
Transactions on

Large-Scale
Data- and Knowledge-
Centered Systems XLVLN

CS
 1

23
90

Abdelkader Hameurlain • A Min Tjoa
Editors-in-Chief

Special Issue on Data Management and
Knowledge Extraction in Digital Ecosystems

Jo
ur

na
l S

ub
lin

e
Richard Chbeir · Yannis Manolopoulos · Hiroshi Ishikawa ·
Sergio Ilarri · Apostolos Papadopoulos
Guest Editors

Lecture Notes in Computer Science 12390

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this series at http://www.springer.com/series/8637

http://www.springer.com/series/8637

Abdelkader Hameurlain •

A Min Tjoa • Richard Chbeir •

Yannis Manolopoulos • Hiroshi Ishikawa •

Sergio Ilarri • Apostolos Papadopoulos (Eds.)

Transactions on
Large-Scale
Data- and Knowledge-
Centered Systems XLV
Special Issue on Data Management and
Knowledge Extraction in Digital Ecosystems

123

Editors-in-Chief
Abdelkader Hameurlain
IRIT, Paul Sabatier University
Toulouse, France

A Min Tjoa
Vienna University of Technology
Vienna, Austria

Guest Editors
Richard Chbeir
University of Pau and Pays de l’Adour
Anglet, France

Yannis Manolopoulos
Open University of Cyprus
Nicosia, Cyprus

Hiroshi Ishikawa
Tokyo Metropolitan University
Tokyo, Japan

Sergio Ilarri
University of Zaragoza
Zaragoza, Spain

Apostolos Papadopoulos
Aristotle University of Thessaloniki
Thessaloniki, Greece

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISSN 1869-1994 ISSN 2510-4942 (electronic)
Transactions on Large-Scale Data- and Knowledge-Centered Systems
ISBN 978-3-662-62307-7 ISBN 978-3-662-62308-4 (eBook)
https://doi.org/10.1007/978-3-662-62308-4

© Springer-Verlag GmbH Germany, part of Springer Nature 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer-Verlag GmbH, DE
part of Springer Nature.
The registered company address is: Heidelberger Platz 3, 14197 Berlin, Germany

https://orcid.org/0000-0003-4026-4329
https://doi.org/10.1007/978-3-662-62308-4

Preface

In the world of the Internet of Things (IoT), the recent rapid growth and use of
connected objects leads to the emergence of virtual environments composed of multiple
and independent entities such as individuals, organizations, services, software, and
applications sharing one or several missions and focusing on the interactions and
interrelationships among them. These digital ecosystems exhibit self-organizing envi-
ronments where the underlying resources mainly comprehend data management and
computational collective intelligence. Due to the multidisciplinary nature of digital
ecosystems and their characteristics, it is highly complex to provide a poor under-
standing as to how managing data will empower digital ecosystems to be innovative
and value-creating. The application of Information Technologies has the potential to
enable the understanding of how entities request to create benefits and added values,
impacting business practices and knowledge. This context introduces many new
challenges from different theoretical and practical points of view.

This special issue aims to assess the current status and technologies, as well as to
outline the major challenges and future perspectives, related to the data management of
digital ecosystems. It includes eight papers that were selected after a very tight peer
review, in which each paper was reviewed by three reviewers. Several topics are
addressed in this special issue, but mainly: data analysis, information extraction,
blockchains, and big data. It is organized as follows.

In the first paper of this special issue, Demetris Trihinas proposes “Interoperable
Data Extraction and Analytics Queries over Blockchains.” Here, the author explores
the explosion of interests by diverse organizations for deploying their services on
blockchains to exploit decentralized transaction governance and advanced crypto-
graphic protocols, fostering the emergence of new challenges for distributed ledger
technologies (DLTs). The next generation of blockchain services are now extending
well beyond cryptocurrencies, accumulating and storing vast amounts of data. There-
fore, the need to efficiently extract data over blockchains and subsequently foster data
analytics, is more evident than ever. However, despite the wide public interest and the
release of several frameworks, efficiently accessing and processing data from block-
chains still imposes significant challenges. First, the paper introduces the key limita-
tions faced by organizations in need for efficiently accessing and managing data over
DLTs. Afterwards, it introduces Datachain, a lightweight, extensible and interoperable
framework deliberately designed to ease the extraction of data hosted on DLTs.
Through high-level query abstractions, users connect to underlying blockchains, per-
form data requests, extract transactions, manage data assets, and derive high-level
analytic insights. Most importantly, due to the inherent interoperable nature of Dat-
achain, queries and analytic jobs are reusable and can be executed without alterations
on different underlying blockchains. To illustrate the wide applicability of Datachain,
we present a realistic use-case on top of Hyperledger and BigchainDB.

The second paper is titled “Exploiting Twitter for Informativeness Classification in
Disaster Situations” and authored by David Graf, Werner Retschitzegger, Wieland
Schwinger, Birgit Pröll, and Elisabeth Kapsammer. It addresses the problem of disaster
management. In essence, this matter urgently requires mechanisms for achieving sit-
uation awareness (SA) in a timely manner, allowing authorities to react in an appro-
priate way to reduce the impact on affected people and infrastructure. In such
situations, no matter if they are human induced like shootings or natural ones like
earthquakes or floods, social media platforms such as Twitter are frequently used
communication channels, making them a highly valuable additional data source for
enhancing SA. The challenge is, however, to identify out of the tremendous mass of
irrelevant and non-informative social media data which messages are truly “informa-
tive”, i.e., contributing to SA in a certain disaster situation. Existing approaches on
machine learning driven informativeness classification most often focus on specific
disaster types, such as shootings or floods, thus lacking general applicability and falling
short in classification of new disaster events. Therefore, this paper puts forward the
following three contributions: First, in order to better understand the underlying social
media data source, an in-depth analysis of existing Twitter data on 26 different disaster
events is provided along temporal, spatial, linguistic, and source dimensions. Second,
based thereupon, a cross-domain informativeness classier is proposed, focussing not on
specific disaster types but rather allowing for classifications across different types.
Third, the applicability of this cross-domain classifier is demonstrated, showing its
accuracy compared to other disaster type specific approaches.

In the third paper titled “COTILES: Leveraging Content and Structure for Evolu-
tionary Community Detection,” Nikolaos Sachpenderis, Georgia Koloniari, and
Alexandros Karakasidis address community detection problems. Most related algo-
rithms for online social networks rely solely either on the structure of the network or on
its contents. Both extremes ignore valuable information that influences cluster for-
mation. The authors propose COTILES, an evolutionary community detection algo-
rithm, that leverages both structural and content-based criteria to derive densely
connected communities with similar contents. Specifically, the authors extend a
fast-online structural community detection algorithm by applying additional
content-based constraints. They also further explore the effect of structure and
content-based criteria on the clustering result by introducing three tunable variations of
COTILES that either tighten or relax these criteria. Through an experimental evalua-
tion, they show that the proposed method derives more cohesive communities com-
pared to the original structured one and highlight when the proposed variations should
be deployed.

Zahi Al Chami, Chady Abou Jaoude, Bechara Al Bouna, and Richard Chbeir
propose “A Weighted Feature-Based Image Quality Assessment Framework in
Real-Time” in the fourth paper. Nowadays, social media runs a significant portion of
people’s daily lives. Millions of people use social media applications to share photos.
The massive volume of images shared on social media presents serious challenges and
requires large computational infrastructure to ensure successful data processing.
However, an image gets distorted somehow during the processing, transmission,
sharing, or from a combination of many factors. So, there is a need to guarantee
acceptable delivery content, especially for image processing applications. In this paper,

vi Preface

the authors present a framework developed to process a large number of images in real
time while estimating the image quality. Image quality evaluation is measured based on
four methods: Perceptual Coherence Measure, Semantic Coherence Measure,
Content-Based Image Retrieval, and Structural Similarity Index. A weighted quality
method is then calculated based on the four previous methods while providing a way to
optimize the execution latency. Lastly, a set of experiments is conducted to evaluate the
proposed approach.

In the fifth paper, “Sharing Knowledge in Digital Ecosystems Using Semantic
Multimedia Big Data” is presented by Antonio M. Rinaldi and Cristiano Russo. In this
paper, the authors stress the need to use formal representations in the context of
multimedia big data due to the intrinsic complexity of this type of data. Furthermore,
the relationships between objects should be clearly expressed and formalized to give
the right meaning to the correlation of data. For this reason, the design of formal models
to represent and manage information is a necessary task to implement intelligent
information systems. Approaches based on the semantic web need to improve the data
models that are the basis for implementing big data applications. Using these models,
data and information visualization becomes an intrinsic and strategic task for the
analysis and exploration of multimedia big data. In this paper, the authors propose the
use of a semantic approach to formalize the structure of a multimedia big data model.
Moreover, the identification of multimodal features to represent concepts and
linguistic-semantic properties, relating them in an effective way, will bridge the gap
between target semantic classes and low-level multimedia descriptors. The proposed
model has been implemented in a NoSQL graph database populated by different
knowledge sources. The authors explore a visualization strategy of this large knowl-
edge base and present and discuss a case study for sharing information represented by a
model according to a peer-to-peer (P2P) architecture. In this digital ecosystem, agents
(e.g. machines, intelligent systems, robots, etc.) act like interconnected peers
exchanging and delivering knowledge with each other.

“Facilitating and Managing Machine Learning and Data Analysis Tasks in Big Data
Environments Using Web and Microservice Technologies” is proposed as the sixth
paper by Shadi Shahoud, Sonja Gunnarsdottir, Hatem Khalloof, Clemens Duepmeier,
and Veit Hagenmeyer. Here, the authors address the need for developing easy to use
frameworks for instrumenting machine learning effectively for non-data analytics
experts as well as novices. Furthermore, building machine learning models in the
context of big data environments still represents a great challenge. In this paper, those
challenges are addressed by introducing a new generic framework for efficiently
facilitating the training, testing, managing, storing, and retrieving of machine learning
models in the context of big data. The framework makes use of a powerful big data
software stack platforms, web technologies, and a microservice architecture for a fully
manageable and highly scalable solution. A highly configurable user interface hiding
platform details from the user is introduced giving the user the ability to easily train,
test, and manage machine learning models. Moreover, the framework automatically
indexes and characterizes models and allows flexible exploration of them in the visual
interface. The performance and usability of the new framework is evaluated on
state-of-the-art machine learning algorithms: it is shown that executing, storing, and
retrieving machine learning models via the framework results in an exceptionally low

Preface vii

overhead demonstrating that the framework can provide an efficient approach for
facilitating machine learning in big data environments. Configuration options are also
evaluated (e.g. caching of RDDs in Apache Spark) based on their affect runtime
performance. Furthermore, the evaluation provides indicators for when the utilization
of distributed computing (i.e., parallel computation) based on Apache Spark on a
cluster outperforms single computer execution of a machine learning model.

The seventh paper is dedicated to “Stable Marriage Matching for Homogenizing
Load Distribution in Cloud Data Center,” authored by Disha Sangar, Ramesh Upreti,
Harek Haugerud, Kyrre Begnum, and Anis Yazidi. Running a sheer virtualized data
center with the help of Virtual Machines (VM) is the de facto standard in modern data
centers. Live migration offers immense flexibility opportunities as it endows the system
administrators with tools to seamlessly move VMs across physical machines. Several
studies have shown that the resource utilization within a data center is not homoge-
neous across the physical servers. Load imbalance situations are observed when a
significant portion of servers are either in overloaded or underloaded states. Apart from
leading to an inefficient usage of energy by underloaded servers, this might lead to
serious QoS degradation issues in the overloaded servers. In this paper, the authors
propose a lightweight decentralized solution for homogenizing the load across different
machines in a data center by mapping the problem to a Stable Marriage matching
problem. The algorithm judiciously chooses pairs of overloaded and underloaded
servers for matching and subsequently VM migrations are performed to reduce load
imbalance. For the purpose of comparisons, three different greedy matching algorithms
are also introduced. In order to verify the feasibility of the provided approach in
real-life scenarios, the authors implement the solution on a small testbed. For the
large-scale scenarios, they provide simulation results that demonstrate the efficiency
of the algorithm and its ability to yield a near-optimal solution compared to other
algorithms. The results are promising, given the low computational footprint of the
algorithm.

The last paper of this special issue is titled “A Sentiment Analysis Software
Framework for the Support of Business Information Architecture in the Tourist Sector”
and is written by Javier Murga, Gianpierre Zapata, Heyul Chavez, Carlos Raymundo,
Luis Rivera, Francisco Dominguez, Javier Moguerza, and José Maria Alvarez. It
addresses a practical problem related to the increased use of digital tools within the
Peruvian tourism industry, creating a corresponding increase in revenues. However,
both factors have caused increased competition in the sector that in turn puts pressure
on small and medium enterprises’ (SME) revenues and profitability. This paper aims to
apply neural network-based sentiment analysis on social networks to generate a new
information search channel that provides a global understanding of user trends and
preferences in the tourism sector. A working data-analysis framework is developed and
integrated with tools from the cloud to allow a visual assessment of high probability
outcomes based on historical data. This helps SMEs estimate the number of tourists
arriving and places they want to visit, so that they can generate desirable travel
packages in advance, reduce logistics costs, increase sales, and ultimately improve both
quality and precision of customer service.

We hope this special issue motivates researchers to take the next step beyond
building models to implement, evaluate, compare, and extend proposed approaches.

viii Preface

Many people worked long and hard to help this edition become a reality. We gratefully
acknowledge and sincerely thank all the editorial board members and reviewers for
their timely and valuable comments and insightful evaluations of the manuscripts that
greatly improved the quality of the final versions. Of course, thanks go to all the
authors for their contribution and cooperation. Finally, we thank the editors of TLDKS
for their support and trust in us, and a special thanks to Gabriela Wagner for her
availability and valuable work in the realization of this TLDKS volume.

July 2020 Richard Chbeir
Yannis Manolopoulos

Hiroshi Ishikawa
Sergio Ilarri

Apostolos Papadopoulos

Preface ix

Organization

Editors-in-Chief

Abdelkader Hameurlain Paul Sabatier University, IRIT, France
A Min Tjoa Technical University of Vienna, IFS, Austria

Guest Editors

Richard Chbeir University of Pau and Adour Countries, France
Yannis Manolopoulos Open University of Cyprus, Cyprus
Hiroshi Ishikawa Tokyo Metropolitan University, Japan
Sergio Ilarri University of Zaragoza, Spain
Apostolos Papadopoulos Aristotle University of Thessaloniki, Greece

Editorial Board

Reza Akbarinia Inria, France
Dagmar Auer FAW, Austria
Djamal Benslimane University Lyon 1, France
Stéphane Bressan National University of Singapore, Singapore
Mirel Cosulschi University of Craiova, Romania
Dirk Draheim University of Innsbruck, Austria
Johann Eder Alpen Adria University of Klagenfurt, Austria
Anastasios Gounaris Aristotle University of Thessaloniki, Greece
Theo Härder Technical University of Kaiserslautern, Germany
Sergio Ilarri University of Zaragoza, Spain
Petar Jovanovic Universitat Politècnica de Catalunya, BarcelonaTech,

Spain
Aida Kamišalić Latifić University of Maribor, Slovenia
Dieter Kranzlmüller Ludwig-Maximilians-Universität München, Germany
Philippe Lamarre INSA Lyon, France
Lenka Lhotská Technical University of Prague, Czech Republic
Vladimir Marik Technical University of Prague, Czech Republic
Jorge Martinez Gil Software Competence Center Hagenberg, Austria
Franck Morvan Paul Sabatier University, IRIT, France
Torben Bach Pedersen Aalborg University, Denmark
Günther Pernul University of Regensburg, Germany
Soror Sahri LIPADE, Descartes Paris University, France
Shaoyi Yin Paul Sabatier University, France
Feng “George” Yu Youngstown State University, USA

SI Editorial Board

Sabri Allani Université de Pau et des Pays de l’Adour, France
Adel Alti Constantine University, Algeria
Richard Chbeir Université de Pau et des Pays de l’Adour, France
Joyce El Haddad UDO, France
Anna Formica Istituto di Analisi dei Sistemi ed Informatica, CNR,

Italy
Anastasios Gounaris Aristotle University of Thessaloniki, Greece
Michael Granitzer University of Passau, Germany
Abdelkader Hameurlain Paul Sabatier University, France
Ramzi Haraty Lebanese American University, Lebanon
Masaharu Hirota Okayama University of Science, Japan
Sergio Ilarri University of Zaragoza, Spain
Hiroshi Ishikawa Tokyo Metropolitan University, Japan
Lara Kallab Nobatek, France
Helen Karatza Aristotle University of Thessaloniki, Greece
Georgia Koloniari University of Macedonia, Greece
Anne Laurent University of Montpellier, France
Aristidis Likas University of Ioannina, Greece
Yannis Manolopoulos Open University of Cyprus, Cyprus
Apostolos Papadopoulos Aristotle University of Thessaloniki, Greece
Imad Saleh University of Paris 8, France
Maria Luisa Sapino Università degli Studi di Torino, Italy
Joe Tekli Lebanese American University, Lebanon
Demetris Trihinas University of Nicosia, Cyprus
Jose R. R. Viqueira University of Santiago de Compostela, Spain

External Reviewers

Karam Bou Chaaya Université de Pau et des Pays de l’Adour, France
Elio Mansour Université de Pau et des Pays de l’Adour, France

xii Organization

Contents

Interoperable Data Extraction and Analytics Queries over Blockchains. 1
Demetris Trihinas

Exploiting Twitter for Informativeness Classification
in Disaster Situations . 27

David Graf, Werner Retschitzegger, Wieland Schwinger, Birgit Pröll,
and Elisabeth Kapsammer

COTILES: Leveraging Content and Structure for Evolutionary Community
Detection . 56

Nikolaos Sachpenderis, Georgia Koloniari, and Alexandros Karakasidis

A Weighted Feature-Based Image Quality Assessment Framework
in Real-Time . 85

Zahi Al Chami, Chady Abou Jaoude, Bechara Al Bouna,
and Richard Chbeir

Sharing Knowledge in Digital Ecosystems Using Semantic Multimedia
Big Data . 109

Antonio M. Rinaldi and Cristiano Russo

Facilitating and Managing Machine Learning and Data Analysis Tasks
in Big Data Environments Using Web and Microservice Technologies. 132

Shadi Shahoud, Sonja Gunnarsdottir, Hatem Khalloof,
Clemens Duepmeier, and Veit Hagenmeyer

Stable Marriage Matching for Homogenizing Load Distribution in Cloud
Data Center . 172

Disha Sangar, Ramesh Upreti, Hårek Haugerud, Kyrre Begnum,
and Anis Yazidi

A Sentiment Analysis Software Framework for the Support of Business
Information Architecture in the Tourist Sector . 199

Javier Murga, Gianpierre Zapata, Heyul Chavez, Carlos Raymundo,
Luis Rivera, Francisco Domínguez, Javier M. Moguerza,
and José María Álvarez

Author Index . 221

Interoperable Data Extraction
and Analytics Queries over Blockchains

Demetris Trihinas(B)

Department of Computer Science, University of Nicosia, Nicosia, Cyprus
trihinas.d@unic.ac.cy

Abstract. The explosion of interests by diverse organisations for
deploying their services on blockchains to exploit decentralize transac-
tion governance and advanced cryptographic protocols, is fostering the
emergence of new challenges for distributed ledger technologies (DLTs).
The next generation of blockchain services are now extending well beyond
cryptocurrencies, accumulating and storing vast amounts of data. There-
fore, the need to efficiently extract data over blockchains and subse-
quently foster data analytics, is more evident than ever. However, despite
the wide public interest and the release of several frameworks, efficiently
accessing and processing data from blockchains still imposes significant
challenges. This article, first, introduces the key limitations faced by
organisations in need for efficiently accessing and managing data over
DLTs. Afterwards, it introduces Datachain, a lightweight, flexible and
interoperable framework deliberately designed to ease the extraction of
data hosted on DLTs. Through high-level query abstractions, users con-
nect to underlying blockchains, perform data requests, extract transac-
tions, manage data assets and derive high-level analytic insights. Most
importantly, due to the inherent interoperable nature of Datachain,
queries and analytic jobs are reusable and can be executed without alter-
ations on different underlying blockchains. To illustrate the wide applica-
bility of Datachain, we present a realistic use-case on top of Hyperledger
and BigchainDB.

Keywords: Blockchain · Distributed ledgers · Data analytics

1 Introduction

Today, blockchains are penetrating into industry sectors not initially envisioned
when Bitcoin first appeared in 2008 as the technology capable of disrupting
the banking system by introducing virtual cryptocurrencies and decentralized
monetary transactions over distributed ledger technologies (DLTs) [30]. Mov-
ing beyond cryptocurrencies, blockchains are now found in healthcare [16], asset
management [7], intelligent transportation services [35], and even disaster relief
systems [10]. Inevitably, both the volume and velocity at which data are being
stored on blockchains is growing at unprecedented rates [9]. Thus, one of the

c© Springer-Verlag GmbH Germany, part of Springer Nature 2020
A. Hameurlain et al. (Eds.) TLDKS XLV, LNCS 12390, pp. 1–26, 2020.
https://doi.org/10.1007/978-3-662-62308-4_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-62308-4_1&domain=pdf
http://orcid.org/0000-0002-9540-7342
https://doi.org/10.1007/978-3-662-62308-4_1

2 D. Trihinas

many fields that have discovered a symbiotic relationship with the next genera-
tion of blockchain technologies, is (big) data management [29].

With the volume and complexity of blockchain data continuously growing,
we are now witnessing research teams exploring the development of analytics
capable of harvesting blockchain data for data-driven decision-making, includ-
ing: privacy and compliance [20], transaction classification [24], user behavior
and interactions [11], and pinpointing mischief and criminal activity [6,31]. To
accommodate these complex analytics tasks, both blockchain frameworks are
now adopting features from distributed data stores and vice-versa [32].

Nonetheless, augmenting blockchains with distributed data stores is not with-
out challenges. Arguably, the greatest difficulty boils down to querying and
extracting data, and then passing changes -or new data products- through the
“chain” again. To overcome this challenge, current blockchain frameworks are
offering low-level programming drivers for users to access data on top of the
blockchain fabric. However, this requires knowledge of the complex nature of
blockchain internals which not all users have and also requires spending signif-
icant amounts of time on infrastructure code. For example, it is the job of a
Data Scientist to discover interesting insights from data assets but not working
out how to scan, issue, or validate, encrypted transactions. In turn, while the
landscape of blockchain frameworks is still fairly open and non-dominant [12],
the lack of interoperability between blockchains is a considerable hindrance for
users. Specifically, switching from one platform to another requires the re-coding
of complex analytic jobs comprising an applications’ governance stack [9]. This
is why interoperability, along with scalability and sustainability, is an open chal-
lenge for blockchains towards which the EU Commission has come out with a
report advocating for blockchain standardization [21].

The main contributions of this article are:

– To present the key limitations faced by organisations in need for efficiently
accessing and managing data over DLTs in order for analytics insights to be
derived in-time.

– To provide a common and interoperable model for accessing and querying
data stored over blockchain platforms. The model goes beyond cryptocurrency
transactions, supporting data assets in general.

– To introduce Datachain, a lightweight, flexible and open-source1 framework
for the querying and manipulation of data assets over blockchain platforms
by abstracting the interaction complexity with blockchains at runtime. Dat-
achain is comprised of: (i) a python library that can be used in native python
scripts or even through jupyter notebooks; (ii) a web service for to interact
with other services; and (iii) an SQL-like interface. Highlight features of Dat-
achain include: allowing users to perform ad-hoc queries instead of providing
a fixed and pre-determined set of queries, asynchronous requests, informative
error handling and automatic query response formatting (e.g., json, xml, pan-
das etc.). Most importantly, queries and analytic jobs are reusable and can
be executed without alterations on different underlying blockchains.

1 https://github.com/dtrihinas/datachain.

https://github.com/dtrihinas/datachain

Interoperable Data Extraction and Analytics Queries over Blockchains 3

– To showcase the wide applicability of Datachain, a use-case scenario is intro-
duced over two popular and open-source blockchain platforms that support
the storage of data assets (HyperLedger, BigchainDB).

The rest of this article is structured as follows: Sect. 2 presents a background
on blockchains and their relationship with distributed databases. Section 3 intro-
duces key challenges for blockchain databases and highlights the problem descrip-
tion. Section 4 introduces our interoperable data asset model, while Sect. 5 intro-
duces the Datachain Framework and presents illustrative queries and examples.
Section 6 presents a comprehensive evaluation of our framework, while Sect. 7
introduces related work, before Sect. 8 concludes the paper.

Fig. 1. High-level and abstract overview of a blockchain network

2 Background

2.1 Blockchains

A Blockchain, in the most simplistic form, is a ledger that captures timestamped
records of transactions with the data hosted in these transactions to be both
immutable and encrypted by advanced cryptographic protocols [22]. Figure 1
depicts a high-level overview of a blockchain network, where we observe that
a blockchain is essentially comprised of blocks “chained” together to form a
linked data structure. A block is comprised of two major parts: (i) the header,
which captures metadata such as the block hashed signature and a reference
to the previous block; and (ii) the transaction set encapsulated in the current

4 D. Trihinas

block. The transaction set of each block forms a Merkle tree to avoid (slow)
sequential traversing of lookup queries [27]. Moreover, transactions are consid-
ered pseudoanonymous, as all transactions committed to the ledger are publically
accessible although involved participants are anonymized.

Although the above linked data structure is sufficient to describe a block-
based ledger for timestamped transactions, the true power of a blockchain is
harness only when the ledger is decentralized alleviating any form of a central
authority. Decentralization is achieved by forming a Peer-to-Peer network of
computing nodes where each node hosts a replica of the blockchain. Finally, to
deal with the synchronization of newly appended transactions to the decentral-
ized ledger, a consensus mechanism must be enforced. The underlying algorithm
(e.g., proof-of-work, proof-of-stake) adopted in the consensus mechanism may
differ from blockchain to blockchain and highly depends on the purpose that the
business network is formed [3]. Still, no matter the implementation, consensus
defines the set of rules that blockchain nodes must follow to achieve an agreement
on the order that transactions appear on the decentralized ledger.

2.2 Blockchain Databases

Fueled by the need of providing secure and decentralized services that also fea-
ture intelligent analytic capabilities, inevitably blockchains must store and keep
track of vast amounts of data. Towards this, a number of both industry and
academic solutions, such as BigchainDB [18], Hyperledger [2], CovenantSQL [8],
Storj [33] and Catena [5] are combining both the power of blockchain and dis-
tributed databases.

This two-way relationship is fruitful for storage systems as blockchain tech-
nologies provide:

– Secure Storage, for data assets via advanced cryptographic protocols over
decentralized networks;

– Data immutability, as validated transactions cannot be tampered with;
– Transparency, as all changes to a data asset (e.g., ownership) must be pack-

aged into a transaction;
– User Accountability, as changes can be traced back to the point of origin in

a possible dispute.

On the other hand, blockchains benefit from what databases do best, long-term
data storage. An illustrative example is BigchainDB which is marketed as a
blockchain database. BigchainDB offers tamper resistance transaction storage
for business network entities which is achieved through shared replication across
peers, automatic reversion of disallowed updates/deletes and cryptographic sign-
ing of all transactions.

3 Motivation and Problem Description

Although integrating blockchains and databases creates a symbiotic relationship
to store vast amounts of data, new emerging challenges are appearing which

Interoperable Data Extraction and Analytics Queries over Blockchains 5

hamper the application in large-scale analytics stacks. First, data extraction
from blockchains is significantly slower than databases due to the “chained”
data structure, transaction encryption, and the absence of well-defined indexes
that can facilitate highly-desired queries [9].

Second, the design and development of query interfaces, along with the effi-
cient mapping for data extraction, are also posing significant challenges for
blockchain frameworks. To overcome this challenge, current blockchain frame-
works are offering low-level programming drivers for users to access data on
top of the blockchain fabric. For instance, BigchainDB features programming
drivers in Java and Python to create, submit and extract transactions. To per-
form more complex queries relevant to the actual stored data assets, one must
directly query the underlying database (mongodb) which poses both security
and privacy threats. Specifically, the database must be accessible by the issuer
of the query and any writes to the database are not passed and tracked through
the blockchain. In turn, HyperLedger, now a Linux Foundation project, allows
users to access blocks and transactions through the Fabric SDK and data assets
through the REST API hosted on top of the blockchain fabric. Unfortunately,
more advanced queries are not possible. However, this requires knowledge of the
complex nature of blockchain internals which not all users have and also requires
spending significant amounts of time on infrastructure code. For example, it is
the job of a Data Scientist to discover interesting insights from data assets but
not working out how to scan, issue, or validate, encrypted transactions. The
importance of the above is also highlighted in the recent Seattle report, where
the ACM Fellows identify the design of declarative programming models decou-
pling the definition of data-oriented tasks from the engineering of the underlying
infrastructure as a prominent inhibitor for advancing Data Science2.

In turn, while the landscape of blockchain frameworks is still fairly open and
non-dominant, the lack of interoperability between blockchains is a considerable
hindrance for users [12]. Specifically, switching from one platform to another
requires the re-coding of complex analytic jobs comprising an applications’ gov-
ernance stack [29]. Thus, any coded analytics jobs would have to be scratched and
re-introduced if the organisation is to migrate from one underlying blockchain
framework to another [13]. This newly introduced pained, now also mentioned
as the analytics stack lock-in, is why interoperability, along with scalability and
sustainability, is an open challenge for blockchains. Towards this direction, the
EU Commission has recently come out with a report advocating for blockchain
standardization [21].

To ease the process of certain analytics tasks, a number of new academia-
proposed frameworks have been proposed [4,17,19]. The majority of these frame-
works usually compile “snapshots” or “views” of the current state of the business
network by periodically polling the underlying blockchain and moving the data
to an external database. With the utilization of richer query languages of today’s
RDBMS solutions, the choice of employing an external database constitutes the
querying of the underlying data an easier task. Still, the required data for the

2 https://sigmodrecord.org/2020/02/12/the-seattle-report-on-database-research/.

https://sigmodrecord.org/2020/02/12/the-seattle-report-on-database-research/

6 D. Trihinas

analytics task is extracted offline and to update the analytics insights, a new
snapshot must be re-compiled. This constitutes real-time analysis a slow process
which may even occur significant costs for data movement [28]. What is more,
there are no guarantees that the data moved to an external database have not
been tampered with.

To overcome the aforementioned challenges, we have designed and developed
an open and extensible framework satisfying the following objectives:

– O1: must integrate a generic and abstract data model extending well beyond
cryptocurrencies. The modeling must be alleviated of any blockchain platform
specifics (model interoperability).

– O2: must support data management operations on top of blockchains (e.g.,
create/update assets, participants, keys, transactions). This must be sup-
ported by hiding the complexity of dealing with blockchain internals (e.g.,
signing and validating encrypted transactions).

– O3: must provide an expressive interface for querying data assets from under-
lying blockchains. Queries must natively support data filtering, grouping and
formatting.

– O4: data management operations (O2) and queries (O3) must be issued
directly to the blockchain without the requirement of periodically moving
data to an external database.

– O5: scripted data management operations and queries, must function even
when the underlying blockchain changes (analytics interoperability).

– O6: must support the integration with other popular Data Science tools (e.g.,
numpy, pandas, jupyter notebooks, statmodels, etc.).

– O7: must provide an adapter interface for integrating new blockchain
platforms.

4 Abstract Data Model

In this Section, we introduce a generalized model for abstracting data stored
over blockchains.

4.1 Assets

Cryptocurrencies, such as Bitcoin, feature a rather limited data model comprised
solely by the value of the cryptocurrency. These cryptocurrencies are created and
derive their value directly from the blockchain. Unlike cryptocurrencies, we will
consider a much more generalized data model where the smallest reference unit
of a data object is an asset. An asset can be tangible and physical, such as bicy-
cles, DVDs, houses, cattle, or intangible and virtual, such as stock certificates,
insurance contracts or even cryptocurrencies. For physical assets, blockchains
are merely a medium to record their existence, evolution and exchanges. Assets
are not limited to a single property (e.g., value) but can feature a wide range of
properties and be comprised of other assets as well. For example, a bicycle, as
depicted below, can have a serial number, manufacturer, color, weight and etc.

Interoperable Data Extraction and Analytics Queries over Blockchains 7

bike = {
"identifier" : "bike_serial_number",
"bike_serial_number": "aXz2r12wQ34",
"bike_manufacturer": "Raleigh",
"bike_type": "Road Bike",
"bike_color": "Red",
"bike_size": "26",
"bike_size_units": "in",
"bike_weight" : 22.7,
"bike_weight_units": "kg"

}
Properties, as the aforementioned, can be immutable, meaning they are

inchangeable. However, an asset (e.g., bicycle), unlike a cryptocurrency, can have
a number of associated and mutable properties as well. For example, the owner
of a bicycle may be interested in tracking the distance traveled per route using
a GPS-enabled monitoring IoT device [28]. Such updates must pass through the
blockchain and then linked to the respected bicycle asset for future retrieval.
Thus, mutable properties referring to data assets must be both linked to the
data asset and afterwards be retrievable when requested. To support this, a
blockchain platform could issue a unique identifier to the asset upon creation,
albeit users may consider domain-specific identifiers (e.g., a bike’s serial number)
to more suitable in a business network.

bike_associated_data = {
"bike_serial_number": "aXz2r12wQ34",
"distance": 5.2,
"distance_unit": "km",
"last_upd": "2019 -06 -14 08:45:38"

}

4.2 Participants

Participants are interacting entities of the business service(s) running on top
of the underlying blockchain. These participants can own, control, and exer-
cise their rights, privileges, and entitlements over assets. Only the owner of an
asset can transfer that asset to another participant. In regards to how current
blockchain platforms approach service participants, there are significantly dif-
ferent approaches. For example, in BigchainDB a participant is modelled by
a private and public keypair, while in Hyperledger, a participant must own a
network authorization card, provided off-the-chain, and can have various (im-
)mutable properties just like data assets, as shown below:

participant = {
"userID": "u39492018za1",
"firstname": "Alice",
"lastname": "Smith",

8 D. Trihinas

"joined": "2019 -06 -01 15:12:04"
}

What is more, an asset can be divisible for certain blockchain platforms,
where an asset is owned by a number of shareholder participants to support
partial ownership schemes over divisible assets. Thus, unlike a bicycle which
usually has one owner, a football team can be owned by multiple shareholders.

4.3 Transactions

Transactions are what derive value to services run on top of block-chain platforms
and are what is recorded on the distributed ledger hosted by the blockchain.
Transactions in their most minimal form are comprised of:

– the identifier (e.g., address) of the transaction initiator (e.g, a payment
sender);

– the identifier of a transaction consumer (e.g., a payment receiver);
– the commodity (e.g., a bicycle, cryptocurrency, etc.) associated with the

transaction.

To support the primary principles of blockchain transactions, we adopt a
CRAB model instead of a Create-Retrieve-Update-Delete (CRUD) model which
is commonly used by a majority of today’s web services. The acronym CRAB
refers to Create-Retrieve-Append-Burn transactions over digital assets. Hence,
the creation and on-boarding of an asset to the blockchain ledger is associated
with a CREATE transaction. Once a CREATE transaction is committed and val-
idated by the underlying blockchain, no changes can be made to the immutable
properties of an asset.

A change to an asset can only be associated with the asset’s mutable prop-
erties, while these changes must be recorded to the ledger. This process is sup-
ported via an APPEND transaction. For example, let us assume our bicycle is
owned by Alice and that after the completion of a ride, the distance covered must
be updated so Alice can keep track of her stats. If this change is not recorded
through the ledger then the hashcode of the asset (e.g., Alice’s bicycle) will not
match due to the change associated with the distance property. Similarly, the
transfer of an asset, or shares of an asset, to another participant is also associ-
ated with an APPEND transaction, where the transaction consumer is now the
new asset owner.

Because of the requirement for every change to be recorded by APPENDing
asset associated changes to the ledger, one can keep track of changes and even
enforce accountability in cases of dispute. For example, if we consider a shared
document, one can RETRIEVE the transactions associated to the asset and
always know who made changes, what changes were made and when they were
made.

Finally, although in theory an asset cannot be deleted from a blockchain
due to the immutability principle, in practice, physical assets can be deleted,
discarded or decommissioned. To overcome this issue, one can submit a BURN

Interoperable Data Extraction and Analytics Queries over Blockchains 9

transaction, which essentially transfers the asset to a vanity address and, thus,
essentially nullifying the asset’s ownership.

Fig. 2. Datachain high-level architecture

5 Datachain

Figure 2 presents a high-level and abstract overview of the Datachain frame-
work’s architecture.

5.1 Users

In general, Datachain targets three user groups which interweave among them-
selves to achieve their goals:

– Data Scientists, who wish to discover hidden insights from the data stored
in underlying blockchains. Such users want to quickly perform queries with-
out having to write infrastructure code and ideally work in the environ-
ments that they commonly use. Such environments include: python scripts
and jupyter notebooks while also utilizing popular analysis libraries such as
pandas, numpy, scipy, scikit-learn, etc.

10 D. Trihinas

– Service Developers, who develop business services for blockchain platforms
and wish to ease the interaction with the underlying infrastructure in an
interoperable manner. These services may be developed natively through pro-
gramming adapters or interact with the underlying blockchain through web
interface.

– Blockchain Operators, who access not the actual data in the blockchain
but relevant metadata, such as monitoring logs, to assess the platform per-
formance and detect, faults, misuse or inefficiencies.

Fig. 3. Create a participant in jupyter notebook and establish connection to
BigchainDB

5.2 Data Management Operations

Figure 3 depicts an example of importing Datachain in a jupyter notebook, con-
necting to a blockchain platform and creating a new participant. In this example,
a connection is established to a locally deployed BigchainDB network, where we
also pass a specific API key as an extra security feature for future connections.
Afterwards, a new participant to the underlying blockchain is created. Encap-
sulated under the createParticipant method is the interaction with the Dat-
achain encryption module which prepares a private/public keypair and then
save’s the keypair. With the optional save parameter, users can securely cache
the keypair for subsequent queries in the current session so that the user does
not have denote the whereabouts of the keypair for every query. The encryption
module is also in charge or signing and verifying CREATE and APPEND transac-
tions, while we note that users do not need to interact with this module, unless
they would like to overwrite the current functionality, as all Datachain queries
abstract this interaction.

At this point it must be noted that all subsequent operations, either these
are asset creations/transfers or queries extracting data from the blockchain, are
completely transparent to the underlying blockchain. Thus, if the initial Dat-
achain object were to change and request a connection to a different blockchain
(e.g., Hyperledger) all subsequent queries would remain intact requiring no alter-
ations to function (O4). Hence, Fig. 4 shows a Datachain object connecting to

Interoperable Data Extraction and Analytics Queries over Blockchains 11

Fig. 4. Datachain object with connection to hyperledger

Hyperledger while also passing another platform-specific parameter requesting
TLS connections for remote queries. For HyperLedger a prominent downside
of it’s, newly introduced query interface, supported through the REST API,
is that it must be programmed prior deployment. This practically means that
no ad-hoc and exploratory queries can be supported as the blockchain fabric
must be redeployed to acknowledge any new queries not thought at the system
design phase. However, this is infeasible for real-time geo-distributed services
(e.g., intelligent transportation services) [26]. In contrast, Datachain supports
interoperability of the data management and queries through the connection
interface which abstracts all interactions with underlying blockchains via the
data asset model introduced in the previous section. Thus, at any time, ad-hoc
queries can be performed and new blockchain providers can be added by simply
implementing the data asset model for the respected blockchain. Afterwards,
all subsequent high-level operations and queries (e.g., used by dc-sql) function
without further implementation needs to ease provider on-boarding and Dat-
achain adoption. Hence, all subsequent will be described without mentioning
the underlying blockchain platform.

Fig. 5. Creating a data asset (bicycle) owned by Alice and commit to blockchain using
datachain

Figure 5 depicts the creation of a transaction for a newly bought bicycle
by Alice. For this transaction, Datachain uses the credentials previously stored
when Alice joined the network. We note that the asset properties and associated
data have been omitted from the figure and are the same as introduced in Sect. 3.
Most importantly, with this CREATE operation, Datachain hides the complexity
of requiring from users to: (i) prepare the transaction, (ii) cryptographically sign

12 D. Trihinas

it with the asset owner’s (e.g., Alice) private key, (iii) commit the transaction to
the blockchain, and (iv) verify the consensus algorithm response.

Fig. 6. Transferring a data asset (bicycle) owned by Alice to Bob

In turn, Fig. 6 depicts the transfer of an asset (bicycle) to another owner,
Bob. It must be mentioned that although this transaction seems simple, without
Datachain it actually requires approximately 102 lines of code and a total of
38 distinct BigchainDB operations. Datachain also provides error handling
through the respective module. This module parses all errors propagated by
the underlying blockchain, prepares informative messages, assigns each error a
status code and raises suitable Datachain exceptions. The former are important
when embedding Datachain in third-party applications. An example is depicted
below where a user (e.g., Alice) attempts to transfer an asset (e.g., her Bicycle)
to another participant although the asset has been transferred already (e.g., to
Bob). This type of error is commonly referred in blockchain terms as double
spending.

resp = {
"dc_status_code ": "409",
"dc_msg": "Double spending error ... you do not own

asset with id: aXz2r12wQ34 anymore",
"trans_id": "5tH... JeAw6",
"trans_status": "NOT committed"

}

Fig. 7. Query for an asset via datachain

Interoperable Data Extraction and Analytics Queries over Blockchains 13

5.3 Query Interface

Having introduced some of the data management operations offered by Dat-
achain, we now present some of it’s query capabilities. A notable feature of Dat-
achain when performing queries is the response formatter. Specifically, when
performing a query via Datachain, users can request to receive the result set
in various formats. Datachain currently supports json, xml, html, csv, python
collections (e.g., lists, dicts, tuples) and even NumPy ndarrays and Pandas
DataFrames which are popular tools used by Data Scientists when deriving
analytic insights using python and jupyter notebooks. Receiving large volumes
of data natively in python, and pandas, can significantly reduce analytics pre-
processing time consumed for preparing, shaping and transforming the data. In
addition, users can limit the result set size (e.g., limit=1 means return only
the most recent transaction) or receive results sorted, in either ascending or
descending order, based on the transactions’ timestamp.

Fig. 8. Query mutable updates on asset (bicycle) and insight extraction (cumsum)

14 D. Trihinas

Fig. 9. Min distance covered in a single bike route

In what follows, are a number of query examples supported by Datachain.
Figure 7 depicts the query of an asset based on the asset’s id with the response
returned as a python dictionary object as no response type is provided. In turn,
Fig. 8 depicts the extraction of updates to an asset’s (e.g., Alice’s bicycle) muta-
ble properties as a pandas DataFrame and, afterwards, the cumulative sum for
the recorded updates is computed and added as a new column to the DataFrame.
Another insight that can be derived from the same data is to find the mini-
mum (or maximum) distance covered in a single bicycle route and when it was
recorded. This query is depicted in Fig. 9.

Moreover, users can also query for transactions linked to an asset and own-
ership changes to an asset. The former is depicted in Fig. 10 where the 10 most
recent transactions are returned in descending order. The later, Fig. 11 returns
the number of ownership changes on an asset along with details of the trans-
action. For example, Fig. 11 depicts how a Data Scientist would issue a query
to obtain the ownership changes to the bicycle initially owned by Alice, sold to
Bob and later to Kate. In turn, a feature supported by Datachain but not offered
by other programming libraries are native groupby queries, where just as with
SQL-like DDL, one requests the data grouped by a certain key (or set of keys).
Figure 12 depicts such a query where mutable updates to the bicycle asset are
first grouped by the date and then daily updates are summed to compute the
daily distance covered. Datachain will process this query and the data returned
will be in the format requested by the user so that subsequent analysis can be
performed without the need for data transformations.

Moreover, to speed up the response time of extracting large volumes of data
issued through multiple bulk requests, Datachain offers asynchronous requests.
With asynchronous requests, queries for data are submitted in parallel and the
client is not blocked awaiting for responses. When results start arriving back
to the client, Datachain collects them and provides immediate access while also
formatting and filtering responses to the desired type and content. For example,
Fig. 13 depicts how easy it is to submit in async mode a large batch of queries
requesting for updates to different assets (e.g., bicycles), formatting the results as
a pandas DataFrame and then filtering the result set to include only the updates
with a distance covered greater than 5 km. Finally, Fig. 14 depicts an example of
an SQL-like ad-hoc query performed via the dc-sql component to return the 3
most recent updates on an asset’s mutable properties. Alas, due to limited space
we omit further, and more complex, queries supported by Datachain and refer
users to the Datachain examples and tests provided as tests.

Interoperable Data Extraction and Analytics Queries over Blockchains 15

Fig. 10. Query for 10 most recent transactions in descending order

Fig. 11. Query for asset ownership changes

Fig. 12. Group by query to aggregate the distance covered per day

16 D. Trihinas

Fig. 13. Query for multiple asset updates in async mode

Fig. 14. Ad-hoc SQL-like query

6 Evaluation

Datachain is deliberately designed to ease the expressiveness of queries to derive
analytic insights over blockchain stored data. The previous section highlights
the expressiveness and functionality of Datachain. Nonetheless, Datachain can
significantly improve the timeliness of data extraction over blockchains via asyn-
chronous query requests and query operators reducing the result set at the query
level instead of after data retrieval. Thus, in this Section we perform an evalua-
tion of Datachain from a performance perspective.

6.1 Testbed

The testbed of the evaluation, depicted in Fig. 15, is realized by a cluster of 16
servers in an Openstack private cloud. 10 servers are the nodes comprising a
decentralized blockchain network and the other 6 servers act as workload gen-
erators to stress the network and will be simply referred to as client nodes.
Each server is configured with 4VCPU clocked at 2.66 GHz, 4 GB RAM, 260 GB
disk and linked with a 2 Mbps upload and 16 Mbps download network interface.
Between each node we introduce an artificial network latency of ∼50 ms. We
opt for these specific capabilities so that the servers resemble actual blockchain
nodes with the network latency giving the testbed a geo-distributed substance
as blockchains nodes are not only decentralized but also scattered across the

Interoperable Data Extraction and Analytics Queries over Blockchains 17

Fig. 15. High-level overview of testbed topology

geographic regions. On each node we deploy and configure BigchainDB3 and
Hyperledger4 as the blockchain fabric. We note that, when experimenting only
one fabric is activated and tested each time. As prerequisites, both platforms
require and run over Docker and are built using Docker Compose. The version
of BigchainDB is 2.1 and uses MongoDB as the storage backend. The version of
Hyperledger is 1.4.1 and uses Composer (v0.20) for the business network mod-
elling and CouchDB as the storage backend.

For the experimentation, we will consider the motivating scenario used
throughout the paper. Thus, the blockchain network will function as a decentral-
ized bicycle enthusiast marketplace where users track their assets, stats and can
sell, at any time, their bicycles. This, resembles other real-world asset enthusiast
marketplaces (e.g., Discogs5 for vinyl records and CDs). Prior to the evaluation
we create a total of 15,000 assets on both blockchains so that the experimentation
does not run on an empty data storage backend.

6.2 Experiments

Workloads. To stress the blockchain networks, we develop a blockchain client
emulator that accepts a list and percentage ratio of queries to perform. In the
experimentation we will consider three distinct workloads:

– W1. This workload is characterized as write-heavy and is comprised purely
of data management operations. Specifically, the workload consists of the
following operations: (i) create new asset (10%), (ii) update asset mutable
properties (80%), (iii) transfer asset to new owner (8%), and (iv) remove
asset from the network (2%).

– W2. This workload is characterized as read-heavy and is comprised of queries
extracting data from the blockchain network. Specifically, the workload con-
sists of the following query types: (i) get asset data by id, (ii) get the 15 most

3 https://www.bigchaindb.com/.
4 https://www.hyperledger.org/projects/fabric.
5 https://www.discogs.com.

https://www.bigchaindb.com/
https://www.hyperledger.org/projects/fabric
https://www.discogs.com

18 D. Trihinas

recent updates to the mutable properties of an asset, (iii) get the 10 oldest
transactions for an asset, and (iv) get all ownership changes for an asset. All
4 query types have a 25% ratio.

– W3. This workload is comprised of group and aggregation queries to derive
analytic insights from the assets stored in the blockchain network. Specifi-
cally, the workload consists of the following: (i) query the mutable updates
on an asset (bicycle) and subsequently compute the cumulative sum on a cer-
tain property (distance covered). This query is depicted in Fig. 8; (ii) query
the mutable updates on an asset (bicycle), group updates by date and sub-
sequently aggregate the values to compute the distance covered daily. This
query is depicted in Fig. 12; and (iii) This query is similar with the previous,
albeit it groups updates by date and bicycle id so that the distance covered
daily is derived per bicycle in the case where the user owns more than 1
bicycles. All 4 query types have a 33.3% ratio.

Fig. 16. Throughput W1 - BigchainDB per experiment run

Configurations. In the experimentation we evaluate the following configura-
tions for all workloads. First, we measure the throughput of each blockchain
fabric by applying the workloads using the respected fabric’s native query envi-
ronment. For BigchainDB we use it’s python driver, while for hyperledger we use
it’s REST API. Second, we use Datachain in sync mode to apply the respected
workload. Third, we use Datachain in async mode to apply the workload. Fourth,
we will use LedgerData Refiner (LR), a new framework developed by researchers
at Fujitsu Labs, so that Datachain is also compared to another framework [36].
We note that out of the works introduced in Sect. 7, LR is the only solution
extending beyond cryptocurrencies and can be used for data assets. Still, LR is
bounded to HyperLedger and therefore the experimentation will only be per-
formed for the respective blockchain. What is more, the configurations were run
for each workload type 15 times.

Interoperable Data Extraction and Analytics Queries over Blockchains 19

Fig. 17. Throughput W1 - HyperLedger per experiment run

Results. The Figs. 16, 17, 18, 19, 20 and 21 depict the peak performance over a
5 min time interval of the configurations for all three workloads with the exper-
imentation topology comprised of 10 blockchain nodes and 6 workload clients.

From these figures we derive the following insights. First, we observe that in
terms of throughput, measured in transactions per second (tx/s), BigchainDB
outperforms Hyperledger for both workloads. This is primarily due to the more
complex consensus algorithm applied by Hyperledger over all nodes of the block-
chain network and the communication overhead as interaction with Hyperledger
is performed over HTTP requests. Second, we observe that for W1 and W2,
Datachain in sync-mode does not incur a performance penalty (<3%) over using
the native programming client for BigchainDB and REST client for Hyperledger.
This is a competitive advantage of Datachain as it not only significantly eases
the expression of data management and analytic queries, but it also does this
without an additional performance overhead.

Next, we observe that for all workloads, Datachain (sync mode) performs
significantly better than LedgerData Refiner (LR). This is due to Datachain
inherent ability to extract and process data in place rather than having to move
data to an external data store before queries and data processing can take place.
Periodically synchronizing an external data store is a query latency bottleneck.
This bottleneck becomes even worse in query operations which must write data
back to the blockchain (W1) as the synchronization process is repeated twice.
Therefore, Datachain provides over LR a 67% and 56% performance improve-
ment for the W1 (write-heavy) and W2 (read-heavy) workloads, respectively.
By not requiring the periodic synchronization of an external database to store
and query extracted blockchain data, Datachain not only can perform real-time
queries (no data loss between synchronizations) but it outperforms the current
State-of-the-Art which resort to the aforementioned practice.

What is more, by taking a look at Figs. 20 and 21 (W3), we immediately
observe that Datachain (sync mode) provides a performance boost for both
blockchain fabrics. The reason for this is inherent to the queries comprising W3

20 D. Trihinas

Fig. 18. Throughput W2 - BigchainDB per experiment run

Fig. 19. Throughput W2 - HyperLedger per experiment run

which not only require the extraction of data, but must be formatted, grouped
and subsequently aggregation computations are performed. For Datachain this
work is inherent to the framework’s built-in capabilities but this is not the case
for the other under-comparison configurations. Thus, for the blockchain clients
significant latency is accumulated for data pre-processing (e.g., for HL extracted
data are in JSON format) while LR incurs additional latency due to the external
data store synchronization penalty. Specifically, Datachain (sync mode) provides
a x1.37 speedup to BigchainDB, a x1.56 speedup to HyperLedger, while the
difference between Datachain and LR extends to 286%. For complex analytics
queries requiring data grouping, aggregation, formatting and filtering, Datachain
not only eases the expressivity of interoperable queries, but it can provide a per-
formance boost compared to utilizing low-level blockchain clients limited to simple
data extraction utilities.

Finally, we observe that Datachain in async-mode is able to increase the
throughput of the underlying networks for both workloads. Specifically, for W1

Interoperable Data Extraction and Analytics Queries over Blockchains 21

there is a x1.69 speedup in throughput for BigchainDB and x1.84 for Hyper-
ledger. The maximum speedup per workload client is x4. In turn, for W2 the
improvement in throughput is a speedup of x2.4 for BigchainDB and x2.7 for
Hyperledger, while for W3 the speedup is x2.79 and x2.85 respectively. As to
why Datachain performs better in W2 and W3 than W1, this is primarily due
to the fact that async-mode can exploit more the parallelism factor. Specifi-
cally, (async) read requests do not wait for a consensus to be agreed between
blockchain nodes. Consensus must only be reached when transactions are writ-
ten to the distributed ledger which is the case for W1. Still, alleviating the client
from blocking and awaiting for responses is a non-measurable benefit of exploit-
ing Datachain in write-heavy workloads for blockchains. Thus, when exploiting
async-mode for data extraction to derive analytic insights from blockchain net-
works, Datachain can boost throughput by providing a speedup of at least x2.4
for read-heavy workloads and at least x1.7 for write-heavy workloads.

Fig. 20. Throughput W3 - BigchainDB per experiment run

7 Related Work

The following are research and industry-driven frameworks developed to ease -in
different ways- the extraction and management of data stored in DLTs. Table 1
summarizes the key features of these frameworks.

Abe [1] is a framework that can be used to periodically crawl the Bitcoin
blockchain and store transactions in a relational database for future queries. In
turn, McGinn et al. [19], propose a high fidelity graph model and database
schema for Neo4J to support offline queries on cryptocurrency transactions,
including Bitcoin and Ethereum. On the other hand, Bartoletti et al. [4] intro-
duce a programmable model implemented in Scala to construct offline “views”
over cryptocurrency transactions and then perform analytic queries on the
extracted data. BlockSci [14] is another notable framework, which provides a

22 D. Trihinas

Fig. 21. Throughput W3 - HyperLedger per experiment run

Table 1. Data Management and extraction framework comparison

Framework name Data managementData extraction Data

formatting

Apps Blockchain

support

On

chain

Off

chain

SQL-

like

Prog. Lib Graphical

Env

Abe X Crypto-

currencies

BTC

McGinn et al. X X Crypto-

currencies

BTC ETH

Bartoletti et al. X X (Scala) Crypto-

currencies

BTC ETH

BlockSci X X (C++) Crypto-

currencies

BTC

Hawk X X (JS) Smart

contracts

ETH

SCILLA X X (custom) Smart

contracts

ETH

EtherQL X X Smart

contracts

ETH

EQL X X X Smart

contracts

ETH

Splunk fabric X X General HyperLedger

LedgerData refiner X X General HyperLedger

Datachain X X X X (python) X General Independent

HyperLedger,

BigchainDB

plugins

parser to periodically extract transactions from the distributed ledger and then
store them in an in-memory database for later analytic queries via a C++ pro-
gramming library. However, the key limitation of these works is that all require
the (periodic) extraction of the data from the underlying DLT so as for process-
ing to be handled “off-chain”. In turn, none of these frameworks mention how
changes or new insights can be passed through the “chain” again as new data
assets.

