
Chapter 6
Clustering

As we saw earlier in the visualizations provided by methods like PCA and SOM, it
is often interesting to look for structure, or groupings, in the data. However, these
methods do not explicitly define clusters; that is left to the pattern recognition capa-
bilities of the scientist studying the plot. In many cases, however, it is useful to rely
on somewhat more formal methods, and this is where clustering methods come in.
They are usually based on object-wise similarities or distances, and since the late
nineties have become hugely popular in the area of high-throughput measurement
techniques in biology, such as DNA microarrays. There, the activities of tens of
thousands of genes are measured, often as a function of a specific treatment, or as a
time series. Of course, the question is which genes show the same activity pattern: if
an unknown gene has much the same behavior as another gene of which it is known
that it is involved in a process like cell differentiation, one can hypothesize that the
unknown gene is somehow related to this process as well.

With only a slight exaggeration one could say that there are about as many clus-
tering algorithms as there are scientists and by no means do these methods always
give the same results.Modern software packages havemademany of these clustering
methods available to a wide audience; unfortunately, this provides the temptation to
try all methods in order to get the result one is looking for, rather than the result
that is suggested by the data. There are no formal rules to help you decide which
clustering method to use.

One of the reasons for this is that most clustering methods are heuristic in nature,
rather than that they stem from solid statistical foundations. Moreover, assessing the
quality of the clustering, or validation, is a problem: since the “real” clustering is
by definition unknown (otherwise it would be more appropriate to use a supervised
approach such as the classification methods described in Chap. 7) we can not say
that one clustering is better than the other. Also cluster characteristics (sphericity,
density, ...) can not be used for this, since different clustering methods “optimize”
different criteria. It is often difficult for users to get a good idea of the behavior of
the separate methods, since our visualization abilities break down in more than three
dimensions, and at the same time the assumptions behind the clustering methods are
often unknown.

© Springer-Verlag GmbH Germany, part of Springer Nature 2020
R. Wehrens, Chemometrics with R, Use R!,
https://doi.org/10.1007/978-3-662-62027-4_6

81

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-62027-4_6&domain=pdf
https://doi.org/10.1007/978-3-662-62027-4_6

82 6 Clustering

In this chapter, we concentrate on several popular classes ofmethods. Hierarchical
methods are represented by single, average and complete linkage, respectively, while
k-means is an example of partitional methods. Both yield “crisp” clusterings; objects
belong to exactly one cluster. More sophisticated methods lead to a clustering where
membership values are assigned to each object: the object can be assigned to the
cluster with the highest membership value. An example is given by model-based
clustering methods.

6.1 Hierarchical Clustering

Quite often, data have a hierarchical structure in the sense that groups consist ofmutu-
ally exclusive sub-groups. This is often visualized in a tree-like structure, called a
dendrogram. The dendrogram presents an intuitive and appealing way for visualiz-
ing the hierarchical structure: the y-axis indicates the “distance” between different
groups, whereas the connections show where successive splits (or joins) take place.

Hierarchical clustering starts with a square matrix containing distances or
(dis)similarities; in the following we will assume we have the data in the form of dis-
tances. It is almost always performed in a bottom-up fashion. Starting with all objects
in separate clusters, one looks for the twomost similar clusters and joins them. Then,
the distance matrix is updated. There are several possibilities to determine the dis-
tance between clusters. One option is to take the shortest distance between clusters.
In Fig. 6.1 this would correspond to the distance between objects d and D. This
choice leads to the single-linkage algorithm. It joins two groups if any members
of both groups are close together, a strategy that is sometimes also referred to as
friends-of-friends: “any friend of yours is my friend, too!”.

The opposite strategy is complete linkage clustering: there, the distance between
clusters is determined by the objects in the respective clusters that are furthest apart—
in Fig. 6.1 objects a and A. In other words: to belong to the same cluster, the distances
to all cluster members must be small.1 This strategy leads to muchmore compact and

Fig. 6.1 Distances between
clusters: single linkage,
average linkage and
complete linkage consider
the closest points, the
averages, and the farthest
points, respectively

●

●

●

●
Single linkage

Complete linkage

Average linkage

● Cluster 1
Cluster 2

a
b

c
d

A
B

C
D

1We can only be friends if all our friends are friends of both of us.

6.1 Hierarchical Clustering 83

G
rig

no
lin

o

Ba
ro

lo

Ba
ro

lo

Ba
ro

lo

Ba
ro

lo

Ba
ro

lo

Ba
ro

lo

Ba
ro

lo

Ba
rb

er
a

G
rig

no
lin

o

Ba
rb

er
a

G
rig

no
lin

o

G
rig

no
lin

o

G
rig

no
lin

o

Ba
rb

er
a

Ba
rb

er
a

Ba
rb

er
a

Ba
rb

er
a

Ba
rb

er
a

Ba
rb

er
a

1.
5

2.
5

3.
5

Cluster Dendrogram

hclust (*, "single")
wines.dist

H
ei

gh
t

G
rig

no
lin

o

G
rig

no
lin

o

G
rig

no
lin

o

Ba
ro

lo

Ba
ro

lo

Ba
ro

lo

Ba
ro

lo

Ba
ro

lo

Ba
ro

lo

Ba
ro

lo Ba
rb

er
a

G
rig

no
lin

o

G
rig

no
lin

o

Ba
rb

er
a

Ba
rb

er
a

Ba
rb

er
a

Ba
rb

er
a

Ba
rb

er
a Ba

rb
er

a

Ba
rb

er
a

0
2

4
6

8

Cluster Dendrogram

hclust (*, "complete")
wines.dist

H
ei

gh
t

Fig. 6.2 Single linkage clustering (top) and complete linkage clustering (bottom) of 20 samples
from the wine data

equal-sized clusters. Of course, intermediate strategies are possible, too. Taking the
distance between cluster means leads to average linkage. Ward’s method explicitly
takes into account the cluster size in calculating a weighted average, and in many
cases gives very similar result to average linkage.

