This relation was
the first quantitative expression of the uncertainty principle, although Heisenberg did
not define preciselywhat the uncertaintiesmeant. Later on, he refined the formula, but
always preferred to think about the principle in heuristic terms. An exact expression
was found in 1927 by Earle Hesse Kennard, by giving the uncertainties the statistical
meaning of standard deviations (which is not really what Heisenberg meant):

�px�x ≥ �/2.

In some experiments, however, one can obtain information about both quantities:
position and momentum or velocity, but each involving some indeterminacy. Then
one could speak of the trajectory of the particle, but this has only an approximate
meaning.

There exists a device to observe the trajectories of particles, called a Wilson
cloud chamber, in honour of Charles Wilson (1869–1959), who was awarded the
Nobel Prize in Physics in 1927 for this momentous invention. In such a chamber, the
trajectory of a charged particle can be observed when it enters the chamber because it
ionizes the medium, and water vapour condenses on the resulting ions to form small
droplets. The width of the path described by such droplets, when observed, is large
as compared with the atomic dimensions.

The process of measurement in quantum mechanics (which always requires
macroscopic objects, or at least objects obeying the laws of classical physics) plays
a central role in this science, since it always affects the quantum particle in such a
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way that, the more exact the measurement, the more significantly the motion of the
particle is perturbed, according to the uncertainty principle.

The phenomenon of interference described in experiment 2 shows that the electron
has wave properties. In fact, in order to describe a particle in quantum mechanics,
a wave function � (x, t) is introduced, which is in general a complex function, the
square of its modulus |�|2 being the probability density of localization of the particle
in space, as we shall see later.

6.2 Evolution of the Concept of Atom

The Greek philosopher Democritus of Abdera (c.460–c.370 bce) put forward the
hypothesis that the Universe consists of empty space and an enormous number of
indivisible particles, and that by joining and separating them, we get the creation and
disappearance of bodies.

Approximately a century later, another Greek philosopher, Epicurus (341–
270 bce), gave the name atoms to these particles. More than twenty centuries after
that, in 1738, Daniel Bernoulli was the first to attempt to construct a theory of gases
based on the atomic structure model, using the calculus of probabilities, but his
contemporaries did not pay very much attention to his work. At the beginning of
the nineteenth century, John Dalton introduced the hypothesis of atomic structure
once again, and Amedeo Avogadro contributed with the idea of integrated molecules
(comprising several atoms each) and elementary molecules (as single atoms). Start-
ing from the middle of the 19th century, the kinetic theory of gases was developed
by James Prescott Joule, Rudolf Clausius, and James Clerk Maxwell, and subse-
quently by Ludwig Boltzmann, who based it on his statistical interpretation of the
second law of thermodynamics. In 1881, Hermann von Helmholtz, after analyzing
the work done by Michael Faraday on electrolysis, suggested the atomic nature of
electricity, and later, George Johnstone Stoney proposed the term electron for the
unit of electric charge.

In 1897, Joseph John Thomson, as a consequence of his studies of cathode rays,
once again stated the atomic nature of electricity. Thomson is credited with the actual
discovery of the electron, for which he was awarded the Nobel Prize in Physics in
1906. Later, Thomson proposed a model of the atom sometimes called the plum
pudding, since it treated the atom as a positive charge in which the electrons were
embedded like the plums in a pudding. The electrons were assumed to oscillate
around their mean positions when emitting or absorbing radiation.

6.3 Rutherford’s Experiment

In 1884, the Swiss mathematician Johann Jakob Balmer published the result of
his investigations on the hydrogen spectrum data. When the radiation emitted by
hydrogen gas is studied (for example, by producing electric arc sparks inside a jar
containing the gas), the visible spectrum is found to consist of a series of discrete
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lines. Balmer gave an empirical formula for the frequencies of the different lines:

ν = cR

(
1

22
− 1

n2

)
, n = 3, 4, 5, . . . , (6.3)

where R = 1.09737 × 105cm−1 is the Rydberg constant and c is the speed of light.
Later, similar empirical formulas for other spectral series of hydrogen were found.

In 1911, Ernest Rutherford (1871–1937) bombarded a thin sheet of gold with
alpha particles (which are helium nuclei, having positive charge) and concluded that
atoms comprise a massive positively charged nucleus around which the electrons
move rather like in a very small planetary system. The nucleus was playing the role
of the Sun, and the electronsweremoving around it like the planets. The experimental
data indicate that the nucleus contains more than 99.8% of the mass of atom but its
radius is approximately 105 smaller than the atomic radius.

The basic idea behind Rutherford’s experiment is very simple. Suppose that one
has a bale of hay within which one wants to know whether a steel tool is hidden. We
do not have at our disposal any other instrument than a shotgun with steel bullets,
and we cannot undo the bale of hay. How can we find out whether the tool is hidden
there? If we fire the shotgun and the bullets pass straight through, there is no tool
in the bale. But if some bullets recoil, and if we measure their angles of deviation
and the number of bullets emerging at each angle or in an interval of angles, we get
much more information about the tool, i.e., we can determine whether it is large or
small, etc.

Rutherford counted the alpha particles recoiling at different angles in his experi-
ment, in which the “shotgun” was an emitter of alpha particles, and his “bale of hay”
was a sheet of gold. The leading idea was that, since the charge of the alpha particles
is positive, if there was a positively charged nucleus, the effect of the bombardment
would give rise to collisions of alpha particles with the nuclei, similarly to the elastic
collisions of the bullets with the tool hidden in the hay. This was the first reported
experiment on particle scattering in physics.

6.4 Bohr’s Atom

At this point, a contradiction appeared with the electromagnetic theory. The plane-
tary model suggested that the electrons moved around the nucleus in elliptical orbits.
But in this case, the electrons would be accelerated continuously and, according
to electrodynamics, an accelerated charge should emit radiation, leading to a con-
tinuous loss of energy, so that the electron would eventually fall onto the nucleus.
Furthermore, this emission of energy would give a continuous spectrum. However,
spectroscopists had demonstrated that atoms do not emit energy continuously, but
discretely, in the form of spectral lines (Fig. 6.3).
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Fig. 6.3 The Danish
physicist Niels Bohr was one
of the most outstanding
physicists of the twentieth
century.

In 1913, a youngDanish physicist, Niels Bohr (1885–1962), who had collaborated
with Rutherford, found a way to solve the crisis by exploiting the quantum ideas
introduced by Planck and Einstein. Bohr proposed two fundamental postulates:

1. Out of all electron orbits, only those are permissible for which the angular
momentum of the electron is an integer multiple of the reduced Planck constant
�, and no energy is radiated while the electron remains in any one of these
allowed orbits. There orbits are called stationary;

2. Whenever radiation energy is emitted or absorbed by an atom, this energy is
emitted or absorbed in quanta that are integer multiples of hν(= �ω), where ν
is the frequency of the radiation, and the energy of the atom is changed by this
amount.

In other words, if Ei and Ef are the initial and final energies of the electron in the
atom emitting radiation, the condition

Ei − Ef = hν

is satisfied. For circular orbits, the quantization condition of Bohr (first postulate)
reads:

mvr = n�, n integer, (6.4)
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where m is the mass of the electron, v is its velocity, and r is the radius of its orbit in
the atom. On the other hand, the electron is kept on its orbit by the Coulomb force,
which is equal in absolute value with the centripetal force:

mv2

r
= e2

r2
. (6.5)

From (6.4) and (6.5), we obtain easily the quantization of the radius and velocity:

rn = n2�2

e2m
, vn = e2

n�
.

A simple calculation leads to the following expression for the energy of the electron
in the hydrogen atom:

En = −me4

2�2

1

n2
, n = 1, 2, 3 . . . (6.6)

We observe that the constant coefficient in (6.6), if we multiply and divide by
c2, may be written as proportional to mc2α2, where mc2 is the rest energy of the
electron according to Chap.5, and the dimensionless constant α = e2/�c � 1/137,
the so-called fine structure constant, characterizes the electromagnetic interactions
in the atom. According to the second postulate, for the frequency of the spectral lines
we obtain:

ν = E f − Ei

h
= 2π2me4

h3

(
1

n2f
− 1

n2i

)
. (6.7)

Here nf = 2 yields the Balmer series (ni is always greater than nf ), while nf =
1, 3, 4, 5 yield the Lyman, Paschen, Brackett, and Pfund series, respectively. The
Balmer series lies in the visible and near ultraviolet region. The Lyman series is in
the ultraviolet, whereas the last three are in the infrared region. The number

2π2me4

ch3
= 1.09740 × 105cm−1 (6.8)

corresponds very well to the value of the Rydberg constant for hydrogen, named
after Johannes Robert Rydberg (1854–1919). The reader may compare with (6.3),
and observe that the value predicted by theory agrees very well with the experimental
result.

The different spectral series result from the jumps of the electron from diverse
excited states to a fixed final state. For instance, the Balmer series is produced by
electron jumps from the initial levels ni = 3, 4, 5 . . . , to the final level nf = 2.

Bohr’s theory concluded that atomic quantities must be discrete multiples of the
quantum of action h. The system obeyed classical mechanics, except that the allowed
motions satisfied the more general Bohr–Sommerfeld quantization rule
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∮
pidqi = nih,

where n is an integer and pi is the momentum conjugated to the coordinate qi , the
integral being taken over the classical region, where H(p, q) = E . In the case of
circular orbits as in (6.4), p = mrω, dq = rdθ, 0 ≤ θ ≤ 2π, where r ,ω are constant.

Bohr’s postulates led to an adequate model to explain the spectra of the hydrogen
atom, but in the end they were replaced by a more complete quantum theory.

There is a historical analogy between the role of Bohr’s quantum mechanics as
regards the atomandNewton’smechanics as regards planetarymotion. InChap.1,we
noted that, starting with observational results, some empirical laws were formulated
(theKepler laws), andNewton subsequently constructed the theory: the second lawof
motion and the gravitational interaction law. This time therewas also an experimental
result (the discrete character of the emission spectra) and empirical laws (the Balmer
series), and then a physical theory was formulated, based on Bohr’s postulates, and
from which the empirical laws could be deduced.

Newtonian mechanics and the theory of gravitation remained valid for more than
two centuries, until it was demonstrated that they are limiting cases of more general
theories, viz., Einstein’s relativistic mechanics and theory of gravitation.

In contrast, Bohr’s quantummechanics (or the Bohr–Sommerfeld model of quan-
tization) became obsolete after a much more shorter time. The model was unsatis-
factory for describing more complicated atomic systems, such as the helium atom.
It ignored the electron spin and the Pauli exclusion principle, and it contradicted the
uncertainty principle, since it assumed classical orbits where position and momen-
tum could be known simultaneously. Thus, after some twelve years, Bohr’s model
was substituted by the new quantum mechanics due to Erwin Schrödinger, Werner
Heisenberg, Max Born, Paul AdrienMaurice Dirac, Pascual Jordan and others. Bohr
himself had the privilege, not only of following this evolution of the quantum theory,
but also of contributing significantly to its development.

6.5 Schrödinger’s Equation

In 1924,Louis deBroglie (1892–1987),made the bold suggestion that, since radiation
has dual behaviour as waves and particles, atomic particles like electrons, should also
manifest wave properties. That is, if we have the relation

E = hν (6.9)

between energy and frequency for a particle, then we must have the relation

p = mv = h

λ
(6.10)
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Fig. 6.4 a According to the de Broglie model, a stationary orbit should contain an integer number
of wavelengths of the electron. b In the opposite case, there would be destructive interference and
such an orbit would not exist for the electron.

between momentum and wavelength. This speculation by de Broglie was con-
firmed experimentally by George Paget Thomson (1892–1975), and independently
by Clinton JosephDavisson (1881–1958) and Lester Halbert Germer (1896–1971) in
1927, when they observed the phenomenon of electron diffraction in crystals. Louis
de Broglie was awarded the Nobel Prize in 1929, and Clinton Davisson and George
Thomson in 1937.

The de Broglie hypothesis can be shown to give rise to the Bohr stationary states.
To have an electron in a stable orbit around the nucleus, the closed orbit must contain
an integer number of wavelengths, otherwise the waves would interfere destructively
(Fig. 6.4). Then, if r is the radius of the orbit, we must have

2πr = nλ. (6.11)

However,
λ = h/mv, (6.12)

whence
rmv = n�, (6.13)

which was the first Bohr postulate.
As already pointed out, Bohr’s theory, developed subsequently by Arnold

Sommerfeld (1868–1951) among others, could not account for the new atomic phe-
nomena. Around 1925, Heisenberg, Jordan, and Born worked on a matrix form of
mechanicswhich differed fromBohr’smodel and gave results compatiblewith exper-
iment. For his work onmatrixmechanics,Werner Heisenbergwas awarded theNobel
Prize in 1932. But in 1926, a major step was taken by Erwin Schrödinger when he
published his famous wave equation, which was the beginning of the new quantum
mechanics, and for which he received the Nobel Prize in 1933. Schrödinger also
showed the equivalence between his wave mechanics and the matrix mechanics of
Heisenberg, which are thus different ways of expressing quantum mechanics.
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The fundamental assumptions made by Schrödinger, which led him to his final
equation, can be outlined as follows. There exists an analogy among the basic equa-
tions of classical mechanics and those of geometrical optics (we recall the analogy
between Hamilton’s principle of least action and Fermat’s principle in optics, men-
tioned in Chaps. 1 and 4). Then, if atomic particles have wave properties, they should
be governed by a wave mechanics that must bear the same relation to classical
mechanics as wave optics bears with regard to geometrical optics, according to the
following scheme:

Wave Optics −→ Geometrical Optics
Wave Mechanics −→ Classical Mechanics

In essence, the mathematical way to get the Schrödinger equation, is the following.
(a) First write down the classical expression for the energy of the system under
investigation. The kinetic energy is expressed in terms of the linear momentum:

1

2m
[p2x + p2y + p2z ] +U (r) = E, (6.14)

where p2/2m,U (r), and E are the kinetic, potential, and total energies, respectively.
As an example, for the electron in the hydrogen atom, U (r) = −e2/r .
(b) Classical quantities are replaced by operators, denoted by hatted letters, accord-
ing to the following rules:

px → p̂x = −i� ∂
∂x ,

py → p̂y = −i� ∂
∂y ,

pz → p̂z = −i� ∂
∂z ,

E → Ê = i� ∂
∂t .

(6.15)

Coordinates are substituted by themselves as operators, x̂ = x , ŷ = y, ẑ = z .
(c) A differential equation is built for the wave function, using the substitutions
(6.15) in (6.14), and applying the result to the wave function �(r, t):

[
− �

2

2m

(
∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2

)
+U (r)

]
� = i�

∂�

∂t
, (6.16)

where the quantity in squared brackets is named the Hamiltonian operator. In what
follows it will be denoted by Ĥ , so that (6.16) is written simply as

Ĥ� = i�∂�/∂t.

(d) In general, (6.16) is solved by imposing some simple conditions, viz., � is
periodic in time (as for any wave motion), vanishes at infinity, and is normalized
so that

∫
�∗�d3x = 1, where �∗ is the complex conjugate of �. Assuming the
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separation of space and time variables,wewrite�(x, y, z, t) = u(x, y, z)�(t). Then
dividing the Schrödinger equation by u(x, y, z)�(t), we get

[
− �

2

2m

(
∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2

)
+U (x, y, z)

]
u(x, y, z)/u(x, y, z) = i�

∂�(t)

∂t
/�(t),

where the left-hand side depends only on u(x, y, z) and the right-hand side only on
�(t). Each side may thus be equated to a constant, which is the energy E , whence

�(t) = e−i E
�
t

and (
∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2

)
u + 2m

�2
[E −U (x, y, z)]u = 0. (6.17)

For the hydrogen atom, Bohr’s postulates and the energies of the stationary states
follow as an immediate consequence:

En = −me4

2�2

1

n2
. (6.18)

Furthermore, the angular momentum is spatially quantized, that is, the inclination of
the orbit of the electron can assume only a discrete set of values, depending on the
value of n.

In order that the average value of quantum mechanical operators be real, the
operators must be Hermitian or self-adjoint. This means that, if F is an operator, its
average must satisfy 〈F〉 = 〈F〉∗. This can be written explicitly as

∫ ∫
drϕ∗Fϕ =

∫ ∫
drϕF∗ϕ∗,

where ϕ is a function of x, y, z and ∗ indicates the complex conjugate. If the oper-
ator is a matrix Mi j , the condition is Mi j = M∗

j i , i.e., it must be the complex con-
jugate of its transpose (the transposed matrix is obtained by exchanging rows and
columns). Denoting the transpose by the superscript t , the Hermitian conjugate of
Mi j is Mt∗

i j = M∗
j i . A unitary operator U is one whose Hermitian conjugate is its

inverse, i.e., Ut∗U = 1, or U−1 = Ut∗. It is common to simplify the notation for
Hermitian conjugation by putting Ut∗ = U †. In this notation the last two relations
read U †U = U †U and U−1 = U † (Fig. 6.5).
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Fig. 6.5 The Austrian
physicist Erwin Schrödinger,
whose famous equation is
one of the cornerstones of
modern physics. He worked
in several other fields,
particularly in statistical
physics.

6.6 Wave Function

Schrödinger interpreted�(x, y, z, t) as a wave field, and from that one could assume
that particles like electrons would be something like wave packets, similar to the
pulse of radiation of Fig. 4.18. But this idea did not work. Among other problems,
the wave packet would disperse and destroy itself in a very short time. However, the
term ‘wave packet’ is frequently used to refer to quantum mechanical particles, with
dual character.

Max Born (1882–1970) was the first to interpret the wave function amplitude
as a quantity associated with the probability of locating the particle at a particular
point. For this contribution, Max Born received the Nobel Prize in Physics in 1954.
According to Born’s interpretation, the square |�|2 of the modulus of the wave
function is the probability density of finding the particle at a given point. If the wave
function for the electron in the hydrogen atom is calculated, it is found that� depends
on three integers n, l,m. The first of these, n, determines the energy,while the second,
l, is associated with the angular momentum, and the third, m, is associated with the
component of the angular momentum along one of the coordinate axes. (A fourth
number s would be necessary in order to characterize the spin or intrinsic angular
momentum of the electron.)

The number n is a positive integer always greater than l, which is also a positive
integer, whereas, for a given value of l, the number m can assume all integer values
from −l to l.
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Table 6.1 Eigenvalues of the quantities determining the electron state in the atom.

General expressions Particular values for

n = 2, l = 1

m = −1, ms = − 1
2

Energy = −me4

2�2
1
n2

E = −me4

2�2
1
4

Square of the angular momentum

L2 = l(l + 1)�2 L2 = 2�
2

z-component of angular momentum

Lz = m� Lz = −�

z-component of spin

Sz = ms� Sz = − 1
2�

For each three numbersn, l,m, thewave function� is a functionof the coordinates
x, y, z, and the time t , and it characterizes a quantum state for the electron in the
hydrogen atom in which the energy, the angular momentum, and the component of
angular momentum in a given direction are well-defined quantities.

Besides these three numbers, in order to completely characterize the state of the
electron, it is necessary to specify its spin or intrinsic angular momentum. This is
another quantum number s whose value is 1/2 in units of �, but more interesting is
the number specifying the orientation of the spin along an axis, ms (the counterpart
of the number m). This number ms can take the values ±1/2. Then the state of the
electron in the atom can be characterized by the set of four numbers n, l, m, ms . For
example, if n = 2, l may assume the values 0 and 1. In the first case, we can have
onlym = 0, and in the second m may take the values −1, 0, 1, whereas ms may take
the values 1/2, −1/2. Then a particular state of the electron may be described, for
instance, by the set of four numbers (n, l,m,ms) = (2, 1,−1,−1/2) (see Table 6.1)
(Fig. 6.6).

In contrast with the classical case, the quantities energy, angular momentum, and
z-component of the angular momentum assume discrete values. (Note that the spin
is a particular case of angular momentum, intrinsic to the particle and independent of
the orbitalmomentumangular l.) But there is another extremely important difference.

In the classical case, we could in principle know the particle position exactly, if
the exact values of the energy and the angular momentum were also known. In the
quantum case this is not so. The wave function� characterizing the electron depends
on the coordinates, that is, its value depends on the coordinates of the point of space
we consider. These coordinates can be, for instance, the distance from the electron
to the nucleus and two angles that would fix its position in space. Let �n correspond
to an eigenvalue of the energy, say,

Ĥ�n = En�n, (6.19)
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Fig. 6.6 The German
physicist Werner
Heisenberg, who formulated
the foundations of the new
quantum mechanics in
matrix form, independently
of Schrödinger.

where n = 1, 2, . . .. This is a typical eigenvalue equation. In the atomic case, the
function �n depends also on other quantum numbers, such as l,m,ms , not written
explicitly in (6.19). The state of minimal energy is called the ground state, and is
non-degenerate in most cases. Other states are usually degenerate (more than one
quantum state for the same energy eigenvalue).

In (6.19), the values of the coordinates would remain uncertain, and for a state of
definite energy one can speak only about the probability that the electron be in some
region. For the ground state n = 1, the probability P(r) of finding the electron at a
distance r from the nucleus is a curve of the form shown in Fig. 6.7. The maximum
probability corresponds to the value r0 = �

2/me2, that is, the radius corresponding
to Bohr’s theory for n = 1.

Our wave function must include the spin. To do this, one must multiply � by a
function ψs that does not depend on the coordinates, and accounts for the part of the
wave function depending on the spin variables. We would then have a wave function
describing the electron completely.

What would happen if we made a measurement to determine the position of the
electron exactly? Then the electron would be in a state in which energy and angular
momentum would be completely uncertain. That is, if the position is determined at
some instant, the energy and the angular momentum do not have definite values at
that instant.
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Fig. 6.7 The probability
distribution for the distance
of the electron in the
hydrogen atom, according to
the new quantum mechanics,
is depicted for the ground
state, i.e., the state with
minimum energy. The
maximum probability
corresponds to the Bohr
radius, that is, the value of
the radius of the orbit
predicted by Bohr’s model
for n = 1.

This is the consequence of Heisenberg’s uncertainty principle, which we men-
tioned earlier. We wrote the uncertainty relations between position and momentum
along the x-axis, viz.,

�px�x ∼ h. (6.20)

As pointed out earlier, the relation (6.20) is very similar to (4.33), typical of wave
motion. Let us return to the diffraction problem in Chap. 4. A photon of wave number
k = 2π

λ
passes through the slit, of width D. Its uncertainty in position is given by the

width of the slit along the y axis, �y = D. The diffraction changes its momentum
along the y axis in the amount �p = ��ky . We can estimate the quantity �ky =
k sin θ as indicated in Fig. 4.9. As θ is small, sin θ ∼ tan θ ∼ θ = y/R. According to
the plot in Fig. 4.10, y ∼ Rλ/D. Then, θ ∼ λ/D, from which �ky ∼ 2π/D. This
implies �y�ky ∼ 2π, and �y�py ∼ h. Thus, we found the uncertainty relation for
the conjugated variables y and py .

However, proceeding on more general grounds we may get a lower bound if we
consider for instance the so-called minimum uncertainty wave packet. Let us start
from the wave function

ψ(x) = Ae
i
�
p0x− αx2

2� , (6.21)

which is a plane wave modulated by a Gaussian centred at the average value x =
x̄ = 0, and A is a normalization constant. The density of probability for any value
of x is

|ψ(x)|2 = |A|2e−αx2/�, (6.22)

which has to be normalized to one, i.e.

∫ ∞

−∞
|ψ(x)|2dx = 1.
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This normalization condition gives a relation between the constants A and α, which
is A2 = √

α
π�
.

The uncertainty in the position is defined according to Kennard as the stan-
dard deviation, i.e. the root mean squared deviation of the position from its mean,
whose expression is �x = √〈(x − x̄)2〉. Calculating the averages, one obtains
�x = √

�/2α.
In momentum space, the wave function is the Fourier transform of (6.21), i.e.

ψ̃(p) = 1√
2π�

∫
dx ψ(x)e− i

�
px .

One can show easily that its expression is

ψ̃(p) = A√
α
e−(p−p0)2/2�α, (6.23)

leading to the probability density in momentum space as |ψ̃(p)|2= A2

α
e−(p−p0)2/�α.

The standard deviation, or the uncertainty, in p is�p=√〈(p − p̄)2〉= √〈p2〉 − p̄2.
A short calculation of the averages gives �p=√

�α/2. Thus, we have found that

�x�p = 1

2
�. (6.24)

If we interpret the standard deviations as meaning uncertainties, the second term of
(6.24) establishes the lower bound for the expression (6.20). The general formula
�x�px ≥ �/2 is obtained by starting from the commutator of two noncommuting
operators.

As in the classical case, for a particle moving in a central force field, like the
electron in a hydrogen atom, it is more convenient in the quantum case, in place
of the linear momentum, to use the angular momentum to characterize the state of
motion, in addition to the energy. In that case, if the energy of a state is determined, it
is only possible to know simultaneously the angular momentum and its component
along one coordinate axis. Then the indeterminacy in the position of the electron
with respect to the nucleus (which can only be known with a certain probability) is
a consequence of the exact knowledge of the energy and angular momentum.

As we have already seen, quantum mechanical operators are associated with
observable quantities. A quantum measurement of one of these observables leads
to one of the eigenvalues of these operators. Two quantities p and q can be known
simultaneously if the corresponding quantum operators P̂ and Q̂ commute, i.e., if

Q̂ P̂ − P̂ Q̂ = 0. (6.25)

But if Q̂ P̂ − P̂ Q̂ �= 0, it is not possible to know p and q simultaneously. For position
andmomentum, the two corresponding operatorswould be the position operator Q̂ =
x and the momentum operator P̂ = −i� ∂

∂x . Applied to a function of the coordinates
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Fig. 6.8 The position of the
electron in a system centred
on the nucleus N , given in
spherical coordinates r , θ,
and ϕ.

N

θ

φ

z e

y

x

f (x), it can be checked that

(Q̂ P̂ − P̂ Q̂) f (x) = i� f (x). (6.26)

The Hamiltonian operator Ĥ for the electron in the hydrogen atom has the form

Ĥ = P̂2
r

2m
+ L̂2

2mr2
− e2

r
, (6.27)

where P̂r is the radial component of linear momentum, L̂ is the total angular momen-
tum, and r is the distance from the electron to the nucleus. This operator Ĥ does
not commute with r , since it contains the momentum operator P̂r . And neither does
it commute with P̂r . But it does commute with L̂2 and L̂ z , even though it does not
commute with the angles θ, ϕ that determine together with r the position of the elec-
tron (Fig. 6.8). From all this, it follows that, if the total energy is known, it is possible
simultaneously to know the total angular momentum and its component in a given
direction, but the distance r and the angles θ and ϕ, determining the position of the
electron are not precisely known. However, it is possible to know their mean values.
If �a(r) is the wave function and �∗

a (r) is the complex-conjugate wave function
in such a state, the average value of the position of the electron with respect to the
nucleus is given by the expression

〈r〉 =
∫

�∗
a (r) r �a(r)dr, (6.28)

where the integral extends over all space and the subscript a stands for the set of
quantum numbers (n, l,m).

Similarly, we can find the average values of other quantities whose values cannot
be known exactly in the quantum state �a . It can be shown that these average values
satisfy the classical equations of motion, a result known as the Ehrenfest theorem,
due to its discoverer, Paul Ehrenfest (1880–1933).
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It should be noted that quantum mechanics can also be formulated in terms of
path integrals, which generalizes the principle of least action of classical mechanics.
To compute quantum amplitudes, it replaces the classical trajectory of a physical
system in space and time, with a sum over an infinity of possible trajectories. The
path integral method in quantum mechanics was developed by Richard Feynman
(1918–1988), starting from an insightful observation made by Paul Dirac in 1933.

Note also the analogy between the diffusion equation (2.59) and the Schrödinger
equation (6.16), which suggests that the Schrödinger equation is a diffusion equation
with an imaginary diffusion coefficient. Incidentally, the path integral method was
developed initially for the Brownian motion by the mathematician Norbert Wiener
(1894–1964), in the beginning of the 1920s.

6.7 Operators and States in Quantum Mechanics

The mathematical formalism of quantum mechanics is essentially based on linear
vector algebra. Below we shall briefly acquaint the reader to this formalism, at the
same time introducing the widely used bra–ket notation proposed by Dirac in 1939.

The state of a microparticle is described in quantum mechanics by a function
which we shall denote by |ψ〉 (a ket vector), and which is an element of a vector (or
linear) space. The most familiar example of a vector space is the three-dimensional
Euclidean space of radius-vectors. At an abstract level, all the properties of radius-
vectors are fulfilled also by the state vectors of quantum mechanics. The dimension
of the space of state vectors depends on the properties of the system; quite often, this
dimension is infinite.

For a vector space, the dimension is the number of elements of a basis of the
space, the basis being defined as a subset of linearly independent vectors, such that
any other element of the vector space can be written in terms of the basis vectors.
Mathematically, assuming afinite dimension n, the linear independence of the vectors
|ψ1〉, |ψ2〉, . . . , |ψn〉 is written as the condition

c1|ψ1〉 + c2|ψ2〉 + · · · + cn|ψn〉 = 0, (6.29)

valid if and only if all the coefficients vanish, c1 = c2 = · · · = cn = 0. An arbitrary
element of the vector space, |ψ〉, is a linear combination of the basis vectors:

|ψ〉 =
n∑

i=1

ai |ψi 〉, (6.30)

where ai , i = 1, 2, . . . , n are complex numbers.
The bra vector 〈ψ| is defined as the Hermitian conjugate of the ket |ψ〉. The

simplest way to express Hermitian conjugation is by adopting amatrix representation
of the ket vectors, analogous to that of the radius-vector on an Euclidean space.
Then Hermitian conjugation, denoted by †, means matrix transposition and complex
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conjugation:
〈ψ| = |ψ〉† = (|ψ〉∗)T . (6.31)

In other words, if the ket (6.30) is written as the column vector

|ψ〉 =

⎛
⎜⎜⎜⎝
a1
a2
...

an

⎞
⎟⎟⎟⎠ ,

the corresponding bra will be the row vector

〈ψ| = (
a∗
1 a∗

2 . . . a∗
n

)
.

One defines the inner product or the scalar product of the state vectors, 〈ψ|φ〉,
which is a complex number. The real quantity 〈ψ|ψ〉 has necessarily to be positive,

〈ψ|ψ〉 � 0,

and
√〈ψ|ψ〉 is called the norm of the state vector |ψ〉.Moreover, in quantummechan-

ics such norms have to be finite. The probability for the particle to be in a certain
quantum state is 〈ψ|ψ〉.

There are some other assumption that the set of state vectors of a quantummechan-
ical system have to satisfy, but we shall not list them here, as they require more back-
ground knowledge in calculus. The space of state vectors is a particular example of
a Hilbert space.

The basis of a vector space is not unique. Recall again, for illustration, the
Euclidean space: one can choose a Cartesian coordinate system, or a spherical, or a
cylindrical one. Each of these systems correspond to a different choice of basis. Of
course, in each basis, the number of elements will be the same.

It is customary to consider the basis vectors to satisfy the property

〈ψi |ψ j 〉 = δi j , for any i, j = 1, 2, . . . , n. (6.32)

In this case we say that the basis is orthonormal (the norm of each basis vector is 1,
and the vectors are orthogonal to each other, just like the directions of the coordinate
axes in an Euclidean system). Then, if we have two state vectors,

|ψ〉 =
n∑

i=1

ai |ψi 〉,

|φ〉 =
n∑

i=1

bi |ψi 〉,
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using (6.31) and (6.32), we find their scalar product in terms of the expansion coef-
ficients:

〈ψ|φ〉 =
n∑

i=1

a∗
i bi . (6.33)

Note that the expansion coefficients are in effect scalar products of the state vector
with the basis vectors:

ai = 〈ψi |ψ〉, i = 1, 2, . . . , n.

Then, from

|ψ〉 =
n∑

i=1

〈ψi |ψ〉|ψi 〉 =
(

n∑
i=1

|ψi 〉〈ψi |
)

|ψ〉,

we deduce that
n∑

i=1

|ψi 〉〈ψi | = 1, (6.34)

where 1 is the unit operator. In the matrix representation, it is the unit n × n matrix.
The physical quantities, for example coordinate, momentum, energy, angular

momentum etc., are represented in quantummechanics by linear operatorswhich act
on the space of state vectors. Customarily, the operator associated to an observable
A is denoted by Â. In contrast to classical mechanics, the measured values of the
observables of a quantum system are selected by the equation

Â|ψi 〉 = Ai |ψi 〉, (6.35)

where |ψi 〉 are called eigenstates or eigenvectors of the operator Â and Ai are called
eigenvalues. Finding the eigenstates and eigenvalues of an operator is equivalent to
finding the spectrum of the operator. The bases of states used in quantum mechanics
are sets of eigenvectors of various operators.

As the states are represented by column or row vectors, the operators are usu-
ally represented by matrices whose elements are complex numbers expressed by
〈ψi | Â|ψ j 〉.

The eigenvalues of an operator associated to an observable have to be real (since
they are supposed to be the result of a measurement), which leads, by a theorem of
linear algebra, to the requirement that the operators be Hermitian,

Â = Â†.

Let us assume that a quantum mechanical system is prepared to be in a state

|ψ〉 =
∑
i

ci |ψi 〉,
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where |ψi 〉, i = 1, 2, . . . , n form a complete and orthonormal set of eigenvectors of
an operator Â. The system is with certainty (unit probability) in that state, therefore

〈ψ|ψ〉 = 1,

or, using (6.33), ∑
i

|ci |2 = 1. (6.36)

The linear combination of basis vectors means, physically, that the system is actually
in a superposition of eigenstates of Â, and the coefficients ci tell us what is the
contribution of the pure state |ψi 〉 to the actual state of the system. The result (6.36)
is interpreted as follows: with the system in the state |ψ〉, |ci |2 is the probability
that, when testing the observable A, we measure the eigenvalue Ai . We can see that,
according to the principle of superposition, while the quantum system is in a given
state, the measurement of a certain observable can give, with specific probabilities,
different values.

One very important result for quantum mechanics, expressed in a theorem, is
that two operators, Â and B̂, which commute, [ Â, B̂] = 0, have a common set of
eigenvectors. Physically, this means that one can measure simultaneously the two
observables corresponding to the commuting operators. The famous commutation
relation of Heisenberg, which we presented earlier, tells us that the coordinate oper-
ator x̂ and the momentum operator p̂ do not commute:

[x̂(t), p̂(t)] = i�,

therefore they are not simultaneously measurable. This explains why the trajectory
of a quantum mechanical particle is in principle not determinable. We wrote the
commutation relation for a one-dimensional system and we shall continue with this
simplification.Thegeneralization to a spacewithmoredimensions is straightforward.
It should be stressed that the above commutation relation cannot be realized in terms
of finite matrices, but in terms of the operators (6.15) introduced by Schrödinger.

One important set of eigenstates are those of the coordinate operator, x̂ , satisfying

x̂ |x〉 = x |x〉, (6.37)

and normalized as follows:
〈x |x ′〉 = δ(x − x ′). (6.38)

The coordinate operator has a continuous spectrum (therefore the sum over basis
vectors becomes an integral), whose completeness is expressed as

∫ ∞

−∞
dx |x〉〈x | = 1.
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Similarly, we have the set of eigenstates of the momentum operator, p̂, corre-
sponding to the eigenvalue p:

p̂|p〉 = p|p〉, 〈p|p′〉 = δ(p − p′), (6.39)

for which ∫ ∞

−∞
dp |p〉〈p| = 1. (6.40)

What could be the meaning of the complex-valued wave function in this formal-
ism? Let us expand the state vector of a system, |ψ(t)〉, in the basis of coordinate
eigenstates:

|ψ(t)〉 =
∫

dx |x〉〈x |ψ(t)〉.

The coefficient of |x〉 in this expansion,

�(x, t) = 〈x |ψ(t)〉, (6.41)

is what we called previously the wave function. Here we find it as meaning the
projection of a more abstract entity, the state vector |ψ(t)〉, on the coordinate eigen-
states |x〉, and we call it wave function in coordinate representation. There is also a
momentum representation wave function, defined analogously as

�̃(p, t) = 〈p|ψ(t)〉. (6.42)

The scalar product of the basis vectors in the coordinate and momentum repre-
sentation is easily determined using (6.38) and (6.40):

δ(x − x ′) = 〈x |x ′〉 =
∫

dp 〈x |p〉〈p|x ′〉,

and the Fourier expansion of the δ-function:

δ(x − x ′) = 1

2π�

∫
dp e

i
�
p(x−x ′).

Equating the integrands, we obtain:

〈x |p〉 = 1√
2π�

e
i
�
px ,

〈p|x ′〉 = 1√
2π�

e− i
�
px ′

. (6.43)

Using (6.43), we find
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�(x, t) = 〈x |ψ(t)〉 =
∫

dp 〈x |p〉〈p|ψ(t)〉 = 1√
2π�

∫
dp �̃(p, t)e

i
�
px , (6.44)

that is, the wave function in the momentum representation is the Fourier transform
of the wave function in the coordinate representation. This relation is very important
for solving the Schrödinger equation: the differential equation for �(x, t) becomes
an algebraic equation for �̃(p, t).

6.8 One-Dimensional Systems in Quantum Mechanics

6.8.1 The Infinite Potential Well

The three-dimensional version of this model is called also “the particle in a box”
and it is the simplest example that shows the differences between the quantum and
classical mechanical systems. We present here the simplified one-dimensional case.
Consider the motion of a particle of mass m. The potential is U = 0 for 0 < x < a
andU → ∞ for x < 0 and x > a. Classically, a particle colliding elasticallywith the
walls would be expected to move continually between them with arbitrary speed or
energy. Quantum mechanically, we may find the eigenfunctions ψn(x, t) and energy
eigenvalues En by solving the time-independent Schrödinger equation for the system.
From (6.17) reduced to one spatial dimension,wehave the time-independent equation
for 0 < x < a as

d2u

dx2
+ 2mE

�2
u = 0, (6.45)

sinceU = 0 inside the box and no forces act upon the particle, which means that the
wave function inside the box oscillates and satisfies the condition u(0) = u(a) = 0.

The energy eigenvalues are given by

En = �
2

2m

π2n2

a2
, (6.46)

and the eigenfunctions are ψn(x, t) = Ane−i En
�
t sin nπx

a , where An =
√

2
a is the nor-

malization constant. For each of these stationary states, the energy has a definite
value given by (6.46); the average position of the particle is 〈x〉 = a/2, and the prob-
ability densities are time-independent. Let us consider the states n = 1, 2. For n = 1
the probability density has a maximum at x = a/2 and a minimum at x = 0, x = a,
where it vanishes. For n = 2, it has two maxima, the first at x = a/4 and the sec-
ond at x = 3a/4, their average being x = a/2. The minima are located at the points
x = 0, x = a/2, x = a, where the probability density is zero.
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If we consider a state which is the superposition of the two eigenstates n = 1
and n = 2, the resulting state is not an energy eigenstate, and its wave function
ψ(x, t) is the linear combination of the two eigenfunctions ψ1(x, t) and ψ2(x, t).
The probability density is

|ψ(x, t)|2 = 1

a

[
sin2

πx

a
+ sin2

2πx

a
+ 2 cos

(
3�π2

2ma2
t

)
sin

πx

a
sin

2πx

a

]
.

This oscillates in time with the frequency ω = (E2 − E1)/� = 3�π2

2ma2 . From ψ(x, t),
|ψ(x, t)|2, wemay find for instance the average energy 〈E〉 and show that the average
position 〈x(t)〉 oscillates around the point x = a/2. This is proposed as a problem
below.

6.8.2 Quantum Harmonic Oscillator

As another important example of a quantum system in one space dimension, we shall
consider the harmonic oscillator. Recall from Chap. 1 its classical Hamiltonian.

H = p2

2m
+ k

2
x2, (6.47)

leading to the classical trajectory

x(t) = A cos(ωt + β), ω =
√

k

m
. (6.48)

The quantity β is some initial constant phase and A is the amplitude of the motion.
Equation (6.48) describes the motion of a classical particle of mass m performing
an oscillatory motion around the point x = 0. Such motion is typical of atoms in
molecules and in solids, and in general occurs in any systemwhosemore complicated
potential is of the form U (x) = U (0) + 1

2U
′′(0)x2 + · · · .

From (6.48) we get the velocity as ẋ(t) = v(t) = −Aω sin(ωt + β), and the clas-
sical energy as E = 1

2mω2A2 = mω2〈x2〉, since 〈cos2(ωt + β)〉 = 1
2 . Thus, we find

that A =
√

2E
k .

For further comparison with the quantum case, it is interesting to calculate the
probability of finding the particle in the neighbourhood of some point x lying in the
interval [−A, A]. The amount of time spent by the particle in the region dx , around
the point x , is inversely proportional to the speed of the particle at x :

dt = dx

v(x)
.
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The probability of finding the particle in this region is the ratio of this time interval
to T/2 – half of a period, which is the time needed to sweep the interval [−A, A]:

P(x)dx = 2dt

T
= 2

T

dx

v(x)
.

From the expressions for x(t) and v(t), we easily obtain, for any moment of time,
x2(t)/A2 + v2(t)/A2ω2 = 1, leading to

P(x)dx = dx

π[A2 − x2]1/2 , where
∫ A

−A
P(x)dx = 1. (6.49)

We see that, since P(x) is inversely proportional to the velocity of the particle, as
the particle approaches the extremes of the trajectory x = ±A, where the velocity
vanishes, the probability density becomes infinite, P(x → ±A) → ∞.

6.8.2.1 Schrödinger’s Equation for the Harmonic Oscillator

Let us turn to the quantum mechanical description of the harmonic oscillator. We
shall do a little mathematics to obtain the eigenvalues and eigenfunctions, since
the oscillator is a simple, useful, and instructive example of a quantum system.
Schrödinger’s equation is

Ê�(x, t) = Ĥ�(x, t),

where Ĥ is the Hamiltonian (6.47) in which the momentum p is replaced by the
operator p̂x = −i� ∂

∂x , and Ê = i� ∂
∂t is the energy operator. We seek a solution with

separation of variables, and after introducing some adequate dimensionless variables,

ξ = x

√
mω

�
and ε = 2E

�ω
, (6.50)

we write the total wave function as

�(ξ, t) = CeiEt/�ψ(ξ),

whereC is a constant to be determined. By canceling the time-dependent exponential
on both sides of the equation, one is left with a stationary Schrödinger equation
(i.e. time-independent) whose solution has the form ψ(ξ) = e−ξ2/2u(ξ), where u(ξ)
satisfies the new differential equation

(
d2

dξ2
− 2ξ

d

dξ
+ (ε − 1)

)
u(ξ) = 0. (6.51)
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For
ε = 2n + 1, (6.52)

where n = 0, 1, 2, . . ., (6.51) coincides with the differential equation of Hermite
polynomials, therefore u(ξ) ∼ Hn(ξ). These are polynomials of order n; for example,
the first two of them are H0 = 1, H1 = 2ξ. The product ψn(ξ) = Nne−ξ2/2Hn(ξ) is
namedHermite associated function,where Nn is a normalization constant. The details
of the derivation can be found in any elementary quantummechanics book. Plugging
the condition (6.52) into the second relation of (6.50), we obtain the quantization of
energy of the quantum harmonic oscillator:

En = �ω

(
n + 1

2

)
. (6.53)

The totalwave function in a staten is�n(ξ, t) = ei Ent/�ψn(ξ). Then, |�n(ξ, t)|2 =
|ψn(ξ)|2 gives in the quantum mechanical approach the probability density P(ξ) of
locating the particle at the point ξ, for each n. It satisfies the natural normalization
condition

∫
P(ξ)dξ = 1.

In Fig. 6.9 are depicted both the classical and the quantum probability densities.
The latter describes a fluctuation around the classical curve and follows on the average
a path close to it. For very large n the quantum probability density approaches more
and more the classical one.

Fig. 6.9 The probability density curve for the quantum state n = 9 (continuous line) and the
classical (dashed line) case for the one-dimensional linear oscillator. The quantum probability
curve follows the classical curve on the average.
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6.8.2.2 Ladder Operators

Finding thewave functions of quantum systems is an important step in the description
of the system. However, in the case of the harmonic oscillator, there is a simplified
method which can be used successfully to obtain essential information in a more
intuitive way, avoiding to solve Schrödinger’s equation. This is called the method of
ladder operators, introduced by Dirac. In the following, we shall find the eigenstates
of the Hamiltonian operator describing the harmonic oscillator.

Let us define linear combinations of the operators x̂ and p̂, as follows:

a = √mω
2�

(
x̂ + i

mω
p̂
)
,

a† = √
mω
2�

(
x̂ − i

mω
p̂
)
, (6.54)

as well as a number operator,
N = a†a. (6.55)

From the canonical commutation relation

[x̂(t), p̂(t)] = i�,

weobtain immediately the following commutators of the newly introduced operators:

[a, a†] = 1, [a, a] = 0, [a†, a†] = 0,

[N , a†] = a†, [N , a] = −a. (6.56)

The Hamiltonian operator Ĥ = p̂2

2m + k
2 x̂

2 becomes

Ĥ = 1

2
�ω(aa† + a†a) = �ω

(
N + 1

2

)
. (6.57)

We construct now the space of states on which these operators act. With the
experience gathered solving the Schrödinger equation for the harmonic oscillator,
we require the states |n〉 to be eigenstates of the Hamiltonian operator, corresponding
to the energy eigenvalues En = �ω (n + 1/2), i.e.

Ĥ |n〉 = En|n〉.

This implies immediately that
N |n〉 = n|n〉, (6.58)

in other words the number operator really “counts” the levels of the harmonic oscil-
lator.

Now let us see what is the role of the operators a† and a. Computing
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Na†|n〉 = (a†N + [N , a†]) = (n + 1)a†|n〉, (6.59)

where we have used (6.56), we deduce that a†|n〉 ∼ |n + 1〉, that is the operator a†
applied to a state raises the energy level by one. Similarly, one obtains that a|n〉 ∼
|n − 1〉, i.e. the lowering of the level by the action of a. The operator a† is called
raising operator, while a is called lowering operator, and together they are named
ladder operators.

The lowest lying state is denoted by |0〉, it is called ground state or vacuum state,
and it has the property that

a|0〉 = 0.

Consequently, its energy is
E0 = �ω/2,

named vacuum or zero point energy (see also Chap.7).
Starting from the ground state, by successive applications of the raising operators,

one can create all the states of the spectrum of the quantum harmonic oscillator,
{|0〉, |1〉, . . . , |n〉, . . .}, infinite in number. The state |n〉 is chosen to be

|n〉 = (a†)n

n! |0〉,

so that we have the natural normalization 〈n|n′〉 = δnn′ for any n and n′.
The generalization to a system of noninteracting harmonic oscillators, with the

angular frequencies ωk , k = 1, 2, . . . is straightforward. The total number operator
will be written as N = ∑

k a
†
k ak and the Hamiltonian Ĥ = ∑

k �ωk(a
†
k ak + 1/2),

where we sum over all the oscillators k. The commutation relations [ak, a†j ] = δk j ,

[ak, a j ] = 0, and [a†k , a†j ] = 0 hold for any oscillators k and j .
The importance of the ladder operatormethod in the case of the harmonic oscillator

is hard to overestimate, as it lies at the basis of the theory of quantized fields, and all
the modern particle physics theories are quantum field theories.

6.8.3 Charged Particle in a Constant Magnetic Field

As a direct application of the quantum harmonic oscillator problem, we present the
motion of a charged particle in a constant external magnetic field (see Chap. 5). The
canonical momentum vector is P = p − e

cA, where A is the vector potential. For
a constant magnetic field B along the z axis, it may be taken as A = (−By, 0, 0),
although the expression forA is not unique, due to gauge freedom (see Chap.5). The
Hamiltonian operator is
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Ĥ = 1

2m

[(
−i�

∂

∂x
+ e

c
By

)2

+
(

−i�
∂

∂y

)2

+
(

−i�
∂

∂z

)2
]

− µ · B. (6.60)

To solve the Schrödinger equation, we assume a separation of the variables of
the form � = ψ(r)θ(t). We then note that, in the resulting equation Ĥψ = Eψ,
the x and z coordinates do not appear in the Hamiltonian, whence the general-
ized momenta px , pz are conserved. We thus assume a wave function of the form
ψ(r) = e

i
�

(px x+pz z)ψ(y). After substituting it in (6.60), we get an equation for ψ(y):

d2ψ

dy2
+ 2m

�2

[
E + µ · B − p2z

2m
− m

2

(
eB

mc

)
(y − y0)

2

]
ψ(y) = 0, (6.61)

where y0 = − cpx
eB . Equation (6.61) is similar to the Schrödinger equation for the

oscillator (6.47)–(6.51), and setting x = y − y0, it can be written as

d2ψ

dx2
+ 2m

�2
(E ′ − 1

2
mω2x2)ψ = 0,

where E ′ = E + µ · B − p2z
2m . We take µ · B = ±μB, where the electron magnetic

moment is μ = e�σ/2mc and σ = ±1 is due to the spin of the particle. We may
write the energy eigenvalues as

E = p2z
2m

+
(
n + 1

2
∓ 1

2

)
eB�

mc
.

We observe that the energy depends on the magnetic field B and is quantized by the
integers n = 0, 1, 2, . . . , called the Landau quantum numbers. Along the z axis, it
behaves as a free particle. As σ = ±1, after the (non-degenerate) ground state n = 0,
σ = −1, there is a two-fold degeneracy (n = 0, σ = 1, and n = 1, σ = −1, and so
on). But E is also independent of py , that is, it is also degenerate with respect to y0,
which is interpreted as the coordinate of the centre of the orbit. This is especially
important in the quantum Hall effect, leading to the degeneracy term eB/�c, whence
there is a number of states per Landau energy level which grows in proportion to B
(see Chap.8, expression (8.39)). The reader may compare the quantum problem of
motion of a particle in a magnetic field to the classical case, discussed in Chap.3.

6.9 Emission and Absorption of Radiation

One of the phenomena leading to the discovery of the quantum nature of atomic
processes was the discrete nature of the emission and absorption spectra of several
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substances. In the case of hydrogen, as already mentioned, it was possible to explain
the origin of the already known spectral series by starting from Bohr’s postulates.

Identical results were obtained by starting from the new quantum mechanics, but
it was also possible to go farther, obtaining selection rules, that is, conditions that
must be satisfied by the set of quantum numbers of the initial and final states of the
electron so that the emission or absorption of the radiation can occur.

When the electron in the atom emits or absorbs radiation, it suffers a change
in the quantum numbers n, l, m. Since the electromagnetic radiation has angular
momentum, both l and m can change. The radiation can be considered as composed
of particles (photons), and the processes of emission and absorption – as interactions
between particles (electrons and photons). However, this treatment of the problem
must be made in the framework of quantum electrodynamics.

According to quantum mechanics, if atoms are made to interact with radiation of
several frequencies, these atoms will absorb certain frequencies and jump to excited
states. In order for a frequency ν to be absorbed by an atom in a state of energy Ei ,
there must be another permissible state for the electron, of energy E f , such that the
condition hν = Ef − Ei is satisfied. If this condition is not satisfied, the radiation
cannot be absorbed. The electrons in the atom, by absorbing radiation, are excited
to higher energy states.

Ifwe irradiate the excited atomswith a beamof radiation of frequencyν, which can
be absorbed, the excited atomswill emit photons of frequency ν, and the emitted pho-
tons will be in phase with those of the incident beam and going in the same direction.
The probability of emission is higher than if we leave the excited atoms unperturbed.
Thus, the incident beam is augmented. This is called stimulated emission.

If we do not induce the atoms initially excited to emit radiation, that is, if we leave
them unperturbed, they will emit radiation spontaneously with some non-vanishing
probability. They will tend to return to the ground state by emitting photons of
frequency equal to the initially absorbed photons, but in random directions and with
random initial phases. This is called spontaneous emission.

Why does spontaneous emission occur? Its existence indicates that the excited
states are not really stationary and that the tendency of the electron is to fall to the
ground state. Spontaneous emission is explained within the framework of quantum
electrodynamics: it is due to the interaction of the electron with the virtual photons
of the quantum vacuum in the presence of the electric field of the electron–nucleus
system.

6.10 Stimulated Emission and Lasers

If an atom interacting with radiation is able to emit a photon in a quantum state
of frequency ν and momentum k, the probability of emission is proportional to the
number N of photons of frequency ν andmomentumk already existing in the system.
That is, if N is increased, the probability of emission by an excited atom of a photon
of frequency ν and momentum k will also be increased.
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Fig. 6.10 Schematic representation of the laser mechanism. a The atoms of some substance are
excited from level 1 (white) to level 2 (black), due to absorption of radiation (photons) coming
from a lamp. b In less than a millionth of a second, the atoms, by spontaneous emission, pass from
level 2 to level 1, and emit radiation in random directions, part of it perpendicular to the system of
mirrors, M which is silvered (completely reflectant) and M ′ which is half-silvered. c The radiation
perpendicular to the mirrors begins to oscillate between them. It has the characteristics of being
monochromatic and coherent. d This radiation induces the atoms (excited again by the effect of the
external radiation) to emit photons of the same frequency and phase. In this process, the intensity
of coherent radiation increases inside the resonant cavity formed by the mirrors M and M ′, and
becomes large enough to cross the half-silvered mirror M ′ and emerge as laser light.

Let us consider for simplicity a gas composed of atoms with two energy levels
E1 < E2, inside a resonant cavity comprising two mirrors between which a beam of
radiation of frequency

ν = E2 − E1

h
(6.62)

can be reflected and kept oscillating. A lamp emits radiation that is absorbed by
the atoms of the gas, whence they pass from level E1 to E2. After a very short
time, these atoms emit spontaneously radiation of frequency ν in all directions. A
large number of photons is lost, except those which are directed perpendicularly to
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the mirrors in the resonant cavity. By means of this mechanism, the population of
photons oscillating inside the cavity begins to increase, all of them having frequency
ν, momentum k, and identical phase and polarization. This induces the atoms to emit
new photons in the same state, with greater probability than any other, all of which
will be in the same quantum state. Their number increases exponentially to reach
such a density that the light passes through one of the mirrors and emerges from the
system as coherent light. This is the laser light (Fig. 6.10).

6.11 Tunnel Effect

Let us assume a particle in a potential V (x), as shown in Fig. 6.11. If the energy E is
lower than the height of the barrier B and the particle is in region I, then in classical
physics, the particle cannot pass to region II. From the quantum point of view, the
situation is different. The probability density, that is the square of the modulus of the
wave function, has its maximum in region I, but it is not zero inside the barrier B
and still exists inside region II, after the barrier. This means that the particle can pass
from region I to region II. When this happens, we call this phenomenon the tunnel
effect or penetration of a potential barrier.

The probability of penetration diminishes if the height of the barrier increases.
Quantum tunneling has great importance in physics, since it provides explanations for
several phenomena, e.g., the alpha disintegration of atomic nuclei and it is essential
also in the functioning of various modern electrotechnical devices, like integrated
circuits.

x

E

B

V(x)

I II

Fig. 6.11 Potential of a particle with a barrier of finite height B. If the particle is located initially
in region I, before the barrier, it can escape through the barrier even though its energy E is lower
than the height of the barrier. The dotted line represents the probability density.
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6.12 Indistinguishability and Pauli’s Principle

Consider an atom with two electrons, for instance, the helium atom. We neglect the
mutual interaction between the electrons. Then each of themwill be characterized by
wave functions similar to those of the electron in the hydrogen atom. Let us denote
one of the electrons by 1 and assume that its state is described by a set of quantum
numbers that will be called a. Similarly, the other electron is denoted by 2 and b will
be its set of quantum numbers. The wave functions of the electrons are denoted by
�1(a) and �2(b), respectively. Then the wave function of the system of electrons
will be

�I = �1(a)�2(b). (6.63)

But since these wave functions extend in space, they may overlap in some region,
and the state of the system can actually correspond, without having any possibility to
distinguish among them, to another state in which the two particles are exchanged:

�II = �1(b)�2(a). (6.64)

Which is the true wave function? It cannot be determined.
The real wave function of the system should be a linear combination of �I and

�II, in such a manner that the physical properties do not change if the two particles
are interchanged. Then, we have the two possibilities:

�S(1, 2) = 1√
2
[(�1(a)�2(b) + �1(b)�2(a)], (6.65)

or

�A(1, 2) = 1√
2
[�1(a)�2(b) − �1(b)�2(a)]. (6.66)

The function �S(1, 2) is symmetric since it does not change if the particles are
exchanged, while the function �A(1, 2) is antisymmetric, since it changes its sign if
the particles are exchanged.

The same situation occurs whatever the number of particles: the wave function
of the complete system should be symmetric or antisymmetric. This property is a
consequence of the indistinguishability of identical particles in quantum systems.

In which case is the wave function symmetric and in which case antisymmetric? If
the identical particles have half-integer spin (like electrons, protons, neutrinos, etc.),
the wave function of the system is antisymmetric. Such particles are said to obey
the Fermi–Dirac statistics, and for that reason are called fermions. If the particles
have integer spin (like photons, π mesons, atoms of 4He, etc.), the wave function
describing a set of identical particles of this kind is symmetric. Such particles obey
the Bose–Einstein statistics and are called bosons.
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Two fermions cannot be in the same state, since in that case the antisymmetric
wave function of the system vanishes. This is the Pauli exclusion principle. This
is easily seen in the case of two particles. If the set of quantum numbers a and b
are identical, then �A = 0. The Pauli principle determines the distribution of the
electrons in atoms and plays a fundamental role in the theory of the chemical bond.

On the other hand, one can have an arbitrary number of bosons in the same
quantum state. For instance, a beam of laser radiation contains millions of photons
in the same quantum state. This property of bosons alsomanifests itself in phenomena
like superconductivity and superfluidity.

6.13 Exchange Interaction

Consider an atom with two electrons, such as a helium atom. The complete wave
function � of the system is the product of a function S12 depending on the spins and
another function depending on the positions of the electrons, �(r1, r2), the latter
being a solution of the Schrödinger equation. The total wave function is

� = S12�(r1, r2). (6.67)

The total wave function should be antisymmetric. If S12 is symmetric (which occurs if
the spins are parallel, that is, if they have the same direction), then �(r1, r2) must be
antisymmetric. If S12 is antisymmetric (antiparallel spins), then �(r1, r2) must be
symmetric. So the energy eigenvalues corresponding to the symmetric solutions of
the Schrödinger equation are taken when the spins are antiparallel (total spin equal
to zero) and the energy eigenvalues corresponding to the antisymmetric solutions of
the Schrödinger equation are taken when the spins are parallel (total spin equal to 1).

As the value of the energy is different in these two cases, we see that in a system
of several electrons the possible values of the energy depend on the total value of
the spin. Thus, we may consider that there is an interaction between the particles
depending on their spin, and we call this the exchange interaction.

