
Chapter 10
Variable Selection

Variable selection is an important topic in many types of multivariate modelling: the
choice which variables to take into account to a large degree determines the result.
This is true for every single technique discussed in this book, be it PCA, cluster-
ing methods, classification methods, or regression. In the unsupervised approaches,
uninformative variables can obscure the “real” picture, and distances between objects
can becomemeaningless. In the supervised cases (both classification and regression),
there is the danger of chance correlations with dependent variables, leading to mod-
els with low predictive power. This danger is all the more real given the very low
sample-to-variable ratios of many current data sets. The aim of variable selection
then is to reduce the independent variables to those that contain relevant informa-
tion, and thereby to improve statistical modelling. This should be seen both in terms
of predictive performance (by decreasing the number of chance correlations) and in
interpretability—often, models can tell us something about the system under study,
and small sets of coefficients are usually easier to interpret than large sets.

In some cases, one is able to decrease the number of variables significantly by
utilizing domain knowledge. A classical application is peak-picking in spectral data.
In metabolomics, for instance, where biological fluids are analyzed by, e.g., NMR
spectroscopy, one can typically quantify hundreds of metabolites. The number of
metabolites is usually orders of magnitude smaller than the number of variables
(ppm values) that have been measured; moreover, the metabolite concentrations
lend themselves for immediate interpretation, which is not the case for the raw
NMR spectra. A similar idea can be found in the field of proteomics, where mass
spectrometry is used to find the presence or absence of proteins, based on the presence
or absence of certain peptides. Quantification is more problematic here, so typically
one obtains a list of proteins that have been found, including the number of fragments
that have been used in the identification.When this step is possible it is nearly always
good to do so. The only danger is to find what is already known—inmany cases, data
bases are used in the interpretation of the complex spectra: an unexpected compound,
or a compound that is not in the data base but is present in the sample, is likely to
be missed. Moreover, incorrect assignments present additional difficulties. Even so,

© Springer-Verlag GmbH Germany, part of Springer Nature 2020
R. Wehrens, Chemometrics with R, Use R!,
https://doi.org/10.1007/978-3-662-62027-4_10

221

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-62027-4_10&domain=pdf
https://doi.org/10.1007/978-3-662-62027-4_10

222 10 Variable Selection

the list of metabolites or proteins may be too long for reliable modelling or useful
interpretation, and one is interested in further reduction of the data.

Very often, this variable selection is achieved by looking at the coefficients
themselves: the large ones are retained, and variables with smaller coefficients are
removed. The model is then refitted with the smaller set, and this process may con-
tinue until the desired number of variables has been reached. Unfortunately, as shown
in Sect. 8.1.1, model coefficients can have a huge variance when correlation is high,
a situation that is the rule rather than the exception in the natural sciences nowa-
days. As a result, coefficient size is not always a good indicator of importance. A
more sophisticated approach is the one we have seen in Random Forests, where the
decrease in model quality upon permutation of the values in one variable is taken as
an importancemeasure. Especially for systemswith not toomany variables, however,
tests for coefficient significance remain popular.

An alternative way of tackling variable selection is to use modelling techniques
that explicitly force asmany coefficients as possible to be zero: all these are apparently
not important for the model and can be removed without changing the fitted values
or the predictions. It can be shown that a ridge-regression type of approach with
a penalty on the size of the coefficients has this effect, if the penalty is suitably
chosen (Hastie et al. 2001)—a whole class of methods has descended from this
principle, starting with the lasso (Tibshirani 1996).

One could say that the only reliable way of assessing the modelling power of a
smaller set is to try it out—and if the result is disappointing, try out a different subset of
variables. Given a suitable error estimate, one can employ optimization algorithms to
find the subset that gives maximal modelling power. Two strategies can be followed:
one is to fix the size of the subset, often dictated by practical considerations, and
find the set that gives the best performance; the other is to impose some penalty on
including extra variables and let the optimization algorithm determine the eventual
size. In small problems it is possible, using clever algorithms, to find the globally
optimal solution; in larger problems it very quickly becomes impossible to assess
all possible solutions, and one is forced to accept that the global optimum may be
missed.

10.1 Coefficient Significance

Testing whether coefficient sizes are significantly different from zero is especially
useful in cases where the number of parameters is modest, less than fifty or so. Even
if it does not always lead to the optimal subset, it can help to eliminate large numbers
of variables that do not contribute to the predictive abilities of the model. Since this is
a univariate approach—every variable is tested individually—the usual caveats about
correlation apply. Rather than concentrating on the size and variability of individual
coefficients, one can compare nested models with and without a particular variable.
If the error decreases significantly upon inclusion of that variable, it can be said to
be relevant. This is the basis of many stepwise approaches, especially in regression.

10.1 Coefficient Significance 223

10.1.1 Confidence Intervals for Individual Coefficients

Let’s use the wine data as an example, and predict class labels from the thirteen mea-
sured variables. We can assess the confidence intervals for the model quite easily,
formulating the problem in a regression sense. For each of the three classes a regres-
sion vector is obtained. The coefficients for Grignolino, third class, can be obtained
as follows:

> X <- wines[wines.odd,]
> C <- classvec2classmat(vintages[wines.odd])
> wines.lm <- lm(C ˜ X)
> wines.lm.summ <- summary(wines.lm)
> wines.lm.summ[[3]]
Call:
lm(formula = Grignolino ˜ X)
Residuals:

Min 1Q Median 3Q Max
-0.4657 -0.1387 0.0022 0.1326 0.4210

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.77235 0.63633 4.36 4.1e-05 ***
Xalcohol -0.12466 0.04918 -2.53 0.0133 *
Xmalic acid -0.06631 0.02628 -2.52 0.0138 *
Xash -0.56351 0.12824 -4.39 3.6e-05 ***
Xash alkalinity 0.03227 0.00975 3.31 0.0014 **
Xmagnesium 0.00118 0.00173 0.68 0.4992
Xtot. phenols -0.00434 0.07787 -0.06 0.9558
Xflavonoids 0.12497 0.05547 2.25 0.0272 *
Xnon-flav. phenols 0.36091 0.23337 1.55 0.1262
Xproanth 0.09320 0.05808 1.60 0.1128
Xcol. int. -0.04748 0.01661 -2.86 0.0055 **
Xcol. hue 0.18276 0.16723 1.09 0.2779
XOD ratio 0.00589 0.06306 0.09 0.9258
Xproline -0.00064 0.00012 -5.33 1.0e-06 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 0.209 on 75 degrees of freedom
Multiple R-squared: 0.847, Adjusted R-squared: 0.82
F-statistic: 31.9 on 13 and 75 DF, p-value: <2e-16

The column with the stars in the output allows us to easily spot coefficients that are
significant at a certain level. To get a summary of all variables that have p values
smaller than, say, 0.1 for each of the three classes, we can issue:

224 10 Variable Selection

> sapply(wines.lm.summ,
+ function(x) which(x$coefficients[, 4] < .1))
$‘Response Barbera‘

Xmalic acid Xash Xflavonoids
3 4 8

Xnon-flav. phenols Xcol. int. XOD ratio
9 11 13

$‘Response Barolo‘
(Intercept) Xalcohol Xash Xash alkalinity

1 2 4 5
Xflavonoids Xproanth XOD ratio Xproline

8 10 13 14

$‘Response Grignolino‘
(Intercept) Xalcohol Xmalic acid Xash

1 2 3 4
Xash alkalinity Xflavonoids Xcol. int. Xproline

5 8 11 14

Variables ash and flavonoids occur as significant for all three cultivars; six
others (not counting the intercept, of course) for two out of three cultivars.