Interoperable Data Extraction and Analytics Queries over Blockchains 23

Moving beyond frameworks supporting offline queries on cryptocurrency
transactions, are a number of programming models featuring high-level declara-
tive operators to define complex smart contracts. For instance, Hawk [15] is a pro-
grammable framework that applies compiler techniques to hide the complexity of
implementing privacy preserving smart contracts. A more generalised approach
is introduced by Sergey et al. [23]. Specifically, the authors introduce SCILLA,
a high-level and expressive programming model developed for Ethereum to ease
the expressiveness in defining smart contracts for digital assets and subsequently
verifying initiated transactions. Li et al. [17], introduce EtherQL which is a
middleware layer supporting high-level queries for the Ethereum blockchain.
However, EtherQL only provides a fixed set of query primitives for analyzing
blockchain data, such as range queries and top-k queries. Finally, Splunk [25],
the widely known log extraction tool, features a plugin capable of extracting
data from HyperLedger business networks. In turn, LedgerData Refiner [36] is
a similar (open-source) tool. Both tools only support the graphical exploration
of the extracted data and do not support the propagation of new data assets to
the blockchain.

Discussion. To date, the research plane for data extraction and management to
support the fostering of analytics over blockchains is far from complete. Current
frameworks present notable limitations: (i) resort to random scans to discover
data; (ii) are offline by periodically scanning the blockchain and then storing off-
the-chain the data for subsequent queries; (iii) focus solely on cryptocurrencies,
ignoring the industry move to support data assets; and/or (iv) provide a fixed
and narrow set of query operators. These limitations can be overcome by utiliz-
ing Datachain. Finally, it must be noted that frameworks such as vChain [34] are
complimentary to Datachain and together can be used to increase the perfor-
mance of analytics queries. Specifically, vChain supports verifiable range queries
by introducing an accumulator-based authenticated data structure that enables
dynamic aggregation over arbitrary query attributes. Incorporating vChain in
the Datachain analytics stack can increase the performance of intra- and inter-
block aggregation queries. Still, a key limitation of all introduced frameworks,
including Datachain, is the absence of support for multi-source queries through
the use of join operators. This is understandable when the initial step is first
to design a framework to extract and query data, but the next generation of
blockchain applications exploring the use of artificial intelligence will require
more advanced operators.

8 Conclusion and Future Work

Due to the wide societal interest in blockchain-powered services and the con-
tinuous growth of data stored on distributed ledgers, there is a high interest in
blockchain analysis leading to an unmet demand for effective query tools. In this
article we have presented the challenges which come with querying and manag-
ing data assets over blockchains and distributed ledgers in general. To overcome

24 D. Trihinas

these challenges, we introduce Datachain, a lightweight, flexible and interoper-
able framework that abstracts the complexity of interacting with blockchains
at runtime. Datachain is open-source and provides a toolset comprised of a
programming library to query and manage data assets natively in third-party
applications, a web service and an SQL-like interface. Key features of Datachain
include the ability to define and submit ad-hoc queries instead of being limited to
a pre-defined and fixed number of queries, asynchronous requests and informative
query handling. Most importantly, queries and analytic jobs are reusable and can
be executed without alterations on different underlying blockchains. Although
Datachain is designed to ease the management and querying of data assets over
blockchains, experiments show that Datachain can also boost throughput when
interacting with distributed ledgers and querying for large volumes of data assets
and transactional data.

For future work, we intend to integrate Datachain with a dashboard-as-a-
service toolset (e.g., Kibana) so as to provide visual exploration of blockchain
data by abstracting Datachain’s interoperable data exploration and query inter-
face. Moreover, as the current SQL standard is such a powerful object-relational
query language, with many query capabilities, we will explore how multi-source
queries can be supported in blockchain ecosystems through join operators. In
turn, we will research approximate entity matching to improve the query latency
over encrypted data transactions through block-based data structures.

References

1. Abe: Block browser for bitcoin. https://github.com/bitcoin-abe/bitcoin-abe
2. Androulaki, E., et al.: Hyperledger fabric: a distributed operating system for per-

missioned blockchains. In: Proceedings of the Thirteenth EuroSys Conference,
EuroSys 2018, pp. 30:1–30:15 (2018)

3. Bano, S., et al.: Consensus in the age of blockchains (2017)
4. Bartoletti, M., Lande, S., Pompianu, L., Bracciali, A.: A general framework for

blockchain analytics. In: Proceedings of the 1st Workshop on Scalable and Resilient
Infrastructures for Distributed Ledgers, SERIAL 2017, pp. 7:1–7:6 (2017)

5. Catena. https://github.com/pixelspark/catena
6. Chen, W., Zheng, Z., Cui, J., Ngai, E., Zheng, P., Zhou, Y.: Detecting ponzi

schemes on ethereum: towards healthier blockchain technology. In: Proceedings
of the 2018 World Wide Web Conference, pp. 1409–1418 (2018)

7. Chiu, J., Koeppl, T.V.: Blockchain-based settlement for asset trading. Rev. Finan.
Stud. 32(5), 1716–1753 (2019)

8. CovenantSQL. https://covenantsql.io/
9. Dinh, T.T.A., Liu, R., Zhang, M., Chen, G., Ooi, B.C., Wang, J.: Untangling

blockchain: a data processing view of blockchain systems. IEEE Trans. Knowl.
Data Eng. 30(7), 1366–1385 (2018)

10. Castelló Ferrer, E.: The blockchain: a new framework for robotic swarm systems.
In: Arai, K., Bhatia, R., Kapoor, S. (eds.) FTC 2018. AISC, vol. 881, pp. 1037–
1058. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-02683-7 77

11. Ford, R.A., Swafford, B.L., Shirey, C.B., Moynahan, M.P., Thompson, R.H.: User
behavior profile in a blockchain (2018)

https://github.com/bitcoin-abe/bitcoin-abe
https://github.com/pixelspark/catena
https://covenantsql.io/
https://doi.org/10.1007/978-3-030-02683-7_77

Interoperable Data Extraction and Analytics Queries over Blockchains 25

12. Gartner: 90% of current enterprise blockchain platform implementations will
require replacement by 2021. https://gtnr.it/2OOYwsN

13. Georgiou, Z., Symeonides, M., Trihinas, D., Pallis, G., Dikaiakos, M.D.: Stream-
Sight: a query-driven framework for streaming analytics in edge computing. In:
2018 IEEE/ACM 11th International Conference on Utility and Cloud Computing
(UCC), pp. 143–152 (2018)

14. Kalodner, H., Goldfeder, S., Chator, A., Möser, M., Narayanan, A.: BlockSci:
design and applications of a blockchain analysis platform. arXiv preprint
arXiv:1709.02489 (2017)

15. Kosba, A., Miller, A., Shi, E., Wen, Z., Papamanthou, C.: Hawk: the blockchain
model of cryptography and privacy-preserving smart contracts. In: 2016 IEEE
Symposium on Security and Privacy (SP), pp. 839–858 (2016)

16. Kuo, T.T., Kim, H.E., Ohno-Machado, L.: Blockchain distributed ledger technolo-
gies for biomedical and health care applications. J. Am. Med. Inform. Assoc. 24(6),
1211–1220 (2017)

17. Li, Y., Zheng, K., Yan, Y., Liu, Q., Zhou, X.: EtherQL: a query layer for blockchain
system. In: Candan, S., Chen, L., Pedersen, T.B., Chang, L., Hua, W. (eds.) DAS-
FAA 2017. LNCS, vol. 10178, pp. 556–567. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-55699-4 34

18. McConaghy, T., et al.: BigchainDB: a scalable blockchain database (2016)
19. McGinn, D., McIlwraith, D., Guo, Y.: Towards open data blockchain analytics: a

bitcoin perspective. Roy. Soc. Open Sci. 5(8), 180298 (2018)
20. Meiklejohn, S., et al.: A fistful of bitcoins: characterizing payments among men with

no names. Commun. ACM 59(4), 86–93 (2016). https://doi.org/10.1145/2896384
21. European Union Blockchain Observatory and Forum: Scalability, interoperability

and sustainability of blockchains, March 2019
22. Rouhani, S., Deters, R.: Security, performance, and applications of smart contracts:

a systematic survey. IEEE Access 7, 50759–50779 (2019)
23. Sergey, I., Kumar, A., Hobor, A.: Scilla: a smart contract intermediate-level lan-

guage (2018)
24. Spagnuolo, M., Maggi, F., Zanero, S.: BitIodine: extracting intelligence from the

bitcoin network. In: Christin, N., Safavi-Naini, R. (eds.) FC 2014. LNCS, vol.
8437, pp. 457–468. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
662-45472-5 29

25. Splunk: Splunk app for hyperledger fabric. https://splk.it/2uCHG9p
26. Symeonides, M., Trihinas, D., Georgiou, Z., Pallis, G., Dikaiakos, M.: Query-driven

descriptive analytics for IoT and edge computing. In: 2019 IEEE International
Conference on Cloud Engineering (IC2E), June 2019

27. Szydlo, M.: Merkle tree traversal in log space and time. In: Cachin, C., Camenisch,
J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 541–554. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-24676-3 32

28. Trihinas, D., Pallis, G., Dikaiakos, M.: Low-cost adaptive monitoring techniques
for the Internet of Things. IEEE Trans. Serv. Comput. 1 (2018) https://doi.org/
10.1109/TSC.2018.2808956

29. Trihinas, D.: Datachain: a query framework for blockchains. In: Proceedings of the
11th International Conference on Management of Digital EcoSystems, MEDES
2019, pp. 134–141. Association for Computing Machinery, New York (2019).
https://doi.org/10.1145/3297662.3365796

30. Underwood, S.: Blockchain beyond bitcoin. Commun. ACM 59(11), 15–17 (2016)

https://gtnr.it/2OOYwsN
http://arxiv.org/abs/1709.02489
https://doi.org/10.1007/978-3-319-55699-4_34
https://doi.org/10.1007/978-3-319-55699-4_34
https://doi.org/10.1145/2896384
https://doi.org/10.1007/978-3-662-45472-5_29
https://doi.org/10.1007/978-3-662-45472-5_29
https://splk.it/2uCHG9p
https://doi.org/10.1007/978-3-540-24676-3_32
https://doi.org/10.1109/TSC.2018.2808956
https://doi.org/10.1109/TSC.2018.2808956
https://doi.org/10.1145/3297662.3365796

26 D. Trihinas

31. Vasek, M., Moore, T.: There’s no free lunch, even using bitcoin: tracking the popu-
larity and profits of virtual currency scams. In: Böhme, R., Okamoto, T. (eds.) FC
2015. LNCS, vol. 8975, pp. 44–61. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-47854-7 4

32. Wang, S., et al.: ForkBase: an efficient storage engine for blockchain and forkable
applications. Proc. VLDB Endow. 11(10), 1137–1150 (2018)

33. Wilkinson, S., Boshevski, T., Brandoff, J., Buterin, V.: Storj a peer-to-peer cloud
storage network (2014)

34. Xu, C., Zhang, C., Xu, J.: vChain: enabling verifiable Boolean range queries over
blockchain databases. In: Proceedings of the 2019 International Conference on
Management of Data, SIGMOD 2019, pp. 141–158. Association for Computing
Machinery, New York (2019). https://doi.org/10.1145/3299869.3300083

35. Yuan, Y., Wang, F.Y.: Towards blockchain-based intelligent transportation sys-
tems. In: 2016 IEEE 19th International Conference on Intelligent Transportation
Systems (ITSC), pp. 2663–2668. IEEE (2016)

36. Zhou, E., Sun, H., Pi, B., Sun, J., Yamashita, K., Nomura, Y.: Ledgerdata refiner:
a powerful ledger data query platform for hyperledger fabric. In: 2019 Sixth Inter-
national Conference on Internet of Things: Systems, Management and Security
(IOTSMS), pp. 433–440, October 2019

https://doi.org/10.1007/978-3-662-47854-7_4
https://doi.org/10.1007/978-3-662-47854-7_4
https://doi.org/10.1145/3299869.3300083

Exploiting Twitter for Informativeness
Classification in Disaster Situations

David Graf1(B), Werner Retschitzegger1, Wieland Schwinger1, Birgit Pröll2,
and Elisabeth Kapsammer1

1 Institute of Telecooperation, Department of Cooperative Information Systems,
Johannes Kepler University, Linz, Austria

{david.graf,werner.retschitzegger,wieland.schwinger,
elisabeth.kapsammer}@cis.jku.at

2 Institute for Application Oriented Knowledge Processing, Johannes Kepler
University, Linz, Austria
bproell@faw.jku.at

Abstract. Disaster management urgently requires mechanisms for
achieving situation awareness (SA) in a timely manner, allowing author-
ities to react in an appropriate way to reduce the impact on affected peo-
ple and infrastructure. In such situations, no matter if they are human-
induced like shootings or natural ones like earthquakes or floods, social
media such as Twitter are frequently used communication channels, mak-
ing them a highly valuable additional data source for enhancing SA. The
challenge is, however, to identify out of the tremendous mass of irrele-
vant and non informative social media data those messages being really
“informative”, i.e., contributing to SA in a certain disaster situation.
Existing approaches on machine-learning driven informativeness classifi-
cation most often focus on specific disaster types, such as shootings or
floods, thus lacking general applicability and falling short in classification
of new disaster events. Therefore, this article puts forward the following
three contributions: First, in order to better understand the underlying
social media data source, an in-depth analysis of existing Twitter data on
26 different disaster events is provided along temporal, spatial, linguistic,
and source dimensions. Second, based thereupon, a cross-domain infor-
mativeness classifier is proposed being not focused on specific disaster
types but rather allowing for classifications across different types. Third,
the applicability of this cross-domain classifier is demonstrated, showing
its accuracy compared to other disaster type specific approaches.

Keywords: Informativeness classification · Disaster related tweets ·
Cross-domain classification

1 Introduction

Situation Awareness in Disaster Management. In disaster situations, such as
natural disasters like earthquakes, floods, hurricanes or human-induced disasters
c© Springer-Verlag GmbH Germany, part of Springer Nature 2020
A. Hameurlain et al. (Eds.) TLDKS XLV, LNCS 12390, pp. 27–55, 2020.
https://doi.org/10.1007/978-3-662-62308-4_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-62308-4_2&domain=pdf
https://doi.org/10.1007/978-3-662-62308-4_2

28 D. Graf et al.

like shootings or bombings, it is crucial for organizations and authorities to
know the extent of the current situation to be able to react in an appropriate
way. In many cases, however, detailed information about what happened exactly
and what is going on in the affected area is not available [10]. Counteracting
this missing Situation Awareness (SA), i.e., “understanding what is happening”
[35], in a timely manner is essential to reduce the impact on affected people
[4,8,10,29,30].

Social Media for SA. Several studies showed, that social media are a frequently
used communication channel even during disaster situations [2,34], thus provid-
ing a new source of data for information retrieval tasks [27], more precisely, for
gaining SA [4]. In order to exploit the full potential of social media for enhancing
SA in disaster management, first of all, social media messages have to be auto-
matically filtered with respect to informativeness [28], eliminating non-related
messages like spam or advertisements and non informative ones like emotions or
emphatic expressions. Overall, informativeness classification is the crucial basis
for all further processing steps, like damage or impact assessment [5]. Especially
in scientific research, Twitter1 or tweets respectively, are a very frequently used
data source due to Twitter’s APIs, which allow access to real tweet data.

Informativeness of Tweets. The concept of informativeness is diverse in its use
and discussed in various areas, including, e.g., informativeness of web documents
[9], term informativeness [36,37] or informativeness of social media messages such
as tweets in areas like news [18] as well as the disaster domain itself [22]. Yet,
informativeness is a subjective concept, which heavily depends on the receiver of
the information [22]. Since a variety of informativeness definitions exist [7,9,18,
19], for the current work we follow the informativeness definition of Olteanu et
al. [22] where informativeness of disaster related tweets is captured by “checking
whether the tweet contributes to a better understanding of the situation on the
ground”.

Machine Learning to Classify Tweets. Current approaches for informativeness
classification of disaster-related tweets mainly employ supervised machine learn-
ing [2,12,14,33]. Learning from past events and classification on new events,
is, however, quite challenging not least since disaster situations are different in
many ways [24]. Thus, most classification approaches focus on informativeness
classification for specific types of events, for instance earthquakes or floods, only,
lacking general applicability. At the same time, how to get accurate informative-
ness classification for new disaster events is not yet totally understood due to
variations in training data, features, classification algorithms and their settings.

Contributions of Our Work2. To address these issues, our contribution is three-
fold: First, in order to better understand the underlying social media data source
1 http://www.twitter.com.
2 It has to be noted that a considerably shorter pre-version of this article has already

been published in Proceeding of the 10th International Conference on Management
of Digital EcoSystems. ACM, Tokyo, Japan, Sept. 2018.

http://www.twitter.com

Exploiting Twitter for Informativeness Classification in Disaster Situations 29

available in disaster situations, a systematic and in-depth analysis of disaster
related tweets with respect to informativeness is provided along four different
dimensions, covering temporal, spatial, linguistic, and source characteristics.
This is done on basis of the CrisisLexT26 [22]3 data set, since this data set
provides manually labeled data with respect to informativeness of 26 geograph-
ically distributed disaster events of 13 different disaster types. Second, based
thereupon, we present a cross-domain informativeness classifier, which can be
used on new events of various disaster types while being at least as accurate in
informativeness classification as disaster type specific ones. Finally, systematic
classification experiments are conducted, demonstrating that our classification
approach is more accurate than other disaster type specific ones.

Paper Structure. The paper is structured as follows. Section 2 presents the
systematic analysis of the CrisisLexT26 dataset being the basis for engineer-
ing a cross-domain classifier putted forward in Sect. 3. The applicability of our
cross-domain classifier is demonstrated in Sect. 4 on basis of a systematic set of
experiments and a comparison of the results with closely related classification
approaches. Section 5 reports on related work. Finally, Sect. 6 critically reflects
on our approach and discusses future research.

2 Systematic Disaster Data Analysis

Rationale Behind Our Data Analysis. Based on the work of Olteanu et al. [22],
the systematic analysis of the CrisisLexT26 presented in the following addresses
two main goals: First, we want to analyze similarities and differences of different
disaster events and in particular of events of different disasters types. This pro-
vides the basis for creating an appropriate training set, which we hypothesize
leads to accurate informativeness classification over various disaster types, i.e.,
addressing the domain adaptation problem [17]. Second, we want to uncover the
impact of tweet characteristics with respect to informativeness, to use specifically
those having high impact on informativeness as features for classification, which
we hypothesize leads to a more accurate informativeness classification compared
to other approaches. The systematic analysis is based on 4 different dimensions,
comprising i) WHEN a tweet was shared, i.e., temporal dimension, ii) WHERE
a tweet geographically belongs to, i.e., spatial dimension, iii) HOW a tweet is
written, i.e., linguistic dimension and iv) WHO posts a tweet, i.e., source dimen-
sion. In order to uncover tweet characteristics correlating with informativeness
and their differences with respect to disaster types, analysis of each dimension
follows a systematic hierarchical process. To be more specific, the analysis con-
siders, firstly, each dimension on an aggregated level, secondly, on a disaster
event level, and, thirdly, in combination with other dimensions. Overall, for each
dimension, the analysis is detailed as far as significant differences with respect to
informativeness are encountered. In addition to analysis along these dimensions,
systematic analysis comprises the investigation of similarity between disaster
events as well as their tweets by applying hierarchical clustering.
3 http://www.crisislex.org/data-collections.html.

http://www.crisislex.org/data-collections.html

30 D. Graf et al.

CrisisLexT26. The analyzed CrisisLexT26 data set contains 28K potentially
disaster-related tweets from 26 past disaster events (cf. Table 1), which happened
in the years 2012 and 2013. It comprises 13 different disaster types which have
been manually labeled by crowd-workers as: “informative and related”, “related
but not informative”, “not related” or “not applicable” and “non informative”
[22] which we only considered the former as being informative.

The current section presents, along the four analysis dimensions, our main
findings, underpinned with several concrete illustrative examples (cf. Subsects.
2.1–2.4). This is followed by similarity analysis of overall crisis events on the one
hand side (cf. Subsect. 2.5) and individual tweets on the other hand side (cf.
Subsect. 2.6), before summarizing the data analysis’ overall outcomes.

Table 1. CrisisLexT26 dataset [22]

Disaster types No. types No. tweets Category Development

Bombings 1 1008 Human-induced Instantaneous

Collapse 1 1255 Human-induced Instantaneous

Crash 1 1100 Human-induced Instantaneous

Derailment 3 3050 Human-induced Instantaneous

Earthquake 4 4464 Natural Instantaneous

Explosion 2 2111 Human-induced Instantaneous

Fire 1 1002 Human-induced Instantaneous

Floods 6 6205 Natural Progressive

Haze 1 1000 Natural Progressive

Meteorite 1 1443 Natural Instantaneous

Shootings 1 1032 Human-induced Instantaneous

Typhoon 2 2048 Natural Progressive

Wildfire 2 2400 Natural Progressive

2.1 Temporal Dimension

By considering the temporal dimension of tweets we want to analyze the evolu-
tion of informativeness in time over an entire disaster. For this, it is investigated
how far tweet characteristics determined by spatial, source and linguistic dimen-
sions change from the beginning of a disaster to its end. Particular emphasis is
put on whether there are differences between disaster events or between disaster
types, apart expectable peculiarities induced by the instantaneous or progressive
character [22] of certain disaster types like bombings or floods (cf. the “Devel-
opment” category in Table 1).

Exploiting Twitter for Informativeness Classification in Disaster Situations 31

Findings. Our findings regarding the temporal dimension can be summarized as
follows:

1. Figure 1 visualizes the relation of informative tweets to non informative tweets
over time. Overall, this relation stays constant indicated by the dashed gray
line. Thus, response time itself, i.e., the period elapsed since the event started
and the tweet was sent, is not highly informative for classification.

2. Considering differences in informativeness over time with respect to the other
three analysis dimensions, only the source dimension shows some peculiarities.
While for all events “media”, “government” and “NGOs” tend to be much
more informative over the entire time period independent of the disaster type,
this is not true for sources, “business”, “eyewitness” and “outsiders”. “Eye-
witnesses” over all events, e.g., tend to share, interestingly, in early stages of
a disaster more non informative than informative tweets, which turns around
after a few days (cf. dashed yellow line in Fig. 1). Since response time in com-
bination with other dimensions, like source, shows differences with respect to
informativeness, response time is therefore suited to be used as feature for
informativeness classification.

3. Analysis shows no considerable differences with respect to informativeness
between different disasters types, except expectable differences with respect
to the amount of shared tweets over time between instantaneous disaster
types where a majority of tweet communication takes place in the first days
and progressive disaster types, where communication is more constant over
the entire disaster or correlates with particular occurrences within the event
itself, e.g., a rising water level in case of a flood.

Fig. 1. Temporal dimension - informativeness evolution (Color figure online)

32 D. Graf et al.

2.2 Spatial Dimension

By considering the spatial dimension of tweets we want to analyze whether
there exist differences in informativeness of tweets with respect to the geographic
location where the disaster event happened. Due to the geographic distribution of
disaster events in the dataset, events were grouped together at a continent level
(Asia, Europe, Australia, North- and South-America) based on their country.

Findings. Our main findings towards the spatial dimension can be summarized
as follows:

1. The overall relation between informative and non informative tweets in dis-
aster events is similar across all continents although there is little variation
between single events (cf. Fig. 2). However, the spatial dimension does not
provide additional information with respect to informativeness and thus is
not used for classification.

2. There are no considerable differences between disaster events and between
disasters types within one continent, which, as a consequence, support cross-
domain classification.

Fig. 2. Spatial dimension - informativeness per continent

2.3 Linguistic Dimension

By considering the linguistic dimension of tweets we want to analyze which
linguistic characteristics differentiate informative tweets from non informative

Exploiting Twitter for Informativeness Classification in Disaster Situations 33

Fig. 3. Linguistic dimension - informativeness of characteristics

34 D. Graf et al.

ones. Since naturally a variety of linguistic characteristics exist, we focus on
those ones which have been already used for classification in other domains such
as news [18]. In particular, we analyze i) language, length and sentiment of a
tweet, ii) Part-of-Speech (POS) information covering nouns, verbs, adverbs and
adjectives, iii) frequency of special characters, Emoticons and disaster-related
hashtags and finally iv) punctuation. Since a majority of tweets, 71%, are in
English, POS annotations and sentiment analysis stick to English.

Findings. Our main findings towards the linguistic dimension are visualized in
Fig. 3 and can be summarized as follows:

Informative tweets tend to:

1. be longer, on average 1.51 tokens longer than non informative ones, thus
indicating that tweet length could be a suitable classification feature.

2. contain more nouns and adjectives.
3. contain URLs and the character “@” more frequently.
4. contain less positive and more negative sentiment.
5. contain less disaster related hashtags.

Non informative tweets tend to:

1. be shorter.
2. contain more verbs and adverbs.
3. contain the characters “#”, “!” and “?” more frequently.
4. contain more Emoticons.
5. contain more negation terms in tweet text, such as “no”, “not” or “never”.
6. finish with punctuation more likely.

However, overall, no considerable differences between different events and differ-
ent disaster types over all analyzed tweet characteristics exist.

2.4 Source Dimension

The source of a tweet was labeled by Olteanu et al. [22] and the dataset contains
tweets originating from source i) business, ii) eyewitness, iii) government, iv)
media, v) NGOs, iv) outsiders, and tweets not categorized, thus being grouped
as “others”.

Findings. Figure 4 visualizes informativeness of tweets originating from different
sources. Our main findings towards the source dimension can be summarized as
follows:

1. Tweets shared by “business”, “media”, “government” and “NGOs” tend to
be informative.

2. Tweets shared by “eyewitness” are informative as well as non informative.
3. Tweets shared by “outsiders” and “others” tend to be non informative.

Exploiting Twitter for Informativeness Classification in Disaster Situations 35

4. The amount of tweets shared by each source vary significantly, while 36%
of all tweets originate from “media” and 33% from “outsiders”, only 4%
originate from “government”, 1.5% from “business”, 8% from “eyewitness”,
3.5% from “NGO” and 14% from “others”. Thus, analysis results based on
these smaller classes might be not representative, especially when the amount
being reduced further by considering only single events.

Fig. 4. Source dimension - informativeness

2.5 Event Similarity

Data analysis of all four dimensions does not show any considerable differences,
neither between different disaster events nor between different disaster types,

36 D. Graf et al.

which, as a consequence, supports the idea of cross-domain classification. In
addition to the analysis regarding the four dimensions above, we investigate
in the following how similar are tweets of events based on their characteristics
in terms of a combination of temporal, spatial, linguistic and source dimension.
This is realized by considering the similarity of events with respect to their tweets
by applying bottom-up hierarchical clustering. Hierarchical clustering results are
visualized in form of cluster dendrograms, i.e., more similar events are clustered
in earlier clustering steps, thus appearing rather at the bottom of the dendro-
gram. In order to interpret similarity results we apply two clustering rounds:
i) event similarity based on event categorization of Olteanu et al. [22] such as
disaster type or event categorization, which serves as a baseline, and ii) event
similarity based on tweet characteristics showing possible differences between
disaster events or disaster types with respect to their tweets. While the former
targets informativeness classification of individual disaster types the latter sup-
ports the idea of cross-domain classification, by considering the tweets of events
intendedly disregarding the disaster type (e.g., floods or wildfires). Both rounds
are discussed in more detail in the following. Agglomerative, i.e., bottom-up,
hierarchical clustering used for our work is realized in R using the R package
“hclust” by applying euclidean distance measure and complete linkage4. For
those characteristics providing no information due to more than 50% of tweets
are not in English, they are replaced by mean values of all other events.

Event Similarity Based on Event Categorization. In order to visualize
similarity of events based on their categorization, the clustering algorithm uses
the event categorization of Olteanu et al. [22], namely, duration, geographic
location, category and subcategory, as well as development and spread as input
and calculates based thereupon the similarity between events visualized in the
cluster dendrogram of Fig. 5. As expected, the dendrogram shows certain disaster
types as clusters, for instance, floods are clustered together (e.g., Philippines
floods and Sardinia floods) as well as earthquakes or wildfires. With respect
to interpreting cluster dendrograms, the y-axis considers the similarity between
certain event clusters or events, respectively. Those events (cf. x-axis), which are
clustered very early in the hierarchical progress, thus appearing at the bottom
of the chart, are considered to be very similar based on hierarchical clustering
results.

Event Similarity Based on Tweet Characteristics. In order to visualize
similarity of events based on their tweet characteristics along the four dimen-
sions discussed at the beginning of this section, these characteristics are used as
input for the hierarchical clustering algorithms. Events are clustered considering
the characteristics of tweets of events, only, intendedly disregarding the disas-
ter type (e.g., floods or wildfires). Results of Fig. 6 show that previous clusters
(e.g., the cluster comprising Colorado floods and Queensland floods), although

4 https://cran.r-project.org/manuals.html.

https://cran.r-project.org/manuals.html

Exploiting Twitter for Informativeness Classification in Disaster Situations 37

Fig. 5. Event similarity based on event categorization

stemming from the same event type, are not considered as similar based on the
characteristics of their tweets. Quite the opposite, disaster events previously not
considered as similar due to different disaster types, e.g., Colorado floods and
Colorado wildfire, however, are considered as similar based on tweet characteris-
tics. Hence, since events of different disaster types are considered as similar based
on their tweet characteristics, thus further supporting the idea of cross-domain
informativeness classification.

Interpreting Hierarchical Clustering Results. First of all, comparing
results of both clustering rounds above shows differences, meaning that the dis-
aster type is not as relevant for informativeness classification of tweets, since
clustering based on tweet characteristics does not show clusters with respect to
the disaster types. Hence, the similarity of events based on tweet characteris-
tics can be interpreted as people’s online communication behavior in disaster
events, which is, based on results so far, not distinguishing between different
disaster types. For instance, the events Colorado floods and Colorado wildfires
are considered to be similar based on their tweet characteristics, although their
disaster type is not the same. In other words, whether a tweet is informative or

38 D. Graf et al.

Fig. 6. Event similarity based on tweet characteristics

not depends on certain characteristics, which are apparently not considerably
different for different disaster types.

2.6 Tweet Similarity

Hierarchical clustering visualizes event similarity rather than the similarity of
individual tweets. In order to visualize similarity of individual tweets, thereby
showing up possible clusters with respect to disaster types, we additionally
visualize all tweets in a scatter plot. Thereby, Principal Component Analysis
(PCA) [1] implemented in Python’s Scikit-Learn library5 was used to visual-
ize d-dimensional information of tweets, i.e., all tweet characteristics described
along the four dimensions discussed at the beginning of this section, in a two
dimensional space. Results of Fig. 7 support once again the idea of cross-domain
informativeness classification of tweets, since no clusters related to disaster types
are recognizable, i.e., tweets from all events are distributed over the entire plot.

5 https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.
html.

https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html

Exploiting Twitter for Informativeness Classification in Disaster Situations 39

Fig. 7. Tweet similarity visualized by applying PCA

2.7 Summary of Outcomes of Our Data Analysis

Our main findings along all four dimensions as well as findings along event
and tweet similarity can be summarized in two outcomes : Firstly, analysis of
temporal, linguistic and source dimensions uncovers tweet characteristics having
impact on informativeness, thus being candidates to be used as features, whereas
analysis of spatial dimension (per continent) shows no significant correlations
with respect to informativeness. Secondly, the fact that analysis does not show
significant differences with respect to disaster types and furthermore does not
show significant similarities within same disaster types, supports the hypotheses
to train an accurate cross-domain classifier cross the 13 different disaster types
available in our dataset.

3 Classification Approach

Based on the analysis presented in the previous section suggesting that different
disaster types do not show significant differences in terms of informativeness and
taking into account indication of informativeness of certain characteristics, in this
section we elaborate on a classification approach visualized in Fig. 8, which can
be used on new events of various disaster types while being at least as accu-
rate in informativeness classification as disaster type specific ones. Thereby, the
proposed classification approach resembles state-of-the-art approaches of related
work (cf. Table 4 in Sect. 5) comprising three phases, namely i) training phase,
ii) testing phase, and iii) online classification phase. Firstly, during the training
phase, an appropriate training set is used to train a classifier. Secondly, dur-
ing testing phase, this classifier is evaluated by using appropriate unseen test
sets. Finally, the trained classifier can be applied to an online stream of disaster

40 D. Graf et al.

related tweets in order to classify in informative and non informative tweets.
Our implementation was realized in Python using the frequently used Machine
Learning library Scikit-Learn [23].

3.1 Dataset

Split Dataset into Training Set and Test Set. In order to evaluate which classifier,
a cross-domain one or an event specific one, is more suited for new events, we
consider three different types of experiments regarding the disaster type:

1. In-domain: training and test data belong to the same disaster type.
2. Out-domain: training and test data belong to different disaster types.
3. Cross-domain: training set consists of tweets of various disaster types, the

test set is of a disaster type included or not included in the training set.

Sampling. To cope with the fact that our dataset is unbalanced in that the total
amount of informative tweets and the total amount of non informative tweets is
not equal in the dataset, and some classification algorithms are vulnerable with
respect to unbalanced data, we use an oversampling strategy [23] by replicating
samples from the smaller class. In addition, sampling allows to reduce the size of
the training set to evaluate the impact of training size on classification accuracy.

Fig. 8. Schematic representation of classification approach

Exploiting Twitter for Informativeness Classification in Disaster Situations 41

3.2 Preprocessing and Feature Extraction

In order to extract features, depending on their respective kinds, preprocessing
steps comprise removing stopwords, tokenization, stemming and POS annota-
tion, which are realized on basis of the NLTK library6, as well as language
detection on basis of the Langdetect7 library and sentiment determination on
basis of the TextBlob8 library. Which features to use is based on findings during
data analysis, discussed in the previous Sect. 2. In the following, these features
and their extraction process from tweets are described in more detail. Finally,
our classification approach ended up with a set of features listed in Table 2.

Table 2. Set of features - grouped by analysis dimensions

Nr. Dimension Feature Data type

1 Temporal Response time Integer

2–5 Probability of language EN, ES, TL, PT Float [0,1]

6 Number of tokens Integer

7–10 Characters “#”, “?”, “!”, “@” Integer

11 Links (URLs) Integer

12–15 POS: nouns, verbs, adjectives, adverbs Integer

16–17 Linguistic Positive/negative Emoticons Integer

18 Sentiment polarity Float [−1,1]

19 Sentiment subjectivity Float [0,1]

20 Disaster related Hashtags Integer

21 Negation terms Integer

22 Tweet finishes with punctuation Binary

23 Media Binary

24 Business Binary

25 NGO Binary

26 Source Government Binary

27 Eyewitness Binary

28 Others Binary

29 Outsiders Binary

Response Time. The response time of a tweet, i.e., the time span from the
beginning of a disaster to the point in time when a certain tweet is shared online,

6 https://www.nltk.org/.
7 https://pypi.python.org/pypi/langdetect.
8 http://textblob.readthedocs.io/en/dev/index.html.

https://www.nltk.org/
https://pypi.python.org/pypi/langdetect
http://textblob.readthedocs.io/en/dev/index.html

42 D. Graf et al.

contains important information with respect to informativeness. The response
time is calculated by the formula below and is measured in days.

featureResponseT ime = tweetPostDate− eventStarted (1)

Probability of Language EN, ES, TL, PT. Naturally, language informa-
tion is crucial in combination with other features due to the reason that some
features are based on the language of the tweet. Top four languages prevalent in
tweets of the dataset are English (EN), Spanish (ES), Tagalog (TL), and Por-
tuguese (PT), together comprising more than 90% of all tweets. The language of
each tweet is determined using the Python library Langdetect, a language detec-
tion tool ported from Google’s language-detection determining the probability
of languages used for a certain tweet. For our approach we use the language
detection for the languages EN, ES, TL, and PT, resulting in four features for
classification.

Number of Tokens. After preprocessing the tweet text, more precisely, remov-
ing stopwords, tokenization, and stemming on basis of the NLTK library, the
number of remaining tokens of the tweet’s text is determined, representing
another feature for classification.

Special Characters. Without preprocessing the tweet text, i.e., from tweet raw
data, the number of characters occurring in the tweet text is determined. Each of
the four characters (“#”, “?”, “!”, “@”) result in one feature for classification,
thus four features in total, expressing how often a special character occur in
tweet text.

Links (URLs). The number of URLs referring to web-links is determined sim-
ply by searching “http” in tweet raw data. This results in one feature for classi-
fication expressing the number of links in a tweet text.

POS: Nouns, Verbs, Adjectives, Adverbs. Part-of-Speech (POS) anno-
tation is based on the Python NLTK library. More precisely the POS tagger
function “pos tag” is used based on appropriately reprocessed tweets (i.e., stop-
word removal, tokenization, and stemming), resulting in four different features
for classification, namely i) number of nouns, ii) number of verbs, iii) number of
adjectives, and iv) number of adverbs.

Positive/Negative Emoticons. The number of Emoticons occurring in tweet
text are determined by searching for particular text sequences, such as “:-)”
or “:-(”. Thereby, variations of positive and negative Emoticons are considered
resulting in two features for classification.

Exploiting Twitter for Informativeness Classification in Disaster Situations 43

Sentiment Polarity/Subjectivity. In addition to determining the number of
Emoticons, only, sentiment analysis tools use a variety of techniques to assess
the sentiment of a text. Sentiment analysis of our approach is based on the
Python library TextBlob providing a sentiment analysis module, which uses a
pattern analyzer to estimate the sentiment in terms of polarity and subjectivity
of a particular text. The resulting two features for classification represent the
sentiment of a tweet text. The first feature expresses the sentiment polarity, i.e,
whether a tweet contains more likely positive or negative sentiment. The second
feature expresses the subjectivity of the sentiment, i.e., whether the sentiment
polarity value is rather subjective or objective.

Disaster Related Hashtags. Disaster related Hashtags, such as #Hurri-
canSandy, are used by twitter users to refer to certain disaster events, many
of them occurring in tweet text. For our approach we determine the number of
disaster related Hashtags by matching already known disaster related Hashtags
given in the CrisisLexT26 dataset with Hashtags in the tweet text. The number
of matches is represented as a feature value for classification.

Negations Terms. The number of negation terms listed below is used as
another feature for classification. Its value represents the number of negation
terms occurring in the tweet text, covering the terms “not”, “none”, “neither”,
“never”, “no one”, “nobody”, “nor”, “nothing”, “nowhere”, “does not”, “did
not”, and “f*ck” (profane words are spelled with “*” to replace one letter).

Tweet Finishes with Punctuation. This binary feature for classification dis-
tinguishes tweets finishing with punctuation, more precisely with the characters
“.”, “!” or “?”, from tweets finishing without punctuation.

Source. Not least since the source dimension showed considerable differences
regarding informativeness in data analysis, six binary features indicating a
tweet’s source are used for classification: i) Media, ii) Business, iii) NGO, iv)
Government, v) Eyewitness, and vi) Outsiders and (vii) Others, covering source-
agnostic tweets.

3.3 Automatic Feature Evaluation

Whether the features and their settings described above are suitable for the final
informativeness classification approach of our work is additionally evaluated by
automatic feature evaluation metrics. Several metrics are provided by the Scikit-
Learn framework. One of them is the “mutual information classification”9, which
measures the dependency between the feature and a certain class label. Higher

9 https://scikit-learn.org/stable/modules/generated/sklearn.feature selection.
mutual info classif.html.

https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.mutual_info_classif.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.mutual_info_classif.html

44 D. Graf et al.

values mean higher dependency, thus mean higher importance of this particu-
lar feature for classification. Results of automatic feature evaluation are listed
by decreasing dependency order in Table 3 and visualized in Fig. 9 indicating
that the first feature “Media” of dimension source is the most important one for
informativeness classification due to showing highest dependency to class. The
following feature “Links (URLs)” has the second highest dependency to class
and is therefore the second most important feature for informativeness classi-
fication. However, considering these two most important features (cf. Fig. 9),
only, it is noticeable that the feature “Media” shows a much higher dependency
than all others meaning that the source “Media” is by far the most relevant
indicator for informativeness of tweets. Besides this fact of the highly impor-
tant feature “Media” for classification, we can identify two further groups of
features with respect to their dependency to class results. We identify features
starting from “Links (URLs)”, i.e., rank 2, to feature “Language EN”, i.e., rank
11, as very important features for classification due to a dependency to class
value higher then 0.02, however, showing continuously decreasing dependency
to class. Finally, all other features, i.e., from rank 12 to the end, we still iden-
tify as important for classification due to showing dependency to class, however,
their differences regarding dependency to class between individual features are
small. With respect to our analysis dimensions we can conclude that all of the
three dimensions namely source, linguistic, and temporal are highly relevant for
informativeness classification since features of all of these dimensions are within
the top eight most relevant features for informativeness classification.

3.4 Training and Testing the Classifier

Training and Testing. In order to simulate a real scenario where tweets are
classified with respect to informativeness on new events, our trained classifiers
are tested on unseen disaster events. To compare their classification results, we
test classifiers on the same disaster event, and employ classification accuracy
as basis of our evaluation, i.e., how many tweets related to the total number of
classified tweets are classified as informative or non informative correctly.

Algorithm, Settings and Implementation. State-of-the-art informativeness clas-
sification employ standard algorithms, like Support Vector Machines (SVM)
[5,14,20,24,31], Naive Bayes classification, Maximum Entropy Models [24,31,33]
or Random Forest classification [2,12,19] as well as deep learning [21], using
a Convolutional Neural Network (CNN). Classification algorithms provided by
Scikit-Learn, such as SVM, Naive Bayes, AdaBoost (an ensemble method), Ran-
dom Forest, and a Multilayer Perceptron (a neural network) have been used for
the presented experiments. However, experiments showed that SVM using an
RBF kernel by applying Scikit-Learn default settings (C = 1.0, gamma = ‘auto’)
work best out of all other algorithms being therefore the first choice for all of
our experiments.

Exploiting Twitter for Informativeness Classification in Disaster Situations 45

Table 3. Mutual information classification - on average over all experiments

Dimension Feature Dependency to class

1 Source Media 0.134248132

2 Linguistic Links (URLs) 0.058554753

3 Source Outsiders 0.053998574

4 Linguistic Sentiment objectivity 0.048314646

5 Linguistic POS nouns 0.046057527

6 Linguistic Sentiment subjectivity 0.038255962

7 Linguistic Characters “#” 0.037680616

8 Temporal Response time 0.031614661

9 Linguistic Number of tokens 0.025143307

10 Linguistic Disaster related Hashtags 0.022630527

11 Linguistic Language EN 0.021173189

12 Linguistic POS adjective 0.016483257

13 Linguistic Characters “!” 0.015189369

14 Linguistic Characters “?” 0.015153933

15 Linguistic Characters “@” 0.015095157

16 Linguistic POS adverb 0.012776012

17 Linguistic Language TL 0.012484242

18 Source Eyewitness 0.012277692

19 Source Government 0.011127693

20 Linguistic POS verbs 0.010531956

21 Linguistic Sentence finishes with punctuation 0.009901169

22 Source NGO 0.009665882

23 Linguistic Language ES 0.008910637

24 Linguistic Language PT 0.008864438

25 Source Business 0.006817192

26 Linguistic Negation terms 0.006486926

27 Linguistic Positive Emoticons 0.006133980

28 Linguistic Negative Emoticons 0.005494237

46 D. Graf et al.

Fig. 9. Visualization of mutual informativeness classification (cf. Table 2)

4 Evaluation

Evaluation Dimensions. For a systematic evaluation of our classification app-
roach, described in the previous section, we define two orthogonal dimensions
for our experiments:

1. Event specifity: To clarify the question whether disaster type specific clas-
sifiers or more generic cross-domain classifiers are more beneficial, we distin-
guish training data containing tweets of only one type of disaster (i.e., deep
event specifity) from training data including tweets of multiple different types
of disasters (i.e., broad event specifity).

2. Training size: To clarify the impact of sample size on classifier performance
in relation to event specifity, we distinguish the amount of tweets used for
training from 1K (small training size) to 28K (large training size).

Experiment Categorization. Based on our evaluation dimensions, we categorize
our experiments into four groups as shown in Fig. 10. Experiments using a large
amount of tweets for training and a deeper event specificity, however, had to be
ruled out, since a comparable amount of tweets of the same disaster type is not
available in the CrisisLexT26 data set. By comparing classification results based
on the three remaining groups, we are able to show the impact of the disaster
type, i.e., event specificity, as well as the impact of the amount of tweets used for
training the classifier on classification accuracy. Thus, we can show, how accurate
our cross-domain classifier performs on various events of different disaster types
against classifiers trained on events of the same disaster type (e.g., trained on an
earthquake event “Guatemala earthquake” and tested on an earthquake event
“Costa Rica earthquake”).

Exploiting Twitter for Informativeness Classification in Disaster Situations 47

Fig. 10. Evaluation dimensions and experiment categorization

4.1 Deep—Small Experiments (DS)

In order to get an evaluation baseline for classification, first we consider system-
atic in-domain and out-domain classification experiments by using all possible
train/test-set combinations visualized in Fig. 11. Regarding training data size,
this kind of experiments use a rather small amount of approximately 1K tweets to
train the classifier, since limited by the available CrisisLexT26 dataset. For those
disaster types in our dataset which contain data about more than one event, dis-
aster events of the same disaster type are used for training and testing the clas-
sifier, i.e., in-domain classification. For instance, for disaster type “floods”, the
event Alberta floods is used to train the classifier and the event Sardinia floods is
used to test the classifier. In total, the CrisisLexT26 dataset allows 55 in-domain
experiments, by using all possible train/test-set combinations of disaster events
of the same disaster type, considering those types identified by Olteanu et al.
[22]. Using all possible train/test-set combinations of disaster events of different
disaster types result in additional 495 out-domain experiments. Figure 12 (cf.
chart lines “DS”) shows the average classification accuracy of all 650 in- and
out-domain experiments with respect to one particular disaster event used for
testing the classifier. In-domain experiments result on average in an informative-
ness classification accuracy of 75% (including a standard deviation of 5%). Out
of 55 in-domain experiments, the best classification accuracy of 88% achieved
the Costa Rica earthquake using the Guatemala Earthquake as training event,
which might be due to obvious similarities between these two events. The worst
result of 58% results from the event Philippines flood using Sardinia floods as
training set. In order to verify our hypothesis that a cross-domain classifier leads
to at least as accurate informativeness classification as an in-domain classifier,
i.e., a more specific one, the mentioned classification results serve as a baseline.

48 D. Graf et al.

Fig. 11. In-domain and out-domain classification accuracy results

4.2 Broad—Small Experiments (BS)

In order to eliminate the impact of training data size on classification accuracy
when comparing results against DS experiments, in our second group of experi-
ments we use the same amount of tweets as before, for training. We sample these
1K tweets out of all disaster events, excluding the one disaster event used for
testing the classifier, to address a broad event specificity. In general, our cross-
domain classification experiments follows a “leave one out” strategy, 25 disaster
events are used for training and the remaining 26th event was used for testing.
The average classification accuracy over all 26 experiments is 79% (including a
standard deviation of 7%), which is 4% higher than the average of in-domain
experiments (cf. Fig. 12, chart lines “BS”). In other words, a classifier trained on
random sampled tweets from various disaster events of different disaster types
achieves a 4% higher informativeness classification accuracy than using a clas-

Exploiting Twitter for Informativeness Classification in Disaster Situations 49

sifier trained on the same disaster type as the actual disaster is, even using the
same size of tweets for training.

4.3 Broad—Large Experiments (BL)

Since using tweets of different disaster events of different disasters types for
training lead to more accurate classification on average than in-domain training,
in the third group of our experiments we want to figure out the impact of the
training size on classification accuracy. By applying a “leave one out” strategy,
our 26 experiments use all available 28K tweets, again excluding those used
for testing, to train the classifier. Classification results are visualized in Fig.
12, chart lines “BL”. On average, classification accuracy over all cross-domain
experiments is 80% (including a standard deviation of 7%), which is significantly
higher compared to in- and out-domain experiments. Comparing the average
classification results using 28K tweets for training against using 1K tweets, show
a slightly, 1%, higher classification accuracy. Thus, the interesting finding here
is that the size of the dataset used for training seems not to be primary relevant
for accurate classification of informativeness.

4.4 Interpretation of Evaluation

To sum up, experimentation results allow us the following conclusions:

1. Using a classifier trained on various events cross different types of disasters
outperforms in 23 cases out of 26 (cf. red diamonds in Fig. 12) more specific
classifiers, trained on the same disaster type, in classification accuracy of 4%
(avg.). This even with the same amount of tweets in the training data.

2. Using a more specifically trained classifier may tend to overfit and therefore
leads to less accurate informativeness classification of unseen disaster events.

3. Increasing the amount of training samples on average lead to slightly more
accurate classification only (cf. Fig. 12).

4.5 Classification Performance

Finally, when considering informativeness classification results of other closely
related approaches, which are discussed in more detail in the following related
work section, as a baseline, results show that the cross-domain classifier pre-
sented in the current work achieved a higher accuracy on average as well as
regarding best accuracy values (cf. Table 4 in Sect. 5). In particular, compared
to cross-domain trained classifiers of [2] as well as to the in-domain classifier of
[19], our cross-domain classifier is 4% (avg.) more accurate in informativeness
classification, and compared to [12] 1.3% more accurate. In the current work,
the best average accuracy is 80% (including a standard deviation of 7%) using
cross-domain training over all events, best accuracy classification result is 89%,
which is compared against [12] an accuracy improvement of 2% and 12% com-
pared against [19]. The worst result was classifying Philippines flood with an
accuracy of 62%.

50 D. Graf et al.

Fig. 12. Classification accuracy results (Color figure online)

5 Related Work

Informativeness Classification. Informativeness is a broadly discussed concept
in literature and applied in various areas like news articles [18], web documents
[9] and linguistic sciences [16,37], to mention just a few. In the disaster domain,
informativeness classification is one early step in processing information from
social media. While few research thereby focuses on the informativeness clas-
sification task [2,12,19], other work take that for granted and focus on more
specific classification tasks like damage assessment [5] or develop platforms [4]
and frameworks [3,26], which support disaster management as a whole. While
many approaches for informativeness classification focus on particular disaster
types [2,5,19], only few works, however, address classification cross a variety of
disaster types [13,14,25] and also in other application areas like e.g. news [6]
cross-domain approaches are sparse. Table 4 shows a summary of closely related
work, sorted firstly with respect to the classification task, secondly concerning
the dataset used and thirdly regarding other related aspects, such as used fea-
tures or cross-domain training. After discussing related work with respect to
systematic manual analysis of disaster data, in the following, the main differ-
ences to other closely related classification approaches are factored out.

Manual Disaster Data Analysis. While many research focus on feature engi-
neering, i.e., inventing and evaluating new features, [13,14,19] or classification
itself [24,31,33], only few research deal with disaster data analysis with respect to

Exploiting Twitter for Informativeness Classification in Disaster Situations 51

informativeness. Acerbo and Rossi investigate “common patterns” inside infor-
mative and non informative tweets, which is similar to the data analysis of our
work, yet, they focus on similarities and differences in words. A statistical anal-
ysis of data with respect to informativeness is done by Lloret and Palomar [18]
where they present linguistic features which “an informative tweet should have
in order to be informative”, focusing, however, on the news domain. Ning et al.
[21] present an analysis of six disasters, to identify linguistic, sentimental and
emotional features. In contrast to our work, they address “relatedness” rather
than “informativeness” of tweets. The manual disaster data analysis of our work
is based on the results of Olteanu et al. [22], additionally, on top of that we focus
on a detailed analysis with respect to informativeness.

Classification Approaches. Considering closely related informativeness classifi-
cation approaches, Acerbo and Rossi [2] base their work on a subset of the
CrisisLexT26. In contrast to our work, their goal was not to learn a cross-
domain classifier, rather they focus on a novel text metric to use as additional
feature for classification. Moreover, their dataset contains only three disaster
types: floods, earthquakes and fires. Closely related with respect to the number
of cross-domain experiments is the work of Imran et al. [12], which is also based
on a subset of the CrisisLexT26, yet, they only use two disaster types, namely
floods and earthquakes. Longhini et al. [19] present a “language-agnostic model”
for informativeness classification and show the impact of a new feature “source”,
indicating hardware for communication, e.g. mobile or not. Cross-domain clas-
sification, however, is not part of their work. Considerable more disaster types
as all previously mentioned approaches are used by Khare et al. [14]. As in
our work, they run cross-domain experiments, yet their classification task is
“relatedness” (whether a tweet is related to a disaster event or not) instead of
“informativeness”. Most closely related to ours is the work of [13] where they use
the entire CrisisLexT26 dataset to address cross-domain classification, focusing,
however, on “relatedness”, not on “informativeness”. The work of [5] is closely
related with respect to features used for classification like number of tokens, “@”-
symbols, hashtags, punctuation, Emoticons and sentiment. Additionally, they
address cross-domain classification by using four disaster events of two disaster
types in Italy. They do not focus, however, on informativeness classification but
rather on “damage assessments” of Italian tweets. Closely related with respect
to cross-domain classification are the works of Li et al. [17] and Imran et al. [11],
yet they consider two different disaster types, only.

52 D. Graf et al.

Table 4. Overview on informativeness classification approaches.

ainformation not available, bcross-domain results, cclassification in three classes

6 Summary and Outlook

To sum up, our work presented in this article comprises the following three con-
tributions: First, in order to better understand the underlying social media data
source available in disaster situations, an in-depth analysis of existing Twitter
data on 26 different disaster events is provided along four different dimensions
covering temporal, spatial, linguistic and source. Second, based thereupon, a
cross-domain informativeness classifier is proposed being not focused on specific
disaster types but rather being able to provide for classifications across different
types. Third, the applicability of the cross-domain classifier is demonstrated,
showing the high accuracy of our approach compared to other disaster type
specific approaches. More precisely, our proposed cross-domain trained classifier
shows following benefits:

1. It is usable on various events of various types of disasters so that a single
classifier is applicable for any event.

2. It achieves 4% (avg.) higher classification accuracy than disaster-type specific
classifiers using the same size of training data.

