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Abstract. Driven by the current advances of machine learning in a
wide range of application areas, the need for developing easy to use
frameworks for instrumenting machine learning effectively for non data
analytics experts as well as novices increased dramatically. Furthermore,
building machine learning models in the context of Big Data environ-
ments still represents a great challenge. In the present article, those
challenges are addressed by introducing a new generic framework for effi-
ciently facilitating the training, testing, managing, storing and retrieving
of machine learning models in the context of Big Data. The framework
makes use of a powerful Big Data software stack platform, web technolo-
gies and a microservice architecture for a fully manageable and highly
scalable solution. A highly configurable user interface hiding platform
details from the user is introduced giving the user the ability to easily
train, test and manage machine learning models. Moreover, the frame-
work automatically indexes and characterizes models and allows flexi-
ble exploration of them in the visual interface. The performance and
usability of the new framework is evaluated on state-of-the-arts machine
learning algorithms: it is shown that executing, storing and retrieving
machine learning models via the framework results in a well acceptable
low overhead demonstrating that the framework can provide an efficient
approach for facilitating machine learning in Big Data environments. It
is also evaluated, how configuration options (e.g. caching of RDDs in
Apache Spark) affect runtime performance. Furthermore, the evaluation
provides indicators for when the utilization of distributed computing (i.e.
parallel computation) based on Apache Spark on a cluster outperforms
single computer execution of a machine learning model.
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1 Introduction

Data mining is the extraction of implicit, unknown and potentially useful infor-
mation from data [35]. To this aim, Machine Learning (ML) provides the tech-
nical basis including algorithms, metrics and technologies. It is the process of
taking an algorithm specification, providing training data and using a training
procedure to learn model parameters that optimally fit the training data. The
success of ML in many application areas such as text classification [4], speech
recognition [5], medical diagnostics [6], energy generation forecasting [7] and load
forecasting [8], to name a few, paved the road for more in-depth research on new
methodologies as well as an even-growing demand for ready-to-go ML software
solutions.

Although ML can be used for solving many complex business problems, there
are also some downsides. Applying ML is usually a time-consuming process for
the user, in which a lot of hyperparameters need to be configured to achieve
the best performance in a so called trial-and-error approach. Such approach is
based on the idea that all possible combinations of learning algorithms with their
relevant parameters will be tried for each task until a good solution is found.
However, this is typically inextricable. It wastes the resources for constructing
multiple models which can take a long time especially in the case of large datasets
to be forecasted.

Consequently and due to the rapid increase of data, more intelligent solutions
utilizing Big Data platforms are becoming one of the hottest topics related to ML
[9], where a distributed execution environment is required for the computation of
larger datasets. Gaining insightful information, finding patterns and extracting
knowledge from big datasets are quite complex tasks. Additionally, the configu-
rations of the underlying Big Data infrastructure introduce more complexity for
configuring and running ML tasks. This process consists of multiple steps and is
commonly called Machine Learning Pipeline (MLP). Figure 1 shows a simplified
MLP encompassing data preprocessing, splitting the data into training and test
data, model training and model testing.
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Fig. 1. Simplified methodology of Machine Learning Pipeline (MLP).

The aforementioned challenges are addressed in developing a new
microservice-based solution by Shahoud et al. in [34]. They developed a new con-
ceptual framework helping users to solve ML problems in Big Data environments
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without caring too much about technical issues of the underlying Big Data and
cluster computing environment as runtime platform. The goal of this framework
is to facilitate training, testing, managing, storing and retrieving ML models in
the context of Big Data by using an easy to use web interface which hides the
complexity of the underlying runtime environment from the user. For efficient
scalable processing, the framework employs a Big Data cluster, a microservices
architecture and modern web technologies like REST, React and Spring Boot.
As a first exemplary application, smart grid applications are addressed in the
evaluation. The proposed framework is able to perform ML tasks on energy time
series datasets using a variety of algorithms on different types and size of such
data.

In context of ML, the users can be categorized into two main categories,
namely expert and non-expert ones as shown in Table 1. On one hand, the expert
users have a deep understanding of ML and good programming skills to imple-
ment ML models using, for example, some developing tools like Jupiter Note-
book1. They have worked with ML libraries before and are capable of program-
ming algorithms themselves. On the other hand, non-expert users are grouped
into two sub-categories. The first one includes the users who are familiar with
statistics and ML but are not able to write the necessary script for training and
evaluating ML models particularly in Big Data environments. This sub-category
of users will be mainly supported by the current framework presented in this
article. The second sub-category of non-expert users is inexperienced and not
knowledgeable about statistics and ML. They need to have some analysis results
using ML, but they only have the data and seems to be difficult for them to write
or build ML models because they also do not have the required ML programming
skills.

Table 1. User categories.

Category Nr. User category Properties

1 Expert ML knowledge (+)
ML Programming skills (+)

2 Non-expert A ML knowledge (+)
ML Programming skills (−)

B ML knowledge (−)
ML Programming skills (−)

For the evaluation of the basic concepts of the framework, a first implemen-
tation is developed which utilizes Apache Spark as runtime environment for ML
on a Big Data cluster and spark.ml as a ML library [18]. The storage layer of
the framework utilizes the Hadoop Distributed File System (HDFS) [10] and a
PostgreSQL database [17] for storing the required input and the resulting output

1 https://jupyter.org/.

https://jupyter.org/
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data. To facilitate the building, training and running of ML models, an easy-to-
use web User Interface (UI) which assists non-expert users in performing these
tasks is conceptualized and implemented in the current version. The UI utilizes
microservices [11] running on the Big Data cluster as background services to
hide the complexities of the runtime environment from the user and interfacing
to the ML software on the cluster in such a way that it will allow plugging in
different ML runtime environments - beside Spark - in the future.

This article is a major extension of [34], with more details on the conceptual
microservice-based architecture, related work and fundamental terms as well as
technologies. It also provides additional results of a performance evaluation of
the framework which are not presented in [34]. I.e., the effect of caching RDDs
in Apache Spark is investigated by comparing the execution time of training
and testing our benchmark evaluation models, namely Multiple Linear Regres-
sion (MLR), Decision Tree (DT), Random Forest (RF) and Gradient Boosted
Trees (GBTs) models in case of caching and without caching input time series
datasets. Moreover, the execution time and framework overhead are measured
for evaluating the efficiency of the framework, highlighting the advantage of
storing and retrieving ML models. It is also evaluated at what dataset sizes the
calculation of ML models on a computing cluster outperforms calculations on
single machines. To this end, the points are defined, referred as thresholds, at
which a distributed computing framework based on, e.g., Apache Spark becomes
necessary. This is done by comparing the total time required for training and
testing different data-driven forecasting models on a computing cluster (using
Apache Spark) to the time needed on a single computer for performing the same
task.

The remainder of this article is organized as follows. In the next section, state-
of-the-art frameworks related to our framework are presented. In Sect. 3, the fun-
damental terms and technologies used in the presented work are explained. In
Sect. 4, the architecture of the proposed microservice-based framework is intro-
duced. Section 5 presents the experimental evaluation of the framework and dis-
cusses the obtained results. The last section draws some conclusions and outlines
future work.

2 Related Work

ML offers a variety of powerful algorithms and approaches for modeling and
decision making from data, but implementing a ML model by yourself is a com-
plex, long lasting and error prone process [12]. To ease the usage of ML, the ML
community has developed a variety of powerful frameworks and tools to make
its techniques more accessible to end users. Such frameworks and tools can be
categorized into data analytic and ML workflow management frameworks.

Frameworks like Apache Spark which is a data analytic framework contain-
ing a good library for more traditional ML algorithms, or TensorFlow dedicated
to Deep Learning, are low level frameworks that help data scientists in pro-
gramming ML algorithms which could then be executed on a local computer
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or even for better performance on a computing cluster. Such frameworks typi-
cally don’t provide easy-to-use user interfaces for non-experts by themselves but
there are additional (Open Source) tools (e.g. Jupiter Notebook) which provide
lean web user interfaces to such frameworks for hiding the details of the back-
ground cluster runtime environment from the user. Typically, these interfaces are
aimed towards a more experienced data scientist programmer and less towards
non-expert users who just want to apply ML algorithms. Apache PredictionIO
[20] is an open source ML framework for developers. Besides supporting the
deployment of ML algorithms, Apache PredictionIO allows expert users to train
and test ML models and query results via RESTful APIs. It is built on top of
state-of-the-art scalable open source services, e.g. Hadoop, HBase, Elasticsearch
and Apache Spark. The drawback here is the non-existence of UI to facilitate
performing ML tasks for non-expert users.