Let r1 and r2 be the position vectors, so that �1(r1) and �2(r2) correspond to
the wave functions of electron 1 at the position r1 and electron 2 at the position r2,
respectively. On the other hand,�1(r2) and�2(r1) are the wave functions of electron
1 at the position r2 and electron 2 at the position r1, that is, when the two electrons
are exchanged. Let the potential between the electrons be V (r1, r2). We define the
exchange integral by

J =
∫

�∗
2(r1)�

∗
1(r2)V (r1, r2)�1(r1)�2(r2)dr1dr2. (6.68)

E denotes the energy of the two-electron system in the field of the nucleus, with
the exchange effects switched-off, i.e. E = ε1 + ε2 + Q, where ε1, ε2 are hydrogen-
like energies and Q = ∫

�2
1(r1)�

2
2(r2)Vdr1dr2 is the average Coulomb interaction
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energy between the electrons. The total energy, including the exchange term has two
possible values:

Es = E + J and EA = E − J. (6.69)

The first corresponds to the case in which the two spins are antiparallel (total spin
zero and �(r1, r2) symmetric), and the second to the case in which the spins are
parallel (total spin 1 and �(r1, r2) antisymmetric). In the excited helium atom, we
call the first case paraheliumand the second case orthohelium.Orthoheliumhas lower
energy and is a metastable state of helium (it does not decay to the ground state with
spin 0, since a flip of spin would be involved and this cannot happen spontaneously).

6.14 Exchange Energy and Ferromagnetism

In a system with many electrons, the exchange energy is determined by the quantity

U = J
∑
i, j

Si · S j , (6.70)

where J is the exchange integral and Si · S j is the scalar product of the spins of the
particles i , j (the spins have been taken as operators).

In a ferromagnetic substance, this exchange energy plays an essential role. The
ferromagnetic properties are due to the coupling between the magnetic dipoles of the
electrons, associated with the exchange interaction between them. As the quantity J
is due to a purely quantum effect, we see that ferromagnetism has a quantum origin.

The exchange interaction determines that the energy is minimum when the spins
(and in consequence, the magnetic dipoles) are parallel. The effect is equivalent to
an external field aligning the spins. For that reason one can speak of an exchange
field.

This ordering tendency, of quantum origin, competes with the disordering ten-
dency due to thermal agitation, so that whenwe heat a ferromagnetic substance, there
is a critical temperature called the Curie temperature (Tc) at which the ferromagnetic
effect disappears and the material becomes paramagnetic for T > Tc.

For some substances, said to be antiferromagnetic, the exchange integral is neg-
ative, determining an antiparallel ordering of spins (see Chap. 3).

6.15 Distribution of Electrons in the Atom

We have already mentioned that the energy of the electron in the hydrogen atom
is determined by a positive integer. The angular momentum is specified by another
integer, l that takes any value between zero and n − 1, i.e.,
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Table 6.2 Electronic configurations for n = 2 (atomic shell L).

Shell L

Orbitals 2s 2p

Maximum number

of electrons 2 6

Table 6.3 Electronic configurations for the fist ten elements of the periodic table.

Atomic Symbol Shell K L

number Orbital 1s 2s 2p

1 H 1

2 He 2

3 Li 2 1

4 Be 2 2

5 B 2 2 1

6 C 2 2 2

7 N 2 2 3

8 O 2 2 4

9 F 2 2 5

10 Ne 2 2 6

0 ≤ l ≤ n − 1. (6.71)

This number is associated with the modulus of the angular momentum vector. There
is another integer,m, that characterizes the direction of the component of the angular
momentum along a given axis:

− l ≤ m ≤ l. (6.72)

Finally, for each set of values n, l, m, there are two possible values of the spin,
ms = ±1/2. These rules have a general validity, and starting from such rules, one
can get the distribution of electrons in any atom, bearing in mind that the Pauli
principle permits at most one electron in each quantum state.

For instance, for n = 1, we have the so-called K shell. The number l has to be
zero, and there can be a maximum of two electrons in such a shell, with opposite
spins. In the hydrogen atom, there is only one, and in the helium atom, two electrons.

For n = 2, the shell is called L . Then l can take the values 0 and 1. The spatial
distributions corresponding to different values of l are called orbitals, and in this
case are symbolized by 2s 2p (1s is the orbital corresponding to the shell K ). For
l = 0, the only acceptable value is m = 0, as in the previous case, and for l = 1,
the number m can take 3 values, viz., −1, 0, 1. Then for n = 2, one can have the
electronic configurations shown in Table 6.2.
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Six electrons occupy the orbital 2p due to the three possible orientations of the
orbital angular momentum, m = −1, 0,+1, to each of which correspond two elec-
trons with opposite spins. In total there would be 8 electrons in the L shell. This
configuration corresponds to the neon atom.

The electronic configurations of the first ten elements are given in the Table 6.3.
In the same way, one can continue with the higher shells. For n = 3, the shell is
called M , and has orbitals 3s, 3p, 3d to which correspond a maximum of 2, 6, and
10 electrons, respectively, while for n = 4, the shell is called N , with orbitals 4s,
4p, 4d, 4 f , etc.

The chemical and physical properties of substances and the location of the ele-
ments in Mendeleev’s periodic table are determined by the electronic configura-
tions, which, as we have seen, are direct consequences of quantum laws such as
Schrödinger’s equation and Pauli’s exclusion principle.

6.16 Quantum Measurement

Quantum mechanics is tested experimentally through the interaction of quantum
objects with apparata obeying classical physics. For example, the photons composing
spectral lines, which are emitted when electrons jump from one energy level to
another inside atoms, are observed using a spectrometer; the motion of a particle is
observed in the Wilson cloud chamber through the formation of droplets of vapour,
which are classical objects; in scattering experiments, angles, energies, andmomenta
of scattered particles are usually measured, after their interaction with macroscopic
devices. Classical mechanics thus plays a double role, as both the limiting case, and
also a necessary basis for formulating quantum measurements.

One essential feature of a quantum measurement of a physical quantity is this:
unless the particle is in an eigenstate of the operator corresponding to the observable
quantity measured by the apparatus, in general, the measurement destroys the initial
wave function, leading to a final state which is an eigenfunction of the operator
associated with the measured quantity.

Suppose we send toward a detector an electron in an eigenstate of momentum,
described by the wave function �(x, t) = Aei(px−Et)/�. The wave function is obvi-
ously a plane wave extending from−∞ to∞, like the case we considered in Chap.4.
At the instant t0, the electron enters the detector, which registers it at the posi-
tion x0. We can say that the electron wave function at time t0 is proportional to
δ(x − x0) = (2π�)−1

∫ ∞
−∞ eip(x−x0)/�dp, i.e., a pulse of zero width, since the Dirac

δ function (here we are speaking about the one-dimensional delta function), is not a
standard function in the purely mathematical sense. In particular, it vanishes every-
where except at the point x0, where it has infinite value. As mentioned earlier, two
basic properties of the δ function are:

∫ ∞

−∞
δ(x − x0)dx = 1 (6.73)
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and ∫ ∞

−∞
f (x)δ(x − x0)dx = f (x0). (6.74)

The initial plane wave can be written as a linear superposition of δ functions:

Aei(px−Et)/� = Ae−i Et/�

∫ ∞

−∞
ei(px

′)/�δ(x ′ − x)dx ′. (6.75)

Thus, as a result of the measurement, only one specific component of the infinite
superposition survives, namely the one corresponding to x ′ = x0. Perhaps this is a
more transparent example than the one in (6.30), where we have an arbitrary wave
function expanded in terms of eigenfunctions of a given operator. The coefficients
of the expansion ai are the probability amplitudes, i.e., |ai |2 are the probabilities
of finding the system in the eigenstate i after a measurement of the correspond-
ing observable. We emphasize that a measurement in quantum mechanics generally
modifies the wave function unless the quantum system is in an eigenstate of a certain
quantity, and only this quantity is measured. For instance, if a measurement of the
energy is made on a quantum system, it gives as a result the energy En , and the wave
function is�n . Then, if the energy is measured again immediately, the wave function
does not change, and the newmeasurement gives the same result as the previous one.

The very notion of destroying the wave function implies changing or reducing
the wave function instantaneously throughout physical space (according to a clock
fixed on the measuring apparatus). This in turn implies a non-local action on the
wave function.

We conclude that the process of measurement has new ingredients not present
in the basic postulates of quantum mechanics. It does not satisfy the superposition
principle, and as a consequence it is essentially nonlinear (the measurement of a
state described by a linear combination of wave functions is not generally the linear
combination of the measurements). In this way we see two different properties or
procedures merging as basic ingredients of quantum theory, which we discuss below.

6.16.1 U and R Evolution Procedures

John von Neumann (1903–1957) pointed out the need to distinguish the role of two
basic evolution procedures in quantum mechanics. This idea has been completed by
Roger Penrose (b. 1931), who called these procedures U and R. The usually more
clearly recognized procedure is U , the unitary time evolution of the quantum state
�(x, t), which is governed by the Schrödinger equation, as a deterministic process,
which does not violate reversibility or time inversion. This means that �(x, t ± �t)
can be predicted with certainty to be the wave function at the times t ± �t . In other
words, by solving i� ∂�

∂t = Ĥ�, one can get some evolution operatorU able to effect
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Table 6.4 Characteristics of U and R evolution procedures.

U (Unitary transformation) R (Reduction of the wavepacket)

Deterministic Probabilistic

Preserves superposition Violates superposition

Acts continuously Acts essentially discontinuously

the transformation �(x, t) → �(x, t ± �t) by going either forward or backward in
time (in the latter case, by taking t → −t).

The process R is associated with measurements of some observable. It magnifies
quantum aspects to the classical level, forming squares of the modulus of the ampli-
tudes to yield classical probabilities. R leads to a reduction of the wave function to
an eigenstate of the measured observable or to the collapse of the wave function. It
distinguishes the future from the past, that is, it is asymmetric with respect to time.
It is the procedure R, and only R, that introduces uncertainties and probabilities in
quantum theory. The two procedures are compared in Table 6.4.

BothU and R procedures are necessary for the correspondence between quantum
effects and observations.

The genesis of what was later namedU and R procedures, and the problemwhich
led to the uncertainty principle, were subject of debate. Important contributions were
made by Bohr and Heisenberg, but several facts remained unclear for some of the
founders of quantum theory, and for instance, at least for some time, Schrödinger did
not accepted the “quantum jumps.” Einstein, although disagreeing with the main-
stream of quantum mechanical way of thinking, contributed with several remarkable
comments and objections to the advance of very basic quantum ideas.

6.16.2 On Theory and Observable Quantities

Einstein raised some objections to Heisenberg’s presentation in Berlin in 1926 con-
cerning the initial interpretations of observable quantities in quantum mechanics.
Einstein, in a private talk, told him (inHeisenberg’s words):Whether you can observe
a thing or not depends on the theorywhich you use. It is the theorywhich decideswhat
can be observed. His argument was like this: Observation means that we construct
some connection between a phenomenon and our realization of the phenomenon.
There is something happening in the atom, the light is emitted, the light hits the
photographic plate, we see the photographic plate and so on and so on. In this
whole course of events between the atom and your eye and your consciousness you
must assume that everything works as in the old physics. If you changed the theory
concerning this sequence of events then of course the observation would be altered.

Einstein remarked that it is really dangerous to say that one should only speak
about observable quantities, because every reasonable theory will, besides all things
which one can immediately observe, also give the possibility of observing other
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things more indirectly. In Heisenberg’s words, Einstein had pointed out to me that it
is really dangerous to say that one should only speak about observable quantities...
In quantum theory it meant, for instance, that when you have quantum mechanics
then you cannot only observe frequencies and amplitudes, but for instance, also
probability amplitudes, probability waves and so on, and these, of course, are quite
different objects.

Later, Bohr and Heisenberg discussed a problem: if in an atom one must abandon
the concept of trajectory, what about the cloud chamber, where the electron could
be seen to have moved along a track? Was this a trajectory or not? Heisenberg
remembered Einstein’s statement, and turned around the question of how to represent
in quantummechanics the orbit of the electron in the cloud chamber?He transformed
the question in: Is it not true that only such situations occur in Nature, even in a
cloud chamber, which can be described by the formalism of quantum mechanics?
Quantum theory stated that it was not possible to measure at the same time the exact
position and exact velocity of a particle, that is, the uncertainty principle. In the
cloud chamber there was a trajectory, but the path had a significant width – there was
uncertainty in both quantities, velocity and position. When Heisenberg met Bohr, he
found that Bohr had also elaborated an answer, based on his famous complementarity
principle. (Complementarity means that quantum systems can be observed either as
having particle or wave behaviour, but not both simultaneously). Finally they agreed
to have understood quantum theory.

However, Einstein was sceptical about the uncertainty principle, and during the
Solvay Conference in 1927, he discussed with Bohr every day, suggestingGedanken
experiments as disproving examples, which Bohr found the way to refute. At the
end, Bohr succeeded and Einstein did not raise any more objections.

6.17 Paradoxes in Quantum Mechanics

6.17.1 De Broglie’s Paradox

Consider a box with walls able to reflect electrons inside in such a way that the
electrons are not absorbed. Suppose we place one electron inside. The box has a
partition which also has perfect reflecting properties. If the partition is drawn, the
box is separated into two half-boxes. We may keep the two half-boxes joined, or
even separate them. For instance, we may take the half-box 1 in a plane to Havana,
while the half-box 2 remains in Helsinki.

Imagine that we make a measurement in box 2 in Helsinki at time t and it is found
that the electron is inside it.

If we wonder where the electron was at the moment t − ε, we can adopt different
attitudes. A ‘realistic’ physicist, who believes in determinism, would say:
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The electron was already in 2 at t − ε. Standard quantum mechanics does not give suffi-
cient information; it is necessary to have additional parameters (hidden variables). A more
complete theory would indicate where the electron was at t − ε.

Aphysicist interpreting standardquantummechanics in the traditionalwaywould say:

It is meaningless to ask where the electron was before doing the measurement.

Let us denote the coordinates in 1 by x1 and in 2 by x2. The wave functions describing
the electron inside box 1 and box 2 would be�1(x1, t − ε) and�2(x2, t − ε), respec-
tively. The total wave function describing the electron inside the box, according to
the U procedure, is

�(x1, x2, t − ε) = a [�1(x1, t − ε) + �2(x2, t − ε)] , (6.76)

where a is a normalization constant. If one integrates |�(x1, x2, t − ε)|2 over the
whole volume of the box, one obtains unity. Let us assume for simplicity that the
wave function� is non-zero only inside the volume V , while�1 and�2 are nonzero
only in the left and right halves of V , respectively, so that if we write

|�|2 = a2
(|�1|2 + |�2|2 + |�∗

1�2 + �∗
2�1|

)
, (6.77)

and integrate (6.77) over thewhole volumeV , the third termon the right vanishes, i.e.,
we exclude interference for simplicity.We take then a2 = 1/2. Integrating (6.77) over
the whole volume V we obtain 1 on the left, while the integral of 1

2 |�1(x1, t − ε)|2
over the half-box 1, as well as the integral of 1

2 |�2(x2, t − ε)| over 2, are equal to
1
2 . Thus, at the moment t − ε the probabilities are P1 = 1/2 that the electron is in
Havana and P2 = 1/2 that it is in Helsinki.

But when we carry out the measurement, i.e., the operation R, the wave packet
is reduced, and the wave function is, say, � = �2(x, t) in box 2 and zero in box 1.
We conclude that some non-local property of quantum mechanics is involved in the
measurement process.

6.17.2 Schrödinger’s Cat Paradox

Let us consider a simplified version of the original Schrödinger’s cat paradox. A cat
is inside a box, and a gun is activated by a photocell in such a way that, if it receives
a photon polarized vertically (V), the gun shoots the cat, while if the polarization is
horizontal (H), there is no shot, and the cat remains alive. Photons enter the photocell
after passing through a polarizer, say, a calcite crystal, withH or V polarizations. We
have an external source sending photons to the polarizer. Suppose it sends a photon
polarized at 45◦ with respect to the vertical. The photon wave function is

� = 1√
2
�V + 1√

2
�H , (6.78)
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Fig. 6.12 Schrödinger’s cat.

where �V and �H are the wave functions corresponding to vertical and horizontal
photon polarizations.

If we open the box and the cat is alive, what was the state of the cat before opening
the box (Fig. 6.12)? Since

�C = 1√
2
�C

D + 1√
2
�C

A , (6.79)

we conclude that it was a linear combination of states in which it was dead, �C
D , and

it was alive, �C
A . We would be forced to admit that the cat would be partially alive

and partially dead, or in a state of ‘suspended animation’. This is a very strange idea,
and it may be argued that we cannot apply the quantum mechanical rules naively to
an extremely complex system like a living organism.

6.17.3 Toward the EPR Paradox

In 1935, Albert Einstein, Boris Podolsky (1896–1966), and Nathan Rosen (1909–
1995) wrote a famous paper in which they put forward strong arguments to show
that quantum mechanics did not give a complete description of reality. The ideas
expressed in that paper were later to become known as the EPR paradox, and were
the subject of a long controversy for nearly 50 years. This paradox states problems
very similar to the de Broglie box and Schrödinger’s cat paradoxes. At the present
time, many physicists consider that the EPR paradox is, if not solved, at least better
understood, as a result of the works by John S. Bell (1928–1990) in 1967 and the
experiments done by Alain Aspect (b. 1947) in 1982, to which we refer below. In
this section, we shall try to use some simple examples to describe the EPR paradox.

In some substances, the excited atoms decay into two photons of different wave-
lengths and orthogonal polarizations in such a way that, whenever the left photon is
V , the right is H , and whenever the left photon is H , the right is V . Or equivalently,
if the left photon emerges polarized at an angle of +45◦ with respect to the vertical,
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Fig. 6.13 A source of pairs of orthogonally polarized photons is placed at the centre, between two
filters of green (left) and red (right) photons. The photons enter the polarizers HV, which contain
photon detectors, in such a way that, if the left photon is found to be V by a detector, the right
photon is found to be H , and whenever the left photon is H , the right is V .

Fig. 6.14 The same system
as in the previous figure,
except that the polarizer on
the right has been removed.

the right photon is polarized at−45◦ with respect to the vertical. Suppose we arrange
a device as shown in the Fig. 6.13, so that one can read the orthogonal polarizations
in the detectors whenever a pair of photons is emitted.

Now consider the same system, but without the polarizer and the detectors at
the right, as in Fig. 6.14. Suppose the polarization of a photon is measured on the
left. Since it is orthogonal to the polarization of the photon on the right, we can be
sure what is the polarization of the right photon, without making a measurement
on it. In other words, measuring the photon polarization on the left determines the
polarization of the photon on the right.

But a quantummeasurement changes the measured system.We do not knowwhat
the polarization of the left photon actually is before measuring it. The polarizer
rotated the direction of polarization of the left photon through some angle, so that it
is now H or V , so the polarizer could not have changed the polarization of the right
photon, being at the other end of the laboratory.

Similarly, we can consider a system of two electrons described by a wave function
�. Assume that the total spin of the two electrons is s1 + s2 = 0, that is, the state of
the system was prepared so that its total spin is zero. Suppose now that the spin of
one of them, say, the left one, is measured in some arbitrary direction, and the result
is, for instance, s1 = 1/2�. According to quantum mechanics, this determines the
value of the spin of the right electron as s2 = −1/2�, in the same arbitrarily chosen
direction, independently of how far apart the two electrons may be.

If we reject the idea that the measuring apparatus in either of these two examples
is able to influence the distant photon or electron, how can we explain the previous
results?

The idea of EPR is that, if the left-hand apparatus could measure a property of
the right-hand particle without perturbing it, this would reflect the incompleteness
of standard quantum mechanics in describing the real world. In Einstein’s words:

If,without in anyway perturbing a system,we can predictwith certainty (i.e., with probability
equal to unity) the value of a physical quantity, then there exists an element of physical reality
corresponding to this physical quantity.
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Fig. 6.15 Rotation of the
polarizer on the right-hand
side, through an angle φ. The
direction φ− is orthogonal to
φ+.

A possible way of completing quantum mechanics, as suggested later by David
Bohm, would be by including in the theory a hidden variable determining the result
of the measurement.

Thus wemay conclude at this point that either the measurement affects the distant
particle or there is a deterministic theory of hidden variables. There would then be at
least two possible versions of quantummechanics: the conventional one, and another
one based on hidden variables.

6.17.4 A Hidden Variable Model and Bell’s Theorem

Let us assume the following properties in the case of the experiment with photons:

1. The photons are emitted plane polarized in random directions;
2. The photons in each pair have perpendicular polarizations;
3. The photon emerges through the nearest channel (H or V ), i.e., if its polarization

is at an angle of less than 45◦ with the vertical, it will emerge through the V
channel, while if its polarization is at an angle of less than 45◦ with the horizontal,
it will emerge through the H channel;

4. The results of the experiments at each point of observation depend only on the
values of the physical quantities at these points, and not on measured properties
of other, distant, particles. In other words, there is locality.

Observe that at this point we are assuming very special particle properties for the
pair of photons, but nothing connected with non-locality.

Let us suppose that the polarizer on the right is rotated through an angle φ with
respect to some axis H chosen as the horizontal (see Fig. 6.15). Then let us denote by
n(V,φ+) the average number of left photons whose right partner emerges through
an angle φ with respect to the horizontal axis. It is assumed that every time a photon
with polarization V is detected on the left, a photon with polarization H would be
detected on the right if a suitable apparatus were placed there.

Consider three experiments. In the first experiment, the right apparatus has been
rotated through an angle φ with respect to the horizontal axis. We note that photons
emerging on the right with polarization φ+ = φ are those horizontal with respect to
the polarizer rotated through an angle φ. The direction φ− is orthogonal to φ+. We
have
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Table 6.5 Pattern generated
by assigning to each symbol
H , φ, and θ either a + or a −,
for a large number of
repetitions.

H φ θ

+ + –

+ – +

– + –

+ – +

– + +

… … …

n(V,φ+) = n(H = +,φ = +), (6.80)

which means that the number of photons arriving on the left with polarization V and
partner photons on the right emerging polarized through an angle φ+ is equal to the
fraction of photons that would be H (if the polarizer were not rotated) on the right,
but emerge polarized through an angle φ.

In the second experiment, we have a similar situation but now the right polarizer
has been rotated through an angle θ with respect to the H direction:

n(V, θ+) = n(H = +, θ = +). (6.81)

In the third setup, the left polarizer has been rotated through an angle φ and the right
polarizer through an angle θ. We have in this case

n(φ+, θ+) = n(φ = −, θ = +). (6.82)

Consider the Table 6.5. It can be checked that

n(H = +,φ = +) + n(φ = −, θ = +) ≥ n(H = +, θ = +), (6.83)

as a simple consequence of Boolean algebra, if we compare the three sets formed
by columns (H,φ), (φ, θ), and (H, θ). Under the previous assumptions, we can in
principle apply the counting of ± signs in Table 6.5 to the problem of counting
photons in our systems of polarizers. Then, from the previous equations we obtain

n(V,φ+) + n(φ+, θ+) ≥ n(V, θ+), (6.84)

under the assumption that the results of the experiments are determined by the prop-
erties of the measured photons (encoded in some hidden variables), and not by the
configuration of a distant apparatus.

This is the content of the Bell theorem, also known as the Bell inequality.
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6.17.5 Bell Inequality and Conventional Quantum
Mechanics

Now comes another fundamental step. It is the connection between the number of
photons and the energy of the electromagnetic wave. According to the conventional
quantum theory, if N is the total number of emitted photons (N/2 on each side), then
since this number is proportional to the energy intensity, we have N ∼ ∫

d3xE2,
where E is the electric field and the integral extends over spatial coordinates. The
number of photons emerging on the right in the directionφ+ must be n = N cos2 φ ∼∫
d3xE2 cos2 φ. Then we have for the photon density

n(V,φ+) = 1

2
N cos2 φ,

n(V, θ+) = 1

2
N cos2 θ,

n(φ+, θ+) = n(H, (θ − φ)+) = 1

2
N sin2(θ − φ),

or, using the Bell inequality,

cos2 φ + sin2(θ − φ) ≥ cos2 θ,

for any θ and φ.
We can choose, for instance, φ = 3θ. Then we have

F(θ) = cos2 3θ + sin2 2θ − cos2 θ ≥ 0. (6.85)

But for 0 ≤ θ ≤ 30◦, the Bell inequality is violated (Fig. 6.16).
The experiments done by Alain Aspect, starting from 1982, confirmed the vio-

lation of the Bell inequalities and were in full agreement with the predictions of
quantum mechanics. This is interpreted by most physicists as the final proof of the
validity of conventional quantum mechanics.

These results can be stated in a weaker form as follows: no quantum theory based
on the preservation of locality is consistent with experiment.

6.17.6 EPR Paradox: Quantum Mechanics Versus Special
Relativity

Does the photon whose polarization is measured somehow warn the other photon
about it? Does it emit a signal carrying information at a velocity V > c? There are
strong arguments against that. EPR pairs cannot be used to send messages at V > c.
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Fig. 6.16 Bell’s inequality
is violated for φ = 3θ, in the
interval 0 ≤ θ ≤ 30◦, where
the function F(θ) is negative.

θ

F(θ)

1.0

–0.4

90°
0

There is no conflict between EPR and causality, but with the spirit of relativity in
our description of physical reality, associated with the problem of non-locality. The
pair of photons moves as a single non-local entity. When the polarization of one of
the photons is measured, the wave function jumps, in such a way that the photon that
was not measured has a definite polarization.

Before the measurement, the state is, for instance,

� = HGVR + VGHR,

where HG, VR denotes a horizontally polarized green photon on the left and a verti-
cally polarized red photon on the right, whereas VG, HR describes the same situation
but exchanging horizontal and vertical.

If by rotating through an angle θ in a plane perpendicular to the photon propaga-
tion, we conceive another state

� ′ = H ′
GV

′
R + V ′

GH
′
R,

where
H ′

G = HG cos θ + VG sin θ, V ′
G = −HG sin θ + VG cos θ,

and
V ′
R = HR sin θ + VR cos θ, H ′

R = HR cos θ − VR sin θ,

it is easy to show that � ′ = �. These states are now called entangled states. (The
symmetric and antisymmetric states seen earlier in Sect. 6.12 can also be considered
as entangled states.)

If a measurement is made in an arbitrary directionα, the wave function is reduced,
say, to

�α = HGVR
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or
�α = VGHR,

where HG, VG refer to one point in space, namely (−x0, t0), and HR, VR refer to
another, far from the first. Let us call it (x0, t0).

Due to the relativity of simultaneity, if we now consider an observer moving at
velocity V toward the right, he would conclude that the second photon is measured
before the first one, whereas another observer moving toward the left would find the
opposite, i.e., the second is measured after the first.

Referring to the Lorentz transformation, let us write this for the observer moving
to the right. He would find that the measurements were made at times t1, t2 given by

t2 = t0 − V x0/c2√
1 − V 2/c2

<
t0 + V x0/c2√
1 − V 2/c2

= t1. (6.86)

If we make simultaneous measurements, in the system at rest, on the left and right
photons, the moving observer would find that the left part of the wave function jumps
before being measured!

Thus we have a conflict: different moving observers would arrive at different
conclusions about wave function reduction (the R operation) in the EPR experiment.

This fact implies a subtle contradiction between the current formulations of quan-
tum theory and special relativity. The statement regarding the violation of the Bell
inequalities involved some possible loopholes relating to the required spacelike sepa-
ration betweenmeasured events, the limited efficiency of the detectors, and a reliance
on the randomness of spontaneous emission events. The three loopholes have been
closed by several fine test experiments performed between 1998 and 2017. We men-
tion for instance an international collaborative effort to close the ‘freedom-of-choice
loophole’ using human free will instead of random number generators. In an exper-
iment conducted in 2016, over 100000 volunteers participated in an online video
game that used random human decisions to provide sufficient input for the experi-
ments to be statistically significant. Other important work was done in 2017 by the
group led by David Kaiser of the Massachusetts Institute of Technology and Anton
Zeilinger of the Institute for Quantum Optics and Quantum Information and Univer-
sity of Vienna. They performed experiments that “produced results consistent with
nonlocality” by measuring starlight that had taken 600 years to travel to Earth.

6.18 Quantum Computation and Teleportation

The EPR particle pairs play an important role in quantum computation, a theory of
communication based on quantum concepts that could materialize in the future in
much faster computers than conventional ones. First of all, there is a new concept
called the qubit, the quantum partner of the classical bit that we saw in Chap.2. The
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bit is based on the two logical alternatives 0, 1 of the Boolean algebra. The quantum
alternatives of two base states |0〉, |1〉 are larger, because besides the 0 = | �〉 and 1 =
| ↔〉, we can have qubits in states like | ↘〉 = (|0〉 + |1〉)/√2 and | ↙〉 = (|0〉 −
|1〉)/√2. Two qubits can also be entangled in states like � = (|01〉 − |10〉)/√2,
where neither of the two-component qubits alone has a definite state.

Quantum computers are still a long way from becoming a reality. But if they could
be built, they should be able to solve problems like the factorization of very large
numbers (which is essential in cryptography) very quickly. This would allow super-
fast Fourier analysis, and would open the way to solving various other interesting
problems.

Using EPR pairs, it is possible in principle to teleport a particle in a state A, from
which part of the information about its state was scanned, by causing the remaining
unscanned part to pass to another particle in state C which does not interact with
A. This is accomplished by making A interact with another particle B which is a
partner of C in an EPR pair (B and C interacted before A interacted with B, so
obviously, when A interacts with B, some effect is produced on C). By using the
initial scanned data from A, plus the EPR information gleaned from C , the exact
initial state of A is reproduced in the particle which was in state C . The original
particle in state A passes to another state which is of no interest. In 1997, quantum
teleportation was achieved experimentally for the first time by a team led by Sandu
Popescu (b. 1956) and independently by another team led by Anton Zeilinger (b.
1945). In 2004, researchers at the University of Innsbruck and the US National
Institute of Standards and Technology (NIST) teleported one atom state to another
with the help of a third auxiliary atom. Teleportation of some other particle states
has also been reported. Recent experiments performed in 2017 by scientists from
the Chinese Academy of Sciences, the Austrian Academy of Sciences and Vienna
University through the Project QUESS (Quantum Experiments at a Space Scale),
achieved quantum teleportation at distances of 7600 Km.

6.19 Classical vs. Quantum Logic

Quantum logic is a set of rules (for reasoning about propositions), taking into account
the principles of quantum theory. The name originated in work carried out in 1936
by Garrett Birkhoff (1911–1996) and John von Neumann, who were attempting to
reconcile the apparent inconsistency of classical logic with quantum facts.

Classical logic satisfies Boolean algebra, and propositions satisfy a distributive
law. We consider an example in the classical case. We use the symbol + to represent
the operation “or” and the symbol · to represent “and”, and consider a ball of mass
m carrying a momentum P toward a stick divided by a line into two parts, upper
a and lower b. Let p be the proposition “the ball hits the stick at a point”, q the
proposition “it is a point of a”, and r the proposition “it is a point of b”. Obviously,
the proposition p · (q + r) = (p · q) + (p · r) satisfies the distributive law, since
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The ball hits the stick at a point and (it is a point of a or it is a point of b) =(the ball
hits the stick at a point and it is a point of a) or (the ball hits the stick at a point and
it is a point of b).

But some properties of quantum logic drastically distinguish it from classical
logic. One example is the failure of the distributive law of propositions. Consider
the propositions p = the particle has momentum in the interval [0,+1/8], q = the
particle is in the interval [−1, 1], and r = the particle is in the interval [1, 4]. Now
consider the statement

p · (q + r) = (p · q) + (p · r), (6.87)

where the symbols p, q, and r are the propositional variables. To illustrate why the
distributive law fails, consider a particle moving along a line, and setting momentar-
ily Planck’s constant � = 1, note that p · (q + r) = true, since the uncertainty in the
momentum is �p = 1/8, while the uncertainty in the coordinates is �x = 5. Thus
�p�x = 5/8 > 1/2. On the other hand, (p · q) + (p · r) = f alse, since the propo-
sition p · q implies �p�x = 1/4 < 1/2 and p · r implies �p�x = 3/8 < 1/2,
whence these are both excluded, since they impose tighter restrictions on simul-
taneous values of uncertainties in position and momentum than is allowed by the
Heisenberg principle. Note that (6.87) is a linear relation, and the fact that it fails
in logical reasoning (which connects theory with observable facts) means that new
logical relations are needed, specific to quantum theory.

Problems

Problem 6.1 Classical concepts are valid in the Bohr model. Thus, we may speak of
the average speed of an electron in the first Bohr orbit of an atom of atomic number
Z . Is it (a) Z1/2c, (b) Zc, or (c) Zcα, where α is the fine structure constant.

Problem 6.2 In the one-dimensional infinite potential well, assume a state which is
the superposition of the first two eigenstates n = 1 and n = 2. The resulting state
is not an energy eigenstate, and its wave function ψ(x, t) is a linear combination of
the two eigenfunctions ψ1(x, t) and ψ2(x, t). (a) Calculate the probability density,
the average energy 〈E〉, the average squared energy 〈E2〉, and the standard deviation
energy σ(E) = √〈E2〉 − 〈E〉2. (b) Show that the average position 〈x(t)〉 oscillates
around the point x = a/2 and calculate the oscillation frequency. (c) Calculate the
period of oscillation T and its relation with σ(E).

Problem 6.3 In the atomic nucleus, the potential binding protons and neutrons is
sometimes approximated by an infinite potential well. Assume a proton is confined
in an infinite square well of width a = 2 × 10−12 cm (which is 20 fm, where fm
stands for the fermi or femtometer, with 1 fm ≡ 10−13 cm). Calculate the energy Eγ

of the photon emitted by the proton under a transition from the excited state n = 2
to the ground state n = 1.
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Problem 6.4 The neutron and proton masses are =1.6749275 × 10−24 g and =
1.6726219 × 10−24 kg, respectively. Express their masses in units MeV/c2.
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Chapter 7
Quantum Electrodynamics

The formulation of a relativistic quantum equation for the electron by Paul Dirac,
as well as the works of Max Born, Werner Heisenberg, and Pascual Jordan on
the quantization of the electromagnetic field as a system of harmonic oscillators—an
idea anticipated earlier by Paul Ehrenfest—established the basis for the development
of quantum electrodynamics—a relativistic theory describing the interaction of the
quantized electromagnetic field with the electron–positron field.

The first steps were taken by Einstein in 1905, with his theory of the photoelec-
tric effect, and subsequently, in 1917, in his works on the emission and absorption
of radiation by an atom. Einstein was the first to suggest that the electromagnetic
interaction exists and it is emitted and absorbed in quanta of radiation, which were
later named photons.

Other outstanding physicists of the twentieth century also participated in later
developments of quantum electrodynamics: Niels Bohr, Freeman J. Dyson, Enrico
Fermi, Richard P. Feynman, Vladimir A. Fock, Wolfgang Pauli, Julian Schwinger,
Sin-Itiro Tomonaga, Victor Weisskopf, and many others. But a particularly remark-
able step was the formulation of the relativistic equation for the electron, the Dirac
equation.

7.1 Dirac Equation

7.1.1 The Spin of the Electron

In 1922, Otto Stern (1888–1969) and Walther Gerlach (1889–1979) performed an
experiment on the deflection of an electrically neutral atom through an inhomoge-
neous magnetic field, thus discovering the existence of an intrinsic angular momen-
tum for those particles, with certain quantized values. This was the first experimental
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observation of what is known as spin. In 1943, the Nobel Prize in Physics was
awarded solely to Otto Stern. In 1925, by the theoretical work of George Uhlenbeck
(1900–1988) and Samuel Goudsmit (1902–1978), it was known that the electrons
possessed an intrinsic angular momentum, named spin. Earlier that year, Wolfgang
Pauli had proposed the exclusion principle, according to which at most one elec-
tron can exist in a given quantum state. He also included the spin in Schrödinger’s
equation in 1927. Pauli’s non-relativistic equation for the wave function reads:

i�
∂

∂t
φ(r, t) =

[
−�

2 �

2m
+ e

2m

(
L̂ + gs Ŝ

)
· B

]
φ(r, t), (7.1)

where

φ(r, t) =
(

φ1(r, t)
φ2(r, t)

)

is a two-componentwave function, e andm are the charge and themass of the particle,
respectively, L̂ is the angular momentum operator, B is an external magnetic field,
and Ŝ = �

2 σ is the spin operator, whose components are three 2 × 2 matrices, called
Pauli’s matrices:

σ1 =
(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (7.2)

These matrices satisfy the relations σ 2
1 = σ 2

2 = σ 2
3 = −iσ1σ2σ3 = 1, where

1 =
(
1 0
0 1

)
.

The orbital angular momentum operator is obtained from the classical formula L =
r × p, in which we replace, according to formula (6.15), p by −i�∇,

L̂ = −i� r×∇. (7.3)

The coefficient gs is called gyromagnetic ratio and for the electron it is equal
to 2. This number had been obtained in spectroscopic experiments determining the
ratio between the intrinsic magnetic moment and the orbital magnetic moment of the
electron. Nobody knew why the ratio should have been 2, but so it was, and Pauli
included it by hand in his equation. This was, however, not a fundamental theory of
spin. The spinwas to appear naturally onlywhen quantummechanics was formulated
in a relativistically invariant way.

From the relativistic expression

E2 = p2c2 + m2c4 (7.4)

for the energy of the electron in terms of its momentum seen in Chap.5, it was quite
natural to derive a quantum mechanical equation, which would be the generalization
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Fig. 7.1 Paul Adrien
Maurice Dirac, English
physicist. His famous
relativistic equation for the
electron was one of the most
important contributions to
the new quantum mechanics
and relativistic quantum field
theory.

of the Schrödinger equation to the relativistic case. All one had to do was to replace
E and p by the corresponding operators, according to (6.15). However, the equation
obtained was not adequate to describe the motion of the relativistic electron, consid-
ered either as a free particle or as part of an atom. Among other difficulties, it was
not possible to introduce the spin in the relativistic equation, and besides, negative
probabilities arose, which was absurd. All these problems were revealed in the works
ofWalter Gordon, Oskar Klein, and Vladimir Fock during 1926–1927. Actually, it is
known that Schrödinger himself wrote first a relativistic quantum mechanical equa-
tion of the type (7.4), but he obtained for the spectrum of the hydrogen atom energy
levels which did not correspond to the experimental findings. He then abandoned
the relativistic equation and settled for the non-relativistic one, which reproduced
with remarkable accuracy the data. The reason for the lack of success of extending
(7.4) to the quantum mechanical treatment of the hydrogen atom was the fact that
the equation described a particle with spin zero, while the electron was not such
a particle. This difficulty was to be solved in 1928 by Paul Adrien Maurice Dirac
(1902–1984), and for this theory he was awarded the Nobel Prize in Physics in 1933,
jointly with Erwin Schrödinger (Fig. 7.1).
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Referring to the times when the general principles of quantum mechanics were
formulated, we quote some paragraphs from a talk given by Dirac at the Interna-
tional Centre for Theoretical Physics of Trieste in 1968: In order to understand the
atmosphere in which theoretical physicists were then working, one must appreciate
the enormous influence of relativity. As relativity was then understood, all relativistic
theories had to be expressible in tensor form. On this basis we could not do better
than the Klein–Gordon theory. Most physicists were content with the Klein–Gordon
theory as the best possible relativistic quantum theory for an electron, but I was
always dissatisfied with the discrepancy between it and general principles, and con-
tinually worried over it till I found the solution. Tensors were inadequate and one
had to get away from them, introducing two-valued quantities, now called spinors.
Those people who were too familiar with tensors were not fitted to get away from
them and think up something more general, and I was able to do so only because
I was more attached to the general principles of quantum mechanics than to ten-
sors. One should always guard against getting too attached to one particular line of
thought. The introduction of spinors provided a relativistic theory in agreement with
the general principles of quantum mechanics, and also accounted for the spin of the
electron, although this was not the original intention of the work. But then a new
problem appeared, that of negative energies. The theory gives symmetry between
positive and negative energies, while only positive energies occur in Nature. As fre-
quently happens with the mathematical procedure in research, the solving of one
difficulty leads to another. The difficulty is removed by the assumption that in the
vacuum all the negative energy states are filled. One is led to a theory of positrons
together with electrons. But again a new difficulty appears, this time connected with
the interaction between an electron and the electromagnetic field. One gets divergent
integrals for quantities that ought to be finite. Again, this difficulty was really present
all the time, lying dormant in the theory, and only now becoming the dominant one.

Dirac obtained an equation linear in energy and momentum, while in (7.4) the
dependence is quadratic. In other words, Dirac linearized the square-root

Ê =
√
p̂2c2 + m2c4,

in which Ê and p̂ are operators. How can such a linearization be achieved? Observe
that (7.4) can be written in terms of operators as:

Ê2 = ( p̂21 + p̂22 + p̂23)c
2 + m2c4, (7.5)

where p̂1, p̂2, p̂3 are the components of the total momentum, that is, they satisfy the
relation p̂2 = p̂21 + p̂22 + p̂23. Dirac’s ingenious idea was to write:

Ê = c(α1 p̂1 + α2 p̂2 + α3 p̂3) + βmc2, (7.6)

where α1, α2, α3 are coefficients to be determined. Then, in order to get (7.5) by
squaring (7.6), one must satisfy the relations
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α2
1 = α2

2 = α2
3 = β2 = 1, (7.7)

and also
α1α2 + α2α1 = 0, α1β + βα1 = 0,
α1α3 + α3α1 = 0, α2β + βα2 = 0,
α2α3 + α3α2 = 0, α3β + βα3 = 0.

(7.8)

Obviously, the quantities α1, α2, α3, and β cannot be numbers, because they do
not commute. The set of properties (7.7) and (7.8) can be satisfied only by other
mathematical entities, viz. matrices, with the special property of being anticommut-
ing, that is, the product of two of them in a certain order is equal but of opposite sign
to the product when their order is reversed. It turns out that the minimum number of
dimensions in which one can find four independent matrices satisfying the properties
(7.7) and (7.8) is four. Thus, the matrices α1, α2, α3, and β are 4 × 4 matrices; conse-
quently, the wave function has to have four components. Thematrices α1, α2, α3, and
β can be expressed in terms of Pauli’s matrices (7.2) and the unit matrix as follows:

α1 =
(
0 σ1

σ1 0

)
, α2 =

(
0 σ2

σ2 0

)
, α3 =

(
0 σ3

σ3 0

)
,

β =
(
1 0
0 −1

)
. (7.9)

The resulting quantum mechanical equation of Dirac, based on the above proper-
ties, describes a free electron:

i�
∂�

∂t
= −ic �

(
α1

∂�

∂x
+ α2

∂�

∂y
+ α3

∂�

∂z

)
+ βmc2�, (7.10)

where �(r, t) is a complex wave function having four components:

�(r, t) =

⎛
⎜⎜⎝

�1

�2

�3

�4

⎞
⎟⎟⎠ . (7.11)

Still, we cannot call this entity a four-vector, because upon aLorentz transformation it
does not have the transformation properties of the four-vectors.Onefinds how�(r, t)
transforms by requiring that Dirac’s equation does not change its form (is covariant)
when passing from one inertial reference frame to another. The transformation law
thus obtained in a way corresponds to that of the square root of a four-vector. We
call it a spinor, because it describes a particle with nontrivial spin, equal to �/2.

To see that this is indeed the case, we have to make a small calculation. We know
that spin is intrinsic angular momentum. Since the electron has a nontrivial spin, its
total angular momentum will be the sum of its usual, or orbital, angular momentum
and its spin. Total angular momentum has to be conserved in Dirac’s theory, since
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the theory is relativistically covariant, and rotations in the three-dimensional space –
which are related by Noether’s theorem (see Chap. 1) to angular momentum con-
servation—are part of the Lorentz transformations which we discussed in Chap. 5.
Now, if we wish to check the conservation of an operator Ô in quantum mechanics,
we do this by calculating its commutator with the Hamiltonian operator Ĥ , since by
Heisenberg’s equation this commutator gives the change in time of the operator:

i�
dÔ
dt

= [Ô, Ĥ ].

We have still to identify the Hamiltonian operator for a free electron, according to
Dirac’s theory. This is very easy—we read it off from the right-hand side of (7.10):

Ĥ = −ic �

(
α1

∂

∂x
+ α2

∂

∂y
+ α3

∂

∂z

)
+ βmc2 = −ic�α · ∇ + βmc2 . (7.12)

Now we can easily calculate the commutator of L̂ with Ĥ , using the properties
(7.7) and (7.8) and the action of the differential operator ∇ on r = (x, y, z). The
result, as expected, is not zero, but

[L̂, Ĥ ] = c�

i
α · p. (7.13)

Consequently, L̂ changes in time, dL̂/dt �= 0. This confirms that the orbital angular
momentum itself is not conserved in Dirac’s theory. In order to achieve conservation,
we have to add to L̂ another term, whose commutator with the Hamiltonian will
compensate exactly the right-hand side of (7.13). This extra term is the spin operator
Ŝ, which has the expression

Ŝ = �

2
�, (7.14)

where the components of the matrix � are

	 j = −iε jklαkαl =
(

σ j 0
0 σ j

)
. (7.15)

With the addition of spin, the total angular momentum

Ĵ = L̂ + Ŝ (7.16)

is conserved:

i�
dĴ
dt

= [Ĵ, Ĥ ] = 0.
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From the expression of Ŝ one finds straightforwardly that its eigenvalues are ±�/2,
in other words, the spin of the Dirac particle is 1/2 in units of �.

Massive particles with spin s = 1/2 have two possible orientations of the spin
vector with respect to their momentum: parallel and antiparallel. For a general spin
s, the number of projections of the spin on the direction of momentum is 2s + 1.

Another success of Dirac’s equation was that it predicted the gyromagnetic ratio
of the electron, gs = 2. If one takes the non-relativistic limit of (7.10), by considering
the velocity of the particlemuch less than c, one obtains exactly Pauli’swave equation
(7.1), for a two-dimensional spinor.

The conclusion which imposes itself is that spin is a relativistic quantum number
(the fundamental equations describing particles with spin have to be relativistically
covariant). Later, in the 1930s, Eugene Paul Wigner (1902–1995) showed that the
relativistic particle states are classified by theirmass and spin, and the wave functions
describing such particles are the so-called representations of the Lorentz group.

7.1.2 Hydrogen Atom in Dirac’s Theory

Dirac extended (7.10) to describe an electron in a hydrogen atom, and to achieve it
he had to include a potential term describing the Coulomb interaction between the
electron and the nucleus:

i�
∂�

∂t
= −ic �

(
α1

∂�

∂x
+ α2

∂�

∂y
+ α3

∂�

∂z

)
+ βmc2� − Ze2

r
�, (7.17)

where Z is the atomic number of the nucleus, which is equal to 1 for hydrogen.
By solving the above equation, he obtained the energy levels of the electron in

the hydrogen and other atoms with great accuracy, predicting also its fine structure:
each energy level of non-relativistic quantum mechanics is in fact split into a set of
finer energy levels and these are in excellent agreement with the experimental data.

The energy spectrum of the electron in the field of a nucleus of atomic number Z
is given by the following expression:

E = mc2

⎡
⎣1 +

(
Zα

n − ( j + 1/2) + √
( j + 1/2)2 − Z2α2

)2
⎤
⎦

−1/2

, (7.18)

where n = 1, 2, . . . is a positive integer quantum number, and j is connected to the
total angular momentum operator (7.16), whose eigenvalues range from 0 to j +
1/2 ≤ n. Here, α = e2/�c ≈ 1/137 is the fine structure constant (see also Sect. 6.4).
The expression (7.18) can be approximated by expanding it in powers of (Zα)2, with
the result:
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E = mc2
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2n4

(
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(Zα)6
)]

. (7.19)

The first term, mc2, represents the rest energy of the electron, the second gives the
non-relativistic spectrum, obtained from Bohr’s model (6.6) The third term produces
the fine structure corrections to the previous term, i.e. a further split of the spectral
lines, due to the effects of the spin.

Dirac theory and the Bohr–Sommerfeld atomic model. We must state at this
point that an equation of form similar to (7.18) was actually obtained in 1915–1916,
before Dirac’s work, by Arnold Sommerfeld, as a relativistic generalization of the
Bohrmodel which is known as the Bohr–Sommerfeldmodel. Sommerfeld concluded
that the theory of relativity should be applied to electrons orbiting with high velocity
v around the nucleus, taking into account the fact that their mass was not constant,
but given by

m = m0√
1 − v2

c2

. (7.20)

In the frame of the Bohr model, this implied changes in the elliptic orbits of the
electrons but, more fundamentally, corrected values for the energy levels given by the
two quantum numbers n and k, i.e., the principal and azimuthal quantum numbers,
respectively, where k = 0, 1, . . . , (n − 1). The energy formula for a one-electron
system, i.e., the hydrogen atom, as given by Sommerfeld in 1916, is similar to (7.18),
if one makes the replacement ( j + 1/2) → k in the latter. If expanded in powers of
α, the result is also similar to the fine structure expression (7.19).

For some time it was believed that the relativistic problem was solved and even
Einstein congratulated Sommerfeld on his results. But the discovery of spin raised
a new problem. In 1926, Heisenberg and Pascual Jordan succeeded in accounting
for the hydrogen fine structure spectral lines by adding to the usual Hamiltonian a
perturbation term describing the relativistic correction plus a magnetic term referring
to the electron spin. With their approximation, they reproduced the fine-structure
Sommerfeld term, with k replaced by j + 1/2. The Heisenberg–Jordan theory was
not genuinely relativistic, and the spin effect was introduced “by hand”. The full and
consistent quantum-relativistic theory was formulated by Dirac two years later. The
Bohr–Sommerfeld theory remained as its quasi-classical approximation.

7.1.3 Hole Theory and Positrons

Dirac’s equation was, for these reasons, a great success. But it went even further in
predicting the existence of “positive electrons”. Let us see how they came out.

The particles described by the free Dirac equation (7.10) have energies which
satisfy (7.4). There are actually two solutions for the energy as a function of the
momentum, after taking the square root:
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E = ±c
√
p2 + m2c2, (7.21)

that is, two possible values for the energy of the particle. Negative-energy solutions
cannot be simply discarded as non-physical due to the requirement of the complete-
ness of the set of solutions in quantum mechanics. For free particles, this is not a
problem, since free particles do not suffer any change in their momentum or energy.
However, as soon as we allow for electromagnetic interactions, transitions between
positive- and negative-energy states are possible, i.e. an electron at rest can tumble
down into a negative-energy state by emitting radiation. For an electron in the ground
state of the hydrogen atom, such transitions were calculated and it was found that the
rate for an electron to make a transition between −mc2 and −2mc2 was 108 s−1, and
the rate would blow up if all negative-energy states were considered! This is indeed
not the way an electron behaves, so negative-energy states had to be interpreted in a
way that would make sense physically.

To this end, Dirac proposed in 1930 his hole theory, which incorporated Pauli’s
exclusion principle into the picture. According to this theory, the ground state is the
state in which all the negative-energy states are filled with electrons, thus being unob-
servable, and all the positive-energy states are unoccupied. As a result, the electrons
bound in the hydrogen atom cannot make anymore transitions to lower energy states,
because Pauli’s exclusion principle forbids the existence of two electrons with the
same quantum numbers.

The negative-energy sea can loose one electron of energy −E if this absorbs a
quantum of radiation with energy at least E + mc2 (Fig. 7.2). Then, the electron
will have positive energy and will become observable. Still more interesting is that
its place in the negative-energy sea will become an observable hole. An observer
will interpret, relative to the vacuum, the absence of an electron with energy −E
and charge −|e| as the presence of a particle with energy E and charge |e|, which
is called a positron. Thus, holes in the negative-energy sea are meaningful objects,
assimilated to positive-energy particles with charge opposite to the electrons. The
phenomenon described above is the production of an electron–positron pair from
radiation. The opposite phenomenon, pair annihilation into radiation, is explained
by the trapping of a positive-energy electron into a hole, with emission of photons.

When Dirac proposed the hole theory, the only known subatomic positively
charged particles with charge |e| where the protons, and Dirac initially considered
that the holes were protons. Later it was shown by Robert Oppenheimer (1904–
1967) that they had to be particles with the same mass as the electron, but with
positive charge. In 1931, Dirac predicted that such antielectrons are real, not ficti-
tious, particles and one year later, Carl Anderson (1905–1991) indeed found them
in his experiments with cosmic rays. They were the first observed manifestation of
antimatter. Anderson was awarded the Nobel Prize in 1936.

Dirac’s hole theory was historically an interesting and useful model in explaining
the existence of particle–antiparticle pairs (as the electron–positron). It certainly had
its drawbacks, for example the fact that the sea of negative-energy electrons should
have an infinite electric charge and infinite mass, which would have a tremendous
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Fig. 7.2 A photon of energy
equal or greater than 2mc2

can excite an electron
occupying a state of negative
energy in the Dirac sea. The
electron becomes
observable, and a vacant
state is left, a positively
charged hole, which is the
positron or antielectron.
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influence both electromagnetically, as well as gravitationally. It also created a breach
in the quantummechanical interpretation of the wave function: in the non-relativistic
case, the number of particles of any quantum mechanical system is fixed and given
by the integral over space of the square of the wave function. The hole theory implies
variable numbers of particles, and there is no way to reconcile this with the proba-
bilistic interpretation of the wave function.

The hole theory becomes obsolete in the quantum theory of fields, although the
ideas of polarization of vacuum and the creation and annihilation of virtual electron–
positron pairs have some ingredients of it. At present, the hole theory is used in
condensed matter physics, where there exists a similar situation concerning the cre-
ation of electron–hole pairs, in the electronic bands of semiconductors. These holes
are named quasi-particles, since they do not exist outside matter, but are important
to explain the phenomenon of electric conduction in semiconductors.

The particle–antiparticle symmetry exists not only for electrons and positrons,
but for all the particles of the subatomic world, as protons, neutrons, neutrinos, π

mesons, muons, etc. In particular, the photon is its own antiparticle, as it is neutral
with respect to all quantum numbers.

In 1955, Emilio Segrè (1905–1989) and Owen Chamberlain (1920–2006) discov-
ered the antiproton, with negative charge. They received the Nobel Prize in 1959 for
their discovery. A positron bounded to an antiproton forms an antihydrogen atom.
Atoms of antimatter have been produced in high energy laboratories.

The existence of antiatoms led to the idea that in our Universe there may exist
large portions of antimatter (including stars and galaxies). If so, theywould have to be
far from bodies formed from ordinary matter, since otherwise they would mutually
annihilate, producing a large amount of radiation. Stars of antimatter would not
be distinguishable from ordinary stars by the spectroscopic analysis of the light
they emit, since the emission and absorption of radiation is similar for atoms and
antiatoms. However, such anti-stars are not observed. It seems that the observable
Universe contains only matter, whose nuclei are formed by protons and neutrons.
Thus, there is a baryon asymmetry in the Universe (see Chap.11), whose origin is
still a topical subject of investigation.
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7.2 Intermezzo: Natural Units and the Metric Used
in Particle Physics

The reader has probably observed that all the formulas in quantummechanics contain
Planck’s constant �, and in the relativistic case they contain usually also the speed
of light in vacuum, c. The formulas would be much less heavy if we were to write
them without these constants, but being able to revert to the correct dimensions in
the end of the calculation.

In the system of natural units, the fundamental quantities are mass, action and
speed. The unit of action is �, which is set to 1, as is also the unit of speed, c:

� = c = 1. (7.22)

This is the system of units adopted in particle physics. The only dimensionfull funda-
mental quantity is the mass, and all the other dimensions are expressed in powers of
mass dimension, [M]n . Clearly, action and speed have mass dimension zero, n = 0;
energy and momentum have the same dimension as the mass itself, n = 1; time and
length have inverse mass dimension, n = −1. Lagrangian and Hamiltonian densi-
ties, in a three-dimensional space, have mass dimension n = 4. The fine structure
constant is dimensionless in CGS, therefore the electric charge has mass dimension
n = 0 in natural units. The mass dimensions of all the quantities are easily found
from the basic formulas which relate them to each other.

After performing calculations in natural units, one reverts to CGS units by multi-
plying the resultwith the appropriate powers of� and c to obtain the correct dimension
for the calculated quantity.

Before starting our discussion of quantized fields, we recall the redefinition of
four-vectors which we introduced in the end of Sect. 5.8. We shall use it in what
follows. To fix the essentials, we remind the reader that a contravariant four-vector
is defined as aμ = (a0, a1, a2, a3) = (a0, a). The corresponding covariant vector is
aμ = (a0, a1, a2, a3), with a0 = a0 and ai = −ai , for i = 1, 2, 3. In particular, the
coordinate four-vector is denoted generically by x or xμ = (t, x1, x2, x3) = (t, x),
where we have employed also natural units.

The scalar product of two four-vectors, a and b, is

ab = aμbμ = a0b0 − a · b,

where Einstein’s summation convention is used.
The metric tensor gμν by which the raising and lowering of the indices is achieved

is the diagonal 4 × 4 matrix

gμν =

⎛
⎜⎜⎝
1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎠ . (7.23)
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Its inverse is gμν , which is identical to gμν . From a contravariant vector we obtain
the covariant one by aμ = gμνaν , and viceversa, aμ = gμνaν .

The matrix gμν in this representation has the signature (or trace) −2, and some-
times the metric of the Minkowski space is identified by its signature. This metric is
most commonly used in particle physics.

7.3 Quantized Fields and Particles

The reconciliation between quantum theory and special relativitywas achieved by the
formulation of the relativistic quantum theory of fields. In this theory, unlike the non-
relativistic quantum mechanics, the role of dynamical variables is taken by fields,
which become operators.

The prototype for a field is the electromagnetic field, which has also a classical
manifestation and is therefore more appealing to intuition. In the free space without
electric or magnetic sources, the electromagnetic field propagates as a wave which
is self-sustainable, the curl of the electric field E (r, t) producing the time-variation
of the magnetic field B (r, t) and vice-versa, according to Maxwell’s equations (4.3)
and (4.4), which are the equations of motion for the electromagnetic field. Remark
that the radius-vector r is used here as a label for the space point at which the field
is considered. The change in time of r is not the object of the study, as it were in the
mechanics of particles or bodies, but the change in time ofE andB is. For this reason
we call the fields dynamical variables. Another essential remark is that the value of
the field at one point is independent of its value at any other point, therefore for each
value of r we have one degree of freedom for each polarization of the wave. Since r
varies continuously, the number of degrees of freedom of a field is infinite.

When a field is quantized, it becomes an operator which acts on a space of states.
Those states represent particles, which can be created or destroyed by the quan-
tum field. For illustration, let us consider a non-interacting real scalar field, ̂(x).
Its equation of motion is identical to the quantum mechanical equation of a scalar
particle, the so-called Klein–Gordon equation,

(
� + m2

)
̂(x) = 0, (7.24)

where � = ∂2/∂2t − ∂2/∂2x − ∂2/∂2y − ∂2/∂2z is the d’Alembertian operator
(four-dimensional generalization on the Minkowski space of the Laplacian oper-
ator) andm is a positive parameter, which will turn out to be the mass of the particles
associated to the field. The argument x , labeling the degrees of freedom, is actually
the four-vector xμ.

