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Abstract.  Due to disturbances or a lack of excitation during the measure-
ments, conventional identification methods offer solutions with limited preci-
sion for the inertial parameters of industrial robots (IR). This paper introduces 
an approach to increase the rank of the identification matrix through additional 
equations from the frequency domain. In areas of lower frequencies, the total 
inertia that is affecting an axis is related to the amplitude of the frequency 
response of the rotational speed controlled system (RSCS). Another advan-
tage of the presented method is the possible correction of friction effects via 
the phase information, which enables a higher identification accuracy. The fre-
quency responses are measured during exciting trajectories, which stimulate 
low frequencies. Thereby, the approach generates additional equations, which 
enables the identification of more inertial parameters with a higher accuracy. 
In this paper, the measurement method and the identification algorithm are 
outlined.

Keywords:  Identification · Modeling · Inertial parameters · Frequency 
response

1  Introduction

Machine tools represent an enormous investment risk for small and medium-sized 
enterprises (SMEs). Conventional IR offer the possibility of flexible machining of 
large components at significantly lower investments. However, due to the serial kin-
ematics and the resulting high compliance, they usually achieve insufficient machin-
ing qualities. In the field of research, model-based simulation and control methods 
are used to increase the accuracy of IR in both planning and the process itself [14]. 
One approach is the derivation of equations of motion, which calculate the drive 
torques, that are needed to perform a certain movement, including the influence of 
intalk- and crosstalk forces within the mechanical structure of the IR. The torques can 
either be fed forward to the control loop during machining or used for the calculation 
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of predicted deviations during the process planning [5, 7, 10]. The accuracy of the 
equations of motion, which are usually derived from the recursive Newton–Euler 
approach, depends significantly on the inertial parameters.

This paper is structured as follows: In the following chapters, the current state 
of the art regarding the identification of inertial parameters and the basic idea of this 
paper is presented. Afterwards the theoretical background and the derivation of the 
necessary equations are explained. Then, the approach is validated followed by an 
evaluation and a conclusion.

2  State of the Art

In general, the identification topic for industrial robots is widely discussed in research 
journals over the past decades. The presented approaches in literature share the fol-
lowing similarities:

• Using a model that is linear regarding the inertial parameters
• Construction of an overdetermined system of equations that is generated with data 

points of a measured trajectory
• Parameter identification via linear regression techniques

Linear models following different methods like the energy model, the power model 
or the most commonly used inverse dynamics model were developed [3, 4, 8]. Those 
models are derived by calculating the systems energy, power or drive torques as out-
puts based on the linear relationships between the motion inputs (positions, veloci-
ties and accelerations) and the geometric and inertia parameters, while the geometric 
parameters are usually known. In order to construct an overdetermined system of 
equations, the IRs discrete motion values and drive torques for a given trajectory are 
measured during a predefined time interval and fed into the model equations, which 
leads to:

Where Y  is the models output, W is the (n× m) observation matrix with n ≫ m, X is 
the vector of inertial parameters and ρ is the residual error vector. A commonly used 
linear regression method is the least squares (LS) approach [12]. Besides LS, other 
regression techniques like the instrumental variable approach and output error meth-
ods were also used [2, 6]. The common goal of the various strategies is to identify 
inertial parameters which, when used in the selected model, provide results that best 
fit the measurements and are also physically plausible [15].

The system of equations in (1) can only be solved if W has a full rank. Due to a 
lack of excitation, a restricted workspace and invariant motion during the experiments, 
some equations provide redundant information because they linearly depend on other 
equations. Hence, (1) can be reduced to a set of so-called minimal base parameters, 
which means that some parameters can only be identified as linear combinations [11]. 
However, the results are still sensitive to noise. Vandanjon et al. already observed this 
problem in 1995 and tried to overcome those disadvantages by planning dedicated 

(1)Y = W(q, q̇, q̈)X+ ρ
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trajectories to capture gravity, inertial, centrifugal and inertial coupling forces sepa-
rately [13]. Rackl et al. attempted to solve the problem of poor excitation by parame-
terizing B-spline trajectories with a constraint optimization algorithm [9].

