
Chapter 7
Classification

The goal of classification, also known as supervised pattern recognition, is to provide
a model that yields the optimal discrimination between several classes in terms of
predictive performance. It is closely related to clustering. The difference is that in
classification it is clear what to look for: the number of classes is known, and the
classes themselves are well-defined, usually by means of a set of examples, the
training set. Labels of objects in the training set are generally taken to be error-
free, and are typically obtained from information other than the data we are going
to use in the model. For instance, one may have data—say, concentration levels
of several hundreds of proteins in blood—from two groups of people, healthy, and
not-so-healthy, and the aim is to obtain a classification model that distinguishes
between the two states on the basis of the protein levels. The diagnosis may have
been based on symptoms, medical tests, family history and subjective reasoning of
the doctor treating the patient. It may not be possible to distinguish patients from
healthy controls on the basis of protein levels, but if one would be able to, it would
lead to a simple and objective test.

Apart from having good predictive abilities, an ideal classification method also
provides insight in what distinguishes different classes from each other—which vari-
able is associated with an observed effect? Is the association positive or negative?
Especially in the natural sciences, this has becomean important objective: a gene, pro-
tein ormetabolite, characteristic for one or several classes, is often called abiomarker.
Such a biomarker, ormore often, set of biomarkers, can be used as an easy and reliable
diagnostic tool, but also can provide insight or even opportunities for intervention
in the underlying biological processes. Unfortunately, biomarker identification can
be extremely difficult. First of all, in cases where the number of variables exceeds
the number of cases, it is quite likely that several (combinations of) variables show
high correlations with class labels even though there may not be causal relationships.
Furthermore, there is a trend towards more complex non-linear modelling methods
(often indicated with terms like Machine Learning or Artificial Intelligence) where
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the relationship between variables and outcome can no longer be summarized in
simple coefficient values. Hence, interpretation of such models is often impossible.

What is needed as well is a reliable estimate of the success rate of the classifier. In
particular, onewould like to knowhow the classifierwill perform in the future, on new
samples, of course comparable to the ones used in setting up the model. This error
estimate is obtained in a validation step—Chap. 9 provides an overview of several
different methods. These are all the more important when the classifier of interest has
tunable parameters. These parameters are usually optimized on the basis of estimated
prediction errors, but as a result the error estimates are positively biased, and a second
validation layer is needed to obtain an unbiased error estimate. In this chapter, we
will take a simple approach and divide the data in a representative part that is used
for building the model (the training set), and an independent part used for testing
(the test set). The phrase “independent” is of utmost importance: if, e.g., autoscaling
is applied, one should use the column means and standard deviations of the training
set to scale the test set. First scaling the complete data set and then dividing the data
in training and test sets is, in a way, cheating: one has used information from the test
data in the scaling. This usually leads to underestimates of prediction error.

That the training data should be representative seems almost trivial, but in some
cases this is hard to achieve. Usually, a random division works well, but also other
divisions may be used. In Chap.4 we have seen that the odd rows of the wine data
set are very similar to the even rows. In a classification context, we can therefore use
the even rows as a training set and the odd rows as a test set:

> wines.odd <- seq(1, nrow(wines), by = 2)
> wines.even <- seq(2, nrow(wines), by = 2)
> wines.trn <- wines[wines.odd, ]
> wines.tst <- wines[wines.even, ]
> vint.trn <- vintages[wines.odd]
> vint.tst <- vintages[wines.even]

Note that classes are represented proportional to their frequency in the original data
in both the training set and the test set. In a couple of cases we will illustrate methods
in two dimensions only, looking at the flavonoids and proline variables in
the wine data set:

> wines2.trn <- wines.trn[, c(7, 13)]
> wines2.tst <- wines.tst[, c(7, 13)]

There are many different ways of using the training data to predict class labels for
future data. Discriminant analysis methods use a parametric description of means
and covariances. Essentially, observations are assigned to the class having the highest
probability density. Nearest-neighbor methods, on the other hand, focus on similar-
ities with individual objects and assign objects to the class that is prevalent in the
neighborhood; another way to look at it is to see nearest-neighbor methods as local
density estimators. Similarities between objects can also be used directly, e.g., in ker-
nel methods; the most well-known representative of this type of methods is Support
Vector Machines (SVMs). A completely different category of classifiers is formed
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by tree-based approaches. These create a model consisting of a series of binary
decisions. Finally, neural-network based classification will be discussed.

Here we will concentrate on the main concepts and show how they should be
implemented using standard approaches. Often these are directly supported by mod-
elling methods themselves. An alternative is to use the caret package (short for
Classification and Regression Training, Kuhn 2008; Kuhn and Johnson 2013), which
provides tools for data splitting and validation in the contexts of classification and
regression, but also many other topics mentioned in this book. The manual pages
and the vignette of the caret package provide more information.

7.1 Discriminant Analysis

In discriminant analysis, one assumes normal distributions for the individual classes:
Np(μk,Σk), where the subscript p indicates that the data are p-dimensional
(McLachlan 2004). One can then classify a new object, which can be seen as a
point in p-dimensional space, to the class that has the highest probability density
(“likelihood”) at that point—this type of discriminant analysis is therefore indicated
with the term “Maximum-Likelihood” (ML) discriminant analysis.

Consider the following univariate example with two groups (Mardia et al. 1979):
group one is N (0, 5) and group 2 is N (1, 1). The likelihoods of classes i are given
by

Li (x;μi ,σi ) = 1
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It is not too difficult to show that L1 > L2 if
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which in this case corresponds to the regions outside the interval [−0.9, 2.9]. In
more general terms, one can show (Mardia et al. 1979) that for one-dimensional data
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This unrestricted form,where every class is individually describedwith amean vector
and covariance matrix, leads to quadratic class boundaries, and is called “Quadratic
Discriminant Analysis” (QDA). Obviously, when σ1 = σ2 the quadratic term disap-
pears, and we are left with a linear class boundary—“Linear Discriminant Analysis”
(LDA). Both techniques will be treated in more detail below.

Another way of describing the same classification rules is to make use of the
Mahalanobis distance:
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d(x, i) = (
x − μi

)T
Σ−1

i

(
x − μi

)
(7.3)

Loosely speaking, this expresses the distance of an object to a class center in terms
of the standard deviation in that particular direction. Thus, a sample x is simply
assigned to the closest class, using the Mahalanobis metric d(x, i). In LDA, all
classes are assumed to have the same covariance matrix Σ , whereas in QDA every
class is represented by its own covariance matrix Σ i .

7.1.1 Linear Discriminant Analysis

It is easy to show that Eq.7.2 in the case of two groups with equal variances reduces
to

|x − μ2| > |x − μ1| (7.4)

Each observation x will be assigned to class 1 when it is closer to the mean of class 1
than of class 2, something that makes sense intuitively as well. Another way to write
this is

αT (x − μ) > 0 (7.5)

with

α = Σ−1(μ1 − μ2) (7.6)

μ = (μ1 + μ2)/2 (7.7)

This formulation clearly shows the linearity of the class boundaries. The separat-
ing hyperplane passes through the midpoint between the cluster centers, but is not
necessarily perpendicular to the segment connecting the two centers.

In reality, of course, one does not know the true means μi and the true covariance
matrix Σ . One then uses the plugin estimate S, the estimated covariance matrix.1 In
LDA, it is obtained by pooling the individual covariance matrices Si :

S = 1

n − G

G∑
i=1

ni Si (7.8)

where there areG groups, ni is the number of objects in group i , and the total number
of objects is n.

1In statistics this is known as the sample covariance matrix.
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For the wine data, this can be achieved as follows:

> wines.counts <- table(vint.trn)
> ngroups <- length(wines.counts)
> wines.groups <- split(as.data.frame(wines.trn), vint.trn)
> wines.covmats <- lapply(wines.groups, cov)
> wines.wcovmats <- mapply(’*’, wines.covmats, wines.counts,
+ SIMPLIFY = FALSE)
> wines.pooledcov <-
+ Reduce("+", wines.wcovmats) / (nrow(wines.trn) - ngroups)

This piece of code illustrates a convenient feature of the lapply function: when
the first argument is a vector, it can be used as an index for a function taking also
other arguments—here, a list and a vector. Each of the three covariance matrices is
multiplied by a weight corresponding to the number of objects in that class. In the
final step, the Reduce function adds the three weighted covariance matrices. An
alternative is to use a plain and simple loop:

> wines.pooledcov2 <- matrix(0, ncol(wines), ncol(wines))
> for (i in 1:3) {
+ wines.pooledcov2 <- wines.pooledcov2 +
+ cov(wines.groups[[i]]) * nrow(wines.groups[[i]])
+ }
> wines.pooledcov2 <-
+ wines.pooledcov2 / (nrow(wines.trn) - ngroups)

> range(wines.pooledcov2 - wines.pooledcov)
[1] 0 0

The number of parameters that must be estimated in LDA is relatively small: the
pooled covariance matrix contains p(p + 1)/2 numbers, and each cluster center p
parameters. For G groups this leads to a total of Gp + p(p + 1)/2 estimates—for
the wine data, with three groups and thirteen variables, this implies 130 estimates.

The LDA classification itself is now easily performed: first we calculate theMaha-
lanobis distances (using themahalanobis function) to the three class centers using
the pooled covariance matrix, and then we determine which of these three is closest
for every sample in the training set:

> distances <-
+ sapply(1:ngroups,
+ function(i, samples, means, covs)
+ mahalanobis(samples, colMeans(means[[i]]), covs),
+ wines.trn, wines.groups, wines.pooledcov)
> trn.pred <- apply(distances, 1, which.min)
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Let’s compare our predictions with the vintages of the odd-numbered samples:

> table(vint.trn, trn.pred)
trn.pred

vint.trn 1 2 3
Barbera 24 0 0
Barolo 0 29 0
Grignolino 0 0 36

The reproduction of the training data is perfect, much better than we have seen with
clustering, which is not surprising since the LDA builds the model (in this case
the pooled covariance matrix) using the information from the training set with the
explicit aim of discriminating between the classes. However, we should not think
that future observations are predicted with equal success. The test data should give
an indication of what to expect:

> distances <-
+ sapply(1:ngroups,
+ function(i, samples, means, covs)
+ mahalanobis(samples, colMeans(means[[i]]), covs),
+ wines.tst, wines.groups, wines.pooledcov)
> tst.pred <- apply(distances, 1, which.min)
> table(vint.tst, tst.pred)

tst.pred
vint.tst 1 2 3

Barbera 24 0 0
Barolo 0 29 0
Grignolino 1 0 34

One Grignolino sample has been classified in the class of the Barbera samples—a
very good result, confirming that the problem is not very difficult. Nevertheless, the
difference with the unsupervised clustering approaches is obvious.