3. It increases the amount of available training data since being not limited to
one type of disaster.

Based on our contributions, several lines of future research can be identified.
First, however, evaluation of classification is based on the 26 disaster events
and 13 disaster types included in the CrisisLexT26 data set, only. Hence, results
might be different when classifying new disaster types. In addition, since a major-
ity of tweets in the CrisisLexT26 data set are in English, it can be expected that
classification is not as accurate in classifying tweets of other languages thus
limiting the classifiers applicability, also confirmed by the related work of [15].
Classifying tweets of other languages requires to adjust linguistic features (e.g.
POS, sentiment) to particular languages. Moreover, the CrisisLexT26 data set
contained tweets stemming from the years 2012 to 2013. Yet, communication of

Exploiting Twitter for Informativeness Classification in Disaster Situations 53

people might change over years and thus informativeness classification accuracy
using classifiers trained on past events happening years ago might decrease over
time. User-related information like user meta data or geo-location are expected to
further improve the overall quality of classification, but has not been considered
in the current work since not being included in the CrisisLexT26 dataset. In our
work we use mainly linguistic, emotional and sentimental features. Experiments
including additional (semantic) features as well as geo-location information like
spatial relationship of tweets [32], which could help increase the accuracy of the
classifier, is subject to work. Another line of intended research is the considera-
tion of other languages, disaster data sets and finally also the expansion of our
evaluation towards other domains like the classification of news articles or web
documents realizing a domain-generic informativeness classification approach.

References

1. Abdi, H., Williams, L.J.: Principal component analysis. Wiley Interdisc. Rev. Com-
put. Stat. 2(4), 433–459 (2010)

2. Acerbo, F., Rossi, C.: Filtering informative tweets during emergencies: a machine
learning approach. In: Proceedings of the 1st CoNEXT Workshop on ICT Tools for
Emergency Networks and Disaster Relief, I-TENDER 2017, pp. 1–6. ACM, New
York (2017)

3. Avvenuti, M., Cimino, M.G.C.A., Cresci, S., Marchetti, A., Tesconi, M.: A frame-
work for detecting unfolding emergencies using humans as sensors. SpringerPlus
5(1), 1–23 (2016). https://doi.org/10.1186/s40064-016-1674-y

4. Cameron, M., Power, R., Robinson, B., Yin, J.: Emergency situation awareness
from twitter for crisis management. In: Proceedings of the 21st International Con-
ference on World Wide Web, WWW 2012, pp. 695–698. ACM, New York (2012)

5. Cresci, S., Tesconi, M., Cimino, A., Dell’Orletta, F.: A linguistically-driven app-
roach to cross-event damage assessment of natural disasters from social media
messages. In: Proceedings of the 24th International Conference on World Wide
Web, WWW 2015, pp. 1195–1200. ACM (2015)

6. Dai, W., Xue, G., Yang, Q., Yu, Y.: Transferring Naive Bayes classifiers for text
classification. In: Proceedings of the 22nd International Conference on Association
for the Advancement of Artificial Intelligence, AAAI 2007, vol. 7, pp. 540–545
(2007)

7. Derczynski, L., Meesters, K., Bontcheva, K., Maynard, D.: Helping crisis
responders find the informative needle in the tweet haystack. arXiv preprint
arXiv:1801.09633 (2018)

8. Girtelschmid, S., Salfinger, A., Pröll, B., Retschitzegger, W., Schwinger, W.: Near
real-time detection of crisis situations. In: Proceedings of 39th International Con-
vention on Information and Communication Technology, Electronics and Micro-
electronics, MIPRO 2016, pp. 247–252. IEEE (2016)

9. Horn, C., Zhila, A., Gelbukh, A., Kern, R., Lex, E.: Using factual density to mea-
sure informativeness of web documents. In: Proceedings of the 19th Nordic Con-
ference of Computational Linguistics, NODALIDA 2013, pp. 227–238 (2013)

10. Imran, M., Castillo, C., Diaz, F., Vieweg, S.: Processing social media messages in
mass emergency: a survey. ACM Comput. Surv. (CSUR) 47, 1–38 (2015)

https://doi.org/10.1186/s40064-016-1674-y
http://arxiv.org/abs/1801.09633

54 D. Graf et al.

11. Imran, M., Elbassuoni, S., Castillo, C., Diaz, F., Meier, P.: Extracting informa-
tion nuggets from disaster-related messages in social media. In: Proceedings of the
10th Conference for Information Systems for Crisis Response and Management,
ISCRAM 2013 (2013)

12. Imran, M., Mitra, P., Srivastava, J.: Cross-language domain adaptation for classi-
fying crisis-related short messages. arXiv preprint arXiv:1602.05388 (2016)

13. Khare, P., Burel, G., Alani, H.: Classifying crises-information relevancy with
semantics. In: Gangemi, A., et al. (eds.) ESWC 2018. LNCS, vol. 10843, pp. 367–
383. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93417-4 24

14. Khare, P., Fernandez, M., Alani, H.: Statistical semantic classification of cri-
sis information. In: 1st workshop of Hybrid Statistical Semantic Understanding
and Emerging Semantics (HSSUES), 16th International Semantic Web Conference
(2017)

15. Khare, P., Burel, G., Maynard, D., Alani, H.: Cross-lingual classification of crisis
data. In: Vrandečić, D.D., et al. (eds.) ISWC 2018. LNCS, vol. 11136, pp. 617–633.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00671-6 36

16. Kireyev, K.: Semantic-based estimation of term informativeness. In: Proceedings
of the 2009 Conference of the North American Chapter of the Association for
Computational Linguistics, NAACL-HLT 2009, pp. 530–538. Association for Com-
putational Linguistics (2009)

17. Li, H., et al.: Twitter mining for disaster response: a domain adaptation approach.
In: Proceedings of the 12th Conference for Information Systems for Crisis Response
and Management, ISCRAM 2015 (2015)

18. Lloret, E., Palomar, M.: Analysing and evaluating the task of automatic tweet
generation: knowledge to business. Comput. Ind. 78, 3–15 (2016)

19. Longhini, J., Rossi, C., Casetti, C., Angaramo, F.: A language-agnostic approach to
exact informative tweets during emergency situations. In: International Conference
on Big Data, Big Data 2017, pp. 3475–3739. IEEE (2017)

20. Mohammad, S., Kiritchenko, S., Zhu, X.: NRC-Canada: building the state-of-the-
art in sentiment analysis of tweets. arXiv preprint arXiv:1308.6242 (2013)

21. Ning, X., Yao, L., Wang, X., Benatallah, B.: Calling for response: automatically
distinguishing situation-aware tweets during crises. In: Cong, G., Peng, W.-C.,
Zhang, W.E., Li, C., Sun, A. (eds.) ADMA 2017. LNCS (LNAI), vol. 10604, pp.
195–208. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69179-4 14

22. Olteanu, A., Vieweg, S., Castillo, C.: What to expect when the unexpected hap-
pens: social media communications across crises. In: Proceedings of the 18th
ACM Conference on Computer Supported Cooperative Work & Social Computing,
CSCW 2015, pp. 994–1009. ACM (2015)

23. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn.
Res. 12, 2825–2830 (2011)

24. Pekar, V., Binner, J., Najafi, H., Hale, C.: Selecting classification features for detec-
tion of mass emergency events on social media. In: Proceedings of the 15th Inter-
national Conference on Security and Management, SAM 2016, The Steering Com-
mittee of The World Congress in Computer Science, Computer Engineering and
Applied Computing (WorldComp), p. 192 (2016)

25. Pekar, V., Binner, J., Najafi, H., Hale, C., Schmidt, V.: Early detection of hetero-
geneous disaster events using social media. J. Assoc. Inf. Sci. Technol. 71, 43–54
(2020)

http://arxiv.org/abs/1602.05388
https://doi.org/10.1007/978-3-319-93417-4_24
https://doi.org/10.1007/978-3-030-00671-6_36
http://arxiv.org/abs/1308.6242
https://doi.org/10.1007/978-3-319-69179-4_14

Exploiting Twitter for Informativeness Classification in Disaster Situations 55

26. Ren, X., et al.: CoType: joint extraction of typed entities and relations with knowl-
edge bases. In: Proceedings of the 26th International Conference on World Wide
Web, WWW 2017, International World Wide Web Conference on Steering Com-
mittee, pp. 1015–1024 (2017)

27. Rossi, C., et al.: Early detection and information extraction for weather-induced
floods using social media streams. Int. J. Disaster Risk Reduct. 30, 145–157 (2018)

28. Salfinger, A.: Staying aware in an evolving world. Ph.D. thesis, Johannes Kepler
University of Linz (2016)

29. Salfinger, A., Salfinger, C., Pröll, B., Retschitzegger, W., Schwinger, W.: Pinpoint-
ing the eye of the hurricane-creating a gold-standard corpus for situative geo-coding
of crisis tweets based on linked open data. In: LDL 2016 5th Workshop on Linked
Data in Linguistics: Managing, Building and Using Linked Language Resources,
p. 27 (2016)

30. Salfinger, A., Schwinger, W., Retschitzegger, W., Pröll, B.: Mining the disaster
hotspots-situation-adaptive crowd knowledge extraction for crisis management. In:
Proceedings of the 2016 Multi-Disciplinary International Conference on Cognitive
Methods in Situation Awareness and Decision Support, CogSIMA 2016, pp. 212–
218. IEEE (2016)

31. Stowe, K., Paul, M., Palmer, M., Palen, L., Anderson, K.: Identifying and catego-
rizing disaster-related tweets. In: Proceedings of The 4th International Workshop
on Natural Language Processing for Social Media, pp. 1–6 (2016)

32. Tsuchida, T., Kato, D., Endo, M., Hirota, M., Araki, T., Ishikawa, H.: Analyzing
Relationship of words using biased LexRank from geotagged tweets. In: Proceed-
ings of the 9th International Conference on Management of Digital Ecosystems,
MEDES 2017, pp. 42–49. ACM, New York (2017)

33. Verma, S., et al.: Natural language processing to the rescue? Extracting “situa-
tional awareness” tweets during mass emergency. In: Proceedings of the 5th Con-
ference on Weblogs and Social Media, ICWSM 2011 (2011)

34. Vieweg, S.: Situational awareness in mass emergency: a behavioral and linguistic
analysis of microblogged communications. Ph.D. thesis, University of Colorado at
Boulder (2012)

35. Vieweg, S., Hughes, A.L., Starbird, K., Palen, L.: Microblogging during two natural
hazards events: what twitter may contribute to situational awareness. In: Proceed-
ings of the Conference on Human Factors in Computing Systems, CHI 2010, pp.
1079–1088. ACM (2010)

36. Wong, B., Kit, C.: Comparative evaluation of term informativeness measures for
machine translation evaluation metrics. In: Proceedings of the 13th Conference of
Machine Translation Summit, vol. 2011, pp. 537–544 (2011)

37. Wu, Z., Giles, C.: Measuring term informativeness in context. In: Proceedings
of the 2013 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, NAACL-HLT 2013,
pp. 259–269 (2013)

COTILES: Leveraging Content
and Structure for Evolutionary

Community Detection

Nikolaos Sachpenderis, Georgia Koloniari(B), and Alexandros Karakasidis

Applied Informatics Department, University of Macedonia,
Thessaloniki 54636, Greece

{sachpenderis,gkoloniari,a.karakasidis}@uom.edu.gr

Abstract. Most community detection algorithms for online social net-
works rely solely either on the structure of the network, or on its con-
tents. Both extremes ignore valuable information that influences cluster
formation. We propose COTILES, an evolutionary community detection
algorithm, that leverages both structural and content-based criteria so as
to derive densely connected communities with similar contents. Specifi-
cally, we extend a fast online structural community detection algorithm
by applying additional content-based constraints. We also further explore
the effect of structure and content-based criteria on the clustering result
by introducing three tunable variations of COTILES that either tighten
or relax these criteria. Through our experimental evaluation, we show
that the proposed method derives more cohesive communities compared
to the original structural one, and highlight when the proposed variations
should be deployed.

Keywords: Community detection · Social networks · Labeled
communities · Evolutionary clustering

1 Introduction

Community detection and analysis in social networks is of particular interest as
it finds many applications such as marketing and advertising, while it is also very
demanding as social networks are massive and highly dynamic. They constantly
evolve both with regards to their structure as nodes join and leave the network,
form new links and remove old ones, and also with regards to their contents as
user interests and content of interactions change over time as well.

As communities in social networks are usually defined as groups of nodes
that are densely connected among themselves while sharing less connections
with other members of the network, most techniques relegate the problem of
community detection to a graph clustering task where only the structure of the
graph is taken into account to detect dense subgraphs. However, the content of
the social graph that can be represented by edges’ or nodes’ labels describing

c© Springer-Verlag GmbH Germany, part of Springer Nature 2020
A. Hameurlain et al. (Eds.) TLDKS XLV, LNCS 12390, pp. 56–84, 2020.
https://doi.org/10.1007/978-3-662-62308-4_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-62308-4_3&domain=pdf
https://doi.org/10.1007/978-3-662-62308-4_3

COTILES: Evolutionary Community Detection 57

their respective contents is also important. For instance, users of an online forum
can share the same interests even without interacting often. They may be consid-
ered a community, but a structure based algorithm will not reach that outcome.
On the other hand, a purely content based approach would exclude groups of
users that interact often with each other if the contents of these interactions are
varied, although logically they constitute a robust community.

We argue that the best approach for community detection is one that lever-
ages both the structure and the content of a network to regulate community
detection. Furthermore, to cope with the dynamic nature of social networks,
modeling the problem as static is not appropriate and incremental approaches
that also consider the past states of the network are required.

To this end, based on TILES [18], an incremental structure-based algorithm
for fast overlapping community detection, we propose COTILES, that in addi-
tion to structure, also exploits network content. Our goal is to form more cohe-
sive communities that still consist of groups of densely connected nodes but are
also centered around the same sets of topics. The proposed algorithm considers
a temporal labeled graph and defines the community label set that describes a
community’s contents. Besides the structural criteria TILES applies to determine
when nodes form a community, COTILES applies a content-based constraint to
ensure that the interaction that causes a node to be added to a community is
relevant to the content of this community. In TILES, edges decay over time. Sim-
ilarly, in COTILES, labels of edges and labels in community label sets also decay
and expire with time to better capture the evolution of the topics (contents) of
a community.

Furthermore, as each social network exhibits different characteristics, we
design configurable variations of the basic COTILES approach that can be
adjusted to best fit a particular application. In specific, we explore how tight-
ening or relaxing the content-based or structure-based constraints alternatively
can influence community detection. Therefore, we propose Strict COTILES that
applies a more restrictive content-based constraint using a similarity threshold
to tune it appropriately, and COTILES with Enhanced Content that relaxes
the structural constraint enforced by COTILES. Both variations favor content
against structure, aiming to derive more thematically cohesive communities. We
also combine the two in a Hybrid approach. We compare the proposed algo-
rithm COTILES against the original TILES using a real world dataset and show
both quantitatively and qualitatively that COTILES leads to more cohesive clus-
ters in contrast with TILES, in which community topics are far more scattered.
Furthermore, we also explore the behavior of the three variations to determine
advantages and weaknesses under different conditions.

The rest of the paper is structured as follows. In Sect. 2, we define basic
concepts required for modeling the community detection problem under our
setting and briefly describe the original TILES algorithm. In Sect. 3, we intro-
duce COTILES and its three variations, while Sect. 4 includes our experimental
results. In Sect. 5, we present related work distinguishing between structure-
based, content-based and combined methods, while also presenting alternative

58 N. Sachpenderis et al.

categorizations one can consider. We conclude in Sect. 6, with a summary and
directions for future work.

2 Preliminaries

We next define the basic concepts required for modeling our problem and
describe the TILES [18] algorithm.

2.1 Basic Concepts

A social graph can be modeled as an undirected graph, G = (V,E). Each node
u ∈ V of the graph corresponds to a user of the social network. Between these
nodes there are edges (u, v) ∈ E that correspond to interactions between users of
the network. To model time evolution, edges in the graph require a timestamp
t(u,v) that represents the time point the interaction occurs. Furthermore, to
incorporate content, graphs are also labeled, so that for each edge (u, v), we
have a label set L(u,v) that corresponds to the content of the interaction, which
usually is a set of tags or text exchanged between nodes u and v. Thus, based
on the definition in [2], we define:

Definition 1 (Temporal - Labeled Graph). A temporal - labeled graph on
G is an ordered quadruplet G(T) = (V,E,L, T), where T = {Te ⊆ N : e ∈ E}
refers to the set of timestamps of the edges of G, and L refers to the global set
of labels that appear in G at any time.

The main task of graph analysis is the detection and monitoring of commu-
nities. We adopt a general, widely used definition of communities [14].

Definition 2 (Community). A community is a group of nodes within which
the connections are denser than those to other groups.

2.2 The TILES Algorithm

Traditional community detection techniques can be used to monitor a graph’s
community structure through time. This is, in most cases, done by dividing the
graph in snapshots based on - context dependent- temporal boundaries, detecting
groups on each snapshot and then determining each community’s continuation
through consecutive snapshots.

Evolutionary community detection, on the other hand, aims to identify and
maintain an up-to-date community structure of the graph throughout its evolu-
tion. TILES [18] is a fast evolutionary community detection algorithm that uses
role propagation to distribute community membership to nodes based on their
neighborhoods. Another advantage of TILES, is its capacity of allowing over-
lapping communities. Such as in real social relations, a person (node) is often
member of more than one communities based on different criteria.

TILES identifies two roles of nodes participating in communities.

COTILES: Evolutionary Community Detection 59

Definition 3. A node is characterized as core if it is involved in at least one
triangle with other nodes in the same community.

That is, a core node belongs in at least one set with two other nodes of the same
community, such that each node has a relationship to all other nodes in the set.

Definition 4. A node is characterized as peripheral if it is an one-hop neighbor
of a core node.

A community may consist of both of these node categories. Core nodes are the
main community representatives that spread community membership to their
neighbors during role propagation. In contrast, peripheral nodes do not propa-
gate their community membership to their own neighbors.

Edges connecting two nodes indicate interactions between them and they are
characterized by a time-to-live (ttl) value. The default ttl value for an edge is set
to infinite and it indicates edges that never expire such as friendships in a social
network or co-authorship of an article in a collaboration network, while small ttl
values indicate the fast decay of relations, hence communities, too. The latter
are appropriate to model transient interactions such as exchange of messages
in a communication network. In addition, the removal of older edges from the
graph prevents memory growth problems.

The algorithm takes four parameters as input. The graph G which is initially
empty, an edge streaming source S producing edges that correspond to inter-
actions between the entities in the network, τ corresponding to the temporal
observation threshold based on which the network evolution is monitored and
the ttl. In every step of the algorithm based on a new edge (u, v) produced by
S, there are four possible scenarios:

1. When both nodes u and v appear for the first time - or reappear after their
expiration, no other action is performed.

2. When at least one node is a peripheral community node, that is a node which
does not propagate community membership, no other action is performed.

3. When one node is a core node and the other appears for the first time in
the graph, the second inherits a peripheral community membership from the
first.

4. When both nodes are community cores, if they have common neighbors, their
community memberships are re-computed, otherwise they propagate a periph-
eral community membership to each other.

The output of the algorithm is the community formation corresponding to
each of the observation windows in the time period the network is monitored.

3 COTILES for Community Detection

We argue that relying only on structure or only on content for community detec-
tion ignores the other important parameter and thus may miss important analy-
sis results. To this end, we propose COTILES, a community detection algorithm

60 N. Sachpenderis et al.

Algorithm 1. UpdateEdgeLabelsT imestamps(Lnew, Lcurr)
Require: Lnew : New edge labelset, Lcurr : Existing edge labelset
1: for l ∈ Lnew − Lcurr do
2: l ∪ Lcurr

3: for l ∈ Lnew ∩ Lcurr do
4: tk = GetT imestamp(l, Lnew)
5: SetT imestamp(l, Lcurr, tk)

that combines both structure and content when determining communities in an
evolving graph. We select TILES [18], an efficient incremental structural cluster-
ing algorithm and extend that to COTILES. COTILES, in addition to the struc-
tural constraints TILES enforces to form a community, also considers content-
based constraints to form communities centered around sets of topics. Beyond
that, COTILES maintains all major characteristics of TILES: it is incremen-
tal, it considers interactions expiration and supports overlapping communities.
We also explore variations of the proposed COTILES algorithm by demanding
greater content similarity among community members and relaxing the struc-
tural constraints. All proposed variations aim to derive communities with more
cohesive content.

The output of COTILES and its variations follows basic TILES, presenting
the community formation at each time slice corresponding to the observation
window, with additional semantic information for each community, determined
by the nodes inserted in it that are active at that time.

Next, we first describe the major contributions of COTILES for content
management, and then present the overall extended algorithm. We conclude
the section by presenting the proposed variations and how they differ from
COTILES.

3.1 Label Management in COTILES

A social network in COTILES is modeled as a temporal labeled undirected graph,
in which each edge has an accompanying label set describing its contents, and a
timestamp denoting the time the interaction the edge represents occurred. The
basic characteristic of COTILES is that it exploits these interaction labels, in
addition to the structural information that the original TILES exploits, so as to
form more thematically cohesive communities.

To describe the contents of a community, we first introduce the notion of the
Community Label Set that is instrumental in the design of COTILES.

Definition 5 (Community Label Set). Given a community c at time point
t, Lc represents the set of labels that at that time describe the contents of c.

As the community label set should represent the contents of the community, it
is formed by considering the labels that correspond to the edges between the
nodes that form the community.

COTILES: Evolutionary Community Detection 61

Algorithm 2. AddToCommunityLabels(Co, L)
Require: Co : a community, L : a labelset
1: LCo = GetLabels(Co)
2: for l ∈ L do
3: tk = GetT imestamp(l, L) � Retrieve l’s timestamp in L
4: if l /∈ LCo then
5: LCoQ.Add(l, tk) � insert new l with timestamp tk

6: LCo = LCo ∪ l
7: else
8: tl = GetT imestamp(l, Co) � Retrieve l’s timestamp in Co

9: if tl < tk then
10: LCoQ.Update(l, tk) � update timestamp of l to tk

Algorithm 3. LabelConstraint(u, v, Co, G, clt)
Require: u, v : nodes of graph G, L(u,v) : labels of edge (u, v), Co : an existing

community, clt : community label set threshold.
1: LCo = Lcomm.GetLabels(Co)
2: if LCo

⋂
L(u,v) �= ∅ or |LCo | ≤ clt then

3: Lcomm.AddToCommunityLabels(Co, L(u,v))
4: return true
5: return false

Lemma 1 (Community Label Set Construction). Given a community c,
consisting of a set of nodes Nc that form a set of edges Ec between them, its
community label set, Lc is defined as: Lc =

⋃
Le,∀e ∈ Ec, where Le is the set

of labels attached to edge e.

In COTILES, we assume that content and structure in a network are tran-
sient. User interests and their interactions and relationships, represented by net-
work content and structure respectively, tend to decay over time. To model this
decay, COTILES uses the time-to-live parameter for both labels and edges. In
TILES, the ttl parameter is used only for edges so that edges expire after some
time. In COTILES, an edge’s labels inherit the edge’s timestamp and the ttl
parameter determines their lifetime as well. Furthermore, COTILES applies the
same idea to model the lifetime of the labels that belong in a community label
set. By using the time-to-live property not only for the edges, but for the labels
in the community label set as well, we ensure that the communities evolve and
do not remain restricted to the first topics and nodes that enter them.

In COTILES, the timestamps of the labels need to be updated similarly to
how edge timestamps are updated if an edge (e(u,v)) reappears before its expi-
ration in TILES. However, when handling labels, as in COTILES, an additional
concern is if the new label set of the edge, Lnew shares labels with its current
label set, Lcurr. Thus, any label l ∈ Lnew − Lcurr is added to the label set of
e(u,v), and any label l ∈ Lnew

⋂
Lcurr updates its timestamp, while the rest of

the labels in Lcurr maintain their timestamp. Thus, some labels in the set of an
edge may expire before the edge itself. This procedure is detailed in Algorithm1.

62 N. Sachpenderis et al.

As it is evident, a respective update procedure should be deployed to handle
a community’s label set. Each time a new edge is added to a community, besides
adding its labels in the community label set according to Lemma 1, there is the
possibility that it carries labels already present in this community. Thus, the
corresponding common labels update their timestamp in the community label
set to the most recent value. Algorithm 2 details the process of updating the
community label set. Given a community Co with label set LCo

and a set of
labels L that corresponds to the edge that is incorporated in the community: if
label l ∈ L − LCo

, l is added to LCo
with its corresponding timestamp tk (lines

4–6), otherwise, l’s timestamp is individually updated to the most recent value
between its value in L and LCo

(lines 9–10).
Besides describing the evolution of the contents of the communities through

the definition of the community label set, the main contribution of COTILES is
that, in addition to the structural criteria deployed by TILES to form a com-
munity, it also enforces content-based criteria via the Label Constraint. Our goal
is to ensure that, when a node is added in a community, the interaction (edge),
that causes this addition, has content similar to the content of the community.
Content similarity can be defined using various methods and measures that aim
to better capture semantic similarity. The similarity measure is orthogonal to our
algorithm, therefore, different alternatives can be explored depending on their
suitability for a given application domain. Here, we simply consider the inter-
section of two label sets to evaluate their similarity, i.e., considering two label
sets equal if they share common labels. Consequently, before adding a node to a
new community, we check whether the label set of the given edge has common
labels with the community’s label set.

To initialize the community label sets, as they start as empty, we use a
community label set threshold, clt. If a community has fewer or equal to clt
labels, then the Label Constraint is evaluated to true without actually computing
the intersection of the community label set with the edge’s label set. The purpose
of this threshold is to encourage the formation of communities at the beginning
of the algorithm, while also maintaining community cohesion and its value is
context dependent.

The steps for the application of the Label Constraint are detailed in
Algorithm 3. Given a community Co, its labels are retrieved (line 1). The label
set of the edge L(u,v) is checked against the label set of this community, LCo

(line 2). If the intersection of the two sets is not empty or |LCo
| ≤ clt, the Label

Constraint is evaluated to true and LCo
is updated by Algorithm 2, otherwise

the constraint is evaluated to false.

3.2 COTILES Description

We proceed with the overall COTILES algorithm, focusing on how we incor-
porate the novel content management processes, which we introduced in the
previous section (Algorithm 1 to Algorithm 3), in the original TILES so as to
make it content-aware.

COTILES: Evolutionary Community Detection 63

Algorithm 4. COTILES.
Require: G : undirected graph, S : streaming source, τ : temporal observation thresh-

old, ttl : edges & labels’ time to leave, L : set of available labels, clt : community
label set threshold.

1: actualt = 0, LRQ = {}
2: while S.isActive() do
3: (u, v, Lu,v, tk) ← S.getNewInteraction()
4: G.UpdateT imestamps(u, v, Le(u,v) , tk)
5: G.UpdateEdgeLabelsT imestamps(Le(u,v) , LLRQ.GetEdge(e(u,v))

)

6: G.RemoveExpiredEdges(LRQ, ttl, actualt) � Remove expired edges and
attached labels.

7: Lcomm.RemoveExpiredLabels(ttl, actualt) � Remove expired labels from
communities.

8: if (u, v) /∈ G then
9: G.addEdge(e(u,v))

10: if |Γ (u)| == 1 and |Γ (v)| == 1 then
11: Continue
12: coreu = G.GetCommunityCore(u)
13: corev = G.GetCommunityCore(v)
14: if coreu == ∅ and corev == ∅ then
15: Continue
16: if |Γ (u)| > 1 and |Γ (v)| == 1 then
17: G.PeripheralPropagation(u, {v}, clt, tk)
18: else if |Γ (u)| == 1 and |Γ (v)| > 1 then
19: G.PeripheralPropagation(v, {u}, clt, tk)
20: else
21: CN=Γ (u)

⋂
Γ (v) � CN: Common Neighbors

22: if |CN | == 0 then
23: G.PeripheralPropagation(u, {v}, clt, tk)
24: G.PeripheralPropagation(v, {u}, clt, tk)
25: else
26: G.CorePropagation(u, v, CN, clt, tk)

27: if t − actualt == τ then
28: OutputCommunities(G)
29: t = actualt

Algorithm 4 presents COTILES and includes the Label Constraint through
the Peripheral Propagation mechanism. COTILES considers an undirected graph
G, a streaming source of interactions S, a temporal observation threshold τ , a
time-to-live threshold ttl, applicable both to edges and labels, a set of labels L
that may appear, and finally, the label community threshold clt.

To facilitate the edge expiration process in COTILES, similarly to the orig-
inal TILES, we use a priority queue LRQ that, besides the edges, it also
includes their labels (line 1). Method UpdateT imestamps (Algorithm 5) and
RemoveExpiredEdges (Algorithm 6) handle the lifetime of the edges in TILES.
In COTILES, in addition to these two procedures, we also include procedure

64 N. Sachpenderis et al.

Algorithm 5. UpdateT imestamps(u, v, L(u,v), tk)
Require: u, v : nodes forming edge uv, L(u,v) : labels of edge e(u,v), tk : timestamp of

edge e(u,v) and its labels.
1: if euv ∈ LRQ then
2: LRQ.Update(u, v, L(u,v), tk) // update tk � Edge exists: Update timestamps
3: else
4: LRQ.Add(u, v, L(u,v), tk)

UpdateEdgeLabelsT imestamps (Algorithm 1) and RemoveExpiredLabels to
handle the lifetime of the labels. The latter simply removes expired labels from
the edge or community label sets they belong to.

Proceeding on the main functionality of COTILES, when the streaming
source produces edge e(u,v) at tk with label set L(u,v), there are four cases.

1. Both nodes u and v appear for the first time in the graph (lines 10–11). No
other actions are performed until the next interaction is produced by the
source S. This case is also described in TILES [18].

2. One node appears for the first time and the other is already existing but
peripheral or both nodes are existing but peripheral (lines 12–15), in any
case they do not belong to any community core. Since peripheral nodes are
not allowed to propagate the community membership, no action is performed
(none of the “if” clauses is satisfied) until the next interaction is produced
by the source S. This case also applies to TILES.

3. Let u be a core node of a community and v appears for the first time (or vice
versa) (lines 16–19). In this case, peripheral propagation is applied, as detailed
in Algorithm 7, with the application of the COTILES Label Constraint.

4. Both nodes u and v are existing core nodes in G (lines 21–26).
(a) Nodes u and v do not have common neighbors (lines 22–24). In this

case, peripheral propagation takes place, as in the previous case with the
application of the COTILES Label Constraint.

(b) Nodes u and v have common neighbors (lines 25–26). In this case, core
propagation that applies a variation of the Label Constraint, as described
in Algorithm 8, takes place.

Peripheral propagation (Algorithm7) before adding a node to the periphery
of a community, first checks the COTILES Label Constraint (Algorithm 3) and
only proceeds if that is evaluated to true.

Finally, core propagation in COTILES is described in (Algorithm8). We will
use the I(·) operator to represent the intersection of the communities of two, or
more, nodes, and the Γ (·) operator to indicate the neighborhood of a node, i.e.,
the set of a node’s one-hop neighbors. Core propagation, assumes that both u and
v have at least one common neighbor z. If two nodes are core for a community,
the third one becomes core (lines 10–21) as well and, the labels of the edges
formed by the newcomer and the existing nodes are added to the community
(lines 12, 16, 20) as long as the Label Constraint is satisfied, as ensured by the

COTILES: Evolutionary Community Detection 65

Algorithm 6. RemoveExpiredEdges(RQ, ttl, actualt)
Require: LRQ : a priority queue containing the edge candidate and its labels to be

removed, ttl : edges time to live, actualt : actual timestamp.
1: for (u, v, t) ∈ RQ do
2: if (actualt − t) ≤ ttl then
3: G.removeEdge(u, v)
4: LRQ.remove(u, v) � Also removes edge labels
5: to update = {Γ (u) ∩ Γ (v)} ∪ {u, v}
6: for community ∈ I(u, v) do
7: components = G.getComponents(community)
8: if |components| == 1 then
9: G.UpdateNodeRoles(community, to update)

10: else
11: for c ∈ components do
12: sc = G.NewCommunity(c)
13: G.RemoveNodes(community, Vc)
14: G.UpdateNodeRoles(sc, c)

Algorithm 7. PeripheralPropagation(u, nodes, clt, tk)
Require: u : node of G, nodes : a set of nodes, clt : threshold for Label Constraint,

tk : timestamp.
1: for v ∈ nodes do
2: for c ∈ G.GetCommunityCore(u) do � ∀ community core nodes
3: for Co ∈ c.GetCommunities() do
4: if LabelConstraint(u, v, Co, G, clt) == true then
5: G.AddToCommunityPeriphery(v, Co)

PeripheralPropagation method. Otherwise, we need to form a new community
according to the original TILES. However, COTILES first applies a variation of
the Label Constraint between the edges connecting the three nodes to ensure
that they are content-wise related. In particular, if the intersection of the label
sets of the edges that are connecting them is not empty, or their union has fewer
or equal to clt labels, a new community, c∗, is formed (lines 2–9) and the labels
of this community, Lc∗ result from the union of the labels of the edges of the
participating nodes (lines 4–5).

3.3 Tuning COTILES

The results of any community detection algorithm depend on the application
domain and the nature of interactions and properties of the entities in the tar-
get social graph. The variety of approaches in the bibliography clearly shows
that there is no unique solution appropriate for all applications. Our goal is to
make COTILES tunable and adaptive to different requirements on community
detection.

In addition to the time-to-live parameter, ttl, which determines the rate
of time decay of edges and labels (i.e., interactions and content) and is also

66 N. Sachpenderis et al.

Algorithm 8. CorePropagation(u, nodes, clt, tk)
Require: u, v : node of G, CN : u&v common neighbors in G, clt : label threshold,

tk : timestamp.
1: for z ∈ CN do
2: if I(u, v) == ∅ and I(u, z) == ∅ and I(v, z) == ∅ then
3: if (L(u,v) ∩ L(u,z) ∩ L(v,z)) �= ∅ or |L(u,v) ∪ L(v,z) ∪ L(u,z)| ≤ clt then
4: c∗ = G.CreateNewCommunity(u, v, z) � c∗: new community
5: Lc∗ = L(u,v) ∪ L(v,z) ∪ L(u,z) � Lc∗ : labels of new community
6: Lcomm.Add(Lc∗)
7: PeripheralPropagation(u, Γ (u), clt, tk)
8: PeripheralPropagation(v, Γ (v), clt, tk)
9: PeripheralPropagation(z, Γ (z), clt, tk)

10: else if I(u, v) �= ∅ then
11: G.AddToCommunityCore(z, I(u, v))
12: Lcomm.AddToCommunityLabels(Cz, LI(u,v))
13: PeripheralPropagation(z, Γ (z), clt, tk)
14: else if I(u, z) �= ∅ then
15: G.AddToCommunityCore(v, I(u, z))
16: Lcomm.AddToCommunityLabels(Cv, LI(u,z))
17: PeripheralPropagation(v, Γ (v), clt, tk)
18: else if I(z, v) �= ∅ then
19: G.AddToCommunityCore(u, I(z, v))
20: Lcomm.AddToCommunityLabels(Cu, LI(z,v))
21: PeripheralPropagation(u, Γ (u), clt, tk)

used in TILES, COTILES introduces the community label set threshold, clt.
This threshold, that is used for a community’s label set initialization, enables
nodes with no content similarity to form the initial communities based solely
on their structural properties. As the algorithm proceeds with the addition of
new interactions and the use of the ttl that removes old labels and edges from a
community, the derived communities will be thematically cohesive, as only active
topics and new interactions with contents around these active topics determine
the evolution of the community.

Increasing the value of clt encourages the formation of larger communities
at the start of COTILES that may include more than one thematic topics,
while reducing its value leads to the formation of numerous smaller communities.
Therefore, greater values are encouraged for networks where the content is more
similar, while smaller values are most appropriate for networks with more diverse
contents.

Besides the user-defined parameters that can be tuned according to the appli-
cation requirements, as COTILES enforces both content and structural con-
straints for the formation of communities, we can explore variations that relax or
tighten the aforementioned constraints to provide adjustable approaches appro-
priate for various settings.

COTILES: Evolutionary Community Detection 67

Strict COTILES. In an effort to derive communities with greater content
purity, we introduce Strict COTILES that restricts the insertion of nodes into
communities in order to form groups with greater content similarity between
their members. A possible weakness of COTILES, that Strict COTILES aspires
to overcome, is grouping nodes to the same community only because they have
few common labels with general meanings. This could happen due to the exis-
tence of some wide-spread labels in the network, connecting nodes not much
semantically related, especially in social network applications that are centered
around a particular domain of interest, i.e., all discussions in a technical support
forum will be around technical issues.

Thus, Strict COTILES defines a more strict Label Constraint compared to
COTILES. While the Label Constraint in COTILES allows a node to join a
community c when the edge triggering the addition shares at least one label
with the community label set of c, i.e., their intersection is not empty, Strict
COTILES requires that the cardinality of the intersection of the two labels
sets is equal or above a user defined threshold (StrT). By restricting the Label
Constraint, higher similarity is achieved within a community. Strict COTILES
uses the same mechanism for encouraging the initial formation of communities
by utilizing clt similarly to COTILES. The Strict Label Constraint algorithm is
illustrated in Algorithm9.

This Strict COTILES variation follows the original COTILES procedure
only deploying the Strict Label Constraint instead of the Label Constraint in
peripheral propagation (Algorithm7, line 4). Furthermore, it correspondingly
alters the variation of the Label Constraint that is applied in core propagation
(Algorithm 8, line 3). Similarly to the Strict Label Constraint, the cardinality of
the intersection of the label sets of the edges connecting the three nodes that
are candidates for forming a new community is required to be greater or equal
to the StrT threshold.

While the use of the StrT threshold introduces a new parameter in the
algorithm, it allows us to tune Strict COTILES according to the application
requirements. COTILES offers one extreme in the spectrum where StrT = 1
and at least one shared label is enough to allow an edge (u, v) to be incorpo-
rated in a community. On the other hand, setting StrT equal to |L(u,v)|, that is
requiring that the label set of the new edge is a subset of the community label
set determines the other extreme, requiring the contents of the edge to already
be included in the contents of a community to incorporate it.

The Strict Label Constraint can be tuned to cover cases between COTILES
and Strict COTILES with maximum strict threshold. In some cases, COTILES
tends to add nodes into communities with barely similar content caused by
only one general common label, as we mentioned, whereas Strict COTILES with
maximum strict threshold has an absolute similarity criterion and excludes many
nodes from a community where they belong in terms of content. Strict COTILES
with the appropriate context-related threshold is quite more selective than the
main algorithm, but does not require all of the edge’s labels to be already present
inside the community label set. As an appropriate threshold we propose using
an estimation of the average of the similarity values within the label sets of the
edges of a community.

68 N. Sachpenderis et al.

Algorithm 9. StrictLabelConstraint(u, v, Co, G, clt, StrT)
Require: u, v : nodes of graph G, L(u,v) : labels of edge (u, v), Co : an existing

community, clt : community label set threshold, StrT : Strict threshold.
1: LCo = Lcomm.GetLabels(Co)
2: if LCo

⋂
L(u,v) ≥ StrT or |LCo | ≤ clt then

3: Lcomm.AddToCommunityLabels(Co, L(u,v))
4: return true
5: return false

COTILES with Enhanced Content. COTILES with Enhanced Content, EC,
is another variation that also aims to derive communities with more similar
contents. However, instead of restricting the content based constraint to achieve
this, in EC, we relax one of the structural constraints COTILES applies. The
main idea behind this variation is that in some cases detecting nodes with similar
content is more important than relying on the density of the interactions among
them. For instance, consider a case where many users share the same interests
but while they interact together, they mostly interact within subgroups. It might
be of value to form a single larger community in such a case.

EC intervenes in the main procedure of COTILES and shifts the attention
mostly at content-based relations between nodes. The Label Constraint is applied
as in COTILES to ensure content similarity. The difference is that EC allows
peripheral nodes to propagate community membership to their neighbors, as long
as the Label Constraint is satisfied. Thus, EC applies the main COTILES algo-
rithm as described, in Algorithm4, but line 12 to line 15, which check whether
one of the nodes of the new edge are core, are omitted and the algorithm con-
tinues with peripheral and core propagation. Thus, even if the two nodes of the
new edge are both peripheral, they can propagate community membership to
one another if the new edges’ labels are similar to any of the communities they
have joined.

We expect EC to encourage the formation of larger communities that include
nodes that may not be so densely connected but share similar contents.

Hybrid COTILES. The final variation we consider is a hybrid approach that
combines the two newly proposed variations, namely Strict COTILES and EC,
in order to exploit and combine the advantages of each one.

Strict COTILES mandates a higher similarity between two label sets to con-
sider them similar by deploying a user defined threshold, while EC relaxes the
structural constraints that COTILES applies allowing not only core, but periph-
eral nodes as well to propagate community membership. In the hybrid approach,
we combine the two, thus both relaxing the structural constraints as in EC, but
also demanding higher content similarity in a community’s members as in Strict
COTILES.

To apply the hybrid approach, COTILES is altered as follows. First, the
change that EC applies in COTILES by omitting the check of whether any of

COTILES: Evolutionary Community Detection 69

the two nodes of a new incoming edge are core, is also applied in the hybrid
approach, that is, lines 12 to 15 of Algorithm4 are omitted. Thus, even if the
nodes are peripheral, they can propagate community membership to one another
as long as the new edge’s label set is similar to any of the nodes’ community
label sets. However, to determine their similarity, instead of the Label Constraint,
the Strict Label Constraint as described in Algorithm 9 of the Strict COTILES
approach is applied in peripheral propagation. Similarly, in core propagation the
variation of the Label Constraint that is described in Strict COTILES is also
deployed in the hybrid approach, ensuring both times that the cardinality of the
intersection of the compared label sets is greater or equal to the StrT threshold.

Compared to Strict COTILES, the Hybrid approach will allow communities
with less dense interactions among their members due to EC that relaxes struc-
tural constraints. At the same time, it will ensure higher content purity within
them compared to EC, due to Strict COTILES that ensures higher content sim-
ilarity between community members.

4 Evaluation

We compare COTILES and its variations against the original TILES measuring
both structural and content-based properties of the derived communities, focus-
ing, also, on how these properties change, as the communities evolve through
time.

In order to make content characteristics countable for TILES as well, we
apply COTILES without the label constraints, deriving the communities formed
by the original TILES but associated with their corresponding community label
sets.

Measuring different structural properties, such as community cardinality and
density, we select to report our results on cardinality as they showcase clearly the
differences between the different variations of our approach. We also separately
study the overlap between the formed communities, as this is one of the most
interesting dimensions of TILES and we are interested in exploring the influence
of content awareness, as introduced by COTILES, on the derived results. As
far as the content-based properties are concerned, we measure the number of
unique labels in each community and also content similarity between communi-
ties. Both these measures demonstrate how well we succeed with respect to our
primary goal, that is, to derive cohesive well-separated with regards to content
communities.

4.1 Experimental Setup

We use a dataset retrieved from the Unix.StackExchange.com forum available
via the Stack Exchange Network [12] and construct a temporal-labeled graph,
G(T) = (V,E,L, T), where V corresponds to forum users, E to interactions
between users occurring when members answer or comment to each other’s posts,

70 N. Sachpenderis et al.

Fig. 1. (Left) label distribution, and (right) similarity between corresponding edge
and community label sets.

L to the set of labels used by the forum’s users as tags describing their posts,
and T to the set of timestamps for the interactions.

The constructed graph has 542120 edges formed between 87438 nodes. 2615
different labels appear through the graph’s lifetime, with a total amount of
1533354 occurrences. The distribution of labels is illustrated in Fig. 1 (left). The
observation timeline lasts 6 years, from August 2010 to August 2015.

Threshold and Setup Selection. Before evaluating the proposed algorithms,
we first need to determine the appropriate values of our parameters so as to
detect communities in the forum-based network with best structural and content
coherence.

The first threshold we examine is the Community Label Set threshold (clt),
which is responsible for the initialization of the communities and their label
sets, and expect it to be highly context dependent. Setting a high clt value in
graphs with few labels per edge would lead to lower content purity in com-
munities as nodes with different interests may join the community before the
Label Constraint is enforced. On the other hand, setting clt too low might lead
to very few communities. We experiment with different values of clt varying
from 3 to 10, and measure the cardinality (Fig. 2(left)) and the content similar-
ity (Fig. 2(right)) of the detected communities. Content similarity is measured
using the Jaccard similarity of the community label sets for the communities that
survived in consecutive snapshots. In Fig. 2 (right), the horizontal axis refers to
the average Jaccard similarity of a community’s label set between one time slice
and its consecutive, if the community survives in it. The vertical axis refers to
the percentage of communities reaching that similarity. A value of clt = 5 leads
to higher content similarity as the proportion of instances with similarity near
1 is increased according to Fig. 2(right), and the ones with similarity near 0 are
reduced compared to other clt values. Considering Fig. 2(left), that presents the
histogram illustrating the cardinality distribution among the communities, we
can observe again that a value of clt = 5 deters the formation of highly extended

COTILES: Evolutionary Community Detection 71

Fig. 2. Varying community label set threshold: (left) community cardinality, and
(right), content similarity in time.

communities (20+ members). Therefore, for the rest of our experiments, we set
clt to 5.

Next, we appropriately choose an observation window (τ) and time-to-live
(ttl) value. In Fig. 3, we illustrate the fluctuation of average community cardi-
nality in time with three different setups with different values for τ and ttl for
COTILES. SETUP 1 corresponds to ttl = 15 and a corresponding τ = 30, i.e.,
double the size of ttl. SETUP 2 has equal value for ttl and τ (= 30). Finally,
SETUP 3 has a ttl = 30 and a larger τ = 45. Taking into account the need
for fast execution and less information loss, we prefer SETUP 3 over SETUP 1
and 2 respectively. Our argument is also amplified by the plots’ slopes, where
although all 3 SETUPs achieve similar average community cardinality, SETUP 3
avoids the high fluctuations between time slices the other SETUPs exhibit. This
SETUP allows edges and labels to expire if they are not renewed within the
observation window as τ is greater than the selected ttl. Thus, it is appropriate
for networks with transient relationships as the ones observed in a forum.

Fig. 3. Average community cardinality in time.

Finally, with regards to our variations, we also need to select an appropriate
strict threshold value StrT for both Strict COTILES and the Hybrid approach.

72 N. Sachpenderis et al.

Fig. 4. Strict COTILES with different threshold: community cardinality (left), content
similarity between same communities in time (right).

In Fig. 1(right), we count the overlap of the edges label sets and the label sets
of the communities they enter according to COTILES. We observe that indeed,
a big percentage of edges have low content similarity with the groups they enter
and a restriction policy could be useful. The average recorded value corresponds
to 2.39 labels in common, so a valid StrT value would be 2 to 3. To acquire
further evidence, we perform the same experiment we performed when tuning clt.
Figure 4(left) corresponds to the effects of StrT in community cardinality, while
Fig. 4(right) corresponds to the content similarity of communities in consecutive
windows. Note that again, the y-axis in both figures shows the percentage of
communities reaching a specific level of cardinality and similarity, respectively.
The experiments show that a value of 3 is not inferior to the other values and
is also closer to the average labels per edge in our setting which is measured to
2.82. Thus, we select StrT = 3 so as to differentiate the variations significantly
from COTILES to better study their effect. Note that a strict threshold equal
to 1 corresponds to COTILES.

4.2 Structural Analysis

We now discuss the outcomes of our empirical evaluation focusing on the behav-
ior of COTILES and its variations based on the structural characteristics of the
formed graphs and the respective communities.

In the left segment of Table 1, we observe the average cardinality of commu-
nities throughout the network’s lifetime. As expected, COTILES tends to form
more communities than TILES per time-slice as the label constraint makes join-
ing an existing community more difficult. Strict COTILES detects 59 communi-
ties on average in each time-slice, while EC quite less, with the hybrid method
falling between them. We also include Strict MAX, which refers to the Strict
variation with maximum strict threshold as requiring the exact same contents
to join a community is an extreme case worth investigating. As expected, this
leads to the highest number of detected communities. Taking into consideration
the average cardinality of communities shown in the second column of Table 1,
we observe the trend of forming more communities but with smaller cardinality.

COTILES: Evolutionary Community Detection 73

Fig. 5. Community cardinality: (left) TILES vs. COTILES, and (right) variations.

Fig. 6. Node community membership: (left) TILES vs. COTILES, and (right) varia-
tions.

Fig. 7. Community overlap: (left) TILES vs. COTILES, and (right) variations.

74 N. Sachpenderis et al.

Histograms in Fig. 5(left) and Fig. 5(right) illustrate the percentage of com-
munities with the corresponding cardinality for COTILES compared to TILES
and the three variations respectively. COTILES differentiates from the original
TILES algorithm by detecting a higher percentage of small communities. Its
variations follow the same trend, except for the hybrid algorithm, which leads
to a high percentage of big communities. Note that the results are not strictly
comparable, as the percentages refer to the total number of communities per
algorithm that differ. For example, COTILES detects 5141 communities in the
networks’ lifetime with the corresponding setup, while the hybrid method only
half (2560). Thus, the absolute number of big communities is the same and one
can claim that this method is suitable in cases where analysis of groups with
high cardinality is needed, with guaranteed robust content relation between their
members.

An important advantage of TILES, compared to other community detection
algorithms and a serious motivation for us to extend it, is its potential in dis-
covering overlapping communities, letting nodes to be part of different groups.
In our next set of experiments, we discuss the behavior of TILES with respect
to this feature and how COTILES and its variations manage such situations.

Node community membership is illustrated in Fig. 6(left) and Fig. 6(right)
and refers to the number of communities that each node is a member of. The
x-axis corresponds to the number of different communities in the same slice in
which a node is present while the y-axis corresponds to the percentage of nodes
that reach this membership value. The specific dataset contains many nodes
not assigned to any community which are not pictured, as many users tend to
interact with others only when they are in need of answers. At the same time,
usual in forums is that many users are very active, answering many questions.
Except for their knowledge, they are also motivated by the importance their
contribution may have, as high reputation in a forum from Stack Exchange is
valuable. Similarly to the previous experiment, COTILES achieves to generally
assign more nodes to only one or few communities and less nodes are highly dis-
tributed compared to TILES (Fig. 6(left)). COTILES variations and especially
those with enhanced content (EC, hybrid) assign nodes to more communities,
as their premise is to give a node a higher chance to enter a group with related
labels (Fig. 6(right)).

Figure 7 considers a different perspective and measures community overlap.
The horizontal axis represents the overlap as the percentage of common members
between communities. Zero overlap represents total dissimilarity, while overlap
equal to 1 would indicate totally overlapping communities. The vertical axis
represents the percentage of communities where the respective amount of over-
lap appears. In general, COTILES (Fig. 7(left)) and its variations (Fig. 7(right))
succeed in reducing the percentage of communities with the highest overlap
with respect to TILES. But the variations exhibit higher overlap values between
0.4 and 0.8, as we expect after viewing the results of the previous experiment
measuring node community membership. Thus, one should consider when it is
appropriate to encourage nodes to join communities with similar contents by
also considering the tradeoff with respect to an increased overlap between the
derived communities.

COTILES: Evolutionary Community Detection 75

4.3 Content-Based Analysis

To validate our structural analysis results, we also directly investigate the content
of the communities formed by all algorithms.

Starting from the third column of Table 1, where the average number of
unique labels in each community is shown, it is clear that, when total content
community purity is needed, Strict COTILES with maximum label constraint
(Strict MAX) is the appropriate algorithm. We retrospect that, in this case, a
new edge enables one node to enter a community only if all of the edge’s labels
are already present in the community label set. Also, COTILES succeeds in
significantly reducing the size of community label sets, so that they are more
focused. All three variations we examine with StrT = 3 when used tend to form
wider label sets for their communities, which however is justified as they also
form communities with higher cardinality. In addition, the quite high portion of
labels in the label sets of communities formed by our hybrid method is a result of
their high cardinality and also very high standard deviation (17.9965) contrary
to TILES (8.0345) and COTILES (3.9946) for example.

Table 1. Algorithm variations statistics.

#Coms Avg. cardinality Avg. #Labels

TILES 59.0588 6.0283 23.5955

COTILES 75.6029 5.2466 9.7947

Strict 59.1470 6.8660 21.1152

Strict MAX 92.1014 3.4689 3.6266

EC 29.2647 8.0022 20.8225

Hybrid 37.6470 10.124 46.3676

The plots in Fig. 8(left) and Fig. 8(right) show how similar in terms of content
are the communities of respective time-slices. The horizontal axis corresponds
to the average Jaccard similarity between a community’s label set and others’
in the same time period. Values in this axis correspond to upper thresholds and
portions near zero correspond to totally different set of labels. The vertical axis
corresponds to the percentage of communities achieving the respective amount of
similarity between them and others on average. COTILES is rather better than
TILES in distinguishing communities based on their content, as it has higher
percentages of communities with low content similarity (<0.2). Strict COTILES
follows the same behavior as shown in Fig. 8(right), while the two variations
containing the enhanced content procedure show different results. Their higher
cardinality and lower number of communities result to hyper-communities with
reasonable similarity between their content. Furthermore, the higher overlap
they exhibit also accentuates this effect.

Finally, in terms of content based criteria, histograms in Fig. 9(left) and
Fig. 9(right) illustrate how the contents of a community are preserved through

76 N. Sachpenderis et al.

Fig. 8. Content similarity between communities: (left) TILES vs. COTILES, and
(right) variations.

Fig. 9. Content similarity between the same community in time: (left) TILES vs.
COTILES, and (right) variations.

time. The horizontal axis refers to the average Jaccard similarity of a commu-
nity’s label set between one time slice and its consecutive, if the community
survives in it. The vertical axis refers to the percentage of communities reaching
that similarity. COTILES and all three of its variations achieve better results
compared to TILES. As shown in the first histogram (Fig. 9(left)), half of the
communities detected by TILES have totally different content if they succeed in
surviving to the next time-slice. On the other hand, communities in COTILES
and its discussed variations are highly correlated in terms of content between
consecutive time-slices (Fig. 9(right)). Our hybrid method which combines Strict
COTILES with EC seems to be the most suitable for content preservation. The
results are also not beautified by the conversion into percentages, since the hybrid
method has 287 survived instances compared to 318 of COTILES and contrary
to nearly the half (152) of TILES.

4.4 Qualitative Results

In order to further investigate the algorithms’ behavior, we focus on sample com-
munities and present comparisons between snapshots of communities detected

COTILES: Evolutionary Community Detection 77

by TILES, COTILES and its variations in the same time slice. We track the
same communities based on their membership and collocate their community
label sets. Mutual emergence of members and labels is noted by bold font in the
following tables.

