
Chapter 9
Validation

Validation is the assessment of the quality of a predictive model, in accordance with
the scientific paradigm in the natural sciences: a model that is able to make accu-
rate predictions (the position of a planet in two weeks’ time) is—in some sense—a
“correct” description of reality. In many applications in the natural sciences, unfortu-
nately, validation is hard to do: chemical and biological processes often exhibit quite
significant variation unrelated to the model parameters. An example is the circadian
rhythm: metabolomic samples, be it from animals or plants, will show very different
characteristics when taken at different time points.When the experimental meta-data
on the exact time point of sampling are missing, it will be very hard to ascribe differ-
ences in metabolite levels to differences between patients and controls, or different
varieties of the same plant. Only a rigorous and consistent experimental design will
be able to prevent this kind of fluctuations. Moreover, biological variation between
individuals often dominates measurement variation. The bigger the variation, the
more important it is to have enough samples for validation. Only in this way, reliable
error estimates can be obtained.

The main goal usually is to estimate the expected error when applying the model
to new, unseen data: the root-mean-square error of prediction (RMSEP). In general,
the expected squared error at a point x is given by

Err(x) = E[(Y − f̂ (x))2] (9.1)

which can be decomposed as follows:

Err(x) = (E[ f̂ (x)] − f (x))2 + E[( f̂ (x) − E[ f̂ (x)])2] + σ 2
e (9.2)

where E denotes the usual expectation operator. The first term is the squared bias,
corresponding to systematic differences between model predictions and measure-
ments, the second is the variance, and σ 2

e corresponds to the remaining, irreducible
error. In many cases one must strike a balance between bias and variance. Biased
regressionmethods like, e.g., ridge regression and PLS achieve lowerMSE values by
decreasing the variance component, but pay a price by accepting bias. If it is possible
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to derive confidence intervals for these, this not only provides an idea of the stability
of the model, but it can also be useful in determining which variables actually are
important in the model.

A second validation aspect, next to estimating the RMSEP, is to assess the size
and variability of the model coefficients, summarized here with the term model
stability. This is especially true for linear models where one can hope to interpret
individual coefficients, and perhaps less so for non-linear models. In the example of
multiple regression with a singular covariance matrix in Sect. 8.1.1, the variance of
the coefficients effectively is infinite, indicating that the model is highly unstable.

Finally, there is the possibility of making use of prior knowledge. Particularly in
the natural sciences, one can often assess whether the features that seem important
make sense. In a regression model for spectroscopic data, for instance, one would
expect wavelengths with large regression coefficients to correspond to peaks in the
spectra—large coefficients in areas where no peaks are present would indicate a not
too reliable model. Since in most forms of spectroscopy it is possible to associate
spectral features with physico-chemical phenomena (specific vibrations, electron
transitions, atoms, ...) one can often even say something about the expected sign
and magnitude of the regression coefficients. Should these be very different than
expected, one may be on to something big—but more likely, one should treat the
predictions of such a model with caution, even when the model appears to fit the
data well. Typically, more experiments are needed to determine which of the two
situations applies. Because of the problem-specific character of this particular type of
validation, we will not treat it any further, but will concentrate on the error estimation
and model stability aspects.

9.1 Representativity and Independence

One key aspect is that both error estimates and confidence intervals for the model
coefficients are derived from the available data (the training data), but that the model
will only be relevant when these data are representative for the system under study. If
there is any systematic difference between the data on which the model is based and
the data for which predictions are required, these predictions will be suboptimal and
in some cases even horribly wrong. These systematic differences can have several
causes: a new machine operator, a new supplier of chemicals or equipment, new
schedules of measurement time (“from now on, Saturdays can be used for measuring
aswell”)—all these thingsmay cause newdata to be slightly but consistently different
from the training data, and as a result the predictive models are no longer optimal. In
analytical laboratories, this is a situation that often occurs, and one approach dealing
with this is treated in Sect. 11.6.

Especially with extremely large data sets, validation is sometimes based on only
one division in a training set and a test set. If the number of samples is very large,
the sheer size of the data will usually prevent overfitting and the corresponding
error estimates can be quite good. However, it depends on how the training and test
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sets are constructed. A random division is to be preferred; to be even more sure,
several random divisions may be considered. This would also allow one to assess the
variability in the validation estimates, and is definitely advisable when computing
resources allow it.

One can check whether the training data are really representative for the test data:
pathological cases where this is not the case can usually be recognized by simple
visualization, (e.g., using PCA). However, one should be very careful not to reject a
division too easily: as soon as one starts to use the test data, in this case, to assess
whether the division between training and test date is satisfactory, there is the risk
of biasing the results. The training set should not only be representative of the test
set, but also completely independent. An example is the application of the Kennard–
Stone algorithm (Kennard and Stone 1969) to make the division in training and test
sets. The algorithm selects training samples from the complete data set to cover the
complete space of the independent variables as good as possible. However, if the
training samples are selected in such a way that they are completely surrounding
the test samples, the prediction error on the test set will probably be lower than it
should be—it is biased. Of course, when the algorithm is only used to decrease the
number of samples in the training set, and the test set has been set aside before the
Kennard–Stone algorithm is run, then there is no problem (provided the discarded
training set samples are not added to the test set!) and we can still treat the error on
the test set as an unbiased estimate of what we can expect for future samples.

If the available data can be assumed to be representative of the future data, we
can use them in several ways to assess the quality of the predictions. The main point
in all cases is the same: from the data at hand, we simulate a situation where unseen
data have to be predicted. In crossvalidation, this is done by leaving out part of the
data, and building the model on the remainder. In bootstrapping, the other main
validation technique, the data are resampled with replacement, so that some data
points are present several times in the training set, and others (the “out-of-bag”, or
OOB, samples) are absent. The performance of the model(s) on the OOB samples is
then an indication of the prediction quality of the model for future samples.

In estimating errors, one should take care not to use any information of the test set:
if the independence of training and test sets is compromised error estimates become
biased. An often-made error is to scale (autoscaling, mean-centering) the data before
the split into training and test sets. Obviously, the information of the objects in the
test set is being used: column means and standard deviations are influenced by data
from the test set. This leads to biased error estimates—they are, in general, lower
that they should be. In the crossvalidation routines of the pls package, for example,
scaling of the data is done in the correct way: the OOB samples in a crossvalidation
iteration are scaled using the means (and perhaps variances) of the in-bag samples.
If, however, other forms of scaling are necessary, this can not be done automatically.
The pls package provides an explicit crossval function, which makes it possible
to include sample-specific scaling functions in the calling formula:
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> gasoline.mscpcr <- pcr(octane ˜ msc(NIR), data = gasoline,
+ ncomp = 4)
> gasoline.mscpcr.cv <- crossval(gasoline.mscpcr, length.seg = 1)
> RMSEP(gasoline.mscpcr.cv, estimate = "CV")
(Intercept) 1 comps 2 comps 3 comps 4 comps

1.5430 1.4589 0.8901 0.2598 0.2668

This particular piece of code applies multiplicative scatter correction (MSC, see
Sect. 3.2) on all in-bag samples, and scales the OOB samples in the same way, as
it should be done. Interestingly, this leads to a PCR model where three components
would be optimal, one fewer component than without the MSC scaling.

A final remark concerns more complicated experimental designs. The general
rule is that the design should be taken into account when setting up the validation.
As an example, consider a longitudinal experiment where multiple measurements
of the same objects at different time points are present in the data. When apply-
ing subsampling approaches like crossvalidation to such data sets one should leave
out complete objects, rather than individual measurements: obviously multiple mea-
surements of the same object, even taken at different times, are not independent.
Randomly sampling individual data points would probably lead to over-optimistic
validation estimates.

