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Preface to the Second Edition

Eight years after the appearance of the first edition of this book, the R ecosystem
has evolved significantly. The number of R users has continued to grow, and so has
the number of R packages. The latter not only can be found at the two main R
repositories, CRAN and Bioconductor, where elementary quality control checks are
being applied to ascertain that the packages are at least semantically correct and
provide a minimum of support, but also at other platforms such as github.
Installation of an R package is as easy as can be, probably one of the main reasons
for the huge success that the language is experiencing. At the same time, this
presents the user with a difficult problem: where should I look? What should I use?
In keeping with the aims formulated in the first edition, this second edition presents
an overview of techniques common in chemometrics, and R packages imple-
menting them. I have tried to remain as close as possible to elementary packages,
i.e., packages that have been designed for one particular purpose and do this pretty
well. All of them are from CRAN or Bioconductor.

Maybe somewhat ironically, the R package ChemometricsWithR, accompa-
nying this book, will no longer be hosted on CRAN. Due to package size restric-
tions, the package accompanying the first edition was forced to be split into two, the
data part transferring into a separate package, ChemometricsWithRData. For this
new edition, hosting everything on my own github repository has made it possible
to reunite the two packages, making life easier for the reader. Installing the
ChemometricsWithR package can be done as follows:

> install.packages(″remotes″)
> library(remotes)
> install_github(″rwehrens/ChemometricsWithR″)

All code in the book is also present in the demo subdirectory of the package, and
can be run directly: each chapter constitutes one demo. These demos make
copying-and-pasting from the book unnecessary.
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Many of the packages mentioned in the first edition, and indeed the R language
itself, have changed over the years—some packages are no longer available, are
superseded by other packages, or have seen other changes. Repairing all the
resulting inconsistencies with the first edition was the main motivation to revisit and
revise the book. Of course, the opportunity to reorganize and extend the material
was taken. For one thing, figures are now in color, which not only leads to a livelier
reading experience but in many cases increases the information content of the plots.
Multivariate classification methods, PLSDA and PCDA, now are treated in Chap. 8.
Some paragraphs, like the ones on global optimization methods (simulated
annealing and genetic algorithms), have been rewritten quite extensively, now
focusing more on CRAN R packages than on the educational code that was pro-
vided in the first edition. Chapter 11 has been extended with paragraphs on missing
values, multivariate process monitoring, biomarker identification and batch
correction.

The biggest change, however, has taken place under the hood. In this edition I
have used the knitr package by Yihui Xie (Xie 2014, 2015, 2018) a package
providing seamless integration of R code and LATEX that has completely changed
my way of working with R. This has helped enormously in straightening out the
inconsistencies in the code, and in avoiding errors such as the mismatch between
Fig. 3.6 and related text that were present in the first edition. In many cases methods
depend on a random initiation, and although random seeds were used to guarantee
reproducible results when writing the book, these random seeds are not mentioned
in the book text. They are, however, included in the code that can be found in the
demo subdirectory of the ChemometricsWithR package so that running the demos
will lead to the results in the book.

Finally, I would like to thank the following people for proofreading and pro-
viding constructive feedback: Manya Afonso, Jasper Engel, Jos Hageman, Maikel
Verouden and Pietro Franceschi.

Arnhem, The Netherlands
2019

Ron Wehrens

viii Preface to the Second Edition



Preface to the First Edition

The natural sciences, and the life sciences in particular, have seen a huge increase in
the amount and complexity of data being generated with every experiment. It is
only some decades ago that scientists were typically measuring single numbers –
weights, extinctions, absorbances – usually directly related to compound concen-
trations. Data analysis came down to estimating univariate regression lines,
uncertainties and reproducibilities. Later, more sophisticated equipment generated
complete spectra, where the response of the system is wavelength-dependent.
Scientists were confronted with the question how to turn these spectra into usable
results such as concentrations. Things became more complex after that: chro-
matographic techniques for separating mixtures were coupled to high-resolution
(mass) spectrometers, yielding a data matrix for every sample, often with large
numbers of variables in both chromatographic and spectroscopic directions. A set of
such samples corresponds to a data cube rather than a matrix. In parallel, rapid
developments in biology saw a massive increase in the ratio of variables to objects
in that area as well.

As a result, scientists today are faced with the increasingly difficult task to make
sense of it all. Although most will have had a basic course in statistics, such a
course is unlikely to have covered much multivariate material. In addition, many
of the classical concepts have a rough time when applied to the types of data
encountered nowadays – the multiple-testing problem is a vivid illustration.
Nevertheless, even though data analysis has become a field in itself (or rather: a
large number of specialized fields), scientists generating experimental data should
know at least some of the ways to interpret their data, if only to be able to ascertain
the quality of what they have generated. Cookbook approaches, involving blindly
pushing a sequence of buttons in a software package, should be avoided.
Sometimes the things that deviate from expected behavior are the most interesting
in a data set, rather than unfortunate measurement errors. These deviations can
show up at any time point during data analysis, during data preprocessing, mod-
elling, interpretation... Every phase in this pipeline should be carefully executed and
results, also at an intermediate stage, should be checked using common sense and
prior knowledge.
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This also puts restrictions on the software that is being used. It should be
sufficiently powerful and flexible to fit complicated models and handle large and
complex data sets, and on the other hand should allow the user to exactly follow
what is being calculated – black-box software should be avoided if possible.
Moreover, the software should allow for reproducible results, something that is hard
to achieve with many point-and-click programs: even with a reasonably detailed
prescription, different users can often obtain quite different results. R R
Development Core Team (2010), with its rapidly expanding user community, nicely
fits the bill. It is quickly becoming the most important tool in statistical bioinfor-
matics and related fields. The base system already provides a large array of useful
procedures; in particular, the high-quality graphics system should be mentioned.
The most important feature, however, is the package system, allowing users to
contribute software for their own fields, containing manual pages and examples that
are directly executable. The result is that many packages have been contributed by
users for specific applications; the examples and the manual pages make it easy to
see what is happening.

Purpose of this book.

Something of this philosophy also can be found in the way this book is set up. The
aim is to present a broad field of science in an accessible way, mainly using
illustrative examples that can be reproduced immediately by the reader. It is written
with several goals in mind:

• An introduction to multivariate analysis. On an abstract level, this book
presents the route from raw data to information. All steps, starting from the data
preprocessing and exploratory analysis to the (statistical) validation of the
results, are considered. For students or scientists with little experience in han-
dling real data, this provides a general overview that is sometimes hard to get
from classical textbooks. The theory is presented as far as necessary to under-
stand the principles of the methods and the focus is on immediate application on
data sets, either from real scientific examples, or specifically suited to illustrate
characteristics of the analyses.

• An introduction to R. For those scientists already working in the fields of
bioinformatics, biostatistics and chemometrics but using other software, the
book provides an accessible overview on how to perform the most common
analyses in R R Development Core Team (2010). Many packages are available
on the standard repositories, CRAN1 and BIOCONDUCTOR

2, but for people unfamiliar
with the basics of R the learning curve can be pretty steep − for software, power
and complexity are usually correlated. This book is an attempt to provide a more
gentle way up.

1http://cran.r-project.org.
2http://www.bioconductor.org.
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• Combining multivariate data analysis and R. The combination of the pre-
vious two goals is especially geared towards university students, at the begin-
ning of their specialization: it is of prime importance to obtain hands-on
experience on real data sets. It does take some help to start reading R code -
once a certain level has been reached, it becomes more easy. The focus,
therefore, is not just on the use of the many packages that are available, but also
on showing how the methods are implemented. In many cases, simplified ver-
sions of the algorithms are given explicitly in the text, so that the reader is able
to follow step-by-step what is happening. It is this insight in (at least the basics
of) the techniques that are essential for fruitful application.

The book has been explicitly set up for self-study. The user is encouraged to try out
the examples, and to substitute his or her own data as well. If used in a university
course, it is possible to keep the classical “teaching” of theory to a minimum;
during the lessons, teachers can concentrate on the analysis of real data. There is no
substitute for practice.

Prior knowledge.

Some material is assumed to be familiar. Basic statistics, for example, including
hypothesis tests, the construction of confidence intervals, analysis of variance and
least-squares regression are referred to, but not explained. The same goes for basic
matrix algebra. The reader should have some experience in programming in general
(variables, variable types, functions, program control, etcetera). It is assumed the
reader has installed R, and has a basic working knowledge of R, roughly corre-
sponding to having worked through the excellent “Introduction to R” Venables
et al. (2009), which can be found on the CRAN website. In some cases, less
mundane functions will receive a bit more attention in the text; examples are the
apply and sweep functions. We will only focus on the command-line interface:
Windows users may find it easier to perform actions using point-and-click.

The R package ChemometricsWithR.

With the book comes a package, too: ChemometricsWithR contains all data sets
and functions used in this book. Installing the package will cause all other packages
used in the book to be available as well − an overview of these packages can be
found in the Appendix in Part 11.8.5 of the book. In the examples, it is always
assumed that the ChemometricsWithR package is loaded; where functions or data
sets from other packages are used for the first time, this is explicitly mentioned in
the text.

More information about the data sets used in the book can be found in the
references − no details will be given about the background or interpretation of the
measurement techniques.
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Chapter 1
Introduction

In the last twenty years, the life sciences have seen a dramatic increase in the size
and number of data sets. Simple sensing devices in many cases offer real-time data
streaming but also more complicated data types such as spectra or images can be
acquired at much higher rates then was thought possible not too long ago. At the
same time, the complexity of the data that are acquired also increases, in some cases
leading to very high numbers of variables—inmass spectrometry it is not uncommon
to have tens of thousands of mass peaks; in genomics having millions of single-
nucleotide polymorphisms (SNPs) is becoming the rule rather than the exception.
“Simply measure everything” is the approach nowadays: rather than focusing on
measuring specific predefined characteristics of the sample1 modern techniques aim
at generating a holistic view, sometimes called a “fingerprint”.As a result, the analysis
of one single sample can easily yield megabytes of data. These (physical) samples
typically are complex mixtures and may, e.g., correspond to body fluids of patients
and controls, measured with possibly several different spectroscopic techniques;
environmental samples (air, water, soil); measurements on different cell cultures or
one cell culture under different treatments; industrial samples from process industry,
pharmaceutical industry or food industry; samples of competitor products; quality
control samples, and many others.

The types of data we will concentrate on are generated by analytical chemical
measurement techniques, and are in almost all cases directly related to concentra-
tions or amounts of specific classes of chemicals such as metabolites or proteins.
The corresponding research fields are called metabolomics and proteomics, and a
host of others with similar characteristics and a similar suffix, collectively known as
the “-omics sciences”, exist. A well-known example from molecular biology is tran-
scriptomics, focusing on the levels of mRNA obtained by transcription from DNA

1Theword “sample”will be used both for the physical objects onwhichmeasurements are performed
(the chemical use of the word) and for the current realization of all possible measurements (the
statistical use). Which one is meant should be clear from the context.
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strains. Although we do not include any transcriptomics data, many of the techniques
treated in this book are directly applicable—in that sense, the characteristics of data
of completely different origins can still be comparable.

These data can be analyzed at different levels. The most direct approach is to
analyst them as raw data (intensities, spectra, ...), without any prior interpretation
other than a suitable pretreatment. Although this has the advantage that it is com-
pletely objective, it is usually also more difficult: typically, the number of variables
is huge and the interpretability of the statistical models that are generated to describe
the data often is low. A more often used strategy is to apply domain knowledge to
convert the raw data into more abstract variables such as concentrations, for example
by quantifying a set of compounds in a mixture based on a library of pure spectra.
The advantage is that the statistical analysis can be performed on the quantities that
really matter, and that the models are simpler and easier to validate and interpret.
The obvious disadvantage is the dependence on the interpretation step: not always
it is easy to decide which compounds are present and in what amounts. Any error at
this stage cannot be corrected in later analysis stages.

The extremely rapid development of analytical techniques in biology and chem-
istry has left data analysis far behind, and as a result the statistical analysis and inter-
pretation of the data has become amajor bottleneck in the pipeline frommeasurement
to information. Academic training in multivariate statistics in the life sciences is lag-
ging. Bioinformatics departments are the primary source of scientists with such a
background, but bioinformatics is a very broad field covering many other topics as
well. Statistics and machine learning departments are usually too far away from the
life sciences to establish joint educational programmes. As a result, scientists doing
the data analysis very often have a background in biology or chemistry, and have
acquired their statistical skills by training-on-the-job. This can be an advantage, since
it makes it easier to interpret results and assess the relevance of certain findings. At
the same time, there is a need for easily accessible background material and oppor-
tunities for self-study: books like Hastie et al. (2001) form an invaluable source of
information but can also be a somewhat daunting read for scientists without much
statistical background.

This book aims to fill the gap, at least to some extent. It is important to combine
the sometimes rather abstract descriptions of the statistical techniques with hands-on
experience behind a computer screen. In many ways R (R Development Core Team
2010) is the ideal software platform to achieve this—it is extremely powerful, the
many add-on packages provide a huge range of functionalities in different areas,
and it is freely accessible. As in the other books in this series, the examples can be
followed step-by-step by typing or cutting-and-pasting the code, and it is easy to
plug in one’s own data. To date, there is only one other book specifically focused
on the use of R in a similar field of science: “Introduction to Multivariate Statistical
Analysis in Chemometrics” Varmuza and Filzmoser (2009) which to some extent
complements the current volume, in particular in its treatment of robust statistics.

Here, the concepts behind the most important data analysis techniques will be
explained using a minimum of mathematics, but in such a way that the book still
can be used as a student’s text. Its structure more or less follows the steps made in
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a “classical” data analysis, starting with the data pretreatment in Part I. This step is
hugely important, yet is often treated only cursorily. An unfortunate choice here can
destroy any hope of achieving good results: background knowledge of the system
under study as well as the nature of the measurements should be used in making
decisions. This is where science meets art: there are no clear-cut rules, and only by
experience we will learn what the best solution is.

The next phase, subject of Part II, consists of exploratory analysis. What structure
is visible? Are there any outliers? Which samples are very similar, which are differ-
ent?Which variables are correlated? Questions like these are most easily assessed by
eye—the human capacity for pattern recognition in two dimensions is far superior
to any statistical method. The methods at this stage all feature strong visualization
capabilities. Usually, they are model-free; no model is fitted, and the assumptions
about the data are kept to a minimum.

Once we are at the modelling phase, described in Part III, we very often do
make assumptions: some models work optimally with normally distributed data, for
example. The purpose ofmodelling can be twofold. The first is prediction. Given a set
of analytical data, we want to be able to predict properties of the samples that cannot
bemeasured easily. An example is the assessment of whether a specific treatment will
be useful for a patient with particular characteristics. Such an application is known
as classification—one is interested in modelling class membership (will or will not
respond). The other major field is regression, where the aim is to model continuous
real variables (blood pressure, protein content, ...). Such predictive models can mean
a big improvement in quality of life, and save large amounts ofmoney. The prediction
error is usually taken as a quality measure: a model that is able to predict with high
accuracy must have captured some real information about the system under study.
Unfortunately, in most cases no analytical expressions can be derived for prediction
accuracy, and other ways of estimating prediction accuracy are required in a process
called validation. A popular example is crossvalidation.

The second aim of statistical modelling is interpretation, one of the topics in Part
IV. Who cares if the model is able to tell me that this is a Golden Delicious apple
rather than a Granny Smith? The label in the supermarket already told me so; but the
question of course is why they taste different, feel different and look different. Fitting
a predictive model in such a case may still be informative: when we are able to find
out why the model makes a particular prediction, we may be able to learn something
about the underlying physical, chemical or biological processes. If we know that a
particular gene is associated with the process that we are studying, and both this
gene and another one show up as important variables in our statistical model, then
we may deduce that the second gene is also involved. This may lead to several new
hypotheses that should be tested in the lab. Obviously, when a model has little or
no predictive ability it does not make too much sense to try and extract this type
of information. The variables identified to be worth further study in many cases are
indicated by the term biomarkers, according to Wikipedia “measurable indicators
of some biological state or condition”. Of course, with high-dimensional data sets
it is very well possible that no biomarkers can be identified, even though predictive
models can be fitted—much aswewould like theworld to be a simple place, it usually
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is not. In areas like Machine Learning one often uses models that do not allow much
interpretation and consequently focus has shifted almost completely to prediction.

Our knowledge of the system can also serve as a tool to assess the quality of our
model. A model that fits the data and seems to be able to predict well is not going to
be very popular when its parameters contradict what we know about the underlying
process. Often, prior knowledge is available (we expect a peak at a certain position;
we know that model coefficients should not be negative; this coefficient should be
larger than the other), and we can use that knowledge to assess the relevance of
the fitted model. Alternatively, we can constrain the model in the training phase to
take prior knowledge into account, which is often done with constraints. In other
cases, the model is hard to interpret because of the sheer number of coefficients
that have been fitted, and graphical summaries may fail to show what variables
contribute in what way. In such cases, variable selection can come to the rescue: by
discarding the majority of the variables, hopefully without compromising the model
quality, one can often improve predictions and make the model much more easy
to interpret. Unfortunately, variable selection is an NP-complete problem (which in
practice means that even for moderate-sized systems it may be impossible to assess
all possible solutions) and one never can be sure that the optimal solution has been
found. But then again, any improvement over the original, full, model is a bonus.

For each of the stages in this “classical” data analysis pipeline, a plethora of
methods is available. It can be hard to assess which techniques should be considered
in a particular problem, and perhaps even more importantly, which should not. The
view taken here is that the simplest possibilities should be considered first; only
when the results are unsatisfactory, one should turn to more complex solutions. Of
course, this is only a very crude first approach, and experienced scientists will have
devised many shortcuts and alternatives that work better for their types of data. In
this book, I have been forced to make choices. It is impossible to treat all methods,
or even a large subset, in detail. Therefore the focus is on an ensemble of methods
that will give the reader a broad range of possibilities, with enough background
information to acquaint oneself with other methods, not mentioned in this book, if
needed. In some cases, methods deserve a mention because of the popularity within
the bioinformatics or chemometrics communities. Suchmethods, together with some
typical applications, are treated in the final part of the book.

Given the huge number of packages available on CRAN and the speed with which
new ones appear, it is impossible to mention all that are relevant to the material in
this book. Where possible, I have limited myself to the recommended packages,
and those coming with a default R installation. Of course, alternative, perhaps even
much simpler, solutions may be available in the packages that this book does not
consider. It pays to periodically scan the CRAN and Bioconductor repositories, or,
e.g., check the Task Views that provide an overview of all packages available in
certain areas—there is one on Physics and Chemistry, too.
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Preliminaries



Chapter 2
Data

In this chapter some data sets are presented that will be used throughout the book.
In a couple of places (in particular in Chap. 11) other sets will be discussed focusing
on particular analysis aspects. All data sets are accessible, either through one of the
packages mentioned in the text, or in theChemometricsWithR package. In addition
to a short description, the data will be visualized to get an idea of their form and
characteristics—one cannot stress enough how important it is to eyeball the data, not
only through convenient summaries but also in their raw form!

Chemical data sets nowadays are often characterized by a relatively low number
of samples and a large number of variables, a result of the predominant spectroscopic
measuring techniques enabling the chemist to rapidly acquire a complete spectrum
for one sample. Depending on the actual technique employed, the number of vari-
ables can vary from several hundreds (typical in infrared measurements) to tens of
thousands (e.g., in Nuclear Magnetic Resonance, NMR). A second characteristic is
the high correlation between variables: neighboring spectral variables usually convey
very similar information. An example is shown in Fig. 2.1, depicting the gasoline data
set. It contains near-infrared (NIR) spectra of sixty gasolines at wavelengths from
900 to 1700 nm in 2 nm intervals (Kalivas 1997), and is available in the pls package.
Clearly, the spectra are very smooth: there is very high correlation between neigh-
boring wavelengths. This implies that the actual dimensionality of the data is lower
than the number of variables.

The plot is made using the following piece of code:

> data(gasoline)

> wavelengths <- seq(900, 1700, by = 2)

> matplot(wavelengths, t(gasoline$NIR), type = "l",

+ lty = 1, xlab = "Wavelength (nm)", ylab = "1/R")

The matplot function is used to plot all columns of matrix t(gasoline$NIR)
(or, equivalently, all rows of matrix gasoline$NIR) against the specified wave-
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Fig. 2.1 Near-infrared spectra of sixty gasoline samples, consisting of 401 reflectance values
measured at equally spaced wavelengths between 900 and 1700 nm

lengths. Clearly, all samples have very similar features—it is impossible to distin-
guish individual samples in the plot. NIR spectra are notoriously hard to interpret:
they consist of a large number of heavily overlapping peaks which leads to more
or less smooth spectra. Nevertheless, the technique has proven to be of immense
value in industry: it is a rapid, non-destructive method of analysis requiring almost
no sample preprocessing, and it can be used for quantitative predictions of sample
properties. The data used here can be used to quantitatively assess the octane number
of the gasoline samples, for instance.

In other cases, specific variables can be directly related to absolute or relative
concentrations. An example in which is the case for most variables is the wine data
set from the kohonen package, used throughout the book. It is a set consisting of
177 wine samples, with thirteen measured variables (Forina et al. 1986):

> data(wines)

> colnames(wines)

[1] "alcohol" "malic acid" "ash"

[4] "ash alkalinity" "magnesium" "tot. phenols"

[7] "flavonoids" "non-flav. phenols" "proanth"

[10] "col. int." "col. hue" "OD ratio"

[13] "proline"

Variables are reported in different units. All variables apart from "col. int.",
"col. hue" and "OD ratio" are concentrations. The meaning of the vari-
ables color intensity and color hue is obvious; the OD ratio is the ratio between the
absorbance at wavelengths 280 and 315 nm. All wines are from the Piedmont region
in Italy. Three different classes ofwines are present: Barolo,Grignolino andBarberas.
Barolo wine is made fromNebbiolo grapes; the other two wines have the name of the
grapes from which they are made. Production areas are partly overlapping (Forina
et al. 1986).
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> table(vintages)

vintages

Barbera Barolo Grignolino

48 58 71

The obvious aim in the analysis of such a data set is to see whether there is any
structure that can be related to the three cultivars. Possible questions are: “which
varieties are most similar?”, “which variables are indicative of the variety?”, “can
we discern subclasses within varieties?”, etcetera.

A quick overview of the first few variables can be obtained with a so-called pairs
plot:

> wine.classes <- as.integer(vintages)

> pairs(wines[, 1:3], pch = wine.classes, col = wine.classes)

This leads to the plot shown in Fig. 2.2. It is clear that the three classes can be
separated quite easily—consider the plot of alcohol against malic acid, for example.

A further data set comes from the field of mass-spectrometry-based proteomics.1

Figure2.3, showing the first mass spectrum (a healthy control sample) is generated
by:

> data(Prostate2000Raw)

> plot(Prostate2000Raw$mz, Prostate2000Raw$intensity[, 1],

+ type = "h", main = "Prostate data",

+ xlab = bquote(italic(.("m/z"))˜.("(Da)")),

+ ylab = "Intensity")

Each peak in the chromatogram corresponds to the elution of a compound, or in
more complex cases, a number of overlapping compounds. In a process called peak
picking (see next chapter) these peaks can be easily quantified, usually by measuring
peak area, but sometimes also by peak height. Since the number of peaks usually
is orders of magnitude smaller than the number of variables in the original data,
summarising the chromatograms with a peak table containing position and inten-
sity information can lead to significant data compression. Mass spectra, containing
intensities for different mass-to-charge ratios (indicated by m/z), can be recorded at
a very high resolution. To enable statistical analysis,m/z values are typically binned
(or “bucketed”). Even then, thousands of variables are no exception.

The data set contains 327 samples from three groups: patientswith prostate cancer,
benign prostatic hyperplasia, and normal controls (Adam et al. 2002; Qu et al. 2002).
All samples have been measured in duplicate:

1Originally from the R package msProstate, which is no longer available.
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Fig. 2.2 A pairs plot of the first three variables of the wine data. The three vintages are indicated
with different colors and plotting symbols: Barbera wines are indicated with black circles, Barolos
with red triangles and Grignolinos with green plusses

> table(Prostate2000Raw$type)

bph control pca

156 162 336

The data have already been preprocessed (binned, baseline-corrected, normalized—
see Chap.3); m/z values range from 200 to 2000 Dalton.

Such data can serve as diagnostic tools to distinguish between healthy anddiseased
tissue, or to differentiate between several disease states. The number of samples is
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Fig. 2.3 The first mass spectrum in the prostate MS data set

almost always very low—for rare diseases, patients are scarce, and stratification to
obtain relatively homogeneous groups (age, sex, smoking habits, ...) usually does
the rest; and in cases where the measurement is unpleasant or dangerous it may be
difficult or even unethical to get data from healthy controls. On the other hand, the
number of variables per sample is often huge. This puts severe restrictions on the
kind of analysis that can be performed and makes thorough validation even more
important.

The final data set in this chapter also comes from proteomics and is measured
with LC-MS, the combination of liquid chromatography andmass spectrometry. The
chromatography step serves to separate the components of a mixture on the basis
of properties like polarity, size, or affinity. At specific time points a mass spectrum
is recorded, containing the counts of particles with specific m/z values. Measuring
several samples therefore leads to a data cube of dimensions ntime, nmz, and
nsample; the number of time points is typically in the order or thousands, whereas
the number of samples rarely exceeds one hundred. Package ptw provides a data set,
lcms, containing data on three tryptic digests of E. coli proteins (Bloemberg et al.
2010).

Figure2.4 shows a top view of the first sample. The projection to the top of the
figure, effectively summing over all m/z values, leads to the “Total Ion Current”
(TIC) chromatogram. Similarly, if the chromatographic dimension would be absent,
the mass spectrum of the whole sample would be very close to the projection on
the right (a “direct infusion” spectrum). The whole data set consists of three of such
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Fig. 2.4 Top view of the first sample in data set lcms. The TIC chromatogram is shown on the
top, and the direct infusion mass spectrum on the right

planes, leading to a data cube of size 100× 2000× 3. Similar data sets are seen in the
field of metabolomics, where the chemical entities that are sampled are not peptides
(small fragments of proteins) as in proteomics, but small chemical molecules called
metabolites. Because of the high dimensionality and general complexity of such data
sets, chemometric methods have caught on very well in the -omics sciences.



Chapter 3
Preprocessing

Textbook examples typically use clean, perfect data, allowing the techniques of
interest to be explained and illustrated. However, in real life data are messy, noisy,
incomplete, downright faulty, or a combination of these. The first step in any data
analysis often consists of preprocessing to assess and possibly improve data quality.
This step may actually take more time than the analysis itself, and more often than
not the process consists of an iterative procedure where data preprocessing steps are
alternated with data analysis steps.

Some problems can immediately be recognized, such as measurement noise,
spikes, non-detects, and unrealistic values. In these cases, taking appropriate action
is rarely a problem.More difficult are the cases where it is not obvious which charac-
teristics of the data contain information, and which do not. There are many examples
where chance correlations lead to statistical models that are perfectly able to describe
the training data (the data used to set up the model in the first place) but have no
predictive abilities whatsoever.

This chapter will focus on standard preprocessing techniques used in the natural
sciences and the life sciences.Data are typically spectra or chromatograms, and topics
include noise reduction, baseline removal, peak alignment, peak picking, and scaling.
Only the basic general techniques are mentioned here; some more specific ways to
improve the quality of the data will be treated in later chapters. Examples include
Orthogonal Partial Least Squares for removing uncorrelated variation (Sect. 11.4)
and variable selection (Chap.10).

3.1 Dealing with Noise

Physico-chemical data always contain noise, where the term “noise” is usually
reserved for small, fast, random fluctuations of the response. The first aim of any
scientific experiment is to generate data of the highest quality, and much effort is
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usually put into decreasing noise levels. The simplest experimental way is to per-
form n repeated measurements, and average the individual spectra, leading to a noise
reduction with a factor

√
n. In NMR spectroscopy, for example, a relatively insensi-

tive analytical method, signal averaging is routine practice, where one has to strike
a balance between measurement time and data quality.

As an example, we consider the prostate data, where each sample has been mea-
sured in duplicate. The replicate measurements of the prostate data cover consecutive
rows in the data matrix. Averaging can be done using the following steps:

> prostate.array <- array(t(Prostate2000Raw$intensity),

+ c(2, 327, 10523))

> prostate <- apply(prostate.array, c(2, 3), mean)

The idea is to convert the matrix into an array where the first dimension contains the
two replicates for every sample—each element in the first dimension thus contains
one complete set of measurements. The final data matrix is obtained by averaging the
replicates. In this code snippet the outcome of apply is a matrix having dimensions
equal to the second and third dimensions of the input array. The first dimension is
averaged out. As we will see later, apply is extremely handy in many situations.
There is, however, amuch faster possibility usingrowsum leading to the same result:

> prostate <- rowsum(t(Prostate2000Raw$intensity),

+ group = rep(1:327, each = 2),

+ reorder = FALSE) / 2

> dim(prostate)

[1] 327 10523

This function sums all the rows forwhich the grouping variable (the second argument)
is equal. Since there are two replicates for every sample, the result is divided by two
to get the average values, and is stored in variable prostate. For this new variable
we should also keep track of the corresponding class labels:

> prostate.type <- Prostate2000Raw$type[seq(1, 654, by = 2)]

The result of the signal averaging is visualized in Fig. 3.1, using the function
matplot to show the original data, and afterwards adding the averaged data to
make sure they are plotted on top. For clarity, we are limiting ourselves to the first
250 m/z values:

> matplot(Prostate2000Raw$mz[1:250],

+ Prostate2000Raw$intensity[1:250, 1:2],

+ type = "l", col = "pink", lty = 1,

+ xlab = bquote(italic(.("m/z"))˜.("(Da)")),

+ ylab = "response")

> lines(Prostate2000Raw$mz[1:250], prostate[1, 1:250], lwd = 2)
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Fig. 3.1 The first averaged
mass spectrum in the
prostate data set; only the
first 250 m/z values are
shown. The original data are
shown in pink
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Also in the averaged data the noise is appreciable; reducing the noise level while
taking care not to destroy the data structure would make subsequent analysis much
easier.

The simplest approach is to apply a running mean, i.e., to replace every single
value by the average of the k points around it. The value of k, the so-called window
size, needs to be optimized; large values lead to a high degree of smoothing, but also
to peak distortion, and low values of k can only make small changes to the signal.
Very often k is chosen on the basis of visual inspection, either of the smoothed signal
itself or of the residuals. Running means can be easily calculated using the function
embed, providing a matrix containing successive chunks of the original data vector
as rows; using the function rowMeans one then can obtain the desired running
means.

> rmeans <- rowMeans(embed(prostate[1, 1:250], 5))

> plot(Prostate2000Raw$mz[1:250], prostate[1, 1:250],

+ type = "l", xlab = "m/z", ylab = "response",

+ main = "running means", col = 2)

> lines(Prostate2000Raw$mz[3:248], rmeans, type = "l", lwd = 2)

As can be seen in the left plot in Fig. 3.2, the smoothing effectively reduces the
noise level. Note that the points at the extremes need to be treated separately in
this implementation. The price to be paid is that peak heights are decreased, and
especially with larger spans one will see appreciable peak broadening. These effects
can sometimes be countered by using running medians instead of running means.
The function runmed, part of the stats package, is available for this:

> plot(Prostate2000Raw$mz[1:250], prostate[1, 1:250],

+ type = "l", xlab = "m/z", ylab = "response",

+ main = "running median", col = 2)

> lines(Prostate2000Raw$mz[1:250],

+ runmed(prostate[1, 1:250], k = 5), type = "l", lwd = 2)



16 3 Preprocessing

running means

m/z

re
sp

on
se

2000 2050 2100 2150 2200 2000 2050 2100 2150 2200

0.
0

0.
5

1.
0

0.
0

0.
5

1.
0

running median

m/z

re
sp

on
se

Fig. 3.2 Smoothing (black lines) of the averaged mass spectrum of Fig. 3.1 (in red): a running
mean (left plot) and a running median (right plot), both with a window size of five
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Fig. 3.3 Residuals of smoothing the first spectrum of the prostate data with a running mean (left
plot) or running median (right)

The result is shown in the right plot in Fig. 3.2. Its appearance is less smooth than the
runningmeanwith the samewindow size. Note that the functionrunmed does return
a vector with the same length as the input—the points at the extremes are unchanged.
The plots of the residuals in Fig. 3.3 show that both smoothing techniques do quite a
good job in removing high-frequency noise components without distorting the signal
too much: there is not much structure left in the residual plots.

Many other smoothing functions are available—only a fewwill bementioned here
briefly. In signal processing, Savitsky–Golay filters are a popular choice (Savitsky
andGolay 1964); every point is replaced by a smoothed estimate obtained froma local
polynomial regression. An added advantage is that derivatives can simultaneously be
calculated (see below). In statistics, robust versions of locally weighted regression
(Cleveland 1979) are often used; loess and its predecessor lowess are available
in R as simple-to-use implementations. The fact that the fluctuations in the noise
usually are much faster than the data has led to a whole class of frequency-based
smoothing methods, of which wavelets (Nason 2008) are perhaps the most popular
ones. The idea is to set the coefficients for the high-frequency components to zero,
which should leave only the signal component.
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Fig. 3.4 Binned version of
the mass-spectrometry data
from Fig. 3.1. Five data
points constitute one bin
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A special kind of smoothing is provided by binning, also called bucketing, which
not only averages consecutive values but also decreases the number of variables. To
replace five data points with their average, one can use:

> mznew <- colMeans(matrix(Prostate2000Raw$mz[1:250], nrow = 5))
> xnew <- colMeans(matrix(prostate[1, 1:250], nrow = 5))
> plot(Prostate2000Raw$mz[1:250], prostate[1, 1:250],
+ type = "l", xlab = "m/z", ylab = "response",
+ main = "binning", col = 2)
> lines(mznew, xnew, lwd = 2)

We have seen the idea before: in this case we fill a matrix with five rows column-wise
with the data, and then average over the rows. This leads to the plot in Fig. 3.4.

Obviously, the binned representation gives a cruder description of the data, but
still is able to follow the main features. Again, determining the optimal bin size is a
matter of trial and error. Binning has several major advantages over running means
and medians. First, it can be applied when data are not equidistant and even when
the data are given as positions and intensities of features, as is often the case with
mass-spectrometric data. Second, the effect of peak shifts (see below) is decreased:
even when a peak is slightly shifted, it will probably be still within the same bin.
And finally, more often than not the variable-to-object ratio is extremely large in data
sets from the life sciences. Summarizing the information in fewer variables in many
cases makes the subsequent statistical modelling more easy.

Although smoothing leads to data that are much better looking, one should also
be aware of the dangers. Too much smoothing will remove features, and even when
applied prudently, the noise characteristics of the data will be different. This may
significantly affect statistical modelling.
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3.2 Baseline Removal

In some forms of spectroscopy one can encounter a baseline, or “background signal”
that is far away from the zero level. Since this influences measures like peak height
and peak area, it is of utmost importance to correct for such phenomena.

Infrared spectroscopy, for instance, can lead to scatter effects—the surface of
the sample influences the measurement. As a result, one often observes spectral
offsets: two spectra of the same material may show a constant difference over the
whole wavelength range. This may be easily removed by taking first derivatives (i.e.,
looking at the differences between intensities at sequential wavelengths, rather than
the intensities themselves). Take a look at the gasoline data:

> nir.diff <- t(apply(gasoline$NIR, 1, diff))

> matplot(wavelengths[-1] + 1, t(nir.diff),

+ xlab = "Wavelength (nm)", ylab = "1/R (1st deriv.)",

+ type = "n")

> abline(h = 0, col = "gray")

> matlines(wavelengths[-1] + 1, t(nir.diff), lty = 1)

Note that the number of variables decreases by one. The result is shown in Fig. 3.5.
Comparison with the original data (Fig. 2.1) shows more detailed structure; the price
is an increase in noise. A better way to obtain first-derivative spectra is given by
the Savitsky–Golay filter (here using the sgolayfilt function from the signal
package), which is not only a smoother but can also be used to calculate derivatives:

> nir.deriv <- apply(gasoline$NIR, 1, sgolayfilt, m = 1)

In this particular case, the differences between the two methods are very small. Also
second derivatives are used in practice—the need to control noise levels is even
bigger in that case.

Another way to remove scatter effects in infrared spectroscopy is Multiplicative
Scatter Correction (MSC,Geladi et al. 1985;Næs et al. 1990). One effectivelymodels

Fig. 3.5 First-derivative
representation of the
gasoline NIR data
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the signal of a query spectrum as a linear function of the reference spectrum:

yq = a + byr

An obvious reference spectrummay not be available, and then often amean spectrum
is used. This is also the approach in the msc function of the pls package:

> nir.msc <- msc(gasoline$NIR)

For the gasoline data, the effects of MSC are quite small.
In more difficult cases, a non-constant baseline drift can be observed. First deriva-

tives are not enough to counter such effects, and one has to resort to techniques
that actually estimate the shape of the baseline. The exact function is usually not
important—the baseline will be subtracted and that is it. To illustrate this point, con-
sider the first chromatogram in the prostate data. One very simple solution is to
connect local minima, obtained from, e.g., 200-point sections:

> x <- Prostate2000Raw$intensity[1:4000, 1]

> mz <- Prostate2000Raw$mz[1:4000]

> lsection <- 200

> xmat <- matrix(x, nrow = lsection)

> ymin <- apply(xmat, 2, min)

> plot(mz, x, type = "l", col = "darkgray", ylim = c(-1.2, 5),

+ xlab = "m/z", ylab = "I")

> lines(mz, rep(ymin, each = lsection))

We have used the by now familiar trick to convert a vector to a matrix and calculate
minimal values for every column to obtain the intensity levels of the horizontal line
segments. The result is shown as the stair-like series of line segments in the left
plot of Fig. 3.6. Obviously, a more smooth baseline estimate would be better. One
function that can be used is loess, fitting local polynomials through the minimal
values:

> bsln.loess <- loess(ymin ˜ mz[seq(101, 4000, by = 200)])

> lines(mz, predict(bsln.loess, mz), lwd = 2, col = "blue")

This leads to the smooth blue line in the left plot in Fig. 3.6. Note that the line is
not influenced much by local variations, such as the large dip near 4000 m/z. For a
baseline estimate that is probably all right—by tweaking the smoother settings one
can adjust the result to the characteristics of the data to obtain a solution that makes
most sense. A similar effect could be obtained for the local-minimum approach in
the same figure by changing the length of the horizontal sections: a smaller length
would lead to more detail, and a larger length to a more global baseline estimate.

Another alternative is to use asymmetric least squares, where deviations above
the fitted curve are not taken into account (or only with a very small weight). This
is implemented in function baseline.corr in the ptw package, which returns
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Fig. 3.6 Simple baseline correction for the first mass spectrum in the prostate data: in the
left plot the baseline is estimated by a series of twenty local minima, the connected horizontal
segments. The blue line indicates the loess smooth (using default settings) of these minima. Right
plot: asymmetric least squares estimate of the baseline

a baseline-corrected signal. Internally, it uses the function asysm to estimate the
baseline:

> plot(mz, x, col = "darkgray", type = "l", ylim = c(-1.2, 5),

+ xlab = "m/z", ylab = "I")

> lines(mz, asysm(x), lwd = 2, col = "blue")

The result is shown in the right plot of Fig. 3.6. Again, the parameters of the asysm
function may be tweaked to get optimal results.

Obviously, manymore techniques can be used to estimate and remove baselines—
wavelets are a popular approach (Nason 2008).

3.3 Aligning Peaks—Warping

Many analytical data suffer from small shifts in peak positions. InNMRspectroscopy,
for example, the position of peaks may be influenced by the pH. What complicates
matters is that in NMR, these shifts are by no means uniform over the data; rather,
only very few peaks shift whereas the majority will remain at their original locations.
The peaks may even move in different directions. In mass spectrometry, the shift is
more uniform over the m/z axis and is more easy to account for—if one aims to
analyse the data in matrix form, binning is required, and in many cases a suitable
choice of bins will already remove most if not all of the effects of shifts. Moreover,
peak shifts are usually small, and may be easily corrected for by the use of standards.

The biggest shifts, however, are encountered in chromatographic applications,
especially in liquid chromatography. Two different chromatographic columns almost
never give identical elution profiles, up to the extent that peaks may even swap posi-
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Fig. 3.7 Comparison of two chromatograms of the lcms data set. Clearly, corresponding features
are not in the same positions

tions. The situation is worse than in gas chromatography, since retentionmechanisms
are more complex in the liquid phase than in the gas phase. In all forms of column
chromatography, column age is an important factor: a column that has been used for
some time almost certainly will show different chromatograms than when freshly
installed.

Peak shifts pose significant problems in modelling. In Fig. 3.7 the chromatograms
of the first mass channel in two of the samples of the lcms data (from the ptw
package) are shown:

> plot(time, lcms[1, , 2], type = "l",

+ xlab = "Time (s)", ylab = "I", main = "Mass channel 1")

> lines(time, lcms[1, , 3], type = "l", col = 2)

> legend("topleft", legend = paste("Sample", 2:3),

+ lty = 1, col = 1:2)

Clearly, both chromatograms contain the same features, although at different
locations—the shift is, equally clearly, not constant over the whole range. Comparing
these chromatograms with a distance-based similarity function based on Euclidean
distance will lead to the conclusion that there are huge differences, whereas the
chromatograms in reality are very similar.

Correction of such shifts is known as “time warping”, one of the more catchy
names in data analysis. The technique originates in speech processing (Sakoe and
Chiba 1978; Rabiner et al. 1978), and nowadays many forms exist. The most popular
in the literature for natural sciences and life sciences are Dynamic Time Warping
(DTW, Wang and Isenhour 1987), Correlation-Optimized Warping (COW, Nielsen
et al. 1998) and Parametric Time Warping (PTW, Eilers 2004). Optimization meth-
ods are used to align two signals, often using the squared differences between the
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two as a criterion; this is the case for DTW and the original version of PTW (Eilers
2004). As an alternative, the R package ptw (Bloemberg et al. 2010; Wehrens et al.
2015a) provides the so-called weighted cross correlation (WCC, de Gelder et al.
2001) criterion to assess the similarity of two shifted patterns. In this context the
WCC is used as a distance measure so that a value of zero indicates perfect align-
ment (Bloemberg et al. 2010). COW maximizes the correlation between patterns,
where the signals are cut into several segments which are treated separately. Another
package, VPdtw (Clifford et al. 2009; Clifford and Stone 2012), implementing a
penalized form of dynamic time warping is available from http://www.github.com/
david-clifford.

3.3.1 Parametric Time Warping

In PTW, one approximates the time axis of the reference signal by applying a poly-
nomial transformation of the time axis of the sample (Eilers 2004):

Ŝ(tk) = S(w(tk)) (3.1)

where Ŝ(tk) is the value of the warped signal at time point tk , where k is an index.
The warping function, w, is given by:

w(t) =
J∑

j=0

a j t
j (3.2)

with J the maximal order of the polynomial. In general, only low-order polynomials
are used. Since neighboring points on the time axis will be warped with almost the
same amount, peak shape distortions are limited. Thus, the method finds the set of
coefficients a0, . . . , aJ that minimizes the difference between the sample S and ref-
erence R, using whatever difference measure is desired. Especially for higher-degree
warpings there is a real possibility that the optimization ends in a local optimum, and
it is usually a good idea to use several different starting values.

This procedure is very suitable for modelling gradual changes, such as the slow
deterioration of chromatographic columns, so thatmeasurements taken days orweeks
apart can still be made comparable. For situations where a few individual peak shifts
have to be corrected (e.g., pH-dependent shifting of patterns in NMR spectra), the
technique is less ideal (Giskeødegård et al. 2010).

The original implementation of ptw (corresponding to function argument
mode = "backward") predicts, for position i , which point j in the signal will
end up at position i . This is somewhat counterintuitive, and in later versions (from
version 1.9.1 onwards) the default mode is "forward", basically predicting the
position of point i after warping. The interpretation of the coefficients in the two
modes is the same, just with reversed signs.

http://www.github.com/david-clifford
http://www.github.com/david-clifford
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We will illustrate the use of PTW by aligning the first mass chromatograms of
Fig. 3.7. Sample number 2 will be used as a reference, and the third sample is warped
so that the peak positions show maximal overlap:

> sref <- lcms[1, , 2]

> ssamp <- lcms[1, , 3]

> lcms.warp <- ptw(sref, ssamp, init.coef = c(0, 1, 0))

> summary(lcms.warp)

PTW object: individual alignment of 1 sample on 1 reference.

Warping coefficients:

[,1] [,2] [,3]

[1,] -43.047 1.0272 -5.8906e-06

Warping criterion: WCC

Warping mode: forward

Value: 0.087797

Using the default quadratic warping function with initial values init.coef =
c(0, 1, 0), corresponding to the unit warp (no shift, unit stretch, no quadratic
warping), we arrive at a warping where the sample is shifted approximately 43 points
to the left, is compressed around 3%, and experiences also a small quadratic warping.
The result is an agreement of 0.088, according to the default WCC criterion. A visual
check, shown in Fig. 3.8, confirms that the peak alignment is much improved:

> plot(time, sref, type = "l", lwd = 2, col = 2,
+ xlim = time[c(600, 1300)], xlab = "Time (s)", ylab = "I")
> lines(time, ssamp + 1e6, lty = 2)
> lines(time, lcms.warp$warped.sample + 2e6, col = 4)
> legend("topleft", lty = c(1, 2, 1), col = c(2, 1, 4),
+ legend = c("Reference", "Sample", "Warped sample"),
+ lwd = c(2, 1, 1))

To show the individual traces more clearly, a small vertical offset has been applied
to both the unwarped and warped sample. Obviously, the biggest gains can be made
at the largest peaks, and in the warped sample the features around 3250 and 3900s
are aligned really well. Nevertheless, some other features, such as the peaks between
3450 and 3650s, and the peaks at 3950 and 4200s still show shifts. This simple
quadratic warping function apparently is not flexible enough to iron out these differ-
ences. Note that squared-difference-based warping in this case leads to very similar
results:

> lcms.warpRMS <- ptw(sref, ssamp, optim.crit = "RMS")

> lcms.warpRMS$warp.coef

[,1] [,2] [,3]

[1,] -39.011 1.0169 -1.4243e-06
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Fig. 3.8 PTW of the data shown in Fig. 3.7, using a quadratic warping function. For easier inter-
pretation, small vertical offsets have been added to the sample and warped sample spectra and only
a part of the time axis is shown

More complex warping functions, fitting polynomials of degrees three to five, can
be tried:

> lcms.warp2 <- ptw(sref, ssamp, init = c(0, 1, 0, 0))

> lcms.warp3 <- ptw(sref, ssamp, init = c(0, 1, 0, 0, 0))

> lcms.warp4 <- ptw(sref, ssamp, init = c(0, 1, 0, 0, 0, 0))

To visualize these warping functions, we first gather all warpings in one list, and
obtain the qualities of each element using a close relative of the apply function,
sapply:

> allwarps <- list(lcms.warp, lcms.warp2, lcms.warp3, lcms.warp4)
> wccs <- sapply(allwarps, function(x) x$crit.value)

Where apply operates on rows or columns of a matrix, sapply performs actions
on list elements, and returns the result in a simple way, in this case a matrix.

Becausewe are interested in the deviations from the identitywarp (i.e., no change),
we subtract that from the warping functions:

> allwarp.funs <- sapply(allwarps, function(x) x$warp.fun)

> warpings <- allwarp.funs - 1:length(sref)

Finally, we can plot the columns of the resulting matrix:

> matplot(time, warpings, type = "l", lty = rep(c(1, 2), 2),
+ col = 1:4, ylim = c(min(warpings), 0.5))
> abline(h = 0, col = "gray", lty = 2)
> legend("bottom", lty = rep(c(1, 2), 2), col = 1:4, bty = "n",
+ legend = paste("Degree", 2:5, " - WCC =", round(wccs, 3)))
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Fig. 3.9 PTW warping functions of different degrees

This leads to Fig. 3.9. The horizontal line at zero indicates the identity warp. The
higher-degree warping functions lead to more or less the same values for the WCC
criterion; the functions for degrees four and five are almost identical. Note that all
these lead to much larger warpings in the right part of the chromatogram than the
second-degree warping function, a sign that these models are trying to correct also
the differences at later elution times. Note that individual warping functions can be
shown very easily by a command like

> plot(lcms.warp, "function")

One very important characteristic of LC-MS data is that it contains multiple m/z
traces. If themain reason for differences in retention time is the state of the column, all
traces should bewarpedwith the samewarping function.When usingmultiple traces,
one should have less trouble identifying the optimal warping since ambiguities, that
may exist in single chromatograms, are resolved easily (Bloemberg et al. 2010).
If all traces should be warped with the same coefficients, one could speed up the
procedure by performing the warping on a subset of samples—bad-quality traces
can have a bad influence on warping estimates, so it makes sense to use a high-
quality subset. Several criteria exist to choose such a subset, e.g., choosing traces
with high average intensity. A popular criterion that is slightly more sophisticated is
Windig’s Component Detection Algorithm (CODA, Windig et al. 1996), one of the
choices in ptw’sselect.traces function. CODAbasically selects high-variance
traces after smoothing and a unit-length scaling step—the variance of a tracewith one
high-intensity feature will always be larger than that of a trace with the same length
but many low-intensity features. The following example chooses the ten traces which
show the highest values for the CODA criterion, and uses these for constructing one
global warping function:
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> srefM <- lcms[, , 2]

> ssampM <- lcms[, , 3]

> traces <- select.traces(srefM, criterion = "var")

> lcms.warpglobal <-

+ ptw(srefM, ssampM, warp.type = "global",

+ selected.traces = traces$trace.nrs[1:10])

> summary(lcms.warpglobal)

PTW object: global alignment of 10 samples on 10 references.

Warping coefficients:

[,1] [,2] [,3]

[1,] -95.514 1.1292 -5.8147e-05

Warping criterion: WCC

Warping mode: forward

Value: 0.13845

In other cases, onewould like to have individualwarpings for individual traces; this
is the default mode for applying the ptw function (warp.type =
"individual").

Finally, one can also mix global and individual alignments. Here we will com-
pare an eight-degree individual warping with a global warping of degree two, fol-
lowed by a four-degree individual warping, also leading to a net warping degree
of eight (Bloemberg et al. 2010). Because repeated application of ptw can lead to
information loss at the extremes of the data points (compression upon compression)
we first add columns of zeros to both sides of the data matrices:

> npad <- 500
> srefM2 <- padzeros(lcms[, , 2], npad, "both")
> ssampM2 <- padzeros(lcms[, , 3], npad, "both")
> sample2.indiv.warp <-
+ ptw(srefM2, ssampM2, init.coef = c(0, 1, 0, 0, 0, 0, 0, 0, 0))
> sample2.global.warp <-
+ ptw(srefM2, ssampM2, init.coef = c(0, 1, 0),
+ warp.type = "global")
> sample2.final.warp <-
+ ptw(srefM2, ssampM2,
+ init.coef = c(sample2.global.warp$warp.coef, 0, 0))

The individual warping is initialized using estimates for the lower degree coefficients
found in the global warping. We evaluate the results by looking at the total ion
currents, given by the column sums of the warped samples:
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Fig. 3.10 Comparison of individual and global parametric time warping for samples two and three
of the lcms data: the total ion current (TIC) of the aligned samples is shown. In the top panel, all
mass traces have been warped individually using a warping function of degree eight—the bottom
panel shows a two-stage warping using a global warping of degree two, followed by an individual
warping of degree four

> orig.ind <- (npad + 1):(npad + 2000)
> plot(time, colSums(srefM2)[orig.ind], col = 2,
+ type = "l", main = "PTW (indiv.)", ylab = "I")
> lines(time, colSums(ssampM2)[orig.ind], col = "gray")
> lines(time,
+ colSums(sample2.indiv.warp$warped.sample)[orig.ind], lwd = 2)
> legend("topleft", bty = "n", lty = 1, lwd = c(1, 2, 1),
+ legend = c("Original sample", "Warped sample", "Reference"),
+ col = c("gray", "black", "red"))

This gives the top panel in Fig. 3.10, showing the result of the individual eight-degree
warping. The bottom plot is produced with similar code, using sample2.final.
warp instead of sample2.indiv.warp. Clearly, both alignments lead to an
overall result that is very good.
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Warping a study sample to a reference will only be successful if the same features,
or at least a reasonable number of them, are present in both samples. However, in
fields like metabolomics this is not always the case: features present in one sample
may be absent from another, and standard application of warping methodology can
easily lead to a situation where the wrong peaks are matched up. A similar situation
can exist in comparing two distinctly different groups, e.g., treated samples and con-
trols (Wehrens et al. 2015a). If quality control (QC) samples are available, typically
the same pooled sample injected several times during the injection sequence, a good
strategy is to base a warping profile on aligning these QC samples. For aligning a
particular study sample, one can then use an interpolation of the warping functions
used for the surrounding QCs. In Wehrens et al. (2015a), the results were very good,
even though large differences in retention times were observed in the raw data due
to a leakage in the HPLC system leading to increasing pressure differences during
the experiment.

A final remark is that the ptw package also supports warpings of non-continuous
data (Wehrens et al. 2015a) such as peak lists obtained by peak-picking procedures
(see next paragraph).Not only is this proceduremuch faster thanwarping full profiles,
it is also more robust in that baselines and other strange effects not corresponding
to true features are eliminated in the peak-picking phase and no longer influence the
warping.

3.3.2 Dynamic Time Warping

Dynamic Time Warping (DTW), implemented in package dtw (Giorgino 2009),
provides a similar approach, constructing awarping function that provides amapping
from the indices in the query signal to the points in the reference signal1:

> warpfun.dtw <- dtw(ssamp, sref)

> plot(warpfun.dtw)

> abline(0, 1, col = "gray", lty = 2)

The result is shown in the left plot of Fig. 3.11. Here, the warping function is not
restricted to be a polynomial, as in PTW.

A horizontal segment indicates that several points in the query signal are mapped
to the same point in the reference signal; the axis of the query signal is compressed
by elimination (or rather, averaging) of points. Similarly, vertical segments indicate
a stretching of the query signal axis by the duplication of points. Note that these
horizontal and vertical regions in the warping function of Fig. 3.11 may also lead to
peak shape distortions.

DTW chooses the warping function that minimizes the (weighted) distance
between the warped signals:

1Note that the order of sample and reference arguments is reversed compared to the ptw function.
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Fig. 3.11 Left plot: warping function of the data from Fig. 3.7. The identity warp is indicated with
a dashed gray line. Right plot: contour lines of the cost function, and the final warping function (fat
line)
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where k is the common axis towhich both the query q and the reference r aremapped,
m(k) is the warped query signal and n(k) is the warped reference. Note that in this
symmetric formulation there is no difference in treatment of query and reference
signals: reversing the roles would lead to the same mapping. The weights are used to
remove the tendency to select the shortest warping path, but should be chosen with
care. The weighting scheme in the original publication (Sakoe and Chiba 1978) is
for point k + 1:

w(k + 1) = m(k + 1) − m(k) + n(k + 1) − n(k)

That is, if both indices advance to the next point, the weight is 2; if only one of the
indices advances to the next point, the weight is 1. A part of the cumulative distance
from the start of both signals is shown in the right plot of Fig. 3.11: the warping
function finds the minimum through the (often very noisy) surface.

