Chapter 2 )
Data i

In this chapter some data sets are presented that will be used throughout the book.
In a couple of places (in particular in Chap. 11) other sets will be discussed focusing
on particular analysis aspects. All data sets are accessible, either through one of the
packages mentioned in the text, or in the ChemometricsWithR package. In addition
to a short description, the data will be visualized to get an idea of their form and
characteristics—one cannot stress enough how important it is to eyeball the data, not
only through convenient summaries but also in their raw form!

Chemical data sets nowadays are often characterized by a relatively low number
of samples and a large number of variables, a result of the predominant spectroscopic
measuring techniques enabling the chemist to rapidly acquire a complete spectrum
for one sample. Depending on the actual technique employed, the number of vari-
ables can vary from several hundreds (typical in infrared measurements) to tens of
thousands (e.g., in Nuclear Magnetic Resonance, NMR). A second characteristic is
the high correlation between variables: neighboring spectral variables usually convey
very similar information. An example is shown in Fig. 2.1, depicting the gasoline data
set. It contains near-infrared (NIR) spectra of sixty gasolines at wavelengths from
900 to 1700 nm in 2 nm intervals (Kalivas 1997), and is available in the pls package.
Clearly, the spectra are very smooth: there is very high correlation between neigh-
boring wavelengths. This implies that the actual dimensionality of the data is lower

than the number of variables.
The plot is made using the following piece of code:

> data(gasoline)

> wavelengths <- seqg (900, 1700, by = 2)

> matplot (wavelengths, t(gasoline$SNIR), type = "1",

+ lty = 1, xlab = "Wavelength (nm)", ylab = "1/R")

The matplot function is used to plot all columns of matrix t (gasoline$NIR)
(or, equivalently, all rows of matrix gasolineS$NIR) against the specified wave-
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Fig. 2.1 Near-infrared spectra of sixty gasoline samples, consisting of 401 reflectance values
measured at equally spaced wavelengths between 900 and 1700 nm

lengths. Clearly, all samples have very similar features—it is impossible to distin-
guish individual samples in the plot. NIR spectra are notoriously hard to interpret:
they consist of a large number of heavily overlapping peaks which leads to more
or less smooth spectra. Nevertheless, the technique has proven to be of immense
value in industry: it is a rapid, non-destructive method of analysis requiring almost
no sample preprocessing, and it can be used for quantitative predictions of sample
properties. The data used here can be used to quantitatively assess the octane number
of the gasoline samples, for instance.

In other cases, specific variables can be directly related to absolute or relative
concentrations. An example in which is the case for most variables is the wine data
set from the kohonen package, used throughout the book. It is a set consisting of
177 wine samples, with thirteen measured variables (Forina et al. 1986):

> data(wines)

> colnames (wines)

[1] "alcohol" "malic acid" "ash"

[4] "ash alkalinity" "magnesium" "tot. phenols"
[7] "flavonoids" "non-flav. phenols" "proanth"

[10] "col. int." "col. hue" "OD ratio"
[13] "proline"

Variables are reported in different units. All variables apart from "col. int.",
"col. hue" and "OD ratio" are concentrations. The meaning of the vari-
ables color intensity and color hue is obvious; the OD ratio is the ratio between the
absorbance at wavelengths 280 and 315 nm. All wines are from the Piedmont region
in Italy. Three different classes of wines are present: Barolo, Grignolino and Barberas.
Barolo wine is made from Nebbiolo grapes; the other two wines have the name of the
grapes from which they are made. Production areas are partly overlapping (Forina
et al. 1986).
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> table(vintages)
vintages
Barbera Barolo Grignolino
48 58 71

The obvious aim in the analysis of such a data set is to see whether there is any
structure that can be related to the three cultivars. Possible questions are: “which
varieties are most similar?”, “which variables are indicative of the variety?”, “can
we discern subclasses within varieties?”, etcetera.