Let us see how this works by clustering a random subset of the wine data. In R
hierarchical clustering is available through function hclust, which takes an object
of class dist as its first argument:

> subset <- sample(nrow(wines), 20)
> wines.dist <- dist(wines.sc[subset,])
> wines.hcsingle <- hclust(wines.dist, method = "single")
> plot(wines.hcsingle, labels = vintages[subset])

This leads to the dendrogram at the top in Fig. 6.2. When we go down in distance,
starting from the top, one Grignolino sample is split off from the main branch as
a singleton before the whole Barolo cluster is identified. Going down even further,

84 6 Clustering

individual Grignolino and Barbera samples are split off before arriving at a cluster
of Grignolino wines, and a cluster of Barberas.

Also the complete linkage dendrogram in the bottompanel of Fig. 6.2, suggesting a
four- or five-cluster solution, shows the confusion betweenBarberas andGrignolinos,
and separate, pure, Barolo and Grignolino clusters. This plot is obtained by:

> wines.hccomplete <- hclust(wines.dist, method = "complete")
> plot(wines.hccomplete, labels = vintages[subset])

The layout of the dendrogram is very different from the single-linkage one: there, the
typical friends-of-friends behaviour is observed, where single objects are gradually
added to one large group, in addition to a number of singletons. In complete linkage
one often finds more clear distinctions between groups of samples, as is the case
here.

In principle, a dendrogram from a hierarchical clustering method in itself is not
yet a clustering, since it does not give a grouping as such. However, these can be
obtained by “cutting” the diagramat a certain height: all objects that are connected are
supposed to be in one and the same cluster. For this, function cutree is available,
which either takes the height at which to cut, or the number of clusters to obtain as
an argument. In this case, let’s cut at a height of 3:

> wines.cl.single <- cutree(wines.hcsingle, h = 3)
> table(wines.cl.single, vintages[subset])

wines.cl.single Barbera Barolo Grignolino
1 0 7 0
2 1 0 0
3 1 0 3
4 0 0 1
5 1 0 0
6 5 0 0
7 0 0 1

The clustering is very good in the sense that there are almost no mixed clusters
containing samples from more than one type; on the other hand, the Barbera wines
are split over four different clusters. Cutting the dendrogram at a height larger than
threewill lead to fewer clusters but inevitably also tomoremixed clusters.Conversely,
lowering the height at which one cuts leads to more, and more pure clusters. What
is most useful needs to be determined on a case-to-case basis.

Now we turn to the complete data set, and recalculate the clusterings. Single
linkage, cut at a height to obtain three clusters, does not show anything useful:

6.1 Hierarchical Clustering 85

> wines.dist <- dist(wines.sc)
> wines.hcsingle <- hclust(wines.dist, method = "single")
> table(vintages, cutree(wines.hcsingle, k = 3))

vintages 1 2 3
Barbera 48 0 0
Barolo 58 0 0
Grignolino 67 3 1

Almost all samples are in cluster 1, and small bits of the data set (all Grignolino
samples) are chipped off leading to clusters 2 and 3, eachwith only very few elements.
On the other hand, the three-cluster solution from complete linkage is already quite
good:

> wines.hccomplete <- hclust(wines.dist, method = "complete")
> table(vintages, cutree(wines.hccomplete, k = 3))

vintages 1 2 3
Barbera 3 0 45
Barolo 50 8 0
Grignolino 14 52 5

Cluster 1 corresponds tomainly Barolo wines, cluster two to Grignolinos, and cluster
three to the Barberas. Of course, there still is significant overlap between the clusters.

Hierarchical clustering methods enjoy great popularity: the intuitive visualization
through dendrograms is one of the main reasons. These also provide the opportunity
to see the effects of increasing the number of clusters, without actually recalculating
the cluster structure. Obviously, hierarchical clustering will work best when the data
actually have a hierarchical structure: that is, when clusters contain subclusters, or
when some clusters are more similar than others. In practice, this is quite often the
case.

A further advantage is that the clustering is unique: no random element is involved
in creating the cluster model. For many other clustering methods, this is not the case.
Note that the uniqueness property is present only in the case that there are no ties in
the distances. If there are, one may obtain several different dendrograms, depending
on the order of the data and the actual implementation of the software. Usually, the
first available merge with the minimal distance is picked. When equal distances are
present, one or more equivalent merges are possible, which may lead to different
dendrograms. An easy way to investigate this is to repeat the clustering many times
on distance matrices from data where the rows have been shuffled.