Obviously, such a procedure is very flexible, and indeed, one can define warping
functions that put any two signals on top of each other, no matter how different
they are. This is of course not what is desired, and usually several constraints are
employed to keep the warping function from extreme distortions. One can, e.g., limit
the maximal warping, or limit the size of individual warping steps. The dtw package
implements these constraints and also provides the possibility to align signals of
different length.

Once the warping function is calculated, we can use it to actuallymap the points in
the second signal to positions corresponding to the first. For this, the warp function
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Fig. 3.12 DTW-corrected mass-spectrometry data

should be used, which internally performs a linear interpolation of the common axis
to the original axes:

> warped.signal <- warp(warpfun.dtw, index.reference = FALSE)

> plot(time, sref, type = "l", lwd = 2, col = 2,

+ xlim = c(time[600], time[1300]),

+ xlab = "Time", ylab = "I")

> lines(time, ssamp + 1e6, lty = 2)

> lines(time, ssamp[warped.signal] + 2e6, col = 4)

> legend("topleft", lty = c(1, 2, 1), col = c(2, 1, 4),

+ legend = c("Reference", "Sample", "Warped sample"),

+ lwd = c(2, 1, 1))

The warped signal can directly be compared to the reference. The result is shown
in Fig. 3.12. Immediately one can see that the warping is perfect: peaks are in exactly
the same positions. The only differences between the two signals are now found in
areas where the peaks in the reference signal are higher than in the warped signal
(e.g., m/z values at 3,100 and just below 3,300)—these peak distortions can not be
corrected for.

These data are ideally suited for DTW: individual mass traces contain not too
many, nicely separated peaks, so that it is clear what features should be aligned. The
quality of the warping becomes clear when we align all traces individually and then
compare the TIC of the warped sample with the TIC of the reference:

> sample2.dtw <- matrix(0, 100, 2000)

> for (i in 1:100) {

+ warpfun.dtw.i <- dtw(ssampM[i, ], srefM[i, ], keep = TRUE)

+ new.indices <- warp(warpfun.dtw.i, index.reference = FALSE)

+ sample2.dtw[i, ] <- ssampM[i, new.indices]

+ }
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The result is shown in the top plot of Fig. 3.13—this should be compared with the
top plot in Fig. 3.10. Clearly, the DTW result is much better. Note that since there is
no overall compression, the length of the warped sample equals the original length.

Global alignment, using one warping function for all traces simultaneously, is
available using the following code:

> warp.dtw.gl <- dtw(t(ssampM), t(srefM))

> samp.aligned <- lcms[, warp(warp.dtw.gl), 3]

The result, although still very good, is less convincing than the sum of individual
DTW alignments: although the features are still aligned correctly, there are many
examples of peak deformations. Global alignment with DTW is more constrained
and therefore is forced to make compromises.

One should be careful, however, when applying extremely flexible warping meth-
ods such as DTW to data sets in which not all peaks can be matched. In this particular
example we have aligned replicate measurements, so in principle every peak should
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be present in all samples. In practice, one very often will want to align different
samples and alignment methods can easily be led astray by the presence of extra
peaks, especially when these are of high intensity.

3.3.3 Practicalities

In almost all cases, a set of signals should be aligned in such a way that all features
of interest are at the same positions in every trace. One strategy is to use the column
means of the data matrix as a reference. This is only possible with very small shifts
and will lead to peak broadening. Simply taking a random record from the set as a
reference is better but still may be improved upon—it usually pays to perform some
experiments to see which reference would lead to the smallest distortion of the other
signals, while still leading to good alignment. If the number of samples is not too
large, one can perform all possible combinations and see which one comes out best.

Careful data pretreatment is essential—baselines may severely influence the
results and should be removed before alignment. In fact, one of the motivations of
the CODA algorithm is to select traces that do not contain a baseline (Windig et al.
1996). Another point of attention is the fact that features can have intensities differing
several orders in magnitude. Often, the biggest gain in the alignment optimization
is achieved by getting the prominent features in the right location. Sometimes, this
dominance leads to suboptimal alignments. Also differences in intensity between
sample and reference signals can distort the results. Methods to cope with these
phenomena will be treated in Sect. 3.5. Finally, it has been shown that in some cases
results can be improvedwhen the signals are divided into segments which are aligned
individually (Wang and Isenhour 1987). Especially with more constrained warping
methods like PTW this adds flexibility, but again, there is a danger of warping too
much andmapping features onto thewrong locations. Especially in cases where there
may be differences between the samples (control versus diseased, for instance) there
is a risk that a biomarker peak, present only in one of the two classes, is incorrectly
aligned. This, again, is all the more probable when that particular peak has a high
intensity.

Packages dtw and ptw are by no means alone in tackling alignment. We already
mentioned the VPdtw package: in addition, several Bioconductor packages, such as
PROcess and xcms, implement both general andmore specific alignment procedures,
in most cases for mass-spectrometry data or hyphenated techniques like LC-MS.

3.4 Peak Picking

Several of the problems associated with misalignment can be avoided if the spectra
can be transformed into lists of features, a process that is also known as peak pick-
ing. The first question of course is: what is a peak, exactly? This depends on the
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spectroscopic technique—usually it is a local maximum in a more or less smooth
curve. In NMR, for instance, peaks usually have a specific shape (a Lorentz line
shape). This knowledge can be used to fit the peaks to the data, and also to give
quality assessments of the features that are identified. In chromatography, peaks can
be described by a modified normal distribution, where the modification is allowing
for peak tailing and other experimental imperfections. In cases where we do not want
to make assumptions about peak shape, we are forced to more crude methods, e.g.,
finding a list of local maxima. One simple way to do this is again to make use of the
embed function that splits up the spectrum in many overlapping segments. For each
segment, we can calculate the location of the local maximum, and eliminate those
segments where the local maximum is at the beginning or at the end. A function
implementing this strategy is given in the next piece of code:

> pick.peaks <- function(x, span) {

+ span.width <- span * 2 + 1

+ loc.max <- span.width + 1 -

+ apply(embed(x, span.width), 1, which.max)

+ loc.max[loc.max == 1 | loc.max == span.width] <- NA

+

+ pks <- loc.max + 0:(length(loc.max) - 1)

+ unique(pks[!is.na(pks)])

+ }

The span parameter determines the width of the segments: wider segments will
cause fewer peaks to be found. Let us investigate the effect using the prostate data
from Fig. 3.2:

> pks10 <- pick.peaks(rmeans, 10)

> plot(Prostate2000Raw$mz[3:248], rmeans, type = "l",

+ xlab = "m/z", ylab = "Response", main = "span = 10")

> abline(v = Prostate2000Raw$mz[pks10 + 2], col = 2)

> pks40 <- pick.peaks(rmeans, 40)

> plot(Prostate2000Raw$mz[3:248], rmeans, type = "l",

+ xlab = "m/z", ylab = "Response", main = "span = 40")

> abline(v = Prostate2000Raw$mz[pks40 + 2], col = 2)

This leads to the plots in Fig. 3.14; with the wider span, many of the smaller features
are not detected. At the same time, the many noisy features that are found with the
smaller span, e.g., around m/z value 2040, probably do not constitute valid features.
Clearly, the results of peak picking depend crucially on the degree and quality of the
smoothing.

Once the positions of the features have been identified, one should quantify the
signals. If an explicit peak model has been fitted, the normal approach would be to
use the peak area, obtained by integrating between certain limits; if not, very often the
peak height is taken. Under the assumption that peak widths are relatively constant,
the two measures lead to similar results. If possible, one should then identify the
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Fig. 3.14 Peak picking by identifying local maxima (prostate data): in the left figure the span is
ten points, in the right forty

signals: in, e.g., mass spectrometry this would mean the identification of the corre-
sponding fragment ion. Having these assignments makes it much easier to compare
spectra of different samples: even if the features are not exactly at the same position,
it still is clear which signals to compare. Thus, the need for peak alignment is obvi-
ated. In practice, however, it is rare to have complete assignments of spectral data
from complex samples, and an alignment step remains necessary.

3.5 Scaling

The scaling method that is employed can totally change the result of an analysis.
One should therefore carefully consider what scaling method (if any) is appropriate.
Scaling can serve several purposes. Many analytical methods provide data that are
not on an absolute scale; the raw data in such a case cannot be used directly when
comparing different samples. If some kind of internal standard is present, it can be
used to calibrate the intensities. In NMR, for instance, the TMS (tetramethylsilane,
added to indicate the position of the origin on the x-axis) peak can be used for this
if its concentration is known. Peak heights can then be compared directly. However,
even in that situation it may be necessary to further scale intensities, since samples
may contain different concentrations. A good example is the analysis of a set of
urine samples by NMR. These samples will show appreciable global differences in
concentrations, perhaps due to the amount of liquid the individuals have been con-
suming. This usually is not of interest—rather, one seeks one or perhaps a couple of
metabolites with concentrations that deviate from the general pattern. As an example,
consider the first ten spectra of the prostate data:
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> range(apply(prostate[1:10, ], 1, max))

[1] 16.360 68.898

> range(rowSums(prostate[1:10, ]))

[1] 2531.7 15207.9

The intensity differenceswithin these first ten spectra are already a factor five for both
statistics. If these differences are not related to the phenomenon we are interested
in but are caused, e.g., by the nature of the measurements, then it is important to
remove them. As stated earlier, also in cases where alignment is necessary, this type
of differences between samples can hamper the analysis.

Several options exist to make peak intensities comparable over a series of spectra.
The most often-used are range scaling, length scaling and variance scaling. In range
scaling, one makes sure that the data have the same minimal and maximal values.
Often, only the maximal value is considered important since for many forms of
spectroscopy zero is the natural lower bound. Length scaling sets the length of each
spectrum to one; variance scaling sets the variance to one. The implementation in R
is easy. Here, these three methods are shown for the first ten spectra of the prostate
data. Range scaling can be performed by

> prost10.rangesc <- sweep(prostate[1:10, ], MARGIN = 1,

+ apply(prostate[1:10, ], 1, max),

+ FUN = "/")

> apply(prost10.rangesc, 1, max)

1 2 3 4 5 6 7 8 9 10

1 1 1 1 1 1 1 1 1 1

> range(rowSums(prost10.rangesc))

[1] 103.33 220.73

The sweep function is very similar to apply—it performs an action for every
row or column of a data matrix. The MARGIN argument states which dimension is
affected. In this case the MARGIN = 1 indicates the rows; column-wise sweeping
would be achieved with MARGIN = 2. The third argument is the statistic that is
to be swept out, here the vector of the per-row maximal values. The final argument
states how the sweeping is to be done. The default is to use subtraction; here we use
division. Clearly, the differences between the spectra have decreased.

Length scaling is done by dividing each row by the square root of the sum of its
squared elements:

> prost10.lengthsc <- sweep(prostate[1:10, ], MARGIN = 1,

+ apply(prostate[1:10, ], 1,

+ function(x) sqrt(sum(xˆ2))),

+ FUN = "/")

> range(apply(prost10.lengthsc, 1, max))

[1] 0.11075 0.20581

> range(rowSums(prost10.lengthsc))

[1] 18.937 30.236
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The difference between the smallest and largest values is now less than a factor of
two. Scaling on the basis of variance or standard deviation has a similar effect:

> prost10.varsc <- sweep(prostate[1:10, ], MARGIN = 1,

+ apply(prostate[1:10, ], 1, sd),

+ FUN = "/")

> range(apply(prost10.varsc, 1, max))

[1] 11.697 21.659

> range(rowSums(prost10.varsc))

[1] 1976.5 3245.7

The underlying hypothesis in these scaling methods is that the maximal intensities,
or the vector lengths, or the variances, should be equal in all objects. However, there
is no real way of assessing whether these assumptions are correct, and it is therefore
always advisable to assess different options.

Often in statistical modelling, especially in a regression context, we are more
interested in deviations from a mean value than in the values per se. These deviations
can be obtained by mean-centering, where one subtracts the mean value from every
column in the data matrix, for example with the gasoline data:

> NIR.mc <- t(sweep(gasoline$NIR, 2, colMeans(gasoline$NIR)))

Subtraction is the default operation in sweep, so we do not need to provide that
explicitly, but one can also use sweep to perform other functions by providing a
FUN = argument. An even easier way to achieve the same effect is to use the
scale function:

> NIR.mc <- scale(gasoline$NIR, scale = FALSE)

> matplot(wavelengths, t(NIR.mc),

+ type = "l", xlab = "Wavelength (nm)",

+ ylab = "1/R (mean-centered)", lty = 1)

The result is shown in Fig. 3.15; note the differences with the raw data shown in
Fig. 2.1 and the first derivatives in Fig. 3.5.

When variables have been measured in different units or have widely different
scales, we should take this into account. Obviously, one does not want the scale in
which a variable is measured to have a large influence on the model: just switching
to other units would lead to different results. One popular way of removing this
dependence on units is called autoscaling, where every column xi is replaced by

(xi − μ̂i )/σ̂i

In statistics, this is often termed standardization of data; the effect is that all variables
are considered equally important. This type of scaling is appropriate for the wine
data, since the variables have different units and very different ranges:
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> apply(wines, 2, range)

alcohol malic acid ash ash alkalinity magnesium

[1,] 11.03 0.74 1.36 10.6 70

[2,] 14.83 5.80 3.23 30.0 162

tot. phenols flavonoids non-flav. phenols proanth

[1,] 0.98 0.34 0.13 0.41

[2,] 3.88 5.08 0.66 3.58

col. int. col. hue OD ratio proline

[1,] 1.28 0.48 1.27 278

[2,] 13.00 1.71 4.00 1680

The apply function in this case returns the range of every column. Clearly, the
last variable (proline) has values that are quite a lot bigger than the other variables.
The scale function already mentioned in the context of mean-centering also does
autoscaling—simply use the argumentscale = TRUE, (the default, as it happens):

> wines.mc <- scale(wines, scale = FALSE)

> wines.sc <- scale(wines, scale = TRUE)

> boxplot(wines.mc ˜ col(wines.mc),

+ main = "Mean-centered wine data")

> boxplot(wines.sc ˜ col(wines.sc),

+ main = "Autoscaled wine data")

The result is shown in Fig. 3.16. In the left plot, showing the mean-centered data,
the dominance of proline is clearly visible, and any structure that may be present
in the other variables is hard to detect. The right plot is much more informative.
In almost all cases where variables indicate concentrations or amounts of chemical
compounds, or represent measurements in unrelated units, autoscaling is a good idea.
For the wine data, we will use always autoscaled data in examples, even in cases
where scaling does not matter.
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Fig. 3.16 Boxplots for the thirteen mean-centered variables (left) and auto-scaled variables (right)
in the wine data set

For spectral data, prevalent in the natural sciences and the life sciences, on the
other hand, autoscaling is usually not recommended. Very often, the data consist
of areas of high information content, viz. containing peaks of different intensities,
and areas containing only noise. When every spectral variable is set to the same
standard deviation, the noise is blown up to the same size as the signal that contains
the actual information. Clearly, this is not a desirable situation, and in such cases
mean-centering is much preferred.

Specialized preprocessing methods are used a lot in spectroscopy. When the total
intensity in the spectra is sample-dependent, spectra should be scaled in such a way
that intensities can be compared. That is, one should scale the rows of the matrix
(and after that, perhaps, also the columns). A typical example is given by the analysis
of urine spectra (of whatever type): depending on how much a person has been
drinking, urine samples can be more or less diluted, and therefore there is no direct
relation between peak intensities in spectra from different subjects. This is a tricky
phenomenon where domain knowledge should be used to decide on a sensible form
of scaling. Sometimes it is known that one particular variable does not change much
in different samples—in the urine context one could hypothesis that some component
is always excreted at the same rate in all different persons. Such a compound could
then be used as the yardstick and could be set to the same value (say, 100) in all
samples by multiplication with an appropriate factor. The same factor then is applied
to all other variables. An alternative is to scale to a particular total sum of responses.
This, however, leads to so-called compositional data that in general require special
data analysis approaches to avoid spurious correlations (Filzmoser et al. 2018).

One other form of row scaling is often used, especially in NIR applications:
Standard Normal Variate scaling (SNV). This method essentially does autoscaling
on the rows instead of the columns. That is, every spectrum will after scaling have
a mean of zero and a standard deviation of 1. This gets rid of arbitrary offsets and
multiplication factors. Obviously, the assumption that all spectra should have the
samemean and variance is not always realistic! In some cases, the fact that the overall
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intensity in one spectrum is consistently higher may contain important information.
In most cases, SNV gives results that are very close to MSC.

When noise is multiplicative in nature rather than additive, the level of variation
depends on the signal strength. An example is mass spectrometry, where the error in
signal intensity is often proportional to the intensity itself, and errors are routinely
reported as relative standard deviations (the standard deviation divided by the abso-
lute value of the mean). Since most noise reduction methods assume additive noise,
a simple solution is to perform a log-transformation of the data. This decreases the
influence of the larger features, and makes the noise more constant over the whole
range. In addition, regular noise reduction methods can be applied if required. Log
transformation can also be used to reduce the dominance of the largest features,which
can be disturbing the analysis, e.g., in alignment applications. An often-used scaling
with a similar albeit less pronounced effect is square-root scaling, which also has the
advantage that it can be performed for data containing zeros. Also Pareto scaling
decreases the effect of high-intensity variables, but not as dramatically as autoscal-
ing or log scaling. It is basically autoscaling using the square root of the standard
deviation in rescaling, rather than the standard deviation itself. This form of scaling
has become popular in biomarker identification applications, e.g., in metabolomics:
one would like to find variables that behave differently in two populations, and one
is mostly interested in those variables that have high intensities (see also Sect. 11.5).

Deciding on an appropriate scaling is one of the most important decisions for
many multivariate analyses, something that is made even more difficult by the fact
that often several scaling steps are performed in sequence. Usually it is unclear what
exactly the optimal scaling, or sets of scaling operations is—a few rules of thumb
exist, but they are surely not covering all possible situations. Here is a stab at a list
of the most common points, to be considered in sequence:

• a comparison between samples should be meaningful. That means that irrelevant
concentration differences (as in urine samples) or irrelevant offsets (as in NIR
spectra) should be removed as a first step.

• data based on counts often show an intensity-dependent error (often the relative
standard deviation is constant)—in such cases, log-scaling is appropriate.

• for latent-variable methods like PCA, mean-centering is a must. Sometimes this
is done automatically, but be sure to check.

• if all variables are thought to be equally important, at least in principle, then
autoscaling may be appropriate. Note that for spectral data this often leads to
increased noise in variables that do not contain information. In cases where one
would like to concentrate on variables with a large signal, Pareto scaling may be
preferable.

Agood strategydetermines before analysing the data how todo scaling; of course, one
should not be afraid to change things if the scaling leads to unexpected disadvantages,
but blindly trying several possible combinations and then selecting the one that seems
most promising is bound to lead to problems. More on this topic can be found in
Chap.9 on validation.
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3.6 Missing Data

Missing data are measurements that for some reason have not led to a valid result. In
spectroscopic measurements, missing data are not usually encountered, but in many
other areas of science they occur frequently. The main question to be answered is:
are the data missing at random? If yes, then we can probably get around the problem,
provided there are not too many missing data. If not, then it means that there is some
rationale behind the missingness of data points. If we would know what it was, we
could use that to decide how to handle the missing values. Usually, we don’t, and
that means trouble: if the missingness is related to the process we are studying our
results will be biased and we can never be sure we are drawing correct conclusions.

Missing values in R are usually indicated by NA. Since many types of analysis do
not accept data containing NAs, it is necessary to think of how to handle the missing
values. If there are only a few, and they occurmostly in one or a few samples or one or
a few variables, we might want to leave out these samples (or variables). Especially
when the data set is rather large this seems a small price to pay for the luxury of
having complete freedom in choosing any analysis method that is suited to our aim.
Alternatively, one can try to find suitable replacements for the missing values, e.g.
by estimating them from the other data points, a process that is known as imputation.
Intermediate approaches are also possible, in which variables or samples with too
many missing values are removed, and others, with a lower fraction of missing data,
are retained. Sometimes imputation is not needed for statistical analysis: fitting linear
models with lm for instance is possible also in the presence of missing values—these
data points will simply be ignored in the fit process. Other functions such as var
and cor have arguments that define several ways of dealing with missing values. In
var, the argument is na.rm, allowing the user to either throw out missing values
or accept missing values in the result, whereas cor has a more elaborate mechanism
of defining strategies to deal with missing values. For instance, one can choose to
consider only complete cases, or use only pairwise complete observations. Consult
the manual pages for more information and examples. One example of dealing with
missing values is shown in Sect. 11.1.

3.7 Conclusion

Data preprocessing is an art, in most cases requiring substantial background knowl-
edge. Because several steps are taken sequentially, the number of possible schemes
is often huge. Should one scale first and then remove noise or the other way around?
Individual steps will influence each other: noise removal may make it more easy to
correct for a sloping baseline, but the presence of a baseline may also influence your
estimate of what is noise. General recipes are hard to give, but some problems are
more serious than others. The presence of peak shifts, for instance, will make any
multivariate analysis very hard to interpret.
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Finally, one should realize that bad data preprocessing can never be compensated
for in the subsequent analysis. One should always inspect the data before and after
preprocessing and assess whether the relevant information has been kept while dis-
turbing signals have been removed. Of course, that is easier said than done—and
probably one will go through a series of modelling cycles before one is completely
satisfied with the result.



Part II
Exploratory Analysis



Chapter 4
Principal Component Analysis

Principal Component Analysis or PCA (Jackson 1991; Jolliffe 1986) is a technique
which, quite literally, takes a different viewpoint of multivariate data. It has many
uses, perhaps the most important of which is the possibility to provide simple two-
dimensional plots of high-dimensional data. This way, one can easily assess the
presence of grouping or outliers, and more generally obtain an idea of how samples
and variables relate to each other. PCA defines new variables, consisting of linear
combinations of the original ones, in such a way that the first axis is in the direction
containing most variation. Every subsequent new variable is orthogonal to previous
variables, but again in the direction containing most of the remaining variation. The
new variables are examples of what is called latent variables (LVs)—in the context
of PCA the term principal components (PCs) is used.

The central idea is that more often than not many of the variables in high-
dimensional data are superfluous. If we look at high-resolution spectra, for example,
it is immediately obvious that neighboring wavelengths are highly correlated and
contain similar information. Of course, one can try to pick only those wavelengths
that appear to be informative, or at least differ from the other wavelengths in the
selected set. This could, e.g., be based on clustering the variables, and selecting for
each cluster one “representative”. However, this approach is quite elaborate and will
lead to different results when using different clustering methods and cutting criteria.
Another approach is to use variable selection, given some criterion—one example is
to select a limited set of variables leading to a matrix with maximal rank. Variable
selection is notoriously difficult, especially in high-dimensional cases. In practice,
many more or less equivalent solutions exist, which makes the interpretation quite
difficult. We will come back to variable selection methods in Chap. 10.

PCA is an alternative. It provides a direct mapping of high-dimensional data into
a lower-dimensional space containing most of the information in the original data.
The tacit assumption here is that variation equals information. This is not always
true, since variation may also be totally meaningless, e.g., in the case of noise.1 The

1The reverse is true, however: if there is no variation in the data, there is no information either.
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coordinates of the samples in the new space are called scores, often indicated with
the symbol T . The new dimensions are linear combinations of the original variables,
and are called loadings (symbol P). The term Principal Component (PC) can refer
to both scores and loadings; which is meant is usually clear from the context. Thus,
one can speak of sample coordinates in the space spanned by PC 1 and 2, but also of
variables contributing greatly to PC 1.

The matrix multiplication of scores and loadings leads to an approximation X̃ of
the original data X :

X = X̃ + E = T a PT
a + E (4.1)

Superscript T , as usual, indicates the transpose of a matrix. The subscript a indicates
how many components are taken into account. Taking more numbers into account
will improve the agreement between X and X̃ and decrease the size of the elements
of the residual matrix E. The largest possible number of PCs is the minimum of the
number of rows and columns of the matrix:

amax = min(n, p) (4.2)

If a = amax, the approximation is perfect and X̃ = X .
The PCs are orthogonal combinations of variables defined in such a way that

(Jolliffe 1986):

• the variances of the scores are maximal;
• the sum of the Euclidean distances between the scores is maximal;
• the reconstruction of X is as close as possible to the original: ||X − X̃|| is minimal.

These three criteria are equivalent (Jackson 1991); the next section will show how
to find the PCs.

PCAhasmany advantages: it is simple, has a unique analytical solution optimizing
a clear and unambiguous criterion, and often leads to a more easily interpretable
data representation. The price we have to pay is that we do not have a small set of
wavelengths carrying the information but a small set of principal components, in
which all wavelengths are represented. Note that the underlying assumption is that
variation equals information. Intuitively, this makes sense: one can not learn much
from a constant number.

Once PCA has defined the latent variables, one can plot all samples in the data set
while ignoring all higher-order PCs. Usually, only a few PCs are needed to capture
a large fraction of the variance in the data set (although this is highly dependent on
the type of data). That means that a plot of (the scores of) PC 1 versus PC 2 can
already be highly informative. Equally useful is a plot of the contributions of the
(original) variables to the important PCs. These visualizations of high-dimensional
data perhaps form the most important application of PCA. Later, we will see that the
scores can also be used in regression and classification. Also the residual matrix E
can contain useful information. We’ll see two examples in Section 11.2, on robust
PCA, and Section 11.3 on multivariate process control.



4.1 The Machinery 47

4.1 The Machinery

Currently, PCA is implemented even in low-level numerical software such as spread-
sheets. Nevertheless, it is good to know the basics behind the computations. In almost
all cases, the algorithm used to calculate the PCs is Singular Value Decomposition
(SVD).2 It decomposes an n × p mean-centered data matrix X into three parts:

X = UDV T (4.3)

where U is a n × a orthonormal matrix containing the left singular vectors, D is a
diagonal matrix (a × a) containing the singular values, and V is a p × a orthonormal
matrix containing the right singular vectors. The latter are what in PCA terminology
is called the loadings—the product of the first two matrices forms the scores:

X = (UD)V T = T PT (4.4)

The interpretation of matrices T , P ,U , D and V is straightforward. The loadings,
columns in matrix P (or equivalently, the right singular vectors, columns in matrix
V ) give the weights of the original variables in the PCs. Variables that have very low
values in a specific column of V contribute only very little to that particular latent
variable. The scores, columns in T , constitute the coordinates in the space of the
latent variables. Put differently: these are the coordinates of the samples as we see
them from our new PCA viewpoint. The columns in U give the same coordinates
in a normalized form—they have unit variances, whereas the columns in T have
variances corresponding to the variances of each particular PC. These variances λi

are proportional to the squares of the diagonal elements in matrix D:

λi = d2
i /(n − 1)

The fraction of variance explained by PC i can therefore be expressed as

FV (i) = λi/

a∑

j=1

λ j (4.5)

One main problem in the application of PCA is the decision on how many PCs to
retain; we will come back to this in Section 4.3.

One final remark needs to be made about the unique solution given by the SVD
algorithm: it is only unique up to the sign. As is clear from, e.g., Equation 4.4, one
can obtain exactly the same solution by reversing the sign of both scores and loadings

2 One alternative for SVD is the application of the Eigen decomposition on the covariance or
correlation matrix of the data. SVD is numerically more stable and is therefore preferred in most
cases.
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simultaneously. There are no conventions, so one should always keep inmind that this
possibility exists. For the interpretation of the data, it make no difference whatsoever.

Although SVD is a fast algorithm in some cases it can be efficient not to apply it
to the data matrix directly, especially in cases where there is a large difference in the
numbers of rows and columns. In such a case, it is faster to apply SVD to either XT X
or XXT , whichever is the smaller one. If the number of columns is much smaller
than the number of rows, one would obtain

XT X = (UDV T )TUDV T = V D2V T

Applying svd3 directly yields loadings and sums of squares. Matrix T , the score
matrix, is easily found by right-multiplying both sides of Equation 4.4 with P :

X P = T PT P = T (4.6)

because of the orthonormality of P . Similarly,we canfind the left singular vectors and
singular values when applying SVD to XXT—see the example in the next section.

4.2 Doing It Yourself

Calculating scores and loadings is easy: consider thewine data first.We performPCA
on the autoscaled data to remove the effects of the different scales of the variables
using the svd function provided by R:

> wines.svd <- svd(wines.sc)
> wines.scores <- wines.svd$u %*% diag(wines.svd$d)
> wines.loadings <- wines.svd$v

The first two PCs represent the plane that contains most of the variance; how much
exactly is given by the squares of the values on the diagonal of D. The importance
of individual PCs is usually given by the percentage of the overall variance that is
explained:

> wines.vars <- wines.svd$dˆ2 / (nrow(wines) - 1)
> wines.totalvar <- sum(wines.vars)
> wines.relvars <- wines.vars / wines.totalvar
> variances <- 100 * round(wines.relvars, digits = 3)
> variances[1:5]
[1] 36.0 19.2 11.2 7.1 6.6

The first PC covers more than one third of the total variance; for the fifth PC this
amount is down to one fifteenth.

3Or eigen, which returns eigenvectors and eigenvalues.
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Fig. 4.1 Left plot: scores on PCs 1 and 2 for the autoscaledwine data. Different symbols correspond
to the three cultivars. Right plot: loadings on PCs 1 and 2

The scores show the positions of the individual wine samples in the coordinate
system of the PCs. A score plot can be produced as follows:

> plot(wines.scores[, 1:2], type = "n",
+ xlab = paste("PC 1 (", variances[1], "%)", sep = ""),
+ ylab = paste("PC 2 (", variances[2], "%)", sep = ""))
> abline(h = 0, v = 0, col = "gray")
> points(wines.scores[, 1:2], pch = wine.classes, col = wine.classes)

The result is depicted in the left plot of Fig. 4.1. It is good practice to indicate the
amount of variance associatedwith each PC on the axis labels. The three cultivars can
be clearly distinguished: class 1, Barbera, indicated with black open circles, has the
largest scores on PC 1 and class 2 (Barolo—red triangles in the figure) the smallest.
PC 2, corresponding to 19% of the variance, improves the separation by separating
theGrignolinos, themiddle class on PC1, from the other two.Note that this is a happy
coincidence: PCA does not explicitly look to discriminate between classes. In this
case, the three cultivars clearly have different characteristics. What characteristics
these are can be seen in the loading plot, shown on the right in Fig. 4.1. It shows the
contribution of the original variables to the PCs. Loadings are traditionally shown as
arrows from the origin:

> plot(wines.loadings[, 1] * 1.2, wines.loadings[, 2], type = "n",
+ xlab = paste("PC 1 (", variances[1], "%)", sep = ""),
+ ylab = paste("PC 2 (", variances[2], "%)", sep = ""))
> abline(h = 0, v = 0, col = "gray", lty = 2)
> arrows(0, 0, wines.loadings[, 1], wines.loadings[, 2],
+ col = "blue", length = .15, angle = 20)
> text(wines.loadings[, 1:2], labels = colnames(wines))
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The factor of 1.2 in the plot command is used to create space for the text labels.
Clearly, the wines of class 3 (green symbols in the plot) are distinguished by lower
values of alcohol and a lower color intensity. Wines of class 2 (in red) have high
flavonoid and phenol content and are low in non-flavonoid phenols; the reverse is
true for wines of class 1. All of these conclusions could probably have been drawn
also by looking at class-specific boxplots for all variables—however, the combination
of one score plot and one loading plot shows this in a much simpler way, and even
presents direct information on correlations between variables and objects. We will
come back on this point later, when treating biplots.

As an example of the kind of speed improvement one can expect when applying
SVD on the crossproduct matrices rather than the original data, consider a really
wide matrix with 100 rows and 100,000 columns (what the values in the matrix are
does not matter for the timing). Timings can be obtained bywrapping the code within
a system.time call:

> nr <- 100
> nc <- 100000
> X <- matrix(rnorm(nr*nc), nrow = nr)
> system.time({
+ X.svd <- svd(X)
+ X.scores <- X.svd$u %*% diag(X.svd$d)
+ X.variances <- X.svd$dˆ2 / (nrow(X) - 1)
+ X.loadings <- X.svd$v
+ })

user system elapsed
3.715 0.099 3.815

Here, the number of variables is much larger than the number of objects (which, by
the way, is not extremely small either), so we perform SVD on the matrix XXT :

> system.time({
+ X2.tcp <- tcrossprod(X)
+ X2.svd <- svd(X2.tcp)
+ X2.scores <- X2.svd$u %*% diag(sqrt(X2.svd$d))
+ X2.variances <- X2.svd$d / (nrow(X) - 1)
+ X2.loadings <- solve(X2.scores, X)
+ })

user system elapsed
1.709 0.012 1.721

The second option is more than twice as fast—for bigger data sets, or in cases
where many PCAs need to be done, this may become very relevant. Instead of the
crossproduct matrix, also the covariance matrix or correlation matrix can be used in
exactly the same way—using the correlation matrix corresponds to performing PCA
on autoscaled data.
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4.3 Choosing the Number of PCs

The question how many PCs to consider, or put differently: where the information
stops and the noise begins, is difficult to answer. Many methods consider the amount
of variance explained, and use statistical tests or graphical methods to define which
PCs to include. In this section we briefly review some of the more popular methods.

4.3.1 Scree Plots

The amount of variance per PC is usually depicted in a scree plot: either the variances
themselves or the logarithms of the variances are shown as bars. Often, one also
considers the fraction of the total variance explained by every single PC. The last
few PCs usually contain no information and, especially on a log scale, tend to make
the scree plot less interpretable, so they are usually not taken into account in the plot.

> barplot(wines.vars[1:10], main = "Variances",
+ names.arg = paste("PC", 1:10))
> barplot(log(wines.vars[1:10]), main = "log(Variances)",
+ names.arg = paste("PC", 1:10))
> barplot(wines.relvars[1:10], main = "Relative variances",
+ names.arg = paste("PC", 1:10))
> barplot(cumsum(100 * wines.relvars[1:10]),
+ main = "Cumulative variances (%)",
+ names.arg = paste("PC", 1:10), ylim = c(0, 100))

This leads to the plots in Fig. 4.2. Clearly, PCs 1 and 2 explain much more variance
than the others: together they cover 55% of the variance. The scree plots show no
clear cut-off, which in real life is the rule rather than the exception. Depending on
the goal of the investigation, for these data one could consider three or five PCs.
Choosing four PCs would not make much sense in this case, since the fifth PC would
explain almost the same amount of variance: if the fourth is included, the fifth should
be, too.

4.3.2 Statistical Tests

One can show that the explained variance for the i-th component, λi = d2
i /(n − 1)

is asymptotically normally distributed (Härdle and Simar 2007; Mardia et al. 1979),
which leads to confidence intervals of the form

ln(λi )± zα

√
2

n − 1

For the wine example, 95% confidence intervals can therefore be obtained as
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> llambdas <- log(wines.vars)
> CIwidth <- qnorm(.975) * sqrt(2 / (nrow(wines) - 1))
> CIs <- cbind(exp(llambdas - CIwidth),
+ wines.vars,
+ exp(llambdas + CIwidth))
> colnames(CIs) <- c("CI 0.025", " Estimate", " CI 0.975")
> CIs[1:4, ]

CI 0.025 Estimate CI 0.975
[1,] 3.79580 4.67780 5.7647
[2,] 2.02973 2.50137 3.0826
[3,] 1.17930 1.45333 1.7910
[4,] 0.75014 0.92444 1.1393
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Fig. 4.2 Scree plots for the assessment of the amount of variance explained by each PC. From
left to right, top to bottom: variances, logarithms of variances, fractions of the total variance and
cumulative percentage of total variance
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Mardia et al. present an approach testing the equality of variances for individual
PCs (Mardia et al. 1979). For the autoscaled wine data, one could test whether the
last p − k PCs are equally important, i.e., have equal values of λ. The quantity

(n − 1)(p − k) log(a0/g0)

is distributed approximately as aχ2-statistic with (p − k + 2)(p − k − 1)/2 degrees
of freedom (Mardia et al. 1979, p. 236). In this formula, a0 and g0 indicate arithmetic
and geometric means of the p − k smallest variances, respectively. We can use this
test to assess whether the last three PCs are useful or not:

> small.ones <- wines.vars[11:13]
> n <- nrow(wines)
> nsmall <- length(small.ones)
> geo.mean <- prod(small.ones)ˆ{1/nsmall}
> mychisq <- (n - 1) * nsmall * log(mean(small.ones) / geo.mean)
> ndf <- (nsmall + 2) * (nsmall - 1) / 2
> 1 - pchisq(mychisq, ndf)
[1] 9.9111e-05

This test finds that after PC 10 there is still a difference in the variances. In fact, the
test finds a difference after any other cutoff, too: apparently all PCs are significant.

The use of statistical tests for determining the optimal number of PCs has never
really caught on. Most scientists are prepared to accept a certain loss of information
(variance) provided that the results, the score plots and loading plots, help to answer
scientific questions. Most often, one uses informal graphical methods: if an elbow
shows up in the scree plot that can be used to decide on the number of PCs. In other
applications, notably with spectral data, one can sometimes check the loadings for
structure. If there is no more structure—in the form of peak-like shapes—present in
the loadings of higher PCs, they can safely be discarded.

4.4 Projections

Once we have our low-dimensional view of the original high-dimensional data, we
may be interested how other data are positioned. This may be data from new samples,
measured on a different instrument, or on a different day. The key point is that the
low-dimensional representation allows us to look at the data and in one glance assess
whether there are patterns. Obtaining scores for new data is pretty easy. Given a new
data matrix X , the projections in the space defined by loadings P can be obtained
by simple right-multiplication:

X P = T PT P = T
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The wine data, for example, are more or less ordered according to vintage. If we
would perform PCA on the first half of the data, the third class, the Barbera wines,
would not play a part in defining the PCs at all, and the first class, Barolo, would
dominate. To see the effect of this, we can project the second half of the data matrix
into the PCA space defined by the first half. We start by constructing scores and
loadings for the first half:

> X1 <- scale(wines[1:88, ])
> X1.svd <- svd(X1)
> X1.pca <- list(scores = X1.svd$u %*% diag(X1.svd$d),
+ loadings = X1.svd$v)

Then, we scale the second half of the data using the means and standard deviations
of the first half. This is a very important detail that sometimes is missed—obviously,
both halves should have the same point of origin:

> X2 <- scale(wines[89:177, ],
+ center = attr(X1, "scaled:center"),
+ scale = attr(X1, "scaled:scale"))
> X2.scores <- X2 %*% X1.pca$loadings

Showing the scores now is easy:

> labels <- rep(c(1, 2), c(89, 88))
> plot(rbind(X1.pca$scores, X2.scores),
+ pch = labels, col = labels,
+ xlab = "PC 1", ylab = "PC 2")

This leads to the left plot in Fig. 4.3. Clearly, the familiar shape of the PC 1 vs. PC 2
plot has been destroyed, and what is more: the triangles, corresponding to the second
half of the data, are generally in a different location than the first half (circles). Since
Barbera wines are only present in the second half, and Barolo wines only in the first
half, this comes as no surprise. The right plot in the same figure shows a completely
different picture. It has been obtained by defining X1 and X2 as follows:

> wines.odd <- seq(1, nrow(wines), by = 2)
> wines.even <- seq(2, nrow(wines), by = 2)
> X1b <- scale(wines[wines.odd, ])
> X2b <- scale(wines[wines.even, ],
+ center = attr(X1b, "scaled:center"),
+ scale = attr(X1b, "scaled:scale"))

Now both halves have similar compositions, and the data clouds neatly overlap. In
fact, this is a very important way to check whether a division in training and test set,
a topic that we will talk about extensively in later chapters, is a good one.
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Fig. 4.3 Projections in PCA space. Left plot: second half of the wine data (red triangles) projected
into the PCA space defined by the first half (black circles). Right plot: PCAmodel based on the odd
rows (circles). The even rows (triangles) are projected in this space. The result is very similar to a
PCA on the complete data matrix

4.5 R Functions for PCA

The standardR function for PCA is prcomp. By default, the data are mean-centered
(but not scaled!). We will show its use on the gasoline data, limiting the number of
PCs to six:

> nir.prcomp <- prcomp(gasoline$NIR, rank. = 6)
> summary(nir.prcomp)
Importance of first k=6 (out of 60) components:

PC1 PC2 PC3 PC4 PC5 PC6
Standard deviation 0.210 0.0831 0.0651 0.0529 0.0275 0.02426
Proportion of Variance 0.726 0.1134 0.0695 0.0460 0.0124 0.00967
Cumulative Proportion 0.726 0.8390 0.9086 0.9546 0.9670 0.97664

One can see that these six components explain almost 98% of the variance. The
default plot command is to show a scree plot (in fact, the screeplot function is
used):

> plot(nir.prcomp, main = "Gasoline scree plot")

The result is depicted inFig. 4.4. Probably,most peoplewould select four components
to be included: although the first is much larger than the others, components two to
four still contribute a substantial amount, whereas higher components are much less
important.
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Fig. 4.4 Scree plot for the NIR data. By default, the scree plot shows not more than ten PCs
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Plotting the loadings of the first four PCs shows some interesting structure. The
loadings are available as the rotation element of the prcomp object:

> nir.loadings <- nir.prcomp$rotation[, 1:4]

The original variables are, of course, highly correlated, and therefore connect-
ing subsequent variables in the loading space forms a trajectory. In the following
code, producing the left plot (PC 1 against PC 2) in Fig. 4.5, the variables with the
most extreme loadings have been indicated—these can easily be found using the
identify function (see the manual page for details). The plot for PCs 3 and 4 is
made completely analogously.
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> offset <- c(0, 0.09) # to create space for labels
> plot(nir.loadings[, 1:2], type = "l",
+ xlim = range(nir.loadings[, 1]) + offset,
+ xlab = "PC 1 (72.6%)", ylab = "PC 2 (11.3%)")
> points(nir.loadings[c(386, 396), 1:2])
> text(nir.loadings[c(386, 396), 1:2], pos = 4,
+ labels = paste(c(1670, 1690), "nm"))

We can see that the variation on PC 1 is mainly attributable to the intensities around
1670nm, whereas the wavelengths around 1690nm are contributing most to PC 2.
PC 3 shows the largest loadings at 1638, 1694 and 1206nm; the latter two are also
extreme loadings on PC 4. These wavelengths correspond with areas of significant
variation (see Fig. 2.1).

An even more interesting visualization is the biplot (Gabriel 1971; Gower and
Hand 1996). This shows scores and loadings in one and the same plot, which can
make interpretation easier. The origins for the score and loading plots are overlayed,
and the two sets of points are plotted in separate axis systems. An example is shown
in Fig. 4.6:

> biplot(nir.prcomp, col = c("black", "blue"), scale = 0.5)

Again, scores are plotted as individual points, and loadings as arrows. The axes
corresponding to the scores are shown on the bottom and the left of the picture; the
axes to the right and on top are for the loadings. Since there are many correlated
variables, the loading plot looks quite crowded. The scale argument (taking values
between 0 and 1) can be used to reach a visually pleasing balance between the sizes

Fig. 4.6 Biplot for the
mean-centered gasoline data
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of the scores and the loadings. The setting employed here uses square-root scaling
for both variables and observations.

We can see in the biplot that wavelength 1690nm is one of the arrows pointing
upward, in the direction of PC 2. Samples 15 and 41 are most different in PC 1, and
samples 57 and 43 differ most in PC 2. Let us plot the mean-centered data for these
four samples (since the mean-centered data are what is fed to PCA):

> extremes <- c(15, 41, 43, 57)
> Xextr <- scale(gasoline$NIR, scale = FALSE)[extremes, ]
> matplot(wavelengths, t(Xextr),
+ type = "l", xlab = "Wavelength (nm)",
+ ylab = "Intensity (mean-scaled)", lty = c(1, 1, 2, 2),
+ col = 1:4)
> legend("bottomleft", legend = paste("sample", extremes),
+ lty = c(1, 1, 2, 2), col = 1:4, bty = "n")

This results in Fig. 4.7. The largest difference in intensity, at 1670nm, corresponds
with the most important variables in PC 1—and although it is not directly recogniz-
able from the loadings in this figure, this is exactly the wavelength with the largest
loading on PC 1. The largest difference in the samples that are extreme in PC 2 is
just above that, at 1690nm, in agreement with our earlier observation. Another major
feature just below 1200nm is represented in the bottom left corner of the loading
plot of PC 1 vs PC 2.

AnotherR function,princomp, also does PCA, using theeigen decomposition
on the covariance matrix instead of directly performing svd on the data themselves.
Since thesvd-based calculations aremore stable, these are to be preferred for regular
applications; princomp does allow you to provide a specific covariance matrix
that will be used for the decomposition, which can be useful in some situations (see
Section 11.2), but is retained mainly for compatibility reasons.

Fig. 4.7 Mean-centered
spectra of samples that are
extreme in PCs 1 or 2
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The package ChemometricsWithR comes with a set of PCA functions, too,
based on the code presented in this chapter. The basic function is PCA, and the
usual generic functions print, plot, and summary are available, as well as some
auxiliary functions such as screeplot, project, and the extraction functions
variances, loadings and scores. To produce, e.g., plots very similar to the
ones shown in Fig. 4.1, one can issue:

> wines.PCA <- PCA(scale(wines))
> scoreplot(wines.PCA, pch = wine.classes, col = wine.classes)
> loadingplot(wines.PCA, show.names = TRUE)

One useful feature of these functions is that the percentages of explained variance
are automatically shown at the axes.

4.6 Related Methods

PCA is not alone in its aim to find low-dimensional representations of high-
dimensional data sets. Several other methods try to do the same thing, but rather
than finding the projection that maximizes the explained variance, they choose other
criteria. In Principal Coordinate Analysis (PCoA) and the related Multidimensional
Scaling (MDS) methods, the aim is to find a low-dimensional projection that repro-
duces the experimentally found distances between the data points. When these dis-
tances are Euclidean, the results are the same or very similar to PCA results; however,
other distances can be used as well. Independent Component Analysis maximizes
deviations from normality rather than variance, and Factor Analysis concentrates on
reproducing covariances.Wewill briefly review thesemethods in the next paragraphs.

4.6.1 Multidimensional Scaling

In some cases, applying PCA to the raw data matrix is not appropriate, for example
in situations where regular Euclidean distances do not apply—similarities between
chemical structures, e.g., can be expressed easily in several differentways, but it is not
at all clear how to represent molecules into fixed-length structure descriptors (Bau-
mann 1999), something that is required by distance measures such as the Euclidean
distance. Even when comparing spectra or chromatograms, the Euclidean distance
can be inappropriate, for instance in the presence of peak shifts (Bloemberg et al.
2010; de Gelder et al. 2001). In other cases, raw data are simply not available and the
only information one has consists of similarities. Based on the sample similarities,
the goal of methods like Multidimensional Scaling (MDS, (Borg and Groenen 2005;
Cox and Cox 2001)) is to reconstruct a low-dimensional map of samples that leads
to the same similarity matrix as the original data (or a very close approximation).
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Since visualization usually is one of the main aims, the number of dimensions usu-
ally is set to two, but in principle one could find an optimal configuration with other
dimensionalities as well.

The problem is something like making a topographical map, given only the dis-
tances between the cities in the country. In this case, an exact solution is possi-
ble in two dimensions since the original distance matrix was calculated from two-
dimensional coordinates. Note that although distances can be reproduced exactly, the
map still has rotational and translational freedom—in practice this does not pose any
problems, however. An amusing example is given by maps not based on kilometers
but rather on travel time—the main cities will be moved to the center of the plot
since they usually are connected by high-speed trains, whereas smaller villages will
appear to be further away. In such a case, and in virtually all practical applications,
a two-dimensional plot will not be able to reproduce all similarities exactly.

InMDS, there are several ways to indicate the agreement between the two distance
matrices, and these lead to different methods. The simplest approach is to perform
PCAon the double-centered distancematrix,4 an approach that is knownasPrincipal
Coordinate Analysis, or ClassicalMDS (Gower 1966). The criterion to beminimized
is called the stress, and is given by

S =
∑

j<i

(||xi − x j || − ei j )
2 =

∑

j<i

(di j − ei j )
2

where ei j corresponds with the true, given, distances, and di j are the distances
between objects xi and x j in the low-dimensional space.

In R, this is available as the function cmdscale:

> wines.dist <- dist(scale(wines))
> wines.cmdscale <- cmdscale(wines.dist)
> plot(wines.cmdscale,
+ pch = wine.classes, col = wine.classes,
+ main = "Principal Coordinate Analysis",
+ xlab = "Coord 1", ylab = "Coord 2")

This leads to the left plot in Fig. 4.8, which up to the reversal of the sign in the second
component is exactly equal to the score plot of Fig. 4.1.

Other approaches optimize slightly different criteria: two well-known examples
are Sammon mapping and Kruskal-Wallis mapping (Ripley 1996)—both are avail-
able in the MASS package as functions sammon and isoMDS, respectively. Sam-
mon mapping decreases the influence of large distances, which can dominate the
map completely. It minimizes the following stress criterion:

S = 1∑
i

∑
j<i di j

∑

i

∑

j<i

di j − ei j
di j

4Double centering is performed by mean-centering in both row and column dimensions, and sub-
sequently adding the grand mean of the original matrix to center the data around the origin.
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Fig. 4.8 Multidimensional scaling approaches on the wine data: classical MDS (left), Sammon
mapping (middle) and non-metric MDS (right)

Since no analytical solution is available, gradient descent optimization is employed
to find the optimum. The starting point usually is the classical solution, but one
can also provide another configuration—indeed, one approach to try to avoid local
optima is to repeat the mapping starting from many different starting sets, or to use
different sets of search parameters. Sammon mapping is easy (the argument trace
= FALSE suppresses progress output):

> wines.sammon <- sammon(wines.dist, trace = FALSE)
> plot(wines.sammon$points, main = "Sammon mapping",
+ col = wine.classes, pch = wine.classes,
+ xlab = "Coord 1", ylab = "Coord 2")

Note that the result is a list rather than a coordinate matrix: the coordinates in low-
dimensional space can be accessed in list element points.

The non-metric scaling implemented inisoMDS uses a two-step optimization that
alternatively finds a good configuration in low-dimensional space, and an appropriate
non-monotone transformation. In effect, one finds a set of points that leads to the
same order of the distances in the low-dimensional approximation and in the real
data, rather than resulting in approximately the same distances.

> wines.isoMDS <- isoMDS(wines.dist, trace = FALSE)
> plot(wines.isoMDS$points, main = "Non-metric MDS",
+ col = wine.classes, pch = wine.classes,
+ xlab = "Coord 1", ylab = "Coord 2")

The results of Sammonmapping and IsoMDS are shown in themiddle and right plots
of Fig. 4.8, respectively. Here we again see the familiar horse-shoe shape, although
it is somewhat different in nature in the non-metric version in the plot on the right.
There, the Grignolino class is much more spread out than the other two.

MDS is popular in the social sciences, but much less so in the life sciences:
maybe there its disadvantages are more important. The first drawback is that MDS
requires a full distance matrix. For data sets with many thousands of samples this
can be prohibitive in terms of computer memory. The other side of the coin is that
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the (nowadays more common) data sets with many more samples than variables
do not present any problem; they can be analyzed by MDS easily. The second and
probably more important disadvantage is that MDS does not provide an explicit
mapping operator. That means that new objects cannot be projected into the lower-
dimensional point configuration as we did before with PCA; either one redoes the
MDS mapping, or one positions the new samples as good as possible within the
space of the mapped ones and takes several iterative steps to obtain a new, complete,
set of low-dimensional coordinates. Finally, the fact that the techniques rely on
optimization, rather than an analytical solution, is a disadvantage: not only does it
take more time, especially with larger data sets, but also the optimization settings
may need to be tweaked for optimal performance.

4.6.2 Independent Component Analysis and Projection
Pursuit

Variation inmany cases equals information, one of the reasons behind thewidespread
application of PCA. Or, to put it the other way around, a variable that has a constant
value does not provide much information. However, there are many examples where
the relevant information is hidden in small differences, and is easily overwhelmed by
other sources of variation that are of no interest. The technique of Projection Pursuit
(Friedman 1987; Friedman and Tukey 1974; Huber 1985) is a generalization of PCA
where a number of different criteria can be optimized. One can for instance choose
a viewpoint that maximizes some grouping in the data. In general, however, there is
no analytical solution for any of these criteria, except for the variance criterion used
in PCA. A special case of Projection Pursuit is Independent Component Analysis
(ICA, Hyvärinen et al. 2001), where the view is taken to maximize deviation from
multivariate normality, given by the negentropy J . This is the difference of the
entropy of a normally distributed random variable H(xG) and the entropy of the
variable under consideration H(x)

J (x) = H(xG)− H(x)

where the entropy itself is given by

H(x) = −
∫

f (x) log f (x)dx

Since the entropy of a normally distributed variable is maximal, the negentropy is
always positive (Cover and Thomas 1991). Unfortunately, this quantity is hard to
calculate, and in practice approximations, such as kurtosis and the fourth moment
are used. Package fastICA provides the fastICA procedure of Hyvarinen and Oja
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Fig. 4.9 Fast ICA applied to the wine data, based on a three-component model

(Hyvärinen and Oja 2000), employing other approximations that are more robust and
faster. The algorithm can be executed either fully in R, or using C code for greater
speed.

The fastICA algorithm first mean-centers the data, and then performs a “whiten-
ing”, i.e., a Principal Component Analysis. The PCs are then rotated in order to
optimize the non-gaussianity criterion. For the wine data, this gives the result shown
in Fig. 4.9:

> wines.ica <- fastICA(wines.sc, 3)
> pairs(wines.ica$S, main = "ICA components",
+ col = wine.classes, pch = wine.classes)

Note that repeated applicationmay lead to different local optima, and thus to different
results. One additional characteristic that should be noted is that ICA components
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Fig. 4.10 Fast ICA applied to the wine data using five components; only the first three components
are shown

can change, depending on the total number of components in the model: where in
PCA the first component remains the same, no matter how many other components
are included, in ICA this is not the case. The pairs plot for the first three components
will therefore be different when taking, e.g., a five-component ICA model (shown
in Fig. 4.10) compared to the three-component model in Fig. 4.9:

> wines.ica5 <- fastICA(wines.sc, 5)
> pairs(wines.ica5$S[, 1:3],
+ main = "ICA components (3 out of 5)",
+ col = wine.classes, pch = wine.classes)

In Fig. 4.10 it is interesting to note that the second ICA component is not related
to the difference in variety. Instead, it is the plot of IC 1 versus IC 3 that shows
most discrimination, and is most similar to the PCA score plot shown in Fig. 4.1.
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Clearly, one should be cautious in the inspection of ICA score plots. Of course, class
separation is not the only criterion we can apply—just because we happen to know
in this case what the grouping is does not mean that all useful projections should be
showing it!

4.6.3 Factor Analysis

Another procedure closely related to PCA is Factor Analysis (FA), developed some
eighty years ago by the psychologist Charles Spearman, who hypothesized that a
large number of abilities (mathematical, artistic, verbal) could be summarized in one
underlying factor “intelligence” (Spearman 1904). Although this view is no longer
mainstream, the idea caught on, and FA can be summarized as trying to describe a
set of observed variables with a small number of abstract latent factors.