9.2 Error Measures

A distinction has to be made between the prediction of a continuous variable (regres-
sion), and a categorical variable, as in classification. In regression, the root-mean-
square error of validation (RMSEV) is given, analogously to Eq.8.12, by

RMSEV =
√∑

i (ŷ(i) − y(i))2

n
(9.3)

where y(i) is the out-of-bag sample in a crossvalidation or bootstrap. That is, the
predictions are made for samples that have not been used in building the model. A
summary of these prediction errors can be used as an estimate for future performance.
In this case, the average of the sum of squared errors is taken—sometimes there are
better alternatives.

For classification, the simplest possibility is to look at the fraction of correctly
classified observations. in R:

> err.rate <- function(x, y) sum(x != y) / length(x)

A more elaborate alternative is to assign each type of misclassification a cost, and
to minimize a loss function consisting of the total costs associated with misclas-
sifications. In a two-class situation, for example, this makes it possible to prevent
false negatives at the expense of accepting more false positives; in a medical context,
it may be the case that a specific test should recognize all patients with a specific
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disease, even if that means that a few people without the disease are also tagged.
Missing a positive sample (a false negative outcome) in this example has much more
radical consequences than the reverse, incorrectly calling a healthy person ill.

A related alternative is to focus on the two components of classification accuracy,
sensitivity and specificity. Sensitivity, also known as the recall rate or the true positive
rate, is the fraction of objects from a particular class k which are actually assigned
to that class:

sensitivityk = T Pk
T Pk + FNk

(9.4)

where T Pk is the number of True Positives (i.e., objects correctly assigned to class k)
and FNk is the number of False Negatives (objects belonging to class k but classified
otherwise). A sensitivity of one indicates that all objects of class k are assigned to
the correct class—note that many other objects, not of class k, may be assigned to
that class as well.

Specificity is related to the purity of class predictions, and summarizes the fraction
of objects in class k that belong elsewhere:

specificityk = T Nk

FPk + T Nk
(9.5)

T Nk and FPk indicate True Negatives and False Positives for class k, respectively. A
specificity of one indicates that no objects have been classified as class k incorrectly.
The measure 1—specificity is sometimes referred to as the false positive rate.

In practice, one will have to compromise between specificity and sensitivity:
usually, sensitivity can be increased at the expense of specificity and vice versa
by changing parameters of the classification procedure. For two-class problems, a
common visualization is the Receiver Operating Characteristic (ROC, Brown and
Davis 2006), which plots the true positive rate against the false positive rate for
several values of the classifier threshold. Consider, e.g., the optimization of k, the
number of neighbors in the KNN classification of the wine data. Let us focus on the
distinction between Barbera and Grignolino, where we (arbitrarily) choose Barbera
as the positive class, and Grignolino as negative.

> X <- wines[vintages != "Barolo", ]
> vint <- factor(vintages[vintages != "Barolo"])
> kvalues <- 1:12
> ktabs <- lapply(kvalues,
+ function(i) {
+ kpred <- knn.cv(X, vint, k = i)
+ table(vint, kpred)
+ })

For twelve different values of k we calculate the crossvalidated predictions and we
save the crosstable. From the resulting list we can easily calculate true positive and
false positive rates:
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Fig. 9.1 ROC curve
(zoomed in to display only
the relative part) for the
discrimination between
Grignolino and Barbera
wines using different values
of k in KNN classification.
Predictions are
LOO-crossvalidated
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> TPrates <- sapply(ktabs, function(x) x[1, 1]/sum(x[, 1]))
> FPrates <- sapply(ktabs, function(x) 1 - x[2, 2]/sum(x[2, ]))
> plot(FPrates, TPrates, type = "b",
+ xlim = c(.15, .45), ylim = c(.5, .75),
+ xlab = "FP rate", ylab = "TP rate")
> text(FPrates, TPrates, 1:12, pos = 4)

In this case, the result, shown in Fig. 9.1, leaves no doubt that k = 1 gives the best
results: it shows the lowest fraction of false positives (i.e., Grignolinos predicted as
Barberas) as well as the highest fraction of true positives. The closer a point is to the
top left corner (perfect prediction), the better.

Note that a careful inspection of model residuals should be a standard ingredient
of any analysis. Just summing up the number of misclassifications, or squared errors,
is not telling the whole story. In some parts of the data space onemight see, e.g., more
misclassifications or larger errors than in other parts. For simple univariate regression,
standard plots exist (simply plotting anlmobject inRwill give a reasonable subset)—
for multivariate models techniques like PCA can come in handy, but there is ample
opportunity for creativity from the part of the data analyst.

9.3 Model Selection

In the field of model selection, one aims at selecting the best model amongst a series
of possibilities, usually based on some quality criterion such as an error estimate.
What makes model selection slightly special is that we are not interested in the error
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estimates themselves, but rather in the order of the sizes of the errors: we would like
to pick the model with the smallest error. Also biased error estimates are perfectly
acceptable when the bias does not influence our choice, and in some cases biased
estimates are even preferable since they often have a lower variance. We will come
back to this in later sections, discussing different resampling-based estimates.

9.3.1 Permutation Approaches

A form of resampling that we have not yet touched upon is permutation, randomly
redistributing labels in order to simulate one possible realization of the data under a
null hypothesis. The concept is most easily explained in the context of classification.
Suppose we have a classifier that distinguishes between two classes, A and B, each
represented by the same number of samples. Let’s say the classifier achieves a 65%
correct prediction rate. The question is whether this could be due to chance. In a
permutation test, one would train the same classifier many times on a data set in
which class labels A and B would be randomly assigned to samples. Since in such
a permutation there is no relation between the dependent and independent variables,
onewould expect a success rate of 50%. In practice onewill see variation. Comparing
the prediction rate observed with the real data with the quantiles of the permutation
prediction rates gives an estimate of the p value, or in other words, tells you whether
themodel is significant or not. In the example above: ifwewould do 500 permutations
and in 78 of them we would find prediction rates above 65%, we should conclude
that our classifier is not doing significantly better than a chance process. If only three
of the 500 permutations would lead to prediction rates of 65% or more, on the other
hand, we would declare our model significant.

So where other forms of validation try to obtain an error measure, permutation
testing as described above aims to assess significance. While the principle remains
the same, there are other ways in which the permutation test can be used. One
example was given in Sect. 8.2.2 in the context of establishing the optimal number of
components in a PCR or PLS regression model. There, residuals of models using A
and A + 1 components, respectively, are being permuted and the true sum of squares
is then compared to the null distribution given by the set of permutations. If there is
no significant difference between the two, the smallest model with A components is
preferred. In the remainder of this chapter we’ll focus on establishing estimates for
the magnitude of the prediction errors.

9.3.2 Model Selection Indices

Resampling approaches such as crossvalidation can be time-consuming, especially
for large data sets or complicatedmodels. In such cases simple, direct estimates could
form a valuable alternative. The most common ones consist of a term indicating
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the agreement between empirical and predicted values, and a penalty for model
complexity. Important examples are Mallows’s Cp (Mallows 1973) and the AIC and
BIC values (Akaike 1974; Schwarz 1978), already encountered in Sect. 6.3. The Cp

value is a special case of AIC for general models, adjusting the expected value in such
a way that it is approximately equal to the prediction error. In a regression context,
these two measures are equal, given by

AIC = Cp = MSE + 2 × p σ̂ 2/n (9.6)

BIC = MSE + log n × p σ̂ 2/n (9.7)

where n is the number of objects, p is the number of parameters in the model, MSE is
themean squared error of calibration, and σ̂ 2 is an estimate of the residual variance—
an obvious choice would be MSE/(n − p) (Efron and Tibshirani 1993). It can be
seen that, for any practical data size, BIC penalizes more heavily than Cp and AIC,
and therefore will choose more parsimonious models. For model selection in the life
sciences, these statistics have never really been very popular. A simple reason is that
it is hard to assess the “true” value of p: how many degrees of freedom do you have
in a PLS or PCR regression? Methods like crossvalidation are more simple to apply
and interpret—and with computing power being cheap, scientists happily accept the
extra computational effort associated with it.