Table 2 compares a community detected by TILES and its corresponding
community detected by COTILES. As expected, the community in the second
case has lower cardinality and limited label set compared to the first case. Focus-
ing on the two label sets, we observe that COTILES achieves higher content
cohesion by containing a lower amount of labels, however with high number
of appearances in most of them. In contrast the community label set of the
corresponding community detected by TILES contains 9 labels with only one
appearance, a fact underlining content fragmentation.

Table 2. Community detected by (left) TILES and (right) COTILES.

TILES COTILES

Members
4, 1002, 1131, 1207,

1327, 1571, 2511, 2534

1207, 1327,

1571, 2534

Labels

‘linux’: 4, ‘filesystems’: 4, ‘mount’: 4,

‘windows’: 3, ‘virtual-machine’: 3,

‘cron’: 2, ‘fedora’: 2, ‘gnome’: 2,

‘login’: 2, ‘gdm’: 2, ‘debugging’: 1,

‘suspend’: 1, ‘grep’: 1, ‘io-redirection’: 1,

‘ffmpeg’: 1, ‘system-installation’: 1,

‘grub2’: 1, ‘install’: 1,

‘package-management’: 1

‘filesystems’: 4, ‘mount’: 4, ‘windows’: 3,

‘virtual-machine’: 3, ‘linux’: 1,

‘debugging’: 1, ‘suspend’: 1

In the following three tables, we compare communities between COTILES
and its variations to distinguish cases in which they can be selected.

Table 3 compares communities from COTILES and Strict COTILES respec-
tively. Members and labels of the second community are subsets of the ones
observed by the first community. In fact, Strict COTILES detects a subgroup

Table 3. Community detected by (left) COTILES and (right) Strict COTILES.

COTILES STRICT

Members
16792, 22257, 38906, 65304,

86440, 117549, 246185
16792, 22257, 38906, 246185

Labels

‘bash’: 9, ‘printf ’: 3,

‘command-substitution’: 2, ‘subshell’: 2,

‘quoting’: 2, ‘process-substitution’: 1,

‘shell’: 1, ‘shell-script’: 1,

‘javascript’: 1, ‘base64’: 1, ‘tar’: 1

‘bash’: 5, ‘printf ’: 3,

‘quoting’: 2, ‘subshell’: 2,

’command-substitution’: 1

78 N. Sachpenderis et al.

inside the community of COTILES and is suitable for cases where higher reso-
lution is needed.

Table 4 focuses on communities formed by COTILES contrary to its variation
with Enhanced Content. The opportunity given to nodes in the EC variation to
propagate community membership to their neighbors without necessarily being
core nodes, leads to groups with higher cardinality but also aspires to preserve
content coherence. Indeed, in this example, a new member is added to the com-
munity by EC, while its community label set is not scattered, exhibiting the
advantage of this method when relaxed structural connections are tolerated in
order to discover content similarities.

Table 4. Community detected by (left) COTILES and (right) COTILES EC.

COTILES EC

Members 5280, 8979, 13003, 19294 5280, 8979, 11318, 13003, 19294

Labels

‘debian’: 3, ‘mercurial’: 2,

‘certificates’: 2, ‘apt’: 2,

‘package-management’: 2,

‘software-installation’: 1, ’‘textbfgimp’: 1

‘debian’: 6, ‘software-installation’: 3,

‘gimp’: 3, ‘package-management’: 2,

‘apt’: 2, ‘mercurial’: 2, ‘certificates’: 2

Table 5. Community detected by (left) COTILES and (right) Hybrid COTILES.

COTILES HYBRID

Members 18887, 170373, 311452 18887, 120884, 170373, 311452, 316025

Labels ‘regular-expression’: 5

‘linux’: 6, ‘tar’: 3, ‘process’: 3,

‘exec’: 3, ‘exit’: 3, ‘vfork’: 3,

‘scripting’: 2, ‘backup’: 2, ‘debian’: 2,

‘linux-kernel’: 2, ‘shared-library’: 2,

‘elf’: 2, ‘sudo’: 1, ‘bash’: 1,

‘shell-script’: 1, ‘timestamps’: 1

Finally, a community detected by our hybrid method which combines
enhanced content technique with the Strict Label Constraint is shown in the
second column of Table 5, next to a corresponding community of COTILES.
The enhanced content part leads to a bigger community by 2 members. The
only label of the first community label set (‘regular-expression’) is not present
in the second case, as the strict constraint requires at least 3 labels of incoming
edges to match the community label set. This shows that by allowing more nodes
to join the community, the hybrid method succeeded in determining a content
shared by more nodes.

COTILES: Evolutionary Community Detection 79

Concluding, we can see that under different considerations, each variation
offers advantages and their application should depend on the characteristics of
the underlying network. However, COTILES and all variations manage to derive
communities with higher content similarity compared to the original TILES.

5 Related Work

We organize related research into three categories: structure based, content based
and combined approaches for community detection. Then, we present recent
surveys that provide different categorizations on related research on community
detection in evolving graphs.

5.1 Structure-Based Methods

The most popular category, structure-based clustering algorithms, assesses the
links between nodes as the main criterion for a community. The survey in [9]
studies the problem for static networks in extent, while the one in [11] considers
recent approaches in evolving graphs. In [24], community evolution is evaluated
using metrics such as growth or disappearing rate. The work in [16] focuses on
the life expectancy of communities with regard to the weight of their intra- or
inter-community edges. Based on clique percolation, the authors focus in a sci-
entists collaboration network and a mobile phone users network and conclude
in correlations between communities’ life expectancy and member composition.
In [20], a snapshot-based approach is used to track the evolution of communi-
ties and interesting persistent communities with high cohesion are detected. In
[15], a method that uncovers intrinsic communities, which are subsets of com-
munities with higher connection and importance, is proposed. Di Tursi et al.
[8] propose a filter-and-verify framework using a time-and-graph-aware locality
sensitive hashing to efficiently discover promising community cores, and focus
on varying densities of interactions, only considering, graph structure.

Evolutionary clustering is proposed in [5] based on the idea that clusters
should be calculated not based on the information of a single snapshot, but
considering also the previous states of the graph. TILES [18], we extend in this
work, is also an example of evolutionary clustering. Another algorithm falling
into this category is the LabelRankT algorithm introduced by Xie et al. [26]. In
this case, labels refer to node identifiers, and do not represent content as in our
case. A community is formed considering the nodes having the same label, edge
weights and directions.

5.2 Content-Based Methods

As the content of the network is also important in order to identify cohesive
groups, scientific research has also shown interest in this area, mostly, though,
for static networks. In [3], time-sensitive tag clustering techniques for finding

80 N. Sachpenderis et al.

semantically similar tags are explored. Similarly, in [22], co-occurrence analy-
sis and clustering techniques are used in two real tag sets to derive meaningful
groups of tags and identifying relationships between subsets of such tags. In
[23], communities are distinguished between structural and content-based ones
and a non-overlapping method is proposed to identify user groups with sim-
ilar interests. In [10], semantics and social features are exploited in addition
to content analysis so as to produce tag clusters. In contrast to the previous
static approaches, in [1], an online approach analyzes micro-blogging streams
(from Twitter) by modeling the problem as discovering dense clusters in dynamic
graphs and using the correlated keyword graph structure.

5.3 Combined Methods

Few methods, similarly to ours, take advantage of both structure and content for
community detection, which can lead to a better understanding of communities’
activities and their emerging trends. In [7], authors are motivated by the fact
that scientific literature is basically clustered into journals and conferences with
predefined domains. To this end, techniques to extract the main context of each
paper are proposed. In [25], the network is transformed into a Node-Edge Inter-
action network which captures both the linkage structure as well as node and
edge content. A random walks-based algorithm is then used to detect dynamic
communities. As neither edges or nodes expire, this approach may not accu-
rately model real world conditions, where interests in topics and relationships in
a community may decay over time.

Sadri et al. [21] analyze tweets and user mentions, introducing three models
for user interest inference. Among them, the community interest pattern model
deals with both community structures and user interests. Nevertheless, the focus
of this work is on identifying interests and not on community evolution per
se. In [4], the authors introduce an interest social network model to connect
nodes with similar interests. If two nodes are connected with an interest in
the same topic, a new link is formed between them. Community discovery is
then applied on this updated graph that represents both structural and content-
based information. Again, this work focuses on community detection and does
not address community evolution.

Finally, this paper extends and verifies the work in [19], where COTILES
is first presented. Here, we first introduce the three variations of COTILES
that are designed as more configurable methods that can be better tuned to
suit the underlying network characteristics, while still relying on the core idea of
COTILES of combining structural and content-based criteria. With our thorough
experimental evaluation, we provide comparative results that verify the utility
not only of COTILES compared to the original TILES, but also of all three of
the proposed variations as well.

COTILES: Evolutionary Community Detection 81

5.4 Categorizing Related Methods

There have been recent surveys examining the developments in our area of inter-
est offering categorizations of the related works under a variety of criteria that
influence how we deal with community evolution.

In [6], related studies on the problem of tracking community evolution over
time in dynamic social networks are presented. This paper provides a categoriza-
tion of existing methods into four classes, based on the approach each method
follows for achieving community evolution tracking while describing strengths
and weaknesses for each. The first category is comprised of methods based on
independent successive static detection and matching. The second class includes
methods using dependent successive static detection. The third class consists of
methods that perform simultaneous study of all stages of community evolution.
Finally, the fourth category is based on methods working directly on temporal
networks.

Before that, in [17], methods for community discovery in dynamic networks
are enumerated and grouped into three basic classes, namely, Instant Optimal,
Temporal Trade-off and Cross-Time community detection, each of them com-
prising of several subclasses. The category of Instant Optimal community detec-
tion, considers that communities at time step t only depend on the current
state of the network at t. Matching communities found at different steps might
involve looking at communities found in previous steps, or considering all steps,
but communities found at t are considered optimal with respect to the topology
of the network at t. In the category of Temporal Trade-off community detec-
tion, communities defined at an instant t depend not only on the topology of
the network at that time but also on the past instances of the topology, past
partitions found, or both. Communities at t are therefore defined as a trade-off
between an optimal solution at t and the known past. Regarding Cross-Time
community detection, the authors consider methods that take into account the
whole network evolution. Methods of this class search a single partition directly
for all time steps. Communities found at t depend not only on the past like in
the Temporal Trade-off category, but also on future instances and modifications
that follow t in time.

In another very recent survey, Interdonato et al. [13] present a taxonomy
of networks that are feature rich, or, in other words, graphs that feature some
additional characteristics beyond their topology. In particular, they consider
Attributed Graphs, where edges or nodes hold generic attributes, Heterogeneous
Information Networks, that is, networks modeling heterogeneous node and edge
types, Multilayer Networks representing different online/offline relations between
the same set of users, Temporal Networks modeling discrete or continuous time
aspects in networked data, Location-aware Networks holding location informa-
tion, and finally, Probabilistic Networks modeling uncertain relations.

82 N. Sachpenderis et al.

6 Conclusions

In this paper, we proposed COTILES, an online community detection algorithm
that relies on both the structural and content-based information in a social
network. COTILES extends TILES [18], a purely structure based community
detection algorithm that allows the detection of overlapping communities with
time decaying edges. COTILES maintains the advantages of TILES, but also
aims to derive more thematically cohesive communities by applying a content
based constraint that regulates community formation. We also presented con-
figurable variations of the proposed algorithm that either relax or tighten the
enforced structural and content constraints so as to be more appropriate for var-
ious social networks and application domains. Strict COTILES demands higher
content purity in communities using an appropriate threshold, while Enhanced
COTILES relaxes the structural constraints of COTILES favoring the detec-
tion of content-based communities. Finally, a hybrid approach combines the two
variations. Through our experimental results, we showed that COTILES derives
labeled communities that are more thematically cohesive compared to the orig-
inal TILES. We also showed the advantages offered by each variation under
different conditions.

In our current work, we focused on the quality of the derived results testing
different configurations and proposing context-dependent variations. Next, we
plan to focus on performance, with respect to the time and space complexity
of our method. In particular, we will aim to minimize the overhead that con-
tent management imposes on COTILES compared to TILES. In this regard, we
plan to parallelize COTILES and deploy it exploiting available big data par-
allel processing platforms so as to evaluate its performance. Our future plans
also include exploring alternative ways to measure the similarity between the
content of nodes and communities. We will move in two directions towards this
end. Firstly, we are going to enrich the labels describing the contents of the net-
work by applying appropriate NLP techniques and semantic processing based
on the use of thesaurus. Finally, we are also going to evaluate the use of differ-
ent similarity measures that better capture semantic similarity between sets of
labels.

References

1. Agarwal, M.K., Ramamritham, K., Bhide, M.: Real time discovery of dense clus-
ters in highly dynamic graphs: identifying real world events in highly dynamic
environments. Proc. VLDB Endow. 5(10), 980–991 (2012)

2. Akrida, E.C., G ↪asieniec, L., Mertzios, G.B., Spirakis, P.G.: On temporally con-
nected graphs of small cost. In: Sanità, L., Skutella, M. (eds.) WAOA 2015. LNCS,
vol. 9499, pp. 84–96. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
28684-6 8

3. Begelman, G., Keller, P., Smadja, F., et al.: Automated tag clustering: improving
search and exploration in the tag space. In: Proceedings of the Collaborative Web
Tagging Workshop at 2006 World Wide Web Conference, pp. 15–33 (2006)

https://doi.org/10.1007/978-3-319-28684-6_8
https://doi.org/10.1007/978-3-319-28684-6_8

COTILES: Evolutionary Community Detection 83

4. Bu, Z., Zhang, C., Xia, Z., Wang, J.: A fast parallel modularity optimization algo-
rithm (FPMQA) for community detection in online social network. Knowl.-Based
Syst. 50, 246–259 (2013)

5. Chakrabarti, D., Kumar, R., Tomkins, A.: Evolutionary clustering. In: Proceedings
of the 12th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 554–560. ACM (2006)

6. Dakiche, N., Tayeb, F.B.S., Slimani, Y., Benatchba, K.: Tracking community evo-
lution in social networks: a survey. Inf. Process. Manag. 56(3), 1084–1102 (2019)

7. De Nart, D., Degl’Innocenti, D., Basaldella, M., Agosti, M., Tasso, C.: A content-
based approach to social network analysis: a case study on research communities.
In: Calvanese, D., De De Nart, D., Tasso, C. (eds.) IRCDL 2015. CCIS, vol. 612, pp.
142–154. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41938-1 15

8. Di Tursi, D.J., Ghosh, G., Bogdanov, P.: Local community detection in dynamic
networks. In: Proceedings of the 2017 IEEE International Conference on Data
Mining (ICDM), pp. 847–852. IEEE (2017)

9. Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3), 75–174 (2010)
10. Giannakidou, E., Kompatsiaris, I., Vakali, A.: SEMSOC: semantic, social and

content-based clustering in multimedia collaborative tagging systems. In: Proceed-
ings of the 2008 IEEE International Conference on Semantic Computing, pp. 128–
135. IEEE (2008)

11. Hartmann, T., Kappes, A., Wagner, D.: Clustering evolving networks. In: Klie-
mann, L., Sanders, P. (eds.) Algorithm Engineering. LNCS, vol. 9220, pp. 280–329.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49487-6 9

12. Stack Exchange Inc.: Stack exchange data dump. https://archive.org/details/
stackexchange. Accessed 10 Feb 2019

13. Interdonato, R., Atzmueller, M., Gaito, S., Kanawati, R., Largeron, C., Sala, A.:
Feature-rich networks: going beyond complex network topologies. Appl. Netw. Sci.
4(1), 4 (2019)

14. Jdidia, M.B., Robardet, C., Fleury, E.: Communities detection and analysis of
their dynamics in collaborative networks. In: Proceedings of the 2nd International
Conference on Digital Information Management, pp. 744–749. IEEE (2007)

15. Nath, K., Roy, S.: Detecting intrinsic communities in evolving networks. Soc. Netw.
Anal. Min. 9(1), 13 (2019)

16. Palla, G., Barabási, A.L., Vicsek, T.: Quantifying social group evolution. Nature
446(7136), 664 (2007)

17. Rossetti, G., Cazabet, R.: Community discovery in dynamic networks: a survey.
ACM Comput. Surv. (CSUR) 51(2), 1–37 (2018)

18. Rossetti, G., Pappalardo, L., Pedreschi, D., Giannotti, F.: Tiles: an online algo-
rithm for community discovery in dynamic social networks. Mach. Learn. 106(8),
1213–1241 (2017)

19. Sachpenderis, N., Karakasidis, A., Koloniari, G.: Structure and content based com-
munity detection in evolving social networks. In: Proceedings of the 11th Interna-
tional Conference on Management of Digital EcoSystems, pp. 1–8. ACM (2019)

20. Sachpenderis, N., Koloniari, G.: Determining interesting communities in evolving
social networks. In: Proceedings of the 22nd Pan-Hellenic Conference on Informat-
ics, pp. 249–254. ACM (2018)

21. Sadri, A.M., Hasan, S., Ukkusuri, S.V.: Joint inference of user community and
interest patterns in social interaction networks. Soc. Netw. Anal. Min. 9(1), 11
(2019)

https://doi.org/10.1007/978-3-319-41938-1_15
https://doi.org/10.1007/978-3-319-49487-6_9
https://archive.org/details/stackexchange
https://archive.org/details/stackexchange

84 N. Sachpenderis et al.

22. Specia, L., Motta, E.: Integrating Folksonomies with the semantic web. In: Fran-
coni, E., Kifer, M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519, pp. 624–639.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72667-8 44

23. Tennakoon, T., Nayak, R.: FCMiner: mining functional communities in social net-
works. Soc. Netw. Anal. Min. 9(1), 20 (2019)

24. Toyoda, M., Kitsuregawa, M.: Extracting evolution of web communities from a
series of web archives. In: Proceedings of the Fourteenth ACM Conference on
Hypertext and Hypermedia, pp. 28–37. ACM (2003)

25. Wang, C.D., Lai, J.H., Philip, S.Y.: Neiwalk: community discovery in dynamic
content-based networks. IEEE Trans. Knowl. Data Eng. 26(7), 1734–1748 (2014)

26. Xie, J., Chen, M., Szymanski, B.K.: LabelRankT: incremental community detec-
tion in dynamic networks via label propagation. In: Workshop on Dynamic Net-
works Management and Mining, pp. 25–32 (2013)

https://doi.org/10.1007/978-3-540-72667-8_44

A Weighted Feature-Based Image Quality
Assessment Framework in Real-Time

Zahi Al Chami1(B), Chady Abou Jaoude1, Bechara Al Bouna1,
and Richard Chbeir2

1 TICKET Lab, Antonine University, Baabda, Lebanon
{zahi.chami,chady.aboujaoude,bechara.albouna}@ua.edu.lb

2 University of Pau and Adour Countries, LIUPPA, Anglet, France
richard.chbeir@univ-pau.fr

Abstract. Nowadays, social media runs a significant portion of people’s
daily lives. Millions of people use social media applications to share pho-
tos. The massive volume of images shared on social media presents serious
challenges and requires large computational infrastructure to ensure suc-
cessful data processing. However, an image gets distorted somehow dur-
ing the processing, transmission, sharing, or from a combination of many
factors. So, there is a need to guarantee acceptable delivery content,
especially for image processing applications. In this paper, we present a
framework developed to process a large number of images in real-time
while estimating the image quality. Our quality evaluation is measured
based on four methods: Perceptual Coherence Measure, Semantic Coher-
ence Measure, Content-Based Image Retrieval, and Structural Similar-
ity Index. A weighted quality method is then calculated based on the
four previous methods while providing a way to optimize the execution
latency. Lastly, a set of experiments is conducted to evaluate our pro-
posed approach.

Keywords: Image quality assessment · Real time data processing ·
Image functions adaptation

1 Introduction

With the recent advances in technology, data providers are continuously pro-
ducing and streaming a significant amount of data as part of many scenarios,
including news-feeds, pod-casts, and live interviews. More particularly and due
to the growth of social media photo sharing applications, most of the data that
are shared between users are images. As of June 2019, and according to [1], there
are over than 300 million photos uploaded to Facebook every day, while more
than 95 million photos are uploaded daily on Instagram.

This work is jointly funded from the National Council for Scientific Research in Lebanon
(CNRS-L), the Antonine University, and the Agence universitaire de la Francophonie
(AUF).

c© Springer-Verlag GmbH Germany, part of Springer Nature 2020
A. Hameurlain et al. (Eds.) TLDKS XLV, LNCS 12390, pp. 85–108, 2020.
https://doi.org/10.1007/978-3-662-62308-4_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-62308-4_4&domain=pdf
https://doi.org/10.1007/978-3-662-62308-4_4

86 Z. Al Chami et al.

These streams might be subject to alteration and/or modification; applying
adaptation and/or protection functions to address the business needs. For exam-
ple, blurring the face of an individual in an interview to hide his/her identity,
removing sensitive content from a twitter stream, or highlighting only the objects
of interest in a video due to some limitations in the hardware or in the connectiv-
ity. Hence, the outcome of content protection and/or adaption functions must be
evaluated to ensure that the trade-off between the quality of the delivered content
and the expected outcome is acceptable. For instance, it is important to evalu-
ate the quality of the visual features in images prior to publishing. This can be
done with structure content evaluation (e.g., ensuring that the objects of interest
remained intact after applying content adaptation functions), and semantic con-
tent evaluation (e.g., ensuring that some useful information can still be extracted
after applying content protection functions). Traditional approaches of evaluat-
ing and assessing data content do not scale well for data streaming scenarios due
to the huge number of data that is being received and generated at tremendous
rate.

These traditional processing techniques need first to store data before pro-
cessing them, which will take a significant amount of time. However, and for
fast-paced organizations, some quality-related decisions must be taken in real-
time. To clarify the previous points, we provide the following scenario.

1.1 Motivating Scenario

Let us consider, for example, the case of a photo-sharing company (shown in
Fig. 1) that provides its users with the ability to share and publish images online.
Therefore, the company is demanded to process these images instantly as it
receives an unbounded stream of images from its users.

Stream Protection

Adaptation

Services

Fig. 1. Scenario

Moreover, the company offers its users some services such as:

– Protection to hide his/her identity using several techniques. For example:
masking functions.

– Adaptation to satisfy some constraints imposed by the available resources,
for example, image compression.

A Weighted Feature-Based Image Quality Assessment Framework 87

However, and after applying these services, some users complain about qual-
ity degradation. So, the company starts searching for a new solution to guarantee
the delivered content quality as it is considered an important aspect. To sum
up, the framework to be adopted by the company must be able to:

– Preserve the quality of the images: guarantee that the useful images’ infor-
mation and features such as color, shape, structure, etc. are kept intact and
can still be extracted from the modified images in the output.

– Handle the unbounded stream of images: find a way to treat the significant
number of images and ensure successful image processing instantly and in real-
time, even though these services, along with the quality assessment process
could take much time.

Several existing works focused on solving these challenges using many meth-
ods/techniques, which are cited in the next section along with their limitations
before presenting our proposed approach.

2 Related Work

In this section, we present some existing works that are compared to our app-
roach based on many criteria: 1) The remaining usefulness images’ information
when addressing business or users’ needs, such as adaptation/or protection, 2)
The methods used to assess the images’ quality; this will show the number of
features taken into consideration to estimate the quality, and 3) The time needed
to process the images, especially the provided solutions that work in real-time.

Several techniques [8,15,22,29,30] modify/hide the features in the images
to preserve privacy through content protection. Identity masking techniques
[15,22,29,30], for instance, use black boxes (face hiding), large pixels (pixela-
tion), blurring, swapping, and impainting, to obscure the whole or a portion
of individual’s face and/or body. Alternatively, content-based adaptation tech-
niques [13,16,18] use frame dropping, semantic coding integration or compres-
sion to adapt multimedia content to the needs and interest of the viewers. Other
techniques such as [11] and [24] build adaptation engines that are consistent with
human visual perception and propose to improve the quality of the adapted video
and to enhance the user’s multimedia experience. These techniques tend to over-
look the quality of multimedia content to achieve the adaption or protection.

Some existing studies involving the determination of users on a preferen-
tial adaptation of consumed multimedia contents can be seen in the litera-
ture. They can be categorized into two groups of utility: maximization-based
and mathematical-based methods. In the former manner, the high-level goal is
defined by a utility function of which optimal solution is the maximization of
utility associating with concerned attributes in the user preferences. In the lat-
ter method, the high-level goal is instead considered as the decision objective of
a multi-level hierarchical system structure of attributes and alternatives, based
on their relationship. The problem resides when the utility maximization-based
method exposes weaknesses on the demand of equivalent utility functions [19]

88 Z. Al Chami et al.

for each attribute in the user preferences. Add to this, the knowledge required
to solve the optimization problem.

In [25], the authors present a compression method to preserve the image
quality while in [10,21], they used qualitative methods to assess the outcome
quality of a distorted image in real-time. In the first one, they offered a machine
learning-based approach to lossy image compression by producing files 2.5 times
smaller than JPEG and JPEG 2000 while preserving its quality. In the second
one, they provide a method to estimate the quality using a Perceptual Coher-
ence Measure and assess the structure feature through Structural Similarity
Index [31]. Despite the fact that these techniques give important results, they
evaluate the distorted images by assessing only the color and structure features
without considering the other features that might be altered and lead to qual-
ity degradation. The authors in [28] proposed a quality assessment method in
live video streaming. Their method is divided into two main parts: 1) An offline
deep unsupervised learning processes are employed at the server side, and 2)
Inexpensive no-reference measurements at the client side.

They showed good results by comparing their metric to the FR benchmark
using the Root Mean Square Error (RMSE). However, and despite processing
the videos in real-time, they did not consider the execution latency and complex-
ity, especially that they are working in real-time. The proposed approach in [14]
specifies semantic constraints for video adaptation by defining a utility function
to determine the utility of adaptation operators. This utility function is based
on: (i) affected area, (ii) affected priority area, and (iii) the visual coherence of
processed videos. In [9], the authors propose a framework that provides end-
to-end quality control on real-time multimedia applications over heterogeneous
networks. Their approach is based on a combined control of video assessment,
Quality of Service (QoS), QoE-based mapping, and adaptation procedures. In
[6], the authors present a framework of adaptive multimedia learning service
where their engine allows the users to determine the best combination of adap-
tive features of video and audio content, under various constraints of network
condition and user’s context and preferences. While their approaches [6,9,14]
provide useful insights to video adaptation, it fails to cope with content pro-
tection for two main reasons: 1) Adaptation operators differ from protection
operators in a content processing perspective. For instance, dropping a scene
can be interpreted as being omitted while scene blurring cannot, and 2) Using
gaps to measure the visual coherence is not appropriate in content protection.
For instance, blurring a face gives enough clues that could preserve semantic
coherence, which is not the case for a drop operation.

We present, in Table 1, a summary of the previous cited approaches:
In our work, we aim to find a fair trade-off between the quality of the altered

content and the expected outcome from the users in real-time as detailed in the
next section.

A Weighted Feature-Based Image Quality Assessment Framework 89

Table 1. Showing the content and the limitations of each approach

Cited approaches Content Limitations

[8,15,22,29,30] Modify/hide the features
in the images to preserve
privacy through content
protection such as black
box, large pixels, etc.

They overlook the quality
of multimedia content to
achieve the adaption or
protection

[11,13,16,18,24] They used techniques
and adaptation engines
that are consistent with
human visual perception
and propose to improve
the quality of the
adapted video

They rely on the PSNR
metric to assess the
quality, which is not
enough to determine the
extent of features
degradation

[10,21,25] They used qualitative
methods such as SSIM,
Perceptual Coherence
Measure, etc. to assess
the image quality

These approaches
disregard the assessment
of the remaining images’
features, for example:
color, shape, and texture.

[6,9,14] They specify semantic
constraints and provide
utility function and
Quality of Service to
determine the utility

The techniques used are
not appropriate in
content protection as
they are not preserving
some useful information

3 Contributions

In this paper, we extend our previous work [10] by proposing a weighted average
feature-based adaptive faces quality estimation approach for in-depth analysis
of perceptual coherence and features image assessment in real-time. We assume
that the faces, which are contained in the images, are affected by adaptations or
protection functions to be evaluated on the fly.

Our contributions can be summarized as follow:

– We present a data-model representation for image content and features. We
also provide in our model a set of data manipulation functions.

– We propose a weighted average feature-based adaptive faces quality estima-
tion involving Perceptual Coherence and features assessment using Struc-
tural Similarity Index [31], Content-Based Image Retrieval [17], and Semantic
Coherence to determine the image quality degradation. We adapted the gen-
eral form of the referenced metrics according to our data model. Moreover, it
is the first time that a combination of these metrics is taken into account while
providing the possibility to choose and preserve specific features (depending
on the users’ needs and constraints) by assigning them a higher weight.

– We design a framework with an ability to efficiently evaluate a stream of
images while providing a method to optimize the execution latency.

90 Z. Al Chami et al.

The remainder of this article is organized as follows. Section 4 presents some
definitions and terminologies used in our work. The data quality assessment
functions are described in Sect. 5, while the proposed framework is then detailed
in Sect. 6. We evaluate our proposed approach in Sect. 7 through a set of exper-
iments. Conclusions and future work are summarized in Sect. 8.

4 Definitions

In this section, we present the basic concepts needed to fully understand the
proposed framework. We start by defining our data model and data manipulation
functions that are used and needed later on in our framework.

4.1 Data Model

Definition 1 (image). An image denoted by im is a basic data structure con-
taining attributes that give information about its content. It is represented as
follows:

im ≺ DESC, F, SO �
where,

– DESC is a set of textual description, keywords or annotations provided by
the user.

– F is the set of features that describes an image. It can be used to describe an
entire image (global features) or a feature present at a location in the image
space (local feature).

– SO is a set of salient objects that represent the objects of interests in an image
as defined in the next section.

Definition 2 (salient object). A salient object designed by so represents an
object of interest in the image, such as a person’s face. It is defined as:

so ≺ w, h, coord, DESC, F �
where,

– w and h are the width and height of the salient object so.
– coord represents the coordinates to determine the location of the salient object

in the image.
– DESC is the set of annotations associated with the salient object.
– F is the set of features describing the visual content of a salient object (such

as color distribution and intensity).

Definition 3 (entity). An entity expressed as e is a semantic object that exists
by itself (e.g., person, vehicle). Each entity is associated with a set of salient
objects. This association, e → {so1, ..., son}, done via manual or automatic
annotation, highlights the salient objects {so1, ..., son} that are related to the
entity e.

Definition 4 (multimedia data stream). A multimedia data stream denoted
by mds is an infinite sequence of images formally defined as follows:

mds = im1, im2, ..., imk where k ∈ N
∗

A Weighted Feature-Based Image Quality Assessment Framework 91

4.2 Data Manipulation Functions

In this section, we define the functions used to manipulate the multimedia data
stream; either protect the salient objects or perform an adaptation on the mul-
timedia data stream. In our assumptions, we focus mainly on identifying the
salient objects that are subject to adaptation or protection. This goes beyond
the rules defined under an authorization or adaptation scheme, which, for now,
is beyond this paper’s scope. We only consider that the functions used to pro-
tect or adapt the content are known and can be called implicitly on a subset of
specified entities or images.

Definition 5 (image manipulation function). An image manipulation func-
tion denoted by imf is a low-level function that alters, hides or deletes a set of
features assigned to a salient object in an image im. imf(so, im) takes a salient
object so, the image in which so is contained and returns a modified salient object
denoted by so′.

As previously mentioned, we focus on two types of functions: a protection
function and an adaptation function. As for the first type, it is used to suppress
the content of an image by removing some of its features in order to protect an
entity. For instance, as stated in [5], various techniques replace the salient objects’
content with a manipulation function like a black box. Other techniques use face-
swapping [15,23] to choose a random or a default avatar to use in order to replace
the content to be masked. The second type can be used to perform adaptation
operations to meet resource constraints. The adaptation function modifies the
image content in order to meet some hardware and software requirements. For
example, in [7] an adaptation function is considered a robust video object cutout
technique, which also can be called matting techniques, where a foreground
object is pulled from a background image [12].

A combination of manipulation functions is applied on the set of images con-
taining an entity. This combination is termed, in our approach, entity manipu-
lation function and it is formally defined as follows;

Definition 6 (entity manipulation function). An entity manipulation func-
tion denoted by emf is defined as:

emf(e,mds) = (imf1(so1, im1) ◦ ... ◦ imfi(son, imn))

where, i and n ∈ N
∗. emf combines a set of image manipulation functions

(imf1(so1, im1), ..., imfi(son, imn)), which alters the salient objects associated
with the entity e in the multimedia data stream mds, by modifying their features.
As a result, emf(e, mds) returns a set of modified salient objects SO′ associated
with e.

4.3 Image Quality Methods Background

Structural Similarity Index. The Structural Similarity Index (SSIM) [31] is a
perceptual metric that quantifies image quality degradation. It is a full reference

92 Z. Al Chami et al.

metric that requires as inputs two parameters: the modified salient objects SO′

with respect to a reference salient objects SO to quantify their visual similarity
in image im. The general form of the SSIM index is defined as follows:

SSIMim(SO, SO′) = [l(SO, SO′)]α.[c(SO, SO′)]β .[r(SO, SO′)]γ (1)

– α, β and γ are parameters to define the importance of each component.
– l(SO, SO′) index is related with luminance differences.
– c(SO, SO′) index is the contrast differences.
– r(SO, SO′) index is the structure variation.

These three indexes are computed as follows:

l(SO,SO′) = (2μSOμSO′ + C1)/(μ2
SO + μ2

SO′ + C1)

c(SO,SO′) = (2σSOσSO′ + C2)/(σ2
SO + σ2

SO′ + C2)

r(SO,SO′) = (σSOSO′ + C3)/(σSOσSO′ + C3) where

– μSO and μSO′ are the average pixel values.
– C1, C2 and C3 are constants to avoid instabilities when (μ2

SO +μ2
SO′), (σ2

SO +
σ2
SO′) or σSOσSO′ is equal to zero.

– σSO and σSO′ are the pixel value standard deviation.

We note that the score of the SSIMim(SO, SO′) ranges from 0 (completely dif-
ferent) to 1 (identical images).

Content Based Image Retrieval. CBIR or Content-Based Image Retrieval
[17] is the retrieval of images based on visual features such as color, texture, and
shape. A CBIR architecture shown in Fig. 2 involves two steps:

– Feature extraction: The first step in the process is to extract image features
to a distinguishable extent.

– Matching: The second step involves matching these features to yield a visually
similar result.

CBIR systems extract features (color, texture, and shape) from images (orig-
inal image) in the dataset based on the value of the image pixels. Each image
stored in the dataset has its features compared to the features of the modified
image. These features are smaller than the image size and stored in a database
called feature database. Thus the feature database contains an abstraction (com-
pact form) of the images in the image database; each image is represented by a
compact representation of its contents (color, texture, shape) in the form of a
fixed length real-valued multicomponent feature vectors or signature.

After forming the feature vectors, CBIR uses an image distance measure to
compare the similarity of the modified image with those stored in the database in
various dimensions and based on the visual content. In our work, we will use the
Manhattan distance because, as stated in [26], it gives the best-retrieved result.
For example, if u = (x1, x2,, xn) and v = (y1, y2,, yn) are two feature

A Weighted Feature-Based Image Quality Assessment Framework 93

Fig. 2. CBIR architecture

vectors representing the modified image and a database image, the distance
between these two vectors is given by:

D =
dMH(u, v)

n
(2)

where:

dMH(u, v) =
n∑

i=1

|xi − yi| (3)

Equation (3) will return a score for each existing image in the database. We
divided the value by n in order to normalize the result between 0 and 1. A
distance of 0 indicates an exact match between two images, while the value 1
means that the two images are completely different with respect to the features
that were considered. So the least the distance is, the more similar the images
are. Then, the database image that has a smaller distance will be considered a
match for the modified image. Then, the CBIR method is represented as follows:

CBIRim(SO, SO′) = 1 − D (4)

Where:

– SO is the original set of salient objects.
– SO′ is the modified set of salient objects.

Finally, we subtracted the distance D from 1 in order to adjust the CBIR measure
with the remaining quality methods.

94 Z. Al Chami et al.

5 Data Quality

5.1 Perceptual Coherence

Determining perceptual coherence consists of measuring the affected areas of
images related to a specific entity. This is the essence of most techniques that use
visual coherence [27]. However, and unlike the latter, our perceptual coherence
measure computes the size of the distorted salient objects over the global image
size. The premise of this assumption is that visually altering images covering
relatively small affected areas would ultimately increase the quality of the images.
We formally define the perceptual coherence measure as follows;

Definition 7 (Perceptual Coherence Measure). A Perceptual Coherence
Measure denoted by PCMim(SO′) quantifies the affected area in im based on
the relative size of the salient objects, where SO′ are the set of modified salient
objects that represent the entities in an image im. The perceptual coherence
measure of the set of salient objects SO′, PCMim(SO′) is computed as follows;

PCMim(SO
′
) = 1 −

(
∑

so′∈SO′

so′.coordx+so′.h∫

so′.coordx

so′.coordy+so′.w∫

so′.coordy

dx dy) − IntersectArea
i∈1...n−1,j∈i+1...n

(so
′
i, so

′
j)

sizeof(im)

where

IntersectArea(so
′
i, so

′
j) = (min(xiTopRight

, xjTopRight
) − max(xiBottomLeft

, xjBottomLeft
))∗

(min(yiTopRight
, yjTopRight

) − max(yiBottomLeft
, yjBottomLeft

) (5)

with :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xiTopRight
= so′

i.coordx + so′
i.w

xjTopRight
= so′

j .coordx + so′
j .w

xiBottomLeft
= so′

i.coordx + so′
i.h

xjBottomLeft
= so′

j .coordx + so′
j .h

yiTopRight
= so′

i.coordy + so′
i.w

yjTopRight
= so′

j .coordy + so′
j .w

yiBottomLeft
= so′

i.coordy + so′
i.h

yjBottomLeft
= so′

j .coordy + so′
j .h

In this equation, we are taking into consideration all the modified salient
objects representing each entity in an image. To do so, we measure the area of
each salient object, which is represented by a rectangle that has coordinates.
While calculating the area, we need to ensure that:

– At least one salient object, which represents a specific entity, should exist.
– If an intersection area exists between two or more salient objects, this area

will be only calculated once.

The numerator will return the total area size of the salient objects in the image.
The result is divided by the image area size, which is indicated by sizeof(im),

A Weighted Feature-Based Image Quality Assessment Framework 95

to obtain the ratio representing the modified area relative to the entire space.
Lastly, we subtract the ratio from 1 to find the coherence value. We note that
there are no modified salient objects if the equation is equal to 1. The size of
the area that is affected by a manipulation function plays an important role in
the perceptual coherence.

5.2 Semantic Coherence Measure

Determining the Semantic Coherence Measure consists of assessing the facial
expression features related to a specific entity. Facial expressions give important
clues about emotions. In our work, we considered seven expressions as the main
emotional expressions that are common among human beings. Let EXP be a
vector that contains the set of expressions. It is written as follows:

EXP = [anger, disgust, fear, happiness, sadness, surprise, neutral]

We denoted by p the probability of each emotion, and the sum of these emotions’
probabilities is equal to 1. To clarify the emotion recognition process, we are
considering Fig. 3 shown below.

Fig. 3. Face emotion recognition

In most existing facial expressions datasets, each facial image is only
associated with one single emotion, but a face may have multiple emotions.

96 Z. Al Chami et al.

For example, someone can be happily surprised or angrily disgusted. However,
and in our work, we are choosing the emotion that has the highest probability.
The emotions are recognized through the use of a machine learning pre-trained
model and it involves two steps:

– Detecting frontal face in an image.
– Comparing the faces to a pre-trained CNN model architecture which takes

the bounded face as input and predicts probabilities of the seven emotions,
which are listed before, in the output layer.

We first apply an emotion recognition formula before calculating the Seman-
tic Coherence Measure, denoted by ERim(SO), with SO the set of salient objects
representing the entities in image im. The formula is computed as follows:

ERim(SO) =

∑

so∈SO

max
i∈0...6

p(EXP (i))

count(SO)
(6)

In formula (6), we are calculating the emotion probability of the salient objects in
im and dividing the result by the number of salient objects in order to maintain
the value between 0 and 1.

Definition 8 (Semantic Coherence Measure)
A Semantic Coherence Measure denoted by SCMim(SO, SO′) quantifies the
quality of an image im by assessing the facial expression features between the
modified salient objects SO′ and the original one SO. The Semantic Coher-
ence Measure, SCMim(SO, SO′) is computed as follows in order to estimate the
semantic loss;

SCMim(SO, SO′) = 1 − |ERim(SO′) − ERim(SO)|
ERim(SO)

(7)

This formula will return between 0 and 1. Higher scores mean face emotion
preservation.

5.3 Image Score

Lastly, and in order to find the final image quality score, we are combining the
four previous methods. Image Score, denoted by IS, is computed as follows:

IS = w1∗[PCMim(SO′)]+w2∗[SSIMim(SO,SO′)]+w3∗[SCMim(SO,SO′)]+w4∗[CBIRim(SO,SO′)]∑4
i=1 wi

(8)
where w1, w2, w3 and w4 are weights between 0 and 1 with their sum equal

to 1. These weights are chosen by the administrator to indicate the importance
of each method. We note that the score of IS ranges from 0 to 1. Higher scores
indicate quality preservation and similarity between the original image and the
modified one.

A Weighted Feature-Based Image Quality Assessment Framework 97

6 Proposed Framework

An overview of our framework is shown in Fig. 4. It consists of two main modules:

– Stream Processing.
– Back-end.

In the following, we present in details the framework’s modules.

Fig. 4. Framework

6.1 Stream Processing Module

In this module, administrators query continuous data streams and detect con-
ditions within a small time period from the time of receiving the data. In our
work, we took Twitter as a source of multimedia data stream while processing
only images.

As shown in Fig. 4, the images contained in the stream are marked from one
to k where k is equal to an infinite number in order to indicate that we are
treating images without any bound. In the end, im′ is the resulted images that
are returned from the back-end module.

6.2 Back-End Module

It consists of two main submodules: a) Identity Recognition and b) Quality
Estimation.

98 Z. Al Chami et al.

The first one is responsible of:

– Detecting and recognizing the entities.
– Checking if an incoming image is already processed in order to minimize the

execution time.

These previous works are done through the use of five components: 1) Face Fea-
tures Extraction, 2) Images Repository, 3) Person Matching, 4) Face Recognition
and 5) Entities Knowledge Base.

The second submodule has the duty to assess the image quality and find
its score with the aid of the remaining components: 6) Entity Manipulation
Function, 7) Perceptual Coherence Measure, 8) Structural Similarity Index, 9)
Content Based Image Retrieval and 10) Semantic Coherence Measure. We will
detail each component in the upcoming sections.

Identity Recognition Module

Face Features Extraction: Face Features Extraction is a process of dimensionality
reduction by which an image is reduced to more manageable groups for process-
ing. It is useful in order to reduce the number of resources and the time needed
for processing without losing important information. We focused in our work on
extracting features related to the faces. These features will form a feature vector
that will be sent to the Image Matching component.

Images Repository: This is a container where the processed images are stored.
To minimize the time needed to search for a possible match, we are cluster-
ing and grouping the images based on the person’s identity. So, the number of
groups are created from the number of users that are trained and chosen by the
administrator. But, due to the huge amount of images that might be saved, we
are addressing this issue by applying the following points:

– The Least Frequently Used (LFU) algorithm [20] that uses a counter to keep
track of how often an image is accessed while retaining only the feature vectors
of each image to reduce the image size and to facilitate the search process.
With LFU algorithm, the image with the lowest count is removed first.

– The administrator has the ability to specify the number of images referred to
each person within each cluster.

Moreover, and after performing the grouping of the images, each group will
be assigned an average feature vector that describes the persons’ identity.

Person Matching: This component is responsible for comparing the features
of the persons within the images that are coming from the stream with those
stored in the Images repository. If a match is found for all the persons contained
in im, the image will return to the stream processing module while assigning
this image the quality score of the matched persons that exist in the images
Repository. Otherwise, it will continue its process by recognizing the remaining
unknown persons, which are not found in the Images Repository, using the next
component.

A Weighted Feature-Based Image Quality Assessment Framework 99

Face Recognition: If no match is found in the previous component and in order
to identify the entities, we used the extracted features (from the Face Features
Extraction component) that will be compared with those stored in the Enti-
ties Knowledge Base, which will be detailed in the next section, using the Face
Recognition component. If a match is found, the image is forwarded to the Entity
Manipulation Function. Otherwise, the image will be directly returned to the
Stream Processing module.

Entities Knowledge Base: This component represents the database where the
trained entities reside. An administrator has an option to add more entities
to the database in order to create his own schema and to train more photos
to the existing entities as well. This will offer the opportunity to improve the
recognition accuracy.

Quality Estimation Module

Entity Manipulation Function: This component modifies the salient objects of
the entities, which are considered the faces in our work. This function will take
the entities as inputs and apply a set of image manipulation functions on the
salient objects representing these entities. As a result, it will return a set of
modified salient objects.

As we mentioned before, the image manipulation function can be either a
protection or adaptation function. We used three main protection functions:
pixelate, gaussian blur and median blur. Concerning the adaptation function,
we used two compression techniques: lossy and lossless. In fact, the functions
differ by means of the features that they preserve. For instance, a median blur
is a function that returns a modified image in such a way that some of the
visual, semantic and multimedia features are hidden while metadata and audio
features remain intact. Giving that each function preserves certain features, we
are applying here a list of functions in order to find the most appropriate one
that will guarantee an acceptable image quality through the use of the quality
assessment functions.

Perceptual Coherence Measure: After modifying the faces, the first metric used
to assess the image is the visual coherence measure through the use of the PCM.
In this component, we measure the total area of the modified faces. As a result,
the function will return a value between 0 and 1 that will be aggregated with
the next quality methods.

100 Z. Al Chami et al.

Structural Similarity Index: The second metric used to estimate the image qual-
ity in our framework is the Structural Similarity Index. It will return a score
for each manipulation function. Then, this component will help us to select the
manipulation function that has the highest score for the modified image in terms
of structure, luminance and contrast.

Semantic Coherence Measure: This component has the responsibility of deter-
mining the image quality by assessing the face emotional state based on facial
expressions. It will also return a score between 0 and 1 for each manipulation
function. Higher scores indicate facial expressions preservation that will lead to
conserving the face emotion.

Content Based Image Retrieval: The last metric adopted in our framework to
assess the image quality is the CBIR. It will evaluate the quality in terms of
color, shape and texture. As a result, a score will be returned between 0 and 1,
which will indicate the extent of the features degradation.

Image Score: The final component is the Image Score that is responsible for:

– Aggregating the scores, which are returned from the previous quality meth-
ods, based on their importance. An administrator has the privileges to select
his preferred features by assigning them parameters, which are known as fea-
tures weights.

– Displaying the final image score.

Simultaneously, the modified image (im′) will return to the stream processing
module in order to be then published.

7 Experiments

In order to test the efficiency of our approach, a program is developed by java
language using eclipse on a desktop computer with a 2.66 GHz core 2 duo and
4 GB RAM running Linux Ubuntu 14.04 64 bit. After testing the program on
one desktop, the framework described above is implemented on a distributed
environment called Apache Storm [2]. In order to successfully run the storm
cluster, we must implement all of its components. For that purpose, we used 16
physical machines, along with the needed libraries, as shown in the Table below:

A Weighted Feature-Based Image Quality Assessment Framework 101

Table 2. Showing the Apache Storm Configuration and the needed libraries

Apache Storm Configuration

Machine Service

Client node [3] It tests the framework locally before deploying
it to the cluster

Nimbus node [4] It deploys the framework, schedules the tasks to

the workers’ nodes, and monitors the progress of

the tuples in the topology

Three Zookeeper nodes

[4]

They handle the communication between the
nimbus and the supervisors. Also, they keep the
states of the nimbus and the supervisors

Eleven Supervisor nodes
[4]

They monitor the workers by viewing the
heartbeat of each one of them to determine its
state. Each worker runs one or more worker
processes, and each worker process runs a JVM
that contains one or more executors

Implemented libraries

Libraries’ name Service

Apache Storm 0.9.3 and
zookeeper 3.4.6

They must be implemented on all nodes to
successfully run the storm cluster.

OpenCV 3.4.3 API and
python dlib library

We use the manipulation functions from
OpenCV and performing face detection using
dlib.

Pre-trained ResNet
model

it is used to recognize the faces and their
expressions

Note that all these computers are connected to each other using a switch and
giving each computer a static IP address.

We conducted two sets of experiments. In the first one, we assessed the
efficiency of our algorithm. More precisely, we evaluated the image data quality
that may be reduced by applying a manipulation function. In this scenario,
we limit the size of the processed images from Twitter Stream to 2100 as our
goal is to determine the image quality using the PCM, SSIM, CBIR and SCM
methods that are defined in Sect. 4. To do so, we started our scenario by varying
the number of faces contained in the images from 1 to 3 and applying several
manipulation functions to find the suitable one that will return the best score in
terms of quality. Lastly, the prototype is tested only on a local cluster without
being uploaded to the distributed system. In the second one, we evaluated the
Apache Storm performance in terms of: 1) Execution latency: The average time
an image spends during its execution, and 2) Number of nodes: Number of
supervisors that are used to process the images.

To do so, the following scenario was executed:

1. We randomly selected 100 individuals and trained 50 photos for each person.
2. We have processed 50 000 images from Twitter Stream.
3. We distributed the libraries on all nodes.

102 Z. Al Chami et al.

4. Finally, we uploaded the framework to the cluster, by starting on two nodes
as the number will be incremented by 2 in order to evaluate the performance
of Apache Storm.

7.1 Test 1: Evaluation of Image Quality Affected by a Manipulation
Function

The objective of this test is to evaluate the image quality that may be affected
when applying a manipulation function. We use in this study three manipulation
functions, and they are mainly considered as protection functions: Pixelation
(a.k.a mosaicking), Gaussian blurring, and Median blurring. We specify for each
manipulation function fixed parameters while allowing the users to choose a
weight for each quality method based on their preferred image features. The
manipulation functions parameters, as well as the quality methods weights, are
shown in Table 3.

Table 3. Parameters list

Manipulation functions parameters list

Manipulation functions Gaussian blur Median blur Pixelate –

Kernel size 31 × 31 31 × 31 – –

standard deviation 5 5 – –

Pixel Size – – 10 –

Quality methods weights

Quality methods PCM SSIM CBIR SCM

Weights 0 0.6 0.2 0.2

We chose the manipulation functions parameters according to the literature
as they are considered an average intensity values for each manipulation function.
In order to test the efficiency of this method, we process 2100 images from
Twitter Stream as they are divided into three parts based on the number of
persons (from one to three persons) contained in each image. We then apply the
manipulation functions on each image, and as a result, we obtained a Table and
a graph shown in Table 4 and Fig. 5. These results represent the SSIM, SCM,
CBIR, and PCM average values for each manipulation over 2100 images.

According to the above graph (Fig. 5), the manipulation function that has
the highest image score is the Gaussian blur. Moreover, and based on Table 2,
this function will satisfy the needs of the users because it preserves the structure,
contrast, emotion, and color features that are chosen by the users and assessed
by the SSIM, SCM, and CBIR methods.

A Weighted Feature-Based Image Quality Assessment Framework 103

Table 4. Quality scores when applying a manipulation function, where * represents
the number of persons

Quality scores before and after adding weights for each manipulation function

Manipulation functions Gaussian blur Median blur Pixelate

Applying weights Before After Before After Before After

SSIM 1* 0.9894 0.5936 0.9875 0.5925 0.9832 0.5899

SSIM 2* 0.9886 0.5931 0.9865 0.5919 0.9815 0.5889

SSIM 3* 0.9904 0.5942 0.9890 0.5934 0.9849 0.5909

CBIR 1* 0.9878 0.1975 0.9856 0.1971 0.9908 0.1981

CBIR 2* 0.9885 0.1977 0.9863 0.1972 0.9907 0.1981

CBIR 3* 0.9894 0.1978 0.9883 0.1976 0.9920 0.1984

SCM 1* 0.2480 0.0496 0.1552 0.0310 0.1967 0.0393

SCM 2* 0.2388 0.0477 0.1614 0.0322 0.1905 0.0381

SCM 3* 0.2140 0.0428 0.1625 0.0325 0.1816 0.0363

PCM 1* 0.9783 0 0.9783 0 0.9783 0

PCM 2* 0.9611 0 0.9611 0 0.9611 0

PCM 3* 0.9541 0 0.9541 0 0.9541 0

Fig. 5. Showing the dependence of a manipulation function regarding the image quality
score.

7.2 Test 2: Evaluation of Apache Storm Performance in Real-Time

In this test, we treat 50 000 images. But before starting our experiments, we
randomly selected and trained around 5000 images representing 100 individuals.
Two sets of experiments are carried out in order to evaluate the performance of
our framework, which is measured from the Apache Storm distributed system
by assessing the execution latency at each component. In the first one, we fixed
the number of nodes to 4 and used various number of images ranging from 5000

104 Z. Al Chami et al.

(a) Previous results.

(b) Current results.

Fig. 6. Executed latency related to the number of images at each component.

to 50 000. As a result, we obtain the graph shown in Fig. 6 representing the first
study.

We noticed in Fig. 6(a) and 6(b) that the execution latency will increase
while incrementing the number of images. Moreover, by comparing the execution
latency between the previous results and the current results at each component,
we can see a performance improvement concerning the execution latency.

In our second study, we fixed the number of images to 50 000 and took a
distinct number of nodes, starting from 2 to 7. Therefore, the results are shown
in Fig. 7 and 8.

According to the above graph (Fig. 7), we can clearly see an improvement
in terms of the execution latency at each component due to the fact that some
of the persons contained in the images are already processed and stored in our
images repository, which will allow us to bypass the remaining components.

We notice that while increasing the number of nodes, an improvement in
Apache Storm performance can be noted as the time needed to execute these
images will decrease for the reason that the number of workers and executors is
incremented, which may lead to handling more tasks at a time. In addition, we

A Weighted Feature-Based Image Quality Assessment Framework 105

can note a decrease (or a little bit higher) in the execution time for the whole
framework despite the fact that the number of the components has increased.

(a) Previous results

(b) Current results

Fig. 7. Executed latency related to the number of nodes at each component.

106 Z. Al Chami et al.

(a) Previous results.

(b) Current results.

Fig. 8. Executed latency related to the whole Framework.

8 Conclusion

In this paper, we presented a framework with the intention of achieving an image
quality estimation that may be distorted during the processing and transmis-
sion phase while treating these images in real-time. Our quality estimation is
based on four methods: Perceptual Coherence Measure, Structural Similarity
Index, Content-Based Image Retrieval and Semantic Coherence Measure. We
then aggregated these methods in a weighted average quality estimation where

A Weighted Feature-Based Image Quality Assessment Framework 107

the user has the ability to choose the weights based on his preferred features. We
also provided a method to optimize the execution latency. A set of experiments
has been tested in order to evaluate our approach. We noticed an improvement
in the execution latency between our previous and current results.