Contrary to the data analytics tools aimed for the experienced ML program-
mers, there are nice User Interface (UI)-based tools targeted to non-experts.
Johanson et al. in [13] developed OceanTEA, a framework to analyze time
series datasets in climate context. OceanTEA leverages web technology such
as microservices and a nice web UI to interactively visualize and analyze time
series datasets. It is a cloud-based software platform, consisting of a microservice
back-end and a web UI, similar to the framework implemented in this article.
Both components communicate with each other through an API gateway utiliz-
ing REST and each microservice is deployed independently through a Docker.
OceanTEA provides four main UI interfaces for the exploration and analysis
of oceanographic times series data including functionalities of time series data
management, data exploration, spatial analysis and temporal pattern discovery.

Another project focused on the acceleration of research in energy data analy-
sis is WattDepot presented by Brewer and Johnson in [14]. The software platform
is an open source and internet-based one. It supports the collection, storage,
analysis and the visualization of data coming from energy meters. The archi-
tecture encompasses three types of services, namely sensors, servers and clients.
The sensors collect the data from different energy meters and send it to the
services which store the incoming data by utilizing the provided RESTful APIs.
Since the services are not coupled to a specific database, flexible data storage
is provided. For analysis and visualization, the clients request the data from
the services in the format XML, JSON or CSV. The applications of WattDe-
pot include a web application for a dorm energy competition and a power grid
simulation mechanism.

However, both WattDepot and OceanTEA typically are not generic. They
contain dedicated ML based analysis features which are specialized towards the
special application domain and therefore e.g. performing ML tasks such as fore-
casting as needed in the energy application field are not included in them.

Shrestha et al. in [15] developed a user friendly web application to analyze
health and education datasets. This tool also includes ML algorithms for the
forecasting of time series data. The application also has a nice and easy-to-
use user interface that was developed using human-computer interaction design
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guidelines and principles and targeted at novice and intermediate users. The
technologies used were Java, the Play framework and Bootstrap. But only linear
regression, logistic regression and back propagation were utilized to perform fore-
casting on the input datasets. However, this framework is not able to solve ML
tasks in the context of Big Data and can only be used as standalone application
on a desktop computer.

ML workflow management is a rich area of research that has produced sys-
tems to manage the process of building ML models. The process of building a
satisfactory ML model by a data scientist is characterized as an iterative trial-
and-error procedure, where in each iteration the user reveals essential insights
into the effectiveness of algorithms’ configurations. Since the models may become
numerous, it is important to keep track of the relevant information so a model’s
performance can easily be analyzed. This leads to the problem of model man-
agement which encompasses the storage and retrieval of the models and related
metadata (e.g. hyperparameters, evaluation performance, etc.) in order to anal-
yse them collectively [12].

Multiple recent research projects have been introduced addressing the model
management as a part of the ML workflow. Vartak et al. in [12] introduced
ModelDB, a system for tracking and versioning ML models in form of pipelines.
The authors argued that data scientists are reluctant in using other environments
than their favored ones, especially those with a GUI and therefore they provide
native client libraries for scikit-learn and Spark MLlib which can be used to track
and store models, operators and related metadata. The framework consists of a
front-end and a back-end encompassing a relational database and custom storage
engine. The front-end is implemented as a web UI and supports the review,
inspection and comparison of the tracked and indexed models and pipelines
through a Tableau-based interface. In addition, the information can be explored
and analysed through SQL. The limitations here are that ModelDB is developed
as a monolithic application making it difficult to be maintained and further
developed. Moreover, ModelDB did not provide the ability to handle problems
in the context of Big Data.

To manage ML models and their lifecycle, MLflow is introduced in [19].
Expert users can develop and track ML experiments, share and deploy ML mod-
els. MLflow is developed as an open source software system addressing typical
problems of the ML workflow particularly experimentation, reproducibility and
deployment. It is integrated with Python, Java and R, and provides REST APIs
encompassing three main elements. The first one, MLflow Tracking, offers APIs
for logging experiments and supports querying the results through APIs as well
as visualizing them with a web UI. The second component, MLflow Projects,
can be used to create reusable software environments for reproducibility and is
defined through YAML files. The last item, MLflow Models, provides the func-
tionality to package ML models in a generic format and deploy them. Those
models incorporate similarly to MLflow Projects a YAML file which contains
the metadata of the model.
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To address the issue of model deployment, a variety of frameworks and tools
are developed. Tensorflow serving [21] provides a flexible and powerful system
for serving tensorflow models. It allows expert users to achieve an efficient inte-
gration of tensorflow models in the production environments. Kubeflow [22] is
a cloud platform for ML built on top of Google’s internal ML pipelines. It pro-
vides expert users with a lot of functionalities including notebooks for training
and serving tensorflow models. H2O Flow [23] is another efficient framework
for creating and managing ML and Deep Learning workflows including training
and testing models. This framework supports Python, R and scala on top of
Hadoop/Yarn and Apache Spark.

Table 2 introduces a brief comparison between the aforementioned ML frame-
works based on some criteria to precisely highlight the originality of the solution
proposed in the present article. In this table, data analytic frameworks are ref-
ereed as 1 and ML workflow management frameworks are referred as 2. (2.A)
refers to the first sub-category of non-expert users presented in Table 1.

Table 2. Data analytic and ML workflow management frameworks.

Framework Framework
category

Web UI Microservice
architecture

Support
Big Data

Support
non-expert

Generic

Apache Spark 1 – – + – +

Tensorflow 1 – – + – +

Apache PredictionIO 1 – + + – +

Jupiter Notebook 1 – + + – +

OceanTea 1 + + – +(2.A) –

WattDepot 1 + + – +(2.A) –

ModelDB 2 + – – +(2.A) +

MLflow 2 + – – – +

Tensorflow serving 2 + + – – +

Kubeflow 2 – + + – +

H2Oflow 2 – + + – +

Current framework 1 + 2 + + + +(2.A) +

The framework implemented in this article uses microservice and Apache
Spark, including MLlib, in addition to HDFS to provide scalability and simplic-
ity. What differentiates the framework from the aforementioned projects, is the
additional abstraction provided by the UI to support non-expert users (cate-
gory A) in applying ML. Moreover, most of the aforementioned frameworks are
intended and developed to mainly support expert users and do not provide an
easy to use integrated framework for non-expert users. But the above tools or
comparable other tools could be used as building blocks to form a more complete
integrated environment such as AutoML2 which can be seen as a competing

2 https://www.automl.org/.

https://www.automl.org/
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approach for automating the process of applying ML to real world problems.
The aim of the framework presented in this article can be seen as a first step in
the direction of such a more complete environment for even non-experts, desig-
nated in a way that will allow plugging in several Machine Learning and Deep
Learning runtime environments.

3 Related Fundamental Terms and Technologies

In this section, we introduce the background knowledge necessary to understand
the main contributions of this article.

3.1 Machine Learning

With the following definition, Alpaydin et al. in [1] introduced an essential
description of machine learning: “Optimizing a performance criterion using
example data and past experience”. Machine learning, as its name implies, means
the ability to make the computers capable to learn from data and use the result-
ing knowledge to perform further tasks without any guidance from the human
side. Precisely, machine learning is a scientific discipline aiming at designing
and developing specific algorithms and concepts in order to allow computers to
evolve behaviors and react to different actions based on empirical data such as
sensor data. Indeed, it can be seen as a core in the field of artificial intelligence, in
which the computers can learn from existing data to predict the future behavior,
results and trends.

Applying ML to extract useful knowledge from raw data has become increas-
ingly popular in a variety of areas. One such field is the health sector where it
helps with medical diagnosis [33,42]. Virtual voice assistance, like siri and alexa,
is another example, where ML is used to take voice commands from people like
setting the alarm clock or finding specific information on the internet. To ensure
better sustainability and economic operation of electricity grids through intel-
ligent decision making in unit commitment of decentralized energy resources
and flexible loads at grid level, an accurate prediction of future energy demand
and renewable energy generation is required. To this end, ML also takes the
advantage for energy load and generation forecasting [30,31,36–40].

Machine Learning Scenarios. Four different scenarios can be distinguished in
the field of machine learning, namely supervised, unsupervised, semi-supervised
and reinforcement machine learning scenarios. The main distinction between the
mentioned scenarios depends on the information they handle. As a result, the
behavior of learning algorithms will differ accordingly.