9.3.3 Including Model Selection in the Validation

Up to now we have concentrated on validation approaches such as crossvalidation
for particular models, e.g., a PLS model with four components, or a KNN classifier
with k = 3. Typically, we would repeat this validation for other numbers of latent
variable, or other values of k, and base the selection of the best model on some kind of
decision rule (e.g., the approaches mentioned in Sect. 8.2.2 for choosing the number
of latent variables in a multivariate regression model). As has been stated before,
the CV error estimate associated with the selected model is to be interpreted in a
relative way, indicating which of the models under comparison is the best one—it’s
value should not be taken absolutely. The reason is the model selection process: we
choose this model precisely because it has the lowest error, and so we introduce a
downward bias.

There is another option. Rather than performing crossvalidation (or bootstrapping
or any other validation technique) on one fully specified model, one could also use it
on the complete procedure, including the model selection (Efron and Hastie 2016).
That is, if we decide to choose the optimal number of latent variables in a PLS
model using the one-sigma rule mentioned in Sect. 8.2.2, we could simply apply
crossvalidation on the overall procedure, including applying the selection rule. The
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resulting error estimate1 now is an unbiased estimate of what we can expect for future
data. Note that in each crossvalidation iteration the optimal number of components
may be different. This usually adds variance, so error estimates obtained with this
procedure are expected to be larger than the estimates we have been discussing until
now, which makes sense.

9.4 Crossvalidation Revisited

Crossvalidation, as we already have seen, is a simple and trustworthy method to
estimate prediction errors. There are twomain disadvantages of LOOcrossvalidation.
The first is the time needed to perform the calculations. Especially for data sets with
many objects and time-consuming modelling methods, LOO may be too expensive
to be practical. There are two ways around this problem: the first is to use fast
alternatives to direct calculations—in some cases analytical solutions exist, or fast
and good approximations. A second possibility is to focus on leaving out larger
segments at a time. This latter option also alleviates the second disadvantage of LOO
crossvalidation—the relatively large variability of its error estimates.

9.4.1 LOO Crossvalidation

Let us once again look at the equation for the LOO crossvalidation error:

ε2CV = 1

n

n∑
i=1

(
y(i) − ŷ(i)

)2 = 1

n

n∑
i=1

ε2(i) (9.8)

where subscript (i) indicates that observation i is being predictedwhile not being part
of the training data. Although the procedure is simple to understand and implement,
it can take a lot of time to run for larger data sets. However, for many modelling
methods it is not necessary to calculate the n different models explicitly. For ordinary
least-squares regression, for example, one can show that the i th residual of a LOO
crossvalidation is given by

ε2(i) = ε2i /(1 − hii ) (9.9)

where ε2i is the squared residual of sample i when it is included in the training set,
and hii is the i th diagonal element of the hat matrix H , given by

H = X
(
XT X

)−1
XT (9.10)

1This in effect is an example of double crossvalidation, since the selection rule internally uses
crossvalidation, too. We’ll come back to this in a later section in this chapter.
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Therefore, the LOO error estimate can be obtained without explicit iteration by

ε2CV = 1

n

n∑
i=1

(
yi − ŷi
1 − hii

)2

(9.11)

This shortcut is available in all cases where it is possible to write the predicted values
as a product of a type of hat matrix H , independent of y, and the measured y values:

ŷ = H y (9.12)

Generalized crossvalidation (GCV, Craven and Wahba 1979) goes one step further:
instead of using the individual diagonal elements of the hat matrix hii , the average
diagonal element is used:

ε2GCV = 1

n
(
1 − ∑n

j=1 h j j

)2

n∑
i=1

(
yi − ŷi

)2
(9.13)

Applying these equations to PCR leads to small differences with the usual LOO
estimates, since the principal components that are estimated when leaving out each
sample in turn will deviate slightly (assuming there are no gross outliers). Consider
the (bad) fit of the one-component PCR model for the gasoline data, calculated with
explicit construction of n sets of size n − 1:

> gasoline.pcr <- pcr(octane ˜ ., data = gasoline,
+ validation = "LOO", ncomp = 1)
> RMSEP(gasoline.pcr, estimate = "CV")
(Intercept) 1 comps

1.543 1.447

The estimate based on Eq.9.11 is obtained by

> gasoline.pcr2 <- pcr(octane ˜ ., data = gasoline, ncomp = 1)
> X <- gasoline.pcr2$scores
> HatM <- X %*% solve(crossprod(X), t(X))
> sqrt(mean((gasoline.pcr2$residuals/(1 - diag(HatM)))ˆ2))
[1] 1.4187

The GCV estimate from Eq.9.13 deviates more from the LOO result:

> sqrt(mean((gasoline.pcr2$residuals/(1 - mean(diag(HatM))))ˆ2))
[1] 1.3888

If one iswilling to ignore the variation in the PCs introduced by leaving out individual
objects, as may be perfectly acceptable in the case of data sets with many objects,
this provides a way to significantly speed up calculations. The example above was
four times faster than the explicit loop, as is implemented in the pcr function with
the validation = "LOO" argument. For PLS, it is a different story: there, the
latent variables are estimated using y, and Eq.9.12 does not hold.
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9.4.2 Leave-Multiple-Out Crossvalidation

Instead of leaving out one sample at a time, it is also possible to leave out a sizeable
fraction, usually 10% of the data; the latter is also called “ten-fold crossvalidation”.
This approach has become quite popular—not only is it roughly ten times faster, it
also shows less variability in the error estimates (Efron and Tibshirani 1993). Again,
there is a bias-variance trade-off: the variance may be smaller, but a small bias occurs
because the model is based on a data set that is appreciably smaller than the “real”
data set, and therefore is slightly pessimistic by nature.

This “leave-multiple-out” (LMO) crossvalidation is usually implemented in a
random way: the order of the rows of the data matrix is randomized, and consecutive
chunks of roughly equal size are used as test sets. In case the data are structured,
it is possible to use non-randomized chunks: the functions in the pls package have
special provisions for this. The following lines of code lead, e.g., to interleaved
sample selection:

> gasoline.pcr <- pcr(octane ˜ ., data = gasoline,
+ validation = "CV", ncomp = 4,
+ segment.type = "interleaved")
> RMSEP(gasoline.pcr, estimate = "CV")
(Intercept) 1 comps 2 comps 3 comps 4 comps

1.5430 1.4261 1.4457 1.2179 0.2468

Analternative is to usesegment.type = "consecutive". Also, it is possible
to construct the segments (i.e., the crossvalidation sets) by hand or otherwise, and
explicitly present them to the modelling function using the segments argument.
See the manual pages for more information.

9.4.3 Double Crossvalidation

In all cases where crossvalidation is used to establish optimal values for modelling
parameters, the resulting error estimates are not indicative of the performance of
future observations. They are biased, in that they are used to pick the optimal model.
Another round of validation is required. This leads to double crossvalidation (Stone
1974), as visualized in Fig. 9.2: the inner crossvalidation loop is used to determine the
optimal model parameters, very often, in chemometrics, the optimal number of latent
variables, and the outer crossvalidation loop assesses the corresponding prediction
error. At the expense of more computing time, one is able to select optimal model
parameters as well as estimate prediction error.