Of course, R already contains an lda function (in package MASS):

> wines.ldamod <- lda(wines.trn, grouping = vint.trn,
+ prior = rep(1, 3)/3)
> wines.lda.testpred <- predict(wines.ldamod, new = wines.tst)
> table(vint.tst, wines.lda.testpred$class)

vint.tst Barbera Barolo Grignolino
Barbera 24 0 0
Barolo 0 29 0
Grignolino 1 0 34

The prior = rep(1, 3)/3 argument in the lda function is used to indicate
that all three classes are equally likely a priori. In many cases it makes sense to incor-
porate information about prior probabilities. Some classesmaybemore common than
others, for example. This is usually reflected in the class sizes in the training set and
therefore is taken into account when calculating the pooled covariance matrix, but it
is not explicitly used in the discrimination rule. However, it is relatively simple to do
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Fig. 7.1 Projection of the
training data from the wine
data set in the linear
discriminant space. It is easy
to see that linear class
boundaries can be drawn so
that all training objects are
classified correctly
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so: instead of maximising Li one nowmaximises πi Li , where πi is an estimate of the
prior probability of class i . In the two-group case, this has the effect of shifting the
critical value of the discriminant function with an amount of log(π2/π1) in Eq.7.5.
This approach is sometimes referred to as the Bayesian discriminant rule, and is
the default behaviour of the lda function. Obviously, when all prior probabilities
are equal, the Bayesian and ML discriminant rules coincide. Also in the example
above, using the relative frequencies as prior probabilities would not have made
any difference to the predictions—the three vintages have approximately equal class
sizes.

The lda function comes with the usual supporting functions for printing and
plotting. An example of what the plotting function provides is shown in Fig. 7.1:

> plot(wines.ldamod, col = as.integer(vint.trn))

The training samples are projected in the space of two new variables, the Linear Dis-
criminants (LDs). In comparison to the PCA scoreplot from Fig. 4.1, class separation
has clearly increased. Again, this is the result of the way in which the LDs have been
chosen: whereas the PCs in PCA account for as much variance as possible, in LDA
the LDs maximize separation. This will be even more clear when we view LDA in
the formulation by Fisher (see Sect. 7.1.3).

One particularly attractive feature of the lda function as it is implemented in
MASS is the possibility to choose different estimators of means and covariances. In
particular, the arguments method = "mve" and method = "t" are interesting
as they provide robust estimates.
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7.1.2 Crossvalidation

When the number of samples is low, there are two important disadvantages of dividing
a data set into two parts, one for training and one for testing. The first is that with
small test sets, the error estimates are on a very rough scale: if there are ten samples in
the test set, the errors are always multiples of ten percent. Secondly, the quality of the
model will be lower than it can be: when building the classification model one needs
all information one can get, and leaving out a significant portion of the data in general
is not helpful. Only with large sets, consisting of, say, tens or hundreds of objects per
class, it is possible to create training and test sets in such a way that modelling power
will suffer very little while giving a reasonably precise error estimate. Even then,
there is another argument against a division into training and test sets: such a division
is random, and different divisions will lead to different estimates of prediction error.
The differences may not be large, but in some cases they can be important, especially
in the case of outliers and/or extremely unlucky divisions.

One solution would be to try a large number of random divisions and to aver-
age the resulting estimates. This is indeed a valid strategy—we will come back to
this in Chap.9. A very popular formalization of this principle is called crossvalida-
tion (Stone 1974). The general procedure is as follows: one leaves out a certain part of
the data, trains the classifier on the remainder, and uses the left-out bit—sometimes
called the out-of-bag, or OOB, samples—to estimate the error. Next, the two data
sets are joined again, and a new test set is split off. This continues until all objects
have been left out exactly once. The crossvalidation error in classification is simply
the number of misclassified objects divided by the total number of objects in the
training set. If the size of the test set equals one, every sample is left out in turn—the
procedure has received the name Leave-One-Out (LOO) crossvalidation. It is shown
to be unbiased but can have appreciable variance: on average, the estimate is correct,
but individual components may deviate considerably.

More stable results are usually obtained by leaving out a larger fraction, e.g.,
10% of the data; such a crossvalidation is known as ten-fold crossvalidation. The
largest errors cancel out (to some extent) so that the variance decreases; however,
one pays the price of a small bias because of the size difference of the real training
set and the training set used in the crossvalidation (Efron and Tibshirani 1993). In
general, the pros outweigh the cons, so that this procedure is quite often applied. It
also leads to significant speed improvements for larger data sets, although for the
simple techniques presented in this chapter it is not likely to be very important. The
whole crossvalidation procedure is illustrated in Fig. 7.2.

For LDA (and also QDA), it is possible to obtain the LOO crossvalidation result
without complete refitting—upon leaving out one object, one can update the Maha-
lanobis distances of objects to classmeans and derive the classifications of the left-out
samples quickly, without doing expensive matrix operations (Ripley 1996). The lda
function returns crossvalidated predictions in the list element classwhen given the
argument CV = TRUE:
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Fig. 7.2 Illustration of crossvalidation; in the first iteration, segment 1 of the data is left out during
training and used as a test set. Every segment in turn is left out. From the prediction errors of the
left-out samples the overall crossvalidated error estimate is obtained

> wines.ldamod <- lda(wines.trn, grouping = vint.trn,
+ prior = rep(1, 3)/3, CV = TRUE)
> table(vint.trn, wines.ldamod$class)

vint.trn Barbera Barolo Grignolino
Barbera 24 0 0
Barolo 0 28 1
Grignolino 1 0 35

So, where the training set can be predicted without any errors, LOO crossvalidation
on the training set leads to an estimated error percentage of 2/89 = 2.25%, twice the
error on the test set. This difference in itself is not very alarming—error estimates
also have variance.

7.1.3 Fisher LDA

A seemingly different approach to discriminant analysis is taken in Fisher LDA,
named after its inventor, Sir Ronald Aylmer Fisher. Rather than assuming a particular
distribution for individual clusters, Fisher devised a way to find a sensible rule to
discriminate between classes by looking for a linear combination of variables a
maximizing the ratio of the between-groups sums of squares B and thewithin-groups
sums of squares W (Fisher 1936):

aT Ba/aTWa (7.9)



112 7 Classification

These sums of squares are calculated by

W =
G∑
i=1

∼
X

T

i

∼
X i (7.10)

B =
G∑
i=1

ni (x̄i − x̄)(x̄i − x̄)T (7.11)

where
∼
X i is the mean-centered part of the data matrix containing objects of class i ,

and x̄i and x̄ are the mean vectors for class i and the whole data matrix, respectively.
Put differently: W is the variation around the class centers, and B is the variation
of the class centers around the global mean. It also holds that the total variance T is
the sum of the between and within-groups variances:

T = B + W (7.12)

Fisher’s criterion is equivalent to finding a linear combination of variables a
corresponding to the subspace in which distances between classes are large and
distances within classes are small—compact classes with a large separation. It can be
shown that maximizing Eq.7.9 leads to an eigenvalue problem, and that the solution
a is given by the eigenvector of BW−1 corresponding with the largest eigenvalue.
An object x is then assigned to the closest class, i , which means that for all classes
i �= j the following inequality holds:

|aT x − aT x̄i | < |aT x − aT x̄ j | (7.13)

Interestingly, although Fisher took a completely different starting point and did
not explicitly assume normality or equal covariances, in the two-group case Fisher
LDA leads to exactly the same solution as ML-LDA. Consider the discrimination
between Barbera and Grignolino wines:

> wns <- wines[vintages != "Barolo", c(7, 13)]
> vnt <- factor(vintages[vintages != "Barolo"])
> wines.odd2 <- seq(1, nrow(wns), by = 2)
> wines.even2 <- seq(2, nrow(wns), by = 2)

To enable easy visualization, we will restrict ourselves to only two variables,
flavonoids and proline. Fisher LDA is performed by the following code:
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> wines.counts <- table(vnt)
> wines.groups <- split(as.data.frame(wns), vnt)
> WSS <-
+ Reduce("+", lapply(wines.groups,
+ function(x) {
+ crossprod(scale(x, scale = FALSE))}))
> BSS <-
+ Reduce("+", lapply(wines.groups,
+ function(x, y) {
+ nrow(x) * tcrossprod(colMeans(x) - y)},
+ colMeans(wns)))
> FLDA <- eigen(solve(WSS, BSS))$vectors[, 1]
> FLDA / FLDA[1]
[1] 1.00000000 -0.00087649

Application of ML-LDA, Eq.7.5, leads to

> wines.covmats <- lapply(wines.groups, cov)
> wines.wcovmats <- lapply(1:length(wines.groups),
+ function(i, x, y) x[[i]]*y[i],
+ wines.covmats, wines.counts)
> wines.pcov12 <- Reduce("+", wines.wcovmats) / (length(vnt) - 2)
> MLLDA <-
+ solve(wines.pcov12,
+ apply(sapply(wines.groups, colMeans), 1, diff))
> MLLDA / MLLDA[1]
flavonoids proline
1.00000000 -0.00087476

Setting the first element of the discrimination functions equal to 1makes the compari-
son easier: the vector a in Eq.7.9 can be rescaledwithout any effect on both allocation
rules Eqs. 7.13 and 7.5. In the two-group case, both ML-LDA and Fisher-LDA lead
to the same discrimination function.

For problems with more than two groups, the results are different unless the
sample means are collinear: Fisher LDA aims at finding one direction discriminating
between the classes. An example is shown in Fig. 7.3, where the boundaries between
the three classes in the two-dimensional subset of the wine data are shown for Fisher
LDA and ML-LDA.