Supervised Machine Learning. It specifies the scenario, in which the examples
in the training set are labeled with a significant information called labels. Such
labels are missed in the examples in the testing set and need to be predicted [45].
More abstractly, all examples in the training set are labeled explicitly. Each of
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them consists of attributes or predictors on one side and the corresponding out-
put on the other side. Both predictors and their corresponding outputs could be
nominal or numeric depending on the source of data. In the supervised learning
settings, we can think of a teacher who provides an extra information i.e. labels
to the examples in the training set to predict such information for the unlabeled
examples in the testing set.

We distinguish two different problems in the supervised machine learning
scenario, namely classification and regression problems. In the current article,
regression problems for time series forecasting are implemented and evaluated.
Some important examples concerning the supervised machine learning scenario
are:

– Linear regression for regression problems.
– Decision Trees (DT), Random Forest (RF) and Gradient Boosted Trees

(GBTs) for classification and regression problems.
– Support vector machines for classification and regression problems.

Unsupervised Machine Learning. In contrast to the supervised machine learning
scenario, in which the examples are explicitly labeled, the examples here are
unlabeled. There is no information in the training set except the training exam-
ples containing only the features without the corresponding output [46]. The
unsupervised machine learning scenario tries to discover the similar characteris-
tics between the examples and group them into meaningful clusters. Precisely, it
aims at discovering and presenting a significant structure in data. Some impor-
tant examples concerning unsupervised machine learning scenario are:

– k-means algorithm as a clustering algorithm.
– Apriori algorithm as an association rule learning algorithm. This algorithm

can be seen as the base of recommendation systems which try to discover the
behavior of customers and present the appropriate product to them conse-
quently.

Semi-supervised Machine Learning. It can be seen as a middle point between
supervised and unsupervised machine learning scenarios [47]. In this scenario, a
part of data is labeled with some supervision information i.e. labels. However,
semi-supervised machine learning scenario is cheaper than the supervised one
based on the fact that the labeled data is more expensive than unlabeled one. It
is hard to get a labeled data because the human annotation of data is expensive
and needs the utilization of experts in order to label this data. Hence, semi-
supervised machine learning has gained a great advantage in different application
fields.
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Based on the aforementioned definition of semi-supervised machine learning
scenario, the usage of unlabeled data needs some assumptions on the underling
distribution of data. The main assumptions of semi-supervised machine learning
scenario are:

– Smoothness assumption: in this assumption, the points that are close to each
other belong to the same class.

– Cluster assumption: in this assumption, the points are clustered based on the
similar characteristics between them. As a result, the points that are in the
same cluster belong to the same class.

– Manifold assumption: it is commonly used with high dimensional training
data, in which manifolds are learned based on labeled and unlabeled data to
get rid of curse of dimensionality and then the learning process is done using
distance and density within each manifold.

Reinforcement Machine Learning. In this learning scenario, the model is built
based on the interaction with the environment [48]. Reinforcement machine
learning scenario aims at maximizing the rewards. It differs from the super-
vised machine learning scenario in that the input/output pairs are not presented
explicitly. On-line performance evaluation is involved in the learning process. As
a result, the model will react to the evaluation feedbacks aiming at increas-
ing the rewards and achieving the best performance. Reinforcement machine
learning has become more important in the recent years, as it produces the best
solutions in a lot world wide applications, for instance helicopter flying, resource-
constrained scheduling, robot control systems and playing backgammon.

3.2 Big Data Technologies

With the increasing amount of available data, various libraries and systems have
been introduced to enable large-scale distributed/parallel processing. One of the
best known open-source frameworks is Apache Hadoop4 which supports Big
Data processing and storage in a distributed environment. It encompasses var-
ious components including a distributed file system, the data processing tool
MapReduce and a cluster resource manager. The Hadoop Distributed File Sys-
tem (HDFS) enables the reliable storage of extensive files in a cluster [25]. It
provides fault tolerance by splitting the files into blocks and replicating these
blocks multiple times over the cluster.

Figure 2 demonstrates the architecture of HDFS which consists of a Name
Node which coordinates file system operations (e.g. opening and closing files,
etc.) and multiple Data Nodes which store the file blocks and serve the read
and write requests [24]. Hadoop MapReduce [27] is a programming model allow-
ing developers to write programs to process data in parallel. Its motivation is
based on the complexity related to computation parallelization, data distribution
and fault tolerance. The main functions of MapReduce are Map, responsible for
transforming data into key/value pairs and Reduce, which accepts the output
from the Map task as input and merges matching pairs.
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Fig. 2. HDFS architecture [24].

Yet Another Resource Negotiator (YARN) [26] is a technology that decou-
ples the application and the required computational resources (e.g. CPUs, RAM,
etc.) for processing from the resource management infrastructure of the cluster.
Figure 3 illustrates YARN’s architecture which is mainly composed of a Resource
Manager (RM), multiple Node Managers (NM) and an Application Master (AM)
for each program. When an application is submitted to the RM, the RM allo-
cates a container accommodating the required resources for the application and
contacts the related NM to launch this container. The container then executes
the Application Master (AM) which coordinates the application scheduling and
task execution and sends resource requests to the RM.

Node Manager

Scheduler

AMService

ResourceManager

Node ManagerNode Manager

MR
AMContainer

ContainerMPI
AM

Client

Client
Client - - RM

RM - - AM

Container
Container

Fig. 3. YARN’s architecture [26].
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3.3 Microservices

Until recently, the monolithic architecture was a classic approach to implement
web applications where the database, the server and the client are maintained in
a single codebase. However, with the rising number of application deployments
to the cloud, more and more companies like Amazon, Netflix and Zalando have
shifted from a monolithic architecture to a newer more scalable architecture
called Microservices. For simplicity’s sake, the term service in this article refers
to microservice.

Characteristics. As the name suggests, the microservices architectural style
revolves around implementing an application consisting of multiple small services
or entities. These services are built around the application’s business functional-
ities, follow the Single Responsibility Principle (SRP), run in their own process
and are independently deployable [32]. By following the SRP which is similar to
the UNIX philosophy emphasizing programs to do one thing and doing it well,
services become highly cohesive and decoupled, leading to good code maintain-
ability. This is unlike monolithic applications which lack hard boundaries and
tend to become, with added functionality, complex and tightly coupled which, in
effect, leads to difficulties when changes are made since they often span multiple
components.

Another distinction is that the microservices style does not require the rede-
ployment of the whole application when new features are implemented or bugs
are fixed. Instead, only the corresponding and affected service needs to be
adapted and redeployed. Furthermore, microservices of a single application are
not constrained to be implemented with the same set of technologies and frame-
works. This allows teams working on different microservices to use independent
technology stacks, as well as data storage technologies, suitable to the data they
process.

Communication Types. In a microservices architecture, services are isolated
from each other and distributed over a network, making communication more
complicated than in monolithic applications. It is often said that microservices
should have smart endpoints and dumb pipes, meaning that the logic should
be inside of the services and only lightweight mechanisms and standards should
be used for their communication [28]. Communication styles are usually divided
into request/response and event-based techniques [29]:

– Request/response: this method describes how two services can directly com-
municate with each other, where one service initiates a request to another
and in return expects a response.

– Event-based: this type of communication is driven by events, where one ser-
vice or producer emits an event and all services that have subscribed to the
event type will get an update.
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REST. A common way to implement the request/response communication style
is by using REST (REpresentational State Transfer), a protocol-agnostic archi-
tectural style that commonly uses HTTP as a communication protocol. All
microservices implemented in this article use REST protocol to communicate
between each other. This protocol enforce each service to define some RESTful
APIs for transferring the data. The term REST was first coined by Fielding et al.
in [2] and is made up of the following 6 constraints.

1. Client-server: to improve the portability of the client i.e. user interface and
scalability of the server entities, the client and server should be separated.
This constraint enables the independent involvement of both.

2. Stateless: this constraint affects the communication between the client and
server and declares that it should be stateless, meaning that the client requests
to the server must contain all necessary information.

3. Cache: improving the network efficiency by requiring data within a response
to be labeled as cacheable or non-cacheable.

4. Uniform interface: this constraint emphasizes the importance of a uniform
interface between components. To this end, the implementations are decou-
pled from the services they provide and the information is transferred in a
standardized form rather than one which is specific to an application’s needs.

5. Layered system: to simplify the complexity of an overall system, hierarchical
layers should be implemented which constrict the components’ behavior.

6. Code-on-demand: this is an optional constraint that allows client functionality
to be extended by downloading and executing code in form of applets or
scripts.