In cases where no confidence intervals can be calculated analytically, such as
in PCR or PLS, we can, e.g., use bootstrap confidence intervals. For the gasoline
data, modelled with PCR using four latent variables, we have calculated bootstrap
confidence intervals in Sect. 9.6.2. The percentile intervals, shown in Fig. 9.6, already
indicated that most regression coefficients are significantly different from zero. How
does that look for the (better) BCα confidence intervals? Let’s find out:

> gas.BCACI <-
+ t(sapply(1:ncol(gasoline$NIR),
+ function(i, x) {
+ boot.ci(x, index = i, type = "bca")$bca[, 4:5]},
+ gas.pcr.bootCI))

A plot of the regression coefficients with these 95% confidence intervals (Fig. 10.1)
immediately shows which variables are significantly different from zero:

> BCAcoef <- gas.pcr.bootCI$t0
> signif <- gas.BCACI[, 1] > 0 | gas.BCACI[, 2] < 0
> BCAcoef[!signif] <- NA

> matplot(wavelengths, gas.BCACI, type = "n",
+ xlab = "Wavelength (nm)",
+ ylab = "Regression coefficient",
+ main = "Gasoline data: PCR (4 PCs)")
> abline(h = 0, col = "gray")
> polygon(c(wavelengths, rev(wavelengths)),
+ c(gas.BCACI[, 1], rev(gas.BCACI[, 2])),
+ col = "pink", border = NA)
> lines(wavelengths, BCAcoef, lwd = 2)

10.1 Coefficient Significance 225

1000 1200 1400 1600

−6
−4

−2
0

2
4

Gasoline data: PCR (4 PCs)

Wavelength (nm)

R
eg

re
ss

io
n

co
ef

fic
ie

nt

Fig. 10.1 Significance of regression coefficients for PCR using four PCs on the gasoline data;
coefficients whose 95% confidence interval (calculated with the BCα bootstrap and indicated in
pink) includes zero are not shown

Re-fitting the model after keeping only the 325 wavelengths leads to

> smallmod <- pcr(octane ˜ NIR[, signif], data = gasoline,
+ ncomp = 4, validation = "LOO")
> RMSEP(smallmod, intercept = FALSE, estimate = "CV")
1 comps 2 comps 3 comps 4 comps
1.4342 1.4720 0.2756 0.2497

The error estimate is lower even than globalminimum (at sevenPCs)with the full data
set containing 401 wavelengths. Here, one could also consider going for the three-
component model which sacrifices very little in terms of RMSEP (it is still better
than the seven-component model seen earlier) and has, well, one component fewer.
After variable selection, refitting often leads to more parsimonious models in terms
of the number of components needed. Even if the predictions are not (much) better,
the improved interpretability is often seen as reason enough to consider variable
selection.

Although this kind of procedure has been proposed in the literature several times,
e.g., in Wehrens and van der Linden (1997), it is essentially incorrect. For the
spectrum-like data, the correlations between the wavelengths are so large that the
confidence intervals of individual coefficients are not particularly useful to determine
which variables are significant—both errors of the first (false positives) and second
kind (false negatives) are possible. Taking into account correlations and calculating
so-called Scheffé intervals (Efron and Hastie 2016) often leads to intervals so wide
that they have no practical relevance. The confidence intervals described above, for
individual coefficients, at least give some idea of where important information is
located.

226 10 Variable Selection

10.1.2 Tests Based on Overall Error Contributions

In regression problems for data sets with not too many variables, the standard
approach is stepwise variable selection. This can be performed in two directions:
either one starts with a model containing all possible variables and iteratively dis-
cards variables that contribute least. This is called backward selection. The other
option, forward selection, is to start with an “empty” model, i.e., prediction with
the mean of the independent variable, and to keep on adding variables until the
contribution is no longer significant.

As a criterion for inclusion, values like AIC, BIC or Cp can be employed—these
take into account both the improvement in the fit as well as a penalty for having more
variables in the model. The default for the R functions add1 and drop1 is to use
the AIC. Let us consider the regression form of LDA for the wine data, leaving out
the Barolo class for the moment:

> twowines.df <- data.frame(vintage = twovintages, twowines)
> twowines.lm0 <- lm(as.integer(vintage) ˜ 1, data = twowines.df)
> add1(twowines.lm0, scope = names(twowines.df)[-1])
Single term additions

Model:
as.integer(vintage) ˜ 1

Df Sum of Sq RSS AIC
<none> 28.6 -168
alcohol 1 11.34 17.3 -226
malic.acid 1 8.75 19.9 -209
ash 1 3.15 25.5 -179
ash.alkalinity 1 1.07 27.6 -170
magnesium 1 0.72 27.9 -168
tot..phenols 1 7.57 21.1 -202
flavonoids 1 15.87 12.8 -262
non.flav..phenols 1 2.88 25.8 -178
proanth 1 4.69 23.9 -187
col..int. 1 18.07 10.6 -284
col..hue 1 15.27 13.4 -256
OD.ratio 1 17.94 10.7 -283
proline 1 3.70 24.9 -182

The dependent variable should be numeric, so in the first argument of thelm function,
the formula, we convert the vintages to class numbers first. According to this model,
the first variable to enter should be col..int—this gives the largest effect in
AIC. Since we are comparing equal-sized models, this also implies that the residual
sum-of-squares of the model with only an intercept and col..int is the smallest.

Conversely, when starting with the full model, the drop1 function would lead to
elimination of the term that contributes least:

10.1 Coefficient Significance 227

> twowines.lmfull <- lm(as.integer(vintage) ˜ ., data = twowines.df)
> drop1(twowines.lmfull)
Single term deletions

Model:
as.integer(vintage) ˜ alcohol + malic.acid + ash + ash.alkalinity +

magnesium + tot..phenols + flavonoids + non.flav..phenols +
proanth + col..int. + col..hue + OD.ratio + proline

Df Sum of Sq RSS AIC
<none> 3.65 -387
alcohol 1 0.026 3.68 -388
malic.acid 1 0.331 3.98 -378
ash 1 0.127 3.78 -384
ash.alkalinity 1 0.015 3.67 -388
magnesium 1 0.000 3.65 -389
tot..phenols 1 0.098 3.75 -385
flavonoids 1 0.821 4.47 -364
non.flav..phenols 1 0.166 3.82 -383
proanth 1 0.028 3.68 -388
col..int. 1 0.960 4.61 -361
col..hue 1 0.162 3.81 -383
OD.ratio 1 0.254 3.91 -381
proline 1 0.005 3.66 -388

In this case, magnesium is the variable with the largest negative AIC value, and
this is the first one to be removed.