The problem is that usually one ends up selecting different parameter settings
in different crossvalidation iterations: leaving out segment 1 may lead to a PLS
model with two components, whereas segment two may seem to need four PLS
components. Which do you choose? Averaging is no solution—again, one would
be using information which is not supposed to be available, and the resulting error
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segment 1

segment 2

segment 3

segment 4

segment 5

it. 1 it. 2 it. 3 it. 4 it. 5

Fig. 9.2 Double crossvalidation: the inner CV loop, indicated by the gray horizontal lines, is
used to estimate the optimal parameters for the modelling method. The outer loop, a five-fold
crossvalidation, visualized by the gray rectangles, is used to estimate the prediction error

estimates would be biased. One approach is to use all optimalmodels simultaneously,
and average the predictions (Smit et al. 2007). The disadvantage is that one loses the
interpretation of one single model; however, this may be a reasonable price to pay.
Other so-called ensemble methods will be treated in Sects. 9.7.1 and 9.7.2.

9.5 The Jackknife

Jackknifing (Efron and Tibshirani 1993) is the application of crossvalidation to obtain
statistics other than error estimates, usually pertaining to model coefficients. The
jackknife can be used to assess the bias and variance of regression coefficients. The
jackknife estimate of bias, for example, is given by

̂Bias jck(b) = (n − 1)(b̄(i) − b) (9.14)

where b is the regression coefficient2 obtained with the full data, and b(i) is the
coefficient from the data with sample i removed, just like in LOO crossvalidation.
The bias estimate is simply the difference between the average of all these LOO
estimates, and the full-sample estimate, multiplied by the factor n − 1.

Let us check the bias of the PLS estimates on the gasoline data using two latent
variables. The plsr function, when given the argument jackknife = TRUE,3

is keeping all regression coefficients of a LOO crossvalidation in the validation
element of the fitted object, so finding the bias estimates is not too difficult:

2In a multivariate setting we should use an index such as b j—to avoid complicated notation we
skip that for the moment.
3Information on this functionality can be found in the manual page of function mvrCv.
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Fig. 9.3 Jackknife estimates of bias (in gray) and variance (red line) for a two-component PLS
model on the gasoline data

> gasoline.pls <- plsr(octane ˜ ., data = gasoline,
+ validation = "LOO", ncomp = 2,
+ jackknife = TRUE)
> n <- length(gasoline$octane)
> b.oob <- gasoline.pls$validation$coefficients[, , 2, ]
> bias.est <- (n-1) * (rowMeans(b.oob) - coef(gasoline.pls))
> plot(wavelengths, bias.est, xlab = "wavelength", ylab = "bias",
+ type = "h", main = "Jackknife bias estimates",
+ col = "gray")

The result is shown in Fig. 9.3—clearly, the bias for specific coefficients can be
appreciable.

The jackknife estimate of variance is given by

V̂ar jck(b) = n − 1

n

∑
(b(i) − b̄(i))

2 (9.15)

and is implemented invar.jack. Again, an object of classmvrneeds to be supplied
that is fitted with jackknife = TRUE:

> var.est <- var.jack(gasoline.pls)
> lines(wavelengths, var.est, col = "red")

The variance is shown as the red line in Fig. 9.3. In the most important regions, bias
seems to dominate variance.

Several variants of the jackknife exist, including somewheremore thanone sample
is left out (Efron and Tibshirani 1993). In practice, however, the jackknife has been
replaced by the more versatile bootstrap.
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9.6 The Bootstrap

The bootstrap (Efron and Tibshirani 1993; Davison and Hinkley 1997) is a gener-
alization of the ideas behind crossvalidation: again, the idea is to generate multiple
data sets that, after analysis, shed light on the variability of the statistic of interest as
a result of the different training set compositions. Rather than splitting up the data to
obtain training and test sets, in non-parametric bootstrapping one generates a train-
ing set—a bootstrap sample—by sampling with replacement from the data. Whereas
the measured data set is one possible realization of the underlying population, an
individual bootstrap sample is, analogously, one realization from the complete set.
Since we may have sufficient knowledge of difference between the complete set and
the empirical realizations, simply by generating more bootstrap samples, we can
study the distribution of the statistic of interest θ . In non-parametric bootstrapping
applied to regression problems, there are two main approaches for generating a boot-
strap sample. One is to sample (again, with replacement) from the errors of the initial
model. Bootstrap samples are generated by adding the resampled errors to the orig-
inal data. This strategy is appropriate when the X data can be regarded as fixed and
the model is assumed to be correct. In other cases, one can sample complete cases,
i.e., rows from the data matrix, to obtain a bootstrap sample. In such a bootstrap
sample, some rows are present multiple times; others are absent.

In parametric bootstrapping on the other hand, one describes the data with a
parametric distribution, from which then random bootstrap samples are generated.
In the life sciences, high-dimensional data are the rule rather than the exception, and
therefore any parametric description of a data set is apt to be based on very sparse
data. Consequently, the parametric bootstrap has been less popular in this context.

What method is used to generate the bootstrap distribution, parametric boost-
rapping or non-parametric bootstrapping, is basically irrelevant for the subsequent
analysis. Typically, several hundreds to thousands bootstrap samples are analyzed,
and the variability of the statistic of interest is monitored. This enables one to make
inferences, both with respect to estimating prediction errors and confidence intervals
for model coefficients.

9.6.1 Error Estimation with the Bootstrap

Because a bootstrap sample will effectively never contain all samples in the data set,
there are samples that have not been involved in building the model. These out-of-
bag samples can conveniently be used in estimation of prediction errors. A popular
estimator is the so-called 0.632 estimate ε̂0.632, given by

ε̂20.632 = 0.368 MSEC + 0.632ε̄2B (9.16)
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where ε̄2B is the average squared prediction error of the OOB samples in the B boot-
strap samples, and MSEC is the mean squared training error (on the complete data
set). The factor 0.632 ≈ (1 − e−1) is approximately the probability of a sample to
end up in a bootstrap sample (Efron and Tibshirani 1993). In practice, the 0.632
estimator is the most popular form for estimating prediction errors; a more sophisti-
cated version, correcting possible bias, is known as the 0.632+ estimator (Efron and
Tibshirani 1997) but in many cases the difference is small.

As an example, let us use bootstrapping rather than crossvalidation to determine
the optimal number of latent variables in PCR fitting of the gasoline data. In this case,
the independent variables are not fixed, and there is some uncertainty on whether
the model is correct. This leads to the adoption of the resampling cases paradigm.
We start by defining bootstrap sample indices—in this case we take 500 bootstrap
samples.

> B <- 500
> ngas <- nrow(gasoline)
> boot.indices <-
+ matrix(sample(1:ngas, ngas * B, replace = TRUE), ncol = B)
> sort(boot.indices[, 1])[1:20]
[1] 2 2 3 3 4 6 8 8 8 8 11 12 14 15 15 16 17 19 20 21

Among others, objects 1 and 5 are absent from the first bootstrap sample, (partially)
shown here as an example. Other samples, such as 2 and 3, occur multiple times.
Similar behaviour is observed for the other 499 bootstrap samples. We now build
a PCR model for each bootstrap sample and record the predictions of the out-of-
bag objects. The following code is not particularly memory-efficient but easy to
understand:

> npc <- 5
> predictions <- array(NA, c(ngas, npc, B))
> for (i in 1:B) {
+ gas.bootpcr <- pcr(octane ˜ ., data = gasoline,
+ ncomp = npc, subset = boot.indices[, i])
+ oobs <- (1:ngas)[-boot.indices[, i]]
+ predictions[oobs, , i] <-
+ predict(gas.bootpcr,
+ newdata = gasoline$NIR[oobs, ])[, 1, ]
+ }

Next, the OOB errors for the individual objects are calculated, and summarized in
one estimate:

> diffs <- sweep(predictions, 1, gasoline$octane)
> sqerrors <- apply(diffsˆ2, c(1, 2), mean, na.rm = TRUE)
> sqrt(colMeans(sqerrors))
[1] 1.48695 1.50077 1.24562 0.28667 0.27598

Finally, the out-of-bag errors are combined with the calibration error to obtain the
0.632 estimate:
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> gas.pcr <- pcr(octane ˜ ., data = gasoline, ncomp = npc)
> RMSEP(gas.pcr, intercept = FALSE)
1 comps 2 comps 3 comps 4 comps 5 comps
1.3656 1.3603 1.1097 0.2305 0.2260