A quick overview of the first few variables can be obtained with a so-called pairs
plot:

> wine.classes <- as.integer (vintages)

> pairs(wines[, 1:3], pch = wine.classes, col = wine.classes)

This leads to the plot shown in Fig.2.2. It is clear that the three classes can be
separated quite easily—consider the plot of alcohol against malic acid, for example.

A further data set comes from the field of mass-spectrometry-based proteomics.'
Figure 2.3, showing the first mass spectrum (a healthy control sample) is generated
by:

> data(Prostate2000Raw)
> plot (Prostate2000Raws$mz, Prostate2000Raw$Sintensity[, 117,

+ type = "h", main = "Prostate data",
+ xlab = bqguote(italic(.("m/z"))~.("(Da)")),
+ yvlab = "Intensity")

Each peak in the chromatogram corresponds to the elution of a compound, or in
more complex cases, a number of overlapping compounds. In a process called peak
picking (see next chapter) these peaks can be easily quantified, usually by measuring
peak area, but sometimes also by peak height. Since the number of peaks usually
is orders of magnitude smaller than the number of variables in the original data,
summarising the chromatograms with a peak table containing position and inten-
sity information can lead to significant data compression. Mass spectra, containing
intensities for different mass-to-charge ratios (indicated by m/z), can be recorded at
a very high resolution. To enable statistical analysis, m /z values are typically binned
(or “bucketed”). Even then, thousands of variables are no exception.

The data set contains 327 samples from three groups: patients with prostate cancer,
benign prostatic hyperplasia, and normal controls (Adam et al. 2002; Qu et al. 2002).
All samples have been measured in duplicate:

!Originally from the R package msProstate, which is no longer available.
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Fig. 2.2 A pairs plot of the first three variables of the wine data. The three vintages are indicated
with different colors and plotting symbols: Barbera wines are indicated with black circles, Barolos
with red triangles and Grignolinos with green plusses

> table(Prostate2000RawStype)

bph control pca
156 162 336

The data have already been preprocessed (binned, baseline-corrected, normalized—
see Chap. 3); m/z values range from 200 to 2000 Dalton.

Such data can serve as diagnostic tools to distinguish between healthy and diseased
tissue, or to differentiate between several disease states. The number of samples is
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Fig. 2.3 The first mass spectrum in the prostate MS data set

almost always very low—for rare diseases, patients are scarce, and stratification to
obtain relatively homogeneous groups (age, sex, smoking habits, ...) usually does
the rest; and in cases where the measurement is unpleasant or dangerous it may be
difficult or even unethical to get data from healthy controls. On the other hand, the
number of variables per sample is often huge. This puts severe restrictions on the
kind of analysis that can be performed and makes thorough validation even more
important.

The final data set in this chapter also comes from proteomics and is measured
with LC-MS, the combination of liquid chromatography and mass spectrometry. The
chromatography step serves to separate the components of a mixture on the basis
of properties like polarity, size, or affinity. At specific time points a mass spectrum
is recorded, containing the counts of particles with specific m/z values. Measuring
several samples therefore leads to a data cube of dimensions ntime, nmz, and
nsample; the number of time points is typically in the order or thousands, whereas
the number of samples rarely exceeds one hundred. Package ptw provides a data set,
lcms, containing data on three tryptic digests of E. coli proteins (Bloemberg et al.
2010).

Figure 2.4 shows a top view of the first sample. The projection to the top of the
figure, effectively summing over all m/z values, leads to the “Total Ion Current”
(TIC) chromatogram. Similarly, if the chromatographic dimension would be absent,
the mass spectrum of the whole sample would be very close to the projection on
the right (a “direct infusion” spectrum). The whole data set consists of three of such
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Fig. 2.4 Top view of the first sample in data set 1cms. The TIC chromatogram is shown on the

top, and the direct infusion mass spectrum on the right

planes, leading to a data cube of size 100 x 2000 x 3. Similar data sets are seen in the
field of metabolomics, where the chemical entities that are sampled are not peptides
(small fragments of proteins) as in proteomics, but small chemical molecules called
metabolites. Because of the high dimensionality and general complexity of such data

sets, chemometric methods have caught on very well in the -omics sciences.
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