The Fisher LDA boundaries for more than two classes are produced by code
essentially identical to the code for the two-group case earlier in this section: one
should replace the lines

> wns <- wines[vintages != "Barolo", c(7, 13)]
> vnt <- factor(vintages[vintages != "Barolo"])

by

> wns <- wines2.trn
> vnt <- vint.trn
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Fig. 7.3 Class boundaries for the wine data (proline and flavonoids only) for Fisher LDA (left)
and ML-LDA (right). Models are created using the odd rows of the wine data (training data); the
plotting symbols indicate the even rows (test data), as mentioned in the text

Then, after calculating the discriminant function FLDA, predictions are made at
positions in a regular grid:

> xcoo <- seq(.4, 5.4, length = 251)
> ycoo <- seq(250, 1750, length = 251)
> gridXY <- data.matrix(expand.grid(xcoo, ycoo))
> scores <- gridXY %*% FLDA
> meanscores <- c(t(sapply(wines.groups, colMeans)) %*% FLDA)
> Fdistance <- outer(scores, meanscores,
+ FUN = function(x, y) abs(x - y))
> Fclassif <- apply(Fdistance, 1, which.min)

The distances of the scores of all gridpoints to the scores of the class means are
calculated using the outer function—this leads to a three-column matrix. The
classification, corresponding to the class with the smallest distance, is obtained using
the function which.min.

Finally, the class boundaries are visualized using the functions image and
contour; the points of the test set are added afterwards.

> softbrg <- colorRampPalette(c("lightgray", "pink", "lightgreen"))
> image(x = xcoo, y = ycoo,
+ z = matrix(Fclassif, nrow = length(xcoo)),
+ xlab = "flavonoids", ylab = "proline",
+ main = "Fisher LDA", col = softbrg(3))
> box()
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> contour(x = xcoo, y = ycoo, drawlabels = FALSE,
+ z = matrix(Fclassif, nrow = length(xcoo)),
+ add = TRUE)
> points(wines2.tst, col = wine.classes[wines.even],
+ pch = wine.classes[wines.even])

The result is shown in the left plot of Fig. 7.3. The right plot is produced analogously:

> wines.ldamod <- lda(wines2.trn,
+ grouping = vint.trn,
+ prior = rep(1, 3)/3)
> colnames(gridXY) <- colnames(wines)[c(7, 13)]
> lda.2Dclassif <- predict(wines.ldamod, newdata = gridXY)$class
> lda.2DCM <- matrix(as.integer(lda.2Dclassif), nrow = length(xcoo))
> image(x = xcoo, y = ycoo, z = lda.2DCM,
+ xlab = "flavonoids", ylab = "proline",
+ main = "LDA", col = softbrg(3))
> box()
> contour(x = xcoo, y = ycoo, z = lda.2DCM, drawlabels = FALSE,
+ add = TRUE)
> points(wines2.tst, col = wine.classes[wines.even],
+ pch = wine.classes[wines.even])

Immediately it is obvious that although the error rates of the two classifications are
quite similar for the test set, large differences will occur when data points are further
away from the class centers. The class means are reasonably close to a straight line,
so that Fisher LDA does not fail completely; however, for multi-class problems it
is not a good idea to impose parallel class boundaries, as is done by Fisher LDA
using only one eigenvector. It is better to utilize the information in the second and
higher eigenvectors ofW−1B aswell (Mardia et al. 1979); these are sometimes called
canonical variates, and the corresponding form of discriminant analysis is known as
canonical discriminant analysis. The maximum number of canonical variates that
can be extracted is one less than the number of groups.

7.1.4 Quadratic Discriminant Analysis

Quadratic discriminant analysis (QDA) takes the same route as LDA, with the impor-
tant distinction that every class is described by its own covariance matrix, rather than
one identical (pooled) covariance matrix for all classes. Given our exposé on LDA,
the algorithm for QDA is pretty simple: one calculates the Mahalanobis distances
of all points to the class centers, and assigns each point to the closest class. Let us
see what this looks like in two dimensions:
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> wines2.groups <- split(as.data.frame(wines2.trn), vint.trn)
> wines2.covmats <- lapply(wines2.groups, cov)
> ngroups <- length(wines2.groups)
> distances <- sapply(1:ngroups,
+ function(i, samples, means, covs) {
+ mahalanobis(samples,
+ colMeans(means[[i]]),
+ covs[[i]]) },
+ wines2.tst, wines2.groups, wines2.covmats)
> test.pred <- apply(distances, 1, which.min)
> table(vint.tst, test.pred)

test.pred
vint.tst 1 2 3

Barbera 19 0 5
Barolo 0 28 1
Grignolino 3 1 31

Ten samples are misclassified in the test set. To see the class boundaries in two-
dimensional space, we use the same visualization as seen in the previous section:

> qda.mahal.dists <-
+ sapply(1:ngroups,
+ function(i, samples, means, covs) {
+ mahalanobis(samples,
+ colMeans(means[[i]]),
+ covs[[i]]) },
+ gridXY, wines2.groups, wines2.covmats)
> qda.2Dclassif <- apply(qda.mahal.dists, 1, which.min)
> qda.2DCM <- matrix(qda.2Dclassif, nrow = length(xcoo))
> image(x = xcoo, y = ycoo, z = qda.2DCM,
+ xlab = "flavonoids", ylab = "proline",
+ main = "QDA", col = softbrg(3))
> box()
> contour(x = xcoo, y = ycoo, z = qda.2DCM, drawlabels = FALSE,
+ add = TRUE)
> points(wines2.tst, col = as.integer(vint.tst),
+ pch = as.integer(vint.tst))

The result is shown in the left plot of Fig. 7.4. The quadratic form of the class
boundaries is clearly visible. Again, only the test set objects are shown.

Using the qda function from the MASS package, modelling the odd rows and
predicting the even rows is done just like with lda. Let’s build a model using all
thirteen variables:

> wines.qda <- qda(wines.trn, vint.trn,
+ prior = rep(1, 3)/3)
> test.qdapred <- predict(wines.qda, newdata = wines.tst)
> table(vint.tst, test.qdapred$class)
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Fig. 7.4 Class boundaries for thewine data (proline and flavonoids only) for QDA (left) andMBDA
(right). Models are created using the odd rows of the wine data (training data); the plotting symbols
indicate the even rows (test data)

vint.tst Barbera Barolo Grignolino
Barbera 24 0 0
Barolo 0 29 0
Grignolino 0 0 35

In this case, all test set predictions are correct.
The optional correction for unequal class sizes (or account for prior probabilities)

is done in exactly the same way as in LDA. Several other arguments are shared
between the two functions: both lda and qda can be called with the method
argument to obtain different estimates of means and variances: the standard plug-in
estimators, maximum likelihood estimates, or two forms of robust estimates. The CV
argument enables fast LOO crossvalidation.

7.1.5 Model-Based Discriminant Analysis

Although QDA uses more class-specific information, it still is possible that the data
are not well described by the individual covariance matrices, e.g., in case of non-
normally distributed data. In such a case one can employ more greedy forms of
discriminant analysis, utilizing very detailed descriptions of class densities. In par-
ticular, one can describe each class with a mixture of normal distributions, just like
in model-based clustering, and then assign an object to the class for which the over-
all mixture density is maximal. Thus, for every class one estimates several means
and covariance matrices—one describes the pod by a set of peas. Obviously, this
technique can only be used when the ratio of objects to variables is very large.
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Package mclust contains several functions for doing model-based discriminant
analysis (MBDA), ormixture discriminant analysis, as it is sometimes called as well.
The easiest one is MclustDA:

> wines.MclustDA <-
+ MclustDA(wines.trn, vint.trn, G = 1:5, verbose = FALSE)

In this case, we have restricted the number of gaussians, to be used for each individual
class, to be at most five. The summary method for the fitted object gives quite a lot
of information:

> summary(wines.MclustDA)
------------------------------------------------
Gaussian finite mixture model for classification
------------------------------------------------

MclustDA model summary:

log.likelihood n df BIC
-1479 89 151 -3635.8

Classes n Model G
Barbera 24 VEI 3
Barolo 29 EEI 3
Grignolino 36 VEI 2

Training classification summary:

Predicted
Class Barbera Barolo Grignolino

Barbera 24 0 0
Barolo 0 28 1
Grignolino 0 0 36

Training error = 0.011236

Again, the BIC value is employed to select the optimal model complexity. For the
Barolo class, a mixture of three gaussians seems optimal; these all have the same
diagonal covariance matrix (indicated with model EEI). The two other classes can be
described by mixtures of two and three diagonal covariance matrices, respectively,
with varying volume—see Sect. 6.3 for more information on model definition in
mclust. Classification for the training set is quite successful: only one object is
misclassified. Predictions for the test set can be obtained in the usual way:

> wines.McDApred <-
+ predict(wines.MclustDA, newdata = wines.tst)$classification
> sum(wines.McDApred != vint.tst)
[1] 1

Also here, only one sample is misclassified (a Barolo is seen as a Grignolino).
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If more control is needed over the training process, functions MclustDAtrain
and MclustDAtest are available in the mclust package. To visualize the class
boundaries in the two dimensions of the wine data set employed earlier for the other
forms of discriminant analysis, we can use

> wines.mclust2D <-
+ MclustDA(wines2.trn, vint.trn, G = 1:5, verbose = FALSE)

The model is simpler than the model employed for the full, 13-dimensional data,
which seems logical. Prediction and visualization is done by

> wines.mclust2Dpred <- predict(wines.mclust2D, gridXY)
> mbda.2DCM <- matrix(as.integer(wines.mclust2Dpred$classification),
+ nrow = length(xcoo))

> image(x = xcoo, y = ycoo, z = mbda.2DCM,
+ main = "MBDA", xlab = "flavonoids", ylab = "proline",
+ col = softbrg(3))
> box()
> contour(x = xcoo, y = ycoo, z = mbda.2DCM, drawlabels = FALSE,
+ add = TRUE)
> points(wines2.tst,
+ col = as.integer(vint.tst),
+ pch = as.integer(vint.tst))

The class boundaries, shown in the right plot of Fig. 7.4, are clearly much more
adapted to the densities of the individual classes, compared to the other forms of
discriminant analysis we have seen.

7.1.6 Regularized Forms of Discriminant Analysis

At theother endof the scalewefindmethods that are suitable in caseswherewecannot
afford to use very complicated descriptions of class density. One form of regularized
DA (RDA) strikes a balance between linear and quadratic forms (Friedman 1989):

the idea is to apply QDA using covariance matrices
∼
Σk that are shrunk towards the

pooled covariance matrix Σ :

Σ̃k = αΣ̂k + (1 − α)Σ (7.14)

where Σ̂k is the empirical covariance matrix of class k. In this way, characteris-
tics of the individual classes are taken into account, but they are stabilized by the
pooled variance estimate. The parameter α needs to be optimized, e.g., by using
crossvalidation.