There are a number of drawbacks to hierarchical clustering, too. For data sets with
many samples (more than ten thousand, say) these methods are less suitable. To start
with, calculating the distance matrix may be very expensive, or even impossible.
More importantly, interpreting the dendrograms quickly becomes cumbersome, and
there is a real danger of over-interpretation. Examples where hierarchical methods
are used with large data sets can be found in the field of DNA microarrays, where
the ground-breaking paper of Eisen et al. (1998) seems to have set a trend.

86 6 Clustering

There are a number of cases where the results of hierarchical clustering can be
misleading. The first is the case where in reality there is no class structure. Cutting
a dendrogram will always give you clusters: unfortunately, there is no warning light
flashing when you investigate a data set with no class structure. Furthermore, even
when there are clusters, they may be too close to separate, or they may overlap. In
these cases it is impossible to conclude anything about individual cases (although
it can still be possible to infer characteristics of the clusters as a whole). The two
keys to get out of this conundrum are formed by the use of prior information, and
by visualization. If you know class structure is present, and you already have infor-
mation about part of that structure, the clustering methods that fail to reproduce that
knowledge obviously are not performing well, and you are more likely to trust the
results of the methods that do find what you already know. Another idea is to visual-
ize the (original) data, and give every cluster a different color and plotting symbol.
One can easily see if clusters are overlapping or are nicely separated. Note that the
dendrogram can be visualized in a number of equivalent ways: the ordering of the
groupings from left to right is arbitrary to some extent and may depend on your
software package.

The cluster package in R also provides functions for hierarchical clustering:
agnes implements single, average and complete linkage methods but also allows
more control over the distance calculations using the method ="flexible"
argument. In addition, it provides a coefficient measuring the amount of cluster
structure, the “agglomerative coefficient”, ac:

ac = 1

n

∑

i

(1− mi)

where the summation is over all n objects, and mi is the ratio of the dissimilarity of
the first cluster an object is merged to and the dissimilarity level of the final merge
(after which only one cluster remains). Compare these numbers for three hierarchical
clusterings of the wine data:

> wines.agness <- agnes(wines.dist, method = "single")
> wines.agnesa <- agnes(wines.dist, method = "average")
> wines.agnesc <- agnes(wines.dist, method = "complete")

> cbind(wines.agness$ac, wines.agnesa$ac, wines.agnesc$ac)
[,1] [,2] [,3]

[1,] 0.53802 0.69945 0.81625

Complete linkage is doing the best job for these data, according to this quality
measure.

6.2 Partitional Clustering 87

6.2 Partitional Clustering

A completely different approach is taken by partitional clustering methods. Instead
of starting with individual objects as clusters and progressively merging similar
clusters, partitional methods choose a set of cluster centers in such a way that the
overall distance of all objects to the closest cluster centers is minimised. Algorithms
are iterative and usually start with random cluster centers, ending when no more
changes in the cluster assignments of individual objects are observed. Again, many
different flavours exist, each with its own characteristics. In general, however, these
algorithms are very fast and are suited for large numbers of objects. The calculation of
the complete distancematrix is unnecessary—only the distances to the cluster centers
need to be calculated, where the number of clusters is much smaller than the number
of objects—and this saves resources. Two examples will be treated here: k-means
and k-medoids. The latter is a more robust version, where outlying observations do
not influence the clustering to a large extent.

6.2.1 K-Means

The k-means algorithm is very simple and basically consists of two steps. It is ini-
tialized by a random choice of cluster centers, e.g., a random selection of objects in
the data set or random values within the range for each variable. Then the following
two steps are iterated:

1. Calculate the distance of an object to all cluster centers and assign the object to
the closest center; do this for all objects.

2. Replace the cluster centers by the means of all objects assigned to them.

The quality of the final model can then be assessed by summing the distances of all
objects to the centers of the clusters to which they are assigned. Note the similarity
to the training of SOMs in Chap.5, in particular to the batch training algorithm. The
goals of the two methods, however, are quite different: SOMs aim at providing a
suitable mapping to two dimensions, and the units should not be seen as individual
clusters, whereas k-means explicitly focusses on finding a specific number of groups.

The basic R function is for k-means clustering conveniently called kmeans.
Application to the wine data leads to the following result:

88 6 Clustering

> (wines.km <- kmeans(wines.sc, centers = 3))
K-means clustering with 3 clusters of sizes 65, 51, 61

Cluster means:
alcohol malic acid ash ash alkalinity magnesium

1 -0.91833 -0.39533 -0.49050 0.16370 -0.483216
2 0.17364 0.86425 0.18718 0.51684 -0.064971
3 0.83336 -0.30131 0.36617 -0.60655 0.569222

tot. phenols flavonoids non-flav. phenols proanth col. int.
1 -0.071141 0.026589 -0.037096 0.065095 -0.89558
2 -0.971065 -1.206242 0.719152 -0.771710 0.93782
3 0.887680 0.980165 -0.561730 0.575837 0.17023

col. hue OD ratio proline
1 0.46141 0.28236 -0.74607
2 -1.15662 -1.28723 -0.40027
3 0.47535 0.77533 1.12965

Clustering vector:
[1] 3

[31] 3 1 1
[61] 2 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1
[91] 1 1 1 1 3 1 2 1 1

[121] 3 1 1 1 1 1 1 1 1 2
[151] 2

Within cluster sum of squares by cluster:
[1] 559.30 326.35 382.19
(between_SS / total_SS = 44.6 %)

Available components:

[1] "cluster" "centers" "totss" "withinss"
[5] "tot.withinss" "betweenss" "size" "iter"
[9] "ifault"

The algorithm not only returns the clustering of the individual objects, but also
cluster-specific information such as the sum of squares, the cumulative distance of
all cluster objects to the center of the cluster.