However, the presented approach of drawing the equations from the frequency 
response of each axis intrinsically eliminates the problem of noisy measurements and 
friction. Noise and zero-mean disturbances do not have an impact on the amplitude 
within areas of lower frequencies for measurements over several excitation periods of 
constant frequency. In addition, friction causes damping, which can be observed in the 
phase response and subtracted from the amplitude response (see Subsect. 3.2).

Current processes require complex derivation of the exciting trajectories. The pre-
sented approach offers a less complex way to get the ideal measurements to increase 
the rank of Eq. (1). The observation matrix here only depends on the axes’ positions 
leading to a simpler optimization of the measurement poses.

The frequency response offers a wide range of information regarding the dynam-
ical system, which is utilized by the presented measurement methods. The current 
results can be characterized as a first step to develop a new frequency-based method.

3  Theoretical Background

In the following chapters the derivation of equations is explained. The equations form 
the basis for the LS identification.

3.1  Modeling of Serial Kinematics

Without external forces acting on the end effector, the dynamic model for axis k of an 
open loop IR with n axes can be expressed as:

Where qk , q̇k and q̈k are the angular position, velocity and acceleration of joint 
k, JAXk

(

qk+1,...,qn

)

 is the total inertia effecting axis k, τck(q, Pq) is the torque due to 
Coriolis and centripetal forces, τgk(q) is the gravity torques and τfk(q̇k) is the 
 friction-related torque which together add up to the drive torque τk. For the presented 
experiments, just one axis is moved at a time by a maximum of 4°. Therefore, Coriolis 
effects do not occur and centripetal forces are absorbed by the bearings. The short tra-
jectory and therefore small change of gravity forces leads to the assumption that grav-
ity effects correspond to frequencies close to zero and therefore can be neglected here.

For an undamped system, the angular velocity would follow the drive torque 
with a phase shift of −90°. Since the analysis of the phase response reveals a devi-
ation from this assumption, frictional damping effects cannot be neglected. There are 
various ways to describe friction with all its complex aspects [1]. An adequate and 
often used model is the combination of Coulomb and viscous friction [13]. Due to 
the constant velocity offset during the experiments, which causes a force excitation 
in a constant direction the discrete Fourier transformation of the Coulomb friction 

(2)JAXk
(

qk+1,...,qn

)

q̈k + τck(qk , q̇k)+ τgk(qk)+ τfk(qk , q̇k) = τk



432    L. Gründel et al.

would generate a spectral line at 0 Hz, so that only the viscous friction, represented by 
µvk, has to be included. The described assumptions lead to the following differential 
equation:

The load-side total inertia of an axis is composed of the sum of the following axes’ 
inertia tensors JkI ,i, transformed into the corresponding joint coordinate system, 
the inertia due to the parallel displacement of the rotational axes described by the 
Huygens-Steiner theorem JkHS,i and the load-side inertia of the motor Jmls,k. The latter 
can be expressed by the inertia of the motor on the drive side multiplied by square of 
the gear ratio uk leading to the following equation:

Where zk is the vector of the rotational axis, Rk
ki is the rotation matrix of coordinate 

frame k to i and Iii is the inertia tensor described in coordinate frame i.

3.2  Systems Theory

To simplify the following equations, the index k is left out in the following explana-
tions. The application of the Laplace transform to (3) leads to the transfer function:

Decomposing (5) into amplitude and phase results in two equations:

Inserting (7) into (6) leads to the final equation of the total inertia:

Here 
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4  Experiments and Validation

After introducing the theory to derive the necessary equations for the LS identifica-
tion, the approach has to be validated. In order to reduce the complexity the following 
experiments focus on the first three axes (as seen from the base) while the last three 
axes are locked.