Concentrating solely on forward or backward selection will in practice often lead
to sub-optimal solutions: the order in which the variables are eliminated or included
is of great importance and the chance of ending up in a local optimum is very real.
Therefore, forward and backward steps are often alternated. This is the procedure
implemented in the step function:

> step(twowines.lmfull, trace = 0)

Call:
lm(formula = as.integer(vintage) ˜ malic.acid + ash + tot..phenols +

flavonoids + non.flav..phenols + col..int. + col..hue + OD.ratio,
data = twowines.df)

Coefficients:
(Intercept) malic.acid ash

1.7220 -0.0571 -0.2359
tot..phenols flavonoids non.flav..phenols

-0.0833 0.2415 0.3821
col..int. col..hue OD.ratio

-0.0647 0.2236 0.1348

From the thirteen original variables, only eight remain.
Several other functions can be used for the same purpose: the MASS pack-

age contains functions stepAIC, addterm and dropterm which allows more

228 10 Variable Selection

model classes to be considered. Package leaps contains function regsubsets1

which is guaranteed to find the best subset, based on the branch-and-bounds algo-
rithm. Another package implementing this algorithm is subselect, with the function
eleaps.

The branch-and-bounds algorithm was first proposed in 1960 in the area of linear
programming (Land and Doig 1960), and was introduced in statistics by Furnival
andWilson (1974). The title of the latter paper has led to the name of theR-package.
This particular algorithmmanages to avoid many regions in the search space that can
be shown to be less good than the current solution, and thus is able to tackle larger
problems than would have been feasible using an exhaustive search. Application of
the regsubsets function leads to the same set of selected variables (now we can
provide a factor as the dependent variable):

> twowines.leaps <- regsubsets(vintage ˜ ., data = twowines.df)
> twowines.leaps.sum <- summary(twowines.leaps)
> names(which(twowines.leaps.sum$which[8,]))
[1] "(Intercept)" "malic.acid" "ash"
[4] "tot..phenols" "flavonoids" "non.flav..phenols"
[7] "col..int." "col..hue" "OD.ratio"

In some special cases, approximate distributions ofmodel coefficients can be derived.
For two-class linear discriminant analysis, a convenient test statistic is given byMar-
dia et al. (1979):

F = a2i (m − p + 1)c2

tim(m + c2)D2
(10.1)

with m = n1 + n2 − 2, n1 and n2 signifying group sizes, p the number of variables,
c2 = n1n2/(n1 + n2), and D2 is the Mahalanobis distance between the class centers,
based on all variables. The estimated coefficient in the discriminant function is ai ,
and ti is the i-th diagonal element in the inverse of the total variance matrix T , given
by

T = W + B (10.2)

This statistic has an F-distribution with 1 and m − p + 1 degrees of freedom.
Let us see what that gives for the wine data without the Barolo samples. We

can re-use the code in Sect. 7.1.3, now using all thirteen variables to calculate the
elements for the test statistic:

1It also contains the function leaps for compatibility reasons; regsubsets is the preferred
function.

10.1 Coefficient Significance 229

> Tii <- solve(BSS + WSS)
> Ddist <- mahalanobis(colMeans(wines.groups[[1]]),
+ colMeans(wines.groups[[2]]),
+ wines.pcov12)
> m <- sum(sapply(wines.groups, nrow)) - 2
> p <- ncol(wines)
> c <- prod(sapply(wines.groups, nrow)) /
+ sum(sapply(wines.groups, nrow))
> Fcal <- (MLLDAˆ2 / diag(Tii)) *
+ (m - p + 1) * cˆ2 / (m * (m + cˆ2 * Ddist))
> which(Fcal > qf(.95, 1, m-p+1))

malic.acid ash flavonoids
2 3 7

non.flav..phenols col..int. col..hue
8 10 11

OD.ratio
12

Using this method, seven variables are shown to be contributing to the separation
between Grignolino and Barbera wines on the α = 0.05 level. The only variable
missing, when compared to the earlier selected set of eight, is tot..phenols,
which has a p-value of 0.08.

10.2 Explicit Coefficient Penalization

In the chapter on multivariate regression we already saw that several methods use the
concept of shrinkage to reduce the variance of the regression coefficients, at the cost
of bias. Ridge regression achieves this by explicit coefficient penalization, as shown
in Eq.8.22. Although it forces the coefficients to be closer to zero, the values almost
never will be exactly zero. If that would be the case, the method would be performing
variable selection: those variables with zero values for the regression coefficients can
safely be removed from the data.

Interestingly enough, one can obtain the desired behavior by replacing the
quadratic penalty in Eq.8.22 by an absolute-value penalty:

argmax
B

(Y − XB)2 + λ|B| (10.3)

The penalty, consisting of the sumof the absolute values of the regression coefficients,
is an L1-norm. As already stated before, ridge regression, focusing on squared coef-
ficients, employs an L2-norm, and measures like AIC or BIC are using the L0-norm,
taking into account only the number of non-zero regression coefficients. In Eq.10.3,
with increasing values for parameter λ more and more regression coefficients will
be exactly zero. This method has become known under the name lasso (Tibshi-
rani 1996; Hastie et al. 2001); an efficient method to solve this equation—and
related approaches—has become known under the name of least-angle regression,

230 10 Variable Selection

−4 −3 −2 −1 0

−6
0

−2
0

0
20

40

Log Lambda

C
oe

ffi
ci

en
ts

14 7 4 3 1

78
84

5

70

3

4

10

2

3

4

8

9

27
9
0

−4 −3 −2 −1 0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Log(λ)

M
ea

n−
Sq

ua
re

d
Er

ro
r

●
●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●●●

16 13 8 8 7 6 5 4 5 4 3 3 1 1

Fig. 10.2 Left: lasso model coefficients plotted against the (relative) penalty size λ. Right: valida-
tion plot

or LARS (Efron et al. 2004). Several R versions for the lasso are available. Package
glmnet is written by the inventors of the method, and will be used here as an exam-
ple. Other packages implementing similar techniques include lars, where slightly
different defaults have been chosen for solving the lasso problem, lpc for “lassoed
principal components” and relaxo, a generalization of the lasso using possibly dif-
ferent penalization coefficients for the variable selection and parameter estimation
steps.

Rather than one set of coefficients for one given value of λ, the function glmnet
returns an entire sequence of fits, with corresponding regression coefficients. For the
odd rows of the gasoline data, the model is simply obtained as follows:

> gas.lasso <- glmnet(x = gasoline$NIR[gas.odd,],
+ y = gasoline$octane[gas.odd])
> plot(gas.lasso, xvar = "lambda", label = TRUE)

The result of the corresponding plotmethod is shown in the left panel of Fig. 10.2.
It shows the (standardized) regression coefficients against the size of the L1 norm of
the coefficient vector. For an infinitely large value of λ, the weight of the penalty, no
variables are selected. Gradually decreasing the penalty leads to a fit using only one
non-zero coefficient. Its size varies linearly with the penalty—until the next variable
enters the fray. The right of the plot shows the position of the entrances of new non-
zero coefficients. This piecewise linear behavior is the key to the lasso algorithm,
and makes it possible to calculate the whole trace in approximately the same amount
of time as needed for a normal linear regression. Around the left axis (and somewhat
hard to read in this default set-up), the variable numbers of some of the coefficients
are shown at their “final” values, i.e., at the last value for λ, by default one percent
of the value at which the first variable enters the model.

Of course, the value of the regularization parameter λ needs to be optimized. A
function cv.glmnet is available for that, using by default ten-fold crossvalidation.
Two common measures are available as predefined choices. Obviously, the model
corresponding to the lowest crossvalidation error is one of them; the other is the most

10.2 Explicit Coefficient Penalization 231

sparse model that is within one standard deviation from the global optimum (Hastie
et al. 2001), the same criterion also used in the pls package for determining the
optimal number of latent variables mentioned in Sect. 8.2.2.