So the question now is: how good is the agreement with the vintages? Let’s see:

> table(vintages, wines.km$cluster)

vintages 1 2 3
Barbera 0 48 0
Barolo 0 0 58
Grignolino 65 3 3

Only six of the Grignolino samples are classified as Barbera and Barolo wines; a lot
better than the complete-linkage solution.

The k-means algorithm enjoys great popularity through its simplicity, ease of
interpretation, and speed. It does have a few drawbacks, however. We already men-
tioned the fact that one should pick the number of clusters in advance. In general, the

6.2 Partitional Clustering 89

correct number (if such a thing exists at all) is never known, and one will probably try
several different clusterings with different numbers of clusters. Whereas hierarchi-
cal clustering delivers this in one go—the dendrogram only has to be cut at different
positions—for k-means clustering (and partitional methods in general) one should
repeat the whole clustering procedure. As already said, the results with four or five
clusters may differ dramatically.

Worse, even a repeated clustering with the same number of clusters will give a
different result, sometimes even a very different result. Remember that we start from
a random initialization: an unlucky starting point may get the algorithm stuck in a
local minimum. Repeated application, starting from different initial guesses, gives
some idea of the variability. The kmeans function returns the within-cluster sums
of squares for the separate clusters, which can be used as a quality criterion:

> wines.km <- kmeans(wines.sc, centers = 3)
> best <- wines.km
> for (i in 1:100) {
+ tmp <- kmeans(wines.sc, centers = 3)
+ if (sum(tmp$withinss) < sum(best$withinss))
+ best <- tmp
+ }

One can then pick the one that leads to the best description of the data or, equivalently,
the smallest overall distance. In this particular case, the overall best solution is found
every time—the wine data do not present that much of a problem. The kmeans
function has a built-in argument for repeating the clustering and only returning the
best solution. Thus, the loop in the previous example can be replaced by

> wines.km <- kmeans(wines.sc, centers = 3, nstart = 100)

Severalminimawith comparable overall distancemeasuremay exist, so that different
but equally good clustering solutions can be found by the algorithm.

6.2.2 K-Medoids

In k-means, cluster centers are given by the mean coordinates of the objects in that
cluster. Since averages are very sensitive to outlying observations, the clustering
may be dominated by a few objects, and the interpretation may be difficult. One
way to resolve this is to assess clusterings with more groups than expected: the
outliers may end up in a cluster of their own. A more practical alternative would be
to use a more robust algorithm where the influence of outliers is diminished. One
example is the k-medoids algorithm (Kaufman and Rousseeuw 1990), available inR
through the function pam—Partitioning Around Medoids— in the cluster package.
Rather than finding cluster centers at optimal positions, k-medoids aims at finding
k representative objects within the data set. Typically, the sum of the distances is

90 6 Clustering

minimized rather than the sum of the squared distances, decreasing the importance
of large distances.

Applied to the wine data, k-medoids gives the following result:

> (wines.pam <- pam(wines.dist, k = 3))
Medoids:

ID
[1,] 35 35
[2,] 106 106
[3,] 148 148
Clustering vector:

[1] 1
[31] 1 2 2
[61] 2 2 1 2 1 2 2 2 1 2 1 2 1 1 2 2 2 1 1 2 2 2 3 2 2 2 2 2 2 2
[91] 2 2 2 2 1 1 2 1 2 2 2 2 2 2 2 2 2 2 1 1 2 2 2 2 2 2 2 2 2 1

[121] 1 2 2 1 2 2 2 2 2 3
[151] 3
Objective function:
build swap

2.9085 2.8086

Available components:
[1] "medoids" "id.med" "clustering" "objective"
[5] "isolation" "clusinfo" "silinfo" "diss"
[9] "call"

The result presents the medoids with their row numbers. The objective function, the
sum of the distances of objects to the medoids, is reported in two stages: the first
stage serves to find a good initial set of medoids, whereas the second stage performs
a local search, trying all possible medoid swaps until no more improvement can be
found. In this rather simple example, the average distance after the second stage has
decreased by 0.1, compared to the distances to the initial set of medoids—not a huge
decrease.

The implementation of pam in the cluster package comes with additional visual-
ization methods. The first is the “silhouette” plot (Kaufman and Rousseeuw 1990).
It shows a quality measure for individual clusterings: object with a high silhouette
width (close to 1) are verywell clustered, while objects with low values lie in between
two or more clusters. Objects with a negative value may be even in the wrong cluster.
The silhouette width si of object i is given by:

si = bi − ai
max(ai , bi)

where ai is the average distance of object i to all other objects in the same cluster,
and bi is the smallest distance of object i to another cluster. Thus, the maximal value
will be obtained in those cases where the intra-cluster distance a is much smaller
than the inter-cluster distance b.