The general solution of this equation, taking a finite volume V for the system, can
be written as a Fourier series, whose coefficients are operators:
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ˆPhi(x) =
∑
k

(
1

2Vωk

)1/2

â(k)e−ikx +
∑
k

(
1

2Vωk

)1/2

â†(k)eikx , (7.25)

where k is the wave four-vector of a relativistic particle with massm, momentum �k
and energy (in natural units)

Ek = ωk =
√
m2 + k2 .

In the exponents of (7.25), kx = kμxμ = ωkt − k · x. The operators â(k) and â†(k)

satisfy the commutation relations:

[â(k), â†(k′)] = δkk′ , (7.26)

[â(k), â(k′)] = [â†(k), â†(k′)] = 0,

which are analogous to the commutation relations of the raising and lowering
operators of the quantum harmonic oscillator, which we have encountered in
Chap.6, (6.56).

The space of states for these operators is constructed in much the same way as
for the harmonic oscillator. One defines the ground state, or vacuum state, denoted
by |0〉, with the property that, for any k,

â(k)|0〉 = 0. (7.27)

The particle states are created from the vacuum state by successive applications of
the operators â†(k). For example, a state with one particle with momentum k will
be described by

|k〉 = â†(k)|0〉,

while a state with n particles with different momenta will be

|k1,k2, . . . ,kn〉 = â†(k1)â†(k2) . . . â†(kn)|0〉.

If a state contains a particle with momentum k, then by applying the operator â(k)

to that state, the particle is destroyed:

â(k)|k〉 = â(k)â†(k)|0〉 = (
â†(k)â(k) + 1

) |0〉 = |0〉,

where the commutation relations (7.26) were used.
Consequently, the operators â†(k) are called creation operators, while â(k) are

called annihilation operators. The particle states are labeled by their momenta (since
for free particles the momentum does not change) and they behave like harmonic
oscillators of a given relativistic energy, corresponding to that momentum.

Speaking of quantum mechanical particles, which are indistinguishable, we have
to make sure that they satisfy also the correct statistics. The particles being scalar,
they have spin zero, meaning that they have to obey the Bose–Einstein statistics.
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Indeed, we see that a state with any number of particles with the same momentum
(same quantum number) can exist, i.e.

|k,k, . . . ,k〉 = 1√
n! â

†(k)â†(k) . . . â†(k)|0〉 (7.28)

(the factor 1/
√
n! is just a normalization factor, where n is the number of particles in

the state). Moreover, any multiparticle state is symmetrical under the interchange of
any two of its particles. For example, for a two-particle state, using (7.26), we have:

|k1,k2〉 = â†(k1)â†(k2)|0〉 = â†(k2)â†(k1)|0〉 = |k2,k1〉. (7.29)

With some modifications, this quantization scheme applies to all integer spin
fields, in particular to the electromagnetic field, which is a vector field Âμ(x), and
has spin 1. We adopt for the electromagnetic field the vector-potential description
becausewe need to develop a relativistic theory, and the space-vectorsE andB are not
suitable for this purpose. The photons, which are the particles corresponding to the
quantized electromagnetic field, have no electric charge, and this is mathematically
encoded in the fact that Âμ(x) is a real field.

If we wish to describe electrons in the theory of quantized fields, we have to
incorporate the two spin degrees of freedom, as well as Pauli’s exclusion principle,
according to which in a given quantum state one can have at most one electron. These
requirements are fulfilled if we take as the equation of motion for the free electron
field the Dirac equation:

(
iγ μ∂μ − m

)
�̂(x) = 0, γ0 = β, γi = βαi , i = 1, 2, 3, (7.30)

where we denoted ∂μ = ∂/∂xμ, and we modify appropriately the commutation rela-
tions analogous to (7.26). Let us see what modifications would suit our purpose.

The solution of Dirac’s equation (7.30) can be written as:

�̂(x) =
∑
p

∑
s=1,2

(
m

V Ep

)1/2

[ĉs(p)us(p)e−i px + d̂†
s (p)vs(p)eipx ], (7.31)

where Ep = √
m2 + p2.

Since the field �̂(x) is complex, its so-called Dirac conjugated, defined by the

relation ˆ̄Psi(x) = ˆPsi†γ0, has the expansion:

ˆ̄�(x) =
∑
p

∑
s=1,2

(
m

V Ep

)1/2

[d̂s(p)v̄s(p)e−i px + ĉ†s (p)ūs(p)eipx ]. (7.32)

Note that the summation is performed also over the spin orientations, besides the
summationover themomenta. The factorsus(p) andvs(p) are spinors (in otherwords,
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column matrices with four components), depending on p and m. For our discussion,
the interesting factors are the creation and annihilation operators, ĉ†s , ĉs and d̂†

s , d̂s .
The field being complex, we obtain two sets of operators for each polarization,
and they indeed correspond to electrons (particles) and positrons (antiparticles),
respectively.

What about Pauli’s exclusion principle? Suppose that ĉ†s (p) creates an electron
with momentum p, energy Ep and spin polarization s,

|e−(p, s)〉 = ĉ†s (p)|0〉.

Then the state with two electrons with the same quantum numbers has to vanish, i.e.

|e−(p, s), e−(p, s)〉 = ĉ†s (p)ĉ†s (p)|0〉 = 0,

which implies
ĉ†s (p)ĉ†s (p) = 0.

This happens indeed if instead of commutation relations, we impose anticommuta-
tion relations between creation and annihilation operators between the creation and
annihilation operators of the spinor field:

{ĉs(k), ĉ†s ′(k′)} = δss ′δkk′ , (7.33)

{ĉs(k), ĉs ′(k′)} = {ĉ†s (k), ĉ†s ′(k′)} = 0,

and

{d̂s(k), d̂†
s ′(k′)} = δss ′δkk′ , (7.34)

{d̂s(k), d̂s ′(k′)} = {d̂†
s (k), d̂†

s ′(k′)} = 0.

The curly brackets are used to denote the anticommutator of two operators:

{O1,O2} = O1O2 + O2O1.

The above relations will lead also to antisymmetric multiparticle electron or positron
states. Thus, the particles created and destroyed by the field �̂(x) satisfy the Fermi–
Dirac statistics.

The quantum harmonic oscillator is the basis of discussion for all free fields,
and the theory of quantized fields is thus solidly anchored in the usual quantum
mechanics. For bosonic fields, quantized by commutation relations, we have a direct
generalization of the non-relativistic quantum mechanics, while for fermionic fields
we take into account Pauli’s exclusion principle by using anticommutation relations
for quantization.

Since observation implies interaction, the next step is, therefore, to quantize fields
in interaction.
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7.4 Quantum Electrodynamics (QED)

The interactions of photons with electrons and positrons were the first to be explained
in the framework of the theory of quantized fields. The energies at which these inter-
actions show their quantum peculiarities are relatively low, and the results of various
experiments in the 1940s could not be explained using just quantum mechanics. In
general, when speaking about quantum electrodynamics, it is understood the inter-
action between photons and electrically charged particles.

For the formulation of quantum electrodynamics it is very useful to use a
Lagrangian function that, as in mechanics and classical electrodynamics, allows
us to obtain the equations of motion. For instance, the Maxwell equations discussed
in Chap.3 are the equations of motion for the electromagnetic field, and can be
obtained by starting from a certain Lagrangian function. The relativistic quantum
field theoretical description of the interactions of photons with charged particles is a
task of some mathematical complexity.

For the purposes of the present book, we shall avoid this task. Here it will be
enough to point out that the Lagrangian density of quantum electrodynamics contains
three terms: the first describes the free electron–positron field, the second—the free
electromagnetic field, and the third—the interaction of the electron–positron field
with the electromagnetic field. The latter term is written as:

L̂int = e ˆ̄�γ μ Âμ�̂. (7.35)

where e is the electric charge of the electron, and the other factors are the same as
in the previous section. According to (7.31) and (7.32), �̂ annihilates electrons and

creates positrons, and ˆ̄� creates electrons and annihilates positrons.
The equations of motion for the interacting fields �̂(x) and Âμ(x) are more

complicated than for free fields: they are non-homogeneous differential equations,
which are not exactly solvable. Considering that the energy of the electromagnetic
interaction is small compared to the other terms in the Lagrangian density (due
to the smallness of e in (7.35)), the most convenient procedure to treat quantum
electrodynamics is in a perturbative expansion. The role of expansion parameter is
played by the coupling constant α, characterizing the strength of the electromagnetic
interactions:

α = e2/�c 
 1

137
, (7.36)

which is present, for example, in the formula for the energy of the electron in the
hydrogen atom, as mentioned in Sect. 7.1.2. We see that in the constant α enter
the square of the electron charge e2, the Planck constant �, and the speed of light c.
The resulting number is dimensionless, a true universal constant, whose value does
not depend on the system of units used.
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7.4.1 Unitarity in Quantum Electrodynamics

In quantum electrodynamics, as in any other quantum field theory, the scattering
of particles is described by a unitary evolution operator called the S-matrix. The
S-matrix is expanded in a perturbative series in the fine structure constant α and
each term of the expansion can be expressed in terms of Feynman diagrams. This
expansion is an essential tool in the calculation of scattering probabilities and it is due
to Freeman Dyson (1923–2020), one of the pioneers of quantum electrodynamics.

The total Hamiltonian of quantum electrodynamics is separated into two parts:
one describing the free fields (corresponding to the kinetic energy of particles),
Ĥ0, and another describing the interaction (corresponding to the potential energy of
particles), Ĥint:

Ĥ = Ĥ0 + Ĥint,

such that the interaction term, whose contribution to the energy is much smaller than
that of the first term, is treated as a perturbation. The Hamiltonian of interaction (or
the potential term) in quantum electrodynamics is

Ĥint =
∫

d3x Ĥint, with Ĥint = −L̂int = −e ˆ̄�γ μ Âμ�̂.

This separation leads naturally to the so-called interaction picture, in which the
operators (e.g., the fields) evolve in time as dictated by the freeHamiltonian,while the
states of the system, generally denoted by |�(t)〉, evolve according to a Schrödinger-
like equation driven by the Hamiltonian of interaction:

i
d

dt
|�(t)〉 = Ĥint|�(t)〉, (7.37)

which is written here as a particular case of the general Tomonaga–Schwinger equa-
tion. Then, formally, the solution of this equation can be written as

|�(t)〉 = U (t, t0)|�(t0)〉, (7.38)

with the evolution operator satisfying the differential equation with boundary con-
dition

i
d

dt
U (t, t0) = ĤintU (t, t0), U (t0, t0) = 1, (7.39)

or, alternatively, satisfying the integral equation

U (t, t0) = 1 − i

t∫
t0

dτ Ĥint(τ )U (τ, t0). (7.40)
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This equation can be solved only iteratively, the result being an expansion in the
coupling constant, which is the electric charge e. Solving the equation is beyond the
scope of this book, however it is the evolution operator which we intend to interpret
physically.

In a scattering process, we are not interested in the intermediate states when the
particles are actually interacting, but rather in the initial state, in which we prepare
the system in an experiment, and in the final state, in which we observe the system
after the interaction. According to the adiabatic approximation, one considers the
initial state as the state in which the particles are in the distant past (t0 → −∞) and
sufficiently far apart not to interact:

|�(−∞)〉 = |i〉.

In the final state, taken in the distant future (t → ∞), the particles behave again as if
they were free. The interaction takes place during a finite period of time in between,
as if the Hamiltonian of interaction were “switched on” at the time −T and then
“switched off” at the time T .

The S-matrix relates the initial state |�(−∞)〉 to the final state |�(∞)〉, which
means that, according to (7.38),

S = lim
t→∞ lim

t0→−∞U (t, t0).

The initial state is fixed by the observer as a state with a definite number of particles,
with given properties (like momenta, spin polarizations, etc.), and far apart, so that
they do not interact. The system is with certainty (unit probability) in the initial state
at the time t0 → −∞, therefore the state is normalized to unity:

〈i |i〉 = 〈�(−∞)|�(−∞)〉 = 1.

The probability is conserved, since the S-matrix contains all the possibilities for a
final state, i.e.

〈�(∞)|�(∞)〉 = 1.

But when we observe the system, we look for particular final states, | f 〉, whose
probability to be detected upon the scattering is

|〈 f |�(∞)〉|2.

Consequently, the probability amplitude for the transition from |i〉 to | f 〉 can be
written as an element of the S-matrix:

〈 f |�(∞)〉 = 〈 f |S|i〉 = S f i . (7.41)



7.4 Quantum Electrodynamics (QED) 267

Considering that all possible final states form a complete orthonormal set, we can
expand the state |�(∞)〉:

|�(∞)〉 =
∑
f

| f 〉〈 f |�(∞)〉 =
∑
f

S f i | f 〉,

which leads to the unitarity of the S-matrix expressed in the form:

∑
f

|S f i |2 = 1. (7.42)

This expression of the conservation of probability in quantumfield theory has a higher
generality than the conservation of particles in non-relativistic quantum mechanics,
which is not anymore valid, since particles can now be created and annihilated.

The unitarity of the S-matrix is a powerful tool in quantum field theory and
an indication whether a theory is plausible or not. Studies of unitarity have led to
impressive theoretical advances, one of the farthest-reaching for particle physics
being the introduction of the so-called Faddeev–Popov ghosts in gauge field theories
in 1967, by Ludvig Faddeev (1934–2017) and Victor Popov (1937–1994). However
these topics, as well as the expression of the conservation of probability by the optical
theorem, are beyond the scope of this book.

7.4.2 Feynman Diagrams

The processes of quantum electrodynamics or any other quantum field theory are
represented by diagrams, of which those in Fig. 7.3a, b are special cases. They are
called Feynman diagrams and represent a customary technical tool in the study of
the interactions of particles. To each term of an S-matrix element corresponds a
Feynman diagram.

The diagrams illustrating the interaction Lagrangian (7.35) involve two fermions
(e.g. electron–positron, or electron–electron, or positron–positron) and a photon. For
each factor in the Lagrangian (7.35) there will be one line on the diagram, as shown
in Fig. 7.3. All the processes appearing in any order in the perturbation expansion
will bemade out of these basic diagrams, which correspond to the so-called vertex, or
interaction point. When connecting vertices among themselves, the theory requires
one to impose the conservation of energy, momentum and electric charge at each
interaction point.

The diagrams in Fig. 7.3 would correspond to the following processes:

1. The scattering of a photon by an electron: the incoming electron and the photon
are annihilated and an electron is created. Classically, we would say that the
electron absorbs a photon and increases its energy and momentum. The time-
reversed process of emission of a photon by an electron is also conceivable.
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Fig. 7.3 Vertex diagrams representing the interaction of a photon (wavy line) with the electron–
positron field (straight lines). The initial state particles are drawn customarily to the left and the
final state particles to the right. The arrows represent the flow of negative charge. In the case of
electrons (particles), the arrows are in the direction of the momentum, while in the case of positrons
(antiparticles), the arrows are in the opposite direction to the momentum.

2. Another fundamental process is the creation of an electron–positron pair, from a
photon. The time-reversed process would be the annihilation of the pair, creating
a photon. None of these processes has a classical counterpart.

There is a problem, however, with these processes, which is common to all pro-
cesses in the first order in the perturbation expansion of QED: they are forbidden due
to the requirement of energy-momentum conservation, if the particles involved are
real, i.e. observable. Observable electrons and positrons have to satisfy the energy-
momentum dispersion relation E2

e = m2c4 + p2c2, while photons, being massless,
have to satisfy E2

γ = k2c2. The reader may check that energy-momentum conserva-
tion with such particles cannot be fulfilled in the above two processes. (However,
if the electromagnetic field is treated classically as an external source, while the
electron–positron field is a quantum field, the processes are allowed. They can actu-
ally happen, for example, in the Coulomb field present in the neighbourhood of an
atomic nucleus, or in the presence of a magnetic field.)

7.4.3 Virtual Particles

If the first order in the perturbative expansion does not provide any physical process,
is it possible that higher orders do? Actually, this is indeed the case. If for one of the
particles at the vertex we do not require the energy-momentum dispersion relation
to hold, then energy and momentum can be conserved. But what about the particle
which makes this possible? That particle will not be physical, but what we call a
virtual particle. Such a particle cannot be observed, but its effect can be. Virtual
particles are allowed by Heisenberg’s uncertainty principle. Since the uncertainties
in energy and time for a quantum particle are in the relation�E�t ∼ h, it means that
for very short times one can have very big fluctuations in energy. According to special
relativity, energy is equivalent to mass, therefore those energy fluctuations can be
treated as particles. Their life-time is too short to allow observation, therefore they are
not constrained by the energy-momentum dispersion relation, E = c

√
p2 + m2c2.

Virtual particles appear in intermediate states only, connecting two vertices in the
higher orders of the perturbation expansion. The mathematical functions charac-
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Fig. 7.4 Lowest order diagrams in quantum electrodynamics. The direction of the arrows shows
the flow of the negative charge. a Bhabha scattering, e+ + e− → e+ + e−. There are two diagrams
contributing to this process, the first being a purely quantum process, while the second has a
classical limit. bMøller scattering, e− + e− → e− + e−. Again there are two diagrams, due to the
indistinguishability of the electrons in the final state - it is impossible to know that the electron (1′) is
created at the vertex where the electron (1) or electron (2) is annihilated, therefore the two diagrams
have to be summed up. The same process can take place also with positrons. c Pair annihilation,
e+ + e− → γ + γ . While the pair annihilation into one real (not virtual) photon is forbidden by
the energy-momentum conservation, the process with two photons in the final state is allowed. d
Pair creation, γ + γ → e+ + e−.

terizing virtual particles in intermediate states are called propagators and they are
essential for the Lorentz-covariant treatment of any relativistic quantum field theory;
the higher-order corrections to basic processes are due only to virtual particles.
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Fig. 7.5 Feynman diagrams of the Compton scattering. Both diagrams contribute to the process.

7.4.4 Compton Scattering

If we go to the next order in the perturbative series, we can describe various physical
processes. The second order terms are proportional to the fine structure constant α.
For example, an electron–positron pair can be created from two photons, if their total
energy is higher than the double of the rest energy of an electron (see Fig. 7.4d).

A two-photon process occurs also in the Compton effect, in which a high-energy
photon (i.e. a photonwhose energy is comparable with the rest energy of the electron)
is scattered by an electron (Fig. 7.5). In the final state we find a “recoil electron” and a
photon with an increased wavelength and a different direction compared to the initial
one. The effect was discovered in 1923 by Arthur Compton (1892–1962), who was
awarded the Nobel Prize in 1927. The great importance of the discovery at that time
was that it gave further support to the hypothesis that light behaves as a particle in
certain phenomena. Classically, the scattering of lower frequency electromagnetic
radiation by electrons had been explained by J. J. Thomson, the discoverer of the
electron. According to his explanation, the electron absorbs electromagnetic radia-
tion, which causes it to accelerate. As a result of the accelerated motion, the charged
particle emits radiation of the same frequency as the absorbed one, but of lower inten-
sity. The difference in the frequency between the incident and the scattered beams
observed by Compton could not be explained classically. In QED, any process

γ + e− → γ + e−

is called Compton scattering, irrespective of the energy of the incident photons. The
low-energy limit of the Compton scattering is called the Thomson limit.

The relativistic kinematics of Compton scattering is easy to understand, assuming
that the electromagnetic radiation behaves like particles and the energy and momen-
tum are conserved (Fig. 7.6). In this section we keep explicit the h and c factors.
The natural reference system to treat this process is the rest frame of the target elec-
tron. In this frame, the electron has zero momentum, p = 0, and the rest energy
E = mc2. The incident photon’s energy is Ei = hνi and the relativistic momentum
|pi | = hνi/c. After the interaction, the recoil electron gains the momentum p′, such
that its total energy becomes E ′ =

√
p′2c2 + m2c4. The photon scattered at an angle
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Fig. 7.6 Kinematics of the
Compton scattering.

θ with respect to the direction of the incident photon has the energy E f = hν f and
the momentum |p f | = hν f /c. The energy conservation is expressed by the equality

mc2 + hνi =
√

(p′c)2 + (mc2)2 + hν f ,

which gives, upon squaring,

h2(νi − ν f )
2 + 2mc2h(νi − ν f ) = p′2c2. (7.43)

The momentum conservation can be written in the form:

pi − p f = p′,

which we plug into (7.43), obtaining:

h2(νi − ν f )
2 + 2mc2h(νi − ν f ) = (pi − p f )

2c2. (7.44)

Inspecting the Fig. 7.6, we can write easily the right-hand side of (7.44):

(pi − p f )
2c2 = p2i c

2 + p2f c
2 − 2pi · p f c

2

= p2i c
2 + p2f c

2 − 2|pi | · |p f |c2 cos θ

= h2(ν2
i + ν2

f − 2νiν f cos θ).

Using this last result, we put (7.44) into the form

1

hν f
− 1

hνi
= 1 − cos θ

mc2
,

or, in terms of the wavelengths of the incident and scattered beams:

λ f − λi = h

mc
(1 − cos θ). (7.45)

This calculated wavelength shift was in full agreement with Compton’s measure-
ments in scattering experiments with X rays and gamma rays. In the conclusion of
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his 1923 paper presenting the effect, Compton noted: This remarkable agreement
between our formulas and the experiments can leave but little doubt that the scat-
tering of X-rays is a quantum phenomenon. With the explanation of the Compton
scattering, a new constant was introduced, the Compton wavelength of a particle of
mass m, representing the wavelength of a photon whose energy is equal to the rest
energy of that particle, λc = h/mc.

In quantum electrodynamics, the Compton scattering is explained as follows: the
incident photon is annihilated, together with the target electron, at the point A, where
a virtual electron is created (Fig. 7.5a). This electron propagates for an extraordinarily
short time from A to B. At the point B, this virtual electron is annihilated, simul-
taneously with the creation of the recoil electron and of the scattered photon. To
this effect contributes also the process depicted in Fig. 7.5b, in which at the point
A where the initial electron is annihilated, the scattered photon is created, together
with a virtual electron. At B, after a brief propagation of the virtual electron, the
physical recoil electron is created, while the incident photon is destroyed. Remark
that in this explanation we have never used the expression “the electron absorbs a
photon” or “the electron emits a photon”, although later in this chapter we shall use
this terminology, with the warning that it has its roots in the classical intuition. (This
way of speaking—absorption and emission of the photon by charged particles—is
widely used. We are permanently facing classical concepts “at the border” of quan-
tum theory.) An electron which would be classically interpreted to absorb a photon
and continue its passage with a different energy and momentum, in quantum field
theory is interpreted as being destroyed, while another electron is created. Whether
the electron is the same or another, we have no way of knowing for sure, because
the electrons (as well as any other elementary particles) cannot be in principle dis-
tinguished from one another. What is sure, however, is that the calculation of the
scattering probability according to the rules of quantum electrodynamics is in per-
fect agreement with the observation. Moreover, for low-energy incident photons, the
energy of the recoil electron is negligible and in this limit, the result of quantum
electrodynamics reduces to the classical Thomson scattering formula.

The attribute of virtual is assigned also to those non-observable photons responsi-
ble for the electrostatic interactions. The electrostatic field (which is exerted between
two charges kept at rest, for instance, and can be attractive or repulsive) is polarized
longitudinally. This means that it is along the direction of propagation, and although
it is formally considered as composed of quantum particles, that is, longitudinal pho-
tons, these are not observable in vacuum (see Sect. 4.5). In a medium where free
charges exist, for instance in a plasma, the electrostatic interactions can propagate as
longitudinal waves and the corpuscular character of these longitudinal oscillations
may become observable.

7.4.5 Electron Self-energy and Vacuum Polarization

As a consequence of the fundamental processes mentioned in Sect. 7.4.2, we should
understand the electron as being in permanent interaction with a cloud of virtual
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Fig. 7.7 One-loop diagram of the electron self-energy, called also mass operator. It represents the
emission and absorption of a virtual photon by an electron (or a positron). It is proportional to
the fine structure constant α (since it contains two vertex factors, each of them contributing one
factor e).

Fig. 7.8 Vacuum polarization diagram.

photons, which it “emits” and “absorbs” all the time. This is represented by the
loop diagram in Fig. 7.7, illustrating the emission and absorption of a virtual photon
by an electron. The interaction of the electron with its own electromagnetic cloud
changes the energy of the electron, consequently it modifies the mass of the electron.
The diagram is said to represent the electron self-energy and it gives the difference
δm between the mass m of an interacting, or physical electron, and the mass m0 =
m − δm of a non-interacting electron, which is sometimes called bare.

The polarization of vacuum is another important effect of quantum electrody-
namics. In this case, a propagating photon creates a virtual electron–positron pair,
which subsequently annihilates again, reproducing the original photon which con-
tinues propagating (Fig. 7.8). Since the electron–positron pair which is created and
then annihilated has virtual nature (they are not observable particles), it is not neces-
sary that the photon has high energy (or frequency), and the process may occur for
photons of any energy. In the presence of a charge producing a background electric
field, the distribution of these virtual pairs will be modified and it would appear as
if the vacuum were polarized. For example, an electron would attract the virtual
positrons and repel the virtual electrons. Thus, the vacuum behaves like a dielectric,
polarizable, medium (the situation is similar to the one depicted in Fig. 3.20). Then,
if a small test charge is brought at a relatively large distance from the electron, it
would experience a force corresponding to a smaller charge of the electron, due to
the screening effect of the vacuum polarization. This effect is indeed observable, as
we shall see in Sect. 7.4.6.

What would happen to a photon? Would it get some non-zero mass due to its
interaction with virtual particles in the vacuum? The answer is negative. Calculations
show that the effect of the vacuum polarization diagram in quantum electrodynamics
is such that it keeps observable free photons on the light cone. This result is expected,
since QED is a relativistic theory, and it is also gauge invariant, as we will discuss
in Sect. 7.6, so photons must remain massless.

There is still one diagram which gets modified in the higher orders in α, and
that is the vertex correction represented in Fig. 7.9. The latter diagram contributes
to the observed intrinsic magnetic moment of the electron. Recall that the magnetic
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Fig. 7.9 Vertex correction
diagram.

moment due to the spin of the electron involved the gyromagnetic factor gs = 2 (see
Sect. 7.1). However, when the measurements were refined, it turned out that there
was a slight departure from this integer number (anomalous magnetic moment), and
the actual gs-factor was higher:

gs = 2(1 + ae). (7.46)

The anomalyaewasfirstmeasuredbyPolykarpKusch andHenryFoley in 1947–1948
to be 0.00119 ± 0.00005. Julian Schwinger derived the correctionae in 1948 from the
process depicted in thediagram inFig. 7.9 and found it to be exactlyα/2π = 0.00116.
Over the years, the measurement of the anomalous magnetic moment of the electron
became one of the highest precision tests of quantum electrodynamics, while the
theoretical value has been calculated up to the order α4. The agreement between
theory and experiment is staggering, making the anomaly of the magnetic moment
of the electron the most accurately verified prediction in the history of physics. As
of 2012, the value given by the Particle Data Group is

ae = 0.00115965218076 ± 0.00000000000027.

In 1947, Willis Lamb discovered a spectral line of 1,058MHz in the hydrogen
atom spectrum, corresponding to the energy difference between the levels 2S1/2
and 2P1/2, i.e. the two levels with n = 2 and j = 1/2, but corresponding to dif-
ferent angular momentum quantum numbers, l = 0 (denoted in spectroscopy by S)
and l = 1 (denoted by P). Dirac’s theory for the hydrogen atom spectrum predicts
degeneracy, that is, the same energy for both levels, as can be seen from the for-
mula (7.18), which does not depend at all on l. Hans Bethe (1906–2005) made
a non-relativistic estimation of the effect of the electron’s self-energy and found a
surprisingly good agreement with the experimentally observed value (1,040MHz).
Actually, besides the electron self-energy, also the vacuumpolarization and the vertex
correction slightly contribute to the Lamb shift (Fig. 7.10).

In the end of the 1940s, quantum electrodynamics was in the process of being
elaborated. The relativistic calculation of the Lamb shift was the great challenge of
the day. Many theoretical physicists were attempting it, but finally the credit went
to Sin-Itiro Tomonaga (1906–1979), Julian Schwinger (1918–1994), and Richard
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Fig. 7.10 Thediagrams contributing to theLamb shift—the hydrogen spectral line corresponding to
the transition 2S1/2 − 2P1/2. (a) The electron self-energy contributes 1,017MHz, (b) the anomalous
magneticmoment contributes 68MHz, and (c) the vacuumpolarization diagramhas a small negative
contribution of −27MHz. Altogether they give the experimentally measured 1,058MHz.

Feynman, (1918–1988), who developed the full relativistic theory while seeking the
answer to this concrete problem. They were awarded jointly the Nobel Prize in 1965,
“for their fundamental work in quantum electrodynamics, with deep-ploughing con-
sequences for the physics of elementary particles”. Already in 1955, the Nobel Prize
had been awarded to Willis Lamb (1913–2008) “for his discoveries concerning the
fine structure of the hydrogen spectrum” and to Polykarp Kusch (1911–1993) “for
his precision determination of the magnetic moment of the electron”.

7.4.6 Renormalization and Running Coupling Constant

Whywas it, after all, so difficult to build quantum electrodynamics? In the discussion
of the previous section we intentionally omitted tomention the reason. The first order
in α diagrams give finite results, in excellent agreement with the experiment. When
one calculates higher-order corrections, like for example those in Fig. 7.10, onewould
expect them to be much smaller than the first-order result, i.e. of the order of α2.
Surprisingly, the calculation of the loop diagrams involve divergent integrals, and
the corrections seem to be infinite! The great achievement of Tomonaga, Schwinger,
and Feynman, was to elaborate a consistent formalism to subtract the divergences,
leading to finite quantities, comparable with experiments. The procedure is generally
called renormalization and it consists of three main steps.

The first step is to regularize the integrals, i.e. tomake themfinite. The divergences
are named ultraviolet divergences, since they are due to the integration up to infinite
momenta of the virtual particles which run in the loops. One intuitive method of
regularization is to cut off the integration limit to a very large, but finite momentum.
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Fig. 7.11 Two-loop diagrams contributing to the electron self-energy, vacuum polarization and
vertex correction. We may conceive easily higher order diagrams. Each new loop introduces a
factor α.

The second step consists of relating the quantities describing bare (i.e. non-
interacting) particles to those describing the physical particles. For example, one
has to find the relation between the mass of a bare electron, m0, and that of a phys-
ical electron, m, or between the charge of a bare electron, e0, and the charge of a
physical electron, e. All the predictions of the theory (which are mainly scattering
probabilities, expressed as scattering cross sections) have to be written in terms of e
andm, which are set at this point to their experimental values, measured at a specific
energy, which gives the renormalization scale.

In order to revert to the original theory, we have to remove the regularization (in
the cut-off method, we let the momenta of the loop go to infinity again). However,
due to the renormalization done at the second step, the infinities reappear only in the
relation between the bare and the physical quantities. In a way, we claim that the bare
mass m0 and the bare charge e0 of an electron are infinite—but this is no problem
anymore, since bare particles cannot be observed. As all the observables have been
expressed at the second step in terms of the finite (physical) e and m, the corrections
will be in their turn finite and proportional to α, if we work at one-loop level, or to
α2, if we work at two-loop level etc. (Fig. 7.11).

A result of special significance is the effective value of the electric charge when
we change the energy scale at which we make the measurement. Recall that we have
mentioned in Sect. 7.4.5 that the vacuum polarization effect has as a consequence the
screening of the charge of an electron, such that from a large distance, a test charge
“feels” it as being smaller. If we bring the test charge closer to the one we wish to
measure, then the screening effect obviously diminishes, and the effective charge
appears as being larger. The closer we bring the test charge, the larger the charge of
the electron appears to be. To bring the test charge close, we need to give it more and
more energy, therefore short distance is equivalent to high energy. Instead of saying
that the electric charge depends on the distance to the test charge, we can say that it
depends on the energy scaleμ of the measurement, α = α(μ). The Coulomb law has
to be modified, because the coupling constant runs. This means that the interaction
potential between two charges q and q ′ should be written at very short distances as

V (r) 
 qq ′

r

[
1 + 2α(μ)

3π

(
ln

h

mcr
− const.

)]
, (7.47)
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where const.= 5/6 + ln γ and γ = 1.781 . . ., that is, the dependence of the potential
on the distance becomes of the form [1 + A ln(r0/r)]/r , where A = 2α

3π and r0 =
h/mc is the Compton wavelength of the electron, of the order 10−2 Å.

The effect is indeed observable. With utmost present-day precision, we can say
that the fine structure constant has the value α = 1/137.03599911(46) at an energy
equal to the rest energy of the electron, μ0 = mc2 = 0.510998918(44)MeV (low-
energy limit, called alsoThomson limit).However,measurements of thefine structure
constants have been regularly reported for higher energies. It has been found that the
effective value for the fine structure constant, at a value of the energy equal to themass
of the Z boson, mZ = 91.1876 ± 0.0021GeV, is α(mZ ) = 1/(128.937 ± 0.047),
in excellent agreement with the theoretical prediction of α(mZ ) = 1/(128.940 ±
0.048), and significantly different from the value α 
 1/137 at low energies.

For large values of ln μ2

μ2
0
, the dependence on the energy scale of the coupling

constant α(μ), to all orders in perturbation, is

α(μ) = α(μ0)

1 − α(μ0)

3π
ln

(
μ2

μ2
0

) . (7.48)

At the nowadays attainable energies in high energy physics laboratories, the increase
in α is not big, although observable. However, at the energy scaleμ = mc2e3π/2α(μ0),
which is a giant value, 10283 keV, but still finite, the denominator vanishes, and α(μ)

becomes infinite. The only way to solve this inconsistency is to assume that α(μ0)

vanishes, but then α(μ) would be zero at any energy, i.e. QED would be a non-
interacting theory, which is absurd. This problem is known as the Landau pole, or
sometimes theMoscow zero. It is a limitation of quantum electrodynamics, and it is
absent inmore complete theories, like the StandardModel or GrandUnified Theories
(see Chap.11).

7.5 Quantum Vacuum and Casimir Effect

In quantumelectrodynamics the properties of vacuumare interpreted as the properties
of the ground state. For instance, the energy spectrum of the free electromagnetic
field is given by its quantum Hamiltonian operator, whose expression is

Ĥ =
∑
k

∑
λ=1,2

�ωk

(
â†λ(k)âλ(k) + 1

2

)
,

where â†λ(k) and âλ(k) are the creation and annihilation operators of a free pho-
ton of momentum k and polarization λ (free real photons can have only transverse
polarizations, therefore the index λ can take only two values). When we apply this
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Hamiltonian to the vacuum state |0〉, the first term gives no contribution due to the
fact that all annihilation operators destroy the vacuum (see (7.27)). The second term
gives the energy of the vacuum, which is obviously infinite, due to the summation
over all possible values of k:

E0 = 1

2

∑
k

∑
λ

�ωk.

This energy is associated to the virtual modes of vacuum which are infinite in num-
ber. As we have seen earlier, quantum vacuum is by no means equivalent to simple
empty space but instead it contains unobservable particles (electrons, positrons, pho-
tons, etc.)—the virtual particles created and annihilated continuously, in quantum
fluctuation processes.

When we calculate the energy of any particle state, this vacuum energy will
always give an infinite contribution (sometimes called zero-point energy), which is
usually subtracted in a renormalization process, arguing that the vacuum energy is
unobservable, and the only thing that we can in principle measure is the difference
between the ground state and the particle states energies.

However, the vacuum energy of the electromagnetic field has actually a macro-
scopic effect—the Casimir effect—discovered and explained in 1948 by Hendrik
Casimir (1909–2000). It consists in the following: if one places two unchargedmetal-
lic plates a few micrometer apart in vacuum, the only waves allowed to propagate in
between the plates are those which correspond to a vanishing transverse electric field
on the metallic plates. Consequently, the waves have to be such that half wavelengths
fit exactly within the distance d, i.e. λn = 2d/n, where n = 1, 2, . . ., corresponding
to the angular frequencies ωn = πnc/d. On the outside of the plates, however, all
the possible frequencies still exist (Fig. 7.12). As a result, a smaller radiation pres-
sure arises from the modes inside the cavity than from those outside it, leading to
an attractive force between the plates. The attractive force per unit area between the
plates (or the corresponding pressure) is given by the expression

F/S ≡ p = − π2
�c

240d4
. (7.49)

For two metallic plates with the area of 1cm2, separated by a distance d = 1µm,
the force is about 1.3 × 10−2 dyne = 1.3 × 10−7 N. The first experiment in which
the Casimir effect was observed was performed by Marcus Sparnaay in 1957, but
while the results did not infirm the theory, the errors were very large. In 1997 started
the era of more accurate measurement of the Casimir force, with the experiments of
Steve Lamoreaux, and Umar Mohideen and Anushree Roy.
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Fig. 7.12 Inside the plates,
only those electromagnetic
modes are allowed whose
frequencies are integer
multiples of ω = πc/d.

7.6 Principle of Gauge Invariance

InChap.5we discussed the gauge invariance of the electromagnetic field components
E and B. When considering the interaction of the electromagnetic field with the
electron–positron field, gauge invariance becomes a more general property.

As we have mentioned in Chap.5, in order to describe electromagnetic theory
in a manifestly relativistic way, one has to re-cast it in the language of the vector
potential Aμ, and start from the relativistically invariant Lagrangian density of the
field, whose expression is:

L = −1

4
FμνFμν, Fμν = ∂μAν − ∂ν Aμ. (7.50)

The components of Fμν are shown in (5.37), i.e. Ek = F0k and Bk = 1
2εi jk Fi j . Apply-

ing the least action principle which we discussed for particle mechanics in Chap. 1,
one obtains the equations of motion for the field, which in this case are the Maxwell
equations. Under the gauge transformations

Aμ(x) → A′
μ(x) = Aμ(x) + ∂μ f (x), (7.51)

where f (x) is an arbitrary differentiable real function, the field strength tensor Fμν is
invariant, which means that the action itself is invariant, as well as all the observables
of the theory.

What looked like a simple peculiarity of the reformulation of electromagnetism in
terms of the vector potential, turns up to be a manifestation of the gauge invariance
principle, which underlies all the modern relativistic theories of particle physics. Let
us sketch the argumentation leading to this principle. In the discussion we shall refer
to classical fields and Lagrangian densities.

The relativistic theory of the interaction of charged particles with the electro-
magnetic field starts with the formulation of a relativistically invariant action. The
Lagrangian density which leads to the free Dirac equation (7.30) has the form:

LDirac(x) = �̄(x)(iγ μ∂μ − m)�(x). (7.52)
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This function remains invariant if we make a transformation on the fields which
does not affect the spacetime, namely:

�(x) → � ′(x) = e−iε�(x), (7.53)

�̄(x) → �̄ ′(x) = eiε�̄(x),

where ε is any real number. Such transformations are unitary, in the sense that the
inverse of a transformation is its Hermitian conjugate. They also form a group,
denoted by U (1), which is the unitary group with one parameter (in our example,
the parameter is the real number ε). We should emphasize that the parameter of the
transformation does not depend on the spacetime point, forwhich reasonwe call these
transformations global. Noether’s theorem predicts that there is a conserved charge
associated with this invariance, and indeed one can derive from it the conservation
of the electric charge (though not complicated, we shall omit this derivation).

What happens if we make the parameter ε a function of coordinate, ε(x), that is
we localize the transformations? Such transformations are called local or gauge. An
argument for such a requirement could be as follows: the phase ε is immaterial—it
can be chosen by someone at a certain place and time differently than by someone
else, at another place and time, so that, in general, the phase can be a function of the
spacetime point x . It is very easy to see that, in this case, the Lagrangian (7.52) is no
more invariant. If we consider ε(x) = e f (x) and perform the transformations (7.53)
with this parameter, we obtain that

L′ = L − e�γ μ� ∂μ f. (7.54)

To make the Lagrangian invariant, we need to add a new field, such that the term
depending on ∂μ f (x) be compensated on the right-hand side of (7.54). The new field
is the electromagnetic vector potential Aμ(x), transforming according to the formula
(7.51), and included in the Lagrangian density through the interaction term

Lint = e�̄γ μAμ�,

which is precisely the form of the interaction term of quantum electrodynamics
(7.35). The electromagnetic field is called a gauge field. The total Lagrangian den-
sity of electrodynamics, invariant under gauge transformations, contains the terms
describing the free Dirac field, the free electromagnetic field, and their interaction:

L = �̄(iγ μ∂μ − m)� − 1

4
FμνFμν + e�̄γ μAμ�. (7.55)

We conclude this paragraph by pointing out that there exists an intimate relation-
ship between the following four properties:
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1. The free photon has only two modes of (transverse) polarization.
2. The photon mass is zero.
3. The Lagrangian density describing electromagnetic interaction is gauge invari-

ant.
4. The electromagnetic interactions have long range (the force decreases as the

inverse square of the distance or the potential decreases as the inverse of the
distance).

The line of reasoning that we presented above is the prototype for constructing any
modern theory of particle physics, which is required to satisfy the principle of gauge
invariance (though with other groups of internal transformations, as we shall see in
Chap.11). The remarkable property of gauge field theories, like QED, is that the
ultraviolet divergencies appearing in higher orders in perturbation can be removed,
or renormalized, in a consistent way – such theories are called renormalizable.

The Aharonov–Bohm Effect. The reformulation of electrodynamics in terms of
the vector potential appears so far like a device to make the theory manifestly rela-
tivistically invariant. The vector potential itself is unobservable, since it is not gauge
invariant, unlike the fields E and B. However, using the concept of electromagnetic
vector potential, a quantummechanical effect was predicted, whose existence would
never have been conceived, had electromagnetism been formulated only in terms
of the fields E and B. This is the Aharonov–Bohm effect, predicted in 1959 by
Yakir Aharonov (b. 1932) and David Bohm (1917–1992) (an earlier report had been
made by Werner Ehrenberg and Raymond E. Siday in 1949). The Aharonov–Bohm
effect clearly indicates that in quantum theory the electromagnetic potentials are
truly fundamental, and not the electromagnetic field strength components.

When Schrödinger’s equation is written in the presence of a magnetic field, the
momentum operator becomes

p̂ = −i�∇ + e

c
A, (7.56)

where A is the vector potential. Let us assume now that we perform the double-
slit experiment described at the beginning of Chap. 6, but with a very long solenoid
placed behind the pierced screen, perpendicular to the straight line that joins the slits
(Fig. 7.13). The magnetic field B is confined inside the solenoid, while in the outer
region it vanishes. Around the solenoid, however, there is a nonvanishing vector
potential A, whose curl is zero.

Before placing the solenoid, the electrons are described by wave functions of the
type ψ(x, t) = Ceiϕ , where in the case of plane waves, the phase is ϕ = (p · r−
Et)/�. For the electrons passing through the slits, the expression for the phase is
more complicated, but for our illustrative purpose we may as well use the plane
waves.
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Fig. 7.13 Influence of the magnetic field inside the solenoid on the motion of electrons, according
to the Aharonov–Bohm effect. The interference pattern is shifted compared to the situation when
the solenoid is removed.

The interference of the amplitudes on the screen depends on the difference of
these phases: if we assume the beams of electrons described by the wave functions
ψ1 = C1eiϕ1 andψ2 = C2eiϕ2 , the probability density of the electrons reaching some
point on the screen is given by the function

|ψ1 + ψ2|2 = C2
1 + C2

2 + 2C1C2 cos(ϕ1 − ϕ2).

The last term determines the pattern of interference on the screen, through the dif-
ference of phases, δ = ϕ1 − ϕ2.

When the solenoid is introduced, the phase acquires a new element. When in
ϕ we substitute the momentum operator by −i�∇ + e

cA, the difference of phases
becomes:

δ′ = δ + e

�c

∫
(a)

A · dl − e

�c

∫
(b)

A · dl (7.57)

= δ + e

�c

∮
(ab)

A · dl, (7.58)

where (a) and (b) are the trajectories of the two beams of electrons and (ab) is the
closed path composed by the two trajectories of the electrons, as seen in the figure.
This integral is invariant under gauge transformations; in fact, the integral represents
the flux of the magnetic field B through the area bounded by the closed curve (ab).
The interesting aspect of this effect is that although the magnetic field is zero outside
the solenoid, it influences themotion of the electrons,manifested by the integral of the
vector potential A, which is not zero outside the solenoid, taken along the trajectory
of the electrons. The Aharonov–Bohm effect is directly connected with the magnetic
flux quantization. Observe that, using Stokes’ theorem, the phase difference can be
put in the form
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δ′ − δ = e

�c

∮
(ab)

A · dl = e

�c

∫
S

B · dS,

where S is the area subtended by (ab). If the flux is quantized in units of �c/2e (as
is the case in superconductors), then δ′ − δ can be interpreted as a measure of twice
the number of flux quanta across S, that is, across the solenoid (Fig. 7.13).

The first experimental observation of the Aharonov–Bohm effect was made as
soon as 1960, by R.G. Chambers. Several other groups also attempted it. However,
since the experiment requires an ideal solenoid, which does not leak any magnetic
field outside, for many years the reported observations were argued to be inconclu-
sive. The final confirmation came in 1986 from the Japanese group led by Akira
Tonomura (1942–2012), a pioneer of holographic electron microscopy. In the exper-
iment, a toroidal ferromagnet was covered with a superconductor layer to confine the
field, and further with a copper layer for complete shielding from the electron wave.
Tonomura performed also other fundamental experiments in quantum physics, like
the demonstration of the electron two-slit interference in 1989, with the pattern devel-
oping gradually by the detection of individual electrons, or the creation of vortices
in electron beams, in 2010.

7.7 CPT Symmetry

The charge conjugation or C-transformation changes a particle to its antiparticle.
C-invariance means that every process has a symmetric process, in which electrons
and positrons (or any particle and its antiparticle, even if they have no electric charge,
but are different in any other way) are interchanged. Quantum electrodynamics is
C-invariant. For instance, the Compton scattering has a symmetric process under
charge conjugation: the scattering of a photon by a positron. The probabilities for
the two processes are identical, i.e. they are C-invariant.

The P-invariance or parity symmetry means invariance under the inversion of
space, for instance, the exchange of right and left. The mirror has the property of
doing such an inversion. If we are right-handed, our mirror image is left-handed and
vice versa. If we walk toward the mirror, the image also approaches us, that is, it
moves in the opposite direction to us. However, the directions parallel to the mirror
do not change, and if we move in these directions, the image follows us in the same
direction. The P-invariance of quantum electrodynamics means that given a process,
there exists an equivalent process in which the space has been inverted; that is, the
mirror image of the phenomenon.

Time reversal is the transformation which reverts the direction of time.
T -invariance means that an equivalent process inverting the initial and final states
occurs with the same probability. For example, the scattering of two photons leads
to the creation of an electron–positron pair. But the electron–positron pair may just
as well annihilate, creating two photons. The processes are symmetric with respect
to the inversion of time.
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These transformations are called discrete, because they cannot be obtained by
the continuous variation of some parameters, but rather by a “jump”. They are all
symmetries of quantum electrodynamics, but not all the fundamental interactions
of particle physics preserve them—we shall see in Chap.9 that weak interactions
violate C-, P-, and the combined CP-symmetry.

Up to now, no CPT -invariance violation has been experimentally observed, that
is, the physical processes of the atomic and subatomic world are invariant under the
product CPT of the three transformations. As a consequence, in quantum electrody-
namics the inversion of time, T, is equivalent to the productCP of charge conjugation
and parity. According to Feynman, positrons can be interpreted formally as electrons
moving backward in time. Thus, in a process in which electrons take part, if the
charge conjugation C and the inversion of space P are performed, a process results
involving positrons, and the operation is equivalent to the inversion of time.

The CPT symmetry is ensured by a theorem proved in 1954 by Wolfgang Pauli
and Gerhart Lüders in certain conditions, all of which being fulfilled by the modern
mainstream theories of particle physics.

7.8 Grassmann Variables

The quantization of the electron–positron field to account for Pauli’s exclusion prin-
ciple requires the use of anticommuting operators. While non-relativistic quantum
mechanics was developed based on commutators of operators, having a correspon-
dent in classical Hamiltonian mechanics in the Poisson brackets, for the anticom-
muting operators which describe fermions there is no classical analog.

As we have seen in Chap.1, there is an example of anticommutation in classical
mechanics—the vector product of two given vectors:

A × B + B × A = 0, A × A = 0.

This property can be generalized by introducing new mathematical entities: the anti-
commuting or Grassmann variables.

A set of n Grassmann variables θi , i = 1, 2, . . . , n, satisfy the so-called exterior
algebra, or Grassmann algebra anticommutation relations:

θiθ j + θ jθi = 0. (7.59)

In particular, for any index i ,
θ2
i = 0. (7.60)
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The Grassmann numbers commute with any ordinary number c, i.e. c θi = θi c.
Moreover, a product of two Grassmann numbers behaves like an ordinary number:

(θiθ j )θk = θk(θiθ j ),

which can be easily seen by applying the property (7.59).
For the Grassmann variables there are obviously no order relations, that is, we

cannot say that one Grassmann number is bigger or smaller than another.
Any function of one Grassmann variable θ , due to the property (7.60), can be

written simply as
f (θ) = a + bθ,

since in the expansion of f (θ) higher powers in θ are zero.
One formally defines derivation and integration with respect to Grassmann vari-

ables, by analogy with the case of the ordinary numbers.
Onemust distinguish between left and right derivatives: if θ and η are two different

Grassmann variables, then

−→
∂

∂θ
ηθ = −η, ηθ

←−
∂

∂θ
= η,

−→
∂

∂η
ηθ = θ. (7.61)

The rules for integration which comply with the anticommutativity of the Grass-
mann variables look rather peculiar:

∫
dθ = 0, (7.62)

∫
dθ θ = 1. (7.63)

Let us justify them. Consider

∫
dθdη = −

∫
dηdθ = −

∫
dθdη,

where for the first equality we used the anticommutation property, and for the second
we exchanged the notation θ ↔ η, since the two variables are integration variables,
and the result should not depend on them. Consequently,

∫
dθdη = 0, which leads

unequivocally to (7.62). Regarding (7.63), we observe that dθθ has to behave like an
ordinary number, therefore the integral is also expected to be an ordinary number.
This number can be chosen arbitrarily, as long as it is used consistently. The natural
choice, for simplicity, is 1. Remark that there are no limits of integration—the oper-
ation is purely formal.
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It is interesting to note that, for Grassmann variables, the integration and the
derivation of a function lead to the same result, as one can straightforwardly check.

The formulation of the path integral quantization of fermionic fields, as well as of
the ghost fields in non-Abelian gauge theories, cannot be imagined in modern times
without the use of Grassmann variables. They are essential also in supersymmetry.
These aspects are far beyond the scope of the present book, but we hope that we have
enticed the reader to delve into them.

Problems

Problem 7.1 Start with the non-relativistic time-independent Schrödinger equation
for an electron in a strong magnetic field, viz., (6.61) in Chap. 6, and write it as a
two component spinor wave function.

Problem 7.2 (i) Check using the definition (7.2) that the Pauli matrices satisfy the
commutation property [σi , σ j ] = 2iεi jkσk . The previous relation may be obtained
from the more general one

σlσ j = δl j + iεl jkσk . (7.64)

(ii) Use (7.64) to find the anticommutator {σl, σ j } = σlσ j + σ jσl .

Problem 7.3 The Bohm–Aharonov effect reveals the fundamental physical role of
the electromagnetic potentials A, φ (in addition to the fields B and E) in quantum
theory. As a consequence, it also leads to the quantization of the magnetic flux.
Concerning the last property, consider an electron moving in a magnetic field, and
impose the Bohr–Sommerfeld quantization condition

∮
P · dl = nh for the electron

in its orbit, whereP = p + eA/c is the canonicalmomentumof the electron.Assume
that the electron momentum p is expressed in terms of B through the Lorentz force.
(i) Show that the magnetic flux is quantized. (ii) Discuss the difference between the
Aharonov–Bohm problem and the present one. Hint: Use the relations between p
and B from classical electrodynamics.
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Chapter 8
Fermi–Dirac and Bose–Einstein Statistics

8.1 Fermi–Dirac Statistics

As we have seen in Chap.6, identical particles are indistinguishable, and if their spin
is a half-integer multiple of �, they are called fermions. They are then described
by antisymmetric wave functions. In what follows we shall consider the statistical
problem of the properties of a large number of electrons and its relation with some
properties of solid bodies.

Suppose that there is a large number of electrons in a cubic box, and let L be the
length of its side. We assume that the electrons are not interacting (as a matter of
fact, this is equivalent to assuming that the interaction energy between the particles
is negligible as compared with their mean kinetic energy). If p is the momentum of
the electron and m its mass, the energy is simply

E = p2

2m
. (8.1)

By solving the Schrödinger equation with some boundary conditions (for instance,
the wave function vanishes at the walls) this leads to the quantization of the electron
momentum inside the cubic box. The components px , py , pz should have the form:

px = 2π�l1
L

, py = 2π�l2
L

, pz = 2π�l3
L

, (8.2)

where l1, l2, l3 are integers. Given three integers, they determine the three components
of the electron momentum and, as a consequence, its energy. To each of these sets of
three numbers there corresponds one of the two possible orientations of the electron
spin, so that the quantum state of the electron will be characterized by the four
numbers l1, l2, l3, and s, the latter describing the spin and taking two values.

Let us consider all possible values of px , py , pz on a system of three coordinate
axes. The result is a three-dimensional lattice of cubic boxes (Fig. 8.1). To each box
one can ascribe a set of three numbers l1, l2, l3, the coordinates of one of the vertices.

© The Author(s), under exclusive license to Springer-Verlag GmbH, DE,
part of Springer Nature 2021
M. Chaichian et al., Basic Concepts in Physics, Undergraduate Lecture Notes in Physics,
https://doi.org/10.1007/978-3-662-62313-8_8

289

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-62313-8_8&domain=pdf
https://doi.org/10.1007/978-3-662-62313-8_8


290 8 Fermi–Dirac and Bose–Einstein Statistics

Fig. 8.1 For a gas of
electrons in a cubic box, the
momentum space is divided
into boxes, in each of which
there can be only two
electrons, with antiparallel
spins.

pz

py

px

Within each box one can have only two electrons, according to the Pauli exclusion
principle (Fig. 8.1).

If now N electrons are distributed in the set of boxes, the configuration of minimal
energy is the one in which the boxes are filled starting from the origin of coordinates,
taking care that no empty boxes remain between the filled ones, and that pairs of two
electrons of opposite spins are placed in each box.

The final result is a spherical distribution of momenta (Fermi sphere), whose rad-
ius pf corresponds to the electrons of maximum energy, called the Fermi energy,
Ef :

p2f = 2mEf . (8.3)

This radius pf , called Fermi momentum, would increase if the density of electrons n
(particles per unit volume) were increased. If the density or the temperature are very
high, the problem must be studied from the relativistic point of view. (For instance,
assume the Fermi energy Ef ≥ mc2. The electron kinetic energies would be of the
same order as their rest energies.) Qualitatively, the relativistic problem is similar
to the non-relativistic one. It is important in astrophysics, i.e., in the study of very
dense stars, like white dwarfs.

For lower densities, the non-relativistic model discussed previously provides a
good description of the behaviour of free electrons in a metal at low temperatures.

It is evident that, even at extremely low temperatures, the electron gas exerts some
pressure, since very few electrons have momentum zero or close to zero, and a large
number have values around pf .

For zero temperature, the density of electrons n in each quantum state of energy
less than or equal to Ef is 1, while for states of energy greater than Ef it is 0. This is
illustrated by the curve in Fig. 8.2, where the vertical axis corresponds to the density
and the horizontal axis to the energy.

If the temperature differs from zero, the thermal motion induces some electrons to
occupy states of energy greater than Ef , leaving vacant some states of lower energy.
Obviously, the more excitable electrons are those close to the Fermi surface, and for
this reason, the mean number of electrons in each quantum state adopts the form
indicated in Fig. 8.3.
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Fig. 8.2 Mean density of
electrons in energy quantum
states at zero temperature.
All the states with E < E f
are occupied (n = 1) and all
the states with E > E f are
empty (n = 0).

n(E)

Ef E

Fig. 8.3 Mean number of
electrons per quantum state
at a temperature T �= 0.
Some fraction of the
electrons has been excited to
states with energies greater
than Ef , and the curve is
smoothed around this value,
over an interval of
temperatures of width
approximately equal to kT .

8.2 Fermi–Dirac and Bose–Einstein Distributions

To justify mathematically the previous statements, we shall calculate the average
number of particles per quantum state in the ideal Bose and Fermi gases in equilib-
rium. We consider the problem of distributing ni particles in gi states of the same
energy. The number gi is in general very large. In the momentum sphere, the number
of states or cells with energy between Ei and Ei+1 = Ei + �E is to be under-
stood as the number of states in the momentum interval pi , pi + �p, where we take
�p = 2π�/L , so that the spherical layer has the thickness of a single cell. This
number is

gi = 4Vπ p2i �p/(2π�)3

for one spin orientation, since the volume of the spherical layer is 4π p2i �p (in terms
of the energy, it is

√
2m3/2E1/2

i �E) and the volume in configuration space is V = L3.
To account for more than one spin orientation, one has to multiply this expression
by the number of spin degrees of freedom which, in the case of electrons, is 2.

To give an idea about orders of magnitude, let us consider speeds between 10 and
11 cm/s in a volume V = 1 cm3. A simple calculation gives gi � 100. For fermions,
we always have ni ≤ gi due to Pauli’s principle, while for bosons there is no such
restriction.

Let us calculate the number of possible states for bosons.We consider the problem
as analogous to the task of putting balls inside boxes. Schematically, let us mix balls
and boxes and let us put them in lines, in such a way that a row begins always with a
box (B), and then place balls (b) and other boxes on the right, understanding that the
numbers of balls to the right of one box are contained in it. A possible configuration is
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BbbbBbbbbbBbBBbbbbbbbbbbb . . . , (8.4)

that is, three balls in the first box, five in the second, one in the third, zero in the fourth,
eleven in the fifth, etc. The number of possible distributions is (ni + (gi − 1))! (the
box at the left is fixed), but as the particles are indistinguishable, and the boxes also,
we must divide by the number of permutations of the quantum states resulting from
the distribution of the ni boson particles in the gi energy states Ei , i.e.,

�(b)
gi ,ni = (ni + gi − 1)!

ni !(gi − 1)! . (8.5)

This is the number ofmicroscopic states that results from the distribution of ni bosons
in the gi one-particle quantum states with energy Ei .