> gas.lasso.cv <- cv.glmnet(gasoline$NIR[gas.odd,],
+ gasoline$octane[gas.odd])
> svals <- gas.lasso.cv[c("lambda.1se", "lambda.min")]

The plot command for the cv.glmnet object leads to the validation plot in the right
panel of Fig. 10.2. The global minimum in the CV curve lies at a value of −4.215,
and the one-se criterion at−3.424 (both in log units, as in the figure). The associated
errors can be obtained directly using the predict function for the crossvalidation
object:

> gas.lasso.preds <-
+ lapply(svals,
+ function(x)
+ predict(gas.lasso,
+ newx = gasoline$NIR[gas.even,],
+ s = x))
> sapply(gas.lasso.preds,
+ function(x) rms(x, gasoline$octane[gas.even]))
lambda.1se lambda.min

0.18881 0.19463

The prediction error for the test set using the optimal penalty is better than the
best values seen with PCR and PLS, the one with the more conservative estimate
somewhat larger. In both cases, only a very small subset of the original variables are
included in the model:

> gas.lasso.coefs <- lapply(svals,
+ function(x) coef(gas.lasso, s = x))
> sapply(gas.lasso.coefs,
+ function(x) sum(x != 0))
lambda.1se lambda.min

9 14

A further development is mixing the L1-norm of the lasso and related methods
with the L2-norm used in ridge regression. This is known as the elastic net (Zou and
Hastie 2005). The penalty term is given by

∑

i

(
α|βi | + (1− α)β2

i

)
(10.4)

where the sum is over all variables. The result is that large coefficients are penalized
heavily (because of the quadratic term) and that many of the coefficients are exactly
zero, leading to a sparse solution.

Theglmnet function provides ridge regression through specifyingalpha = 0
and the lasso with alpha = 1. It will be no surprise that values of alpha between
zero and one lead to the elastic net:

232 10 Variable Selection

0 50 100 150 200

−1
5

−5
0

5
10

15
20

L1 Norm

C
oe

ffi
ci

en
ts

0 11 15 25 30

−3 −2 −1 0 1

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Log(λ)

M
ea

n−
Sq

ua
re

d
Er

ro
r ●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●●●

29 27 26 25 21 17 14 14 9 7 6

Fig. 10.3 Elastic net results for the gasoline data usingα = 0.5.The left plot shows the development
of the regression coefficients upon relaxation of the penalty parameter. The right plot shows the
ten-fold crossvalidation curve, optimizing λ

> gas.elnet <- glmnet(gasoline$NIR, gasoline$octane, alpha = .5)
> plot(gas.elnet, "norm")

The result is shown in the left plot in Fig. 10.3. Further inspection of the elastic net
model, including the crossvalidation plot on the right side of Fig. 10.3, is completely
analogous to the code shown earlier for the lasso. The performance of the elastic net
in predicting the test set is slightly better than the lasso, at the expense of including
more variables:

> sapply(gas.elnet.preds,
+ function(x) rms(x, gasoline$octane[gas.even]))
lambda.1se lambda.min

0.15881 0.15285
> sapply(gas.elnet.coefs,
+ function(x) sum(x != 0))
[1] 28 30

The coefficients that are selected by the global-minimum lasso and elastic-netmodels
are shown in Fig. 10.4. There is good agreement between the two sets; the elastic net
in general selects variables in the same region as the lasso, with the exception of the
area around 1000 nm with is not covered by the lasso at all. Note that the coefficient
sizes for the elastic net are much smaller (in absolute size) than the ones from the
lasso, a result of the L2 penalization.

10.3 Global Optimization Methods

Given the speed ofmodern-day computing, it is possible to examine large numbers of
different models and select the best one. However, as we already sawwith leaps-and-
bounds approaches, even in caseswith amoderate number of variables it is practically

10.3 Global Optimization Methods 233

1000 1200 1400 1600

−6
0

−4
0

−2
0

0
20

40

Wavelength (nm)

C
oe

ffi
ci

en
ts

−6
0

−4
0

−2
0

0
20

Lasso
Elastic net

Fig. 10.4 Non-zero coefficients in the lasso and elastic net models. A small vertical offset has been
added to facilitate the comparison

impossible to assess the quality of all subsets. One must, therefore, limit the number
of subsets that is going to be considered to a manageable size. The stepwise approach
does this by performing a very local search around the current best solution before
adding or removing one variable; it can be compared to a steepest-descent strategy.
The obvious disadvantage is that many areas of the search space will never be visited.
For regression or classification cases with many variables, almost surely the method
will find a local optimum, very often of low quality.

An alternative is given by random search—just sampling randomly from all pos-
sible subsets until time is up. Of course, the chance of finding the global optimum
in this way is smaller than the chance of winning the lottery... What is needed is
a search strategy that combines random elements with “gradient” information; that
is, a strategy that uses information, available in solutions of higher quality, with
the ability to throw that information away if needed, in order to be able to escape
from local optima. This type of approaches has become known under the heading of
global search strategies. The two best-known ones in the area of chemometrics are
Simulated Annealing and Genetic Algorithms. Both will be treated briefly below.

What is quality, in this respect, again depends on the application. Inmost cases, the
property of interest will be the quality of prediction of unseen data, which for larger
data sets can conveniently be estimated by crossvalidation approaches. For data sets
with few samples, this will not work very well because of the coarse granularity
of the criterion: many subsets will lead to an equal number of errors. Additional
information should be used to distinguish between these.

234 10 Variable Selection

10.3.1 Simulated Annealing

In Simulated Annealing (SA, Kirkpatrick et al. 1983; Cerny 1985), a sequence of
candidate solutions is assessed, starting from a random initial point. A new solution
with quality Et+1, not too far away from the current one (with quality Et), is uncon-
ditionally accepted if it is better than the current one. If Et > Et+1 on the other hand,
accepting the move corresponds to a deterioration. However, and this is the defining
feature of SA, such a move can be accepted, with a probability equal to

pacc = exp

(
Et+1 − Et

Tt

)
(10.5)

where Tt the state of the control parameter at the current time point t . Note that
pacc, defined in this way, is always between zero and one (since Et > Et+1). This
criterion is known as theMetropolis criterion (Metropolis et al. 1953). Other criteria
are possible, too, but are rarely used.

ThenameSimulatedAnnealing comes froman analogy to annealing inmetallurgy,
where crystals with fewer defects can be created by repeatedly heating and cooling a
material: during the (slow) cooling, the atoms are able to find their energetically most
favorable positions in a regular crystal lattice, whereas the heating allows atoms that
have been caught in unfavorable positions (local optima) to “try again” in the next
cooling stage. The analogy with the optimization task is clear: if an improvement is
found (better atom positions) it is accepted; if not, then sometimes a deterioration in
quality is accepted in order to be able to cross a ridge in the solution landscape and to
find an solution that is better in the end. Very often, the control parameter is therefore
indicated with T , to stress the analogy with temperature. During the optimization,
it will slowly be decreasing in magnitude—the cooling—causing fewer and fewer
solutions of lower quality to be accepted. In the end, only real improvements are
allowed. It can be shown that SA leads to the global optimum if the cooling is slow
enough (Granville et al. 1994); unfortunately, the practical importance of this proof
is limited since the cooling may have to be infinitely slow. Note that random search
is a special case that can be achieved simply by setting Tt to an extremely large value,
leading to pacc = 1 whatever the values of Et+1 and Et .