The technique is very similar to PCA, but there is a fundamental difference. PCA
aims at finding a series of rotations in such a way that the first axis corresponds with
the direction of most variance, and each subsequent orthogonal axis explains the
most of the remaining variance. In other words, PCA does not fit an explicit model.
FA, on the other hand, does. For a mean-centered matrix X , the FA model is

X = LF + U (4.7)

where L is the matrix of loadings on the common factors F, and U is a matrix
of specific factors, also called uniquenesses. The common factors again are linear
combinations of the original variables, and the scores present the positions of the
samples in the new coordinate system. The result is a set of latent factors that capture
as much variation, shared between variables, as possible. Variation that is unique
to one specific variable will end up in the specific factors. Especially in fields like
psychology it is customary to try and interpret the common factors like in the original
approach by Spearman. Summarizing, it can be stated that PCA tries to represent
as much as possible of the diagonal elements of the covariance matrix, whereas FA
aims at reproducing the off-diagonal elements (Jackson 1991).

There is considerable confusion between PCA and FA, andmany examples can be
foundwhere PCAmodels are actually called factor analysismodels: one reason is that
the simplest way (in a first approximation) to estimate the FA model of Equation 4.7
is to perform a PCA – this method of estimation is called Principal Factor Analysis.
However, other methods exist, e.g., based on Maximum Likelihood, that provide
more accurate models. The second source of confusion is that for spectroscopic data
in particular, scientists are often trying to interpret the PCs of PCA. In that sense,
they are more interested in the FAmodel than in the model-free transformation given
by PCA.
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Factor analysis is available in R as the function factanal, from the stats pack-
age (loaded by default). Application to the wine data is straightforward:

> (wines.fa <- factanal(wines.sc, 3, scores = "regression"))

Call:
factanal(x = wines.sc, factors = 3, scores = "regression")

Uniquenesses:
alcohol malic acid ash

0.393 0.729 0.524
ash alkalinity magnesium tot. phenols

0.068 0.843 0.198
flavonoids non-flav. phenols proanth

0.070 0.660 0.559
col. int. col. hue OD ratio

0.243 0.503 0.248
proline

0.388

Loadings:
Factor1 Factor2 Factor3

alcohol 0.776
malic acid -0.467 0.211
ash 0.287 0.626
ash alkalinity -0.297 -0.313 0.864
magnesium 0.119 0.367
tot. phenols 0.825 0.346
flavonoids 0.928 0.262
non-flav. phenols -0.533 -0.140 0.192
proanth 0.621 0.226
col. int. -0.412 0.751 0.153
col. hue 0.653 -0.206 -0.170
OD ratio 0.865
proline 0.355 0.684 -0.134

Factor1 Factor2 Factor3
SS loadings 4.005 2.261 1.310
Proportion Var 0.308 0.174 0.101
Cumulative Var 0.308 0.482 0.583

Test of the hypothesis that 3 factors are sufficient.
The chi square statistic is 159.14 on 42 degrees of freedom.
The p-value is 1.57e-15

The default printmethod for a factor analysis object shows the uniquenesses, i.e.,
those parts that cannot be explained by linear combinations of other variables. The
uniquenesses of the variablesash alkalinity andflavonoids, e.g., are very
low, indicating that they may be explained well by the other variables. The loadings
are printed in such a way as to draw attention to patterns: only three digits are shown
after the decimal point, and smaller loadings are not printed.
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Fig. 4.11 Scores for the FA model of the wine data using three components

Scores can be calculated in several different ways, indicated by the scores
argument of the factanal function. Differences between the methods are usually
not very large; consult themanual pages offactanal to getmore information about
the exact implementation. The result for the regression scores, shown in Fig. 4.11, is
only slightly different from what we have seen earlier with PCA; the familiar horse
shoe is again visible in the first two components.

In Factor Analysis it is usual to rotate the components in such a way that the
interpretability is enhanced. One of the ways to do this is to require that as few
loadings as possible have large values, something that can be achieved by a so-called
varimax rotation. This rotation is applied by default in factanal, and is the reason
why the horseshoe is rotated compared to the PCA score plot in Fig. 4.1.
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4.6.4 Discussion

Although there are some publications where ICA and FA are applied to data sets in
the life sciences, their number is limited, and certainly much lower than the number
of applications of PCA. There are several of reasons for this. Both ICA and FA do not
have analytical solutions and require optimization to achieve their objectives, which
takes more computing time, and can lead to different results, depending on the opti-
mization settings. Moreover, several algorithms are available, each having slightly
different definitions, which makes the results harder to compare and to interpret.

PCA, on the other hand, always gives the same result (if we disregard the sign
ambiguity) when presentedwith a data set that is scaled in a certain way. In particular,
PCA scores and loadings do not change when the number of component is changed.
Since choosing the “right” number of components can be quite difficult, this is a
real advantage over applying ICA, where earlier components depend on the total
number of components taken into account. In a typical application, there are so
many choices to make with respect to preprocessing, scaling, outlier detection and
others, that there is a healthy tendency to choose methods that have as few tweaking
possibilities as possible—if not, one can spend forever investigating the effects of
small differences in analysis parameters. Nevertheless, there are cases where ICA,
FA, or other dimension reduction methods can have definite advantages over PCA,
and it can pay to check that.

The main aim of PCA is dimension reduction, often for visualization purposes,
but scientists in the last decades have been remarkably creative in finding new and
intriguing applications of the method. Very often, “classical” methods that cannot be
applied towide datamatrices suddenly become possible after a PCA (see the chapters
on regression and classification, for example). Another general use of PCA is as a
form of denoising: one then assumes that the (majority of) the signal is contained in
the first PCs and that later PCs only (ormostly) contain noise. In the latter application,
the most important thing is not to take too few PCs, and usually one is quite generous
in selecting the cut-off. Section 11.2 shows an important application, where a variant
of PCA is used to identify outliers in multivariate data sets.



Chapter 5
Self-Organizing Maps

In PCA, the most outlying data points determine the direction of the PCs—these are
the ones contributing most to the variance. This often results in score plots showing
a large group of points close to the center. As a result, any local structure is hard to
recognize, even when zooming in: such points are not important in the determination
of the PCs. One approach is to select the rows of the data matrix corresponding
to these points, and to perform a separate PCA on them. Apart from the obvious
difficulties in deciding which points to leave out and which to include, this leads
to a cumbersome and hard to interpret two-step approach. It would be better if a
projection can be found that does show structure, even within very similar groups of
points.

Self-organizing maps (SOMs, Kohonen 2001), sometimes also referred to as
Kohonen maps after their inventor, Teuvo Kohonen, offer such a view. Rather than
providing a continuous projection into R

2, SOMs map all data to a set of discrete
locations, organized in a regular grid. Associated with every location is a proto-
typical object, called a codebook vector. This usually does not correspond to any
particular object, but rather represents part of the space of the data. The complete set
of codebook vectors therefore can be viewed as a concise summary of the original
data. Individual objects from the data set can be mapped to the set of positions, by
assigning them to the unit with the most similar codebook vectors.

The effect is shown in Fig. 5.1. A two-dimensional point cloud is simulated where
most points are very close to the origin.1 The codebookvectors of a 5-by-5 rectangular
SOM are shown in black; neighboring units in the horizontal and vertical directions
are connected by lines. Clearly, the density of the codebook vectors is greatest in areas
where the density of points is greatest. When the codebook vectors are shown at their
SOM positions the plot on the right in Fig. 5.1 emerges, where individual objects are
shown at a random position close to “their” codebook vector. The codebook vectors
in the middle of the map are the ones that cover the center of the data density, and

1The point cloud is a superposition of two bivariate normal distributions, centered at the origin and
with diagonal covariance matrices. The first has unit variance and contains 100 points; the other,
containing 500 points, has variances of 0.025.
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Fig. 5.1 Application of a 5-by-5 rectangular SOM to 600 bivariate normal data points. Left plot:
location of codebook vectors in the original space. Right plot: location of data points in the SOM

one can see that these contain most data points. That is, relations within this densely
populated area can be investigated in more detail.

5.1 Training SOMs

A SOM is trained by repeatedly presenting the individual samples to the map. At
each iteration, the current sample is compared to the codebook vectors. The most
similar codebook vector (the “winning unit”) is then shifted slightly in the direction
of the mapped object. This is achieved by replacing it with a weighted average of
the old values of the codebook vector, cvi , and the values of the new object obj :

cvi+1 = (1− α) cvi + α obj (5.1)

The weight, also called the learning rate α, is a small value, typically in the order of
0.05, and decreases during training so that the final adjustments are very small.

As we shall see in Sect. 6.2.1, the algorithm is very similar in spirit to the one
used in k-means clustering, where cluster centers and memberships are alternatingly
estimated in an iterative fashion. The crucial difference is that not only the winning
unit is updated, but also the other units in the “neighborhood” of the winning unit.
Initially, the neighborhood is fairly large, but during training it decreases so that
finally only the winning unit is updated. The effect is that neighboring units in
general are more similar than units far away. Or, to put it differently, moving through
the map by jumping from one unit to its neighbor would see gradual and more or
less smooth transitions in the values of the codebook vectors. This is clearly visible
in the mapping of the autoscaled wine data to a 5-by-4 SOM, using the kohonen
package:
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Fig. 5.2 Codebook vectors
for a SOM mapping of the
autoscaled wine data. The
thirteen variables are shown
counterclockwise, beginning
in the first quadrant

alcohol
malic acid
ash
ash alkalinity
magnesium

tot. phenols
flavonoids
non−flav. phenols
proanth
col. int.

col. hue
OD ratio
proline

Codes plot

> wines.som <- som(wines.sc, somgrid(5, 4, "hexagonal"))
> plot(wines.som, type = "codes")

The result is shown in Fig. 5.2. Units in this example are arranged in a hexagonal
fashion and are numbered row-wise from left to right, starting from the bottom left.
The first unit at the bottom left for instance, is characterized by relatively large values
of alcohol, flavonoids and proanth; the second unit, to the right of the first,
has lower values for these variables, but still is quite similar to unit number one.

The codebook vectors are usually initialized by a random set of objects from the
data, but also random values in the range of the data can be employed. Sometimes
a grid is used, based on the plane formed by the first two PCs. In practice, the
initialization method will hardly ever matter; however, starting from other random
initial values will lead to different maps. The conclusions drawn from the different
maps, however, tend to be very similar.

The training algorithm for SOMs can be tweaked in many different ways. One
can, e.g., update units using smaller changes for units that are further away from
the winning unit, rather than using a constant learning rate within the neighborhood.
One can experiment with different rates of decreasing values for learning rate and
neighborhood size. One can use different distance measures. Regarding topology,
hexagonal or rectangular ordering of the units is usually applied; in the first case, each
unit has six equivalent neighbors, unless it is at the border of the map, in the second
case, depending on the implementation, there are four or eight equivalent neighbors.
The most important parameter, however, is the size of the map. Larger maps allow
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for more detail, but may contain more empty units as well. In addition, they take
more time to be trained. Smaller maps are more easy to interpret; groups of units
with similar characteristics are more easily identified. However, they may lack the
flexibility to show specific groupings or structure in the data. Some experimentation
usually is needed. As a rule of thumb, one can consider the object-to-unit ratio, which
can lead to useful starting points. In image segmentation applications, for instance,
where hundreds of thousands of (multivariate) pixels need to be mapped, one can
choose a map size corresponding to an average of several hundreds of pixels per unit;
in other applications where the number of samples is much lower, a useful object-to-
unit ratiomay be five. Onemore considerationmay be the presence of class structure:
for every class, several units should be allocated. This allows intra-class structure to
be taken into account, and will lead to a better mapping.

Finally, there is the option to close the map, i.e., to connect the left and right
sides of the map, as well as the bottom and top sides. This leads to a toroidal map,
resembling the surface of a closed tube. In such a map, all differences between
units have been eliminated: there are no more edge units, and they all have the
same number of neighbors. Whereas this may seem a desirable property, there are
a number of disadvantages. First, it will almost certainly be depicted as a regular
map with edges, and when looking at the map one has to remember that the edges
in reality do not exist. In such a case, similar objects may be found in seemingly
different parts of the map that are, in fact, close together. Another pressing argument
against toroidal maps is that in many cases the edges serve a useful purpose: they
provide refuge for objects that are quite different from the others. Indeed, the corners
of non-toroidal maps often contain the most distinct classes.

5.2 Visualization

Several different visualization methods are provided in the kohonen package: one
can look at the codebook vectors, the mapping of the samples, and one can also
use SOMs for prediction. Here, only a few examples are shown. For more infor-
mation, consult the manual pages of the plot.kohonen function, or the software
description (Wehrens and Buydens 2007; Wehrens and Kruisselbrink 2018).

For multivariate data, the locations of the codebook vectors can not be visualized
as was done for the two-dimensional data in Fig. 5.1. In the kohonen package, the
default is to show segment plots, such as in Fig. 5.2 if the number of variables is
smaller than 15, and a line plot otherwise. One can also zoom in and concentrate on
the values of just one of the variables:

> for (i in c(1, 8, 11, 13))
+ plot(wines.som, "property",
+ property = getCodes(wines.som, 1)[, i],
+ main = colnames(wines)[i])
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Fig. 5.3 Separate maps for the contributions of individual variables to the codebook vectors of the
SOM shown in Fig. 5.2

Clearly, in these plots, shown in Fig. 5.3, there are regions in the map where specific
variables have high values, and other regionswhere they are low. Areas of high values
and low values are much more easily recognized than in Fig. 5.2. Note the use of the
accessor function getCodes here.

Perhaps the most important visualization is to show which objects map in
which units. In the kohonen package, this is achieved by supplying the the type
="mapping" argument to the plotting function. It allows for using different plotting
characters and colors (see Fig. 5.4):

> plot(wines.som, type = "mapping",
+ col = as.integer(vintages), pch = as.integer(vintages))

Again, one can see that the wines are well separated. Some class overlap remains,
especially for the Grignolinos (pluses in the figure). These plots can be used to make
predictions for new data points: when the majority of the objects in a unit are, e.g.,
of the Barbera class, one can hypothesize that this is also the most probably class for
future wines that end up in that unit. Such predictions can play a role in determining
authenticity, an economically very important application.

Since SOMs are often used to detect grouping in the data, it makes sense to
look at the codebook vectors more closely, and investigate if there are obvious class
boundaries in the map—areas where the differences between neighboring units are
relatively large. Using a color code based on the average distance to neighbors one
can get a quick and simple idea of where the class boundaries can be found. This
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Fig. 5.4 Mapping of the 177
wine samples to the SOM
from Fig. 5.2. Circles
correspond to Barbera,
triangles to Barolo, and
pluses to Grignolino wines

Mapping plot

Fig. 5.5 Summed distances
to direct neighbors: the
U-matrix plot for the
mapping of the wine data
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idea is often referred to as the “U-matrix” (Ultsch 1993), and can be employed by
issuing:

> plot(wines.som, type = "dist.neighb")

The resulting plot is shown in Fig. 5.5. The map is too small to really be able to see
class boundaries, but one can see that the centers of the classes (the bottom left corner
for Barbera, the bottom right corner for Barolo, and the top row for the Grignolino
variety) correspond to areas of relatively small distances, i.e., high homogeneity.

Training progress, and an indication of the quality of themapping, can be obtained
using the following plotting commands:

> par(mfrow = c(1, 2))
> plot(wines.som, "changes")
> plot(wines.som, "quality")
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Fig. 5.6 Quality parameters for SOMs: the plot on the left shows the decrease in distance between
objects and their closest codebook vectors during training. The plot on the right shows the mean
distances between objects and codebook vectors per unit

This leads to the plots in Fig. 5.6. The left plot shows the average distance (expressed
per variable) to thewinning unit during the training iterations, and the right plot shows
the average distance of the samples and their corresponding codebook vectors after
training. Note that the latter plot concentrates on distances within the unit whereas
the U-matrix plot in Fig. 5.5 visualizes average distances between neighboring units.

Finally, an indication of the quality of the map is given by the mean distances of
objects to their units:

> summary(wines.som)
SOM of size 5x4 with a hexagonal topology

and a bubble neighbourhood function.
The number of data layers is 1.
Distance measure(s) used: sumofsquares.
Training data included: 177 objects.
Mean distance to the closest unit in the map: 3.646.

The summary function indicates that an object, on average, has a distance of 3.6
units to its closest codebook vector. The plot on the left in Fig. 5.6 shows that the
average distance drops during training: codebook vectors becomemore similar to the
units that are mapped to them. The plot on the right, finally, shows that the distances
within units can be quite different. Interestingly, some of the units with the largest
spread only contain Grignolinos (units 2 and 8), so the variation can not be attributed
to class overlap alone.
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Fig. 5.7 Mapping of the
prostate data. The cancer
samples (pca) lie in a broad
band from the bottom right
to the top of the map.
Control samples are split in
two groups on either side of
the pca samples. There is
considerable class overlap

Prostate data

bph control pca

5.3 Application

Themain attraction of SOMs lies in the applicability to large data sets; even if the data
are too large to be loaded in memory in one go, one can train the map sequentially
on (random) subsets of the data. It is also possible to update the map when new
data points become available. In this way, SOMs provide a intuitive and simple
visualization of large data sets in a way that is complementary to PCA. An especially
interesting feature is that thesemaps can show grouping of the data without explicitly
performing a clustering. In largemaps, sudden transitions betweenunits, as visualized
by, e.g., a U-matrix plot, enable one to view themajor structure at a glance. In smaller
maps, this often does not show clear differences between groups—see Fig. 5.5 for
an example. One way to find groups is to perform a clustering of the individual
codebook vectors. The advantage of clustering the codebook vectors rather than the
original data is that the number of units is usually orders of magnitude smaller than
the number of objects.

As a practical example, consider the mapping of the 654 samples from the
prostate data using the complete, 10,523-dimensional mass spectra in a 7-by-
5 map. This would on average lead to almost twenty samples per unit and, given
the fact that there are three classes, leave enough flexibility to show within-class
structure as well:

> X <- t(Prostate2000Raw$intensity)
> prostate.som <- som(X, somgrid(7, 5, "hexagonal"))

The plot in Fig. 5.7 is produced with the following code:

> types <- as.integer(Prostate2000Raw$type)
> trellis.cols <- trellis.par.get("superpose.symbol")$col[c(2, 3, 1)]
> plot(prostate.som, "mapping", col = trellis.cols[types],
+ pch = types, main = "Prostate data")
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> legend("bottom", legend = levels(Prostate2000Raw$type),
+ col = trellis.cols, pch = 1:3, ncol = 3, bty = "n")

Clearly, there is considerable class overlap, as may be expected when calculating
distances over more than 10,000 variables. Some separation can be observed, how-
ever, especially between the cancer and control samples. To investigate differences
between the individual units, one can plot the codebook vectors of some of the units
containing (predominantly) objects from one class only, corresponding to the three
right-most units in the plot in Fig. 5.7:

> units <- c(7, 21, 35)
> unitfs <- paste("Unit", units)
> prost.plotdf <-
+ data.frame(mz = Prostate2000Raw$mz,
+ intensity = c(t(getCodes(prostate.som, 1)[units, ])),
+ unit = rep(factor(unitfs, levels = unitfs),
+ each = length(Prostate2000Raw$mz)))
> xyplot(intensity ˜ mz | unit, data = prost.plotdf, type = "l",
+ scale = list(y = "free"), as.table = TRUE,
+ xlab = bquote(italic(.("m/z"))˜.("(Da)")),
+ groups = unit, layout = c(1, 3),
+ panel = function(...) {
+ panel.abline(v = c(3300, 4000, 6000, 6200),
+ col = "gray", lty = 2)
+ panel.xyplot(...)
+ })

These codebook vectors, shown in Fig. 5.8, display appreciable differences. The
cancer samples from Unit 7, for instance, are missing the large peaks at 3,100 and
4,000 Da that are present in the other two units but contain very clear signals around
6,100 and 6,200 Da, where the others have nothing.

5.4 R Packages for SOMs

The kohonen package used in this chapter, originally based on the class pack-
age (Venables and Ripley 2002), has several noteworthy features not discussed
yet (Wehrens and Kruisselbrink 2018). It can use distance functions other than the
usual Euclidean distance, which might be extremely useful for some data sets, often
avoiding the need for prior data transformations. One example is the WCC function
mentioned earlier: this can be used to group sets of X-ray powder diffractograms
where the position rather than the position of peaks contains the primary informa-
tion (Wehrens andWillighagen 2006; Wehrens and Kruisselbrink 2018). For numer-
ical variables, the sum-of-squares distance is the default (slightly faster than the
Euclidean distance); for factors, the Tanimoto distance. In the kohonen package
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Fig. 5.8 Codebook vectors for three units from the far-right side of the map in Fig. 5.7, containing
only samples from one class: unit 7 contains pca samples, unit 21 mostly bph samples and unit
35 control samples. Vertical gray lines indicate mass-to-charge ratios mentioned in the text

it is possible to supply several different data layers, where the rows in each layer
correspond to different bits of information on the same objects. Separate distance
functions can be defined for each single layer, which are then combined into one
overall distance measure using weights that can be defined by the user. Apart from
the usual “online” training algorithm described in this chapter, a “batch” algorithm is
implemented as well, where codebook vectors are not updated until all records have
been presented to the map. One advantage of the batch algorithm is that it dispenses
with one of the parameters of the SOM: the learning rate α is no longer needed. The
main disadvantage is that it is sometimes less stable and more likely to end up in a
local optimum. The batch algorithm also allows for parallel execution by distribut-
ing the comparisons of objects to all codebook vectors over several cores (Lawrence
et al. 1999) which may lead to considerable savings with larger data sets (Wehrens
and Kruisselbrink 2018).
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Several other packages are available from repositories like CRAN. One exam-
ple is the som package (Yan 2016). This package implements the online and batch
algorithms and provides great flexibility in setting training parameters. The somoclu
package implements a general SOM toolbox supporting parallel computation, also on
GPUs (Wittek et al. 2017). It uses the kohonen plotting functions for visualization. A
package providing a shiny (Chang et al. 2018) web interface is SOMbrero (Olteanu
and Villa-Vialaneix 2015). Here, one can use numerical data, contingency tables
as well as distance matrices as primary input data. Finally, the Stuttgart Neural
Network Simulator (SNNS) provides SOMs as one of many types of neural net-
works (Bergmeir and Benítez 2012).

5.5 Discussion

Conceptually, theSOMismost related toMDS, seen inSect. 4.6.1.Both, in away, aim
tofind a configuration in two-dimensional space that represents the distances between
the samples in the data. Whereas metric forms of MDS focus on the preservation
of the actual distances, SOMs provide a topological mapping, preserving the order
of the distances, at least for the smallest ones. Because of this, an MDS mapping
is often dominated by the larger distances, even when using methods like Sammon
mapping, and the configuration of the finer structure in the data may not be well
preserved. In SOMs, on the other hand, a big distance between the positions of two
samples in the map does not mean that they are very dissimilar: if the map is too
large, and not well trained, two regions in the map that are far apart may very well
have quite similar codebook vectors. What one can say is that objects mapped to the
same or to neighboring units are likely to be similar.

Both MDS and SOMs operate using distances rather than the original data to
determine the position in the low-dimensional representation of the data. This can be
a considerable advantage when working with high-dimensional data: even when the
number of variables is in the tens or hundreds of thousands, the distances between
objects can be calculated fairly quickly. Obviously, MDS, in particular, runs into
trouble when the number of samples gets large—SOMs can handle that more easily
because of the iterative training procedure employed. It is not even necessary to have
all the data in memory simultaneously.

Using SOMs is doubtfulwhen the number of samples is low, although applications
have been published with fewer than fifty objects. If the number of units in the map
is much smaller than the number of objects in such cases, one loses the advantage of
the spatial smoothness in the map, and one could just as well perform a clustering; if
the number of units approaches the number of objects, it is more likely than not that
the majority of the objects will occupy a unit by itself, which is not very informative
either.

One should realize that in the case of correlated variables the distances that are
calculatedmay be a bit biased: a group of highly correlated variableswill have amajor
influence on the distance between objects. In areas like, e.g., quantitative structure-
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activity relationships (QSAR), it is usual to calculate as many chemical structure
descriptors as possible in order to define the two- or three-dimensional structure
of a set of compounds. Many of these descriptors are variations on a theme: some
groups measure properties related to dipole, polarizability, surface area, etcetera.
The influence of one single descriptor capturing information that is unrelated to
the hundreds of other descriptors can easily be lost when calculating distances. For
SOMs, one simple solution is to decorrelate the (scaled) data, e.g., using PCA, and
to calculate distances using the scores.



Chapter 6
Clustering

As we saw earlier in the visualizations provided by methods like PCA and SOM, it
is often interesting to look for structure, or groupings, in the data. However, these
methods do not explicitly define clusters; that is left to the pattern recognition capa-
bilities of the scientist studying the plot. In many cases, however, it is useful to rely
on somewhat more formal methods, and this is where clustering methods come in.
They are usually based on object-wise similarities or distances, and since the late
nineties have become hugely popular in the area of high-throughput measurement
techniques in biology, such as DNA microarrays. There, the activities of tens of
thousands of genes are measured, often as a function of a specific treatment, or as a
time series. Of course, the question is which genes show the same activity pattern: if
an unknown gene has much the same behavior as another gene of which it is known
that it is involved in a process like cell differentiation, one can hypothesize that the
unknown gene is somehow related to this process as well.

With only a slight exaggeration one could say that there are about as many clus-
tering algorithms as there are scientists and by no means do these methods always
give the same results.Modern software packages havemademany of these clustering
methods available to a wide audience; unfortunately, this provides the temptation to
try all methods in order to get the result one is looking for, rather than the result
that is suggested by the data. There are no formal rules to help you decide which
clustering method to use.

One of the reasons for this is that most clustering methods are heuristic in nature,
rather than that they stem from solid statistical foundations. Moreover, assessing the
quality of the clustering, or validation, is a problem: since the “real” clustering is
by definition unknown (otherwise it would be more appropriate to use a supervised
approach such as the classification methods described in Chap. 7) we can not say
that one clustering is better than the other. Also cluster characteristics (sphericity,
density, ...) can not be used for this, since different clustering methods “optimize”
different criteria. It is often difficult for users to get a good idea of the behavior of
the separate methods, since our visualization abilities break down in more than three
dimensions, and at the same time the assumptions behind the clustering methods are
often unknown.
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In this chapter, we concentrate on several popular classes ofmethods. Hierarchical
methods are represented by single, average and complete linkage, respectively, while
k-means is an example of partitional methods. Both yield “crisp” clusterings; objects
belong to exactly one cluster. More sophisticated methods lead to a clustering where
membership values are assigned to each object: the object can be assigned to the
cluster with the highest membership value. An example is given by model-based
clustering methods.

6.1 Hierarchical Clustering

Quite often, data have a hierarchical structure in the sense that groups consist ofmutu-
ally exclusive sub-groups. This is often visualized in a tree-like structure, called a
dendrogram. The dendrogram presents an intuitive and appealing way for visualiz-
ing the hierarchical structure: the y-axis indicates the “distance” between different
groups, whereas the connections show where successive splits (or joins) take place.

Hierarchical clustering starts with a square matrix containing distances or
(dis)similarities; in the following we will assume we have the data in the form of dis-
tances. It is almost always performed in a bottom-up fashion. Starting with all objects
in separate clusters, one looks for the twomost similar clusters and joins them. Then,
the distance matrix is updated. There are several possibilities to determine the dis-
tance between clusters. One option is to take the shortest distance between clusters.
In Fig. 6.1 this would correspond to the distance between objects d and D. This
choice leads to the single-linkage algorithm. It joins two groups if any members
of both groups are close together, a strategy that is sometimes also referred to as
friends-of-friends: “any friend of yours is my friend, too!”.

The opposite strategy is complete linkage clustering: there, the distance between
clusters is determined by the objects in the respective clusters that are furthest apart—
in Fig. 6.1 objects a and A. In other words: to belong to the same cluster, the distances
to all cluster members must be small.1 This strategy leads to muchmore compact and

Fig. 6.1 Distances between
clusters: single linkage,
average linkage and
complete linkage consider
the closest points, the
averages, and the farthest
points, respectively

●

●

●

●
Single linkage

Complete linkage

Average linkage

● Cluster 1
Cluster 2

a
b

c
d

A
B

C
D

1We can only be friends if all our friends are friends of both of us.
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Fig. 6.2 Single linkage clustering (top) and complete linkage clustering (bottom) of 20 samples
from the wine data

equal-sized clusters. Of course, intermediate strategies are possible, too. Taking the
distance between cluster means leads to average linkage. Ward’s method explicitly
takes into account the cluster size in calculating a weighted average, and in many
cases gives very similar result to average linkage.

Let us see how this works by clustering a random subset of the wine data. In R
hierarchical clustering is available through function hclust, which takes an object
of class dist as its first argument:

> subset <- sample(nrow(wines), 20)
> wines.dist <- dist(wines.sc[subset, ])
> wines.hcsingle <- hclust(wines.dist, method = "single")
> plot(wines.hcsingle, labels = vintages[subset])

This leads to the dendrogram at the top in Fig. 6.2. When we go down in distance,
starting from the top, one Grignolino sample is split off from the main branch as
a singleton before the whole Barolo cluster is identified. Going down even further,
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individual Grignolino and Barbera samples are split off before arriving at a cluster
of Grignolino wines, and a cluster of Barberas.

Also the complete linkage dendrogram in the bottompanel of Fig. 6.2, suggesting a
four- or five-cluster solution, shows the confusion betweenBarberas andGrignolinos,
and separate, pure, Barolo and Grignolino clusters. This plot is obtained by:

> wines.hccomplete <- hclust(wines.dist, method = "complete")
> plot(wines.hccomplete, labels = vintages[subset])

The layout of the dendrogram is very different from the single-linkage one: there, the
typical friends-of-friends behaviour is observed, where single objects are gradually
added to one large group, in addition to a number of singletons. In complete linkage
one often finds more clear distinctions between groups of samples, as is the case
here.

In principle, a dendrogram from a hierarchical clustering method in itself is not
yet a clustering, since it does not give a grouping as such. However, these can be
obtained by “cutting” the diagramat a certain height: all objects that are connected are
supposed to be in one and the same cluster. For this, function cutree is available,
which either takes the height at which to cut, or the number of clusters to obtain as
an argument. In this case, let’s cut at a height of 3:

> wines.cl.single <- cutree(wines.hcsingle, h = 3)
> table(wines.cl.single, vintages[subset])

wines.cl.single Barbera Barolo Grignolino
1 0 7 0
2 1 0 0
3 1 0 3
4 0 0 1
5 1 0 0
6 5 0 0
7 0 0 1

The clustering is very good in the sense that there are almost no mixed clusters
containing samples from more than one type; on the other hand, the Barbera wines
are split over four different clusters. Cutting the dendrogram at a height larger than
threewill lead to fewer clusters but inevitably also tomoremixed clusters.Conversely,
lowering the height at which one cuts leads to more, and more pure clusters. What
is most useful needs to be determined on a case-to-case basis.

Now we turn to the complete data set, and recalculate the clusterings. Single
linkage, cut at a height to obtain three clusters, does not show anything useful:
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> wines.dist <- dist(wines.sc)
> wines.hcsingle <- hclust(wines.dist, method = "single")
> table(vintages, cutree(wines.hcsingle, k = 3))

vintages 1 2 3
Barbera 48 0 0
Barolo 58 0 0
Grignolino 67 3 1

Almost all samples are in cluster 1, and small bits of the data set (all Grignolino
samples) are chipped off leading to clusters 2 and 3, eachwith only very few elements.
On the other hand, the three-cluster solution from complete linkage is already quite
good:

> wines.hccomplete <- hclust(wines.dist, method = "complete")
> table(vintages, cutree(wines.hccomplete, k = 3))

vintages 1 2 3
Barbera 3 0 45
Barolo 50 8 0
Grignolino 14 52 5

Cluster 1 corresponds tomainly Barolo wines, cluster two to Grignolinos, and cluster
three to the Barberas. Of course, there still is significant overlap between the clusters.

Hierarchical clustering methods enjoy great popularity: the intuitive visualization
through dendrograms is one of the main reasons. These also provide the opportunity
to see the effects of increasing the number of clusters, without actually recalculating
the cluster structure. Obviously, hierarchical clustering will work best when the data
actually have a hierarchical structure: that is, when clusters contain subclusters, or
when some clusters are more similar than others. In practice, this is quite often the
case.

A further advantage is that the clustering is unique: no random element is involved
in creating the cluster model. For many other clustering methods, this is not the case.
Note that the uniqueness property is present only in the case that there are no ties in
the distances. If there are, one may obtain several different dendrograms, depending
on the order of the data and the actual implementation of the software. Usually, the
first available merge with the minimal distance is picked. When equal distances are
present, one or more equivalent merges are possible, which may lead to different
dendrograms. An easy way to investigate this is to repeat the clustering many times
on distance matrices from data where the rows have been shuffled.

There are a number of drawbacks to hierarchical clustering, too. For data sets with
many samples (more than ten thousand, say) these methods are less suitable. To start
with, calculating the distance matrix may be very expensive, or even impossible.
More importantly, interpreting the dendrograms quickly becomes cumbersome, and
there is a real danger of over-interpretation. Examples where hierarchical methods
are used with large data sets can be found in the field of DNA microarrays, where
the ground-breaking paper of Eisen et al. (1998) seems to have set a trend.
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There are a number of cases where the results of hierarchical clustering can be
misleading. The first is the case where in reality there is no class structure. Cutting
a dendrogram will always give you clusters: unfortunately, there is no warning light
flashing when you investigate a data set with no class structure. Furthermore, even
when there are clusters, they may be too close to separate, or they may overlap. In
these cases it is impossible to conclude anything about individual cases (although
it can still be possible to infer characteristics of the clusters as a whole). The two
keys to get out of this conundrum are formed by the use of prior information, and
by visualization. If you know class structure is present, and you already have infor-
mation about part of that structure, the clustering methods that fail to reproduce that
knowledge obviously are not performing well, and you are more likely to trust the
results of the methods that do find what you already know. Another idea is to visual-
ize the (original) data, and give every cluster a different color and plotting symbol.
One can easily see if clusters are overlapping or are nicely separated. Note that the
dendrogram can be visualized in a number of equivalent ways: the ordering of the
groupings from left to right is arbitrary to some extent and may depend on your
software package.

The cluster package in R also provides functions for hierarchical clustering:
agnes implements single, average and complete linkage methods but also allows
more control over the distance calculations using the method ="flexible"
argument. In addition, it provides a coefficient measuring the amount of cluster
structure, the “agglomerative coefficient”, ac:

ac = 1

n

∑

i

(1− mi )

where the summation is over all n objects, and mi is the ratio of the dissimilarity of
the first cluster an object is merged to and the dissimilarity level of the final merge
(after which only one cluster remains). Compare these numbers for three hierarchical
clusterings of the wine data:

> wines.agness <- agnes(wines.dist, method = "single")
> wines.agnesa <- agnes(wines.dist, method = "average")
> wines.agnesc <- agnes(wines.dist, method = "complete")

> cbind(wines.agness$ac, wines.agnesa$ac, wines.agnesc$ac)
[,1] [,2] [,3]

[1,] 0.53802 0.69945 0.81625

Complete linkage is doing the best job for these data, according to this quality
measure.
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6.2 Partitional Clustering

A completely different approach is taken by partitional clustering methods. Instead
of starting with individual objects as clusters and progressively merging similar
clusters, partitional methods choose a set of cluster centers in such a way that the
overall distance of all objects to the closest cluster centers is minimised. Algorithms
are iterative and usually start with random cluster centers, ending when no more
changes in the cluster assignments of individual objects are observed. Again, many
different flavours exist, each with its own characteristics. In general, however, these
algorithms are very fast and are suited for large numbers of objects. The calculation of
the complete distancematrix is unnecessary—only the distances to the cluster centers
need to be calculated, where the number of clusters is much smaller than the number
of objects—and this saves resources. Two examples will be treated here: k-means
and k-medoids. The latter is a more robust version, where outlying observations do
not influence the clustering to a large extent.

6.2.1 K-Means

The k-means algorithm is very simple and basically consists of two steps. It is ini-
tialized by a random choice of cluster centers, e.g., a random selection of objects in
the data set or random values within the range for each variable. Then the following
two steps are iterated:

1. Calculate the distance of an object to all cluster centers and assign the object to
the closest center; do this for all objects.

2. Replace the cluster centers by the means of all objects assigned to them.

The quality of the final model can then be assessed by summing the distances of all
objects to the centers of the clusters to which they are assigned. Note the similarity
to the training of SOMs in Chap.5, in particular to the batch training algorithm. The
goals of the two methods, however, are quite different: SOMs aim at providing a
suitable mapping to two dimensions, and the units should not be seen as individual
clusters, whereas k-means explicitly focusses on finding a specific number of groups.

The basic R function is for k-means clustering conveniently called kmeans.
Application to the wine data leads to the following result:



88 6 Clustering

> (wines.km <- kmeans(wines.sc, centers = 3))
K-means clustering with 3 clusters of sizes 65, 51, 61

Cluster means:
alcohol malic acid ash ash alkalinity magnesium

1 -0.91833 -0.39533 -0.49050 0.16370 -0.483216
2 0.17364 0.86425 0.18718 0.51684 -0.064971
3 0.83336 -0.30131 0.36617 -0.60655 0.569222

tot. phenols flavonoids non-flav. phenols proanth col. int.
1 -0.071141 0.026589 -0.037096 0.065095 -0.89558
2 -0.971065 -1.206242 0.719152 -0.771710 0.93782
3 0.887680 0.980165 -0.561730 0.575837 0.17023

col. hue OD ratio proline
1 0.46141 0.28236 -0.74607
2 -1.15662 -1.28723 -0.40027
3 0.47535 0.77533 1.12965

Clustering vector:
[1] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

[31] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 1 1
[61] 2 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1
[91] 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1

[121] 3 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[151] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

Within cluster sum of squares by cluster:
[1] 559.30 326.35 382.19
(between_SS / total_SS = 44.6 %)

Available components:

[1] "cluster" "centers" "totss" "withinss"
[5] "tot.withinss" "betweenss" "size" "iter"
[9] "ifault"

The algorithm not only returns the clustering of the individual objects, but also
cluster-specific information such as the sum of squares, the cumulative distance of
all cluster objects to the center of the cluster.

So the question now is: how good is the agreement with the vintages? Let’s see:

> table(vintages, wines.km$cluster)

vintages 1 2 3
Barbera 0 48 0
Barolo 0 0 58
Grignolino 65 3 3

Only six of the Grignolino samples are classified as Barbera and Barolo wines; a lot
better than the complete-linkage solution.

The k-means algorithm enjoys great popularity through its simplicity, ease of
interpretation, and speed. It does have a few drawbacks, however. We already men-
tioned the fact that one should pick the number of clusters in advance. In general, the
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correct number (if such a thing exists at all) is never known, and one will probably try
several different clusterings with different numbers of clusters. Whereas hierarchi-
cal clustering delivers this in one go—the dendrogram only has to be cut at different
positions—for k-means clustering (and partitional methods in general) one should
repeat the whole clustering procedure. As already said, the results with four or five
clusters may differ dramatically.

Worse, even a repeated clustering with the same number of clusters will give a
different result, sometimes even a very different result. Remember that we start from
a random initialization: an unlucky starting point may get the algorithm stuck in a
local minimum. Repeated application, starting from different initial guesses, gives
some idea of the variability. The kmeans function returns the within-cluster sums
of squares for the separate clusters, which can be used as a quality criterion:

> wines.km <- kmeans(wines.sc, centers = 3)
> best <- wines.km
> for (i in 1:100) {
+ tmp <- kmeans(wines.sc, centers = 3)
+ if (sum(tmp$withinss) < sum(best$withinss))
+ best <- tmp
+ }

One can then pick the one that leads to the best description of the data or, equivalently,
the smallest overall distance. In this particular case, the overall best solution is found
every time—the wine data do not present that much of a problem. The kmeans
function has a built-in argument for repeating the clustering and only returning the
best solution. Thus, the loop in the previous example can be replaced by

> wines.km <- kmeans(wines.sc, centers = 3, nstart = 100)

Severalminimawith comparable overall distancemeasuremay exist, so that different
but equally good clustering solutions can be found by the algorithm.

6.2.2 K-Medoids

In k-means, cluster centers are given by the mean coordinates of the objects in that
cluster. Since averages are very sensitive to outlying observations, the clustering
may be dominated by a few objects, and the interpretation may be difficult. One
way to resolve this is to assess clusterings with more groups than expected: the
outliers may end up in a cluster of their own. A more practical alternative would be
to use a more robust algorithm where the influence of outliers is diminished. One
example is the k-medoids algorithm (Kaufman and Rousseeuw 1990), available in R
through the function pam—Partitioning Around Medoids— in the cluster package.
Rather than finding cluster centers at optimal positions, k-medoids aims at finding
k representative objects within the data set. Typically, the sum of the distances is
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minimized rather than the sum of the squared distances, decreasing the importance
of large distances.

Applied to the wine data, k-medoids gives the following result:

> (wines.pam <- pam(wines.dist, k = 3))
Medoids:

ID
[1,] 35 35
[2,] 106 106
[3,] 148 148
Clustering vector:

[1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[31] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2
[61] 2 2 1 2 1 2 2 2 1 2 1 2 1 1 2 2 2 1 1 2 2 2 3 2 2 2 2 2 2 2
[91] 2 2 2 2 1 1 2 1 2 2 2 2 2 2 2 2 2 2 1 1 2 2 2 2 2 2 2 2 2 1

[121] 1 2 2 1 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
[151] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
Objective function:
build swap

2.9085 2.8086

Available components:
[1] "medoids" "id.med" "clustering" "objective"
[5] "isolation" "clusinfo" "silinfo" "diss"
[9] "call"

The result presents the medoids with their row numbers. The objective function, the
sum of the distances of objects to the medoids, is reported in two stages: the first
stage serves to find a good initial set of medoids, whereas the second stage performs
a local search, trying all possible medoid swaps until no more improvement can be
found. In this rather simple example, the average distance after the second stage has
decreased by 0.1, compared to the distances to the initial set of medoids—not a huge
decrease.

The implementation of pam in the cluster package comes with additional visual-
ization methods. The first is the “silhouette” plot (Kaufman and Rousseeuw 1990).
It shows a quality measure for individual clusterings: object with a high silhouette
width (close to 1) are verywell clustered, while objects with low values lie in between
two or more clusters. Objects with a negative value may be even in the wrong cluster.
The silhouette width si of object i is given by:

si = bi − ai
max(ai , bi )

where ai is the average distance of object i to all other objects in the same cluster,
and bi is the smallest distance of object i to another cluster. Thus, the maximal value
will be obtained in those cases where the intra-cluster distance a is much smaller
than the inter-cluster distance b.

For the wine data clustering, the silhouette plot shown in Fig. 6.3 is obtained by:
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Silhouette width si

0.0 0.2 0.4 0.6 0.8 1.0

Silhouette plot

Average silhouette width :  0.27

n = 177 3 clusters Cj

j :  nj | avei∈Cj si

1 :   74  |  0.24

2 :   54  |  0.23

3 :   49  |  0.34

Fig. 6.3 Silhouette plot for the k-medoids clustering of the wine data. The three clusters contain
74, 54 and 49 objects, and have average silhouette widths of 0.24, 0.23 and 0.34, respectively

> plot(wines.pam, main = "Silhouette plot")

An overall measure of clustering quality can be obtained by averaging all silhouette
widths. This is an easy way to decide on the most appropriate number of clusters:

> best.pam <- pam(wines.dist, k = 2)
> for (i in 3:10) {
+ tmp.pam <- pam(wines.dist, k = i)
+ if (tmp.pam$silinfo$avg.width < best.pam$silinfo$avg.width)
+ best.pam <- tmp.pam
+ }
> best.pam$medoids
[1] 12 56 34 97 91 163 125 148

In this case, eight clusters seem to give the clustering with the least ambiguity. The
agreement with the true class labels is quite good:
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> table(vintages, best.pam$clustering)

vintages 1 2 3 4 5 6 7 8
Barbera 0 0 0 0 0 18 0 30
Barolo 21 17 20 0 0 0 0 0
Grignolino 0 1 5 20 15 5 24 1

Clusters 1, 2 and 3 correspond to theBarolowines, and clusters 6 and 8 to theBarbera.
Again, the Grignolino wines are the most difficult to cluster, and 12 Grignolino
samples end up in clusters dominated by other wines.

For large data sets, pam is too slow; in the cluster package, an alternative is
provided in the function clara (Kaufman and Rousseeuw 1990) which considers
subsets of size sampsize. Each subset is partitioned using the same algorithm as
in pam. The sets of medoids that result are used to cluster the complete data set, and
the best set of medoids, i.e., the one for which the sum of the distances is minimal,
is retained.

6.3 Probabilistic Clustering

In probabilistic clustering, sometimes also called fuzzy clustering, objects are not
allocated to one cluster only. Rather, cluster memberships are used to indicate which
of the clusters is more likely. If a “crisp” clustering result is needed, an object is
assigned to the cluster with the highest membership value.

The most well-established methods are found in the area of mixture modelling,
where individual clusters are represented bymixtures of parametric distributions, and
the overall clustering is a weighted sum of the individual components (McLachlan
and Peel 2000; Fraley and Raftery 2002). Usually, multivariate normal distributions
are applied. In that case, assuming G clusters, the likelihood is given by

L(τ ,μ,�|x) =
n∏

i=1

G∑

k=1

τ kφk(xi |μk,�k) ,

where τ k is the fraction of objects in cluster k, μk and �k correspond to the cluster
means and covariance matrices of cluster k, respectively, and φk is the density of
cluster k. If the cluster labels would be known, one could estimate the unknown
parameters τ k , μk and �k by maximizing the likelihood (for example). Vice versa,
when these parameters are known, it is easy to calculate the conditional probabilities
of belonging to class k:

zik = φk(xi |θk)/
K∑

j=1

φ j (xi |θ j )
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These two steps are the components in the Expectation-Maximization algorithm
(EM) (Dempster et al. 1977; McLachlan and Krishnan 1997): estimating the condi-
tional probabilities is indicated with the E-step, whereas estimating the parameters
(class means and variances, and mixing proportions) is the M-step. The conditional
probabilities zik can also be seen as indicators of uncertainty: the larger zi,max, the
maximal value of all zik values for object i , the more certain the classification.

One can use the likelihood to determine what number of clusters is optimal. Of
course, the likelihoodwill increasewith the number of clusters, so one usually defines
a penalty depending on the number of parameters that are estimated. Two popular
measures are Akaike’s Information Criterion (AIC) and the Bayesian Information
Criterion (BIC). The AIC criterion (Akaike 1974) is defined by

AIC = −2 log L + 2p (6.1)

where L is the likelihood and p the number of parameters in the model (here τ ,
μ, and �). The closely related BIC criterion (Schwarz 1978) uses a penalty that is
usually stronger than the AIC penalty:

BIC = −2 log L + p log n (6.2)

The optimal model has a minimal value for AIC and/or BIC2—because of the more
heavy penalty, BIC is likely to select slightly more parsimonious models than AIC.
Several other criteria exist (McLachlan and Peel 2000). None of these is able to
correctly identify the number of clusters in all cases, but in practice, differences are
not very big and both AIC and BIC criteria are often used.

Several packages in R implement this form of clustering. In the mclust pack-
age (Fraley andRaftery 2003), for example, one can calculateBICvalues for different
numbers of clusters easily:

> wines.BIC <- mclustBIC(wines.sc, modelNames = "VVV")
> plot(wines.BIC)

This produces the plot in Fig. 6.4. The BIC value, here given in its negative form,
has a maximum at two clusters, which will be the model picked by the function
mclustModel if no specific number of clusters is given. Alternatively, one can
specify a specific number of clusters by providing a value for the G argument:

> wines.mclust2 <- mclustModel(wines.sc, wines.BIC)
> wines.mclust3 <- mclustModel(wines.sc, wines.BIC, G = 3)

Onecanmake scatter plots at specific combinations of variableswith thecoordProj
function, visualizing the clustering in low-dimensional subspaces. Also the uncer-
tainties, given by 1− zi,max, can be visualized. This provides an easy way to compare
the two- and three-cluster solutions graphically:

2Especially for the BIC value, one often sees the negative form so that maximization will lead to
an optimal model. This is also the definition by (Schwarz 1978).
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Fig. 6.4 BICvalues for clustering the autoscaledwine datawithmclust. The label “VVV” indicates
a completely unconstrained model. The optimal model has two clusters

> par(mfrow = c(2, 2))
> coordProj(wines.sc, dimens = c(7, 13),
+ parameters = wines.mclust2$parameters,
+ z = wines.mclust2$z, what = "classification")
> title("2 clusters: classification")
> coordProj(wines.sc, dimens = c(7, 13),
+ parameters = wines.mclust3$parameters,
+ z = wines.mclust3$z, what = "classification")
> title("3 clusters: classification")
> coordProj(wines.sc, dimens = c(7, 13),
+ parameters = wines.mclust2$parameters,
+ z = wines.mclust2$z, what = "uncertainty")
> title("2 clusters: uncertainty")
> coordProj(wines.sc, dimens = c(7, 13),
+ parameters = wines.mclust3$parameters,
+ z = wines.mclust3$z, what = "uncertainty")
> title("3 clusters: uncertainty")

The result, here for the variables flavonoids and proline, is shown in Fig. 6.5.
The top row shows the classifications of the two- and three-cluster models, respec-
tively. The bottom row shows the corresponding uncertainties.

Just like with k-means and k-medoids, the clustering using the EM algorithm
needs to be kick-started with an initial guess. This may be a random initialization, but
the EM algorithm has a reputation for being slow to converge, and an unlucky guess
may lead into a local optimum. In mclust, the initialization is done by hierarchical
clustering.3 This has the advantage that initial models for many different numbers of
clusters can be generated quickly. Moreover, this initialization algorithm is stable in
the sense that the same clustering is obtained upon repetition. A BIC table, such as
the one depicted in Fig. 6.4 is therefore easily obtained.

3To be more precise, model-based hierarchical clustering (Fraley 1998).
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Fig. 6.5 Two- and three-cluster models for the wines data, obtained by mclust. The top row
shows the classifications; the bottom row shows uncertainties at three levels, where the smallest
dots have z-values over 0.95 and the largest, black, dots have z-values below 0.75. The others are
in between

While mixtures of gaussians (or other distributions) have many attractive prop-
erties, they suffer from one big disadvantage: the number of parameters to estimate
quickly becomes large. This is the reason why the BIC curve in Fig. 6.4 does not run
all the way to nine clusters, although that is the default in mclust: in high dimen-
sions, clusters with only few members quickly lead to singular covariance matrices.
In such cases, no BIC value is returned. Banfield and Raftery (Banfield and Raftery
1993) suggested to impose restrictions on the covariance matrices of the clusters: one
can, e.g., use spherical and equal-sized covariance matrices for all clusters. In this
case, which is also the most restricted, the criterion that is optimized corresponds to
the criterion used in k-means and in Ward’s hierarchical clustering. For each cluster,
Gp parameters need to be estimated for the cluster centers, one parameter for the
covariance matrices, and p mixing proportions, a total of (G + 1)p + 1. In contrast,
for the completely free model such as the ones in Figs. 6.4 and 6.5, indicated with



96 6 Clustering

Fig. 6.6 BIC plots for all
covariance models
implemented in mclust:
although the constrained
models do not fit as well for
the same numbers of clusters,
they are penalized less and
achieve higher BIC values
for larger numbers of clusters
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“VVV” in mclust, every single covariance matrix requires p(p + 1)/2 parame-
ters. This leads to a grand total of p(Gp + G + 4)/2 estimates. For low-dimensional
data, this is still doable, but for higher-dimensional data the unrestricted models are
no longer workable.

Consider the wine data again, but now consider all ten models implemented in
mclust:

> wines.BIC <- mclustBIC(wines.sc)
> plot(wines.BIC, legendArgs = list(x = "bottom", ncol = 2))

This leads to the output in Fig. 6.6. The three-letter codes in the legend stand for vol-
ume, shape and orientation, respectively. The “E” indicates equality for all clusters,
the “V” indicates variability, and the “I” indicates identity. Thus, the “EEI” model
stands for diagonal covariance matrices (the “I”) with equal volumes and shapes, and
the “VEV”model indicates an ellipsoidalmodelwith equal shapes for all clusters, but
complete freedom in size and orientation. It is clear that the more constrained models
achieve much higher BIC values for higher numbers of clusters: the unconstrained
models are penalized more heavily for estimating so many parameters.

6.4 Comparing Clusterings

In many cases, one is interested in comparing the results of different clusterings. This
maybe to assess the behavior of differentmethods on the samedata set, but also to find
out howvariable the clusterings are that are obtained by randomly initializedmethods
like k-means. The difficulty here, of course, is that there is no golden standard; one
cannot simply count the number of incorrect assignments and use that as a quality
criterion. Moreover, the number of clusters may differ—still we may be interested
in assessing the agreement between the partitions.
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Several measures have been proposed in literature. Hubert (1985) compares sev-
eral of these, and proposes the adjusted Rand index, inspired by earlier work by Rand
(1971). The original Rand index is based on the number of times two objects are
classified in the same cluster, n. In the formulas below, ni · indicates the number of
object pairs classified in the same cluster in partition one, but not in partition two,
n· j the reverse, and ni j the number of pairs classified in different clusters in both
partitions. The index, comparing two partitions with I and J objects, respectively,
is given by

R =
(
n
2

)
+ 2

I∑

i=1

J∑

j=1

(
ni j
2

)
−

⎧
⎨

⎩

I∑

i=1

(
ni ·
2

)
+

J∑

j=1

(
n· j
2

)⎫
⎬

⎭ (6.3)

The adjusted Rand index “corrects for chance” by taking into account the expected
value of the index under the null hypothesis of random partitions:

Radj =
R − E(R)

max(R)− E(R)
=

a

(
n
2

)
− bc

1
2

(
n
2

)
(b + c)− bc

(6.4)

with

a =
∑

i, j

(
ni j
2

)
(6.5)

b =
∑

i

(
ni ·
2

)
(6.6)

c =
∑

j

(
n· j
2

)
(6.7)

This measure is zero when the Rand index takes its expected value, and has a maxi-
mum of one.

The implementation in R takes only a few lines:

> AdjRkl <- function(part1, part2) {
+ confusion <- table(part1, part2)
+
+ n <- sum(confusion)
+ a <- sum(choose(confusion[confusion>1], 2))
+ b <- apply(confusion, 1, sum)
+ b <- sum(choose(b[b>1], 2))
+ c <- apply(confusion, 2, sum)
+ c <- sum(choose(c[c>1], 2))
+
+ Rexp <- b*c/choose(n, 2)
+ (a - Rexp) / (.5*(b+c) - Rexp )
+ }
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Seed 7 Seed 17

Fig. 6.7 Clustering of the codebook vectors of two mappings of the wine data, indicated by back-
ground colors. Symbols indicate vintages

The function takes two partitionings, i.e., class vectors, and returns the value of the
adjusted Rand index. Note that the number of classes in both partitionings need not
be the same. An alternative is function adjustedRandIndex in packagemclust.

