
Chapter 5
Self-Organizing Maps

In PCA, the most outlying data points determine the direction of the PCs—these are
the ones contributing most to the variance. This often results in score plots showing
a large group of points close to the center. As a result, any local structure is hard to
recognize, even when zooming in: such points are not important in the determination
of the PCs. One approach is to select the rows of the data matrix corresponding
to these points, and to perform a separate PCA on them. Apart from the obvious
difficulties in deciding which points to leave out and which to include, this leads
to a cumbersome and hard to interpret two-step approach. It would be better if a
projection can be found that does show structure, even within very similar groups of
points.

Self-organizing maps (SOMs, Kohonen 2001), sometimes also referred to as
Kohonen maps after their inventor, Teuvo Kohonen, offer such a view. Rather than
providing a continuous projection into R

2, SOMs map all data to a set of discrete
locations, organized in a regular grid. Associated with every location is a proto-
typical object, called a codebook vector. This usually does not correspond to any
particular object, but rather represents part of the space of the data. The complete set
of codebook vectors therefore can be viewed as a concise summary of the original
data. Individual objects from the data set can be mapped to the set of positions, by
assigning them to the unit with the most similar codebook vectors.

The effect is shown in Fig. 5.1. A two-dimensional point cloud is simulated where
most points are very close to the origin.1 The codebookvectors of a 5-by-5 rectangular
SOM are shown in black; neighboring units in the horizontal and vertical directions
are connected by lines. Clearly, the density of the codebook vectors is greatest in areas
where the density of points is greatest. When the codebook vectors are shown at their
SOM positions the plot on the right in Fig. 5.1 emerges, where individual objects are
shown at a random position close to “their” codebook vector. The codebook vectors
in the middle of the map are the ones that cover the center of the data density, and

1The point cloud is a superposition of two bivariate normal distributions, centered at the origin and
with diagonal covariance matrices. The first has unit variance and contains 100 points; the other,
containing 500 points, has variances of 0.025.

© Springer-Verlag GmbH Germany, part of Springer Nature 2020
R. Wehrens, Chemometrics with R, Use R!,
https://doi.org/10.1007/978-3-662-62027-4_5

69

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-62027-4_5&domain=pdf
https://doi.org/10.1007/978-3-662-62027-4_5

70 5 Self-Organizing Maps

1

5
21

25

1 5

21 25

Fig. 5.1 Application of a 5-by-5 rectangular SOM to 600 bivariate normal data points. Left plot:
location of codebook vectors in the original space. Right plot: location of data points in the SOM

one can see that these contain most data points. That is, relations within this densely
populated area can be investigated in more detail.

5.1 Training SOMs

A SOM is trained by repeatedly presenting the individual samples to the map. At
each iteration, the current sample is compared to the codebook vectors. The most
similar codebook vector (the “winning unit”) is then shifted slightly in the direction
of the mapped object. This is achieved by replacing it with a weighted average of
the old values of the codebook vector, cvi , and the values of the new object obj :

cvi+1 = (1− α) cvi + α obj (5.1)

The weight, also called the learning rate α, is a small value, typically in the order of
0.05, and decreases during training so that the final adjustments are very small.

As we shall see in Sect. 6.2.1, the algorithm is very similar in spirit to the one
used in k-means clustering, where cluster centers and memberships are alternatingly
estimated in an iterative fashion. The crucial difference is that not only the winning
unit is updated, but also the other units in the “neighborhood” of the winning unit.
Initially, the neighborhood is fairly large, but during training it decreases so that
finally only the winning unit is updated. The effect is that neighboring units in
general are more similar than units far away. Or, to put it differently, moving through
the map by jumping from one unit to its neighbor would see gradual and more or
less smooth transitions in the values of the codebook vectors. This is clearly visible
in the mapping of the autoscaled wine data to a 5-by-4 SOM, using the kohonen
package:

5.1 Training SOMs 71

Fig. 5.2 Codebook vectors
for a SOM mapping of the
autoscaled wine data. The
thirteen variables are shown
counterclockwise, beginning
in the first quadrant

alcohol
malic acid
ash
ash alkalinity
magnesium

tot. phenols
flavonoids
non−flav. phenols
proanth
col. int.

col. hue
OD ratio
proline

Codes plot

> wines.som <- som(wines.sc, somgrid(5, 4, "hexagonal"))
> plot(wines.som, type = "codes")

The result is shown in Fig. 5.2. Units in this example are arranged in a hexagonal
fashion and are numbered row-wise from left to right, starting from the bottom left.
The first unit at the bottom left for instance, is characterized by relatively large values
of alcohol, flavonoids and proanth; the second unit, to the right of the first,
has lower values for these variables, but still is quite similar to unit number one.