> error.632 <- .368 * colMeans(gas.pcr$residualsˆ2) +
+ .632 * colMeans(sqerrors)
> sqrt(error.632)

1 comps 2 comps 3 comps 4 comps 5 comps
octane 1.4435 1.4507 1.1974 0.26737 0.25873

The result is an upward correction of the too optimistic training set errors. We can
compare the 0.632 estimate with the LOO and ten-fold crossvalidation estimates:

> gas.pcr.cv <- pcr(octane ˜ ., data = gasoline, ncomp = npc,
+ validation = "CV")
> gas.pcr.loo <- pcr(octane ˜ ., data = gasoline, ncomp = npc,
+ validation = "LOO")
> bp <- barplot(sqrt(error.632),
+ ylim = c(0, 1.6), col = "peachpuff")
> lines(bp, sqrt(c(gas.pcr.cv$validation$PRESS) / ngas),
+ col = 2, lwd = 2)
> lines(bp, sqrt(c(gas.pcr.loo$validation$PRESS) / ngas),
+ col = 4, lty = 2, lwd = 2)
> legend("topright", lty = 1:2, col = c(2, 4), lwd = 2,
+ legend = c("CV", "LOO"))

The result is shown in Fig. 9.4. The estimates in general agree very well—the dif-
ferences that can be seen are the consequence of the stochastic nature of both ten-
fold crossvalidation and bootstrapping: every time a slightly different result will be
obtained.

Fig. 9.4 Error estimates for
PCR on the gasoline data:
bars indicate the result of the
0.632 bootstrap, the solid
line is the ten-fold
crossvalidation, and the
dashed line the LOO
crossvalidation

1 comps 2 comps 3 comps 4 comps 5 comps
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It now should be clear what is the philosophy behind the 0.632 estimator. What
it estimates, in fact, is the amount of optimism associated with the RMSEC value,
ω̂0.632:

ω̂0.632 = 0.632(MSEC − ε̄B) (9.17)

The original estimate is then corrected for this optimism:

ε̂0.632 = MSEC + ω̂0.632 (9.18)

which leads to Eq.9.16.
SeveralR packages are available that contain functions for bootstrapping. Perhaps

the two best known ones are bootstrap, associated with Efron and Tibshirani (1993),
and boot, written by Angelo Canty and implementing functions from Davison and
Hinkley (1997). The former is a relatively simple package, maintained mostly to
support Efron and Tibshirani (1993)—boot, a recommended package, is the primary
general implementation of bootstrapping in R. The implementation of the 0.632
estimator using boot is done in a couple of steps (Davison and Hinkley 1997, p. 324).
First, the bootstrap samples are generated, returning the statistic to be bootstrapped—
in this case, the prediction errors4:

> gas.pcr.boot632 <-
+ boot(gasoline,
+ function(x, ind) {
+ mod <- pcr(octane ˜ ., data = x,
+ subset = ind, ncomp = 4)
+ gasoline$octane -
+ predict(mod, newdata = gasoline$NIR, ncomp = 4)},
+ R = 499)

The optimism is assessed by only considering the errors of the out-of-bag samples.
For every bootstrap sample, we can find out which samples are constituting it using
the boot.array function:

> dim(boot.array(gas.pcr.boot632))
[1] 499 60
> boot.array(gas.pcr.boot632)[1, 1:10]
[1] 0 1 0 1 2 1 0 1 2 1

Just like when we did the resampling ourselves, some objects are absent from this
bootstrap sample (here, as an example, using the first, only showing the first ten
objects), and others are present multiple times. Averaging the squared errors of the
OOB objects leads to the 0.632 estimate:

4In Davison and Hinkley (1997) and the corresponding boot package the number of bootstrap
samples is typically a number like 499 or 999—the original sample then is added to the bootstrap
set. Most other implementations use 500 and 1000. The differences are not very important in
practice.
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> in.bag <- boot.array(gas.pcr.boot632)
> oob.error <- mean((gas.pcr.boot632$tˆ2)[in.bag == 0])
> app.error <- MSEP(pcr(octane ˜ ., data = gasoline, ncomp = 4),
+ ncomp = 4, intercept = FALSE)
> sqrt(.368 * c(app.error$val) + .632 * oob.error)
[1] 0.26572

This error estimate is very similar to the four-fold crossvalidation result in Sect. 9.4.2
(0.2468). Note that it is not exactly equal to the 0.632 estimate in Sect. 9.6.1 (0.26737)
because different bootstrap samples have been selected, but again the difference is
small.

9.6.2 Confidence Intervals for Regression Coefficients

The bootstrap may also be used to assess the variability of a statistic such as an
error estimate. A particularly important application in chemometrics is the standard
error of a regression coefficient from a PCR or PLS model. Alternatively, confidence
intervals can be built for the regression coefficients. No analytical solutions such as
those for MLR exist in these cases; nevertheless, we would like to be able to say
something about which coefficients are actually contributing to the regressionmodel.

Typically, for an interval estimate such as a confidence interval, more bootstrap
samples are needed than for a point estimate, such as an error estimate. Several
hundred bootstrap samples are taken to be sufficient for point estimates; several
thousand for confidence intervals. Taking smaller numbers may drastically increase
the variability of the estimates, and with the current abundance of computing power
there is rarely a case for being too economical.

The simplest possible approach is the percentile method: estimate the models
for B bootstrap samples, and use the Bα/2 and B(1 − α/2) values as the (1 − α)

confidence intervals. For the gasoline data, modelled with PCR using four PCs, these
bootstrap regression coefficients are obtained by:

> B <- 1000
> ngas <- nrow(gasoline)
> boot.indices <-
+ matrix(sample(1:ngas, ngas * B, replace = TRUE), ncol = B)
> npc <- 4
> gas.pcr <- pcr(octane ˜ ., data = gasoline, ncomp = npc)
> coefs <- matrix(0, ncol(gasoline$NIR), B)
> for (i in 1:B) {
+ gas.bootpcr <- pcr(octane ˜ ., data = gasoline,
+ ncomp = npc, subset = boot.indices[, i])
+ coefs[, i] <- c(coef(gas.bootpcr))
+ }

A plot of the area covered by the regression coefficients of all bootstrap samples is
shown in Fig. 9.5:
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Fig. 9.5 Regression coefficients from all 1000 bootstrap samples for the gasoline data, using PCR
with four latent variables

> matplot(wavelengths, coefs, type = "n",
+ ylab = "Coefficients", xlab = "Wavelength (nm)")
> abline(h = 0, col = "gray")
> polygon(c(wavelengths, rev(wavelengths)),
+ c(apply(coefs, 1, max), rev(apply(coefs, 1, min))),
+ col = "steelblue", border = NA)

Some of the wavelengths show considerable variation in their regression coefficients,
especially the longer wavelengths above 1650 nm.

In the percentile method using 1000 bootstrap samples, the 95% confidence inter-
vals are given by the 25th and 975th ordered values of each coefficient:

> coef.stats <- cbind(apply(coefs, 1, quantile, .025),
+ apply(coefs, 1, quantile, .975))
> matplot(wavelengths, coef.stats, type = "n",
+ xlab = "Wavelength (nm)",
+ ylab = "Regression coefficient")
> abline(h = 0, col = "gray")
> polygon(c(wavelengths, rev(wavelengths)),
+ c(coef.stats[, 1], rev(coef.stats[, 2])),
+ col = "pink", border = NA)
> lines(wavelengths, c(coef(gas.pcr)))

The corresponding plot is shown in Fig. 9.6. Since the most extreme values will be
removed by the percentile strategy, these CIs are more narrow than the area covered
by the bootstrap coefficients from Fig. 9.5. Clearly, for most coefficients, zero is not
in the confidence interval. A clear exception is seen in the longer wavelengths: there,
the confidence intervals are very wide, indicating that this region contains very little
relevant information.