Our current framework can only be applied to the Full-reference images. So,
in future work, we intend to provide a neural network model that will be able
to estimate the quality of the No-reference images by assessing several features.

References

1. Social media statistics in 2020. https://dustinstout.com/social-media-statistics/#
instagram-stats. Accessed 24 Jan 2020

2. Apache storm - concepts (2015). http://storm.apache.org/releases/current/
Concepts.html

3. Setting up a development environment (2015). http://storm.apache.org/releases/
1.0.6/Setting-up-development-environment.html

4. Apache storm cluster architecture (2018). http://storm.apache.org/releases/1.0.6/
Setting-up-development-environment.html

5. Agrawal, P., Narayanan, P.: Person de-identification in videos. IEEE Trans. Cir-
cuits Syst. Video Technol. 21(3), 299–310 (2011)

6. Atchara Rueangprathum, S.L., Witosurapot, S.: User-driven multimedia adapta-
tion framework for context-aware learning content service. J. Adv. Inf. Technol. 7,
182–185 (2016)

7. Bai, X., Wang, J., Simons, D., Sapiro, G.: Video SnapCut: robust video object
cutout using localized classifiers. In: ACM SIGGRAPH 2009 papers, SIGGRAPH
2009, pp. 70:1–70:11. ACM, New York (2009)

8. Al Bouna, B., Chbeir, R., Gabillon, A.: The image protector - a flexible security
rule specification toolkit. In: SECRYPT, pp. 345–350 (2011)

9. Cerqueira, E., Fernando Boavida, A.M.: Quality of experience management frame-
work for real-time multimedia applications (2009)

10. Chami, Z., AL Bouna, B., Jaoude, C., Chbeir, R.: A real-time multimedia
data quality assessment framework, pp. 270–276 (2019). https://doi.org/10.1145/
3297662.3365803

11. Kim, C.S., Sohn, H., De Neve, W., Ro, Y.M.: An objective perceptual quality-
based ADTE for adapting mobile SVC video content. IEICE Trans. Inf. Syst. 92,
93–96 (2009). Please check and confirm the edit made in author names in Ref. [11]

12. Chuang, Y.Y., Agarwala, A., Curless, B., Salesin, D.H., Szeliski, R.: Video matting
of complex scenes. In: Proceedings of the 29th Annual Conference on Computer
Graphics and Interactive Techniques, SIGGRAPH 2002, pp. 243–248. ACM, New
York (2002)

13. De Bruyne, S., De Schrijver, D., De Neve, W., Van Deursen, D., Van de Walle, R.:
Enhanced shot-based video adaptation using MPEG-21 generic bitstream syntax
schema. In: IEEE Symposium on Computational Intelligence in Image and Signal
Processing, CIISP 2007, pp. 380–385, April 2007. https://doi.org/10.1109/CIISP.
2007.369199

14. El-Khoury, V., Bennani, N., Coquil, D.: Utility function for semantic video content
adaptation. In: Proceedings of the 12th International Conference on Information
Integration and Web-based Applications & Services, iiWAS 2010, pp. 921–924.
ACM, New York (2010)

https://dustinstout.com/social-media-statistics/#instagram-stats
https://dustinstout.com/social-media-statistics/#instagram-stats
http://storm.apache.org/releases/current/Concepts.html
http://storm.apache.org/releases/current/Concepts.html
http://storm.apache.org/releases/1.0.6/Setting-up-development-environment.html
http://storm.apache.org/releases/1.0.6/Setting-up-development-environment.html
http://storm.apache.org/releases/1.0.6/Setting-up-development-environment.html
http://storm.apache.org/releases/1.0.6/Setting-up-development-environment.html
https://doi.org/10.1145/3297662.3365803
https://doi.org/10.1145/3297662.3365803
https://doi.org/10.1109/CIISP.2007.369199
https://doi.org/10.1109/CIISP.2007.369199

108 Z. Al Chami et al.

15. Fan, J., Luo, H., Hacid, M.S., Bertino, E.: A novel approach for privacy-preserving
video sharing. In: Proceedings of the 14th ACM International Conference on Infor-
mation and Knowledge Management, CIKM 2005, pp. 609–616. ACM, New York
(2005)

16. Gang, Z., Chia, L.T., Zongkai, Y.: MPEG-21 digital item adaptation by applying
perceived motion energy to H.264 video. In: 2004 International Conference on
Image Processing, ICIP 2004, vol. 4, pp. 2777–2780, October 2004. https://doi.
org/10.1109/ICIP.2004.1421680

17. Gudivada, V.N., Raghavan, V.V.: Content based image retrieval systems. Com-
puter 28(9), 18–22 (1995)

18. Herranz, L.: Integrating semantic analysis and scalable video coding for efficient
content-based adaptation. Multimed. Syst. 13, 103–118 (2007). https://doi.org/
10.1007/s00530-007-0090-0

19. Kephart, J.O., Das, R.: Achieving self-management via utility functions. IEEE
Internet Comput. 11, 40–48 (2007)

20. Ketan, P., Anirban, S., Matani, M.D.: An O(1) algorithm for implementing the
LFU cache eviction scheme (2010)

21. Li, Q., Lin, W., Fang, Y.: No-reference quality assessment for multiply-distorted
images in gradient domain. IEEE Signal Process. Lett. 23(4), 541–545 (2016).
https://doi.org/10.1109/LSP.2016.2537321

22. Newton, E.M., Sweeney, L., Malin, B.: Preserving privacy by de-identifying face
images. IIEEE Trans. Knowl. Data Eng. 17(2), 232–243 (2005)

23. Nguyen, S.M., Ogino, M., Asada, M.: Real-time face swapping as a tool for under-
standing infant self-recognition. CoRR abs/1112.2095 (2011)

24. Prangl, M., Szkaliczki, T., Hellwagner, H.: A framework for utility-based multime-
dia adaptation. IEEE Trans. Circuits Syst. Video Technol. 17(6), 719–728 (2007).
https://doi.org/10.1109/TCSVT.2007.896650

25. Rippel, O., Bourdev, L.: Real-time adaptive image compression. In: Proceed-
ings of the 34th International Conference on Machine Learning, ICML 2017, vol.
70, pp. 2922–2930. JMLR.org (2017). http://dl.acm.org/citation.cfm?id=3305890.
3305983

26. Sural, S., et al.: Performance comparison of distance metrics in content-based image
retrieval applications. In: Proceedings of the International Conference on Informa-
tion Technology, Bhubaneswar, India, pp. 159–164, January 2003

27. Truong, B., Venkatesh, S., Dorai, C.: Scene extraction in motion pictures. IEEE
Trans. Circuits Syst. Video Technol. 13(1), 5–15 (2003)

28. Vega, M.T., Mocanu, D.C., Famaey, J., Stavrou, S., Liotta, A.: Deep learning for
quality assessment in live video streaming. IEEE Signal Process. Lett. 24(6), 736–
740 (2017). https://doi.org/10.1109/LSP.2017.2691160

29. Vijay Venkatesh, M., Cheung, S.c.S., Zhao, J.: Efficient object-based video inpaint-
ing. Pattern Recognit. Lett. 30(2), 168–179 (2009)

30. Wickramasuriya, J., Datt, M., Mehrotra, S., Venkatasubramanian, N.: Privacy
protecting data collection in media spaces. In: Proceedings of the 12th Annual
ACM International Conference on Multimedia, MULTIMEDIA 2004, pp. 48–55.
ACM, New York (2004)

31. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment:
from error visibility to structural similarity. IEEE Trans. Image Process. 13(4),
600–612 (2004). https://doi.org/10.1109/TIP.2003.819861

https://doi.org/10.1109/ICIP.2004.1421680
https://doi.org/10.1109/ICIP.2004.1421680
https://doi.org/10.1007/s00530-007-0090-0
https://doi.org/10.1007/s00530-007-0090-0
https://doi.org/10.1109/LSP.2016.2537321
https://doi.org/10.1109/TCSVT.2007.896650
http://dl.acm.org/citation.cfm?id=3305890.3305983
http://dl.acm.org/citation.cfm?id=3305890.3305983
https://doi.org/10.1109/LSP.2017.2691160
https://doi.org/10.1109/TIP.2003.819861

Sharing Knowledge in Digital Ecosystems
Using Semantic Multimedia Big Data

Antonio M. Rinaldi1,2(B) and Cristiano Russo1

1 Department of Electrical Engineering and Information Technologies,
University of Napoli Federico II, Via Claudio, 21, 80125 Napoli, Italy

{antoniomaria.rinaldi,cristiano.russo}@unina.it
2 IKNOS-LAB Intelligent and Knowledge Systems - LUPT,

University of Napoli Federico II, Via Toledo, 402, 80134 Napoli, Italy

Abstract. The use of formal representations has a basic importance in
the era of big data. This need is more evident in the context of multimedia
big data due to the intrinsic complexity of this type of data. Furthermore,
the relationships between objects should be clearly expressed and formal-
ized to give the right meaning to the correlation of data. For this reason
the design of formal models to represent and manage information is a
necessary task to implement intelligent information systems. Approaches
based on the semantic web need to improve the data models that are
the basis for implementing big data applications. Using these models,
data and information visualization becomes an intrinsic and strategic
task for the analysis and exploration of multimedia Big Data. In this
article we propose the use of a semantic approach to formalize the struc-
ture of a multimedia Big Data model. Moreover, the identification of
multimodal features to represent concepts and linguistic-semantic prop-
erties to relate them is an effective way to bridge the gap between tar-
get semantic classes and low-level multimedia descriptors. The proposed
model has been implemented in a NoSQL graph database populated by
different knowledge sources. We explore a visualization strategy of this
large knowledge base and we present and discuss a case study for sharing
information represented by our model according to a peer-to-peer(P2P)
architecture. In this digital ecosystem, agents (e.g. machines, intelligent
systems, robots,. . .) act like interconnected peers exchanging and deliv-
ering knowledge with each other.

Keywords: Semantic BigData · Multimedia ontologies · Semantics ·
P2P

1 Introduction

The huge amount of data produced every day by humans and machines in dif-
ferent formats and in several application areas has a great impact on method-
ologies and technologies able to capture, store and analyze data. The Big Data
paradigm tries to give a comprehensive approach to deal with the management
c© Springer-Verlag GmbH Germany, part of Springer Nature 2020
A. Hameurlain et al. (Eds.) TLDKS XLV, LNCS 12390, pp. 109–131, 2020.
https://doi.org/10.1007/978-3-662-62308-4_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-62308-4_5&domain=pdf
https://doi.org/10.1007/978-3-662-62308-4_5

110 A. M. Rinaldi and C. Russo

of extreme volumes of heterogeneous data and other dimensions as the high
velocity of changing data [16]. The Internet has a crucial role in this context
both in the creation and in the access to a large amount of online information
sources, underlining the problem of managing data. However, web content is
generally for human use and not for machine processing. The increasing volume,
variety and complexity of the data collected presents interesting challenges in
different research fields. In this scenario, both humans and machines must not
only be able to access information, but also to interpret, use and share it. In our
opinion, the use of semantics could be a useful way to achieve these goals by
using approaches from different research fields such as semantic data integration
or semantic data extraction. [13,17,57]. Our approach is strictly related to the
vision of Semantic Web [8] voted to give formal tools to solve or at least smooth
ambiguities, inconsistencies and heterogeneities at different data levels. A com-
mon standard for data format and structure is a useful tool in order to integrate
heterogeneous models in a unified conceptualization of a specific knowledge or
application domain and reuse of existing knowledge models [12], allowing intel-
ligent systems to share knowledge in a real environment. Moreover, the W3C
has proposed during years a number of standards to implement this vision as
RDF, OWL, SPARQL and promoted the use of ontologies to give a formal,
common and shared view of data. The union of the Big Data paradigm and
the Semantic Web vision is a new and interesting research area called Semantic
Big Data [32,35]. The combination of these approaches will define more efficient
techniques for storing, organizing and analyzing the huge amount of available
information, facilitating the work of data scientists reducing, for example, the
information overload and redundancy of data. In addition, other models based
on ontologies may be merged in new ones, linking information from different
sources and making it possible to realize more efficient tools and smart applica-
tions [41,45]. While ontologies and big data paradigm are silver bullets for formal
representation and efficient management of a large amount of data, we define an
integrated, general purpose model to enable a more expressive way to represent
data and transform it in information and knowledge. We use a property-based
labeled graph to represent our model and implement it in a graph database. We
decided to use a graph structure because we consider it as a natural representa-
tion of complex ontologies [15]. The graph database is populated using general
multimedia knowledge bases and linked open data and we implement a system to
share knowledge represented by our graph database in a P2P digital ecosystem.

The motivations behind this work are manifold. The need for semantic models
able to elevate raw data and information to knowledge is one of the keys for the
development of next future intelligent systems. This need is still more evident
if we consider the rapid evolution of our society, where humans, robots and
other machines are required to collaborate and share their knowledge with each
other by means of friendly interactions. In this context, the use of a formal
model, based on NoSQL technologies is a first step to take into account complex
systems and to provide an adequate scalability of large-scale multimedia big
data due to the intrinsic complexity of unstructured data. Furthermore, the

Sharing Knowledge in Digital Ecosystems 111

inclusion of linguistic-semantic interconnections between model entities enables
the addition of “interpretability” feature to the model, which is essential for a
shared understanding of knowledge to be shared.

The reminder of the paper is organized as follows: in Sect. 2 is presented
the state of the art of our field of interest; Sect. 3 is devoted to give a detailed
description of our model, also providing insights about the implemented model
in a NoSQL database. In Sect. 4 we show a case study for sharing the knowledge
through a peer-to-peer architecture; eventually, in Sect. 5 conclusion and future
works are discussed.

2 Related Works

In this Section we describe and discuss the directions of Big Data research during
years, focusing our attention on the evolution process which involves semantics
and ontologies for Big Data development. The use of the term “Big Data” in
articles and reports is today overwhelming. The pervasive nature of digital tech-
nologies and the broad range of data-reliant applications have also made this
expression widespread across other disciplines, including sociology, medicine,
biology, economics, management and information science. However, this raising
phenomenon has not been accomplished by a rational development of a shared
vocabulary. In fact, the word has been used with several and inconsistent mean-
ings and lacks of formal definitions. One of the first attempt for a stately defini-
tion is given in [23]. According to the authors, Big Data is an information asset
characterized by a High Volume, Velocity and Variety to require specific technol-
ogy and analytical methods for its transformation into Value. This model can be
even extended to 5Vs if the concept of Veracity is incorporated into the big data
definition[6]. A more articulated classification of big data literature regarding
models, data types and applications can be found in [34]. While much attention
has been devoted to the Volume and Velocity dimensions of Big Data, a sys-
tematic support for managing the Variety of data, is only emerging in recent
years. In [35], this process is called “Semantification” of Big Data. In this paper
the authors present an approach for managing hybrid Big Data using RDF data
model, i.e. non-semantic Big Data is semantically enriched by using RDF vocab-
ularies. In terms of data variety, this approach allows to ingest both semantic
and non-semantic data. However, it is limited to convert non-semantic data to
RDF data, where possible. In [27], a survey on Big Data concepts and chal-
lenges is given. It also discusses the problem of merging Big Data architecture
in an already existing information system, tackling the emerging importance of
semantics (reasoning, coreference resolution, entity linking, information extrac-
tion, consolidation, paraphrase resolution, ontology alignment) in the Big Data
context. The use of semantics for big data processing has had an important
increasing in many applications fields. In [1] the authors present a distributed
architecture and technology for scaling up text analysis running a complete chain
of linguistic processors on several virtual machines. This approach is limited to
textual analysis and does not consider multimedia data. An approach based on

112 A. M. Rinaldi and C. Russo

semantics and ontologies is also a key aspect in “social big data” [6] and in mul-
timedia social networks [19]. In [38] a semantic big data platform to integrate
heterogeneous wearable data in healthcare has been presented. Semantic big data
is also used for realizing a national-scale infrastructure for vulnerability analysis
in critical infrastructure systems (CIs) such as energy, water, transportation,
and communication [33]. In [55] Knowle, an online news management system
based on semantic link network model is described. Another system exploiting
semantics is Karma [32]; it is a system applied in the cultural heritage domain to
integrate data across museums. Above-cited approaches have the advantage of
using semantics, but their models have been designed for very limited and specific
knowledge domains. A semantic ETL framework is proposed in [4]. It generates a
semantic model to integrate heterogeneous datasets, and then generates seman-
tic linked data complied with the data model. The generated semantic data is
made available on the Web as linked data (RDF triples) that can be queried and
used in analytic tasks and as a resource for innovative data-driven applications.
In [7] an approach handling semantic heterogeneity and URI-based entity iden-
tification over multiple data sources is proposed. The work describes a semantic
entity resolution method based on inference mechanism using rules to manage
the misunderstanding of data, for real world entities; a Data Quality enhance-
ment using MapReduce-based query rewriting approach; a parallel combination
of MapReduce jobs and query rewriting inferences to handle transitive and cyclic
rules for a richer rule expression language. A scalable data integration platform
is presented in [10]. It uses Big Data technologies based on ontological models to
give semantic-based analysis services for various purposes. Semantic technology,
or the use of ontologies, is seen as a core approach to solve the big data Variety
challenge and align the data generated from heterogeneous data sources as dis-
cussed in [47] with a special focus on the financial domain. An approach based
on an unsupervised and adaptive ontology-learning process is described in [30].
The growing amount of information from the Web is processed and extracted to
get only the most valuable pieces of information. The resulting ontology is then
used to enhance the performance of a focussed crawler. The combination of Big
Data and Semantic Web technologies allows to classify information according
to a domain knowledge. MOUNT [48] is a multi-level annotation and integra-
tion framework used to process heterogeneous datasets by exploiting semantic
knowledge and improve the query processing in the large scale infrastructure. It is
based on coarse-grained and fine-grained annotation models. The coarse-grained
annotation employs Yago and SEeds SEarch to categorize domain information
on big data and fine-grained annotation to enable semantic enrichment, integrate
structured and unstructured data to form a global resource description frame-
work ontology. With respect to cited approaches, our proposed model tackles
the integration problem at a different and more abstract level. In particular, our
approach is based on several abstractions for representing data, i.e. it makes use
of both semantic-linguistic and multimedia features, with the aims of elevating
raw data to information and finally, knowledge. Moreover, the implementation
of such a model as a NoSQL general graph database has valuable benefits in

Sharing Knowledge in Digital Ecosystems 113

the knowledge sharing process. Given that entities (e.g. concepts) stored in our
knowledge base are closer to human understanding, a proper mapping of data to
be ingested is required through entity pre-processing and disambiguation steps.

Peer2Peer technology has wildly used to share knowledge and we focus our
attention on ontology based systems. In the last years several approaches and
systems have been presented to manage and share knowledge and in particular
ontologies. In [2] is presented InfoQuilt, a system for sharing ontologies in a peer-
to-peer environment. Using this system a user can find relevant sets of ontologies,
reuse them, create new ones and advertise the resulting ontologies. The system
allows to search concepts and services exploring inter-ontological relationships.
The implemented system is based on agents that allow users to request infor-
mation, semantically correlate data from different sources and of heterogeneous
type or representation; they can have an interactive interface for knowledge dis-
covery. Becker et al. [5] propose a P2P extension for ontology editing based on
Ontorama [26]. The system uses a sharing protocol using RDF. This approach
provides a novel editing environment compared to the classic client/server ontol-
ogy management approaches. In [3] a method to integrate different knowledge
sources as thesaurus, gazetteer and a chronology based in an ontology using Topic
Maps is proposed. This ontology is shown to Government Agencies by Web Ser-
vices to support information harmonization about environmental data. KAON
[25] is an open-source software infrastructure to manage ontologies for semantic-
driven applications. It integrates traditional technologies as relational databases
with new knowledge representation tools. There are several additional compo-
nents which increase the KAON functionalities. COE (Cooperative Ontology
Editor) [28] is a P2P application designed to allow ontology developers to share
their knowledge through many activities: ontology sharing, ontology reuse and
other traditional peer-to-peer mechanisms. It is implemented over COPPEER, a
framework for creating flexible collaborative P2P applications that provides non-
specific collaboration tools as plug-ins. SWAP (Semantic Web and Peer-to-Peer)
[37] is a project that allows participants to keep private knowledge structures in
their personal computer and share that knowledge in a P2P architecture. Users
can extract ontologies from selected remote repositories, which are automatically
integrated in their local repository. Any change in the source of the information
is propagated to the local repositories. Oyster [44] is a java-based system, which
assists users in managing, searching and sharing ontology metadata in a peer-
to-peer network; it is a P2P application that exploits semantic web techniques
in order to provide a solution for exchanging and re-using ontologies. The Oys-
ter client on its own (e.g. disconnected from the P2P network) provides added
value to it’s users as it will give researchers an overview and search facilities of
his/her own ontology metadata. In order to provide this functionalities, Oyster
implements a proposal for a metadata standard, so called Ontology Metadata
Vocabulary (OMV) which is based on discussions and agreement in the EU IST
thematic network of excellence Knowledge Web as the way to describe ontologies.
In [49] different techniques and tools for ontology definition and management are
proposed together with a model for representing knowledge and a system based

114 A. M. Rinaldi and C. Russo

on peer-to-peer (P2P) paradigm to share general and domain knowledge. In [42]
the authors propose an integrated agent system for ontology sharing on WWW,
which enables users to manage ontologies and Semantic Web Services. The pro-
posed system has several modules to manage personal information, translate
them into standard language as RDF and analyze RDF to obtain user’s inter-
ests and create Semantic Web Services which enable agent program to make
inferences from grounding data on personalized ontology. In this context we
notice also XAROP [11], a P2P platform to knowledge management in a decen-
tralized IT infrastructure. Several surveys and books have been presented in the
last years to evidence the importance of Peer-to-Peer and ontologies for enabling
the Semantic Web; an useful reference is [52].

Even if the discussed literature tackles the problem of big data Variety using
semantics and ontologies at different levels, the proposed models and tools are
often limited to specific tasks and applications related to very specific domains
or they do not consider multimedia data.

In our vision, a formal semantic-based model is needed to represent in a whole
information about specific and general knowledge domains and the use of stan-
dard multimedia features is a basic step in order to overcome the long-standing
issue of heterogeneity. Moreover, the use of a formal knowledge representation
together with its implementation in a graph db allow the sharing of knowledge
in a real scenario based on efficient techniques.

3 The Proposed Model

In this section, the proposed model to represent multimedia big data is pre-
sented with a description of its components and properties. Our model is based
on property-based graph, which allows users to represent concepts and logical
relations between them through a graph-based structure with an implicit agree-
ment about the meaning of edges, nodes, labels and properties. The access to
nodes and relationships in a native graph database is an efficient, constant-
time operation and allows to quickly traverse millions of connections per second.
Nodes are the entities in the graph. They can hold any number of attributes
(key-value-pairs) called properties. Nodes can be tagged with labels represent-
ing their different roles in a knowledge domain. Relationships provide directed,
named and semantically relevant connections between two node-entities. A rela-
tionship always has a direction, typology, start node and end node. Similar to
nodes, relationships can also have properties. In most cases, relationships have
quantitative properties, such as weights, costs, distances, ratings, time intervals,
or strengths. Since our model is based on ontologies, this discussion starts with
some notions about ontologies and the way to build them. Starting from some
definitions of ontology [29,43] we extend them using also visual data to denote
a concept; these data are represented using visual low-level features defined in
MPEG-7 standard and others presented in literature described in the following.
Thus an ontology can be seen as a set of “signs” and “relations” among them,
denoting the concepts that are used in a knowledge domain.

Sharing Knowledge in Digital Ecosystems 115

The proposed model is composed of a triple 〈S,P,C 〉 where:

S is a set of signs;
P is a set of properties used to link the signs in S ;
C is a set of constraints on P.

In order to avoid confusion about the used terminology, we explicit point
out that from the ontological point of view, the term property has a different
meaning from the same term used in the property-based graph model; while in
the first case, a property is a relation between two entities, in the second case it
is intended as an attribute of an entity. In this context signs are words and visual
data. The properties are linguistic, semantic and multimedia relations, and the
constraints are validity rules applied to properties with respect to the multime-
dia category considered. In the proposed approach, knowledge is represented by
an ontology implemented with respect to a semantic network (SN). A semantic
network can be seen as a graph where the nodes are signs and arcs are relations
between signs. A concept represents an abstract or general idea, something that
is conceived in the human mind. It is the abstract representation of an object or
a set of objects sharing some common features. In addition, an abstract concept
is also represented by means of visual data, i.e. global and local feature vec-
tors extracted from images depicting a given concept. The top-level ontological
model is described in [50] using the Web Ontology Language (OWL). The two
main classes in this meta-model are: Concepts, in which all objects are defined as
individuals, and Multimedia (MM), which represents all the multimedia repre-
sentations for Concepts, i.e. they represent all the “signs” in the ontology. From
a linguistic-semantic point of view we exploit WordNet [39] to build the corre-
sponding type of relations between signs. WordNet is a large lexical database of
English. Nouns, verbs, adjectives and adverbs are grouped into sets of cognitive
synonyms (synsets), each expressing a distinct concept. Synsets are interlinked
by means of conceptual-semantic and lexical relations. The semantic and lexical
properties are arranged in a hierarchy. The use of a linguistic approach allows an
extension of linguistic properties also to multimedia data; e.g. different multime-
dia information related to the same concept are synonyms and in the same way
hypernym/hyponym or meronym properties entail a semantic relation among the
multimedia representation of concepts. Concepts, multimedia and properties are
arranged in a class hierarchy resulting from the syntactic category for concepts
and words, data type for multimedia and semantic or lexical for the properties.
From a logical point of view, a multimedia representation can be related to all
kind of concepts.

3.1 Ontological Model Formalization

In recent years, several languages have been proposed to represent ontologies and
we choose to use OWL [24] due to its expressive power useful for our purposes
and its extensive use in knowledge based systems. In our approach we use the DL
version of OWL, because it is sufficiently effective to describe our model and its

116 A. M. Rinaldi and C. Russo

implementation. The DL version allows the declaration of disjoint classes, which
may be used to assert that a word belongs to a syntactic category. Moreover,
it allows the declaration of union classes used to specify domains and property
ranges used to relate concepts and words belonging to different lexical categories.
The ontology schema and the corresponding semantic network representation is
formally described using OWL. Every node (both concept and multimedia) is an
OWL individual. The connecting edges in the semantic network are represented
as ObjectProperties. The considered linguistic properties for Concepts are shown
in Table 1.

Table 1. Linguistic properties

Lexical properties Synonym, antonym, pertainym, nominalization,
derived from adjective, participle of verb

Semantic properties Hypernyms, hyponyms, coordinate terms,
holonym, meronym, hypernym, troponym,
entailment, related nouns, similar to, coordinate
terms, Participle of verb, root adjectives

These properties have constraints that depend on the syntactic category
(noun, verb, adjective, adverb) or kind of semantic or lexical properties. For
example, the hyponymy property can only relate nouns to nouns or verbs to
verbs. A semantic property may links concepts to concepts respecting the con-
straints defined by the ontological model. Concept and multimedia are consid-
ered with DatatypeProperties, which relate individuals to pre-defined data types.
Each multimedia is related to the concept it represents by the ObjectProperty
hasConcept, whereas a concept is related to multimedia that represents it using
the ObjectProperty hasMM. These are the only properties that can relate con-
cepts to multimedia and vice versa; all of the other properties relate multimedia
to multimedia and concepts to concepts. The two main classes are not supposed
to have common elements; therefore they are defined as disjoint. The class MM
defines the logical model of the multimedia forms used to express a concept.
On the other hand, the class Concept represents the meaning related to a mul-
timedia form; the sub-classes have been derived from related categories. There
are some union classes that are useful for defining the properties of domain and
co-domain. Attributes have been defined for Concept and MM respectively; Con-
cept has: Name that represents the concept name; Description that gives a short
description of concept. On the other hand MM has Name as attribute that is the
MM name and a set of features described in Table 2. More details and references
to such descriptors are reported in Sect. 3.2.

All elements have an ID within a unique identification number. Table 3 shows
some of the properties considered and their domains and ranges of definition.

The use of domain and codomain reduces the property range application;
however, the model as described so far does not exhibit perfect behavior in some

Sharing Knowledge in Digital Ecosystems 117

Table 2. Visual features

Data type Features

Visual Auto Color Correlogram (ACC), Scalable Color
(SC) Fuzzy Color and Texture Histogram
(FCTH), Color Layout (CL), Edge Histogram
(EH), Color and Edge Directivity Descriptor
(CEDD), Joint-Composite Descriptor (JCD),
Pyramid Histogram of Oriented Gradients
(PHOG)

Table 3. Property features

Property Domain Range

hasMM Concept MM

hasConcept MM Concept

hypernym NounsAnd NounsAnd

VerbsConcept VerbsConcept

holonym NounConcept NounConcept

entailment VerbConcept VerbConcept

similar AdjectiveConcept AdjectiveConcept

cases. For example, the model does not know that a hyponymy property defined
on sets of nouns and verbs would have 1) a range of nouns when applied to a
set of nouns and 2) a range of verbs when applied to a set of verbs. Therefore, it
is necessary to define several constraints to express the ways that the linguistic
properties are used to relate concepts and/or MM. Table 4 shows some of the
defined constraints specifying the classes to which they have been applied with
respect to the properties considered. The table also shows the matching range.

Table 4. Model constraints

Costraint Class Property Constraint range

AllValuesFrom NounConcept hyponym NounConcept

AllValuesFrom AdjectiveConcept attribute NounConcept

AllValuesFrom NounWord synonym NounWord

AllValuesFrom VerbWord also see VerbWord

Sometimes, the existence of a property between two or more individuals
entails the existence of other properties. For example, since the concept “dog”
is a hyponym of “animal”, animal is a hypernym of dog. These characteristics
are represented in OWL by means of property features. Table 5 shows several of
those properties and their features.

118 A. M. Rinaldi and C. Russo

Table 5. Property features

Property Features

hasMM inverse of hasConcept

hasConcept inverse of hasMM

hyponym inverse of hypernym; transitivity

hypernym inverse of hyponym; transitivity

cause transitivity

verbGroup symmetry and transitivity

The proposed model allows a high-level conceptual matching using different
type of low-level representations. Moreover, an ontology built using this model
can be used to infer information by means of formal representation of properties
among multimedia data and concepts.

3.2 Property-Based Graph Model Formalization

We propose the use of a semantic approach to formalize the model structure of
multimedia BigData. The use of multimodal features to represent concepts and
linguistic properties to relate them are an effective way to bridge the gap between
the target semantic classes and the available low-level multimedia descriptors.
The proposed model has been implemented in a NoSQL graphdb populated from
different knowledge sources and a visualization of this very large knowledge base
has been discussed as a case study. We decided to store as nodes in the graph
database model the two main classes of the ontological model, i.e. Concepts and
Multimedia. Therefore the nodes in the graph may have two different labels, Con-
cept and Multimedia and a different number of properties(attributes) according
to it.

The nodes labelled with concept label have the following attributes:

– id, a number used to identify each concept in the database.
– sid, the id used in WordNet for that concept.
– pos, the part of speech of the concept. It can be a noun, a verb, an adjective

or an adverb.
– lemmas, the list of english terms used to represent the concept.
– glossary, a brief description of the concept, explaining its meaning.

Multimedia nodes contain visual information. In particular, global descriptors
have been extracted from the images considered in our knowledge base. Global
descriptors are feature vectors extracted from images considering them as a
whole unit. In particular, the nodes with the label multimedia share the following
attributes:

– id, a number used to identify each multimedia in the database.
– url, the path to the multimedia file representing the concept.

Sharing Knowledge in Digital Ecosystems 119

– PHOG [9], the extracted Pyramid Histogram of Oriented Gradients (PHOG)
feature vector.

– JCD [20], the extracted Joint-Composite Descriptor(JCD) feature vector.
– CEDD [21], the extracted Color and Edge Directivity Descriptor (CEDD)

feature vector.
– SC [36], the extracted Scalable Color(SC) feature vector.
– EH [54], the extracted Edge Histogram (EH) feature vector.
– FCTH [22], the path to the Fuzzy Color and Texture Histogram (FCTH)

feature vector.
– CL [31], the path to the Color Layout(CL) feature vector.
– ACC [53], the path to the Auto Color Correlogram(ACC) feature vector.

Also relationships have some attributes:

– id, univoque identifier of relation in the graph database
– type, the type of relation, i.e. hyponym, antonym, hasConcept, etc.
– weight, a number in the interval [0, 1] used to assign a strength level to each

type of relation and consequently giving the possibility to perform similarity
metrics based on weighted distances.

Relationships can link multimedia nodes to multimedia nodes, concept nodes
to concept nodes, multimedia nodes to concept nodes and vice-versa. The pres-
ence of a weight attribute is desirable and needed for our model, since it allows
to discriminate between different relationships, which is the case of a semantic-
based model where many relationships are present. Such weights may be actively
exploited during analysis and usage of metrics for sophisticated path distances
calculations. Using a set-theory notation, we give here formal definitions for
them. Γ is the entire network containing nodes and arcs, V is the set of all
nodes, E is the set containing all edges, C is the set of concept nodes, and M
is the set of multimedia nodes. From a theoretical point of view, relationships
are formally defined as hyperarcs in a hypergraph structure. The reason for this
choice is that the hyperarc concept allows for more powerful and generalized
definitions of “many-to-many” relationships between two sets of nodes.

Definition 1 (Multimedia to Multimedia relationship M-M):
Let M̂ ⊂ M ⊂ V and M̊ ⊂ M ⊂ V , with M̂ ∩ M̊ = ∅, two disjoint subsets of
nodes of M in Γ , a multimedia to multimedia relationship is a weighted hyperarc
ei ⊂ E with a weight w −→ [0, 1] connecting the nodes in subset M̂ with nodes
in subset M̊.

Multimedia to Multimedia relationships are used for example to relate mul-
timedia contents by exploiting metadata, features extracted from the contents,
low-level multimedia descriptors, etc.

Definition 2 (Concept to Multimedia relationship C-M):
Let Ĉ ⊂ C ⊂ V and M̂ ⊂ M ⊂ V two subsets of C and M respectively, in Γ , a
concept to multimedia relationship is a weighted hyperarc ei ⊂ E with a weight
w −→ [0, 1] connecting the nodes in Ĉ with nodes in M̂.

120 A. M. Rinaldi and C. Russo

This relationship is called hasMM and it is used to define a link between the
Concept and Multimedia nodes.

Definition 3 (Multimedia to Concept relationship M-C):
Let M̂ ⊂ M ⊂ V and Ĉ ⊂ C ⊂ V two subsets of nodes of M and C respectively,
in Γ , a multimedia to concept relationship is a weighted hyperarc ei ⊂ E with a
weight w −→ [0, 1] connecting the nodes in M̂ with nodes in C̊.

With this relationship we are able to associate a multimedia “sign” to a
set of concepts. As previously described, we use the hasConcept ObjectProperty
defined in the top level ontological model. In this formalization, each multimedia
is related to the concept it represents by the hasConcept, whereas a concept is
related to multimedia that represent it using hasMM.

Definition 4 (Concept to Concept relationship C-C):
Let Ĉ ⊂ C ⊂ V and C̊ ⊂ C ⊂ V , with Ĉ ∩ C̊ = ∅, two disjoint subsets of C in
Γ , a concept to concept relationship is a weighted hyperarc ei ⊂ E with a weight
w −→ [0, 1] connecting the nodes in Ĉ with nodes in C̊.

This kind of link is used to exploit the semantic and linguistic properties between
Concept nodes, described in Sect. 3.1.

The use of general top level ontological model for Multimedia and Concepts
allows us to exploit all the potentials of ontologies, highlighting the importance
of a strong formalization and organization of data. Moreover, the linguistic prop-
erties used to relate concepts give a formalization of our representation closer to
human languages.

3.3 Semantic Multimedia Big Data Population

In this section we provide details related to the implementation and population
of the knowledge graph. The general architecture of the system is shown in Fig. 1.

Fig. 1. System architecture

Sharing Knowledge in Digital Ecosystems 121

The main component of the architecture is the Semantic Multimedia Big-
Data (SMBD) which contain the implemented model. In particular, the model
previously described has been implemented as instance of a Neo4J [40] graph
database, according to the property-based labelled graph model. Neo4J is a
NoSQL graph database entirely written in Java language. It guarantees relia-
bility for transactions by means of ACID (i.e. Atomicity, Consistency, Integrity,
Durability) properties. It is possible to query the database through a powerful
language, named Cypher. We consider concepts and multimedia representations
as graph nodes, whereas semantic, linguistic, semantic-linguistic and multime-
dia relations as edges connecting nodes. For example, the hyponymy property is
converted in an edge that links two concept nodes (nouns to nouns or verbs to
verbs). The database was built by means of LOAD Cypher queries of informa-
tion stored in CSV files. This method allows to dramatically increase the speed
during the database creation phase. First, we created the CSV files (CSV Serial-
izer block) containing nodes and relationships exploiting the Java library JWNL,
the dictionary WordNet 3.0, images related to the concepts were collected from
ImageNet and BabelNet and feature extracted with the library LIRE. Then,
we loaded in Neo4J nodes and relationships. Linked Open Data sources can be
ingested as well into the database after that a proper mapping with concepts
in the graph database is found ny the Schema Mapper module. The Knowledge
Visualiser is the module used for the visualization task. In particular, a well-
known technique based on the library D3.js [56] has been used for enhancing
the Neo4J browser, which is the standard tool used for visualizing data stored
in the graph. In Table 6 we report some statistics related to our instance of the
database used as a case study.

Table 6. Database statistics

Type of entity #

Concept nodes 117659

Multimedia nodes 302305

Concept nodes properties 675401

Multimedia nodes properties 1776195

Linguistic-semantic relationships 377585

Cross-label relationships 605185

4 A Case Study for Sharing Knowledge

We provide an example of knowledge representation and sharing showing the
power of combining both textual and visual information in a peer-to-peer
environment.

122 A. M. Rinaldi and C. Russo

Fig. 2. Partial visualization of our graph

In order to give an idea to the reader about complexity of our network we
show in Fig. 2 a partial view of it containing 8000 relationships and 5990 nodes. It
has been obtained using the Apoc plugin and Gephi an open-source software for
visualization and exploration of graphs and networks. The layout used for this
representation is the Force Atlas 2, with the dissolve Hubs and prevent overlap
settings.

The comparison between the numbers related to Fig. 2 and the statistics of
our knowledge base provided in Table 6 help to understand the huge size and
complexity of the network. Figure 3 gives a scratch of our database in order to
visualize the structure of the logical model in a more meaningful way. It is the
result of a Cypher query to highlight the hasMM relationship between nodes
labelled as a Concept (light blue nodes) and nodes labelled as a Multimedia
(green nodes).

Sharing Knowledge in Digital Ecosystems 123

Fig. 3. Excerpt of graph database (Colour figure online)

We consider as case study a knowledge domain related to famous painters.
As a matter of fact, despite WordNet is usually intended only as a dictionary
or as a thesaurus containing general concepts representing classes, in its newer
versions it also contains many individuals or instances, linked to classical Word-
Net concepts by means of different relationships, named instance hyponym and
its inverse relation instance hypernym. This is the case, for example, of famous
painters. One of the synsets contained in WordNet, named old master, describes
famous painter of the past, also providing the following definition: “a great Euro-
pean painter prior to 19th century”. Therefore we can extract all the instances
for the Concept representing “old masters” querying our Knowledge Base.

The proposed model has been implemented in our graph db used to supply
knowledge system to create in a peer to peer environment.

The system has this common model for defining knowledge structure and
contents. In this way all peers have a common view of distributed knowledge and
they can share it in a simple way. This structure is implemented in a Semantic
Multimedia Bigdata based on a graph DBMS.

124 A. M. Rinaldi and C. Russo

Fig. 4. P2P network

The proposed system has several software modules and, from a top-level
view, they can be organized around some entities and macro-functionalities.
The main system entities are: Peer: it is the agent in charge of editing and
managing local knowledge (i.e. graphs extracted from the SMDB); each user
which takes part in the network is a peer; Rendez-Vous Peer: its task is to build
the P2P network, manage a list of sharing local knowledge between peers and
allow the communication with the SMBD. The general architecture of the system
is hereinafter described and it is drawn in Figure 4 together with an example of
each single macro-module.

A peer has two main tasks: (i) managing and editing extracted graphs and
(ii) putting in share local graphs. A Rendez-Vous peer has a list of active peers
and a description of their contents. It uses these information in the knowledge
discovery step between peers.

In each single peer a system interface shows the catalog of the graphs stored
in the local repository to the user by means of an appropriate software module
called OntoSearcher; OntoSearcher performs a syntactic search or a browsing in
a directory structure arranged by arguments with the aim of finding a graph
relevant to the user interest. When OntoSearcher finds a suitable graph, the
OntoViewer builds a view to represent it. A user can modify the graph, add

Sharing Knowledge in Digital Ecosystems 125

contents or build a new one with the peer editing functionalities. On the other
hand a peer must communicate to the other peer and with the Rendez-Vous one
for sharing ontologies. JXTA is the framework used to build the P2P network;
it uses advertisements in the communication steps. In the following subsections
are described into details both the remaining modules drawn in Fig. 4.

Many information systems use a knowledge base to represent data in order
to satisfy information requests and in the author’s vision it is a good choice for
having a common view of the same general and specific knowledge domain.

In the proposed framework we use our SMBD as a “starting point” for users
because they can extract an initial graph from this general knowledge base and
expand it to have a specialized one; these tasks are explained in the following of
this section. Hence, efficiency and performances of the knowledge sharing process
depend on user actions and on the JXTA framework performances.

The graph is built using an ad-hoc interface based on cypher language.

Fig. 5. Visualization of query result obtained with D3

126 A. M. Rinaldi and C. Russo

Fig. 6. Data exploration of query result with D3

Using the OntoEditor functionalities a user can modify the local graph struc-
ture as a whole adding new MM and Concepts, linking MM and Concepts using
arrows (lexical and semantic properties), deleting nodes and arcs.

The images are fetched using a search engine image tool (i.e. google image)
by means of a query with the concept name in the SMBD or added by the user.
In addition, the user can use words from the SMBD concept description or other
ones manually added to refine his/her search. Once images have been fetched,
they can be added to the considered concept using an ad hoc interface.

At this step of our research we are interested in showing a real implementation
of our model. Therefore, the proposed methods and techniques are described
and tested by means of a complete use case in order to put in evidence the
several features of the proposed model and implemented system. The system
has been completely developed using Java and the P2P network is based on
JXTA libraries. The process of extracting a graph from the SMBD begins with
an interaction in which the user inserts a specific term by means of the user
interface and chooses the proper sense by reading the description of the related
concepts. The system retrieves the correct sense and builds the graph following
the steps described in the previous section. An example of results is shown in
Fig. 5 where a graph regarding old master concept is drawn together with some
properties among the related concepts; moreover a user can interact with the
system editing tools.

The images are displayed with a circular shape in the multimedia nodes by
using the D3 library. The user can also click on the node he/she is interested

Sharing Knowledge in Digital Ecosystems 127

in to visualize the image in its original dimension. As an example, Fig. 6 shows
an image related to the famous painter Raffaello Sanzio.

5 Conclusion and Future Works

The constant production of digital data coming from different sources gives us
tons of data, from which we could extract precious and useful information. This
issue becomes more interesting if we consider multimedia data. In this context,
the use of a formal model to represent and manage data is a silver bullet task
to implement intelligent information systems. The aim of our work has been to
provide a novel model to represent in a formal and complete way the knowledge
structure implemented in a generalized semantic multimedia big data. In this
paper we have described the problem of data heterogeneity and the impact of
multimedia data. In this scenario, we propose a formal model combining top-
level ontology models and graph models represented by a labelled, property-
based structure to take into account both semantic, linguistic and multimedia
aspects. The use of a common model and it’s implementation has been used in a
P2P environment to share knowledge. A complete case study in a given scenario
shows the real use of our model and its expressive power. The distinctive features
of our framework is to use a simple and general formal model for multimedia
knowledge representation taking into account a linguistic approach considered
as the natural communication way between human agents integrating standard
descriptions for multimedia data. The proposed model and its implementation
can be used in crucial knowledge based applications for mining information. In
this first stage of our research, some aspects related to efficiency and scalability
with big volumes of data are not taken into account. Our goal is in describing
our semantic-based model together with a first prototype implementation. The
current research effort is based on the use of the proposed model together with
multimedia similarity metrics for content based analysis and we count to improve
the exploitation of multimedia data enriching our knowledge base and develop-
ing new classification algorithms based on it. There are other research lines to
be investigated as the implementation of a system based on our model in differ-
ent applications domains with a particular interest to multimodal information
retrieval [46], the implementation of other multimedia representation as audio
features and the definition of strategies to integrate other heterogeneous knowl-
edge sources [51]. In addition, we are also interested in finding more efficient
techniques to visualize and analyze data stored in very large knowledge bases
[14,18] and to define strategies and perform experiments for the evaluation of our
model and approaches through statistical and quantitative measures, as well as
to test the efficiency and performances of the knowledge sharing process. More-
over, we plan to extend the proposed approach for sharing knowledge among
different kind of agents both software and robotics by designing a Knowledge-
as-a-Service (KaaS) architecture.

128 A. M. Rinaldi and C. Russo

References

1. Agerri, R., Artola, X., Beloki, Z., Rigau, G., Soroa, A.: Big data for natural lan-
guage processing: a streaming approach. Knowl.-Based Syst. 79, 36–42 (2015)

2. Arumugam, M., Sheth, A.P., Arpinar, I.B.: Towards P2P semantic web: a dis-
tributed environment for sharing semantic knowledge on the web. In: Proceedings
of the Workshop on Real World RDF and Semantic Web Applications (2002)

3. Bandholtz, T.: Sharing ontology by web services: Implementation of a semantic
network service (SNS) in the context of the German environmental information
network (Gein). In: Proceedings of SWDB 2003, pp. 189–201 (2003)

4. Bansal, S.K., Kagemann, S.: Integrating big data: a semantic extract-transform-
load framework. Computer 48(3), 42–50 (2015)

5. Becker, P., Eklund, P., Roberts, N.: Peer-to-peer based ontology editing. In: Pro-
ceedings of NWESP 2005, p. 259. IEEE Computer Society, Washington (2005).
https://doi.org/10.1109/NWESP.2005.63

6. Bello-Orgaz, G., Jung, J.J., Camacho, D.: Social big data: recent achievements and
new challenges. Inf. Fusion 28, 45–59 (2016)

7. Benbernou, S., Huang, X., Ouziri, M.: Semantic-based and entity-resolution fusion
to enhance quality of big RDF data. IEEE Trans. Big Data, (Early Access), 1
(2017). https://ieeexplore.ieee.org/document/7937830

8. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Sci. Am. 284(5), 34–43
(2001)

9. Bosch, A., Zisserman, A., Munoz, X.: Representing shape with a spatial pyramid
kernel. In: Proceedings of the 6th ACM International Conference on Image and
Video Retrieval, pp. 401–408 (2007)

10. Boury-Brisset, A.C.: Managing semantic big data for intelligence. In: STIDS, pp.
41–47 (2013)

11. Tempich, C.: XAROP: a midterm report in introducing a decentralized semantics-
based knowledge sharing application. In: Karagiannis, D., Reimer, U. (eds.) PAKM
2004. LNCS (LNAI), vol. 3336, pp. 259–270. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-30545-3 25

12. Caldarola, E., Rinaldi, A.: A multi-strategy approach for ontology reuse through
matching and integration techniques. Adv. Intell. Syst. Comput. 561, 63–90 (2018).
https://doi.org/10.1007/978-3-319-56157-8 4

13. Caldarola, E.G., Picariello, A., Rinaldi, A.M.: An approach to ontology integration
for ontology reuse in knowledge based digital ecosystems. In: Proceedings of the
7th International Conference on Management of Computational and Collective
intElligence in Digital EcoSystems, pp. 1–8. ACM (2015)

14. Caldarola, E.G., Picariello, A., Rinaldi, A.M.: Big graph-based data visualization
experiences: The wordnet case study. In: 2015 7th International Joint Conference
on Knowledge Discovery, Knowledge Engineering and Knowledge Management
(IC3K), vol. 1, pp. 104–115. IEEE (2015)

15. Caldarola, E.G., Picariello, A., Rinaldi, A.M.: Experiences in wordnet visualization
with labeled graph databases. Commun. Comput. Inf. Sci. 631, 80–99 (2016)

16. Caldarola, E.G., Rinaldi, A.M.: Big data: a survey. In: Proceedings of 4th Interna-
tional Conference on Data Management Technologies and Applications, pp. 362–
370. SCITEPRESS-Science and Technology Publications, Lda (2015)

17. Caldarola, E.G., Rinaldi, A.M.: An approach to ontology integration for ontology
reuse. In: 2016 IEEE 17th International Conference on Information Reuse and
Integration (IRI), pp. 384–393. IEEE (2016)

https://doi.org/10.1109/NWESP.2005.63
https://ieeexplore.ieee.org/document/7937830
https://doi.org/10.1007/978-3-540-30545-3_25
https://doi.org/10.1007/978-3-540-30545-3_25
https://doi.org/10.1007/978-3-319-56157-8_4

Sharing Knowledge in Digital Ecosystems 129

18. Caldarola, E.G., Rinaldi, A.M.: Big data visualization tools: a survey: the new
paradigms, methodologies and tools for large data sets visualization. In: Pro-
ceedings of the 6th International Conference on Data Science, Technology and
Applications-DATA 2017, pp. 296–305 (2017)

19. Caldarola, E.G., Rinaldi, A.M.: Modelling multimedia social networks using seman-
tically labelled graphs. 2017 IEEE International Conference on Information Reuse
and Integration (IRI), pp. 493–500 (2017)

20. Chatzichristofis, S., Boutalis, Y., Lux, M.: Selection of the proper compact com-
posite descriptor for improving content based image retrieval. In: Proceedings of
the 6th IASTED International Conference, vol. 134643, p. 064 (2009)

21. Chatzichristofis, S.A., Boutalis, Y.S.: CEDD: color and edge directivity descriptor:
a compact descriptor for image indexing and retrieval. In: Gasteratos, A., Vincze,
M., Tsotsos, J.K. (eds.) ICVS 2008. LNCS, vol. 5008, pp. 312–322. Springer, Hei-
delberg (2008). https://doi.org/10.1007/978-3-540-79547-6 30

22. Chatzichristofis, S.A., Boutalis, Y.S.: FCTH: fuzzy color and texture histogram-a
low level feature for accurate image retrieval. In: 2008 Ninth International Work-
shop on Image Analysis for Multimedia Interactive Services, pp. 191–196. IEEE
(2008)

23. De Mauro, A., Greco, M., Grimaldi, M.: A formal definition of big data based on
its essential features. Libr. Rev. 65(3), 122–135 (2016)

24. Dean, M., Schreiber, G.: OWL web ontology language reference. Technical report,
W3C, February 2004. http://www.w3.org/TR/2004/REC-owl-ref-20040210/

25. Bozsak, E., et al.: KAON—towards a large scale semantic web. In: Bauknecht, K.,
Tjoa, A.M., Quirchmayr, G. (eds.) EC-Web 2002. LNCS, vol. 2455, pp. 304–313.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45705-4 32

26. Eklund, P., Roberts, N., Green, S.: OntoRama: browsing RDF ontologies using a
hyperbolic-style browser. In: Proceedings of CW 2002, p. 0405. IEEE Computer
Society, Washington (2002)

27. Emani, C.K., Cullot, N., Nicolle, C.: Understandable big data: a survey. Comput.
Sci. Rev. 17, 70–81 (2015)

28. Xexeo, G., et al.: Peer-to-peer collaborative editing of ontologies. In: Proceedings
of CSCWD 2004, pp. 186–190 (2004)

29. Gruber, T.R.: A translation approach to portable ontology specifications. Knowl.
Acquis. 5(2), 199–220 (1993)

30. Hassan, T., Cruz, C., Bertaux, A.: Ontology-based approach for unsupervised
and adaptive focused crawling. In: Proceedings of The International Workshop
on Semantic Big Data, p. 2. ACM (2017)

31. Kasutani, E., Yamada, A.: The MPEG-7 color layout descriptor: a compact image
feature description for high-speed image/video segment retrieval. In: Proceedings
2001 International Conference on Image Processing (Cat. No. 01CH37205), vol. 1,
pp. 674–677. IEEE (2001)

32. Knoblock, C.A., Szekely, P.: Exploiting semantics for big data integration. AI Mag.
36(1), 25–38 (2015)

33. Lee, S., Chinthavali, S., Duan, S., Shankar, M.: Utilizing semantic big data for real-
izing a national-scale infrastructure vulnerability analysis system. In: Proceedings
of the International Workshop on Semantic Big Data, p. 3. ACM (2016)

34. Lv, Z., Song, H., Basanta-Val, P., Steed, A., Jo, M.: Next-generation big data
analytics: state of the art, challenges, and future research topics. IEEE Trans. Ind.
Inform. 13(4), 1891–1899 (2017)

https://doi.org/10.1007/978-3-540-79547-6_30
http://www.w3.org/TR/2004/REC-owl-ref-20040210/
https://doi.org/10.1007/3-540-45705-4_32

130 A. M. Rinaldi and C. Russo

35. Mami, M.N., Scerri, S., Auer, S., Vidal, M.-E.: Towards semantification of big data
technology. In: Madria, S., Hara, T. (eds.) DaWaK 2016. LNCS, vol. 9829, pp. 376–
390. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-43946-4 25

36. Manjunath, B.S., Ohm, J.R., Vasudevan, V.V., Yamada, A.: Color and texture
descriptors. IEEE Trans. Circuits Syst. Video Technol. 11(6), 703–715 (2001)

37. Ehrig, M., et al.: SWAP: ontology-based knowledge management with peer-to-peer.
In: Izquierdo, E. (ed.) Proceedings of WIAMIS 2003, pp. 557–562. World Scientific,
London (2003)

38. Mezghani, E., Exposito, E., Drira, K., Da Silveira, M., Pruski, C.: A semantic big
data platform for integrating heterogeneous wearable data in healthcare. J. Med.
Syst. 39(12), 185 (2015)

39. Miller, G.A.: WordNet: a lexical database for English. Commun. ACM 38(11),
39–41 (1995)

40. Miller, J.J.: Graph database applications and concepts with Neo4j. In: Proceedings
of the Southern Association for Information Systems Conference, Atlanta, GA,
USA, vol. 2324, p. 36 (2013)

41. Moscato, V., Picariello, A., Rinaldi, A.M.: A recommendation strategy based on
user behavior in digital ecosystems. In: Proceedings of the International Conference
on Management of Emergent Digital EcoSystems, pp. 25–32. ACM (2010)

42. Nakayama, K., Hara, T., Nishio, S.: An agent system for ontology sharing on
WWW. In: Proceedings of WWW 2005, pp. 964–965. ACM, New York (2005)

43. Neches, R., et al.: Enabling technology for knowledge sharing. AI Mag. 12(3),
36–56 (1991)

44. Palma, R., Haase, P., Gómez-Pérez, A.: Oyster: sharing and re-using ontologies in
a peer-to-peer community. In: Proceedings of WWW 2006, pp. 1009–1010 (2006)

45. Purificato, E., Rinaldi, A.M.: Multimedia and geographic data integration for cul-
tural heritage information retrieval. Multimedia Tools Appl. 77(20), 27447–27469
(2018). https://doi.org/10.1007/s11042-018-5931-7

46. Purificato, E., Rinaldi, A.M.: A multimodal approach for cultural heritage infor-
mation retrieval. In: Gervasi, O., et al. (eds.) ICCSA 2018. LNCS, vol. 10960, pp.
214–230. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95162-1 15

47. Quboa, Q., Mehandjiev, N.: Creating intelligent business systems by utilising big
data and semantics. In: 2017 IEEE 19th Conference on Business Informatics (CBI),
vol. 2, pp. 39–46. IEEE (2017)

48. Rani, P.S., Suresh, R.M., Sethukarasi, R.: Multi-level semantic annotation and
unified data integration using semantic web ontology in big data processing. Cluster
Comput. 22(5), 10401–10413 (2017). https://doi.org/10.1007/s10586-017-1029-7

49. Rinaldi, A.: A peer-to-peer system to share ontology in the semantic web. In:
Proceedings of the 5th International Conference on Soft Computing as Transdis-
ciplinary Science and Technology, CSTST 2008 - Proceedings, pp. 644–649 (2008)

50. Rinaldi, A.M.: A multimedia ontology model based on linguistic properties and
audio-visual features. Inf. Sci. 277, 234–246 (2014)

51. Rinaldi, A.M., Russo, C.: A matching framework for multimedia data integration
using semantics and ontologies. In: 2018 IEEE 12th International Conference on
Semantic Computing (ICSC), pp. 363–368. IEEE (2018)

52. Staab, S., Stuckenschmidt, H.: Semantic Web and Peer-to-Peer - Decentralized
Management and Exchange of Knowledge and Information, 1st edn., p. 365.
Springer, Heidelberg (2006). https://doi.org/10.1007/3-540-28347-1

53. Tungkasthan, A., Intarasema, S., Premchaiswadi, W.: Spatial color indexing using
ACC algorithm. In: 2009 7th International Conference on ICT and Knowledge
Engineering, pp. 113–117. IEEE (2009)

https://doi.org/10.1007/978-3-319-43946-4_25
https://doi.org/10.1007/s11042-018-5931-7
https://doi.org/10.1007/978-3-319-95162-1_15
https://doi.org/10.1007/s10586-017-1029-7
https://doi.org/10.1007/3-540-28347-1

Sharing Knowledge in Digital Ecosystems 131

54. Won, C.S., Park, D.K., Park, S.J.: Efficient use of mpeg-7 edge histogram descrip-
tor. ETRI J. 24(1), 23–30 (2002)

55. Xu, Z., et al.: Knowle: a semantic link network based system for organizing large
scale online news events. Future Gener. Comput. Syst. 43, 40–50 (2015)

56. Zhu, N.Q.: Data Visualization with D3.js Cookbook. Packt Publishing Ltd., Birm-
ingham (2013)

57. Zomaya, A.Y., Sakr, S.: Handbook of Big Data Technologies. Springer, Heidelberg
(2017). https://doi.org/10.1007/978-3-319-49340-4

https://doi.org/10.1007/978-3-319-49340-4

Facilitating and Managing Machine
Learning and Data Analysis Tasks in Big

Data Environments Using Web
and Microservice Technologies

Shadi Shahoud(B), Sonja Gunnarsdottir, Hatem Khalloof,
Clemens Duepmeier, and Veit Hagenmeyer

Institute for Automation and Applied Informatics (IAI),
Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany

{shadi.shahoud,hatem.khalloof,clemens.duepmeier,veit.hagenmeyer}@kit.edu,
sonjabara@gmail.com

Abstract. Driven by the current advances of machine learning in a
wide range of application areas, the need for developing easy to use
frameworks for instrumenting machine learning effectively for non data
analytics experts as well as novices increased dramatically. Furthermore,
building machine learning models in the context of Big Data environ-
ments still represents a great challenge. In the present article, those
challenges are addressed by introducing a new generic framework for effi-
ciently facilitating the training, testing, managing, storing and retrieving
of machine learning models in the context of Big Data. The framework
makes use of a powerful Big Data software stack platform, web technolo-
gies and a microservice architecture for a fully manageable and highly
scalable solution. A highly configurable user interface hiding platform
details from the user is introduced giving the user the ability to easily
train, test and manage machine learning models. Moreover, the frame-
work automatically indexes and characterizes models and allows flexi-
ble exploration of them in the visual interface. The performance and
usability of the new framework is evaluated on state-of-the-arts machine
learning algorithms: it is shown that executing, storing and retrieving
machine learning models via the framework results in a well acceptable
low overhead demonstrating that the framework can provide an efficient
approach for facilitating machine learning in Big Data environments. It
is also evaluated, how configuration options (e.g. caching of RDDs in
Apache Spark) affect runtime performance. Furthermore, the evaluation
provides indicators for when the utilization of distributed computing (i.e.
parallel computation) based on Apache Spark on a cluster outperforms
single computer execution of a machine learning model.