The naive implementation of an SA therefore can be very simple: one needs a
function that generates a new solution in the neighborhood of the current one, an
evaluation function to assess the quality of the new solution, and the acceptance
function, including a cooling schedule for the search parameter T . The evaluation
needs to be defined specifically for each problem. In regression or classification cases
typically some estimate of prediction accuracy is used such as crossvalidation—note
that the evaluation function in this schedule probably is the most time-consuming
step, and since it will be executed many times (typically thousands or, in complicated

10.3 Global Optimization Methods 235

cases, even millions of solutions are evaluated by global search methods) it should
be very fast. If enough data are available then one could think of using a separate
test set for the evaluation, or of using quality criteria such as Mallows’s Cp, or AIC
or BIC values, mentioned in Chap.9. The whole SA algorithm can therefore easily
be summarized in a couple of steps:

1. Choose a starting temperature and state;
2. Generate and evaluate a new state;
3. Decide whether to accept the new state;
4. Decrease the temperature parameter;
5. Terminate or go to step 2.

Several SA implementations are available in R. We will have a look at the optim
function from the core stats package which implements a general-purpose SA func-
tion.

Let us see how this works in the two-class wines example from Sect. 10.1.2,
excluding the Barolo variety. This is a simple example for which it still is quite
difficult to assess all possible solutions, especially since we do not force a model
with a specific number of variables. We will start with the general-purpose optim
approach, since this provides most insight in the inner workings of the SA. First we
need to define an evaluation function.Here,we use the fast built-in LOOclassification
estimates of the lda function:

> lda.loofun <- function(selection, xmat, grouping, ...) {
+ if (sum(selection) == 0) return(100)
+ lda.obj <- lda(xmat[, selection == 1], grouping, CV = TRUE)
+ 100*sum(lda.obj$class != grouping)/length(grouping)
+ }

Argument selection is a vector of numbers here, with ones at the position of the
selected variables, and zeroes elsewhere. Sinceoptim by default doesminimization,
the evaluation function returns the percentage of misclassified cases—note that if no
variables are selected, a value of 100 is returned.

Now thatwe have definedwhat exactlywe are going to optimize, we need to define
a step function, leading from the current solution to the next. A simple approach could
be to do one of three things: either remove a variable, add a variable, or replace a
variable. If too few variables are selected, we could increase the number by adding
one previously unselected variable randomly (so the escape clause in the evaluation
function checking for zero selected variables should never be reached). That seems
easy enough to put in a function:

236 10 Variable Selection

> saStepFun <- function(selected, ...) {
+ maxval <- length(selected)
+ selection <- which(selected == 1)
+ newvar2 <- sample(1:maxval, 2)
+
+ ## too short: add a random number
+ if (length(selection) < 2) {
+ result <- unique(c(selection, newvar2))[1:2]
+ } else { # generate two variable numbers
+ presentp <- newvar2 %in% selection
+ ## if both are in x, remove the first
+ if (all(presentp)) {
+ result <- selection[selection != newvar2[1]]
+ } else { # if none are in selection, add the first
+ if (all(!presentp)) {
+ result <- c(selection, newvar2[1])
+ } else { # otherwise swap
+ result <- c(selection[selection != newvar2[presentp]],
+ newvar2[!presentp])
+ }}}
+
+ newselected <- rep(0, length(selected))
+ newselected[result] <- 1
+ newselected
+ }

Both in the evaluation and step functionweuse the ellipses (...) to prevent undefined
arguments to throw errors: optim simply transfers all arguments that are not its own
to both underlying functions, where they can be used or ignored.

We will start with a random subset of five columns. This leads to the following
misclassification rate:

> initselect <- rep(0, ncol(wines))
> initselect[sample(1:ncol(wines), 5)] <- 1
> (r0 <- lda.loofun(initselect, x = twowines,
+ grouping = twovintages))
[1] 2.521

This corresponds to 3misclassifications. Howmuch can we improve using simulated
annealing? Let’s find out:

> SAoptimWines <-
+ optim(initselect,
+ fn = lda.loofun, gr = saStepFun, method = "SANN",
+ x = twowines, grouping = twovintages)

The result is a simple list with the first two elements containing the best result and
the corresponding evaluation value:

10.3 Global Optimization Methods 237

> SAoptimWines[c("par", "value")]
$par
[1] 1 0 0 0 1 0 1 1 0 1 1 0 1

$value
[1] 0

In this case, all misclassifications have been eliminated while still using only a
subset of the variables, in this case 7 columns. We could try to push the number of
selected variables back by adding a small penalty for every selected variable—once
the ideal value of zero misclassifications has been reached the current definition of
the evaluation function gives no more opportunities for further improvement.

By default, 10,000 evaluations are performed in the optim version of SA; this
number can be changed using the control argument, where also the initial temper-
ature and the cooling rate can be adjusted. In real, nontrivial problems, itwill probably
take some experimentation to find optimal values for these search parameters.

Amore ambitious example is to predict the octane number of the gasoline samples
with only a subset of the NIR wavelengths. The step function is the same as in the
wine example, and the only thing we have to do is to define the evaluation function:

> pls.cvfun <- function(selection, xmat, response, ncomp, ...) {
+ if (sum(selection) < ncomp) return(Inf)
+ pls.obj <- plsr(response ˜ xmat[, selection == 1],
+ validation = "CV", ncomp = ncomp, ...)
+ c(RMSEP(pls.obj, estimate = "CV", ncomp = ncomp,
+ intercept = FALSE)$val)
+ }

In this case, we use the explicit crossvalidation provided by the plsr function. This
adds a little bit of variability in the evaluation function since repeated application will
lead to different segments—but the savings in time are quite big.We will assume that
this variability is smaller than the gains we hope tomake. The number of components
to take into account can be specified in the extra argument of the evaluation function;
the error of the model with the largest number of latent variables is returned. The
RMSEP function returns an object of class mvrVal, where the val list element
contains the numerical value of interest—this is what we will return. Now, let us
try to find an optimal two-component PLS model (fewer variables often lead to less
complicated models). We start with a very small model using only eight variables
(.02× 401):

> nNIR <- ncol(gasoline$NIR)
> initselect <- rep(0, nNIR)
> initselect[sample(1:nNIR, 8)] <- 1
> SAoptimNIR1 <-
+ optim(initselect,
+ fn = pls.cvfun, gr = saStepFun, method = "SANN",
+ x = gasoline$NIR, response = gasoline$octane,
+ ncomp = 2, maxval = nNIR)

238 10 Variable Selection

> pls.cvfun(initselect, gasoline$NIR, gasoline$octane, ncomp = 2)
[1] 1.3896
> (nvarSA1 <- sum(SAoptimNIR1$par))
[1] 190
> SAoptimNIR1$value
[1] 0.24823

The result is already quite good: compare this, e.g., to the values in the left panel in
Fig. 8.4 (where we were looking at the crossvalidation of a model based on the odd
samples only) and it is clear that the estimated error with fewer variables and two
components is less than half that of the two-component model including all variables.