For fermions, the task is even simpler because, as ni ≤ gi and as we can have at
most one fermion in each state, the problem consists in calculating the combinations
of order ni of the gi states. This gives

�( f )
gi ,ni = gi !

ni !(gi − ni )! . (8.6)

Considering all possible energy levels Ei , each with an occupation number ni , the
total number of microstates is given by the product between the number of energy
levels and the number of ways in which each energy level can be populated:

�(b, f ) = �Ei �
(b, f )
gi ,ni . (8.7)

We assume that in both cases the total energy, given by the formula

U =
∑

i

ni Ei , (8.8)

and the total number of particles,

N =
∑

i

ni , (8.9)

are conserved.
The problem is to calculate the maximum of the entropy S = k ln�(b, f ) subject

to the conditions of conservation of energy, dU = 0, and conservation of the total
number of particles, dN = 0, assuming that ni is effectively a continuous variable.
Using the Stirling formula ln n! � n ln n − n, and neglecting unity in (8.5), a short
calculation yields

dS(b, f ) = kdln�(b, f ) = k
∑

i

dni ln
gi ± ni

ni
, (8.10)
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where the numbers ni are not independent, because one has

dU =
∑

i

dni Ei = 0, dN =
∑

i

dni = 0. (8.11)

Imposing that dS(b, f ) = 0, one faces a problem of conditional extremum which can
be treated by using Lagrange multipliers. We multiply dU and dN in (8.11) by
the Lagrange multipliers α and β, and introduce the constraints in the extremum
problem:

dS(b, f ) + αdU + βdN = 0.

This formula is a consequence of the second law of thermodynamics written for
constant volume, and thus we identify α and β, respectively, as −1/T and μ/T ,
where μ is the chemical potential. This leads to the equation

dS(b, f ) − dU

T
+ μdN

T
=k

∑

i

dni

(
ln

gi ± ni
ni

− Ei

kT
+ μ

kT

)
= 0. (8.12)

This equality has to be true for an arbitrary set of dni , therefore all the quantities in
brackets have to vanish identically. For bosons, this gives the Bose–Einstein distri-
bution:

n(b)
i = gi

e
Ei−μ

kT − 1
, (8.13)

and for fermions, the Fermi–Dirac distribution:

n( f )
i = gi

e
Ei−μ

kT + 1
. (8.14)

The expressions for total energy (8.8) and total particle number (8.9) become for
bosons:

U =
∑

i

Ei
gi

e
Ei−μ

kT − 1
, N =

∑

i

gi

e
Ei−μ

kT − 1
, (8.15)

and for fermions:

U =
∑

i

Ei
gi

e
Ei−μ

kT + 1
, N =

∑

i

gi

e
Ei−μ

kT + 1
. (8.16)

8.3 The Ideal Electron Gas

For electrons, the average density of particles in a quantum state of given energy, or
occupation number, is
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n(Ei ) = n( f )
i

gi
= 1

e(Ei−E f )/kT + 1
, (8.17)

where we replaced the chemical potential μ by the Fermi energy E f . This replace-
ment can be made for temperatures T such that kT � E f , and we assume this is
the case for the discussion below. In general, the chemical potential depends on tem-
perature, μ = μ(T ), but μ(0) = E f . This can be seen by examining formula (8.17)
at T = 0: if Ei > E f = μ(0) then the exponential is infinite, and n(Ei ) = 0. This
means that at T = 0, all states with energy Ei < μ(0) are occupied, while all those
with energy Ei > μ(0) are vacant. Thus, μ(0) coincides with E f , by the definition of
the latter. For T �= 0, the occupation number ni (E) given by (8.17) is represented by
the curve in Fig. 8.3. Indeed, when T �= 0, for Ei < E f , the exponential e(Ei−E f )/kT

is significantly different from zero only when E f − Ei ≈ kT . For such a region of
values, n(Ei ) ≤ 1. For Ei − E f = 0, one has e0 = 1 and n(Ei ) = 1/2. For Ei > E f ,
the term e(Ei−E f )/kT grows as Ei increases and n(Ei ) → 0.

For the calculation of the total energy of the electron gas it is necessary to know
the number of quantum states with energies in the shell between E and E + dE .
This is equivalent to calculating how many boxes are contained in that shell. Since
the sphere of energy less or equal to E has in momentum space the radius R =√
p2x + p2y + p2z = √

2mE , we find that the number of boxes included in the sphere

is equal to the volume 4π
3 (2mE)3/2 divided by the volume of each elementary box,

(2π�)3/V , where V = L3 is the volume of the cube containing the electron gas.
Since two opposite-spin states correspond to each box, we have

G(E) = 8π(2mE)3/2V

3(2π�)3
, (8.18)

for the total number of quantum states with energy less than or equal to E .
For T = 0, since each state of energy smaller than E f is occupied by an electron

and all the states of greater energy than E f are vacant, the total number of electrons
N is equal to G(E f ). In order to calculate the energy of the electron gas, we first
need to find the number of states in the interval of energy between E and E + dE .
Let us call this number g(E)dE . We have

g(E)dE = G(E + dE) − G(E) = [27/2πm3/2V/(2π�)3]E1/2dE. (8.19)

For T = 0, the energy of all the electrons between the shells E and E + dE is

dU = E g(E)dE = 27/2πm3/2V E3/2dE/(2π�)3. (8.20)

The total energy is obtained by integrating (8.20) between 0 and Ef , with the result

U = 29/2πm3/2

5(2π�)3
V E5/2

f . (8.21)
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Thus, the total energy of the electron gas included in a volume V is proportional to
the volume V and the Fermi energy to the power 5/2.

If the temperature is different from zero, the above formulas must be corrected.
The reader interested in this point may consult any of the books on statistical physics
mentioned in the list at the end of the chapter.

8.4 Heat Capacity of Metals

The model already discussed provides a good description of the electron gas in
metals, and it has been used to characterize some of their properties.

If we assume a metal starting out at a temperature close to absolute zero, and
heat it up to a temperature T , the thermal energy �E which may be absorbed by the
electrons is on the average of order kT . Obviously, if kT < Ef , the electrons whose
energy is far from the Fermi level cannot absorb this energy to be thermally excited,
since they would jump to electronic states that are already occupied. The excitable
electrons are those located near the Fermi surface, since if they increase their energy
by �E , they can pass to vacant quantum states. It can be estimated that the relative
fraction of excitable electrons is of the order

�E

Ef
= kT

Ef
= T

Tf
, (8.22)

where the Fermi temperature Tf is defined as Ef /k.
If there are N electrons per unit volume, the excitable fraction �N is

�N = NT

Tf
, (8.23)

and the energy absorbed by them is

U ≈ �NkT ≈ NT

Tf
kT . (8.24)

The heat capacity at constant volume is defined as the derivative of the internal energy
with respect to the temperature:

CV =
(

∂U

∂T

)

V

≈ NkT

Tf
. (8.25)

According to the classical theory, it is expected that CV = 3
2Nk. Due to quantum

effects, this number is very much reduced for the electron gas, since for metals Tf
is of the order of 104 K, and if T is the room temperature (300 K), T/Tf ≈ 0.01.
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From this we conclude that the heat capacity of the electron gas in metals at room
temperature is a hundredth of the value predicted by classical theory.

Regarding the thermal conductivity K , if Q is the flow of thermal energy (energy
transmitted throughunit area andper unit time) anddT/dx is the temperature gradient
(variation of the temperature in the x direction), one can define K in the x direction
by

K = Q

(dT/dx)
. (8.26)

In the kinetic theory, one can demonstrate that, if v is the average velocity of the
particles, l the mean free path (mean distance between two collisions), and CV the
heat capacity, then approximately

K = 1

3
CV vl. (8.27)

Now, by taking v = vf = pf /m, and l = vf τ , where τ is the mean time interval
between two collisions, since the Fermi temperature would be given by

T f = mv2
f /2k,

by taking for the Fermi gas CV = 1
2π

2Nk T
TF
, the final result is

K = π2k2τ

3m
NT, (8.28)

that is, the thermal conductivity is proportional to the total number of electrons per
unit volume. For this reason, metals are good conductors of heat, since at room
temperature N is larger for metals than for solid dielectrics.

Another consequence of the Fermi–Dirac statistics for the electron gas of metals
is the large electrical conductivity. If j is the current density (current per unit area)
and E is the electric field, the electrical conductivity σ is given in terms of these
quantities by Ohm’s law:

j = σE. (8.29)

This current could also be written as j = Nev. It is then easy to demonstrate that,
in a metal, when an electric field is applied in the x direction, the Fermi sphere is
displaced in that direction (Fig. 8.4), that is, all the electrons gain a momentum

�p = eEτ (8.30)

in that direction. Here τ is the average time between collisions. As a consequence of
(8.30), one can deduce an approximate expression for σ, viz.,
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Fig. 8.4 An electric field
displaces the Fermi sphere in
the direction of the electric
field.

σ = Ne2τ

m
, (8.31)

that is, the conductivity is proportional to the density of the electron gas and to the
average time τ between collisions. Since τ increases when the temperature decreases
(as a consequence, the mean free path also increases), the conductivity increases at
low temperatures.

As we have pointed out at the end of Chap.3, the conductivity falls abruptly at
very low temperatures and there appears the phenomenon of superconductivity. We
shall return to this phenomenon at the end of the present chapter.

The resistivity ρ is defined as the reciprocal of the conductivity:

ρ = m

Ne2τ
. (8.32)

This grows with temperature T , since τ decreases with increasing T .
If we compare (8.28) and (8.31), we conclude that the quotient of the thermal and

electric conductivities is proportional to the absolute temperature:

K

σ
= π2

3

(
k

e

)2

T . (8.33)

This relation is known as the Wiedemann–Franz law, due to Gustav Wiedemann
(1826–1899) and Rudolph Franz (1826–1902). They formulated it in 1853, and it
holds true only approximately, since the value τ for electrical and thermal conduc-
tivities is not exactly the same.

Up to now we have discussed the application of Fermi–Dirac statistics to metals,
where there is an electron gas which can be treated approximately as a gas of free
particles. Another interesting example is the electron gas in stars, e.g., in white dwarf
stars. We shall discuss this issue in Chap.9.



298 8 Fermi–Dirac and Bose–Einstein Statistics

8.5 Metals, Semiconductors, and Insulators

In our discussion of metals, we referred to the way they differ from semiconductors
and insulators from a quantummechanical perspective. This is a topic usually studied
in solid state physics, and we shall discuss it only briefly.

A solid is characterized by order (crystal) or disorder (amorphous solid) among
an enormous number of atoms, molecules, or ions. In a crystalline solid, the basic
structures repeat themselves periodically in the form of a lattice of ordered cells of
atoms, molecules, or ions. The vibrations of atoms around their equilibrium positions
in this lattice produces elastic waves, which correspond in the quantum version
to quasi-particles called phonons. These are to elastic waves what photons are to
electromagnetic waves. The phonons are considered as quasi-particles, which means
that they cannot exist as independent particles outside the solid.

The crystal structure of the solid creates a situation where the energy states of
the electrons in the last shell of the atoms are very closely spaced, forming continu-
ous bands of energy separated by forbidden bands. Some of these electrons remain
attached to the atom, and they are called valence electrons. Some others may belong
to delocalized states, being named conduction electrons, since they contribute to the
electric conduction when an external electric field is applied to the sample. The peri-
odicity of the crystalline lattice implies a periodicity of the interaction potential in
which the valence electrons of the atoms or molecules can move. If the characteristic
length of the lattice is denoted by a, then the relevant values of the wave vector k
of a conduction or valence electron in the crystal are between 0 and π/a. The band
structure is represented as the dependence of the energy of the electrons on the values
of their wave vector. In Fig. 8.5 is illustrated the band structure for some prototypical
crystals:

• Case (a) corresponds to an insulator. The valence band is completely filled,whereas
the conduction band is empty.

Fig. 8.5 Energy bands in a an insulator, b a semimetal, c a metal, and d a semiconductor. The
lower line delimits the valence band and the upper line delimits the conduction band. The band gap
is the energy difference between the top of the valence band and the bottom of the conduction band,
which appears in certain cases.
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• Case (b) represents a semimetal. The valence band is almost filled. The conduction
band, with the same Fermi energy, since there is some overlap, is almost empty.

• Case (c) illustrates the situation in a metal. The valence band is filled, while the
upper contains a significant number of conduction electrons.

• Case (d) is typical of a semiconductor. At absolute zero, the semiconductor would
have the valence band filled and the conduction band empty. At room temperature,
some electrons are excited and pass into the conduction band due to the fact that
the band gap is narrow. The valence band now contains a certain number of vacant
states, which are holes.

8.6 Electrons and Holes

In the previous example of a semiconductor, if an electron in the valence band is
excited to the conduction band, an electron state is left vacant in the first band. This
state behaves as a positive charge and is called a hole, with opposite momentum and
spin to the excited electron.

This description was inspired by the Dirac model of the electron vacuum, sug-
gested to explain the negative energy solutions of the relativistic Dirac equation (see
Chap.7). The holes play an important role as charge carriers in semiconductors. They
are quasi-particles and they also obey Fermi–Dirac statistics.

The dynamic properties of electrons and holes depend on the shape of the band.
In general, they behave in their motion as though they had an effective mass which
differs from the free electron mass, being greater or smaller, and even negative.

8.7 Applications of the Fermi–Dirac Statistics

8.7.1 Quantum Hall Effect

If a magnetic field is applied transverse to an electric current in a plane sample,
a voltage (an electric field) appears perpendicular to both the original current and
the magnetic field, inducing a new current. The effect was discovered by Edwin
Hall (1855–1938) in 1879, and is named Hall effect. Classically, this effect is easily
understood ifwe start from theLorentz force introduced inChap.3. Let us assume that
the system of electrons lies in the plane xy, and the electrons move with velocity v,
due to an applied electric field E in the y-direction, i.e. E = (0, Ey, 0) (see Fig. 8.6).

In addition to the force term due to the electrostatic interaction, Fe = eE, an
electric charge placed in amagnetic fieldB experiences a Lorentz force perpendicular
to themagnetic field and to the initial electron velocity,FL = ev/c × B. If the current
is stationary, i.e. v̇ = 0, the two forces cancel each other, which means:

E = −v
c

× B.
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Fig. 8.6 Schematic
representation of the Hall
experiment. The Hall
resistance is RH = VH /I .

As a result, the flow of current will be only in the direction perpendicular to the
applied electric field. The current density is J = eρ0v, with ρ0 being the surface
density of the electrons. Extracting v from the stationarity condition, we see that
the only nonvanishing component of J is in the x-direction, being given by the
expression:

Jx = ecρ0
B

Ey .

Now we can calculate the resistivities, by the formula R = E/J . It turns out that a
Hall resistance RH develops, denoted sometimes also by Rxy , because it is the ratio
of the electric field in the y-direction and the current in the x-direction:

RH = Rxy = Ey

Jx
= B

ecρ0
. (8.34)

The diagonal component of the resistivity tensor, called longitudinal resistivity Rxx ,
vanishes, since Ex = 0. Thus, classically, the Hall resistance is a linear function of
the transverse magnetic field, for fixed density of electrons (see Fig. 8.7).

It took one century to discover that all had not been said about the Hall effect.
In two-dimensional electron systems subjected to low temperatures and strong mag-
netic fields, the quantum-mechanical version of the Hall effect is observed, namely
the quantumHall effect. In this case, theHall resistance RH takes on quantized values
given by the expression

RH = 1

ν

h

e2
, (8.35)



8.7 Applications of the Fermi–Dirac Statistics 301

Fig. 8.7 Integer quantum
Hall effect schematically
illustrated. In the classical
theory of the electron gas,
the Hall resistance RH is
proportional to the magnetic
field B applied perpendicular
to the sample, as indicated
by line labeled classical
theory. In an actual sample,
subjected to very low
temperature and very high
magnetic field, the Hall
resistance appears like a
staircase, with the plateaux
crossing the classical line at
integer values of the filling
factor, ν = 1, 2, 3, . . . .
While the Hall resistance is
on a plateau, the longitudinal
resistivity Rxx vanishes.

where e is the electric charge, h is Planck’s constant and ν is the filling factor.
This factor can have either integer values (ν = 1, 2, 3, . . .) for the so-called integer
quantum Hall effect, or rational fraction values (ν = 1/3, 2/5, 3/7, 2/3, 3/5, 1/5,
2/9, 3/13, 5/2, 12/5 . . .) in the fractional quantumHall effect. The profile of theHall
resistance curve when the magnetic field is increased is shown in Fig. 8.7: it appears
like a staircase, with the plateaux crossing the classical line at ν = 1, 2, 3, . . .. At
the same points, the longitudinal resistivity Rxx vanishes.

The integer quantum Hall effect was discovered in 1980 by Klaus von Klitzing
(b. 1943) and collaborators, and the fractional quantum Hall effectwas discovered in
1982 by Daniel Tsui (b. 1939), Horst Störmer (b. 1949) and collaborators. The Nobel
Prize in 1985 was awarded to Klaus von Klitzing, and in 1998 to Robert Laughlin,
Horst Störmer and Daniel Tsui, for the discovery and explanation of the fractional
Hall effect.

The mysterious filling factor can be easily obtained by matching the expressions
(8.34) and (8.35), with the result

ν = hcρ0
eB

. (8.36)

This formula is derived exactly by performing the detailed quantum mechanical
analysis, which leads also to the physical interpretation of the filling factor.
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The integer quantum Hall effect is explained in terms of single-particle states of
electrons in a plane system (two-dimensional electron gas) under the action of an
orthogonal magnetic field. Classically, the electrons are accelerated in a cyclotron
motion when placed in a magnetic field which has a component orthogonal to their
direction of motion. Quantum mechanically, the cyclotron orbits are quantized, such
that the planar electrons can occupy discrete energy levels, given by the same expres-
sion as in the case of a one-dimensional quantum mechanical oscillator, but with the
frequency depending on the magnetic field:

En = �ωc(n + 1/2), n = 0, 1, 2, . . . (8.37)

The cyclotron frequency is

ωc = eB

mc
, (8.38)

where e is the charge of the electron, B is the value of the magnetic field orthogonal
to the plane of the system, m is the mass of the electron and c is the speed of light.

The energy levels indexed by n ≥ 0 are called Landau levels, in honour of Lev
Landau (1908–1968). One can imagine the planar electrons as making a cyclotron
motion of a radius corresponding to their energy level, such that each electron occu-
pies an area πr2n , avoiding any other electron. The calculations show that the squares

of the various radii are expressed as r2n = (2n + 1)l2B . The quantity lB =
√

�c
eB is

called magnetic length and it gives the scale of the quantum Hall effect. Note that
this length depends on the applied magnetic field and becomes smaller with the
increase of the latter. For a typical magnetic field used in the experiments, of about
104 gauss, the magnetic length is about 100Å.

The system of electrons being planar, each electron has two degrees of freedom.
When the problem is reduced to a one-dimensional harmonic oscillator, one degree
of freedom only is taken care of in the quantization. This means that there is degen-
eracy of the energy levels in the second degree of freedom, which does not appear
in the expression of the energy. The second degree of freedom in this case is the
coordinate of the centre of the orbit. A simple calculation using the Fermi–Dirac
statistics (similar to the one in Sect. 8.3) shows that a two-dimensional system of
free electrons exhibits a degeneracy of each energy level, such that the density of
states is independent of the energy, g(E) = A m

π�2 , where A is the area of the planar
system. When the magnetic field is applied, the energy levels are discrete, with a
constant spacing of �ωc. The number of zero-field states in an interval �ωc is

g(E)�ωc = A
m

π�2
�
eB

mc
= 2

eB

hc
A.

One has to include also the Zeeman splitting, for spin up and spin down electrons,
which will reduce the density of states to half of the above value. This is the degen-
eracy of each Landau level:
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Fig. 8.8 a Landau levels in
a two-dimensional electron
gas. b Broadening of the
density of states in a strong
magnetic field. The
delocalized states are at the
centre of the peaks, while the
states localized by impurities
are found in the tails.

Number of states per Landau level = eB

hc
A. (8.39)

The distribution of states is not continuous, like in the case of zero magnetic field,
but rather the states are grouped at the discrete values of the energy (see Fig. 8.8a).
However, the total number of states below a certain energy, much larger than the
Landau level spacing, is unchanged by the magnetic field.

The filling factor is the ratio between the total number of electrons and the number
of states in one Landau level:

ν = Number of electrons

Number of states per Landau level
= ρ0A

eBA/hc
= hcρ0

eB
. (8.40)

Assuming that the thermal energy is much smaller than the Landau level spacing,
i.e. kT � �ωc (very low temperature and high magnetic fields), and keeping the
number of electrons constant by adjusting the longitudinal voltage, experimentally
one observes the quantization of the Hall resistance, according to the formula (8.35).
The profile of the Hall resistance curve when the magnetic field is varied shows
the peculiar formation of plateaux at the quantized values of RH and sudden jumps
at those values of the magnetic field where the filling factor takes integer values
(see Fig. 8.7).

The formation of the plateaux is one of themost interesting features of the quantum
Hall effect, and it is due to the presence of impurities in the sample. In a pure sample,
the distribution of states would be exactly like in Fig. 8.8a. The impurities make
the Landau energy levels spread out—in other words, they lift to some extent the
degeneracy. For example, if an impurity atom has an excess of positive charge,
an electron is more likely to be found near that atom, in which case its energy
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Fig. 8.9 Plateaux formation in a sample with constant density of electrons, when the applied
magnetic field is varied. a While the Fermi level is in the sub-band of high-energy localized states,
the Hall resistance does not change, since the number of charge carriers is not affected. The current
is carried only by the electrons in the delocalized states. b When the Fermi level enters the sub-
band of delocalized states, the current drops, because current-carrying electrons become trapped in
localized states. The filling factor (number of completely filled Landau levels) decreases by one unit
and the Hall resistance increases abruptly, until the Fermi level enters the sub-band of low-energy
localized states. c A new plateau starts to be formed at the new value of the Hall resistance.

would be slightly lower (the electron would be more stable) than its corresponding
Landau level. As a result, bands of energy form around each Landau level, as in
Fig. 8.8b. These bands are still separated by energy gaps. The electrons in each band
are divided into two classes: (1) those electrons which are close to the centre of the
band (having theLandau energy) are spread over a large region of space (delocalized),
and contribute to conduction; (2) the electrons which are at the margins of the energy
bands, are localized in space due to the impurities, and do not carry the current.

Let us nowexplain the formationof theplateaux in theHall resistance (seeFig. 8.9).
Keeping the density of electrons constant in the sample (which means that the Fermi
energy does not change over the whole process), one increases the magnetic field
and measures RH . Let us assume that we start with a value of B at which the Fermi
energy is in a gap between two Landau levels, for example above the nth of them.
Thismeans that all Landau levels below the Fermi energy are completely filled, while
all the Landau levels lying above are completely empty. In this case, the conduction
is ensured by the delocalized electrons in the n completely filled Landau levels. Now
suppose that the strength of the magnetic field is gradually increased and that at the
same time, the current is continuously adjusted in such a way that the Hall voltage
between the two edges of the sample remains constant. The Fermi level starts to
enter the region of high-energy localized states (Fig. 8.9a), and the corresponding
electrons vacate those states. As long as the Fermi level remains in the sub-band of
high-energy localized states, all the extended states within the Landau band remain
fully occupied.
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While increasing themagnetic field, the degeneracy of the Landau levels increases
proportionally according to the formula (8.39). The fraction of localized states
changes, but this has no effect on the conduction properties of the sample. The
amount of current flowing in the sample therefore remains constant as long as the
sub-band of extended states is completely filled: although the increased magnetic
field slows the forward motion of any current carrying electrons, this effect is pre-
cisely cancelled by the increase, due to the newly created extended states, in the
number of electrons available to carry current. Since the Hall voltage is being held
constant, the fact that the current does not change as the magnetic field is varied
implies that the Hall resistance also remains constant and a plateau is formed.

Increasing further themagnetic field, the Fermi energy enters the sub-band of delo-
calized states (Fig. 8.9b).As a result, someof these states becomevacant and the num-
ber of current-carrying electrons drops down. The current decreases suddenly until
all the delocalized states of the nth Landau level become empty, and the Fermi energy
enters the region of the low-energy localized states (Fig. 8.9c). At that moment, the
gradual increase in the magnetic field ceases to have any effect on the Hall resistance,
as long as the delocalized states of the (n − 1)th Landau level are completely filled.

In summary, the Hall resistance makes a jump between two plateaux when the
delocalized states of one Landau level become empty due to the increase in the
magnetic field.When localized states become empty, this has no effect on the number
of current-carrying electrons, and the Hall resistance remains on a plateau.

A few words are in order about the longitudinal resistivity, whose behaviour is
depicted also in Fig 8.7. According to the classical formula, Rxx = 0. This is the
case also in the quantum version of the Hall effect, as long as the Hall resistance is
on a plateau. As we have just explained, a plateau means that the delocalized sub-
bands are completely filled. The conduction electrons cannot jump from one energy
level to another, since there are no available energy levels for them. As a result,
the scattering of conduction electrons, with loss of energy, cannot happen. A state
similar to superconductivity in the longitudinal direction is thus attained. It should
be emphasized that the vanishing of the longitudinal resistivity does not require the
absence of scattering centres, but the absence of possibilities for electrons to scatter.
However, when the magnetic field is such that the Fermi energy is in a sub-band of
delocalized states and these are nomore completely filled, the possibility of scattering
suddenly reappears, and the longitudinal resistivity becomes finite. The clean jump of
the Hall resistance at the plateau transition and the peak in the longitudinal resistivity
have, therefore, the same origin.

The Hall resistance quantization is universal in nature, depending only on uni-
versal constants and integer numbers. The form of the localization potential and the
distribution of scatterers are of no importance for quantization.

The fractional quantumHall effect is more complicated but it is also understood as
a form of integer quantum Hall effect, in which the electrons form bound states with
an even number of magnetic flux quanta. The resulting particles are called composite
fermions.
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The quantumHall effect has important applications even inmetrology.Based on it,
a resistance standard has been introduced and named the vonKlitzing constant, RK =
h/e2 = 25812.807557(18) �. Moreover, the fine structure constant, α, is related to
the von Klitzing constant by

α = μ0c

2

e2

h
= μ0c

2
R−1
K .

Since the speed of light is known with great accuracy and the magnetic permeability
of the vacuum by definition equals 4π × 10−7 H/m, this relation permits an indepen-
dent high-precision determination of α, one of the fundamental constants of Nature,
characterizing the strength of electromagnetic interactions.

8.7.2 Graphene

Some chemical elements exist in two or more different forms, known as allotropes,
which are different structural modifications of an element, in the sense that the
atoms of the element are bound in a different manner. Carbon’s allotropes include
diamond—in which carbon atoms are bound in a tetrahedral lattice, graphite—
in which carbon atoms are bound in sheets of hexagonal form, as a honeycomb,
graphene—which represents single sheets of graphite, and fullerene, whose carbon
atoms are bound for instance in a spherical lattice (see Fig. 8.10).

Graphene is at present a very important material, of special interest in the area of
nanoscience and nanotechnology. The Nobel Prize in Physics in 2010 was awarded
to Andre Geim (b. 1958) and Konstantin Novoselov (b. 1974) “for groundbreaking
experiments regarding the two-dimensional material graphene.”

Graphene is a unique two-dimensional material (0.335nm = 3.35Å thickness).
It appears to be one of the strongest materials ever tested, having a breaking strength
near 200 times greater than steel. Its highmobility and conductivity suggest unbeliev-
able microelectronic possibilities, from transistors and scroll screens, to photovoltaic
cells, bio-devices, and many other applications.

Fig. 8.10 In the figure are shown three allotropes of carbon: aBuckminsterfullerene—apolyhedron
form of fullerene, consisting of 60 atoms, b carbon nanotube, and c graphene, a two-dimensional
arrangement. Graphite, not shown, is a three-dimensional structure composed of graphene layers.



8.7 Applications of the Fermi–Dirac Statistics 307

Fig. 8.11 A cat on a
graphene hammock.

A customary intuitive picture of graphene is of a 1m2 hammock tied between two
trees, and holding up to 4 kg without breaking. To make the picture more attractive,
one can imagine the hammock holding a cat (Fig. 8.11), while the weight of the
hammock itself is less than 1mg, corresponding to the weight of one of the cat’s
wiskers!

Carbon is an element with six electrons, populating two atomic levels. The four
electrons on the last layer are distributed as follows: two on the 2s orbital and two
on the 2p orbitals. When chemical bonds are formed, the 2s and 2p orbitals mix in
a superposition of the two states, named hybridized state. In one of the hybridized
states, named sp2, the 2s orbital mixes with two of the three 2p orbitals, forming
three degenerate sp2 orbitals placed in the xy-plane, with equal angles of 120◦
among themselves. The remaining 2p orbital is oriented orthogonal to this plane. It
is energetically favourable to have one electron on each of these four valence orbitals.
When neighbouring atoms come close, strong covalent bonds are formed, leading to
a hexagonal lattice. The 2pz orbitals of adjacent atoms overlap, forming a delocalized
state. The electrons in this state have the ability to move relatively freely above and
below the plane of the nuclei, forming two bands with zero gap. Thus, graphene
differs from most conventional three-dimensional materials and is a semi-metal or
zero-gap semiconductor (having massless quasi-particles).

In the presence of a magnetic field, graphene displays an anomalous quantum
Hall effect with the sequence of steps shifted by 1/2 with respect to the standard
sequence, and with an additional factor of 4:

RH = ± h

e2
1

4(m + 1/2)
, m integer. (8.41)

Thus, the filling factor is νG = ±4(m + 1/2), which is the fingerprint of the
relativistic Landau quantization. The steps in units of 4 reflect the so-called
“spin-valley degeneracy”, which is characteristic for graphene. The Hall resistance
shows the same universality as in the non-relativistic case, being determined by the
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universal constant RK = h/e2 and integer numbers. The impurities have the same
essential role in the formation of the plateaux in the Hall resistance.

From the side of pure science, the links between condensed matter physics and
high energy physics established by quantum Hall effect and graphene is profound:
for instance, the measurement, with high accuracy of quantities like the resistivity
quantum h/e2 and the fine-structure constant α = e2/�c. This makes possible the
study of experimental problems related to high energy physics (usually demanding
large installations) in the frame of a “table condensed matter laboratory”.

8.8 Bose–Einstein Statistics

The identical particles obeying Bose–Einstein statistics, commonly called bosons,
have integer spin and, like fermions, are indistinguishable. The essential difference
from fermions is that there can be an arbitrary number of bosons in a quantum state.
In other words, they do not obey the Pauli exclusion principle.

The expression (8.13) gives the Bose–Einstein distribution. Thus, the average
density of particles per quantum state for an ideal Bose–Einstein gas is:

n(Ei ) = 1

e(Ei−μ)/kT − 1
. (8.42)

If we compare (8.42) with (8.17), we see that the difference is in the sign in front of
unity in the denominator. It is now subtracted from the exponential. This is enough
to guarantee that, whenever Ei − μ > 0, ni could take any positive value, where
the chemical potential μ plays a role analogous to the Fermi energy in the case of
fermions. If the minimum value of the one-particle energy is 0, then μ ≤ 0. Photons
obey Bose–Einstein statistics with μ = 0. The same is true for phonons in a solid.

For a gas of photons, the average energy 〈ε〉 in a mode with energy ε = hν is
equal to the average number of photons in that state multiplied by hν:

〈ε〉 = hν

ehν/kT − 1
. (8.43)

The number of states per unit volume contained in a shell of energy (hν, hν + h dν)

is 4π p2dp/h3, with p = hν/c. For photons we have to take into account the two
orthogonal polarizations, resulting in the doubling of the above number of states:

n(ν)dν = 2
4π p2 dp

h3
= 8π

c3
ν2dν. (8.44)

If we multiply (8.43) by (8.44), the energy density for electromagnetic radiation in
thermal equilibrium is obtained as a function of the frequency:
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U (ν, T )dν = 8πh

c3
ν3 dν

ehν/kT − 1
. (8.45)

This is Planck’s law (see Chap. 4, (4.51)). IfU is graphed as a function of ν at several
temperatures, the typical curves of the Planck distribution are obtained (Fig. 4.25).
If (8.45) is integrated with respect to ν, one obtains the total energy density

Ut =
∫ ∞

0
U (ν, T )dν = 8π(kT )4

(hc)3

∫ ∞

0

x3dx

ex − 1
= 4σ

T 4

c
. (8.46)

This is the Stefan–Boltzmann law: the total energy density of the black body radiation
is proportional to the fourth power of the absolute temperature, where the coefficient
of proportionality in the CGS system of units is (4/c)σ, where σ = 2π5k4/15h3c2 �
5.67 × 10−5 erg cm−2 s−1 K−4 and is called the Stefan–Boltzmann constant.

Another system obeying Bose–Einstein statistics is a gas of normal helium, 4He,
whose nucleus contains two protons and two neutrons. This guarantees that the spin
of the nucleus is an integer (the isotope 3He has half-integer spin and obeys Fermi–
Dirac statistics).

8.9 Einstein–Debye Theory of Heat Capacity

We have seen the role of Fermi statistics in calculating the specific heat (heat capac-
ity per unit mass) of metals. For insulators, the thermal properties are determined
by the lattice oscillations or elastic (sound) waves. Their quanta, named phonons,
obey Bose–Einstein statistics. The calculation of the specific heat is another good
illustration of the application of Bose–Einstein statistics in condensed matter.

Einstein was the first who calculated in 1907 the specific heat due to elastic
waves, of special interest for non-metallic solids (for metals, in the limit T → 0,
the Fermi–Dirac specific heat behaviour linear in T is usually the dominant term).
In Einstein’s approach, each atom is treated as an independent quantum harmonic
oscillator (i.e., without interaction), and the frequency is the same for all atoms. By
assuming N oscillators per unit mass, in one dimension, with an energy per oscillator
E = �ω(n + 1

2 ), where n = (e�ω/kT − 1)−1, and defining the Einstein temperature
as �E = �ω/k, one finds for the energy per unit of mass

U = 3N�ω

(
1

e�E/T − 1
+ 1

2

)
, (8.47)
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where we have introduced a factor 3, to account for the fact that each atom has
actually three degrees of freedom. From here it follows that

CV =
(

∂U

∂T

)

V

= 3Nk

(
�E

T

)2 e�E/T

(e�E/T − 1)2
. (8.48)

The high temperature limit leads to CV = 3Nk, which is the empirical
Dulong–Petit law, according to which the heat capacity of solids does not depend on
the temperature. At low temperatures, the energy (8.47) tends to a constant, or zero
point energy, and CV → 0. Thus, the entropy also tends to zero, S → 0, according
the third law of thermodynamics. Einstein’s work provided a first theoretical basis
to understand the departure of the specific heat of solids from the Dulong–Petit law
at low temperatures.

Peter Debye (1884–1966) refined the model in 1912, including the interaction
of the atoms in the lattice, which are viewed as coupled oscillators, resulting in a
collective phenomenon of lattice oscillation. Quantum mechanically, the oscillation
of the lattice can be given an interpretation in terms of fictitious particles, phonons,
thus named in 1932 by Igor Tamm (1895–1971). The phonons have a continuous
spectrum of frequencies, from zero up to a cut–off frequency ωD , which is bound by
the atomic lattice, thus ensuring a finite number of degrees of freedom, 3N . Denoting
by g(ω) the density of frequencies, we have

∫ ωD

0
g(ω)dω = 3N . (8.49)

Calling respectively cL and cT the longitudinal and transverse velocities for modes
propagating in the solid, if we do the counting of states similarly as we did earlier
(for instance, for the black body modes) and take into account the fact that a phonon
has two transverse and one longitudinal degrees of freedom, one can write

∫ ωD

0
V

(
ω2dω

2π2c3L
+ ω2dω

π2c3T

)
= 3N . (8.50)

Defining an effective sonic velocity cs by the formula c−3
s = (1/3c−3

L + 2/3c−3
T ),

and comparing equations (8.49) and (8.50), we obtain

g(ω) = 3V
ω2

2π2c3s
. (8.51)

Introducing (8.51) into (8.49), the expression of ωD which bounds the possible fre-
quencies of the phonons is found to be:
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ωD = cs

(
6π2 N

V

) 1
3

. (8.52)

One can now calculate the total energy U of the phonons:

U =
∫ ωD

0
dω g(ω)n(ω)�ω = 3NkT

3

x3D

∫ xD

0
dx

x3

ex − 1
= 3NkT D3(xD), (8.53)

where we made the notations x = �ω/kT and xD = �ωD/kT = �D/T (the tem-
perature �D is called Debye temperature). The function D3(xD) is the third Debye
function. The heat capacity has the expression:

CV =
(

∂U

∂T

)

V

= 9Nk
1

x3D

∫ xD

0

x4exdx

(ex − 1)2
. (8.54)

Debye’s theory leads to satisfactory theoretical results both for T → 0 and
T → ∞, although the simplifications inherent to the model make the curve of CV

as a function of T to depart from the experimental observation for intermediate
temperatures.

For xD � 1, which means T � �D , by expanding the exponential as ex ≈ 1 + x
in (8.54), we obtain

CV ≈ 9Nk
1

x3D

∫ xD

0

x4

x2
dx = 3Nk,

which is again the classical Dulong–Petit behaviour.
In the opposite limit, T � �D , xD is a large number, and the upper limit of

integration in (8.53) may be taken to be infinity. In that case, the integral can be
calculated exactly, with the result π4/5. Taking the derivative with respect to T , we
obtain:

CV � 12π4

5
Nk

(
T

�D

)3

, (8.55)

i.e. a T 3-dependence, which—unlike Einstein’s theory—reproduces correctly the
observed heat capacity behaviour also in the low-temperature limit. The entropy,
evaluated from S = ∫ T

0 CV (t)dt/t , leads to S = CV (T )/3, and thus the entropy also
vanishes as T 3 for T → 0.

Debye’s model is in good agreement with the empirical data. From the values of
N/V and the elastic properties (expressed by the velocities cL and cT ), the Debye
temperature �D can be determined. The pure T 3-behaviour is satisfied reasonably
well below �D/50, but the curve CV (T ) is in a wider range of temperature values
in agreement with experimental results.
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8.10 Bose–Einstein Condensation

As we have already seen, for bosons, −μ > 0. In general, μ decreases with the
temperature. One can write the number of particles N in a volume V for an atomic
or molecular Bose gas as

N = 4Vπ

(2π�)3

∫ ∞

0

p2dp

e(E(p)−μ)/kT − 1
, (8.56)

where E(p) = p2/2m. Ifμdecreaseswith temperature, there should be a temperature
Tc for which μ = 0, keeping the same number of particles N :

N = 4Vπ

(2π�)3

∫ ∞

0

p2dp

ep2/2mkTc − 1
. (8.57)

Equation (8.57) for a given density N/V gives a critical temperature Tc at which
condensation starts. If we take the formula (8.57) with an arbitrary temperature T on
the right-hand side and perform the change of variable p2/2mkT = y, the integral
becomes

N = 2V (2πmkT )3/2

π1/2(2π�)3

∫ ∞

0

y1/2dy

ey − 1
. (8.58)

If the temperature decreases the expression on the right in (8.58) gives a number
N ′ < N . What has happened to the remaining molecules N − N ′ = N0? A macro-
scopic number of them occupies the ground state E = 0. This phenomenon is called
Bose–Einstein condensation. It was discovered by Einstein in 1925 when studying
the Bose distribution.

In a system inwhich condensation occurs, two phases appear: a normal phase and a
condensed phase.As T decreases below Tc, the number ofmolecules in the condensed
phase increases, and at T = 0, all the molecules will be in the condensed phase.
One can write approximately N0 = N [1 − (T/Tc)3/2]. If the critical temperature is
calculated for a gas with the density of 4He, it is found to be 3.2K.

In 1937, PyotrKapitsa inMoscow, and independently JohnAllen andDonMisener
in Cambridge discovered that, at 2.26K, liquid helium 4He exhibits the phenomenon
of superfluidity, i.e., loss of viscosity, manifested by the property of being able to
flow through thin capillaries. Under such conditions the liquid helium appears as a
mixture of normal fluid and superfluid. Although the gas model cannot strictly be
applied to liquid helium, it is generally accepted that the phenomenon of superfluidity
corresponds qualitatively to a sort of Bose–Einstein condensation. Pyotr Kapitsa
(1894–1984) was awarded the Nobel Prize in Physics in 1978, for his work in low-
temperature physics. In 1938, Fritz London and Lazlo Tisza elaborated models to
explain superfluidity by Bose–Einstein condensation. In 1941, Lev Landau proposed
an essentially phenomenological model of superfluidity as a quantized theory of
hydrodynamics, for which he was awarded the Nobel Prize in 1962.
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The numerical value of the integral in (8.58) is 2.612π1/2/2, and finally one can
write, for T = Tc,

N

V
= d−3 = 2.612

λ3
c

, (8.59)

where λ3
c is the de Broglie wavelength corresponding to the critical temperature, and

the critical conditions can be written as

λc/d = 2.6121/3 = 1.38. (8.60)

Thus, condensation sets in when the thermal wavelength is longer by a factor near 1.4
of the average distance between particles. This is the quantum degeneracy condition
for the Bose–Einstein gas.

Superconductivity and ferromagnetism (which we have encountered in Chap.3)
can also be understood qualitatively as forms of a Bose–Einstein condensation. In the
phenomenon of superconductivity, an important role is played by systems of paired
electrons, of opposite spin and momenta, called Cooper pairs. The pair of electrons
behaves as a composite particle of spin 0, and as a consequence, it can be treated as
a bosonic system, in which condensation can take place. For ferromagnetism, there
is an exchange interaction between electrons such that, under certain conditions, an
enormous number of them go into a single quantum state (when all the elementary
dipoles align). In fact, this has interest essentially from the qualitative and conceptual
points of view. The problems of superfluidity, like those of superconductivity and
ferromagnetism, require more advanced models.

Bose–Einstein condensation was observed directly for the first time in 1995 in
an experiment led by Carl E. Wieman and Eric A. Cornell, with their collaborators
M. H. Anderson, J. R. Ensher, and M. R. Mattews. This remarkable experiment
involved rubidium-87 atoms (which bear a nonzeromagnetic moment), slowed down
by laser cooling and caught in a magnetic trap.

To understand the essence of the experiment, let us see first howmagnetic trapping
works. To start with, recall that an atom in a magnetic field has the energy E = −µ ·
B, where µ is its magnetic moment. The magnetic moments aligned parallel to the
field have lower energies than those antiparallel to it. In a nonuniformmagnetic field,
the parallel magnetic moments seek for higher field intensity, while the antiparallel
ones tend to seek for lower field intensity, in order to achieve minimum energy of
the whole system. As local minimum fields can be produced in the laboratory, they
serve to trap low-energy atoms, that is, atoms whose kinetic energies correspond to
temperatures of a fraction of a kelvin.

The mechanism for slowing down atoms was laser cooling. This phenomenon is
rather counterintuitive, since one would expect radiation to warm up and not cool
down a system. The great ingenuity consisted in tuning the laser slightly below the
frequency of a certain transition that can take place in the atoms which are supposed
to collide with the radiation. Upon head-on scattering, the atoms absorb one photon
and correspondingly lose a part of their momentum equal to the momentum of the
photon that they had scattered. If the photon’s momentum is in the same direction
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with the momentum of the atom that absorbs it, the effect is quite the opposite,
that is, the atom is speeded up. Tuning the frequency of the laser slightly below the
absorbtion frequency of the atom ensures that the head-on collisions dominate, since
the atom which is approaching the photon, by Doppler effect, “sees” the photon
as having the resonant frequency to be absorbed. The slowed down, but excited
atom emits radiation in a random direction, thus returning to the ground state and
the cycle can start again. In this way, the atoms are drastically slowed down by
the interaction with the laser radiation. The laser cooling technique was invented
by Steven Chu (b. 1948), Claude Cohen-Tannoudji (b. 1933), and William Daniel
Phillips (b. 1948), who were awarded the Nobel Prize in 1997. This mechanism is
used in the experiment in such a way that an atom in the magnetic trap becomes more
likely to get a photon kick toward the centre of the trap, and decrease its energy. The
atom cloud is kept inside the trap, and it tends to thermal equilibrium, decreasing its
temperature down to a lower limit. Achieving Bose–Einstein condensation requires
an additional step of cooling the atoms beyond the limits of laser cooling, by means
of the so-called forced evaporative cooling, which consists in rotating the magnetic
trap, to selectively remove high-energy atoms from the previously laser-cooled atom
cloud until the remaining cloud is cooled below the critical condensation temperature.
The experimental setup acts as a Maxwell demon, the atoms with nonzero speed
being removed, and leaving a sample of nearly pure condensate, at a temperature
of 1.7 × 10−7 K. The condensate in the original experiment contained about 2,000
atoms, corresponding to a density of 2.5 × 1012 cm−3, and lasted for 15 s.

Examining Fig. 8.12, itmust be remarked that the peak is not infinitesimaly narrow
because of the Heisenberg uncertainty principle: since the atoms are trapped in a
particular region of space, their velocity distribution necessarily possesses a certain
minimum width, determined by the size of the magnetic trapping potential. More
confined space leads to larger widths in the velocity distribution, since in a direction
of diameter L , �p ∼ 2π�/L , from which �v = �p/m.

About 4 months after the Wieman–Cornell experiment, independently, Wolfang
Ketterle with collaborators at MIT created a condensate of sodium-23 atoms. Later
on, in 1997, his group reported the observation of quantum mechanical interference
between two different condensates, as well as several other important results. E. A.
Cornell (b. 1961), C. E. Wieman (b. 1951), and W. Ketterle (b. 1957) were awarded
the 2001 Nobel Prize in Physics for their achievements.

Bose–Einstein condensation for photons was observed in 2010 by J. Klaers,
J. Schmitt, F. Vewinger, and M. Weitz. Free photons have mass zero and in the
case of the black body radiation, the number of particles does not conserve when
temperature is varied, which in principle makes condensation impossible. The exper-
imental setup, using a curved-mirror optical resonator filled with a dye solution, acts
as “white-walls” which do not absorb the low-energy photons, thus ensuring the
conservation of their number during thermalization and making the system formally
equivalent to a two-dimensional gas of trapped, massive bosons.
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Fig. 8.12 Bose–Einstein condensation experiment. a For frequencies of the rotating magnetic trap
above 4.23 MHz, the atoms show a single, smooth, Gaussian-like distribution. b At 4.23 MHz,
a sharp central peak in the distribution begins to appear, and at lower frequencies two distinct
components to the cloud are visible, the smooth broad curve and a narrow central peak, identi-
fied as the noncondensate and condensate fractions, respectively. c As the cooling progresses the
noncondensate fraction is reduced until, at a frequency of 4.1 MHz, there remains an almost pure
condensate.

Experiments include the observation of interference fringes between condensates,
as a consequence of wave–particle duality. Other experiments produced
manifestations of superfluidity and quantized vortices, and several other phenomena.

8.11 Quantum Coherence

In the ideal Bose gas theory, as the temperature is decreased, the number of particles
in the condensate, that is, in the ground state, increases, and at 0K, all the particles of
the gas would be in the ground state. When the whole system is in a single quantum
state, it is said to be in a pure state. The system can be described by awave function. It
is also said to be in a coherent state. Coherent states are quantum states that are closest
to the classical states. They were introduced in 1960 by John Klauder (b. 1932). The
technique of coherent multiphoton states, which are essential for the description of
lasers, was developed in 1963 by Roy Glauber (1925–2018), who was awarded the
Nobel Prize in 2005 for his contribution to the quantum theory of optical coherence.

When a system cannot be described by a single wave function, because our (lim-
ited) information about the system is compatible with several quantum states, and it
is not possible to determine precisely in which of these states it is, the system is in
a mixed state, and instead of the wave function one must use a function which is an
average of the wave functions compatible with the macroscopic information one has
about the system. Then a density matrix ρ is used to describe the system. Actually,
all the quantum statistical systems discussed in Chap.2 and in the present chapter
are described by density matrices.

If we start from a condensate at 0K, that is to say, from a pure state, and we
increase the temperature slightly, the system acquires the possibility of being in a
very large number of possible states: the system passes from a pure to a mixed state
and there is a loss of quantum coherence.
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It is not necessary for a system to be at zero temperature in order to be in a
coherent state. Laser radiation provides an example of this. Because of the analogy
between the coherent state of thousands or millions of atoms in the condensate and
the coherent state of photons in the laser, one concludes that it is possible to make a
laser of atoms, instead of photons.

8.12 Nonrelativistic Quantum Gases

We may express the general non-relativistic quantum gas density in terms of the
particle mass and the temperature by means of an integral of a function of the particle
energy E . Assume there is spin degeneracy with a factor g, and the volume of the
system is V . The quantum gas is assumed to be composed of non-interacting particles
of energy E = p2/2m. Note that quantum properties become manifest in the ideal
gas when λ/d � 1, where λ is the thermal de Broglie wavelength, and d the average
interparticle separation. Thus, the quantum properties become relevant, not only due
to the increase in the term λ when the temperature decreases, but also due to the
decrease in d when the density grows enough. Later, we shall discuss the lowest
order temperature correction to the Fermi degenerate gas.

We start from the density of particles in momentum space for quantum gases
n(p) = 1/(e(E−μ)/kT ± 1). The density of states is gV 4π p2dp/(2π)3�3. For T �= 0,
(8.15), (8.16) imply

N = 4πV g

(2π)3�3

∫ ∞

0

p2dp

e(E−μ)/kT ± 1
, (8.61)

where the+ sign corresponds to fermions and the− sign to bosons. We now express
the integral in terms of the energy E , noting that pdp/m = dE and p = √

2mE .
We have

N = gVm3/2

21/2π2�3

∫ ∞

0

√
EdE

e(E−μ)/kT ± 1
. (8.62)

We shall obtain an expression for the total energy of the system, and its relation to
the thermodynamic potential �. One can get an integral expression for the energy
U = ∫ ∞

0 EdN (E) as

U = gVm3/2

21/2π2�3

∫ ∞

0

E3/2dE

e(E−μ)/kT ± 1
, (8.63)

and rewrite (8.62) in the form

N = gVm3/2

21/2π2�3

∫ ∞

0

e−(E−μ)/kT
√
EdE

1 ± e−(E−μ)/kT
= − ∂

∂μ
�, (8.64)

where
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� = ∓gVm3/2kT

21/2π2�3

∫ ∞

0

√
E ln(1 ± e−(E−μ)/kT )dE .

Then, integrating by parts, one gets

� = −2

3

gVm3/2

21/2π2�3

∫ ∞

0

E3/2dE

e(E−μ)/kT ± 1
. (8.65)

As � = −pV , we have

pV = 2

3
U. (8.66)

The Boltzmann approximation is valid when e(E−μ)/kT � 1. This holds in the limit
eμ/kT � 1, which implies that μ < 0. We shall use this to express the first order
quantum corrections to thermodynamic quantities.

Let us consider the term

1

e(E−μ)/kT ± 1
= e−(E−μ)/kT

1 ± e−(E−μ)/kT
.

It can be written approximately as

1

e(E−μ)/kT ± 1
= e−(E−μ)/kT

(1 ∓ e−(E−μ)/kT )
≈ e−(E−μ)/kT

[
1 ∓ e−(E−μ)/kT

]
. (8.67)

The term in square brackets on the right-hand side is obtained by going up to the term
linear in ε(= e−(E−μ)/kT ), in the series expansion 1/(1 ± ε) = 1 ∓ ε + ε2 · · · . We
obtain the Boltzmann approximation by taking ε/(1 + ε) ∼ ε, that is, by neglecting
ε in the denominator:

NB = g4πV

(2π)3�3

∫ ∞

0
e−(E−μ)/kT p2dp. (8.68)

Introducing the integration variable x = p/2mkT , this gives

NB = gV

2π2

(2mkT )3/2

�3
eμ/kT

∫ ∞

0
e−x2x2dx .

Replacing the integral by
√

π/4 and taking into account the de Broglie thermal
wavelength defined by λ = h/

√
2πmkT (see Chap. 2), we have

NB = gV

8π3/2

(2mkT )3/2

�3
eμ/kT = gV

λ3
eμ/kT . (8.69)

The quantity p(T ) = √
2πmkT is called the thermal momentum.

From (8.69), we have
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μ = kT ln
NBλ3

gV
= kT ln

λ3

gd3
,

where d3 = V/N is the average volume per molecule. As g is of order unity, for μ to
be significantly negative, we must have d � λ. This corresponds to the classical or
Boltzmann limit. As pointed out earlier, quantum effects become significant when
λ � d.

By integrating NB with respect to μ, and multiplying by −1 we get,

�B = − gV

8π3/2

(2mkT )3/2

�3
kT eμ/kT = −gV

λ3
kT eμ/kT .

Since � = − 2
3U , we get

UB = −3

2
�B = 3gV

2λ3
kT eμ/kT = 3

2
kT NB, (8.70)

as expected in the Boltzmann limit of a quantum gas.
If we calculate the first quantum correction (see the literature), we obtain

� = −pV = −kT

(
NB ± λ3

d3

1

25/2g

)
. (8.71)

This is negligibly small if the average distance between particles d � λ. For constant
N and V , since λ varies with the temperature as T−1/2, when the temperature is low
enough, λ may become ∼ d, and the quantum properties will become manifest.
Similarly, for very high densities, d decreases and quantum effects may become
relevant even at very high temperatures, leading to macroscopic quantum properties,
as happens in astrophysical objects like white dwarf stars. We observe that, for
fermions, the pressure increases, and we may say that exchange effects lead to an
effective repulsion among the particles, while for bosons, the pressure decreases,
and quantum corrections lead to an effective attraction among the particles, when
compared to the Boltzmann gas.

For the fermion case, we now consider the previous expression for the number
of particles and calculate it in the zero temperature limit for electrons (degener-
ate electron gas). We shall also calculate the energy in terms of p f . In this case
1/(e(E−μ)/kT + 1) → θ(μ − E), that is, the distribution becomes a step function,
such that for μ ≥ E , θ(μ − E) = 1 and for μ < E , θ(μ − E) = 0, as discussed in
Sect. 8.3. We take the degeneracy factor g = 2. Instead of (8.19), it is simpler to
write the density of states in terms of the momentum as g(p)dp = 8πV p2dp/h3.
Call the maximum momentum p f and recall that it must satisfy p2f /2m = E f = μ.
The expression (8.62) becomes

N = 8πV

h3

∫ p f

0
p2dp = 8πV

3h3
p3f , (8.72)
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from which
p f = (3/8π)1/3h/d, E f = (3/8π)2/3h2/2md2. (8.73)

The energy is given by

U0 = 8πV

2mh3

∫ p f

0
p4dp = 8πV

10mh3
p5f = −3

2
�. (8.74)

Substituting in p f = (2mE f )
1/2, we obtain (8.21).

The first temperature dependent term is given by the expression (see the
bibliography)

U = U0 + π2

4

N (kT )2

E f
= U0 + π2

4

NkT 2

T f
, (8.75)

where T f = E f /k is the Fermi temperature. By dividing by V , one can write the
specific heat as

CV = π2

2

nkT

T f
, (8.76)

where n = N/V is the electron density. For metals, the Fermi temperature is usually
of order 104 K and the electron density n is of order 1022 cm−3. Equation (8.76) is a
more exact version of (8.25). When applying this to practical problems in condensed
matter physics, it should be remembered that the effective electron mass is different
from the physical mass, and also that the Debye term contributes (nonlinearly) to the
total specific heat.

Problems

Problem 8.1 Consider a photon gas in equilibrium at temperature T enclosed in
a volume V . The photon is a massless particle, so its energy is E = pc and its
chemical potential μ = 0. The average number of photons in the volume V depends
on (kT/�c)3. Find the photon density in the early Universe, when T = 1015 K.

Problem 8.2 When we integrate (4.52) over ν, we obtain the so-called Stefan–
Boltzmann law (8.46),which gives the total energy density of the black body radiation
at temperature T as u = aT 4, where a = 4σ/c is called the radiation constant. The
emitted power is the energy emitted per unit area and per unit time, namely, Eb =
σT 4, while the luminosity expresses the total radiated power, defined for a black
body by the product

L = σAT 4,

where A is the surface area of the body. Treating the Sun as a black body, calculate:
(i) the solar luminosity, assuming the temperature of the photosphere to be T = 5700
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K and its surface area to be A = 6.09 × 1012 km2; (ii) the mass equivalent of the
energy radiated throughout its life, estimating the Sun’s age as 4.6 × 109 years and
assuming that it has maintained the present luminosity on the average right through
its existence.

Problem 8.3 From the thermodynamic potential �, find the pressure of the photon
gas in terms of the internal energy.

Problem 8.4 Starting from U = aT 4 and p = U/3V , according to the Big Bang
theory, the radiation energy of the Universe was initially confined to a small region
and expanded adiabatically in a spherically symmetric manner. The radiation would
have cooled down as it expanded. Find the relation between the temperature T and
the radius R of the spherical volume of radiation, on the basis of thermodynamic
considerations.

Problem 8.5 Find the total entropy of a photon gas as a function of its temperature
T , volume V , and the constants σ, a. Recall that dS = dU

T + p
T dV .
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Chapter 9
Four Fundamental Forces

At present we know of four types of forces as basic interactions in Nature. The
strongest of them is the nuclear force, attracting protons and neutrons inside the
atomic nucleus, although its range is limited to distances of the order of the diameter
of the atomic nucleus, i.e., 10−13 cm. After this, the next strongest is the electromag-
netic force, which is exerted between electrically charged particles, and in particular
which attracts protons and electrons to form the atom. Then follows the so-called
weak force, mediating the beta decay of nuclei. This is also a short-range force. As a
consequence of beta decay, electrons and neutrinos are produced. Finally, theweakest
is the gravitational force. Like the electromagnetic force, this has long range.

All other interactions observed in Nature can be reduced to these four forces. For
instance, molecular forces are a consequence of electromagnetic interactions. It must
be pointed out, however, that purely quantum effects, such as Pauli’s principle, lead
to effects close to the idea of forces. The exchange interaction is a good example
for the case of fermions. For bosons, Bose–Einstein condensation is a representative
example.

Atmospheric and oceanic pressure are both determined by gravity. If one presses
down on the table with the hand, the forces intervening in the process, at the level of
atoms and molecules, are electromagnetic forces combined with quantum effects.

In what follows, we shall examine some characteristics of these four forces in
more detail.

9.1 Gravity and Electromagnetism

We have already dealt earlier with two fundamental forces: the gravitational and the
electromagnetic forces. They have some similar properties, for instance, the force
between two electric charges depends on the inverse square of the distance, and
gravity obeys a similar law.

On the other hand, electromagnetic interactions can propagate to large distances,
the intensity of the force decreasing with the square of the distance. Gravitational
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interactions behave similarly from this point of view. For these reasons, gravity and
electromagnetism are said to be long-range forces. From the quantumfield theoretical
perspective, this is reflected in the fact that the quanta of the electromagnetic field
(photons) and the gravitational field (gravitons) are massless particles, and hence
propagate at the velocity of light. (Although gravitons have not yet been observed, it
is believed that they do exist.) From the mathematical point of view, gravity and elec-
tromagnetism are both described by theories with the property of gauge invariance
(see Chaps. 5 and 7).

On the other hand, there exist essential differences between electromagnetism and
gravity. The existence of electric charges of opposite signs leads to the screening of
the electrostatic force. An electric charge always tends to be screened by attracting
opposite charges. This occurs in atoms, in molecules, and in any macroscopic body.
However, the gravitational charges cannot be screened since the force is only attrac-
tive, whence the gravitational interaction plays a dominant role at cosmic scale. It
determines the motion of the planets around the Sun. The Sun with its planetary sys-
tem, like other stars in our galaxy, are coupled by gravitation in a complex rotational
motion around a common centre. And galaxies, in turn, interact with one another
through gravity over enormous distances, forming clusters of galaxies.