For the wine data clustering, the silhouette plot shown in Fig. 6.3 is obtained by:

6.2 Partitional Clustering 91

Silhouette width si

0.0 0.2 0.4 0.6 0.8 1.0

Silhouette plot

Average silhouette width : 0.27

n = 177 3 clusters Cj

j : nj | avei∈Cj si

1 : 74 | 0.24

2 : 54 | 0.23

3 : 49 | 0.34

Fig. 6.3 Silhouette plot for the k-medoids clustering of the wine data. The three clusters contain
74, 54 and 49 objects, and have average silhouette widths of 0.24, 0.23 and 0.34, respectively

> plot(wines.pam, main = "Silhouette plot")

An overall measure of clustering quality can be obtained by averaging all silhouette
widths. This is an easy way to decide on the most appropriate number of clusters:

> best.pam <- pam(wines.dist, k = 2)
> for (i in 3:10) {
+ tmp.pam <- pam(wines.dist, k = i)
+ if (tmp.pam$silinfo$avg.width < best.pam$silinfo$avg.width)
+ best.pam <- tmp.pam
+ }
> best.pam$medoids
[1] 12 56 34 97 91 163 125 148

In this case, eight clusters seem to give the clustering with the least ambiguity. The
agreement with the true class labels is quite good:

92 6 Clustering

> table(vintages, best.pam$clustering)

vintages 1 2 3 4 5 6 7 8
Barbera 0 0 0 0 0 18 0 30
Barolo 21 17 20 0 0 0 0 0
Grignolino 0 1 5 20 15 5 24 1

Clusters 1, 2 and 3 correspond to theBarolowines, and clusters 6 and 8 to theBarbera.
Again, the Grignolino wines are the most difficult to cluster, and 12 Grignolino
samples end up in clusters dominated by other wines.

For large data sets, pam is too slow; in the cluster package, an alternative is
provided in the function clara (Kaufman and Rousseeuw 1990) which considers
subsets of size sampsize. Each subset is partitioned using the same algorithm as
in pam. The sets of medoids that result are used to cluster the complete data set, and
the best set of medoids, i.e., the one for which the sum of the distances is minimal,
is retained.

6.3 Probabilistic Clustering

In probabilistic clustering, sometimes also called fuzzy clustering, objects are not
allocated to one cluster only. Rather, cluster memberships are used to indicate which
of the clusters is more likely. If a “crisp” clustering result is needed, an object is
assigned to the cluster with the highest membership value.

The most well-established methods are found in the area of mixture modelling,
where individual clusters are represented bymixtures of parametric distributions, and
the overall clustering is a weighted sum of the individual components (McLachlan
and Peel 2000; Fraley and Raftery 2002). Usually, multivariate normal distributions
are applied. In that case, assuming G clusters, the likelihood is given by

L(τ ,μ,�|x) =
n∏

i=1

G∑

k=1

τ kφk(xi |μk,�k) ,

where τ k is the fraction of objects in cluster k, μk and �k correspond to the cluster
means and covariance matrices of cluster k, respectively, and φk is the density of
cluster k. If the cluster labels would be known, one could estimate the unknown
parameters τ k , μk and �k by maximizing the likelihood (for example). Vice versa,
when these parameters are known, it is easy to calculate the conditional probabilities
of belonging to class k:

zik = φk(xi |θk)/
K∑

j=1

φ j (xi |θ j)

6.3 Probabilistic Clustering 93

These two steps are the components in the Expectation-Maximization algorithm
(EM) (Dempster et al. 1977; McLachlan and Krishnan 1997): estimating the condi-
tional probabilities is indicated with the E-step, whereas estimating the parameters
(class means and variances, and mixing proportions) is the M-step. The conditional
probabilities zik can also be seen as indicators of uncertainty: the larger zi,max, the
maximal value of all zik values for object i , the more certain the classification.

One can use the likelihood to determine what number of clusters is optimal. Of
course, the likelihoodwill increasewith the number of clusters, so one usually defines
a penalty depending on the number of parameters that are estimated. Two popular
measures are Akaike’s Information Criterion (AIC) and the Bayesian Information
Criterion (BIC). The AIC criterion (Akaike 1974) is defined by

AIC = −2 log L + 2p (6.1)

where L is the likelihood and p the number of parameters in the model (here τ ,
μ, and �). The closely related BIC criterion (Schwarz 1978) uses a penalty that is
usually stronger than the AIC penalty:

BIC = −2 log L + p log n (6.2)

The optimal model has a minimal value for AIC and/or BIC2—because of the more
heavy penalty, BIC is likely to select slightly more parsimonious models than AIC.
Several other criteria exist (McLachlan and Peel 2000). None of these is able to
correctly identify the number of clusters in all cases, but in practice, differences are
not very big and both AIC and BIC criteria are often used.