Still, we see that the number of variables included in the model is quite high—
perhaps more sparse models can be found that are equally good or even better. In
such cases, it pays to abandon the naive approach adopted above and look closer at
the problem itself. We should realize we are optimizing a long parameter vector in
this case, with 401 values. Many of these values are zero to start with, and we would
like to retain the sparsity of the solution. Our step function, however, is not taking this
into account and will suggest many steps leading to more variables. Combine that
with a rather high initial temperature parameter, and it is clear that especially in the
beginning many bad moves will be accepted. Finally, the evaluation function does
not reward sparse solutions explicitly. Let’s see what a lower starting temperature
and an adapted evaluation function contribute. First we will define the latter:

> pls.cvfun2 <- function(selection, xmat, response, ncomp,
+ penalty = 0.01, ...) {
+ if (sum(selection) < ncomp) return(Inf)
+ pls.obj <- plsr(response ˜ xmat[, selection == 1, drop = FALSE],
+ validation = "CV", ncomp = ncomp, ...)
+ c(RMSEP(pls.obj, estimate = "CV", ncomp = ncomp,
+ intercept = FALSE)$val) +
+ penalty * sum(selection)
+ }

Note that we need at least ncomp variables in order to fit a PLS model. Next, we
will define a step function that, using the default settings, will keep the number of
variables approximately equal to the starting situation. By playing with the cutoffs
in the argument plimits (a random draw from the uniform distribution lower than
the first value will lead to eliminating one of the selected variables; anything larger
than the second number to the addition of a variable, and anything in between to
swapping variables) one can tweak the behavior of the step function:

10.3 Global Optimization Methods 239

> saStepFun2 <- function(selected, plimits = c(.3, .7), ...) {
+ dowhat <- runif(1)
+
+ ## decrease selection
+ if (dowhat < plimits[1]) {
+ if (sum(selected) > 2) { # not too small...
+ kickone <- sample(which(selected == 1), 1)
+ selected[kickone] <- 0
+ return(selected)
+ }
+ }
+
+ ## increase selection
+ if (dowhat > plimits[2]) { # not too big...
+ if (sum(selected) < length(selected)) {
+ addone <- sample(which(selected == 0), 1)
+ selected[addone] <- 1
+ return(selected)
+ }
+ }
+
+ ## swap
+ kickone <- sample(which(selected == 1), 1)
+ selected[kickone] <- 0
+ addone <- sample(which(selected == 0), 1)
+ selected[addone] <- 1
+ selected
+ }

By changing the values of the plimits argument we can directly influence the
number of nonzero entries in the result: e.g., the higher the first number, the bigger
the chance that a variable will be removed. Let’s see how that works, combined with
a lower starting temperature. The default is 10—we will try a value of 1:

> penalty <- 0.01
> SAoptimNIR2 <-
+ optim(initselect,
+ fn = pls.cvfun2, gr = saStepFun2, method = "SANN",
+ x = gasoline$NIR, response = gasoline$octane,
+ ncomp = 2, maxval = nNIR,
+ control = list(temp = 1))

This leads to the following results:

> (nvarSA2 <- sum(SAoptimNIR2$par))
[1] 6
> SAoptimNIR2$value - penalty*nvarSA2
[1] 0.20047

Now we have a crossvalidation error that is clearly better than what we saw earlier
but with only 6 instead of 190 variables in the model.

Several packages provide SA functions specifically optimized for variable selec-
tion. Theanneal function in package subselect, e.g., can be used for variable selec-

240 10 Variable Selection

tion in situations like discriminant analysis, PCA, and linear regression, according to
the criterion employed. For LDA, this function takes the between-groups covariance
matrix, the minimal and maximal number of variables to be selected, the within-
groups covariance matrix and its expected rank, and a criterion to be optimized (see
below) as arguments. For the wine example above, a solution to find the optimal
three-variable subset would look like this:

> winesHmat <- ldaHmat(twowines.df[, -1], twowines.df[, 1])
> wines.anneal <-
+ anneal(winesHmat$mat, kmin = 3, kmax = 3,
+ H = winesHmat$H, criterion = "ccr12", r = 1)

> wines.anneal$bestsets
Var.1 Var.2 Var.3

Card.3 2 7 10
> wines.anneal$bestvalues
Card.3

0.83281

Repeated application (using, e.g., nsol = 10) in this case leads to the same solu-
tion every time. Rather than the direct estimates of prediction error, the anneal
function uses functions of thewithin- and between-groups covariancematrices (Silva
2001). In this case using the ccr12 criterion, the first root of BW−1 is optimized,
analogous to Fisher’s formulation of LDA in Sect. 7.1.3. As an other example,Wilk’s
� is given by

� = det(W)/ det(T) (10.6)

and is (in a slightly modified form) available in the tau2 criterion. For the current
case where the dimensionality of the within-covariance matrices is estimated to be
one, all criteria lead to the same result.

The new result differs from the subset from our own implementation in only one
instance: variable 11, color hue, is swapped for the malic acid concentration. The
reason, of course, is that both functions optimize different criteria. Let us see how
the two solutions fare when evaluated with the criterion of the other algorithm. The
value for the ccr12 criterion of the solution using variables 7, 10 and 11, found
with our own simplistic SA implementation, can be assessed easily:

> ccr12.coef((nrow(twowines.df) - 1) * var(twowines.df[, -1]),
+ winesHmat$H, r = 1, c(7, 10, 11))
[1] 0.82293

which, as expected, is slightly lower than that of the set consisting of variables 2,
7 and 10. Conversely, the prediction quality of the newer set is slightly worse (two
misclassifications):

> selection <- rep(0, ncol(twowines))
> selection[c(2, 7, 10)] <- 1
> lda.loofun(selection, twowines.df[, -1], twowines.df[, 1])
[1] 1.6807

10.3 Global Optimization Methods 241

Obviously, there are probably many sets with the same or similar values for the
quality criterion of interest, and to some extent it is a matter of chance which one is
returned by the search algorithm. Moreover, the number of possible quality values
can be limited, especially with criteria based on the number of misclassifications.
This can make it more difficult to discriminate between two candidate subsets.

The anneal function for subset selection is also applicable in other types of
problems than classification alone: e.g., for variable selection in PCA it uses a mea-
sure of similarity of the original data matrix and of the projections on the k-variable
subspace—again, several different criteria are available. The speed and applicability
in several domains are definite advantages of this particular implementation. How-
ever, there are some disadvantages, too: firstly, because of the formulation using
covariance matrices it is hard to apply anneal to problems with large numbers of
variables. Finding the most important discriminating variables in the prostate data
set would stretch your computer to the limit—in fact, even the gasoline example
requires the argument force = TRUE since the default is to refuse cooperation
(and give a serious-looking warning) as soon as the number of variables exceeds 400.

Secondly, the function does not allow one to submit an evaluation function, and
one has to dowith the predefined set—crossvalidation-based approaches such as used
in the examples above cannot be implemented, increasing the danger of overfitting.
Finally, it can be important to monitor the progress of the optimization, or at least
keep track of the speed with which improvements are found—especially when fine-
tuning the SA parameters (temperature, cooling rate) one would like to have the
possibility to assess acceptance rates. Currently, no such functionality is provided in
the subselect package.

One other dedicated SA approach for variable selection can be found in the caret
package mentioned in Chap. 7 in the form of the safs (simulated annealing feature
selection) function. This function does allow crossvalidation-based quality measures
to guide the optimization, but also supports external test sets and criteria like AIC.
Parallelization is supported at several different levels.