Although electrostatic interactions are screened at the cosmic scale, another form
of the long range electromagnetic field is manifested in planets and stars, namely,
magnetic forces. Magnetic fields are believed to be produced mostly by rotational
motions of electric charges inside those bodies. These magnetic fields may become
very strong in objects like pulsars, which are neutron stars rotating at high frequency.
It is estimated that fields of the order of 1014 gauss and even higher are generated in
them.

9.2 Atomic Nuclei and Nuclear Phenomena

Heavy nuclei may be treated as classical systems, since they contain hundreds of
nucleons. For instance, in the liquid-drop model, the nucleus energy is considered
as arising both from surface tension and from electrical repulsion of the protons.
The liquid-drop model can reproduce many features of nuclei, including the binding
energy and the phenomenon of nuclear fission.

The nuclear shell model was proposed first by Dmitry Ivanenko (1904–1994) in
1932, and was developed in 1949 mainly by EugeneWigner, Maria Goeppert Mayer
and J. Hans D. Jensen (1907–1973), who were awarded the 1963 Nobel Prize in
Physics. It includes quantum mechanical effects to some extent analogous to the
electron shells in the atom structure. One interesting consequence is that nuclei with
certain numbers of neutrons and protons (the magic numbers (2, 8, 20, 28, 50, 82,
126,…) are particularly stable, because their shells are filled.
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Nuclear Decay and Radioactivity.Among the known elements, eighty have at least
one stable isotope never observed to decay, giving a total of about 254 known stable
isotopes. But thousands of isotopes have been characterized as unstable. Radioiso-
topes decay over diverse time scales, ranging from fractions of a second to bil-
lions of years. The phenomenon of radioactivity was discovered in 1896 by the
French physicist Henri Becquerel (1852–1908), while working with phosphorescent
materials. Fundamental contributions were also made by Marie Skłodowska Curie
(1987–1934), a Polish and naturalized-French physicist and chemist who conducted
pioneering research on radioactivity. She was the first woman to win a Nobel Prize
(in Physics, shared with Pierre Curie and Henri Becquerel in 1903), and the only
person to win a Nobel Prize in two different sciences (in 1911 she was awarded
the Nobel Prize for Chemistry, among other reasons, for her discovery of two new
elements, radium and polonium).

Nuclei are more stable when there is a balance in the numbers of neutrons and
protons. Too few or too many neutrons may cause a nucleus to decay. For instance,
a nitrogen-16 atom, whose nucleus contains 7 protons and 9 neutrons, will decay
in a few seconds to an oxygen-16 atom, with 8 protons and 8 neutrons. This is due
to a weak interaction process, namely beta decay of a neutron inside the nitrogen
nucleus, producing a proton, an electron, and an antineutrino.

Alpha decay is characterized by the emission of a helium nucleus, which is called
an α particle (containing 2 protons and 2 neutrons), to give another element. In many
cases this process continues in several steps, including other types of decays, until a
stable element is formed.

In gamma decay, the nucleus decays from an excited state into a lower energy
state by emitting a gamma ray, and no nuclear transmutation is involved.

Nuclear fusion. Nuclear fusion is produced when two low mass nuclei come into
very close contact with each other, whereupon the strong force acts and fuses them
together. A large amount of energy is required to overcome the repulsion between the
nuclei, so that the strong force can produce this effect. For this reason, nuclear fusion
takes place at very high temperatures or high pressures. If the fusion process succeeds,
a very large amount of energy is released and the combined nucleus assumes a lower
energy level. The binding energy per nucleon increases with mass number A up to
nickel-62. The power of stars like the Sun comes from a nuclear reaction consisting
in the fusion of four protons into a helium nucleus, two positrons, and two neutrinos.
Natural nuclear fusion is the origin of the light and energy produced by the core of
all stars including the Sun. Various laboratories around the world are working on
the development of an economically viable method for using energy produced in a
controlled fusion reaction.

Nuclear fission. The reverse process of nuclear fusion is nuclear fission. The binding
energy per nucleon decreases with the mass number for nuclei beyond nickel-62. It
is possible to release energy if a nucleus breaks apart into two lighter ones. The
process of α decay is actually a sort of spontaneous nuclear fission, which is highly
asymmetrical because the four particles composing the α particle are tightly bound
to each other.
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For some heavy nuclei which produce neutrons upon undergoing fission, and
which also easily absorb neutrons to initiate fission, a self-igniting type of neutron-
initiated fission can be obtained. This is known as a chain reaction. The fission or
nuclear chain reaction, using fission-produced neutrons, is the source of energy for
nuclear power plants. For a neutron-initiated chain reaction to occur, there must be a
critical mass of the element present in a certain volume and under certain conditions.

9.3 Strong Interactions

The strongest known force in Nature is exerted between the constituent particles of
the atomic nucleus: protons and neutrons. In order to get a comparative idea, it is
enough to point out that the attraction between two protons due to that force is 100 to
1000 times stronger than their electrostatic repulsion, while the latter is greater than
the gravitational attraction by a factor of order of 1037. But the nuclear force has the
feature of being short range: its action is limited to distances of the same order as
the dimensions of the atomic nucleus, that is 10−13 cm.

In 1935, the Japanese physicist Hideki Yukawa (1907–1981) predicted the exis-
tence of mesons as the particles mediating the strong interactions, by analogy with
photons mediating in the electromagnetic interactions. Since the strong interactions
are short range, the mesons should have nonzero mass (differing in this respect from
the photon), and this mass should be 200–300 times the electron mass. The counter-
part to the electrostatic potential is then the Yukawa potential:

�(r) = g

r
e−r/r0 , (9.1)

where g is a constant characteristic of the strong interactions. The expression (9.1)
is significant for r smaller or near r0, where r0 is of the order 10−13 cm (this is a unit
called fermi or femtometer, denoted by fm). One can also write (9.1) in the form

�(r) = g

r
e−mr, (9.2)

where m ∼ 1/r0 is proportional to the mass of the π mesons, in natural units. The
Fourier transform of (9.2) is

�̃(|k|) = g

k2 + m2
. (9.3)

The interesting thing about (9.3) is that, if it is compared with (4.44) in Chap.4, it can
be seen that what makes the interaction short range is the mass of the mediator, i.e.,
if the bosons mediating in the interactions have nonzero massm, the resulting forces
are short range, and the damping factor of the interaction is proportional to e−mr . As
the photon has zero rest mass, the Coulomb force is long range.
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The Yukawa mesons were discovered in 1947 in cosmic rays experiments and
called π mesons, or pions. There are three types of pions: positive (π+), negative
(π−), and neutral (π0). Their masses are approximately

mπ± = 273 me,

mπ0 = 264 me,
(9.4)

where me is the electron mass.
The π0 pions are not stable particles and decay in different ways, e.g., into two

photons:
π0 → 2γ, (9.5)

in a time of order 10−16 s. The π± pions have a longer lifetime, of order 10−8 s and
decay in several ways.

Let e− and e+ be the electron and positron, respectively, let νe and ν̄e be the
neutrino and antineutrino associated with the electron, let μ+ and μ− be the particles
known asmuons (or heavy electrons, first calledμmesons), withmass approximately
207 times the electron mass, and let νμ and ν̄μ be the neutrino and antineutrino,
respectively, associated with the muon. Then the pions π± decay weakly, with the
highest probability in the following ways:

π+ → μ+ + νμ,

π− → μ− + ν̄μ,

but also to

π+ → e+ + νe, (9.6)

π− → e− + ν̄e,

or, with extremely small probability, to

π+ → π0 + e+ + νe,

π− → π0 + e− + ν̄e.

Other decay modes have also been observed. From the theoretical point of view the
pions are described by pseudoscalar fields. They behave as scalars under all Lorentz
transformations, except the inversion of the space coordinates (parity transforma-
tion), under which they change sign. In this respect, they differ radically from the
photons, whose field operator Aμ is a four-vector. The photons have spin unity, and
the π mesons have spin 0. Since they have integer spin, they obey the Bose–Einstein
statistics.

The mechanism of attraction between protons and neutrons inside the nuclei was
explained by an exchange of pions, i.e., of π0 between nucleons of identical charge,
and of π0 and π± for interactions between nucleons of different charge. Neutrons
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and protons can be understood as two isotopic spin states of the same particle, called
nucleon. The neutron absorbs a π+ or emits a π− and becomes a proton. The proton
absorbs a π− or emits a π+ and becomes a neutron. (To be precise, these processes
happen when the exchanged particle is virtual, otherwise energy and momentum
would not be conserved.) As mentioned earlier, for some time it was believed that
the pions were the quanta of the strong interactions, and the existence of three types
with charges (±, 0) is necessary in order to achieve the different possible interactions
between protons and neutrons.

Neutrons and protons, together with other heavy particles called hyperons form a
set of particles known as baryons. The hyperons are characterized by having a higher
mass than the proton, and a lifetime of the order 10−10 s, specific of decay by weak
interactions.

Strong forces are known at present to be determined by the interaction between
quarks, elementary particles of fractional charge ±2e/3, ±e/3, from which the
hadrons are composed. Quarks interact through the gluon field, which is the car-
rier of the fundamental strong force, and all previous models are modified (this is
discussed in detail in Chap. 11). The nuclear force is actually a residual force, whose
relationship with the gluon field should be understood as similar to the relation
between molecular forces and the interatomic Coulomb force.

A neutron outside the nucleus is unstable, and its mean lifetime is approximately
12 minutes. Protons are assumed to be stable, although some Grand Unification
Theories, for instance, the one based on the SU (5) gauge symmetry group, predict a
lifetime of the order 1033 years for the proton. This hypothesis remains unconfirmed,
but if it were true it would violate the principle of baryon number conservation, which
is assumed to be valid in any interaction process of fundamental particles.

9.4 Weak Interactions

Some atomic nuclei decay by emitting an electron and an antineutrino, causing the
nucleus to increase its atomic number Z by one unit. Since the electrons emerging
from these decays were originally called beta particles, this process emitting an
electron and an antineutrino is called beta decay. The beta decay of carbon 14 gives
a nitrogen nucleus, an electron and an antineutrino:

14
6 C → 14

7 N + e− + ν̄e. (9.7)

A free neutron decays similarly into a proton, an electron, and an antineutrino:

n → p + e− + ν̄e. (9.8)

An antineutron n̄ decays into an antiproton p̄, a positron e+, and a neutrino νe:

n̄ → p̄ + e+ + νe. (9.9)
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The weak interactions are responsible for the decay of many other particles, such as
the pions, as can be seen in (9.6), and other mesons, as well as all the hyperons.

Weak interactions are short range. The characteristic length is of the order 10−15–
10−16 cm.An important consequence is that the probability of interaction of neutrinos
with other particles is very small at the usual energies encountered on Earth. For this
reason, we call them weak interactions. The weak force is stronger than gravity, but
the force of gravity acts more strongly at great distances because it is long-range and
proportional to the masses of the interacting bodies.

The weak interactions have the fundamental property of not conserving parity.
Let us discuss this now.

9.5 Parity Non-Conservation in Beta Decay

Until 1956, it was believed that parity (P) conservation was a fundamental property
of the atomic world. If a process exists, its mirror image should also exist. In that
year, the Chinese–American physicists Chen Ning Yang (b.1922) and Tsung-Dao
Lee (b.1926) realized that this property was not in fact valid for weak interactions.
Their hypothesis was based on a comparative study of the decay ofK+ mesons in two
final states of different parity. In 1957, the non-conservation of parity was confirmed
by Chien-Shiung Wu (1912–1997) with collaborators, in an experimental study of
the beta decay of spin-polarized nuclei of cobalt 60. Figure 9.1 illustrates the process
of beta decay of such a nucleus. The nucleus emits an electron L (where Lmeans left-
handed) with negative helicity (or left chirality), i.e., the direction of spin rotation and
the direction of its momentum are as in a left-hand screw. The electron L is always
emitted in the direction opposite to the spin polarization of the nucleus. The nucleus
also emits an antineutrino ν̄ with positive helicity, i.e., the direction of the spin
rotation and the momentum combines as in a right-hand screw. The antineutrino is
always emitted in the direction of the spin of the decaying nucleus. The fact that in the
experiment of C.S. Wu the electrons coming out of the decay of the polarized cobalt
60 nucleus fly only in one direction and never in the opposite direction was suggested
as parity violation by Lee and Yang. At the very same time, the parity violation was
checked also byLeonLederman, togetherwithRichardGarwin andMarcelWeinrich,
in an experiment of pion and muon decay. In 1957, the Nobel Prize in Physics was
awarded to Lee and Yang for the hypothesis of parity violation in weak interactions.

Thus, themirror image of beta decay does not occur inNature. However, if besides
taking the mirror image, the charge is conjugated, that is, the nucleus is replaced by
an antinucleus, the electron by a positron, and the antineutrino by a neutrino, the
resulting process does occur in Nature. That is, parity P alone is not conserved, but
the symmetry is recovered if parity P and charge conjugation C are combined into
a CP conjugation operation. Thus individually, P and C fail to be symmetries, but
the combined symmetry CP remains valid. Comparing (9.8) and (9.9), it can be seen
that the decay of a neutron and of an antineutron are related by a CP transformation
(see also Fig. 9.1).

Neutrinos, as massless particles, violate parity maximally. Strictly speaking (see
Chap.11), recent results suggest that neutrinos actually have a very tiny mass, so the
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Fig. 9.1 Parity non-conservation. A nucleus emits an electron L of negative helicity (as in a left-
handed screw) and an antineutrino R of positive helicity (as in a right-handed screw), so beta decay
distinguishes right from left. The mirror image (under P inversion) would give an electron R and an
antineutrino L. This process has not been observed in Nature. In a hypothetical CP mirror, in which
the images of particles are antiparticles, the antinucleus emits a positron R and a neutrino L, and
this process would be observable (the mirror image of a screw is an antiscrew, made by antimatter).

a

V

b
V

V ′

c

Fig. 9.2 (a) Electron with velocity V and helicity R in some reference system. (b) Electron at rest
in a system moving with velocity V toward the right with respect to the previous one. (c) Electron
with negative helicity in a system moving with velocity V ′ > V toward the right.

following discussion, based on a massless neutrino is to be taken as approximate. In
the zero mass limit, one can be sure that the antineutrino has positive helicity R in
any frame of reference (R means right-handed), and that the neutrino has negative
helicity L.

For a massive particle like the electron, the notion of helicity is not relativistically
invariant, since if the electron moves with the velocity V and has positive helicity
(R), by choosing a system of reference moving at the velocity V in the same direction
as the electron, the particle will be seen to be at rest. If now the velocity of the system
of reference is increased to a value V ′ > V in the same direction, the relative velocity
of the electron will be seen as negative, and its helicity also negative (L) (Fig. 9.2).
However, this cannot be done with a massless fermion, which would move at the
speed of light, whence there would be no reference system in which it were at rest,
and as a consequence, no reference system in which its momentum and helicity were
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inverted. A newkind of symmetrywould then arise, viz., chiral invariance, associated
with such massless fermions, manifested by their always having the same helicity.
If neutrinos (and antineutrinos) have a very small mass, they will not travel at the
velocity of light, but at velocities very close to it, and the conservation of helicity will
only hold approximately. It should be emphasized, however, that all weak interaction
processes are parity violating, whether they involve or not neutrinos. We shall return
to this issue in Chap. 11.

9.6 Violation of CP and T Invariance

Charge conjugation transformation C and space inversion, or parity, transforma-
tion P are combined in the CP transformation. By applying the CP operator to a
particle with a certain “handedness,” we obtain the antiparticle with the opposite
handedness (for example, a left-handed electron by CP transformation goes into a
right-handed positron). Symmetry underCP transformationmeans, actually, symme-
try between matter and antimatter. In 1980, the Nobel Prize in Physics was awarded
to Val Fitch (1923–2015) and James W. Cronin (1931–2016), for their outstanding
discovery made in 1964: the violation of CP invariance in certain decays.

With regard to the weak interaction, the neutral K mesons have some special
features. Both the electric charge and the baryonic charge of K0 and K̄0 are zero.
They only differ in strangeness S (S = +1 for K0 and S = −1 for K̄0). Since the
strangeness is not conserved in weak interactions (see Chap. 11 for details), K0 and
K̄0 are identical with respect to them. In particular, they can convert into each other.

All particles can be classified into two groups. One group comprises particles
(e.g., proton, electron, hyperons, etc.) which differ from their antiparticles by some
strictly conserved quantum numbers (e.g., electric charge, baryonic charge, etc.). The
second group comprises particles identical with their antiparticles or truly neutral
particles (e.g., photon or π0 meson). Neutral K0 mesons are on the border between
these two groups: K0 and K̄0 differ in strangeness, but this difference is relevant for
strong interaction and irrelevant forweak interaction.WhileK0 and K̄0 have a definite
strangeness, they do not have a definite CP parity – under CP transformations, K0

transforms into K̄0 and vice versa:

CP|K0〉 = |K̄0〉, CP|K̄0〉 = |K0〉. (9.10)

A definite CP parity can be attributed to the quantummechanical linear combination
of K0 and K̄0:

|K0
1 〉 = 1√

2
(|K0〉 + |K̄0〉), |K0

2 〉 = 1√
2
(|K0〉 − |K̄0〉). (9.11)

Under CP transformation, K0 converts into K̄0 and K̄0 converts into K0, so that the
state |K0

1 〉 will transform into itself, while |K0
2 〉 will reverse its sign:
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CP|K0
1 〉 = |K0

1 〉, CP|K0
2 〉 = −|K0

2 〉. (9.12)

Hence, K0
1 has positive and K

0
2 has negative CP parity, but neither K0

1 nor K
0
2 possess

a definite value of strangeness.
If the CP invariance holds, the K0

1 meson may only decay into two π mesons,
whose total CP parity is positive:

K0
1

↗π++π−

↘π0+π0 ,

while K0
2 may only decay into three π mesons, their total CP parity being negative,

as the π mesons are pseudoscalars:

K0
2

↗π++π−+π0

↘π0+π0+π0 .

Both kinds of decay have been observed. The lifetime of the K0
1 meson (0.86 ×

10−10 s) is shorter than that of the K0
2 meson (5 × 10−8 s). For this reason, K0

1 and
K0
2 are also referred to as the short-lived K0

S meson and the long-lived K0
L meson,

respectively.
In the absence of CP invariance, the K0

L meson can also decay into two
π mesons and the K0

S meson into three π mesons:

K0↗π++π−
L↘π0+π0 , K0↗π++π−+π0

S↘π0+π0+π0 . (9.13)

The experiment of Cronin and Fitch consisted of injecting a pure K0 beam into a
vacuum tube of 15 m length. K0

1 should have decayed within 6 cm of length, such
that at the end of the tube only the long-lived K0

2 should have been detected, by its
decay to three pions. However, surprisingly, also decays to two pions were observed
at the end of the tube, signaling the presence of K0

1 . Thus, the mass eigenstates |K0
S〉

and |K0
L〉, with definite lifetime, cannot be identified with the CP eigenstates |K0

1 〉
and |K0

2 〉, respectively, but they represent rather a superposition of the two:

|K0
S〉 = |K0

1 〉 + ε|K0
2 〉√

1 + ε2
, (9.14)

|K0
L〉 = |K0

2 〉 − ε|K0
2 〉√

1 + ε2
. (9.15)

Here, ε is a complex parameter which encodes the magnitude of the CP violation.
The effect ofCP violation is very small: for example, only 0.20%of allK0

L mesons
do decay into π+ + π−; the ratio of the decay probabilities of K0

L → π+ + π− and
K0
S → π+ + π− amounts to only (3.69 ± 0.15) × 10−6.
In case ofP invariance, a particle can be figuratively represented as a “nail”; in case

ofCP invariance the particle can be imagined as a “screw” with a certain direction of
screw thread, whose length is the same for the particle and the antiparticle, due to the
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fact that only a relative difference exists between them under CP invariance. If CP
is violated, different “screws” have to be attributed to a particle and its antiparticle
(both the sense of the screw thread and its length being different), to represent an
absolute difference between the particles and the antiparticles. As a consequence, the
probabilities of, e.g., the following lepton decays of K0

L mesons with the production
of particles or antiparticles will be different:

K0↗π++e−+ν̄e
L↘π−+e++νe

, K
0↗π++μ−+ν̄μ

L↘π−+μ++νμ
. (9.16)

That is to say, in the case of CP non-invariance the probabilities of creating particles
with opposite charge (e.g., e− or e+, μ− or μ+) will be different (charge asymmetry).
Charge asymmetry in the mentioned leptonic decays of K0

L mesons has been exper-
imentally observed. In 1967, Andrei Sakharov (1921–1989) used the CP violation
argument to justify the matter–antimatter asymmetry in the Universe (we shall return
to this point in Chap.11).

While CP symmetry is violated in these processes, it turns out that the time-
reversal symmetry, T , is also violated, such that the combined CPT symmetry is
preserved.Actually,CPT is a symmetry of every knownprocess.All the experimental
searches for CPT violation have failed to date, but the quest continues. The CPT
symmetrywas proved theoretically in 1954 to be intrinsic to relativistic quantumfield
theories by Gerhart Lüders (1920–1995) and, independently, byWolfgang Pauli; the
proof of the CPT theorem in axiomatic quantum field theory was given in 1957 by
Res Jost (1918–1990).

9.7 Some Significant Numbers

The Compton wavelength of a particle of mass m is λc = h
mc . Relativistic quantum

behaviour, described by the theory of quantized fields as creation and annihilation of
particles and antiparticles, manifests itself at distances of this order. Mass scales in
quantum physics are customarily represented by the reduced Compton wavelength,
defined as λ̄c = �

mc . The reason is simple, if we look at it in natural units (� = c=1):
λ̄c = 1/m. For an electron the reduced Compton wavelength is:

λ̄e
c = �

mec
= 3.86 × 10−11 cm. (9.17)

This is a number 100 times smaller than the radius of the smallest atom, which is of
the order 10−9 cm.



332 9 Four Fundamental Forces

For the proton, we have

λ̄p
c = �

mpc
= 0.21 × 10−13 cm, (9.18)

which is of the order of the nuclear size ∼1 fm. For pions we have

λ̄π
c = �

mπc
= 1.41 × 10−13 cm, (9.19)

a number giving the range of the nuclear force.
The weak interactions have a smaller range, roughly of the order 10−15 cm. Let

us estimate the masses of the particles mediating that interaction:

mW = �

c × 10−15 cm
≈ 10−22 g, (9.20)

which is about 100 times larger than the proton mass. The subscriptW stands for the
W vector bosons, which mediate the beta decay. We conclude that the smaller the
range of an interaction, the greater the mass of the particles mediating it. Conversely,
the greater the range, the smaller the mass of the particles mediating the interaction.
Since the electromagnetic and gravitational forces have long (actually, infinite) range,
it can be deduced from the previous relations that the mass of the mediating particles
(the photon and the graviton) should be zero.

The corresponding energies associated with these masses are frequently given in
electron volts (eV) or their multiples (MeV = 106 eV and GeV = 109 eV). We have

1 eV = 1.6 × 10−12 erg. (9.21)

The mass of the proton in natural units (previously multiplied by c2) would be

mp = 9.38 × 102 MeV ≈ 1GeV, (9.22)

and for the W bosons mediating the weak interactions:

mW ≈ 80GeV. (9.23)

The so-called classical radius of the electron corresponds to the distance at which
the electrostatic energy is of the same order as the rest energy of the electron:

mc2 = e2/r, (9.24)
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leading to
r = e2/mc2 ≈ 2.82 × 10−13cm. (9.25)

Once again we obtain distances characterizing nuclear dimensions. This suggests
that new phenomena arise at distances of that order.

9.8 Death of Stars

To conclude this chapter we discuss a cosmic phenomenon in which the four funda-
mental forces of Nature and Pauli’s principle (through the so-called fermion degen-
eracy pressure) come together, namely, the death of stars. It should be mentioned,
however, that after undergoing the final stages of stellar evolution, the remnants of
stars are still very active objects.

Inside stars, matter is not organized in the form of atoms andmolecules: the atoms
are completely ionized, and the nuclei and electrons move independently, forming
a plasma at temperatures of order 107−109 K. At such temperatures, thermonuclear
reactions can occur. The strong, weak, and electromagnetic interactions make the
nucleosynthesis of helium (and some heavier elements) possible from hydrogen.

At present the generally accepted hypothesis is that the mass of a star plays an
important role in its evolution. When a star with mass less than 1.44 times the solar
mass has transformed all its hydrogen reserves to helium, it becomes a white dwarf,
according to the well-known appellation. At a certain moment, a contraction process
will begin in awhite dwarf, due to the gravitational force. This contraction is balanced
only by the pressure exerted by the electron gas, which is a purely quantum effect,
due to Pauli’s principle. Owing to its high temperature (near 107 K), the gas also
has relativistic behaviour, with some electrons moving at velocities near c. Although
there is a contribution to the pressure from the nuclei, the main contribution comes
from the extremely dense electron gas (near 1030 cm−3). The brightness of such stars
is due to the release of gravitational energy in the slow contraction process.

Only stars of mass smaller than 1.44 solar masses can become white dwarfs.
Higher mass stars collapse. Let us outline a demonstration based on elementary con-
siderations. Assume that we haveN electrons in a star of radius R. As a consequence,
its density is n ∼ N/R3, and the volume per fermion is 1/n. The uncertainty principle
implies for the electron p ∼ �n1/3.

The repulsive Fermi energy for relativistic electrons can be then immediately
written as:

EF = �cN 1/3

R
. (9.26)

The total attractive gravitational energy is given practically by the interaction of the
baryons (since they are much heavier than the electrons)
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EG = −GM 2

R
, (9.27)

with M = NmB, where mB is the baryon mass, the baryons being protons and neu-
trons, and it is assumed that the number of nucleons is approximately equal to the
number of electrons. The condition of zero energy is E = NEF + EG = 0, and from
this we obtain

Nmax =
(

�c

Gm2
B

)3/2

∼ 2 × 1057. (9.28)

Equation (9.28) (which can be written asNmax ∼ (mP/mB)
3, wheremP = √

�c/G ∼
10−5 g is the Planck mass, see Chap.10) implies Mmax ∼ 1.85M⊙, where M⊙ ∼
1.98 × 1033g is the solar mass.We observe that, except for some numerical constants
dependent on the star composition, Nmax andMmax depend on fundamental physical
constants. This value forMmax is a rough estimate of the quantity 1.44M⊙, known as
the Chandrasekhar limit, in honour of Subrahmanyan Chandrasekhar (1910–1995)
who found it first and was awarded the Nobel Prize in Physics in 1983 for “for
his theoretical studies of the physical processes of importance to the structure and
evolution of the stars”.

This hand-waving argument can be made more precise as follows. Let us denote
by P0 the pressure of the degenerate electron gas. The work done in order to change
the volume by a small amount dV is dW0 = −P0dV (where dV = 4πR2dR). At
equilibrium, this must be equal to the work done by the gravitational field due to the
small change dR of the star radius, dW0 = η(GM 2/R2)dR, where η, of order unity,
depends on the density inside the star. By equating the two expressions for dW0, one
obtains an equation from which two important limits can be calculated. By defining
the relative Fermi momentum as x = pF/mc, these limits are the non-relativistic
one, for x 
 1 and the ultra-relativistic, for x � 1. Recalling that λ̄c = �/mc is the
reduced Compton wavelength of the electron, in the non-relativistic limit one obtains
the mass–radius equation

RM 1/3 � 3(9π)2/3

40η

λ̄cm2
P

m2/3
B

, (9.29)

i.e., the white dwarfmass decreases with its radius asM = const. × R−3. In the ultra-
relativistic case, we obtain another mass–radius equation for the star equilibrium:

R � (9π)1/3

2

(
M

mB

)1/3

λ̄c

[
1 −

(
M

M0

)2/3
]1/2

,where M0 = 9

64

(
3π

η3

)
m3

P

m2
B

.

(9.30)

We see that in these two expressions the electron Compton wavelength, the baryon
mass, and the Planck mass play a fundamental role. From (9.30), it is seen that a
white dwarf star in equilibrium must have a mass M < M0, where M0 ∼ 1033 g, a
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result fully upheld by observation. Thus, from (9.29) and (9.30) we conclude that
in both cases the white dwarf radius decreases with its mass, but in the latter, for
M ≥ M0, R would vanish or become an imaginary number: this implies that the star
is not stable and would explode.

Awhite dwarf becomes a hot carbon ball, and itmay increase itsmass by accretion,
for instance of hydrogen, from a neighbouring star. The fusion process continues
and the star may explode in a type Ia supernova. These supernovas have brightness
greater than the whole galaxy, and they are so similar in their characteristics that they
have been taken as ‘standard candles’ to estimate intergalactic distances. Recently,
it has been argued that the accretion mechanism may be able to produce 5% of
the observed type Ia supernovas in some galaxies. It has also been suggested that
collisions may be a significant mechanism for producing supernovas. Since colliding
white dwarfs could have a range of masses, this in turn would weaken arguments for
using exploding white dwarfs as standard candles for determining the nature of the
Universe.

A neutron star may be the final result after the gravitational collapse of a massive
star suffering a type II, type Ib, or type Ic supernova event.

A typical neutron star has a mass between 1.35 and about 2.1 solar masses. In
general, compact stars of less than 1.44 solar masses are white dwarfs. Above 2 to 3
solar masses, it is believed that a quark star might be created, but this is uncertain.
Neutron stars havingmasses less than 2–3 solar masses are stabilized by the quantum
degeneracy pressure of neutrons, which opposes the gravitational collapse. The mass
limit for neutron stars is called the Tolman–Oppenheimer–Volkoff limit, and it was
found in 1939 by Robert Oppenheimer (1904–1967) and George Volkoff (1914–
2000). For star massesM > 4M⊙, gravitational collapse will always occur, with the
inevitable creation of a black hole.

9.9 Neutron Stars and Pulsars

In 1967, Jocelyn Bell (b. 1943) and Antony Hewish (b. 1924) in Cambridge
discovered cosmic radio waves consisting of short pulses, received at regular
intervals. Later, similar sources of pulsed radiation were discovered. The objects
emitting these pulses, called pulsars, seem to be bodies of small dimensions (diam-
eters around 10km), rotating around their axis with periods of the order of the
duration of the pulses they emit. The period of the pulses varies from some tens
of milliseconds to a few seconds. It is believed that such objects could originate
precisely in the compression of the nucleus of a star when it explodes in a supernova.
The resulting superdense body comprises mainly neutrons, since under such condi-
tions it is thermodynamically more favourable for electrons, protons, and neutrinos
to form neutrons by means of the weak interaction. A neutron star has a density com-
parable to the atomic nucleus, i.e., of the order 1011 kg/cm3. Antony Hewish was
awarded the Nobel Prize in Physics in 1974 “for his decisive role in the discovery of
pulsars”.



336 9 Four Fundamental Forces

Associated with a neutron star there is usually a strong magnetic field, maybe
billions of times stronger than the Earth’s, which would accelerate streams of
electrons emerging from the star. The accelerated electrons emit radiation at var-
ious frequencies (radio waves, visible light, X rays), but after going through several
stages of supernova evolution, the relic radiation consists mainly of radio waves.

The enormous angular velocity of neutron stars, and probably also the extremely
strong magnetic field, are due to the fact that, when compressed, the star conserves
its angular momentum, and thus increases its angular velocity. This is similar to
a skater who rotates with arms outstretched, then folds them in to increase his or
her angular velocity. The magnetic flux is also conserved, and the field intensity is
thereby greatly increased.

The rotation energy of a neutron star with a period of 10 milliseconds and a mass
of the same order as the Sun, is comparable to the energy radiated by a star throughout
its whole life.

In 1054, there appeared a supernova in the constellation of Taurus, recorded by
Arab, Chinese and Japanese astronomers, and now in its place we observe a bright
mass of expanding gas. This is known as the Crab Nebula. In its central part, a
pulsar has been discovered with a period of rotation of almost 30 milliseconds and
a diameter of about 30 km.

This discovery and other observations justify the hypothesis that pulsars are neu-
tron stars with an enormous spinning angular velocity. The rotation period of the
pulsar in the Crab Nebula decreases by one part in 2,400 per year. The correspond-
ing decrease in rotational energy is enough to account for the energy radiated by the
entire Nebula.

The rotation energy of one solar mass M⊙, concentrated in a radius r � 10km
(= 106 cm), and having an angular frequency of the order of ω = 200 rad/s, is Er �
mr2ω2 � 1050 erg. If this is compared with the rest energy ET = M⊙c2 � 1054 erg,
we see that Er � 10−4ET . This is indeed a significant fraction of the rest energy. In
recent years pulsars with accompanying planets have been discovered. An example
is PSR B1257+12, with two bodies much more massive than the Earth orbiting
around it, and a third body much smaller, like the Moon. These planets should have a
chemical composition very different from the planets of our Solar System, subjected
as they are to the radiation wind issuing from the pulsar.

Problems

Problem 9.1 Explain why the following decays are forbidden

(a) n → p + e+ + νe

(b) n → p + e− + νe

(c) p → π+ + π0
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Problem 9.2 Is the following process allowed

p + p → p + n + e+ + ν ? (9.31)

Problem9.3Themass of the Sun is estimated as 1.98 × 1033 g. (i) Assuming that it is
composed mainly of baryons (protons and neutrons) of average mass 1.67 × 10−24g,
estimate the number of baryons contained in the Sun. (ii) Is this number constant?
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Chapter 10
General Relativity and Cosmology

The general theory of relativity is considered to be Albert Einstein’s masterpiece in
theoretical physics. In contrast with special relativity, where scientists like Hendrik
Lorentz and Henri Poincaré worked in parallel, motivated by the unsolved physical
problems existing at the beginning of the twentieth century (for instance, motion with
respect to the æther and the negative result of the Michelson–Morley experiment),
there was no such motivation for general relativity. With the exception of an anomaly
in the precession of Mercury’s orbit, the Newtonian theory of gravitation did not
manifest symptoms of obsolescence.

The general theory of relativity was constructed by Einstein in a purely deduc-
tive form, using as basic postulates the principles of covariance and equivalence.
A suitable mathematical tool had just been invented, thanks to the works of the
Italian mathematicians Gregorio Ricci-Curbastro (1853–1925) and Tullio Levi-
Civita (1873–1941), who had developed the so-called absolute differential calculus.
Einstein was introduced to the formal aspects of non-Euclidean geometry by his
friend, the mathematician Marcel Grossmann (1878–1936).

In the summer of 1915, Einstein was invited by David Hilbert (1862–1943), an
outstanding mathematician, to visit Göttingen in order to lecture on his work on
the theory of gravitation. In November 1915, independently, Einstein and Hilbert
presented the equations of the gravitational field, which Hilbert had derived by
variational principle. Therefore, the gravitational field action is customarily called
Einstein–Hilbert action. However, the scheme of general relativity was developed by
Einstein, therefore the new theory of gravity is Einstein’s general relativity.

The final version of the theory was published by Einstein in 1916. The most
spectacular confirmation was obtained in 1919, when Arthur Eddington (1882–1944)
together with a team observed the bending of light from a distant star as it passed
close by the Sun during a solar eclipse. This and other predictions of general relativity
were subsequently confirmed in several experiments, making it an essential tool in
cosmological research.
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10.1 Principle of Equivalence and General Relativity

It is customary to distinguish between two forms of the principle of equivalence,
referred to as weak and strong. The weak principle of equivalence establishes the
equality of the inertial and gravitational masses. The inertial mass mi of a body is
the coefficient of the acceleration a in Newton’s second law:

F = mia. (10.1)

The gravitational mass of the same body, for example, in its interaction with the Earth,
is the one which appears in the expression for the force of gravitational attraction,
i.e.,

F = −GMmg

r2
r0, (10.2)

between, say, the Earth, of mass M , and the body of interest, of mass mg . The unit
vector r0 is along the line joining the body with the Earth’s centre. We have the
equivalence between these two masses expressed by means of the equality mi = mg .
As a consequence, the acceleration due to gravity is the same for all bodies, if air
resistance is neglected.

Imagine an elevator falling freely. An observer inside it would feel weightless. If
the observer has a ball and lets go of it, without pushing it in any way, it will hang in the
air, falling together with the system. When falling freely under the action of gravity,
everything happens for the observer as if gravity were zero inside the elevator. For an
observer inside an artificial satellite, this produces the effect of feeling weightless.

Returning to the elevator, if we accelerated it, for instance, by doubling the acceler-
ation produced by the Earth attraction, our observer would feel weight in the opposite
direction, that is, he would feel attracted toward the ceiling, as though there were a
gravitational field in that direction. We see in this way that an accelerated system and
a gravitational field produce similar effects, or in other words, motion in accelerated
systems is equivalent to motion produced by a gravitational field (Fig. 10.1).

If the elevator were to ascend with some acceleration g′, however, the observer of
mass m would experience an increase in weight by an amount mg′. That is, it would
seem as though the Earth’s gravitational field had increased, and the observer’s weight
would now be m(g + g′), instead of mg. In conclusion, a local equivalence exists
(that is, in a small region of space) between an accelerated reference frame and a
gravitational field.

The strong principle of equivalence establishes that in every gravitational field, an
elevator falling freely turns locally into a system in which the laws of physics are the
same as in special relativity, that is, in an inertial system. The case is the same for an
artificial satellite, in which the weightlessness effect is produced as a consequence of
the satellite falling continuously toward the Earth as it moves around its orbit (as we
pointed out in Chap. 1, the closed orbits result from the combination of this free-fall
effect with a large enough tangential velocity).
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Fig. 10.1 For an observer inside an elevator falling freely under the action of gravity, the gravi-
tational field force acting on him is canceled, and he feels as though he is floating or weightless.
If the elevator is accelerated with twice the acceleration due to gravity, the observer inside feels a
force equal to the Earth’s gravity acting on him, but directed toward the ceiling of the elevator.

Fig. 10.2 For a very large
elevator falling freely, the
forces F1,F2,F3 are not
parallel, whence the elevator
tends to adopt the form of an
arch.

So both the falling elevator and the satellite can be treated as inertial systems,
if their dimensions are small (strictly, pointlike). In the same way the Earth could
be considered as an inertial system with respect to the Sun if its dimensions were
negligibly small. In the case of the Earth, the fact of not being pointlike causes the
tidal forces due to the solar attraction (there are also tidal forces due to the Moon).
The atmospheric and oceanic masses are more sensitive to the tidal forces.

It is easy to understand the origin of tidal forces if we consider an extremely large
elevator (Fig. 10.2). Its centre of mass M moves with the acceleration due to gravity,
and falls freely. But the forces exerted on the ends E and E ′ are not parallel to the
one which acts on M , since, due to the curvature of the Earth’s surface, F1, F2, F3

are directed toward the Earth’s centre, whence the elevator tends to adopt the form
of an arch.

Similarly, the trajectory followed by the Earth in its motion around the Sun (with-
out considering the effect of the Moon) corresponds to a pointlike mass located at the
Earth’s centre of mass. The centre of mass behaves like a freely falling body during
its motion. But because of the Earth’s extension, the points distant from the centre
of mass do not rigorously follow the free-falling motion. The result is that a small
residual force is exerted on them by the Sun, producing tides. It must be emphasized,
however, that the most notable tides are produced by the Moon, and have a similar
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origin. For artificial satellites, this tidal effect is very small, and it can be neglected in
the first approximation. One can thus consider that the satellite satisfies the condition
of the principle of equivalence: for observers inside it, there the Earth’s gravitational
field vanishes.

10.2 Gravitational Field and Geometry

The potential of the gravitational field near the surface of the Earth is

V (r) = −GM

r
, (10.3)

where r is the Earth’s radius, G is the constant of gravitation, and M is the Earth’s
mass.

Imagine now the following Gedanken experiment: suppose that at some height l
with respect to some reference system on the Earth’s surface we have an electron and
a positron at rest. The mass of each is m. The potential energy of the two particles at
that height, putting l � r , is

E = −2mGM

r + l
= −2mGM

r

1

1 + l
r

≈ 2mV

(
1 − l

r

)
= 2m(V + �V ), (10.4)

where �V = GMl/r2. If the two particles now fall to the Earth’s surface, their
potential energy decreases to 2mV , and their kinetic energy will be equal to 2m�V . If
now the electron and positron annihilate to produce two photons of angular frequency
ω, the following equation will be satisfied:

2�ω = 2mc2 + 2m�V . (10.5)

That is, the energy of the two photons will be equal to the sum of the rest energy of
the electron and positron, plus their kinetic energy. We assume that the velocity of
these particles is not very large, so that we can use the approximation

mc2√
1 − v2/c2

≈ mc2 + 1

2
mv2,

where 1
2mv2 = m�V . Now, by means of a suitable mirror, let the two photons be

reflected back up to the initial level of height l. At this height l, let the two photons
create the electron–positron pair again. The pair will be at rest, since otherwise
there would be a gain of energy in the cyclic process, implying the possibility of
constructing a perpetual motor of the second kind.

The frequency ω′ of the two photons at the height l is different from the frequency
ω at the level of the Earth’s surface, and should satisfy



10.2 Gravitational Field and Geometry 343

2�ω′ = 2mc2. (10.6)

Comparing (10.5) and (10.6), we deduce that

ω − ω′

ω′ = �V

c2
. (10.7)

So the frequency of the radiation varies in a gravitational field. Since �V is positive
in our case, (10.7) implies that radiation emitted away from the surface of the Earth
has frequency diminished by an amount

�ω = ω − ω′ = �V

c2
ω, (10.8)

where in writing the second equality we have assumed that ω and ω′ are much larger
than their difference.

Assume that a source on the Earth emits radiation at some frequency. The observer
at some height will measure a lower frequency, i.e., shifted toward the red. This
effect was measured for the first time by the American physicists Robert Pound and
Glen Rebka in 1960, using a source of γ rays and the Mössbauer effect. These and
other experiments reached an accuracy of 7 × 10−5. In 2010, a much more exact
measurement of the gravitational red shift based on quantum interference of matter
waves within an accuracy of 7 × 10−9 was reported by H. Müller, A. Peters, and
S. Chu.

Let us now examine the phenomenon from the wave point of view. If the frequency
varies in a gravitational field, this should be caused by a time dilation. Actually, if
a train of waves is sent from the Earth’s surface, containing n complete oscillations
during the time T1, the relation between the angular frequency and the interval T1 is

T1 = 2πn/ω. (10.9)

The angular frequency of the same train of waves at the height l can be measured by
dividing n by the duration of the train. The number obtained, ω′, is different from ω,
and this means that the interval T2 that corresponds to n oscillations is

T2 = 2πn/ω′. (10.10)

From (10.8) to (10.10), it follows that

T2 − T1

T1
= �V

c2
. (10.11)

That is, a clock at a height l measures for the duration of the wave train an interval
of time longer than a clock located at the Earth’s surface, and T2 = (1 + �V/c2)T1.
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Fig. 10.3 Spacetime
diagram of the propagation
of a wave train in the
gravitational field of the
Earth from its surface to
some height l. The duration
of the wave train is different
for observers located at the
two points.

2′

1′

1

2

t

xl

T1

T2

A clock on the Earth goes more slowly than another one placed at some height
above the Earth’s surface. In general, a clock located in a gravitational field goes
more slowly than another clock located where the field is zero.

Let us draw a picture in which we mark on the horizontal axis x the height
above the Earth and on the vertical axis the time t (Fig. 10.3). The event marked
as 1 corresponds to the origin of the wave train as measured by the observer on the
Earth. The event 1′ corresponds to the origin of the train as measured by a second
observer located at the height l. Similarly, the point 2 marks the end of the wave
train as measured by the terrestrial observer, and 2′ the same event as measured by
the second observer. The lines 11′ and 22′ are the graphs of the propagation of the
origin and the end of the wave train in spacetime. But as we have seen, the duration
of the train, considered as the segments 12 = T1, 1′2′ = T2, are different for the two
observers:

T2 > T1. (10.12)

On the other hand, the lines 11′ and 22′ should be parallel, since they correspond to
the same phenomenon (the propagation of the signal) in a static gravitational field
(it does not vary in time), and they differ only in that they have been measured by
two different observers.

But the figure 11′2′2 is not a parallelogram. The only solution to this paradox is
that, in the presence of a gravitational field, the spacetime is curved. Hence, instead
of taking the axes x, t on a plane, they must be taken on a curved surface. Then, by
redefining the condition of parallelism on the surface, the lines 11′ and 22′ can be
made to satisfy it on this surface.

A fundamental consequence of the general theory of relativity is that the effect of
a gravitational field is described by spacetime curvature. Let us compare a plane and
a curved surface like the surface of a sphere. Mark two points in the plane. Geometry
demonstrates that the geodesic or shortest distance between those two points is the
straight line segment joining them. In the geometry of the plane, the geodesics are
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straight lines extending across the whole plane toward infinity. Three points that are
not aligned determine a triangle, the sum of whose internal angles is 180◦. In other
words, we can say that the plane is a two-dimensional Euclidean space.

Considering the same problem on the surface of the sphere leads to the conclusion
that the geodesics are arcs of great circles (a great circle on the spherical surface is
one whose centre coincides with the centre of the sphere). On the sphere, geodesics
are finite in extent, and so is the total area of the sphere. Furthermore, a triangle on
the spherical surface has the property that the sum of its internal angles is greater
than 180◦. The spherical surface is an example of a two-dimensional non-Euclidean
space.

If α, β, and γ are the internal angles of a spherical triangle, A the area of this
triangle, and R the radius of the sphere, we have the relation

A

R2
= α + β + γ − π. (10.13)

If A is kept constant and R tends to infinity, (10.13) gives the planar limit

α + β + γ = π. (10.14)

On the other hand, from (10.13), one can define the reciprocal of the square of the
radius of the sphere, K = 1/R2, by

K = α + β + γ − π

A
. (10.15)

If the area A tends to zero in the expression (10.15), the resulting expression allows
us to define the curvature in the neighbourhood of any point on the surface as

K = lim
A→0

α + β + γ − π

A
, (10.16)

i.e., the excess over π of the sum of the internal angles of a triangle divided by the
area of such triangle, in the limit of the area going to zero.

At a given point the curvature can be positive, zero, or negative. For example, K is
positive everywhere in the case of a sphere, zero in the case of a plane, and negative
on a saddle-shaped surface (Fig. 10.4).

Our intuition suggests that the three-dimensional physical space has the geometric
properties resulting from generalizing the plane by adding one more dimension to
obtain a three-dimensional Euclidean space. In this case, if we start from a point and
move along a geodesic, that is, in a straight line, we move away from our starting
point toward infinity.

In contrast, if our three-dimensional physical space had the geometrical properties
which result from the generalization of the spherical surface to three dimensions, the
geodesics would be closed curves. In contrast, if the geometry of space were of saddle
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K > 0 K = 0 K < 0

Fig. 10.4 A sphere has positive curvature, the plane has zero curvature, and a saddle-shaped surface
has negative curvature.

type (negative curvature), the geodesics would not be closed, but open curves, and
they would extend toward infinity.

According to general relativity, the planets, in their orbital motion around the Sun,
describe geodesics in a four-dimensional curved spacetime, which is deformed by
the mass of the Sun. In addition, when the rays of light emitted by a distant star pass
close to the Sun, they follow a geodesic curve and hence deviate from the straight
line trajectory. By defining b = cL/E , where L is the angular momentum of the
beam and E its energy, the shifted angle is given approximately by

δφ = 4GM⊙/bc2,

where M⊙ is the mass of the Sun. Notice that b has dimension of length. The effect
is 1.75′′ for light coming from distant stars and grazing the Sun’s limb.

Actually, according to classical Newtonian mechanics and special relativity, some
deviation of the light rays would be expected near the large solar mass, and it is not
difficult to calculate this effect, which has been mentioned also in Sect. 1.5.3. But
general relativity predicts a result twice as large, and this was confirmed by the
observations made later by Eddington and other observers. The doubling of the
deviation can be explained only in the framework of the general relativity, as a
consequence of the curvature of space. It is found from the solution of the equation
of motion for a light ray (the so-called eikonal equation) in a centrally symmetric
gravitational field.

The geodesic curves described by the planets according to general relativity are
not ellipses (as predicted by Newtonian mechanics), but more complicated curves in
the form of almost-ellipses whose major axes precess around their focus (Fig. 10.5).
An anomalous effect of this sort had been known since the nineteenth century in
the orbit of Mercury. The observed precession of Mercury’s perihelion (the point
of closest approach to the Sun on the orbit) is 574" (arc-seconds) per century. The
gravitational tugs of other planets, calculated by Newton’s theory, could explain
a precession of about 531". The origin of such a difference was not known. The
calculations performed by Einstein in 1915 in the framework of general relativity
provided the extra amount of + 43", in perfect agreement with the observed data.
This was the first observational fact explained by the theory of general relativity. The
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Fig. 10.5 The true
trajectories of the planets
around the Sun are
precessing ellipses, resulting
in curves in the shape of
rosettes. This precession
effect is very small, and is
more perceptible in the case
of Mercury owing to its
proximity to the Sun.

effect is more perceptible in Mercury’s orbit because of its high eccentricity and its
proximity to the Sun, but other planets display it in smaller amounts. In particular,
for the Earth, this effect is about 3.84" per century.

It is interesting to note that, according to general relativity, a body moving with
some velocity V in a gravitational field is under the action of two forces: one
corresponding to the usual gravitational attraction of Newtonian mechanics, and
another one perpendicular to its velocity. This has a close analogy with the elec-
tromagnetic case, in which a charged particle in motion suffers the action of the
Lorentz force, with two components: the electric force, independent of the velocity
of the particle, and the magnetic force, perpendicular to its velocity. The additional
force exerted by the gravitational field on a particle in motion in that field is the
analog of the magnetic force. This second gravitational force is not very significant
for low velocities since, as in the magnetic case, the term describing it contains the
factor V/c.

According to the principle of equivalence, this second force of gravity corresponds
more properly to the Coriolis force, appearing in a rotating (non-inertial) system of
reference as a force perpendicular to the velocity of a particle moving in such a
system.

General relativity also predicts that massive rotating bodies “drag” spacetime in
their vicinity. This effect was first derived from general relativity by Josef Lense
(1890–1985) and Hans Thirring (1888–1976) in 1918, and is also known as the
Lense–Thirring effect.

Lensing effect. The lensing effect is due to the deflection of light coming from
a distant object by a massive body. For small angles, it can be expressed as θ =
4GM�/bc2, where b = cL/E (see Sect. 10.2). Since the light is made up of photons,
for which p = E/c, we have L = Er/c, which implies b = r , where r is the shortest
distance from the photon beam to the body’s centre. Thus, one can write

θ = 2rg/r. (10.17)
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Fig. 10.6 a For perfect alignment of the observer, lens, and star we get a complete Einstein ring. b
If this is not the case, only part of a ring will be observed. c An interesting example of the latter case
is the Canarias ring, discovered by Margherita Bettinelli et al. in the constellation of the Sculptor
in 2016. The maximal intensities are indicated by A, B, and C. The lens is a massive galaxy with
redshift z = 0.581, and the source is also a galaxy, with z = 1.165. The ring covers around 300◦.

Consider a massive object, which may be a star or a galaxy, and call it the lens.
This is located between the observer and a still more distant star (galaxy). When it
passes near the lens, light coming from this last object can be bent round toward the
eye of the observer. This gravitational lensing phenomenon was first mentioned in
1924 by the physicist Orest Chwolson (1852–1934) in Saint Petersburg, and treated
quantitatively by Albert Einstein in 1936. If the object, the lens, and the observer are
perfectly aligned, the image of the body will be a circular ring, known as an Einstein
ring, centred on the lens (Figs. 10.6).

GPS time correction due to general relativistic effects. GPS (Global Positioning
System) satellites form a global navigation system. Each carries a very accurate
atomic clock that provides geolocation and time information to a GPS receiver. GPS
satellites are located at a height of approximately 26600 km from the centre of
the Earth, and describe two full orbits every sidereal day. For a position accuracy
of �x = 15 m, the time aboard GPS satellites must be known to an accuracy of
�t = �x/c = 50 × 10−9 s. The time measured by the satellite clocks must therefore
be corrected due to effects from special and general relativity.

To calculate the relativistic effects on the time measured by a clock aboard a GPS
satellite, which runs faster than a clock on Earth surface, we must compare the proper
times measured on the satellite and on the Earth’s surface. We take the Earth’s mass
to be 5.924 × 1027 g and its radius to be R = 6378 km. We need the velocities of
the satellite v and the Earth’s surface V , as well as rg , to write the proper time at
the satellite in the form dτS = ds/c, where ds is obtained from the Schwarzschild
metric (10.18). We should set r constant as well as θ = π/2. Then, as v = rdφ/dt ,
we have −r2dφ2/c2 = −(v2/c2)dt2 and

dτS =
√

1 − rg
r

− v2

c2
dt, (10.18)

where the denominator of the third term in (10.28) has been approximated by one,
i.e., dr2/(1 − rg

r ) ≈ dr2, since it would only contribute to a small second order term.
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(Note that, if rg is neglected in (10.18), one is left with the special relativistic proper
time relation in terms of v/c.) For the proper time at the Earth’s surface, we have

dτE =
√

1 − rg
R

− V 2

c2
dt. (10.19)

Setting ε = rg/r + v2/c2 and η = rg/R + V 2/c2, we obtain an expression of the
form

dτS

dτE
=

√
1 − ε√
1 − η

,

for the ratio of the proper times on the satellite and on Earth, where ε and η are very
small quantities compared to 1.

Approximating by dτS
dτE

= (1 − ε/2)(1 + η/2), and neglecting square terms, we
get dτS − dτE = (−ε/2 + η/2)dτE . From this, we can integrate dτ over the interval
of time to be corrected in one day. It is calculated as a problem below, leading to a
value of 38 × 10−6 s.

10.3 Affine Connection and Metric Tensor

We saw in Chap. 5 how the concept of interval is used to characterize the distance
between two events in spacetime. This concept remains valid in general relativity, and
in fact the whole mathematical formulation of this theory starts from the expression
for the infinitesimal interval between two events. In special relativity, if two events
A and B have the spacetime coordinates A = (x, y, z, ct) and B = (x + dx, y +
dy, z + dz, ct + cdt), the interval would have the form

ds2
AB = c2dt2 − dx2 − dy2 − dz2. (10.20)

Observe that the coefficients of the squares of the differentials of the coordinates
are the constant numbers (1,−1,−1,−1). It is customary to refer to (10.20) as the
expression for the interval in the flat spacetime, and to call the set of four numbers
(1,−1,−1,−1) the Minkowski metric. With the notation introduced in Sect. 5.8, in
the case of general relativity, the interval between events A and B would have the
general form

ds2
AB = g00dx

2
0 + g11dx

2
1 + g22dx

2
2 + g33dx

2
3 + 2g12dx1dx2 + 2g23dx2dx3 + · · · ,

(10.21)
with ten general, spacetime-dependent coefficients gμν = gμν(x), where μ, ν =
0, 1, 2, 3, and by x we denote the spacetime four-vector xμ. In weak gravitational
fields, gμν approach their special relativity values, i.e., the Minkowski metric. The
quantities gμν = gμν(x) form a mathematical entity, the metric tensor of spacetime.
Recall that a tensor is an object which transforms as the product of vectors. The
metric tensor is symmetric, i.e., gμν = gνμ.
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As a consequence of the curvature of spacetime, systems of curvilinear coordi-
nates are more convenient. Recall also the contravariant quantities, transforming like
the coordinate differentials dxμ = (dx0, dx1, dx2, dx3), and covariant quantities,
transforming like the partial derivatives ∂

∂xμ = (
∂

∂x0 ,
∂

∂x1 ,
∂

∂x2 ,
∂

∂x3

)
, where by xμ we

denote the generalized coordinate. As examples of curvilinear coordinates, we have
cylindrical coordinates xμ = ct, ρ, ϕ, z, and spherical coordinates xμ = ct, r, θ, ϕ.
A typical case of a covariant vector is the vector formed by the derivative of a scalar
function f with respect to the (contravariant) coordinates:

∂ f (x)

∂xμ
.

Another example of a covariant quantity is the metric tensor gμν . Given a contravari-
ant vector, (A0, A1, A2, A3), we can transform it to a covariant one by multiplying
it by the matrix formed by the metric tensor. We write Aμ = ∑

ν gμν Aν , but from
now on we drop the summation symbol, understanding that when repeated indices
appear, like ν in the previous expression, we sum over them. This is Einstein’s sum-
mation convention, introduced by Albert Einstein in his general relativity paper of
1916. We define δν

μ to be the unit four-dimensional tensor, or Kronecker symbol,
with all components equal to zero but with units down the main diagonal. Then the
contravariant metric tensor gμλ satisfies the property

gμλgλν = δμ
ν .

The task of defining the derivative of a vector with respect to the coordinates is
more complicated. We must bear in mind that the variation of each of the components
of a vector depends also on the other components. That is, this derivative which we
will represent by ∇λ, and is called the covariant derivative, or affine connection (an
affine transformation has the general form y = ax + b), has two terms:

∇λA
μ = ∂Aμ

∂xλ
+ �

μ
ηλA

η, (10.22)

where �
μ
ηλ = gμξ�ξηλ. Note that �

μ
ηλ and �ξηλ are not tensors. They are called

Christoffel symbols, and are defined in terms of gμν by the relation

�ξηλ = 1

2

(
∂gξη

∂xλ
+ ∂gξλ

∂xη
− ∂gλη

∂xξ

)
. (10.23)

We would like to point out the analogy between (10.22) and (1.27). The latter equa-
tion can be written as dx ′

i/dt = dxi/dt − εi jkω j xk , and expresses the transformation
of the velocity of a body from an inertial to a rotating (non-inertial) frame in Newto-
nian mechanics. Actually, (10.22) contains a generalization of (1.27), as a covariant
derivative since, due to the principle of equivalence, the rotating system is equivalent
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(locally) to a gravitational field. Incidentally, covariant derivatives related to gauge
transformations are defined also in the theory of Yang–Mills fields (see Chap. 11).

The metric tensor gμν(x) describes the gravitational field in the general theory
of relativity. If a falling elevator is used as a system of reference, in such a system
the interval between two very close events will take the form (10.20). That is, by
making a transformation of coordinates to such a system, the expression (10.21)
takes the form (10.20), and the Einstein metric becomes locally Minkowskian. We
say ‘locally’ since this transformation is only valid in an infinitesimally small region.
The point is that a gravitational field can only be made to vanish in the neighbourhood
of a given point. As pointed out by Einstein:

In the immediate vicinity of an observer that falls freely in a gravitational field, the gravita-
tional field does not exist.

This establishes an essential difference between a real gravitational field and a
fictitious one (created by a non-inertial system). The fictitious gravitational field can
simply be eliminated at all spacetime points by making an appropriate transformation
of coordinates. A real gravitational field cannot be eliminated in this way.