The codebook vectors are usually initialized by a random set of objects from the
data, but also random values in the range of the data can be employed. Sometimes
a grid is used, based on the plane formed by the first two PCs. In practice, the
initialization method will hardly ever matter; however, starting from other random
initial values will lead to different maps. The conclusions drawn from the different
maps, however, tend to be very similar.

The training algorithm for SOMs can be tweaked in many different ways. One
can, e.g., update units using smaller changes for units that are further away from
the winning unit, rather than using a constant learning rate within the neighborhood.
One can experiment with different rates of decreasing values for learning rate and
neighborhood size. One can use different distance measures. Regarding topology,
hexagonal or rectangular ordering of the units is usually applied; in the first case, each
unit has six equivalent neighbors, unless it is at the border of the map, in the second
case, depending on the implementation, there are four or eight equivalent neighbors.
The most important parameter, however, is the size of the map. Larger maps allow

72 5 Self-Organizing Maps

for more detail, but may contain more empty units as well. In addition, they take
more time to be trained. Smaller maps are more easy to interpret; groups of units
with similar characteristics are more easily identified. However, they may lack the
flexibility to show specific groupings or structure in the data. Some experimentation
usually is needed. As a rule of thumb, one can consider the object-to-unit ratio, which
can lead to useful starting points. In image segmentation applications, for instance,
where hundreds of thousands of (multivariate) pixels need to be mapped, one can
choose a map size corresponding to an average of several hundreds of pixels per unit;
in other applications where the number of samples is much lower, a useful object-to-
unit ratiomay be five. Onemore considerationmay be the presence of class structure:
for every class, several units should be allocated. This allows intra-class structure to
be taken into account, and will lead to a better mapping.

Finally, there is the option to close the map, i.e., to connect the left and right
sides of the map, as well as the bottom and top sides. This leads to a toroidal map,
resembling the surface of a closed tube. In such a map, all differences between
units have been eliminated: there are no more edge units, and they all have the
same number of neighbors. Whereas this may seem a desirable property, there are
a number of disadvantages. First, it will almost certainly be depicted as a regular
map with edges, and when looking at the map one has to remember that the edges
in reality do not exist. In such a case, similar objects may be found in seemingly
different parts of the map that are, in fact, close together. Another pressing argument
against toroidal maps is that in many cases the edges serve a useful purpose: they
provide refuge for objects that are quite different from the others. Indeed, the corners
of non-toroidal maps often contain the most distinct classes.

5.2 Visualization

Several different visualization methods are provided in the kohonen package: one
can look at the codebook vectors, the mapping of the samples, and one can also
use SOMs for prediction. Here, only a few examples are shown. For more infor-
mation, consult the manual pages of the plot.kohonen function, or the software
description (Wehrens and Buydens 2007; Wehrens and Kruisselbrink 2018).

For multivariate data, the locations of the codebook vectors can not be visualized
as was done for the two-dimensional data in Fig. 5.1. In the kohonen package, the
default is to show segment plots, such as in Fig. 5.2 if the number of variables is
smaller than 15, and a line plot otherwise. One can also zoom in and concentrate on
the values of just one of the variables:

> for (i in c(1, 8, 11, 13))
+ plot(wines.som, "property",
+ property = getCodes(wines.som, 1)[, i],
+ main = colnames(wines)[i])

5.2 Visualization 73

alcohol

−1

−0.5

0

0.5

1

non−flav. phenols

−0.5

0

0.5

1

col. hue

−1
−0.5

0
0.5

1
1.5

proline

−1
−0.5

0
0.5

1
1.5

Fig. 5.3 Separate maps for the contributions of individual variables to the codebook vectors of the
SOM shown in Fig. 5.2

Clearly, in these plots, shown in Fig. 5.3, there are regions in the map where specific
variables have high values, and other regionswhere they are low. Areas of high values
and low values are much more easily recognized than in Fig. 5.2. Note the use of the
accessor function getCodes here.