How this can be useful is easily illustrated. As already stated, repeated application
of SOM mapping will, in general, lead to mappings that visually can appear very
different. However, objects may find themselves very close to the same neighbors in
repeated training runs, so that conclusions from the two maps will be very much the
same. One way to investigate that is to quantify the similarities. Consider the SOM
mapping of the wine data for two initializations:

> set.seed(7)
> som.wines <- som(wines.sc, grid = somgrid(6, 4, "hexagonal"))
> set.seed(17)
> som.wines2 <- som(wines.sc, grid = somgrid(6, 4, "hexagonal"))

Assessing the similarities of themaps should not be done on the level of the individual
units, since these are not relevant entities in themselves. Rather, the units should be
aggregated into larger clusters. This can be achieved by looking at plots like Fig. 5.5;
an alternative is to explicitly cluster the codebook vectors (see, e.g., Vesanto and
Alhoniemi 2000). If hierarchical clustering is used, the dendrograms can be cut
at the desired level, immediately providing cluster memberships for the individual
samples.

> som.hc <- cutree(hclust(dist(getCodes(som.wines, 1))), k = 3)
> som.hc2 <- cutree(hclust(dist(getCodes(som.wines2, 1))), k = 3)
> plot(som.wines, "mapping", bgcol = terrain.colors(3)[som.hc],
+ pch = as.integer(vintages), main = "Seed 7")
> plot(som.wines2, "mapping", bgcol = terrain.colors(3)[som.hc2],
+ pch = as.integer(vintages), main = "Seed 17")

This leads to the plots in Fig. 6.7.
The mappings seem very different. Is this really the case, or is it just a visual

artifact? Let’s find out:
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> som.clust <- som.hc[som.wines$unit.classif]
> som.clust2 <- som.hc2[som.wines2$unit.classif]
> AdjRkl(som.clust, som.clust2)
[1] 0.4501

This rather low value suggests that both mappings are quite different. Note that this
analysis does not take into account the vintages and is applicable also in cases where
“true” class labels are unknown. Of course, one can also use the adjusted Rand index
to compare clusterings with a set of “true” labels:

> AdjRkl(vintages, som.clust)
[1] 0.47699
> AdjRkl(vintages, som.clust2)
[1] 0.67278

Clearly, the second random seed gives a mapping that is more in agreement with
the class labels, something that is also clear when looking at the agreement between
plotting symbols and background color in Fig. 6.7.

Other indices to measure correspondence between two partitionings include
Fowlkes’ and Mallows’s Bk (Fowlkes and Mallows 1983), Goodmans and Kruskals
γ (GoodmanandKruskal 1954), andMeila’sVariationof Information criterion (Meila
2007), also available inmclust. The latter is a difference measure, rather than a sim-
ilarity measure.

6.5 Discussion

Hierarchical clustering methods have many attractive features. They are suitable in
cases where there is a hierarchical structure, i.e., subclusters, which very often is the
case. A large number of variables does not pose a problem: the rate-limiting step
is the calculation of the distance matrix, the size of which does not depend on the
dimensionality of the data, but only on the number of samples. And last but not least,
the dendrogram provides an appealing presentation of the cluster structure, which
can be used to assess clusterings with different numbers of clusters very quickly.
Partitional methods, on the other hand, are more general. In hierarchical clustering
a split cannot be undone – once a sample is in one branch of the tree, there is no
way it can move to the other branch. This can lead, in some cases, to suboptimal
clusterings. Partitional methods do not know such restrictions: a sample can always
be classified into a different class in the next iteration. Some of the less complicated
partitional methods, such as k-means clustering, can also be applied with huge data
sets, containing tens of thousands of samples, that cannot be tackledwith hierarchical
clustering.

Both types of clustering have their share of difficulties, too. In cases relying on
distance calculations (all hierarchical methods, and some of the partitional methods,
too), the choice of a distance function can dramatically influence the result. The
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importance of this cannot be overstated. On the one hand, this is good, since it
allows one to choose the most relevant distance function available—it even allows
one to tackle data that do not consist of real numbers but are binary or have a more
complex nature. As long as there is a distance function that adequately represents
dissimilarities between objects, the regular clustering methods can be applied. On
the other hand, it is bad: it opens up the possibility of a wrong choice. Furthermore,
one should realize that when correlated groups of variables are present, as often is
the case in life science data, these variables may receive a disproportionally large
weight in a regular distance measure such as Euclidean distance, and smaller groups
of variables, or uncorrelated variables, may fail to be recognized as important.

Partitional methods force one to decide on the number of clusters beforehand,
or perform multiple clusterings with different numbers of clusters. Moreover, there
can be considerable differences upon repeated clustering, something that is less
prominent in hierarchical clustering (only with ties in the distance data). The main
problem with hierarchical clustering is that the bottom-up joining procedure may be
too strict: once an object is placed in a certain category, it will stay there, whatever
happens further on in the algorithm. Of course, there are many examples where this
leads to a sub-optimal clustering. More generally, there may not be a hierarchical
structure to begin with.

Both partitional and hierarchical clustering yield “crisp” clusters, that is, objects
are assigned to exactly one cluster, without any doubt. For partitional methods, there
are alternatives where each object gets a membership value for each of the clusters.
If a crisp clustering is required, at the end of the algorithm the object is assigned to
the cluster for which it has the highest membership. We have seen one example in
the model-based clustering methods.

Finally, one should take care not to over-interpret the results. If you ask for five
clusters, that is exactly what you get. Suppose one has a banana-shaped cluster.
Methods like k-means, but also complete linkage, will typically describe such a
banana with three or four spherical clusters. The question is: are you interested in
the peas or the pod4? It may very well be that several clusters in fact describe one
and the same group, and that to find the other clusters one should actually instruct
the clustering to look for more than five clusters.

Clustering is, because of the lack of “hard” criteria, more of an art than a science.
Without additional knowledge about the data or the problem, it is hard to decide
which one of several different clusterings is best. This, unfortunately, in some areas
has led to a practice in which all available clustering routines are applied, and the
one that seems most “logical” is selected and considered to describe “reality”. One
should always keep in mind that this may be a gross overestimation of the powers of
clustering.

4Metaphor from Adrian Raftery.
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Modelling



Chapter 7
Classification

The goal of classification, also known as supervised pattern recognition, is to provide
a model that yields the optimal discrimination between several classes in terms of
predictive performance. It is closely related to clustering. The difference is that in
classification it is clear what to look for: the number of classes is known, and the
classes themselves are well-defined, usually by means of a set of examples, the
training set. Labels of objects in the training set are generally taken to be error-
free, and are typically obtained from information other than the data we are going
to use in the model. For instance, one may have data—say, concentration levels
of several hundreds of proteins in blood—from two groups of people, healthy, and
not-so-healthy, and the aim is to obtain a classification model that distinguishes
between the two states on the basis of the protein levels. The diagnosis may have
been based on symptoms, medical tests, family history and subjective reasoning of
the doctor treating the patient. It may not be possible to distinguish patients from
healthy controls on the basis of protein levels, but if one would be able to, it would
lead to a simple and objective test.

Apart from having good predictive abilities, an ideal classification method also
provides insight in what distinguishes different classes from each other—which vari-
able is associated with an observed effect? Is the association positive or negative?
Especially in the natural sciences, this has becomean important objective: a gene, pro-
tein ormetabolite, characteristic for one or several classes, is often called abiomarker.
Such a biomarker, ormore often, set of biomarkers, can be used as an easy and reliable
diagnostic tool, but also can provide insight or even opportunities for intervention
in the underlying biological processes. Unfortunately, biomarker identification can
be extremely difficult. First of all, in cases where the number of variables exceeds
the number of cases, it is quite likely that several (combinations of) variables show
high correlations with class labels even though there may not be causal relationships.
Furthermore, there is a trend towards more complex non-linear modelling methods
(often indicated with terms like Machine Learning or Artificial Intelligence) where
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the relationship between variables and outcome can no longer be summarized in
simple coefficient values. Hence, interpretation of such models is often impossible.

What is needed as well is a reliable estimate of the success rate of the classifier. In
particular, onewould like to knowhow the classifierwill perform in the future, on new
samples, of course comparable to the ones used in setting up the model. This error
estimate is obtained in a validation step—Chap. 9 provides an overview of several
different methods. These are all the more important when the classifier of interest has
tunable parameters. These parameters are usually optimized on the basis of estimated
prediction errors, but as a result the error estimates are positively biased, and a second
validation layer is needed to obtain an unbiased error estimate. In this chapter, we
will take a simple approach and divide the data in a representative part that is used
for building the model (the training set), and an independent part used for testing
(the test set). The phrase “independent” is of utmost importance: if, e.g., autoscaling
is applied, one should use the column means and standard deviations of the training
set to scale the test set. First scaling the complete data set and then dividing the data
in training and test sets is, in a way, cheating: one has used information from the test
data in the scaling. This usually leads to underestimates of prediction error.

That the training data should be representative seems almost trivial, but in some
cases this is hard to achieve. Usually, a random division works well, but also other
divisions may be used. In Chap.4 we have seen that the odd rows of the wine data
set are very similar to the even rows. In a classification context, we can therefore use
the even rows as a training set and the odd rows as a test set:

> wines.odd <- seq(1, nrow(wines), by = 2)
> wines.even <- seq(2, nrow(wines), by = 2)
> wines.trn <- wines[wines.odd, ]
> wines.tst <- wines[wines.even, ]
> vint.trn <- vintages[wines.odd]
> vint.tst <- vintages[wines.even]

Note that classes are represented proportional to their frequency in the original data
in both the training set and the test set. In a couple of cases we will illustrate methods
in two dimensions only, looking at the flavonoids and proline variables in
the wine data set:

> wines2.trn <- wines.trn[, c(7, 13)]
> wines2.tst <- wines.tst[, c(7, 13)]

There are many different ways of using the training data to predict class labels for
future data. Discriminant analysis methods use a parametric description of means
and covariances. Essentially, observations are assigned to the class having the highest
probability density. Nearest-neighbor methods, on the other hand, focus on similar-
ities with individual objects and assign objects to the class that is prevalent in the
neighborhood; another way to look at it is to see nearest-neighbor methods as local
density estimators. Similarities between objects can also be used directly, e.g., in ker-
nel methods; the most well-known representative of this type of methods is Support
Vector Machines (SVMs). A completely different category of classifiers is formed
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by tree-based approaches. These create a model consisting of a series of binary
decisions. Finally, neural-network based classification will be discussed.

Here we will concentrate on the main concepts and show how they should be
implemented using standard approaches. Often these are directly supported by mod-
elling methods themselves. An alternative is to use the caret package (short for
Classification and Regression Training, Kuhn 2008; Kuhn and Johnson 2013), which
provides tools for data splitting and validation in the contexts of classification and
regression, but also many other topics mentioned in this book. The manual pages
and the vignette of the caret package provide more information.

7.1 Discriminant Analysis

In discriminant analysis, one assumes normal distributions for the individual classes:
Np(μk,Σk), where the subscript p indicates that the data are p-dimensional
(McLachlan 2004). One can then classify a new object, which can be seen as a
point in p-dimensional space, to the class that has the highest probability density
(“likelihood”) at that point—this type of discriminant analysis is therefore indicated
with the term “Maximum-Likelihood” (ML) discriminant analysis.

Consider the following univariate example with two groups (Mardia et al. 1979):
group one is N (0, 5) and group 2 is N (1, 1). The likelihoods of classes i are given
by

Li (x;μi ,σi ) = 1

σi

√
2π

exp

[
− (x − μi )

2

2σ2
i

]
(7.1)

It is not too difficult to show that L1 > L2 if

12

25
x2 − x + 1/2 − ln 5 > 0

which in this case corresponds to the regions outside the interval [−0.9, 2.9]. In
more general terms, one can show (Mardia et al. 1979) that for one-dimensional data
L1 > L2 when
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(7.2)

This unrestricted form,where every class is individually describedwith amean vector
and covariance matrix, leads to quadratic class boundaries, and is called “Quadratic
Discriminant Analysis” (QDA). Obviously, when σ1 = σ2 the quadratic term disap-
pears, and we are left with a linear class boundary—“Linear Discriminant Analysis”
(LDA). Both techniques will be treated in more detail below.

Another way of describing the same classification rules is to make use of the
Mahalanobis distance:
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d(x, i) = (
x − μi

)T
Σ−1

i

(
x − μi

)
(7.3)

Loosely speaking, this expresses the distance of an object to a class center in terms
of the standard deviation in that particular direction. Thus, a sample x is simply
assigned to the closest class, using the Mahalanobis metric d(x, i). In LDA, all
classes are assumed to have the same covariance matrix Σ , whereas in QDA every
class is represented by its own covariance matrix Σ i .

7.1.1 Linear Discriminant Analysis

It is easy to show that Eq.7.2 in the case of two groups with equal variances reduces
to

|x − μ2| > |x − μ1| (7.4)

Each observation x will be assigned to class 1 when it is closer to the mean of class 1
than of class 2, something that makes sense intuitively as well. Another way to write
this is

αT (x − μ) > 0 (7.5)

with

α = Σ−1(μ1 − μ2) (7.6)

μ = (μ1 + μ2)/2 (7.7)

This formulation clearly shows the linearity of the class boundaries. The separat-
ing hyperplane passes through the midpoint between the cluster centers, but is not
necessarily perpendicular to the segment connecting the two centers.

In reality, of course, one does not know the true means μi and the true covariance
matrix Σ . One then uses the plugin estimate S, the estimated covariance matrix.1 In
LDA, it is obtained by pooling the individual covariance matrices Si :

S = 1

n − G

G∑
i=1

ni Si (7.8)

where there areG groups, ni is the number of objects in group i , and the total number
of objects is n.

1In statistics this is known as the sample covariance matrix.
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For the wine data, this can be achieved as follows:

> wines.counts <- table(vint.trn)
> ngroups <- length(wines.counts)
> wines.groups <- split(as.data.frame(wines.trn), vint.trn)
> wines.covmats <- lapply(wines.groups, cov)
> wines.wcovmats <- mapply(’*’, wines.covmats, wines.counts,
+ SIMPLIFY = FALSE)
> wines.pooledcov <-
+ Reduce("+", wines.wcovmats) / (nrow(wines.trn) - ngroups)

This piece of code illustrates a convenient feature of the lapply function: when
the first argument is a vector, it can be used as an index for a function taking also
other arguments—here, a list and a vector. Each of the three covariance matrices is
multiplied by a weight corresponding to the number of objects in that class. In the
final step, the Reduce function adds the three weighted covariance matrices. An
alternative is to use a plain and simple loop:

> wines.pooledcov2 <- matrix(0, ncol(wines), ncol(wines))
> for (i in 1:3) {
+ wines.pooledcov2 <- wines.pooledcov2 +
+ cov(wines.groups[[i]]) * nrow(wines.groups[[i]])
+ }
> wines.pooledcov2 <-
+ wines.pooledcov2 / (nrow(wines.trn) - ngroups)

> range(wines.pooledcov2 - wines.pooledcov)
[1] 0 0

The number of parameters that must be estimated in LDA is relatively small: the
pooled covariance matrix contains p(p + 1)/2 numbers, and each cluster center p
parameters. For G groups this leads to a total of Gp + p(p + 1)/2 estimates—for
the wine data, with three groups and thirteen variables, this implies 130 estimates.

The LDA classification itself is now easily performed: first we calculate theMaha-
lanobis distances (using themahalanobis function) to the three class centers using
the pooled covariance matrix, and then we determine which of these three is closest
for every sample in the training set:

> distances <-
+ sapply(1:ngroups,
+ function(i, samples, means, covs)
+ mahalanobis(samples, colMeans(means[[i]]), covs),
+ wines.trn, wines.groups, wines.pooledcov)
> trn.pred <- apply(distances, 1, which.min)
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Let’s compare our predictions with the vintages of the odd-numbered samples:

> table(vint.trn, trn.pred)
trn.pred

vint.trn 1 2 3
Barbera 24 0 0
Barolo 0 29 0
Grignolino 0 0 36

The reproduction of the training data is perfect, much better than we have seen with
clustering, which is not surprising since the LDA builds the model (in this case
the pooled covariance matrix) using the information from the training set with the
explicit aim of discriminating between the classes. However, we should not think
that future observations are predicted with equal success. The test data should give
an indication of what to expect:

> distances <-
+ sapply(1:ngroups,
+ function(i, samples, means, covs)
+ mahalanobis(samples, colMeans(means[[i]]), covs),
+ wines.tst, wines.groups, wines.pooledcov)
> tst.pred <- apply(distances, 1, which.min)
> table(vint.tst, tst.pred)

tst.pred
vint.tst 1 2 3

Barbera 24 0 0
Barolo 0 29 0
Grignolino 1 0 34

One Grignolino sample has been classified in the class of the Barbera samples—a
very good result, confirming that the problem is not very difficult. Nevertheless, the
difference with the unsupervised clustering approaches is obvious.

Of course, R already contains an lda function (in package MASS):

> wines.ldamod <- lda(wines.trn, grouping = vint.trn,
+ prior = rep(1, 3)/3)
> wines.lda.testpred <- predict(wines.ldamod, new = wines.tst)
> table(vint.tst, wines.lda.testpred$class)

vint.tst Barbera Barolo Grignolino
Barbera 24 0 0
Barolo 0 29 0
Grignolino 1 0 34

The prior = rep(1, 3)/3 argument in the lda function is used to indicate
that all three classes are equally likely a priori. In many cases it makes sense to incor-
porate information about prior probabilities. Some classesmaybemore common than
others, for example. This is usually reflected in the class sizes in the training set and
therefore is taken into account when calculating the pooled covariance matrix, but it
is not explicitly used in the discrimination rule. However, it is relatively simple to do
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Fig. 7.1 Projection of the
training data from the wine
data set in the linear
discriminant space. It is easy
to see that linear class
boundaries can be drawn so
that all training objects are
classified correctly
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so: instead of maximising Li one nowmaximises πi Li , where πi is an estimate of the
prior probability of class i . In the two-group case, this has the effect of shifting the
critical value of the discriminant function with an amount of log(π2/π1) in Eq.7.5.
This approach is sometimes referred to as the Bayesian discriminant rule, and is
the default behaviour of the lda function. Obviously, when all prior probabilities
are equal, the Bayesian and ML discriminant rules coincide. Also in the example
above, using the relative frequencies as prior probabilities would not have made
any difference to the predictions—the three vintages have approximately equal class
sizes.

The lda function comes with the usual supporting functions for printing and
plotting. An example of what the plotting function provides is shown in Fig. 7.1:

> plot(wines.ldamod, col = as.integer(vint.trn))

The training samples are projected in the space of two new variables, the Linear Dis-
criminants (LDs). In comparison to the PCA scoreplot from Fig. 4.1, class separation
has clearly increased. Again, this is the result of the way in which the LDs have been
chosen: whereas the PCs in PCA account for as much variance as possible, in LDA
the LDs maximize separation. This will be even more clear when we view LDA in
the formulation by Fisher (see Sect. 7.1.3).

One particularly attractive feature of the lda function as it is implemented in
MASS is the possibility to choose different estimators of means and covariances. In
particular, the arguments method = "mve" and method = "t" are interesting
as they provide robust estimates.
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7.1.2 Crossvalidation

When the number of samples is low, there are two important disadvantages of dividing
a data set into two parts, one for training and one for testing. The first is that with
small test sets, the error estimates are on a very rough scale: if there are ten samples in
the test set, the errors are always multiples of ten percent. Secondly, the quality of the
model will be lower than it can be: when building the classification model one needs
all information one can get, and leaving out a significant portion of the data in general
is not helpful. Only with large sets, consisting of, say, tens or hundreds of objects per
class, it is possible to create training and test sets in such a way that modelling power
will suffer very little while giving a reasonably precise error estimate. Even then,
there is another argument against a division into training and test sets: such a division
is random, and different divisions will lead to different estimates of prediction error.
The differences may not be large, but in some cases they can be important, especially
in the case of outliers and/or extremely unlucky divisions.

One solution would be to try a large number of random divisions and to aver-
age the resulting estimates. This is indeed a valid strategy—we will come back to
this in Chap.9. A very popular formalization of this principle is called crossvalida-
tion (Stone 1974). The general procedure is as follows: one leaves out a certain part of
the data, trains the classifier on the remainder, and uses the left-out bit—sometimes
called the out-of-bag, or OOB, samples—to estimate the error. Next, the two data
sets are joined again, and a new test set is split off. This continues until all objects
have been left out exactly once. The crossvalidation error in classification is simply
the number of misclassified objects divided by the total number of objects in the
training set. If the size of the test set equals one, every sample is left out in turn—the
procedure has received the name Leave-One-Out (LOO) crossvalidation. It is shown
to be unbiased but can have appreciable variance: on average, the estimate is correct,
but individual components may deviate considerably.

More stable results are usually obtained by leaving out a larger fraction, e.g.,
10% of the data; such a crossvalidation is known as ten-fold crossvalidation. The
largest errors cancel out (to some extent) so that the variance decreases; however,
one pays the price of a small bias because of the size difference of the real training
set and the training set used in the crossvalidation (Efron and Tibshirani 1993). In
general, the pros outweigh the cons, so that this procedure is quite often applied. It
also leads to significant speed improvements for larger data sets, although for the
simple techniques presented in this chapter it is not likely to be very important. The
whole crossvalidation procedure is illustrated in Fig. 7.2.

For LDA (and also QDA), it is possible to obtain the LOO crossvalidation result
without complete refitting—upon leaving out one object, one can update the Maha-
lanobis distances of objects to classmeans and derive the classifications of the left-out
samples quickly, without doing expensive matrix operations (Ripley 1996). The lda
function returns crossvalidated predictions in the list element classwhen given the
argument CV = TRUE:



7.1 Discriminant Analysis 111

segment 1

segment 5 segment 5 segment 5 segment 5 segment 5

segment 4 segment 4 segment 4 segment 4 segment 4

segment 3 segment 3 segment 3 segment 3

segment 2 segment 2 segment 2 segment 2

segment 1 segment 1 segment 1 segment 1

segment 2

segment 3

it. 1 it. 2 it. 3 it. 4 it. 5

Fig. 7.2 Illustration of crossvalidation; in the first iteration, segment 1 of the data is left out during
training and used as a test set. Every segment in turn is left out. From the prediction errors of the
left-out samples the overall crossvalidated error estimate is obtained

> wines.ldamod <- lda(wines.trn, grouping = vint.trn,
+ prior = rep(1, 3)/3, CV = TRUE)
> table(vint.trn, wines.ldamod$class)

vint.trn Barbera Barolo Grignolino
Barbera 24 0 0
Barolo 0 28 1
Grignolino 1 0 35

So, where the training set can be predicted without any errors, LOO crossvalidation
on the training set leads to an estimated error percentage of 2/89 = 2.25%, twice the
error on the test set. This difference in itself is not very alarming—error estimates
also have variance.

7.1.3 Fisher LDA

A seemingly different approach to discriminant analysis is taken in Fisher LDA,
named after its inventor, Sir Ronald Aylmer Fisher. Rather than assuming a particular
distribution for individual clusters, Fisher devised a way to find a sensible rule to
discriminate between classes by looking for a linear combination of variables a
maximizing the ratio of the between-groups sums of squares B and thewithin-groups
sums of squares W (Fisher 1936):

aT Ba/aTWa (7.9)
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These sums of squares are calculated by

W =
G∑
i=1

∼
X

T

i

∼
X i (7.10)

B =
G∑
i=1

ni (x̄i − x̄)(x̄i − x̄)T (7.11)

where
∼
X i is the mean-centered part of the data matrix containing objects of class i ,

and x̄i and x̄ are the mean vectors for class i and the whole data matrix, respectively.
Put differently: W is the variation around the class centers, and B is the variation
of the class centers around the global mean. It also holds that the total variance T is
the sum of the between and within-groups variances:

T = B + W (7.12)

Fisher’s criterion is equivalent to finding a linear combination of variables a
corresponding to the subspace in which distances between classes are large and
distances within classes are small—compact classes with a large separation. It can be
shown that maximizing Eq.7.9 leads to an eigenvalue problem, and that the solution
a is given by the eigenvector of BW−1 corresponding with the largest eigenvalue.
An object x is then assigned to the closest class, i , which means that for all classes
i �= j the following inequality holds:

|aT x − aT x̄i | < |aT x − aT x̄ j | (7.13)

Interestingly, although Fisher took a completely different starting point and did
not explicitly assume normality or equal covariances, in the two-group case Fisher
LDA leads to exactly the same solution as ML-LDA. Consider the discrimination
between Barbera and Grignolino wines:

> wns <- wines[vintages != "Barolo", c(7, 13)]
> vnt <- factor(vintages[vintages != "Barolo"])
> wines.odd2 <- seq(1, nrow(wns), by = 2)
> wines.even2 <- seq(2, nrow(wns), by = 2)

To enable easy visualization, we will restrict ourselves to only two variables,
flavonoids and proline. Fisher LDA is performed by the following code:
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> wines.counts <- table(vnt)
> wines.groups <- split(as.data.frame(wns), vnt)
> WSS <-
+ Reduce("+", lapply(wines.groups,
+ function(x) {
+ crossprod(scale(x, scale = FALSE))}))
> BSS <-
+ Reduce("+", lapply(wines.groups,
+ function(x, y) {
+ nrow(x) * tcrossprod(colMeans(x) - y)},
+ colMeans(wns)))
> FLDA <- eigen(solve(WSS, BSS))$vectors[, 1]
> FLDA / FLDA[1]
[1] 1.00000000 -0.00087649

Application of ML-LDA, Eq.7.5, leads to

> wines.covmats <- lapply(wines.groups, cov)
> wines.wcovmats <- lapply(1:length(wines.groups),
+ function(i, x, y) x[[i]]*y[i],
+ wines.covmats, wines.counts)
> wines.pcov12 <- Reduce("+", wines.wcovmats) / (length(vnt) - 2)
> MLLDA <-
+ solve(wines.pcov12,
+ apply(sapply(wines.groups, colMeans), 1, diff))
> MLLDA / MLLDA[1]
flavonoids proline
1.00000000 -0.00087476

Setting the first element of the discrimination functions equal to 1makes the compari-
son easier: the vector a in Eq.7.9 can be rescaledwithout any effect on both allocation
rules Eqs. 7.13 and 7.5. In the two-group case, both ML-LDA and Fisher-LDA lead
to the same discrimination function.

For problems with more than two groups, the results are different unless the
sample means are collinear: Fisher LDA aims at finding one direction discriminating
between the classes. An example is shown in Fig. 7.3, where the boundaries between
the three classes in the two-dimensional subset of the wine data are shown for Fisher
LDA and ML-LDA.

The Fisher LDA boundaries for more than two classes are produced by code
essentially identical to the code for the two-group case earlier in this section: one
should replace the lines

> wns <- wines[vintages != "Barolo", c(7, 13)]
> vnt <- factor(vintages[vintages != "Barolo"])

by

> wns <- wines2.trn
> vnt <- vint.trn
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Fig. 7.3 Class boundaries for the wine data (proline and flavonoids only) for Fisher LDA (left)
and ML-LDA (right). Models are created using the odd rows of the wine data (training data); the
plotting symbols indicate the even rows (test data), as mentioned in the text

Then, after calculating the discriminant function FLDA, predictions are made at
positions in a regular grid:

> xcoo <- seq(.4, 5.4, length = 251)
> ycoo <- seq(250, 1750, length = 251)
> gridXY <- data.matrix(expand.grid(xcoo, ycoo))
> scores <- gridXY %*% FLDA
> meanscores <- c(t(sapply(wines.groups, colMeans)) %*% FLDA)
> Fdistance <- outer(scores, meanscores,
+ FUN = function(x, y) abs(x - y))
> Fclassif <- apply(Fdistance, 1, which.min)

The distances of the scores of all gridpoints to the scores of the class means are
calculated using the outer function—this leads to a three-column matrix. The
classification, corresponding to the class with the smallest distance, is obtained using
the function which.min.

Finally, the class boundaries are visualized using the functions image and
contour; the points of the test set are added afterwards.

> softbrg <- colorRampPalette(c("lightgray", "pink", "lightgreen"))
> image(x = xcoo, y = ycoo,
+ z = matrix(Fclassif, nrow = length(xcoo)),
+ xlab = "flavonoids", ylab = "proline",
+ main = "Fisher LDA", col = softbrg(3))
> box()
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> contour(x = xcoo, y = ycoo, drawlabels = FALSE,
+ z = matrix(Fclassif, nrow = length(xcoo)),
+ add = TRUE)
> points(wines2.tst, col = wine.classes[wines.even],
+ pch = wine.classes[wines.even])

The result is shown in the left plot of Fig. 7.3. The right plot is produced analogously:

> wines.ldamod <- lda(wines2.trn,
+ grouping = vint.trn,
+ prior = rep(1, 3)/3)
> colnames(gridXY) <- colnames(wines)[c(7, 13)]
> lda.2Dclassif <- predict(wines.ldamod, newdata = gridXY)$class
> lda.2DCM <- matrix(as.integer(lda.2Dclassif), nrow = length(xcoo))
> image(x = xcoo, y = ycoo, z = lda.2DCM,
+ xlab = "flavonoids", ylab = "proline",
+ main = "LDA", col = softbrg(3))
> box()
> contour(x = xcoo, y = ycoo, z = lda.2DCM, drawlabels = FALSE,
+ add = TRUE)
> points(wines2.tst, col = wine.classes[wines.even],
+ pch = wine.classes[wines.even])

Immediately it is obvious that although the error rates of the two classifications are
quite similar for the test set, large differences will occur when data points are further
away from the class centers. The class means are reasonably close to a straight line,
so that Fisher LDA does not fail completely; however, for multi-class problems it
is not a good idea to impose parallel class boundaries, as is done by Fisher LDA
using only one eigenvector. It is better to utilize the information in the second and
higher eigenvectors ofW−1B aswell (Mardia et al. 1979); these are sometimes called
canonical variates, and the corresponding form of discriminant analysis is known as
canonical discriminant analysis. The maximum number of canonical variates that
can be extracted is one less than the number of groups.

7.1.4 Quadratic Discriminant Analysis

Quadratic discriminant analysis (QDA) takes the same route as LDA, with the impor-
tant distinction that every class is described by its own covariance matrix, rather than
one identical (pooled) covariance matrix for all classes. Given our exposé on LDA,
the algorithm for QDA is pretty simple: one calculates the Mahalanobis distances
of all points to the class centers, and assigns each point to the closest class. Let us
see what this looks like in two dimensions:
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> wines2.groups <- split(as.data.frame(wines2.trn), vint.trn)
> wines2.covmats <- lapply(wines2.groups, cov)
> ngroups <- length(wines2.groups)
> distances <- sapply(1:ngroups,
+ function(i, samples, means, covs) {
+ mahalanobis(samples,
+ colMeans(means[[i]]),
+ covs[[i]]) },
+ wines2.tst, wines2.groups, wines2.covmats)
> test.pred <- apply(distances, 1, which.min)
> table(vint.tst, test.pred)

test.pred
vint.tst 1 2 3

Barbera 19 0 5
Barolo 0 28 1
Grignolino 3 1 31

Ten samples are misclassified in the test set. To see the class boundaries in two-
dimensional space, we use the same visualization as seen in the previous section:

> qda.mahal.dists <-
+ sapply(1:ngroups,
+ function(i, samples, means, covs) {
+ mahalanobis(samples,
+ colMeans(means[[i]]),
+ covs[[i]]) },
+ gridXY, wines2.groups, wines2.covmats)
> qda.2Dclassif <- apply(qda.mahal.dists, 1, which.min)
> qda.2DCM <- matrix(qda.2Dclassif, nrow = length(xcoo))
> image(x = xcoo, y = ycoo, z = qda.2DCM,
+ xlab = "flavonoids", ylab = "proline",
+ main = "QDA", col = softbrg(3))
> box()
> contour(x = xcoo, y = ycoo, z = qda.2DCM, drawlabels = FALSE,
+ add = TRUE)
> points(wines2.tst, col = as.integer(vint.tst),
+ pch = as.integer(vint.tst))

The result is shown in the left plot of Fig. 7.4. The quadratic form of the class
boundaries is clearly visible. Again, only the test set objects are shown.

Using the qda function from the MASS package, modelling the odd rows and
predicting the even rows is done just like with lda. Let’s build a model using all
thirteen variables:

> wines.qda <- qda(wines.trn, vint.trn,
+ prior = rep(1, 3)/3)
> test.qdapred <- predict(wines.qda, newdata = wines.tst)
> table(vint.tst, test.qdapred$class)
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Fig. 7.4 Class boundaries for thewine data (proline and flavonoids only) for QDA (left) andMBDA
(right). Models are created using the odd rows of the wine data (training data); the plotting symbols
indicate the even rows (test data)

vint.tst Barbera Barolo Grignolino
Barbera 24 0 0
Barolo 0 29 0
Grignolino 0 0 35

In this case, all test set predictions are correct.
The optional correction for unequal class sizes (or account for prior probabilities)

is done in exactly the same way as in LDA. Several other arguments are shared
between the two functions: both lda and qda can be called with the method
argument to obtain different estimates of means and variances: the standard plug-in
estimators, maximum likelihood estimates, or two forms of robust estimates. The CV
argument enables fast LOO crossvalidation.

7.1.5 Model-Based Discriminant Analysis

Although QDA uses more class-specific information, it still is possible that the data
are not well described by the individual covariance matrices, e.g., in case of non-
normally distributed data. In such a case one can employ more greedy forms of
discriminant analysis, utilizing very detailed descriptions of class densities. In par-
ticular, one can describe each class with a mixture of normal distributions, just like
in model-based clustering, and then assign an object to the class for which the over-
all mixture density is maximal. Thus, for every class one estimates several means
and covariance matrices—one describes the pod by a set of peas. Obviously, this
technique can only be used when the ratio of objects to variables is very large.
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Package mclust contains several functions for doing model-based discriminant
analysis (MBDA), ormixture discriminant analysis, as it is sometimes called as well.
The easiest one is MclustDA:

> wines.MclustDA <-
+ MclustDA(wines.trn, vint.trn, G = 1:5, verbose = FALSE)

In this case, we have restricted the number of gaussians, to be used for each individual
class, to be at most five. The summary method for the fitted object gives quite a lot
of information:

> summary(wines.MclustDA)
------------------------------------------------
Gaussian finite mixture model for classification
------------------------------------------------

MclustDA model summary:

log.likelihood n df BIC
-1479 89 151 -3635.8

Classes n Model G
Barbera 24 VEI 3
Barolo 29 EEI 3
Grignolino 36 VEI 2

Training classification summary:

Predicted
Class Barbera Barolo Grignolino

Barbera 24 0 0
Barolo 0 28 1
Grignolino 0 0 36

Training error = 0.011236

Again, the BIC value is employed to select the optimal model complexity. For the
Barolo class, a mixture of three gaussians seems optimal; these all have the same
diagonal covariance matrix (indicated with model EEI). The two other classes can be
described by mixtures of two and three diagonal covariance matrices, respectively,
with varying volume—see Sect. 6.3 for more information on model definition in
mclust. Classification for the training set is quite successful: only one object is
misclassified. Predictions for the test set can be obtained in the usual way:

> wines.McDApred <-
+ predict(wines.MclustDA, newdata = wines.tst)$classification
> sum(wines.McDApred != vint.tst)
[1] 1

Also here, only one sample is misclassified (a Barolo is seen as a Grignolino).
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If more control is needed over the training process, functions MclustDAtrain
and MclustDAtest are available in the mclust package. To visualize the class
boundaries in the two dimensions of the wine data set employed earlier for the other
forms of discriminant analysis, we can use

> wines.mclust2D <-
+ MclustDA(wines2.trn, vint.trn, G = 1:5, verbose = FALSE)

The model is simpler than the model employed for the full, 13-dimensional data,
which seems logical. Prediction and visualization is done by

> wines.mclust2Dpred <- predict(wines.mclust2D, gridXY)
> mbda.2DCM <- matrix(as.integer(wines.mclust2Dpred$classification),
+ nrow = length(xcoo))

> image(x = xcoo, y = ycoo, z = mbda.2DCM,
+ main = "MBDA", xlab = "flavonoids", ylab = "proline",
+ col = softbrg(3))
> box()
> contour(x = xcoo, y = ycoo, z = mbda.2DCM, drawlabels = FALSE,
+ add = TRUE)
> points(wines2.tst,
+ col = as.integer(vint.tst),
+ pch = as.integer(vint.tst))

The class boundaries, shown in the right plot of Fig. 7.4, are clearly much more
adapted to the densities of the individual classes, compared to the other forms of
discriminant analysis we have seen.

7.1.6 Regularized Forms of Discriminant Analysis

At theother endof the scalewefindmethods that are suitable in caseswherewecannot
afford to use very complicated descriptions of class density. One form of regularized
DA (RDA) strikes a balance between linear and quadratic forms (Friedman 1989):

the idea is to apply QDA using covariance matrices
∼
Σk that are shrunk towards the

pooled covariance matrix Σ :

Σ̃k = αΣ̂k + (1 − α)Σ (7.14)

where Σ̂k is the empirical covariance matrix of class k. In this way, characteris-
tics of the individual classes are taken into account, but they are stabilized by the
pooled variance estimate. The parameter α needs to be optimized, e.g., by using
crossvalidation.

In cases where the number of variables exceeds the number of samples, more
extreme regularization is necessary. One way to achieve this is shrinkage towards
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the unity matrix (Hastie et al. 2001):

Σ̃ = αΣ + (1 − α)I (7.15)

Equivalent formulations are given by:

Σ̃ = κΣ + I (7.16)

and
Σ̃ = Σ + κI (7.17)

with κ ≥ 0. In this form of RDA, again the regularized form Σ̃ of the covariance is
used, rather than the empirical pooled estimate Σ . Matrix Σ̃ is not singular so that
the matrix inversions in Eqs. 7.3 or 7.6 no longer present a problem. In the extreme
case, one can use a diagonal covariance matrix (with the individual variances on
the diagonal) leading to diagonal LDA (Dudoit et al. 2002), also known as Idiot’s
Bayes (Hand and Yu 2001). Effectively, all dependencies between variables are com-
pletely ignored. For so-called “fat” matrices, containing many more variables than
objects, often encountered in microarray research and other fields in the life sciences,
such simple methods often give surprisingly good results.

7.1.6.1 Diagonal Discriminant Analysis

As an example, consider the odd rows of the prostate data, limited to the first 1000
variables. We are concentrating on the separation between the control samples and
the cancer samples:

> prostate <- rowsum(t(Prostate2000Raw$intensity),
+ group = rep(1:327, each = 2),
+ reorder = FALSE) / 2
> prostate.type <- Prostate2000Raw$type[seq(1, 654, by = 2)]
>
> prost <- prostate[prostate.type != "bph", 1:1000]
> prost.type <- factor(prostate.type[prostate.type != "bph"])
> prost.df <- data.frame(type = prost.type, prost = prost)
> prost.odd <- seq(1, length(prost.type), by = 2)
> prost.even <- seq(2, length(prost.type), by = 2)

Although it is easy to re-use the code given in Sects. 7.1.1 and 7.1.4, plugging in
diagonal covariance matrices, here we will use the dDA function from the sfsmisc
package:

> prost.dlda <-
+ dDA(prost[prost.odd, ], as.integer(prost.type)[prost.odd])

By default, the same covariance matrix is used for all classes, just like in LDA. Here,
the result for the predictions on the even samples is not too bad:
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> prost.dldapred <- predict(prost.dlda, prost[prost.even, ])
> table(prost.type[prost.even], prost.dldapred)

prost.dldapred
1 2

control 32 8
pca 7 77

Approximately 88%of the test samples are predicted correctly.Allowing for different
covariance matrices per class, we arrive at diagonal QDA, which does slightly worse
for these data:

> prost.dqda <-
+ dDA(prost[prost.odd, ], as.integer(prost.type)[prost.odd],
+ pool = FALSE)
> prost.dqdapred <- predict(prost.dqda, prost[prost.even, ])
> table(prost.type[prost.even], prost.dqdapred)

prost.dqdapred
1 2

control 38 2
pca 16 68

7.1.6.2 Shrunken Centroid Discriminant Analysis

In the context of microarray analysis, it has been suggested to combine RDA with
the concept of “shrunken centroids” (Tibshirani et al. 2003)—the resulting method
is indicated as SCRDA (Guo et al. 2007) and is available in the R package rda. As
the name suggests, class means are shrunk towards the overall mean. The effect is
that the points defining the class boundaries (the centers) are closer, which may lead
to a better description of local structure. These shrunken class means are then used
in Eq.7.3, together with the diagonal covariance matrix also employed in DLDA.
For a more complete description, see, e.g., (Hastie et al. 2001).

Let us see how SCRDA does on the prostate example. Application of the rda
function is straightforward.2 The function takes two arguments, α and δ, where α
again indicates the amount of unity matrix in the covariance estimate, and δ is a
soft threshold, indicating the minimal coefficient size for variables to be taken into
account in the classification:

> prost.rda <-
+ rda(t(prost[prost.odd, ]), as.integer(prost.type)[prost.odd],
+ delta = seq(0, .4, len = 5), alpha = seq(0, .4, len = 5))

Printing the fitted object shows some interesting results:

2Note that in this function the variables are in the rows of the data matrix and not, as usual, in the
columns—hence the use of the transpose function.
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> prost.rda
Call:
rda(x = t(prost[prost.odd, ]), y = as.integer(prost.type)[prost.odd],

alpha = seq(0, 0.4, len = 5), delta = seq(0, 0.4, len = 5))
$nonzero

delta
alpha 0 0.1 0.2 0.3 0.4

0 1000 433 193 121 92
0.1 1000 220 34 3 0
0.2 1000 192 19 4 0
0.3 1000 179 18 4 0
0.4 1000 195 24 4 0

$errors
delta

alpha 0 0.1 0.2 0.3 0.4
0 36 38 39 39 39
0.1 10 16 32 41 41
0.2 7 21 43 41 41
0.3 4 23 44 41 41
0.4 2 20 44 41 41

Increasing values of δ lead to a rapid decrease in the number of non-zero coefficients;
however, these sparse models do not lead to very good predictions, and the lowest
value for the training error is found atα = .4 and δ = 0. Obviously, the training error
is not the right criterion to decide on the optimal values for these parameters. This
we can do using the rda.cv crossvalidation function, and subsequently we can use
the test data as a means to estimate the expected prediction error:

> prost.rdacv <-
+ rda.cv(prost.rda, t(prost[prost.odd, ]),
+ as.integer(prost.type)[prost.odd])

Inspection of the result (not shown) reveals that the optimal value of α would be .2,
with no thresholding (delta = 0). Predictions with these values lead to the following
result:

> prost.rdapred <-
+ predict(prost.rda,
+ t(prost[prost.odd, ]), as.integer(prost.type)[prost.odd],
+ t(prost[prost.even, ]), alpha = .2, delta = 0)
> table(prost.type[prost.even], prost.rdapred)

prost.rdapred
1 2

control 30 10
pca 4 80

Overall, fourteen samples are misclassified, only slightly better than the DLDA
model. This sort of behavior is more general than one might think: for fat data,
the simplest models are often among the top performers.
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7.2 Nearest-Neighbor Approaches

Acompletely different approach, not relying on any distributional assumptions what-
soever, is formed by techniques focusing on distances between objects, and in partic-
ular on the closest objects. These techniques are known under the name of k-nearest-
neighbors (KNN), where k is a number to be determined. If k = 1, only the closest
neighbor is taken into account, and any new object will be assigned to the class of
its closest neighbor in the training set. If k > 1, the classification is straightforward
in cases where the k nearest neighbors are all of the same class. If not, a majority
vote is usually performed. Class areas can be much more fragmented than with LDA
or QDA; in extreme cases one can even find patch-work-like patterns. The smaller
the number k, the more irregular the areas can become: only one object is needed to
assign its immediate surroundings to a particular class.

As an example, consider the KNN classification for the first sample in the test
set of the wine data (sample number two), based on the training set given by the
odd samples. One starts by calculating the distance to all samples in the training
set. Usually, the Euclidean distance is used—in that case, one should scale the data
appropriately to avoid large numbers to dominate the results. For the wine data,
autoscaling is advisable. The mahalanobis function has a useful feature that
allows one to calculate the distance of one object to a set of others. The covariance
matrix is given as the third argument. Thus, the Euclidean distance between samples
in the autoscaled wine data can be calculated in two ways, either from the autoscaled
data using a unit covariance matrix, or from the unscaled data using the estimated
column standard deviations. Consider the wine data, scaled according to the means
and variances of the odd rows (the training set). Calculating the distance to the second
sample in these two ways leads to the following result:

> wines.trn.sc <- scale(wines.trn)
> wines.tst.sc <- scale(wines.tst,
+ scale = apply(wines.trn, 2, sd),
+ center = colMeans(wines.trn))

> dist2sample2a <- mahalanobis(wines.trn.sc,
+ wines.tst.sc[1, ],
+ diag(13))
> dist2sample2b <- mahalanobis(wines.trn,
+ wines.tst[1, ],
+ diag(apply(wines.trn, 2, var)))
>
> range(dist2sample2a - dist2sample2b)
[1] -7.1054e-15 1.4211e-14

Clearly, the two lead to the same result. Next, we order the training samples according
to their distance to the second sample:
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> nearest.classes <- vint.trn[order(dist2sample2a)]
> table(nearest.classes[1:10])

Barbera Barolo Grignolino
0 10 0

The closest ten objects are all of the Barolo class—apparently, there is little doubt
that object 2 also should be a Barolo.

Rather than using a diagonal of the covariance matrix, one could also use the
complete estimated covariance matrix of the training set. This would lead to the
Mahalanobis distance:

> dist2sample2 <- mahalanobis(wines.trn,
+ wines.tst[1, ],
+ cov(wines.trn))
> nearest.classes <- vint.trn[order(dist2sample2)]
> table(nearest.classes[1:10])

Barbera Barolo Grignolino
0 6 4

Note that autoscaling of the data is not necessary because we explicitly include the
covariance matrix of the training data. Clearly, the results depend on the distance
measure employed. Although the closest three samples are Barolo wines, the next
three are Grignolinos; values of k between 5 and 9 would lead to a close call or even a
tie. Several different strategies to deal with such cases can be employed. The simplest
is to require a significant majority for any classification—in a 5-NN classification
one may require at least four of the five closest neighbors to belong to the same class.
If this is not the case, the classification category becomes “unknown”. Although this
may seem aweakness, inmany applications it is regarded as a strong point if amethod
can indicate some kind of reliability—or lack thereof—for individual predictions.

The class package contains an implementation of the KNN classifier using
Euclidean distances, knn. Its first argument is a matrix constituting the training
set, and the second argument is the matrix for which class predictions are required.
The class labels of the training set are given in the third argument. It provides great
flexibility in handling ties: the default strategy is to choose randomly between the
(tied) top candidates, so that repeated application can lead to different results:

> knn(wines.sc[wines.odd, ], wines.sc[68, ], cl = vint.trn, k = 4)
[1] Barbera
Levels: Barbera Barolo Grignolino
> knn(wines.sc[wines.odd, ], wines.sc[68, ], cl = vint.trn, k = 4)
[1] Grignolino
Levels: Barbera Barolo Grignolino

Apparently, there is some doubt about the classification of sample 68—it can be
either a Barbera or Grignolino. Of course, this is caused by the fact that from the
four closest neighbors, two are Barberas and two are Grignolinos. Requiring at least
three votes for an unambiguous classification (l = 3) leads to:
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> knn(wines.sc[wines.odd, ], wines.sc[68, ], cl = vint.trn,
+ k = 4, l = 3)
[1] <NA>
Levels: Barbera Barolo Grignolino

In many cases it is better not to have a prediction at all, rather than a highly uncertain
one.

The value of k is crucial. Unfortunately, no rules of thumb can be given on the
optimal choice, and this must be optimized for every data set separately. One simple
strategy is to monitor the performance of the test set for several values of K and pick
the one that leads to the smallest number of misclassifications. Alternatively, LOO
crossvalidation can be employed:

> wines.knnresult <- rep(0, 10)
> for (i in 1:10) {
+ wines.knncv <- knn.cv(wines.sc[wines.odd, ], vint.trn, k = i)
+ wines.knnresult[i] <-
+ sum(diag(table(vint.trn, wines.knncv)))
+ }
> round(100 * wines.knnresult / length(wines.odd), 1)
[1] 92.1 92.1 96.6 92.1 95.5 96.6 95.5 95.5 96.6 94.4

In this example, k values of three, six and nine show the best prediction—differences
are not large.

An alternative is to use the convenience function tune.knn in package e1071.
This function by default uses ten-fold crossvalidation for a range of values of k:

> (knn.tuned <- tune.knn(wines.sc[wines.odd, ], vint.trn, k = 1:10))

Parameter tuning of ’knn.wrapper’:

- sampling method: 10-fold cross validation

- best parameters:
k
3

- best performance: 0.022222

Plotting the knn.tuned object leads to the left plot of Fig. 7.5—the differences
with the LOO results we saw earlier show what kind of variability is to be expected
with crossvalidated error estimates. Indeed, repeated application of the tune function
will—for these data—lead to quite different estimates for the optimal value of k:

> bestKs <- rep(0, 1000)
> for (i in 1:1000)
+ bestKs[i] <- tune.knn(wines.sc[wines.odd, ],
+ vint.trn,
+ k = 1:10)$best.parameters[1, 1]
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Fig. 7.5 Optimization of k for the wine data using the tune wrapper function. Left plot: one
crossvalidation curve. Right plot: optimal values of k in 1000 crossvalidations

The right plot of Fig. 7.5 shows a histogram of the best k values. In the large majority
of cases, k = 2 is best. This is partly caused by a built-in preference for small values
of k in the script: the smallest value of k that gives the optimal predictions is stored,
even though larger values may lead to equally good predictions, something that given
the rather small size of our data set can easily occur.

Although application of these simple strategies allow one to choose the optimal
parameter settings, the optimal error associated with this setting (e.g., 97.8% in
the LOO example) is not an estimation of the prediction error of future samples,
because the test set is used in this procedure to fine-tune the method. Another layer
of validation is necessary to find the estimated prediction error; see Chap.9. The
1-nearest neighbor method enjoys great popularity, despite coming out worst in
the above comparison—there, it is almost never selected. Nevertheless, it has been
awarded a separate function in the class package: knn1. Most often, odd values of
K smaller than ten are considered.

One potential disadvantage of the KNN method is that in principle, the whole
training set—the training set in a sense is the model!—should be saved, which can
be a nuisance for large data sets. Predictions for new objects can be slow, and storing
really large data sets may present memory problems. However, things are not so
bad as they seem, since in many cases one can safely prune away objects without
sacrificing information. For the wine data, it is obvious that in large parts of the space
there is no doubt: only objects from one class are present. Many of these objects can
be removed and one then still will get exactly the same classification for all possible
new objects.
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7.3 Tree-Based Approaches

A wholly different approach to classification is formed by tree-based approaches.
These proceed in a way that is very similar to medical diagnosis: the data are “inter-
rogated” and a series of questions are posed which finally lead to a classification.
Modelling, in this metaphore, is to decide which questions are most informative. As
a class, tree-based methods possess some unique advantages. They can be used for
both classification and regression. Since the model is based on sequential decisions
on individual variables, scaling is not important: every variable is treated at its own
scale and no “overall” measure needs to be computed. Variable selection comes with
the method—only those variables that contribute to the result are incorporated in
the tree. Trees form one of the few methods that can accommodate variables of a
very different nature, e.g., numerical, categorical and ordinal, in one single model.
Their handling of missing values is simple and elegant. In short, trees can be used
for almost any classification (and regression) problem.

Currently, tree-based modelling comes in two main branches: Breiman’s Classifi-
cation and Regression Trees (CART, Breiman et al. 1984) and Quinlan’s See5/C5.0
(and its predecessors,C4.5,Quinlan 1993, and ID3,Quinlan 1986).Both are commer-
cial and not open-source software, butR comeswith twopretty faithful representation
of CART in the form of the rpart and tree functions, from the packages with
the same names. Since the approaches by Quinlan and Breiman have become more
similar with every new release, and since no See5/C5.0 implementation is available
in R, we will here only focus on rpart (Therneau and Atkinson 1997)—one of
the recommended R packages—to describe the main ideas of tree-based classifica-
tion. The differences between CART and the implementation in the tree package
are small; consult the manual pages and (Therneau and Atkinson 1997) for more
information.

7.3.1 Recursive Partitioning and Regression Trees

Recursive Partitioning and Regression Trees, which is what the acronym rpart
stands for, can be explained most easily by means of an example. Consider, again,
the the two-dimensional subset of the wine data encountered earlier:

> wines2.df <- data.frame(vint = vintages, wines[, c(7, 13)])
> wines2.rpart <- rpart(vint ˜ ., subset = wines.odd,
+ data = wines2.df, method = "class")

In setting up the tree model, we explicitly indicate that we mean classification
(method = "class"): the rpart function also provides methods for survival
analysis and regression, and though it tries to be smart in guessing what exactly is
required, it is better to explicitly provide the method argument. The result is an
object of class rpart:
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> wines2.rpart
n= 89

node), split, n, loss, yval, (yprob)
* denotes terminal node

1) root 89 53 Grignolino (0.269663 0.325843 0.404494)
2) flavonoids< 1.235 23 1 Barbera (0.956522 0.000000 0.043478) *
3) flavonoids>=1.235 66 31 Grignolino (0.030303 0.439394 0.530303)

6) proline>=739 30 2 Barolo (0.000000 0.933333 0.066667) *
7) proline< 739 36 3 Grignolino (0.055556 0.027778 0.916667) *

The top node, where no splits have been defined, is labelled as “Grignolino” since
that is the most abundant variety—36 out of 89 objects (a fraction of 0.4045) are
Grignolinos. The first split is on the flavonoids variable. A value smaller than
1.235 leads to node 2, which is consisting almost completely of Barbera samples
(more than 95 percent). This node is not split any further, and in tree terminology
is indicated as a “leaf”. A flavonoid value larger than 1.235 leads to node three that
is split further into separate Barolo and Grignolino leaves. Of course, such a tree is
much easier to interpret when depicted graphically:

> plot(wines2.rpart, margin = .12)
> text(wines2.rpart, use.n = TRUE)
> cl.id <- as.integer(wines2.df$vint[wines.odd])
> plot(wines2.df[wines.odd, 2:3], pch = cl.id, col = cl.id)
> segments(wines2.rpart$splits[1, 4], par("usr")[3],
+ wines2.rpart$splits[1, 4], par("usr")[4], lty = 2)
> segments(wines2.rpart$splits[1, 4], wines2.rpart$splits[2, 4],
+ par("usr")[2], wines2.rpart$splits[2, 4], lty = 2)

This leads to the plots in Fig. 7.6. The tree on the left shows the splits, corresponding
to the tessellation of the surface in the right plot. The plot command sets up the
coordinate system en plots the tree; the margin argument is necessary to reserve
some space for the annotation added by the text command. At every split, the test,
stored in the splits element in the X.rpart object, is shown. At the final nodes
(the “leaves”), the results are summarized: one Barbera (red triangles) is classified as
a Grignolino (green pluses), two Barolos (black circles) are in the Grignolino area;
two Grignolinos are thought to be Barolos, one a Barbera.