Several packages in R implement this form of clustering. In the mclust pack-
age (Fraley andRaftery 2003), for example, one can calculateBICvalues for different
numbers of clusters easily:

> wines.BIC <- mclustBIC(wines.sc, modelNames = "VVV")
> plot(wines.BIC)

This produces the plot in Fig. 6.4. The BIC value, here given in its negative form,
has a maximum at two clusters, which will be the model picked by the function
mclustModel if no specific number of clusters is given. Alternatively, one can
specify a specific number of clusters by providing a value for the G argument:

> wines.mclust2 <- mclustModel(wines.sc, wines.BIC)
> wines.mclust3 <- mclustModel(wines.sc, wines.BIC, G = 3)

Onecanmake scatter plots at specific combinations of variableswith thecoordProj
function, visualizing the clustering in low-dimensional subspaces. Also the uncer-
tainties, given by 1− zi,max, can be visualized. This provides an easy way to compare
the two- and three-cluster solutions graphically:

2Especially for the BIC value, one often sees the negative form so that maximization will lead to
an optimal model. This is also the definition by (Schwarz 1978).

94 6 Clustering

−6
60

0
−6

20
0

−5
80

0

Number of components

BI
C

1 2 3 4 5 6 7 8 9

VVV

Fig. 6.4 BICvalues for clustering the autoscaledwine datawithmclust. The label “VVV” indicates
a completely unconstrained model. The optimal model has two clusters

> par(mfrow = c(2, 2))
> coordProj(wines.sc, dimens = c(7, 13),
+ parameters = wines.mclust2$parameters,
+ z = wines.mclust2$z, what = "classification")
> title("2 clusters: classification")
> coordProj(wines.sc, dimens = c(7, 13),
+ parameters = wines.mclust3$parameters,
+ z = wines.mclust3$z, what = "classification")
> title("3 clusters: classification")
> coordProj(wines.sc, dimens = c(7, 13),
+ parameters = wines.mclust2$parameters,
+ z = wines.mclust2$z, what = "uncertainty")
> title("2 clusters: uncertainty")
> coordProj(wines.sc, dimens = c(7, 13),
+ parameters = wines.mclust3$parameters,
+ z = wines.mclust3$z, what = "uncertainty")
> title("3 clusters: uncertainty")

The result, here for the variables flavonoids and proline, is shown in Fig. 6.5.
The top row shows the classifications of the two- and three-cluster models, respec-
tively. The bottom row shows the corresponding uncertainties.

Just like with k-means and k-medoids, the clustering using the EM algorithm
needs to be kick-started with an initial guess. This may be a random initialization, but
the EM algorithm has a reputation for being slow to converge, and an unlucky guess
may lead into a local optimum. In mclust, the initialization is done by hierarchical
clustering.3 This has the advantage that initial models for many different numbers of
clusters can be generated quickly. Moreover, this initialization algorithm is stable in
the sense that the same clustering is obtained upon repetition. A BIC table, such as
the one depicted in Fig. 6.4 is therefore easily obtained.

3To be more precise, model-based hierarchical clustering (Fraley 1998).

6.3 Probabilistic Clustering 95

flavonoids

pr
ol

in
e

2 clusters: classification

flavonoids

pr
ol

in
e

3 clusters: classification

flavonoids

pr
ol

in
e

2 clusters: uncertainty

−1 0 1 2 3 −1 0 1 2 3

−1 0 1 2 3 −1 0 1 2 3

−1
0

1
2

3

−1
0

1
2

3

−1
0

1
2

3

−1
0

1
2

3

flavonoids

pr
ol

in
e

3 clusters: uncertainty

Fig. 6.5 Two- and three-cluster models for the wines data, obtained by mclust. The top row
shows the classifications; the bottom row shows uncertainties at three levels, where the smallest
dots have z-values over 0.95 and the largest, black, dots have z-values below 0.75. The others are
in between

While mixtures of gaussians (or other distributions) have many attractive prop-
erties, they suffer from one big disadvantage: the number of parameters to estimate
quickly becomes large. This is the reason why the BIC curve in Fig. 6.4 does not run
all the way to nine clusters, although that is the default in mclust: in high dimen-
sions, clusters with only few members quickly lead to singular covariance matrices.
In such cases, no BIC value is returned. Banfield and Raftery (Banfield and Raftery
1993) suggested to impose restrictions on the covariance matrices of the clusters: one
can, e.g., use spherical and equal-sized covariance matrices for all clusters. In this
case, which is also the most restricted, the criterion that is optimized corresponds to
the criterion used in k-means and in Ward’s hierarchical clustering. For each cluster,
Gp parameters need to be estimated for the cluster centers, one parameter for the
covariance matrices, and p mixing proportions, a total of (G + 1)p + 1. In contrast,
for the completely free model such as the ones in Figs. 6.4 and 6.5, indicated with

96 6 Clustering

Fig. 6.6 BIC plots for all
covariance models
implemented in mclust:
although the constrained
models do not fit as well for
the same numbers of clusters,
they are penalized less and
achieve higher BIC values
for larger numbers of clusters

−7
50

0
−7

00
0

−6
50

0
−6

00
0

−5
50

0

Number of components

BI
C

●

●

●
●

●
● ● ● ●

●

●

●
●

●
● ● ●

●

●

●

● ●
●

● ● ● ●

●

●

● ●
●

●
●

● ●

1 2 3 4 5 6 7 8 9

●

●

●

●EII
VII
EEI
VEI
EVI

VVI
EEE
EVE
VEE
VVE

EEV
VEV
EVV
VVV

“VVV” in mclust, every single covariance matrix requires p(p + 1)/2 parame-
ters. This leads to a grand total of p(Gp + G + 4)/2 estimates. For low-dimensional
data, this is still doable, but for higher-dimensional data the unrestricted models are
no longer workable.