Starting from the metric tensor gμν (and its contravariant associated tensor gλη),
it is possible to build other mathematical entities, such as the Riemann–Christoffel
tensor Rμνλη, the Ricci tensor Rμν , which describes the curvature of spacetime, and
the scalar curvature R = gμνRμν . The tensor Rμν is defined by

Rμν = ∂�η
μν

∂xη
− ∂�η

μη

∂xν
+ �η

μν�
λ
ηλ − �λ

μη�
η

νλ, (10.24)

and the scalar curvature is R = gμνRμν . Remark that in general relativity the tensors
are covariant under general coordinate transformations. A non-vanishing Riemann
tensor is the covariant criterion to define a curved spacetime, as this tensor is identi-
cally zero for the flat Minkowski spacetime.

A distribution of matter or radiation is described in general relativity by means
of another mathematical entity: the energy–momentum tensor Tμν . For a relativistic
fluid in thermal equilibrium having pressure p, energy density ε, and velocity four
vector uμ, one finds:

Tμν = (p + ε)
uμuν

c2
− pgμν. (10.25)

10.4 Gravitational Field Equations

The gravitational field equations in general relativity, named Einstein’s equations,
establish a relation between the geometrical properties of the spacetime, expressed by
the metric tensor gμν , the Ricci tensor Rμν , and the spacetime curvature R on the one
hand, and the distribution of mass and energy, represented by the energy–momentum
tensor of matter, Tμν , on the other hand:
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Rμν − 1

2
gμνR = 8πG

c4
Tμν, (10.26)

where G is the gravitational constant. Einstein’s equations for the gravitational field
are analogous to Maxwell’s equations in classical electrodynamics. There are, how-
ever, three important differences:

1. Maxwell’s equations apply to inertial systems. The equations of the gravitational
field apply to arbitrarily moving systems;

2. Maxwell’s equations do not contain the equations of motion of the charges which
produce the electromagnetic field. However, the gravitational field equations pro-
vide the equations of motion for the particles producing the field;

3. Maxwell’s equations are linear differential equations in the electromagnetic poten-
tial Aμ(x), while the gravitational field equations are highly non-linear in gμν(x),
whose components represent the generalized gravitational potential.

In particular, from the latter feature, in the quantum version of the theory, we would
expect the gravitons or quanta of the gravitational field (the gravitational analog of
photons) to be able to split and generate other gravitons. Photons, on the other hand,
do not split into pairs of photons (in vacuum), in standard quantum electrodynamics.
Moreover, there is an analogy between the Lorentz force in electromagnetism and
the gravitational force on a moving mass, as pointed out previously. If we denote
h = −g00 and if we define the three-dimensional vector g with components gi =
g0i/g00, where i = 1, 2, 3, for a constant gravitational field (the components of the
metric tensor do not depend on time), one can write this force as

F = mc2√
1 − V 2/c2

{
−∇ ln

√
h + √

h
v
c

× (∇ × g)
}

. (10.27)

For small velocities, the first term corresponds to the well-known force of gravity,
and it is the analog of the electrostatic attraction, while the second term depends on
the velocity, as does the magnetic force, and it is equal to the Coriolis force in a
rotating system with angular velocity � = c

2

√
h∇ × g. But for the latter to become

significant, e.g., in the case of the planets, they would have to move at high speed,
comparable with the speed of light.

In addition, as for the electromagnetic field, there should be gravitational waves,
that is, deformations of the spacetime geometry propagating at the speed of light.
But even for very massive astronomical objects, the amount of gravitational energy
radiated is extremely small. For example, for a system of binary stars, the radiation
emitted in a year would be 10−12 of the total energy of the system. The so-called
Hulse–Taylor binary is a pair of stars, one of which is a pulsar. They each have
masses around 1.4 M⊙ and the distance between them is around 2 × 106 km, of the
order of the Sun’s diameter. They are expected to radiate 1022 times the gravitational
energy radiated by the Earth–Sun system. This causes the stars to gradually move
closer together, in what is known as an inspiral, and this has an effect on the observed
pulsar’s signals.
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Russell Hulse (b. 1950) and Joseph Taylor (b. 1941) were awarded the Nobel
Prize in 1993 for their measurements which led to the discovery of the first binary
pulsar, and allowed them to show that the gravitational radiation predicted by general
relativity matched the results of these observations with a precision within 0.2%. This
was the first indirect evidence for gravitational energy radiation, which is understood
as a wave phenomenon.

Observation of Gravitational Waves

The search for direct evidence of gravitational waves lead to a great success, using
mainly detectors based on laser interferometry, like LIGO on Earth ground (Laser
Interferometer Gravitational Wave Observatory) in Livingstone, Louisiana, and the
Hanford Site in the state of Washington. The Laser Interferometer Space Antenna
(LISA) is designed to detect gravitational waves at frequencies not observable by
ground based interferometry, and planned to operate in the near future. LISA is a
giant interferometer, composed of three satellites forming an equilateral triangle with
the sides 2.5 million km long.

As a gravitational wave passes through matter, a distortion in space-time pro-
duced by the gravitational wave leads to a tiny lengthening or contraction of objects,
like the arms of an interferometer. This makes interferometry-based devices partic-
ularly useful for the detection of such waves. A modified Michelson interferometer
is used to measure gravitational-wave strain through the difference in length of its
orthogonal arms. LIGO is the largest interferometer ever built and the most sensi-
tive detector, possessing a measurement sensitivity of about one part in 5 × 1022.
Each arm is formed by two mirrors, acting as test masses, separated by a dis-
tance Lx = Ly = L = 4 km. When a gravitational wave passes, it alters the arm
lengths such that the measured difference is �L = δLx − δLy = h(t)L , where h
is the gravitational-wave strain amplitude projected onto the detector. This length
variation produces a phase difference between the two light beams returning to the
splitter, transmitting an optical signal proportional to the gravitational-wave strain
to the output photodetector.

When a gravitational wave enters, one of the arms of the interferometer is length-
ened. Mirrors placed near the beam splitter cause multiple reflections of the laser
beam, increasing the distance traveled in each arm to 1120 km. This system of mirrors
forms an optical resonator known as a Fabry–Pérot cavity. The output is the signal
coming from the interference of the two beams, showing the shape of the incoming
gravitational wave.

Up to 2015, evidence for black holes could only be obtained through electromag-
netic signals, although evidence for the radiation of gravitational waves was pro-
vided by the Hulse–Taylor observations. However, the merging of two black holes
by detection of the emitted gravitational waves was first observed on 14 September
2015. LIGO reported the observation of a signal corresponding to the wave predicted
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by general relativity for the merger of two black holes with masses 29M� and 36M�
about 1.3 billion light years away. The final black hole mass was estimated to be of
order 62M�. The difference of 3M� was radiated as gravitational waves. A second
set of gravitational waves was reported in December 2015. They represented the
merger of two black holes about 1.4 billion light years aways, with masses of about
14.2 and 7.5 solar masses, yielding a final black hole of around 20.8 solar masses,
with one solar mass radiated away as gravitational waves. In 2017, the Nobel Prize
in Physics was awarded to Rainer Weiss (b. 1932), Kip Thorne (b. 1940), and Barry
Barish (b. 1936) “for decisive contributions to the LIGO detector and the observation
of gravitational waves”.

On 17 August 2017, scientists also witnessed a process in which two neutron
stars spiralled into each other and merged, producing a black hole. The event was
first detected by the gravitational waves this generated. Scientists immediately knew
it was due to two spiralling neutron stars, which were already emitting radiation
before they merged. The radiation was detected by 70 observatories around the world,
ranging from gamma ray detectors to radio telescopes. They confirmed several key
astrophysical models, and revealed the birthplace of some heavy elements like gold
and platinum. Above all, they were able to further test general theory of relativity.

10.5 Cosmology

If Einstein’s equations (10.26) are solved for a gravitational field produced in vacuum
by a body of mass M with spherical symmetry, and such that the metric does not
depend on time and is asymptotically flat, the interval ds2 is given by the expression
obtained by Karl Schwarzschild (1873–1916) in 1915:

ds2 =
(

1 − rg
r

)
c2dt2 − r2(sin2 θdϕ2 + dθ2) − dr2

1 − rg
r

, (10.28)

where rg = 2GM/c2 is the Schwarzschild radius of a spherical body of mass M .
For r = rg , g00 = 0 and g11 → ∞ with the formation of the so-called event horizon
of a black hole. An event horizon is a boundary in spacetime beyond which events
cannot affect an outside observer. Such a region of spacetime is called a black hole.
In 2020, the British mathematician Roger Penrose was awarded the Nobel Prize in
Physics “for the discovery that black hole formation is a robust prediction of the
general theory of relativity”.

The Russian physicist Alexander A. Friedmann (1888–1925) studied the Einstein
equations as applied to the Universe, assuming a homogeneous and isotropic density,
and he concluded that there are two possible solutions: the closed and the open mod-
els. The latter leads to a perpetual expansion. At the boundary between the open
and the closed models, there is the flat solution. Physically, the condition for open,
closed, or flat Universe is determined by the density (of matter or energy).
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If the distance between two galaxies is taken as d(t) = R(t)d0, their relative speed
can be written as v = [Ṙ(t)/R(t)]d(t), i.e., the speed is proportional to the separation
between the two galaxies, with a proportionality factor H(t) = Ṙ(t)/R(t) which is
called the Hubble parameter. Its present value is usually represented by H0 and called
Hubble’s constant. We call R(t) the cosmic scale factor, and here we take it to be
dimensionless, while d0 has the dimension of length. Below we shall consider R(t)
frequently as containing implicitly the d0 factor and having dimensions of length.
Concerning H(t), it has the dimension of inverse time.

We shall discuss the problem of the motion of a galaxy by using the Newtonian
mechanics of Chap. 1, but taking into account Hubble’s law. Let us consider the mass
of the galaxy as m, under the gravitational attraction of the rest of the Universe, of
mass M . As M � m, one has M + m � M and the total energy is

1

2
mv2 − GMm

r
= E . (10.29)

Let us write v = Ṙ(t) = H(t)R(t) and r = R, where H(t) is the Hubble parameter
and R is the radius of the Universe. For a spherical mass distribution, the total mass is
M = 4

3πR3ρ, where ρ is the average mass density of the Universe, and we substitute
this expression into (10.29). This gives

Ṙ2(t)

2
− 4πρGR2(t)

3
= E

m
= −K

2
. (10.30)

This is a non-relativistic way of obtaining Einstein’s equation from the Friedmann
model for the expansion of the homogeneous and isotropic Universe. The latter
is identical to the one obtained using the relativistic formalism starting from the
Robertson–Walker metric, which is a metric compatible with the conditions of homo-
geneity and isotropy (these conditions are sometimes called cosmological principle):

ds2 = c2dt2 − R2(t)

[
dr2

1 − kr2
+ r2(dθ2 + sin2 θdϕ2)

]
. (10.31)

Here k = −1, 0, 1 correspond to open, flat, and closed cosmologies, respectively.
Observe that K in (10.30) has the dimension of the square of a velocity, while k
in (10.31) is dimensionless, because R(t) has the dimension of length, and r is
dimensionless. Then we have K ∼ kc2. According to (10.30), the critical condition
to bring the expansion asymptotically to a halt occurs for k = 0, that is to say, for
the density

ρc = 3H 2

8πG
. (10.32)

With the present-day value of the Hubble parameter, H0, the value of ρc is of the
order of 10−29g cm−3.
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But the Robertson–Walker metric does not tell us anything about the time
dependence of the scale factor R(t). To obtain this information, one must solve not
only the Einstein equations, that is, (10.30) and (10.34) below, but also the equation of
conservation of energy and the equation of state. Let us discuss the simplest case of a
flat Universe. If we expand R(t) in a power series around the reference time t0, taken as
the present time, we get R(t) = R(t0)[1 + H0(t − t0) − 1

2q(t0)H 2
0 (t − t0)2 + · · · ],

where the so-called deceleration parameter is given by

q(t) = − R̈(t)R(t)

Ṙ2(t)
. (10.33)

This quantity was estimated to be of the order of −0.5 at present, indicating that the
expansion of the Universe is accelerated. The value of the deceleration parameter is
a major topic in the present day cosmological research.

Together with (10.30) we must consider the other Einstein equation,

R̈(t) = −4πG

3
R(t)

(
ρ + 3p

c2

)
. (10.34)

For ρ > 0 and p > 0, the acceleration R̈ is negative, and consistent with a positive
deceleration. But as will be pointed out later, dark energy may provide a negative
value for the factor (ρ + 3p/c2), producing an accelerated expansion of the Universe.
We postpone the discussion of this case and continue with the solutions for standard
cosmology. We denote � = ρ/ρc. Then we can write (10.30) in terms of the Hubble
parameter as follows:

H 2(� − 1) = K R−2(t). (10.35)

If one assumes the pressure to be negligible compared with the density, that is to say
p � 0, simple solutions of the Friedmann model are found. In the flat case (k = 0,
q0 < 0.5, � = 1), one has

R(t) = [3GM/π ]1/3t2/3, H = 2/3t. (10.36)

In the closed case (k = +1, q0 > 0, � > 1), the Universe has a finite volume, but
it is unbounded (this corresponds to the previously mentioned space which can be
regarded as a generalization of the spherical surface to three dimensions). In such a
case, one obtains solutions in terms of a parameter η, defined by dη = R(t)dt :

R(η) = (2GM/3πc2)(1 − cos η), t (η) = (2GM/3πc3)(η − sin η). (10.37)

In both the open (k = −1, � < 1) and the flat cases, the Universe is infinite and
unbounded. In the open case, one has
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R(η) = (2GM/3πc2)(cosh η − 1), t (η) = (2GM/3πc3)(sinh η − η).

(10.38)
In none of the three cases is the Universe static, and it should be either expanding
or contracting. Expansion is interpreted as meaning that the galaxies separate with
increasing speed because their mutual separation increases. But if this occurs, there
should be a redshift in the spectra of light coming from remote galaxies. The effect
was observed for the first time in 1912 by Vesto Slipher (1875–1969) at the Lowell
Observatory in Flagstaff, Arizona.

If νE is the emitted frequency and νO the observed one, the redshift is measured
by a quantity z = (νE/νO) − 1. If νE > νO , the light is redshifted and z > 0. In the
opposite case, if νE < νO , then z < 0, and the spectrum is shifted to the blue.

Edwin Hubble (1889–1953) discovered that the distances to the far-away galaxies
are roughly proportional with their redshifts, which is now known as Hubble’s law.
Hubble reached this conclusion by interpreting his own measurements of galaxy
distances and the galactic redshift measurements of Slipher. George Lemaître (1894–
1966) had been the first to report this result in 1927 and to propose the theory of
the expansion of the Universe. As pointed out before, as our Universe expands,
the galaxies recede from each other with increasing speed. This expansion suggests
that there was necessarily an initial moment in which all the matter composing
these galaxies, and all intergalactic matter, was concentrated in a small region of the
Universe. A great explosion, the Big Bang, occurred at some time around 10 to 20
billion years ago. The most recent estimate by the Planck collaboration for the age of
the Universe, i.e. the time since the Big Bang, is 13.79 billion years. The Big Bang
theory was proposed by Lemaître in 1931, but the term Big Bang was coined later.

Over the last few decades a theory has been proposed on the hypothesis that, in
the early stages of the Universe, there was an exponential expansion. This phase was
called inflation in the 1980s. It has been suggested that this could be described by
a coupling between the gravitational field and some scalar field which is displaced
from its equilibrium configuration. This point will be discussed further in Chap. 11.

With regard to the distribution of galaxies, moving away from each other in all
space directions, observations indicate that they are grouped into clusters or super-
clusters, separated by empty space, with a cellular distribution. This in turn suggests
a three-dimensional structure of these clusters separated by empty space, with some
regularity, on a gigantic scale of 390 million light-years, in a form similar to a hon-
eycomb.

The temperature of the primeval fireball in which the matter composing our visible
Universe was concentrated was extraordinarily large, of the order of 1032 K, but it
would have decreased quickly to values between 1010 and 109 K a few seconds after
the Big Bang. This stage is said to be radiation dominated, because the density of the
radiation was significantly greater than the density of matter. For instance, the photon
density was much higher than the baryon density. As the initial ball cooled down in
the process of expansion, the atoms of the light elements would have condensed out,
while heavier atoms would have formed later inside the stars.

With the expansion of the Universe, the average temperature has decreased, and
the whole system has cooled down, going through a matter-dominated era, when
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most of the energy of the Universe was concentrated in the masses of the nuclear
particles. At present, the Universe is dominated by dark energy, which drives the
cosmic acceleration.

As a result of this cosmological process, one may expect some fingerprint of the
radiation-dominated era during the first stages after the Big Bang. George Gamow
(1904–1968) predicted the existence of a background radiation, corresponding to a
black body at very low temperatures. In 1964, Arno Allan Penzias (b. 1933) and
Robert Woodrow Wilson (b. 1936) discovered this fossil radiation, a discovery for
which they were awarded the Nobel Prize in 1978. The background radiation comes
from all directions of space and it corresponds to a black body radiation at a tem-
perature of about 2.725 K. It is called the cosmic microwave background (CMB).
This radiation has a density of 4.40 × 10−34 g/cm3, while the density of matter is of
the order of 10−29 g/cm3, that is, 105 times greater. For a certain time this justified
the claim that we live in a matter-dominated era. At the present time, this view has
changed due to current hypotheses about dark matter and dark energy, which we
shall come back to in Sect. 10.6.2.

10.6 Gravitational Radius and Collapse

The idea of escape velocity is well known: it is the minimum velocity one must give
a body so that it can escape from the Earth’s gravitational field. If one neglects air
resistance, the problem reduces to solving the equation in which the total energy of
the particle in the gravitational field is equal to zero, viz.,

1

2
mv2 − GMm

r
= E = 0. (10.39)

Taking M and r as the Earth’s mass and radius, this gives

v =
√

2GM

r
. (10.40)

If the Earth’s radius decreased to one quarter (but keeping the same total mass), the
escape velocity is doubled. But one can also consider the opposite problem: to which
radius would we have to compress the Earth to reach a given value of the escape
velocity? Let us suppose v = c, the speed of light. Then the value obtained for the
radius R is the gravitational or Schwarzschild radius mentioned above,

R = 2GM

c2
≡ rg. (10.41)
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For M of the order of the Earth’s mass (6 × 1027 g), R ≈ 0.9 cm. So if the Earth’s
mass were compressed to such an incredibly small size, no object could escape from
inside, and only light emitted vertically would be able to get outside.

For a radius smaller than this value of R, the Earth would be transformed into a
black hole, and even light could not escape from it. A black hole would absorb all
the substance and radiation in its surrounding space. The existence of black holes,
which we have argued mainly from non-relativistic mechanics, is a consequence
of the general theory of relativity. For every body of mass M, a corresponding
gravitational radius can be calculated by dividing its mass M (multiplied by the
gravitational constant G), by the square of the speed of light. We have already seen
that the Earth’s gravitational radius is of the order of 0.45 cm. A similar calculation
carried out for the Sun would give a sphere of radius about 3 km. Assuming a spherical
shape and density ρ, its mass would be M = 4

3πR3ρ. Then

R = 8π

3c2
GR3ρ, (10.42)

which implies that ρ = 3c2/(8πGR2), that is, the density required to achieve the
gravitational radius condition decreases as the reciprocal of the square of the radius.
In other words, the larger the mass, the smaller the density required to achieve the
gravitational radius condition. For instance, for our galaxy, if we assume a mass 1044

g (that is 1011 times that of the Sun, whose mass is about 2 × 1033 g), the gravitational
radius is

R ≈ 1011 km, (10.43)

which is about a hundredth of a light-year (one light-year is approximately 9.4 ×
1012 km). The radius of our galaxy is about 55,000 light-years, i.e., ∼5.2 × 1017 km.
The gravitational radius would be reached by reducing the galactic radius to one
millionth of its present size.

If for the Universe we estimate a mass of 1080 times the proton mass, that is, about
1056 g, the corresponding gravitational radius would be of the order of 1010 light-
years. This is of the same order as the estimated radius of the Universe, the distance
of the most remote cosmic objects. It has thus been speculated that the whole of our
visible Universe is a black hole. Such an idea is in contradiction with the current
cosmology.

If a star explodes in a supernova, its nucleus may be compressed to such a density
that it becomes a neutron star, with a density of about 1015 g/cm3. If its mass is greater
than 2.5 times the mass of the Sun, gravity dominates over any other force resisting
the compression. A gravitational collapse then occurs leading to the formation of a
black hole. The gravitational radius determines the so-called event horizon. All the
radiation and matter surrounding it would be absorbed by the black hole, and it would
disappear below the horizon (Fig. 10.7). An observer inside a black hole (if it could
survive the forces generated inside) could find out about what happens outside, but
could never communicate with external observers, since it would be impossible to
send out a signal.
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Fig. 10.7 Light from a distant star is deviated by a heavy body, which deforms spacetime around it
(part of it is represented schematically by a two-dimensional mattress). A black hole captures light
as well as matter incident on it.

Under such extreme conditions in which the gravitational force becomes so large,
classical ideas cease to be valid, and we are in a situation similar to that of atomic
theory as described by classical electrodynamics, according to which the atom would
disappear in a collapse. Under such extreme conditions, quantum effects would thus
enter the game in a predominant way.

Stephen Hawking (1942–2018) suggested in 1974 that black holes can evaporate
in a gas of photons and other particles, by a quantum mechanism: the tunnel effect.
In Chap. 7, we saw that particle and antiparticle pairs are created and annihilated
spontaneously in vacuum. The process of pair formation has a characteristic time,
given by the Heisenberg uncertainty principle:

τ = h/E, (10.44)

where E is the energy required for pair formation. Associated with the black hole,
there is also a characteristic time τ ′ given by

τ ′ = R

c
, (10.45)

where R = 2GM/c2 is the gravitational radius of the black hole. If τ ′ < τ , the pair
production process may be possible, at the expense of the mass (energy) of the
black hole, and one particle of the pair can tunnel out of the black hole. The black
hole temperature is inversely proportional to its mass and it would radiate energy
proportionally to the fourth power of the temperature. Jacob Bekenstein (1947–2015)
conjectured in 1972 that the area of the event horizon is proportional to the black hole
entropy. This is intuitively comprehensible if one remembers that, when two black
holes of masses M1 and M2 (and radii r1 and r2) join together, the area of the event
horizon of the resulting black hole is always larger than the sum of the areas of the
original black holes, because (r1 + r2)

2 > r2
1 + r2

2 . As we see, the horizon surface
area always grows with mass. In his work on black hole radiation of 1974, Hawking
confirmed Bekenstein’s conjecture and fixed the proportionality constant.
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Fig. 10.8 MERLIN imaging
of relativistic jets in the
microquasar GRS1915+105,
which is an X-ray binary
system assumed to be
composed of a rotating black
hole and a normal star. The
black hole has an accretion
disk fed by gas from the star.
It was the first known
galactic source which ejects
material with apparently
superluminal velocities. This
seems to be due to a
relativistic effect known as
Doppler boosting, produced
by jets of particles moving
with the speed of 0.9c
(Courtesy of Fender et al.,
University of Manchester,
Jodrell Bank Centre for
Astrophysics).
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Let us assume then that the entropy of a black hole is proportional to the area of the
event horizon, S = k A. But A = k ′R2 = 4k ′G2M2/c4, where k and k ′ are constants
of proportionality. Then S ∼ U 2, withU the internal energy, which is proportional to
the mass M . From this, one has 1/T = ∂S/∂U ∼ U , and evidently T ∼ 1/M . From
here we deduce that a big black hole will radiate less than a small one, according to
the law 1/M4, since the radiation power is proportional to T 4 ∼ 1/M4. A black hole
is a system which loses information. If the black hole is in a pure quantum state when
it begins, as it radiates thermal energy, it will pass to a mixed state with consequent
loss of quantum coherence. This hypothesis is due to Hawking.

It is believed that the first indirect observation of a black hole was the binary
system GRO J1655-40, assumed to comprise a black hole and a star, like the system
GRS1915+105 (Fig. 10.8). Orbiting around the black hole, there is an accretion
disk made up of material fed to it by the normal star, and this disk radiates in the
X-ray region. Both binary systems are galactic ‘microquasars’ and may provide a
link between the supermassive black holes which are believed to power extragalactic
quasars and more local, accreting black hole systems.

In 2008, astrophysicists found compelling evidence that a supermassive black
hole, called Sagittario, of more than 4 million solar masses is located at the centre
of the Milky Way. Supermassive black holes were subsequently found at the centre
of all known galaxies.
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Fig. 10.9 A wormhole is a shortcut between separate regions of spacetime.

It has been suggested that instead of an infinite compression, the substance
contained inside the black hole may emerge in another region of the spacetime.
This would lead to a white hole, which would be a black hole running backward in
time. In other words, gravitational collapse might cause an interconnection between
two remote regions of spacetime.

10.6.1 Wormholes

The hypothetical bridges between separate regions of spacetime are called worm-
holes. These would be shortcuts between areas of space otherwise separated by long
distances (Fig. 10.9). The wormhole would have two mouths (which are spheres in
3D space) and a throat between them. Standard theory indicates that they would not
generally be stable. To be stable, or traversable, some exotic matter with negative
energy density would be required in the throat. But this point remains open, since
the assumption of extra dimensions would provide new scenarios. It should be noted
that, although faster-than-light speeds remain forbidden locally, through a wormhole,
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even moving at speeds smaller than c, it would be possible to connect two events
A, B by an interval of time τ < tAB, where tAB = lAB/c and lAB is the distance across
standard space. This leads to an effective faster-than-light communication. Even time
travel seems possible through wormholes.

10.6.2 Dark Matter, Dark Energy, and Accelerated
Expansion

In an open Universe there would be perpetual expansion, whereas in a closed one
the expansions and contractions would alternate in huge cycles. The time required
for each of these cycles defies all imagination.

We have seen from (10.32) how to find ρc. The most recent value measured for the
Hubble constant H0 is 67.8 km/s Mpc−1, where 1 Mpc = 3.26 × 106 light-years. The
critical density ρc is of order 10−29 g/cm3. There is strong evidence, most recently
from the Planck space mission, that the observable Universe is flat, i.e. ρ = ρc, which
is consistent with inflationary models. But the flatness implies the existence of dark
matter and dark energy, in significant amounts compared to the usual matter.

At present, dark matter appears to be an unavoidable hypothesis, providing some
missing matter needed to explain the observed rotational velocities of galaxies, orbital
velocities of galaxies in clusters, gravitational lensing of background objects by
galaxy clusters, and other observable phenomena.

Most dark matter does not interact with electromagnetic radiation. It is thus trans-
parent. However, there is not yet any satisfactory model for dark matter. For instance,
it could be that some as-yet undiscovered weakly interacting particles were created
during the Big Bang and today remain in significantly large amounts to account for
the dark matter. The name of weakly interacting massive particles (WIMPs) has
been suggested for some of these candidates for dark matter, assuming that it is
nonbaryonic, i.e., that it contains no atoms. In addition to WIMPs, the nonbaryonic
candidates for dark matter include neutrinos and hypothetical particles such as axions
or supersymmetric particles (see Chap. 11).

However, certain astronomical objects may constitute the dark matter, but escape
detection. For instance, brown dwarf stars with very small mass or black hole rem-
nants of an early generation of stars would be similarly invisible. A small fraction
of this hypothetical dark matter is referred to as MACHO an acronym for massive
(astrophysical) compact halo object, made up of baryonic matter. Yet a large fraction
of the dark matter has to be of a non-baryonic nature.

At present it is believed that ordinary matter constitutes only around 4.9% of the
mass of the Universe, whereas dark matter would make up 26.8%, and the remaining
68.3% is thought to be due to dark energy. These percentages have varied over the
last few years, since some measurements have been refined.

Since 1997, observations of supernovas of type Ia, which are excellent standard
candles for measuring cosmological distances, suggest that the expansion of the
Universe is actually accelerating. The Nobel Prize in Physics in 2011 was awarded
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to Saul Perlmutter (b. 1959), Brian Schmidt (b. 1967), and Adam Riess (b. 1969) for
their discovery of the accelerated expansion of the Universe. This cannot be explained
on the basis of the present gravitational interaction, and it requires an assumption of
additional energies able to act as a repulsive force, for instance, whence the idea of
dark energy. Such dark energy is assumed to be transparent.

The quantum vacuum was suggested in 1967 by Yakov Zel′dovich (1914–1987)
as a candidate for dark energy, but present estimates give an extremely large figure
for this, not compatible with what is expected by observation.

Let us consider the amount of dark energy inside a cylindrical cavity with a
piston. The energy associated with a change of volume dV is dE = −pdV. If ρE is
the energy density, we have dE = ρEdV. Thus, ρE = −p. The vacuum pressure is
minus its energy density. In ordinary matter, we usually have |p| � ρE . This leads us
to conclude that dark energy is essentially relativistic, able to interact in a repulsive
way with ordinary matter. This would give a negative pressure term in the Einstein
equations.

When Einstein wrote his equations, there was no knowledge of the expansion of
the Universe. Hence, to make a static Universe from his model, Einstein introduced
a cosmological constant. For years, this cosmological constant was taken as zero by
cosmologists. The quantum vacuum effect is equivalent to assuming a nonvanishing
cosmological constant.

Other researchers work with models based on appropriate scalar fields, called
quintessence, able to generate similar effects. The problem is still open.

10.7 Gravitation and Quantum Effects

If we combine the constant of gravitation G, the reduced Planck constant �, and the
speed of light c, it is possible to estimate the order of magnitude at which quantum
gravity phenomena are likely to manifest themselves. The combination with the
dimension of length is

lP =
√
G�

c3
≈ 10−33 cm. (10.46)

This is the so-called Planck length. It indicates the order of distances at which quan-
tum gravitational effects are expected to appear. Starting from this value, it is possible
to derive a number with dimensions of mass, named the Planck mass:

mP =
√
c�

G
≈ 10−4 g. (10.47)

The Planck mass can be interpreted as the mass of a body whose reduced
Compton wavelength (characteristic of relativistic quantum effects) is equal to its
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Schwarzschild or gravitational radius:

�

mPc
= 2

GmP

c2
,

which leads to the above expression for mP . This mass has a macroscopic value, and
can be used to obtain the equivalent energy

EP = mPc
2 =

√
c5�

G
≈ 1016erg ≈ 1019 GeV. (10.48)

This energy is so large that the gravitational field can give rise to the spontaneous
creation of particle–antiparticle pairs. The average temperature associated with that
energy is 1032 K which is believed to be the initial temperature of the primeval fireball
from which the Big Bang was produced.

10.8 Cosmic Numbers

As pointed out earlier, the mass of the visible Universe is estimated as being 1080

times the proton mass. This is an incredibly large number. Other very large numbers
(called cosmic numbers) appear in the physics of the microscopic as well as the
macroscopic world. The first cosmic number is the ratio of the electromagnetic and
gravitational forces exerted between an electron and a proton. Letting Fe and FG be
the moduli of these forces, one has

Fe = e2

r2
, FG = Gmpme

r2
, (10.49)

where e is the electron charge, G the constant of gravitation, and mp and me the
proton and electron masses. The first cosmic number N1 is then

N1 = Fe

FG
= e2

Gmpme
= 0.23 × 1040. (10.50)

Being the ratio of two forces, it is a dimensionless number.
The second cosmic number is the quotient of the radius of the Universe L and the

proton radius rP . The number L is of order 1010 light-years, and one light-year is
� 1018 cm, so that L ≈ 1028 cm. On the other hand, rP � 10−13 cm. Dividing L by
rP , one obtains the second cosmic number

N2 = L

rP
≈ 1040. (10.51)
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The coincidence in the orders of magnitude of the two numbers is very striking,
and Dirac suggested that there should be some relation between them. Now, as L
increases with time, N2 also increases, and if there is a relation between N2 and N1,
the latter should vary with time. There is no evidence that e2, me, or mp vary with
time, so this would leave open the possibility that G might be time-dependent. This
topic remains open to speculation.

Problems

Problem 10.1 Calculate the relativistic effects on time measured by a clock on a
GPS satellite, which runs faster than a clock on the Earth’s surface, and show that it
amounts to around 38 × 10−6 s per day.

Problem 10.2 Starting from dl2 = (1 − rg/r)−1dr2 + r2(sin2 θdϕ2 + dθ2), which
is the spatial part of ds2 in the expression (10.28) for the metric outside a spherically
symmetric gravitating body, (i) find an expression for the radial distance (l2 − l1)
between two circles of radii r1 and r2 concentric to the body’s centre, in this geometry;
and (ii) obtain the limit r2 > r1 � rg . (iii) Apply to the case r1 = 7 × 108 m, which
is the order of the average solar radius, r2 = 5.8 × 1010 m, which is of the order of
the average radius of Mercury’s orbit, and rg = 3 × 103 m, which is approximately
the Sun’s gravitational radius.

Problem 10.3 On an intuitive quantum mechanical basis, justify the Hawking–
Bekenstein expression for the black hole temperature T = �c3

8πGMk (up to a constant
factor).

Problem 10.4 Once a black hole has formed, its mass is extremely unevenly dis-
tributed within it. The usual concept of density applies more to the body under-
going gravitational collapse, so the density to which we refer in the present and
following problems corresponds to the density of the collapsing body rather than
to the resulting black hole. In any case, these problems serve to show the scales
involved in black holes. As an example, calculate the size and density of the black
hole at the centre of our Galaxy, called Sagittarius A∗, estimated to have a mass
M = 4 × 106M� ∼ 8 × 1036 kg.

Problem 10.5 Calculate the Schwarzschild radius for a black hole with density equal
to that of (a) water, (b) the estimated density of (normal) matter in the Universe, which
is 10−29 g/cm3.

Problem 10.6 The Hawking–Bekenstein black hole entropy formula is S = k A
4l2

,

where l =
√

G�

c3 is the Planck length and A = 4πR2 = 16πG2M2/c4 is the area

of the event horizon, since R = 2GM/c2 is the gravitational radius. Use this to
calculate the black hole temperature and internal energy.

Problem 10.7 Calculate the black hole heat capacity.
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Fig. 10.10 We assume a
perfect alignment and hence
a complete Einstein ring.
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Problem 10.8 Einstein ring due to a lens star. If the distance and mass of the
lens are approximately known, along with the distance to the more remote object,
the radius of the Einstein ring can be calculated. Consider a lens mass similar to
the Sun’s mass, and assume the distance from the observer to the remote star to be
H = 60 kpc. Assume also that the lens is located at a distance H/3 from the observer.
Calculate the Einstein ring radius r assuming a perfect alignment. (1 parsec= 3.2616
lyr ≈ 3.0857 × 1016m) (Fig. 10.10).
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Chapter 11
Unification of the Forces of Nature

In 1979, the Nobel Prize in Physics was awarded to Sheldon Glashow (b. 1932),
Abdus Salam (1926–1996), and Steven Weinberg (b. 1933), for formulating a the-
ory which unified the electromagnetic and weak interactions. By then, there was
already enough experimental evidence concerning the predictions of the theoretical
model they had built. As a coincidence, in 1979 was the centennial of the death of
James ClerkMaxwell, who formulated a theory that clearly demonstrated the unified
character of electric and magnetic phenomena. Also in 1979, the scientific world cel-
ebrated the centennial of the birth of Albert Einstein. Einstein devoted his last years
to the search for a unified theory of electromagnetic and gravitational interactions.

The work by Glashow, Salam, and Weinberg partially achieved this goal when
unifying electromagnetic and weak interactions into a common theory. But the way
they did this was very different from Einstein’s attempts. Einstein followed a clas-
sical (not quantum) approach, starting from general relativity and searching for a
unification of gravitation and electrodynamics. In contrast, the electroweak theory
was constructed within the framework of the modern renormalizable quantum theory
of non-Abelian gauge fields with spontaneous symmetry breaking.

11.1 Theory of Weak Interactions

The discovery of radioactivity in 1896 by Henri Becquerel was the starting point
of the study of what is now known as the decay of particles and transmutation of
chemical elements. In 1899, Ernest Rutherford classified the radioactive emissions
into two types: alpha and beta, followed by the addition in 1900 of the gamma rays,
by Paul Villard (1860–1934). The power of penetration into matter increases from
alpha to beta and finally to gamma radiation. Subsequent research showed that alpha
radiation is composed of helium nuclei, beta radiation is composed of electrons and
gamma rays are made up of very energetic photons. While gamma emission, being
electromagnetic radiation, was obviously produced by the well-known electromag-
netic interactions, the other two emissions turned out to be ways of probing two new
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fundamental interactions: the strong and the weak force. Alpha decay was explained
in 1928 by George Gamow via quantum mechanical tunneling, the process being
governed by the interplay of the strong and electromagnetic interactions.

Beta decay, which we briefly discussed in Sect. 9.4, is a manifestation of the weak
interaction. The energy spectrum of the electrons in the beta emission is continuous,
not discrete, as it would be expected. This seemed to show that the phenomenon
was violating the energy-momentum conservation. Moreover, angular momentum
seemed also not to be conserved in this process. The solution proposed by Wolfgang
Pauli in 1930 came in the shape of a so-far undetected particle, very light, with spin
1/2 and no electric charge. Pauli called it a “neutron”. In 1932, James Chadwick
(1891–1974) discovered a chargeless nuclear particle, with a mass close to the mass
of the proton, and named it also neutron. Since Pauli’s “neutron” had to be extremely
light, Enrico Fermi (1901–1954) cleared the confusion by naming Pauli’s particle
neutrino, i.e. “little neutron”, and included the new particle in his theory of the beta
decay.

Up until 1967, the weak interactions were described satisfactorily by means
of a phenomenological model proposed in 1934 by Enrico Fermi. This used the
notion of weak current Jμ(x), which contains a hadronic part (as mentioned ear-
lier, hadrons are any particles that interact strongly, such as baryons and mesons)
and a leptonic part (leptons are particles that do not interact strongly, including
the electron and its associated neutrino, the muon and its neutrino, and the tau and
its neutrino). Mathematically, the weak interaction was described by means of a
Lagrangian density

LF (x) = G F√
2

J †μ
h (x)Jlμ(x) + Hermitian conjugate, (11.1)

where Jμ

h is the hadronic current four-vector, Jμ

l is the leptonic current, and G F is
the weak (or Fermi) coupling constant. We do not enter into a more detailed analysis
of (11.1). It is enough to point out that it is the product of two currents. Recall that
the Lagrangian for the electromagnetic interactions has the form:

Lem(x) = jμ(x)Aμ(x), (11.2)

where jμ is the current four-vector and Aμ is the electromagnetic field four-vector.
Fermi used this analogy in proposing the model (11.1) for weak interactions.

The Lagrangian (11.1) describes the beta decay process depicted in Fig. 11.1: a
neutron decays into a proton, an electron, and an antineutrino. The hadronic cur-
rent is composed of the proton and the neutron, Jμ

h = �̄pγ
μ�n , and the leptonic

current is composed of the electron and its antineutrino, Jμ

l = �̄eγ
μ�ν . The con-

currence of the two pairs of particles corresponds to product of the two currents in
the expression (11.1).

On the other hand, (11.2) implies several processes in quantum electrodynamics,
one of them being indicated in Fig. 11.2: two electrons interact by exchanging a
(virtual) photon and scatter on each other. But if we compare Figs. 11.1 and 11.2, it



11.1 Theory of Weak Interactions 371
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Fig. 11.1 Beta decay: decay of a neutron into a proton, an electron, and an antineutrino. The process
is described as the interaction of two hadrons (proton and neutron) with two leptons (electron and
antineutrino). At the vertex, we have four fermions and no boson. The direction of motion of an
antiparticle is, by convention, opposite to the direction of the arrow on the diagram.

Fig. 11.2 Scattering of two
electrons. In the diagram
there are two pairs of
fermions which exchange a
boson, the photon γ .
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e–
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e–
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is striking that the first contains four fermions and no boson. The second contains
four fermions, but the process is mediated by a vector boson, the photon.

Weak interaction processes were to some extent described satisfactorily by the
model given by the expression (11.1). There were no phenomenological or experi-
mental reasons for modifying this expression. However, the corresponding physical
theory was not aesthetically pleasing. It did not satisfy the universally accepted prin-
ciple that interactions between fermions should be mediated by bosons. In addition,
scattering amplitudes calculated from (11.1) violate unitarity at very high energies
and the theory is not renormalizable. By analogy with the expression (11.2), an
interaction Lagrangian was proposed with the form

Lw = g Jμ

h Wμ + g Jμ

l Wμ + Hermitian conjugate, (11.3)

where Wμ(x) is a new vector boson field, and g is a weak coupling constant. Instead
of Fig. 11.1, we should have the diagram in Fig. 11.3, and between the neutron–
proton and electron–antineutrino vertices, a virtual charged particle would appear,
mediating the weak interaction.

There is an analogy between the model resulting from the expression (11.3) and
quantum electrodynamics, but there are also important differences:
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Fig. 11.3 Diagram that
would replace the one in
Fig. 11.1 if there existed a
bosonic particle mediating
the weak interactions. The
particle W would differ from
the photon in having electric
charge and nonzero mass.
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1. Electromagnetism is a long-range interaction, or equivalently, the photon has zero
mass, while the weak interactions are short-range, whence the intermediate W
bosons must be massive.

2. The photon is neutral, whereas the W bosons must be charged, in order to have
charge conservation at each vertex.

These differences imply serious technical difficulties in constructing a satisfactory
theory. Amathematical difficulty of prime importance was the non-renormalizability
of the theory of weak interactions, with the consequence that the calculation of
higher-order quantum corrections was inconsistent. This was in contrast to quantum
electrodynamics, where the renormalization programme works.

The construction of a renormalizable theory of quantum electrodynamics was
achieved due to the fact that the photon is a massless particle. This helped to relate
divergences in different scattering probability amplitudes.

Now, concerning the massive W bosons, the situation was much more compli-
cated. The theory was non-renormalizable, because it was not possible to conceive
a formalism able to eliminate consistently the divergences. For this reason, it was
not possible to use it for perturbative calculations, that is, to make an expansion in a
series of diagrams, since the divergences in higher order terms were unrelated, cre-
ating as a whole an infinite number of divergences. So it was not possible to predict
processes beyond the elementary ones.

Besides this renormalization problem, a number of other features of the weak
interactions started to accumulated after Fermi’s partially successful model. The
most striking was the parity symmetry violation, which we discussed in Sect. 9.5.
The conviction already existed that the electromagnetic and weak interactions should
have been unified, and it was nontrivial to achieve parity violation only in the weak
sector, while keeping the electromagnetic part parity-invariant, as all the experiments
had shown.

Would there be some way of solving these difficulties? Would it be possible
to modify the Lagrangian (11.3) to construct a unified renormalizable theory of
electro-weak interactions? The answerwas affirmative, and the credit for the creation
of such a theory goes to Sheldon Glashow, Abdus Salam, and Steven Weinberg.
Several other theoretical physicists, such as Yoichiro Nambu, Jeffrey Goldstone,
Robert Brout, François Englert, Peter Higgs, Martinus Veltman, Gerard ′t Hooft
and others, contributed in a remarkable way to providing the theoretical support for
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its basic assumptions. Now, the idea was that the weak and electromagnetic forces
are due to the existence of some vector fields which arise as the electromagnetic
field, due to some gauge symmetry principle. In order to include such fields into the
theory it was necessary to conceive new models of gauge fields and a mechanism for
explaining the mass of the W bosons.

On conserved quantities and symmetries. We recall that there are several con-
servation laws in physics, and each conservation law is related to a symmetry by
Noether’s theorem. These are the conservation of energy–mass (due to invariance
under time translation), conservation of linear momentum (due to invariance under
space translation), conservation of angular momentum (due to invariance under spa-
tial rotations), conservation of electric charge, conservation of color charge. In what
follows, conservationof the baryonic number B is also assumed,whichmeans conser-
vation of the number of baryons minus the number of antibaryons (NB = nB − n̄B).
Similarly, conservation of the lepton number L means conservation of the number
of leptons minus the number of antileptons (NL = nL − n̄L ). The conservation of
these numbers is accidental. Some discrete symmetries, like invariance under parity
(P), invariance under charge conjugation (C), invariance under time reversal (T), and
CP symmetry are preserved in electromagnetic and strong interactions, but violated
in weak interaction. CPT symmetry is universal in local relativistic quantum field
theories.

11.2 Yang–Mills Fields

In 1954, Chen Ning Yang (b. 1922) and Robert L. Mills (1927–1999) proposed a
generalization of thewell-known gauge invariance of electrodynamics. In thismodel,
each spacetime component of the gauge fields would also have components in an
abstract space, the isotopic space. In 1932,Heisenberg had introduced a newquantum
number, the isospin (or isotopic spin), in order to describe the similarity of properties
of the proton and neutron under nuclear interaction. Heisenberg proposed to regard
the proton and the neutron as two states of one particle, the nucleon, since theirmasses
are almost equal and the strength of the strong interaction between any pair of them
(p − p, n − n, or p − n) is the same. These two particles were included in a doublet,
which was the fundamental representation of the isospin group of symmetry, SU(2)
(i.e. the special unitary group of degree 2). The group SU(2) is locally isomorphic
to SO(3), the group of rotations in three-dimensional space. As a result, in isotopic
space there are three independent “directions”. One can consider the group SU(2) as
a higher-dimensional generalization of the group U (1). The elements of the gauge
group SU(2), in the fundamental representation, are 2 × 2 matrices of the type
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U (x) = ei
∑3

k=1 αk (x)Tk ,

where αk(x) are the real, coordinate-dependent parameters of the isospin transfor-
mations, and Tk are the 2 × 2 matrix generators of the transformations, which satisfy
the relation

[Ti , Tj ] = i fijkTk . (11.4)

This relation is general for any Lie group. The coefficients fijk are called structure
constants and can be chosen to be antisymmetric in all indices. There is no difference
if we place the internal symmetry indices up or down.

The complex matrices U are unitary, i.e. U † = U−1, and special, meaning
detU = 1. One can show that the maximum number of independent 2 × 2 matrices
satisfying these conditions is 3. The generators of the SU(2) transformations are cus-
tomarily chosen as Tk = σk/2, where σk are the Pauli matrices introduced in Chap.7.
In this case, fijk = εijk , the Levi-Civita symbol, or the completely antisymmetric unit
tensor of rank 3.

One can define higher degree groups, denoted by SU(n), whose elements are
special unitary n × n matrices. For the general case, the number of generators is given
by the formula n2 − 1. This can be seen as follows: the total number of independent
elements in a complex n × n matrix is 2n2. The unitarity conditions, written in
components, are actually n2 equations, which reduce the number of independent
variables correspondingly. The unit determinant represents still one more condition,
such that at the end we are left with the number n2 − 1 mentioned above. The groups
are non-Abelian because their generators do not commute, as shown by (11.4).

The special unitary groups, both global and local, are essential in particle physics,
underlying the Standard Model and also various extensions of it. We shall frequently
encounter them in this chapter. But let us return for the moment to the theory of
Yang and Mills. Independently, the same idea of constructing gauge field theories in
the general case, with any Lie group symmetry, was introduced by Ryoyu Utiyama
around the same year of 1954. It should be emphasized that the most remarkable
feature of a theory built on the principle of gauge invariance is that all the interactions
and their corresponding interaction terms in theLagrangianwill appear automatically
and in a unique way, as was the case of the electromagnetic interaction, which is an
Abelian gauge theory.

In electrodynamics, the electromagnetic field is described using a four-vector
potential Aμ, that is, a vector that has one component along each spacetime coor-
dinate, and its mathematical transformation properties are dictated by the Lorentz
group. The field proposed by Yang and Mills is such that in each direction of iso-
topic space there is a potential four-vector component. As the isotopic space has
three dimensions, we have three four-vectors A1

μ, A2
μ, A3

μ, each one of them, in turn,
with four spacetime components. The SU(2) gauge transformations vary from point
to point, and are as a consequence local, as we saw in Chap.7. But due to the isotopic
components, for such non-Abelian fields, the gauge invariance of electrodynamics
does not work, and it is necessary to establish a new law relating the three iso-
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Fig. 11.4 Trilinear and
quadrilinear interactions of
the non-Abelian gauge fields.
Remark that such couplings
cannot exist among photons
in the Abelian gauge field
theory of quantum
electrodynamics.

topic components A1
μ, A2

μ, A3
μ (which is beyond the scope of this book). This gives

rise to new physical properties for these fields, as a consequence of their symmetry
transformations.

In contrast to electrodynamics, the gauge transformations of Yang–Mills fields are
non-commutative or non-Abelian (commutative transformations are also frequently
called Abelian in honour of the Norwegian mathematician Niels Abel). For example,
if we consider infinitesimal SU(2) transformations, i.e. αk(x) � 1, the gauge fields
transform as follows:

A′k
μ(x) = Ak

μ(x) + ∂μαk(x) + iεkij Ai
μ(x)α j (x). (11.5)

Remark that the first two terms are identical as in the case of the AbelianU (1) gauge
field, while the last term is the mark of the non-Abelian transformation. In addition,
a fundamental entity, the field-strength tensor, is nonlinear in the gauge fields having
the expression

F i
μν = ∂μ Ai

ν − ∂ν Ai
μ + gεijk A j

μ Ak
ν, i = 1, 2, 3.

In this formula, the summation convention for the indices j and k is used.
The tensorF i

μν bears a close analogy to the Ricci tensor (10.24). The Yang–Mills
fields Ai

μ(x) play the role of Christoffel symbols in general relativity. Actually, there
are close similarities between the two theories.

In quantum electrodynamics, a photon has no direct coupling to other photons.
The Lagrangian density for the SU(2) gauge fields is

L(x) = −1

4
F iμν(x)F i

μν(x).

The above Lagrangian density physically implies that triple and quadruple interac-
tions of non-Abelian gauge bosons are also possible, like those depicted in Fig. 11.4.
We shall return to this property when we discuss the Standard Model of particle
interactions.

Later on it became clear that the strong isospin symmetry SU(2) remains all the
way a global symmetry and there are in reality no gauge fields corresponding to it.
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However, the theoretical framework proposed by Yang and Mills is the prototype for
the description of any fundamental interaction, as we shall see later.

If a Yang–Mills field (or non-Abelian gauge field) interacts with some other field,
such as a scalar or a fermionic field, the latter must also have several isotopic compo-
nents. For instance, in the unified Glashow–Salam–Weinberg theory of electromag-
netic and weak interactions, the electron and the neutrino behave like two (weak)
isotopic components of one fermionic field.

One crucial aspect of the theory of Yang and Mills is that the gauge fields have to
be massless, for the theory to be invariant with respect to the gauge transformations
(11.5). But if the weak interactions are to be described by the Yang–Mills theory, the
vector bosons have to be necessarily massive. We shall now discuss the mechanism
by which the mass of the intermediate vector bosons is built into the electroweak
theory.

11.3 Nambu–Goldstone Theorem

One of the simplest field-theoretical models is the scalar field, which is associated to
particles of zero spin. But independently of its specific physical meaning, the scalar
field can be studied as a simple and interesting model in which the Lagrangian has
a potential term of the form

V (	) = m2	†	 + λ(	†	)2, (11.6)

where 	 is a complex scalar field, 	† its Hermitian conjugate, m2 its mass squared,
and λ(	†	)2 describes its self-interaction, with λ a positive coupling constant. Such
a Lagrangian is symmetric under the transformations of the group of phase transfor-
mations U (1), i.e.,

	(x) → 	′(x) = eiα	(x). (11.7)

One may ask what would happen if the potential term were

V (	) = −m2	†	 + λ(	†	)2. (11.8)

One is tempted to answer that this is equivalent to having scalar tachyons, because
m2 corresponds to the square of the mass term, and if the term is negative, it leads to
tachyons. But the presence of the term λ(	†	)2 suggests a more careful interpreta-
tion. The potential (11.6) is represented in Fig. 11.5. The minimum of this potential
corresponds to	 = 0. The expression (11.6) then describes particles of mass m. The
ground state (or vacuum state) is non-degenerate.

The potential (11.8) takes the form depicted in Fig. 11.6. The minimum of the
potential is reached at a value of |	| different from zero, which we may call ξ . In
this case we say that spontaneous symmetry breaking (SSB) occurs, as discussed in
Chap.3. There are infinitely many vacuum states generated by transforming the field
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Fig. 11.5 The potential of
the scalar field V (	) for the
usual case of positive
m2-term, as in (11.6).
The minimum of V (	)

corresponds to the value
	 = 0.

Fig. 11.6 The potential of
the scalar field V (	) in the
case of negative m2-term, but
with λ > 0, as in (11.8). The
symmetry can be broken
since the ground state is
degenerate.

	 according to (11.7). They are all different and a quantummechanical superposition
of them cannot exist—to different vacua correspond differentworlds.More precisely,
the Hilbert spaces constructed out of different vacua are all orthogonal to each other,
so all interference effects in linear superpositions between the corresponding states
vanish. Only one of these points can be used as the actual vacuum. The intercept
with the real 	 axis is usually chosen. It can be demonstrated that, in this case, the
Lagrangian describes a massive scalar field and another massless field.

The Nambu–Goldstone theorem states that when a global symmetry is sponta-
neously broken, massless particles appear. These scalar massless particles are called
Goldstone bosons, or Nambu–Goldstone bosons.1 If the symmetry is global, the
Nambu–Goldstone boson should exist, but if the symmetry is local (i.e., if the param-
eter α is a function of x), this is not the case, according to the Brout–Englert–Higgs
mechanism.

1The fact that massless particles are associated with a broken global symmetry was found in 1960
by Yoichiro Nambu (1921–2015) in the context of the Bardeen–Cooper–Schiffer (BCS) supercon-
ductivity mechanism. The idea was developed and elucidated by Jeffrey Goldstone (b. 1933). Thus,
it is more proper to call them Nambu–Goldstone bosons.
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11.4 Brout–Englert–Higgs Mechanism

What would happen if the scalar field interacted with some gauge fields, for instance,
with non-Abelian Yang–Mills fields? In this case, if there is symmetry breaking,
the would-be Nambu–Goldstone bosons will be eliminated from the theory, while
some gauge fields become massive. This is equivalent to increasing their degrees
of freedom by the same amount that the scalar fields have lost. For each would-be
Nambu–Goldstone boson, a massless vector particle (gauge field) becomes massive.

This mechanism is also found in the theory of superconductivity. There, the scalar
field is the Cooper pair of electrons and the vector field that becomes massive is
the electromagnetic field. This ‘mass’ implies that the magnetic field has a short
penetration depth.

The mechanism of spontaneous symmetry breaking in the context of gauge field
theories was first proposed by Robert Brout (1928–2011) and François Englert
(b. 1932) in 1964, and very soon after them, independently, by Peter Higgs (b. 1929).
Gerald Guralnik, Carl Hagen, and Thomas Kibble also contributed to the elucida-
tion of the mechanism. In this book we shall refer to it as the Brout–Englert–Higgs
mechanism.2 The 2013 Nobel Prize in Physics was awarded to François Englert and
Peter Higgs for the theoretical discovery of this mechanism.

Actually, if we think deeper, the gauge symmetry is not really broken, but rather
hidden. The vacuum structure is similar to the one in Fig. 11.6, only that now different
vacuum states are related by gauge transformations. The gauge symmetry of the
Lagrangian tells us that not all the degrees of freedom of the scalar field and of the
vector fields are independent. To quantize the theory, one has to fix the gauge, i.e.
to impose conditions among the fields, such that the number of degrees of freedom
is decreased to only the physical ones. In usual gauge field theories, this is done by
imposing relations between the components of the gauge fields, like, for example,
∂μ Aμ(x) = 0, which is the so-called Lorenz gauge in quantum electrodynamics. In
our case, we can fix the gauge also by imposing conditions on the scalar degrees
of freedom. There is a gauge condition on the scalar degrees of freedom, called the
unitarity gauge, whichwas originally used to show that the Yang–Mills fields acquire
mass, and that no massless Goldstone boson appears. Since the gauge invariance is
maintained, onemaywell use the Landau gauge (ormore generally covariant gauges)
as done by Brout and Englert, in which renormalization is strongly suggested but
unitarity is not explicit. Alternatively, one may take the unitarity gauge used by
Higgs (when translated in the language of field theory), in which unitarity is obvious
but renormalization is hidden. Actually, what we regard as a symmetry breaking,
is a gauge fixing procedure, and the gauge symmetry is in no way broken, but just
hidden. The terminology “spontaneous gauge symmetry breaking”, though not quite
adequate, refers to such a situation. A remarkable consequence of the Brout–Englert–
Higgs mechanism applied to the interaction of a Yang–Mills field with a scalar field

2Very often this mechanism has simply been referred to as the Higgs mechanism.
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with spontaneously broken gauge symmetry is that the model is renormalizable.
Consequently, the mechanism became a basic element in the theory describing the
unification of electromagnetic and weak interactions.

11.5 Glashow–Salam–Weinberg Model

The Standard Model of particle interactions expresses our present knowledge of
the electromagnetic, weak and strong interactions. A summary of the elementary
particles which are included in the Standard Model is given in Fig. 11.7. On the
left-hand side of the figure are the so-called matter particles, the quarks and the
leptons, which have all spin 1/2. On the right-hand side are the carriers of the
electromagnetic, weak and strong forces, which have all spin 1 (vector bosons). In
the middle is the scalar (spin 0) Brout–Englert–Higgs particle, which arises from the
spontaneous breaking of the gauge symmetry SU(2)L × U (1). The antiparticles of
all the elementary particles should be also included, although they are not explicitly
mentioned.

The Glashow–Salam–Weinberg model is the unified theory of the electromag-
netic and weak interactions. The story of its conception is a wonderful example
of scientific theoretical creativity based on scarce experimental evidence and lead-
ing to spectacular predictions. Glashow, Salam, and Weinberg were awarded the
Nobel Prize in 1979 for this theory, after many experimental confirmations had been

Fig. 11.7 Elementary particles in the Standard Model of particle interactions.
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achieved. The story started in 1961, when Glashow proposed as electroweak uni-
fication structure the gauge group SU(2) × U (1). At that time, it was not known
how to make the gauge bosons massive. The Brout–Englert–Higgs mechanism was
proposed in 1964 and Weinberg incorporated the mechanism into Glashow’s model
in 1967. By 1968, Glashow, Salam, and Weinberg had formulated in detail their the-
oretical model of electroweak unification. In 1971–1972, Gerard ′t Hooft (b. 1946)
and Martinus Veltman (b. 1931) proved that this theoretical model with spontaneous
symmetry breaking was renormalizable; they were awarded the Nobel Prize in 1999.

The model is governed by the gauge group SU(2)L × U (1)Y (the sign × is read
“direct product of groups” and it means that the transformations of the two groups act
independently). The subscript L means “left” and it is an indication of the fact that
parity is broken in the weak interactions and the observed neutrinos are left-handed
spinors. The groupU (1)Y with which we start does not represent the electromagnetic
interaction, but another symmetry, whose associated quantum number is called weak
hypercharge and is denoted by Y . Only after the symmetry breaking the usual elec-
tromagnetic interaction will arise in the form of a residual gauge symmetry, U (1)em .
It should be emphasized that this SU(2)L gauge group has nothing to do with the
strong isospin global symmetry group SU(2), which we have mentioned earlier.

In general, a usual spinor, like the electron field, can be decomposed in a sum of
the left-handed and right-handed helicities,

e(x) = eL(x) + eR(x).