4 Concept and Architecture

In this section, the basic concepts and architecture of the proposed framework
are presented. First, the general framework architecture is introduced. Then,
details of the different architectural layers are presented.

4.1 Framework Architecture

Figure 4 describes the conceptual architecture of the presented framework. As
seen in this figure, the architecture is layered into three main layers, namely
UI layer, service layer and persistence and processing layer. The UI is split into
separate sub-parts (e.g. separate web applications) providing dedicated function-
alities for data and model management, model training and cluster management
which are wrapped into one logical web application forming the UI of the appli-
cation. The service layer is partitioned into two microservices, where each one
is a small and self contained application that can be deployed independently
e.g. on the runtime cluster with a single responsibility. One service focuses on
data and model management, where models can be seen as special data objects.
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Fig. 4. Basic architecture of the proposed microservice-based framework.

The other service focuses on the management of running ML jobs e.g. for train-
ing and testing. The services provide RESTful APIs which are used by the web
applications in the UI layer to interact with the runtime environment.

The persistence and processing layer provides the basic model and data stor-
age capabilities according to the underlying runtime computer infrastructure and
provides generic interfaces for executing and managing ML jobs on this infras-
tructure independent of the used low level ML framework. While the current
implementation only supports Apache Spark as ML framework, the persistence
and processing layer is designed in a way that supports plugging in additional
ML frameworks in the future. In the following, the layers will be described in
more details.

User Interface (UI) Layer. This layer consists of separate web applica-
tions providing dedicated functionalities which interact with the service layer
via RESTful APIs. The separate web applications are wrapped into a container
application which provides navigation between the views to form the complete
UI. To make the user experience of the UI as pleasant as possible, the famous
10 Usability Heuristics for UI Design by Nielsen [3] are applied while conceptu-
alizing and implementing the UI. Multiple technologies including HTML5, CSS
and React3 are utilized to implement the UI. The JavaScript (JS) library from
Facebook, React, is chosen because it simplifies the development of complex user
interfaces and is very permanent. Its good performance can be attributed to its
use of a virtual Document Object Model (DOM) which is a copy of the HTML

3 https://reactjs.org/.

https://reactjs.org/
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DOM and enables efficient rendering updates of the otherwise slow HTML DOM.
React is based on declarative programming and the concept of encapsulating
and reusing of components. Such components are implemented through a spe-
cific syntax called JavaScript Syntax Extension (JSX) which is a combination of
HTML and JS code.

To simplify the configuration of the build tools and the setup of the React
application, Node Package Manager (NPM)4 is used. For better data manage-
ment and to organize the side effects related to asynchronous RESTful API calls,
Redux5 and redux-saga6 are used. To distinguish different functions and to pro-
vide good navigability on the website, React Router is utilized. For implement-
ing a responsive and nice web design, the popular framework React Bootstrap7

which provides easy to use pre-styled components is utilized.
A recent trend in web development has been to develop web UIs as Single

Page Applications (SPAs) [49]. Essentially, SPAs are front-end applications that
consist of single HTML document that can be dynamically updated through
JavaScript (JS). This makes it possible to refresh only particular regions of the
screen instead of reloading the whole page when changes take place. This is espe-
cially convenient in interactive web pages, since these applications can respond
much faster to user input and therefore provide better user experience. Addition-
ally, the number of requests between the SPAs and services is often dramatically
decreased, since much of the logic can be implemented in the front-end. For
these reasons, the web UI will be implemented as an SPA communicating with
the service tier through HTTP requests using the RESTful APIs. In the cur-
rent version of the concept, the UI contains separate web applications for “data
management”, “model management”, “execution of jobs” (e.g. for training and
testing) and “cluster management”. Figures 5 and 6 show some web page views
related to these applications.

Data Management UI. It allows the uploading, management and configuration
of data sources which provide data to ML jobs. Moreover, an interactive visual-
ization besides statistical analysis can be performed on the datasets to achieve a
better understanding of their characteristics and properties. For example and in
the case of time series datasets, the user has the ability to zoom in/out and select
a part of the chart for more detailed view. This allows the user to discover trends
and outliers in the selected part of the time series dataset. Additionally, when the
user hovers over a specific point in the chart, the related information will appear
in a small box, for example the value of the power generation at this point. The
interactive visualization of statistic and performance data in our framework is
implemented using the HighChart Java-script library [50]. Moreover, dedicated
features could be selected in the chosen dataset before performing ML tasks.

4 https://www.npmjs.com/.
5 https://redux.js.org/.
6 https://redux-saga.js.org/.
7 https://react-bootstrap.github.io/.

https://www.npmjs.com/
https://redux.js.org/
https://redux-saga.js.org/
https://react-bootstrap.github.io/
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Model Management UI. Analog to data management, the model management UI
allows the management of ML models which are (eventually) already pre-trained
in the framework. Figure 6a shows a view of this UI which lists the available
models. Each model has some associated metadata (e.g. id, creation date, model
name, a textual description of what the mode does, etc.) which are shown in
the tabular view. Each row (e.g. a pre-trained model) represents a ML pipeline
corresponding to a specific ML task. For each task, the related general informa-
tion resulting from performing this task such as ML algorithm, dataset used for
training and testing, hyperparameters and performance results, to name a few,
are shown if the user hovers over the model entry in the model list. The user can
compare models and select the best one for executing it on a new dataset. More-
over, the user can perform actions on a selected model, namely delete a pipeline,
extract the best hyperparameters, extract cluster configurations or extract the
whole parameters and use them to build a new ML model.

Job Execution UI. It provides functionalities for executing a job for training
and testing a ML model. To ease the usage for non-experts (non-programmers),
the UI provides a wizard interface which guides the user through the process
of choosing a dataset, a type of analysis to be performed on the dataset, an
adequate ML model (e.g. model, either pre-trained or untrained) for performing
the wanted type of analysis and afterwards for tuning the execution parameters
of the model based on an already existing parameter set.

One of the main advantages of the proposed framework is to be very generic.
I.e. in the step of selecting a given type of analysis to be performed on a dataset,
the user should be able to select many different types of ML based analysis. But
what kind of ML analysis methods and algorithms will be available is directly
dependent on what kind of low level ML frameworks will be integrated on the
persistence and processing layer.

Because in the present work only Apache Spark is integrated as low level
ML framework and Apache Sparks standard ML library mainly provides algo-
rithms for classification, clustering and regression, our framework currently only
provides these three categories for choosing an analysis category as shown in
Fig. 5a. After choosing one of these categories, the user will be navigated to
the datasets tab view in order to select an already uploaded dataset or data
source, or directly upload one to perform the ML task. Thereafter, the wizard
navigates to the next wizard screen shown in Fig. 5b. Figure 5b shows that a
ML framework can provide a variety of ML algorithms for performing a certain
analysis category to cover a wide range of ML application scenarios. I.e., it can
be seen in Fig. 5b that Apache Spark provides several algorithms for “regression
analysis”, e.g. “Linear regression”, “Decision tree regression” and so on. If at a
later time more than one ML framework will be incorporated into the present
framework, different algorithms implementing an another analysis category can
even be provided.

It can also be seen from Fig. 5b, that the user has the possibility to use an
already existing pre-trained model or alternatively create and train a new ML
model. Additionally, the user can adapt a given collection of algorithm hyper-
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(a) Job Execution UI - Choosing ML Category

(b) Job Execution UI - Building ML Model

Fig. 5. User Interface (UI)



Facilitating and Managing Machine Learning and Data Analysis Tasks 149

(a) Model Management UI

(b) Job Execution UI - Summary

Fig. 6. User Interface (UI)
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parameters for tuning the model performance. The storage and re-usability of
pre-trained ML models on new datasets is another advantage of the presented
framework. This eases usage and reduces the time the user needs to train and
build a new model for each new dataset. After appropriate options are chosen
in Fig. 5b, the ML task including learning and testing can be executed on the
runtime platform. The wizard will then show a screen which allows to moni-
tor the execution state. When the execution is done, the model and the other
results of execution will be saved in the persistence and processing layer and a
comprehensive visualization of results as well as an execution summary will be
be shown as depicted in Fig. 6b.

Cluster Configuration UI. As mentioned in the introduction, a Big Data infras-
tructure as runtime environment for ML tasks can introduce great challenges for
configuring and running the framework on the cluster with best performance for
a given task. To tackle this challenge, the cluster configuration UI implemented
in this framework gives the possibility to tune the low level execution framework
configurations in relation to the usage of CPU cores, RAM usage and executors
instances, to name a few.