The percentile method was the first attempt at deriving confidence intervals from
bootstrap samples (Efron 1979) and has enjoyed huge popularity; however, one can
show that the intervals are, in fact, incorrect. If the intervals are not symmetric (and it



208 9 Validation

1000 1200 1400 1600

−6
−4

−2
0

2

Wavelength (nm)

R
eg

re
ss

io
n 

co
ef

fic
ie

nt

Fig. 9.6 Regression vector and 95% confidence intervals for the individual coefficients, for the
PCRmodel of the gasoline data with four PCs. Confidence intervals are obtained with the bootstrap
percentile method

can be seen in Fig. 9.6 that this is quite often the case—it is one of the big advantages
of bootstrapping methods that they are able to define asymmetric intervals), it can
be shown that the percentile method uses the skewness of the distribution the wrong
way around (Efron and Tibshirani 1993). Better results are obtained by so-called
studentized confidence intervals, in which the statistic of interest is given by

tb = θ̂b − θ̂

σ̂b
(9.19)

where θ̂b is the estimate for the statistic of interest, obtained from the bth bootstrap
sample, σ̂b is the standard deviation of that estimate, and θ̂ is the estimate obtained
from the complete original data set. In the example of regression, θ̂ corresponds to
the regression coefficient at a certain wavelength. Often, no analytical expression
exists for σ̂b, and it should be obtained by other means, e.g., crossvalidation, or an
inner bootstrap loop. Using the notation of tBα/2 as an approximation for the α/2th
quantile of the distribution of tb, the studentized confidence intervals are given by

θ̂ − tB(1−α/2) ≤ θ ≤ θ̂ − tBα/2 (9.20)

Several other ways of estimating confidence intervals exist, most notably the bias-
corrected and accelerated (BCα) interval (Efron and Tibshirani 1993; Davison and
Hinkley 1997).

The boot package provides the function boot.ci, which calculates several con-
fidence interval estimates in one go. Again, first the bootstrap sampling is done and
the statistics of interest are calculated:
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Fig. 9.7 Bootstrap plot for the regression coefficient at 1206 nm; in all bootstrap samples the
coefficient is much smaller than zero

> gas.pcr.bootCI <-
+ boot(gasoline,
+ function(x, ind) {
+ c(coef(pcr(octane ˜ ., data = x,
+ ncomp = npc, subset = ind)))},
+ R = 999)

Here we use R = 999 to conform to the setup of the boot package—the actual
sample is seen as the 1000th element of the set. The regression coefficients are
stored in the gas.pcr.bootCI object, which is of class "boot", in the element
named t:

> dim(gas.pcr.bootCI$t)
[1] 999 401

Plots of individual estimates can be made through the index argument:

> smallest <- which.min(gas.pcr.bootCI$t0)
> plot(gas.pcr.bootCI, index = smallest)

From the plot, shown in Fig. 9.7, one can see the distribution of the values for this
coefficient in all bootstrap samples—the corresponding confidence interval will def-
initely not contain zero. The dashed line indicates the estimate based on the full data;
these estimates are stored in the list element t0.

Confidence intervals for individual coefficients can be obtained from the
gas.pcr.bootCI object as follows:
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> boot.ci(gas.pcr.bootCI, index = smallest, type = c("perc", "bca"))
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 999 bootstrap replicates

CALL :
boot.ci(boot.out = gas.pcr.bootCI, type = c("perc", "bca"),

index = smallest)

Intervals :
Level Percentile BCa
95% (-5.909, -5.157 ) (-6.239, -5.538 )
Calculations and Intervals on Original Scale
Warning : BCa Intervals used Extreme Quantiles
Some BCa intervals may be unstable

The warning messages arise because in the extreme tails of the bootstrap distribution
it is very difficult to make precise estimates—in such cases one really needs more
bootstrap samples to obtain somewhat reliable estimates. Nevertheless, one can see
that the intervals agree reasonably well; the BCα intervals are slightly shifted down-
ward compared to the percentile intervals. For this coefficient, in absolute value the
largest of the set, neither contains zero, as expected. In total, the percentile intervals
show 318 cases where zero is not in the 95% confidence interval; the BCα intervals
lead to 325 such cases.

It is interesting to repeat this exercise using a really large number of principal
components, say twenty (remember, the gasoline data set only contains sixty sam-
ples). We would expect much more variation in the coefficients, since the model is
more flexible and can adapt to changes in the training data much more easily. More
variationmeanswider confidence intervals, and fewer “significant” cases, where zero
is not included in the CI. Indeed, using twenty PCs leads to only 71 significant cases
for the percentile intervals, and 115 for BCα (and an increased number of warning
messages from the boot function as well).

9.6.3 Other R Packages for Bootstrapping

The bootstrap is such a versatile technique, that it has found application in many
different areas of science. This has led to a large number ofR packages implementing
some form of the bootstrap—at the moment of writing, the package list of the CRAN
repository contains already four other packages in between the packages boot and
bootstrap already mentioned. To name just a couple of examples: package FRB
contains functions for applying bootstrapping in robust statistics; DAIM provides
functions for error estimation including the 0.632 and 0.632+ estimators. Using
EffectiveDose it is possible to estimate the effects of a drug, and in particular to
determine the effective dose level—bootstrapping is provided for the calculation
of confidence intervals. Packages meboot and BootPR provide machinery for the
application of bootstrapping in time series.
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9.7 Integrated Modelling and Validation

Obtaining a good multivariate statistical model is hardly ever a matter of just loading
the data and pushing a button: rather, it is a long and sometimes seemingly end-
less iteration of visualization, data treatment, modelling and validation. Since these
aspects are so intertwined, it seems to make sense to develop methods that combine
them in some way. In this section, we consider approaches that combine elements of
model fitting with validation. The first case is bagging (Breiman 1996), where many
models are fitted on bootstrap sets, and predictions are given by the average of the
predictions of these models. At the same time, the out-of-bag samples can be used for
obtaining an unbiased error estimate. Bagging is applicable to all classification and
regression methods, but will give benefits only in certain cases; the classical example
where it works well is given by trees (Breiman 1996)—see below. An extension of
bagging, also applied to trees, is the technique of random forests (Breiman 2001).
Finally, we will look at boosting (Freund and Schapire 1997), an iterative method for
binary classification giving progressivelymoreweight tomisclassified samples. Bag-
ging and boosting can be seen as meta-algorithms, because they consist of strategies
that, in principle at least, can be combined with any model-fitting algorithm.

9.7.1 Bagging

The central idea behind bagging is simple: if you have a classifier (or a method for
predicting continuous variables) that on average gives good predictions but has a
somewhat high variability, it makes sense to average the predictions over a large
number of applications of this classifier. The problem is how to do this in a sensible
way: just repeating the same fit on the same data will not help. Breiman proposed
to use bootstrapping to generate the variability that is needed. Training a classifier
on every single bootstrap sets leads to an ensemble of models; combining the pre-
dictions of these models would then, in principle, be closer to the true answer. This
combination of bootstrapping and aggregating is called bagging (Breiman 1996).

The package ipred implements bagging for classification, regression and sur-
vival analysis using trees—the rpart implementation is employed. For classification
applications, also the combination of bagging with kNN is implemented (in function
ipredknn).Wewill focus here on bagging trees. The basic function isipredbag,
while the function bagging provides the same functionality using a formula inter-
face. Making a model for predicting the octane number for the gasoline data is very
easy:
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> (gasoline.bagging <- ipredbagg(gasoline$octane[gas.odd],
+ gasoline$NIR[gas.odd, ],
+ coob = TRUE))

Bagging regression trees with 25 bootstrap replications
Out-of-bag estimate of root mean squared error: 0.9181

The OOB error is quite high. Predictions for the even-numbered samples can be
obtained by the usual predict function:

> gs.baggpreds <-
+ predict(gasoline.bagging, gasoline$NIR[gas.even, ])
> resids <- gs.baggpreds - gasoline$octane[gas.even]
> sqrt(mean(residsˆ2))
[1] 1.6738

This is not a very good result. Nevertheless, one should keep in mind that default set-
tings are often suboptimal and some tweakingmay lead to substantial improvements.