4.1  Measurement Setup

The used IR system consists of a MAX 100 of the company Mabi Robotics AG with 
a Sinumerik 840D sl control. The IR has six degrees of freedom and is equipped 
with direct and indirect encoders at each axis. The Computerized Numerical Control 
(CNC) is traditionally used for machine tools and therefore offers a wide range of 
testing methods for the dynamic behavior of the system, e.g.:

• Frequency response measurements of the RSCS for broader bandwidths
• And sweep measurements at discrete frequencies

The analysis of the first measurements provides the optimal frequency for the second 
experiment. The sweep measurements lead to more accurate amplitude responses for 
lower frequencies with shorter motions to perform.

As explained in Chap. 3, the amplitude of the RSCS is related to the total iner-
tia that is acting at the observed axis. The Sinumerik enables the user to measure 
the frequency response of the RSCS for each axis individually. In order to reduce 
the influence of the control cascades, the control parameters are softened manually. 
During the experiment, the observed axis rotates with a speed offset while an interfer-
ing pseudo-random noise torque with specified frequency bandwidth is applied. The 
CNC simultaneously measures the torque via torque-related motor currents and the 
rotational speed using the encoders and then automatically calculates the frequency 
response of the RSCS (see Fig. 1). Numerous experiments with various test parame-
ters have shown that a setting with bandwidths below 40 Hz, speed offset of 0.1 rpm 
and an amplitude of the excitation signal of 1% of the nominal torque generated suffi-
cient results.

In theory the sweep measurement can be set up for arbitrary excitation frequen-
cies. After examining the RSCS via the experiment explained above, these frequencies 
are selected as 2, 3, 4 and 5 Hz, below the first resonant frequency and thus lower than 
the frequency where the load decouples from the drivetrain. The measurement super-
imposes sine waves of the mentioned frequencies with a rotational speed offset, which 
is previously optimized by considering the periodic disturbances of the drive train 
(e.g. cogging forces). Therefore, a rotational speed profile is determined which leads 
to a target path of the axis position via integration. Hence, the control parameters are 
not softened for this experiment because the exciting frequencies are part of the target 
trajectory and the control does not treat them as interfering signals. During the meas-
urement, the time courses of the drive torque and the rotational speed are measured 
and transformed into the frequency domain via the discrete Fourier transformation.

http://dx.doi.org/10.1007/978-3-662-62138-7_3
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4.2  Initial Analysis of the Frequency Response

Figure 1a shows the amplitude responses for axis 1 for different poses of axis 2 and 
3. An important landmark is the first locked-rotor frequency, which decreases from 
about 12 Hz to 5 Hz as the inertia increases. For the decade immediately below the 
resonance the system behaves like a first order pole. Elsewhere, this assumption is 
not valid. In any case, the effect of changing the robots pose and thus increasing its 
moment of inertia about axis 1, results in a decreased the first locked-rotor frequency.

If the torque and angular velocities are interpreted in terms of inertia the fre-
quency response of the RSCS can be transformed leading to Fig. 1b. The graph 
illustrates how an ideal sweep frequency can be identified. The ideal frequency lies 
in between the resonant frequency and an area of lower frequencies where friction is 
affecting the amplitude for f < 0.7Hz). For a given pose the resonant frequency and 
the frequency at the intersection of the asymptotes of inertia- and  friction-dominated 
areas (3 dB point) are calculated. The ideal frequency is the geometrical mean of 
those frequencies. In order to circumvent drive train harmonics while also maintain-
ing a specified number of sine wave periods during the trajectory, the frequency is 
rounded to the next integer number of 2, 3, 4 or 5 Hz. This procedure is performed 
with different robot poses leading to ideal excitation frequencies for the sweep meas-
urements described below.

Fig. 1  Amplitude responses of axis 1 for various poses of axes 2 and 3 a) and the geometrical 
identification of the ideal sweep frequency b)
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4.3  Sweep Measurements

The amplitude at a discrete frequency for Eq. (8) is provided by the sweep measure-
ments. The measured total inertia and the corresponding position values are the inputs 
that generate new equations for the LS procedure. In order to add as many not line-
arly dependent equations as possible the pose of the IR has to vary. When attempting 
to select poses, a criterion for decision making is required. The standard procedure, 
which is also employed in this work, is to calculate the condition number of the iden-
tification matrix. The condition number allows the quantification of the maximum 
error of the identified parameters due to disturbances. To optimize the condition num-
ber an iterative procedure is used: Initially a list of all collision-free poses in a 5° grid 
that fit into the robot cell is generated. Then for each step, the pose, which results in 
the lowest condition number is added to the list.