Service Layer. This layer abstracts the interface of the UI applications to
the ML runtime environment (e.g. computing cluster or single computer, etc.)
by providing generic interfaces to the runtime environment via currently two
microservices, namely the Job Management Service (J.M.-Service) and the Data
Management Service (D.M.-Service) as shown in Fig. 4. Each microservice has
dedicated responsibilities and contains a layered architecture based on the Sep-
aration of Concerns design principle (SoC). Keeping the code in distinct layers
enforces a logical encapsulation of functionalities and dependencies leading to
better code maintainability and loose coupling. Figure 7 depicts this architecture,
where only upper layers are allowed to access lower layers.

The uppermost layer is the presentation layer which handles HTTP requests
and is the entry point of the microservices. It contains controllers which map
HTTP URLs and provide Create, Read, Update and Delete (CRUD) function-
ality to the outside through RESTful APIs. For simple read requests, the layer
accesses the persistence layer to acquire the relevant data from the database.
However, for complex logic, it communicates with the service layer which con-
tains the business logic. This has the advantage that common operations required
by multiple controllers can be abstracted to the service layer. The persistence
(i.e. data access) layer consists of repositories and entities. The repositories inter-
act with the underlying data source i.e. database and manage the entities which
encapsulate the domain objects.

The following two sections provide a comprehensive description of both
microservices, which are called as services for a simplicity’s sake. The established
RESTful pattern is chosen as the communication tool instead of the event-driven
pattern, because the microservices are just two in total and the RESTful com-
munication is easier to implement. In addition, the JSON format is selected for
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Fig. 7. Layered architecture of microservices.

requesting and sending data via the RESTful APIs because of its popularity,
ease of use and interpretability.

J.M.-Service. This service is responsible for the creation and submission of jobs
to be executed by an available low level ML execution framework (e.g. Apache
Spark) on the available runtime environment (e.g. a cluster or single computer).
Therefore, it interfaces with the persistence and processing layer below which
encapsulates the specification of a certain runtime environment.

The J.M.-Service not only allows to execute ML tasks but also tracks and
monitors the status of the running tasks. Moreover, it reads the execution results
stored by the executing framework somewhere in the runtime environment (e.g.
in an execution directory of the task on e.g. a file system) and sends them to
the D.M.-Service for storage in a database, so that the execution statistics and
results can be later visualized in the UI. The J.M.-Service provides an abstract
job execution and monitoring interface to the web application UI through its
RESTful APIs. This completely decouples the UI from the specification of the
runtime environment. The main functionalities of J.M.-Service REST-APIs are
described by the following URL patters:
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1. /jobs: a GET request on this URL is used a list of spark jobs.
2. /jobs: a POST request on this URL is used to create of a spark job and its

corresponding processing directory in HDFS.
3. /jobs/id: a GET request on this URL is used to retrieve a spark job for a

specific id.
4. /jobs/id: a DELETE request on this URL is used to delete a spark job

for a specific id with its corresponding processing directory in HDFS.
5. /jobConfigurations: a GET request on this URL is used to show a list of

spark configurations.
6. /jobConfigurations: a POST request on this URL is used to create spark

configuration.
7. /jobConfigurations/id: a DELETE request on this URL is used to delete

a specific spark configurations for specific id.
8. /jobSetup: a POST request on this URL is used to copy the packaged jars

and pre-trained saved machine learning models into HDFS.
9. /submitJob/id: a POST request on this URL is used to submit a spark

job.

D.M.-Service. This service is responsible for the storage and preparation of
required inputs to execute a job on the runtime environment, namely storing
and providing datasets, models containing (pre-trained) algorithms and hyper-
parameters, to name a few. The D.M.-Service uses its own database to store the
required data as well as all results produced from performing ML tasks. On the
one hand, the UI applications interact with this service to upload, manage and
retrieve data, model information as well as configurations. Also the J.M.-Service
interacts with the D.M.-Service to retrieve information about datasets, models
and configurations, copy models from the database to the execution environ-
ment of a task and to push result information back to the D.M.-Service. The
D.M-Service then stores all information about the execution of a task and the
results in its own database, so that these information can be later used for the
visualization of the results and the overall performance of the ML jobs as already
shown in Fig. 6a.

The main functionalities of the D.M.-Service REST-APIs are described in
the following URL patters:

1. /algorithms: a GET request on this URL is used to retrieve a list of the
available machine learning algorithms.

2. /algorithms/id: a GET request on this URL is used to retrieve a specific
machine learning algorithm.

3. /categories: a GET request on this URL is used to retrieve a list of the
available machine learning categories, for example classification, regression,
clustering, to name a few.

4. /dataSets: a GET request on this URL is used to show available datasets
5. /dataSets: a POST request on this URL is used to create meta data of a

dataset.
6. /dataSets/id: a GET request on this URL is used to retrieve the metadata

of a specific dataset.
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7. /dataSets/id/data: a POST request on this URL is used to upload a local
data file into HDFS and upload the dataset’s reference.

8. /dataSets/id/descriptiveStatistics: a POST request on this URL is
used to prepare model for calculating the descriptive statistics for a spe-
cific dataset.

9. /mlModels: a GET request on this URL is used to retrieve a list of pre-
trained machine learning models.

10. /mlModels/id: a GET request on this URL is used to retrieve metadata
of a specific machine learning model.

11. /mlModels/id: a DELETE request on this URL is used to delete a specific
pre-trained machine learning model.

12. /mlModelPredictions/id: a GET request on this URL is used to retrieve
the prediction file for a specific machine learning model.

13. /mlPipelines: a GET request on this URL is used to retrieve a list of
machine learning execution pipelines.

14. /mlPipelines/id: a GET request on this URL is used to get the meta data
for a specific machine learning pipeline.

Persistence and Processing Layer: It hides the low level details of the run-
time environment from the implementation of the services. The services use
generic functions implemented in this layer to interface with the job runtime
directory in HDFS and the database infrastructure installed on the runtime as
well as performing dedicated tasks on the runtime environment for instrument-
ing installed ML frameworks to e.g. perform job execution. For each ML runtime
environment, the persistence and processing layer will contain an adapter which
maps model and execution details to the specific framework (see Sect. 5 for fur-
ther discussion on issues related to the prototype and interfacing to the Apache
Spark runtime environment).

Typically, all information related to the execution of a certain job is collected
in a job runtime directory on a file system of the runtime platform. Thus, the
persistence and processing layer contains functionalities for creating such direc-
tories depending on the execution framework. More generally, all data items
managed by the D.M.-Service are stored in a database infrastructure which is
defined by an abstract object-like interface. This interface can be implemented
in the runtime infrastructure by using different database technologies as shown
in Sect. 5.

5 Evaluation

So far the concept and architecture of the proposed microservice-based frame-
work is discussed. In this section, two aspects of the experimental performance
evaluation will be detailed. On the one hand, the effect of caching RDDs in
Apache Spark is analyzed by comparing the execution time of training and test-
ing the benchmark evaluation models in case of memory caching and without
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memory caching of the input time series datasets. On the other hand, the execu-
tion time and framework overhead for evaluating the efficiency of the framework
are measured, highlighting the advantage of storing and retrieving ML models
and discovering the threshold, at which the use of the proposed framework is
recommended for better performing machine learning tasks in Big Data envi-
ronments. Before presenting the obtained results, first the execution workflow
is explained. Then the experimental setup and the related configurations are
presented.

5.1 Execution Workflow

In the present work, the well-known Apache Spark framework installed on a
Big Data computing cluster using an Apache Hadoop software stack as runtime
engine for executing ML jobs is used. ML execution environments typically use
a job runtime directory in a file system for storing all information needed for
job execution (e.g. for storing models to executed, algorithm configurations and
results). On a Big Data cluster based on the Apache Hadoop, HDFS is typ-
ically used as distributed file system and the runtime directory for a job can
be accessed by all computing nodes of the cluster using the HDFS interfaces.
Therefore, for implementing the persistence and processing layer on the clus-
ter, HDFS and a postqreSQL database are utilized to store the required input
and the output produced from performing ML tasks. The postqreSQL database
system is used as an object-relational database to store all information man-
aged by the D.M.-Service, e.g. ML categories, ML algorithms, hyperparameters,
pre-trained models, jar files, references of datasets stored in HDFS, pre-trained
model pipelines and untrained model pipelines.