In cases where the number of variables exceeds the number of samples, more
extreme regularization is necessary. One way to achieve this is shrinkage towards
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the unity matrix (Hastie et al. 2001):

Σ̃ = αΣ + (1 − α)I (7.15)

Equivalent formulations are given by:

Σ̃ = κΣ + I (7.16)

and
Σ̃ = Σ + κI (7.17)

with κ ≥ 0. In this form of RDA, again the regularized form Σ̃ of the covariance is
used, rather than the empirical pooled estimate Σ . Matrix Σ̃ is not singular so that
the matrix inversions in Eqs. 7.3 or 7.6 no longer present a problem. In the extreme
case, one can use a diagonal covariance matrix (with the individual variances on
the diagonal) leading to diagonal LDA (Dudoit et al. 2002), also known as Idiot’s
Bayes (Hand and Yu 2001). Effectively, all dependencies between variables are com-
pletely ignored. For so-called “fat” matrices, containing many more variables than
objects, often encountered in microarray research and other fields in the life sciences,
such simple methods often give surprisingly good results.

7.1.6.1 Diagonal Discriminant Analysis

As an example, consider the odd rows of the prostate data, limited to the first 1000
variables. We are concentrating on the separation between the control samples and
the cancer samples:

> prostate <- rowsum(t(Prostate2000Raw$intensity),
+ group = rep(1:327, each = 2),
+ reorder = FALSE) / 2
> prostate.type <- Prostate2000Raw$type[seq(1, 654, by = 2)]
>
> prost <- prostate[prostate.type != "bph", 1:1000]
> prost.type <- factor(prostate.type[prostate.type != "bph"])
> prost.df <- data.frame(type = prost.type, prost = prost)
> prost.odd <- seq(1, length(prost.type), by = 2)
> prost.even <- seq(2, length(prost.type), by = 2)

Although it is easy to re-use the code given in Sects. 7.1.1 and 7.1.4, plugging in
diagonal covariance matrices, here we will use the dDA function from the sfsmisc
package:

> prost.dlda <-
+ dDA(prost[prost.odd, ], as.integer(prost.type)[prost.odd])

By default, the same covariance matrix is used for all classes, just like in LDA. Here,
the result for the predictions on the even samples is not too bad:
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> prost.dldapred <- predict(prost.dlda, prost[prost.even, ])
> table(prost.type[prost.even], prost.dldapred)

prost.dldapred
1 2

control 32 8
pca 7 77

Approximately 88%of the test samples are predicted correctly.Allowing for different
covariance matrices per class, we arrive at diagonal QDA, which does slightly worse
for these data:

> prost.dqda <-
+ dDA(prost[prost.odd, ], as.integer(prost.type)[prost.odd],
+ pool = FALSE)
> prost.dqdapred <- predict(prost.dqda, prost[prost.even, ])
> table(prost.type[prost.even], prost.dqdapred)

prost.dqdapred
1 2

control 38 2
pca 16 68

7.1.6.2 Shrunken Centroid Discriminant Analysis

In the context of microarray analysis, it has been suggested to combine RDA with
the concept of “shrunken centroids” (Tibshirani et al. 2003)—the resulting method
is indicated as SCRDA (Guo et al. 2007) and is available in the R package rda. As
the name suggests, class means are shrunk towards the overall mean. The effect is
that the points defining the class boundaries (the centers) are closer, which may lead
to a better description of local structure. These shrunken class means are then used
in Eq.7.3, together with the diagonal covariance matrix also employed in DLDA.
For a more complete description, see, e.g., (Hastie et al. 2001).

Let us see how SCRDA does on the prostate example. Application of the rda
function is straightforward.2 The function takes two arguments, α and δ, where α
again indicates the amount of unity matrix in the covariance estimate, and δ is a
soft threshold, indicating the minimal coefficient size for variables to be taken into
account in the classification:

> prost.rda <-
+ rda(t(prost[prost.odd, ]), as.integer(prost.type)[prost.odd],
+ delta = seq(0, .4, len = 5), alpha = seq(0, .4, len = 5))

Printing the fitted object shows some interesting results:

2Note that in this function the variables are in the rows of the data matrix and not, as usual, in the
columns—hence the use of the transpose function.
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> prost.rda
Call:
rda(x = t(prost[prost.odd, ]), y = as.integer(prost.type)[prost.odd],

alpha = seq(0, 0.4, len = 5), delta = seq(0, 0.4, len = 5))
$nonzero

delta
alpha 0 0.1 0.2 0.3 0.4

0 1000 433 193 121 92
0.1 1000 220 34 3 0
0.2 1000 192 19 4 0
0.3 1000 179 18 4 0
0.4 1000 195 24 4 0

$errors
delta

alpha 0 0.1 0.2 0.3 0.4
0 36 38 39 39 39
0.1 10 16 32 41 41
0.2 7 21 43 41 41
0.3 4 23 44 41 41
0.4 2 20 44 41 41

Increasing values of δ lead to a rapid decrease in the number of non-zero coefficients;
however, these sparse models do not lead to very good predictions, and the lowest
value for the training error is found atα = .4 and δ = 0. Obviously, the training error
is not the right criterion to decide on the optimal values for these parameters. This
we can do using the rda.cv crossvalidation function, and subsequently we can use
the test data as a means to estimate the expected prediction error:

> prost.rdacv <-
+ rda.cv(prost.rda, t(prost[prost.odd, ]),
+ as.integer(prost.type)[prost.odd])

Inspection of the result (not shown) reveals that the optimal value of α would be .2,
with no thresholding (delta = 0). Predictions with these values lead to the following
result:

> prost.rdapred <-
+ predict(prost.rda,
+ t(prost[prost.odd, ]), as.integer(prost.type)[prost.odd],
+ t(prost[prost.even, ]), alpha = .2, delta = 0)
> table(prost.type[prost.even], prost.rdapred)

prost.rdapred
1 2

control 30 10
pca 4 80

Overall, fourteen samples are misclassified, only slightly better than the DLDA
model. This sort of behavior is more general than one might think: for fat data,
the simplest models are often among the top performers.
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7.2 Nearest-Neighbor Approaches

Acompletely different approach, not relying on any distributional assumptions what-
soever, is formed by techniques focusing on distances between objects, and in partic-
ular on the closest objects. These techniques are known under the name of k-nearest-
neighbors (KNN), where k is a number to be determined. If k = 1, only the closest
neighbor is taken into account, and any new object will be assigned to the class of
its closest neighbor in the training set. If k > 1, the classification is straightforward
in cases where the k nearest neighbors are all of the same class. If not, a majority
vote is usually performed. Class areas can be much more fragmented than with LDA
or QDA; in extreme cases one can even find patch-work-like patterns. The smaller
the number k, the more irregular the areas can become: only one object is needed to
assign its immediate surroundings to a particular class.

As an example, consider the KNN classification for the first sample in the test
set of the wine data (sample number two), based on the training set given by the
odd samples. One starts by calculating the distance to all samples in the training
set. Usually, the Euclidean distance is used—in that case, one should scale the data
appropriately to avoid large numbers to dominate the results. For the wine data,
autoscaling is advisable. The mahalanobis function has a useful feature that
allows one to calculate the distance of one object to a set of others. The covariance
matrix is given as the third argument. Thus, the Euclidean distance between samples
in the autoscaled wine data can be calculated in two ways, either from the autoscaled
data using a unit covariance matrix, or from the unscaled data using the estimated
column standard deviations. Consider the wine data, scaled according to the means
and variances of the odd rows (the training set). Calculating the distance to the second
sample in these two ways leads to the following result:

> wines.trn.sc <- scale(wines.trn)
> wines.tst.sc <- scale(wines.tst,
+ scale = apply(wines.trn, 2, sd),
+ center = colMeans(wines.trn))

> dist2sample2a <- mahalanobis(wines.trn.sc,
+ wines.tst.sc[1, ],
+ diag(13))
> dist2sample2b <- mahalanobis(wines.trn,
+ wines.tst[1, ],
+ diag(apply(wines.trn, 2, var)))
>
> range(dist2sample2a - dist2sample2b)
[1] -7.1054e-15 1.4211e-14

Clearly, the two lead to the same result. Next, we order the training samples according
to their distance to the second sample:



124 7 Classification

> nearest.classes <- vint.trn[order(dist2sample2a)]
> table(nearest.classes[1:10])

Barbera Barolo Grignolino
0 10 0

The closest ten objects are all of the Barolo class—apparently, there is little doubt
that object 2 also should be a Barolo.

Rather than using a diagonal of the covariance matrix, one could also use the
complete estimated covariance matrix of the training set. This would lead to the
Mahalanobis distance:

> dist2sample2 <- mahalanobis(wines.trn,
+ wines.tst[1, ],
+ cov(wines.trn))
> nearest.classes <- vint.trn[order(dist2sample2)]
> table(nearest.classes[1:10])

Barbera Barolo Grignolino
0 6 4

Note that autoscaling of the data is not necessary because we explicitly include the
covariance matrix of the training data. Clearly, the results depend on the distance
measure employed. Although the closest three samples are Barolo wines, the next
three are Grignolinos; values of k between 5 and 9 would lead to a close call or even a
tie. Several different strategies to deal with such cases can be employed. The simplest
is to require a significant majority for any classification—in a 5-NN classification
one may require at least four of the five closest neighbors to belong to the same class.
If this is not the case, the classification category becomes “unknown”. Although this
may seem aweakness, inmany applications it is regarded as a strong point if amethod
can indicate some kind of reliability—or lack thereof—for individual predictions.