In this formula, by e(x) we denoted the field of the electron, which previously in
Chap.7 was denoted by �(x). In the Standard Model there are so many matter
particles, that it is most convenient to denote the corresponding fields simply by the
symbols for the particles.

In the Glashow–Salam–Weinberg model, the leptons and quarks are grouped in
fundamental representations of the gauge groups SU(2) and U (1). In order to intro-
duce the parity violation, only the left-handed parts of the spinors will be allowed to
interact with the three SU(2) gauge bosons. This is achieved by distributing the left-
handed components in SU(2) doublets and the right-handed components in SU(2)
singlets. However, both L and R components interact identically with the U (1)Y

gauge boson. For the lepton sector we have the following assignment of representa-
tions (

νe
e

)

L

,

(
νμ

μ

)

L

,

(
ντ

τ

)

L

, eR, μR, and τR, (11.9)

while for the quarks we have

(
u
d ′

)

L

,

(
c
s ′

)

L

,

(
t
b′

)

L

, uR, d ′
R, cR, s ′

R, tR, and b′
R. (11.10)

The quark states d ′, s ′, and b′, which take part in weak interactions, are linear com-
binations (mixtures) of the quark states d, s, and b, which interact strongly. The
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necessity for mixing the quarks is dictated by experiment; this will be discussed in
some detail later. Remark also that all the quarks have L and R components, while
in the lepton sector the neutrinos do not have the R component, in accord with the
experimental observations.

It should be alsomentioned that this assignment of representationsmakes impossi-
ble the presence of usual mass terms for the matter particles, since such terms cannot
be made gauge-invariant. The leptons (except neutrinos) and quarks in the Glashow–
Salam–Weinberg model acquire their mass through the same Brout–Englert–Higgs
mechanism of spontaneous symmetry breaking that gives masses to the carriers of
the weak force.

Let us now turn to the gauge bosons. There are three gauge bosons corresponding
to the SU(2)L symmetry, which we shall denote by W k

μ, with k = 1, 2, 3; there is
also one vector boson, Bμ, corresponding to the hypercharge symmetryU (1)Y . Thus,
in total, we have four massless gauge bosons. Each of them has only two possible
polarizations, transverse to the direction of propagation; in other words, two physical
degrees of freedom.

Upon the spontaneous symmetry breaking, the three carriers of the weak force
have to become massive, thus justifying the short-range character of the weak inter-
actions. The photon which mediates the electromagnetic interaction, however, has
to remain massless. This implies that the breaking of the symmetry is not complete,
but a residual U (1)em invariance remains:

SU(2)L × U (1)Y → U (1)em.

To achieve this, we use the Brout–Englert–Higgs mechanism with a doublet of com-
plex scalar fields,

	(x) =
(

φ1 + iφ2

φ3 + iφ4

)

. (11.11)

The scalar doublet interacts with all the four gauge fields and its Lagrangian contains
the potential part with a self-interaction term of the form

−m2	†	 + λ(	†	)2,

which produces the needed nonzero vacuum expectation value. The four distinct
components of the scalar doublet correspond to four degrees of freedom.

The Lagrangian density of the Glashow–Salam–Weinberg model, containing all
these matter and gauge fields with their respective interactions, is invariant under the
gauge group SU(2)L × U (1)Y . The vacuum of the theory, however, is not invariant:
by gauge transformations one goes from one vacuum configuration to a distinct
vacuum configuration. One has to make a choice of the vacuum state, which is
equivalent to fixing the gauge. Any choice would be just as good physically, but one
of them, called the unitarity gauge, is more convenient for the physical interpretation
of the resulting theory. In the unitarity gauge, three of the scalar degrees of freedom
disappear from the Lagrangian, and we are left with one massive chargeless scalar,
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H(x), which is the Brout–Englert–Higgs particle. Three combinations of the original
gauge bosons become massive, while one combination remains massless. The vector
bosons W k

μ and Bμ mix as follows:

W +
μ = 1√

2
(W 1

μ + iW 2
μ),

W −
μ = 1√

2
(W 1

μ − iW 2
μ) (11.12)

and

Aμ = Bμ cos θW + W 3
μ sin θW ,

Zμ = −Bμ sin θW + W 3
μ cos θW . (11.13)

The free parameter θW is called the Weinberg angle, or weak mixing angle, and it
is related to the coupling constants of the SU(2)L and U (1)Y gauge symmetries.
The fields W ±

μ have electrical charge and they form a particle–antiparticle pair. The
field Zμ is neutral and it is its own antiparticle. All three are now massive vector
bosons, meaning that they have each three degrees of freedom (two transverse and
one longitudinal polarizations). It is sometimes said that the gauge fields “ate” the
would-be Goldstone bosons. Thus, the degrees of freedom lost by the scalar fields
are gained by the vector boson fields. The mass of the Zμ boson is 91.2 GeV/c2

and the mass of the W ±
μ is 80.4 GeV/c2 (about 100 times more than the mass of the

proton). The Weinberg angle relates also these two masses: mW = m Z cos θW . The
combination Aμ remainsmassless and it represents the photon of the electromagnetic
interaction.

The electroweak unification means that at very high energies (above the unifica-
tion scale), or at very tiny distances, the electromagnetic and the weak force are of
comparable strength. The apparent “weakness” of the weak interaction in experi-
ments performed at low energies reflects only its short range of action. As a result,
the essential difference between the strengths of the two forces can be due only to
the mass of the vector bosons which mediate the weak processes.

The processes in which the W ±
μ and Zμ particles participate are weak interactions.

The W ±
μ bosons interact only with the L components of the matter fields, while Zμ

bosons interact with both L and R components, but differently. The observed parity
violation in weak interaction is thus perfectly well incorporated in the model. The
photon Aμ interacts identically with the L and R components of the matter fields.

Since we have started with a non-Abelian gauge field theory, nonlinear couplings
of gauge bosons appear. Naturally, the photon interacts with W ±, since they are
charged particles. But also triple and quadruple couplings of W ± occur, as well as
other combinations of W ±, Z and γ . All possible vector boson vertices are repre-
sented in Fig. 11.8.

While the weak interactions involving the charged W ±
μ bosons were expected,

the neutral boson Zμ was a prediction of the theory. The Zμ boson interacts with
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Fig. 11.8 All possible
vector boson vertices in the
Glashow–Salam–Weinberg
model of electroweak
unification.

all the matter particles, including the neutrinos. They mediate in the neutral current
processes, whose observation was one of the first confirmations of the Glashow–
Weinberg–Salam model. The weak neutral currents were discovered in 1974 in a
neutrino experiment with the Gargamelle bubble chamber at CERN. The existence of
the neutral current means that a weak force also acts between electrons, in addition to
the electromagnetic force mediated by photons. This force also acts between protons
and electrons in an atom, and between the protons and neutrons inside the nuclei.

Early in 1983, in experiments carried out at CERN by the UA1 and UA2 collabo-
rations, when beams of protons and antiprotons were made to collide at high enough
energy, some very energetic electrons appeared whose presence was interpreted as
being due to the decay of W −

μ produced in the proton–antiproton collisions. Soon
after this evidence of the W ±

μ bosons, very energetic electron–positron pairs were
observed, whose origin could be attributed to the decay of Zμ particles, also produced
in the proton–antiproton collisions. In 1984, Carlo Rubbia (b. 1934) and Simon van
derMeer (1925–2011) were awarded theNobel Prize for this experimental discovery.

One particle predicted by the Glashow–Weinberg–Salam model eluded discov-
ery for over 40 years: the Brout–Englert–Higgs scalar. It has been lately the most
awaited discovery in high energy physics. On the 4th of July 2012, the ATLAS and
CMS collaborations at CERN simultaneously reported the discovery of a previously
unknown boson with a mass of about 125 GeV/c2. The data analysis performed by
December 2012 shows that the particle has spin 0 and its behaviour is consistent with
the Standard Model scalar.
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11.6 Electroweak Phase Transition

As already mentioned, there is a close analogy with the phenomenon of supercon-
ductivity, where the magnetic field acquires a mass inversely proportional to the
London penetration length, this implying the Meissner effect whereby the magnetic
field penetrating the superconductor decreases exponentially. Superconductivity is
destroyed by increasing the temperature above some critical temperature Tc, and in
1972 it was suggested byDavidKirzhnitz andAndrei Linde that a similarmechanism
may occur in the electroweak theory. The point is that the symmetry breaking param-
eter ξ and, as a consequence, the effective masses of the W ±

μ and Zμ bosons, should
decrease with temperature and vanish at some high enough critical temperature. At
this point, the weak interactions would become effectively long-range forces just
like the electromagnetic force. The critical temperature for this electroweak phase
transition is believed to be of order 1015 K. Such high temperatures are believed to
have occurred in the early stages of the Univers, after the Big Bang. Under these
extreme conditions, the symmetry, broken at lower temperatures, is restored, and all
the components of the electroweak field acquire equal status.

The basic idea is that the effective potential now takes amore complex form than in
(11.8), since quantum and temperature corrections must be taken into account. Actu-
ally, at very high temperature, the latter become dominant. The effective potential
takes the form

V (ξ) = λξ 4

4
− a2ξ 2

2
+ V (ξ, T ), (11.14)

where V (ξ, T ) depends on ξ through the masses of the particles (W ± and Z vector
bosons, Brout–Englert–Higgs scalar particle, electrons, and quarks), since all these
masses are assumed to be generated by spontaneous symmetry breaking and are
proportional to ξ . At high temperatures, the terms contributing to V (ξ, T ) can be
approximated by a series expansion containing terms proportional to T 4,m2T 2,m3T ,
ln T 2/m2, etc., where m denotes the masses of the particle species. Fermions as well
as bosons contribute to these terms, except the last term linear in T , to which only
bosons contribute.

In oversimplified conditions, two possible models result, giving rise respectively
to first or second order phase transitions, in very close analogy to the cases discussed
in Chap.3. In the case of a second order phase transition, the temperature of the
Universe decreased to the critical value for the electroweak phase transition Tc, at
which spontaneous symmetry breaking took placewith the parameter ξ taking a small
value. But similarly to a ferromagnetic material (see Fig. 3.27 in Chap.3, replacing
G1(M) by V (ξ) and M by ξ ), this parameter gradually increased as the temperature
decreased. This corresponds to the case where the effective potential has the form

V (ξ) = λξ 4

4
− γ

2
(T 2

c − T 2)ξ 2, (11.15)

with γ a constant and Tc the critical temperature of symmetry restoration.
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But if the phase transition is first order, the situation looks like what happens in
some ferroelectric materials (see Fig. 3.28 in Chap.3, this time replacing G1(P) by
V (ξ) and P by ξ ). When the free energy (or effective potential) of the symmetrical
and non-symmetrical phases had the same value, spontaneous breaking of symmetry
took place in some regions of the Universe. Bubbles were formed with a broken
symmetry, and our visible Universe is one of them. An effective potential describing
such a case is

V (ξ) = λξ 4

4
+ γ

2
(T 2 − T 2

0 )ξ 2 − 1

3
αT ξ 3, (11.16)

where T0 is the temperature above which the symmetrical phase ξ = 0 is metastable.
This potential has two minima, one for ξ = 0 and another for ξM �= 0. The critical
temperature at which V (0) = V (ξM) characterizes the discontinuous phase transi-
tion. The treatment of the electroweak phase transition given in this section is mainly
of qualitative nature. For instance, the conditionsmay change drastically if theBrout–
Englert–Higgs boson mass is more than 60 GeV/c2, and this seems to be the case.
The Large Hadron Collider (LHC) experiments suggest that it is around 125 GeV/c2.
In this case, numerical methods are necessary to get more realistic models of the
electroweak phase transition.

11.7 Hadrons and Quarks

There is a fundamental difference between leptons and hadrons. The leptons do
not interact strongly. On the other hand, they behave as particles without internal
structure, that is, as pointlike particles, without perceptible dimensions. The hadrons
differ from the leptons in many respects. In the first place, they have dimensions of
order 10−13 cm, and in the collisions of these particles at very high energies, they
exhibit an internal structure. The electric, magnetic, and strong fields of protons and
neutrons seem to emanate from pointlike sources inside them—the quarks.

The quarks are fermions, that is, they obey Pauli’s principle, and the strong inter-
action between them is mediated by the colour or gluon field.

There are two properties that are believed to be fundamental for the quarks:
one is called confinement and the other is asymptotic freedom. Quark confinement
means that these particles are not found in the free state: quarks live inside hadrons
and there are no quark singlets. They only appear in doublets, triplets, or higher
n-lets. Baryons are made from three quarks and mesons from quark–antiquark pairs.

Asymptotic freedom is a property of quarks wherein they behave as though free,
or completely non-interacting, when they come close enough (or equivalently, when
their energy is very high, e.g., when we observe them by colliding particles at very
high energy). There are several types of quarks, known somewhat facetiously by
physicists as flavours. At present it is believed that there are six flavours. There is
a set of quantum numbers for any flavour and colour. These are baryonic number
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B(=1/3), spin J (=1/2), isotopic spin I and its projection I3, strangeness S, charm
C , bottomness (or beauty) B, topness (or truth) T , and electric charge Q (in units
of e).

Quark flavor I I3 S C B T Q

u (up) 1
2

1
2 0 0 0 0 2/3

d (down) 1
2 − 1

2 0 0 0 0 −1/3
s (strange) 0 0 −1 0 0 0 −1/3
c (charm) 0 0 0 +1 0 0 2/3
b (bottom) 0 0 0 0 −1 0 −1/3
t (top) 0 0 0 0 0 +1 2/3

The following generalized Gell-Mann–Nishijima formula connects these quantum
numbers characterizing each particle:

Q = (B+ S + C + B + T )/2 + I3. (11.17)

Ordinary matter is made only of the elementary particles of the first generation,
i.e. the quarks u and d and the leptons e and νe, together with their antiparticles. All
the members of the other two generations were discovered in high energy physics
experiments (cosmic rays or particle accelerators). For instance, the proton has the
structure (uud), with total electric charge +1. The neutron has the structure (udd),
with zero net charge. Similarly, the π+ meson has the structure (ud̄), i.e., it is com-
posed of a quark u of charge 2/3 and an antiquark d̄ , of charge 1/3, whence its charge
is +1.

The mechanism of beta decay can now be understood as due to the process in
which a d quark in the neutron emits a virtual W − boson of charge −1, and then
becomes a u quark, so that the original neutron passes from the neutral structure udd
to uud, with charge +1, corresponding to a proton. The virtual W − decays into an
electron and an antineutrino (see Fig. 11.9).

The quarks assemble into baryons and mesons. The baryons, having baryonic
number 1, are made of three quarks, as a result their spin can be either 1/2 or 3/2.
The mesons, which are quark–antiquark pairs, can have either spin 0 (pseudoscalar
mesons) or spin 1 (vector mesons). These two cases of spin states correspond to
particles with lowest masses, when the angular momenta among the quarks are zero.

After the SecondWorld War, with the development of the accelerator technology,
a great number of particles—baryons and mesons—were produced in the laborato-
ries. Some of them, the �0 particle and the K mesons, had an unexpected, strange
behaviour in their weak decays. What was strange about them? There is a direct
connection between the strength of an interaction and the speed of interaction.3 The
�0 particles, for example, have a relatively long lifetime on a nuclear time scale, of
about 10−8 to 10−10 s, which is typical for a weak interaction decay. On the other
hand, they are copiously produced, which is typical for the strong interaction. If they

3It is illuminating to think that, if a strong interaction process takes place on a given time scale in
1 s, then a weak interaction process takes place in one million years!
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Fig. 11.9 The mechanism of
beta decay as W boson
exchange, with the nucleons
represented using the quark
model.

were to decay by strong interaction, their lifetime would have been about 10−21 to
10−22 s. Later, a cascade particle � was produced, which decayed in 10−10 s into a
�0 and a pion, and subsequently the �0 decayed further into a pion and a nucleon.
To account for the nature of such particles, which were produced only in pairs in
strong interactions, a new quantum number, strangeness, was proposed by Kazuhiko
Nishijima (1926–2009) in 1955 and by Murray Gell-Mann (b. 1929) in 1956. This
was the first quantum number to be introduced after Heisenberg’s strong isospin,
which characterizes the nucleons. The strangeness is conserved in strong and elec-
tromagnetic interactions, but not in weak interactions. A classification scheme of the
hadrons, based on the flavour symmetry group SU(3), was then introduced in 1961,
independently, by Yuval Ne′eman (1925–2006) and Murray Gell-Mann. Gell-Mann
called it “The Eightfold Way”. This scheme is reminiscent of Mendeleev’s periodic
table of elements, which was put together based on the properties of atoms, without
their underlying electronic structure being known at that time. Similarly, the SU(3)
flavour classification was an empiric scheme, which led to the prediction of particles
that were subsequently found.

The SU(3) classification of baryons and mesons is presented in Figs. 11.10
and 11.11. In 1961 were known only particles with single strangeness (like �0

and the K mesons) and with double strangeness (the cascade particles, �0 and �−),
but no particle with triple strangeness was known. However, the representations
of the group SU(3) required such a particle to complete the decuplet of baryons
(Fig. 11.10b). The particle �−, with strangeness −3, was discovered in 1964 at
the Brookhaven National Laboratories, with the decay properties predicted by Gell-
Mann and Ne′eman. In 1969, Murray Gell-Mann received the Nobel Prize for his
contributions to the classification of elementary particles and their interactions.

Interesting enough, while the known particles fell into the higher representations
of the group SU(3), there were no particles to be ascribed to the smallest, or funda-
mental, representation, which should have had only three elements. In 1964, Murray
Gell-Mann and George Zweig, independently, proposed a set of three elementary
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Fig. 11.10 a The spin 1/2 baryons and b the spin 3/2 baryons in the quark model based on SU(3)
flavour symmetry.

Fig. 11.11 a The pseudoscalar mesons and b the vector mesons in the quark model based on SU(3)
flavour symmetry.

particles as members of the fundamental representation, from which all the known
baryons and mesons were supposed to be made up. Zweig called them “aces”, while
Gell-Mann called them “quarks” and denoted them by u, d, and s. The latter name
became popular. In Figs. 11.10 and 11.11 the quark content of the particles is also
indicated. The quarks were introduced as a mere mathematical device, to explain
the hadron classification scheme. Even their inventors did not think of them as real
particles. The physical reality of quarks was proven in the end of the 1960s, by
experiments of deep inelastic scattering. The idea is inspired by Rutherford’s exper-
iments with atoms and alpha particles. In the deep inelastic scattering, the protons
and neutrons of atomic nuclei were probed with very energetic leptonic beams. This
experiments showed that the hadrons had internal structure, with three pointlike scat-
tering centres in baryons and two in mesons. The experimental data also confirmed
that the centres had the fractional electric charges assigned to quarks in the Standard
Model.
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Nevertheless, free quarks have never been observed. In high energy collisions, in
which quarks and gluons are knocked free from a nucleon, for example, a process
called hadronization takes place: the free quark or gluon combineswith virtual quarks
and antiquarks created spontaneously from the vacuum and tight jets of hadrons are
formed. This is the case with all but one of the quarks: the most massive quark, the
top, once produced, it decays by weak interactions before it has time to hadronize
by strong interactions. The top is the only quark which has been studied “bare”.

But let us return to the story of the quarks as it was in the 1960s.
Recall that strangeness is determined by the quarks s, s̄, and is conserved in

strong and electromagnetic interactions, but not in weak interactions. Among the
set of strange particles are the baryon �0 and the mesons K ±, K 0, K̄ 0. The quark
structure of kaons is K 0 = ds̄, K̄ 0 = sd̄, K + = us̄, K − = sū.

It was found that the rates of weak decays in which the change in strangeness
was �S = 1 were much smaller than the rates for those decays in which �S = 0. In
1963, Nicola Cabibbo (1935–2010) introduced a newmixing parameter, the Cabbibo
angle θC , in order to salvage the universality of weak interactions. Using the quark
model, this means that the d and s quarks participate in weak interactions in a mixed
quantum state of the form d ′ = d cos θC + s sin θC . If the angle θC is small enough,
this can explain the observed difference of results. The problem becamemore serious
in the case of some neutral current decays in which the change �S = 1 was absent,
although theoretically they seemed to be allowed.

Then, in 1970, Sheldon Glashow, John Iliopoulos (b. 1940), and Luciano Maiani
(b. 1941) suggested the existence of a fourth quark, charm, and of themixed state s ′ =
s cos θC − d sin θC . This eliminated the term �S = 1 by what is called nowadays
the GIM mechanism. Theoretically, now there were two quark doublets, (u, d ′) and
(c, s ′), where (

d ′
s ′

)

=
(

cos θC sin θC

− sin θC cos θC

) (
d
s

)

. (11.18)

The first particle containing the charm quark was observed in 1974 and simulta-
neously reported by the Stanford Linear Accelerator centre (SLAC) team led by
Burton Richter (1931–2018) and the Brookhaven National Laboratory team led by
Samuel Ting (b. 1936). Richter and Ting were awarded the Nobel Prize in 1976. The
famous particle is the J/ψ vector meson, as it was given different names by the two
experimental groups that discovered it. This meson is a bound state of charm and
anticharm, and such bound states are also called charmonium. After the discovery
of the c-quark, the flavour group SU(3) was not enough anymore, and the composite
particles had to be classified according to the representations of SU(4).

By 1964, the C P violation in weak interactions had been discovered experimen-
tally (see Chap.9). However, there were no C P-violating terms in the Lagrangian
of the Standard Model. After the proposal of the GIM mechanism, in 1972, Makoto
Kobayashi (b. 1944) and ToshihideMaskawa (b. 1940) suggested to enlarge the num-
ber of quark families by one, formed of the quarks top and bottom, or t and b, such
that the quarks d, s, and b are all mixed. Thus, they were enlarging the 2 × 2 Cab-
bibo matrix to a 3 × 3 unitary matrix. The crucial difference was that their matrix
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had four independent parameters: three mixing angles and one phase, eiδ . A simple
argument shows that the phase in the Kobayashi–Maskawa matrix is responsible for
the C P violations: the Lagrangian of the model remains C PT invariant, and indeed
no departure from the C PT symmetry has yet been observed. Upon the time rever-
sal transformation, t → −t , all the complex numbers in the Lagrangian have to be
replaced by their conjugates, therefore eiδ → e−iδ . Due to the change in phase, the
Lagrangian will violate T parity, but this is equivalent to the violation of the C P-
parity, since the Lagrangian is C PT -symmetric. With the 2 × 2 Cabbibo matrix, the
C P violation could not be introduced, since in this case there is no complex cou-
pling. Thus, a new family of quarks was predicted. In 2008, Kobayashi andMaskawa
shared the Nobel Prize with Yoichiro Nambu, “for the discovery of the origin of the
broken symmetry which predicts the existence of at least three families of quarks in
Nature”.

Of the third family, the b-quarkwas the first to be discovered, in 1977, at Fermilab,
by the E288 experiment team led byLeonLederman. The t-quark,more than 40 times
heavier than the bottom, was discovered in 1995 also at Fermilab, by the CDF and
D0 teams, using the Tevatron collider.

In 1967, Andrei Sakharov (1921–1989) realized that C P violation was an
essential ingredient for explaining the matter–antimatter asymmetry observed in our
Universe.

In 2001, important experiments were reported by two multinational groups, one
in the Belle collaboration, at the KEK laboratory in Tsukuba, Japan, and another in
SLAC, using theBaBar detector. In these experiments, a difference or asymmetrywas
shown between the decays of mesons B0 = db̄ and those of their antiparticles B̄0 =
bd̄ . This was an important discovery after the experiments with K 0—K̄ 0 carried out
by Cronin and Fitch in 1964 concerning the violation of C P invariance. It was of
great importance for the question of matter–antimatter asymmetry and baryogenesis
(see Sect. 11.11).

11.8 Neutrino Oscillations and Masses

Although the electron neutrino was theoresized by Pauli in 1930 to explain the
puzzling spectrum of the beta decay, the direct observation of neutrinos was reported
only as late as 1956. Neutrinos are elusive particles, with no electric charge and such
a tiny mass, that they propagate in practice at the speed of light. They interact only
weakly, and it took a lot of ingenuity to devise an experiment to observe them. The
method chosen by Frederick Reines (1918–1998) and Clyde Cowan (1919–1974)
to detect free antineutrinos was the so-called inverse beta decay. In this process, an
antineutrino interacts with a proton, giving in the final state a neutron and a positron:

ν̄e + p → n + e+.
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In the Reines–Cowan experiment, a significant flux of antineutrinos was produced by
a nuclear reactor. They interacted with the protons from a water tank. The resulting
positrons immediately combined with electrons, leading to two photons (e+ + e− →
γ + γ ) detectable by scintillation. The occurrence of the inverse beta decaywasmade
certain by the detection of the final state neutrons, using cadmium bars. Cadmium
absorbs neutrons with high probability, passing to an excited state. When it returns to
the lowest energy state, the atom of cadmium releases a photon. The coincidence of
the electron–positron annihilation with the neutron capture was a double signature
of the detection of free antineutrinos ν̄e.

The muons were detected in 1936 by Carl Anderson in experiments with cosmic
rays, which were in those times natural accelerators for particles. Their properties
were very similar to those of the electrons, for which reasons they were called also
“heavy electrons” (having the mass some 200 times larger than the electron). It was
expected that the pairing with neutrinos would happen in this case as well. The
muon neutrino was discovered in 1962 at the Brookhaven National Laboratory by a
team led by Leon Lederman (1922–2018), Melvin Schwartz (1932–2006), and Jack
Steinberger (1921–2020). They were awarded the Nobel Prize in 1988.

The last lepton to be discovered was the tau or the “superheavy electron”, discov-
ered in 1975 at SLAC, by a team led by Martin Perl (1927–2014). In 1995, by the
Nobel Prize awarded to Frederick Reines andMartin Perl were honoured the discov-
eries of the first neutrino and of the last lepton. The tau neutrino discovery followed
in the year 2000 at Fermilab, by the DONUT collaboration. The tau neutrino events
are so rare, that observation of even one of them makes the headlines of newspapers.

In the StandardModel, neutrinos aremassless particles. However, the experiments
show that the situation is quite different—they have masses and they oscillate from
one flavour into another. The idea of neutrino oscillations was proposed in 1957 by
Bruno Pontecorvo (1913–1993), in analogy with the oscillations of the K mesons
presented in Chap.9. Basically, it is assumed that the weak eigenstates νe, νμ, and
ντ are quantum mechanical superpositions of the mass eigenstates ν1, ν2, and ν3:

⎛

⎝
νe

νμ

ντ

⎞

⎠ = V

⎛

⎝
ν1
ν2
ν3

⎞

⎠ , (11.19)

where V is a 3 × 3 unitary matrix called the Pontecorvo–Maki–Nakagawa–Sakata
matrix. It is misleading to speak about the masses of the weak eigenstates. The limits
given in Fig. 11.7 refer to mass expectation values of the weak eigenstates. However,
direct mass measurements cannot be made, but the experiments show unequivocally
that the neutrinos oscillate and mass eigenstates must exist.

The number of electron neutrinos detected on Earth as coming from the Sun is
only about one third of what is expected according to the theory of thermonuclear
reactions occurring in the Sun. This is known as the solar neutrino problem, and it
was discovered in the end of 1969, in the Homestake experiment led by Raymond
Davis (1914–2006) and John Bahcall (1934–2005). The idea that neutrinos may
oscillate, i.e., the electron neutrino may change into μ or τ neutrinos, is a con-
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vincing explanation for this peculiar phenomenon. Actually, before the Homestake
experiment, Pontecorvo had predicted that the observed flux of solar neutrinos might
be two times smaller than what was predicted (in those times, only two species of
neutrinos were known). Observing neutrino oscillation was a great task for the exper-
imentalists over many years. The conclusive evidence for neutrino oscillation was
provided starting with 1998 by the Super-Kamiokande team in Japan led by Takaaki
Kajita (b. 1959). Before that, the Kamiokande and Super-Kamiokande experiments
had been used for the discovery of cosmic neutrino, by a team led by Masatoshi
Koshiba (1926–2020). In 2002, Davis and Koshiba were awarded the Nobel Prize
“for pioneering contributions to astrophysics, in particular for the detection of cos-
mic neutrinos”. In 1985, Stanislav Mikheyev and Alexei Smirnov, using previous
work by Lincoln Wolfenstein, suggested that flavour oscillations could be modified
when neutrinos propagate through matter. This is the so-called MSW (Mikheyev–
Smirnov–Wolfenstein) effect. This oscillation, which is similar to refraction, requires
neutrinos to have a small mass, of the order of a few eV/c2. In 2002, measurements
of neutral currents produced by neutrinos of different families were observed in the
Sudbury Neutrino Observatory (SNO) in Ontario, Canada, and the results confirmed
that there were twice as many non-electron neutrinos as electron neutrinos. This
observation indicated that there are no missing solar neutrinos, and that neutrinos
are in fact massive. In 2015, the Nobel Prize for Physics was awarded to Takaaki
Kajita (b. 1959) and Arthur B. McDonald (b. 1943) “for the discovery of neutrino
oscillations, which shows that neutrinos have mass.”

Dirac, Weyl, and Majorana Fermions. A Dirac fermion is a fermion which is not
its own antiparticle. Most fermions appearing in Nature fall under this category, as
they are not their own antiparticles. With the possible exception of neutrinos, they
are Dirac fermions and are modeled by the Dirac equation.

Hermann Weyl (1885–1955) showed that the massless Dirac equation could be
reduced to a two-component equation. The solutions of that equation are calledWeyl
spinors, or Weyl fermions, and have well defined chirality. A Dirac fermion is equiv-
alent to twoWeyl fermions. AMajorana fermion is such that it is its own antiparticle.
It has been conjectured that neutrinos are candidates for Majorana fermions. If this
were so, it would violate lepton number conservation, and this would change several
basic ideas of present day physics. The idea of double beta decay was first proposed
by Maria Goeppert-Mayer (1906–1972) in 1935. In 1937, Ettore Majorana (1906–
1938) demonstrated that all the results of beta decay theory (see Chap. 9) would
remain unchanged if the neutrino were its own antiparticle. In 1939, Wendell H.
Furry (1907–1984) showed that if neutrinos were Majorana particles, then double
beta decay could proceed without the emission of any neutrinos, via the process
now called neutrinoless double beta decay. The nature of neutrino as Dirac or Majo-
rana particle is one of the fundamental standing problems in elementary particle
physics. The experimental effort for discovering the signature of the Majorana neu-
trinos, namely the neutrinoless double beta decay, has not yet yielded any conclusive
results.
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11.9 Quantum Chromodynamics

The strong interaction between quarks is characterized by new quantum numbers,
called colours. Each quark of a given flavour, for instance u, appears in three colours,
say, red, green, and blue.

The colour field is mediated, according to the Standard Model of particle inter-
actions, by massless particles called gluons. As mediators of the strong interactions,
they are the analogs of photons as mediators of the electromagnetic interactions. The
existence of three colours for quarks provides the foundation for the current theory
of strong interactions, known as quantum chromodynamics (QCD).

The necessity for having a colour quantum number for quarks was noticed first in
1965, in connection with the baryon �−. This particle contains three strange quarks,
all with spins aligned, since the total spin is 3/2 (see Fig. 11.10). The particle was
produced in the lowest energy state of the three quarks, which is a symmetric state
under the interchange of any two quarks. However, by Pauli’s exclusion principle the
state had to be antisymmetrical.With the known quantum numbers, it was impossible
to achieve such an antisymmetric state, therefore itwas necessary to introduce another
quantum number, such that each s-quark composing the particle �− has a different
colour and then the state is obtained by antisymmetrization. The solution for saving
Pauli’s principle in the cases of the particles �− and �++ was given by various
physicists in 1965. Among them, Moo-Young Han and Yoichiro Nambu proposed
that the colour group SU(3) were a gauge group, thus including in the picture the
dynamics of strong interactions.

For a quark of given flavor, the three colours, red, green, and blue, form a
triplet: u = (ur , ug, ub), d = (dr , dg, db), etc. Antiquarks have anticolours, such
that colour plus anticolour gives white (no colour). All observable hadrons are
“white” or colourless—the baryons are composed of three quarks of three dif-
ferent colours, while the mesons are composed of quark–antiquark pairs carrying
colour–anticolour. The colour gauge group SU(3), has eight generators. There is
therefore a set of eight independent gauge fields Aa

μ, which are called gluon fields.
The gluon fields are Yang–Mills fields with eight components. But in contrast to the
case of the electroweak field, the symmetry of these Yang–Mills fields is not broken:
gluons, like photons, are massless particles. Being non-Abelian gauge fields, they
also carry colour charge and interact among themselves.

One might therefore think that the strong interaction mediated by gluonic field
would have long range. However, quantum chromodynamics has the property of
confinement, mentioned previously. The gluons have a remarkable feature, different
from the electromagnetic field, concerning screening. For example, we have seen that
an electric charge attracts opposite charges, so that the original charge is screened,
and the net effect is a smaller charge. With the colour field the opposite happens: a
quark of given colour attracts colour charges of the same polarity. As a result of this,
the colour charge decreases at short distances from the quark, and it increases with
increasing distances.
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This anti-screening effect has an important consequence on the running of the
coupling constant of quantum chromodynamics. Denoting by k2 the square of the
exchanged momentum, the running of the strong coupling constant αs(k2) happens
according to the formula:

αs(k
2) = αs(μ

2)

1 +
(
11 − 2nf

3

)
ln k2

μ2

. (11.20)

In the case of quantum chromodynamics, due to confinement, we cannot observe free
quarks and gluons, therefore one cannot experimentally measure the probability of
a scattering of Compton type, in order to find the value of αs at the zero-momentum
limit, i.e.αs(mquark) (seeSect. 7.4.6). It is therefore necessary to introduce an arbitrary
renormalization scale represented by the parameter μ, which provides the initial
condition αs(μ

2) = αs . The number of quark flavors is nf . For nf = 6, the coefficient
of the logarithm is 7, then the denominator is positive and it grows with k2. When
k2 → ∞ (the distance tends to zero), αs(k2) → 0. This property is called asymptotic
freedom, and its discovery in quantum chromodynamics was honoured with the
Nobel Prize in 2004 awarded to David Gross (b. 1941), David Politzer (b. 1949), and
Frank Wilczek (b. 1951).

One can re-write the running coupling constant of quantum chromodynamics in
the form:

αs(k
2) = 4π

(
11 − 2n f

3

)
ln(k2/�2

QCD)
. (11.21)

In this formula, instead of an arbitrary renormalization point μ, we have a quantity
with the dimension of energy,�QCD. This gives the scale at which αs becomes strong
as k2 decreases. Experimentally,�QCD was found to be of the order of 150–200MeV.
The perturbation theory in quantum chromodynamics is valid only above this scale,
for example above energies of 1 GeV, where αs(k2) ≈ 0.4, and the strong interaction
can be treated indeed as a perturbation.When the distances aremore than 1/�QCD (in
natural units), the interactions become too strong for the perturbation theory to give
reliable results. It is not accidental that distances of the order of 1/�QCD are roughly
the size of the light hadrons, rh . This procedure is called dimensional transmutation:
instead of describing the strength of the interaction by the dimensionless coupling
constant, we describe it by the dimensionfull energy scale.

For asymptotic freedom, the gluons play a key role. Gluons have colour charge, in
contrast to photons, which do not carry electric charge. Their effect is to increase the
effective colour charge of the quarks with the distance, instead of shielding it (anti-
screening effect). They contribute the factor+11 in the denominator of (11.20), while
the term 2nf /3, due to the quark–gluon interaction, comes with a minus sign and
is the analog of the electron–photon interaction term in quantum electrodynamics.
In Fig. 11.12 is presented comparatively the running of the coupling constant in
quantum electrodynamics and quantum chromodynamics.
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Fig. 11.12 Comparative
behaviour of the running
coupling constants in
quantum electrodynamics
(Abelian gauge field theory),
α, and in quantum
chromodynamics
(non-Abelian gauge field
theory), αs .

Fig. 11.13 The nuclear force as pion exchange between nucleons, represented by virtual processes
of quantum chromodynamics.

In this way, if the condition (11 − 2nf )/3 > 0 holds true, an anti-screening effect
is produced. As an example, if one takes a pion and tries to separate it into a quark and
an antiquark, as the exerted force increases with distance, the increase in potential
energy would cause the formation of a new quark–antiquark pair, and the final result
would be two pions. Indeed, only colourless bound states have ever been observed.

The interaction force between nucleons about whichwe talked in Chap. 9 is under-
stood in quantum chromodynamics as a residual strong force, and can be explained
in terms of exchanges of quarks and gluons, as it is shown in Fig. 11.13.

Is it possible to produce quarks and gluons by colliding particles which do not
interact strongly? The answer is affirmative. The first quark–antiquark production
events were reported in 1975, at the e+e− SPEAR collider at SLAC. The electron and
positron annihilate into a virtual photon (or Z boson), which forms in the final state
the quark–antiquark pair. Aswementioned before, bare quarks cannot be observed—
what is really observed are two jets of hadrons, whose structure and angular distri-
bution shows that they are obtained from the hadronization of two spin 1/2 particles,
with fractional charge.

In 1979, the first three-jet event was reported from the PETRA e+e− accelera-
tor of Deutsches Elektronen-Synchrotron (DESY) in Hamburg. This contained the
expected signature of a gluon: when the energy is higher, one of the quarks in the
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Fig. 11.14 A three-jet event: a the Feynman diagram; b an actual event observed in the JADE
experiment at DESY.

final state emits one gluon, which also hadronizes and produces its own jet. The kine-
matical configuration changes and a sort of planar “star” is observed (see Fig. 11.14).

The presence of a spin 1 gluon was unequivocally determined in the experiments.
Naturally, by increasing the energy of the e+e− collision, multi-jet events appear,
involving pairs of quarks and various numbers of gluons. They were important also
as a proof of the trilinear coupling of gluons, g (virtual) → gg. The precision tests
of quantum chromodynamics have been essentially based on electron–positron scat-
tering experiments.

11.10 Grand Unification

The quarks interact among themselves by exchange of gluons, and with leptons
through the electroweak field. It thus seems natural to look for models that unify
strong and electroweak interactions. One of the first models believed to be promising
was the grandunified theory (GUT)basedon the simple gaugegroupSU(5), proposed
by Howard Georgi and Sheldon Glashow in 1974. The unification of all three forces
had been initiated the same year by Abdus Salam and Jogesh Pati.

This kind of unified theory of electroweak and strong forces predicts mechanisms
transforming hadrons into leptons. Themodel contains some supermassive bosons X
and Y , with masses of order 1014–1015 GeV/c2. These would act as intermediaries in
the decay of a proton into a positron and a pion. Proton decay, however, has not been
observed. The model also predicts a tiny neutrino mass and the existence of magnetic
monopoles. In addition to SU (5), there are by now an impressive number of grand
unifiedmodels, based on gauge groups, such as SO(10), SU (6), superstring-inspired
E(6) × E(6), and others. None of them is currently considered to be satisfactory.

The idea of grand unification stems from the fact that the coupling constants
depend on the energy (or momentum) of the interacting particles, as either increas-
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ing or decreasing functions. Thus, as seen in Chap.7, the fine structure constant
characterizing the electromagnetic interactions is a constant at low energies, but its
value increases with momentum at high energies. We have also seen in the present
chapter that in strong interactions, the coupling constant decreases with decreasing
distances (increasing energy and momentum). The weak interaction coupling also
decreases with increasing energy, but more slowly.

The grand unification theories predict the unification of the electroweak inter-
actions with the strong ones at extremely high energies, of order 1015 GeV, which
correspond to a wavelength of order 10−29 cm. Above these energies, the values of
the three coupling constants coincide (Fig. 11.15).

This predicted energy of unification of strong and electroweak interactions is 10−4

times smaller than the Planck energy, characteristic of quantum gravitational effects.
For energies lower than 1015 GeV, symmetry breaking occurs, resulting in two sepa-
rate fields: the strong or colour field and the electroweak field. At energies of the order
of 100GeV, the latter also separates into two components. The electromagnetic field
remains until low energies, but the weak force is manifest only in virtual processes
of creation of W ± and Z particles.

The fact that the values of the energies determining these changes of symmetry are
100 and 1015 GeV means that, in this model, there is a very large interval of energies
between these two significant physical changes, called “desert”. Their ratio is 1013,
and this “desert” is considered a shortcoming of the theory. It is believed that there
could be many remarkable new phenomena in the range between 102 and 1015 GeV.

Grand unification theories have immediate interest in cosmology. In Chap.10
we discussed that, at the beginning of the expansion of the Universe, the average
temperature was of the order of 1032 K. At this temperature, all the fundamental
interactions had the same status. After going below 1028 K, the separation between
the strong and electroweak interactions took place. The phase transition leading to the
breaking of electroweak symmetry would have occurred between that temperature
and 1015 K.

At the present average temperature of the Universe, the forces of Nature have
the characteristics described in Chap.9. From the initial equality between all the

Fig. 11.15 Qualitative
behaviour of the strong,
weak, and electromagnetic
coupling constants as
functions of energy. The
unification, if it exists, would
take place at around
1015 GeV.

1

1 102 1015 GeV

U(1)

SU(2)

SU(3)
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fundamental interactions, reached at the very high temperature of 1032 K, the cooling
of theUniverse has brought us to the hierarchy in the forces ofNature observed today.

11.11 Inflation

Looking in different directions in space, we observe similar physical properties. In
particular, we find a background radiation with nearly the same temperature. It is
thus natural to wonder how these phenomena, separated by enormous spacelike
intervals, can look so similar? This has led to the postulation of a theory called
inflation, which assumes that the very early Universe expanded at an accelerated
rate, or inflated. Typically, during the inflationary stage the cosmic scale factor R(t)
grows exponentially with time.

If there existed a scalar field φ displaced from its equilibrium position, with a
scalar field potential V (φ) flat enough for the field to slowly roll down toward the
minimum of the potential, the Universe may have been dominated by the energy
density of the scalar field, which would have acted as vacuum energy, and this would
have caused an exponential expansion of the Universe.

Let R(t) be the Friedmann scale factor of the Universe. The energy density of the
field φ is

1

2
φ̇2 + V (φ) = ρφ. (11.22)

Let us assume that the total density ρ is dominated by the energy density of the scalar
field φ, i.e. ρ ≈ ρφ . We can write the Friedmann equation in the form

Ṙ2

R2
= 8πGρ

3
− K

R2
. (11.23)

If the scalar field potential V (φ) is sufficiently flat, we find that φ evolves slowly,
φ̇/MP � Ṙ/R. That is, φ (in units of Planck mass) evolves more slowly than the
expansion of the Universe, and ρφ 	 V (φ) ∼ const. Then the Friedmann equation
(11.23) gives an exponential solution:

R(t) ∼ et/t ′
, (11.24)

where t ′ 	 (8πGV (φ)/3)1/2. This process continues until φ reaches the vicinity of
the minimum of the potential. After that, φ evolves more quickly, and the production
of particles heats the Universe.

After this phase transition, the Universe continues its evolution in the era domi-
nated by radiation, where R(t) ∼ t1/2. But the consequences of the brief inflationary
period are many. Let us mention two:

• It explains the flatness of the observable Universe;
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• It solves the so-called horizon problem of explaining how causally disconnected
regions of the Universe can show similar properties.

The flatness of the Universe can be understood if the matter density is critical. The
duration of order 100t ′ for the inflationary period is enough to make the curvature
term K/R2 in (11.23) in negligibly small, and to make the Universe grow to its
present dimensions. The second problem of the apparent regularity of the Universe
in all directions can also be understood: the distances between the initially causally
connected regions grew exponentially during the inflationary period.

Baryogenesis and Nucleosynthesis. As we saw in Chap.7, the Dirac equation pre-
dicts the existence of antiparticles of the corresponding particles. Also, the C PT
symmetry states that a particle and its antiparticle have exactly the same mass and
lifetime, and exactly opposite charge. Then why does our Universe have a matter–
antimatter asymmetry? Did this exist at the beginning of its evolution, or did it appear
later? These questions have not yet found convincing answers.

Andrei Sakharov pointed out in 1967 that three conditions are required for the
baryon asymmetry: (i) baryonnumber non-conservation; (ii)C andC P violation, and
(iii) interactions out of thermal equilibrium. We have seen that C P violation indeed
occurs inNature. However, there is no evidence of baryon number violation, although
it would be a necessary condition to produce more baryons than antibaryons. The C
symmetry violation would act to avoid that the interactions producing more baryons
than antibaryons be compensated by someC-symmetric interactions producingmore
antibaryons than baryons. To be out of equilibrium is also necessary, since otherwise
the C PT symmetry would erase any previous baryon asymmetry.

Nucleosynthesis is the process of formation of the chemical elements. Some light
elements like hydrogen were formed in the earlier stages of our Universe. This is
called Big-Bang nucleosynthesis. Heavier elements, from helium to carbon to iron,
were formed in stellar nuclear fusion processes. Even heavier elements are formed in
supernova explosions. This has been observed in gamma-ray spectral lines coming
from supernova.

Elements like gold and platinum are now known to be formed in collisions of
neutron stars, as already mentioned in Chap. 10. This has been witnessed in the
merger of two neutron stars to form a black hole, observed in August 2017.

11.12 Supersymmetry and Superstrings

Supersymmetry has arisen over the last few decades as a symmetry between fermions
and bosons. The idea started from the consideration of models in which the variables
representing bosons (which commute) may have transformation properties involving
products of anticommuting quantities (Grassmann variables). Following this idea, the
notion of superspace was proposed as an extension of spacetime. This involves the
addition of four anticommuting coordinates θα to the four spacetime coordinates xμ.



400 11 Unification of the Forces of Nature

In this way transformationsmixing bosonic and fermionic fields can be implemented,
and the supersymmetric models are invariant under these transformations.

The idea of supersymmetry in the context of four-dimensional quantum field
theorywas put forward in the beginningof the 1970s independently by several groups:
Yuri Gol′fand and Evgeny Likhtman in 1971, Dmitri Volkov and Vladimir Akulov in
1972, and Julius Wess and Bruno Zumino in 1974. Supersymmetric particle physics
models have been continuously developed ever since, and nowadays the search for
the supersymmetric partners of the known particles is one of the priorities of the high
energy physics experiments at the Large Hadron Collider at CERN.

One consequence of supersymmetry is the possibility of building theories with-
out divergences (these theories remain finite at any order of perturbative expansion).
A supersymmetric theory of special interest is the one whose local supersymmet-
ric transformation properties (supersymmetries depend on the spacetime coordi-
nates) lead to supergravity, i.e., a supersymmetric theory of gravity. Supergravity,
coupled with supersymmetric Yang–Mills theories, gives rise to interesting unified
phenomenological models. However, they do contain divergences. Since in super-
symmetry, a supersymmetric bosonic partner would correspond to each fermion, and
vice versa, the photon would have a partner called the photino, the electron would
have a scalar partner, the selectron, the graviton with spin 2 would have as partner the
gravitino with spin 3/2, and so on. No supersymmetric partner of any of the known
elementary particles has been detected experimentally, but the idea of supersymmetry
is interesting and promising.

The supersymmetric models have particular interest in string theory, the theory of
extended elementary objects, in which what is quantized is not located at spacetime
points, but on curves that can be open or closed. Superstring theory (or the super-
symmetric theory of strings) is considered a promising model for the unification of
the four fundamental forces of Nature.

The theory of strings evolved from an old theory of dual models for strong inter-
action. In 1968, Gabriele Veneziano constructed a dual model amplitude for strong
interaction scattering of mesons which was interpreted as a theory of oscillating
strings, independently, by Yoichiro Nambu (1968), Holger Bech Nielsen (1969), and
Leonard Susskind (1969). In 1970, fermionic excitations were added to the string
theory byPierreRamond, and later byAndréNeveu and JohnSchwarz. Supersymme-
try in the context of string theory was discovered in 1971 by Jean-Loup Gervais and
Bunji Sakita. The research in superstring theory has been one of the most vigurously
developing branches of theoretical physics ever since.

It is interesting, as an example, to write the action corresponding to a string.
Above all, when the string moves in spacetime, it sweeps out a two-dimensional
surface, the so-called worldsheet, having as coordinates two variables: σ , defined in
the interval (0, π), and τ , which can be any real number. The spacetime coordinates
are defined in a D-dimensional space as Xμ(τ, σ ), where μ = 0, 1, . . . , D − 1. If
hαβ is the metric on the worldsheet, and gμν(X) is the spacetime metric, the action
of the bosonic string is written as
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S = T

2

∫

dτdσ
√

hhαβ gμν(X)∂α Xμ∂β X ν, (11.25)

where T is the tension of the string, proportional to the reciprocal of the gravitational
constant G, h = − det(hαβ), and the partial derivatives are taken with respect to
the worldsheet variables τ and σ . As a consequence, in the quantized theory, the
typical length of the string is of the order of the Planck length, l ∼ lP = √

G�/c3.
This formula is called the Polyakov action, in honour of Alexander Polyakov, who
quantized it by the path integral method in 1981. The action was introduced in 1976
by Stanley Deser and Bruno Zumino, and independently by Lars Brink, Paolo di
Vecchia, and Paul Howe.

In the case of the bosonic string theory, the number of spacetime dimensions is
D = 26. In the supersymmetric theory, which would be a modification of (11.25)
including fermionic fields, D = 10. The six additional coordinates (compared to our
4-dimensional spacetime) would have been coiled up, or compactified, at the time
of the Big Bang. The strings themselves can be either open or closed. The theory of
superstrings leads to the only known finite theory of quantum gravity, and it seems
to reproduce all the interactions found in Nature. However, the theory is not directly
verifiable experimentally.

Five principal string theories were developed, up to the mid-1990s, each one
having different mathematical properties, in particular, the number of dimensions,
and each best describing different physical circumstances. All these theories looked
equally correct. Then Edward Witten proposed that these five theories might be
describing the same phenomenon viewed from different points of view. The essential
new feature was that, by invoking certain symmetry operations sometimes called
dualities, these different string theories turned out to bear such deep relations to one
another that they could actually be taken to be equivalent string theories.

Each of the string theories is a special case of the M-theory.
M-theory also incorporates a number of other string-related and supersymmetry-

related ideas. Strings are actually a special case of a more general notion which
includes higher dimensional structures called p-branes, or simply branes, which have
p spatial dimensions plus one temporal dimension, the worldsheet being (1 + p)-
dimensional. These structures are embedded in an 11-dimensional space. Of partic-
ular interest are the D-branes (or Dq -branes) which are timelike structures of 1 + q
spacetime dimensions (q space dimensions and time). The two ends of an open string
are supposed to reside on a D-brane.

Due to its logical consistency, and the fact that it includes the Standard Model,
many physicists believe that string theory is the first candidate for a Theory of Every-
thing (TOE), a manner of describing the known fundamental forces (gravitational,
electromagnetic, weak, and strong interactions) and matter (quarks and leptons) in a
mathematically complete system. However, some other prominent physicists do not
share this view, because it does not provide quantitative experimental predictions.

A closed string looks like a small loop, so its worldsheet will look like a pipe or,
more generally, a Riemann surface (a two-dimensional oriented manifold) with no
boundaries (i.e., no edge). An open string looks like a short line, so its worldsheet will
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Fig. 11.16 Worldsheet representation of some open and closed superstring interactions.

look like a strip or,more generally, aRiemann surfacewith a boundary. Interactions in
the subatomicworld are described byworldlines of pointlike particles in the Standard
Model and by a worldsheet swept up by closed strings in string theory.

Strings can split and connect (see Fig. 11.16). This is reflected by the form of
their worldsheet. If a closed string splits, its worldsheet will look like a single pipe
splitting into (or connected to) two pipes. If a closed string splits and its two parts
later reconnect, its worldsheet will look like a single pipe splitting into two and then
reconnecting, which also looks like a torus connected to two pipes. An open string
doing the same thing will have a worldsheet that looks like a ring connected to two
strips.

Brane Cosmology. It is assumed that the visible, four-dimensional Universe is
restricted to a D-brane inside a higher-dimensional space, called the bulk. The addi-
tional dimensions are compactified, so the observed Universe contains extra dimen-
sions. Other branes may be moving through this bulk. Interactions with the bulk,
or with other branes, can introduce effects not seen in more standard cosmological
models.

This model proposes an explanation for the weakness of gravity as compared to
the other fundamental forces, by assuming that the other three forces are localized
on the brane. Not imposing this constraint on gravity, a large part of its attractive
power ‘leaks’ into the bulk. As a consequence, the force of gravity should appear
significantly stronger at small scales, where less gravitational force has ‘leaked’.
Various experiments have been suggested to test this hypothesis.

Problems

Problem 11.1 Discuss the decay of μ+. By considering the fact that νμ + n →
e− + p is forbidden, find the possible lepton number assignments that satisfy additive
quantum number conservation laws.

Problem 11.2 Express the muon decay μ+ → e+ + νe + ν̄μ using a Feynman dia-
gram.
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Problem 11.3 Decide whether the following particles can exist or not according to
the quark model:

(i) A baryon with spin 1.
(ii) An antibaryon with electric charge +2.
(iii) A meson with charge +1 and strangeness 1.
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Chapter 12
Physics and Life

Life sciences are among the most interesting fields of contemporary scientific
research. The biological world has such awide range of complexities that any attempt
to present it in any depth would take us outside the scope of the present book. In the
present chapter, we shall thus only refer to a few specific physical problems in the
biological world.

12.1 Order and Life

Biological systems have the property of being highly complex and highly organized,
and from the simple bacterium to the human being, living organisms perdure and
reproduce thanks to a continuous exchange of energy and matter with the environ-
ment. The maintenance of this high level of biological order in living organisms in
comparisonwith the non-living environment can be understood in terms of their prop-
erty of being thermodynamically open systems. (Viruses are apparent exceptions, but
they cannot multiply unless they infect a cell, that is, unless they become parts of
an open system.) In contrast with the non-living phenomena in which the entropy
tends to grow, there is a tendency for the entropy to decrease in living systems. Put
another way, they have a tendency to increase their information or negative entropy
content (or information density, see Chap.2). But while living systems increase both
structural and functional biological order, they continuously produce biochemical
reactions with the opposite consequence of increasing the entropy. The capacity of
self-replication makes life a unique process in Nature. It is also characterized by
the essential properties of feed-back and other control and communication mecha-
nisms. These mechanisms have been extended to technology and evolved to complex
adaptive systems such as computers and robots.

An essential component of living systems is DNA—the deoxyribonucleic acid.
DNA is the depository of the genetic information, and the cells of each organism

© The Author(s), under exclusive license to Springer-Verlag GmbH, DE,
part of Springer Nature 2021
M. Chaichian et al., Basic Concepts in Physics, Undergraduate Lecture Notes in Physics,
https://doi.org/10.1007/978-3-662-62313-8_12

405

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-62313-8_12&domain=pdf
https://doi.org/10.1007/978-3-662-62313-8_12


406 12 Physics and Life

Fig. 12.1 The two DNA
strands showing the
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(except certain cells related to reproduction) contain all the information for its devel-
opment as a whole individual of a given species. DNA is composed of two long
polymer strands made up of four basic nucleotides, adenine, guanine, cytosine, and
thymine (see Fig. 12.1). These provide a code of four symbols in terms of which the
blueprint for any living organism can be written. There are some n = 109 molecules
in a part of a cell volume of order 10−15cm3, and this implies the immense number of
4n possible states. The information density is estimated as 1 bit per cubic nanometer.
This means approximately 1012 Gb cm−3.

The two DNA strands are anti-parallel, that is, they run in opposite directions to
each other. The DNA information is read by means of the genetic code by copying
stretches of DNA into RNA (ribonucleic acid) in a process called transcription.

James Watson (b. 1928) and Francis Crick (1916–2004) discovered the helical
structure ofDNA in 1953. For this and subsequentwork theywere jointly awarded the
Nobel Prize in Physiology or Medicine in 1962, with Maurice Wilkins. BothWatson
and Crick were influenced on their early interest in genetics by Erwin Schrödinger’s
classical book “What is life?”.

At this point we should mention Rosalind Franklin (1920–1958). For her precur-
sory work, she undoubtedly deserves an important place among the names behind
the discovery of the structure of DNA. She is best known for her work on the X-ray
diffraction images of DNA, particularly the so-called “Photo 51”, at King’s College,
London, which led to the discovery of the DNA double helix. Unfortunately, Nobel
Prizes cannot be awarded posthumously.

Evolution is an essential characteristic of life. According to Charles Darwin, the
struggle for life and the survival of the fittest is the key mechanism which produces
evolution. This is strongly dependent on environmental changes. Changes in a species
are due to genetic mutations. Those making the fittest individuals will survive in the
species. Those which do not will disappear. The mechanisms triggering mutations
are not yet fully understood.

Biological order is maintained thanks to the permanent exchange of substance
and radiation with the environment, so that there is a net inflow of information or
negative entropy toward the living matter. For open thermodynamical systems, the
change in entropy over an infinitesimal time interval is given by
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dS = deS + di S, (12.1)

where deS is the entropy flow from the exterior and di S is the change in entropy
produced by the irreversible processes which occur inside the system. The entropy
variation di S is always positive, but deS can have arbitrary sign, and for this reason,
during its evolution, a system can reach a state in which its entropy is lower than in
the initial state. Such a state can be maintained indefinitely if a condition is satisfied
in which the flow of negative entropy compensates the entropy produced inside the
system:

deS ≤ −di S, (12.2)

that is, dS ≤ 0. This expresses in a quantitative way what was said before about the
maintenance of biological order.

The expression (12.2) is valid under conditions of non-equilibrium. Near equi-
librium, the tendency to destroy order dominates over the tendency to create it. But
under certain favourable non-equilibrium conditions, order can be created. A simple
physical example is the convective (ordered) motion of a layer of liquid heated from
below.

Another interesting example is the emergence of order in a laser. The coherent
light coming from the laser is highly ordered. However, the light from the lamp
exciting the atoms is incoherent and highly disordered. This can be interpreted as a
phase transition in a non-equilibrium system. Below a transition threshold, one has
the incoherent regime. Above the threshold, one has the coherent state.

Similarly, the complex chemical reactions and regulatory processes that allow
the maintenance of biological order take place under conditions of non-equilibrium.
These ideas have been widely discussed by Hermann Haken (b. 1927) and Ilya
Prigogine (1917–2003).

If we return to the content of (12.2), there is a question concerning the ultimate
source of the negative entropy of living systems. This problem is not yet com-
pletely solved. In animals, the source of negative entropy is the food coming from
other animals or from plants. In the case of the vegetal world, George Gamow
(1904–1968) and Wesley Brittin (1917–2006) suggested in 1961 that solar radia-
tion could be the source of negative entropy, and the process of photosynthesis is
compatible with the laws of thermodynamics.