HDFS is also utilized to store datasets and the output of successful jobs
executed in Apache Spark before being read by the J.M.-Service. The dataset
storage on HDFS allows it to have “Big Data” as input, i.e. datasets which are
extremely large. To achieve the goal of storing pre-trained ML models in the
form of binary objects, the Large Object feature of PostgreSQL is used. This
feature uses the Large Object Manager Interface which stores only a reference
named oid in the database table pointing to the actual object stored in the
system table pg largeobject. This method breaks the binary data into chunks
and allows storing objects of up to 2 GB within the database. However, another
format such as Predictive Model Markup Language (PMML) will be considered
in the future.

Figure 8 shows the the basic methodological workflow for task execution as
it is implemented in the prototype for submitting jobs to the Apache Spark
runtime. For each new job, the persistence and processing layer generates on
behalf of the J.M-Service a Universally Unique Identifier (UUID) as jobID which
will be sent back to the D.M.-Service. The usage of a UUID guaranties the
uniqueness of the id, making it suitable to use in a distributed environment,
such as a Big Data environment.

Corresponding to each jobID, a temporary job runtime directory with the
UUID as a name is created in HDFS by the J.M.-Service, which uses the File
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System (FS) shell instruction of HDFS8 to achieve that. Then, the J.M-Service
then calls the D.M.-Service to fetch the necessary artifacts (e.g. model, runtime
configuration) from the database and pass it to the J.M-Service as an Apache
Spark AVRO file. After that, the J.M-Service places the AVRO file in the per-
sistence and processing layer in the job runtime directory.

The decision for utilizing AVRO was made, because AVRO uses a schema
which decouples the solution from the implementation including error preven-
tion. An AVRO file contains the received jobID and the chosen cluster configu-
rations. However, if no cluster configurations are chosen in the UI, the default
one will be fetched from the database and used in this task. Besides cluster con-
figurations, algorithm hyperparameters and metadata related to the execution
of algorithms, namely the name of application main class are included in the
AVRO file for execution. The name of the application main class is required by
Apache Spark to find the main code entry point for executing the task. While all
datasets are stored in the HDFS, path references pointing to the files are stored
in the database of the D.M.-Service. Once the user chooses a dataset, the path
reference of the dataset in HDFS is fetched from the database and included in
the AVRO file. After that, the D.M.-Service fetches the corresponding jar file
from the database and sends it to the J.M.-Service. At this point, all required
information to perform the task is passed to the J.M.-Service which creates a
spark-submit job and sends it for execution to Apache Spark.

As a result of executing e.g. a task performing forecasting on a time series
dataset, the forecasting results, forecasting performance and the forecasting
model in the form of a binary object are located in the temporary job runtime
directory of the task. After executing the job, all of these results are stored in
the temporary job runtime directory and read afterwards by the J.M.-Service to
be passed to the D.M.-Service. The D.M.-Service receives the results and stores
8 https://hadoop.apache.org/docs/stable/.

https://hadoop.apache.org/docs/stable/
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them in the form of a pipeline in the database to be retrieved later. Simultane-
ously, the D.M.-Service sends the results to the UI to be rendered and visualized
for the user.

5.2 Experimental Setup and Configurations

The aforementioned microservice architecture is implemented using Java and
tested while running on a local workstation which is a MacBook with a 2.7 GHz
Intel Core i5 processor and 8 GB of RAM. Both microservices are implemented
as standalone Spring Boot applications which are configured to run on different
HTTP ports, namely 8090 and 8080. To run our web application, the embedded
Apache Tomcat server from Spring Boot is utilized.

For our evaluation and to investigate the effectiveness of our framework,
local execution context and cluster execution context have been configured. In
the local context, Spark (v. 2.3.0) on top of Hadoop (v. 2.7.6) as state-of-the-arts
technology to perform machine learning tasks is installed on the aforementioned
workstation, where the executors and drivers run in a single JVM. In the cluster
context, we utilize a powerful Big Data stack, in which Apache Spark is fit on
top of Yet Another Resource Negotiator (YARN) as a resource manager and
Hadoop Distributed File System (HDFS) as a primary data storage. The Big
Data stack is deployed on a cluster of 3 logical machine nodes. Each of them has
32 cores and 80.52 GB RAM. The nodes are connected to each other by a LAN
with 10 GBit/s bandwidth.

Table 3. Default and custom configurations used in cluster context.

Default Custom

Drivers.cores = 1 Drivers.cores = 1

Driver.memory = 1 GB Driver.memory = 1 GB

Executors.cores = 2 Executors.cores = 2

Executors.memory = 1 GB Executors.memory = 70 GB

Executors.instances = 1 Executors.instances = 3

In the cluster context, we distinguish two configuration setups, namely
default and custom as presented in Table 3. Random Forest (RF), Multiple Lin-
ear Regression(MLR), Gradient Boosted Trees (GBTs) and Decision Tree (DT)
are used as base classifiers to build the data-driven forecasting models. MLlib,
which is a Spark’s scalable ML library is employed to build the models. To train
and test the forecasting models, a simulated energy multivariate time series
dataset is used. MLR is a widely used supervised algorithm which assumes a
linear relationship between one or multiple independent input variables and a
dependent output variable [44]. Table 4 presents the default values of the MLR
hyperparameters.
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Table 4. Default hyperparameters of MLR algorithm in MLlib.

Hyperparameter Description Default

maxIter Maximum number of iterations 100

regParam Regularization/Shrinkage parameter 0.0

DT algorithm [44] is a supervised algorithm, often chosen for its interpretabil-
ity. It has the ability to capture the non-linear structures in data, unlike MLR.
A DT is essentially a binary tree which recursively partitions the input space
and consists of internal nodes and leaves (i.e. terminal nodes). It is constructed
starting from the root and its nodes are split down based on the largest decrease
in impurity. For classification trees, the impurity is often measured with the Gini
impurity or entropy. However, for regression trees, where the target is contin-
uous, the impurity is based on variance reduction. Table 5 presents the default
values of the DT hyperparameters. RF algorithm [44] builds a forest of multi-
ple DTs that are independently trained. Whereas, single DTs are often said to
overfit, the RF algorithm does not overfit because of the Law of Large Num-
bers [7]. Also, randomness is applied to the training process of RF by utilizing
random feature subsets for node splitting. Since, each DT is trained separately,
multiple trees can be trained in parallel. For the final prediction, the individual
votes of all trees are combined. Table 6 presents the default values of the RF
hyperparameters.

Table 5. Default hyperparameters of DT algorithm in MLlib.

Hyperparameter Description Default

maxBins Maximum number of bins for split decision and
discretization of continuous features

32

maxDepth Number of trees in the forest 5

minInstancesPerNode Minimum number of trees (training instances) in
children must have by splitting

1

Table 6. Default hyperparameters of RF algorithm in MLlib.

Hyperparameter Description Default

maxDepth Maximum depth of individual trees in the forest 5

numTree Number of trees in the forest 20

In contrast to RF which trains the trees independently, GBTs algorithm [44]
employs the Boosting technique training one tree at a time. Successively, to
correct the errors made by previous trees, a DT is fitted on the residuals of the
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previous tree, instead of a fraction of the original data. The final prediction is
based on a weighted majority vote. Table 7 presents the default values of the
GBTs hyperparameters.

Table 7. Default hyperparameters of GBTs algorithm in MLlib.

Hyperparameter Description Default

maxDepth Maximum depth of the individual trees 5

maxIter Maximum number of iterations 20

stepSize Controls the contribution/weight of each tree 0.1

subsamplingRate Training data proportion used for learning each tree 1.0

Tuning hyperparameters is an important step of the Machine Learning
Pipeline (MLP), since they can not only significantly influence the forecasting
performance of a model, which is not our focus in the present work, but also the
processing time.

Table 8. ML algorithms hyperparameters after tuning.

ML algorithm Hyperparameters

Multiple Linear Regression (MLR) Max iterations (ntree) = 20
Regularization parameter = 0.5

Decision Tree (DT) Max bin = 5
Max depth = 5
Min instance split = 1

Gradient Boosted Trees (GBTs) Max depth = 5
Number of trees = 20
Step size = 0.1
Sampling rate = 1.0

Random Forest (RF) Max depth = 5
Number of trees (ntree) = 20

Based on the main property of our microservice-based framework in facili-
tating training and testing ML models in Big Data environments, an efficient
hyperparameter tuning is performed for the aforementioned ML algorithms to
ensure that the time measurements are taken for a best case scenario of the
aforementioned algorithms. The results are depicted in Table 8.