The class package contains an implementation of the KNN classifier using
Euclidean distances, knn. Its first argument is a matrix constituting the training
set, and the second argument is the matrix for which class predictions are required.
The class labels of the training set are given in the third argument. It provides great
flexibility in handling ties: the default strategy is to choose randomly between the
(tied) top candidates, so that repeated application can lead to different results:

> knn(wines.sc[wines.odd, ], wines.sc[68, ], cl = vint.trn, k = 4)
[1] Barbera
Levels: Barbera Barolo Grignolino
> knn(wines.sc[wines.odd, ], wines.sc[68, ], cl = vint.trn, k = 4)
[1] Grignolino
Levels: Barbera Barolo Grignolino

Apparently, there is some doubt about the classification of sample 68—it can be
either a Barbera or Grignolino. Of course, this is caused by the fact that from the
four closest neighbors, two are Barberas and two are Grignolinos. Requiring at least
three votes for an unambiguous classification (l = 3) leads to:
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> knn(wines.sc[wines.odd, ], wines.sc[68, ], cl = vint.trn,
+ k = 4, l = 3)
[1] <NA>
Levels: Barbera Barolo Grignolino

In many cases it is better not to have a prediction at all, rather than a highly uncertain
one.

The value of k is crucial. Unfortunately, no rules of thumb can be given on the
optimal choice, and this must be optimized for every data set separately. One simple
strategy is to monitor the performance of the test set for several values of K and pick
the one that leads to the smallest number of misclassifications. Alternatively, LOO
crossvalidation can be employed:

> wines.knnresult <- rep(0, 10)
> for (i in 1:10) {
+ wines.knncv <- knn.cv(wines.sc[wines.odd, ], vint.trn, k = i)
+ wines.knnresult[i] <-
+ sum(diag(table(vint.trn, wines.knncv)))
+ }
> round(100 * wines.knnresult / length(wines.odd), 1)
[1] 92.1 92.1 96.6 92.1 95.5 96.6 95.5 95.5 96.6 94.4

In this example, k values of three, six and nine show the best prediction—differences
are not large.

An alternative is to use the convenience function tune.knn in package e1071.
This function by default uses ten-fold crossvalidation for a range of values of k:

> (knn.tuned <- tune.knn(wines.sc[wines.odd, ], vint.trn, k = 1:10))

Parameter tuning of ’knn.wrapper’:

- sampling method: 10-fold cross validation

- best parameters:
k
3

- best performance: 0.022222

Plotting the knn.tuned object leads to the left plot of Fig. 7.5—the differences
with the LOO results we saw earlier show what kind of variability is to be expected
with crossvalidated error estimates. Indeed, repeated application of the tune function
will—for these data—lead to quite different estimates for the optimal value of k:

> bestKs <- rep(0, 1000)
> for (i in 1:1000)
+ bestKs[i] <- tune.knn(wines.sc[wines.odd, ],
+ vint.trn,
+ k = 1:10)$best.parameters[1, 1]
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Fig. 7.5 Optimization of k for the wine data using the tune wrapper function. Left plot: one
crossvalidation curve. Right plot: optimal values of k in 1000 crossvalidations

The right plot of Fig. 7.5 shows a histogram of the best k values. In the large majority
of cases, k = 2 is best. This is partly caused by a built-in preference for small values
of k in the script: the smallest value of k that gives the optimal predictions is stored,
even though larger values may lead to equally good predictions, something that given
the rather small size of our data set can easily occur.

Although application of these simple strategies allow one to choose the optimal
parameter settings, the optimal error associated with this setting (e.g., 97.8% in
the LOO example) is not an estimation of the prediction error of future samples,
because the test set is used in this procedure to fine-tune the method. Another layer
of validation is necessary to find the estimated prediction error; see Chap.9. The
1-nearest neighbor method enjoys great popularity, despite coming out worst in
the above comparison—there, it is almost never selected. Nevertheless, it has been
awarded a separate function in the class package: knn1. Most often, odd values of
K smaller than ten are considered.

One potential disadvantage of the KNN method is that in principle, the whole
training set—the training set in a sense is the model!—should be saved, which can
be a nuisance for large data sets. Predictions for new objects can be slow, and storing
really large data sets may present memory problems. However, things are not so
bad as they seem, since in many cases one can safely prune away objects without
sacrificing information. For the wine data, it is obvious that in large parts of the space
there is no doubt: only objects from one class are present. Many of these objects can
be removed and one then still will get exactly the same classification for all possible
new objects.
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7.3 Tree-Based Approaches

A wholly different approach to classification is formed by tree-based approaches.
These proceed in a way that is very similar to medical diagnosis: the data are “inter-
rogated” and a series of questions are posed which finally lead to a classification.
Modelling, in this metaphore, is to decide which questions are most informative. As
a class, tree-based methods possess some unique advantages. They can be used for
both classification and regression. Since the model is based on sequential decisions
on individual variables, scaling is not important: every variable is treated at its own
scale and no “overall” measure needs to be computed. Variable selection comes with
the method—only those variables that contribute to the result are incorporated in
the tree. Trees form one of the few methods that can accommodate variables of a
very different nature, e.g., numerical, categorical and ordinal, in one single model.
Their handling of missing values is simple and elegant. In short, trees can be used
for almost any classification (and regression) problem.

Currently, tree-based modelling comes in two main branches: Breiman’s Classifi-
cation and Regression Trees (CART, Breiman et al. 1984) and Quinlan’s See5/C5.0
(and its predecessors,C4.5,Quinlan 1993, and ID3,Quinlan 1986).Both are commer-
cial and not open-source software, butR comeswith twopretty faithful representation
of CART in the form of the rpart and tree functions, from the packages with
the same names. Since the approaches by Quinlan and Breiman have become more
similar with every new release, and since no See5/C5.0 implementation is available
in R, we will here only focus on rpart (Therneau and Atkinson 1997)—one of
the recommended R packages—to describe the main ideas of tree-based classifica-
tion. The differences between CART and the implementation in the tree package
are small; consult the manual pages and (Therneau and Atkinson 1997) for more
information.

7.3.1 Recursive Partitioning and Regression Trees

Recursive Partitioning and Regression Trees, which is what the acronym rpart
stands for, can be explained most easily by means of an example. Consider, again,
the the two-dimensional subset of the wine data encountered earlier:

> wines2.df <- data.frame(vint = vintages, wines[, c(7, 13)])
> wines2.rpart <- rpart(vint ˜ ., subset = wines.odd,
+ data = wines2.df, method = "class")

In setting up the tree model, we explicitly indicate that we mean classification
(method = "class"): the rpart function also provides methods for survival
analysis and regression, and though it tries to be smart in guessing what exactly is
required, it is better to explicitly provide the method argument. The result is an
object of class rpart:
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> wines2.rpart
n= 89

node), split, n, loss, yval, (yprob)
* denotes terminal node

1) root 89 53 Grignolino (0.269663 0.325843 0.404494)
2) flavonoids< 1.235 23 1 Barbera (0.956522 0.000000 0.043478) *
3) flavonoids>=1.235 66 31 Grignolino (0.030303 0.439394 0.530303)

6) proline>=739 30 2 Barolo (0.000000 0.933333 0.066667) *
7) proline< 739 36 3 Grignolino (0.055556 0.027778 0.916667) *

The top node, where no splits have been defined, is labelled as “Grignolino” since
that is the most abundant variety—36 out of 89 objects (a fraction of 0.4045) are
Grignolinos. The first split is on the flavonoids variable. A value smaller than
1.235 leads to node 2, which is consisting almost completely of Barbera samples
(more than 95 percent). This node is not split any further, and in tree terminology
is indicated as a “leaf”. A flavonoid value larger than 1.235 leads to node three that
is split further into separate Barolo and Grignolino leaves. Of course, such a tree is
much easier to interpret when depicted graphically:

> plot(wines2.rpart, margin = .12)
> text(wines2.rpart, use.n = TRUE)
> cl.id <- as.integer(wines2.df$vint[wines.odd])
> plot(wines2.df[wines.odd, 2:3], pch = cl.id, col = cl.id)
> segments(wines2.rpart$splits[1, 4], par("usr")[3],
+ wines2.rpart$splits[1, 4], par("usr")[4], lty = 2)
> segments(wines2.rpart$splits[1, 4], wines2.rpart$splits[2, 4],
+ par("usr")[2], wines2.rpart$splits[2, 4], lty = 2)

This leads to the plots in Fig. 7.6. The tree on the left shows the splits, corresponding
to the tessellation of the surface in the right plot. The plot command sets up the
coordinate system en plots the tree; the margin argument is necessary to reserve
some space for the annotation added by the text command. At every split, the test,
stored in the splits element in the X.rpart object, is shown. At the final nodes
(the “leaves”), the results are summarized: one Barbera (red triangles) is classified as
a Grignolino (green pluses), two Barolos (black circles) are in the Grignolino area;
two Grignolinos are thought to be Barolos, one a Barbera.

The rpart function has a familiar formula interface also used in, e.g., lm. For
the wine data, we will predict the classes of the even rows, again based on the odd
rows:

> wines.df <- data.frame(vint = vintages, wines)
> wines.rpart <- rpart(vint ˜ ., subset = wines.odd,
+ data = wines.df, method = "class")

Plotting the rpart object leads to Fig. 7.7. The flavonoids and proline variables are
again important in the classification, now in addition to the colour intensity.
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Fig. 7.6 Tree object from rpart using default settings (left). The two nodes lead to the class
boundaries visualized in the right plot. Only points for the even rows, the test set, are shown

Prediction is done using the predict.rpart function, which returns a matrix
of class probabilities, simply estimated from the composition of the training samples
in the end leaves:

> wines.rpart.predict <- predict(wines.rpart,
+ newdata = wines.df[wines.even, ])
> wines.rpart.predict[31:34, ]

Barbera Barolo Grignolino
62 0 0.032258 0.96774
64 0 0.032258 0.96774
66 0 0.142857 0.85714
68 0 0.032258 0.96774

In this rather simple problem, most of the probabilities are either 0 or 1, but here
some Grignolinos are shown that have a slight chance of actually being Barolos,
according to the tree model. The uncertainties are simply the misclassification rates
of the training model: row 66 ends up in a lead containing seven training samples,
one of which is a Barolo and six are Grignolinos. The other rows end up in the large
Grignolino group, containing also one Barolo sample. A global overview is more
easily obtained by plotting the probabilities:

> matplot(wines.rpart.predict, xlab = "sample number (test set)")

This leads to the plot in Fig. 7.8. Clearly, most of the Barolos and Barberas are
classified with complete confidence, corresponding with “pure” leaves. The Grigno-
linos on the other hand always end up in a leaf also containing one Barolo sample.
When using the type = "class" argument to the prediction function, the result
is immediately expressed in terms of classes, and can be used to assess the overall
prediction quality:
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Fig. 7.7 Fitted tree using rpart on the odd rows of the wine data set (all thirteen variables)
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Fig. 7.8 Classification probabilities of the test set of the wine data for the tree shown in Fig. 7.7.
Within the first twenty samples we see four incorrect predictions: the true class is Barolo (indicated
by “2”) but there is some confusion with Grignolino (“3”). Similarly, in the right part of the plot
two Barbera samples are seen as Grignolinos

> table(vint.tst,
+ predict(wines.rpart, newdata = wines.df[wines.even, ],
+ type = "class"))

vint.tst Barbera Barolo Grignolino
Barbera 22 0 2
Barolo 0 25 4
Grignolino 0 0 35

This corresponds to the six misclassifications seen in Fig. 7.8.
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7.3.1.1 Constructing the Tree

The construction of the optimal tree cannot be guaranteed to finish in polynomial
time (a so-called NP-complete problem), and therefore one has to resort to simple
approximations. The standard approach is the following. All possible splits—binary
divisions of the data—in all predictor variables are considered; the one leading to
the most “pure” branches is selected. The term “pure” in this case signifies that,
in one leaf, only instances of one class are present. For categorical variables, tests
for unique values are used; for continuous variables, all data points are considered
as potential split values. This simple procedure is applied recursively until some
stopping criterion is met.