The rpart function has a familiar formula interface also used in, e.g., lm. For
the wine data, we will predict the classes of the even rows, again based on the odd
rows:

> wines.df <- data.frame(vint = vintages, wines)
> wines.rpart <- rpart(vint ˜ ., subset = wines.odd,
+ data = wines.df, method = "class")

Plotting the rpart object leads to Fig. 7.7. The flavonoids and proline variables are
again important in the classification, now in addition to the colour intensity.
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Fig. 7.6 Tree object from rpart using default settings (left). The two nodes lead to the class
boundaries visualized in the right plot. Only points for the even rows, the test set, are shown

Prediction is done using the predict.rpart function, which returns a matrix
of class probabilities, simply estimated from the composition of the training samples
in the end leaves:

> wines.rpart.predict <- predict(wines.rpart,
+ newdata = wines.df[wines.even, ])
> wines.rpart.predict[31:34, ]

Barbera Barolo Grignolino
62 0 0.032258 0.96774
64 0 0.032258 0.96774
66 0 0.142857 0.85714
68 0 0.032258 0.96774

In this rather simple problem, most of the probabilities are either 0 or 1, but here
some Grignolinos are shown that have a slight chance of actually being Barolos,
according to the tree model. The uncertainties are simply the misclassification rates
of the training model: row 66 ends up in a lead containing seven training samples,
one of which is a Barolo and six are Grignolinos. The other rows end up in the large
Grignolino group, containing also one Barolo sample. A global overview is more
easily obtained by plotting the probabilities:

> matplot(wines.rpart.predict, xlab = "sample number (test set)")

This leads to the plot in Fig. 7.8. Clearly, most of the Barolos and Barberas are
classified with complete confidence, corresponding with “pure” leaves. The Grigno-
linos on the other hand always end up in a leaf also containing one Barolo sample.
When using the type = "class" argument to the prediction function, the result
is immediately expressed in terms of classes, and can be used to assess the overall
prediction quality:
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Fig. 7.7 Fitted tree using rpart on the odd rows of the wine data set (all thirteen variables)
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Fig. 7.8 Classification probabilities of the test set of the wine data for the tree shown in Fig. 7.7.
Within the first twenty samples we see four incorrect predictions: the true class is Barolo (indicated
by “2”) but there is some confusion with Grignolino (“3”). Similarly, in the right part of the plot
two Barbera samples are seen as Grignolinos

> table(vint.tst,
+ predict(wines.rpart, newdata = wines.df[wines.even, ],
+ type = "class"))

vint.tst Barbera Barolo Grignolino
Barbera 22 0 2
Barolo 0 25 4
Grignolino 0 0 35

This corresponds to the six misclassifications seen in Fig. 7.8.
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7.3.1.1 Constructing the Tree

The construction of the optimal tree cannot be guaranteed to finish in polynomial
time (a so-called NP-complete problem), and therefore one has to resort to simple
approximations. The standard approach is the following. All possible splits—binary
divisions of the data—in all predictor variables are considered; the one leading to
the most “pure” branches is selected. The term “pure” in this case signifies that,
in one leaf, only instances of one class are present. For categorical variables, tests
for unique values are used; for continuous variables, all data points are considered
as potential split values. This simple procedure is applied recursively until some
stopping criterion is met.

The crucial point is the definition of “impurity”: several different measures can
be used. Two criteria are standing out (Ripley 1996): the Gini index, and the entropy.
The Gini index of a node is given by

IG(p) =
∑
i �= j

pi p j = 1 −
∑
j

p2j (7.18)

and is minimal (exactly zero) when the node contains only samples from one class—
pi is the fraction of samples from class i in the node. A simple function calculating
the Gini index looks like this:

> gini <- function(x, clss) {
+ p <- table(clss) / length(clss)
+ gini.parent <- 1 - sum(pˆ2)
+
+ gini.index <-
+ sapply(sort(x), function(splitpoint) {
+ left.ones <- clss[x < splitpoint]
+ right.ones <- clss[x >= splitpoint]
+ nleft <- length(left.ones)
+ nright <- length(right.ones)
+
+ if ((nleft == 0) | (nright == 0)) return (NA)
+
+ p.left <- table(left.ones) / nleft
+ p.right <- table(right.ones) / nright
+
+ (nleft * (1 - sum(p.leftˆ2)) +
+ nright * (1 - sum(p.rightˆ2))) /
+ (nleft + nright)
+ })
+
+ gini.index - gini.parent
+ }

This function takes a vector x, for instance values for the proline variable in the
wines data, and a class vector. Impurity values are calculated where each value in
the sorted vector x is considered as a split point. To really quantify improvement
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after splitting at that node, the Gini index of the parent node is subtracted: the more
negative the number, the bigger the improvement.

The other impurity criterion is based on entropy, where the entropy of a node is
defined by

IE (p) = −
∑
j

p j log p j

which again is minimal when the node is pure and contains only samples of one class
(where we define 0 log 0 = 0).

The optimal split is the one that minimizes the average impurity of the new left
and right branches (whatever criterion is used):

Pl I (pl) + Pr I (pr )

where Pl and Pr signify the sample fractions and I (pl) and I (pr ) are the impurities
of the left and right branches, respectively.

As an illustration, again consider the two-dimensional subset of the odd rows
of the wine data, using variables flavonoids and proline. Since the data are
continuous, we consider all values as potential splits, and calculate the Gini and
entropy indices. For the two-dimensional wine data this leads to:

> wines2.df.odd <- wines2.df[wines.odd, ]
> Ginis <- sapply(wines2.df.odd[, -1], gini, wines2.df.odd$vint)
> apply(Ginis, 2, min, na.rm = TRUE)
flavonoids proline

-0.24683 -0.24127
> (idx <- which.min(Ginis[, 1]))
[1] 24
> (bestSplit <- sort(wines2.df.odd[, "flavonoids"])[idx])
[1] 1.25

Plotting theGini values for the two columns leads to the left panel in Fig. 7.9. Because
of the lower Gini index, corresponding to more pure leaves, the first split should be
on the flavonoids column. The split point equals the 24th sorted value. Next we
divide the data into two sets, one to the left of the bestSplit value, and one to
the right. Here we show only the result for the right split following results:

> wr <- wines2.df.odd[wines2.df.odd$flavonoids >= bestSplit, ]
> GinisR <- sapply(wr[, -1], gini, wr$vint)
> apply(GinisR, 2, min, na.rm = TRUE)
flavonoids proline

-0.18750 -0.38321
> (idxR <- which.min(GinisR[, 2]))
[1] 37
> (bestSplitR <- sort(wr[, "proline"])[idxR])
[1] 760
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Fig. 7.9 Impurity values (Gini indices) for all possible split points in the two-dimensional subset of
the wine data. The left panel points to the flavonoids variable for selecting the first split point;
the right panel shows that the subsequent fit with the biggest gain is in the proline variable

Clearly, the second split should be done for the proline column at the level 760.
The two splits correspond exactly to the results in Fig. 7.6. The Gini values for the
right split are shown in the right panel of Fig. 7.9.

Obviously, one can keep on splitting nodes until every sample in the training set is
a leaf in itself, or in any case until each single leaf contains only instances of one class.
Such a tree is able to represent the training data perfectly, but whether the predictions
of such a tree are reliable is quite another matter. In fact, these trees generally will
not perform very well. By describing every single feature of the training set, the tree
is not able to generalize. This is an example of overfitting (or overtraining, as it is
sometimes called as well), something that is likely to occur in methods that have a
large flexibility—in the case of trees, the freedom to keep on adding nodes.

Theway this problem is tackled in constructing optimal trees is to use pruning, i.e.,
trimming useless branches. When exactly a branch is useless needs to be assessed
by some form of validation—in rpart, tenfold crossvalidation is used by default.
One can therefore easily find out whether a particular branch leads to a decrease in
prediction error or not.

More specifically, in pruning one minimizes the cost of a tree, expressed as

C(T ) = R(T ) + α|T | (7.19)

In this equation, T is a tree with |T | leafs, R(T ) the “risk” of the tree—e.g., the
proportion of misclassifications—and α a complexity penalty, chosen between 0 and
∞. One can see α as the cost of adding another node. It is not necessarily to build up
the complete tree to calculate this measure: during the construction the cost of the
current tree can be assessed and if it is above a certain value, the process stops. This
cost is indicated with the complexity parameter (cp) in the rpart function, which
is normalized so that the root node has a complexity value of one.

Once again looking at the first 1000 variables of the control and pca classes
in the prostate data, one can issue the following commands to construct the full tree
with no misclassifications in the training set:
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> prost.df <- data.frame(type = prost.type, prost = prost)
> prost.rpart <-
+ rpart(type ˜ ., data = prost.df, subset = prost.odd,
+ control = rpart.control(cp = 0, minsplit = 0))

The two extra arguments tell the rpart function to keep on looking for splits even
when the complexity parameter, cp, gets smaller than 0.1 and the minimal number
of objects in a potentially split node, minsplit, is smaller than 20 (the default
values). This leads to a tree with seven leaves. Printing the prost.rpart object
would show that the training data are indeed predicted perfectly. However, four of
the terminal nodes contain only three or fewer samples: it seems these are introduced
to repair some individual cases. Indeed, the test data are not predicted with the same
level of accuracy:

> prost.rpartpred <-
+ predict(prost.rpart, newdata = prost.df[prost.even, ])
> table(prost.type[prost.even], classmat2classvec(prost.rpartpred))

control pca
control 29 11
pca 12 72

Pruning could decrease the complexity without sacrificing much accuracy in the
description of the training set, and hopefully would increase the generalizing abilities
of themodel. To see what level of pruning is necessary, the table of complexity values
can be printed:

> printcp(prost.rpart)

Classification tree:
rpart(formula = type ˜ ., data = prost.df, subset = prost.odd,

control = rpart.control(cp = 0, minsplit = 0))

Variables actually used in tree construction:
[1] prost.4909 prost.5013 prost.5110 prost.5261 prost.5489 prost.5866

Root node error: 41/125 = 0.328

n= 125

CP nsplit rel error xerror xstd
1 0.5610 0 1.0000 1.000 0.128
2 0.2927 1 0.4390 0.829 0.121
3 0.0488 2 0.1463 0.634 0.111
4 0.0244 4 0.0488 0.561 0.106
5 0.0000 6 0.0000 0.561 0.106

Also a graphical representation is available:

> plotcp(prost.rpart)
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Fig. 7.10 Complexity
pruning of a tree: in this case,
three terminal nodes are
optimal (lowest prediction
error at lowest complexity)
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This leads to Fig. 7.10. Both from this figure and the complexity table shown above,
it is clear that the tree with the lowest prediction error and the least number of nodes
is obtained at a value of cp equal to 0.12. Usually, one chooses the complexity
corresponding to the minimum of the predicted error plus one standard deviation,
indicated by the dotted line in Fig. 7.10. The tree created with a cp value of 0.12,
containing only two leaves rather than the original seven, leads to a higher number
of misclassifications (six rather than zero) in the training set, but unfortunately also
to a slightly higher number of misclassifications in the test set:

> prost.rpart2 <-
+ rpart(type ˜ ., data = prost.df, subset = prost.odd,
+ control = rpart.control(cp = 0.12))
> prost.rpart2pred <-
+ predict(prost.rpart2, newdata = prost.df[prost.even, ])
> table(prost.type[prost.even], classmat2classvec(prost.rpart2pred))

control pca
control 29 11
pca 15 69

Either way, the result is quite a bit worse than what we have seen earlier with RDA
(Sect. 7.1.6.2).

Apart from the 0/1 loss function normally used in classification (a prediction is
either right or wrong), rpart allows to specify other, more complicated loss functions
as well—often, the cost of a false positive is very different from the cost of a false
negative decision. Another useful feature in the rpart package is the possibility to
provide prior probabilities for all classes.
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7.3.2 Discussion

Trees offer a lot of advantages. Perhaps the biggest of them is the appeal of the par-
ticular form of the model: many scientists feel comfortable with a series of more and
more specific questions, eventually leading to an unambiguous answer. The implicit
variable selectionmakesmodel interpretationmuch easier, and alleviates many prob-
lemswithmissing values, and variables ofmixed types (boolean, categorical, ordinal,
numerical).

There are downsides too, of course. The number of parameters to adjust is large,
and although the default settings quite often lead to reasonable solutions, there may
be a temptation to keep fiddling until an even better result is obtained. This, however,
can easily lead to overfitting: although the data are faithfully reproduced, themodel is
too specific and lacks generalization power. As a result, predictions for future data are
generally of lower quality than expected. And as for the interpretability of the model:
this is very much dependent on the composition of the training set. A small change in
the data can lead to a completely different tree. As we will see, this is a disadvantage
that can be turned into an advantage: combinations of tree-based classifiers often
give stable and accurate predictions. These so-called Random Forests, taking away
many of the disadvantages of simple tree-based classifiers while keeping the good
characteristics, enjoy huge popularity and will be treated in Sect. 9.7.2.

7.4 More Complicated Techniques

When relatively simple models like LDA or KNN do not succeed in producing
models with good predictive capabilities, one can ask the question: why do we fail?
Is it because the data just do not contain enough information to build a useful model?
Or are the models we have tried too simple? Do we need something more flexible,
perhaps nonlinear? The distinction between information-poor data and complicated
class boundaries is often hard to make.

In this section, we will treat two popular nonlinear techniques from the domain
of Machine Learning with complementary characteristics: whereas Support Vector
Machines (SVMs) are very useful when the number of objects is not too large,
Artificial Neural Networks (ANNs) should only be applied when there are ample
training cases available. Conversely, SVMs are applicable in high-dimensional cases
whereas ANNs are not: very often, a data reduction step like PCA is employed to
bring the number of variables down to a manageable size. These two techniques do
share one important property: they are very flexible indeed, and capable of modelling
the most complex relationships. This puts a large responsibility on the researcher for
thorough validation, especially since there are several parameters to tune. Because
the theory behind the methods is rather extensive, we will only sketch the contours—
interested readers are referred to the literature for more details.
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Fig. 7.11 The basic idea
behind SVM classification:
the separating hyperplane
(here, in two dimensions, a
line) is chosen in such a way
that the margin is maximal.
Points on the margins (the
dashed lines) are called
“support vectors”. Clearly,
the margins for the
separating line with slope
2/3 are much further apart
than for the vertical boundary
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7.4.1 Support Vector Machines

SVMs (Vapnik 1995; Cristianini and Shawe-Taylor 2000; Schölkopf and Smola
2002) in essence are binary classifiers, able to discriminate between two classes.
They aim at finding a separating hyperplane maximizing the distance between the
two classes. This distance is called the margin in SVM jargon; a synthetic example,
present in almost all introductions to SVMs, is shown in Fig. 7.11. Although both
classifiers, indicated by the solid lines, perfectly separate the two classes, the classifier
with slope 2/3 achieves a much bigger margin than the vertical line. The points
that are closest to the hyperplane are said to lie on the margins, and are called
support vectors—these are the only points that matter in the classification process
itself. Note however that all other points have been used in setting up the model,
i.e., in determining which points are support vectors in the first place. The fact that
only a limited number of points is used in the predictions for new data is called
the sparseness of the model, an attractive property in that it focuses attention to the
region that matters, the boundary between the classes, and ignores the exact positions
of points far from the battlefield.

More formally, a separating hyperplane can be written as

wx − b = 0 (7.20)

The margin is the distance between two parallel hyperplanes with equations
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wx − b = −1 (7.21)

wx − b = 1 (7.22)

and is givenby2/||w||. Therefore,maximizing themargin comesdown tominimizing
||w||, subject to the constraint that no data points fall within the margin:

ci (wxi ) ≤ 1 (7.23)

where ci is either −1 or 1, depending on the class label. This is a standard quadratic
programming problem.

It can be shown that these equations can be rewritten completely in terms of
inner products of the support vectors. This so-called dual representation has the
big advantage that the original dimensionality of the data is no longer of inter-
est: it does not really matter whether we are analyzing a data matrix with two
columns, or a data matrix with ten thousand columns. By applying suitable ker-
nel functions, one can transform the data, effectively leading to a representation in
higher-dimensional space. Often, a simple discrimination function can be obtained in
this high-dimensional space, which translates into an often complex class boundary
in the original space. Because of the dual representation, one does not need to know
the exact transformation—it suffices to know that it exists, which is guaranteed by
the use of kernel functions with specific properties. Examples of suitable kernels
are the polynomial and gaussian kernels. More details can be found in the literature
(e.g., Hastie et al. 2001).

Package e1071 provides an interface to the libsvm library3 through the function
svm. Autoscaling is applied bydefault.Modelling theBarbera andGrignolino classes
leads to the following results:

> wns.df <-
+ data.frame(vint = vnt,
+ flavonoids = wns[,"flavonoids"],
+ proline = wns[,"proline"])
> wns.svm <- svm(vint ˜ ., data = wns.df[wines.odd2, ])
> wns.svmpred <- predict(wns.svm, wns.df[wines.even2, ])
> table(wns.df$vint[wines.even2], wns.svmpred)

wns.svmpred
Barbera Grignolino

Barbera 22 2
Grignolino 4 31

These default settings lead to a reasonable of the test set.
One attractive feature of SVMs is that they are able to handle fat data matrices

(where the number of features is much larger than the number of objects) without any
problem. Let us see, for instance, how the standard SVM performs on the prostate
data. We will separate the cancer samples from the other control class—again, we
are considering only the first 1000 variables. Using the cross = 10 argument, we

3See http://www.csie.ntu.edu.tw/~cjlin/libsvm/.

http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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perform ten-fold crossvalidation, which should give us some idea of the performance
on the test set:

> prost.svm <- svm(type ˜ ., data = prost.df, subset = prost.odd,
+ cross = 10)
> summary(prost.svm)

Call:
svm(formula = type ˜ ., data = prost.df, cross = 10, subset = prost.odd)

Parameters:
SVM-Type: C-classification

SVM-Kernel: radial
cost: 1

gamma: 0.001

Number of Support Vectors: 88

( 38 50 )

Number of Classes: 2

Levels:
control pca

10-fold cross-validation on training data:

Total Accuracy: 92
Single Accuracies:
83.333 84.615 100 92.308 100 84.615 100 100 91.667 84.615

This summary shows us that rather than the complete training set of 125 samples,
only 88 are seen as support vectors (for SVMs already quite a large fraction). The
prediction accuracies for the left out segments vary from 83 to 83%, with an overall
error estimate of 92%. Let us see whether the test set can be predicted well:

> prost.svmpred <- predict(prost.svm, newdata = prost.df[prost.even,])
> table(prost.type[prost.even], prost.svmpred)

prost.svmpred
control pca

control 33 7
pca 1 83

Six misclassifications out of 124 cases, nicely in line with the crossvalidation error
estimate, is better than anything we have seen so far—not a bad result for default
settings.
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7.4.1.1 Extensions to More than Two Classes

The fact that only two-class situations can be tackled by basic forms of SVMs is a
severe limitation: in reality, it often happens that we should discriminate between
several classes. The standard approach is to turn one multi-class problem into sev-
eral two-class problems. More specifically, one can perform one-against-one testing,
where every combination of single classes is assessed, or one-against-all testing. In
the latter case, the question is rephrased as: “to be class A or not to be class A”—the
advantage is that, in the case of n classes, only n comparisons need to be made,
whereas in the one-against-one case n(n − 1)/2 models must be fitted. The disad-
vantage is that the class boundaries may be much more complicated: class “not A”
may be very irregular in shape. The default in the function svm is to assess all one-
against-one classifications, and use a voting scheme to pinpoint the final winning
class.

To show how this works we again concentrate on two dimensions only so that we
can visualize the results. First we set up the SVM model using the odd-numbered
rows only:

> wines.svm <- svm(vint ˜ flavonoids + proline, data = wines.df,
+ subset = wines.odd)
> wines.svmpred.trn <- predict(wines.svm)
> wines.svmpred.tst <-
+ predict(wines.svm, newdata = wines.df[wines.even, ])
> sum(wines.svmpred.trn == vint.trn) / length(wines.odd)
[1] 0.91011
> sum(wines.svmpred.tst == vint.tst) / length(wines.even)
[1] 0.90909

Predictions are very good, both for the training data (the odd rows of the data frame)
and the test data (the even rows). Next, we can plot the class boundaries, and project
the values of the test data on top to get a visual impression:

> plot(wines.svm, wines.df[wines.even, ], proline ˜ flavonoids,
+ color.palette = softbrg)

This code leads to the left plot in Fig. 7.12. The background colours, indicate the
predicted class for each region in the plot. They are obtained in a way very similar
to the code used to produce the contour lines in Fig. 7.3 and similar plots. Plotting
symbols show the positions of the support vectors—these are shown as crosses,
whereas regular data points, unimportant for this SVM model, are shown as open
circles. The 8 misclassifications can easily be spotted in the figure.

7.4.1.2 Finding the Right Parameters

The biggest disadvantage of SVMs is the large number of tuning parameters. One
should choose an appropriate kernel, and, depending on this kernel, values for two
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Fig. 7.12 SVM classification plots for the two-dimensional wine data (training data only). Support
vectors are indicated by crosses; regular data points by open circles. Left plot: default settings of
svm. Right plot: best SVM model with a polynomial kernel, obtained with best.svm

or three parameters. A special convenience function, tune, is available in the e1071
package, which, given a choice of kernel, varies the settings over a grid, calculates
validation values such as crossvalidated prediction errors, and returns an object of
classtune containing all validation results.A related function isbestwhich returns
the model with the best validation performance. If we wanted to find the optimal
settings for the three parameters coef0, gamma and cost using a polynomial
kernel (the default kernel is a radial basis function), we could do it like this:

> set.seed(7)
> wines.bestsvm <-
+ best.svm(vint ˜ flavonoids + proline, data = wines.df,
+ kernel = "polynomial",
+ coef0 = seq(-.5, .5, by = .1),
+ gamma = 2ˆ(-1:1), cost = 2ˆ(2:4))

The predictions with these settings then lead to the following results:

> wines.bestsvmpred.trn <-
+ predict(wines.bestsvm, newdata = wines.df[wines.odd, ])
> wines.bestsvmpred.tst <-
+ predict(wines.bestsvm, newdata = wines.df[wines.even, ])
> sum(wines.bestsvmpred.trn == vint.trn) / length(vint.trn)
[1] 0.92135
> sum(wines.bestsvmpred.tst == vint.tst) / length(vint.tst)
[1] 0.92045

For both the training and test data, one fewermisclassification error ismade; however,
the classification plot, shown in the right of Fig. 7.12 looks quite different from the
earlier version. The differences in areas where no samples are present may seem
not particularly interesting—however, they may become very relevant when new
samples are classified. Note that also the number and position of support vectors is
quite different.
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7.4.2 Artificial Neural Networks

Artificial Neural Networks (ANNs, also shortened to neural networks, NNs) form a
family of extremely flexible modelling techniques, loosely based on the way neu-
rons in human brains are thought to be connected—hence the name. Although the
principles of NNs had already been defined in the fifties of the previous century
with Rosenblatt’s perceptron (Rosenblatt 1962), the technique only really caught
on some twenty years later with the publication of Rumelhart’s and McClellands
book (Rumelhard and McClelland 1986). Many different kinds of NNs have been
proposed; here, we will only treat the flavor that has become known as feed-forward
neural networks, backpropagation networks, after the name of the training rule (see
below), or multi-layer perceptrons.

Such a network consists of a number of units, typically organized in three layers,
as shown in Fig. 7.13.When presented with input signals si , a unit will give an output
signal so corresponding to a transformation of the sum of the inputs:

so = f

(∑
i

si

)
(7.24)

For the units in the input layer, the transformation is usually the identity function,
but for the middle layer (the hidden layer typically sigmoid transfer functions or

Fig. 7.13 The structure of a
feedforward NN with three
input units, four hidden
units, two bias units and two
output units

bias bias
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threshold functions are used. For the hidden and output layers, special bias units are
traditionally added, always having an output signal of +1 (Ripley 1996). Network
structure is very flexible. It is possible to use multiple hidden layers, remove links
between specific units, to add connections skipping layers, or even to create feedback
loops where output is again fed to special input units. However, the most common
structure is to have a fully connected network such as the one depicted in Fig. 7.13,
consisting of one input layer, one hidden layer and one output layer. One can show
that adding more hidden layers will not lead to better predictions (although in some
cases it is reported to speed up training). Whereas the numbers of units in the input
and output layers are determined by the data, the number of units in the hidden layer
is a parameter that must be optimized by the user.

Connections between units are weighted: an output signal from a particular unit
is sent to all connected units in the next layer, multiplied by the respective weights.
These weights, in fact form the model for a particular network topology—training
the network comes down to finding the set of weights that gives optimal predictions.
The most popular training algorithm is based on a steepest-descent based adaption of
the weights upon repeated presentation of training data. The gradient is determined
by what is called the backpropagation rule, a simple application of the chain rule in
obtaining derivatives. Many other training algorithms have been proposed as well.

InR, several packages are available providing general neural network capabilities,
such as AMORE and neuralnet (Günther and Fritsch 2010). We will use the nnet
package, one of the recommendedR packages, featuring feed-forward networkswith
one hidden layer, several transfer functions and possibly skip-layer connections. It
does not employ the usual backpropagation training rule but rather the optimization
method provided by the R function optim. The target values, here the labels of
the vintages, have to be presented as a membership matrix, here containing three
columns, one for each type of wine. Each row contains 1 at the correct label of the
sample, and zeros in the other two positions. The conversion of a factor to a mem-
bership matrix is done by the classvec2classmat function from the kohonen
package—below, the first three lines of the membership matrix (all Barolos) are
shown:

> membership.trn <- classvec2classmat(vint.trn)
> head(membership.trn, 3)

Barbera Barolo Grignolino
[1,] 0 1 0
[2,] 0 1 0
[3,] 0 1 0

For the (autoscaled) training set of the wine data, the network is trained as follows:

> wines.nnet <- nnet(x = wines.trn.sc,
+ y = membership.trn,
+ size = 4)
# weights: 71
initial value 64.600576
iter 10 value 28.923577
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iter 20 value 0.012965
iter 30 value 0.002048
iter 40 value 0.000696
iter 50 value 0.000530
final value 0.000096
converged

Although the autoscaling is not absolutely necessary (the same effect can be reached
by using different weights for the connections of the input units to the hidden layer)
it does make it easier for the network to reach a good solution—without autoscaling
the data, the optimization easily gets stuck in a local optimum. Here convergence
is reached very quickly. In practice, multiple training sessions should be performed,
and the one with the smallest (crossvalidated) training error should be selected. An
alternative is to use a (weighted) prediction using all trained networks.

As expected for such a flexible fitting technique, the training data are reproduced
perfectly:

> membership.pred <- predict(wines.nnet)
> training.pred <- classmat2classvec(membership.pred)
> table(vint.trn, training.pred)

training.pred
vint.trn Barbera Barolo Grignolino

Barbera 24 0 0
Barolo 0 29 0
Grignolino 0 0 36

Luckily, also the test data are predicted very well here:

> table(vint.tst,
+ classmat2classvec(predict(wines.nnet, wines.tst.sc)))

vint.tst Barbera Barolo Grignolino
Barbera 24 0 0
Barolo 0 29 0
Grignolino 1 1 33

Several default choices have been made under the hood of the nnet function: the
type of transfer functions in the hidden layer and in the output layer, the number of
iterations,whether least-squares fitting ormaximum likelihoodfitting is done (default
is least-squares), and several others. The only explicit setting in this example is the
number of units in the hidden layer, and this immediately is the most important
parameter, too. Choosing too many units will lead to a good fit of the training data
but potentially bad generalization—overfitting. Too few hidden units will lead to a
model that is not flexible enough.

A convenience function tune.nnet is available in package e1071, similar to
tune.svm. This will test neural networks of a specific architecture a number of
times (the default is five) and collect measures of predictive performance (obtained
by either crossvalidation or bootstrapping, see Chap.9). Let us see whether our
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Fig. 7.14 Tuning neural
networks: selecting the
optimal number of nodes in
the hidden layer
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(arbitrary) choice of four hidden units can be improved upon, now using the formula
interface of the nnet function:

> wines.trn.sc.df <- data.frame(vintage = vint.trn, wines.trn.sc)
> (wines.nnetmodels <-
+ tune.nnet(vintage ˜ ., data = wines.trn.sc.df,
+ size = 1:8, trace = FALSE))

Generic summary and a plot methods are available—for the corresponding plot,
see Fig. 7.14. Clearly, one hidden unit is not enough, and two hidden units are
not much worse than four, or even eight (although changing the y scale could
make us rethink that statement). Instead of using tune.nnet, one can also apply
best.nnet—this function directly returns the trained model with the optimal
parameter settings:

> best.wines.nnet <-
+ best.nnet(vintage ˜ ., data = wines.trn.sc.df,
+ size = 1:8, trace = FALSE)
> table(vint.tst,
+ predict(best.wines.nnet,
+ newdata = data.frame(wines.tst.sc),
+ type = "class"))

vint.tst Barbera Barolo Grignolino
Barbera 24 0 0
Barolo 0 29 0
Grignolino 4 0 31

Indeed, we see one fewer misclassification. Note that here, “optimal” simply means
the network with the lowest crossvalidation error. However, this may be too opti-
mistic: especially with very flexible models like ANNs and the tree-based methods
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we saw earlier, overfitting is a real danger. The idea is that too complex models have
enough flexibility to learn data “by heart” whereas models of the right complexity are
forced to focus on more general principles. One rule of thumb is to use the simplest
possible model that is not worse than the best model to be as conservative as possible.
In this case, one would expect a network with only two hidden neurons to perform
better for new, unseen, data than a network with four or eight. We will come back to
this in Chap.9.

In the example above we used the default stopping criterion of the nnet func-
tion, which is to perform 100 iterations of complete presentations of the training
data. In several publications, scientists have advocated continuously monitoring pre-
diction errors throughout the training iterations, in order to prevent the network from
overfitting. In this approach, training should be stopped as soon as the error of the
validation set starts increasing. Apart from the above-mentioned training parameters,
this presents an extra level of difficulty which becomes all the more acute with small
data sets. To keep these problemsmanageable, one should be very careful in applying
neural networks in situations with few cases; the more examples, the better.

7.4.2.1 Deep Learning

Since2010, a novel development in neural networks calledDeepLearning (DL,Good-
fellow et al. 2016) has taken center stage with applications in areas like computer
vision (Uijlings et al. 2013; Gatys et al. 2016; Badrinarayanan et al. 2017), speech
recognition (Hinton et al. 2012; Deng et al. 2013; Nassif et al. 2019) and many oth-
ers. At that point in time, developments in GPUs, graphics processing units allowing
massively parallel computations coincided with easy access to large data sets such
as ImageNet (Russakovsky et al. 2015), a collection of millions of annotated images.
Open-source software was available, too, and the interest of companies like Google
and Microsoft made sure large steps were made. Today, many of the top-performing
approaches in difficult benchmark problems are based on Deep Learning.

So what is different, compared to the neural networks in the previous sections?
From a structural viewpoint, not that much. Just like the neural networks from the
nineties can be seen as perceptrons stitched together in a particular structure, DL
networks can be described as collections of neural networks such as the ones in
Fig. 7.13. What is new is that many more layers are used (DL networks with more
than one hundred layers are no exception) and that layers are includedwith a purpose:
in image processing applications we typically see, amongst others, convolutional
layers and pooling layers, applied in alternating fashion. Each of these layers serves
a particular purpose—subsequent layers are not fully connected like in the network
of Fig. 7.13 but only connected if there is a reason for it. In this way, the DL network
is able to aggregate the raw input data into more and more abstract features that
eventually will be combined to obtain the final answer. The increased amount of
structure within the DL net restricts the number of weights that need to be optimized.
Regularizationmethods (see, e.g., Sects. 8.4 and10.2) are employed routinely in order
to keep the weights small and prevent overfitting (Efron and Hastie 2016), effectively
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removing the number of training iterations as a parameter to be optimized: more is
better in these cases. Still, the training is a daunting task:manyweights are optimized,
and for this a large (large!) number of training examples needs to be provided.

Amajor hurdle for classification applications is that in almost all cases the training
examples need to be annotated, i.e., the ground truth needs to be known. Modern
sensing devices like cameras have no problems in generating terabytes and more of
data, but what the true class of the image is still needs to be decided, an area that is
being exploited commercially nowadays. Chemometrics is typically concerned with
data characterized by multivariate responses, recorded for relatively few samples, so
DL applications are still rare but they will certainly come.



Chapter 8
Multivariate Regression

InChaps. 6 and 7wehave concentrated onfinding groups in data, or, given a grouping,
creating a predictive model for new data. The last situation is “supervised” in the
sense that we use a set of examples with known class labels, the training set, to build
the model. In this chapter we will do something similar—now we are not predicting
a discrete class property but rather a continuous variable. Put differently: given a
set of independent real-valued variables (matrix X), we want to build a model that
allows prediction of Y , consisting of one, or possibly more, real-valued dependent
variables. As in almost all regression cases, we here assume that errors, normally
distributed with constant variance, are only present in the dependent variables, or
at least are so much larger in the dependent variables that errors in the independent
variables can be ignored. Of course, we also would like to have an estimate of the
expected error in predictions for future data.

8.1 Multiple Regression

The usual multiple least-squares regression (MLR), taught in almost all statistics
courses, is modelling the relationship

Y = XB + E (8.1)

where B is the matrix of regression coefficients and E contains the residuals. The
regression coefficients are obtained by

B = (XT X)−1XTY (8.2)

with variance-covariance matrix
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Var(B) = (XT X)−1σ2 (8.3)

The residual variance σ2 is typically estimated by

σ̂2 = 1

n − p − 1

n∑

i=1

(yi − ŷi )
2 (8.4)

MLR has a number of attractive features, the most important of which is that it is
the Best Linear Unbiased Estimator (BLUE) when the assumption of uncorrelated
normally distributed noise with constant variance is met (Mardia et al. 1979). The
standard deviations of the individual coefficients, given by the square roots of the
diagonal elements of the variance-covariance matrix Var(B), can be used for statisti-
cal testing: variables whose coefficients are not significantly different from zero are
sometimes removed from the model. Since removing one such variable will in gen-
eral lead to different estimates for the remaining variables, this results in a stepwise
variable selection approach (see Chap. 10).

For the odd-numbered samples in the gasoline data, a regression using four
of the 401 wavelengths, evenly spaced over the entire range to reduce correlations
between the wavelengths would yield

> X <- gasoline$NIR[, 100*(1:4)]
> Y <- gasoline$octane
> Xtr <- cbind(1, X[gas.odd, ])
> Ytr <- Y[gas.odd]
> Bs <- t(solve(crossprod(Xtr), t(Xtr)) %*% Ytr)
> Bs

1098 nm 1298 nm 1498 nm 1698 nm
[1,] 64.482 1312.9 -1607.5 229.94 26.244

Adding the column of ones using the cbind function on the fifth line in the example
above causes an intercept to be fitted as well. The solve statement is the direct
implementation of Eq.8.2. This also works when Y is multivariate—the regression
matrix B will have one column for every variable to be predicted.

Rather than using this explicit matrix inversion, one would use the standard linear
model function lm, which also provides the usual printing, plotting and summary
functions. The lm function is provided with a data.frame as input. To avoid
funny-looking names we’ll make a temporary data.frame:



8.1 Multiple Regression 151

> gas.df <- data.frame(octane = gasoline$octane,
+ V100 = gasoline$NIR[, 100],
+ V200 = gasoline$NIR[, 200],
+ V300 = gasoline$NIR[, 300],
+ V400 = gasoline$NIR[, 400])
> Blm <- lm(octane ˜ ., data = gas.df)
> summary(Blm)

Call:
lm(formula = octane ˜ ., data = gas.df)

Residuals:
Min 1Q Median 3Q Max

-4.328 -0.874 0.383 0.811 2.275

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 72.59 11.52 6.30 5.2e-08 ***
V100 714.94 178.39 4.01 0.00019 ***
V200 -957.29 224.92 -4.26 8.2e-05 ***
V300 154.76 66.29 2.33 0.02324 *
V400 12.01 7.24 1.66 0.10260
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 1.35 on 55 degrees of freedom
Multiple R-squared: 0.278, Adjusted R-squared: 0.226
F-statistic: 5.3 on 4 and 55 DF, p-value: 0.0011

The lm function automatically fits an intercept; there is no need to explicitly add a
column of ones to the matrix of independent variables. Under the usual assumption
of normal independent and identically distributed (iid) residuals, the p-values for the
coefficients are gathered in the last column: all but one coefficients are significant at
the α = 0.05 level.

8.1.1 Limits of Multiple Regression

Unfortunately, however, there are some drawbacks. In the context of the natural sci-
ences, the most important perhaps is the sensitivity to correlation in the independent
variables. This can be illustrated using the following example. Suppose we have a
model that looks like this:

y = 2 + x1 + 0.5x2 − 2x3

and further suppose that x2 and x3 are highly correlated (r ≈ 1.0). This means that
any of the following models will give more or less the same predictions:
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y = 2 + x1 − 1.5x2
y = 2 + x1 − 1.5x3
y = 2 + x1 + 5.5x2 − 7x3
y = 2 + x1 + 1000.5x2 − 1002x3

So what is so bad about that? If all x values would exactly be the same, not even that
much, but in practice there will be errors, affecting all these models in different ways.
Especially when coefficients are large, differences can be appreciable, one reason
to prefer, from a set of equivalent models, the one with the smallest regression
coefficients. Furthermore, confidence intervals for the regression coefficients are
based on the assumption of independence, which clearly is violated in this case: any
coefficient value for x2 can be compensated for by x3, and variances for the x2 and x3
coefficients will be infinite. Also in cases where there is less than perfect correlation,
we will see more unstable models, in the sense that the variances of the coefficient
estimates will get large and predictions less reliable.

To be fair, ordinary multiple regression will not allow you to calculate the model
in pathological cases like the above: matrix XT X will be singular, indicating that
infinitely many inverse matrices, and, conversely, many different coefficient vectors,
are possible—it is comparable to choosing the best straight line through only one
point. Another case where the inverse cannot be calculated is the situation where
there are more independent variables than samples, which indeed is the case for the
gasoline data:

> Xtr <- cbind(1, gasoline$NIR[gas.odd, ])
> solve(crossprod(Xtr), t(Xtr)) %*% Ytr

This will throw an error, which was the primary reason to select four of the variables
in the gasoline example in the beginning of this section. Unfortunately, in almost
all applications of spectroscopy the number of variables far exceeds the number of
samples; the correlations between variables is often high, too.

One possibility to tackle the above problem is to calculate a pseudoinverse matrix
X+—such a pseudoinverse, or a generalized inverse, has the property that

XX+ = 1 (8.5)

and can be applied to non-square matrices as well as square matrices. The most often
used variant is the Moore-Penrose inverse, available in R as function ginv in
package MASS:

> Blm <- ginv(Xtr) %*% Ytr

TheMoore-Penrose inverse uses the singular value decomposition of the datamatrix:

X−1 = (
UDV T

)−1 = V D−1UT (8.6)
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The trick is to ignore the singular values in D that are zero—in the inverse matrix
D−1 these will still have a value of zero and the corresponding rows in V and U
will be disregarded. In practice, of course, a threshold will have to be used which
is usually taken to be dependent on the machine precision. Values smaller than the
threshold will be set to zero in the inverse of D. Singular values which are slightly
larger, however, may exert a large influence on the result, and in many cases the
generalized inverse is not very stable.

It is taking this idea one step further to restrict the number of singular values in
Eq.8.6 to only themost important principal components. This is the basis of Principal
Component Regression (PCR). PCR basically performs a regression on the scores of
X , where a suitable number of latent variables has to be chosen.An alternative, Partial
Least Squares (PLS) regression employs the same basic idea, but takes the dependent
variable into account when defining scores and loadings, whereas PCR concentrates
on capturing variance in X only. In both techniques, the inversion of the covariance
matrix is simple because of the orthogonality of the scores. The price we pay is
threefold: vital information may be lost because of the data compression, we have
to choose the degree of compression, i.e., the number of latent variables, and finally
it is no longer possible to derive analytical expressions for the prediction error and
the variances of individual regression coefficients. To be able to say something about
the optimal number of latent variables, and about the expected error of prediction,
crossvalidation or similar techniques must be used (see Chap.9).

We have already seen that in general models with small regression coefficients are
to be preferred. It can be shown that PLS aswell as PCR actually shrink the regression
coefficients towards zero (Hastie et al. 2001). They are therefore biasedmethods: the
coefficients on average will be smaller in absolute value than the unknown, “true”,
coefficients—however, this will be compensated for by amuch lower variance. Other
approaches, based on explicit penalization of the regression coefficients, can be used
as well. If a quadratic (L2) penalty is employed, the result is called ridge regression.
A penalty in the form of absolute values (an L1 penalty) leads to the lasso, whereas
a combination of L1 and L2 penalties is known as the elastic net. Methods based on
the L1 norm have the advantage that many of the coefficients will have a value of
zero, thereby implicitly performing variable selection. They will be treated, along
with explicit variable selection methods, in Chap.10.

8.2 PCR

The prime idea of PCR is to use scores rather than the original data for the regression
step. This has two advantages: scores are orthogonal, so there are no problems with
correlated variables, and secondly, the number of PCs taken into account usually
is much lower than the number of original variables. This considerably reduces the
number of coefficients that must be estimated, which in turn leads to more degrees
of freedom for the estimation of errors. Of course, we have the added problem that
we have to estimate how many PCs to retain.
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8.2.1 The Algorithm

For the moment, let us select a PCs; matrices T , P , etcetera, will have a columns.
The regression model is then built using the reconstructed matrix X̃ = T PT rather
than the original matrix:

Y = X̃ B + E = T (PT B) + E = T A + E (8.7)

A = (T T T )−1T TY (8.8)

where A = PT B will contain the regression coefficients for the scores. The
crossproduct matrix of T is diagonal (remember, T is orthogonal) so can be eas-
ily inverted. The regression coefficients for the scores can be back-transformed to
coefficients for the original variables:

B = P A

= P(T T T )−1T TY (8.9)

This can be simplified further by resubstituting T = UD (from the SVD routine):

B = P(DUTUD)−1DUTY

= P D−2DUTY

= P D−1UTY (8.10)

In practice, one always performs PCR on a mean-centered data matrix. In Chap. 4
we have seen that without mean-centering the first PC often dominates and is very
close to the vector of column means, an undesirable situation. By mean-centering,
we explicitly force a regression model without an intercept. The result is that the
coefficient vector B does not contain an abscissa vector b0; it should be calculated
explicitly by taking the difference between the mean y values and the mean predicted
y-values.

b0 = ȳ − XB (8.11)

For every variable in Y , we will find one number in b0.
Let’s see how this works for the gasoline data. We will model the gas.odd rows,

now based on the complete NIR spectra. We start by mean-centering the data, based
only on the gas.odd rows:

> X <- scale(gasoline$NIR, scale = FALSE,
+ center = colMeans(gasoline$NIR[gas.odd, ]))

Note that we do not use autoscaling, since that would blow up noise in uninformative
variables. Next, we calculate scores and use these as independent variables in a
regression. For the moment, we choose five PCs.
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Fig. 8.1 Regression coefficients for the gasoline data (based on the gas.odd rows), obtained by
PCR using five PCs

> Xgas.odd.svd <- svd(X[gas.odd, ])
> Xgas.odd.scores <- Xgas.odd.svd$u %*% diag(Xgas.odd.svd$d)
> gas.odd.pcr <-
+ lm(gasoline$octane[gas.odd] ˜ I(Xgas.odd.scores[, 1:5]) - 1)

The - 1 in the formula definition prevents lm from fitting an intercept; the other
coefficients are not affected, whether an intercept is fitted or not, but removing it
makes the comparison below slightly easier. The regression coefficients of the wave-
lengths, the original variables, are obtained bymultiplying the regression coefficients
of the scores with the corresponding loadings:

> gas.odd.coefs <- coef(gas.odd.pcr) %*% t(Xgas.odd.svd$v[, 1:5])

The samemodel canbeproducedby thepcr function from theplspackage (Mevik
and Wehrens 2007):

> gasoline.pcr <- pcr(octane ˜ ., data = gasoline,
+ subset = gas.odd, ncomp = 5)
> all.equal(c(coef(gasoline.pcr)), c(gas.odd.coefs))
> plot(wavelengths, coef(gasoline.pcr), type = "l",
+ xlab = "Wavelength (nm)", ylab = "Regression coefficient")
> abline(h = 0, col = "gray")

The last line produces the plot of the regression coefficients, shown in Fig. 8.1. As
usual, the intercept is not visualized. One can clearly see features such as the peaks
around 1200 and 1400 nm. Often, such important variables can be related to physical
or chemical phenomena.

The model can be summarized by the generic function summary.mvr:
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> summary(gasoline.pcr)
Data: X dimension: 30 401
Y dimension: 30 1
Fit method: svdpc
Number of components considered: 5
TRAINING: % variance explained

1 comps 2 comps 3 comps 4 comps 5 comps
X 74.318 86.26 91.66 96.11 97.32
octane 9.343 11.32 16.98 97.22 97.26

Clearly, the first component focuses completely on explaining variation in X ; it is
the fourth component that seems most useful in predicting Y , the octane number.

8.2.2 Selecting the Optimal Number of Components

How much variance of Y is explained is one criterion one could use to determine
the optimal number of PCs. More often, however, one monitors the (equivalent)
root-mean-square error (RMS or RMSE):

RMS =
√∑n

i (ŷi − yi )2

n
(8.12)

where ŷi − yi is the difference between predicted and true value, and n is the number
of predictions. A simple R function to find RMS values is the following:

> rms <- function(x, y) sqrt(mean((x-y)ˆ2))

It is important to realize that both criteria, the amount of variance explained as well
as the RMSE, assess the fit of the model to the training data, i.e., the quality of the
reproduction rather than the predictive abilities of the model.

The pls package comes with an extractor function for RMS estimates:

> RMSEP(gasoline.pcr, estimate = "train", intercept = FALSE)
1 comps 2 comps 3 comps 4 comps 5 comps
1.3467 1.3319 1.2887 0.2358 0.2343

Theintercept = FALSE argument prevents theRMSerror based on nothing but
the average of the dependent variable to be printed. These numbers are cumulative,
so the number under “4 comps” signifies the error when using components 1–4.
The error when only using the fourth PC in the regression is given by

> RMSEP(gasoline.pcr, estimate = "train", comp = 4)
[1] 0.6287

It is only half the size of the error of prediction usingPCs one to three, showing that the
fourth PC is very important in the prediction model. Nevertheless, the combination
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of the fourth with the first three components leads to an even better model. Adding
the fifth does not seem worthwhile.

One should be very cautious in interpreting these numbers—reproduction of the
training set is not a reliable way to assess prediction accuracy, which is what we
really are after. For one thing, adding another component will (by definition) always
decrease the error. Predictions for new data, however, may not be as good: the model
often is too focused on the training data, the phenomenon known as overfitting that
we also saw in Sect. 7.3.1.

Amajor difficulty in PCRmodelling is therefore the choice of the optimal number
of PCs to retain. Usually, crossvalidation is employed to estimate this number: if the
number of PCs is too small, we will incorporate too little information, and our model
will not be very useful—the crossvalidation error will be high. If the number of PCs is
too large, the training set will be reproduced very well, but again, the crossvalidation
error will be large because the model is not able to provide good predictions for the
left-out samples. So the strategy is simple: we perform the regression for several
numbers of PCs, calculate the crossvalidation errors, put the results in a graph, et
voilà, we can pick the number we like best.

In LOOcrossvalidation, n differentmodels are created, each time omitting another
sample y−i from the training data. Equation 8.12 then is used to calculate an RMS
estimate. Alternatively, a group of samples is left out simultaneously. One often sees
the name RMSCV or RMSECV, to indicate that it is the RMS value derived from a
crossvalidation procedure. Of course, this procedure can be used in other contexts as
well; the RMSEP usually is associated with prediction of unseen test data, RMSEV
is an error estimate from some form of validation, and RMSEC is the calibration
error, indicating how well the model fits the training data. The RMSEC value is in
almost all cases the lowest; it measures how well the model represents the data on
which it is based. The RMSEP is an estimate of the thing that really interests us, the
error of prediction, but it can only reliably be calculated directly when large training
and test sets are available and the training data are representative for the test data. In
practice, RMSE(C)V estimates are the best we can do.

In the pls package, the function RMSEP is used to calculate all these quantities—
it takes an argument estimate which can take the values "train" (used in the
example above), "CV" and "test" for calibration, crossvalidation and test set esti-
mates, respectively. The pcr function has an optional argument for crossvalidation:
validation can be either "none", "LOO", or "CV". In the latter case, 10 seg-
ments are used in the crossvalidation by default (“leave 10% out”). Application to
the gasoline data leads to the following results:

> gasoline.pcr <- pcr(octane ˜ ., data = gasoline, subset = gas.odd,
+ validation = "LOO", ncomp = 10)
> plot(gasoline.pcr, "validation", estimate = "CV")
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Fig. 8.2 Validation plot for PCR regression on the gasoline data (left) and prediction quality of the
optimal model, containing four PCs (right)

This leads to the validation plot in the left panel of Fig. 8.2, showing the RMSECV
estimate1 against the number of PCs. Not unexpectedly, four PCs clearly are a very
good compromise between model complexity and predictive power. For the argu-
ment estimate, one can also choose "adjCV", which is a bias-corrected error
estimate (Mevik and Cederkvist 2004).

Zooming in on the plotwould show that the absoluteminimum is at seven PCs, and
perhaps taking more than ten PCs into consideration would lead to an lower global
minimum. However, one should keep in mind that an RMS value is just an estimate
with an associated variance, and differences are not always significant. Moreover,
the chance of overfitting increases with a higher number of components. Numerical
values are accessible in the validation list element of the fitted object. The RMS
values plotted in Fig. 8.2 can be assessed as follows:

> RMSEP(gasoline.pcr, estimate = "CV")
(Intercept) 1 comps 2 comps 3 comps 4 comps

1.4631 1.5351 1.5802 1.6682 0.3010
5 comps 6 comps 7 comps 8 comps 9 comps
0.3082 0.3031 0.2661 0.2738 0.2949

10 comps
0.2861

which is the same as

> sqrt(gasoline.pcr$validation$PRESS / nrow(Xtr))
1 comps 2 comps 3 comps 4 comps 5 comps 6 comps 7 comps

octane 1.5351 1.5802 1.6682 0.30099 0.30815 0.30309 0.26611
8 comps 9 comps 10 comps

octane 0.27377 0.29495 0.28615

1Note that the y axis is labelled with “RMSEP” which sometimes is used in a more general sense—
whether it deals with crossvalidation or true predictions must be deduced from the context.
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The quality of the four-component model can be assessed by visualization: a very
common plot shows the true values of the dependent variable on the x-axis and the
predictions on the y-axis. We use a square plot (the right panel of Fig. 8.2) where
both axes have the same range so that an ideal prediction would lie on a line with a
slope of 45 degrees:

> par(pty = "s")
> plot(gasoline.pcr, "prediction", ncomp = 4)
> abline(0, 1, col = "gray")

Each point in the right plot of Fig. 8.2 is the prediction for that point when it was
not part of the training set. Therefore, this plot gives some idea of what to expect
for unseen data. Note, however, that this particular number of PCs was chosen with
the explicit aim to minimize errors for these data points—the LOO crossvalidation
was used to assess the optimal number of PCs. The corresponding error estimate
is therefore optimistically biased, and we need another way of truly assessing the
expected error for future observations.

This is given, for example, by the performance of the model on an unseen test set:

> gasoline.pcr.pred <- predict(gasoline.pcr, ncomp = 4,
+ newdata = gasoline[gas.even, ])
> rms(gasoline$octane[gas.even], gasoline.pcr.pred)
[1] 0.21017

or, by using the RMSEP function again:

> RMSEP(gasoline.pcr, ncomp = 4, newdata = gasoline[gas.even, ],
+ intercept = FALSE)
[1] 0.2102

The error on the test set is 0.21, which is smaller than the cross validated error on
the training set with four components (0.3010). Although this may seem surprising
at first, it is again the result of the fact that LOO error estimates, although unbiased,
have a large variance (Efron and Tibshirani 1993). We will come back to this point
in Chap.9.

Although the selection of the optimal number of components is a subjective pro-
cess and should be guided by background knowledge as well as common sense, there
are situations where amore automatic approach is desirable, e.g., in large-scale simu-
lation studies. The pls package provides the functionselectNcomp, implementing
two different strategies. The first and simplest one estimates standard deviations for
the RMSEP estimates in crossvalidation error curves such as shown in Fig. 8.2, and
picks the simplest model that is within one standard deviation of the global optimum
in the curve. This heuristical approach has been suggested in the context of methods
like ridge regression and the lasso (Hastie et al. 2001) but can also be applied here.
The second approach implements a permutation test (see also Sect. 9.3.1), again using
the global minimum in the crossvalidation curve as a reference, and testing whether
simpler models are significantly worse (Van der Voet 1994). Both approaches also
provide graphical output. The input is a fitted model, including validation data:
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Fig. 8.3 Two strategies to automatically select the number of components in a PCR (or PLS) model
from the pls package. Left plot: the one-sigma approach. The smallest model within one standard
deviation from the optimal model (here at seven PCs) is picked. Right plot: the permutation test
approach. Large blue circles indicate which models are compared to the global minimum. In this
rather trivial example, both criteria choose four components

> nc.1s <-
+ selectNcomp(gasoline.pcr, method = "onesigma", plot = TRUE)
> nc.rand <-
+ selectNcomp(gasoline.pcr, method = "randomization", plot = TRUE)

For the gasoline data, the results are shown in Fig. 8.3—both methods select four
components.

8.3 Partial Least Squares (PLS) Regression

In PCR, the information in the independent variables is summarized in a small number
of principal components. However, there is no a priori reasonwhy the PCs associated
with the largest singular values should be most useful for regression. PC 1 covers the
largest variance, but still may have only limited predictive power, as we have seen in
the gasoline example. Since we routinely pick PCs starting from number 1 and going
up, there is a real chance that we include variables that actually do not contribute to
the regression model. Put differently: we compress information in X without regard
to what is to be predicted, so we can never be sure that the essential part of the data is
preserved. Although it has been claimed that selecting specific PCs (e.g., numbers 2,
5 and 6) on which to base the regression, rather than a sequence of PCs starting from
one, leads to better models (see, e.g., Barros and Rutledge 1998), this only increases
the difficulties one faces: selection is a much more difficult process than determining
a threshold.
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PLS forms an alternative. Just like PCR, PLS defines orthogonal latent variables to
compress the information and throw away irrelevant stuff. However, PLS explicitly
aims to construct latent variables in such away as to capturemost variance in X andY ,
and tomaximize the correlation between thesematrices. Put differently: it maximizes
the covariance between X and Y . So it seems we keep all the advantages, and get rid
of the less desirable aspects of PCR. The algorithm is a bit more complicated than
PCR; in fact, there exist several almost equivalent algorithms to perform PLS. The
differences are caused by either small variations in the criterion that is optimized,
different implementations to obtain speed improvements in specific situations, or by
different choices for scaling intermediate results.

8.3.1 The Algorithm(s)

Just as in PCR, in PLS it is customary to perform mean-centering of the data so
that there is no need to estimate an intercept vector; this is obtained afterwards. The
notation is a bit more complicated than with PCR, as already mentioned, since now
both X and Y matrices have scores and loadings. Moreover, in many algorithms one
employs additional weight matrices. One other difference with PCR is that the com-
ponents of PLS are extracted sequentially whereas the PCs in PCR can be obtained
in one SVD step. In each iteration in the PLS algorithm, the variation associated with
the estimated component is removed from the data in a process called deflation, and
the remainder (indicated with E for the “deflated” X matrix, and F for the deflated
Y ) is used to estimate the next component. This continues until the user decides it
has been enough, or until all components have been estimated.