As mentioned before, one of the main advantages of the proposed framework
is to store pre-trained models in order to use them later in production. Thus, for
evaluation, two execution contexts are determined, namely the untrained model
pipeline and pre-trained model pipeline. In the first one, as its name implies,
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the user follows the general methodology to perform a ML task, in which the
model is trained from scratch and afterwards tested. In the second one, the
user selects a pre-trained model from the database and uses it to perform or
test a ML task with a new dataset without the need for building a new model.
In the present article, the main goals of evaluation are discovering the effect of
caching in Apache Spark, the advantage of storing ML models and reusing them,
measuring the framework overhead and determining the thresholds for efficiently
performing ML tasks on the cluster. To this aim, time measurements need to be
precisely defined. As time measurements, we defined Ttotal and Tfo according to
Eq. 1 and 2 respectively.

Ttotal = Texe + Tfo (1)

where:

– Texe: is the execution time required by Apache Spark to perform a ML task
in context of pre-trained pipelines or untrained pipelines.

– Tfo: is the framework overhead.

Tfo = Tco + Tdbo (2)

where:

– Tco: describes the communication overhead between microservices and inside
the Big Data infrastructure.

– Tdbo: describes the overhead for storing and retrieving required data from the
database.

5.3 Experimental Results and Analysis

In the following, the evaluation results are discussed. As the focus is on the
execution time and the framework overhead raised while performing ML tasks,
the accuracy of forecasting will not be taken into account.

Effect of Caching in Apache Spark. Resilient Distributed Datasets (RDDs)
are the basic data structure of Apache Spark developed as a fault-tolerant
immutable collection of objects which can be computed on different nodes of
the cluster9. Caching RDDs in Apache Spark is a widely used mechanism for
speeding up the running applications. This is especially helpful, when running
iterative machine learning applications, where the data is accessed repeatedly. If
RDD is not cached, nor checkpointed, it is re-evaluated again each time an action
is invoked on that RDD. The training time is measured as the time it takes to
fit the model on the training data. The prediction time is similarly computed for
applying the resulted model on testing data. Since Spark utilizes lazy evaluation
for data transformations, meaning an operation is not executed until an action is
called on the data, the prediction time has to be measured in combination with
performing an action. The main advantages of the lazy evaluation mechanism in
Apache Spark are:
9 https://spark.apache.org/docs/latest/rdd-programming-guide.html.

https://spark.apache.org/docs/latest/rdd-programming-guide.html
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– Increased manageability of RDDs because the source code of our machine
learning algorithms is organized into smaller operations which in turns
reduces the number of passes on data by grouping the operations.

– More efficient computation time and an increased speed, as only the necessary
values are computed saving the communication round-trip time between the
drivers and clusters.

– Better optimization of operations on data by reducing the number of queries.

Table 9. Mean computation time for training and testing different algorithms in the
cases of caching and no caching of input data.

Machine learning algorithms Training time (s) Prediction time (s)

No caching Caching No caching Caching

Multiple Linear Regression (MLR) 16.07 3.57 3.92 0.87

Decision Tree (DT) 15.88 3.21 3.41 0.86

Gradient-boosted trees (GBTs) 37.04 21.74 8.61 1.77

Random Forest (RF) 23.11 12.48 5.75 1.12

Table 9 shows how caching of the input time series datasets affects the per-
formance of the implemented algorithms, using their default hyperparameters
and default cluster configurations. For calculating these values, the experiments
are repeated three times. Afterwards, the mean values are calculated as final
performance indicator. Obviously, the need for caching will be larger in the case
of large datasets, as more operations are required and larger amount of data are
loaded and accessed repeatedly, therefore and to precisely discover the effect of
caching, the models are trained and tested on a small dataset size i.e. 4 MB. As
shown in this table, combining lazy evaluation with caching reduces the training
and prediction time of all algorithms by approximately 75%.

Advantage of Storing and Retrieving ML Models. The main ML task
used for this part of evaluation is to perform short-term energy generation fore-
casting using MLR, RF, DT and GBTs data-driven models on simulated energy
multivariate time series dataset. The algorithm hyperparameter configurations
shown in Table 8 are used. For better utilization and exploitation of the available
abilities of the underlying Big Data cluster, the custom configurations shown in
Table 3 are used. A feature space consisting of 5 features, namely temperature,
humidity, cloud coverage, hour and day is used to build the forecasting models.
A dataset of 4 GB size is used for training and testing ML models, where 80% of
the input time series dataset are used as a training set and 20% as testing set.
For each ML algorithm, the experiment is repeated three times. Afterwards, the
mean values are calculated as final performance indicator. Figure 9 shows the
Ttotal required by the framework to perform the aforementioned task in case of
pre-trained and untrained model pipeline.
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In general, the total time Ttotal is strongly related to the complexity of ML
models. As this complexity increases, Ttotal required to perform the task will
dramatically increases. The base classifier of both RF and GBTs algorithms is
the DT algorithm. Consequently, the complexity of RF and GBTs models will
be higher than the complexity of the DT model. As seen in Fig. 9, RF and GBTs
introduced higher Ttotal than DT and MLR algorithms.

Fig. 9. Ttotal required for training and testing models (untrained model pipeline) and
for testing (pre-trained model pipeline) on simulated energy multivariate time series
dataset with size 4 GB.

Both GBTs and RF are algorithms for learning ensembles of trees, but the
training processes are different. While GBTs algorithm trains one tree at a time,
RF algorithm can train multiple trees in parallel. This can be seen clearly in
Fig. 9, in which GBTs show higher Ttotal than RF. In our experiments, both
MLR and DT algorithm introduce lower Ttotal compared to RF and GBTs.
The efficiency of storing ML model can clearly be seen in case of complex ML
models, namely GBTs and RF models, and will rise with growing complexity of
the model. As the complexity of model increases, the time needed to perform
the same task with each new dataset will dramatically increase and the benefit
of using pre-trained models will also increase. E.g., by performing forecasting,
we gain a time of 690 and 411 s in case of GBTs and RF respectively. In contrast
to that, only small time will be gained in case of retrieving and reusing simpler
models such as MLR and DT as seen in Fig. 9.

As a result, the recommendation of storing ML models and reusing them in
testing is higher in case of complex models than for simpler ones. This experi-
mental study gives an evidence for the importance of storing and retrieving ML
models as a major property in our framework. However, the experiments are
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performed only with a dataset of 4 GB size. As this size increases, the complex-
ity of the ML models will increase too, paving the road to save and gain more
time for performing ML tasks with new datasets based on pre-trained models
without the need for training these models.

Framework Overhead. To evaluate the framework overhead, MLR models for
short-term energy generation forecasting are used. The algorithm hyperparam-
eter configurations shown in Table 8 besides the custom cluster configurations
are used in this group of experiments. The evaluation instruments the untrained
model pipeline, in which the training and the testing steps of ML models are
required. The goal of the study is to evaluate the effect of input dataset size on
framework performance in the form of framework overhead defined in Eq. 2. For
this evaluation, the size of the input datasets is upscaled to 64 GB, as bigger
datasets typically expose more load on the framework infrastructure.

Fig. 10. Effect of input datasets size used for training and testing MLR models on the
framework overhead.

As defined in Eq. 2, the framework overhead encompasses communication
overhead and database overhead. The obtained results depicted in Fig. 10 show
that the proposed framework introduces an approximately constant communi-
cation overhead averaging at around 26 s for datasets with sizes up to 512 MB.
The framework overhead starts to increase for a size of input datasets larger
than 512 MB. The reason behind this is the additional overhead raised inside
the Big Data environment for resource scheduling, coordination and network
communications in the cluster. Precisely, an increasing size of the input dataset
naturally leads to an increased overhead due to data replication, disk I/O and the
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Fig. 11. Effect of input datasets size used for training and testing MLR models on the
framework overhead (detailed overview).

serialization of data inside the execution environment of the cluster. A detailed
increasing in overhead can be seen also in Fig. 11.

Despite this increment, the introduced framework overhead is still low com-
pared to the execution time spent in performing a ML task as shown in Table 10.
For example, the portion of framework overhead is 210,47 s in the worst case,
namely for 65 GB input multivariate time series datasets. Consequently, our eval-
uation demonstrates, that it maintains high performance ML processing with low
framework overhead to facilitate and solve ML tasks in Big Data environments,
where the user gains great benefits from reusing pre-trained models.