The crucial point is the definition of “impurity”: several different measures can
be used. Two criteria are standing out (Ripley 1996): the Gini index, and the entropy.
The Gini index of a node is given by

IG(p) =
∑
i �= j

pi p j = 1 −
∑
j

p2j (7.18)

and is minimal (exactly zero) when the node contains only samples from one class—
pi is the fraction of samples from class i in the node. A simple function calculating
the Gini index looks like this:

> gini <- function(x, clss) {
+ p <- table(clss) / length(clss)
+ gini.parent <- 1 - sum(pˆ2)
+
+ gini.index <-
+ sapply(sort(x), function(splitpoint) {
+ left.ones <- clss[x < splitpoint]
+ right.ones <- clss[x >= splitpoint]
+ nleft <- length(left.ones)
+ nright <- length(right.ones)
+
+ if ((nleft == 0) | (nright == 0)) return (NA)
+
+ p.left <- table(left.ones) / nleft
+ p.right <- table(right.ones) / nright
+
+ (nleft * (1 - sum(p.leftˆ2)) +
+ nright * (1 - sum(p.rightˆ2))) /
+ (nleft + nright)
+ })
+
+ gini.index - gini.parent
+ }

This function takes a vector x, for instance values for the proline variable in the
wines data, and a class vector. Impurity values are calculated where each value in
the sorted vector x is considered as a split point. To really quantify improvement
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after splitting at that node, the Gini index of the parent node is subtracted: the more
negative the number, the bigger the improvement.

The other impurity criterion is based on entropy, where the entropy of a node is
defined by

IE (p) = −
∑
j

p j log p j

which again is minimal when the node is pure and contains only samples of one class
(where we define 0 log 0 = 0).

The optimal split is the one that minimizes the average impurity of the new left
and right branches (whatever criterion is used):

Pl I (pl) + Pr I (pr )

where Pl and Pr signify the sample fractions and I (pl) and I (pr ) are the impurities
of the left and right branches, respectively.

As an illustration, again consider the two-dimensional subset of the odd rows
of the wine data, using variables flavonoids and proline. Since the data are
continuous, we consider all values as potential splits, and calculate the Gini and
entropy indices. For the two-dimensional wine data this leads to:

> wines2.df.odd <- wines2.df[wines.odd, ]
> Ginis <- sapply(wines2.df.odd[, -1], gini, wines2.df.odd$vint)
> apply(Ginis, 2, min, na.rm = TRUE)
flavonoids proline

-0.24683 -0.24127
> (idx <- which.min(Ginis[, 1]))
[1] 24
> (bestSplit <- sort(wines2.df.odd[, "flavonoids"])[idx])
[1] 1.25

Plotting theGini values for the two columns leads to the left panel in Fig. 7.9. Because
of the lower Gini index, corresponding to more pure leaves, the first split should be
on the flavonoids column. The split point equals the 24th sorted value. Next we
divide the data into two sets, one to the left of the bestSplit value, and one to
the right. Here we show only the result for the right split following results:

> wr <- wines2.df.odd[wines2.df.odd$flavonoids >= bestSplit, ]
> GinisR <- sapply(wr[, -1], gini, wr$vint)
> apply(GinisR, 2, min, na.rm = TRUE)
flavonoids proline

-0.18750 -0.38321
> (idxR <- which.min(GinisR[, 2]))
[1] 37
> (bestSplitR <- sort(wr[, "proline"])[idxR])
[1] 760
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Fig. 7.9 Impurity values (Gini indices) for all possible split points in the two-dimensional subset of
the wine data. The left panel points to the flavonoids variable for selecting the first split point;
the right panel shows that the subsequent fit with the biggest gain is in the proline variable

Clearly, the second split should be done for the proline column at the level 760.
The two splits correspond exactly to the results in Fig. 7.6. The Gini values for the
right split are shown in the right panel of Fig. 7.9.

Obviously, one can keep on splitting nodes until every sample in the training set is
a leaf in itself, or in any case until each single leaf contains only instances of one class.
Such a tree is able to represent the training data perfectly, but whether the predictions
of such a tree are reliable is quite another matter. In fact, these trees generally will
not perform very well. By describing every single feature of the training set, the tree
is not able to generalize. This is an example of overfitting (or overtraining, as it is
sometimes called as well), something that is likely to occur in methods that have a
large flexibility—in the case of trees, the freedom to keep on adding nodes.

Theway this problem is tackled in constructing optimal trees is to use pruning, i.e.,
trimming useless branches. When exactly a branch is useless needs to be assessed
by some form of validation—in rpart, tenfold crossvalidation is used by default.
One can therefore easily find out whether a particular branch leads to a decrease in
prediction error or not.

More specifically, in pruning one minimizes the cost of a tree, expressed as

C(T ) = R(T ) + α|T | (7.19)

In this equation, T is a tree with |T | leafs, R(T ) the “risk” of the tree—e.g., the
proportion of misclassifications—and α a complexity penalty, chosen between 0 and
∞. One can see α as the cost of adding another node. It is not necessarily to build up
the complete tree to calculate this measure: during the construction the cost of the
current tree can be assessed and if it is above a certain value, the process stops. This
cost is indicated with the complexity parameter (cp) in the rpart function, which
is normalized so that the root node has a complexity value of one.

Once again looking at the first 1000 variables of the control and pca classes
in the prostate data, one can issue the following commands to construct the full tree
with no misclassifications in the training set:
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> prost.df <- data.frame(type = prost.type, prost = prost)
> prost.rpart <-
+ rpart(type ˜ ., data = prost.df, subset = prost.odd,
+ control = rpart.control(cp = 0, minsplit = 0))

The two extra arguments tell the rpart function to keep on looking for splits even
when the complexity parameter, cp, gets smaller than 0.1 and the minimal number
of objects in a potentially split node, minsplit, is smaller than 20 (the default
values). This leads to a tree with seven leaves. Printing the prost.rpart object
would show that the training data are indeed predicted perfectly. However, four of
the terminal nodes contain only three or fewer samples: it seems these are introduced
to repair some individual cases. Indeed, the test data are not predicted with the same
level of accuracy:

> prost.rpartpred <-
+ predict(prost.rpart, newdata = prost.df[prost.even, ])
> table(prost.type[prost.even], classmat2classvec(prost.rpartpred))

control pca
control 29 11
pca 12 72

Pruning could decrease the complexity without sacrificing much accuracy in the
description of the training set, and hopefully would increase the generalizing abilities
of themodel. To see what level of pruning is necessary, the table of complexity values
can be printed:

> printcp(prost.rpart)

Classification tree:
rpart(formula = type ˜ ., data = prost.df, subset = prost.odd,

control = rpart.control(cp = 0, minsplit = 0))

Variables actually used in tree construction:
[1] prost.4909 prost.5013 prost.5110 prost.5261 prost.5489 prost.5866

Root node error: 41/125 = 0.328

n= 125

CP nsplit rel error xerror xstd
1 0.5610 0 1.0000 1.000 0.128
2 0.2927 1 0.4390 0.829 0.121
3 0.0488 2 0.1463 0.634 0.111
4 0.0244 4 0.0488 0.561 0.106
5 0.0000 6 0.0000 0.561 0.106

Also a graphical representation is available:

> plotcp(prost.rpart)
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Fig. 7.10 Complexity
pruning of a tree: in this case,
three terminal nodes are
optimal (lowest prediction
error at lowest complexity)
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This leads to Fig. 7.10. Both from this figure and the complexity table shown above,
it is clear that the tree with the lowest prediction error and the least number of nodes
is obtained at a value of cp equal to 0.12. Usually, one chooses the complexity
corresponding to the minimum of the predicted error plus one standard deviation,
indicated by the dotted line in Fig. 7.10. The tree created with a cp value of 0.12,
containing only two leaves rather than the original seven, leads to a higher number
of misclassifications (six rather than zero) in the training set, but unfortunately also
to a slightly higher number of misclassifications in the test set:

> prost.rpart2 <-
+ rpart(type ˜ ., data = prost.df, subset = prost.odd,
+ control = rpart.control(cp = 0.12))
> prost.rpart2pred <-
+ predict(prost.rpart2, newdata = prost.df[prost.even, ])
> table(prost.type[prost.even], classmat2classvec(prost.rpart2pred))

control pca
control 29 11
pca 15 69

Either way, the result is quite a bit worse than what we have seen earlier with RDA
(Sect. 7.1.6.2).

Apart from the 0/1 loss function normally used in classification (a prediction is
either right or wrong), rpart allows to specify other, more complicated loss functions
as well—often, the cost of a false positive is very different from the cost of a false
negative decision. Another useful feature in the rpart package is the possibility to
provide prior probabilities for all classes.
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7.3.2 Discussion

Trees offer a lot of advantages. Perhaps the biggest of them is the appeal of the par-
ticular form of the model: many scientists feel comfortable with a series of more and
more specific questions, eventually leading to an unambiguous answer. The implicit
variable selectionmakesmodel interpretationmuch easier, and alleviates many prob-
lemswithmissing values, and variables ofmixed types (boolean, categorical, ordinal,
numerical).