The first component is obtained from an SVD of the crossproduct matrix S =
XTY , thereby including information on both variation in X and Y , and on the cor-
relation between both. The first left singular vector, w, can be seen as the direction
of maximal variance in the crossproduct matrix, and is usually indicated with the
somewhat vague description of “weights”. The projections of matrix X on this vector
are called “X scores”:

t = Xw = Ew (8.13)

Eventually, these scores t will be gathered in a matrix T that fulfills the same
role as the score matrix in PCR; it is a low-dimensional, full-rank, estimate of the
information in X . Therefore, regressing Y on T is easy, and the coefficient vector
for T can be converted to a coefficient vector for the original variables.

The next step in the algorithm is to obtain loadings for X and Y by regressing
against the same score vector t:

p = ET t/(tT t) (8.14)

q = FT t/(tT t) (8.15)
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Notice that one divides by the sum of all squared elements in t: this leads to “normal-
ized” loadings. It is not essential that the scaling is done in this way. In fact, there are
numerous possibilities to scale either loadings, weights, or scores—one can choose
to have either the scores or the loadings orthogonal. Unfortunately, this can make it
difficult to compare the scores and loadings of different PLS implementations. The
current description is analogous to PCR where the loadings are taken to have unit
variance.

Finally, the data matrices are deflated: the information related to this latent vari-
able, in the form of the outer products t pT and tqT , is subtracted from the (current)
data matrices.

En+1 = En − t pT (8.16)

Fn+1 = Fn − tqT (8.17)

The estimation of the next component then can start from the SVDof the crossproduct
matrix ET

n+1Fn+1. After every iteration, vectors w, t , p and q are saved as columns
in matrices W , T , P and Q, respectively.

In words, the algorithm can be summarized as follows: the vectors w constitute
the direction of most variation in the crossproduct matrix XTY . The scores t are
the coordinates of the objects on this axis. Loadings for X and Y are obtained
by regressing both matrices against the scores, and the products of the scores and
loadings for X and Y are removed from data matrices E and F.

One complication is that columns of matrix W can not be compared directly:
they are derived from successively deflated matrices E and F. An alternative way to
represent the weights, in such a way that all columns relate to the original X matrix,
is given by

R = W(PT W)−1 (8.18)

Matrix R has some interesting properties, one of which is that it is a generalized
inverse for PT . It also holds that T = XR. For interpretation purposes, one some-
times also calculates so-called y-scores U = Y Q. Alternatively, these y-scores can
be obtained as the right singular vectors of ET F.

Now, we are in the same position as in the PCR case: instead of regressing Y on
X , we use scores T to calculate the regression coefficients A, and later convert these
back to the realm of the original variables:

Y = X̃ B + E = T (PT B) + E = T A + E (8.19)

A = (T T T )−1T TY (8.20)

B = RA (8.21)

These equations are almost identical with the PCR algorithm presented in Eqs. 8.7
and 8.8. The difference lies first and foremost in the calculation of T , which now
includes information on Y , and in the calculation of the regression coefficients for the
original variables, where PLS uses R rather than P . Again, the singularity problem
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is solved by using a low-dimensional score matrix T of full rank. The coefficient for
the abscissa is obtained in the same way as with PCR (Eq.8.11).

In the pls package, PLS regression is available as function plsr:

> gasoline.pls <- plsr(octane ˜ ., data = gasoline,
+ subset = gas.odd, ncomp = 5)
> summary(gasoline.pls)
Data: X dimension: 30 401
Y dimension: 30 1
Fit method: kernelpls
Number of components considered: 5
TRAINING: % variance explained

1 comps 2 comps 3 comps 4 comps 5 comps
X 71.71 79.70 90.71 95.70 96.59
octane 22.82 93.93 97.49 97.79 98.74

Clearly, the first components of the PLS model explain much more variation in Y
than the corresponding PCR model: the first two PLS components already cover
almost 94%, whereas the first two PCR components barely exceed ten percent. The
price to be paid lies in the description of the X data: the two-component PCR model
explains seven percent more than the corresponding PLS model.

To assess how many components are needed, the validation argument can be
used, in the same way as with the pcr function:

> gasoline.pls <- plsr(octane ˜ ., data = gasoline, subset = gas.odd,
+ validation = "LOO", ncomp = 10)
> par(mfrow = c(1, 2))
> plot(gasoline.pls, "validation", estimate = "CV")
> par(pty = "s")
> plot(gasoline.pls, "prediction", ncomp = 3)
> abline(0, 1, col = "gray")

The resulting plots, shown in Fig. 8.4, indicate that a PLS model comparable to
the four-component PCR model from Fig. 8.2 only needs three latent variables. This
difference between PLS and PCR is often observed in practice: PLSmodels typically
need one or two fewer components than PCR models to achieve similar CV error
estimates.

Let’s check the predictions of the unseen data, the even rows of the data frame:

> RMSEP(gasoline.pls, ncomp = 3, newdata = gasoline[gas.even, ],
+ intercept = FALSE)
[1] 0.2093

Indeed, with one component less the PLS model achieves a prediction quality that is
as good as that of the PCR model.

The plsr function takes a method argument to specify which PLS algorithm
is to be used. The default is kernelpls (Dayal and MacGregor 1997), a very
fast and stable algorithm which gives results equal to the original NIPALS algo-
rithm (Martens and Næs 1989) which is available as oscorespls. The kernel
algorithm performs SVD on crossproduct matrix XTYY T X rather than XTY , and
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Fig. 8.4 Validation plot for PLS regression on the gasoline data (left) and prediction quality of the
optimal model, containing three PLS components (right)

avoids deflation of Y . In cases with large numbers of variables (tens of thousands), a
variant called widekernelpls (Rännar et al. 1994) is more appropriate—again,
it operates by constructing a smaller kernel matrix, this time XXTYY T , on which to
perform the SVD operations. However, it is numerically less stable than the default
algorithm. Also the widekernelpls algorithm gives results that are identical
(upon convergence) to the NIPALS results.

One popular alternative formulation, SIMPLS (de Jong 1993), deflates matrix
S rather than matrices E and F individually. It can be shown that SIMPLS actu-
ally maximizes the covariance between X and Y (which is usually taken as “the”
PLS criterion), whereas the other algorithms are good approximations; for univari-
ate Y , SIMPLS predictions are equal to the results from NIPALS and kernel algo-
rithms. However, for multivariate Y , there may be (minor) differences between the
approaches. SIMPLS can be invoked by providing the method = "simpls"
argument to the plsr function. In all these variants, the scores will be orthogonal,
whereas the loadings are not:

> cor(gasoline.pls$loadings[, 1:3])
Comp 1 Comp 2 Comp 3

Comp 1 1.000000 -0.553292 -0.075284
Comp 2 -0.553292 1.000000 -0.062259
Comp 3 -0.075284 -0.062259 1.000000

> cor(gasoline.pls$scores[, 1:3])
Comp 1 Comp 2 Comp 3

Comp 1 1.0000e+00 -1.4330e-16 -9.5352e-17
Comp 2 -1.4330e-16 1.0000e+00 6.4193e-17
Comp 3 -9.5352e-17 6.4193e-17 1.0000e+00
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Given that one has a certain freedom to decide where exactly in the algorithm to
normalize, the outcome of different implementations, and in particular, in different
software packages, may seem to vary significantly. However, the regression coeffi-
cients, and therefore the predictions, of all these are usually virtually identical. For
all practical purposes there is no reason to prefer the outcome of one algorithm over
another.

8.3.2 Interpretation

PLS models give separate scores and loadings for X and Y , and additionally, in
most implementations, some form of a weight matrix. In most cases, one concen-
trates on the matrix of regression coefficients B which is independent of algorithmic
details such as the exact way of normalization of weights, scores and loadings, and is
directly comparable to regression coefficients from other methods like PCR. Some-
times, plots of weights, loadings or scores of individual components can be infor-
mative, too, although one should be careful not to overinterpret: there is no a priori
reason to assume that the individual components directly correspond to chemically
interpretable entities (Frank and Friedman 1993).

The interpretation of the scores and loadings is similar to PCA: a score indicates
howmuch a particular object contributes to a latent variable, while a loading indicates
the contribution of a particular variable. An example of a loading plot is obtained
using the code below:

> plot(gasoline.pls, "loading", comps = 1:3, legendpos = "topleft",
+ lty = 1, col = 1:3)

This leads to Fig. 8.5. The percentage shown in the legend corresponds with the
variation explained of the X matrix for each latent variable. Note that the third
component explains more variation of X than the second; in a PCR model this
would be impossible.2 Components one and two show spectrum-like shapes, with
the largest values at the locations of the main features in the data, as expected—
the third component is focusing very much on the last ten data points. This raises
questions on the validity of the model: it is doubtful that these few (and noisy)
wavelengths should play a major part. Perhaps a more prudent choice for the number
of latent variables from Fig. 8.4 would have been to use only two.

Biplots, showing the relations between scores and loadings, can be made using
the function biplot.mvr. One can in this way inspect the influence of individual
PLS components, where the regression coefficient matrix B gives amore global view
summarizing the influence of all PLS components. The argument which, taking the
values "x", "y", "scores" and "loadings", indicates what type of biplot is
required. In the first case, the scores and loadings for x are shown in a biplot; the

2The plot.mvr function can be applied to PCR models as well as PLS models, so the discussion
in this paragraph pertains to both.
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Fig. 8.5 PLS loadings for the first three latent variables for the gasoline data; the third component
has large loadings only for the last ten variables

second case does the same for y. The other two options show combinations of x-
and y- scores and loadings, respectively. In the current example, y-loadings are not
very interesting since there is only one y variable, octane. An additional source of
information is the relation between the X-scores, T , and the Y-scores, U . For the
gasolinemodel these plots are shown for the first two latent variables in Fig. 8.6 using
the following code:

> plot(scores(gasoline.pls)[, 1], Yscores(gasoline.pls)[, 1],
+ xlab = "X scores", ylab = "Y scores", main = "LV 1")
> abline(h = 0, v = 0, col = "gray")
> plot(scores(gasoline.pls)[, 2], Yscores(gasoline.pls)[, 2],
+ xlab = "X scores", ylab = "Y scores", main = "LV 2")
> abline(h = 0, v = 0, col = "gray")

Usually one hopes to see a linear relation, as is the case for the second latent variable;
the first LV shows a less linear behavior. One could replace the linear regression in
Eqs. 8.14 and 8.15 by a polynomial regression (using columns of powers of t), or
even a non-linear regression. There are, however, not many reports where this has
led to significant improvements (see, e.g., Wold et al. 1989; Hasegawa et al. 1996).

For multivariate Y , there is an additional difference between PLS and PCR. With
PCR, separate models are fit for each Y variable: the algorithm does not try to make
use of any correlation between the separate dependent variables. With PLS, this
is different. Of course, one can fit separate PLS models for each Y variable (this
is often indicated with the acronym PLS1), but one can also do it all in one go
(PLS2). In that case, the same X-scores T are used for all dependent variables;
although a separate set of regression coefficients will be generated for every y-
variable, implicitly information from the other dependent variables is taken into
account. This can be an advantage, especially when there is appreciable correlation
between the y-variables, but in practice there is often little difference between the two
approaches.Most people prefermultiple PLS1models (analogous to PCR regression)
since they seem to give slightly better fits.
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Fig. 8.6 Relation between X-scores and Y-scores, T and U , respectively, for the first two latent
variables (gasoline data)

It is no coincidence that chemistry has been the first area in which PLS was
really heavily used. Analytical chemists had been measuring spectra and trying to
relate them to chemical properties for years, when this regression technique finally
provided them with the tool to do so. Other disciplines such as statistics were slow
to follow, but eventually PLS has found its place in a wide range of fields. Also the
theoretical background has now been clarified: PLS started out as an algorithm that
was really poorly understood. Nowadays, there are very few people who dispute that
PLS is an extremely useful method, but it has been overhyped somewhat. In practical
applications, its performance is very similar to techniques like PCR. Careful thinking
of experimental design, perhaps variable selection, and appropriate preprocessing of
the data is likely to be far more important than the exact choice of multivariate
regression technique.

8.3.2.1 PLS Packages for R

Apart from the pls package, several other packages provide PLS functions, both
for regression and classification. The list is large and rapidly expanding; examples
include the packages lspls implementing Least-Squares PLS (Jorgensen et al. 2004),
and gpls (Ding andGentleman 2005) implementing generalized partial least squares,
based on the Iteratively ReWeighted Least Squares (IRWLS) method (Marx 1996).
Weighted-average PLS (ter Braak and Juggins 1993), often used in paleolimnology,
can be found in package paltran. Package plsgenomics implements methods for
classification with microarray data and prediction of transcription factor activities
combining, amongst others, ridge regression with PLS. This package also provides
functionpls-lda performing LDA on PLS scores (see Sect. 8.7.3). Package plspm
contains, in addition to the usual functions for PLS regression, also functions for Path
Modelling (Tenenhaus et al. 2005). Penalized PLS (Krämer et al. 2008) is available
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in package ppls, and sparse PLS, forcing small loadings to become zero so that fewer
variables are taking part in the model, in package spls (Chun and Keles 2010).Which
of these packages is most suited depends on the application.

8.4 Ridge Regression

Ridge Regression (RR, Hoerl 1962; Hoerl and Kennard 1970) is another way to
tackle regression problems with singular covariance matrices, usually for univariate
Y . From all possible regression models giving identical predictions for the data at
hand, RR selects the one with the smallest coefficients. This loss function is
implemented by posing a (quadratic) penalty on the size of the coefficients B:

argmax
B

(Y − XB)2 + λBT B (8.22)

The solution is given by
B̂ = (

XT X + λI
)−1

XTY (8.23)

Compared to Eq.8.2, a constant is added to the diagonal of the crossproduct matrix
XT X , which makes it non-singular. The size of λ is something that has to be deter-
mined (see below). This shrinkage property has obvious advantages in the case of
collinearities: even if the RR model is not quite correct, it will not lead to wildly
inaccurate predictions (which may happen when some coefficients are very large).
Usually, the intercept is not included in the penalization: one would expect that
adding a constant c to the y-values would lead to predictions that are exactly the
same amount larger. If the intercept would be penalized as well, this would not be
the case.

Optimal values for λ may be determined by crossvalidation (or variants thereof).
Several other, direct, estimates of optimal values for λ have been proposed. Hoerl
and Kennard (Hoerl and Kennard 1970) use the ratio of the residual variance s2,
estimated from the model, and the largest regression coefficient:

λ̂H K = s2

max(B2
i )

(8.24)

A better estimate is formed by using the harmonic means of the regression coeffi-
cients rather than the largest value. This is known as the Hoerl-Kennard-Baldwin
estimate (Hoerl et al. 1975):

λ̂H K B = ps2

BT B
(8.25)

where p, as usual, indicates the number of columns in X .Avariance-weightedversion
of the latter is given by the Lawless-Wang estimate (Lawless and Wang 1976):
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λ̂LW = ps2

BT XT XB
(8.26)

Since PCR and PLS can also be viewed as shrinkage methods (Frank and Fried-
man 1993; Hastie et al. 2001), there are interesting links with ridge regression. All
three shrink the regression coefficients away from directions of low variation. Ridge
regression can be shown to be equivalent to PCR with shrunken eigenvalues for the
principal components; PCR uses a hard threshold to select which PCs to take into
account. PLS also shrinks—it usually takes the middle ground between PCR and
RR. However, in some cases PLS coefficients may be inflated, which may lead to
slightly worse performance (Hastie et al. 2001). In practice, all three methods lead
to very similar results. Another common feature is that just like PCR and PLS, ridge
regression is not affine equivariant: it is sensitive to different (linear) scalings of
the input. In many cases, autoscaling is applied by default. It is also hard-coded in
the lm.ridge function in package MASS. Unfortunately, for many types of spec-
troscopic data autoscaling is not very appropriate, as we have seen earlier. For the
gasoline data, it does not work very well either:

> gasoline.ridge <-
+ lm.ridge(octane ˜ NIR, data = gasoline, subset = gas.odd,
+ lambda = seq(0.001, 0.1, by = 0.01))
> select(gasoline.ridge)
modified HKB estimator is -6.256e-28
modified L-W estimator is -3.6741e-28
smallest value of GCV at 0.001

Both the HKB estimate and the L-W estimate suggest a very small value of λ; the
generalized crossvalidation (see Chap.9) suggests the smallest value of λ is the best.

Apart from the links with PCR and PLS, ridge regression is also closely related
to SVMs when seen in the context of regression—we will come back to this in
Sect. 8.6.1. Related methods using L1 penalization, such as the lasso and the elastic
net, will be treated in more detail in Sect. 10.2.

8.5 Continuum Methods

In many ways, MLR and PCR form the opposite ends of a scale. In PCR, the stress
is on summarizing the variance in X ; the correlation with the property that is to be
predicted is not taken into account in defining the latent variables. With MLR the
opposite is true: one does not care howmuch information in X is actually used as long
as the predictions are OK. PLS takes a middle ground with the criterion that latent
variables should explain as much of the covariance between X and Y as possible.

There have been attempts to create regression methods that offer other intermedi-
ate positions, most notably ContinuumRegression (CR, Stone and Brooks 1990) and
Principal Covariates Regression (PCovR, de Jong and Kiers 1992). Although they
are interesting from a theoretical viewpoint, in practice they have never caught on.
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One possible explanation is that there is little gain in yet another form of multivariate
regression, where methods like PCR, PLS and RR already exist and in most cases
give very similar results. Moreover, these continuum methods provide additional
crossvalidation problems because more often than not an extra parameter needs to
be set.

8.6 Some Non-linear Regression Techniques

Many non-linear techniques are available for regression. Here, we will very briefly
focus on two classes ofmethods thatwe have already seen inChap.7 on classification,
SVMs and neural networks. Both can be adapted to continuous output without much
trouble.

8.6.1 SVMs for Regression

In order not to get lost in mathematical details that would be out of context in
this book, only the rough contours of the use of SVMs in regression problems are
sketched here. A more thorough treatment can be found in the literature (Hastie et al.
2001). Typically, SVMs tackle linear regression problems by minimization of a loss
function of the following form:

LSVM =
∑

i

V (yi − f (xi )) + λ||β||2 (8.27)

where the term V (yi − f (xi )) corresponds to an error function describing the differ-
ences between experimental and fitted values, and the second term is a regularization
term, keeping the size of the coefficients small. If the error function V is taken to be
the usual squared error then this formulation is equal to ridge regression, but more
often other forms are used. Two typical examples are shown in Fig. 8.7: the left panel
shows a so-called ε-insensitive error function, where only errors larger than a cut-off
ε are taken into account (linearly), and the right plot shows the Huber loss function,
which is quadratic up to a certain value c and linear above that value.

The reason to use these functions is that the linear error function for larger errors
leads to more robust behavior. Moreover, the solution of the loss function in Eq.8.27
can be formulated in terms of inner products, just like in the classification case, and
again only a subset of all coefficients (the support vectors) are non-zero. Moreover,
kernels can be used to find simple linear relationships in high dimensions which
after back-transformation represent much more complex patterns.

Let us concentrate on how to use the svm function, seen earlier, in regres-
sion problems. We again take the gasoline data, and fit a model, using ten-fold
crossvalidation:
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Fig. 8.7 Typical error functions for SVMs in a regression setting: left, the ε-insensitive error
function; right, the Huber function

> gasoline.svm <- svm(octane ˜ ., data = gasoline,
+ subset = gas.odd, cross = 10)
> (gasoline.svmsum <- summary(gasoline.svm))

Call:
svm(formula = octane ˜ ., data = gasoline, cross = 10,

subset = gas.odd)

Parameters:
SVM-Type: eps-regression

SVM-Kernel: radial
cost: 1

gamma: 0.0024938
epsilon: 0.1

Number of Support Vectors: 27

10-fold cross-validation on training data:

Total Mean Squared Error: 0.54107
Squared Correlation Coefficient: 0.79318
Mean Squared Errors:
0.82181 0.046941 1.0881 0.48363 0.10566 1.0402 0.098511
0.43532 0.29603 0.99446

Clearly, the crossvalidation leads to a relatively large error, corresponding to an
RMSCV of 0.7356. Note that the svm function by default performs autoscaling on
both X and y, which for the gasoline data is not optimal for reasons discussed earlier.
Plotting the predictions for the training and test sets clearly shows the difference in
quality:
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Fig. 8.8 Predictions for the training data (left) and the test data (right) using the default values of
the svm function

> plot(gasoline$octane[gas.odd], predict(gasoline.svm),
+ main = "Training set", xlab = "Octane number (true)",
+ ylab = "Octane number (predicted)")
> abline(0, 1)
> plot(gasoline$octane[gas.even],
+ predict(gasoline.svm, new = gasoline[gas.even, ]),
+ main = "Test set", xlab = "Octane number (true)",
+ ylab = "Octane number (predicted)")
> abline(0, 1)

The result, shown in Fig. 8.8, tells us that the training data are predicted quite well
(although there seems to be a slight tendency to predict too close to the mean), but
the predictions for the test data show large errors. The corresponding RMS value for
prediction is:

> rms(gasoline$octane[gas.even],
+ predict(gasoline.svm, new = gasoline[gas.even, ]))
[1] 1.0671

Apparently, the model is not able to generalize, which should be no surprise
given the already quite large crossvalidation error seen in the summary, both clear
indications that the model is overfitting.

In this kind of situation, one should consider the parameters of the method. The
default behavior of the svm function is to use the ε-insensitive error function, with
ε = .1, a value of 1 for the penalization factor in Eq.8.27, and a gaussian (“radial
basis”) kernel, which also has some parameters to tune. Since in this case already
many variables are available for the SVM, it makes sense to use a less flexible kernel.
Indeed, swapping the radial basis kernel for a linear one makes a big difference for
the prediction of the test data:



8.6 Some Non-linear Regression Techniques 173

> gasoline.svmlin <- svm(octane ˜ ., data = gasoline,
+ subset = gas.odd, kernel = "linear")
> rms(gasoline$octane[gas.even],
+ predict(gasoline.svmlin, new = gasoline[gas.even, ]))
[1] 0.26418

Optimization of the parameters, for instance usingtune.svm, should lead to further
improvements.

8.6.2 ANNs for Regression

The basic structure of a backpropagation network as shown in Fig. 7.13 remains
unchanged for regression applications: the numbers of input and output units equal
the number of independent and dependent variables, respectively. Again, the number
of hidden units is subject to optimization. In high-dimensional cases one practical
difficulty needs to be solved—the data need to be compressed, otherwise the number
of weights would be too high. In many practical applications, PCA is performed on
the input matrix and the network is trained on the scores.

Let’s see how that works out for the gasoline data. We will use the scores of the
first five PCs, and fit a neural network model with five hidden units. To indicate that
we want numerical output rather than class output, we set the argument linout to
TRUE (the default is use logistic output units):

> X <- scale(gasoline$NIR, scale = FALSE,
+ center = colMeans(gasoline$NIR[gas.odd, ]))
> X.odd.svd <- svd(X[gas.odd, ])
> X.odd.scores <- X.odd.svd$u %*% diag(X.odd.svd$d)
> X.even.scores <- X[gas.even, ] %*% X.odd.svd$v
> gas.nnet <- nnet(X.odd.scores[, 1:5],
+ matrix(gasoline$octane[gas.odd], ncol = 1),
+ size = 5, linout = TRUE)
# weights: 36
initial value 228545.146358
iter 10 value 52.125172
iter 20 value 25.813681
iter 30 value 7.492666
iter 40 value 2.621245
iter 50 value 1.899539
iter 60 value 1.715577
iter 70 value 1.647011
iter 80 value 1.636999
iter 90 value 1.619624
iter 100 value 1.613594
final value 1.613594
stopped after 100 iterations

The number of weights is 36, perhaps already a bit too high given the limited number
of samples. Clearly, the decrease in error value for the training set has not yet slowed
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Fig. 8.9 Histogram of
prediction errors (RMS
values) for the even rows of
the gasoline data upon
repeated neural network
training
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after the (default) maximum value of 100 training iterations—however, using more
iterations may lead to overfitting. The usual approach is to divide the data in three
sets: the training set, the validation set, of which the predictions are continuously
monitored, and a test set. As soon as the errors in the predictions for the validation
set start to increase, training is stopped. At that point, the network is considered to
be trained, and its prediction errors can be assessed using the test set. Obviously,
this can only be done when the number of data points is not too small, a serious
impediment in the application of neural nets in the life sciences.

For the moment, we will ignore the issue, and we will assess the predictive per-
formance of our final network:

> gas.nnet.pred <- predict(gas.nnet, X.even.scores)
> rms(gas.nnet.pred, gasoline$octane[gas.even])
[1] 0.21797

The prediction error is similar to the PCR result in Sect. 8.2.2. Obviously, not only
the number of training iterations, but also the number of hidden units needs to
be optimized. Similar to the approach in classification, the convenience function
tune.nnet can be helpful.

One further remark needs to be made: since the initialization of neural nets usu-
ally is done randomly, repeated training sessions rarely lead to comparable results.
Figure 8.9 shows a histogram of RMS prediction errors (test set, even rows of the
gasoline data) of 100 trained networks. Clearly, there is considerable spread. Even a
local optimum can be discerned around 1.63 in whichmore than 10% of the networks
end up. The bottom line is that although neural networks have great modelling power,
one has to be very careful in using them—in particular, one should have enough data
points to allow for rigid validation.
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8.7 Classification as a Regression Problem

In many cases, classification can be tackled as a regression problem. The obvious
example is logistic regression, one of the most often used classification methods in
the medical and social sciences. In logistic regression, one models the log of the odds
ratio, usually with a multiple linear regression:

ln
p

1 − p
= XB (8.28)

where p is the probability of belonging to class 1. This way of modelling has several
advantages, the most important of which may be that the result can be directly
interpreted as a probability—the p value will always be between 0 and 1. Moreover,
the technique makes very few assumptions: the independent variables do not need to
have constant variance, or even be normally distributed; theymay even be categorical.
The usual least-squares estimators for finding B are not used, but rather numerical
optimization techniques maximizing the likelihood. However, a big disadvantage is
that many data points are needed. Because of the high dimensionality of most data
sets in the life sciences, logistic regression has not been widely adopted in this field
and we will not treat it further here.

Although it may not seem immediately very useful to use regression for classifi-
cation problems, it does open up a whole new field of elaborate, possibly non-linear
regression techniques as classifiers. Another very important application is classifica-
tion of “fat” data matrices, or data sets with many more variables than objects. These
have become the rule rather than the exception in the natural sciences. Although it
means that a lot of information is available for each sample, it also means in practice
that a lot of numbers are available that do not say anything particularly interest-
ing about the sample—these can be pure noise, but also genuine signals, unrelated
to the research question at hand. Another problem is the correlation that is often
present between variables. Finding relevant differences between classes of samples
in such a situation is difficult: the number of parameters to estimate in regular forms
of discriminant analysis far exceeds the number of independent samples available.
An example is the prostate data set, containing more than 10,000 variables and
only 327 samples. We could eliminate several without losing information, and also
removing variables that are “clearly” not related to the dependent variable (in as far
as we would be able to recognize these) would help, the idea that is formalized in
the OPLS approach discussed in Sect. 11.4. An alternative is formed by variable
selection techniques, such as the ones described in Chap.10, but these usually rely
on accurate error estimates that are hard to get with low numbers of samples.

The same low number of samples also forces the statistical models to have very
few parameters: fat matrices can be seen as describing sparsely—very sparsely—
populated high-dimensional spaces, and only the simplest possible models have any
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chance of gaining predictive power. The simplest possible case is that of linear
discriminant analysis, but direct calculation of the coefficients is impossible because
of the matrix inversion in Eq.7.6—the covariance matrix is singular. Regularization
approaches like RDA are one solution; the extreme form of regularization, diagonal
LDA, enjoys great popularity in the realm of microarray analysis. Another often-
used strategy is to compress the information in a much smaller number of variables,
usually linear combinations of the original set, and perform simplemethods like LDA
on the new, small, data matrix. Two approaches are popular: PCDA and PLSDA. We
start, however, by showing the general idea of using regression for classification
purposes in the context of LDA.

8.7.1 Regression for LDA

In the case of a two-class problem (healthy/diseased, true/false, yes/no) the dependent
variable is coded as 1 for the first class, and 0 for the other class. For prediction, any
object whose predicted value is above 0.5 will be classified in the second class. In
the field of machine learning, often a representation is chosen where one class is
indicated with the label −1 and the other one with 1; the class boundary then is at
0. For problems involving more than two classes, a class matrix is used with one
column for every class and at most one “1” per row; the position of the “1” indicates
the class of that particular object. We saw this already in the chapter on classification.
In principle, one could even remove one of these columns: since every row adds to
one (every object is part of a class) the number of independent columns is the number
of classes minus one. In practice, however, this is rarely done.

To illustrate the close connection between discriminant analysis and linear regres-
sion, consider a two-variable subset of the wine data with equal sizes of only classes
Barolo and Grignolino:

> C <- classvec2classmat(vintages[c(1:25, 61:85)])
> X <- wines[c(1:25, 61:85), c(7, 13)]

The regression model can be written as

C = XB + E (8.29)

where C is the two-column class matrix—note that because this is only a two-class
problem, we could also have used one vector with the 0/1 or –1/1 coding. Solving
this equation by least squares leads to:
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> C <- classvec2classmat(vintages[c(1:25, 61:85)])
> X <- wines[c(1:25, 61:85), c(7, 13)]
> wines.lm <- lm(C ˜ X)
> wines.lm.predict <- classmat2classvec(predict(wines.lm))
> table(vintages[c(1:25, 61:85)], wines.lm.predict)

wines.lm.predict
Barbera Barolo Grignolino

Barbera 0 0 0
Barolo 0 23 2
Grignolino 0 1 24

This is exactly the same classification as the one obtained from LDA:

> wines.lda <- lda(factor(vintages[c(1:25, 61:85)]) ˜ X)
> table(vintages[c(1:25, 61:85)], predict(wines.lda)$class)

Barolo Grignolino
Barbera 0 0
Barolo 23 2
Grignolino 1 24

The factor function in the lda line is used to convert the three-level factor
vintages to a two-level factor containing only Barolo and Grignolino, making
the comparison with the lm predictions easier. This means that instead of doing
LDA, we could use linear regression with a binary dependent variable: any object
for which the predicted value is larger than 0.5 will be classified in class 2, otherwise
in class 1. The direct equality of the least-squares solution with LDA only holds for
two groups with equal class sizes (Ripley 1996; Hastie et al. 2001); for more classes,
or classes with different sizes, the linear regression approach actually optimizes a
slightly different criterion than LDA.

8.7.2 PCDA

One way to compress the information in a fat data matrix into something that is more
easy to analyse is PCA. Subsequently, LDA is performed on the scores—the result
is often referred to as PCDA or PCLDA. The prostate data provide a nice example:
the number of variables far exceeds the number of samples, even though that number
is not low in absolute terms. Again, we are trying to discriminate between control
samples and cancer samples, so we consider only two of the three classes. Now,
however, we use all variables—in the cases of SVMs and boosting this would have
led to large memory demands, but the current procedure is much more efficient.
Using the SVD on the crossproduct matrix of the non-bph samples of the prostate
data, similar to the procedure shown in Sect. 4.2, we obtain scores and loadings.
The first sixteen PCs cover just over 70% of the variance of the X matrix, not too
surprising given the number of variables. We should have a look at the scores, for
clarity limiting ourselves to the first five components:
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Fig. 8.10 Pairs plot of the scores of the prostate data in the first five PCs. Red triangles indicate
cancer samples, black circles are controls

> pairs(prost.scores[, 1:5], labels = paste("PC", 1:5),
+ pch = as.integer(prost.type), col = as.integer(prost.type))

The result is shown in Fig. 8.10. Although some interesting structure is visible, there
is no obvious separation between the classes in any of the plots. This five-dimensional
representation of the data can be used in any form of discriminant analysis; we will
stick to LDA, and just to get a feeling for what we can hope to expect, we will use five
PCs. The naive, and as we shall see later, incorrect approach would be the following:
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> ## INCORRECT
> prost.pcda5 <- lda(prost.type ˜ prost.scores[, 1:5], CV = TRUE)
> (prost.ldaresult <- table(prost.type, prost.pcda5$class))

prost.type control pca
control 51 30
pca 8 160

Leave-one-out crossvalidation leads to a correct prediction in 85% of the cases,
better than we might have expected on the basis of Fig. 8.10. One should not forget,
however, that the cancer class is more than twice the size of the control class, so that
already a not-too-clever random classification of cancer for all samples would lead
to a success rate of over 65%. Note that the prediction errors are slightly unbalanced:
more control samples are predicted to be cancer than vice versa. This is the result of
the default prior of thelda function, which is proportional to the class representation
in the training set.

As already stated, the above procedure is incorrect: the error estimate is optimisti-
cally biased because the PCA step (including mean-centering and scaling) has not
been incorporated in the crossvalidation. As it is now, the left-out sample still exerts
influence on the classification model through its contribution to the PCs, whereas in
the correct way, the crossvalidation should include the PCA. This can be done by
using an explicit crossvalidation loop, leaving out part of the samples, performing
PCAandbuilding theLDAmodel, but amore easy approach is to see the classification
as a regression problem and use the pcr function, with its built-in crossvalidation
facilities. While we are at it, we should also separate training data from test data,
in order to get some kind of estimate for the prediction error, as well as the optimal
number of latent variables. After rearranging the data into a form that fits the pcr
function, application is simple:

> prost.df2 <- data.frame(class = as.integer(prost.type),
+ msdata = I(prost))
> prost.pcr <- pcr(class ˜ msdata, ncomp = 16,
+ data = prost.df2, subset = prost.odd,
+ validation = "CV", scale = TRUE)
> validationplot(prost.pcr, estimate = "CV")

In this case the validation (by default a ten-fold crossvalidation) is done correctly: the
scaling and the PCA are done only after the out-of-bag samples are removed from
the training data. This leads to the validation plot in the left panel of Fig. 8.11—a
cautious personwould probably select five PCs here, but since the number of samples
is quite large, one might even consider eleven PCs.

Note that the RMSEP measure shown here is not quite what we are interested in:
rather than the deviation from the ideal values of 0 and 1 in the classification matrix,
we should look at the number of correct classifications (Kjeldahl and Bro 2010). For
the training data this is achieved by directly assessing the cross-validated predictions
in the mvr object returned by the pcr function:



180 8 Multivariate Regression

0 5 10 15

0.
35

0.
40

0.
45

0.
50

class

number of components

R
M

SE
P

5 10 15

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

# PCs

M
is

cl
as

si
f. 

ra
te

Training set CV
Test set prediction

Fig. 8.11 Validation plots for the PCR regression plot of the prostate MS data: discrimination
between control and pca samples. Left plot: RMSEP values for the class codes. Right plot:
fraction of misclassifications, for the cross-validated training set predictions, and prediction of new,
unseen data

> prost.cv.cl <- round(prost.pcr$validation$pred[, 1, ])
> prost.cv.err <- apply(prost.cv.cl, 2,
+ err.rate, prost.df2$class[prost.odd])

Predictions for the test data can be achieved by the by now well-known predict
function:

> prost.tst <- predict(prost.pcr, newdata = prost.df2[prost.even, ])
> prost.tst.cl <- round(prost.tst[, 1, ])
> prost.tst.err <- apply(prost.tst.cl, 2,
+ err.rate, prost.df2$class[prost.even])
>
> matplot(cbind(prost.cv.err, prost.tst.err),
+ lty = 1:2, col = 2:1, type = "l",
+ xlab = "# PCs", ylab = "Misclassif. rate")
> legend("topright", lty = 1:2, col = 2:1, bty = "n",
+ legend = c("Training set CV", "Test set prediction"))

The result is shown in the right plot of Fig. 8.11. The two lines clearly follow a very
similar trajectory, confirming that crossvalidation is a quite reliableway of estimating
errors, or in this case misclassification rates: there is no evidence here of overfitting.
Normal choices for the optimal number of PCs again (looking only at the training
set CV line!) would be five (the first local minimum), eleven, or even thirteen. The
test data show that with eleven PCs the expected classification error is around 10%.

One big advantage of the regression approach to classification is that it is not
restricted to two-class problems only, but can be directly applied to multiclass prob-
lems. Rather than presenting a factor as the dependent variable, we use the matrix-
membership notation and present a matrix, with one column per class. For the PCR-
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based approach, application to the full three-class prostate data (only 1,000 variables,
however) is achieved as follows:

> prostate.clmat <- classvec2classmat(prostate.type)
> prostate.df <- data.frame(class = I(prostate.clmat),
+ msdata = I(prostate[, 1:1000]))
> prostate.odd <- seq(1, nrow(prostate.df), by = 2)
> prostate.even <- seq(2, nrow(prostate.df), by = 2)
> prostate.pcr <- pcr(class ˜ msdata, ncomp = 16,
+ data = prostate.df,
+ subset = prostate.odd,
+ validation = "CV", scale = TRUE)

Again, we should convert the predicted values in the PCR crossvalidation to classes,
and plot the number of misclassifications so that we can pick the optimal number of
components:

> pcr.predictions.loo <-
+ sapply(1:16,
+ function(i, arr) classmat2classvec(arr[, , i]),
+ prostate.pcr$validation$pred)
> pcr.loo.err <- apply(pcr.predictions.loo, 2, err.rate,
+ prostate.type[prostate.odd])

Test set results can be obtained in a completely analogous way:

> prostate.pcrpred <-
+ predict(prostate.pcr, new = prostate.df[prost.even, ])
> predictions.pcrtest <-
+ sapply(1:16,
+ function(i, arr) classmat2classvec(arr[, , i]),
+ prostate.pcrpred)

> matplot(cbind(pcr.loo.err,
+ apply(predictions.pcrtest, 2, err.rate,
+ prostate.type[prost.even])),
+ type = "l", lty = 1:2, col = 2:1,
+ main = "PCDA",
+ xlab = "# PCs", ylab = "Misclassif. rate")
> legend("topright", lty = 1:2, col = 2:1, bty = "n",
+ legend = c("Training set CV", "Test set prediction"))

The left panel in Fig. 8.12 shows the result. The solid red line corresponds to the
CV estimates of misclassification rate; the black dashed line to the results of the
test set predictions. Clearly, the classification error is quite high for all numbers of
components. We could ask ourselves what is going wrong, and focus on, e.g., seven
components:
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> table(prostate.type[prost.even], predictions.pcrtest[, 7])

bph control pca
bph 1 0 38
control 0 30 10
pca 0 4 41

There is considerably confusion between the pca and bph classes: almost all bph
objects are classified as pca. The controls are separated relatively well.

8.7.3 PLSDA

Although the above approach often is reported to work well in practice, it has a
(familiar) flaw: there is no reason to assume that the information relevant for the
class discrimination is captured in the first PCs. Since PLS takes into account the
dependent variable when defining latent variables, this is a logical alternative. In
literature, this form of discriminant analysis, usually done in the form of a direct
regression on coded class variables, is called PLSDA (Barker and Rayens 2003). For
the prostate data, this leads to:

> prostate.pls <- plsr(class ˜ msdata, data = prostate.df,
+ subset = prostate.odd, scale = TRUE,
+ ncomp = 16, validation = "CV")

Using code that is completely analogous to the PCDA case on the previous pages,
we arrive at the right plot in Fig. 8.12 (note the difference in scales at the y-axis!). As
expected, fewer components are needed for optimal results—four would be selected
in the case of PLSDA, whereas PCR would need seven. The PLSDA error values are
considerably lower than with PCR, both for the LOO crossvalidation and for the test
data: already with one PLS component the prediction of the test data is better than
the PCDA model achieves with eight. With four components, PLSDA prediction of
the test set looks like this:

> table(prostate.type[prostate.even], predictions.plstest[, 4])

bph control pca
bph 10 0 29
control 0 35 5
pca 4 2 78

Clearly, the confusion between the bph and pca classes is still there, but results are
somewhat better.

An alternative is to perform a classical LDA on the PLS scores—in several papers
(e.g., Barker and Rayens 2003; Nguyen and Rocke 2002; Boulesteix 2004) this is
claimed to be superior in quality.Where performing LDA on the first couple of PCs is
completely analogous to doingPCRon the classmatrix (for equal class sizes, at least),
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Fig. 8.12 PCDA (left) and PLSDA (right) classification results for the three-class prostate data

this is not the case in PLS, since class knowledge is used in defining latent variables.
One therefore may expect some differences. First, we build an LDA model on the
scores of the training set, directly available with the scores extractor function:

> prostate.ldapls <- lda(scores(prostate.pls)[, 1:6],
+ prostate.type[prostate.odd])

Next, we can build an LDAmodel on the scores of the training set, directly available
with the scores extractor function, and use this model to make predictions for the
test set:

> tst.scores <- predict(prostate.pls, ncomp = 1:6,
+ newdata = prostate.df[prostate.even, ],
+ type = "scores")
> table(prostate.type[prostate.even],
+ predict(prostate.ldapls, new = tst.scores)$class)

bph control pca
bph 24 0 15
control 3 33 4
pca 15 1 68

Compared to the direct PLSDA method, the total number of misclassifications is
the same, although slightly different for individual classes. For this case at least, the
differences are small.

8.7.3.1 A Word of Warning

Because it is more focused on information in the dependent variable, PLS can be
called a more greedy algorithm than PCR. In many cases this leads to a better fit for
PLS (with the same number of components as the PCR model, that is), but it also
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presents a bigger risk of overfitting. The following example will make this clear:
suppose we generate random data from a normal distribution, and allocate every
sample randomly to one of two possible classes:

> nvar <- 2000
> nobj <- 40
> RandX <- matrix(rnorm(nobj*nvar), nrow = nobj)
> RandY <- sample(c(0, 1), nobj, replace = TRUE)

Next, we compress the information in variable RandX into two latent variables,
so that LDA can be applied. We use both PCA3 and PLS. The results are quite
interesting:

> Rand.pcr <- pcr(RandY ˜ RandX, ncomp = 2)
> Rand.ldapcr <- lda(RandY ˜ scores(Rand.pcr), CV = TRUE)
> table(RandY, Rand.ldapcr$class)

RandY 0 1
0 5 13
1 7 15

> Rand.pls <- plsr(RandY ˜ RandX, ncomp = 2)
> Rand.ldapls <- lda(RandY ˜ scores(Rand.pls), CV = TRUE)
> table(RandY, Rand.ldapls$class)

RandY 0 1
0 18 0
1 0 22

where the PCA compression leads to results that are reasonably close to the expected
50-50 prediction, PLS-LDA leads to perfect predictions. For random data, that is
not exactly what we would want! Note that we did not perform any optimization of
the number of latent variables employed—in this case, choosing two latent variables
is already enough to be in deep trouble. Validation plots for the regression models
would have shown that there is trouble ahead—in both the PCR and PLS case, zero
latent variables would appear optimal. The moral of the story should by now sound
familiar: especially in cases with low ratios of numbers of objects to numbers of
variables, one should be very, very careful.

8.7.4 Discussion

Although the concept of using regression methods for classification seems appeal-
ing and certainly adds flexibility, there are some remarks that should be made. The
question arises what exactly it is that we are predicting. Since the only two reason-
able values are zero and one, what do other values signify? How can we compare
predictions from different classifiers? If a prediction is far greater than one, does that

3For simplicity, we employ the pcr function from the pls package so that the results can be directly
compared with the results from the plsr function.
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mean that the classification is more reliable than a prediction that is close to the class
cut-off point of 0.5?

More serious are the violations of the usual regression assumptions. In logistic
regression, maximum likelihood methods are used to obtain the regression coeffi-
cients, but in most cases where a classification is disguised as a regression problem,
ordinary least squares methods are used. The assumption of normally distributed
errors with equal variance is certainly not fulfilled here. Still, as is so often the case,
when a method performs in practice by achieving good quality predictions, people
will not be afraid to use it.



Part IV
Model Inspection



Chapter 9
Validation

Validation is the assessment of the quality of a predictive model, in accordance with
the scientific paradigm in the natural sciences: a model that is able to make accu-
rate predictions (the position of a planet in two weeks’ time) is—in some sense—a
“correct” description of reality. In many applications in the natural sciences, unfortu-
nately, validation is hard to do: chemical and biological processes often exhibit quite
significant variation unrelated to the model parameters. An example is the circadian
rhythm: metabolomic samples, be it from animals or plants, will show very different
characteristics when taken at different time points.When the experimental meta-data
on the exact time point of sampling are missing, it will be very hard to ascribe differ-
ences in metabolite levels to differences between patients and controls, or different
varieties of the same plant. Only a rigorous and consistent experimental design will
be able to prevent this kind of fluctuations. Moreover, biological variation between
individuals often dominates measurement variation. The bigger the variation, the
more important it is to have enough samples for validation. Only in this way, reliable
error estimates can be obtained.

The main goal usually is to estimate the expected error when applying the model
to new, unseen data: the root-mean-square error of prediction (RMSEP). In general,
the expected squared error at a point x is given by

Err(x) = E[(Y − f̂ (x))2] (9.1)

which can be decomposed as follows:

Err(x) = (E[ f̂ (x)] − f (x))2 + E[( f̂ (x) − E[ f̂ (x)])2] + σ 2
e (9.2)

where E denotes the usual expectation operator. The first term is the squared bias,
corresponding to systematic differences between model predictions and measure-
ments, the second is the variance, and σ 2

e corresponds to the remaining, irreducible
error. In many cases one must strike a balance between bias and variance. Biased
regressionmethods like, e.g., ridge regression and PLS achieve lowerMSE values by
decreasing the variance component, but pay a price by accepting bias. If it is possible
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to derive confidence intervals for these, this not only provides an idea of the stability
of the model, but it can also be useful in determining which variables actually are
important in the model.

A second validation aspect, next to estimating the RMSEP, is to assess the size
and variability of the model coefficients, summarized here with the term model
stability. This is especially true for linear models where one can hope to interpret
individual coefficients, and perhaps less so for non-linear models. In the example of
multiple regression with a singular covariance matrix in Sect. 8.1.1, the variance of
the coefficients effectively is infinite, indicating that the model is highly unstable.

Finally, there is the possibility of making use of prior knowledge. Particularly in
the natural sciences, one can often assess whether the features that seem important
make sense. In a regression model for spectroscopic data, for instance, one would
expect wavelengths with large regression coefficients to correspond to peaks in the
spectra—large coefficients in areas where no peaks are present would indicate a not
too reliable model. Since in most forms of spectroscopy it is possible to associate
spectral features with physico-chemical phenomena (specific vibrations, electron
transitions, atoms, ...) one can often even say something about the expected sign
and magnitude of the regression coefficients. Should these be very different than
expected, one may be on to something big—but more likely, one should treat the
predictions of such a model with caution, even when the model appears to fit the
data well. Typically, more experiments are needed to determine which of the two
situations applies. Because of the problem-specific character of this particular type of
validation, we will not treat it any further, but will concentrate on the error estimation
and model stability aspects.

9.1 Representativity and Independence

One key aspect is that both error estimates and confidence intervals for the model
coefficients are derived from the available data (the training data), but that the model
will only be relevant when these data are representative for the system under study. If
there is any systematic difference between the data on which the model is based and
the data for which predictions are required, these predictions will be suboptimal and
in some cases even horribly wrong. These systematic differences can have several
causes: a new machine operator, a new supplier of chemicals or equipment, new
schedules of measurement time (“from now on, Saturdays can be used for measuring
aswell”)—all these thingsmay cause newdata to be slightly but consistently different
from the training data, and as a result the predictive models are no longer optimal. In
analytical laboratories, this is a situation that often occurs, and one approach dealing
with this is treated in Sect. 11.6.

Especially with extremely large data sets, validation is sometimes based on only
one division in a training set and a test set. If the number of samples is very large,
the sheer size of the data will usually prevent overfitting and the corresponding
error estimates can be quite good. However, it depends on how the training and test
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sets are constructed. A random division is to be preferred; to be even more sure,
several random divisions may be considered. This would also allow one to assess the
variability in the validation estimates, and is definitely advisable when computing
resources allow it.

One can check whether the training data are really representative for the test data:
pathological cases where this is not the case can usually be recognized by simple
visualization, (e.g., using PCA). However, one should be very careful not to reject a
division too easily: as soon as one starts to use the test data, in this case, to assess
whether the division between training and test date is satisfactory, there is the risk
of biasing the results. The training set should not only be representative of the test
set, but also completely independent. An example is the application of the Kennard–
Stone algorithm (Kennard and Stone 1969) to make the division in training and test
sets. The algorithm selects training samples from the complete data set to cover the
complete space of the independent variables as good as possible. However, if the
training samples are selected in such a way that they are completely surrounding
the test samples, the prediction error on the test set will probably be lower than it
should be—it is biased. Of course, when the algorithm is only used to decrease the
number of samples in the training set, and the test set has been set aside before the
Kennard–Stone algorithm is run, then there is no problem (provided the discarded
training set samples are not added to the test set!) and we can still treat the error on
the test set as an unbiased estimate of what we can expect for future samples.

If the available data can be assumed to be representative of the future data, we
can use them in several ways to assess the quality of the predictions. The main point
in all cases is the same: from the data at hand, we simulate a situation where unseen
data have to be predicted. In crossvalidation, this is done by leaving out part of the
data, and building the model on the remainder. In bootstrapping, the other main
validation technique, the data are resampled with replacement, so that some data
points are present several times in the training set, and others (the “out-of-bag”, or
OOB, samples) are absent. The performance of the model(s) on the OOB samples is
then an indication of the prediction quality of the model for future samples.

In estimating errors, one should take care not to use any information of the test set:
if the independence of training and test sets is compromised error estimates become
biased. An often-made error is to scale (autoscaling, mean-centering) the data before
the split into training and test sets. Obviously, the information of the objects in the
test set is being used: column means and standard deviations are influenced by data
from the test set. This leads to biased error estimates—they are, in general, lower
that they should be. In the crossvalidation routines of the pls package, for example,
scaling of the data is done in the correct way: the OOB samples in a crossvalidation
iteration are scaled using the means (and perhaps variances) of the in-bag samples.
If, however, other forms of scaling are necessary, this can not be done automatically.
The pls package provides an explicit crossval function, which makes it possible
to include sample-specific scaling functions in the calling formula:



192 9 Validation

> gasoline.mscpcr <- pcr(octane ˜ msc(NIR), data = gasoline,
+ ncomp = 4)
> gasoline.mscpcr.cv <- crossval(gasoline.mscpcr, length.seg = 1)
> RMSEP(gasoline.mscpcr.cv, estimate = "CV")
(Intercept) 1 comps 2 comps 3 comps 4 comps

1.5430 1.4589 0.8901 0.2598 0.2668

This particular piece of code applies multiplicative scatter correction (MSC, see
Sect. 3.2) on all in-bag samples, and scales the OOB samples in the same way, as
it should be done. Interestingly, this leads to a PCR model where three components
would be optimal, one fewer component than without the MSC scaling.

A final remark concerns more complicated experimental designs. The general
rule is that the design should be taken into account when setting up the validation.
As an example, consider a longitudinal experiment where multiple measurements
of the same objects at different time points are present in the data. When apply-
ing subsampling approaches like crossvalidation to such data sets one should leave
out complete objects, rather than individual measurements: obviously multiple mea-
surements of the same object, even taken at different times, are not independent.
Randomly sampling individual data points would probably lead to over-optimistic
validation estimates.

9.2 Error Measures

A distinction has to be made between the prediction of a continuous variable (regres-
sion), and a categorical variable, as in classification. In regression, the root-mean-
square error of validation (RMSEV) is given, analogously to Eq.8.12, by

RMSEV =
√∑

i (ŷ(i) − y(i))2

n
(9.3)

where y(i) is the out-of-bag sample in a crossvalidation or bootstrap. That is, the
predictions are made for samples that have not been used in building the model. A
summary of these prediction errors can be used as an estimate for future performance.
In this case, the average of the sum of squared errors is taken—sometimes there are
better alternatives.

For classification, the simplest possibility is to look at the fraction of correctly
classified observations. in R:

> err.rate <- function(x, y) sum(x != y) / length(x)

A more elaborate alternative is to assign each type of misclassification a cost, and
to minimize a loss function consisting of the total costs associated with misclas-
sifications. In a two-class situation, for example, this makes it possible to prevent
false negatives at the expense of accepting more false positives; in a medical context,
it may be the case that a specific test should recognize all patients with a specific
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disease, even if that means that a few people without the disease are also tagged.
Missing a positive sample (a false negative outcome) in this example has much more
radical consequences than the reverse, incorrectly calling a healthy person ill.

A related alternative is to focus on the two components of classification accuracy,
sensitivity and specificity. Sensitivity, also known as the recall rate or the true positive
rate, is the fraction of objects from a particular class k which are actually assigned
to that class:

sensitivityk = T Pk
T Pk + FNk

(9.4)

where T Pk is the number of True Positives (i.e., objects correctly assigned to class k)
and FNk is the number of False Negatives (objects belonging to class k but classified
otherwise). A sensitivity of one indicates that all objects of class k are assigned to
the correct class—note that many other objects, not of class k, may be assigned to
that class as well.

Specificity is related to the purity of class predictions, and summarizes the fraction
of objects in class k that belong elsewhere:

specificityk = T Nk

FPk + T Nk
(9.5)

T Nk and FPk indicate True Negatives and False Positives for class k, respectively. A
specificity of one indicates that no objects have been classified as class k incorrectly.
The measure 1—specificity is sometimes referred to as the false positive rate.

In practice, one will have to compromise between specificity and sensitivity:
usually, sensitivity can be increased at the expense of specificity and vice versa
by changing parameters of the classification procedure. For two-class problems, a
common visualization is the Receiver Operating Characteristic (ROC, Brown and
Davis 2006), which plots the true positive rate against the false positive rate for
several values of the classifier threshold. Consider, e.g., the optimization of k, the
number of neighbors in the KNN classification of the wine data. Let us focus on the
distinction between Barbera and Grignolino, where we (arbitrarily) choose Barbera
as the positive class, and Grignolino as negative.

> X <- wines[vintages != "Barolo", ]
> vint <- factor(vintages[vintages != "Barolo"])
> kvalues <- 1:12
> ktabs <- lapply(kvalues,
+ function(i) {
+ kpred <- knn.cv(X, vint, k = i)
+ table(vint, kpred)
+ })

For twelve different values of k we calculate the crossvalidated predictions and we
save the crosstable. From the resulting list we can easily calculate true positive and
false positive rates:
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Fig. 9.1 ROC curve
(zoomed in to display only
the relative part) for the
discrimination between
Grignolino and Barbera
wines using different values
of k in KNN classification.
Predictions are
LOO-crossvalidated
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> TPrates <- sapply(ktabs, function(x) x[1, 1]/sum(x[, 1]))
> FPrates <- sapply(ktabs, function(x) 1 - x[2, 2]/sum(x[2, ]))
> plot(FPrates, TPrates, type = "b",
+ xlim = c(.15, .45), ylim = c(.5, .75),
+ xlab = "FP rate", ylab = "TP rate")
> text(FPrates, TPrates, 1:12, pos = 4)

In this case, the result, shown in Fig. 9.1, leaves no doubt that k = 1 gives the best
results: it shows the lowest fraction of false positives (i.e., Grignolinos predicted as
Barberas) as well as the highest fraction of true positives. The closer a point is to the
top left corner (perfect prediction), the better.