Perhaps the most important visualization is to show which objects map in
which units. In the kohonen package, this is achieved by supplying the the type
="mapping" argument to the plotting function. It allows for using different plotting
characters and colors (see Fig. 5.4):

> plot(wines.som, type = "mapping",
+ col = as.integer(vintages), pch = as.integer(vintages))

Again, one can see that the wines are well separated. Some class overlap remains,
especially for the Grignolinos (pluses in the figure). These plots can be used to make
predictions for new data points: when the majority of the objects in a unit are, e.g.,
of the Barbera class, one can hypothesize that this is also the most probably class for
future wines that end up in that unit. Such predictions can play a role in determining
authenticity, an economically very important application.

Since SOMs are often used to detect grouping in the data, it makes sense to
look at the codebook vectors more closely, and investigate if there are obvious class
boundaries in the map—areas where the differences between neighboring units are
relatively large. Using a color code based on the average distance to neighbors one
can get a quick and simple idea of where the class boundaries can be found. This

74 5 Self-Organizing Maps

Fig. 5.4 Mapping of the 177
wine samples to the SOM
from Fig. 5.2. Circles
correspond to Barbera,
triangles to Barolo, and
pluses to Grignolino wines

Mapping plot

Fig. 5.5 Summed distances
to direct neighbors: the
U-matrix plot for the
mapping of the wine data

Neighbour distance plot

5

10

15

20

idea is often referred to as the “U-matrix” (Ultsch 1993), and can be employed by
issuing:

> plot(wines.som, type = "dist.neighb")

The resulting plot is shown in Fig. 5.5. The map is too small to really be able to see
class boundaries, but one can see that the centers of the classes (the bottom left corner
for Barbera, the bottom right corner for Barolo, and the top row for the Grignolino
variety) correspond to areas of relatively small distances, i.e., high homogeneity.

Training progress, and an indication of the quality of themapping, can be obtained
using the following plotting commands:

> par(mfrow = c(1, 2))
> plot(wines.som, "changes")
> plot(wines.som, "quality")

5.2 Visualization 75

0 20 40 60 80 100

0.
04

0
0.

04
5

0.
05

0
0.

05
5

Training progress

Iteration

M
ea

n
di

st
an

ce
 to

 c
lo

se
st

 u
ni

t Quality plot

2

3

4

5

6

7

Fig. 5.6 Quality parameters for SOMs: the plot on the left shows the decrease in distance between
objects and their closest codebook vectors during training. The plot on the right shows the mean
distances between objects and codebook vectors per unit

This leads to the plots in Fig. 5.6. The left plot shows the average distance (expressed
per variable) to thewinning unit during the training iterations, and the right plot shows
the average distance of the samples and their corresponding codebook vectors after
training. Note that the latter plot concentrates on distances within the unit whereas
the U-matrix plot in Fig. 5.5 visualizes average distances between neighboring units.

Finally, an indication of the quality of the map is given by the mean distances of
objects to their units:

> summary(wines.som)
SOM of size 5x4 with a hexagonal topology

and a bubble neighbourhood function.
The number of data layers is 1.
Distance measure(s) used: sumofsquares.
Training data included: 177 objects.
Mean distance to the closest unit in the map: 3.646.

The summary function indicates that an object, on average, has a distance of 3.6
units to its closest codebook vector. The plot on the left in Fig. 5.6 shows that the
average distance drops during training: codebook vectors becomemore similar to the
units that are mapped to them. The plot on the right, finally, shows that the distances
within units can be quite different. Interestingly, some of the units with the largest
spread only contain Grignolinos (units 2 and 8), so the variation can not be attributed
to class overlap alone.