10.3.2 Genetic Algorithms

Genetic Algorithms (GAs, Goldberg 1989) manage a population of candidate solu-
tions, rather than one single solution as is the case with most other optimization
methods. Every solution in the population is represented as a string of values, and in
a process called cross-over, mimicking sexual reproduction, offspring is generated
combining parts of the parent solutions. Random mutations, occurring with rela-
tively low frequency, ensure that some diversity is maintained in the population. The
quality of the offspring is measured in an evaluation phase—again in analogy with
biology, this quality is often called “fitness”. Strings with a low fitness will have
no or only a low probability of reproduction, so that subsequent generations will
generally consist of better and better solutions. This obvious imitation of the process
of natural selection has led to the name of the technique. GAs have been applied to

242 10 Variable Selection

a wide range of problems in very diverse fields—several overviews of applications
within chemistry can be found in the literature (e.g., Leardi 2001; Niazi and Leardi
2012).

Just like with Simulated Annealing, GAs need an evaluation function to obtain
fitness values for trial solutions. A step function, on the other hand, is not needed:
the genetic machinery (cross-over and mutation operations) will take care of that.
Several parameters need to be set, such as the size of the population, the number
of iterations, and the chances of crossover and mutation, but that is all. Population
sizes are typically in the order of 50–100; the number of iterations in the order of
several hundreds. There are some aspects, however, that are particular for GAs. The
first choice we have to make is on the representation of the candidate solutions,
i.e., the candidate subsets. For variable selection, two obvious possibilities present
themselves: either a vector of indices of the variables in the subset, or a string of
zeros and ones. For other optimization problems, e.g., non-linear fitting, real num-
bers can also be used. Secondly, the selection function needs to be defined. This
determines which solutions are allowed to reproduce, and is the driving force behind
the optimization—if all solutions would have the same probability the result would
be a random search. Typical selection procedures are to use random sampling with
equal probabilities for all solutions above a quality cutoff, or to use random sampling
with (scaled) quality indicators as probability weights.

The GA package (Scrucca 2013, 2017) provides a convenient and efficient tool-
box, supporting for binary, real-valued and permutation representations, and several
standard genetic operators. In addition, users can define their own operators. Parallel
evaluation of population members is supported (especially useful if the evaluation of
a single solution takes some time), and to speed up proceedings even further, local
searches can be allowed at random intervals to inject new and useful information
in the population. Finally, populations can be “seeded”, i.e., one can provide one or
more solutions that are thought to be approximately correct.

Applying the ga function from the GA package to our gasoline data is quite
easy. We can use the same evaluation function as used in the SA optimization,
pls.cvfun2, where a small penalty is applied for solutions with more variables.
Since ga does maximization only, we multiply the result with −1:

> fitnessfun <- function(...) -pls.cvfun2(...)

Nowweare ready togo.The simplest approachwouldbe to apply standardprocedures
and hope for the best:

> GAoptimNIR1 <-
+ ga(type = "binary", fitness = fitnessfun,
+ x = gasoline$NIR, response = gasoline$octane,
+ ncomp = 2, penalty = penalty,
+ nBits = ncol(gasoline$NIR), monitor = FALSE, maxiter = 100)

The result, as we may have expected, still contains many variables, and has a high
crossvalidation error:

10.3 Global Optimization Methods 243

> (nvarGA1 <- sum(GAoptimNIR1@solution))
[1] 149
> -GAoptimNIR1@fitnessValue + penalty*nvarGA1
[1] 3.2732

Ouch, that does not look too good. Of course we have not been fair: the random
initialization of the GA will lead to a population with approximately 50% selected
variables, where the initial SA solution had only 2%. In addition, the default mutation
function is biased to this 50% ratio as well: in sparse solutions it is much more likely
to add a variable than to remove one. Similar to the adaptation of the step function in
SA, we define the mutation function in such a way that setting bits to zero is (much)
more likely than setting bits to one, a behavior that can be controlled by the value of
the bias argument:

> myMutate <- function (object, parent, bias = 0.01)
+ {
+ mutate <- parent <- as.vector(object@population[parent,])
+ n <- length(parent)
+ probs <- abs(mutate - bias)
+ j <- sample(1:n, size = 1, prob = probs)
+ mutate[j] <- abs(mutate[j] - 1)
+ mutate
+ }

In the GA package these settings are controlled by the gaControl function, and
changes remain in effect for the rest of the session (or until changed again). Including
the new mutation function and using a more reasonable initial state is easily done:

> gaControl("binary" = list(mutation = "myMutate"))
> popSize <- 50 # default
> initmat <- matrix(0, popSize, nNIR)
> initmat[sample(1:(popSize*nNIR), nNIR)] <- 1
>
> GAoptimNIR2 <-
+ ga(type = "binary", fitness = fitnessfun,
+ x = gasoline$NIR, response = gasoline$octane,
+ popSize = popSize, nBits = ncol(gasoline$NIR),
+ ncomp = 2, suggestions = initmat, penalty = penalty,
+ monitor = FALSE, maxiter = 100)

This leads to the following result:

> (nvarGA2 <- sum(GAoptimNIR2@solution))
[1] 4
> -GAoptimNIR2@fitnessValue + penalty*nvarGA2
[1] 0.26728

Clearly, this constitutes a substantial improvement over the first optimization result,
getting close to the SA solution presented earlier. Of course, more experimentation
can easily lead to further improvements (as is the case with SA as well).

244 10 Variable Selection

0 20 40 60 80 100

−2
.4

−2
.2

−2
.0

−1
.8

Naive

Generation

Fi
tn

es
s

va
lu

e

0 20 40 60 80 100

−1
.0

−0
.8

−0
.6

−0
.4

−0
.2 Dedicated

Generation

Fi
tn

es
s

va
lu

e

●
●

●●●●●●●●●

●●●●●●●●

●●●

●●●●●●

●●●●●●
●●●●

●●●●●●●●●
●●●

●●●●●●●●●●

●●●●●●●
●●●●●●●●●

●●●●●●●●●●●●
●●●●●●

●●●●●●

●

●●
●●

●●●●●●●● ●●●●●● ●●●●●● ●●●●●● ●●●●●● ●●●●●● ●●●●●● ●●●●●●

●●●●●●●●●● ●●●●●● ●●●●●● ●●●●●● ●●●●●● ●●●●●●●

●●●●●●●●● ●●●●●●

●●●●●●●● ●●●●●● ●●●●●● ●●●●●● ●●●●●●

●●●●●●●●●● ●●●●●●●● ●●●●●●
●●

●●●●
●●●●●● ●●●●●●

●●●●●●

●●●●●●●●●●● ●●●●●● ●●●●●●●● ●●●●●● ●●●●●● ●●●●●●
●●●●

●●●●
●●●●●●

●●●●●●●●●● ●●●●●●●●● ●●●●●●
●●●●●●●● ●●●●●● ●●●●●● ●●●●●● ●●●●●●●

●●●●●●●● ●●●●●● ●●●●●●●●●● ●●●●●●
●●●●●●●●●● ●●●●●● ●●●●●● ●●●●●● ●●●●●●●● ●●●●●●

●●●●●●●● ●●●●●● ●●●●●●● ●●●●●● ●●●●●● ●●●●●● ●●●●●● ●●●●●● ●●●●●● ●●●●●● ●●●●●●
●●●●●●●●●