Consider the wine data again, but now consider all ten models implemented in
mclust:

> wines.BIC <- mclustBIC(wines.sc)
> plot(wines.BIC, legendArgs = list(x = "bottom", ncol = 2))

This leads to the output in Fig. 6.6. The three-letter codes in the legend stand for vol-
ume, shape and orientation, respectively. The “E” indicates equality for all clusters,
the “V” indicates variability, and the “I” indicates identity. Thus, the “EEI” model
stands for diagonal covariance matrices (the “I”) with equal volumes and shapes, and
the “VEV”model indicates an ellipsoidalmodelwith equal shapes for all clusters, but
complete freedom in size and orientation. It is clear that the more constrained models
achieve much higher BIC values for higher numbers of clusters: the unconstrained
models are penalized more heavily for estimating so many parameters.

6.4 Comparing Clusterings

In many cases, one is interested in comparing the results of different clusterings. This
maybe to assess the behavior of differentmethods on the samedata set, but also to find
out howvariable the clusterings are that are obtained by randomly initializedmethods
like k-means. The difficulty here, of course, is that there is no golden standard; one
cannot simply count the number of incorrect assignments and use that as a quality
criterion. Moreover, the number of clusters may differ—still we may be interested
in assessing the agreement between the partitions.

6.4 Comparing Clusterings 97

Several measures have been proposed in literature. Hubert (1985) compares sev-
eral of these, and proposes the adjusted Rand index, inspired by earlier work by Rand
(1971). The original Rand index is based on the number of times two objects are
classified in the same cluster, n. In the formulas below, ni · indicates the number of
object pairs classified in the same cluster in partition one, but not in partition two,
n· j the reverse, and ni j the number of pairs classified in different clusters in both
partitions. The index, comparing two partitions with I and J objects, respectively,
is given by

R =
(
n
2

)
+ 2

I∑

i=1

J∑

j=1

(
ni j
2

)
−

⎧
⎨

⎩

I∑

i=1

(
ni ·
2

)
+

J∑

j=1

(
n· j
2

)⎫
⎬

⎭ (6.3)

The adjusted Rand index “corrects for chance” by taking into account the expected
value of the index under the null hypothesis of random partitions:

Radj =
R − E(R)

max(R)− E(R)
=

a

(
n
2

)
− bc

1
2

(
n
2

)
(b + c)− bc

(6.4)

with

a =
∑

i, j

(
ni j
2

)
(6.5)

b =
∑

i

(
ni ·
2

)
(6.6)

c =
∑

j

(
n· j
2

)
(6.7)

This measure is zero when the Rand index takes its expected value, and has a maxi-
mum of one.

The implementation in R takes only a few lines:

> AdjRkl <- function(part1, part2) {
+ confusion <- table(part1, part2)
+
+ n <- sum(confusion)
+ a <- sum(choose(confusion[confusion>1], 2))
+ b <- apply(confusion, 1, sum)
+ b <- sum(choose(b[b>1], 2))
+ c <- apply(confusion, 2, sum)
+ c <- sum(choose(c[c>1], 2))
+
+ Rexp <- b*c/choose(n, 2)
+ (a - Rexp) / (.5*(b+c) - Rexp)
+ }

98 6 Clustering

Seed 7 Seed 17

Fig. 6.7 Clustering of the codebook vectors of two mappings of the wine data, indicated by back-
ground colors. Symbols indicate vintages

The function takes two partitionings, i.e., class vectors, and returns the value of the
adjusted Rand index. Note that the number of classes in both partitionings need not
be the same. An alternative is function adjustedRandIndex in packagemclust.

How this can be useful is easily illustrated. As already stated, repeated application
of SOM mapping will, in general, lead to mappings that visually can appear very
different. However, objects may find themselves very close to the same neighbors in
repeated training runs, so that conclusions from the two maps will be very much the
same. One way to investigate that is to quantify the similarities. Consider the SOM
mapping of the wine data for two initializations:

> set.seed(7)
> som.wines <- som(wines.sc, grid = somgrid(6, 4, "hexagonal"))
> set.seed(17)
> som.wines2 <- som(wines.sc, grid = somgrid(6, 4, "hexagonal"))

Assessing the similarities of themaps should not be done on the level of the individual
units, since these are not relevant entities in themselves. Rather, the units should be
aggregated into larger clusters. This can be achieved by looking at plots like Fig. 5.5;
an alternative is to explicitly cluster the codebook vectors (see, e.g., Vesanto and
Alhoniemi 2000). If hierarchical clustering is used, the dendrograms can be cut
at the desired level, immediately providing cluster memberships for the individual
samples.