Keywords: Microservice · Web-based applications · Big Data · Data
analytic · Machine Learning

c© Springer-Verlag GmbH Germany, part of Springer Nature 2020
A. Hameurlain et al. (Eds.) TLDKS XLV, LNCS 12390, pp. 132–171, 2020.
https://doi.org/10.1007/978-3-662-62308-4_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-62308-4_6&domain=pdf
https://doi.org/10.1007/978-3-662-62308-4_6

Facilitating and Managing Machine Learning and Data Analysis Tasks 133

1 Introduction

Data mining is the extraction of implicit, unknown and potentially useful infor-
mation from data [35]. To this aim, Machine Learning (ML) provides the tech-
nical basis including algorithms, metrics and technologies. It is the process of
taking an algorithm specification, providing training data and using a training
procedure to learn model parameters that optimally fit the training data. The
success of ML in many application areas such as text classification [4], speech
recognition [5], medical diagnostics [6], energy generation forecasting [7] and load
forecasting [8], to name a few, paved the road for more in-depth research on new
methodologies as well as an even-growing demand for ready-to-go ML software
solutions.

Although ML can be used for solving many complex business problems, there
are also some downsides. Applying ML is usually a time-consuming process for
the user, in which a lot of hyperparameters need to be configured to achieve
the best performance in a so called trial-and-error approach. Such approach is
based on the idea that all possible combinations of learning algorithms with their
relevant parameters will be tried for each task until a good solution is found.
However, this is typically inextricable. It wastes the resources for constructing
multiple models which can take a long time especially in the case of large datasets
to be forecasted.

Consequently and due to the rapid increase of data, more intelligent solutions
utilizing Big Data platforms are becoming one of the hottest topics related to ML
[9], where a distributed execution environment is required for the computation of
larger datasets. Gaining insightful information, finding patterns and extracting
knowledge from big datasets are quite complex tasks. Additionally, the configu-
rations of the underlying Big Data infrastructure introduce more complexity for
configuring and running ML tasks. This process consists of multiple steps and is
commonly called Machine Learning Pipeline (MLP). Figure 1 shows a simplified
MLP encompassing data preprocessing, splitting the data into training and test
data, model training and model testing.

Data

Preprocessing
Training

Data

Test
Data

Model Training
Model
Testing

Fig. 1. Simplified methodology of Machine Learning Pipeline (MLP).

The aforementioned challenges are addressed in developing a new
microservice-based solution by Shahoud et al. in [34]. They developed a new con-
ceptual framework helping users to solve ML problems in Big Data environments

134 S. Shahoud et al.

without caring too much about technical issues of the underlying Big Data and
cluster computing environment as runtime platform. The goal of this framework
is to facilitate training, testing, managing, storing and retrieving ML models in
the context of Big Data by using an easy to use web interface which hides the
complexity of the underlying runtime environment from the user. For efficient
scalable processing, the framework employs a Big Data cluster, a microservices
architecture and modern web technologies like REST, React and Spring Boot.
As a first exemplary application, smart grid applications are addressed in the
evaluation. The proposed framework is able to perform ML tasks on energy time
series datasets using a variety of algorithms on different types and size of such
data.

In context of ML, the users can be categorized into two main categories,
namely expert and non-expert ones as shown in Table 1. On one hand, the expert
users have a deep understanding of ML and good programming skills to imple-
ment ML models using, for example, some developing tools like Jupiter Note-
book1. They have worked with ML libraries before and are capable of program-
ming algorithms themselves. On the other hand, non-expert users are grouped
into two sub-categories. The first one includes the users who are familiar with
statistics and ML but are not able to write the necessary script for training and
evaluating ML models particularly in Big Data environments. This sub-category
of users will be mainly supported by the current framework presented in this
article. The second sub-category of non-expert users is inexperienced and not
knowledgeable about statistics and ML. They need to have some analysis results
using ML, but they only have the data and seems to be difficult for them to write
or build ML models because they also do not have the required ML programming
skills.

Table 1. User categories.

Category Nr. User category Properties

1 Expert ML knowledge (+)
ML Programming skills (+)

2 Non-expert A ML knowledge (+)
ML Programming skills (−)

B ML knowledge (−)
ML Programming skills (−)

For the evaluation of the basic concepts of the framework, a first implemen-
tation is developed which utilizes Apache Spark as runtime environment for ML
on a Big Data cluster and spark.ml as a ML library [18]. The storage layer of
the framework utilizes the Hadoop Distributed File System (HDFS) [10] and a
PostgreSQL database [17] for storing the required input and the resulting output

1 https://jupyter.org/.

https://jupyter.org/

Facilitating and Managing Machine Learning and Data Analysis Tasks 135

data. To facilitate the building, training and running of ML models, an easy-to-
use web User Interface (UI) which assists non-expert users in performing these
tasks is conceptualized and implemented in the current version. The UI utilizes
microservices [11] running on the Big Data cluster as background services to
hide the complexities of the runtime environment from the user and interfacing
to the ML software on the cluster in such a way that it will allow plugging in
different ML runtime environments - beside Spark - in the future.

This article is a major extension of [34], with more details on the conceptual
microservice-based architecture, related work and fundamental terms as well as
technologies. It also provides additional results of a performance evaluation of
the framework which are not presented in [34]. I.e., the effect of caching RDDs
in Apache Spark is investigated by comparing the execution time of training
and testing our benchmark evaluation models, namely Multiple Linear Regres-
sion (MLR), Decision Tree (DT), Random Forest (RF) and Gradient Boosted
Trees (GBTs) models in case of caching and without caching input time series
datasets. Moreover, the execution time and framework overhead are measured
for evaluating the efficiency of the framework, highlighting the advantage of
storing and retrieving ML models. It is also evaluated at what dataset sizes the
calculation of ML models on a computing cluster outperforms calculations on
single machines. To this end, the points are defined, referred as thresholds, at
which a distributed computing framework based on, e.g., Apache Spark becomes
necessary. This is done by comparing the total time required for training and
testing different data-driven forecasting models on a computing cluster (using
Apache Spark) to the time needed on a single computer for performing the same
task.

The remainder of this article is organized as follows. In the next section, state-
of-the-art frameworks related to our framework are presented. In Sect. 3, the fun-
damental terms and technologies used in the presented work are explained. In
Sect. 4, the architecture of the proposed microservice-based framework is intro-
duced. Section 5 presents the experimental evaluation of the framework and dis-
cusses the obtained results. The last section draws some conclusions and outlines
future work.

2 Related Work

ML offers a variety of powerful algorithms and approaches for modeling and
decision making from data, but implementing a ML model by yourself is a com-
plex, long lasting and error prone process [12]. To ease the usage of ML, the ML
community has developed a variety of powerful frameworks and tools to make
its techniques more accessible to end users. Such frameworks and tools can be
categorized into data analytic and ML workflow management frameworks.

Frameworks like Apache Spark which is a data analytic framework contain-
ing a good library for more traditional ML algorithms, or TensorFlow dedicated
to Deep Learning, are low level frameworks that help data scientists in pro-
gramming ML algorithms which could then be executed on a local computer

136 S. Shahoud et al.

or even for better performance on a computing cluster. Such frameworks typi-
cally don’t provide easy-to-use user interfaces for non-experts by themselves but
there are additional (Open Source) tools (e.g. Jupiter Notebook) which provide
lean web user interfaces to such frameworks for hiding the details of the back-
ground cluster runtime environment from the user. Typically, these interfaces are
aimed towards a more experienced data scientist programmer and less towards
non-expert users who just want to apply ML algorithms. Apache PredictionIO
[20] is an open source ML framework for developers. Besides supporting the
deployment of ML algorithms, Apache PredictionIO allows expert users to train
and test ML models and query results via RESTful APIs. It is built on top of
state-of-the-art scalable open source services, e.g. Hadoop, HBase, Elasticsearch
and Apache Spark. The drawback here is the non-existence of UI to facilitate
performing ML tasks for non-expert users.

Contrary to the data analytics tools aimed for the experienced ML program-
mers, there are nice User Interface (UI)-based tools targeted to non-experts.
Johanson et al. in [13] developed OceanTEA, a framework to analyze time
series datasets in climate context. OceanTEA leverages web technology such
as microservices and a nice web UI to interactively visualize and analyze time
series datasets. It is a cloud-based software platform, consisting of a microservice
back-end and a web UI, similar to the framework implemented in this article.
Both components communicate with each other through an API gateway utiliz-
ing REST and each microservice is deployed independently through a Docker.
OceanTEA provides four main UI interfaces for the exploration and analysis
of oceanographic times series data including functionalities of time series data
management, data exploration, spatial analysis and temporal pattern discovery.

Another project focused on the acceleration of research in energy data analy-
sis is WattDepot presented by Brewer and Johnson in [14]. The software platform
is an open source and internet-based one. It supports the collection, storage,
analysis and the visualization of data coming from energy meters. The archi-
tecture encompasses three types of services, namely sensors, servers and clients.
The sensors collect the data from different energy meters and send it to the
services which store the incoming data by utilizing the provided RESTful APIs.
Since the services are not coupled to a specific database, flexible data storage
is provided. For analysis and visualization, the clients request the data from
the services in the format XML, JSON or CSV. The applications of WattDe-
pot include a web application for a dorm energy competition and a power grid
simulation mechanism.

However, both WattDepot and OceanTEA typically are not generic. They
contain dedicated ML based analysis features which are specialized towards the
special application domain and therefore e.g. performing ML tasks such as fore-
casting as needed in the energy application field are not included in them.

Shrestha et al. in [15] developed a user friendly web application to analyze
health and education datasets. This tool also includes ML algorithms for the
forecasting of time series data. The application also has a nice and easy-to-
use user interface that was developed using human-computer interaction design

Facilitating and Managing Machine Learning and Data Analysis Tasks 137

guidelines and principles and targeted at novice and intermediate users. The
technologies used were Java, the Play framework and Bootstrap. But only linear
regression, logistic regression and back propagation were utilized to perform fore-
casting on the input datasets. However, this framework is not able to solve ML
tasks in the context of Big Data and can only be used as standalone application
on a desktop computer.

ML workflow management is a rich area of research that has produced sys-
tems to manage the process of building ML models. The process of building a
satisfactory ML model by a data scientist is characterized as an iterative trial-
and-error procedure, where in each iteration the user reveals essential insights
into the effectiveness of algorithms’ configurations. Since the models may become
numerous, it is important to keep track of the relevant information so a model’s
performance can easily be analyzed. This leads to the problem of model man-
agement which encompasses the storage and retrieval of the models and related
metadata (e.g. hyperparameters, evaluation performance, etc.) in order to anal-
yse them collectively [12].

Multiple recent research projects have been introduced addressing the model
management as a part of the ML workflow. Vartak et al. in [12] introduced
ModelDB, a system for tracking and versioning ML models in form of pipelines.
The authors argued that data scientists are reluctant in using other environments
than their favored ones, especially those with a GUI and therefore they provide
native client libraries for scikit-learn and Spark MLlib which can be used to track
and store models, operators and related metadata. The framework consists of a
front-end and a back-end encompassing a relational database and custom storage
engine. The front-end is implemented as a web UI and supports the review,
inspection and comparison of the tracked and indexed models and pipelines
through a Tableau-based interface. In addition, the information can be explored
and analysed through SQL. The limitations here are that ModelDB is developed
as a monolithic application making it difficult to be maintained and further
developed. Moreover, ModelDB did not provide the ability to handle problems
in the context of Big Data.

To manage ML models and their lifecycle, MLflow is introduced in [19].
Expert users can develop and track ML experiments, share and deploy ML mod-
els. MLflow is developed as an open source software system addressing typical
problems of the ML workflow particularly experimentation, reproducibility and
deployment. It is integrated with Python, Java and R, and provides REST APIs
encompassing three main elements. The first one, MLflow Tracking, offers APIs
for logging experiments and supports querying the results through APIs as well
as visualizing them with a web UI. The second component, MLflow Projects,
can be used to create reusable software environments for reproducibility and is
defined through YAML files. The last item, MLflow Models, provides the func-
tionality to package ML models in a generic format and deploy them. Those
models incorporate similarly to MLflow Projects a YAML file which contains
the metadata of the model.

138 S. Shahoud et al.

To address the issue of model deployment, a variety of frameworks and tools
are developed. Tensorflow serving [21] provides a flexible and powerful system
for serving tensorflow models. It allows expert users to achieve an efficient inte-
gration of tensorflow models in the production environments. Kubeflow [22] is
a cloud platform for ML built on top of Google’s internal ML pipelines. It pro-
vides expert users with a lot of functionalities including notebooks for training
and serving tensorflow models. H2O Flow [23] is another efficient framework
for creating and managing ML and Deep Learning workflows including training
and testing models. This framework supports Python, R and scala on top of
Hadoop/Yarn and Apache Spark.

Table 2 introduces a brief comparison between the aforementioned ML frame-
works based on some criteria to precisely highlight the originality of the solution
proposed in the present article. In this table, data analytic frameworks are ref-
ereed as 1 and ML workflow management frameworks are referred as 2. (2.A)
refers to the first sub-category of non-expert users presented in Table 1.

Table 2. Data analytic and ML workflow management frameworks.

Framework Framework
category

Web UI Microservice
architecture

Support
Big Data

Support
non-expert

Generic

Apache Spark 1 – – + – +

Tensorflow 1 – – + – +

Apache PredictionIO 1 – + + – +

Jupiter Notebook 1 – + + – +

OceanTea 1 + + – +(2.A) –

WattDepot 1 + + – +(2.A) –

ModelDB 2 + – – +(2.A) +

MLflow 2 + – – – +

Tensorflow serving 2 + + – – +

Kubeflow 2 – + + – +

H2Oflow 2 – + + – +

Current framework 1 + 2 + + + +(2.A) +

The framework implemented in this article uses microservice and Apache
Spark, including MLlib, in addition to HDFS to provide scalability and simplic-
ity. What differentiates the framework from the aforementioned projects, is the
additional abstraction provided by the UI to support non-expert users (cate-
gory A) in applying ML. Moreover, most of the aforementioned frameworks are
intended and developed to mainly support expert users and do not provide an
easy to use integrated framework for non-expert users. But the above tools or
comparable other tools could be used as building blocks to form a more complete
integrated environment such as AutoML2 which can be seen as a competing

2 https://www.automl.org/.

https://www.automl.org/

Facilitating and Managing Machine Learning and Data Analysis Tasks 139

approach for automating the process of applying ML to real world problems.
The aim of the framework presented in this article can be seen as a first step in
the direction of such a more complete environment for even non-experts, desig-
nated in a way that will allow plugging in several Machine Learning and Deep
Learning runtime environments.

3 Related Fundamental Terms and Technologies

In this section, we introduce the background knowledge necessary to understand
the main contributions of this article.

3.1 Machine Learning

With the following definition, Alpaydin et al. in [1] introduced an essential
description of machine learning: “Optimizing a performance criterion using
example data and past experience”. Machine learning, as its name implies, means
the ability to make the computers capable to learn from data and use the result-
ing knowledge to perform further tasks without any guidance from the human
side. Precisely, machine learning is a scientific discipline aiming at designing
and developing specific algorithms and concepts in order to allow computers to
evolve behaviors and react to different actions based on empirical data such as
sensor data. Indeed, it can be seen as a core in the field of artificial intelligence, in
which the computers can learn from existing data to predict the future behavior,
results and trends.

Applying ML to extract useful knowledge from raw data has become increas-
ingly popular in a variety of areas. One such field is the health sector where it
helps with medical diagnosis [33,42]. Virtual voice assistance, like siri and alexa,
is another example, where ML is used to take voice commands from people like
setting the alarm clock or finding specific information on the internet. To ensure
better sustainability and economic operation of electricity grids through intel-
ligent decision making in unit commitment of decentralized energy resources
and flexible loads at grid level, an accurate prediction of future energy demand
and renewable energy generation is required. To this end, ML also takes the
advantage for energy load and generation forecasting [30,31,36–40].

Machine Learning Scenarios. Four different scenarios can be distinguished in
the field of machine learning, namely supervised, unsupervised, semi-supervised
and reinforcement machine learning scenarios. The main distinction between the
mentioned scenarios depends on the information they handle. As a result, the
behavior of learning algorithms will differ accordingly.

Supervised Machine Learning. It specifies the scenario, in which the examples
in the training set are labeled with a significant information called labels. Such
labels are missed in the examples in the testing set and need to be predicted [45].
More abstractly, all examples in the training set are labeled explicitly. Each of

140 S. Shahoud et al.

them consists of attributes or predictors on one side and the corresponding out-
put on the other side. Both predictors and their corresponding outputs could be
nominal or numeric depending on the source of data. In the supervised learning
settings, we can think of a teacher who provides an extra information i.e. labels
to the examples in the training set to predict such information for the unlabeled
examples in the testing set.

We distinguish two different problems in the supervised machine learning
scenario, namely classification and regression problems. In the current article,
regression problems for time series forecasting are implemented and evaluated.
Some important examples concerning the supervised machine learning scenario
are:

– Linear regression for regression problems.
– Decision Trees (DT), Random Forest (RF) and Gradient Boosted Trees

(GBTs) for classification and regression problems.
– Support vector machines for classification and regression problems.

Unsupervised Machine Learning. In contrast to the supervised machine learning
scenario, in which the examples are explicitly labeled, the examples here are
unlabeled. There is no information in the training set except the training exam-
ples containing only the features without the corresponding output [46]. The
unsupervised machine learning scenario tries to discover the similar characteris-
tics between the examples and group them into meaningful clusters. Precisely, it
aims at discovering and presenting a significant structure in data. Some impor-
tant examples concerning unsupervised machine learning scenario are:

– k-means algorithm as a clustering algorithm.
– Apriori algorithm as an association rule learning algorithm. This algorithm

can be seen as the base of recommendation systems which try to discover the
behavior of customers and present the appropriate product to them conse-
quently.

Semi-supervised Machine Learning. It can be seen as a middle point between
supervised and unsupervised machine learning scenarios [47]. In this scenario, a
part of data is labeled with some supervision information i.e. labels. However,
semi-supervised machine learning scenario is cheaper than the supervised one
based on the fact that the labeled data is more expensive than unlabeled one. It
is hard to get a labeled data because the human annotation of data is expensive
and needs the utilization of experts in order to label this data. Hence, semi-
supervised machine learning has gained a great advantage in different application
fields.

Facilitating and Managing Machine Learning and Data Analysis Tasks 141

Based on the aforementioned definition of semi-supervised machine learning
scenario, the usage of unlabeled data needs some assumptions on the underling
distribution of data. The main assumptions of semi-supervised machine learning
scenario are:

– Smoothness assumption: in this assumption, the points that are close to each
other belong to the same class.

– Cluster assumption: in this assumption, the points are clustered based on the
similar characteristics between them. As a result, the points that are in the
same cluster belong to the same class.

– Manifold assumption: it is commonly used with high dimensional training
data, in which manifolds are learned based on labeled and unlabeled data to
get rid of curse of dimensionality and then the learning process is done using
distance and density within each manifold.

Reinforcement Machine Learning. In this learning scenario, the model is built
based on the interaction with the environment [48]. Reinforcement machine
learning scenario aims at maximizing the rewards. It differs from the super-
vised machine learning scenario in that the input/output pairs are not presented
explicitly. On-line performance evaluation is involved in the learning process. As
a result, the model will react to the evaluation feedbacks aiming at increas-
ing the rewards and achieving the best performance. Reinforcement machine
learning has become more important in the recent years, as it produces the best
solutions in a lot world wide applications, for instance helicopter flying, resource-
constrained scheduling, robot control systems and playing backgammon.

3.2 Big Data Technologies

With the increasing amount of available data, various libraries and systems have
been introduced to enable large-scale distributed/parallel processing. One of the
best known open-source frameworks is Apache Hadoop4 which supports Big
Data processing and storage in a distributed environment. It encompasses var-
ious components including a distributed file system, the data processing tool
MapReduce and a cluster resource manager. The Hadoop Distributed File Sys-
tem (HDFS) enables the reliable storage of extensive files in a cluster [25]. It
provides fault tolerance by splitting the files into blocks and replicating these
blocks multiple times over the cluster.

Figure 2 demonstrates the architecture of HDFS which consists of a Name
Node which coordinates file system operations (e.g. opening and closing files,
etc.) and multiple Data Nodes which store the file blocks and serve the read
and write requests [24]. Hadoop MapReduce [27] is a programming model allow-
ing developers to write programs to process data in parallel. Its motivation is
based on the complexity related to computation parallelization, data distribution
and fault tolerance. The main functions of MapReduce are Map, responsible for
transforming data into key/value pairs and Reduce, which accepts the output
from the Map task as input and merges matching pairs.

142 S. Shahoud et al.

Name node Metadata (Name, replica, …):
/home/foo/data, 3, …

Client

Client

Data nodes

BlocksReplication

Rack 1 Rack 2
Write

Data nodes

Metadata ops

Read

Fig. 2. HDFS architecture [24].

Yet Another Resource Negotiator (YARN) [26] is a technology that decou-
ples the application and the required computational resources (e.g. CPUs, RAM,
etc.) for processing from the resource management infrastructure of the cluster.
Figure 3 illustrates YARN’s architecture which is mainly composed of a Resource
Manager (RM), multiple Node Managers (NM) and an Application Master (AM)
for each program. When an application is submitted to the RM, the RM allo-
cates a container accommodating the required resources for the application and
contacts the related NM to launch this container. The container then executes
the Application Master (AM) which coordinates the application scheduling and
task execution and sends resource requests to the RM.

Node Manager

Scheduler

AMService

ResourceManager

Node ManagerNode Manager

MR
AMContainer

ContainerMPI
AM

Client

Client
Client - - RM

RM - - AM

Container
Container

Fig. 3. YARN’s architecture [26].

Facilitating and Managing Machine Learning and Data Analysis Tasks 143

3.3 Microservices

Until recently, the monolithic architecture was a classic approach to implement
web applications where the database, the server and the client are maintained in
a single codebase. However, with the rising number of application deployments
to the cloud, more and more companies like Amazon, Netflix and Zalando have
shifted from a monolithic architecture to a newer more scalable architecture
called Microservices. For simplicity’s sake, the term service in this article refers
to microservice.

Characteristics. As the name suggests, the microservices architectural style
revolves around implementing an application consisting of multiple small services
or entities. These services are built around the application’s business functional-
ities, follow the Single Responsibility Principle (SRP), run in their own process
and are independently deployable [32]. By following the SRP which is similar to
the UNIX philosophy emphasizing programs to do one thing and doing it well,
services become highly cohesive and decoupled, leading to good code maintain-
ability. This is unlike monolithic applications which lack hard boundaries and
tend to become, with added functionality, complex and tightly coupled which, in
effect, leads to difficulties when changes are made since they often span multiple
components.

Another distinction is that the microservices style does not require the rede-
ployment of the whole application when new features are implemented or bugs
are fixed. Instead, only the corresponding and affected service needs to be
adapted and redeployed. Furthermore, microservices of a single application are
not constrained to be implemented with the same set of technologies and frame-
works. This allows teams working on different microservices to use independent
technology stacks, as well as data storage technologies, suitable to the data they
process.

Communication Types. In a microservices architecture, services are isolated
from each other and distributed over a network, making communication more
complicated than in monolithic applications. It is often said that microservices
should have smart endpoints and dumb pipes, meaning that the logic should
be inside of the services and only lightweight mechanisms and standards should
be used for their communication [28]. Communication styles are usually divided
into request/response and event-based techniques [29]:

– Request/response: this method describes how two services can directly com-
municate with each other, where one service initiates a request to another
and in return expects a response.

– Event-based: this type of communication is driven by events, where one ser-
vice or producer emits an event and all services that have subscribed to the
event type will get an update.

144 S. Shahoud et al.

REST. A common way to implement the request/response communication style
is by using REST (REpresentational State Transfer), a protocol-agnostic archi-
tectural style that commonly uses HTTP as a communication protocol. All
microservices implemented in this article use REST protocol to communicate
between each other. This protocol enforce each service to define some RESTful
APIs for transferring the data. The term REST was first coined by Fielding et al.
in [2] and is made up of the following 6 constraints.

1. Client-server: to improve the portability of the client i.e. user interface and
scalability of the server entities, the client and server should be separated.
This constraint enables the independent involvement of both.

2. Stateless: this constraint affects the communication between the client and
server and declares that it should be stateless, meaning that the client requests
to the server must contain all necessary information.

3. Cache: improving the network efficiency by requiring data within a response
to be labeled as cacheable or non-cacheable.

4. Uniform interface: this constraint emphasizes the importance of a uniform
interface between components. To this end, the implementations are decou-
pled from the services they provide and the information is transferred in a
standardized form rather than one which is specific to an application’s needs.

5. Layered system: to simplify the complexity of an overall system, hierarchical
layers should be implemented which constrict the components’ behavior.

6. Code-on-demand: this is an optional constraint that allows client functionality
to be extended by downloading and executing code in form of applets or
scripts.

4 Concept and Architecture

In this section, the basic concepts and architecture of the proposed framework
are presented. First, the general framework architecture is introduced. Then,
details of the different architectural layers are presented.

4.1 Framework Architecture

Figure 4 describes the conceptual architecture of the presented framework. As
seen in this figure, the architecture is layered into three main layers, namely
UI layer, service layer and persistence and processing layer. The UI is split into
separate sub-parts (e.g. separate web applications) providing dedicated function-
alities for data and model management, model training and cluster management
which are wrapped into one logical web application forming the UI of the appli-
cation. The service layer is partitioned into two microservices, where each one
is a small and self contained application that can be deployed independently
e.g. on the runtime cluster with a single responsibility. One service focuses on
data and model management, where models can be seen as special data objects.

Facilitating and Managing Machine Learning and Data Analysis Tasks 145

Jobs
Execution

UI

Data Management
Service

Job Management
Service

UI Layer

Service
Layer

Persistence
and

Processing
Layer

Model
Management

UI

Data
Management

UI

Cluster
Configuration

UI

Big Data Environment
Machine Learning Engine Deep Learning Engine

Spark/MLlib Tensorflow

DB

Fig. 4. Basic architecture of the proposed microservice-based framework.

The other service focuses on the management of running ML jobs e.g. for train-
ing and testing. The services provide RESTful APIs which are used by the web
applications in the UI layer to interact with the runtime environment.

The persistence and processing layer provides the basic model and data stor-
age capabilities according to the underlying runtime computer infrastructure and
provides generic interfaces for executing and managing ML jobs on this infras-
tructure independent of the used low level ML framework. While the current
implementation only supports Apache Spark as ML framework, the persistence
and processing layer is designed in a way that supports plugging in additional
ML frameworks in the future. In the following, the layers will be described in
more details.

User Interface (UI) Layer. This layer consists of separate web applica-
tions providing dedicated functionalities which interact with the service layer
via RESTful APIs. The separate web applications are wrapped into a container
application which provides navigation between the views to form the complete
UI. To make the user experience of the UI as pleasant as possible, the famous
10 Usability Heuristics for UI Design by Nielsen [3] are applied while conceptu-
alizing and implementing the UI. Multiple technologies including HTML5, CSS
and React3 are utilized to implement the UI. The JavaScript (JS) library from
Facebook, React, is chosen because it simplifies the development of complex user
interfaces and is very permanent. Its good performance can be attributed to its
use of a virtual Document Object Model (DOM) which is a copy of the HTML

3 https://reactjs.org/.

https://reactjs.org/

146 S. Shahoud et al.

DOM and enables efficient rendering updates of the otherwise slow HTML DOM.
React is based on declarative programming and the concept of encapsulating
and reusing of components. Such components are implemented through a spe-
cific syntax called JavaScript Syntax Extension (JSX) which is a combination of
HTML and JS code.

To simplify the configuration of the build tools and the setup of the React
application, Node Package Manager (NPM)4 is used. For better data manage-
ment and to organize the side effects related to asynchronous RESTful API calls,
Redux5 and redux-saga6 are used. To distinguish different functions and to pro-
vide good navigability on the website, React Router is utilized. For implement-
ing a responsive and nice web design, the popular framework React Bootstrap7

which provides easy to use pre-styled components is utilized.
A recent trend in web development has been to develop web UIs as Single

Page Applications (SPAs) [49]. Essentially, SPAs are front-end applications that
consist of single HTML document that can be dynamically updated through
JavaScript (JS). This makes it possible to refresh only particular regions of the
screen instead of reloading the whole page when changes take place. This is espe-
cially convenient in interactive web pages, since these applications can respond
much faster to user input and therefore provide better user experience. Addition-
ally, the number of requests between the SPAs and services is often dramatically
decreased, since much of the logic can be implemented in the front-end. For
these reasons, the web UI will be implemented as an SPA communicating with
the service tier through HTTP requests using the RESTful APIs. In the cur-
rent version of the concept, the UI contains separate web applications for “data
management”, “model management”, “execution of jobs” (e.g. for training and
testing) and “cluster management”. Figures 5 and 6 show some web page views
related to these applications.

Data Management UI. It allows the uploading, management and configuration
of data sources which provide data to ML jobs. Moreover, an interactive visual-
ization besides statistical analysis can be performed on the datasets to achieve a
better understanding of their characteristics and properties. For example and in
the case of time series datasets, the user has the ability to zoom in/out and select
a part of the chart for more detailed view. This allows the user to discover trends
and outliers in the selected part of the time series dataset. Additionally, when the
user hovers over a specific point in the chart, the related information will appear
in a small box, for example the value of the power generation at this point. The
interactive visualization of statistic and performance data in our framework is
implemented using the HighChart Java-script library [50]. Moreover, dedicated
features could be selected in the chosen dataset before performing ML tasks.

4 https://www.npmjs.com/.
5 https://redux.js.org/.
6 https://redux-saga.js.org/.
7 https://react-bootstrap.github.io/.

https://www.npmjs.com/
https://redux.js.org/
https://redux-saga.js.org/
https://react-bootstrap.github.io/

Facilitating and Managing Machine Learning and Data Analysis Tasks 147

Model Management UI. Analog to data management, the model management UI
allows the management of ML models which are (eventually) already pre-trained
in the framework. Figure 6a shows a view of this UI which lists the available
models. Each model has some associated metadata (e.g. id, creation date, model
name, a textual description of what the mode does, etc.) which are shown in
the tabular view. Each row (e.g. a pre-trained model) represents a ML pipeline
corresponding to a specific ML task. For each task, the related general informa-
tion resulting from performing this task such as ML algorithm, dataset used for
training and testing, hyperparameters and performance results, to name a few,
are shown if the user hovers over the model entry in the model list. The user can
compare models and select the best one for executing it on a new dataset. More-
over, the user can perform actions on a selected model, namely delete a pipeline,
extract the best hyperparameters, extract cluster configurations or extract the
whole parameters and use them to build a new ML model.

Job Execution UI. It provides functionalities for executing a job for training
and testing a ML model. To ease the usage for non-experts (non-programmers),
the UI provides a wizard interface which guides the user through the process
of choosing a dataset, a type of analysis to be performed on the dataset, an
adequate ML model (e.g. model, either pre-trained or untrained) for performing
the wanted type of analysis and afterwards for tuning the execution parameters
of the model based on an already existing parameter set.

One of the main advantages of the proposed framework is to be very generic.
I.e. in the step of selecting a given type of analysis to be performed on a dataset,
the user should be able to select many different types of ML based analysis. But
what kind of ML analysis methods and algorithms will be available is directly
dependent on what kind of low level ML frameworks will be integrated on the
persistence and processing layer.

Because in the present work only Apache Spark is integrated as low level
ML framework and Apache Sparks standard ML library mainly provides algo-
rithms for classification, clustering and regression, our framework currently only
provides these three categories for choosing an analysis category as shown in
Fig. 5a. After choosing one of these categories, the user will be navigated to
the datasets tab view in order to select an already uploaded dataset or data
source, or directly upload one to perform the ML task. Thereafter, the wizard
navigates to the next wizard screen shown in Fig. 5b. Figure 5b shows that a
ML framework can provide a variety of ML algorithms for performing a certain
analysis category to cover a wide range of ML application scenarios. I.e., it can
be seen in Fig. 5b that Apache Spark provides several algorithms for “regression
analysis”, e.g. “Linear regression”, “Decision tree regression” and so on. If at a
later time more than one ML framework will be incorporated into the present
framework, different algorithms implementing an another analysis category can
even be provided.

It can also be seen from Fig. 5b, that the user has the possibility to use an
already existing pre-trained model or alternatively create and train a new ML
model. Additionally, the user can adapt a given collection of algorithm hyper-

148 S. Shahoud et al.

(a) Job Execution UI - Choosing ML Category

(b) Job Execution UI - Building ML Model

Fig. 5. User Interface (UI)

Facilitating and Managing Machine Learning and Data Analysis Tasks 149

(a) Model Management UI

(b) Job Execution UI - Summary

Fig. 6. User Interface (UI)

150 S. Shahoud et al.

parameters for tuning the model performance. The storage and re-usability of
pre-trained ML models on new datasets is another advantage of the presented
framework. This eases usage and reduces the time the user needs to train and
build a new model for each new dataset. After appropriate options are chosen
in Fig. 5b, the ML task including learning and testing can be executed on the
runtime platform. The wizard will then show a screen which allows to moni-
tor the execution state. When the execution is done, the model and the other
results of execution will be saved in the persistence and processing layer and a
comprehensive visualization of results as well as an execution summary will be
be shown as depicted in Fig. 6b.

Cluster Configuration UI. As mentioned in the introduction, a Big Data infras-
tructure as runtime environment for ML tasks can introduce great challenges for
configuring and running the framework on the cluster with best performance for
a given task. To tackle this challenge, the cluster configuration UI implemented
in this framework gives the possibility to tune the low level execution framework
configurations in relation to the usage of CPU cores, RAM usage and executors
instances, to name a few.

Service Layer. This layer abstracts the interface of the UI applications to
the ML runtime environment (e.g. computing cluster or single computer, etc.)
by providing generic interfaces to the runtime environment via currently two
microservices, namely the Job Management Service (J.M.-Service) and the Data
Management Service (D.M.-Service) as shown in Fig. 4. Each microservice has
dedicated responsibilities and contains a layered architecture based on the Sep-
aration of Concerns design principle (SoC). Keeping the code in distinct layers
enforces a logical encapsulation of functionalities and dependencies leading to
better code maintainability and loose coupling. Figure 7 depicts this architecture,
where only upper layers are allowed to access lower layers.

The uppermost layer is the presentation layer which handles HTTP requests
and is the entry point of the microservices. It contains controllers which map
HTTP URLs and provide Create, Read, Update and Delete (CRUD) function-
ality to the outside through RESTful APIs. For simple read requests, the layer
accesses the persistence layer to acquire the relevant data from the database.
However, for complex logic, it communicates with the service layer which con-
tains the business logic. This has the advantage that common operations required
by multiple controllers can be abstracted to the service layer. The persistence
(i.e. data access) layer consists of repositories and entities. The repositories inter-
act with the underlying data source i.e. database and manage the entities which
encapsulate the domain objects.

The following two sections provide a comprehensive description of both
microservices, which are called as services for a simplicity’s sake. The established
RESTful pattern is chosen as the communication tool instead of the event-driven
pattern, because the microservices are just two in total and the RESTful com-
munication is easier to implement. In addition, the JSON format is selected for

Facilitating and Managing Machine Learning and Data Analysis Tasks 151

Microservices

P
re

se
n

ta
ti

o
n

L
ay

er
S

er
vi

ce

L
ay

er
P

er
si

st
en

ce
L

ay
er

Controllers

Database

Services

Repositories Entities

Fig. 7. Layered architecture of microservices.

requesting and sending data via the RESTful APIs because of its popularity,
ease of use and interpretability.

J.M.-Service. This service is responsible for the creation and submission of jobs
to be executed by an available low level ML execution framework (e.g. Apache
Spark) on the available runtime environment (e.g. a cluster or single computer).
Therefore, it interfaces with the persistence and processing layer below which
encapsulates the specification of a certain runtime environment.

The J.M.-Service not only allows to execute ML tasks but also tracks and
monitors the status of the running tasks. Moreover, it reads the execution results
stored by the executing framework somewhere in the runtime environment (e.g.
in an execution directory of the task on e.g. a file system) and sends them to
the D.M.-Service for storage in a database, so that the execution statistics and
results can be later visualized in the UI. The J.M.-Service provides an abstract
job execution and monitoring interface to the web application UI through its
RESTful APIs. This completely decouples the UI from the specification of the
runtime environment. The main functionalities of J.M.-Service REST-APIs are
described by the following URL patters:

152 S. Shahoud et al.

1. /jobs: a GET request on this URL is used a list of spark jobs.
2. /jobs: a POST request on this URL is used to create of a spark job and its

corresponding processing directory in HDFS.
3. /jobs/id: a GET request on this URL is used to retrieve a spark job for a

specific id.
4. /jobs/id: a DELETE request on this URL is used to delete a spark job

for a specific id with its corresponding processing directory in HDFS.
5. /jobConfigurations: a GET request on this URL is used to show a list of

spark configurations.
6. /jobConfigurations: a POST request on this URL is used to create spark

configuration.
7. /jobConfigurations/id: a DELETE request on this URL is used to delete

a specific spark configurations for specific id.
8. /jobSetup: a POST request on this URL is used to copy the packaged jars

and pre-trained saved machine learning models into HDFS.
9. /submitJob/id: a POST request on this URL is used to submit a spark

job.

D.M.-Service. This service is responsible for the storage and preparation of
required inputs to execute a job on the runtime environment, namely storing
and providing datasets, models containing (pre-trained) algorithms and hyper-
parameters, to name a few. The D.M.-Service uses its own database to store the
required data as well as all results produced from performing ML tasks. On the
one hand, the UI applications interact with this service to upload, manage and
retrieve data, model information as well as configurations. Also the J.M.-Service
interacts with the D.M.-Service to retrieve information about datasets, models
and configurations, copy models from the database to the execution environ-
ment of a task and to push result information back to the D.M.-Service. The
D.M-Service then stores all information about the execution of a task and the
results in its own database, so that these information can be later used for the
visualization of the results and the overall performance of the ML jobs as already
shown in Fig. 6a.

The main functionalities of the D.M.-Service REST-APIs are described in
the following URL patters:

1. /algorithms: a GET request on this URL is used to retrieve a list of the
available machine learning algorithms.

2. /algorithms/id: a GET request on this URL is used to retrieve a specific
machine learning algorithm.

3. /categories: a GET request on this URL is used to retrieve a list of the
available machine learning categories, for example classification, regression,
clustering, to name a few.

4. /dataSets: a GET request on this URL is used to show available datasets
5. /dataSets: a POST request on this URL is used to create meta data of a

dataset.
6. /dataSets/id: a GET request on this URL is used to retrieve the metadata

of a specific dataset.

Facilitating and Managing Machine Learning and Data Analysis Tasks 153

7. /dataSets/id/data: a POST request on this URL is used to upload a local
data file into HDFS and upload the dataset’s reference.

8. /dataSets/id/descriptiveStatistics: a POST request on this URL is
used to prepare model for calculating the descriptive statistics for a spe-
cific dataset.

9. /mlModels: a GET request on this URL is used to retrieve a list of pre-
trained machine learning models.

10. /mlModels/id: a GET request on this URL is used to retrieve metadata
of a specific machine learning model.

11. /mlModels/id: a DELETE request on this URL is used to delete a specific
pre-trained machine learning model.

12. /mlModelPredictions/id: a GET request on this URL is used to retrieve
the prediction file for a specific machine learning model.

13. /mlPipelines: a GET request on this URL is used to retrieve a list of
machine learning execution pipelines.

14. /mlPipelines/id: a GET request on this URL is used to get the meta data
for a specific machine learning pipeline.

Persistence and Processing Layer: It hides the low level details of the run-
time environment from the implementation of the services. The services use
generic functions implemented in this layer to interface with the job runtime
directory in HDFS and the database infrastructure installed on the runtime as
well as performing dedicated tasks on the runtime environment for instrument-
ing installed ML frameworks to e.g. perform job execution. For each ML runtime
environment, the persistence and processing layer will contain an adapter which
maps model and execution details to the specific framework (see Sect. 5 for fur-
ther discussion on issues related to the prototype and interfacing to the Apache
Spark runtime environment).

Typically, all information related to the execution of a certain job is collected
in a job runtime directory on a file system of the runtime platform. Thus, the
persistence and processing layer contains functionalities for creating such direc-
tories depending on the execution framework. More generally, all data items
managed by the D.M.-Service are stored in a database infrastructure which is
defined by an abstract object-like interface. This interface can be implemented
in the runtime infrastructure by using different database technologies as shown
in Sect. 5.

5 Evaluation

So far the concept and architecture of the proposed microservice-based frame-
work is discussed. In this section, two aspects of the experimental performance
evaluation will be detailed. On the one hand, the effect of caching RDDs in
Apache Spark is analyzed by comparing the execution time of training and test-
ing the benchmark evaluation models in case of memory caching and without

154 S. Shahoud et al.

memory caching of the input time series datasets. On the other hand, the execu-
tion time and framework overhead for evaluating the efficiency of the framework
are measured, highlighting the advantage of storing and retrieving ML models
and discovering the threshold, at which the use of the proposed framework is
recommended for better performing machine learning tasks in Big Data envi-
ronments. Before presenting the obtained results, first the execution workflow
is explained. Then the experimental setup and the related configurations are
presented.

5.1 Execution Workflow

In the present work, the well-known Apache Spark framework installed on a
Big Data computing cluster using an Apache Hadoop software stack as runtime
engine for executing ML jobs is used. ML execution environments typically use
a job runtime directory in a file system for storing all information needed for
job execution (e.g. for storing models to executed, algorithm configurations and
results). On a Big Data cluster based on the Apache Hadoop, HDFS is typ-
ically used as distributed file system and the runtime directory for a job can
be accessed by all computing nodes of the cluster using the HDFS interfaces.
Therefore, for implementing the persistence and processing layer on the clus-
ter, HDFS and a postqreSQL database are utilized to store the required input
and the output produced from performing ML tasks. The postqreSQL database
system is used as an object-relational database to store all information man-
aged by the D.M.-Service, e.g. ML categories, ML algorithms, hyperparameters,
pre-trained models, jar files, references of datasets stored in HDFS, pre-trained
model pipelines and untrained model pipelines.

HDFS is also utilized to store datasets and the output of successful jobs
executed in Apache Spark before being read by the J.M.-Service. The dataset
storage on HDFS allows it to have “Big Data” as input, i.e. datasets which are
extremely large. To achieve the goal of storing pre-trained ML models in the
form of binary objects, the Large Object feature of PostgreSQL is used. This
feature uses the Large Object Manager Interface which stores only a reference
named oid in the database table pointing to the actual object stored in the
system table pg largeobject. This method breaks the binary data into chunks
and allows storing objects of up to 2 GB within the database. However, another
format such as Predictive Model Markup Language (PMML) will be considered
in the future.

Figure 8 shows the the basic methodological workflow for task execution as
it is implemented in the prototype for submitting jobs to the Apache Spark
runtime. For each new job, the persistence and processing layer generates on
behalf of the J.M-Service a Universally Unique Identifier (UUID) as jobID which
will be sent back to the D.M.-Service. The usage of a UUID guaranties the
uniqueness of the id, making it suitable to use in a distributed environment,
such as a Big Data environment.

Corresponding to each jobID, a temporary job runtime directory with the
UUID as a name is created in HDFS by the J.M.-Service, which uses the File

Facilitating and Managing Machine Learning and Data Analysis Tasks 155

1. Start new job

2. Create job directory

4. Input 5. Input

8. Job submit

9. Result

Job
Management

Service

Data
Management

Service

MLlib

3.
 J

ob
ID

11.Result12. Result
10

. R
es

ul
t

Data
Command
Result

6.
 A

V
R

O
7.

 JA
R

Fig. 8. Execution workflow.

System (FS) shell instruction of HDFS8 to achieve that. Then, the J.M-Service
then calls the D.M.-Service to fetch the necessary artifacts (e.g. model, runtime
configuration) from the database and pass it to the J.M-Service as an Apache
Spark AVRO file. After that, the J.M-Service places the AVRO file in the per-
sistence and processing layer in the job runtime directory.

The decision for utilizing AVRO was made, because AVRO uses a schema
which decouples the solution from the implementation including error preven-
tion. An AVRO file contains the received jobID and the chosen cluster configu-
rations. However, if no cluster configurations are chosen in the UI, the default
one will be fetched from the database and used in this task. Besides cluster con-
figurations, algorithm hyperparameters and metadata related to the execution
of algorithms, namely the name of application main class are included in the
AVRO file for execution. The name of the application main class is required by
Apache Spark to find the main code entry point for executing the task. While all
datasets are stored in the HDFS, path references pointing to the files are stored
in the database of the D.M.-Service. Once the user chooses a dataset, the path
reference of the dataset in HDFS is fetched from the database and included in
the AVRO file. After that, the D.M.-Service fetches the corresponding jar file
from the database and sends it to the J.M.-Service. At this point, all required
information to perform the task is passed to the J.M.-Service which creates a
spark-submit job and sends it for execution to Apache Spark.

As a result of executing e.g. a task performing forecasting on a time series
dataset, the forecasting results, forecasting performance and the forecasting
model in the form of a binary object are located in the temporary job runtime
directory of the task. After executing the job, all of these results are stored in
the temporary job runtime directory and read afterwards by the J.M.-Service to
be passed to the D.M.-Service. The D.M.-Service receives the results and stores
8 https://hadoop.apache.org/docs/stable/.

https://hadoop.apache.org/docs/stable/

156 S. Shahoud et al.

them in the form of a pipeline in the database to be retrieved later. Simultane-
ously, the D.M.-Service sends the results to the UI to be rendered and visualized
for the user.

5.2 Experimental Setup and Configurations

The aforementioned microservice architecture is implemented using Java and
tested while running on a local workstation which is a MacBook with a 2.7 GHz
Intel Core i5 processor and 8 GB of RAM. Both microservices are implemented
as standalone Spring Boot applications which are configured to run on different
HTTP ports, namely 8090 and 8080. To run our web application, the embedded
Apache Tomcat server from Spring Boot is utilized.

For our evaluation and to investigate the effectiveness of our framework,
local execution context and cluster execution context have been configured. In
the local context, Spark (v. 2.3.0) on top of Hadoop (v. 2.7.6) as state-of-the-arts
technology to perform machine learning tasks is installed on the aforementioned
workstation, where the executors and drivers run in a single JVM. In the cluster
context, we utilize a powerful Big Data stack, in which Apache Spark is fit on
top of Yet Another Resource Negotiator (YARN) as a resource manager and
Hadoop Distributed File System (HDFS) as a primary data storage. The Big
Data stack is deployed on a cluster of 3 logical machine nodes. Each of them has
32 cores and 80.52 GB RAM. The nodes are connected to each other by a LAN
with 10 GBit/s bandwidth.

Table 3. Default and custom configurations used in cluster context.

Default Custom

Drivers.cores = 1 Drivers.cores = 1

Driver.memory = 1 GB Driver.memory = 1GB

Executors.cores = 2 Executors.cores = 2

Executors.memory = 1 GB Executors.memory = 70 GB

Executors.instances = 1 Executors.instances = 3

In the cluster context, we distinguish two configuration setups, namely
default and custom as presented in Table 3. Random Forest (RF), Multiple Lin-
ear Regression(MLR), Gradient Boosted Trees (GBTs) and Decision Tree (DT)
are used as base classifiers to build the data-driven forecasting models. MLlib,
which is a Spark’s scalable ML library is employed to build the models. To train
and test the forecasting models, a simulated energy multivariate time series
dataset is used. MLR is a widely used supervised algorithm which assumes a
linear relationship between one or multiple independent input variables and a
dependent output variable [44]. Table 4 presents the default values of the MLR
hyperparameters.

Facilitating and Managing Machine Learning and Data Analysis Tasks 157

Table 4. Default hyperparameters of MLR algorithm in MLlib.

Hyperparameter Description Default

maxIter Maximum number of iterations 100

regParam Regularization/Shrinkage parameter 0.0

DT algorithm [44] is a supervised algorithm, often chosen for its interpretabil-
ity. It has the ability to capture the non-linear structures in data, unlike MLR.
A DT is essentially a binary tree which recursively partitions the input space
and consists of internal nodes and leaves (i.e. terminal nodes). It is constructed
starting from the root and its nodes are split down based on the largest decrease
in impurity. For classification trees, the impurity is often measured with the Gini
impurity or entropy. However, for regression trees, where the target is contin-
uous, the impurity is based on variance reduction. Table 5 presents the default
values of the DT hyperparameters. RF algorithm [44] builds a forest of multi-
ple DTs that are independently trained. Whereas, single DTs are often said to
overfit, the RF algorithm does not overfit because of the Law of Large Num-
bers [7]. Also, randomness is applied to the training process of RF by utilizing
random feature subsets for node splitting. Since, each DT is trained separately,
multiple trees can be trained in parallel. For the final prediction, the individual
votes of all trees are combined. Table 6 presents the default values of the RF
hyperparameters.

Table 5. Default hyperparameters of DT algorithm in MLlib.

Hyperparameter Description Default

maxBins Maximum number of bins for split decision and
discretization of continuous features

32

maxDepth Number of trees in the forest 5

minInstancesPerNode Minimum number of trees (training instances) in
children must have by splitting

1

Table 6. Default hyperparameters of RF algorithm in MLlib.

Hyperparameter Description Default

maxDepth Maximum depth of individual trees in the forest 5

numTree Number of trees in the forest 20

In contrast to RF which trains the trees independently, GBTs algorithm [44]
employs the Boosting technique training one tree at a time. Successively, to
correct the errors made by previous trees, a DT is fitted on the residuals of the

158 S. Shahoud et al.

previous tree, instead of a fraction of the original data. The final prediction is
based on a weighted majority vote. Table 7 presents the default values of the
GBTs hyperparameters.