Basically, the argument goes as follows: the Sun emits high-energy photons at the
temperature TSun = 6,000K. While traveling toward the Earth, the solar radiation
becomes very “diluted” due to the expansion in space and it reached the Earth at the
temperature TEarth = 300K, with much lower energy density. The process that takes
place at the impact of the diluted high-energy radiation with the Earth is essential:
the contact with a material surface allows the exchange of energy between different
frequencies, and the high-frequency photons are transformed irreversibly in a much
larger number of low-energy photons. This irreversible process is accompanied by
a significant increase in the entropy of the radiation. If the material surface which
engenders this process is organic, specifically—the cloroplasts in the leaves of the
plants, the increase in entropy is used to compensate for the decrease of entropy
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which takes place in creating organic molecules out of water (H2O) and carbon
dioxide (CO2). According to the second law of thermodynamics, the increase in
radiation entropy in the transition from a high-energy non-equilibrium state to a low-
energy equilibrium state has to be larger than the decrease of entropy accompanying
the organic matter formation.

The physical process that takes place when energy is exchanged between different
frequencies is equivalent to a flow of heat from a hot source at the temperature TSun to
a cooler reservoir at the temperature TEarth. The total energy E is conserved, therefore
the entropy variation is basically

�S ∼= E

(
1

TEarth
− 1

TSun

)
.

If we neglect the term containing the temperature of the Sun, 1/TSun, and we put
E = nhν, where n is the number of photons participating in the synthesis of one
organic molecule, then

�S ∼= E
1

TEarth
.

Numerically, considering red light with ν = 4 × 1014 Hz and TEarth = 300K, we
obtain

�S ∼= 10−14n ergK−1/molecule = 150 n cal K−1 mol−1.

This increase in entropy has to be compared with the decrease taking place in the
basic photochemical reaction

6CO2 + 6H2O
light−→
energy

C6H12O6 + 6O2.

This reaction requires at least three photons and corresponds to an entropy decrease
of 40 cal K−1 mol−1. Thus, Brittin and Gamow concluded that the growing of plants
in sunlight is consistent with the second law of thermodynamics, if the process of
photosynthesis has at least 10% efficiency in entropy conversion. This means that
negative entropy can be extracted from solar radiation and used for the construction
of biological order by photosynthesis.

In this way one can justify the primary origin of biological order. However, some
researchers consider that this is not enough to completely justify the increase in order
(e.g., in the division of a cell, where information is doubled).

A pair of hot and cold sources around which biological order is created has been
found in the cold and dark conditions on the deep ocean floor. During the last few
decades, very active colonies of shrimps and other organisms have been discovered
around hydrothermal vents. Before the discovery of these underwater vents, all life
was believed to be driven by sunlight. However, these organisms seem to get their
nutrients directly from the Earth’smineral deposits, in extreme conditions of pressure
(of order 1000kg/cm2), salinity, and temperature (in the range 150–400 ◦C). It is



12.1 Order and Life 409

believed that they derive their basic sustainability from hydrogen sulfide (which is
otherwise toxic for terrestrial life).

It is an interesting fact that, around the hydrothermal vents containing hydrogen
sulfide, there is the coldwater of the ocean (around 3–4 ◦C).We thus have two sources
at different temperatures, which create conditions for the cyclic production of work,
or creation of order from disorder, as in a heat engine, or in the photosynthesis
process. But in this case it is a new mechanism of chemosynthesis that mediates the
creation of biological order.

12.2 Life and Fundamental Interactions

From the point of view of the fundamental interactions, when intracellular biological
processes take place by means of chemical reactions, electromagnetic forces and
quantum laws play the main role. The energies involved in these reactions is of the
order of a few electron-volts per particle. Electromagnetic interactions aremanifested
in most cell processes. The gravitational interaction is important from the point of
view of their mass and weight, and for their motion and external location as a whole.
However, it does not to play an important role in intracellular processes. It also seems
that strong interactions are unimportant due to the scale of energies associated with
them, which is much higher than the average energies involved in the biochemical
reactions of living organisms.

On the other hand it would appear that the electroweak interactions do play a
significant role, related to the microscopic asymmetry observed in living organisms
with regard to chirality.

12.3 Homochirality: Biological Symmetry Breaking

A mirror exchanges left and right: if you are right-handed your mirror image is
left-handed, and vice versa (Fig. 12.2). Right to left exchange is a mathematical
transformation called inversion. Thus, a left glove is an inversion of a right glove,
i.e., it is its mirror image. Recall that the mirror inverts the space in the direction
perpendicular to it: if we come close to it, the image also comes closer, that is, it
moves in the opposite direction to us. However, directions parallel to the mirror do
not change and if we move up or down, or left and right, the image moves in the
same directions. But the image given by the mirror, if alive, could not exist in our
world. And this would be so, not because of any important external difference (in
general bodies have some approximate bilateral symmetry), or because its organs
were disposed in the opposite way. The reason is that this living mirror image would
differ microscopically. At the cellular level, its substance would be inverted with
respect to ours, with dramatic consequences.
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Fig. 12.2 A mirror inverts
an image. If you are
right-handed, your mirror
image is left-handed.

The components of the basic macromolecules of life (DNA, RNA, proteins and
polysaccharides) are amino acids and sugars. These molecules can have two inde-
pendent spatial structures, called enantiomeric forms, which are the mirror images of
one another—the d and l forms (Fig. 12.3). This type of chirality at molecular level
manifests itself as birefringence (or optical activity) at macroscopic level: these chi-
ral forms have the propriety of rotating the plane of polarized light. The substances
which rotate clockwise the plane of polarized light when viewed toward the source
are caller dextrorotatory (dextrogyre) or right-handed and symbolized by “+” or
“d”. Those which have the opposite effect are called levorotatory (levogyre) or left-
handed and denoted by “−” or “l”. Byd-(l-)amino acid andd-(l-)sugar is designated
that form of the molecule which can be synthesized from d-(l-)glyceraldehyde, the
simplest chiral sugar molecule. The d/l nomenclature is not directly linked to the
optical activity of the enantiomer: while d-glyceraldehyde itself is dextrorotatory,
the same is not valid for all d-amino acids or all d-sugars. For example, the amino
acid d-alanine and the sugar d-gulose are levorotatory. Of the 20 standard proteino-
genic amino acids, only glycine is symmetric or achiral. Most of the more important
macromolecules of life are built from chiral pieces linked together in such a way that
all the pieces have the same chirality. This is a biological breaking of symmetry, and
we call this property homochirality.

The proteins of living substance are formed almost without exception from l-
amino acids (some d-amino acids appear in the cell walls of some bacteria). For this
reason, our twin in the mirror could not survive in our world: her amino acids and
proteins would have opposite chirality to ours, and if she ate our food, she could not
digest it. To feed her, we would have to synthesize artificial nutrients in a laboratory.

Molecular chirality reminds us of the chirality of neutrinos, and it suggests that,
if worlds of antimatter existed with living organisms in them, their anti-amino acids
would be of type d. The fact that most living substance is composed essentially from
l-amino acids and other substances of definite chirality has always been an enigma,
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Fig. 12.3 Enantiomers d
and l of the glyceraldehyde.
Each molecule is the mirror
image of the other. The
chirality is due to the fact
that the middle carbon atom,
in the sp3 hybridization
state, is asymmetric—it is
attached to four different
groups of atoms.

and several hypotheses have been formulated to explain this. Among them, it has been
assumed that circularly polarized light coming from synchrotron radiation produced
in pulsarsmay have had an influence on the selectionmechanism.Another hypothesis
assumes that homochirality is due to the chiral asymmetry of weak interactions,
leading to the non-conservation of parity discussed in Chap.9.

12.4 Neutrinos and Beta Decay

As pointed out earlier, neutrinos are extremely light particles, and millions of them
maypass throughuswithout interactingwith a single atomof our bodies (they interact
weaklywith other particles).Wehave also explained that neutrinos are usually created
in the beta decay of neutrons (or by quarks inside the neutron) inside atomic nuclei:
the neutron emits an electron and an antineutrino, and in the process the initial nucleus
increases its atomic charge Z by one, and becomes another element. For instance, if a
carbon 14 (Z = 6) nucleus suffers beta decay, it emits an electron and an antineutrino
and becomes a nitrogen (Z = 7) nucleus.

Up until 1954 it was believed that all phenomena in elementary particle physics
had the property of P-symmetry (parity), that is, for any process, its mirror image
would occur equally often in Nature. But it was discovered that beta decay does not
have such a property. When it decays, the nucleus, with a spin that is a half integer
multiple of �, as indicated by the arrow in Fig. 9.1, emits an electron and an antineu-
trino in opposite directions. The electron and the antineutrino also have spin �/2.
But the helicity, which combines the direction of rotation with the direction of the
velocity of the particle, is as in a right-hand screw for the antineutrino, while for the
electron it is as in a left-hand screw. However, the symmetrical process or mirror
image of beta decay, that is, the case of a nucleus which emits a right-handed elec-
tron and a left-handed antineutrino, simply does not occur in Nature. This property,
as pointed out earlier, is called non-conservation of parity. On the other hand, an
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antimatter nucleus, composed of antineutrons and antiprotons (the latter with nega-
tive charge), in the process of beta decay, would emit a right-handed positron and a
left-handed neutrino.

Anatural question arises: Is parity non-conservation related tobiological homochi-
rality? There are reasons for believing that it is. The field maintaining the electrons
around the nucleus in an atom is the electromagnetic field. But as we have already
seen, it has been established that the electromagnetic and weak fields (associated
with neutrino interactions) form a unified electroweak field. This means that, besides
the electric attraction between protons and electrons in the atom, there is an addi-
tional force, extraordinarily smaller, which is exerted not only between protons and
electrons, but also between neutrons and electrons.

This force, though it is much weaker than the electromagnetic force, may give
an extremely small energy advantage to the l-enantiomer over the d-enantiomer,
equivalent to one part in 10−16, as suggested in 1978 by Vladilen Letokhov. This is
because this force has left-hand selectivity. In spite of the smallness of this number,
if one bears in mind that the evolution of life on Earth has been produced over
several billion years, such a period of time may guarantee the complete dominance
of organisms based on l-amino acids over those composed of d-amino acids, as a
consequence of a cumulative effect. That is to say, the energy difference would be
imperceptible in a reaction happening over a short time, but would lead to an absolute
supremacy in biochemical evolution extended over billions of years.

The problem of homochirality has attracted the attention of many scientists, like
Dilip K. Kondepudi and G. W. Nelson, Abdus Salam, Cyril Ponnamperuma, Julian
Chela-Flores. In particular, Salam suggested considering the problem in terms of
symmetry breaking, as a consequence of a phase transition at a certain critical tem-
perature Tc. This temperature would be higher than 300K, unless the so-called pre-
biotic conditions occurred at lower temperatures. There are various candidates for
the mechanism producing the phase transition, and this remains an open question.

On the other hand, experiments support both parity non-conservation and the
influence of circularly polarized light as a cause for homochirality.

An experiment at Stanford University provides evidence in favour of the first
hypothesis. A mixture of equal amounts of l-leucine and d-leucine was prepared,
then bombarded with left-handed electrons (like those produced in the beta decay of
nuclei). It was observed that the left-handed electrons decomposed a larger amount
of d-leucine than l-leucine. The opposite experiment, bombarding the mixture with
right-handed electrons, destroyed a larger amount of l-leucine than d-leucine. But a
similar effect was achieved in 1976 by irradiating leucine with circularly polarized
ultraviolet light.

In connection with the first mechanism, such a process could have occurred nat-
urally in living matter throughout its evolution, due to the influence of carbon 14
formed when atmospheric nitrogen is bombarded with neutrons produced by cosmic
rays. This carbon 14 is subsequently assimilated by plant leaves via photosynthesis,
and thereby gets incorporated into living matter. Later, the carbon 14 nuclei suffer
beta decay, transforming back into nitrogen and emitting right-handed antineutrinos
and left-handed electrons. Throughout the evolution of life, organic molecules hav-
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ing been bombarded continuously by left-handed electrons from the decay of carbon
14 contained in their own bodies, type l-amino acids would have had better chances
of survival.

If on Earth there was initially a biological sector based on l-amino acids and
another based on d-amino acids, they would have been independent, because the
exchange of amino acids and proteins between them would have been impossible.
It is not difficult to imagine that, with any small imbalance between the populations
of the two sectors, after a sufficiently long time, the smaller one would have been
reduced to extinction. In other words, the existence of a mechanism that favoured
the formation of l-amino acids over d-amino acids, even in extraordinarily small
amounts, would have been enough to ensure its absolute prevalence over the other,
producing life aswe know it today.d-protein-based lifewould have beenwiped out in
the early stages of its evolution, since it would have been less apt than l-protein-based
life.

Concerning the existence of extraterrestrial homochirality, the Murchison mete-
orite, studied since 1970, contains several amino acids. At first it seemed that both
enantiomers occurred in the same amounts, but detailed studies by Cronin et al.
(1997) discovered that this meteorite contained a significant excess of two l-amino
acids: isovaline and α-methylnorvaline. The extent to which this extraterrestrial mat-
ter coming from meteorites has influenced the evolution of terrestrial homochirality
is a current subject of research, but the evidence seems to indicate that homochirality
is universal, and that its presence is an indication of the existence of life in other
regions of the Universe.

12.5 Anthropic Principle

Modern science has been characterized by an evolutionary process in which the
role of Man as an observer has been gradually getting a more and more central
position. As we saw in Chap.1, Man was displaced from his position (central, but
subordinated to religious dogma) in the medieval Aristotelian–Christian philosophy
by the Copernican model of the Universe, and even more, by Newtonian mechanics,
inwhich the basic laws ofmotion are independent of the observer and of divine action.
Classical electromagnetic theory, optics, and thermodynamics further contributed to
this line of thought.

However, the special theory of relativity started to locate the observer in a singular
position due to new concepts such as the relativity of the simultaneity, proper time,
and others. Quantum mechanics then attributed an outstanding role to the observer,
starting with the concept of wave function and the observer’s role in the concept
of measurement and the collapse of the wave function. And even this goes further,
enlarging the concept of reality by conceiving of virtual or non-observable processes
as being part of reality, and capable of leading to observable physical effects.

Man created science with the purpose of having a description and a logical and
systematic knowledge of objective reality, but since he is part of this objective world,
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he cannot avoid applying this description to himself. On the other hand, this descrip-
tion is conditioned by the fact that the physical, chemical, and cybernetic processes
determining the functioning of his own brain do not escape the laws and principles
that he tries to identify for the external world. He can observe the Universe because
he exists, and this constrained existence as an open thermodynamical system, based
on carbon chemistry and other essential substances for life, is possible because the
Universe is old enough to have allowed a long process of stellar evolution, of the
order of 1010 years.

As a consequence of its age, theUniverse is also sufficiently large due to expansion
to have given rise to the formation of thousands of millions of galaxies, each contain-
ing thousands of millions of stars inside which nuclear combustion has occurred, and
with it the synthesis of elements heavier than hydrogen. In this way, evolution could
give rise to the formation of planets and to the appearance of exceptional conditions
for the advent of life on some of them, as on our own planet, but probably on millions
of other planets too.

Many thinkers have wondered whether one can conceive of a Universe eternally
without life. Does it make sense to conceive of a Universe without somebody able to
speak about its existence? Several physicists—the pioneers being Gerald J.Whitrow,
Brandon Carter, and John A. Wheeler suggested an answer: the anthropic principle.
In its weak form, it can be stated as suggested by John D. Barrow and Frank J. Tipler:

The observed values of all the physical and cosmological quantities are not equally probable,
but they take values restricted by a first requirement, that places exist where carbon-based
life can evolve, and by a second one, that the Universe be sufficiently old so that it has already
happened.

In its strong form, the statement becomes:

The Universe should have properties that allow life to develop in some stage of its history.

An implication of the strong anthropic principle is that physical constants and laws of
Nature should be such that life can exist. This gives rise to different interpretations.

Evidently, the anthropic principle is a speculative hypothesis in the framework of
physics, and in a certain sense, it claims to answer in an affirmativewayquestions like:
Is life a universal phenomenon? In other words, is the appearance of life, in particular,
of intelligent beings, the manifestation of universal and unavoidable laws, like those
governing other phenomena, e.g., physical laws? These ideas can encourage different
attitudes, one of which is the search for other manifestations of life in our Universe,
in particular, the search for intelligent extraterrestrial life.

12.6 Search for Extraterrestrial Life

There is increasing interest in finding extraterrestral life. Up to 2018, several organic
molecules, the building blocks of living systems, have been identified in some places,
such as onMars byNASA’s rover Curiosity. Thiophenes, benzene, toluene, and small
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carbon chains, such as propane or butane, have been found. Methane (which may
also have an inorganic origin) had been found previously, but now observations over
three Martian years indicate a seasonal variation. Furthermore, on Saturn’s moon
Enceladus, analysis of data from NASA’s Cassini spacecraft indicates the presence
of large organic molecules ten times heavier than methane. And in a mass of gas and
dust called the Taurus Molecular Cloud 1, at 430 light-years from Earth, researchers
have used the Green Bank Telescope in West Virginia to identify signatures of the
molecule benzonitrile, a building block for polycyclic aromatic hydrocarbons (PAH).
Although PAHmolecules are usually carcinogenic, they also contain the ingredients
for the seeds of life. Obviously, these findings do not yet mean that we have found
extraterrestrial life itself, but they are perhaps a first step towards it. Concerning the
search for intelligent life, several projects have been carried out over many decades,
such as the SETI project (Search for Extraterrestrial Intelligence). Its purpose is to
try to detect intelligent extraterrestrial life from Earth, as opposed to looking for it
from outer space. Several attempts have been made and the names Paul Horowitz (b.
1942), Carl Sagan (1934–1996), and Frank Drake (b. 1930) should be mentioned,
among others, as pioneers of signal detection research. However, after many years,
this research has not succeeded in producing any positive result.

In 1950, Enrico Fermi suggested that, if technologically advanced civilizations
are common in the Universe, then they should be detectable one way or another.
However, it may be that our assumptions are flawed, since we assume technological
development comparable with our own. Can we be sure that more advanced commu-
nication technologies could not be found, e.g., not based on electromagnetic signals?
Can we be sure that means of transportation not imagined by ourselves could not be
found in future?

A typical mistake made when thinking about extraterrestrial beings is to assume
that they are similar to us, but just a few hundred years more advanced. In that
case, we may simply observe that, even the most imaginative thinkers of the Middle
Ages were unable to guess the progress to be made by our present communications
and travel technologies. It is very important also that we are distant from them in
scientific language and concepts. We must extrapolate these ideas to the future: we
are surely unable to guess the technological possibilities and scientific advances of
a civilization hundreds of thousands, or million years ahead of us.

Michio Kaku has suggested travel through wormholes. If we fold a sheet of paper
and punch a hole through it, we realize that a wormhole is the shortest distance
between two points, rather than the straight line joining them on the unfolded surface.
According to Kaku, a civilization able to harness the power of stars might perhaps
use such shortcuts through spacetime, and bridge the vast distances of space to reach
Earth. Kaku believes that only civilizations millions of years more advanced than us,
and capable of using wormholes as shortcuts, could reach Earth and perhaps visit us,
coming from unbelievably remote regions of space and time.

Here arises the main question: to what extent is communication possible, accord-
ing to our present standards, between societies separated from us by such enormous
lapses of time, and scientific and technological gaps, if they are ahead us as we are,
for instance, from Australopithecus or Homo erectus in the past?



416 12 Physics and Life

Literature

1. E. Schrödinger, What is Life? (Cambridge University Press, Cambridge, 1944). An excellent
study of the thermodynamics and statistical physics of biological systems. Several topics dealt
with here remain valid today

2. N. Wiener, Cybernetics or Control and Communication in the Animal and the Machine (MIT
Press, 1948). This was a pioneering book on cybernetics, by one of the creators of the field

3. G. Nicholis, I. Prigogine, Self Organization in Non-Equilibrium Systems (Wiley, New York,
1977). The thermodynamics of open systems, like biological systems, is very clearly discussed
in this book

4. G. Gamow, W. Brittin, Negative entropy and photosynthesis. Proc. Natl. Acad. Sci. 47, 724
(1961). This paper supplies a quantitative argument regarding the role of low entropy sunlight
as the mechanism driving the development of biological order

5. R.P. Feynman, The Feynman Lectures on Physics, The Definitive edn., vol. I. (Pearson-Addison
Wesley, Reading, 2006). One of the first references in a physics book to the homochirality
problem was made in the first edition of this book, in 1965

6. J. Chela-Flores, Terrestrial microbes as candidates for survival onMars and Europa, in Journey
to Diverse Microbial Worlds: Adaptation to Exotic Environments (Kluwer Academic Publish-
ers, Dordrecht, 2000). Contains a very interesting discussion on the topic of exobiology

7. J.D. Barrow, F.J. Tipler, The Anthropic Cosmological Principle (Clarendon, Oxford, 1986). In
this book a deep and exhaustive analysis is made of the physical and biological basis for the
anthropic principle

8. M. Gell-Mann, The Quark and the Jaguar: Adventures in the Simple and the Complex (W.
Freeman and Co., New York, 1995). A stimulating and uncommon book, dealing with diverse
topics, from elementary particle physics to complex adaptive systems

9. D. Abbot, P.A.W. Davies, A.K. Pati (eds.), Quantum Aspects of Life (Imperial College Press,
London, 2008). This book, with a foreword by Roger Penrose, presents the hotly debated
question of whether quantum mechanics plays a non-trivial role in biology



Appendix
Solutions of the Problems

Solutions for Chap. 1

Solution 1.1 From Sect. 1.11, x(t) = A cos(ωt + φ), so we can write

K = 1

2
mẋ2 = 1

2
mA2ω2 sin2(ωt + φ), (A.1)

and since ω = √
k/m, (1.87) follows by calculating K + V . We have that the poten-

tial energy V (x), as well as the absolute value of the displacement, get their maxi-
mum values for ωt + φ = 0,π. Moreover, the force F(x) = −∂V/∂x = −kx also
reaches its maximum absolute value at these points. The kinetic energy, however, is
zero at both points, and its maximum value is reached when ωt + φ = π/2, 3π/2,
where x as well as V (x)andF(x) also vanish. Note that, for a given oscillator, the
total energy depends explicitly on the amplitude A and the constant k, and we can
write E = 1

2mω2A2. In the quantum case (Chap. 6), we will see that the harmonic
oscillator energy depends linearly on the frequency according to E = �ω(n + 1

2 ),
where � is the reduced Planck constant and n is an integer describing the quantum
state of the oscillator.

Solution 1.2 Assume the position of the planet, moving on a circular orbit around
the centre of forces, is given by the radius vector r forming an angle θ with the
diameter of the orbit. The projection, taken along the x axis, is a point x = r cos θ.
The velocity component along x is ẋ = −r sin θθ̇, leading to the kinetic energy
T = 1

2mẋ2 = 1
2mr2ω2 sin2 θ,whereω = √

GM�/r3. Theoscillator potential energy
is V = 1

2kx
2, where k = mω2. Thus, simple harmonic motion is equivalent to the

projection of uniform circular motion on a diameter. This property might be useful,
for instance, in the study of the motion of satellites around their planets. b) Note that
r can be expressed in terms of | E |, and the solution is obtained by substituting v

and r into L = mrv. The expression indicates that, for a given planetary mass, if we
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increase the orbital radius, which is equivalent to decreasing the absolute value of
the total energy, the angular momentum increases.

Solution 1.3Write the equation

T 2
V

T 2
E

=
(
1.080

1.496

)3

= 0.376. (A.2)

Then, TV ≈ 0.613TE , and for TE = 365.256 days, this leads approximately to TV ≈
224.04 days. The observed period is 224.7 days.

Solution 1.4 In most cases in what follows, we shall assume circular orbits as a
good approximation for low eccentricity. (a) We get α = m2/M� = 3 × 10−6, and
the reduced mass is m = m2/(1 + α) ≈ (1 − 3 × 10−6)m2. The attractive force is
exerted along the vector r. Thus, by calling r1E the distance from the Earth–Sun
centre of mass to the centre of the Sun,

r1E = αr ∼ 3 × 10−6r ≈ 450 km. (A.3)

Thus r1E ≈ 6.46 × 10−4R�, where R� = 6.96 × 105 km is the solar radius.
(b) For the Sun–Jupiter system, the distance from its centre of mass to the centre of
the Sun is r1J = mJr/(M� + m j ) ≈ mJr/M�. Inserting the various quantities, this
gives

r1J = 7.02 × 105 km = 1.01R�,

slightly larger than the solar radius and 1560 times larger than r1E .

Solution 1.5 (i) First calculate r1 = mJr/M�(1 + αJ ) ≈ αJ r , where αJ =
mJ/M� = 0.9 × 10−3. Use also r2 = r/(1 + αJ ). By equating the Sun’s centripetal
(with respect to its centre of mass) and gravitational forces in its interaction with
Jupiter, i.e., M�v2/αJ r = GM2�αJ/r2, it follows that v� ≈ αJ

√
GM�/r , where√

GM�/r ≈ 1.3 × 104 ms−1, leading to v� ∼ 0.954 × 10−3 × 1.30 × 104 = 12.4
ms−1.

Thus, adistant observer, by using Doppler spectroscopy, may deduce from the
Sun’s wobble that it has (at least) one companion planet. (ii) Jupiter’s centripetal
force is αJ M�v2

J/r2 = GM2�αJ/r2, from which, neglecting terms in α2
J , we get

vJ ≈ √
GM�/r ≈ 13.02 km s−1,more than 1000 times greater than that of the Sun.

Solution 1.6 (a) By imposing the equality of the centripetal and gravitational forces
for the Earth in its orbit around the Sun, we have mv2/r = GM�m/r2, from which
v = √

GM�/r . If t is the period of rotation of the Earth around the Sun, it is given
by t = 2πr/v. It follows that

r3 = GM�
4π2

t2. (A.4)

Similarly, assuming that the Sun describes a circular orbit around the centre of the
Milky Way, and estimating the galactic mass inside a sphere of radius R to be given
by MG = NM�, we get
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R3 = GNM�
4π2

T 2. (A.5)

Dividing (A.5) by (A.4) and substituting in the data,wefind N = (t/T )2 × (R/r)3 =
1.83 × 1011, fromwhichMG = NM� ∼ 3.6 × 1041 kg is the part ofMilkyWaymass
enclosed in a sphere of radius R measured from its centre O .
(b) If we assume the Sun is located at a distance of R = 0.55RG from O , where
RG is the average galactic radius, and if we assume that the Milky Way is spherical
with uniform density (of course, neither of these assumptions is accurate, but it helps
to have an approximate answer), the total mass of the Milky Way is proportional
to R3

G , and in fact approximately (1/0.55)3 ∼ 6 times greater than MG , that is,
1.1 × 1012M�.

Solution 1.7 The linear force acting on the train can be written at each point of
its trajectory in terms of the mass M(r) = 4πρr3/3 of a sphere of radius r ≤ R
concentric with the Earth, and the angle θ between the radius and the chord. It is F =
−GM(r)mT cos θ/r2 = −GM(r)mT x/r3, where x = R cos θ, R = √

x2 + y2, and
y is the distance from the centre of the Earth to the chord. Thus, themaximum force is
exerted at the extremes, since it is the projectionof the gravitational force on the chord,
and it is zero at its centre, x = 0, where θ = π/2. Here we use GM/R2 = 9.8 m s−2.
The potential energy is U = 1

2GM(R)mT x2/R3 and we have T +U = E , where
T = 1

2mT ẋ2 and E is the total energy. The train will move as a linear oscillator. The
maximum value of U is reached at the extremes xm = ±160 km, where the kinetic
energy is zero, and E = U (xm). By equating this to the maximum kinetic energy of
the oscillating train T = 1

2mT v2, reached at x = 0, we get

v =
√
GMx2m
R3

= 199 m/s = 715 km/h. (A.6)

Solution 1.8 We use spherical coordinates. The Earth rotation frequency ω is
assumed to be approximately constant. Around a point r,φ, θ, take a volume ele-
ment dV = r2dr sin θdθdϕ. Its mass is dM = ρdV . The angular momentum is
dSE = dMEr2 sin2 θ. Integrating r over (0, R), we obtain

SE = 8πρR5ω

15
= IEω,

where the quantity IE = 2ME R2/5 is the moment of inertia of the Earth around its
axis. (b) Assuming circular motion of the Moon around the Earth and equating the
gravitational and centripetal forces, we easily find LM = MM

√
GMEr . As

SE + LM = const.,

a decrease in SE is compensated by an increase in LM , i.e., δSE = −δLM . We
consider r as a function of the Earth’s period of rotation T to find δr in terms of
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δT . We assume dT = δT , from which δω = −2πδT/T 2 and assume that the day
lengthens by δT = 1.75 × 10−5 s every year. We also take the following values:
the Moon’s mass MM = 7.34 × 1025g, the Earth’s mass ME = 5.90 × 1027 g, G =
6.67 × 10−8 cm3g−1s−2, the Earth–Moon distance r = 3.84 × 1010 cm, the Earth’s
radius R = 6.35 × 108 cm, and the length of the day T = 8.62 × 104s. We get

δr = 8πR2

5MMT 2

√
MEr

G
δT .

Finally, we obtain approximately δr = 3.78 cm per year for the increase in the radius
of the lunar orbit. The observed value is around 3.80 cm per year.

Solutions for Chap. 2

Solution 2.1 (a) After removing the partition, the gas flows continuously to the
right-hand side and finally reaches equilibrium. The second half of the container
being empty, the expanding gas does not do work. Since also no heat is exchanged,
from the first law of thermodynamics, it follows that the internal energy of the
systemU is unchanged. SinceU depends only on the temperature T for an ideal gas,
the equilibrium temperature is still T . (b) The probability of the system returning
spontaneously to be confined in the volume V1 is negligibly small, and this indicates
that the process is irreversible. But from the thermodynamic point of view, this is
confirmed if we show that the entropy is increased. Let us calculate the change in
entropy, assuming the equation of state pV = NkT and no change in the internal
energy, i.e., dU = TdS − pdV = 0, which implies T

∫
dS = ∫

pdV . (The work
done by the gas is equal to the heat absorbed.) We have

�S = Nk
∫ V1+V2

V1

dV

V
= Nk ln

V1 + V2

V1
> 0. (A.7)

Thus, the process is irreversible.

Solution 2.2 The elementary change in the free energy is dF = −SdT − pdV ,
so if dT = 0, we have dF = −pdV , and for a finite change of volume, we have
�F = −p�V . In other words, in such a restricted case, we can write dF = −dW ,
and F = −W behaves as a function of the thermodynamic state.

Solution 2.3 The elementary change in enthalpy is dH = TdS + Vdp. If dp = 0,
we have dH = TdS. In other words, the heat exchanged at constant p is a function
of the thermodynamic state, since it is equal to the variation of the enthalpy, which
is a function of the thermodynamic state.

Solution 2.4 (a) At constant temperature T0, the work done by the system is
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�W =
∫ 2V0

V0

pdV = RT0

∫ 2V0

V0

dV

V
= RT0 ln 2. (A.8)

As the change in the internal energy dU = 0, the work done is equivalent to the
amount of heat absorbed by the gas to increase its volume at T = const., which is
given by

δQ = �W = RT0 ln 2. (A.9)

However, the work done on the system is δW = −�W . Note that increasing the
volume at T = const. involves keeping the system in contactwith a source at constant
temperature, dT = 0, and the system absorbs an amount of energy equal to dU =
δQ + δW = 0.
(b) At constant pressure p, the work done is

�W =
∫ 2V0

V0

pdV = 2RT0, (A.10)

which implies that, if the system has the same pressure but twice its volume, its
temperature will have been doubled. In consequence, if the internal energy was
initially U1 = 3

2 RT0, it will now be U2 = 3RT0, i.e., it will also have been doubled,
U2 = 2U1.

Solution 2.5 At the surface of the sea,

�H

RTi
= 40700

8.31 × 373
≈ 13.13, (A.11)

and deep inside the sea, where the boiling temperature of water is 400 ◦ C,

�H

RTf
= 40700

8.31 × 673
≈ 7.28. (A.12)

The pressure increases by a factor e−(7.28−13.13) = e5.85 ≈ 347. If we assume that at
sea level the atmospheric pressure is around 1 kgcm−2, the pressure increases by
approximately 1 kgcm−2 for every 10 m we go down in the sea. Thus, the factor
347 corresponds to a depth of around 3.5 km. In deep oceanic hydrothermal vents,
the water boiling point is raised high enough to allow living organisms to exist in
this very high pressure, high temperature environment (we shall refer to this again
in Chap. 12).
Earlier in this chapter we mentioned that the Clausius–Clapeyron equation provides
a theoretical basis for the fact that the inner core of the Earth is solid, as discovered
in 1936 by the Danish seismologist Inge Lehmann (1888–1993). She observed that
seismic waves were reflected on the boundary of the inner core.

Solution 2.6 The Helmholtz free energy is F = −kT ln Z . Equation (2.29) thus
implies F = −kT N ln eV

Nλ3 . This in turn implies that the entropy is
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S = −∂F

∂T
= kN ln

eV

Nλ3
+ 3

2
kN .

Hence, U = 3
2NkT . By calculating p = −∂F/∂V , the reader will find that the

equation of state pV = NkT is obtained for the ideal gas.

Solutions for Chap. 3

Solution 3.1 (a) The charge density is the total charge divided by the volume of the
ball, i.e.,

ρ = 3Q

4πR3
.

(b) The electric field inside (r < R) is obtained from Gauss’ law by integrating over
a sphere of radius r , whence

∮
E · dS = 4π

∫ r

0
ρdV,

implying 4πr2E = 3Q
4πR3

4
3πr

3, from which

E = Qr
4πR3

.

For the electric field outside, we assume a sphere of radius r > R. We have 4πr2E =
Q, from which

E = Qr
4πr3

.

Solution 3.2 In a polarizable medium the free charge density is given by ∇ · D =
∇ · εE = 4πρ, where ε = 1 + 4πχ, and χ is the electric susceptibility.

Using the relation ∇ · ab = ∇a · b + a∇ · b, we have

∇ · E = q
[
∇(e−λr ) · r0

r2
+ e−λr∇ · (

r0
r2

)
]
, (A.13)

from which we get
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4πρ

ε
= q

[−λe−λr

r2
r0 · r0 + e−λr∇ · (

r0
r2

)

]
(A.14)

= q

[−λe−λr

r2
+ e−λr∇ · (

r0
r2

)

]

= q

[−λe−λr

r2
+ 4πδ(r)

]
.

This in turn implies

ρ = εq

4π

[−λe−λr

r2
+ 4πδ(r)

]
.

Since the density comprises two terms of opposite charge, if we assume q positive,
we have a positive charge at the origin, surrounded by a spherically symmetric
negative charge. The total screened charge is obtained by integrating the first term
over spherical shells, and the second term by using Cartesian coordinates, both over
the whole space:

Q =
∫

ρdV =
∫

εq

4π

[−λe−λr

r2
4πr2dr

]
+ εq

∫
δ(r)d3r (A.15)

= εqe−λr ]∞0 + εq = −εq + εq = 0.

The same result is obtained by calculating the flux of E through a sphere of radius
R, then taking R → ∞. This is an apparent effect on a probe charge, which does not
"see" the fixed charge q at all if it is placed at infinity. Naturally, the total charge of
the neutral polarizable medium with the fixed charge remains q.

Solution 3.3 Taking the electron mass as 0.91 × 10−27 g and substituting other data
into (3.24) and (3.23), we find r = 427 cm and f = 28 kHz.

Solution 3.4 For r > R, assuming the system is in vacuum, what we observe at the
distance r is the magnetic field B. Then Ampère’s law gives 2πr B = 4π

c I , implying

B = 2

cr
Ieθ

outside the wire, where eθ is in the direction tangent to circles orthogonal to the
direction of the current I . For r < R, we need the current density. Using cylindrical
coordinates with the z-axis parallel to the current I , we can write the current density
as

j = I

πR2
ez .

Then Ampère’s law is expressed in terms of the effective field H and gives 2πr H =
4π
c I , for r < R. This leads to

H = 2r

cR2
Ieθ
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and B = μH inside the wire.

Solution 3.5 The electric field generated by a fixed charge is such that lines of force
begin or end at that charge, that is, charges are sources and/or sinks of electric fields.
An electric field produced by the time variation of a magnetic flux leads to closed
electric lines of force. In most media, the converse cannot occur, due to the absence
of free magnetic monopole particles and magnetic currents.

Solution 3.6 The coil rotates with angular velocity ω = 2π f . Thus the flux through
the surface bounded by the coil is φB(t) = B · S(t) and the projection of the field B
on the plane containing the N loops (we assume them identical and tightly wound)
at any time t is given by φB(t) = NabB cos 2π f t. Faraday’s law states that the
electromotive force is given by the rate of change of the magnetic flux:

E = −dφB

dt
= 2πNabB sin 2π f t, (A.16)

where E = ∮
E · dl is the electromotive force obtained finally and �B = ∫

B · dS is
the magnetic flux across S. The direction of the electromotive force is such that it
induces a current creating a magnetic field opposite to B, as demanded by Lenz’s
law. This exercise illustrates the basis of the alternating current generator.

Solutions for Chap. 4

Solution 4.1 (i) The first minimum is determined from d sin θ = ±(2n + 1)λ/2, by
taking n = 0. Thus

sin θ =
1
25.46 × 10−5

10−2
= 0.0027.

As D � d, we take sin θ ∼ θ. This is approximately 0.153◦. (ii) The fifth maximum,
not counting the first one at the origin, is determined from d sin θ = ±2nλ as

sin θ = 54.6 × 10−5

10−2
= 0.027,

which is approximately 3.06◦.

Solution 4.2 By defining the integration variable x = hν/kT , we get U = aT 4V
where

a = 8πk4

h3c3

∫ ∞

0

x3dx

ex − 1
= 8π5k4

15c3h3
= 7.56 × 10−15 erg · cm−3K−4. (A.17)



Appendix: Solutions of the Problems 425

One can write a = 4σ/c, where σ = 2π5k4/15h3c2 is the Stefan–Boltzmann con-
stant, related to the black body emitting power by the expression Eb = σT 4. The
latter is the black body energy emitted per unit surface per unit time.

Solution 4.3 (i) N ∼ 5.12 × 1012 cm−3.
(ii) As U = F − T (∂F/∂T ), we conclude that both F and U are homogeneous
functions of T 4. Thus, we have U = F − 4F = −3F , and finally, F = −aT 4V/3.
Thus, S = 4aT 3V/3 and CV = ∂U/∂T = 4aT 3V . For S and CV , a similar depen-
dence on temperature is found in solids when the temperature T is small compared
with the so-called Debye temperature � (see Chap. 8).

Solutions for Chap. 5

Solution 5.1 The expression (5.6) relates the set of coordinates x, y, z, t in the rest
frame K to the coordinates x ′, y′, z′, t ′ in the moving frame K ′. As K ′ is moving
with velocity V with respect to K , this implies that K moves with velocity −V
with respect to K ′. Thus, the transformation is obtained by swapping primed and
unprimed coordinates, and setting V → −V . Thus, we get

x = x ′ + V t ′
√
1 − V 2/c2

,

y = y′,
z = z′,

t = t ′ + (V/c2)x ′
√
1 − V 2/c2

.

(A.18)

Solution 5.2 If the source is moving at a speed V parallel to the x axis of the K0

system, the K system is moving with speed−V with respect to K0. The frequency ω
in the observer frame K is obtained from the inverse Lorentz transformation (A.18)
applied to the four-vector ki , with speed −V . Define β = V/c. Then,

k(0)
4 = k4 − iβk1√

1 − β2
= iω(1 − β cosα)

√
1 − β2

. (A.19)

This implies

ω = ω0

√
1 − β2

1 − β cosα
. (A.20)

For a source approaching the observer, if we take α = 0 (for instance, k ‖ V), the
frequency is increased to
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ω = ω0

√
1 − β2

1 − β
= ω0

√
1 + β

1 − β
.

For a receding source for which α = π (for instance, k ‖ −V), then 1 − β cosπ =
1 + β and the frequency is decreased toω = ω0

√
1−β
1+β

. In the caseα = π/2, the wave
is moving parallel to the y axis. In this case, only time dilation affects the frequency.

The Doppler effect has several practical uses in technology and in science. In
particular, Doppler spectroscopy is an indirect method for finding extrasolar planets
and brown dwarfs from radial velocity measurements via observation of Doppler
shifts in the spectrum of the planet’s parent star.

Solution 5.3 Momentum conservation means that p1 + p2 = 0. As a consequence,
p21 = p22 �= 0. Consequently,

E2
1 − m2

1c
4 = E2

2 − m2c
4. (A.21)

By squaring (5.60) and substituting, say, E2 from (A.21), we easily obtain E1 =
M2+m2

1−m2
2

2M c2 and E2 = M2+m2
2−m2

1
2M c2.

Solution 5.4 We use the expression obtained in Problem 2, Chap. 4, for the
total energy density of a black body at temperature T . By using the factor a =
7.56 × 10−15 erg · cm−3K−4 and multiplying by T 4 = 3.421 × 1028, we get the
energy density u = 2.586 × 1014 erg · cm−3. We must calculate

V�
125

u

c2
= 1.422 × 1033 × 2.586 × 1014

125 × 9 × 1020
= 3.27 × 1024 g.

A lower bound on the mass of the Sun’s core is M ′� ≈ 2 × 1033/125 = 1.6 × 1031 g.
Thus, the radiation mass is at least of order 2 × 10−7 the matter mass in the process
of nuclear fusion in the Sun’s core.

Solution 5.5 The deviation of the photon from a straight line is twice the angle
formed by the asymptotes with the vertical axis (perpendicular to the polar axis)
φ = π/2. Let φ = π/2 + ϕ and take φ

√
1 − K 2/c2L2 ≈ φ. Note that, by expanding

the square root, the first correction to unity is −K 2/2c2L2 ∼ −0.88 × 10−11, which
can be neglected. For very large r and using (5.59), we get

rg/2R� ≈ arccos(φ
√
1 − K 2/c2L2) ≈ arccos(π/2 + ϕ) = arcsin(ϕ) ≈ ϕ.

(A.22)
The total deviation is 2ϕ = rg

cL/E . Taking L = R�E/c, where R� = 6.96 × 1010 cm

is the solar radius and rg = 2.93 × 105 cm is the gravitational radius for the Sun, we
obtain (see Chap. 1)

2ϕ = rg
6.96 × 1010

= 0.42 × 10−5 rad = 0.87′′, (A.23)
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which is the same as the result obtained using Newtonian theory. It is also one half of
the value predicted by general relativity. Special relativity essentially unified space
and time, and served as an appropriate basis for the formulation of electromagnetic
theory. But it did not deal with the gravitational field in its basic postulates. This was
achieved by the general theory of relativity, which is necessary to account for the
full deviation of light by a gravitational field. It does so by including the curvature
of space.

Solutions for Chap. 6

Solution 6.1 Let v be the average speed of the electron and m its mass. Denote the
radius of the first Bohr orbit by a0. Then mv2

a0
= Ze2

a20
, where a0 = �

2

Ze2m , and we get

v = Zce2

�c
= Zcα ≈ 0.0073Z = 2.2 × 108Z cm s−1.

Solution 6.2 (a) We start from the state described by ψ(x, t) = C[ψ1(x, t) +
ψ2(x, t)] =

√
2
a

[
ei

E1 t
� sin πx

a + ei
E2 t
� sin 2πx

a

]
. It is easy to see that normalization

requires C = 1/
√
2. The probability density is

|ψ(x, t)|2 = 1

a

[
sin2

πx

a
+ sin2

2πx

a
+

(
e−i E1−E2

�
t + ei

E1−E2
�

t
)
sin

πx

a
sin

2πx

a

]

= 1

a

[
sin2

πx

a
+ sin2

2πx

a
+ 2 cos

(
3�π2

2ma2
t

)
sin

πx

a
sin

2πx

a

]
.

The average energy is

〈E〉 = −i�
∫

ψ∗(x, t)
∂

∂t
ψ(x, t) = 1

2
(E1 + E2) = 5

4

�
2π2

ma2
,

whereas the average squared energy is

〈E2〉 = −�
2
∫

ψ∗(x, t)
∂2

∂t2
ψ(x, t) = 1

2
(E2

1 + E2
2).

The standard deviation of the energy is

σ(E) =
√

〈E2〉 − 〈E〉2 = 1

2
(E2 − E1) = 3

4

�
2π2

ma2
.
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(b) The average position can be expressed as

∫ a

0
x |ψ(x, t)|2dx = A + B cosωt,

which is an oscillatory motion in which

A = 1

a

∫ a

0
x

[
sin2

πx

a
+ sin2

2πx

a

]
dx = a

2

and

B = 2

a

∫ a

0
x sin

πx

a
sin

2πx

a
dx = −16a

9π2
,

and the frequency can be written in the form

ω = (E2 − E1)/� = 3�π2

2ma2
= 2σ(E)

�
.

The average particle position oscillates around themidpoint x = a/2 of the well with
amplitude B = 16a

9π2 ≈ 0.18a.

(c) The period of the oscillation is

T = 2π

ω
= h

2σ(E)
,

and we get Tσ(E) = h/2 as an expression of the energy-time uncertainty relation.

Solution 6.3We have

Eγ = 3 × (6.6261 × 10−27)2

8 × 1.6726 × 10−24 × 4 × 10−24
= 2.457 × 10−6 erg.

Since 1 MeV = 1.6022 × 10−6 erg, we have

Eγ = 1.5335 MeV,

which is about 3 times the electron rest energy (equal to 0.51099906 MeV). Note
that 1 MeV= 106 eV, 1 eV= 1.602 × 10−12 erg, and 1 keV= 103 eV.

Solution6.4Neutronmass= 939.56563MeV/c2, protonmass= 938.27231MeV/c2.
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Solutions for Chap. 7

Solution 7.1 We can write the time-independent Schrödinger equation in terms of
the unit 2 × 2 matrix 1 and the Pauli matrix σ3 as

[
d2

dy2
+ 2m

�2
[E − p2z

2m
− m

2
(
eB

mc
)2(y − y0)

2]
]
Iψ +

[
eB�

2mc
σ3

]
ψ = 0, (A.24)

which has two sets of eigenvalues En,∓ = p2/2m + (n + 1
2 )eB�/mc ∓ eB�/

2mc, corresponding to the two-component wave functions (spinors)ψ1 = (
ψn,−1, 0

)

and ψ2 = (
0,ψn,+1

)
.

Solution 7.2 (i) From the set of Pauli matrices (7.2), it is straightforward to check
this relation. (ii) We find that {σl,σ j } = 2δl j .

Solution 7.3We start from

e

c

∮
(r × B) · dr + e

c

∫
B · dS = nh.

By permuting r and B and also · and ×, we get

−e

c

∮
B · (r × dr) + e

c

∫
B · dS = nh.

Note that r × dr = 2dS. From this and setting
∫
B · dS = �, we can write the quan-

tization rule in the form

−2� + � = −� = n
hc

e
.

Putting |e| = −e, e < 0, we finally arrive at � = 4πn� for the flux quantization
given in terms of the flux quantum � = �c

2|e| . Note that, although this problem is
solved using themethods of the old quantum theory, it does give a result in agreement
with the one obtained from the Aharonov–Bohm effect (except by a factor 2π). (b)
There is a basic difference between the two problems: in the Bohm–Aharonov case
the field B is confined inside the solenoid, andA assumes a constant value outside it,
leading to B = 0. This implies a non-local effect of the magnetic field on the phase
of the electron wave functions, leading to the quantized flux, whereas the present
problem, although it also leads to the quantization of the magnetic flux, is based
on the assumption of a constant field B everywhere, and would only be valid for
electrons moving inside the solenoid in the Aharonov–Bohm problem.
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Solutions for Chap. 8

Solution 8.1 N/V ≈ 6 × 1049 cm−1.

Solution 8.2 (i) Substituting in numerical values, we have L = 5.67 × 10−8 ×
6.09 × 1018 × 1.108 × 1015 = 3.82 × 1026 W.
(ii) We must first calculate 3.82 × 1026 × 4.6 × 109 × 3.15 × 107 = 5.53 × 1043

J as the amount of energy radiated by the Sun throughout its life. Dividing by
c2 = 9 × 1016 m2s−2, we get the equivalent mass m = 6.15 × 1026 kg, of order
3 × 10−4M�.

Solution8.3From the expressiond� = −SdT − pdV − Ndμ,weget� = − ∫
Ndμ

at constant T and V , where N = �ni . If we divide by e
εi−μ

kT the numerator and the
denominator of the boson density (gi is a degeneracy factor)

ni = gi

e
εi−μ

kT − 1

we have

� = −
∫

Ndμ =
∑

gi

∫
e− εi−μ

kT dμ

1 − e− εi−μ

kT

= −kT
∑

gi ln(1 − e− εi−μ

kT ). (A.25)

Assuming μ = 0, which is true for photons, and expressing as an integral, over
energies viz.,

� = 8πT V

h3c3

∫ ∞

0
E2 ln(1 − e− E

kT )dE = −8πk4T 4V

3h3c3

∫ ∞

0

x3dx

ex − 1
, (A.26)

then comparing with (8.46), we get

� = −U/3. (A.27)

Since � = −pV , this implies p = U/3V = aT 4/3 for the photon gas.

Solution 8.4 The adiabatic expansion means that we can write dU = −pdV =
−UdV/3V . We have dU/U = −dV/3V , leading to lnUV 1/3 = const . Thus,U =
KV−1/3. As u = U/V = aT 4, and also R = CV 1/3, we have aT 4 = K ′V−4/3 =
K ′′R−4 (here K , K ′, K ′′, and C are constants). We conclude that T R = const . Thus
T decreases as R−1. The Universe cools as R expands.

Solution 8.5Denoting the energy density by u = U/V , we have dU = Vdu + udV .
Then

dS = V

T
du + 4u

3T
dV = (4VaT 2)dT + 4aT 3

3
dV = d

(
4

3
aT 3V

)
.

Thus, we have
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S = 4a

3
T 3V .

Solutions for Chap. 9

Solution 9.1 (a) By charge conservation, (b) by lepton number conservation, (c) by
baryon number and spin conservation.

Solution 9.2 Yes, charge is conserved and so are the baryon and lepton numbers.
This is called the proton–proton process, and it is a basic step in the formation of
deuterium in stars, itself an intermediate step in hydrogen–helium fusion, according
to the nuclear reactions:

1H
1 +1 H

1 →1 H 2 + e+ + ν,

1H
1 +1 H

2 →2 He3,

2He3 +2 He3 →2 He4 + 21H
1,

where the first reaction corresponds to p and n binding in a deuterium nucleus.

Solution 9.3 (i) N� = M�/mB = (1.98/1.67) × 1057 = 1.18 × 1057.
(ii) Nuclear fusion in the Sun preserves the baryon number. However, baryon num-
ber will not actually be conserved, because there is a loss of massive particles, for
instance, in the form of solar wind, a stream of charged particles released from
the upper atmosphere of the Sun. This is a plasma consisting largely of electrons,
protons, and alpha particles at temperatures between 105 and 106 K, and mass is
ejected at a rate of order 109 kg·s−1. The Sun also loses mass through the radi-
ation of electromagnetic energy, but this does not decrease the baryon number.
Assuming the Sun age as 5 × 109 years, we have the mass lost by solar wind as
�M� = 3.15 × 107 × 109 × 5 × 109 ≈ 1.57 × 1025 kg. This means that

�M�
M�

= 0.8 × 10−4.

Thus, a small fraction of the solar mass has been lost due to solar wind throughout
its life. We may therefore conclude that the number of baryons in the Sun is in fact
approximately conserved.



432 Appendix: Solutions of the Problems

Solutions for Chap. 10

Solution 10.1We need the velocities of both the satellite and the Earth. By equating
centrifugal and gravitational forces, we obtain the velocity of the satellite (the orbital
radius is 26600 km). We find

mv2

r
= GMm

r2
, (A.28)

from which

v =
√
GM

r
=

√
6.67 × 10−8 × 5.974 × 1027

2.6600 × 109
cm s−1 = 3.870 × 103 m s−1.

(A.29)
This is the velocity of the satellite relative to the static Earth. It also satisfies the
relation v2 = c2rg/2r . We take the velocity of the Earth’s surface to be the equatorial
velocity, V = 2πR/T , where T is one day:

V = 2π × 6.378 × 103

24 × 3600
= 464 m s−1. (A.30)

We also find rg = 0.8866 cm.
We use (10.19) and the equations after it to write

dτS − dτE =
(

− rg
2r

− v2

2c2
+ rg

2R
+ V 2

2c2

)
dτE . (A.31)

From this, expressing v2 in terms of rg , we have
rg
r + v2

c2 = 3
2
rg
r , and

dτS − dτE ≈
(

−3

4

rg
r

+ rg
2R

+ V 2

2c2

)
dτE = (

4.451 × 10−10
)
dτE . (A.32)

In one day, the satellite time advances with respect to the Earth time by the amount

(�τS − �τE )day ≈ (
4.451 × 10−10

) × (24 × 3600) = 38.4 × 10−6s. (A.33)

We thus observe that the clock in the satellite goes faster than the one on the ground
by more than 38 microseconds per day. Actually, this contains both the general and
special relativistic contributions. The special relativistic effect contributes an amount

(dτS − dτE )sp =
(

− v2

2c2
+ V 2

2c2

)
dτE = (−0.832 × 10−10) dτE , (A.34)

so due to this effect, the satellite clock loses
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(−0.832 × 86400 × 10−10) s = −7.18 × 10−6 s

every day. Thus, the general relativistic effect alone makes the clock run faster by
around 38 + 7 ∼ 45 microseconds/day.

Corrections like this are necessary if we are to synchronize Earth-based and
satellite-borne clocks, and this in turn is essential for precise position measurements.

Solution 10.2 (i) Assume fixed ϕ, θ. We have

l2 − l1 =
∫ r2

r1

∂l

∂r
dr =

∫ r2

r1

dr

(1 − rg/r)1/2
= r2g(r2) − r1g(r1) < r2 − r1,

where g(r) = (1 − rg/r)1/2 + (rg/r) ln
(
(r/rg)1/2

[
1 + (1 − rg/r)1/2

])
. For

rg = 0, we have g(r) = 1, and for r � rg , we have g(r) = 1 + (
rg/r

)
ln(

2(r/rg)1/2
)
. Note that the last inequality, due to the curvature of space, is a conse-

quence of (1 − rg/r)1/2 < 1.
(ii) For r2 > r1 � rg , we have

g(r) = 1 + (rg/r) ln 2(r/rg)
1/2.

We then have

r2 − r1
l2 − l1

= 1

1 + rg
2(r2−r1)

ln r2
r1

≈ 1 − rg
2(r2 − r1)

ln
r2
r1

.

(iii) We get 1 − rg
2(r2−r1)

ln r2
r1

= 1 − 4.33 × 10−7, which is a very small correction.

Solution 10.3 We take the black hole diameter to be the uncertainty in the length
�x = 2rg = 4GM/c2, and the momentum uncertainty of a particle inside it is of
order�p = �

2�x = �/4rg . This leads to an average energy per particle�pc. Equating

this with kT , we find T = �c3

8GMk , which is the Hawking–Bekenstein temperature for
the black hole, except for a factor of π in the denominator.

Solution 10.4 The estimated radius of Sagittarius A∗ is rg = 2 × 6.674 × 10−118 ×
1036/9 × 1016 ≈ 1.2 × 1010 m. This is approximately ten times the solar radius.
From (10.42), we get the density ρ = 3c2/8πGR2 = 4.57 × 106 kg/m3 =
4.57 kg/cm3. This density is around 10−3 times smaller than the density of a white
dwarf, estimated to be of thes order 103 to 104 kg/cm3.

Solution 10.5 (a) rg ∼ 106 km. (b) rg ∼ 1010 light-years. This is the same order of
magnitude as the size of the observable universe.

Solution 10.6 By expressing the Hawking–Bekenstein black hole entropy formula
in terms of M , and since the black hole internal energy must satisfy the equation
U = Mc2, we can write the entropy as
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S = 4πkGU 2

�c5
.

From (A.35), we have 1/T = ∂S/∂U , and from thiswe get theHawking–Bekenstein
temperature

T = �c3

8πkGM
.

Then, expressing M in terms of T , we write finally U = �c5/8πkGT .

Solution 10.7 Defining CV = ∂U/∂T , we get immediately

CV = − �c5

8πkGT 2
.

This result is a consequence of U being proportional to T−1.

Solution 10.8Wemust calculate the length r from the data. Let θ andϕ, respectively,
be the angles formed by the line from the observer to the ring, and from the star to the
ring, with the line joining the observer and the star. This line is divided by the lens
into two segments, hOl and hSl . We neglect the effects of the curvature of space and
take hOl + hSl = H . As θ and ϕ are small, the approximations sin x ≈ tan x ≈ x
can be made and we may write θ = r/hOl , ϕ = r/hSl . They satisfy the equation

θ + ϕ = 2rg
r

, (A.35)

where rg is the gravitational radius of the lens. As θ + ϕ = r
(

1
hOl

+ 1
hSl

)
, equating

with (A.35), we can write

θ = r

hOl
=

√
2rg

(1 + hOl
hSl

)hOl
− 2.6 × 10−9rad. (A.36)

As hOl ∼ 6.2 × 1020 m,we have r ∼ 1.6 × 109 km. The ring has a radius of the same
order as the average radius of Saturn’s orbit around the Sun. The total deviation of
light is ϕ + θ = 2rg/r ∼ 3.75 × 10−9 rad.

Solutions for Chap. 11

Solution 11.1The positivemuonμ+ decays according toμ+ → e+ + νe + ν̄μ. It fol-
lows that ν̄e + μ+ → e+ + ν̄μ. From this, we see that, for allowed reactions involving
leptons, if there is a lepton of one family in the initial state, there must be a lepton of
the same family in the final state. Thus, we must define an electron lepton number
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Fig. A.1 Feynman diagram
for the decay of the positive
muon

μ+

ν  µ

νe

e+

W+

Le = 1 for e−, νe (and Le = −1 for their antiparticles) and a muon lepton number
Lμ = 1 forμ−, νμ (and Lμ = −1 for their antiparticles). Such numbers are separately
conserved in any reaction.

For instance in the pion decay

π+ → μ+ + νμ,

Lμ = 0 on the left and Lμ = −1 + 1 = 0 on the right. The decay is allowed, whereas

μ+ → e+ + γ

is such that Lμ = −1 on the left and Le = −1 on the right, so both these lepton
numbers change and the decay is forbidden. The latter reaction is the subject of
experimental research for the detection of lepton number violation, suggested by the
existence of neutrino oscillations.

Solution 11.2 See Fig. A.1.

Solution 11.3 (i) According to the quark model, a baryon consists of three quarks
and each quark has spin 1/2, so they cannot combine to form a baryon of integer
spin. In consequence, it has to be a fermion and cannot have spin 1.

(ii) An antibaryon is composed of three antiquarks. To combine three antiquarks
to form an antibaryon of electric charge +2, we require antiquarks of electric charge
+2/3. However, there is no such antiquark in the quark model and such a particle
cannot exist.

(iii) Ameson is composed of a quark and an antiquark. If we choose an s antiquark
(S = +1 and Q = 1/3) and a quark with Q = 2/3 like u, we get the positively
charged kaon us̄ = K+. This particle is therefore allowed.
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