> som.hc <- cutree(hclust(dist(getCodes(som.wines, 1))), k = 3)
> som.hc2 <- cutree(hclust(dist(getCodes(som.wines2, 1))), k = 3)
> plot(som.wines, "mapping", bgcol = terrain.colors(3)[som.hc],
+ pch = as.integer(vintages), main = "Seed 7")
> plot(som.wines2, "mapping", bgcol = terrain.colors(3)[som.hc2],
+ pch = as.integer(vintages), main = "Seed 17")

This leads to the plots in Fig. 6.7.
The mappings seem very different. Is this really the case, or is it just a visual

artifact? Let’s find out:

6.4 Comparing Clusterings 99

> som.clust <- som.hc[som.wines$unit.classif]
> som.clust2 <- som.hc2[som.wines2$unit.classif]
> AdjRkl(som.clust, som.clust2)
[1] 0.4501

This rather low value suggests that both mappings are quite different. Note that this
analysis does not take into account the vintages and is applicable also in cases where
“true” class labels are unknown. Of course, one can also use the adjusted Rand index
to compare clusterings with a set of “true” labels:

> AdjRkl(vintages, som.clust)
[1] 0.47699
> AdjRkl(vintages, som.clust2)
[1] 0.67278

Clearly, the second random seed gives a mapping that is more in agreement with
the class labels, something that is also clear when looking at the agreement between
plotting symbols and background color in Fig. 6.7.

Other indices to measure correspondence between two partitionings include
Fowlkes’ and Mallows’s Bk (Fowlkes and Mallows 1983), Goodmans and Kruskals
γ (GoodmanandKruskal 1954), andMeila’sVariationof Information criterion (Meila
2007), also available inmclust. The latter is a difference measure, rather than a sim-
ilarity measure.

6.5 Discussion

Hierarchical clustering methods have many attractive features. They are suitable in
cases where there is a hierarchical structure, i.e., subclusters, which very often is the
case. A large number of variables does not pose a problem: the rate-limiting step
is the calculation of the distance matrix, the size of which does not depend on the
dimensionality of the data, but only on the number of samples. And last but not least,
the dendrogram provides an appealing presentation of the cluster structure, which
can be used to assess clusterings with different numbers of clusters very quickly.
Partitional methods, on the other hand, are more general. In hierarchical clustering
a split cannot be undone – once a sample is in one branch of the tree, there is no
way it can move to the other branch. This can lead, in some cases, to suboptimal
clusterings. Partitional methods do not know such restrictions: a sample can always
be classified into a different class in the next iteration. Some of the less complicated
partitional methods, such as k-means clustering, can also be applied with huge data
sets, containing tens of thousands of samples, that cannot be tackledwith hierarchical
clustering.

Both types of clustering have their share of difficulties, too. In cases relying on
distance calculations (all hierarchical methods, and some of the partitional methods,
too), the choice of a distance function can dramatically influence the result. The

100 6 Clustering

importance of this cannot be overstated. On the one hand, this is good, since it
allows one to choose the most relevant distance function available—it even allows
one to tackle data that do not consist of real numbers but are binary or have a more
complex nature. As long as there is a distance function that adequately represents
dissimilarities between objects, the regular clustering methods can be applied. On
the other hand, it is bad: it opens up the possibility of a wrong choice. Furthermore,
one should realize that when correlated groups of variables are present, as often is
the case in life science data, these variables may receive a disproportionally large
weight in a regular distance measure such as Euclidean distance, and smaller groups
of variables, or uncorrelated variables, may fail to be recognized as important.

Partitional methods force one to decide on the number of clusters beforehand,
or perform multiple clusterings with different numbers of clusters. Moreover, there
can be considerable differences upon repeated clustering, something that is less
prominent in hierarchical clustering (only with ties in the distance data). The main
problem with hierarchical clustering is that the bottom-up joining procedure may be
too strict: once an object is placed in a certain category, it will stay there, whatever
happens further on in the algorithm. Of course, there are many examples where this
leads to a sub-optimal clustering. More generally, there may not be a hierarchical
structure to begin with.

Both partitional and hierarchical clustering yield “crisp” clusters, that is, objects
are assigned to exactly one cluster, without any doubt. For partitional methods, there
are alternatives where each object gets a membership value for each of the clusters.
If a crisp clustering is required, at the end of the algorithm the object is assigned to
the cluster for which it has the highest membership. We have seen one example in
the model-based clustering methods.

Finally, one should take care not to over-interpret the results. If you ask for five
clusters, that is exactly what you get. Suppose one has a banana-shaped cluster.
Methods like k-means, but also complete linkage, will typically describe such a
banana with three or four spherical clusters. The question is: are you interested in
the peas or the pod4? It may very well be that several clusters in fact describe one
and the same group, and that to find the other clusters one should actually instruct
the clustering to look for more than five clusters.

Clustering is, because of the lack of “hard” criteria, more of an art than a science.
Without additional knowledge about the data or the problem, it is hard to decide
which one of several different clusterings is best. This, unfortunately, in some areas
has led to a practice in which all available clustering routines are applied, and the
one that seems most “logical” is selected and considered to describe “reality”. One
should always keep in mind that this may be a gross overestimation of the powers of
clustering.

4Metaphor from Adrian Raftery.

	6 Clustering
	6.1 Hierarchical Clustering
	6.2 Partitional Clustering
	6.2.1 K-Means
	6.2.2 K-Medoids

	6.3 Probabilistic Clustering
	6.4 Comparing Clusterings
	6.5 Discussion