Note that a careful inspection of model residuals should be a standard ingredient
of any analysis. Just summing up the number of misclassifications, or squared errors,
is not telling the whole story. In some parts of the data space onemight see, e.g., more
misclassifications or larger errors than in other parts. For simple univariate regression,
standard plots exist (simply plotting anlmobject inRwill give a reasonable subset)—
for multivariate models techniques like PCA can come in handy, but there is ample
opportunity for creativity from the part of the data analyst.

9.3 Model Selection

In the field of model selection, one aims at selecting the best model amongst a series
of possibilities, usually based on some quality criterion such as an error estimate.
What makes model selection slightly special is that we are not interested in the error
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estimates themselves, but rather in the order of the sizes of the errors: we would like
to pick the model with the smallest error. Also biased error estimates are perfectly
acceptable when the bias does not influence our choice, and in some cases biased
estimates are even preferable since they often have a lower variance. We will come
back to this in later sections, discussing different resampling-based estimates.

9.3.1 Permutation Approaches

A form of resampling that we have not yet touched upon is permutation, randomly
redistributing labels in order to simulate one possible realization of the data under a
null hypothesis. The concept is most easily explained in the context of classification.
Suppose we have a classifier that distinguishes between two classes, A and B, each
represented by the same number of samples. Let’s say the classifier achieves a 65%
correct prediction rate. The question is whether this could be due to chance. In a
permutation test, one would train the same classifier many times on a data set in
which class labels A and B would be randomly assigned to samples. Since in such
a permutation there is no relation between the dependent and independent variables,
onewould expect a success rate of 50%. In practice onewill see variation. Comparing
the prediction rate observed with the real data with the quantiles of the permutation
prediction rates gives an estimate of the p value, or in other words, tells you whether
themodel is significant or not. In the example above: ifwewould do 500 permutations
and in 78 of them we would find prediction rates above 65%, we should conclude
that our classifier is not doing significantly better than a chance process. If only three
of the 500 permutations would lead to prediction rates of 65% or more, on the other
hand, we would declare our model significant.

So where other forms of validation try to obtain an error measure, permutation
testing as described above aims to assess significance. While the principle remains
the same, there are other ways in which the permutation test can be used. One
example was given in Sect. 8.2.2 in the context of establishing the optimal number of
components in a PCR or PLS regression model. There, residuals of models using A
and A + 1 components, respectively, are being permuted and the true sum of squares
is then compared to the null distribution given by the set of permutations. If there is
no significant difference between the two, the smallest model with A components is
preferred. In the remainder of this chapter we’ll focus on establishing estimates for
the magnitude of the prediction errors.

9.3.2 Model Selection Indices

Resampling approaches such as crossvalidation can be time-consuming, especially
for large data sets or complicatedmodels. In such cases simple, direct estimates could
form a valuable alternative. The most common ones consist of a term indicating
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the agreement between empirical and predicted values, and a penalty for model
complexity. Important examples are Mallows’s Cp (Mallows 1973) and the AIC and
BIC values (Akaike 1974; Schwarz 1978), already encountered in Sect. 6.3. The Cp

value is a special case of AIC for general models, adjusting the expected value in such
a way that it is approximately equal to the prediction error. In a regression context,
these two measures are equal, given by

AIC = Cp = MSE + 2 × p σ̂ 2/n (9.6)

BIC = MSE + log n × p σ̂ 2/n (9.7)

where n is the number of objects, p is the number of parameters in the model, MSE is
themean squared error of calibration, and σ̂ 2 is an estimate of the residual variance—
an obvious choice would be MSE/(n − p) (Efron and Tibshirani 1993). It can be
seen that, for any practical data size, BIC penalizes more heavily than Cp and AIC,
and therefore will choose more parsimonious models. For model selection in the life
sciences, these statistics have never really been very popular. A simple reason is that
it is hard to assess the “true” value of p: how many degrees of freedom do you have
in a PLS or PCR regression? Methods like crossvalidation are more simple to apply
and interpret—and with computing power being cheap, scientists happily accept the
extra computational effort associated with it.

9.3.3 Including Model Selection in the Validation

Up to now we have concentrated on validation approaches such as crossvalidation
for particular models, e.g., a PLS model with four components, or a KNN classifier
with k = 3. Typically, we would repeat this validation for other numbers of latent
variable, or other values of k, and base the selection of the best model on some kind of
decision rule (e.g., the approaches mentioned in Sect. 8.2.2 for choosing the number
of latent variables in a multivariate regression model). As has been stated before,
the CV error estimate associated with the selected model is to be interpreted in a
relative way, indicating which of the models under comparison is the best one—it’s
value should not be taken absolutely. The reason is the model selection process: we
choose this model precisely because it has the lowest error, and so we introduce a
downward bias.

There is another option. Rather than performing crossvalidation (or bootstrapping
or any other validation technique) on one fully specified model, one could also use it
on the complete procedure, including the model selection (Efron and Hastie 2016).
That is, if we decide to choose the optimal number of latent variables in a PLS
model using the one-sigma rule mentioned in Sect. 8.2.2, we could simply apply
crossvalidation on the overall procedure, including applying the selection rule. The
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resulting error estimate1 now is an unbiased estimate of what we can expect for future
data. Note that in each crossvalidation iteration the optimal number of components
may be different. This usually adds variance, so error estimates obtained with this
procedure are expected to be larger than the estimates we have been discussing until
now, which makes sense.

9.4 Crossvalidation Revisited

Crossvalidation, as we already have seen, is a simple and trustworthy method to
estimate prediction errors. There are twomain disadvantages of LOOcrossvalidation.
The first is the time needed to perform the calculations. Especially for data sets with
many objects and time-consuming modelling methods, LOO may be too expensive
to be practical. There are two ways around this problem: the first is to use fast
alternatives to direct calculations—in some cases analytical solutions exist, or fast
and good approximations. A second possibility is to focus on leaving out larger
segments at a time. This latter option also alleviates the second disadvantage of LOO
crossvalidation—the relatively large variability of its error estimates.

9.4.1 LOO Crossvalidation

Let us once again look at the equation for the LOO crossvalidation error:

ε2CV = 1

n

n∑
i=1

(
y(i) − ŷ(i)

)2 = 1

n

n∑
i=1

ε2(i) (9.8)

where subscript (i) indicates that observation i is being predictedwhile not being part
of the training data. Although the procedure is simple to understand and implement,
it can take a lot of time to run for larger data sets. However, for many modelling
methods it is not necessary to calculate the n different models explicitly. For ordinary
least-squares regression, for example, one can show that the i th residual of a LOO
crossvalidation is given by

ε2(i) = ε2i /(1 − hii ) (9.9)

where ε2i is the squared residual of sample i when it is included in the training set,
and hii is the i th diagonal element of the hat matrix H , given by

H = X
(
XT X

)−1
XT (9.10)

1This in effect is an example of double crossvalidation, since the selection rule internally uses
crossvalidation, too. We’ll come back to this in a later section in this chapter.



198 9 Validation

Therefore, the LOO error estimate can be obtained without explicit iteration by

ε2CV = 1

n

n∑
i=1

(
yi − ŷi
1 − hii

)2

(9.11)

This shortcut is available in all cases where it is possible to write the predicted values
as a product of a type of hat matrix H , independent of y, and the measured y values:

ŷ = H y (9.12)

Generalized crossvalidation (GCV, Craven and Wahba 1979) goes one step further:
instead of using the individual diagonal elements of the hat matrix hii , the average
diagonal element is used:

ε2GCV = 1

n
(
1 − ∑n

j=1 h j j

)2

n∑
i=1

(
yi − ŷi

)2
(9.13)

Applying these equations to PCR leads to small differences with the usual LOO
estimates, since the principal components that are estimated when leaving out each
sample in turn will deviate slightly (assuming there are no gross outliers). Consider
the (bad) fit of the one-component PCR model for the gasoline data, calculated with
explicit construction of n sets of size n − 1:

> gasoline.pcr <- pcr(octane ˜ ., data = gasoline,
+ validation = "LOO", ncomp = 1)
> RMSEP(gasoline.pcr, estimate = "CV")
(Intercept) 1 comps

1.543 1.447

The estimate based on Eq.9.11 is obtained by

> gasoline.pcr2 <- pcr(octane ˜ ., data = gasoline, ncomp = 1)
> X <- gasoline.pcr2$scores
> HatM <- X %*% solve(crossprod(X), t(X))
> sqrt(mean((gasoline.pcr2$residuals/(1 - diag(HatM)))ˆ2))
[1] 1.4187

The GCV estimate from Eq.9.13 deviates more from the LOO result:

> sqrt(mean((gasoline.pcr2$residuals/(1 - mean(diag(HatM))))ˆ2))
[1] 1.3888

If one iswilling to ignore the variation in the PCs introduced by leaving out individual
objects, as may be perfectly acceptable in the case of data sets with many objects,
this provides a way to significantly speed up calculations. The example above was
four times faster than the explicit loop, as is implemented in the pcr function with
the validation = "LOO" argument. For PLS, it is a different story: there, the
latent variables are estimated using y, and Eq.9.12 does not hold.
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9.4.2 Leave-Multiple-Out Crossvalidation

Instead of leaving out one sample at a time, it is also possible to leave out a sizeable
fraction, usually 10% of the data; the latter is also called “ten-fold crossvalidation”.
This approach has become quite popular—not only is it roughly ten times faster, it
also shows less variability in the error estimates (Efron and Tibshirani 1993). Again,
there is a bias-variance trade-off: the variance may be smaller, but a small bias occurs
because the model is based on a data set that is appreciably smaller than the “real”
data set, and therefore is slightly pessimistic by nature.

This “leave-multiple-out” (LMO) crossvalidation is usually implemented in a
random way: the order of the rows of the data matrix is randomized, and consecutive
chunks of roughly equal size are used as test sets. In case the data are structured,
it is possible to use non-randomized chunks: the functions in the pls package have
special provisions for this. The following lines of code lead, e.g., to interleaved
sample selection:

> gasoline.pcr <- pcr(octane ˜ ., data = gasoline,
+ validation = "CV", ncomp = 4,
+ segment.type = "interleaved")
> RMSEP(gasoline.pcr, estimate = "CV")
(Intercept) 1 comps 2 comps 3 comps 4 comps

1.5430 1.4261 1.4457 1.2179 0.2468

Analternative is to usesegment.type = "consecutive". Also, it is possible
to construct the segments (i.e., the crossvalidation sets) by hand or otherwise, and
explicitly present them to the modelling function using the segments argument.
See the manual pages for more information.

9.4.3 Double Crossvalidation

In all cases where crossvalidation is used to establish optimal values for modelling
parameters, the resulting error estimates are not indicative of the performance of
future observations. They are biased, in that they are used to pick the optimal model.
Another round of validation is required. This leads to double crossvalidation (Stone
1974), as visualized in Fig. 9.2: the inner crossvalidation loop is used to determine the
optimal model parameters, very often, in chemometrics, the optimal number of latent
variables, and the outer crossvalidation loop assesses the corresponding prediction
error. At the expense of more computing time, one is able to select optimal model
parameters as well as estimate prediction error.

The problem is that usually one ends up selecting different parameter settings
in different crossvalidation iterations: leaving out segment 1 may lead to a PLS
model with two components, whereas segment two may seem to need four PLS
components. Which do you choose? Averaging is no solution—again, one would
be using information which is not supposed to be available, and the resulting error
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segment 1

segment 2

segment 3

segment 4

segment 5

it. 1 it. 2 it. 3 it. 4 it. 5

Fig. 9.2 Double crossvalidation: the inner CV loop, indicated by the gray horizontal lines, is
used to estimate the optimal parameters for the modelling method. The outer loop, a five-fold
crossvalidation, visualized by the gray rectangles, is used to estimate the prediction error

estimates would be biased. One approach is to use all optimalmodels simultaneously,
and average the predictions (Smit et al. 2007). The disadvantage is that one loses the
interpretation of one single model; however, this may be a reasonable price to pay.
Other so-called ensemble methods will be treated in Sects. 9.7.1 and 9.7.2.

9.5 The Jackknife

Jackknifing (Efron and Tibshirani 1993) is the application of crossvalidation to obtain
statistics other than error estimates, usually pertaining to model coefficients. The
jackknife can be used to assess the bias and variance of regression coefficients. The
jackknife estimate of bias, for example, is given by

̂Bias jck(b) = (n − 1)(b̄(i) − b) (9.14)

where b is the regression coefficient2 obtained with the full data, and b(i) is the
coefficient from the data with sample i removed, just like in LOO crossvalidation.
The bias estimate is simply the difference between the average of all these LOO
estimates, and the full-sample estimate, multiplied by the factor n − 1.

Let us check the bias of the PLS estimates on the gasoline data using two latent
variables. The plsr function, when given the argument jackknife = TRUE,3

is keeping all regression coefficients of a LOO crossvalidation in the validation
element of the fitted object, so finding the bias estimates is not too difficult:

2In a multivariate setting we should use an index such as b j—to avoid complicated notation we
skip that for the moment.
3Information on this functionality can be found in the manual page of function mvrCv.



9.5 The Jackknife 201

1000 1200 1400 1600

−0
.2

0.
0

0.
2

0.
4

Jackknife bias estimates

wavelength

bi
as

Fig. 9.3 Jackknife estimates of bias (in gray) and variance (red line) for a two-component PLS
model on the gasoline data

> gasoline.pls <- plsr(octane ˜ ., data = gasoline,
+ validation = "LOO", ncomp = 2,
+ jackknife = TRUE)
> n <- length(gasoline$octane)
> b.oob <- gasoline.pls$validation$coefficients[, , 2, ]
> bias.est <- (n-1) * (rowMeans(b.oob) - coef(gasoline.pls))
> plot(wavelengths, bias.est, xlab = "wavelength", ylab = "bias",
+ type = "h", main = "Jackknife bias estimates",
+ col = "gray")

The result is shown in Fig. 9.3—clearly, the bias for specific coefficients can be
appreciable.

The jackknife estimate of variance is given by

V̂ar jck(b) = n − 1

n

∑
(b(i) − b̄(i))

2 (9.15)

and is implemented invar.jack. Again, an object of classmvrneeds to be supplied
that is fitted with jackknife = TRUE:

> var.est <- var.jack(gasoline.pls)
> lines(wavelengths, var.est, col = "red")

The variance is shown as the red line in Fig. 9.3. In the most important regions, bias
seems to dominate variance.

Several variants of the jackknife exist, including somewheremore thanone sample
is left out (Efron and Tibshirani 1993). In practice, however, the jackknife has been
replaced by the more versatile bootstrap.
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9.6 The Bootstrap

The bootstrap (Efron and Tibshirani 1993; Davison and Hinkley 1997) is a gener-
alization of the ideas behind crossvalidation: again, the idea is to generate multiple
data sets that, after analysis, shed light on the variability of the statistic of interest as
a result of the different training set compositions. Rather than splitting up the data to
obtain training and test sets, in non-parametric bootstrapping one generates a train-
ing set—a bootstrap sample—by sampling with replacement from the data. Whereas
the measured data set is one possible realization of the underlying population, an
individual bootstrap sample is, analogously, one realization from the complete set.
Since we may have sufficient knowledge of difference between the complete set and
the empirical realizations, simply by generating more bootstrap samples, we can
study the distribution of the statistic of interest θ . In non-parametric bootstrapping
applied to regression problems, there are two main approaches for generating a boot-
strap sample. One is to sample (again, with replacement) from the errors of the initial
model. Bootstrap samples are generated by adding the resampled errors to the orig-
inal data. This strategy is appropriate when the X data can be regarded as fixed and
the model is assumed to be correct. In other cases, one can sample complete cases,
i.e., rows from the data matrix, to obtain a bootstrap sample. In such a bootstrap
sample, some rows are present multiple times; others are absent.

In parametric bootstrapping on the other hand, one describes the data with a
parametric distribution, from which then random bootstrap samples are generated.
In the life sciences, high-dimensional data are the rule rather than the exception, and
therefore any parametric description of a data set is apt to be based on very sparse
data. Consequently, the parametric bootstrap has been less popular in this context.

What method is used to generate the bootstrap distribution, parametric boost-
rapping or non-parametric bootstrapping, is basically irrelevant for the subsequent
analysis. Typically, several hundreds to thousands bootstrap samples are analyzed,
and the variability of the statistic of interest is monitored. This enables one to make
inferences, both with respect to estimating prediction errors and confidence intervals
for model coefficients.

9.6.1 Error Estimation with the Bootstrap

Because a bootstrap sample will effectively never contain all samples in the data set,
there are samples that have not been involved in building the model. These out-of-
bag samples can conveniently be used in estimation of prediction errors. A popular
estimator is the so-called 0.632 estimate ε̂0.632, given by

ε̂20.632 = 0.368 MSEC + 0.632ε̄2B (9.16)
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where ε̄2B is the average squared prediction error of the OOB samples in the B boot-
strap samples, and MSEC is the mean squared training error (on the complete data
set). The factor 0.632 ≈ (1 − e−1) is approximately the probability of a sample to
end up in a bootstrap sample (Efron and Tibshirani 1993). In practice, the 0.632
estimator is the most popular form for estimating prediction errors; a more sophisti-
cated version, correcting possible bias, is known as the 0.632+ estimator (Efron and
Tibshirani 1997) but in many cases the difference is small.

As an example, let us use bootstrapping rather than crossvalidation to determine
the optimal number of latent variables in PCR fitting of the gasoline data. In this case,
the independent variables are not fixed, and there is some uncertainty on whether
the model is correct. This leads to the adoption of the resampling cases paradigm.
We start by defining bootstrap sample indices—in this case we take 500 bootstrap
samples.

> B <- 500
> ngas <- nrow(gasoline)
> boot.indices <-
+ matrix(sample(1:ngas, ngas * B, replace = TRUE), ncol = B)
> sort(boot.indices[, 1])[1:20]
[1] 2 2 3 3 4 6 8 8 8 8 11 12 14 15 15 16 17 19 20 21

Among others, objects 1 and 5 are absent from the first bootstrap sample, (partially)
shown here as an example. Other samples, such as 2 and 3, occur multiple times.
Similar behaviour is observed for the other 499 bootstrap samples. We now build
a PCR model for each bootstrap sample and record the predictions of the out-of-
bag objects. The following code is not particularly memory-efficient but easy to
understand:

> npc <- 5
> predictions <- array(NA, c(ngas, npc, B))
> for (i in 1:B) {
+ gas.bootpcr <- pcr(octane ˜ ., data = gasoline,
+ ncomp = npc, subset = boot.indices[, i])
+ oobs <- (1:ngas)[-boot.indices[, i]]
+ predictions[oobs, , i] <-
+ predict(gas.bootpcr,
+ newdata = gasoline$NIR[oobs, ])[, 1, ]
+ }

Next, the OOB errors for the individual objects are calculated, and summarized in
one estimate:

> diffs <- sweep(predictions, 1, gasoline$octane)
> sqerrors <- apply(diffsˆ2, c(1, 2), mean, na.rm = TRUE)
> sqrt(colMeans(sqerrors))
[1] 1.48695 1.50077 1.24562 0.28667 0.27598

Finally, the out-of-bag errors are combined with the calibration error to obtain the
0.632 estimate:
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> gas.pcr <- pcr(octane ˜ ., data = gasoline, ncomp = npc)
> RMSEP(gas.pcr, intercept = FALSE)
1 comps 2 comps 3 comps 4 comps 5 comps
1.3656 1.3603 1.1097 0.2305 0.2260

> error.632 <- .368 * colMeans(gas.pcr$residualsˆ2) +
+ .632 * colMeans(sqerrors)
> sqrt(error.632)

1 comps 2 comps 3 comps 4 comps 5 comps
octane 1.4435 1.4507 1.1974 0.26737 0.25873

The result is an upward correction of the too optimistic training set errors. We can
compare the 0.632 estimate with the LOO and ten-fold crossvalidation estimates:

> gas.pcr.cv <- pcr(octane ˜ ., data = gasoline, ncomp = npc,
+ validation = "CV")
> gas.pcr.loo <- pcr(octane ˜ ., data = gasoline, ncomp = npc,
+ validation = "LOO")
> bp <- barplot(sqrt(error.632),
+ ylim = c(0, 1.6), col = "peachpuff")
> lines(bp, sqrt(c(gas.pcr.cv$validation$PRESS) / ngas),
+ col = 2, lwd = 2)
> lines(bp, sqrt(c(gas.pcr.loo$validation$PRESS) / ngas),
+ col = 4, lty = 2, lwd = 2)
> legend("topright", lty = 1:2, col = c(2, 4), lwd = 2,
+ legend = c("CV", "LOO"))

The result is shown in Fig. 9.4. The estimates in general agree very well—the dif-
ferences that can be seen are the consequence of the stochastic nature of both ten-
fold crossvalidation and bootstrapping: every time a slightly different result will be
obtained.

Fig. 9.4 Error estimates for
PCR on the gasoline data:
bars indicate the result of the
0.632 bootstrap, the solid
line is the ten-fold
crossvalidation, and the
dashed line the LOO
crossvalidation

1 comps 2 comps 3 comps 4 comps 5 comps

0.
0

0.
5

1.
0

1.
5 CV

LOO
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It now should be clear what is the philosophy behind the 0.632 estimator. What
it estimates, in fact, is the amount of optimism associated with the RMSEC value,
ω̂0.632:

ω̂0.632 = 0.632(MSEC − ε̄B) (9.17)

The original estimate is then corrected for this optimism:

ε̂0.632 = MSEC + ω̂0.632 (9.18)

which leads to Eq.9.16.
SeveralR packages are available that contain functions for bootstrapping. Perhaps

the two best known ones are bootstrap, associated with Efron and Tibshirani (1993),
and boot, written by Angelo Canty and implementing functions from Davison and
Hinkley (1997). The former is a relatively simple package, maintained mostly to
support Efron and Tibshirani (1993)—boot, a recommended package, is the primary
general implementation of bootstrapping in R. The implementation of the 0.632
estimator using boot is done in a couple of steps (Davison and Hinkley 1997, p. 324).
First, the bootstrap samples are generated, returning the statistic to be bootstrapped—
in this case, the prediction errors4:

> gas.pcr.boot632 <-
+ boot(gasoline,
+ function(x, ind) {
+ mod <- pcr(octane ˜ ., data = x,
+ subset = ind, ncomp = 4)
+ gasoline$octane -
+ predict(mod, newdata = gasoline$NIR, ncomp = 4)},
+ R = 499)

The optimism is assessed by only considering the errors of the out-of-bag samples.
For every bootstrap sample, we can find out which samples are constituting it using
the boot.array function:

> dim(boot.array(gas.pcr.boot632))
[1] 499 60
> boot.array(gas.pcr.boot632)[1, 1:10]
[1] 0 1 0 1 2 1 0 1 2 1

Just like when we did the resampling ourselves, some objects are absent from this
bootstrap sample (here, as an example, using the first, only showing the first ten
objects), and others are present multiple times. Averaging the squared errors of the
OOB objects leads to the 0.632 estimate:

4In Davison and Hinkley (1997) and the corresponding boot package the number of bootstrap
samples is typically a number like 499 or 999—the original sample then is added to the bootstrap
set. Most other implementations use 500 and 1000. The differences are not very important in
practice.
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> in.bag <- boot.array(gas.pcr.boot632)
> oob.error <- mean((gas.pcr.boot632$tˆ2)[in.bag == 0])
> app.error <- MSEP(pcr(octane ˜ ., data = gasoline, ncomp = 4),
+ ncomp = 4, intercept = FALSE)
> sqrt(.368 * c(app.error$val) + .632 * oob.error)
[1] 0.26572

This error estimate is very similar to the four-fold crossvalidation result in Sect. 9.4.2
(0.2468). Note that it is not exactly equal to the 0.632 estimate in Sect. 9.6.1 (0.26737)
because different bootstrap samples have been selected, but again the difference is
small.

9.6.2 Confidence Intervals for Regression Coefficients

The bootstrap may also be used to assess the variability of a statistic such as an
error estimate. A particularly important application in chemometrics is the standard
error of a regression coefficient from a PCR or PLS model. Alternatively, confidence
intervals can be built for the regression coefficients. No analytical solutions such as
those for MLR exist in these cases; nevertheless, we would like to be able to say
something about which coefficients are actually contributing to the regressionmodel.

Typically, for an interval estimate such as a confidence interval, more bootstrap
samples are needed than for a point estimate, such as an error estimate. Several
hundred bootstrap samples are taken to be sufficient for point estimates; several
thousand for confidence intervals. Taking smaller numbers may drastically increase
the variability of the estimates, and with the current abundance of computing power
there is rarely a case for being too economical.

The simplest possible approach is the percentile method: estimate the models
for B bootstrap samples, and use the Bα/2 and B(1 − α/2) values as the (1 − α)

confidence intervals. For the gasoline data, modelled with PCR using four PCs, these
bootstrap regression coefficients are obtained by:

> B <- 1000
> ngas <- nrow(gasoline)
> boot.indices <-
+ matrix(sample(1:ngas, ngas * B, replace = TRUE), ncol = B)
> npc <- 4
> gas.pcr <- pcr(octane ˜ ., data = gasoline, ncomp = npc)
> coefs <- matrix(0, ncol(gasoline$NIR), B)
> for (i in 1:B) {
+ gas.bootpcr <- pcr(octane ˜ ., data = gasoline,
+ ncomp = npc, subset = boot.indices[, i])
+ coefs[, i] <- c(coef(gas.bootpcr))
+ }

A plot of the area covered by the regression coefficients of all bootstrap samples is
shown in Fig. 9.5:
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Fig. 9.5 Regression coefficients from all 1000 bootstrap samples for the gasoline data, using PCR
with four latent variables

> matplot(wavelengths, coefs, type = "n",
+ ylab = "Coefficients", xlab = "Wavelength (nm)")
> abline(h = 0, col = "gray")
> polygon(c(wavelengths, rev(wavelengths)),
+ c(apply(coefs, 1, max), rev(apply(coefs, 1, min))),
+ col = "steelblue", border = NA)

Some of the wavelengths show considerable variation in their regression coefficients,
especially the longer wavelengths above 1650 nm.

In the percentile method using 1000 bootstrap samples, the 95% confidence inter-
vals are given by the 25th and 975th ordered values of each coefficient:

> coef.stats <- cbind(apply(coefs, 1, quantile, .025),
+ apply(coefs, 1, quantile, .975))
> matplot(wavelengths, coef.stats, type = "n",
+ xlab = "Wavelength (nm)",
+ ylab = "Regression coefficient")
> abline(h = 0, col = "gray")
> polygon(c(wavelengths, rev(wavelengths)),
+ c(coef.stats[, 1], rev(coef.stats[, 2])),
+ col = "pink", border = NA)
> lines(wavelengths, c(coef(gas.pcr)))

The corresponding plot is shown in Fig. 9.6. Since the most extreme values will be
removed by the percentile strategy, these CIs are more narrow than the area covered
by the bootstrap coefficients from Fig. 9.5. Clearly, for most coefficients, zero is not
in the confidence interval. A clear exception is seen in the longer wavelengths: there,
the confidence intervals are very wide, indicating that this region contains very little
relevant information.

The percentile method was the first attempt at deriving confidence intervals from
bootstrap samples (Efron 1979) and has enjoyed huge popularity; however, one can
show that the intervals are, in fact, incorrect. If the intervals are not symmetric (and it
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Fig. 9.6 Regression vector and 95% confidence intervals for the individual coefficients, for the
PCRmodel of the gasoline data with four PCs. Confidence intervals are obtained with the bootstrap
percentile method

can be seen in Fig. 9.6 that this is quite often the case—it is one of the big advantages
of bootstrapping methods that they are able to define asymmetric intervals), it can
be shown that the percentile method uses the skewness of the distribution the wrong
way around (Efron and Tibshirani 1993). Better results are obtained by so-called
studentized confidence intervals, in which the statistic of interest is given by

tb = θ̂b − θ̂

σ̂b
(9.19)

where θ̂b is the estimate for the statistic of interest, obtained from the bth bootstrap
sample, σ̂b is the standard deviation of that estimate, and θ̂ is the estimate obtained
from the complete original data set. In the example of regression, θ̂ corresponds to
the regression coefficient at a certain wavelength. Often, no analytical expression
exists for σ̂b, and it should be obtained by other means, e.g., crossvalidation, or an
inner bootstrap loop. Using the notation of tBα/2 as an approximation for the α/2th
quantile of the distribution of tb, the studentized confidence intervals are given by

θ̂ − tB(1−α/2) ≤ θ ≤ θ̂ − tBα/2 (9.20)

Several other ways of estimating confidence intervals exist, most notably the bias-
corrected and accelerated (BCα) interval (Efron and Tibshirani 1993; Davison and
Hinkley 1997).

The boot package provides the function boot.ci, which calculates several con-
fidence interval estimates in one go. Again, first the bootstrap sampling is done and
the statistics of interest are calculated:
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Fig. 9.7 Bootstrap plot for the regression coefficient at 1206 nm; in all bootstrap samples the
coefficient is much smaller than zero

> gas.pcr.bootCI <-
+ boot(gasoline,
+ function(x, ind) {
+ c(coef(pcr(octane ˜ ., data = x,
+ ncomp = npc, subset = ind)))},
+ R = 999)

Here we use R = 999 to conform to the setup of the boot package—the actual
sample is seen as the 1000th element of the set. The regression coefficients are
stored in the gas.pcr.bootCI object, which is of class "boot", in the element
named t:

> dim(gas.pcr.bootCI$t)
[1] 999 401

Plots of individual estimates can be made through the index argument:

> smallest <- which.min(gas.pcr.bootCI$t0)
> plot(gas.pcr.bootCI, index = smallest)

From the plot, shown in Fig. 9.7, one can see the distribution of the values for this
coefficient in all bootstrap samples—the corresponding confidence interval will def-
initely not contain zero. The dashed line indicates the estimate based on the full data;
these estimates are stored in the list element t0.

Confidence intervals for individual coefficients can be obtained from the
gas.pcr.bootCI object as follows:
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> boot.ci(gas.pcr.bootCI, index = smallest, type = c("perc", "bca"))
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 999 bootstrap replicates

CALL :
boot.ci(boot.out = gas.pcr.bootCI, type = c("perc", "bca"),

index = smallest)

Intervals :
Level Percentile BCa
95% (-5.909, -5.157 ) (-6.239, -5.538 )
Calculations and Intervals on Original Scale
Warning : BCa Intervals used Extreme Quantiles
Some BCa intervals may be unstable

The warning messages arise because in the extreme tails of the bootstrap distribution
it is very difficult to make precise estimates—in such cases one really needs more
bootstrap samples to obtain somewhat reliable estimates. Nevertheless, one can see
that the intervals agree reasonably well; the BCα intervals are slightly shifted down-
ward compared to the percentile intervals. For this coefficient, in absolute value the
largest of the set, neither contains zero, as expected. In total, the percentile intervals
show 318 cases where zero is not in the 95% confidence interval; the BCα intervals
lead to 325 such cases.

It is interesting to repeat this exercise using a really large number of principal
components, say twenty (remember, the gasoline data set only contains sixty sam-
ples). We would expect much more variation in the coefficients, since the model is
more flexible and can adapt to changes in the training data much more easily. More
variationmeanswider confidence intervals, and fewer “significant” cases, where zero
is not included in the CI. Indeed, using twenty PCs leads to only 71 significant cases
for the percentile intervals, and 115 for BCα (and an increased number of warning
messages from the boot function as well).

9.6.3 Other R Packages for Bootstrapping

The bootstrap is such a versatile technique, that it has found application in many
different areas of science. This has led to a large number ofR packages implementing
some form of the bootstrap—at the moment of writing, the package list of the CRAN
repository contains already four other packages in between the packages boot and
bootstrap already mentioned. To name just a couple of examples: package FRB
contains functions for applying bootstrapping in robust statistics; DAIM provides
functions for error estimation including the 0.632 and 0.632+ estimators. Using
EffectiveDose it is possible to estimate the effects of a drug, and in particular to
determine the effective dose level—bootstrapping is provided for the calculation
of confidence intervals. Packages meboot and BootPR provide machinery for the
application of bootstrapping in time series.
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9.7 Integrated Modelling and Validation

Obtaining a good multivariate statistical model is hardly ever a matter of just loading
the data and pushing a button: rather, it is a long and sometimes seemingly end-
less iteration of visualization, data treatment, modelling and validation. Since these
aspects are so intertwined, it seems to make sense to develop methods that combine
them in some way. In this section, we consider approaches that combine elements of
model fitting with validation. The first case is bagging (Breiman 1996), where many
models are fitted on bootstrap sets, and predictions are given by the average of the
predictions of these models. At the same time, the out-of-bag samples can be used for
obtaining an unbiased error estimate. Bagging is applicable to all classification and
regression methods, but will give benefits only in certain cases; the classical example
where it works well is given by trees (Breiman 1996)—see below. An extension of
bagging, also applied to trees, is the technique of random forests (Breiman 2001).
Finally, we will look at boosting (Freund and Schapire 1997), an iterative method for
binary classification giving progressivelymoreweight tomisclassified samples. Bag-
ging and boosting can be seen as meta-algorithms, because they consist of strategies
that, in principle at least, can be combined with any model-fitting algorithm.

9.7.1 Bagging

The central idea behind bagging is simple: if you have a classifier (or a method for
predicting continuous variables) that on average gives good predictions but has a
somewhat high variability, it makes sense to average the predictions over a large
number of applications of this classifier. The problem is how to do this in a sensible
way: just repeating the same fit on the same data will not help. Breiman proposed
to use bootstrapping to generate the variability that is needed. Training a classifier
on every single bootstrap sets leads to an ensemble of models; combining the pre-
dictions of these models would then, in principle, be closer to the true answer. This
combination of bootstrapping and aggregating is called bagging (Breiman 1996).

The package ipred implements bagging for classification, regression and sur-
vival analysis using trees—the rpart implementation is employed. For classification
applications, also the combination of bagging with kNN is implemented (in function
ipredknn).Wewill focus here on bagging trees. The basic function isipredbag,
while the function bagging provides the same functionality using a formula inter-
face. Making a model for predicting the octane number for the gasoline data is very
easy:
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> (gasoline.bagging <- ipredbagg(gasoline$octane[gas.odd],
+ gasoline$NIR[gas.odd, ],
+ coob = TRUE))

Bagging regression trees with 25 bootstrap replications
Out-of-bag estimate of root mean squared error: 0.9181

The OOB error is quite high. Predictions for the even-numbered samples can be
obtained by the usual predict function:

> gs.baggpreds <-
+ predict(gasoline.bagging, gasoline$NIR[gas.even, ])
> resids <- gs.baggpreds - gasoline$octane[gas.even]
> sqrt(mean(residsˆ2))
[1] 1.6738

This is not a very good result. Nevertheless, one should keep in mind that default set-
tings are often suboptimal and some tweakingmay lead to substantial improvements.

Doing classification with bagging is equally simple. Here, we show the example
of discriminating between the control and pca classes of the prostate data, again
using only the first 1000 variables as we did in Sect. 7.1.6.1:

> prost.bagging <- bagging(type ˜ ., data = prost.df,
+ subset = prost.odd)
> prost.baggingpred <- predict(prost.bagging,
+ newdata = prost.df[prost.even, ])
> table(prost.type[prost.even], prost.baggingpred)

prost.baggingpred
control pca

control 30 10
pca 4 80

which doubles the number of misclassifications compared to the SVM solution in
Sect. 7.4.1 but still is a lot better than the single-tree result.

So when does bagging improve things? Clearly, when a classification or regres-
sion procedure changes very little with different bootstrap samples, the result will be
the same as the original predictions. It can be shown (Breiman 1996) that bagging is
especially useful for predictors that are unstable, i.e., predictors that are highly adap-
tive to the composition of the data set. Examples are trees, neural networks (Hastie
et al. 2001) or variable selection methods.

9.7.2 Random Forests

The combination of bagging and tree-based methods is a good one, as we saw in
the last section. However, Breiman and Cutler saw that more improvement could be
obtained by injecting extra variability into the procedure, and they proposed a number
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of modifications leading to the technique called Random Forests (Breiman 2001).
Again, bootstrapping is used to generate data sets that are used to train an ensemble
of trees. One key element is that the trees are constrained to be very simple—only
few nodes are allowed, and no pruning is applied. Moreover, at every split, only a
subset of all variables is considered for use. Both adaptations force diversity into the
ensemble, which is the key to why improvements can be obtained with aggregating.

It can be shown (Breiman 2001) that an upper bound for the generalization error
is given by

Ê ≤ ρ̄(1 − q2)/q2

where ρ̄ is the average correlation between predictions of individual trees, and q
is a measure of prediction quality. This means that the optimal gain is obtained
when many good yet diverse classifiers are combined, something that is intuitively
logical—there is not much point in averaging the outcomes of identical models, and
combining truly bad models is unlikely to lead to good results either.

The R package randomForest provides a convenient interface to the original
Fortran code of Breiman and Cutler. The basic function is randomForest, which
either takes a formula or the usual combination of a data matrix and an outcome
vector:

> wines.df <- data.frame(vint = vintages, wines)
> (wines.rf <- randomForest(vint ˜ ., subset = wines.odd,
+ data = wines.df))

Call:
randomForest(formula = vint ˜ ., data = wines.df, subset = wines.odd)

Type of random forest: classification
Number of trees: 500

No. of variables tried at each split: 3

OOB estimate of error rate: 4.49%
Confusion matrix:

Barbera Barolo Grignolino class.error
Barbera 24 0 0 0.000000
Barolo 0 28 1 0.034483
Grignolino 2 1 33 0.083333

The print method shows the result of the fit in terms of the error rate of the out-
of-bag samples, in this case less than 5%. Because the algorithm fits trees to many
different bootstrap samples, this error estimate comes for free. Prediction is done in
the usual way:

> wines.rf.predict <-
+ predict(wines.rf, newdata = wines.df[wines.even, ])
> table(wines.rf.predict, vintages[wines.even])

wines.rf.predict Barbera Barolo Grignolino
Barbera 24 0 0
Barolo 0 29 0
Grignolino 0 0 35
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So prediction for the even rows in the data set is perfect here. Note that repeated
training may lead to small differences because of the randomness involved in select-
ing bootstrap samples and variables in the training process. Also in many other
applications random forests have shown very good predictive abilities (see, e.g.,
reference Svetnik et al. 2003 for an application in chemical modelling).

So it seems the most important disadvantage of tree-based methods, the generally
low quality of the predictions, has been countered sufficiently. Does this come at a
price? At first sight, yes. Not only does a random forest add complexity to the original
algorithm in the formof tuning parameters, the interpretability suffers aswell. Indeed,
an ensemble of trees would seemmore difficult to interpret than one simple sequence
of yes/no questions. Yet in reality things are not so simple. The interpretability, one
of the big advantages of trees, becomes less of an issue when one realizes that a
slight change in the data may lead to a completely different tree, and therefore a
completely different interpretation. Such a small change may, e.g., be formed by
the difference between successive crossvalidation or bootstrap iterations—thus, the
resulting error estimate may be formed by predictions from trees using different
variables in completely different ways.

The technique of random forests addresses these issues in the following ways. A
measure of the importance of a particular variable is obtained by comparing the
out-of-bag errors for the trees in the ensemble with the out-of-bag errors when the
values for that variable are permuted randomly. Differences are averaged over all
trees, and divided by the standard error. If one variable shows a big difference, this
means that the variable, in general, is important for the classification: the scrambled
values lead to models with decreased predictivity. This approach can be used for
both classification (using, e.g., classification error rate as a measure) and regression
(using a value like MSE). An alternative is to consider the total increase in node
purity.

In package randomForest this is implemented in the following way. When
setting the parameter importance = TRUE in the call to randomForest,
the importances of all variables are calculated during the fit—these are available
through the extractor function importance, and for visualization using the func-
tion varImpPlot:

> wines.rf <- randomForest(vint ˜ ., data = wines.df,
+ importance = TRUE)
> varImpPlot(wines.rf)

The result is shown in Fig. 9.8. The left plot shows the importance measured
using the mean decrease in accuracy; the right plot using the mean decrease in node
impurity, as measured by the Gini index. Although there are small differences, the
overall picture is the same using both indices.

The second disadvantage, the large number of parameters to set in using tree-based
models, is implicitly taken care of in the definition of the algorithm: by requiring all
trees in the forest to be small and simple, no elaborate pruning schemes are necessary,
and the degrees of freedom of the fitting algorithm have been cut back drastically.
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Fig. 9.8 Assessment of variable importance by random forests: the left plot shows the mean
decrease in accuracy and the right the mean decrease in Gini index, both after permuting indi-
vidual variable values

Furthermore, it appears that in practice random forests are very robust to changes in
settings: averaging many trees also takes away a lot of the dependence on the exact
value of parameters. In practice, the only parameter that is sometimes optimized is the
number of trees (Efron and Hastie 2016), and even that usually has very little effect.
This has caused random forests to be called one of the most powerful off-the-shelf
classifiers available.

Just like the classification and regression trees seen in Sect. 7.3, random forests
can also be used in a regression setting. Take the gasoline data, for instance: training
a model using the default settings can be achieved with the following command.

> gasoline.rf <- randomForest(gasoline$NIR[gas.odd, ],
+ gasoline$octane[gas.odd],
+ importance = TRUE,
+ xtest = gasoline$NIR[gas.even, ],
+ ytest = gasoline$octane[gas.even])

For interpretation purposes, we have used the importance = TRUE argument,
andwe have provided the test samples at the same time. The results, shown in Fig. 9.9,
are better than the ones from bagging:
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Fig. 9.9 Predictions for the gasoline data using random forests. Left plot: OOB predictions for the
training data—right plot: test data

> pl.range <- c(83, 90)
> plot(gasoline$octane[gas.odd], gasoline.rf$predicted,
+ main = "Training: OOB prediction", xlab = "True",
+ ylab = "Predicted", xlim = pl.range, ylim = pl.range)
> abline(0, 1, col = "gray")
> plot(gasoline$octane[gas.even], gasoline.rf$test$predicted,
+ main = "Test set prediction", xlab = "True",
+ ylab = "Predicted", xlim = pl.range, ylim = pl.range)
> abline(0, 1, col = "gray")

However, there seems to be a bias towards the mean—the absolute values of the
predictions at the extremes of the range are too small. Also the RMS values confirm
that the test set predictions are much worse than the PLS and PCR estimates of 0.21:

> resids <- gasoline.rf$test$predicted - gasoline$octane[gas.even]
> sqrt(mean(residsˆ2))
[1] 0.63721

One of the reasons can be seen in the variable importance plot, shown in Fig. 9.10:

> rf.imps <- importance(gasoline.rf)
> plot(wavelengths, rf.imps[, 1] / max(rf.imps[, 1]),
+ type = "l", xlab = "Wavelength (nm)",
+ ylab = "Importance", col = "gray")
> lines(wavelengths, rf.imps[, 2] / max(rf.imps[, 2]), col = 2)
> legend("topright", legend = c("Error decrease", "Gini index"),
+ col = c("gray", "red"), lty = 1)

Both criteria are dominated by the wavelengths just above 1200 nm. Especially
the Gini index leads to a sparse model, whereas the error-based importance values
clearly are much more noisy. Interestingly, when applying random forests to the first
derivative spectra of the gasoline data set (not shown) the same feature around 1200
nm is important, but the response at 1430 nm comes up as an additional feature.
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Fig. 9.10 Variable importance for modelling the gasoline data with random forests: basically, only
the wavelengths just above 1200 nm seem to contribute

Although the predictions improve somewhat, they are still nowhere near the PLS
and PCR results shown in Chap.8.

For comparison, we also show the results of random forests on the prediction of
the even samples in the prostate data set:

> prost.rf <-
+ randomForest(x = prost[prost.odd, ],
+ y = prost.type[prost.odd],
+ x.test = prost[prost.even, ],
+ y.test = prost.type[prost.even])
> prost.rfpred <- predict(prost.rf, newdata = prost[prost.even, ])
> table(prost.type[prost.even], prost.rfpred)

prost.rfpred
control pca

control 30 10
pca 4 80

Again, a slight improvement over bagging can be seen.

9.7.3 Boosting

In boosting (Freund and Schapire 1997), validation and classification are combined
in a different way. Boosting, and in particular in the adaBoost algorithm that we will
be focusing on in this section, is an iterative algorithm that in each iteration focuses
the attention to misclassified samples from the previous step. Just as in bagging,
in principle any modelling approach can be used; also similar to bagging, not all
combinations will show improvements. Other forms of boosting have appeared since
the original adaBoost algorithm, such as gradient boosting, popular in the statistics
community (Friedman 2001; Efron and Hastie 2016). One of the most powerful
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new variants is XGBoost (which stands for Extreme Gradient Boosting, Chen and
Guestrin 2016), available in R through package xgboost.

The main idea of adaBoost is to use weights on the samples in the training set.
Initially, theseweights are all equal, but during the iterations theweights of incorrectly
predicted samples increase. In adaBoost, which stands for adaptive boosting, the
changes in the weight of object i is given by

Dt+1(i) = Dt (i)

Zt
×

{
e−αt if correct

eαt if incorrect
(9.21)

where Zt is a suitable normalization factor, and αt is given by

αt = 0.5 ln

(
1 − εt

εt

)
(9.22)

with εt the error rate of the model at iteration t . In prediction, the final classification
result is given by the weighted average of the T predictions during the iterations,
with the weights given by the α values.

The algorithm itself is very simple and easily implemented. The only parameter
that needs to be set in an applicationof boosting is themaximal number of iterations.A
number that is too large would potentially lead to overfitting, although in many cases
it has been observed that overfitting does not occur (see, e.g., references in Freund
and Schapire 1997).

Boosting trees in R is available in package ada (Michailides et al. 2006), which
directly follows the algorithms described in reference (Friedman et al. 2000). Let us
revisit the prostate example, also tackled with SVMs (Sect. 7.4.1):

> prost.ada <- ada(type ˜ ., data = prost.df, subset = prost.odd)
> prost.adapred <-
+ predict(prost.ada, newdata = prost.df[prost.even, ])
> table(prost.type[prost.even], prost.adapred)

prost.adapred
control pca

control 30 10
pca 3 81

The result is equal to the one obtained with bagging. The development of the errors
in training and test sets can be visualized using the default plot command. In this
case, we should add the test set to the ada object first5:

> prost.ada <- addtest(prost.ada,
+ prost.df[prost.even, ],
+ prost.type[prost.even])
> plot(prost.ada, test = TRUE)

5We could have added the test set data to the original call to ada as well—see the manual page.
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Fig. 9.11 Development of prediction errors for training and test sets of the prostate data (two
classes, only 1000 variables) using ada

This leads to the plot in Fig. 9.11. The final error on the test set is less than half of the
error at the beginning of the iterations. Clearly, both the training and testing errors
have stabilized already after some twenty iterations.

The version of boosting employed in this example is also known as Discrete
adaboost (Friedman et al. 2000; Hastie et al. 2001), since it returns 0/1 class predic-
tions. Several other variants have been proposed, returning membership probabilities
rather than crisp classifications and employing different loss functions. Inmany cases
they outperform the original algorithm (Friedman et al. 2000).

Since boosting is in essence a binary classifier, special measures must be taken to
apply it in a multi-class setting, similar to the possibilities mentioned in Sect. 7.4.1.1.
A further interesting connection with SVMs can be made (Schapire et al. 1998):
although boosting does not explicitly maximize margins, as SVMs do, it does come
very close. The differences are, firstly, that SVMs use the L2 norm, the sum of the
squared vector elements, whereas boosting uses L1 (the sum of the absolute values)
and L∞ (the largest value) norms for the weight and instance vectors, respectively.
Secondly, boosting employs greedy search rather than kernels to address the problem
of finding discriminating directions in high-dimensional space. The result is that
although there are intimate connections, in many cases the models of boosting and
SVMs can be quite different.

The obvious drawback of focusing more and more on misclassifications is that
thesemay bemisclassifications with a reason: outlying observations, or samples with
wrong labels, may disturb the modelling to a large extent. Indeed, boosting has been
proposed as a way to detect outliers.



Chapter 10
Variable Selection

Variable selection is an important topic in many types of multivariate modelling: the
choice which variables to take into account to a large degree determines the result.
This is true for every single technique discussed in this book, be it PCA, cluster-
ing methods, classification methods, or regression. In the unsupervised approaches,
uninformative variables can obscure the “real” picture, and distances between objects
can becomemeaningless. In the supervised cases (both classification and regression),
there is the danger of chance correlations with dependent variables, leading to mod-
els with low predictive power. This danger is all the more real given the very low
sample-to-variable ratios of many current data sets. The aim of variable selection
then is to reduce the independent variables to those that contain relevant informa-
tion, and thereby to improve statistical modelling. This should be seen both in terms
of predictive performance (by decreasing the number of chance correlations) and in
interpretability—often, models can tell us something about the system under study,
and small sets of coefficients are usually easier to interpret than large sets.

In some cases, one is able to decrease the number of variables significantly by
utilizing domain knowledge. A classical application is peak-picking in spectral data.
In metabolomics, for instance, where biological fluids are analyzed by, e.g., NMR
spectroscopy, one can typically quantify hundreds of metabolites. The number of
metabolites is usually orders of magnitude smaller than the number of variables
(ppm values) that have been measured; moreover, the metabolite concentrations
lend themselves for immediate interpretation, which is not the case for the raw
NMR spectra. A similar idea can be found in the field of proteomics, where mass
spectrometry is used to find the presence or absence of proteins, based on the presence
or absence of certain peptides. Quantification is more problematic here, so typically
one obtains a list of proteins that have been found, including the number of fragments
that have been used in the identification.When this step is possible it is nearly always
good to do so. The only danger is to find what is already known—inmany cases, data
bases are used in the interpretation of the complex spectra: an unexpected compound,
or a compound that is not in the data base but is present in the sample, is likely to
be missed. Moreover, incorrect assignments present additional difficulties. Even so,
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the list of metabolites or proteins may be too long for reliable modelling or useful
interpretation, and one is interested in further reduction of the data.

Very often, this variable selection is achieved by looking at the coefficients
themselves: the large ones are retained, and variables with smaller coefficients are
removed. The model is then refitted with the smaller set, and this process may con-
tinue until the desired number of variables has been reached. Unfortunately, as shown
in Sect. 8.1.1, model coefficients can have a huge variance when correlation is high,
a situation that is the rule rather than the exception in the natural sciences nowa-
days. As a result, coefficient size is not always a good indicator of importance. A
more sophisticated approach is the one we have seen in Random Forests, where the
decrease in model quality upon permutation of the values in one variable is taken as
an importancemeasure. Especially for systemswith not toomany variables, however,
tests for coefficient significance remain popular.

An alternative way of tackling variable selection is to use modelling techniques
that explicitly force asmany coefficients as possible to be zero: all these are apparently
not important for the model and can be removed without changing the fitted values
or the predictions. It can be shown that a ridge-regression type of approach with
a penalty on the size of the coefficients has this effect, if the penalty is suitably
chosen (Hastie et al. 2001)—a whole class of methods has descended from this
principle, starting with the lasso (Tibshirani 1996).

One could say that the only reliable way of assessing the modelling power of a
smaller set is to try it out—and if the result is disappointing, try out a different subset of
variables. Given a suitable error estimate, one can employ optimization algorithms to
find the subset that gives maximal modelling power. Two strategies can be followed:
one is to fix the size of the subset, often dictated by practical considerations, and
find the set that gives the best performance; the other is to impose some penalty on
including extra variables and let the optimization algorithm determine the eventual
size. In small problems it is possible, using clever algorithms, to find the globally
optimal solution; in larger problems it very quickly becomes impossible to assess
all possible solutions, and one is forced to accept that the global optimum may be
missed.

10.1 Coefficient Significance

Testing whether coefficient sizes are significantly different from zero is especially
useful in cases where the number of parameters is modest, less than fifty or so. Even
if it does not always lead to the optimal subset, it can help to eliminate large numbers
of variables that do not contribute to the predictive abilities of the model. Since this is
a univariate approach—every variable is tested individually—the usual caveats about
correlation apply. Rather than concentrating on the size and variability of individual
coefficients, one can compare nested models with and without a particular variable.
If the error decreases significantly upon inclusion of that variable, it can be said to
be relevant. This is the basis of many stepwise approaches, especially in regression.
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10.1.1 Confidence Intervals for Individual Coefficients

Let’s use the wine data as an example, and predict class labels from the thirteen mea-
sured variables. We can assess the confidence intervals for the model quite easily,
formulating the problem in a regression sense. For each of the three classes a regres-
sion vector is obtained. The coefficients for Grignolino, third class, can be obtained
as follows:

> X <- wines[wines.odd, ]
> C <- classvec2classmat(vintages[wines.odd])
> wines.lm <- lm(C ˜ X)
> wines.lm.summ <- summary(wines.lm)
> wines.lm.summ[[3]]
Call:
lm(formula = Grignolino ˜ X)
Residuals:

Min 1Q Median 3Q Max
-0.4657 -0.1387 0.0022 0.1326 0.4210

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.77235 0.63633 4.36 4.1e-05 ***
Xalcohol -0.12466 0.04918 -2.53 0.0133 *
Xmalic acid -0.06631 0.02628 -2.52 0.0138 *
Xash -0.56351 0.12824 -4.39 3.6e-05 ***
Xash alkalinity 0.03227 0.00975 3.31 0.0014 **
Xmagnesium 0.00118 0.00173 0.68 0.4992
Xtot. phenols -0.00434 0.07787 -0.06 0.9558
Xflavonoids 0.12497 0.05547 2.25 0.0272 *
Xnon-flav. phenols 0.36091 0.23337 1.55 0.1262
Xproanth 0.09320 0.05808 1.60 0.1128
Xcol. int. -0.04748 0.01661 -2.86 0.0055 **
Xcol. hue 0.18276 0.16723 1.09 0.2779
XOD ratio 0.00589 0.06306 0.09 0.9258
Xproline -0.00064 0.00012 -5.33 1.0e-06 ***
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 0.209 on 75 degrees of freedom
Multiple R-squared: 0.847, Adjusted R-squared: 0.82
F-statistic: 31.9 on 13 and 75 DF, p-value: <2e-16

The column with the stars in the output allows us to easily spot coefficients that are
significant at a certain level. To get a summary of all variables that have p values
smaller than, say, 0.1 for each of the three classes, we can issue:
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> sapply(wines.lm.summ,
+ function(x) which(x$coefficients[, 4] < .1))
$‘Response Barbera‘

Xmalic acid Xash Xflavonoids
3 4 8

Xnon-flav. phenols Xcol. int. XOD ratio
9 11 13

$‘Response Barolo‘
(Intercept) Xalcohol Xash Xash alkalinity

1 2 4 5
Xflavonoids Xproanth XOD ratio Xproline

8 10 13 14

$‘Response Grignolino‘
(Intercept) Xalcohol Xmalic acid Xash

1 2 3 4
Xash alkalinity Xflavonoids Xcol. int. Xproline

5 8 11 14

Variables ash and flavonoids occur as significant for all three cultivars; six
others (not counting the intercept, of course) for two out of three cultivars.