There are downsides too, of course. The number of parameters to adjust is large,
and although the default settings quite often lead to reasonable solutions, there may
be a temptation to keep fiddling until an even better result is obtained. This, however,
can easily lead to overfitting: although the data are faithfully reproduced, themodel is
too specific and lacks generalization power. As a result, predictions for future data are
generally of lower quality than expected. And as for the interpretability of the model:
this is very much dependent on the composition of the training set. A small change in
the data can lead to a completely different tree. As we will see, this is a disadvantage
that can be turned into an advantage: combinations of tree-based classifiers often
give stable and accurate predictions. These so-called Random Forests, taking away
many of the disadvantages of simple tree-based classifiers while keeping the good
characteristics, enjoy huge popularity and will be treated in Sect. 9.7.2.

7.4 More Complicated Techniques

When relatively simple models like LDA or KNN do not succeed in producing
models with good predictive capabilities, one can ask the question: why do we fail?
Is it because the data just do not contain enough information to build a useful model?
Or are the models we have tried too simple? Do we need something more flexible,
perhaps nonlinear? The distinction between information-poor data and complicated
class boundaries is often hard to make.

In this section, we will treat two popular nonlinear techniques from the domain
of Machine Learning with complementary characteristics: whereas Support Vector
Machines (SVMs) are very useful when the number of objects is not too large,
Artificial Neural Networks (ANNs) should only be applied when there are ample
training cases available. Conversely, SVMs are applicable in high-dimensional cases
whereas ANNs are not: very often, a data reduction step like PCA is employed to
bring the number of variables down to a manageable size. These two techniques do
share one important property: they are very flexible indeed, and capable of modelling
the most complex relationships. This puts a large responsibility on the researcher for
thorough validation, especially since there are several parameters to tune. Because
the theory behind the methods is rather extensive, we will only sketch the contours—
interested readers are referred to the literature for more details.
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Fig. 7.11 The basic idea
behind SVM classification:
the separating hyperplane
(here, in two dimensions, a
line) is chosen in such a way
that the margin is maximal.
Points on the margins (the
dashed lines) are called
“support vectors”. Clearly,
the margins for the
separating line with slope
2/3 are much further apart
than for the vertical boundary
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7.4.1 Support Vector Machines

SVMs (Vapnik 1995; Cristianini and Shawe-Taylor 2000; Schölkopf and Smola
2002) in essence are binary classifiers, able to discriminate between two classes.
They aim at finding a separating hyperplane maximizing the distance between the
two classes. This distance is called the margin in SVM jargon; a synthetic example,
present in almost all introductions to SVMs, is shown in Fig. 7.11. Although both
classifiers, indicated by the solid lines, perfectly separate the two classes, the classifier
with slope 2/3 achieves a much bigger margin than the vertical line. The points
that are closest to the hyperplane are said to lie on the margins, and are called
support vectors—these are the only points that matter in the classification process
itself. Note however that all other points have been used in setting up the model,
i.e., in determining which points are support vectors in the first place. The fact that
only a limited number of points is used in the predictions for new data is called
the sparseness of the model, an attractive property in that it focuses attention to the
region that matters, the boundary between the classes, and ignores the exact positions
of points far from the battlefield.

More formally, a separating hyperplane can be written as

wx − b = 0 (7.20)

The margin is the distance between two parallel hyperplanes with equations
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wx − b = −1 (7.21)

wx − b = 1 (7.22)

and is givenby2/||w||. Therefore,maximizing themargin comesdown tominimizing
||w||, subject to the constraint that no data points fall within the margin:

ci (wxi ) ≤ 1 (7.23)

where ci is either −1 or 1, depending on the class label. This is a standard quadratic
programming problem.

It can be shown that these equations can be rewritten completely in terms of
inner products of the support vectors. This so-called dual representation has the
big advantage that the original dimensionality of the data is no longer of inter-
est: it does not really matter whether we are analyzing a data matrix with two
columns, or a data matrix with ten thousand columns. By applying suitable ker-
nel functions, one can transform the data, effectively leading to a representation in
higher-dimensional space. Often, a simple discrimination function can be obtained in
this high-dimensional space, which translates into an often complex class boundary
in the original space. Because of the dual representation, one does not need to know
the exact transformation—it suffices to know that it exists, which is guaranteed by
the use of kernel functions with specific properties. Examples of suitable kernels
are the polynomial and gaussian kernels. More details can be found in the literature
(e.g., Hastie et al. 2001).

Package e1071 provides an interface to the libsvm library3 through the function
svm. Autoscaling is applied bydefault.Modelling theBarbera andGrignolino classes
leads to the following results:

> wns.df <-
+ data.frame(vint = vnt,
+ flavonoids = wns[,"flavonoids"],
+ proline = wns[,"proline"])
> wns.svm <- svm(vint ˜ ., data = wns.df[wines.odd2, ])
> wns.svmpred <- predict(wns.svm, wns.df[wines.even2, ])
> table(wns.df$vint[wines.even2], wns.svmpred)

wns.svmpred
Barbera Grignolino

Barbera 22 2
Grignolino 4 31

These default settings lead to a reasonable of the test set.
One attractive feature of SVMs is that they are able to handle fat data matrices

(where the number of features is much larger than the number of objects) without any
problem. Let us see, for instance, how the standard SVM performs on the prostate
data. We will separate the cancer samples from the other control class—again, we
are considering only the first 1000 variables. Using the cross = 10 argument, we

3See http://www.csie.ntu.edu.tw/~cjlin/libsvm/.

http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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perform ten-fold crossvalidation, which should give us some idea of the performance
on the test set:

> prost.svm <- svm(type ˜ ., data = prost.df, subset = prost.odd,
+ cross = 10)
> summary(prost.svm)

Call:
svm(formula = type ˜ ., data = prost.df, cross = 10, subset = prost.odd)

Parameters:
SVM-Type: C-classification

SVM-Kernel: radial
cost: 1

gamma: 0.001

Number of Support Vectors: 88

( 38 50 )

Number of Classes: 2

Levels:
control pca

10-fold cross-validation on training data:

Total Accuracy: 92
Single Accuracies:
83.333 84.615 100 92.308 100 84.615 100 100 91.667 84.615

This summary shows us that rather than the complete training set of 125 samples,
only 88 are seen as support vectors (for SVMs already quite a large fraction). The
prediction accuracies for the left out segments vary from 83 to 83%, with an overall
error estimate of 92%. Let us see whether the test set can be predicted well:

> prost.svmpred <- predict(prost.svm, newdata = prost.df[prost.even,])
> table(prost.type[prost.even], prost.svmpred)

prost.svmpred
control pca

control 33 7
pca 1 83

Six misclassifications out of 124 cases, nicely in line with the crossvalidation error
estimate, is better than anything we have seen so far—not a bad result for default
settings.
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7.4.1.1 Extensions to More than Two Classes

The fact that only two-class situations can be tackled by basic forms of SVMs is a
severe limitation: in reality, it often happens that we should discriminate between
several classes. The standard approach is to turn one multi-class problem into sev-
eral two-class problems. More specifically, one can perform one-against-one testing,
where every combination of single classes is assessed, or one-against-all testing. In
the latter case, the question is rephrased as: “to be class A or not to be class A”—the
advantage is that, in the case of n classes, only n comparisons need to be made,
whereas in the one-against-one case n(n − 1)/2 models must be fitted. The disad-
vantage is that the class boundaries may be much more complicated: class “not A”
may be very irregular in shape. The default in the function svm is to assess all one-
against-one classifications, and use a voting scheme to pinpoint the final winning
class.

To show how this works we again concentrate on two dimensions only so that we
can visualize the results. First we set up the SVM model using the odd-numbered
rows only:

> wines.svm <- svm(vint ˜ flavonoids + proline, data = wines.df,
+ subset = wines.odd)
> wines.svmpred.trn <- predict(wines.svm)
> wines.svmpred.tst <-
+ predict(wines.svm, newdata = wines.df[wines.even, ])
> sum(wines.svmpred.trn == vint.trn) / length(wines.odd)
[1] 0.91011
> sum(wines.svmpred.tst == vint.tst) / length(wines.even)
[1] 0.90909

Predictions are very good, both for the training data (the odd rows of the data frame)
and the test data (the even rows). Next, we can plot the class boundaries, and project
the values of the test data on top to get a visual impression:

> plot(wines.svm, wines.df[wines.even, ], proline ˜ flavonoids,
+ color.palette = softbrg)

This code leads to the left plot in Fig. 7.12. The background colours, indicate the
predicted class for each region in the plot. They are obtained in a way very similar
to the code used to produce the contour lines in Fig. 7.3 and similar plots. Plotting
symbols show the positions of the support vectors—these are shown as crosses,
whereas regular data points, unimportant for this SVM model, are shown as open
circles. The 8 misclassifications can easily be spotted in the figure.

7.4.1.2 Finding the Right Parameters

The biggest disadvantage of SVMs is the large number of tuning parameters. One
should choose an appropriate kernel, and, depending on this kernel, values for two
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Fig. 7.12 SVM classification plots for the two-dimensional wine data (training data only). Support
vectors are indicated by crosses; regular data points by open circles. Left plot: default settings of
svm. Right plot: best SVM model with a polynomial kernel, obtained with best.svm

or three parameters. A special convenience function, tune, is available in the e1071
package, which, given a choice of kernel, varies the settings over a grid, calculates
validation values such as crossvalidated prediction errors, and returns an object of
classtune containing all validation results.A related function isbestwhich returns
the model with the best validation performance. If we wanted to find the optimal
settings for the three parameters coef0, gamma and cost using a polynomial
kernel (the default kernel is a radial basis function), we could do it like this:

> set.seed(7)
> wines.bestsvm <-
+ best.svm(vint ˜ flavonoids + proline, data = wines.df,
+ kernel = "polynomial",
+ coef0 = seq(-.5, .5, by = .1),
+ gamma = 2ˆ(-1:1), cost = 2ˆ(2:4))

The predictions with these settings then lead to the following results:

> wines.bestsvmpred.trn <-
+ predict(wines.bestsvm, newdata = wines.df[wines.odd, ])
> wines.bestsvmpred.tst <-
+ predict(wines.bestsvm, newdata = wines.df[wines.even, ])
> sum(wines.bestsvmpred.trn == vint.trn) / length(vint.trn)
[1] 0.92135
> sum(wines.bestsvmpred.tst == vint.tst) / length(vint.tst)
[1] 0.92045

For both the training and test data, one fewermisclassification error ismade; however,
the classification plot, shown in the right of Fig. 7.12 looks quite different from the
earlier version. The differences in areas where no samples are present may seem
not particularly interesting—however, they may become very relevant when new
samples are classified. Note that also the number and position of support vectors is
quite different.
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7.4.2 Artificial Neural Networks

Artificial Neural Networks (ANNs, also shortened to neural networks, NNs) form a
family of extremely flexible modelling techniques, loosely based on the way neu-
rons in human brains are thought to be connected—hence the name. Although the
principles of NNs had already been defined in the fifties of the previous century
with Rosenblatt’s perceptron (Rosenblatt 1962), the technique only really caught
on some twenty years later with the publication of Rumelhart’s and McClellands
book (Rumelhard and McClelland 1986). Many different kinds of NNs have been
proposed; here, we will only treat the flavor that has become known as feed-forward
neural networks, backpropagation networks, after the name of the training rule (see
below), or multi-layer perceptrons.