Figure 2 illustrates the relationship between the positions of axes 2 and 3 and the 
total inertia measured at axis 1 for the measured data and the data generated with the 
reference model. The shown graph validates the presented approach as the measure-
ments clearly match the expectable values regarding the inertial parameters provided 
by the manufacturer. In general, the logical relationship is that the measured inertia is 
higher the wider the distance between the following links of the IR and the center of 
rotation of the observed axis is.

Fig. 2  Correlation of measured and reference data



436    L. Gründel et al.

5  Evaluation

In general, the whole approach of calculating new poses for the measurements proved 
to be comprehensible and efficient. The optimization leads to over 300 different poses 
for the identification. After performing the measurements the system of equations 
for the LS procedure was constructed. As described before, the last three axes were 
locked, which allows the combination of the last four links and the end effector of the 
robot into one body. The resulting 30 parameters were transformed into a set of eight 
base parameters. After carrying out the standard LS the identified set of base parame-
ters is inserted into the model equations and compared to the model based on the ref-
erence parameters of the manufacturer. A frequently used measure for the differences 
between model values and a measurement is the root-mean-square error (RMSE).

In Table 1 the RMSEs between the LS fitted model, the reference model and the 
measurements at the various poses are listed. The high deviations between the refer-
ence model and the measurement can probably be traced back to the CAD calculation 
of inertial parameters, which only considers the large casting components of the IR. 
In addition, the reference model does not take the additional structures like the assem-
bled ducts and hose packages into account, which results in a significantly larger 
RMSE for all axes. Summing up, the identified LS fitted model can map the measured 
inertias for the different poses adequately. The significantly lower RMSE values indi-
cate an improved model accuracy. The last line in Table 1 illustrates the models ability 
to depict the physical behavior of the IR. In contrast to axes 1 and 3, the increase in 
RMSE of axis 2 indicates a poorer conditioning of the observation matrix which could 
be optimized by further poses in the future.

Similarly good results are expected when extending the approach to the other 
axes of the robot. Nevertheless, further equations generated by additional exciting 
trajectories would provide information that could be used to identify more parame-
ters. However, the presented approach does lead to a reduced model, which accurately 
matches the dynamics of the IR.

Table 1  Comparison of the RMSEs for the LS fitted model, the reference model and the 
measurements

aFor this calculation of the RMSE between the reference model and the LS identified model 
additional poses were added to the measurement poses in order to demonstrate the improve-
ments of the identified model for the entire workspace

Axis 1 Axis 2 Axis 3

RMSE [%]: reference model – measurement 19.75   5.54 15.52

RMSE [%]: LS identified model – measurement 1.61   1.33 0.10

RMSE [%]: reference model – LS identified modela 20.05 12.38 15.52
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6  Conclusion

Current methods to identify masses and inertias of IR links are performed with a 
model consisting of differential equations, exciting trajectories and linear regression 
algorithms. However, those methods fail to identify the parameters properly because 
the algorithms are sensitive to noise and effects like friction are difficult to reproduce 
in a model. The presented approach of a frequency response based identification of 
inertial parameters delivers promising results. Due to the analysis in the frequency 
domain and the possibility of frequency selective measurements, the procedure offers 
the decisive advantage of independency to noise and a simplified process for the gen-
eration of exciting trajectories. In conclusion, the identified set of base parameters 
properly matches the reference and measurement data for the first three axes.

Currently the procedure is extended to all six axes. In addition, the authors plan 
to add more information through further exciting trajectories. The combination of the 
presented approach with additional equations for the LS procedure leads to an identi-
fication routine for six-axis IRs.
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