76 5 Self-Organizing Maps

Fig. 5.7 Mapping of the
prostate data. The cancer
samples (pca) lie in a broad
band from the bottom right
to the top of the map.
Control samples are split in
two groups on either side of
the pca samples. There is
considerable class overlap

Prostate data

bph control pca

5.3 Application

Themain attraction of SOMs lies in the applicability to large data sets; even if the data
are too large to be loaded in memory in one go, one can train the map sequentially
on (random) subsets of the data. It is also possible to update the map when new
data points become available. In this way, SOMs provide a intuitive and simple
visualization of large data sets in a way that is complementary to PCA. An especially
interesting feature is that thesemaps can show grouping of the data without explicitly
performing a clustering. In largemaps, sudden transitions betweenunits, as visualized
by, e.g., a U-matrix plot, enable one to view themajor structure at a glance. In smaller
maps, this often does not show clear differences between groups—see Fig. 5.5 for
an example. One way to find groups is to perform a clustering of the individual
codebook vectors. The advantage of clustering the codebook vectors rather than the
original data is that the number of units is usually orders of magnitude smaller than
the number of objects.

As a practical example, consider the mapping of the 654 samples from the
prostate data using the complete, 10,523-dimensional mass spectra in a 7-by-
5 map. This would on average lead to almost twenty samples per unit and, given
the fact that there are three classes, leave enough flexibility to show within-class
structure as well:

> X <- t(Prostate2000Raw$intensity)
> prostate.som <- som(X, somgrid(7, 5, "hexagonal"))

The plot in Fig. 5.7 is produced with the following code:

> types <- as.integer(Prostate2000Raw$type)
> trellis.cols <- trellis.par.get("superpose.symbol")$col[c(2, 3, 1)]
> plot(prostate.som, "mapping", col = trellis.cols[types],
+ pch = types, main = "Prostate data")

5.3 Application 77

> legend("bottom", legend = levels(Prostate2000Raw$type),
+ col = trellis.cols, pch = 1:3, ncol = 3, bty = "n")

Clearly, there is considerable class overlap, as may be expected when calculating
distances over more than 10,000 variables. Some separation can be observed, how-
ever, especially between the cancer and control samples. To investigate differences
between the individual units, one can plot the codebook vectors of some of the units
containing (predominantly) objects from one class only, corresponding to the three
right-most units in the plot in Fig. 5.7:

> units <- c(7, 21, 35)
> unitfs <- paste("Unit", units)
> prost.plotdf <-
+ data.frame(mz = Prostate2000Raw$mz,
+ intensity = c(t(getCodes(prostate.som, 1)[units,])),
+ unit = rep(factor(unitfs, levels = unitfs),
+ each = length(Prostate2000Raw$mz)))
> xyplot(intensity ˜ mz | unit, data = prost.plotdf, type = "l",
+ scale = list(y = "free"), as.table = TRUE,
+ xlab = bquote(italic(.("m/z"))˜.("(Da)")),
+ groups = unit, layout = c(1, 3),
+ panel = function(...) {
+ panel.abline(v = c(3300, 4000, 6000, 6200),
+ col = "gray", lty = 2)
+ panel.xyplot(...)
+ })

These codebook vectors, shown in Fig. 5.8, display appreciable differences. The
cancer samples from Unit 7, for instance, are missing the large peaks at 3,100 and
4,000 Da that are present in the other two units but contain very clear signals around
6,100 and 6,200 Da, where the others have nothing.

5.4 R Packages for SOMs

The kohonen package used in this chapter, originally based on the class pack-
age (Venables and Ripley 2002), has several noteworthy features not discussed
yet (Wehrens and Kruisselbrink 2018). It can use distance functions other than the
usual Euclidean distance, which might be extremely useful for some data sets, often
avoiding the need for prior data transformations. One example is the WCC function
mentioned earlier: this can be used to group sets of X-ray powder diffractograms
where the position rather than the position of peaks contains the primary informa-
tion (Wehrens andWillighagen 2006; Wehrens and Kruisselbrink 2018). For numer-
ical variables, the sum-of-squares distance is the default (slightly faster than the
Euclidean distance); for factors, the Tanimoto distance. In the kohonen package