●●●●
●●●●●●●●● ●●●●●●● ●●●●●●●

●●●●●●●●●● ●●●●●● ●●●●●● ●●●●●●●

●

●

Best
Mean
Median

●●
●
●●●●●

●●●●●●●●●●●●●
●●●

●

●

●●

●

●●
●●

●
●
●

●

●

●●

●

●
●●

●

●
●
●
●●

●
●

●●●●
●

●
●
●

●
●●

●
●●

●
●
●
●

●
●
●
●●●●

●
●●●

●

●

●
●
●
● ●

●
●
●●

●

●●●●●●●●
●●
●●●●●●●●●● ●●●●●● ●●●●●●

●●●●●●●● ●●●●●● ●●●●●● ●●●●●● ●●●●●● ●●●●●● ●●●●●● ●●●●●● ●●●●●● ●●●●●● ●●●●●● ●●●●●●
●●●●●●●●●●●● ●●●●●● ●●●●●● ●●●●●● ●●●●●●●● ●●●●●● ●●●●●● ●●●●●● ●●●●●●●● ●●●●●● ●●●●●● ●●●●●● ●●●●●●●●● ●●●●●● ●●●●●● ●●●●●● ●●●●●● ●●●●●● ●●●●●● ●●●●●● ●●●●●● ●●●●●● ●●●●●● ●●●●●● ●●●●●● ●●●●●● ●●●●●●●● ●●●●●● ●●●●●● ●●●●●●●● ●●●●●●● ●●●●●● ●●●●●● ●●●●●● ●●●●●●●● ●●●●●● ●●●●●● ●●●●●●●● ●●●●●●●● ●●●●●● ●●●●●● ●●●●●● ●●●●●● ●●●●●● ●●●●●● ●●●●●● ●●●●●● ●●●●●● ●●●●●● ●●●●●● ●●●●●● ●●●●●● ●●●●●● ●●●●●● ●●●●●● ●●●●●● ●●●●●● ●●●●●●●● ●●●●●● ●●●●●● ●●●●●●●● ●●●●●● ●●●●●● ●●●●●● ●●●●●● ●●●●●●●

●

●

Best
Mean
Median

Fig. 10.5 GA optimization results for the NIR data. Left panel: naive application; right panel:
application with a specific initializationmatrix and a dedicatedmutation function. Note the different
y scales

One of the nice features of theGA package is that the results of calling ga can be
plotted aswell. Figure10.5 shows the optimization trajectories of bothGA runs. First,
note the difference in the y-axes: the dedicated GA leads to much better fitnesses.
The plots show the best result (green dots/line) as well as the average and the mean
fitness values of the population at each iteration. If the latter two are very close to
the best value, there is too little variation in the population and the result is likely to
be quite bad. Especially with the dedicated mutation operator, one sees quite sudden
jumps when “worse” solutions are introduced in the population (too few variables
even lead to Inf values in which case noMean is displayed), but still these solutions
may contain kernels of good information.

The curves also give an idea on whether it is useful to put in additional effort:
the left panel of Fig. 10.5 clearly gives the impression that further improvements are
possible. Inmost cases, playing aroundwith search parameters or tweaking the fitness
function will have more chance of reaching good results than simply increasing the
number of iterations.

In more complicated problems, speed is a big issue. Some simple tricks can be
employed to speed up the optimization. Typically, several candidate solutions will
survive unchanged during a couple of generations. Rigorous bookkeeping may pre-
vent unnecessary quality assessments, which in almost all cases is themost computer-
intensive part of a GA. An implementational trick that is also very often applied is
to let the best few solutions enter the next generation unchanged; this process, called
elitism, makes sure that no valuable information is thrown away and takes away the
need to keep track of the best solution. Provisions can be taken to prevent prema-
ture convergence: if the population is too homogeneous the power of the crossover
operator decreases drastically, and the optimization usually will not lead to a useful
answer. One strategy is to disallow offspring that is equal to other candidate solu-
tions; a second strategy is to penalize the fitness of candidate solutions that are too
similar; the latter strategy is sometimes called sharing.

10.3 Global Optimization Methods 245

Other GA implementations are available, too, of course. The caret package
includes a gafs function that is very similar to the safs function we saw earlier for
SA. The genetic function in the subselect package provides a fast Fortran-based
GA. The details of the crossover and mutation functions are slightly different from
the description above—indeed, there are probably very few implementations that
share the exact same crossover and mutation operators, testimony to the flexibility
and power of the evolutionary paradigm. Having seen the working of the anneal
function, most input parameters will speak for themselves:

> wines.genetic <-
+ genetic(winesHmat$mat, kmin = 3, kmax = 5, nger = 20,
+ popsize = 50, maxclone = 0,
+ H = winesHmat$H, criterion = "ccr12", r = 1)
> wines.genetic$bestvalues
Card.3 Card.4 Card.5

0.83281 0.84368 0.85248
> wines.genetic$bestsets

Var.1 Var.2 Var.3 Var.4 Var.5
Card.3 2 7 10 0 0
Card.4 2 3 7 10 0
Card.5 2 3 7 10 12

And indeed, the same three-variable solution is found as the optimal one. This time,
also four- and five-variable solutions are returned (because of the values of the kmin
and kmax arguments).

The maxclone argument tries to enforce diversity by replacing duplicate off-
spring by random solutions (which are not checked for duplicity, however). Leaving
out this argument would, in this simple example, lead to a premature end of the
optimization because of the complete homogeneity of the population. Both anneal
and genetic provide the possibility of a further local optimization of the final best
solution.

10.3.3 Discussion

Variable selection is a difficult process. Simple stepwise methods only work with
a small number of variables, whereas the largest gains can be made in the nowa-
days typical situation of hundreds or even thousands of variables. More complicated
methods containing elements of random search, such as SA or GA approaches, can
have a high variability, especially in cases where correlations between variables are
high. One approach is to repeat the variable selection multiple times, and to use those
variables that are consistently selected. Although this strategy is intuitively appeal-
ing, it does have one flaw: suppose that variables a and b are highly correlated, and
that a combination of either a or b with a third variable c leads to a good model. In
repeated selection runs, c will typically be selected twice as often as a or b—if the
overall selection threshold is chosen to include c but neither of a and b, the model
will not work well.

246 10 Variable Selection

In addition, the optimization criterion is important. It has been shown that LOO
crossvalidation as a criterion for variable selection is inconsistent, in the sense that
even with an infinitely large data set it will not choose the correct model (Shao
2003). Baumann et al. advocate the use of leave-multiple-out crossvalidation for this
purpose (Baumann et al. 2002a, b), even though the computational burden is high.
In this approach, the data are repeatedly split, randomly, in training and test sets,
where the number of repetitions needs to be greater than the number of variables,
and for every split a separate crossvalidation is performed to optimize the parameters
of the modelling method such as the number of latent variables in PCR or PLS. A
workable alternative is to fix the number of latent variables to a “reasonable” number,
and to find the subset of variables that with this particular setting leads to the best
results. This takes away the nested crossvalidation but may lead to subsets that are
suboptimal. In general, one should accept the fact that there is no guarantee that the
optimal subset will be found, and it is wise to accept a subset that is “good enough”.

	10 Variable Selection
	10.1 Coefficient Significance
	10.1.1 Confidence Intervals for Individual Coefficients
	10.1.2 Tests Based on Overall Error Contributions

	10.2 Explicit Coefficient Penalization
	10.3 Global Optimization Methods
	10.3.1 Simulated Annealing
	10.3.2 Genetic Algorithms
	10.3.3 Discussion