Doing classification with bagging is equally simple. Here, we show the example
of discriminating between the control and pca classes of the prostate data, again
using only the first 1000 variables as we did in Sect. 7.1.6.1:

> prost.bagging <- bagging(type ˜ ., data = prost.df,
+ subset = prost.odd)
> prost.baggingpred <- predict(prost.bagging,
+ newdata = prost.df[prost.even, ])
> table(prost.type[prost.even], prost.baggingpred)

prost.baggingpred
control pca

control 30 10
pca 4 80

which doubles the number of misclassifications compared to the SVM solution in
Sect. 7.4.1 but still is a lot better than the single-tree result.

So when does bagging improve things? Clearly, when a classification or regres-
sion procedure changes very little with different bootstrap samples, the result will be
the same as the original predictions. It can be shown (Breiman 1996) that bagging is
especially useful for predictors that are unstable, i.e., predictors that are highly adap-
tive to the composition of the data set. Examples are trees, neural networks (Hastie
et al. 2001) or variable selection methods.

9.7.2 Random Forests

The combination of bagging and tree-based methods is a good one, as we saw in
the last section. However, Breiman and Cutler saw that more improvement could be
obtained by injecting extra variability into the procedure, and they proposed a number



9.7 Integrated Modelling and Validation 213

of modifications leading to the technique called Random Forests (Breiman 2001).
Again, bootstrapping is used to generate data sets that are used to train an ensemble
of trees. One key element is that the trees are constrained to be very simple—only
few nodes are allowed, and no pruning is applied. Moreover, at every split, only a
subset of all variables is considered for use. Both adaptations force diversity into the
ensemble, which is the key to why improvements can be obtained with aggregating.

It can be shown (Breiman 2001) that an upper bound for the generalization error
is given by

Ê ≤ ρ̄(1 − q2)/q2

where ρ̄ is the average correlation between predictions of individual trees, and q
is a measure of prediction quality. This means that the optimal gain is obtained
when many good yet diverse classifiers are combined, something that is intuitively
logical—there is not much point in averaging the outcomes of identical models, and
combining truly bad models is unlikely to lead to good results either.

The R package randomForest provides a convenient interface to the original
Fortran code of Breiman and Cutler. The basic function is randomForest, which
either takes a formula or the usual combination of a data matrix and an outcome
vector:

> wines.df <- data.frame(vint = vintages, wines)
> (wines.rf <- randomForest(vint ˜ ., subset = wines.odd,
+ data = wines.df))

Call:
randomForest(formula = vint ˜ ., data = wines.df, subset = wines.odd)

Type of random forest: classification
Number of trees: 500

No. of variables tried at each split: 3

OOB estimate of error rate: 4.49%
Confusion matrix:

Barbera Barolo Grignolino class.error
Barbera 24 0 0 0.000000
Barolo 0 28 1 0.034483
Grignolino 2 1 33 0.083333

The print method shows the result of the fit in terms of the error rate of the out-
of-bag samples, in this case less than 5%. Because the algorithm fits trees to many
different bootstrap samples, this error estimate comes for free. Prediction is done in
the usual way:

> wines.rf.predict <-
+ predict(wines.rf, newdata = wines.df[wines.even, ])
> table(wines.rf.predict, vintages[wines.even])

wines.rf.predict Barbera Barolo Grignolino
Barbera 24 0 0
Barolo 0 29 0
Grignolino 0 0 35
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So prediction for the even rows in the data set is perfect here. Note that repeated
training may lead to small differences because of the randomness involved in select-
ing bootstrap samples and variables in the training process. Also in many other
applications random forests have shown very good predictive abilities (see, e.g.,
reference Svetnik et al. 2003 for an application in chemical modelling).

So it seems the most important disadvantage of tree-based methods, the generally
low quality of the predictions, has been countered sufficiently. Does this come at a
price? At first sight, yes. Not only does a random forest add complexity to the original
algorithm in the formof tuning parameters, the interpretability suffers aswell. Indeed,
an ensemble of trees would seemmore difficult to interpret than one simple sequence
of yes/no questions. Yet in reality things are not so simple. The interpretability, one
of the big advantages of trees, becomes less of an issue when one realizes that a
slight change in the data may lead to a completely different tree, and therefore a
completely different interpretation. Such a small change may, e.g., be formed by
the difference between successive crossvalidation or bootstrap iterations—thus, the
resulting error estimate may be formed by predictions from trees using different
variables in completely different ways.

The technique of random forests addresses these issues in the following ways. A
measure of the importance of a particular variable is obtained by comparing the
out-of-bag errors for the trees in the ensemble with the out-of-bag errors when the
values for that variable are permuted randomly. Differences are averaged over all
trees, and divided by the standard error. If one variable shows a big difference, this
means that the variable, in general, is important for the classification: the scrambled
values lead to models with decreased predictivity. This approach can be used for
both classification (using, e.g., classification error rate as a measure) and regression
(using a value like MSE). An alternative is to consider the total increase in node
purity.

In package randomForest this is implemented in the following way. When
setting the parameter importance = TRUE in the call to randomForest,
the importances of all variables are calculated during the fit—these are available
through the extractor function importance, and for visualization using the func-
tion varImpPlot:

> wines.rf <- randomForest(vint ˜ ., data = wines.df,
+ importance = TRUE)
> varImpPlot(wines.rf)

The result is shown in Fig. 9.8. The left plot shows the importance measured
using the mean decrease in accuracy; the right plot using the mean decrease in node
impurity, as measured by the Gini index. Although there are small differences, the
overall picture is the same using both indices.

The second disadvantage, the large number of parameters to set in using tree-based
models, is implicitly taken care of in the definition of the algorithm: by requiring all
trees in the forest to be small and simple, no elaborate pruning schemes are necessary,
and the degrees of freedom of the fitting algorithm have been cut back drastically.



9.7 Integrated Modelling and Validation 215

non.flav..phenols

ash

proanth

ash.alkalinity

malic.acid

magnesium

tot..phenols

col..hue

OD.ratio

alcohol

flavonoids

col..int.

proline

●

●

●

●

●

●

●

●

●

●

●

●

●

5 10 15 20 25
MeanDecreaseAccuracy

non.flav..phenols

ash

proanth

ash.alkalinity

malic.acid

magnesium

tot..phenols

col..hue

OD.ratio

alcohol

col..int.

flavonoids

proline

●

●

●

●

●

●

●

●

●

●

●

●

●

0 5 10 15
MeanDecreaseGini

wines.rf

Fig. 9.8 Assessment of variable importance by random forests: the left plot shows the mean
decrease in accuracy and the right the mean decrease in Gini index, both after permuting indi-
vidual variable values

Furthermore, it appears that in practice random forests are very robust to changes in
settings: averaging many trees also takes away a lot of the dependence on the exact
value of parameters. In practice, the only parameter that is sometimes optimized is the
number of trees (Efron and Hastie 2016), and even that usually has very little effect.
This has caused random forests to be called one of the most powerful off-the-shelf
classifiers available.

Just like the classification and regression trees seen in Sect. 7.3, random forests
can also be used in a regression setting. Take the gasoline data, for instance: training
a model using the default settings can be achieved with the following command.