78 5 Self-Organizing Maps

m/z (Da)

in
te

ns
ity

Unit 7

Unit 21

0
10

20
30

40
50

0
20

40
60

0
20

40
60

5000 10000 15000 20000

Unit 35

Fig. 5.8 Codebook vectors for three units from the far-right side of the map in Fig. 5.7, containing
only samples from one class: unit 7 contains pca samples, unit 21 mostly bph samples and unit
35 control samples. Vertical gray lines indicate mass-to-charge ratios mentioned in the text

it is possible to supply several different data layers, where the rows in each layer
correspond to different bits of information on the same objects. Separate distance
functions can be defined for each single layer, which are then combined into one
overall distance measure using weights that can be defined by the user. Apart from
the usual “online” training algorithm described in this chapter, a “batch” algorithm is
implemented as well, where codebook vectors are not updated until all records have
been presented to the map. One advantage of the batch algorithm is that it dispenses
with one of the parameters of the SOM: the learning rate α is no longer needed. The
main disadvantage is that it is sometimes less stable and more likely to end up in a
local optimum. The batch algorithm also allows for parallel execution by distribut-
ing the comparisons of objects to all codebook vectors over several cores (Lawrence
et al. 1999) which may lead to considerable savings with larger data sets (Wehrens
and Kruisselbrink 2018).

5.4 R Packages for SOMs 79

Several other packages are available from repositories like CRAN. One exam-
ple is the som package (Yan 2016). This package implements the online and batch
algorithms and provides great flexibility in setting training parameters. The somoclu
package implements a general SOM toolbox supporting parallel computation, also on
GPUs (Wittek et al. 2017). It uses the kohonen plotting functions for visualization. A
package providing a shiny (Chang et al. 2018) web interface is SOMbrero (Olteanu
and Villa-Vialaneix 2015). Here, one can use numerical data, contingency tables
as well as distance matrices as primary input data. Finally, the Stuttgart Neural
Network Simulator (SNNS) provides SOMs as one of many types of neural net-
works (Bergmeir and Benítez 2012).

5.5 Discussion

Conceptually, theSOMismost related toMDS, seen inSect. 4.6.1.Both, in away, aim
tofind a configuration in two-dimensional space that represents the distances between
the samples in the data. Whereas metric forms of MDS focus on the preservation
of the actual distances, SOMs provide a topological mapping, preserving the order
of the distances, at least for the smallest ones. Because of this, an MDS mapping
is often dominated by the larger distances, even when using methods like Sammon
mapping, and the configuration of the finer structure in the data may not be well
preserved. In SOMs, on the other hand, a big distance between the positions of two
samples in the map does not mean that they are very dissimilar: if the map is too
large, and not well trained, two regions in the map that are far apart may very well
have quite similar codebook vectors. What one can say is that objects mapped to the
same or to neighboring units are likely to be similar.

Both MDS and SOMs operate using distances rather than the original data to
determine the position in the low-dimensional representation of the data. This can be
a considerable advantage when working with high-dimensional data: even when the
number of variables is in the tens or hundreds of thousands, the distances between
objects can be calculated fairly quickly. Obviously, MDS, in particular, runs into
trouble when the number of samples gets large—SOMs can handle that more easily
because of the iterative training procedure employed. It is not even necessary to have
all the data in memory simultaneously.

Using SOMs is doubtfulwhen the number of samples is low, although applications
have been published with fewer than fifty objects. If the number of units in the map
is much smaller than the number of objects in such cases, one loses the advantage of
the spatial smoothness in the map, and one could just as well perform a clustering; if
the number of units approaches the number of objects, it is more likely than not that
the majority of the objects will occupy a unit by itself, which is not very informative
either.

One should realize that in the case of correlated variables the distances that are
calculatedmay be a bit biased: a group of highly correlated variableswill have amajor
influence on the distance between objects. In areas like, e.g., quantitative structure-

80 5 Self-Organizing Maps

activity relationships (QSAR), it is usual to calculate as many chemical structure
descriptors as possible in order to define the two- or three-dimensional structure
of a set of compounds. Many of these descriptors are variations on a theme: some
groups measure properties related to dipole, polarizability, surface area, etcetera.
The influence of one single descriptor capturing information that is unrelated to
the hundreds of other descriptors can easily be lost when calculating distances. For
SOMs, one simple solution is to decorrelate the (scaled) data, e.g., using PCA, and
to calculate distances using the scores.

	5 Self-Organizing Maps
	5.1 Training SOMs
	5.2 Visualization
	5.3 Application
	5.4 R Packages for SOMs
	5.5 Discussion