Table 7. Default hyperparameters of GBTs algorithm in MLlib.

Hyperparameter Description Default

maxDepth Maximum depth of the individual trees 5

maxIter Maximum number of iterations 20

stepSize Controls the contribution/weight of each tree 0.1

subsamplingRate Training data proportion used for learning each tree 1.0

Tuning hyperparameters is an important step of the Machine Learning
Pipeline (MLP), since they can not only significantly influence the forecasting
performance of a model, which is not our focus in the present work, but also the
processing time.

Table 8. ML algorithms hyperparameters after tuning.

ML algorithm Hyperparameters

Multiple Linear Regression (MLR) Max iterations (ntree) = 20
Regularization parameter = 0.5

Decision Tree (DT) Max bin = 5
Max depth = 5
Min instance split = 1

Gradient Boosted Trees (GBTs) Max depth = 5
Number of trees = 20
Step size = 0.1
Sampling rate = 1.0

Random Forest (RF) Max depth = 5
Number of trees (ntree) = 20

Based on the main property of our microservice-based framework in facili-
tating training and testing ML models in Big Data environments, an efficient
hyperparameter tuning is performed for the aforementioned ML algorithms to
ensure that the time measurements are taken for a best case scenario of the
aforementioned algorithms. The results are depicted in Table 8.

As mentioned before, one of the main advantages of the proposed framework
is to store pre-trained models in order to use them later in production. Thus, for
evaluation, two execution contexts are determined, namely the untrained model
pipeline and pre-trained model pipeline. In the first one, as its name implies,

Facilitating and Managing Machine Learning and Data Analysis Tasks 159

the user follows the general methodology to perform a ML task, in which the
model is trained from scratch and afterwards tested. In the second one, the
user selects a pre-trained model from the database and uses it to perform or
test a ML task with a new dataset without the need for building a new model.
In the present article, the main goals of evaluation are discovering the effect of
caching in Apache Spark, the advantage of storing ML models and reusing them,
measuring the framework overhead and determining the thresholds for efficiently
performing ML tasks on the cluster. To this aim, time measurements need to be
precisely defined. As time measurements, we defined Ttotal and Tfo according to
Eq. 1 and 2 respectively.

Ttotal = Texe + Tfo (1)

where:

– Texe: is the execution time required by Apache Spark to perform a ML task
in context of pre-trained pipelines or untrained pipelines.

– Tfo: is the framework overhead.

Tfo = Tco + Tdbo (2)

where:

– Tco: describes the communication overhead between microservices and inside
the Big Data infrastructure.

– Tdbo: describes the overhead for storing and retrieving required data from the
database.

5.3 Experimental Results and Analysis

In the following, the evaluation results are discussed. As the focus is on the
execution time and the framework overhead raised while performing ML tasks,
the accuracy of forecasting will not be taken into account.

Effect of Caching in Apache Spark. Resilient Distributed Datasets (RDDs)
are the basic data structure of Apache Spark developed as a fault-tolerant
immutable collection of objects which can be computed on different nodes of
the cluster9. Caching RDDs in Apache Spark is a widely used mechanism for
speeding up the running applications. This is especially helpful, when running
iterative machine learning applications, where the data is accessed repeatedly. If
RDD is not cached, nor checkpointed, it is re-evaluated again each time an action
is invoked on that RDD. The training time is measured as the time it takes to
fit the model on the training data. The prediction time is similarly computed for
applying the resulted model on testing data. Since Spark utilizes lazy evaluation
for data transformations, meaning an operation is not executed until an action is
called on the data, the prediction time has to be measured in combination with
performing an action. The main advantages of the lazy evaluation mechanism in
Apache Spark are:
9 https://spark.apache.org/docs/latest/rdd-programming-guide.html.

https://spark.apache.org/docs/latest/rdd-programming-guide.html

160 S. Shahoud et al.

– Increased manageability of RDDs because the source code of our machine
learning algorithms is organized into smaller operations which in turns
reduces the number of passes on data by grouping the operations.

– More efficient computation time and an increased speed, as only the necessary
values are computed saving the communication round-trip time between the
drivers and clusters.

– Better optimization of operations on data by reducing the number of queries.

Table 9. Mean computation time for training and testing different algorithms in the
cases of caching and no caching of input data.

Machine learning algorithms Training time (s) Prediction time (s)

No caching Caching No caching Caching

Multiple Linear Regression (MLR) 16.07 3.57 3.92 0.87

Decision Tree (DT) 15.88 3.21 3.41 0.86

Gradient-boosted trees (GBTs) 37.04 21.74 8.61 1.77

Random Forest (RF) 23.11 12.48 5.75 1.12

Table 9 shows how caching of the input time series datasets affects the per-
formance of the implemented algorithms, using their default hyperparameters
and default cluster configurations. For calculating these values, the experiments
are repeated three times. Afterwards, the mean values are calculated as final
performance indicator. Obviously, the need for caching will be larger in the case
of large datasets, as more operations are required and larger amount of data are
loaded and accessed repeatedly, therefore and to precisely discover the effect of
caching, the models are trained and tested on a small dataset size i.e. 4 MB. As
shown in this table, combining lazy evaluation with caching reduces the training
and prediction time of all algorithms by approximately 75%.

Advantage of Storing and Retrieving ML Models. The main ML task
used for this part of evaluation is to perform short-term energy generation fore-
casting using MLR, RF, DT and GBTs data-driven models on simulated energy
multivariate time series dataset. The algorithm hyperparameter configurations
shown in Table 8 are used. For better utilization and exploitation of the available
abilities of the underlying Big Data cluster, the custom configurations shown in
Table 3 are used. A feature space consisting of 5 features, namely temperature,
humidity, cloud coverage, hour and day is used to build the forecasting models.
A dataset of 4 GB size is used for training and testing ML models, where 80% of
the input time series dataset are used as a training set and 20% as testing set.
For each ML algorithm, the experiment is repeated three times. Afterwards, the
mean values are calculated as final performance indicator. Figure 9 shows the
Ttotal required by the framework to perform the aforementioned task in case of
pre-trained and untrained model pipeline.

Facilitating and Managing Machine Learning and Data Analysis Tasks 161

In general, the total time Ttotal is strongly related to the complexity of ML
models. As this complexity increases, Ttotal required to perform the task will
dramatically increases. The base classifier of both RF and GBTs algorithms is
the DT algorithm. Consequently, the complexity of RF and GBTs models will
be higher than the complexity of the DT model. As seen in Fig. 9, RF and GBTs
introduced higher Ttotal than DT and MLR algorithms.

Fig. 9. Ttotal required for training and testing models (untrained model pipeline) and
for testing (pre-trained model pipeline) on simulated energy multivariate time series
dataset with size 4 GB.

Both GBTs and RF are algorithms for learning ensembles of trees, but the
training processes are different. While GBTs algorithm trains one tree at a time,
RF algorithm can train multiple trees in parallel. This can be seen clearly in
Fig. 9, in which GBTs show higher Ttotal than RF. In our experiments, both
MLR and DT algorithm introduce lower Ttotal compared to RF and GBTs.
The efficiency of storing ML model can clearly be seen in case of complex ML
models, namely GBTs and RF models, and will rise with growing complexity of
the model. As the complexity of model increases, the time needed to perform
the same task with each new dataset will dramatically increase and the benefit
of using pre-trained models will also increase. E.g., by performing forecasting,
we gain a time of 690 and 411 s in case of GBTs and RF respectively. In contrast
to that, only small time will be gained in case of retrieving and reusing simpler
models such as MLR and DT as seen in Fig. 9.

As a result, the recommendation of storing ML models and reusing them in
testing is higher in case of complex models than for simpler ones. This experi-
mental study gives an evidence for the importance of storing and retrieving ML
models as a major property in our framework. However, the experiments are

162 S. Shahoud et al.

performed only with a dataset of 4 GB size. As this size increases, the complex-
ity of the ML models will increase too, paving the road to save and gain more
time for performing ML tasks with new datasets based on pre-trained models
without the need for training these models.

Framework Overhead. To evaluate the framework overhead, MLR models for
short-term energy generation forecasting are used. The algorithm hyperparam-
eter configurations shown in Table 8 besides the custom cluster configurations
are used in this group of experiments. The evaluation instruments the untrained
model pipeline, in which the training and the testing steps of ML models are
required. The goal of the study is to evaluate the effect of input dataset size on
framework performance in the form of framework overhead defined in Eq. 2. For
this evaluation, the size of the input datasets is upscaled to 64 GB, as bigger
datasets typically expose more load on the framework infrastructure.

Fig. 10. Effect of input datasets size used for training and testing MLR models on the
framework overhead.

As defined in Eq. 2, the framework overhead encompasses communication
overhead and database overhead. The obtained results depicted in Fig. 10 show
that the proposed framework introduces an approximately constant communi-
cation overhead averaging at around 26 s for datasets with sizes up to 512 MB.
The framework overhead starts to increase for a size of input datasets larger
than 512 MB. The reason behind this is the additional overhead raised inside
the Big Data environment for resource scheduling, coordination and network
communications in the cluster. Precisely, an increasing size of the input dataset
naturally leads to an increased overhead due to data replication, disk I/O and the

Facilitating and Managing Machine Learning and Data Analysis Tasks 163

Fig. 11. Effect of input datasets size used for training and testing MLR models on the
framework overhead (detailed overview).

serialization of data inside the execution environment of the cluster. A detailed
increasing in overhead can be seen also in Fig. 11.

Despite this increment, the introduced framework overhead is still low com-
pared to the execution time spent in performing a ML task as shown in Table 10.
For example, the portion of framework overhead is 210,47 s in the worst case,
namely for 65 GB input multivariate time series datasets. Consequently, our eval-
uation demonstrates, that it maintains high performance ML processing with low
framework overhead to facilitate and solve ML tasks in Big Data environments,
where the user gains great benefits from reusing pre-trained models.

Cluster Utilization Threshold. This section discusses the question “when
to use the proposed framework for performing Ml tasks more efficiently on a
cluster?”. Clearly, the dataset size has an essential effect on the complexity of
machine learning models and therefore on runtime performance. As the size of
the dataset used for training and testing machine learning models grows, the
complexity of model will increase which dramatically affects the total execution
time in our microservice-based framework. While MLR forecasting models have
the lower complexity, the RF forecasting models represent the higher complex
models in our evaluation study. Moreover, DT forecasting model has higher and
lower complexity from LR and GBT respectively as seen in Fig. 9.

The algorithm hyperparameter configurations shown in Table 8 are used. The
input dataset size is changed between 2.5 MB and 4 GB in the experiments for
investigating the effect of dataset size on the framework overhead and execution

164 S. Shahoud et al.

Table 10. Execution time in Apache Spark vs. framework overhead for MLR models.

DataSet size (MB) Execution time (s) Framework overhead (s)

4 19,99 28, 78

8 21,79 28,53

16 22,6 27,41

32 25,88 26,21

64 30,54 27,05

128 41,7 27,13

256 68,54 25,82

512 113,25 30,2

1024 200,66 37,06

2048 383,75 53,54

4096 724,98 79,37

8192 1016,48 85,65

16384 4724,98 110,66

32768 6383,75 150,88

65536 11804,36 210,47

time. The total time Ttotal is compared to the time required for performing the
same task in local and cluster context. The ratio of local time and cluster time
is defined as abs threshold in Eq. 3.

abs threshold =
Tlocal

Ttotal
(3)

where:

– Tlocal: encompasses the total time required to locally execute a machine learn-
ing task.

The main idea behind defining abs threshold is to find the dataset size for
which the total time in local context exceeds the total time required by the
framework to execute tasks in cluster context. From this point, it is highly rec-
ommended to use a cluster. Precisely, to effectively perform machine learning
tasks, this ratio should be greater than 1.

Performing machine learning tasks in cluster context introduces additional
overhead. The main reason behind this interest lies in the time cost for resource
scheduling, coordination and network communications in the cluster. Figure 12
shows the mean total time in local and cluster modes, including default and cus-
tom configurations, using various dataset sizes. It can be observed that enlarging
the dataset size from 2.5 MB to 64 MB has no significant effect on both Tlocal

and Ttotal.
As seen in Fig. 12a and for data less or equal to 256 MB, Ttotal in both

cluster modes is larger than Tlocal in local mode which can be explained by

Facilitating and Managing Machine Learning and Data Analysis Tasks 165

(a) Multiple Linear Regression (MLR). (b) Decision Tree (DT).

(c) Gradient-boosted trees (GBTs). (d) Random Forest (RF).

Fig. 12. Mean Ttotal in case of local and cluster (default, custom) configurations mode
to determine the cluster utilization abs threshold for MLR, DT, RF and GBTs algo-
rithms.

the added overhead for processing the application on the cluster. Thus, running
Spark applications locally for these dataset sizes is more efficient. For a dataset
size less than 256 MB, Ttotal with custom configurations is larger than Ttotal with
default configurations, since two additional nodes are used in these configurations
where each of them introduces an overhead. As expected, when the dataset size
grows larger, utilizing a cluster becomes more desirable which is shown by the
intersection points highlighted by the two red lines, where these points depend on
the configurations. As the abs threshold cc (cc: custom configurations) is found
at a dataset size of 512 MB making the custom configurations the most efficient
beyond that point, the abs threshold dc (dc: default configurations) lies at a

166 S. Shahoud et al.

dataset size of >= 1024 MB. Consequently, the computing power of the cluster
can be seen and the time consumed locally to perform a task will exceed the
time required to perform the same task on cluster. Therefore, it is recommended
here to use the cluster.

Comparing Figs. 12a, 12b, 12c and 12d, we conducted that as the complex-
ity of machine learning model increases, the abs threshold will be early arrived.
The reason is that the complex models need more calculation costs. As a result,
the performance in cluster context will earlier outperform the performance in
local context because of the power of the underlying deployed Big Data cluster.
Concerning RF model which represents the highest complex model in our bench-
mark evaluation, the abs threshold will be arrived for input dataset in size of
about 64 MB. In contrast to that, lower complexity models such as DT models
introduced abs threshold for 300 MB.

As mentioned before, there is an inherent overhead in the framework arising
from e.g. database communication and the use of the cluster. The smaller this
overhead is compared to Spark’s execution time, the more efficient the framework
is. To gain insight into how the efficiency of the framework varies as the dataset
grows, a new threshold, referred as min threshold, is defined and formulated in
Eq. 4:

min threshold =
Texe

Tfo
(4)

This threshold is defined based on the fact that for an efficient execution of a task,
the overhead time should not exceed the time required for the execution. Conse-
quently, to effectively perform machine learning tasks, this threshold should be
greater than 1. The main difference between min threshold and abs threshold
lies in the context, in which they are calculated. While abs threshold compares
the total time required to perform a machine learning task in local and clus-
ter context, the other one is calculated only in cluster context comparing the
framework overhead with the execution for different dataset size. As a result, we
discovered the point at which it is recommended to use our framework in cluster
context.

This group of experiments are conducted using default cluster configurations
summarized in Table 3 and also repeated three time for more robust results.
The obtained mean results, presented in Fig. 13 show that min threshold has
the same behavior of abs threshold. It is evident that for very small dataset
sizes min threshold is less than 1 since more time is spent on Tfo than Texe.
The min threshold comes closest to 1 at the size of 64 MB and 32 MB for MLR
and DT respectively as seen in Figs. 13a and 13b. Beyond this point Texe starts
to exceed Tfo which implies that for larger dataset sizes it is recommended to
use the framework in cluster context. Precisely, the gap between Tfo and Texe

increases proportionally to the dataset size, since Texe is strongly dependent on
it. As the complexity of the model increases, the min threshold will be shifted
to meet smaller dataset size i.e. 2.5 MB as seen in Figs. 13c and 13d. Combining
the results of abs threshold and min threshold, it is recommended to perform

Facilitating and Managing Machine Learning and Data Analysis Tasks 167

ML tasks using the proposed microservice-based framework if both of these
thresholds are greater than 1.

(a) Multiple Linear Regression (MLR). (b) Decision Tree (DT).

(c) Gradient-boosted trees (GBTs). (d) Random Forest (RF).

Fig. 13. Mean Ttotal in case of local and cluster (custom) configurations mode to deter-
mine the cluster utilization min threshold for MLR, DT, RF and GBTs algorithms.

6 Conclusion and Future Works

The present paper introduces a new highly scalable generic microservice-based
framework to ease and streamline the performing of ML tasks in Big Data envi-
ronments. This framework provides a user-friendly UI built on top of a service
layer that eases the usage of ML frameworks on Big Data infrastructure and hides
cluster details from the user. Despite the ability of training, testing, managing,

168 S. Shahoud et al.

storing and retrieving of machine learning models in the context of Big Data,
the framework provides functionalities for uploading, exploring and visualizing
datasets using state-of-the-arts web technologies. Moreover, ML model selection
and management in form of storing pipelines are supported. Each pipeline corre-
sponds to a specific ML task, in which ML algorithm, dataset, hyperparameters
and performance results are stored in an integrated package providing the user
the ability for deeper comparison and better selection of ML models. To reduce
the difficulty as well as the complexity of performing tasks in Big Data environ-
ments, cluster configurations can be easily tuned and adjusted in the UI.

In a comprehensive evaluation study, the advantage of storing and retrieving
ML models is demonstrated. The results also show that the caching of RDDs in
Apache Spark plays an essential role in saving the execution time required for
performing the task on the cluster. Moreover, by measuring the framework over-
head and comparing it to the model calculation time, it could be demonstrated
that the proposed framework introduces an acceptable low overhead relative to
an increasing size of an input dataset. For efficient utilization of the proposed
framework, certain thresholds are defined to determine the dataset size, in which
it is highly recommended to use clusters in favor to single computers for per-
forming a given ML task.

The proposed framework is an ongoing work for developing an even more
interactive and intelligent framework for fully automating, managing, deploying,
monitoring, organizing, and documenting of ML tasks.

Future work will discover the effect of caching in the case of using the
best hyperparameters that optimize the performance of the ML algorithms. We
will also extend the functionalities of the framework to cover automated pre-
processing, model selection and hyperparameter tuning leveraging the advantage
of meta learning. Classification, clustering and a wide range of ML application
scenarios will be taken into account. Deep Learning as a pluggable engine will
be integrated in the persistence and storage layer to support performing Deep
Learning tasks. In-depth user feedback assessment by a large number of users, in
particular, non-expert users will be collected and analyzed too. For tenancy and
secure management of ML tasks, user authentication and authorization issues
will be also taken into account.

References

1. Vernon, V.: Implementing Domain-Driven Design, p. 612. Addision-Wesley, Upper
Saddle River (2013)

2. Fielding, R.T.: Architectural Styles and the Design of Network-Based Software
Architectures. AAI9980887. University of California, Irvine (2000)

3. Nielsen, J.: 10 usability heuristics for user interface design. Nielsen Norman Group
1, 1 (1995)

4. Sebastiani, F.: Machine learning in automated texT categorization. ACM Comput.
Surv. (CSUR) 34(1), 1–47 (2002)

5. Padmanabhan, J., Johnson Premkumar, M.J.: Machine learning in automatic
speech recognition: a survey. IETE Tech. Rev. 32, 1–12 (2015)

Facilitating and Managing Machine Learning and Data Analysis Tasks 169

6. Kononenko, I.: Machine learning for medical diagnosis: history, state of the art and
perspective. Artif. Intell. Med. 23(1), 89–109 (2001)

7. Voyant, C., et al.: Machine learning methods for solar radiation forecasting: a
review. Renew. Energy 105, 569–582 (2017)

8. Jurado, S., Nebot, A., Mugica, F., Avellana, N.: Hybrid methodologies for elec-
tricity load forecasting: entropy-based feature selection with machine learning and
soft computing techniques. Energy 86, 276–291 (2015)

9. Gandomi, A., Haider, M.: Beyond the hype: Big Data concepts, methods and
analytics. Int. J. Inf. Manag. 35(2), 137–144 (2015)

10. Karun, A.K., Chitharanjan, K.: A review on Hadoop-HDFS infrastructure exten-
sions. In: 2013 IEEE Conference on Information and Communication Technologies,
pp. 132–137. IEEE (2013)

11. Nadareishvili, I., Mitra, R., McLarty, M., Amundsen, M.: Microservice Architec-
ture: Aligning Principles, Practices and Culture. O’Reilly Media Inc. (2016)

12. Vartak, M., et al.: Model DB: a system for machine learning model management.
In: Proceedings of the Workshop on Human-In-the-Loop Data Analytics, p. 14.
ACM (2016)

13. Johanson, A., Flogel, S., Dullo, C., Hasselbring, W.: OceanTEA: exploring ocean-
derived climate data using microservices (2016)

14. Brewer, R.S., Johnson, P.M.: WattDepot: an open source software ecosystem
for enterprise-scale energy data collection, storage, analysis and visualization. In:
2010 First IEEE International Conference on Smart Grid Communications. 2010
1st IEEE International Conference on Smart Grid Communications (SmartGrid-
Comm), pp. 91–95, Gaithersburg, MD, USA. IEEE (2010)

15. Shrestha, C.: A web based user interface for machine learning analysis of health
and education data (2016)

16. Schelter, S., Böse, J.-H., Kirschnick, J., Klein, T., Seufert, S.: Automatically track-
ing metadata and provenance of machine learning experiments (2017)

17. Obe, R.O., Hsu, L.S.: PostgreSQL: Up and Running: a Practical Guide to the
Advanced Open Source Database. O’Reilly Media Inc. (2017)

18. Meng, X., et al.: MLlib: machine learning in Apache Spark. J. Mach. Learn. Res.
17(1), 1235–1241 (2016)

19. Zaharia, M., et al.: Accelerating the machine learning lifecycle with MLflow. IEEE
Data Eng. Bull. 41(4), 39–45 (2018)

20. Chan, S., Stone, T., Szeto, K.P., Chan, K.H.: Predictionio: a distributed machine
learning server for practical software development. In: Proceedings of the 22nd
ACM International Conference on Information and Knowledge Management, pp.
2493–2496. ACM (2013)

21. TensorFlow Serving. https://www.tensorflow.org/serving. Accessed 4 Feb 2020
22. kubeflow. https://www.kubeflow.org/. Accessed 4 Feb 2020
23. Candel, A., Parmar, V., LeDell, E., Arora, A.: Deep Learning with H2O. H2O. AI

Inc. (2016)
24. Borthakur, D.: The Hadoop distributed file system: architecture and design. In:

Hadoop Project Website, vol. 11, p. 21.0 (2007)
25. Shvachko, K., Kuang, H., Radia, S., Chansler, R.: The Hadoop distributed file

system. In: 2010 IEEE 26th Symposium on Mass Storage Systems and Technologies
(MSST). 2010 IEEE 26th Symposium on Mass Storage Systems and Technologies
(MSST), Incline Village, NV, USA, pp. 1–10. IEEE, May 2010

26. Vavilapalli, V.K., et al.: Apache Hadoop YARN: yet another resource negotiator.
In: Proceedings of the 4th Annual Symposium on Cloud Computing - SOCC 2013.
The 4th Annual Symposium, pp. 1–16. ACM Press, Santa Clara (2013)

https://www.tensorflow.org/serving
https://www.kubeflow.org/

170 S. Shahoud et al.

27. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
Commun. ACM 51(1), 107–113 (2008)

28. Microservices. https://martinfowler.com/articles/microservices.html. Accessed 18
Feb 2020

29. Newman, S.: Building Microservices: Designing Fine-Grained Systems, 1st edn.
O’Reilly Media, Beijing (2015)

30. Coughlin, K., Piette, M., Goldman, C., Kiliccote, S.: Estimating demand response
load impacts: evaluation of base line load models for non-residential buildings in
California. Technical report, Ernest Orlando Lawrence Berkeley National Labora-
tory, Berkeley, CA, USA (2008)

31. Khotanzad, A., Afkhami-Rohani, R., Lu, T.L., Abaye, A., Davis, M., Maratuku-
lam, D.J.: ANNSTLF-a neural-network based electric load forecasting system.
IEEE Trans. Neural Netw. 8(4), 835–846 (1997)

32. Evans, E.: Domain-Driven Design: Tackling Complexity in the Heart of Software,
p. 529. Addison-Wesley, Boston (2004)

33. Shoeb, A.H., Guttag, J.V.: Application of machine learning to epileptic seizure
detection. In: ICML (2010)

34. Shahoud, S., Gunnarsdottir, S., Khalloof, H., Duepmeier, C., Hagenmeyer, V.:
Facilitating and managing machine learning and data analysis tasks in Big Data
environments using web and microservice technologies. In: Proceedings of the 11th
International Conference on Management of Digital EcoSystems, pp. 80–87 (2019)

35. Witten, I.H., Frank, E., Hall, M.A., Pal, C.J.: Data Mining: Practical Machine
Learning Tools and Techniques. Morgan Kaufmann (2016)

36. Aman, S., Simmhan, Y., Prasanna, V.K.: Improving energy use forecast for campus
micro-grids using indirect indicators. In: 2011 IEEE 11th International Conference
on Data Mining Workshops. IEEE, pp. 389–397 (2011)

37. Hong, T., Gui, M., Baran, M., Willis, H.: Modeling and forecasting hourly electric
load by multiple linear regression with interactions. In: IEEE PES General Meeting.
IEEE, pp. 1–8 (2010)

38. Metaxiotis, K., Kagiannas, A., Askounis, D., Psarras, J.: Artificial intelligence in
short term electric load forecasting. Energy Convers. Manag. 44(9), 1525–1534
(2003)

39. Mori, H., Takahashi, A.: Hybrid intelligent method of relevant vector machine and
regression tree for probabilistic load forecasting. In: 2011 2nd IEEE PES Interna-
tional Conference and Exhibition on Innovative Smart Grid Technologies, pp. 1–8.
IEEE (2011)

40. Cui, C., Wu, T., Hu, M., Weir, J.D., Li, X.: Short-term building energy model
recommendation system: a meta-learning approach. Appl. Energy 172(2016), 251–
263 (2016)

41. Mitchell, T.M.: Machine Learning. McGraw-Hill Series in Computer Science, 414
pp. McGraw-Hill, New York (1997)

42. Cruz, J.A., Wishart, D.S.: Applications of machine learning in cancer prediction
and prognosis. Cancer Inform. 2, 59–77 (2006)

43. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
44. Machine Learning Library (MLlib) Guide. https://spark.apache.org/docs/latest/

ml-guide.html. Accessed 19 Feb 2020
45. Dougherty, J., Kohavi, R., Sahami, M.: Supervised and unsupervised discretization

of continuous features. In: Proceedings of the Twelfth International Conference on
Machine Learning, vol. 12, pp. 194–202 (1995)

46. Hahne, F., Huber, W., Gentleman, R., Falcon, S.: Bioconductor Case Studies.
Springer, New York (2010). https://doi.org/10.1007/978-0-387-77240-0

https://martinfowler.com/articles/microservices.html
https://spark.apache.org/docs/latest/ml-guide.html
https://spark.apache.org/docs/latest/ml-guide.html
https://doi.org/10.1007/978-0-387-77240-0

Facilitating and Managing Machine Learning and Data Analysis Tasks 171

47. Chapelle, O., Scholkopf, B., Zien, A.: Semi-supervised learning. IEEE Trans. Neural
Netw. 20(3), 542–542 (2009). (Chapelle, O. et al. (eds.) (2006)) (bibbook reviews)

48. Kaelbling, L., Littman, M., Moore, A.: Reinforcement learning: a survey. J. Artif.
Intell. Res. 4, 237–285 (1996)

49. Mikowski, M., Powell, J.: Single Page Web Applications: JavaScript End-to-End.
Manning Publications Co. (2013)

50. Kuan, J.: Learning Highcharts. Packt Publishing Ltd. (2012)

Stable Marriage Matching
for Homogenizing Load Distribution

in Cloud Data Center

Disha Sangar, Ramesh Upreti, H̊arek Haugerud, Kyrre Begnum,
and Anis Yazidi(B)

Autonomous Systems and Networks Research Group,
Department of Computer Science, Oslo Metropolitan University, Oslo, Norway

anisy@oslomet.no

Abstract. Running a sheer virtualized data center with the help of
Virtual Machines (VM) is the de facto-standard in modern data centers.
Live migration offers immense flexibility opportunities as it endows the
system administrators with tools to seamlessly move VMs across phys-
ical machines. Several studies have shown that the resource utilization
within a data center is not homogeneous across the physical servers. Load
imbalance situations are observed where a significant portion of servers
are either in overloaded or underloaded states. Apart from leading to
inefficient usage of energy by underloaded servers, this might lead to
serious QoS degradation issues in the overloaded servers.

In this paper, we propose a lightweight decentralized solution for
homogenizing the load across different machines in a data center by
mapping the problem to a Stable Marriage matching problem. The algo-
rithm judiciously chooses pairs of overloaded and underloaded servers
for matching and subsequently VM migrations are performed to reduce
load imbalance. For the purpose of comparisons, three different greedy
matching algorithms are also introduced. In order to verify the feasibil-
ity of our approach in real-life scenarios, we implement our solution on
a small test-bed. For the larger scale scenarios, we provide simulation
results that demonstrate the efficiency of the algorithm and its ability to
yield a near-optimal solution compared to other algorithms. The results
are promising, given the low computational footprint of the algorithm.

Keywords: Self-organization · Cloud computing · Stable Marriage ·
Distributed load balancing

1 Introduction

Major systems and Internet based services have grown to such a scale that we
now use the term “hyper scale” to describe them. Furthermore, hyper scale
architectures are often deployed in cloud based environments, which offers a
flexible pay-as-you-go model.

c© Springer-Verlag GmbH Germany, part of Springer Nature 2020
A. Hameurlain et al. (Eds.) TLDKS XLV, LNCS 12390, pp. 172–198, 2020.
https://doi.org/10.1007/978-3-662-62308-4_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-62308-4_7&domain=pdf
https://doi.org/10.1007/978-3-662-62308-4_7

Stable Marriage Matching for Load Distribution 173

From a system administrator’s perspective, optimizing a hyper scale solution
implies introducing system behaviour that can yield automated reactions to
changes in configurations and fault occurrences. For instance, auto scaling is
a desired behaviour model for websites to optimize cost and performance in
accordance to usage patterns.

There are two different perspectives on how an automated behaviour can be
implemented within the field of cloud computing. One of the perspectives is to
implement the behaviour in the infrastructure, which is the paradigm embraced
by the industry. The other alternative is to introduce behaviour as a part of
the Virtual Machine (VM), which opens up a possibility for cloud independent
models.

Several studies have shown that the resource utilization within a data center
varies drastically across the physical servers [4,12,28]. Load imbalance situations
are observed where a significant portion of servers are either in overloaded or
underloaded states. Apart from leading to inefficient usage of energy by the
presence of underloaded servers, this might lead to serious QoS degradation
issues in the overloaded servers. The aim of this paper is to present an efficient
and yet simple solution for homogenizing the load in data centers. The potential
gain with this research is to find an efficient and less complex way of operating
a data center. Stable Marriage is a an intriguing theory emanating from the
field of economy and holds many promises in the field of computer science and
more particularly in the field of cloud management. In this paper, we apply
the theory of Stable Marriage matching in order to devise a load homogenizing
scheme within a data center. We also modify the original algorithm in order to
support distributed execution.

Various studies on self-organizing approaches have been emerging in the
recent years to efficiently solve computationally hard problems where central-
ized solutions might not scale or might also create a single point a failure.

The aim of this paper is to provide a distributed solution for achieving dis-
tributed load balancing in a data center which is inspired by the the Stable
Marriage algorithm [16]. The algorithm implements message exchange between
pairs of servers. It is worth emphasizing that modern distributed systems often
use gossip protocols to solve problems that might be difficult to solve in other
ways, either because the underlying network has an inconvenient structure, is
extremely large, or because gossip solutions are the most efficient ones available
[17] in terms of communication. We shall adopt the Stable Marriage algorithm
and study its behavior under different scales.

2 Stable Matching

According to Shapley et al. [15] an allocation where no individual perceives any
gain from any further trade is called Stable. Stability is a central theory in the
field of cooperative game theory that emanates from mathematical economics
which seeks to know how any constellation of rational individuals might coop-
erate to choose an allocation.

174 D. Sangar et al.

Shapley [14] introduced the concept of pairwise matching. Pairwise matching
studies how individuals can be paired up when they all have different preferences
regarding who are their best matches. The matching was analyzed at an abstract
level where the idea of marriage was used as an illustrative example.

For this experiment Shapley et al. tested how ten women and ten men should
be matched, while respecting their individual preferences. The main challenge
was to find a simple method that would lead to stable matching, where no couples
would break up and form new matches which would make them better off. The
solution was deferred acceptance, a simple set of rules that always led straight
to the stable matching.

Deferred acceptance can be set up in two different ways, either men propose
to women or women propose to men. If women propose to men the process begins
with each woman proposing to the man she likes the best. Each man then looks
at the different proposals he has received, if any, and regards the best proposal
and rejects the others. The women who were rejected in the first round, then
move along to propose to their second best choice. This will continue in a loop
until no women wants to make any further proposals. Shapley et al. [15] proved
this algorithm mathematically and showed that this algorithm always leads to
stable matching.

The specific way the algorithm was set up turned out to have an important
distributional consequence. The outcome of the algorithm might differ signifi-
cantly depending on whether the right to propose was given to the women or
to the men. If men proposed this lead to the worst outcome from the women’s
perspective. This is because if women proposed, no woman would be worse off
than if the men had been given the right to propose [15].

Fig. 1. Stable matching

Stable Marriage Matching for Load Distribution 175

The model depicted in Fig. 1 presents the selection process for Stable Match-
ing. On the right side we find the women with their preferences and to the left
the men with their respective preferences.

3 Related Work

In this section, we shall review some prominent works on distributed approaches
for homogenizing the load in a data center. It is worth mentioning that the
related work in this particular area is rather sparse.

Marzolla et al. [17] propose a decentralized gossip-based algorithm, called
V-MAN to address to the issues regarding consolidation. V-MAN is invoked
periodically to create consolidate VMs into fewer servers. They assume that the
cloud system has a communication layer, so that any pair of servers can exchange
messages between them. The work of Marzolla et al. [17] yields very promising
results which show that using V-MAN converges fast – after less than 5 rounds
of message exchanging between the servers.

In [3], the authors use scouts which are allowed to move from one PM (phys-
ical machine) to another – to be able to recognize which compute node might be
a suitable migration destination for a VM. This is completely opposite of what
V-MAN does. It does not rely on any subset like scouts, instead each server
can individually cooperate to identify a new VM location, which makes V-MAN
scalable. It is also to be noted that any server can leave or join the cloud at any
time.

Sedaghat et al. [25] use a Peer-to-Peer protocol to achieve energy efficiency
and increase the resource utilization. The Peer-to-Peer protocol provides mech-
anisms for nodes to join, leave, publish or search for a resource-object in the
overlay or network. This solution also considers multi-dimensionality – because
the algorithm needs to be specified to be dimension aware, each PMs proportion-
ality should be considered. Each node is a peer where a peer sampling service,
known as newscast, provides each peer with a list of peers whom are to be consid-
ered neighbours. Each peer only know k random neighbours which map its local
view. The aim is to improve a common value which is defined as the total imbal-
ance of each pair at the time of decision-making by redistributing the VMs. The
work uses a modified dimension aware algorithm to tackle the multi-dimensional
problem. The algorithm is iterative and starts from an arbitrary VM placement.
When the algorithm converges, a reconfiguration plan is set so the migration of
the VMs can start.

A survey by Hummaida et al. [10] is focused on adaptation of computing
resources. In [29], a peer-to-peer distributed and decentralized approach is pro-
posed that enables servers to communicate with each others without a central-
ized controller. It uses a node discovery service which is run periodically to find
new neighbouring servers to communicate with. The algorithm decides whether
two servers should exchange a VM based on the predefined objectives. Similarly,
in [20], the authors propose a decentralized approach for user-centric elasticity
management to achieve conflict free solutions between customer satisfaction and

176 D. Sangar et al.

business objectives. Dynamical allocation of CPU resources to servers is per-
formed in [13] which integrates the Kalman filter into feedback controllers to
track the CPU utilizations and update the allocations accordingly.

Siebenhaar et al. [26] use a decentralized approach to achieve better resource
management using a two phase negotiation protocol to conduct negotiations with
multiple providers across multiple tiers. Moreover, in [8] the authors present an
architecture for dynamic resource provisioning via distributed decisions where
each server makes its own utilization decision based on its own current capacity
and workload characteristics. The authors also introduce a light-weight provi-
sioning optimizer with a replaceable routing algorithm for resource provisioning
and scaling. The authors claim that with this solution the resource provisioning
system will be more scalable, reliable, traceable, and simple to manage.

Calcavecchia et al. [6] start by criticizing centralized solutions and states
that it is not suitable for managing large-scale systems. The authors introduce
a Decentralized Probabilistic Auto-Scaling Algorithm (DEPAS) which is inte-
grated into a P2P architecture and allows simultaneous auto-scaling of services
over multiple cloud infrastructures. They conduct simulations and real platform
based experiments and claims that their approach is capable of handling (i):
keeping track of: overall utilization of all Instant Cloud resources within the
target range, (ii): maintaining service response times close to those achieved
through optimal centralized auto-scale approaches.

Another interesting decentralized approach is presented by [5] where an
emphasis is given to low price based deployment and dynamic scaling of com-
ponent based applications to meet SLA performance and availability goals. The
work gives priority to a low price model instead of normalizing loads to all
servers, meaning the dynamic economic fitness of the servers will decide whether
resources are replicated, migrated to another server, or deleted. Each server
stores the table of complete mapping between instances and servers and a gossip
protocol is used for mapping instances.

In another survey [21] the authors aim to classify and provide a concise sum-
mary of the several proposals for cloud resource elasticity today. They present
a taxonomy covering a wide range of aspects, and discuss details for each of
the aspects, and the main research challenges. Finally, they propose fields that
require further research. A more recent article on cloud computing elasticity [1]
reviews both classical and recent elasticity solutions and provides an overview of
containerization. It also discusses major issues and research challenges related to
elasticity in cloud computing. The authors comprehensively review and analyze
the proposals developed in this field.

In a survey on elasticity management in PaaS systems [19] the authors claim
that ideally, that elasticity management should be done by specialised compa-
nies: the platform as a service (PaaS) providers. The PaaS layer is placed on top
of an IaaS layer in a regular cloud computing architecture. The authors provide
a tutorial on the requirements to be considered and the current solutions to the
challenges being present in elastic PaaS systems and conclude that elasticity
management in the PaaS service model is an active research area amenable to
improvement.

Stable Marriage Matching for Load Distribution 177

Most of the papers mentioned above concern scaling of resources and load
distribution by developers. However, there has been some recent development
in the field of cloud computing which might entirely shift the burden of scaling
resources from developers and system designer to cloud providers. This new
cloud computing paradigm is called Serverless Computing. The term Serverless
Computing is a platform (Function-as-a-service) that hides the server usage from
the developer and runs code on-demand, scaling accordingly and only billing for
the time the code is running [7].

The term Serverless can however be a bit misleading, serverless doesn’t equal
to no backend service, it just means that all of the server space and infrastructure
issues are handled by the vendor [27]. Many larger companies (e.g Amazon AWS,
Azure, etc.) now offer these type of solutions, where you can deploy your code
to the cloud, and only pay for the amount of time the code is used, while all the
administration of the servers are handled by the vendor [2].

AWS was one of the first vendors to introduce the concept of serverless
computing in 2014 [11]. According to Castro et al. [7] serverless seems to be
the natural progression in the advancement and adoption of VM and container
technology, where each layer of the abstraction leads to more lightweight units
of computation, saving resources, being more cost effective and increasing the
speed of development. Castro et al. conclude that serverless computing lowers
the bar for developers by delegating to the platform provider much of the oper-
ational complexity of monitoring and scaling large-scale applications. However,
the developer now needs to work around limitations on the stateless nature of
their functions, and understand how to map their application’s SLAs to those
of the serverless platform and other dependent services [7].

4 Solution

4.1 Overview of a Functioning Framework

As the algorithm implemented will be based on a real life inspiration, it is impor-
tant to understand that the outcome can end in two different cases. Just as each
relationship does not end in marriage neither will the decision of the PMs. Each
PM can be viewed as individuals making their own “life choices”.

Figure 2 and 3 enhances the different outcomes the algorithm can opt for
and how the framework is set up to work around the execution of the algorithm.
Note that the environment later implemented is not in an actual data center.
Our main goal is to achieve load balance in a distributed cloud data center, but
our solution is restricted to load-balancing of CPU-intensive applications as we
have not considered the impact of other resources such as memory, network and
disk. The intention is to create a framework that can handle any given scenario
or setup for CPU-intensive applications.

The basic framework for both scenarios are the same, it is a data center
consisting of PMs with different weight. However, as explained in the section
above, based on the calculations of the underloaded server in the second scenario
the proposal is rejected and the PM moves on to the next best on their list. This

178 D. Sangar et al.

Fig. 2. Proposal accepted

Fig. 3. Proposal rejected

Stable Marriage Matching for Load Distribution 179

process is supposed to be a continuous process, unless the target load for each
PM is achieved, then the process stops entirely.

4.2 Bin Packing with Stable Marriage

The bin packing problem is the challenge of packing an amount n of objects
in to as few bins as possible. In this case, the servers are the bins and the VMs
are the objects. This terminology fits the Stable Marriage algorithm well, as
the bins are the humans who are in quest of a partner (bin) which represents a
good match while satisfying some constraints in terms of capacity. A constraint
can be defined in many ways, but for a bin some common constraints would be
the height of the box, its width and depth. Our algorithm will focus on Virtual
CPUs (VCPUs) and memory as constraints. The aim of the algorithm is to even
and equalize the load of the data center by evenly distribute the weight of the
VMs across the bins in such a way that the bins should neither be overfilled nor
underfilled.

4.3 Stable Marriage Animation

A known set of servers is divided into two groups of overutilized (men) and
underutilized (women). The goal is to find a perfect match for the overutilized
servers. The matchmaking is based on three values, the average CPU load, the
imbalance before and after migration (calculated before the eventual migration)
and the profit of such a marriage.

The figures below demonstrate the expected outcome of implementing the
Stable Marriage algorithm. This approach is mainly centralized and the PMs
know the allocated values of each other. This means that each PM, both over
and underutilized, has a list of preferred men and women they want to propose
to or receive a proposal from.

Figure 4 shows that PM1 has reached full capacity as marked by the red line.
The red line represents the average capacity that each PM can handle. Assume
that each group of men can only handle four or six full servers, in this case PM1
has then reached its full capacity and so has PM2. They need to migrate the load
to a underloaded PM of preference, so that they can balance the load equally.
Hence, the overloaded server PM1 proposes to his first choice, PM3.

The female set of servers have their own method to calculate the advan-
tage/disadvantage of such a marriage. If the underutilized PM calculates a higher
imbalance than before the marriage, she sees this as a disadvantage and rejects
the proposal. This method also avoids that the proposing party becomes under-
utilized in the future.

After being rejected, PM1 proceeds to his next best choice which is PM4.
PM4 then calculates the imbalance before and after the proposed marriage to
check if it improves after a potential migration. In this case the imbalance factor
improves, and PM4 accepts the proposal. The migration can now take place.

Since PM4 has the same amount of capacity to accept load, the server is not
over-utilized and the load has been balanced between the married PMs.

180 D. Sangar et al.

Fig. 4. Set of over/under utilized servers

Fig. 5. PM1 proposes to PM3

Fig. 6. PM3 rejects PM1 seeing no benefit to this marriage.

Stable Marriage Matching for Load Distribution 181

Fig. 7. PM4 accepts PM1’s proposal

Fig. 8. Migration successful

This particular animation doesn’t have any scheme implemented, it just gives
an idea of how the algorithm is supposed to work. The schemes will only make
a difference in terms of the size of the VMs that is migrated. The figure below
shows how the VM sizes may differ on each PM and how the migration process
may look inside each server.

4.4 The Proposed Stable Marriage Algorithm

In our preliminary version of this work [24], we proposed two implementations
of the Stable Marriage algorithm called Migrate Smallest-Greedy Matching (MS-
GM) and Migrate Largest-Greedy Matching (ML-GM). We observed that both of
the methods have some pitfalls. The Migrate Smallest algorithm usually results
in a better overall result, but at the cost of a higher number of migrations.
On the other hand, the Migrate Largest algorithm requires a smaller number of
migrations in order to reach a final state at the cost of a higher final imbalance.
In order to improve on these two algorithms, we propose a Stable Marriage based
approach which will provide a minimum imbalance result while still yielding a
low number of migrations. In addition to this, in order to compare with the
efficiency of new the Stable Marriage (SM) algorithm, three different kinds of
greedy matching algorithms are introduced.

182 D. Sangar et al.

Fig. 9. PMs with various VM sizes

In the example shown in Fig. 9 PM1 is overloaded while PM2 and PM3
are underloaded. As can be seen, PM1 is highly overloaded and PM3 is highly
underloaded, therefore the SM algorithm pairs PM1 and PM3 and migrates the
largest VM of PM1 to PM3. Then the algorithm will calculate the imbalance of
each PM again and compute the overload and underload. Based on the amount
of overload and underload, SM will determine a new pair of PMs and move
the optimal VM based on size. This process will continue until a minimum
imbalance is achieved. Figure 10 illustrates that the resources allocated to the
VMs are different. The resources of the three VMs correspond to those of the
three smallest E2 high-CPU machine types of Google Cloud Engine. We restrict
our study to these three VM sizes as it simplifies the solution while this design
choice still is complex enough to illustrate the usefulness of our solution. It is
straightforward to generalize this by simply including VMs of different sizes.
It should be noted that in the experiments only the number of CPUs is taken
into account when determining whether a server is underloaded or overloaded.
In a more extensive solution other resources and features, like memory, network
bandwidth, disk usage, runtime monitoring, message overheads and migration
time should be taken into account. However, for CPU intensive applications our
solution includes the most important feature.

Stable Marriage Matching for Load Distribution 183

The complexity per time instance of the SM algorithm is O(nonu) where no

and nu are the numbers of overloaded, respectively underloaded servers at each
time instant. Thus, the number of messages exchanged is in the order of O(nonu)
at each iteration of the algorithm. The complexity of the greedy ones is O(nu)
since the overloaded servers are those that propose. The upper bound on the
running time (and the number of migrations) is the total number of VMs in all
servers.

Fig. 10. VMs with their allocated resources.

4.5 The Greedy Matching Approach

The greedy matching approach is inspired by the greedy algorithm. In this app-
roach we first take the one most overloaded server and compare the imbalance
with every underloaded server with a predefined movement method and choose
the one that will reduce the imbalance most. If there are multiple cases which
have the same imbalance result, one of them will be picked at random. Once
this process is done, the algorithm again calculates the imbalance of each server
and continues the above process until the minimum imbalance result is gained.
The three predefined movement methods are denoted as Migrate Smallest (MS),
Migrate Medium (MF) and Migrate Largest (ML). For each of the methods, a
VM of the size corresponding to the name of the method is migrated from the
most overloaded PM to the most underloaded PM.

5 Implementation of Stable Marriage

In this section we give details about the implementation of the Stable Marriage
algorithm which aims to find the perfect match for gaining load balance. Each
node is considered an individual with preferences and demands. These are taken
into consideration to be able to find the perfect balance for each individual node.

The flow diagram in Fig. 11 gives an insight into how the Stable Marriage
Algorithm operates and the different procedures involved.

184 D. Sangar et al.

Recieve an
updated list of
neghbors and
their weight

Make a list of
overloaded and

underloaded
servers

Find
overload_preference

and
underload_preference

Apply Stable
Marriage
Algorithm

Find suitable VMs
to move

Get the index of
suitable VMs to

move

Adjust the scale of
data center

Find the
average and

total CPU load

Compare with
previous
average

imbalance

Exit and reject if
imbalance result

is higher than
the previous

VMs can be
migrated to their

perfect match

Fig. 11. Flow diagram of the stable marriage implementation

The following describes the most important parameters of the algorithm
inspired by Rao et al. [23]. We define the CPU load to simply be the num-
ber of VCPUs of a VM. Let Ci be the total CPU load of server i contained in
its VMs and let cj be the number of VCPUs assigned to VMj :

Ci =
∑

VMj

cj

Each server i has a maximum CPU capacity Ci
max which is its number of

physical CPUs and we define this to be the maximum number of VCPUs a server
can contain:

Ci ≤ Ci
max

When it comes to consolidation, most algorithms take into account the bot-
tleneck resource as a sole criterion for achieving better consolidation decisions.
Similarly, when it comes to load balancing, one can base the algorithm on the
imbalanced resource whether it is CPU or memory. For the sake of simplicity,
we assume that the CPU is the most imbalanced resource in our data center,
which in real life is often the case.

Average load C is defined as the average CPU load of the N Physical
Machines:

C =
∑

PMi

Ci/N =
N∑

i=1

Ci/N

Stable Marriage Matching for Load Distribution 185

If the system was perfectly balanced and all servers of same size, each server
would have this number of VCPUs. Furthermore, we define the average capacity
of a server as

Cmax =
∑

PMi

Ci
max/N

We define the target load to be the result when evenly distributing the load
according to the capacity of the servers. Let Ti be the the target load at PMi

when there is no imbalance:
Ti =

Ci
max

Cmax
C

If all the machines have the same capacity, this would reduce to equal load
on each server:

Ti = C =
∑

PMi

Ci/N

We define the imbalance Ii of a server or physical machine PMi in terms of
CPU load as the deviation of the load of machine PMi from the target CPU
load:

The following pseudo code shows how the possible gain of a migration
between an overloaded server and an underloaded server is calculated:

Gain_of_Migration_Couple

Calculate imbalance before an eventual migration

<calculate imbalance of overloaded server>

<calculate imbalance of underloaded server>

overloaded_pref = [make preferences based on overloaded size]

underloaded_pref = [make preferences based of underloaded size]

SM = stablemarriage(overloaded_pref, underloaded_pref)

for each pair on SM

check difference and move suitable VMs

continue the process until minimum imbalance is achieved

The Stable Marriage algorithm operates in rounds and it stops when no more
“gain” in terms of reducing imbalance can be achieved. The algorithm will then exit.
In other terms, if there is no beneficial proposal that reduces the imbalance or the
proposals will increase the imbalance, the algorithm will stop whenever there are no
possibilities to reduce further imbalance. It also restricts overloaded servers to become
underloaded, which means that PMs may also decline a proposal if the overloaded
server becomes underloaded. This means that a node can never become overbalanced
again or underbalanced to take more VMs on board. This is an important part of
the implementation, as the point of the Stable Marriage algorithm is to stabilize the
system, this algorithm contributes to the stability factor.

186 D. Sangar et al.

6 Experiments

6.1 Experimental Set-Up

Figure 12 is a model which gives an overview of the structure in which the project
will be implemented. This is a figure which shows how the different components from
entirely different worlds are paired together. The bottom layer is the physical hard-
ware consisting of PM1-PM3 or Lab01-Lab03 which are the assigned name on the
OS. This layer is controlled by the hypervisor KVM, which is in control of the virtual
environment, also the network of VMs which are later spawned in layer 3.

Fig. 12. Design

6.2 Environment Configuration

Evidently, a framework is built with several services and components, which are nec-
essary for an environment to work. To set up a virtual environment for this project
several physical and virtual technologies were necessary.

The physical servers in this project are stored in a server room at Oslo Metropolitan
University. There are three dedicated servers for this project, as seen in Fig. 13. The
setup consists of a dedicated gateway to connect to the outside. All of the PMs are
inter-connected through a dedicated switch.

Stable Marriage Matching for Load Distribution 187

Fig. 13. Overview of the physical lab structure

Each server is allocated with same specifications (Fig. 14):

Fig. 14. Physical attributes

These are the details for the physical hardware which are dedicated for the virtual
implementation. The PMs run Ubuntu which is easier to work with especially with
QEMU and KVM for virtualization of the environment.

6.3 Virtual Configuration

The next step is to configure the virtual network. This network will also ensure that
when migrating VMs from one host to another, this happens within the same virtualized
network. Figure 15 below shows how the PMs are connected and how the VMs reside
inside the PMs. The VMs are attached to a virtual bridge by birth. This is a actually
a virtual switch, however it is called a bridge and used with KVM/QEMU hypervisors
to be able to use live migration for instance.

188 D. Sangar et al.

To connect the PMs together, a physical switch is used.

Fig. 15. Physical lab details

The different VM flavors that will be used in the experiments are given in Fig. 16.
Each PM will be given a combination of VMs of different flavors.

Fig. 16. VM flavors

6.4 Comparison of Greedy Matching and Stable Marriage

The aim of these experiments is to show and compare the impact of different types
of greedy matching approaches with the Stable Marriage migration approach in terms
of imbalance and the number of migrations taking place in a virtualized environment
with different flavours of VMs. For the sake of clarity, all the abbreviations used in the
algorithms are summarized in the Table 1. To test the effectiveness of the migration
algorithms, three different test scenarios have been created, TEST-10, TEST-50 and
TEST-100. The TEST-10 experiment refers to a small scale system with a bin size of
10 and where each bin or PM contains a number of VMs between 5 and 10. Similarly,
TEST-50 refers to medium system with bins size of 50 where each bin contains a
random number of VMs in the range 40 to 50. Lastly, TEST-100 refers to a large scale
system, with 100 bins and each bin has a random number of VMs between 80 and 100.
The results presented below are the average result of 100 experiments. In order to find
the most effective approach each experiment is performed using all the four algorithms.

Stable Marriage Matching for Load Distribution 189

Table 1. List of abbreviations used for algorithms

Abbreviation Definition

GM Greedy Matching

SM Stable Marriage

MS-GM Migrate Smallest-Greedy Matching

MM-GM Migrate Medium-Greedy Matching

ML-GM Migrate Largest-Greedy Matching

Migrate Smallest-Greedy Matching vs Stable Marriage. Figure 17 and
18 depict the results for the three different test scenarios and shows the compari-
son between Migrate Smallest-Greedy Matching (MS-GM) and Stable Marriage (SM)
migration approaches in terms of imbalance and migrations. In TEST-10, the initial
average imbalance was 8.65 which is reduced to 1.18 by the Migrate Smallest-Greedy
Matching (MS-GM) approach while the Stable Marriage approach minimized the initial
imbalance to 0.83. Interestingly in Fig. 18, we can see the Stable Marriage approach
takes less than half the number of VM migrations compared to the MS-GM approach
for the two largest experiments.

Fig. 17. Migrate Smallest-Greedy Matching (MS-GM) vs Stable Matching (SM)

In TEST-50, the initial average imbalance was 18.06. The MS-GM approach
brought down this imbalance to 0.81 after 399 VM migrations while SM reduced the
initial average imbalance to 0.69 after only 145 VM migrations. In TEST-100, the ini-
tial average imbalance was 29.82. The SM approach required 223 migrations to reduce
the imbalance to 0.78 while MS-GM required more than three times this number of
migrations, 704, and minimized the imbalance to 0.82 which is higher than the result
of SM.