> gasoline.rf <- randomForest(gasoline$NIR[gas.odd, ],
+ gasoline$octane[gas.odd],
+ importance = TRUE,
+ xtest = gasoline$NIR[gas.even, ],
+ ytest = gasoline$octane[gas.even])

For interpretation purposes, we have used the importance = TRUE argument,
andwe have provided the test samples at the same time. The results, shown in Fig. 9.9,
are better than the ones from bagging:
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Fig. 9.9 Predictions for the gasoline data using random forests. Left plot: OOB predictions for the
training data—right plot: test data

> pl.range <- c(83, 90)
> plot(gasoline$octane[gas.odd], gasoline.rf$predicted,
+ main = "Training: OOB prediction", xlab = "True",
+ ylab = "Predicted", xlim = pl.range, ylim = pl.range)
> abline(0, 1, col = "gray")
> plot(gasoline$octane[gas.even], gasoline.rf$test$predicted,
+ main = "Test set prediction", xlab = "True",
+ ylab = "Predicted", xlim = pl.range, ylim = pl.range)
> abline(0, 1, col = "gray")

However, there seems to be a bias towards the mean—the absolute values of the
predictions at the extremes of the range are too small. Also the RMS values confirm
that the test set predictions are much worse than the PLS and PCR estimates of 0.21:

> resids <- gasoline.rf$test$predicted - gasoline$octane[gas.even]
> sqrt(mean(residsˆ2))
[1] 0.63721

One of the reasons can be seen in the variable importance plot, shown in Fig. 9.10:

> rf.imps <- importance(gasoline.rf)
> plot(wavelengths, rf.imps[, 1] / max(rf.imps[, 1]),
+ type = "l", xlab = "Wavelength (nm)",
+ ylab = "Importance", col = "gray")
> lines(wavelengths, rf.imps[, 2] / max(rf.imps[, 2]), col = 2)
> legend("topright", legend = c("Error decrease", "Gini index"),
+ col = c("gray", "red"), lty = 1)

Both criteria are dominated by the wavelengths just above 1200 nm. Especially
the Gini index leads to a sparse model, whereas the error-based importance values
clearly are much more noisy. Interestingly, when applying random forests to the first
derivative spectra of the gasoline data set (not shown) the same feature around 1200
nm is important, but the response at 1430 nm comes up as an additional feature.
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Fig. 9.10 Variable importance for modelling the gasoline data with random forests: basically, only
the wavelengths just above 1200 nm seem to contribute

Although the predictions improve somewhat, they are still nowhere near the PLS
and PCR results shown in Chap.8.

For comparison, we also show the results of random forests on the prediction of
the even samples in the prostate data set:

> prost.rf <-
+ randomForest(x = prost[prost.odd, ],
+ y = prost.type[prost.odd],
+ x.test = prost[prost.even, ],
+ y.test = prost.type[prost.even])
> prost.rfpred <- predict(prost.rf, newdata = prost[prost.even, ])
> table(prost.type[prost.even], prost.rfpred)

prost.rfpred
control pca

control 30 10
pca 4 80

Again, a slight improvement over bagging can be seen.

9.7.3 Boosting

In boosting (Freund and Schapire 1997), validation and classification are combined
in a different way. Boosting, and in particular in the adaBoost algorithm that we will
be focusing on in this section, is an iterative algorithm that in each iteration focuses
the attention to misclassified samples from the previous step. Just as in bagging,
in principle any modelling approach can be used; also similar to bagging, not all
combinations will show improvements. Other forms of boosting have appeared since
the original adaBoost algorithm, such as gradient boosting, popular in the statistics
community (Friedman 2001; Efron and Hastie 2016). One of the most powerful
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new variants is XGBoost (which stands for Extreme Gradient Boosting, Chen and
Guestrin 2016), available in R through package xgboost.

The main idea of adaBoost is to use weights on the samples in the training set.
Initially, theseweights are all equal, but during the iterations theweights of incorrectly
predicted samples increase. In adaBoost, which stands for adaptive boosting, the
changes in the weight of object i is given by

Dt+1(i) = Dt (i)

Zt
×

{
e−αt if correct

eαt if incorrect
(9.21)

where Zt is a suitable normalization factor, and αt is given by

αt = 0.5 ln

(
1 − εt

εt

)
(9.22)

with εt the error rate of the model at iteration t . In prediction, the final classification
result is given by the weighted average of the T predictions during the iterations,
with the weights given by the α values.

The algorithm itself is very simple and easily implemented. The only parameter
that needs to be set in an applicationof boosting is themaximal number of iterations.A
number that is too large would potentially lead to overfitting, although in many cases
it has been observed that overfitting does not occur (see, e.g., references in Freund
and Schapire 1997).

Boosting trees in R is available in package ada (Michailides et al. 2006), which
directly follows the algorithms described in reference (Friedman et al. 2000). Let us
revisit the prostate example, also tackled with SVMs (Sect. 7.4.1):

> prost.ada <- ada(type ˜ ., data = prost.df, subset = prost.odd)
> prost.adapred <-
+ predict(prost.ada, newdata = prost.df[prost.even, ])
> table(prost.type[prost.even], prost.adapred)

prost.adapred
control pca

control 30 10
pca 3 81

The result is equal to the one obtained with bagging. The development of the errors
in training and test sets can be visualized using the default plot command. In this
case, we should add the test set to the ada object first5:

> prost.ada <- addtest(prost.ada,
+ prost.df[prost.even, ],
+ prost.type[prost.even])
> plot(prost.ada, test = TRUE)

5We could have added the test set data to the original call to ada as well—see the manual page.
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Fig. 9.11 Development of prediction errors for training and test sets of the prostate data (two
classes, only 1000 variables) using ada

This leads to the plot in Fig. 9.11. The final error on the test set is less than half of the
error at the beginning of the iterations. Clearly, both the training and testing errors
have stabilized already after some twenty iterations.

The version of boosting employed in this example is also known as Discrete
adaboost (Friedman et al. 2000; Hastie et al. 2001), since it returns 0/1 class predic-
tions. Several other variants have been proposed, returning membership probabilities
rather than crisp classifications and employing different loss functions. Inmany cases
they outperform the original algorithm (Friedman et al. 2000).

Since boosting is in essence a binary classifier, special measures must be taken to
apply it in a multi-class setting, similar to the possibilities mentioned in Sect. 7.4.1.1.
A further interesting connection with SVMs can be made (Schapire et al. 1998):
although boosting does not explicitly maximize margins, as SVMs do, it does come
very close. The differences are, firstly, that SVMs use the L2 norm, the sum of the
squared vector elements, whereas boosting uses L1 (the sum of the absolute values)
and L∞ (the largest value) norms for the weight and instance vectors, respectively.
Secondly, boosting employs greedy search rather than kernels to address the problem
of finding discriminating directions in high-dimensional space. The result is that
although there are intimate connections, in many cases the models of boosting and
SVMs can be quite different.

The obvious drawback of focusing more and more on misclassifications is that
thesemay bemisclassifications with a reason: outlying observations, or samples with
wrong labels, may disturb the modelling to a large extent. Indeed, boosting has been
proposed as a way to detect outliers.


	9 Validation
	9.1 Representativity and Independence
	9.2 Error Measures
	9.3 Model Selection
	9.3.1 Permutation Approaches
	9.3.2 Model Selection Indices
	9.3.3 Including Model Selection in the Validation

	9.4 Crossvalidation Revisited
	9.4.1 LOO Crossvalidation
	9.4.2 Leave-Multiple-Out Crossvalidation
	9.4.3 Double Crossvalidation

	9.5 The Jackknife
	9.6 The Bootstrap
	9.6.1 Error Estimation with the Bootstrap
	9.6.2 Confidence Intervals for Regression Coefficients
	9.6.3 Other R Packages for Bootstrapping

	9.7 Integrated Modelling and Validation
	9.7.1 Bagging
	9.7.2 Random Forests
	9.7.3 Boosting