Cluster Utilization Threshold. This section discusses the question “when
to use the proposed framework for performing Ml tasks more efficiently on a
cluster?”. Clearly, the dataset size has an essential effect on the complexity of
machine learning models and therefore on runtime performance. As the size of
the dataset used for training and testing machine learning models grows, the
complexity of model will increase which dramatically affects the total execution
time in our microservice-based framework. While MLR forecasting models have
the lower complexity, the RF forecasting models represent the higher complex
models in our evaluation study. Moreover, DT forecasting model has higher and
lower complexity from LR and GBT respectively as seen in Fig. 9.

The algorithm hyperparameter configurations shown in Table 8 are used. The
input dataset size is changed between 2.5 MB and 4 GB in the experiments for
investigating the effect of dataset size on the framework overhead and execution
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Table 10. Execution time in Apache Spark vs. framework overhead for MLR models.

DataSet size (MB) Execution time (s) Framework overhead (s)

4 19,99 28, 78

8 21,79 28,53

16 22,6 27,41

32 25,88 26,21

64 30,54 27,05

128 41,7 27,13

256 68,54 25,82

512 113,25 30,2

1024 200,66 37,06

2048 383,75 53,54

4096 724,98 79,37

8192 1016,48 85,65

16384 4724,98 110,66

32768 6383,75 150,88

65536 11804,36 210,47

time. The total time Ttotal is compared to the time required for performing the
same task in local and cluster context. The ratio of local time and cluster time
is defined as abs threshold in Eq. 3.

abs threshold =
Tlocal

Ttotal
(3)

where:

– Tlocal: encompasses the total time required to locally execute a machine learn-
ing task.

The main idea behind defining abs threshold is to find the dataset size for
which the total time in local context exceeds the total time required by the
framework to execute tasks in cluster context. From this point, it is highly rec-
ommended to use a cluster. Precisely, to effectively perform machine learning
tasks, this ratio should be greater than 1.

Performing machine learning tasks in cluster context introduces additional
overhead. The main reason behind this interest lies in the time cost for resource
scheduling, coordination and network communications in the cluster. Figure 12
shows the mean total time in local and cluster modes, including default and cus-
tom configurations, using various dataset sizes. It can be observed that enlarging
the dataset size from 2.5 MB to 64 MB has no significant effect on both Tlocal

and Ttotal.
As seen in Fig. 12a and for data less or equal to 256 MB, Ttotal in both

cluster modes is larger than Tlocal in local mode which can be explained by
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(a) Multiple Linear Regression (MLR). (b) Decision Tree (DT).

(c) Gradient-boosted trees (GBTs). (d) Random Forest (RF).

Fig. 12. Mean Ttotal in case of local and cluster (default, custom) configurations mode
to determine the cluster utilization abs threshold for MLR, DT, RF and GBTs algo-
rithms.

the added overhead for processing the application on the cluster. Thus, running
Spark applications locally for these dataset sizes is more efficient. For a dataset
size less than 256 MB, Ttotal with custom configurations is larger than Ttotal with
default configurations, since two additional nodes are used in these configurations
where each of them introduces an overhead. As expected, when the dataset size
grows larger, utilizing a cluster becomes more desirable which is shown by the
intersection points highlighted by the two red lines, where these points depend on
the configurations. As the abs threshold cc (cc: custom configurations) is found
at a dataset size of 512 MB making the custom configurations the most efficient
beyond that point, the abs threshold dc (dc: default configurations) lies at a
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dataset size of >= 1024 MB. Consequently, the computing power of the cluster
can be seen and the time consumed locally to perform a task will exceed the
time required to perform the same task on cluster. Therefore, it is recommended
here to use the cluster.

Comparing Figs. 12a, 12b, 12c and 12d, we conducted that as the complex-
ity of machine learning model increases, the abs threshold will be early arrived.
The reason is that the complex models need more calculation costs. As a result,
the performance in cluster context will earlier outperform the performance in
local context because of the power of the underlying deployed Big Data cluster.
Concerning RF model which represents the highest complex model in our bench-
mark evaluation, the abs threshold will be arrived for input dataset in size of
about 64 MB. In contrast to that, lower complexity models such as DT models
introduced abs threshold for 300 MB.

As mentioned before, there is an inherent overhead in the framework arising
from e.g. database communication and the use of the cluster. The smaller this
overhead is compared to Spark’s execution time, the more efficient the framework
is. To gain insight into how the efficiency of the framework varies as the dataset
grows, a new threshold, referred as min threshold, is defined and formulated in
Eq. 4:

min threshold =
Texe

Tfo
(4)

This threshold is defined based on the fact that for an efficient execution of a task,
the overhead time should not exceed the time required for the execution. Conse-
quently, to effectively perform machine learning tasks, this threshold should be
greater than 1. The main difference between min threshold and abs threshold
lies in the context, in which they are calculated. While abs threshold compares
the total time required to perform a machine learning task in local and clus-
ter context, the other one is calculated only in cluster context comparing the
framework overhead with the execution for different dataset size. As a result, we
discovered the point at which it is recommended to use our framework in cluster
context.

This group of experiments are conducted using default cluster configurations
summarized in Table 3 and also repeated three time for more robust results.
The obtained mean results, presented in Fig. 13 show that min threshold has
the same behavior of abs threshold. It is evident that for very small dataset
sizes min threshold is less than 1 since more time is spent on Tfo than Texe.
The min threshold comes closest to 1 at the size of 64 MB and 32 MB for MLR
and DT respectively as seen in Figs. 13a and 13b. Beyond this point Texe starts
to exceed Tfo which implies that for larger dataset sizes it is recommended to
use the framework in cluster context. Precisely, the gap between Tfo and Texe

increases proportionally to the dataset size, since Texe is strongly dependent on
it. As the complexity of the model increases, the min threshold will be shifted
to meet smaller dataset size i.e. 2.5 MB as seen in Figs. 13c and 13d. Combining
the results of abs threshold and min threshold, it is recommended to perform
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ML tasks using the proposed microservice-based framework if both of these
thresholds are greater than 1.

(a) Multiple Linear Regression (MLR). (b) Decision Tree (DT).

(c) Gradient-boosted trees (GBTs). (d) Random Forest (RF).

Fig. 13. Mean Ttotal in case of local and cluster (custom) configurations mode to deter-
mine the cluster utilization min threshold for MLR, DT, RF and GBTs algorithms.

6 Conclusion and Future Works

The present paper introduces a new highly scalable generic microservice-based
framework to ease and streamline the performing of ML tasks in Big Data envi-
ronments. This framework provides a user-friendly UI built on top of a service
layer that eases the usage of ML frameworks on Big Data infrastructure and hides
cluster details from the user. Despite the ability of training, testing, managing,
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storing and retrieving of machine learning models in the context of Big Data,
the framework provides functionalities for uploading, exploring and visualizing
datasets using state-of-the-arts web technologies. Moreover, ML model selection
and management in form of storing pipelines are supported. Each pipeline corre-
sponds to a specific ML task, in which ML algorithm, dataset, hyperparameters
and performance results are stored in an integrated package providing the user
the ability for deeper comparison and better selection of ML models. To reduce
the difficulty as well as the complexity of performing tasks in Big Data environ-
ments, cluster configurations can be easily tuned and adjusted in the UI.

In a comprehensive evaluation study, the advantage of storing and retrieving
ML models is demonstrated. The results also show that the caching of RDDs in
Apache Spark plays an essential role in saving the execution time required for
performing the task on the cluster. Moreover, by measuring the framework over-
head and comparing it to the model calculation time, it could be demonstrated
that the proposed framework introduces an acceptable low overhead relative to
an increasing size of an input dataset. For efficient utilization of the proposed
framework, certain thresholds are defined to determine the dataset size, in which
it is highly recommended to use clusters in favor to single computers for per-
forming a given ML task.

The proposed framework is an ongoing work for developing an even more
interactive and intelligent framework for fully automating, managing, deploying,
monitoring, organizing, and documenting of ML tasks.

Future work will discover the effect of caching in the case of using the
best hyperparameters that optimize the performance of the ML algorithms. We
will also extend the functionalities of the framework to cover automated pre-
processing, model selection and hyperparameter tuning leveraging the advantage
of meta learning. Classification, clustering and a wide range of ML application
scenarios will be taken into account. Deep Learning as a pluggable engine will
be integrated in the persistence and storage layer to support performing Deep
Learning tasks. In-depth user feedback assessment by a large number of users, in
particular, non-expert users will be collected and analyzed too. For tenancy and
secure management of ML tasks, user authentication and authorization issues
will be also taken into account.
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