Such a network consists of a number of units, typically organized in three layers,
as shown in Fig. 7.13.When presented with input signals si , a unit will give an output
signal so corresponding to a transformation of the sum of the inputs:

so = f

(∑
i

si

)
(7.24)

For the units in the input layer, the transformation is usually the identity function,
but for the middle layer (the hidden layer typically sigmoid transfer functions or

Fig. 7.13 The structure of a
feedforward NN with three
input units, four hidden
units, two bias units and two
output units

bias bias
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threshold functions are used. For the hidden and output layers, special bias units are
traditionally added, always having an output signal of +1 (Ripley 1996). Network
structure is very flexible. It is possible to use multiple hidden layers, remove links
between specific units, to add connections skipping layers, or even to create feedback
loops where output is again fed to special input units. However, the most common
structure is to have a fully connected network such as the one depicted in Fig. 7.13,
consisting of one input layer, one hidden layer and one output layer. One can show
that adding more hidden layers will not lead to better predictions (although in some
cases it is reported to speed up training). Whereas the numbers of units in the input
and output layers are determined by the data, the number of units in the hidden layer
is a parameter that must be optimized by the user.

Connections between units are weighted: an output signal from a particular unit
is sent to all connected units in the next layer, multiplied by the respective weights.
These weights, in fact form the model for a particular network topology—training
the network comes down to finding the set of weights that gives optimal predictions.
The most popular training algorithm is based on a steepest-descent based adaption of
the weights upon repeated presentation of training data. The gradient is determined
by what is called the backpropagation rule, a simple application of the chain rule in
obtaining derivatives. Many other training algorithms have been proposed as well.

InR, several packages are available providing general neural network capabilities,
such as AMORE and neuralnet (Günther and Fritsch 2010). We will use the nnet
package, one of the recommendedR packages, featuring feed-forward networkswith
one hidden layer, several transfer functions and possibly skip-layer connections. It
does not employ the usual backpropagation training rule but rather the optimization
method provided by the R function optim. The target values, here the labels of
the vintages, have to be presented as a membership matrix, here containing three
columns, one for each type of wine. Each row contains 1 at the correct label of the
sample, and zeros in the other two positions. The conversion of a factor to a mem-
bership matrix is done by the classvec2classmat function from the kohonen
package—below, the first three lines of the membership matrix (all Barolos) are
shown:

> membership.trn <- classvec2classmat(vint.trn)
> head(membership.trn, 3)

Barbera Barolo Grignolino
[1,] 0 1 0
[2,] 0 1 0
[3,] 0 1 0

For the (autoscaled) training set of the wine data, the network is trained as follows:

> wines.nnet <- nnet(x = wines.trn.sc,
+ y = membership.trn,
+ size = 4)
# weights: 71
initial value 64.600576
iter 10 value 28.923577
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iter 20 value 0.012965
iter 30 value 0.002048
iter 40 value 0.000696
iter 50 value 0.000530
final value 0.000096
converged

Although the autoscaling is not absolutely necessary (the same effect can be reached
by using different weights for the connections of the input units to the hidden layer)
it does make it easier for the network to reach a good solution—without autoscaling
the data, the optimization easily gets stuck in a local optimum. Here convergence
is reached very quickly. In practice, multiple training sessions should be performed,
and the one with the smallest (crossvalidated) training error should be selected. An
alternative is to use a (weighted) prediction using all trained networks.

As expected for such a flexible fitting technique, the training data are reproduced
perfectly:

> membership.pred <- predict(wines.nnet)
> training.pred <- classmat2classvec(membership.pred)
> table(vint.trn, training.pred)

training.pred
vint.trn Barbera Barolo Grignolino

Barbera 24 0 0
Barolo 0 29 0
Grignolino 0 0 36

Luckily, also the test data are predicted very well here:

> table(vint.tst,
+ classmat2classvec(predict(wines.nnet, wines.tst.sc)))

vint.tst Barbera Barolo Grignolino
Barbera 24 0 0
Barolo 0 29 0
Grignolino 1 1 33

Several default choices have been made under the hood of the nnet function: the
type of transfer functions in the hidden layer and in the output layer, the number of
iterations,whether least-squares fitting ormaximum likelihoodfitting is done (default
is least-squares), and several others. The only explicit setting in this example is the
number of units in the hidden layer, and this immediately is the most important
parameter, too. Choosing too many units will lead to a good fit of the training data
but potentially bad generalization—overfitting. Too few hidden units will lead to a
model that is not flexible enough.

A convenience function tune.nnet is available in package e1071, similar to
tune.svm. This will test neural networks of a specific architecture a number of
times (the default is five) and collect measures of predictive performance (obtained
by either crossvalidation or bootstrapping, see Chap.9). Let us see whether our
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Fig. 7.14 Tuning neural
networks: selecting the
optimal number of nodes in
the hidden layer
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(arbitrary) choice of four hidden units can be improved upon, now using the formula
interface of the nnet function:

> wines.trn.sc.df <- data.frame(vintage = vint.trn, wines.trn.sc)
> (wines.nnetmodels <-
+ tune.nnet(vintage ˜ ., data = wines.trn.sc.df,
+ size = 1:8, trace = FALSE))

Generic summary and a plot methods are available—for the corresponding plot,
see Fig. 7.14. Clearly, one hidden unit is not enough, and two hidden units are
not much worse than four, or even eight (although changing the y scale could
make us rethink that statement). Instead of using tune.nnet, one can also apply
best.nnet—this function directly returns the trained model with the optimal
parameter settings:

> best.wines.nnet <-
+ best.nnet(vintage ˜ ., data = wines.trn.sc.df,
+ size = 1:8, trace = FALSE)
> table(vint.tst,
+ predict(best.wines.nnet,
+ newdata = data.frame(wines.tst.sc),
+ type = "class"))

vint.tst Barbera Barolo Grignolino
Barbera 24 0 0
Barolo 0 29 0
Grignolino 4 0 31

Indeed, we see one fewer misclassification. Note that here, “optimal” simply means
the network with the lowest crossvalidation error. However, this may be too opti-
mistic: especially with very flexible models like ANNs and the tree-based methods
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we saw earlier, overfitting is a real danger. The idea is that too complex models have
enough flexibility to learn data “by heart” whereas models of the right complexity are
forced to focus on more general principles. One rule of thumb is to use the simplest
possible model that is not worse than the best model to be as conservative as possible.
In this case, one would expect a network with only two hidden neurons to perform
better for new, unseen, data than a network with four or eight. We will come back to
this in Chap.9.

In the example above we used the default stopping criterion of the nnet func-
tion, which is to perform 100 iterations of complete presentations of the training
data. In several publications, scientists have advocated continuously monitoring pre-
diction errors throughout the training iterations, in order to prevent the network from
overfitting. In this approach, training should be stopped as soon as the error of the
validation set starts increasing. Apart from the above-mentioned training parameters,
this presents an extra level of difficulty which becomes all the more acute with small
data sets. To keep these problemsmanageable, one should be very careful in applying
neural networks in situations with few cases; the more examples, the better.

7.4.2.1 Deep Learning

Since2010, a novel development in neural networks calledDeepLearning (DL,Good-
fellow et al. 2016) has taken center stage with applications in areas like computer
vision (Uijlings et al. 2013; Gatys et al. 2016; Badrinarayanan et al. 2017), speech
recognition (Hinton et al. 2012; Deng et al. 2013; Nassif et al. 2019) and many oth-
ers. At that point in time, developments in GPUs, graphics processing units allowing
massively parallel computations coincided with easy access to large data sets such
as ImageNet (Russakovsky et al. 2015), a collection of millions of annotated images.
Open-source software was available, too, and the interest of companies like Google
and Microsoft made sure large steps were made. Today, many of the top-performing
approaches in difficult benchmark problems are based on Deep Learning.

So what is different, compared to the neural networks in the previous sections?
From a structural viewpoint, not that much. Just like the neural networks from the
nineties can be seen as perceptrons stitched together in a particular structure, DL
networks can be described as collections of neural networks such as the ones in
Fig. 7.13. What is new is that many more layers are used (DL networks with more
than one hundred layers are no exception) and that layers are includedwith a purpose:
in image processing applications we typically see, amongst others, convolutional
layers and pooling layers, applied in alternating fashion. Each of these layers serves
a particular purpose—subsequent layers are not fully connected like in the network
of Fig. 7.13 but only connected if there is a reason for it. In this way, the DL network
is able to aggregate the raw input data into more and more abstract features that
eventually will be combined to obtain the final answer. The increased amount of
structure within the DL net restricts the number of weights that need to be optimized.
Regularizationmethods (see, e.g., Sects. 8.4 and10.2) are employed routinely in order
to keep the weights small and prevent overfitting (Efron and Hastie 2016), effectively
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removing the number of training iterations as a parameter to be optimized: more is
better in these cases. Still, the training is a daunting task:manyweights are optimized,
and for this a large (large!) number of training examples needs to be provided.

Amajor hurdle for classification applications is that in almost all cases the training
examples need to be annotated, i.e., the ground truth needs to be known. Modern
sensing devices like cameras have no problems in generating terabytes and more of
data, but what the true class of the image is still needs to be decided, an area that is
being exploited commercially nowadays. Chemometrics is typically concerned with
data characterized by multivariate responses, recorded for relatively few samples, so
DL applications are still rare but they will certainly come.
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