190 D. Sangar et al.

Fig. 18. MS-GM migrations vs SM migrations

Migrate Medium-Greedy Matching vs Stable Marriage. Figure 19 shows
a comparison of the results of Migrate Medium-Greedy Matching and Stable Mar-
riage approach obtained from three different tests. In TEST-10, the MM-GM approach
reduced the initial average imbalance to 2.59 while the SM approach yielded a more
than three times smaller imbalance result. From Fig. 20 we see that SM not only gave
better imbalance results but it also needed a smaller number of migrations. Also for
TEST-50 and TEST-100, SM provided better imbalance results compared to MM and
needed fewer migrations in order to reach these results.

Fig. 19. Migrate Medium-Greedy Matching (MM-GM) vs Stable Matching (SM)

Stable Marriage Matching for Load Distribution 191

Fig. 20. MM-GM migrations vs SM migrations

Migrate Largest-Greedy Matching vs Stable Marriage. Figure 21 shows
the results obtained from the three different tests for Migrate Largest-Greedy Matching
(ML-GM) and Stable Marriage (SM). In this comparison, we can observe that in all
the three tests, ML was not able to reduce the initial average imbalance to less than 2
while SM minimized the imbalance to less than 0.83 all cases. On the other hand, in
Fig. 22 we see that ML-GM required slightly fewer VM migrations than SM. This is
because when ML-GM migrates VMs it always moves the largest VMs and then the
total number of migrations will be smaller than for other methods.

Fig. 21. Migrate Largest-Greedy Matching (ML-GM) vs Stable Matching (SM)

192 D. Sangar et al.

Fig. 22. ML-GM migrations vs SM migrations

In TEST-100, the ML-GM approach reduced the initial average imbalance to 2.05
from 29.82 whereas SM minimized it to 0.78 which is a nearly three times better result.
However, ML-GM needed just 183 migrations and SM needed 41 more migrations to
reach its lowest imbalance state.

Overall Imbalance Reduction. Figure 23 illustrates how the average imbalance
was reduced as function of the number of migrations for the four algorithms tested for
the TEST-100 experiment. For the greedy matching algorithms, as the size of the VMs

Fig. 23. Imbalance reduction as function of number of migrations in the TEST-100
experiment.

Stable Marriage Matching for Load Distribution 193

moved decreases an increasing number of iterations are needed to reach the final state.
This is not surprising as a larger number of small VMs must be moved when reducing
an imbalance of the same magnitude compared to when moving large VMs. However,
migrating using small VMs leads to a final state with smaller imbalance. The final
state of the SM algorithm has on average the smallest imbalance and at the same time
it uses just a few more migrations to reach the final state compared to the ML-GM
algorithm.

Fig. 24. Imbalance reduction as function of number of iterations in the TEST-100
experiment.

Figure 24 shows the reduction of average imbalance as function of the number of
iterations needed to reach the final state of smallest possible imbalance. It is apparent
that the SM algorithm needs an order of magnitude fewer iterations to find imbalance
compared to the greedy algorithms. This is for a large part due to the fact that the SM
algorithm for each iteration migrates VMs between all the bins in parallel while the
GM algorithms migrates just a single VM for each iteration. Nevertheless, this means
that the SM algorithm in a real data center will reach a balanced state much faster
than the other algorithms.

Figure 25 shows the average imbalance reduction of our proposed SM algorithm as
function of number of iterations. In the first few iterations the reduction ratio is very
high while for the last few iterations the reduction in average imbalance is very small
as the optimal balance is reached.

194 D. Sangar et al.

Fig. 25. Reduction of imbalance as function of iterations for the Stable Marriage algo-
rithm in the TEST-100 experiment.

Figure 26 illustrates how the number of migrations varies as the iterations of our
proposed SM algorithm is performed. In the first iteration, 50 VMs are migrated from
50 overloaded servers to 50 underloaded servers at the same time, meaning that all of
the 100 bins of the TEST-100 experiment take part. In the second iteration 40 parallel
migrations take place, meaning that 20 of the bins have already reach a state close to
be balanced. The SM algorithm continues in the same manner efficiently reducing the
imbalance and reaches a balanced state after only 11 iterations. On the other hand,

Fig. 26. Number of migrations as function of number of iterations for the Stable Mar-
riage algorithm in the TEST-100 experiment.

Stable Marriage Matching for Load Distribution 195

the greedy matching algorithms migrates just a single VM for each iteration and thus
spend much more time reaching a balanced situation.

Performance Optimization. In the case of load management, the optimal solution
is to have a perfect load balance between servers, i.e., to reduce the imbalance to 0.
The load distribution problem is known to be NP hard and hence intractable for large
systems [9,18]. Our goal is to design a system that yields near-optimal solutions.

Fig. 27. Performance optimization of the proposed Stable Marriage and greedy match-
ing algorithms.

Figure 27 illustrates the performance optimization of the proposed stable marriage
and three different greedy matching algorithms in terms of imbalance reduction in three
different test cases. In all three test scenarios the proposed stable marriage algorithm
is clearly best, while ML-GM and MM-GM have the worst optimization percentage.
However, in the case of test3, the MS-GM performance is close to the one of the SM
algorithm. But as we already presented in Fig. 23 and Fig. 24, SM-GM requires a
larger number of migrations and iterations which leads to extra overhead in terms of
processing and time.

In a recent paper dealing with load balanced task scheduling for cloud comput-
ing, Panda et al. [22] propose a new algorithm reckoned as Probabilistic approach for
Load Balancing (PLB). They run extensive simulations and compare their results with
several algorithms which have been used in this context namely, Random, Cloud List
Scheduling (CLS), Greedy and Round Robin (RR) [30]. The problem of load balancing
tasks on VMs is comparable to load balancing VMs on physical servers and one of their
Key Performance Indicators (KPI) is the dispersion of a set of loads from its average
load, which is comparable to the load imbalance metric reported above [23]. In the
simulations of Panda et al. the results of the Greedy algorithm are roughly equal to
the performance of the other classical algorithms. We see this as an indication of how
well our SM algorithm performs compared to other algorithms traditionally used for
load balancing in cloud computing.

196 D. Sangar et al.

7 Conclusion

In our preliminary work [24], we addressed the problem of homogenizing the load in
a cloud data center using the concept of the Stable Marriage algorithm. The results
were promising and demonstrated the ability of the proposed algorithms to efficiently
distribute the load across different physical servers. Although the proposed algorithms
in [24] are based on the principles of Stable Marriage, they have a greedy matching
principle and fail to replicate and incarnate the ideas of Stable Marriage theory in a
proper way. Furthermore, in the analysis of results we found that the Migrate Smallest
method gives better imbalance results but requires a large number of migrations while
Migrate Smallest requires smaller number of migrations but at the cost of a larger final
imbalance. To overcome this problem we propose in this paper a more conform Stable
Marriage algorithm and compare its results to three different types of greedy matching
algorithms. Based on the results presented in Sect. 6.4, we can conclude that the Stable
Marriage algorithm yields the lowest imbalance result combined with the lowest number
of migrations. A single exception is that the Migrate Largest algorithm needs slightly
fewer migrations, but its final imbalance is then larger. The Stable Marriage algorithm
requires three times fewer migrations and provides the lowest imbalance compared to
the other two greedy algorithms. Our results also show that the number of iterations
needed to reach a balanced state is an order of magnitude smaller than the number of
iterations needed by the three greedy matching algorithms.

References

1. Al-Dhuraibi, Y., Paraiso, F., Djarallah, N., Merle, P.: Elasticity in cloud computing:
state of the art and research challenges. IEEE Trans. Serv. Comput. 11(2), 430–447
(2017)

2. Amazon: Serverless computing (2020). https://aws.amazon.com/serverless/.
Accessed 17 June 2020

3. Barbagallo, D., Di Nitto, E., Dubois, D.J., Mirandola, R.: A bio-inspired algorithm
for energy optimization in a self-organizing data center. In: Weyns, D., Malek, S.,
de Lemos, R., Andersson, J. (eds.) SOAR 2009. LNCS, vol. 6090, pp. 127–151.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14412-7 7

4. Barroso, L.A., Hölzle, U., Ranganathan, P.: The datacenter as a computer: design-
ing warehouse-scale machines. Synth. Lect. Comput. Archit. 13(3), i-189 (2018)

5. Bonvin, N., Papaioannou, T.G., Aberer, K.: Autonomic SLA-driven provisioning
for cloud applications. In: 2011 11th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing, pp. 434–443. IEEE (2011)

6. Calcavecchia, N.M., Caprarescu, B.A., Di Nitto, E., Dubois, D.J., Petcu, D.:
DEPAS: a decentralized probabilistic algorithm for auto-scaling. Computing 94(8–
10), 701–730 (2012)

7. Castro, P., Ishakian, V., Muthusamy, V., Slominski, A.: The rise of serverless com-
puting. Commun. ACM 62(12), 44–54 (2019)

8. Chieu, T.C., Chan, H.: Dynamic resource allocation via distributed decisions in
cloud environment. In: 2011 IEEE 8th International Conference on e-Business
Engineering, pp. 125–130. IEEE (2011)

9. Garey, M.R., Johnson, D.S.: Computers and Intractability, vol. 174. Freeman, San
Francisco (1979)

https://aws.amazon.com/serverless/
https://doi.org/10.1007/978-3-642-14412-7_7

Stable Marriage Matching for Load Distribution 197

10. Hummaida, A.R., Paton, N.W., Sakellariou, R.: Adaptation in cloud resource con-
figuration: a survey. J. Cloud Comput. 5(1), 1–16 (2016). https://doi.org/10.1186/
s13677-016-0057-9

11. Jangda, A., Pinckney, D., Brun, Y., Guha, A.: Formal foundations of serverless
computing. In: Proceedings of the ACM on Programming Languages 3 (OOPSLA),
pp. 1–26 (2019)

12. Jin, C., Bai, X., Yang, C., Mao, W., Xu, X.: A review of power consumption models
of servers in data centers. Appl. Energy 265, 114806 (2020)

13. Kalyvianaki, E., Charalambous, T., Hand, S.: Self-adaptive and self-configured
CPU resource provisioning for virtualized servers using Kalman filters. In: Proceed-
ings of the 6th International Conference on Autonomic Computing, pp. 117–126
(2009)

14. Levine, D.K.: Introduction to the special issue in honor of Lloyd Shapley: eight
topics in game theory. Games Econ. Behav. 108, 1–12 (2018). https://doi.
org/10.1016/j.geb.2018.05.001. http://www.sciencedirect.com/science/article/pii/
S089982561830068X. Special Issue in Honor of Lloyd Shapley: Seven Topics in
Game Theory

15. Lloyd Shapley, A.R.: Stable matching: theory, evidence, and practical design.
https://www.nobelprize.org/uploads/2018/06/popular-economicsciences2012.pdf

16. Manlove, D.F.: Algorithmics of Matching Under Preferences, vol. 2. World Scien-
tific, Singapore (2013)

17. Marzolla, M., Babaoglu, O., Panzieri, F.: Server consolidation in clouds through
gossiping. In: 2011 IEEE International Symposium on a World of Wireless, Mobile
and Multimedia Networks (WoWMoM), pp. 1–6. IEEE (2011)

18. Mishra, S.K., Sahoo, B., Parida, P.P.: Load balancing in cloud computing: a big
picture. J. King Saud Univ. Comput. Inf. Sci. 32(2), 149–158 (2020)

19. Muñoz-Escóı, F.D., Bernabéu-Aubán, J.M.: A survey on elasticity management in
PaaS systems. Computing 99(7), 617–656 (2017)

20. Najjar, A., Serpaggi, X., Gravier, C., Boissier, O.: Multi-agent negotiation for user-
centric elasticity management in the cloud. In: 2013 IEEE/ACM 6th International
Conference on Utility and Cloud Computing, pp. 357–362. IEEE (2013)

21. Naskos, A., Gounaris, A., Sioutas, S.: Cloud elasticity: a survey. In: Karydis, I.,
Sioutas, S., Triantafillou, P., Tsoumakos, D. (eds.) ALGOCLOUD 2015. LNCS,
vol. 9511, pp. 151–167. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
29919-8 12

22. Panda, S.K., Jana, P.K.: Load balanced task scheduling for cloud computing: a
probabilistic approach. Knowl. Inf. Syst. 61(3), 1607–1631 (2019)

23. Rao, A., Lakshminarayanan, K., Surana, S., Karp, R., Stoica, I.: Load balancing in
structured P2P systems. In: Kaashoek, M.F., Stoica, I. (eds.) IPTPS 2003. LNCS,
vol. 2735, pp. 68–79. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-
540-45172-3 6

24. Sangar, D., Haugerud, H., Yazidi, A., Begnum, K.: A decentralized approach for
homogenizing load distribution: in cloud data center based on stable marriage
matching. In: Proceedings of the 11th International Conference on Management of
Digital EcoSystems, pp. 292–299 (2019)

25. Sedaghat, M., Hernández-Rodriguez, F., Elmroth, E., Girdzijauskas, S.: Divide
the task, multiply the outcome: cooperative VM consolidation. In: 2014 IEEE 6th
International Conference on Cloud Computing Technology and Science (Cloud-
Com), pp. 300–305. IEEE (2014)

https://doi.org/10.1186/s13677-016-0057-9
https://doi.org/10.1186/s13677-016-0057-9
https://doi.org/10.1016/j.geb.2018.05.001
https://doi.org/10.1016/j.geb.2018.05.001
http://www.sciencedirect.com/science/article/pii/S089982561830068X
http://www.sciencedirect.com/science/article/pii/S089982561830068X
https://www.nobelprize.org/uploads/2018/06/popular-economicsciences2012.pdf
https://doi.org/10.1007/978-3-319-29919-8_12
https://doi.org/10.1007/978-3-319-29919-8_12
https://doi.org/10.1007/978-3-540-45172-3_6
https://doi.org/10.1007/978-3-540-45172-3_6

198 D. Sangar et al.

26. Siebenhaar, M., Nguyen, T.A.B., Lampe, U., Schuller, D., Steinmetz, R.: Concur-
rent negotiations in cloud-based systems. In: Vanmechelen, K., Altmann, J., Rana,
O.F. (eds.) GECON 2011. LNCS, vol. 7150, pp. 17–31. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-28675-9 2

27. Taibi, D., El Ioini, N., Pahl, C., Niederkofler, J.R.S.: Serverless cloud computing
(function-as-a-service) patterns: a multivocal literature review. In: Proceedings
of the 10th International Conference on Cloud Computing and Services Science
(CLOSER 2020) (2020)

28. Vasques, T.L., Moura, P., de Almeida, A.: A review on energy efficiency and
demand response with focus on small and medium data centers. Energy Effic.
12(5), 1399–1428 (2018). https://doi.org/10.1007/s12053-018-9753-2

29. Wuhib, F., Stadler, R., Lindgren, H.: Dynamic resource allocation with manage-
ment objectives-implementation for an openstack cloud. In: 2012 8th International
Conference on Network and Service Management (CNSM) and 2012 Workshop on
Systems Virtualiztion Management (SVM), pp. 309–315. IEEE (2012)

30. Xu, M., Tian, W., Buyya, R.: A survey on load balancing algorithms for virtual
machines placement in cloud computing. Concurr. Comput. Pract. Exp. 29(12),
e4123 (2017)

https://doi.org/10.1007/978-3-642-28675-9_2
https://doi.org/10.1007/s12053-018-9753-2

A Sentiment Analysis Software
Framework for the Support of Business
Information Architecture in the Tourist

Sector

Javier Murga1, Gianpierre Zapata2, Heyul Chavez3, Carlos Raymundo4(B),
Luis Rivera5, Francisco Domı́nguez5, Javier M. Moguerza5,

and José Maŕıa Álvarez6

1 Ingenieŕıa de Software,
Universidad Peruana de Ciencias Aplicadas, Lima, Peru

u201111811@upc.edu.pe
2 Ingenieŕıa de Sistemas de Información,

Universidad Peruana de Ciencias Aplicadas, Lima, Peru
u201214895@upc.edu.pe

3 Ingenieŕıa de Telecomunicaciones y Redes,
Universidad Peruana de Ciencias Aplicadas, Lima, Peru

u812426@upc.edu.pe
4 Dirección de Investigación,

Universidad Peruana de Ciencias Aplicadas, Lima, Peru
carlos.raymundo@upc.edu.pe

5 Escuela Superior de Ingenieŕıa Informática,
Universidad Rey Juan Carlos, Mostoles, Madrid, Spain

lm.rivera@alumnos.urjc.es, {francisco.dominguez,javier.moguerza}@urjc.es
6 Department of Computer Science and Engineering,

Universidad Carlos III, Madrid, Spain
joalvare@inf.uc3m.es

Abstract. In recent years, the increased use of digital tools within the
Peruvian tourism industry has created a corresponding increase in rev-
enues. However, both factors have caused increased competition in the
sector that in turn puts pressure on small and medium enterprises’ (SME)
revenues and profitability. This study aims to apply neural network based
sentiment analysis on social networks to generate a new information
search channel that provides a global understanding of user trends and
preferences in the tourism sector. A working data-analysis framework
will be developed and integrated with tools from the cloud to allow a
visual assessment of high probability outcomes based on historical data,
to help SMEs estimate the number of tourists arriving and places they
want to visit, so that they can generate desirable travel packages in
advance, reduce logistics costs, increase sales, and ultimately improve
both quality and precision of customer service.

c© Springer-Verlag GmbH Germany, part of Springer Nature 2020
A. Hameurlain et al. (Eds.) TLDKS XLV, LNCS 12390, pp. 199–219, 2020.
https://doi.org/10.1007/978-3-662-62308-4_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-62308-4_8&domain=pdf
https://doi.org/10.1007/978-3-662-62308-4_8

200 J. Murga et al.

Keywords: Sentiment analysis · Framework · Predictive · Tourism ·
Cloud computing

1 Introduction

The tourism industry is an important sector of the world economy. In 2018, global
tourism increased 6% according to the United Nations World Tourism Organiza-
tion (UNWTO), and it is expected to in-crease by 3% to 4% in 2019. Despite the
political and economic conflicts that continually arise around the world, global
tourism metrics continues to rise. According to the Ministry of International
Commerce and Tourism (MINCETUR in Spanish), in 2018, approximately 4.4
million foreign tourists visited Peru, 9.6% more than 2017, and generated US$
4.9 billion of revenue [1].

SMEs constitute the majority of tourism service providers nationwide, how-
ever, they lack the infrastructure and resources to provide products and services
to a greater number of people, since in order to be profitable they need to have a
minimum of packages purchased. For this reason, if they do not manage to have
this minimum of packages purchased, they need to outsource certain services to
a larger tourism company and reduce their profit margins. In addition to reduced
profits, there is considerable risk, as separating some of these services requires a
non-refundable pre-deposit.

With this study, a framework is proposed that will predict the number of
tourists who will visit an area and the packages they want to take, through
a long-term sentiment analysis and a short-term, real-time analysis of Twitter
posts. By applying sentiment analysis to these comments and posts, the system
estimates a general level of satisfaction with the destinations visited and can
thus estimate an increase or decrease in tourists during specific time periods.
These statistics will allow SMEs to significantly reduce the risk of not reaching
the minimum of packages purchased, and will even allow them to start building
personalized tour packages as they will meet the interests of tourists, and can
improve their profit margins.

2 Literature Review

2.1 Analysis of Different Languages

In the relevant research of language analysis, [3] developed a sentiment analysis
system for the two most used languages in Malaysia, English and Malay, focusing
on the lexicon, as the majority of the published research on sentiment analysis
has concentrated on the vocabularies of the English lexicon. However, [4] pre-
sented a language-independent sentiment analysis model, with the domain based
on n-grams of characters to improve classifier performance using the surrounding
context. The results confirmed that this approach of integrating the surrounding
context was more effective for data sets of different languages and domains. This
suggests that a model based on n-grams of characters for data sets of multiple

A Sentiment Analysis Software Framework 201

domains and languages is effective. Thus, a simple all-in-one classifier, that uses
a mix of labeled data in multiple languages (or domains) to train a model of sen-
timent classification, can compete with more sophisticated domain or language
adaptation techniques. On the other hand, [5] presents an innovative solution
that considers space and temporal dimensions, using automatic geolocation tech-
niques, for sentiment analysis of users that have a sense of belonging to a group.
Geolocation is language independent and does not make previous assumptions
about the users.

In the case of the articles mentioned above, the outcomes show that the sen-
timent analysis can be reliable. However, the proposed methods in [3,4] and [5]
produce average accuracy due to the use of the slang, abbreviated words and
dialects widely used in social networks and thus difficult to decipher.

2.2 Sentiment Analysis in the Tourism Industry

In relation to sentiment analysis in the tourism industry, [6] and [7] designed a
model to analyze hotel customers’ comments, [8] analyzed the flight experience of
airline passengers from their social network comments, and [9] applied different
sentiment analysis approaches for tourism in general, reviewing and evaluating
them in terms of data sets used and performance relative to key evaluation
metrics.

Nevertheless, most of the available hotel review or flight experience text
data sets lack labels. As they represent feelings, attitudes and opinions that are
commonly full of idiomatic expressions, onomatopoeias, homophones, phonemes,
alliterations and acronyms, they are difficult to decipher and require a large
amount of work to pre-process [6–8]. In particular, [8] uses sentiment analysis
techniques to analyze negative, neutral and positive feelings in relation to the
top ten airlines in the United States. And [9] outlines future research in tourism
analysis as part of an expansive, Big Data approach.

2.3 Social Network

Regarding social networks, [10] developed a Sentiment Analysis Engine (SAE)
that estimates the sentiment of users in terms of positive, negative or neutral
polarity. Their SAE is based on the classification of an automatic text learning
model, trained by real data flows deriving from different social network platforms
that specialize in user opinion (for example, TripAdvisor). Monitoring and senti-
ment classification are then carried out on the continuously extracted comments
from publicly available social networks such as Facebook, Twitter and Insta-
gram, a procedure that [11] performs as well. In a specific case, [12] presents a
model for analyzing the impact of a brand by fusing real data collected from
Twitter over a 14-month period, and also analyzes the revisions that covers the
existing methods and approaches in the sentiment analysis. In a more general
case, [13] suggests a framework consisting of analysis modules and linguistic
resources where two main analysis modules are run by a classification algorithm
that automatically assigns class appropriate labels of intent and sentiment for

202 J. Murga et al.

a given text. However, [14] demonstrates that addressing negation can improve
the final system and thus developed an unsupervised polarity classification sys-
tem, based on the integration of external knowledge. To evaluate this influence, a
group of tweets were first analyzed by their suggested unsupervised polarity clas-
sification system to detect negation, and then under a sentiment analysis that
considered their detected negation, and a control that didn’t. As seen above,
traditional sentiment analysis emphasizes the classification of web comments in
positive, neutral and negative categories. However, [15] goes beyond classifica-
tion of sentiments by focusing on techniques that can detect the specific topics
that correspond to positive and negative opinions. Combining these techniques
can help understand the general reach of sentiment as well as sentiment drivers.
Contrary to the articles previously mentioned, [16] analyzes the textual content
as well as the visual one. As the old saying goes, “a picture is worth a thousand
words”, and the image tweet is a great example of a multimodal sentiment.

In conclusion, each article reviewed here has a different approach in analyz-
ing social network sentiment, as they attack the problem from their individual
perspective. For example, [16] focuses on the sentiment analysis based on visual
and multimedia information. The results obtained in [14] reveal that the anal-
ysis of negation can greatly improve the accuracy of the final system. And [11]
concludes that information extraction techniques based on Twitter allow for the
collection of direct answers from a target public, and therefore provide a valu-
able understanding of public sentiment to predict an overall opinion of a specific
product. In order to train its classification model, [13] suggests the linguistic
resources of corpus and lexicon. Corpus consists of a collection of texts manually
labeled with the appropriate classes of intention and sentiment. Lexicon consists
of general terms of opinions and clusters of words that help to identify the inten-
tionality and the sentiment. This later process requires manual entry of a large
quantity of information and is therefore quite complicated and time-intensive.

2.4 Types of Neural Networks

In recent years, deep artificial neural networks, including recurrents, have won
numerous pattern recognition and machine learning competitions. [17] summa-
rizes succinctly the significant work of the last millennium. Shallow and deep
learners are distinguished by the depth of their credit allocation routes, which
are the chains of possibly learnable, causal links between actions and effects.
Deep supervised learning, non-supervised learning, reinforcement learning, evo-
lutive calculation, and indirect search of short programs that codify big and deep
networks are reviewed. [18] looks to provide a complete tutorial and survey about
recent developments, with the objective of enabling the efficient processing of
deep neural networks (DNNs). Specifically, it provides a general vision of DNNs
and analyzes several hardware platforms and architectures that can run them.
It also summarizes the various development resources that allow researchers and
professionals to get started in the field. [19] and [20] each developed Sentiment
Analysis (SA) based on experiments in different Convolutional Neural Network
(CNN) configurations, with [19] implemented on Hindi movie reviews collected

A Sentiment Analysis Software Framework 203

from newspapers and online websites. The dataset was manually annotated by
three native hindi speakers for model training preparation and experiments were
carried out by using different numbers of convolution layers with a variable
quantity and size of filters. [21] presents a similar model to [19], with neural
convolution networks. However, the original model of convolution neural net-
works ignores sentence structure, a very important aspect of textual sentiment
analysis. For this reason, [21] adds the association of parts to the convolution
neural network, which allows the model to understand the sentence structure.
To counteract a lack of data and actually improve the model’s generalization
capacity, [21] employs a generative adversarial network to obtain the common
characteristics associated with emotions. Also, [22] suggests a sentiment classi-
fication model with a convolutional neural network that uses representations of
several words to represent words that have not been pre-trained. The experimen-
tal outcomes of three data sets show that the suggested model, with an additional
character-level integration method, improves the accuracy of the sentiment clas-
sification. On the other hand, [23] suggests a multiple attention network (MAN)
for sentiment analysis that learns word and phrase level characteristics. MAN
uses the vectorial representation of the input sequence as an objective in the
first attention layer to locate the words that contribute to the sentiment of the
sentence.

As has been shown, there are many models and configurations of neural
networks, some more effective than others depending on their application and
desired analysis. This is the case with [21], as opposed to [19], because it can
overcome a lack of data availability. In the case of [23], where even though
an individual word can indicate subjectivity, it can give insufficient context to
determine the orientation of the sentiment. The authors posit that this sentiment
analysis usually requires multiple steps of reasoning. Therefore, they applied a
second attention layer to explore the information of the phrase around the key
word.

3 Proposed Model

3.1 Model Analysis

To support SMEs, we present the following framework (Fig. 1) that analyzes
information from social networks on a cloud platform to create a tourism prefer-
ence metric that helps create desirable tourism packages. This is very important
for SME tourist agencies because their business model relies on presenting desir-
able travel packages for travelers to visit tourist destinations. Historically, agen-
cies used word of mouth information and in some cases, surveys, to design their
travel packages, both of which lacked reliability. With the suggested framework,
information is collected from social networks and review sites and processed in a
low-cost, high performance, cloud platform that uses neural networks to analyze
and calculate traveler sentiment. These outcomes are stored in a datastore where
metrics/reports can be generated in the future. Performance indicators and rep-
resentations of place and time trends will show where tourists feel more satisfied

204 J. Murga et al.

or motivated. With this information, tourist agencies can create better packages
that reflect historic travelers’ mood, and a more personalized sales environment.

Fig. 1. Framework.

3.2 Components

Figure 2 shows the process of extraction of the information from Google and
Twitter, first by a filter (hashtag), then the sentiment analysis to generate the
charts that will present the trends and tourist satisfaction in relation to the
different destinations.

Input. For data input we use two platforms: Twitter and Google Places/Maps.
The Twitter platform will be used for measuring user motivation at a specific
time, because this network fits with this type of analysis.

Twitter/Motivation The motivation data source will be Twitter, a platform
commonly known for sharing people’s mood or opinion at a specific moment
and thus effective for measuring tourist motivation at different locations in real
time. This information, related to trips, tourism, etc., will be collected in a
massive way using related hashtags, which will provide the first source of data
about tourist destinations during specific time periods.

Google Places/Maps Satisfaction. The second platform that will be used is
Google Places/Maps. This network will be used for quantifying user satisfaction
with registered places as this network focuses on opinions and levels of customer
service. Google Places/Maps generates a more historical type of information as
it doesn’t operate with the real time aspect of Twitter, but provides us a more
specific channel for information.

A Sentiment Analysis Software Framework 205

Cloud. To process the information, a Cloud platform will be used to help SMEs
reduce operating costs (servers purchases, trainings, implementation, mainte-
nance, etc.) and provide an market accepted processing speed and uptime stan-
dard of service.

Fig. 2. Information analysis process.

Web Server.

– Tools.
• Sent analysis. We will use neural networks for sentiment analysis on the

massive information collected from Twitter and Google reviews to mea-
sure satisfaction/motivation for a specific moment and destination and
ultimately quantify targeted users’ moods. As the amount of data due to
the number of opinions found in social networks is so large, the historical
method of surveys or word of mouth opinions cannot possibly match the
breadth of information from these networks. This information is vital for
generating metrics and establishing trends.

• Db. After being retrieved, the information will be stored in a database
for persistence and accessibility for the application of our neural network

206 J. Murga et al.

to assess our main parameters: travel trends and popular destinations, or
those destinations that present an elevated positive emotion.

• Neural network. For the sentiment analysis we use neural networks to cal-
culate the emotion users display on social networks. The neural network
for this study is Deep Feed Forward [24]. This network combines the wide
and deep models to allow a high capacity of abstraction and processing
speed. This network will use the previously extracted, transformed and
loaded social network input data for its analysis.

– System.
• Analyzed data. After the social network data is organized by the neural

network, it is stored in a datastore for metric and trend analysis.
• Organized Data. At this stage the analyzed data is organized for data

mining by separation/granularizating for time and location to create a
decision-making spectrum for the creation of travel packages.

– Safety Support. Safety support will manage user access/communication/
sessions for better organization and customer service.

Output. Organized data will be presented through charts and indicators to
show destination trends with respect to specific time periods to improve the
selection or creation of tour packages and thus provide a better experience to
customers.

Trends Charts. These charts will show the evolution of social network users’
moods regarding the tour destinations, presenting a timeline that will help pre-
dict when the travel packages could have the best reception.

KPIs. These indicators will be used to evaluate the acceptance across different
destinations at specific moments in time.

4 Validation

4.1 Case

To validate the model presented, we used a case study to demonstrate that the
proposal successfully solves the needs of SMEs in the Peruvian tourism market.

4.2 OT S.A.C. Company Information

OT S.A.C is a small tourist agency business that sells and distributes tour pack-
ages, with ten employees and monthly revenues of approximately $29,000. It is
located in the district of Santiago de Surco, in the city of Lima, Peru. Its main
suppliers are wholesale companies that provide it with a list of packages for sale
and distribution. In turn, OT S.A.C. sells custom packages as requested by their
clients. From its early stages, according to national regulations regarding tourist
package distributors, this company benefited by its portfolio of existing clients.

A Sentiment Analysis Software Framework 207

As new companies entered the market in the same category and with the same
products, price competition began and spurred a sudden growth in the sector.

Under these circumstances, the owners and managers focused on the use of
new technologies to maintain or improve sales levels. That is why we proposed
this emerging technology process model to OT S.A.C.

4.3 Implementation

In Fig. 3 the ETL (Extraction, Transform and Load) process is shown. This
process is used for the ex-traction of data from the social networks, the trans-
formation of those data, and the loading of those data into the database.

4.4 Program/APIs

For the framework implementation we developed a web tool that collects data
from the Twitter and Google Places/Maps social networks using their respective
APIs. With the Twitter API, tweets at a specific time can be collected and fil-
tered by hashtags chosen for their relevance/closeness to tourism topics (Fig. 4).
This data is filtered and cleaned of special characters, URLs, emoticons, and
other factors that can negatively affect the sentiment analysis. Then, the data
is sent to the cloud service where it will be processed and stored.

All reviews will collect the geographic location information they make ref-
erence to (Fig. 5). This information will be sent afterward to the API of the
sentiment analysis tool. This will evaluate each request and will send the output
of the analysis to the database API for future use.

4.5 Sentiment Analysis

For the implementation of sentiment analysis, 3 types of neural networks were
compared: densely connected neural network (basic neural network), convolu-
tional neural network (CNN) and short-term memory network (LSTM), which
is a variant of the networks recurrent neural. To choose which type of neu-
ral network has the best performance, the 3 models were trained with the same
database. The database used was [25], which contains sentences labeled with pos-
itive or negative feelings. In total there were 2748 sentences, which are labeled
with a score, 1 (for positive) and 0 (for negative), as shown in (Fig. 6). The
sentences come from three websites: imdb.com, amazon.com and yelp.com.

Densely Donnected Neural Network. The first neural network to be tested
is a simple deep neural network. The embedment layer will have an input length
of 100, the dimension of the output vector will also be 100, and the dense layer of
10,000 parameters. For the activation function, the sigmoid function was used.
The Adam optimizer was used to compile the model. For the training of the
neural network, 80% of the data was used, and 20% for validation. At the end
of the training, the training precision was around 81.9% and the test precision

http://www.imdb.com
http://www.amazon.com
http://www.yelp.com

208 J. Murga et al.

Fig. 3. ETL – Extraction, Transform, Load.

Fig. 4. Hashtags used for the filtering.

A Sentiment Analysis Software Framework 209

Fig. 5. Filtered, cleaned and stored tweets.

Fig. 6. Positive and negative sentences.

was 73.2% (Fig. 7). This means that the model is over-fitted, this occurs when
the model performs better in the training set than the test set. Ideally, the
performance difference between sets should be minimal.

Convolutional Neural Network (CNN). The convolutional neural network
is a type of network that is mainly used for the classification of 2D data, such as
images. A convolutional network tries to find specific characteristics in an image.
Convolutional neural networks have also been found to work well with text data.
Although text data is one-dimensional, 1D convolutional neural networks can be
used to extract features from our data.

The created CNN has 1 convolutional layer and 1 grouping layer. The one-
dimensional convolutional layer has 128 neurons. The kernel size is 5 and the

210 J. Murga et al.

activation function used is sigmoid. As can be seen in (Fig. 8), the training
precision for CNN is 92.5%, and the test precision 83%.

Recurrent Neural Network (LSTM). Lastly, the LSTM, which is a network
that works well with sequence data such as text, which is a sequence of words,
will be tested. In this case, the LSTM layer will have 128 neurons, just like CNN.
As can be seen in (Fig. 9), the training precision is 86% and the test precision
is 85%, higher than that of CNN.

The result shows that the difference between the precision values for the train-
ing and the test sets is much smaller compared to the simple neural network and
CNN. Furthermore, the difference between the loss values is also insignificant,
therefore, it can be concluded that LSTM is the best algorithm for this case.

For text analysis, it is first cleaned of HTML code and symbols (Fig. 10)
Then the feeling of the phrase is predicted. the sigmoid function predicts a

floating value between 0 and 1. If the value is less than 0.5, the sentiment is
considered negative, and if it is greater than 0.5, the sentiment is considered
positive. The result is as follows (Fig. 11):

The sentiment value for the instance is 0.87, which means that the sentiment
is positive.

Finally, these results are presented in web-based statistical tables, where users
can select the statistics they need for making their decisions (Fig. 12).

Figure 13 shows a chart generated by the system, where satisfaction is shown
in different countries, where 1 is a very positive comment and -1 is a very negative
one. This chart has been generated from 5,000 tweets that were filtered to show
only comments made in June 2019.

4.6 Implementation Outcomes

As a result of the use of the framework, data collected from social networks is pro-
cessed by the sentiment analysis tool and organized so that users can understand
the tourism trends that occur during specific time periods. Through charts or a
trend line, users will be able to see when the highest positive sentiment occurs
for a specific destination, and thus present travel packages with a high probabil-
ity of desirability and acceptance. Through this framework, the travel packages
presented will have a higher probability of customer satisfaction. The outcomes
of Twitter analysis we will be able to rate the users’ mood or motivation across
time. The outcomes from Google Reviews analysis will concern satisfaction lev-
els, helping quantify the quality level of services offered at different destinations.
These two metrics, generated through the experiences shared on social network,
will help agencies design better travel packages.

4.7 Segmentation

The scenarios presented were generated from the data collected throughout the
project. Our first scenario presents the picture of travel and tourism sentiment

A Sentiment Analysis Software Framework 211

Fig. 7. Densely donnected neural network.

from different countries. The next scenario shows the number of tweets about
specific tourism topics, which reveals to us the mood of a country regarding those
topics. The last shows us raw data that companies can use to build their charts
and metrics. With these scenarios, we can have a wider dataset from which to
analyze tourism topics from different countries across time (Fig. 14).

212 J. Murga et al.

Fig. 8. Convolutional neural network

Scenario 1 – Average Ranking of Countries per Month. The preceding
chart shows the average ranking obtained from tweets collected in June and
processed through the sentiment analysis tool. It shows what countries have
presented a positive attitude related to travel and tourism on social networks.
From this, we can visualize which countries have a better reception to tourism
topics and can evaluate which periods of time would be better for trip planning
and travel package presentation (Fig. 15).

A Sentiment Analysis Software Framework 213

Fig. 9. Recurrent neural network

Fig. 10. Clean text.

Fig. 11. Result of sentiment analysis.

214 J. Murga et al.

Fig. 12. Web platform.

Fig. 13. Generated chart.

Scenario 2 – Sum of the Score of Countries per Day. In this chart, we
show the sum of the sentiment analysis scores of tweets on specific days, by
country. The chart is segmented by days, to present a more detailed vision of
the sentiment in different countries on travel and tourism topics. The score is

A Sentiment Analysis Software Framework 215

Fig. 14. Average ranking of countries per month.

Fig. 15. Sum of the score of countries per day.

added to give a dimension to the number of tweets generated and to see what
amount of people are discussing the topic in social networks. By taking into
account the number of tweets generated and the scores obtained, we can have
an idea of the tourism picture in different countries. With this, companies can
make better decisions as to what are the best times to organize tourist packages
(Fig. 16).

Fig. 16. Analyzed Tweets.

Scenario 3 – Analyzed Tweets. This chart shows an abstract from the
obtained tweets. The table shows the time where the tweet was collected and

216 J. Murga et al.

its sentiment analysis. The Magnitude is the numeric equivalent of the intensity
of the sentiment shown in the tweet, while the Score shows how positive or
negative the tweet has been rated. With this information we can generate charts
and metrics to help with company decision-making.

4.8 Case Study Result

After the process model implementation and thanks to the support of the web
tool, OT SAC reduced decision-making time by 60%, to an average of 6 days (in
a 3–8 day range).

Due to the support provided by the sentiment analysis, OT SAC was able to
reduce logistic expenditures, as seen in Table 1. In addition to increasing travel
package sales, they were able to create their own packages, reducing dependence
on a wholesale company (See Table 2).

Table 1. Loss by logistic expenditures.

Loss caused by logistical expenses ($)

Before After

Annual expenses caused
by price difference

4824.24 Annual expenses caused
by price difference

3600

Annual loss caused by
purchases

11,104.3 Annual loss caused by
purchases

7773.01

Loss % 57% Loss % 27%

Indicator Critic Indicator Positive

Table 2. Before and after sales comparison.

Sales comparison ($)

Before After

Separation of Package with Wholesaler 10% Separation of Package with Wholesaler 0%

Coordination with transport 5% Coordination with transport 5%

Average sales 6 Average sales 13

Total price $ 2810 Total price $ 2810

Gain per package (20%–10%) $ 281 Gain per package (20%) $ 562

Total gain $1686 Total gain $ 7384

Regarding the results, we can say the following:
Before implementing the process model, the company lost customers for not

responding to requirements on time, and lost package reservations due to not con-
sidering clients’ needs. However, after implementation, not only could customers’
needs be more effectively considered, but the company was able to negotiate more
favorable rates with suppliers that will generate a greater profit margin.

A Sentiment Analysis Software Framework 217

5 Discussion

The neural network has been trained with sentences in English, however, it can
be trained with any other language. An already analyzed database was used,
since it requires a large number of already analyzed sentences to train the neural
network, however, for it to perform better it is recommended to train it with
more updated comments and using slangs, so that it can analyze the comments
with more precision.

The proposed system does not interpret emojis, and in many comments the
sentiment information is contained in these, that is why, it is recommended to
assign a word to each emoji and train the network with these values so that you
can later interpret the emojis.

6 Conclusions

The results show that the framework will help SME tourist agencies use historical
data and sentiment analysis to offer more desirable, customized travel packages.

The generation of charts and trends will vary according to the user necessity,
by place, time, etc., and is immediate since all of the information required is
organized and stored in a datastore in the cloud.

Some tweets do not present any sentiment by text, but rather through a
picture attached to the tweet. Further research should investigate adding a sys-
tem of sentiment analysis of images to the developed text-based framework to
provide an even more accurate analysis.

References

1. Confederación Nacional de Instituciones Empresariales Privadas - CONFIEP
(2019). Turismo en Perú (21 Noviembre del 2019). Recuperado de https://www.
confiep.org.pe/noticias/economia/turismo-en-peru/

2. Zapata, G., Murga, J., Raymundo, C., Dominguez, F., Moguerza, J.M., Alvarez,
J.M.: Business information architecture for successful project implementation
based on sentiment analysis in the tourist sector. J. Intell. Inf. Syst. 53(3), 563–585
(2019). https://doi.org/10.1007/s10844-019-00564-x

3. Zabha, N., Ayop, Z., Anawar, S., Erman, H., Zainal, Z.: Developing Cross-lingual
Sentiment Analysis of Malay Twitter Data Using Lexicon-based Approach. Int. J.
Adv. Comput. Sci. Appl. (2019). https://doi.org/10.14569/IJACSA.2019.0100146

4. Kincl, T., Novák, M., Pribil, J.: Improving sentiment analysis performance on mor-
phologically rich languages: language and domain independent approach. Comput.
Speech Lang. 56, 36–51 (2019). https://doi.org/10.1016/j.csl.2019.01.001

5. Fernández-Gavilanes, M., Juncal-Martńnez, J., Méndez, S., Costa-Montenegro, E.,
Castaño, F.: Differentiating users by language and location estimation in senti-
ment analisys of informal text during major public events. Expert Syst. Appl. 117
(2018). https://doi.org/10.1016/j.eswa.2018.09.007

6. Zvarevashe, K., Olugbara, O.: A framework for sentiment analysis with opin-
ion mining of hotel reviews, pp. 1–4 (2018). https://doi.org/10.1109/ICTAS.2018.
8368746

https://www.confiep.org.pe/noticias/economia/turismo-en-peru/
https://www.confiep.org.pe/noticias/economia/turismo-en-peru/
https://doi.org/10.1007/s10844-019-00564-x
https://doi.org/10.14569/IJACSA.2019.0100146
https://doi.org/10.1016/j.csl.2019.01.001
https://doi.org/10.1016/j.eswa.2018.09.007
https://doi.org/10.1109/ICTAS.2018.8368746
https://doi.org/10.1109/ICTAS.2018.8368746

218 J. Murga et al.

7. Gunasekar, S., Sudhakar, S.: Does hotel attributes impact customer satisfaction:
a sentiment analysis of online reviews. J. Glob. Scholars Mark. Sci. 29, 180–195
(2019). https://doi.org/10.1080/21639159.2019.1577155

8. Anitsal, M.M., Anitsal, I., Anitsal, S.: Is your business sustainable? A sentiment
analysis of air passengers of top 10 US-based airlines. J. Glob. Scholars Mark. Sci.
29, 25–41 (2019). https://doi.org/10.1080/21639159.2018.1552532

9. Alaei, A., Becken, S., Stantic, B.: Sentiment analysis in tourism: capitalizing on
big data. J. Travel Res. 58, 004728751774775 (2017). https://doi.org/10.1177/
0047287517747753

10. Ducange, P., Fazzolari, M., Petrocchi, M., Vecchio, M.: An effective Decision Sup-
port System for social media listening based on cross-source sentiment analy-
sis models. Eng. Appl. Artif. Intell. 78, 71–85 (2019). https://doi.org/10.1016/
j.engappai.2018.10.014

11. Suresh, H., Gladston, S.: An innovative and efficient method for Twitter sentiment
analysis. Int. J. Data Min. Model. Manage. 11, 1 (2019). https://doi.org/10.1504/
IJDMMM.2019.096543

12. Vural, A., Cambazoglu, B., Karagoz, P.: Sentiment-focused web crawling. ACM
Trans. Web 8, 2020–2024 (2012). https://doi.org/10.1145/2396761.2398564

13. Haruechaiyasak, C., Kongthon, A., Palingoon, P., Trakultaweekoon, K.: S-sense: a
sentiment analysis framework for social media sensing. In: IJCNLP 2013 Workshop
on Natural Language Processing for Social Media (SocialNLP), pp. 6–13 (2013)

14. Zafra, S.M., Mart́ın-Valdivia, M., Mart́ınez-Cámara, E., López, L.: Studying the
scope of negation for spanish sentiment analysis on Twitter. IEEE Trans. Affect.
Comput. PP, 1 (2017). https://doi.org/10.1109/TAFFC.2017.2693968

15. Cai, K., Spangler, W., Chen, Y., Li, Z.: Leveraging sentiment analysis for topic
detection. Web Intell. Agent Syst. 8, 291–302 (2010). https://doi.org/10.3233/
WIA-2010-0192

16. You, Q.: Sentiment and emotion analysis for social multimedia: methodologies and
applications, pp. 1445–1449 (2016). https://doi.org/10.1145/2964284.2971475

17. Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61
(2014). https://doi.org/10.1016/j.neunet.2014.09.003

18. Sze, V., Chen, Y.-H., Yang, T.-J., Joel, E.: Efficient processing of deep neural
networks: a tutorial and survey. Proc. IEEE 105 (2017). https://doi.org/10.1109/
JPROC.2017.2761740

19. Rani, S., Kumar, P.: deep learning based sentiment analysis using convolution
neural network. Arab. J. Sci. Eng. 44(4), 3305–3314 (2018). https://doi.org/10.
1007/s13369-018-3500-z

20. Alharbi, A.S.M., de Doncker, E.: Twitter sentiment analysis with a deep neural
network: an enhanced approach using user behavioral information. Cogn. Syst.
Res. (2018). https://doi.org/10.1016/j.cogsys.2018.10.001

21. Du, C., Lei, H.: Sentiment analysis method based on piecewise convolutional neural
network and generative adversarial network. Int. J. Comput. Commun. Control 4,
7–20 (2019). https://doi.org/10.15837/ijccc.2019.1.3374

22. Ju, H., Yu, H.: Sentiment classification with convolutional neural network
using multiple word representations 1–7 (2018). https://doi.org/10.1145/3164541.
3164610

23. Du, T., Huang, Y., Wu, X., Chang, H.: Multi-attention network for sentiment
analysis. In: NLPIR 2018: Proceedings of the 2nd International Conference on
Natural Language Processing and Information Retrieval, pp. 49–54 (2018). https://
doi.org/10.1145/3278293.3278295

https://doi.org/10.1080/21639159.2019.1577155
https://doi.org/10.1080/21639159.2018.1552532
https://doi.org/10.1177/0047287517747753
https://doi.org/10.1177/0047287517747753
https://doi.org/10.1016/j.engappai.2018.10.014
https://doi.org/10.1016/j.engappai.2018.10.014
https://doi.org/10.1504/IJDMMM.2019.096543
https://doi.org/10.1504/IJDMMM.2019.096543
https://doi.org/10.1145/2396761.2398564
https://doi.org/10.1109/TAFFC.2017.2693968
https://doi.org/10.3233/WIA-2010-0192
https://doi.org/10.3233/WIA-2010-0192
https://doi.org/10.1145/2964284.2971475
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1109/JPROC.2017.2761740
https://doi.org/10.1109/JPROC.2017.2761740
https://doi.org/10.1007/s13369-018-3500-z
https://doi.org/10.1007/s13369-018-3500-z
https://doi.org/10.1016/j.cogsys.2018.10.001
https://doi.org/10.15837/ijccc.2019.1.3374
https://doi.org/10.1145/3164541.3164610
https://doi.org/10.1145/3164541.3164610
https://doi.org/10.1145/3278293.3278295
https://doi.org/10.1145/3278293.3278295

A Sentiment Analysis Software Framework 219

24. Zapata, G., Murga, J., Raymundo, C., Alvarez, J., Dominguez, F.: Predictive model
based on sentiment analysis for Peruvian SMEs in the sustainable tourist sector. In:
IC3K 2017 - Proceedings of the 9th International Joint Conference on Knowledge
Discovery, Knowledge Engineering and Knowledge Management, vol. 3, pp. 232–
240 (2017)

25. Kotzias, D., et al.: From group to individual labels using deep features. In: KDD
(2015)

Author Index

Abou Jaoude, Chady 85
Al Bouna, Bechara 85
Al Chami, Zahi 85
Álvarez, José María 199

Begnum, Kyrre 172

Chavez, Heyul 199
Chbeir, Richard 85

Domínguez, Francisco 199
Duepmeier, Clemens 132

Graf, David 27
Gunnarsdottir, Sonja 132

Hagenmeyer, Veit 132
Haugerud, Hårek 172

Kapsammer, Elisabeth 27
Karakasidis, Alexandros 56
Khalloof, Hatem 132
Koloniari, Georgia 56

Moguerza, Javier M. 199
Murga, Javier 199

Pröll, Birgit 27

Raymundo, Carlos 199
Retschitzegger, Werner 27
Rinaldi, Antonio M. 109
Rivera, Luis 199
Russo, Cristiano 109

Sachpenderis, Nikolaos 56
Sangar, Disha 172
Schwinger, Wieland 27
Shahoud, Shadi 132

Trihinas, Demetris 1

Upreti, Ramesh 172

Yazidi, Anis 172

Zapata, Gianpierre 199

	Preface
	Organization
	Contents
	Interoperable Data Extraction and Analytics Queries over Blockchains
	1 Introduction
	2 Background
	2.1 Blockchains
	2.2 Blockchain Databases

	3 Motivation and Problem Description
	4 Abstract Data Model
	4.1 Assets
	4.2 Participants
	4.3 Transactions

	5 Datachain
	5.1 Users
	5.2 Data Management Operations
	5.3 Query Interface

	6 Evaluation
	6.1 Testbed
	6.2 Experiments

	7 Related Work
	8 Conclusion and Future Work
	References

	Exploiting Twitter for Informativeness Classification in Disaster Situations
	1 Introduction
	2 Systematic Disaster Data Analysis
	2.1 Temporal Dimension
	2.2 Spatial Dimension
	2.3 Linguistic Dimension
	2.4 Source Dimension
	2.5 Event Similarity
	2.6 Tweet Similarity
	2.7 Summary of Outcomes of Our Data Analysis

	3 Classification Approach
	3.1 Dataset
	3.2 Preprocessing and Feature Extraction
	3.3 Automatic Feature Evaluation
	3.4 Training and Testing the Classifier

	4 Evaluation
	4.1 Deep—Small Experiments (DS)
	4.2 Broad—Small Experiments (BS)
	4.3 Broad—Large Experiments (BL)
	4.4 Interpretation of Evaluation
	4.5 Classification Performance

	5 Related Work
	6 Summary and Outlook
	References

	COTILES: Leveraging Content and Structure for Evolutionary Community Detection
	1 Introduction
	2 Preliminaries
	2.1 Basic Concepts
	2.2 The TILES Algorithm

	3 COTILES for Community Detection
	3.1 Label Management in COTILES
	3.2 COTILES Description
	3.3 Tuning COTILES

	4 Evaluation
	4.1 Experimental Setup
	4.2 Structural Analysis
	4.3 Content-Based Analysis
	4.4 Qualitative Results

	5 Related Work
	5.1 Structure-Based Methods
	5.2 Content-Based Methods
	5.3 Combined Methods
	5.4 Categorizing Related Methods

	6 Conclusions
	References

	A Weighted Feature-Based Image Quality Assessment Framework in Real-Time
	1 Introduction
	1.1 Motivating Scenario

	2 Related Work
	3 Contributions
	4 Definitions
	4.1 Data Model
	4.2 Data Manipulation Functions
	4.3 Image Quality Methods Background

	5 Data Quality
	5.1 Perceptual Coherence
	5.2 Semantic Coherence Measure
	5.3 Image Score

	6 Proposed Framework
	6.1 Stream Processing Module
	6.2 Back-End Module

	7 Experiments
	7.1 Test 1: Evaluation of Image Quality Affected by a Manipulation Function
	7.2 Test 2: Evaluation of Apache Storm Performance in Real-Time

	8 Conclusion
	References

	Sharing Knowledge in Digital Ecosystems Using Semantic Multimedia Big Data
	1 Introduction
	2 Related Works
	3 The Proposed Model
	3.1 Ontological Model Formalization
	3.2 Property-Based Graph Model Formalization
	3.3 Semantic Multimedia Big Data Population

	4 A Case Study for Sharing Knowledge
	5 Conclusion and Future Works
	References

	Facilitating and Managing Machine Learning and Data Analysis Tasks in Big Data Environments Using Web and Microservice Technologies
	1 Introduction
	2 Related Work
	3 Related Fundamental Terms and Technologies
	3.1 Machine Learning
	3.2 Big Data Technologies
	3.3 Microservices

	4 Concept and Architecture
	4.1 Framework Architecture

	5 Evaluation
	5.1 Execution Workflow
	5.2 Experimental Setup and Configurations
	5.3 Experimental Results and Analysis

	6 Conclusion and Future Works
	References

	Stable Marriage Matching for Homogenizing Load Distribution in Cloud Data Center
	1 Introduction
	2 Stable Matching
	3 Related Work
	4 Solution
	4.1 Overview of a Functioning Framework
	4.2 Bin Packing with Stable Marriage
	4.3 Stable Marriage Animation
	4.4 The Proposed Stable Marriage Algorithm
	4.5 The Greedy Matching Approach

	5 Implementation of Stable Marriage
	6 Experiments
	6.1 Experimental Set-Up
	6.2 Environment Configuration
	6.3 Virtual Configuration
	6.4 Comparison of Greedy Matching and Stable Marriage

	7 Conclusion
	References

	A Sentiment Analysis Software Framework for the Support of Business Information Architecture in the Tourist Sector
	1 Introduction
	2 Literature Review
	2.1 Analysis of Different Languages
	2.2 Sentiment Analysis in the Tourism Industry
	2.3 Social Network
	2.4 Types of Neural Networks

	3 Proposed Model
	3.1 Model Analysis
	3.2 Components

	4 Validation
	4.1 Case
	4.2 OT S.A.C. Company Information
	4.3 Implementation
	4.4 Program/APIs
	4.5 Sentiment Analysis
	4.6 Implementation Outcomes
	4.7 Segmentation
	4.8 Case Study Result

	5 Discussion
	6 Conclusions
	References

	Author Index