In cases where no confidence intervals can be calculated analytically, such as
in PCR or PLS, we can, e.g., use bootstrap confidence intervals. For the gasoline
data, modelled with PCR using four latent variables, we have calculated bootstrap
confidence intervals in Sect. 9.6.2. The percentile intervals, shown in Fig. 9.6, already
indicated that most regression coefficients are significantly different from zero. How
does that look for the (better) BCα confidence intervals? Let’s find out:

> gas.BCACI <-
+ t(sapply(1:ncol(gasoline$NIR),
+ function(i, x) {
+ boot.ci(x, index = i, type = "bca")$bca[, 4:5]},
+ gas.pcr.bootCI))

A plot of the regression coefficients with these 95% confidence intervals (Fig. 10.1)
immediately shows which variables are significantly different from zero:

> BCAcoef <- gas.pcr.bootCI$t0
> signif <- gas.BCACI[, 1] > 0 | gas.BCACI[, 2] < 0
> BCAcoef[!signif] <- NA

> matplot(wavelengths, gas.BCACI, type = "n",
+ xlab = "Wavelength (nm)",
+ ylab = "Regression coefficient",
+ main = "Gasoline data: PCR (4 PCs)")
> abline(h = 0, col = "gray")
> polygon(c(wavelengths, rev(wavelengths)),
+ c(gas.BCACI[, 1], rev(gas.BCACI[, 2])),
+ col = "pink", border = NA)
> lines(wavelengths, BCAcoef, lwd = 2)



10.1 Coefficient Significance 225

1000 1200 1400 1600

−6
−4

−2
0

2
4

Gasoline data: PCR (4 PCs)

Wavelength (nm)

R
eg

re
ss

io
n 

co
ef

fic
ie

nt

Fig. 10.1 Significance of regression coefficients for PCR using four PCs on the gasoline data;
coefficients whose 95% confidence interval (calculated with the BCα bootstrap and indicated in
pink) includes zero are not shown

Re-fitting the model after keeping only the 325 wavelengths leads to

> smallmod <- pcr(octane ˜ NIR[, signif], data = gasoline,
+ ncomp = 4, validation = "LOO")
> RMSEP(smallmod, intercept = FALSE, estimate = "CV")
1 comps 2 comps 3 comps 4 comps
1.4342 1.4720 0.2756 0.2497

The error estimate is lower even than globalminimum (at sevenPCs)with the full data
set containing 401 wavelengths. Here, one could also consider going for the three-
component model which sacrifices very little in terms of RMSEP (it is still better
than the seven-component model seen earlier) and has, well, one component fewer.
After variable selection, refitting often leads to more parsimonious models in terms
of the number of components needed. Even if the predictions are not (much) better,
the improved interpretability is often seen as reason enough to consider variable
selection.

Although this kind of procedure has been proposed in the literature several times,
e.g., in Wehrens and van der Linden (1997), it is essentially incorrect. For the
spectrum-like data, the correlations between the wavelengths are so large that the
confidence intervals of individual coefficients are not particularly useful to determine
which variables are significant—both errors of the first (false positives) and second
kind (false negatives) are possible. Taking into account correlations and calculating
so-called Scheffé intervals (Efron and Hastie 2016) often leads to intervals so wide
that they have no practical relevance. The confidence intervals described above, for
individual coefficients, at least give some idea of where important information is
located.
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10.1.2 Tests Based on Overall Error Contributions

In regression problems for data sets with not too many variables, the standard
approach is stepwise variable selection. This can be performed in two directions:
either one starts with a model containing all possible variables and iteratively dis-
cards variables that contribute least. This is called backward selection. The other
option, forward selection, is to start with an “empty” model, i.e., prediction with
the mean of the independent variable, and to keep on adding variables until the
contribution is no longer significant.

As a criterion for inclusion, values like AIC, BIC or Cp can be employed—these
take into account both the improvement in the fit as well as a penalty for having more
variables in the model. The default for the R functions add1 and drop1 is to use
the AIC. Let us consider the regression form of LDA for the wine data, leaving out
the Barolo class for the moment:

> twowines.df <- data.frame(vintage = twovintages, twowines)
> twowines.lm0 <- lm(as.integer(vintage) ˜ 1, data = twowines.df)
> add1(twowines.lm0, scope = names(twowines.df)[-1])
Single term additions

Model:
as.integer(vintage) ˜ 1

Df Sum of Sq RSS AIC
<none> 28.6 -168
alcohol 1 11.34 17.3 -226
malic.acid 1 8.75 19.9 -209
ash 1 3.15 25.5 -179
ash.alkalinity 1 1.07 27.6 -170
magnesium 1 0.72 27.9 -168
tot..phenols 1 7.57 21.1 -202
flavonoids 1 15.87 12.8 -262
non.flav..phenols 1 2.88 25.8 -178
proanth 1 4.69 23.9 -187
col..int. 1 18.07 10.6 -284
col..hue 1 15.27 13.4 -256
OD.ratio 1 17.94 10.7 -283
proline 1 3.70 24.9 -182

The dependent variable should be numeric, so in the first argument of thelm function,
the formula, we convert the vintages to class numbers first. According to this model,
the first variable to enter should be col..int—this gives the largest effect in
AIC. Since we are comparing equal-sized models, this also implies that the residual
sum-of-squares of the model with only an intercept and col..int is the smallest.

Conversely, when starting with the full model, the drop1 function would lead to
elimination of the term that contributes least:
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> twowines.lmfull <- lm(as.integer(vintage) ˜ ., data = twowines.df)
> drop1(twowines.lmfull)
Single term deletions

Model:
as.integer(vintage) ˜ alcohol + malic.acid + ash + ash.alkalinity +

magnesium + tot..phenols + flavonoids + non.flav..phenols +
proanth + col..int. + col..hue + OD.ratio + proline

Df Sum of Sq RSS AIC
<none> 3.65 -387
alcohol 1 0.026 3.68 -388
malic.acid 1 0.331 3.98 -378
ash 1 0.127 3.78 -384
ash.alkalinity 1 0.015 3.67 -388
magnesium 1 0.000 3.65 -389
tot..phenols 1 0.098 3.75 -385
flavonoids 1 0.821 4.47 -364
non.flav..phenols 1 0.166 3.82 -383
proanth 1 0.028 3.68 -388
col..int. 1 0.960 4.61 -361
col..hue 1 0.162 3.81 -383
OD.ratio 1 0.254 3.91 -381
proline 1 0.005 3.66 -388

In this case, magnesium is the variable with the largest negative AIC value, and
this is the first one to be removed.

Concentrating solely on forward or backward selection will in practice often lead
to sub-optimal solutions: the order in which the variables are eliminated or included
is of great importance and the chance of ending up in a local optimum is very real.
Therefore, forward and backward steps are often alternated. This is the procedure
implemented in the step function:

> step(twowines.lmfull, trace = 0)

Call:
lm(formula = as.integer(vintage) ˜ malic.acid + ash + tot..phenols +

flavonoids + non.flav..phenols + col..int. + col..hue + OD.ratio,
data = twowines.df)

Coefficients:
(Intercept) malic.acid ash

1.7220 -0.0571 -0.2359
tot..phenols flavonoids non.flav..phenols

-0.0833 0.2415 0.3821
col..int. col..hue OD.ratio

-0.0647 0.2236 0.1348

From the thirteen original variables, only eight remain.
Several other functions can be used for the same purpose: the MASS pack-

age contains functions stepAIC, addterm and dropterm which allows more
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model classes to be considered. Package leaps contains function regsubsets1

which is guaranteed to find the best subset, based on the branch-and-bounds algo-
rithm. Another package implementing this algorithm is subselect, with the function
eleaps.

The branch-and-bounds algorithm was first proposed in 1960 in the area of linear
programming (Land and Doig 1960), and was introduced in statistics by Furnival
andWilson (1974). The title of the latter paper has led to the name of the R-package.
This particular algorithmmanages to avoid many regions in the search space that can
be shown to be less good than the current solution, and thus is able to tackle larger
problems than would have been feasible using an exhaustive search. Application of
the regsubsets function leads to the same set of selected variables (now we can
provide a factor as the dependent variable):

> twowines.leaps <- regsubsets(vintage ˜ ., data = twowines.df)
> twowines.leaps.sum <- summary(twowines.leaps)
> names(which(twowines.leaps.sum$which[8, ]))
[1] "(Intercept)" "malic.acid" "ash"
[4] "tot..phenols" "flavonoids" "non.flav..phenols"
[7] "col..int." "col..hue" "OD.ratio"

In some special cases, approximate distributions ofmodel coefficients can be derived.
For two-class linear discriminant analysis, a convenient test statistic is given byMar-
dia et al. (1979):

F = a2i (m − p + 1)c2

tim(m + c2)D2
(10.1)

with m = n1 + n2 − 2, n1 and n2 signifying group sizes, p the number of variables,
c2 = n1n2/(n1 + n2), and D2 is the Mahalanobis distance between the class centers,
based on all variables. The estimated coefficient in the discriminant function is ai ,
and ti is the i-th diagonal element in the inverse of the total variance matrix T , given
by

T = W + B (10.2)

This statistic has an F-distribution with 1 and m − p + 1 degrees of freedom.
Let us see what that gives for the wine data without the Barolo samples. We

can re-use the code in Sect. 7.1.3, now using all thirteen variables to calculate the
elements for the test statistic:

1It also contains the function leaps for compatibility reasons; regsubsets is the preferred
function.
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> Tii <- solve(BSS + WSS)
> Ddist <- mahalanobis(colMeans(wines.groups[[1]]),
+ colMeans(wines.groups[[2]]),
+ wines.pcov12)
> m <- sum(sapply(wines.groups, nrow)) - 2
> p <- ncol(wines)
> c <- prod(sapply(wines.groups, nrow)) /
+ sum(sapply(wines.groups, nrow))
> Fcal <- (MLLDAˆ2 / diag(Tii)) *
+ (m - p + 1) * cˆ2 / (m * (m + cˆ2 * Ddist))
> which(Fcal > qf(.95, 1, m-p+1))

malic.acid ash flavonoids
2 3 7

non.flav..phenols col..int. col..hue
8 10 11

OD.ratio
12

Using this method, seven variables are shown to be contributing to the separation
between Grignolino and Barbera wines on the α = 0.05 level. The only variable
missing, when compared to the earlier selected set of eight, is tot..phenols,
which has a p-value of 0.08.

10.2 Explicit Coefficient Penalization

In the chapter on multivariate regression we already saw that several methods use the
concept of shrinkage to reduce the variance of the regression coefficients, at the cost
of bias. Ridge regression achieves this by explicit coefficient penalization, as shown
in Eq.8.22. Although it forces the coefficients to be closer to zero, the values almost
never will be exactly zero. If that would be the case, the method would be performing
variable selection: those variables with zero values for the regression coefficients can
safely be removed from the data.

Interestingly enough, one can obtain the desired behavior by replacing the
quadratic penalty in Eq.8.22 by an absolute-value penalty:

argmax
B

(Y − XB)2 + λ|B| (10.3)

The penalty, consisting of the sumof the absolute values of the regression coefficients,
is an L1-norm. As already stated before, ridge regression, focusing on squared coef-
ficients, employs an L2-norm, and measures like AIC or BIC are using the L0-norm,
taking into account only the number of non-zero regression coefficients. In Eq.10.3,
with increasing values for parameter λ more and more regression coefficients will
be exactly zero. This method has become known under the name lasso (Tibshi-
rani 1996; Hastie et al. 2001); an efficient method to solve this equation—and
related approaches—has become known under the name of least-angle regression,
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Fig. 10.2 Left: lasso model coefficients plotted against the (relative) penalty size λ. Right: valida-
tion plot

or LARS (Efron et al. 2004). Several R versions for the lasso are available. Package
glmnet is written by the inventors of the method, and will be used here as an exam-
ple. Other packages implementing similar techniques include lars, where slightly
different defaults have been chosen for solving the lasso problem, lpc for “lassoed
principal components” and relaxo, a generalization of the lasso using possibly dif-
ferent penalization coefficients for the variable selection and parameter estimation
steps.

Rather than one set of coefficients for one given value of λ, the function glmnet
returns an entire sequence of fits, with corresponding regression coefficients. For the
odd rows of the gasoline data, the model is simply obtained as follows:

> gas.lasso <- glmnet(x = gasoline$NIR[gas.odd, ],
+ y = gasoline$octane[gas.odd])
> plot(gas.lasso, xvar = "lambda", label = TRUE)

The result of the corresponding plotmethod is shown in the left panel of Fig. 10.2.
It shows the (standardized) regression coefficients against the size of the L1 norm of
the coefficient vector. For an infinitely large value of λ, the weight of the penalty, no
variables are selected. Gradually decreasing the penalty leads to a fit using only one
non-zero coefficient. Its size varies linearly with the penalty—until the next variable
enters the fray. The right of the plot shows the position of the entrances of new non-
zero coefficients. This piecewise linear behavior is the key to the lasso algorithm,
and makes it possible to calculate the whole trace in approximately the same amount
of time as needed for a normal linear regression. Around the left axis (and somewhat
hard to read in this default set-up), the variable numbers of some of the coefficients
are shown at their “final” values, i.e., at the last value for λ, by default one percent
of the value at which the first variable enters the model.

Of course, the value of the regularization parameter λ needs to be optimized. A
function cv.glmnet is available for that, using by default ten-fold crossvalidation.
Two common measures are available as predefined choices. Obviously, the model
corresponding to the lowest crossvalidation error is one of them; the other is the most
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sparse model that is within one standard deviation from the global optimum (Hastie
et al. 2001), the same criterion also used in the pls package for determining the
optimal number of latent variables mentioned in Sect. 8.2.2.

> gas.lasso.cv <- cv.glmnet(gasoline$NIR[gas.odd, ],
+ gasoline$octane[gas.odd])
> svals <- gas.lasso.cv[c("lambda.1se", "lambda.min")]

The plot command for the cv.glmnet object leads to the validation plot in the right
panel of Fig. 10.2. The global minimum in the CV curve lies at a value of −4.215,
and the one-se criterion at−3.424 (both in log units, as in the figure). The associated
errors can be obtained directly using the predict function for the crossvalidation
object:

> gas.lasso.preds <-
+ lapply(svals,
+ function(x)
+ predict(gas.lasso,
+ newx = gasoline$NIR[gas.even, ],
+ s = x))
> sapply(gas.lasso.preds,
+ function(x) rms(x, gasoline$octane[gas.even]))
lambda.1se lambda.min

0.18881 0.19463

The prediction error for the test set using the optimal penalty is better than the
best values seen with PCR and PLS, the one with the more conservative estimate
somewhat larger. In both cases, only a very small subset of the original variables are
included in the model:

> gas.lasso.coefs <- lapply(svals,
+ function(x) coef(gas.lasso, s = x))
> sapply(gas.lasso.coefs,
+ function(x) sum(x != 0))
lambda.1se lambda.min

9 14

A further development is mixing the L1-norm of the lasso and related methods
with the L2-norm used in ridge regression. This is known as the elastic net (Zou and
Hastie 2005). The penalty term is given by

∑

i

(
α|βi | + (1− α)β2

i

)
(10.4)

where the sum is over all variables. The result is that large coefficients are penalized
heavily (because of the quadratic term) and that many of the coefficients are exactly
zero, leading to a sparse solution.

Theglmnet function provides ridge regression through specifyingalpha = 0
and the lasso with alpha = 1. It will be no surprise that values of alpha between
zero and one lead to the elastic net:



232 10 Variable Selection

0 50 100 150 200

−1
5

−5
0

5
10

15
20

L1 Norm

C
oe

ffi
ci

en
ts

0 11 15 25 30

−3 −2 −1 0 1

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Log(λ)

M
ea

n−
Sq

ua
re

d 
Er

ro
r ●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

29 27 26 25 21 17 14 14 9 7 6

Fig. 10.3 Elastic net results for the gasoline data usingα = 0.5.The left plot shows the development
of the regression coefficients upon relaxation of the penalty parameter. The right plot shows the
ten-fold crossvalidation curve, optimizing λ

> gas.elnet <- glmnet(gasoline$NIR, gasoline$octane, alpha = .5)
> plot(gas.elnet, "norm")

The result is shown in the left plot in Fig. 10.3. Further inspection of the elastic net
model, including the crossvalidation plot on the right side of Fig. 10.3, is completely
analogous to the code shown earlier for the lasso. The performance of the elastic net
in predicting the test set is slightly better than the lasso, at the expense of including
more variables:

> sapply(gas.elnet.preds,
+ function(x) rms(x, gasoline$octane[gas.even]))
lambda.1se lambda.min

0.15881 0.15285
> sapply(gas.elnet.coefs,
+ function(x) sum(x != 0))
[1] 28 30

The coefficients that are selected by the global-minimum lasso and elastic-netmodels
are shown in Fig. 10.4. There is good agreement between the two sets; the elastic net
in general selects variables in the same region as the lasso, with the exception of the
area around 1000 nm with is not covered by the lasso at all. Note that the coefficient
sizes for the elastic net are much smaller (in absolute size) than the ones from the
lasso, a result of the L2 penalization.

10.3 Global Optimization Methods

Given the speed ofmodern-day computing, it is possible to examine large numbers of
different models and select the best one. However, as we already sawwith leaps-and-
bounds approaches, even in caseswith amoderate number of variables it is practically
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Fig. 10.4 Non-zero coefficients in the lasso and elastic net models. A small vertical offset has been
added to facilitate the comparison

impossible to assess the quality of all subsets. One must, therefore, limit the number
of subsets that is going to be considered to a manageable size. The stepwise approach
does this by performing a very local search around the current best solution before
adding or removing one variable; it can be compared to a steepest-descent strategy.
The obvious disadvantage is that many areas of the search space will never be visited.
For regression or classification cases with many variables, almost surely the method
will find a local optimum, very often of low quality.

An alternative is given by random search—just sampling randomly from all pos-
sible subsets until time is up. Of course, the chance of finding the global optimum
in this way is smaller than the chance of winning the lottery... What is needed is
a search strategy that combines random elements with “gradient” information; that
is, a strategy that uses information, available in solutions of higher quality, with
the ability to throw that information away if needed, in order to be able to escape
from local optima. This type of approaches has become known under the heading of
global search strategies. The two best-known ones in the area of chemometrics are
Simulated Annealing and Genetic Algorithms. Both will be treated briefly below.

What is quality, in this respect, again depends on the application. Inmost cases, the
property of interest will be the quality of prediction of unseen data, which for larger
data sets can conveniently be estimated by crossvalidation approaches. For data sets
with few samples, this will not work very well because of the coarse granularity
of the criterion: many subsets will lead to an equal number of errors. Additional
information should be used to distinguish between these.
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10.3.1 Simulated Annealing

In Simulated Annealing (SA, Kirkpatrick et al. 1983; Cerny 1985), a sequence of
candidate solutions is assessed, starting from a random initial point. A new solution
with quality Et+1, not too far away from the current one (with quality Et ), is uncon-
ditionally accepted if it is better than the current one. If Et > Et+1 on the other hand,
accepting the move corresponds to a deterioration. However, and this is the defining
feature of SA, such a move can be accepted, with a probability equal to

pacc = exp

(
Et+1 − Et

Tt

)
(10.5)

where Tt the state of the control parameter at the current time point t . Note that
pacc, defined in this way, is always between zero and one (since Et > Et+1). This
criterion is known as theMetropolis criterion (Metropolis et al. 1953). Other criteria
are possible, too, but are rarely used.

ThenameSimulatedAnnealing comes froman analogy to annealing inmetallurgy,
where crystals with fewer defects can be created by repeatedly heating and cooling a
material: during the (slow) cooling, the atoms are able to find their energetically most
favorable positions in a regular crystal lattice, whereas the heating allows atoms that
have been caught in unfavorable positions (local optima) to “try again” in the next
cooling stage. The analogy with the optimization task is clear: if an improvement is
found (better atom positions) it is accepted; if not, then sometimes a deterioration in
quality is accepted in order to be able to cross a ridge in the solution landscape and to
find an solution that is better in the end. Very often, the control parameter is therefore
indicated with T , to stress the analogy with temperature. During the optimization,
it will slowly be decreasing in magnitude—the cooling—causing fewer and fewer
solutions of lower quality to be accepted. In the end, only real improvements are
allowed. It can be shown that SA leads to the global optimum if the cooling is slow
enough (Granville et al. 1994); unfortunately, the practical importance of this proof
is limited since the cooling may have to be infinitely slow. Note that random search
is a special case that can be achieved simply by setting Tt to an extremely large value,
leading to pacc = 1 whatever the values of Et+1 and Et .

The naive implementation of an SA therefore can be very simple: one needs a
function that generates a new solution in the neighborhood of the current one, an
evaluation function to assess the quality of the new solution, and the acceptance
function, including a cooling schedule for the search parameter T . The evaluation
needs to be defined specifically for each problem. In regression or classification cases
typically some estimate of prediction accuracy is used such as crossvalidation—note
that the evaluation function in this schedule probably is the most time-consuming
step, and since it will be executed many times (typically thousands or, in complicated
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cases, even millions of solutions are evaluated by global search methods) it should
be very fast. If enough data are available then one could think of using a separate
test set for the evaluation, or of using quality criteria such as Mallows’s Cp, or AIC
or BIC values, mentioned in Chap.9. The whole SA algorithm can therefore easily
be summarized in a couple of steps:

1. Choose a starting temperature and state;
2. Generate and evaluate a new state;
3. Decide whether to accept the new state;
4. Decrease the temperature parameter;
5. Terminate or go to step 2.

Several SA implementations are available in R. We will have a look at the optim
function from the core stats package which implements a general-purpose SA func-
tion.

Let us see how this works in the two-class wines example from Sect. 10.1.2,
excluding the Barolo variety. This is a simple example for which it still is quite
difficult to assess all possible solutions, especially since we do not force a model
with a specific number of variables. We will start with the general-purpose optim
approach, since this provides most insight in the inner workings of the SA. First we
need to define an evaluation function.Here,we use the fast built-in LOOclassification
estimates of the lda function:

> lda.loofun <- function(selection, xmat, grouping, ...) {
+ if (sum(selection) == 0) return(100)
+ lda.obj <- lda(xmat[, selection == 1], grouping, CV = TRUE)
+ 100*sum(lda.obj$class != grouping)/length(grouping)
+ }

Argument selection is a vector of numbers here, with ones at the position of the
selected variables, and zeroes elsewhere. Sinceoptim by default doesminimization,
the evaluation function returns the percentage of misclassified cases—note that if no
variables are selected, a value of 100 is returned.

Now thatwe have definedwhat exactlywe are going to optimize, we need to define
a step function, leading from the current solution to the next. A simple approach could
be to do one of three things: either remove a variable, add a variable, or replace a
variable. If too few variables are selected, we could increase the number by adding
one previously unselected variable randomly (so the escape clause in the evaluation
function checking for zero selected variables should never be reached). That seems
easy enough to put in a function:
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> saStepFun <- function(selected, ...) {
+ maxval <- length(selected)
+ selection <- which(selected == 1)
+ newvar2 <- sample(1:maxval, 2)
+
+ ## too short: add a random number
+ if (length(selection) < 2) {
+ result <- unique(c(selection, newvar2))[1:2]
+ } else { # generate two variable numbers
+ presentp <- newvar2 %in% selection
+ ## if both are in x, remove the first
+ if (all(presentp)) {
+ result <- selection[selection != newvar2[1]]
+ } else { # if none are in selection, add the first
+ if (all(!presentp)) {
+ result <- c(selection, newvar2[1])
+ } else { # otherwise swap
+ result <- c(selection[selection != newvar2[presentp]],
+ newvar2[!presentp])
+ }}}
+
+ newselected <- rep(0, length(selected))
+ newselected[result] <- 1
+ newselected
+ }

Both in the evaluation and step functionweuse the ellipses (...) to prevent undefined
arguments to throw errors: optim simply transfers all arguments that are not its own
to both underlying functions, where they can be used or ignored.

We will start with a random subset of five columns. This leads to the following
misclassification rate:

> initselect <- rep(0, ncol(wines))
> initselect[sample(1:ncol(wines), 5)] <- 1
> (r0 <- lda.loofun(initselect, x = twowines,
+ grouping = twovintages))
[1] 2.521

This corresponds to 3misclassifications. Howmuch can we improve using simulated
annealing? Let’s find out:

> SAoptimWines <-
+ optim(initselect,
+ fn = lda.loofun, gr = saStepFun, method = "SANN",
+ x = twowines, grouping = twovintages)

The result is a simple list with the first two elements containing the best result and
the corresponding evaluation value:
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> SAoptimWines[c("par", "value")]
$par
[1] 1 0 0 0 1 0 1 1 0 1 1 0 1

$value
[1] 0

In this case, all misclassifications have been eliminated while still using only a
subset of the variables, in this case 7 columns. We could try to push the number of
selected variables back by adding a small penalty for every selected variable—once
the ideal value of zero misclassifications has been reached the current definition of
the evaluation function gives no more opportunities for further improvement.

By default, 10,000 evaluations are performed in the optim version of SA; this
number can be changed using the control argument, where also the initial temper-
ature and the cooling rate can be adjusted. In real, nontrivial problems, itwill probably
take some experimentation to find optimal values for these search parameters.

Amore ambitious example is to predict the octane number of the gasoline samples
with only a subset of the NIR wavelengths. The step function is the same as in the
wine example, and the only thing we have to do is to define the evaluation function:

> pls.cvfun <- function(selection, xmat, response, ncomp, ...) {
+ if (sum(selection) < ncomp) return(Inf)
+ pls.obj <- plsr(response ˜ xmat[, selection == 1],
+ validation = "CV", ncomp = ncomp, ...)
+ c(RMSEP(pls.obj, estimate = "CV", ncomp = ncomp,
+ intercept = FALSE)$val)
+ }

In this case, we use the explicit crossvalidation provided by the plsr function. This
adds a little bit of variability in the evaluation function since repeated application will
lead to different segments—but the savings in time are quite big.We will assume that
this variability is smaller than the gains we hope tomake. The number of components
to take into account can be specified in the extra argument of the evaluation function;
the error of the model with the largest number of latent variables is returned. The
RMSEP function returns an object of class mvrVal, where the val list element
contains the numerical value of interest—this is what we will return. Now, let us
try to find an optimal two-component PLS model (fewer variables often lead to less
complicated models). We start with a very small model using only eight variables
(.02× 401):

> nNIR <- ncol(gasoline$NIR)
> initselect <- rep(0, nNIR)
> initselect[sample(1:nNIR, 8)] <- 1
> SAoptimNIR1 <-
+ optim(initselect,
+ fn = pls.cvfun, gr = saStepFun, method = "SANN",
+ x = gasoline$NIR, response = gasoline$octane,
+ ncomp = 2, maxval = nNIR)
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> pls.cvfun(initselect, gasoline$NIR, gasoline$octane, ncomp = 2)
[1] 1.3896
> (nvarSA1 <- sum(SAoptimNIR1$par))
[1] 190
> SAoptimNIR1$value
[1] 0.24823

The result is already quite good: compare this, e.g., to the values in the left panel in
Fig. 8.4 (where we were looking at the crossvalidation of a model based on the odd
samples only) and it is clear that the estimated error with fewer variables and two
components is less than half that of the two-component model including all variables.

Still, we see that the number of variables included in the model is quite high—
perhaps more sparse models can be found that are equally good or even better. In
such cases, it pays to abandon the naive approach adopted above and look closer at
the problem itself. We should realize we are optimizing a long parameter vector in
this case, with 401 values. Many of these values are zero to start with, and we would
like to retain the sparsity of the solution. Our step function, however, is not taking this
into account and will suggest many steps leading to more variables. Combine that
with a rather high initial temperature parameter, and it is clear that especially in the
beginning many bad moves will be accepted. Finally, the evaluation function does
not reward sparse solutions explicitly. Let’s see what a lower starting temperature
and an adapted evaluation function contribute. First we will define the latter:

> pls.cvfun2 <- function(selection, xmat, response, ncomp,
+ penalty = 0.01, ...) {
+ if (sum(selection) < ncomp) return(Inf)
+ pls.obj <- plsr(response ˜ xmat[, selection == 1, drop = FALSE],
+ validation = "CV", ncomp = ncomp, ...)
+ c(RMSEP(pls.obj, estimate = "CV", ncomp = ncomp,
+ intercept = FALSE)$val) +
+ penalty * sum(selection)
+ }

Note that we need at least ncomp variables in order to fit a PLS model. Next, we
will define a step function that, using the default settings, will keep the number of
variables approximately equal to the starting situation. By playing with the cutoffs
in the argument plimits (a random draw from the uniform distribution lower than
the first value will lead to eliminating one of the selected variables; anything larger
than the second number to the addition of a variable, and anything in between to
swapping variables) one can tweak the behavior of the step function:
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> saStepFun2 <- function(selected, plimits = c(.3, .7), ...) {
+ dowhat <- runif(1)
+
+ ## decrease selection
+ if (dowhat < plimits[1]) {
+ if (sum(selected) > 2) { # not too small...
+ kickone <- sample(which(selected == 1), 1)
+ selected[kickone] <- 0
+ return(selected)
+ }
+ }
+
+ ## increase selection
+ if (dowhat > plimits[2]) { # not too big...
+ if (sum(selected) < length(selected)) {
+ addone <- sample(which(selected == 0), 1)
+ selected[addone] <- 1
+ return(selected)
+ }
+ }
+
+ ## swap
+ kickone <- sample(which(selected == 1), 1)
+ selected[kickone] <- 0
+ addone <- sample(which(selected == 0), 1)
+ selected[addone] <- 1
+ selected
+ }

By changing the values of the plimits argument we can directly influence the
number of nonzero entries in the result: e.g., the higher the first number, the bigger
the chance that a variable will be removed. Let’s see how that works, combined with
a lower starting temperature. The default is 10—we will try a value of 1:

> penalty <- 0.01
> SAoptimNIR2 <-
+ optim(initselect,
+ fn = pls.cvfun2, gr = saStepFun2, method = "SANN",
+ x = gasoline$NIR, response = gasoline$octane,
+ ncomp = 2, maxval = nNIR,
+ control = list(temp = 1))

This leads to the following results:

> (nvarSA2 <- sum(SAoptimNIR2$par))
[1] 6
> SAoptimNIR2$value - penalty*nvarSA2
[1] 0.20047

Now we have a crossvalidation error that is clearly better than what we saw earlier
but with only 6 instead of 190 variables in the model.

Several packages provide SA functions specifically optimized for variable selec-
tion. Theanneal function in package subselect, e.g., can be used for variable selec-
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tion in situations like discriminant analysis, PCA, and linear regression, according to
the criterion employed. For LDA, this function takes the between-groups covariance
matrix, the minimal and maximal number of variables to be selected, the within-
groups covariance matrix and its expected rank, and a criterion to be optimized (see
below) as arguments. For the wine example above, a solution to find the optimal
three-variable subset would look like this:

> winesHmat <- ldaHmat(twowines.df[, -1], twowines.df[, 1])
> wines.anneal <-
+ anneal(winesHmat$mat, kmin = 3, kmax = 3,
+ H = winesHmat$H, criterion = "ccr12", r = 1)

> wines.anneal$bestsets
Var.1 Var.2 Var.3

Card.3 2 7 10
> wines.anneal$bestvalues
Card.3

0.83281

Repeated application (using, e.g., nsol = 10) in this case leads to the same solu-
tion every time. Rather than the direct estimates of prediction error, the anneal
function uses functions of thewithin- and between-groups covariancematrices (Silva
2001). In this case using the ccr12 criterion, the first root of BW−1 is optimized,
analogous to Fisher’s formulation of LDA in Sect. 7.1.3. As an other example,Wilk’s
� is given by

� = det(W)/ det(T ) (10.6)

and is (in a slightly modified form) available in the tau2 criterion. For the current
case where the dimensionality of the within-covariance matrices is estimated to be
one, all criteria lead to the same result.

The new result differs from the subset from our own implementation in only one
instance: variable 11, color hue, is swapped for the malic acid concentration. The
reason, of course, is that both functions optimize different criteria. Let us see how
the two solutions fare when evaluated with the criterion of the other algorithm. The
value for the ccr12 criterion of the solution using variables 7, 10 and 11, found
with our own simplistic SA implementation, can be assessed easily:

> ccr12.coef((nrow(twowines.df) - 1) * var(twowines.df[, -1]),
+ winesHmat$H, r = 1, c(7, 10, 11))
[1] 0.82293

which, as expected, is slightly lower than that of the set consisting of variables 2,
7 and 10. Conversely, the prediction quality of the newer set is slightly worse (two
misclassifications):

> selection <- rep(0, ncol(twowines))
> selection[c(2, 7, 10)] <- 1
> lda.loofun(selection, twowines.df[, -1], twowines.df[, 1])
[1] 1.6807
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Obviously, there are probably many sets with the same or similar values for the
quality criterion of interest, and to some extent it is a matter of chance which one is
returned by the search algorithm. Moreover, the number of possible quality values
can be limited, especially with criteria based on the number of misclassifications.
This can make it more difficult to discriminate between two candidate subsets.

The anneal function for subset selection is also applicable in other types of
problems than classification alone: e.g., for variable selection in PCA it uses a mea-
sure of similarity of the original data matrix and of the projections on the k-variable
subspace—again, several different criteria are available. The speed and applicability
in several domains are definite advantages of this particular implementation. How-
ever, there are some disadvantages, too: firstly, because of the formulation using
covariance matrices it is hard to apply anneal to problems with large numbers of
variables. Finding the most important discriminating variables in the prostate data
set would stretch your computer to the limit—in fact, even the gasoline example
requires the argument force = TRUE since the default is to refuse cooperation
(and give a serious-looking warning) as soon as the number of variables exceeds 400.

Secondly, the function does not allow one to submit an evaluation function, and
one has to dowith the predefined set—crossvalidation-based approaches such as used
in the examples above cannot be implemented, increasing the danger of overfitting.
Finally, it can be important to monitor the progress of the optimization, or at least
keep track of the speed with which improvements are found—especially when fine-
tuning the SA parameters (temperature, cooling rate) one would like to have the
possibility to assess acceptance rates. Currently, no such functionality is provided in
the subselect package.

One other dedicated SA approach for variable selection can be found in the caret
package mentioned in Chap. 7 in the form of the safs (simulated annealing feature
selection) function. This function does allow crossvalidation-based quality measures
to guide the optimization, but also supports external test sets and criteria like AIC.
Parallelization is supported at several different levels.

10.3.2 Genetic Algorithms

Genetic Algorithms (GAs, Goldberg 1989) manage a population of candidate solu-
tions, rather than one single solution as is the case with most other optimization
methods. Every solution in the population is represented as a string of values, and in
a process called cross-over, mimicking sexual reproduction, offspring is generated
combining parts of the parent solutions. Random mutations, occurring with rela-
tively low frequency, ensure that some diversity is maintained in the population. The
quality of the offspring is measured in an evaluation phase—again in analogy with
biology, this quality is often called “fitness”. Strings with a low fitness will have
no or only a low probability of reproduction, so that subsequent generations will
generally consist of better and better solutions. This obvious imitation of the process
of natural selection has led to the name of the technique. GAs have been applied to
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a wide range of problems in very diverse fields—several overviews of applications
within chemistry can be found in the literature (e.g., Leardi 2001; Niazi and Leardi
2012).

Just like with Simulated Annealing, GAs need an evaluation function to obtain
fitness values for trial solutions. A step function, on the other hand, is not needed:
the genetic machinery (cross-over and mutation operations) will take care of that.
Several parameters need to be set, such as the size of the population, the number
of iterations, and the chances of crossover and mutation, but that is all. Population
sizes are typically in the order of 50–100; the number of iterations in the order of
several hundreds. There are some aspects, however, that are particular for GAs. The
first choice we have to make is on the representation of the candidate solutions,
i.e., the candidate subsets. For variable selection, two obvious possibilities present
themselves: either a vector of indices of the variables in the subset, or a string of
zeros and ones. For other optimization problems, e.g., non-linear fitting, real num-
bers can also be used. Secondly, the selection function needs to be defined. This
determines which solutions are allowed to reproduce, and is the driving force behind
the optimization—if all solutions would have the same probability the result would
be a random search. Typical selection procedures are to use random sampling with
equal probabilities for all solutions above a quality cutoff, or to use random sampling
with (scaled) quality indicators as probability weights.

The GA package (Scrucca 2013, 2017) provides a convenient and efficient tool-
box, supporting for binary, real-valued and permutation representations, and several
standard genetic operators. In addition, users can define their own operators. Parallel
evaluation of population members is supported (especially useful if the evaluation of
a single solution takes some time), and to speed up proceedings even further, local
searches can be allowed at random intervals to inject new and useful information
in the population. Finally, populations can be “seeded”, i.e., one can provide one or
more solutions that are thought to be approximately correct.

Applying the ga function from the GA package to our gasoline data is quite
easy. We can use the same evaluation function as used in the SA optimization,
pls.cvfun2, where a small penalty is applied for solutions with more variables.
Since ga does maximization only, we multiply the result with −1:

> fitnessfun <- function(...) -pls.cvfun2(...)

Nowweare ready togo.The simplest approachwouldbe to apply standardprocedures
and hope for the best:

> GAoptimNIR1 <-
+ ga(type = "binary", fitness = fitnessfun,
+ x = gasoline$NIR, response = gasoline$octane,
+ ncomp = 2, penalty = penalty,
+ nBits = ncol(gasoline$NIR), monitor = FALSE, maxiter = 100)

The result, as we may have expected, still contains many variables, and has a high
crossvalidation error:
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> (nvarGA1 <- sum(GAoptimNIR1@solution))
[1] 149
> -GAoptimNIR1@fitnessValue + penalty*nvarGA1
[1] 3.2732

Ouch, that does not look too good. Of course we have not been fair: the random
initialization of the GA will lead to a population with approximately 50% selected
variables, where the initial SA solution had only 2%. In addition, the default mutation
function is biased to this 50% ratio as well: in sparse solutions it is much more likely
to add a variable than to remove one. Similar to the adaptation of the step function in
SA, we define the mutation function in such a way that setting bits to zero is (much)
more likely than setting bits to one, a behavior that can be controlled by the value of
the bias argument:

> myMutate <- function (object, parent, bias = 0.01)
+ {
+ mutate <- parent <- as.vector(object@population[parent, ])
+ n <- length(parent)
+ probs <- abs(mutate - bias)
+ j <- sample(1:n, size = 1, prob = probs)
+ mutate[j] <- abs(mutate[j] - 1)
+ mutate
+ }

In the GA package these settings are controlled by the gaControl function, and
changes remain in effect for the rest of the session (or until changed again). Including
the new mutation function and using a more reasonable initial state is easily done:

> gaControl("binary" = list(mutation = "myMutate"))
> popSize <- 50 # default
> initmat <- matrix(0, popSize, nNIR)
> initmat[sample(1:(popSize*nNIR), nNIR)] <- 1
>
> GAoptimNIR2 <-
+ ga(type = "binary", fitness = fitnessfun,
+ x = gasoline$NIR, response = gasoline$octane,
+ popSize = popSize, nBits = ncol(gasoline$NIR),
+ ncomp = 2, suggestions = initmat, penalty = penalty,
+ monitor = FALSE, maxiter = 100)

This leads to the following result:

> (nvarGA2 <- sum(GAoptimNIR2@solution))
[1] 4
> -GAoptimNIR2@fitnessValue + penalty*nvarGA2
[1] 0.26728

Clearly, this constitutes a substantial improvement over the first optimization result,
getting close to the SA solution presented earlier. Of course, more experimentation
can easily lead to further improvements (as is the case with SA as well).
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Fig. 10.5 GA optimization results for the NIR data. Left panel: naive application; right panel:
application with a specific initializationmatrix and a dedicatedmutation function. Note the different
y scales

One of the nice features of theGA package is that the results of calling ga can be
plotted aswell. Figure10.5 shows the optimization trajectories of bothGA runs. First,
note the difference in the y-axes: the dedicated GA leads to much better fitnesses.
The plots show the best result (green dots/line) as well as the average and the mean
fitness values of the population at each iteration. If the latter two are very close to
the best value, there is too little variation in the population and the result is likely to
be quite bad. Especially with the dedicated mutation operator, one sees quite sudden
jumps when “worse” solutions are introduced in the population (too few variables
even lead to Inf values in which case noMean is displayed), but still these solutions
may contain kernels of good information.

The curves also give an idea on whether it is useful to put in additional effort:
the left panel of Fig. 10.5 clearly gives the impression that further improvements are
possible. Inmost cases, playing aroundwith search parameters or tweaking the fitness
function will have more chance of reaching good results than simply increasing the
number of iterations.

In more complicated problems, speed is a big issue. Some simple tricks can be
employed to speed up the optimization. Typically, several candidate solutions will
survive unchanged during a couple of generations. Rigorous bookkeeping may pre-
vent unnecessary quality assessments, which in almost all cases is themost computer-
intensive part of a GA. An implementational trick that is also very often applied is
to let the best few solutions enter the next generation unchanged; this process, called
elitism, makes sure that no valuable information is thrown away and takes away the
need to keep track of the best solution. Provisions can be taken to prevent prema-
ture convergence: if the population is too homogeneous the power of the crossover
operator decreases drastically, and the optimization usually will not lead to a useful
answer. One strategy is to disallow offspring that is equal to other candidate solu-
tions; a second strategy is to penalize the fitness of candidate solutions that are too
similar; the latter strategy is sometimes called sharing.
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Other GA implementations are available, too, of course. The caret package
includes a gafs function that is very similar to the safs function we saw earlier for
SA. The genetic function in the subselect package provides a fast Fortran-based
GA. The details of the crossover and mutation functions are slightly different from
the description above—indeed, there are probably very few implementations that
share the exact same crossover and mutation operators, testimony to the flexibility
and power of the evolutionary paradigm. Having seen the working of the anneal
function, most input parameters will speak for themselves:

> wines.genetic <-
+ genetic(winesHmat$mat, kmin = 3, kmax = 5, nger = 20,
+ popsize = 50, maxclone = 0,
+ H = winesHmat$H, criterion = "ccr12", r = 1)
> wines.genetic$bestvalues
Card.3 Card.4 Card.5

0.83281 0.84368 0.85248
> wines.genetic$bestsets

Var.1 Var.2 Var.3 Var.4 Var.5
Card.3 2 7 10 0 0
Card.4 2 3 7 10 0
Card.5 2 3 7 10 12

And indeed, the same three-variable solution is found as the optimal one. This time,
also four- and five-variable solutions are returned (because of the values of the kmin
and kmax arguments).

The maxclone argument tries to enforce diversity by replacing duplicate off-
spring by random solutions (which are not checked for duplicity, however). Leaving
out this argument would, in this simple example, lead to a premature end of the
optimization because of the complete homogeneity of the population. Both anneal
and genetic provide the possibility of a further local optimization of the final best
solution.

10.3.3 Discussion

Variable selection is a difficult process. Simple stepwise methods only work with
a small number of variables, whereas the largest gains can be made in the nowa-
days typical situation of hundreds or even thousands of variables. More complicated
methods containing elements of random search, such as SA or GA approaches, can
have a high variability, especially in cases where correlations between variables are
high. One approach is to repeat the variable selection multiple times, and to use those
variables that are consistently selected. Although this strategy is intuitively appeal-
ing, it does have one flaw: suppose that variables a and b are highly correlated, and
that a combination of either a or b with a third variable c leads to a good model. In
repeated selection runs, c will typically be selected twice as often as a or b—if the
overall selection threshold is chosen to include c but neither of a and b, the model
will not work well.
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In addition, the optimization criterion is important. It has been shown that LOO
crossvalidation as a criterion for variable selection is inconsistent, in the sense that
even with an infinitely large data set it will not choose the correct model (Shao
2003). Baumann et al. advocate the use of leave-multiple-out crossvalidation for this
purpose (Baumann et al. 2002a, b), even though the computational burden is high.
In this approach, the data are repeatedly split, randomly, in training and test sets,
where the number of repetitions needs to be greater than the number of variables,
and for every split a separate crossvalidation is performed to optimize the parameters
of the modelling method such as the number of latent variables in PCR or PLS. A
workable alternative is to fix the number of latent variables to a “reasonable” number,
and to find the subset of variables that with this particular setting leads to the best
results. This takes away the nested crossvalidation but may lead to subsets that are
suboptimal. In general, one should accept the fact that there is no guarantee that the
optimal subset will be found, and it is wise to accept a subset that is “good enough”.
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Chapter 11
Chemometric Applications

This chapter highlights some typical examples of research themes in the chemo-
metrics community. Up to now we have concentrated on fairly general techniques,
found in many textbooks and applicable in a wide range of fields. The topics in this
chapter are more specific to the field of chemometrics, combining elements from the
previous chapters. In particular, latent-variable approaches like PCA and PLS exhibit
a wide range of applications (some people have criticized the field of chemometrics
of being too preoccupied with latent-variable methods, and not without reason—on
the other hand such tools are extremely handy in many different situations).

To start with, we come back to the problem of missing values. Hard to avoid in
many real-life applications, they often prevent the standard application of statistical
methods. One example is PCA—the svd-based implementation in Chap. 4 does not
allow missing values. We will discuss a couple of alternatives, e.g., replacing the
missing values with estimated values. Ironically, PCA is one of the methods that can
be used to obtain these estimates... Another form of PCA, robust PCA, is an attractive
method to identify outliers in multivariate space, at modest computational cost. It
is very often a good idea to check whether a robust alternative (if it exists) leads to
results that are close to what one sees in the main analysis: if that is not the case, one
should really try to find the cause(s) of the differences and then decide what to do.
Robust estimates also play a role in the next topic, statistical process control, which
is very important in industrial applications. Again, multivariate approaches based on
distances or dimension reduction firmly place this topic in the chemometrics area.
Continuing the theme of finding ways to combat flaws in our data,Orthogonal Signal
Correction and its combination with PLS, OPLS, provide ways to remove irrelevant
variation in the data—irrelevant for predicting purposes, that is. In some cases this
leads to simpler models that are easier to interpret. In analytical laboratories, there
is often a need to develop calibration models that can be transferred across a range
of instruments. One example is to develop a model using a laboratory, high-quality
setup, and then to apply the model for in-line measurements of a much lower quality.
The approach to achieve this has become known as calibration transfer. Finally, we
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take a look at a decomposition of a matrix X where the individual components are
directly interpretable, e.g., as concentration profiles or spectra of pure compounds:
Multivariate Curve Resolution.

11.1 PCA in the Presence of Missing Values

Real-life data sets nearly always contain missing values, i.e., data points for which
no value has been recorded. Data analyses often cannot handle these missing values,
and the regular approach is to replace the missing values with some hopefully appro-
priate estimate, and do the analysis on the completed data. This process is usually
referred to as imputation, and is often repeated many times (multiple imputation,
using different imputed values) to decrease the influence of the artificial values. In
analytical chemical applications, a common cause for missing values is the detection
or quantification limit of the measurement device: concentrations may simply be too
low to lead to a measurable response. In other cases, values may be missing because
of non-responses in surveys, errors in data processing (e.g., misalignments in LC-
MS data), temporary breakdown of a sensor, or simply because of some random
event—there are countless possible reasons why a data point is missing.

That does not mean it is not important to think about reasons for missingness;
in fact, ignoring this is dangerous and can easily lead to false conclusions. Missing
values being caused bymeasurements below the detection limit form a good example.
Weknow that in these cases the true but unknownvalue should be somewhere between
zero and the limit of detection. That is, even the missing values contain information.
The simplest possible approach in such a case would be to pick a value somewhere
in the middle and use that instead of all missing values. In many applications, such
an approach is too simple, and leads to an awkward peak around the imputed value in
the distribution of the variable. A better strategy is to try to estimate—on the basis of
the non-missing values for a particular variable—the parameters of the distribution
of a variable, and then draw randomly from that distribution to complete the data
set (Uh et al. 2008). Again, this can be done multiple times, allowing to assess the
effect of the imputed values on the analysis. An overview of many different ways of
imputing data can be found, e.g., in Little and Rubin (2019).

In case there is reason to believe that the data are missing completely at random
(a term so important in the field that the acronymMCAR is often used) life becomes
simpler. MCAR means that there is no relation between the values of the data and
the missingness status. This is clearly not the case for the detection limit example.
Also the term missing at random (MAR) is used, and although this again implies
that there is no relation between the values and the missingness status, it is different
fromMCAR in that missingness may depend on non-missing values. As a hypothet-
ical example, hospital lab tests may show more missing values for obese patients
than for patients with a lower BMI. This obviously makes it important to take into
account these dependencies when imputing. The final category ismissing not at ran-
dom (MNAR), e.g., corresponding to the measurements below the detection limit
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mentioned earlier. In such a situation there is no easy way out and the mechanism
leading to missingness needs to be taken into account in the analysis.

Many methods are available to handle missing values in a general context (Little
and Rubin 2019). To name just two: the analysis may be based on only the complete
cases, which may work well when the number of missing values is limited. It does
run the risk of strongly biased results. Alternatively, missing values may be replaced
by adequate values such as means, or estimated using methods like regression or
the EM algorithm mentioned in the context of model-based clustering, described
in Sect. 6.3—there, the unknown class label is basically treated as a missing value.
SeveralR packages are available formore general situations. Themice package (van
Buuren and Groothuis-Oudshoorn 2011), for example, assumes that data are MAR,
and uses regressions to estimate missing values from the other variables. The name
stands for Multivariate Imputation via Chained Equations. Categorical as well as
numerical values are allowed. Another package for multiple imputation, amelia
(named after Amelia Earhart, the first woman to fly across the Atlantic Ocean solo
who went missing over the Pacific in 1937), also assumes MAR data but in addition
assumes multivariate normal data (Honaker et al. 2011).

In the remainder of this paragraph we will focus on a couple of ways to perform
PCA in the presence of missing data. First of all, we could sacrifice some of the
functionality of PCA and use simple tricks allowing us to use the incomplete matrix
anyway. Second, we could replace themissing values by something that makes sense,
in the case of MCAR data perhaps a mean value. In all cases, it is probably wise to
eliminate rows or columns that contain too many missing values – finding an optimal
cutoff here is a trial-and-error process which will depend strongly on the application.

Let’s look at the arabidopsis data from ChemometricsWithR, an LC-MS-
based metabolomics data set on a number of samples of Arabidopsis thaliana, a
popular model organism in plant sciences. As usual in this kind of data, many values
are missing—the total number per variable is shown in Fig. 11.1. In the following,
we will only retain variables with less than 40% missing values:

> data(arabidopsis)
> naLimitPerc <- 40
> naLimit <- floor(nrow(arabidopsis) * naLimitPerc / 100)
> nNA <- apply(arabidopsis, 2, function(x) sum(is.na(x)))
> naIdx <- which(nNA < naLimit)
> X.ara <- arabidopsis[, naIdx]

This leads to amatrix containing 249 columns, less than half of the number of original
variables. We expect a large majority of missing values to be caused by metabolites
being too low in concentration to be measured.
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Fig. 11.1 Number of missing values in the LC-MS arabidopsis data (sorted). The cutoff of
including a variable has been set here at no more than 40% missing values (i.e., at most 304 NAs)

11.1.1 Ignoring the Missing Values

The first approach is simply to ignore the missing values. This can be done
by calculating the covariance or correlation matrix with the argument use =
"pairwise.complete.obs". Note that this (incorrectly!) assumes that the
missing data are MCAR: one pretends that the correlations or covariances calcu-
lated with the subset of points that is observed on average does not differ from the
values that would be calculated from the full matrix. As long as there are enough
cases for which pairwise data are available, this will lead to a square matrix with-
out any NA values from which scores or loadings can be derived, as explained in
Sect. 4.2. A similar result would be obtained by calculating distances using only
pairwise complete observations and then doing PCA on the distance matrix (PCoA,
see Sect. 4.6.1).

Let’s see how this works out for the arabidopsis data. First we need to decide on
the scaling. Since the intensities are basically counts, we use log scaling, more or less
the default in MS-based metabolomics data. Then there are several other choices that
could be relevant here, such as Pareto scaling. For the sake of demonstration we will
proceed with the most common choice which is autoscaling, giving each variable
equal weight in the PCA:

> X.ara.l <- log(X.ara)
> X.ara.l.sc <- scale(X.ara.l)

Next we calculate the covariance matrix (which is equal to the correlation matrix
here, because of the scaling we applied), check that the number of NA values is zero,
and run svd:
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Fig. 11.2 PCA scoreplots from the arabidopsis data set using three different ways of handling
missing data

> X.ara.cov <- cov(t(X.ara.l.sc), use = "pairwise.complete.obs")
> sum(is.na(X.ara.cov))
[1] 0
> X.ara.svd <- svd(X.ara.cov, nu = 2, nv = 2)
> ara.PCA.svd <-
+ structure(
+ list(scores = X.ara.svd$u %*% diag(sqrt(X.ara.svd$d[1:2])),
+ var = X.ara.svd$d,
+ totalvar = sum(X.ara.svd$d),
+ centered.data = TRUE),
+ class = "PCA")

Since the goal here is visualization, we limit the number of singular vectors to be
calculated to two. The result is stored as an object of class PCA so that we can use
the scoreplot.PCA function, leading to the left panel in Fig. 11.2:

> scoreplot(ara.PCA.svd, main = "PCA using cov")

The two-component model leads to a reasonable amount of variance explained in the
first two components, given that the data matrix has 249 columns. Some structure
seems to be visible, especially along the first axis.

11.1.2 Single Imputation

We already discussed that the method in the previous section assumes an MCAR
regime which is unlikely for the current situation. Rather, we expect most of the
values to be missing because of low concentrations. Replacing NA values with the
smallest number in the column would therefore seem a more sensible idea:
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> X.ara.imput1 <-
+ apply(X.ara, 2,
+ function(x) {
+ x[is.na(x)] <- min(x, na.rm = TRUE)
+ x
+ })

It is easy to check that the number of NAs after imputation is zero. Now that we have
completed ourmatrix we can proceed using the standard PCA approach. Note that we
perform autoscaling only after having done the imputation: obviously, the imputed
values will affect column means and standard deviations. The resulting scoreplot is
shown in the middle panel of Fig. 11.2:

> ara.PCA.minimputation <- PCA(scale(log(X.ara.imput1)))

We see the same structure with two or three clusters as in the previous case, but now
rotated by something like 45◦. The percentage of variance explained by the first PC
in particular is much higher than in the case ignoring the missing values altogether.

Interestingly, a more elaborate version of single imputation can be done by PCA
methods. One would start with imputing random values, perform a PCA, and recon-
structing the values at the locations of the NAs with the values predicted by PCA.
This process iterates until some convergence threshold is met. In this way, correlation
structure is taken into account. Note that the number of PCs is again a parameter that
needs to be set: in this case, models with two PCs are no longer subsets of models
with more PCs, so one has to explicitly calculate the results for all dimensionalities.
One function implementing this is imputePCA from themissMDA package (Josse
and Husson 2016). Let’s see how things go when we use two dimensions:

> X.ara.pcaimput <- imputePCA(X.ara.l, ncp = 2)$completeObs

The PCA scoreplot based on the PCA imputation is shown in the right panel of
Fig. 11.2:

> ara.PCA.pcaimputation <- PCA(scale(X.ara.pcaimput))

It is very similar to the one obtained by imputing the missing values with column
minima.

In the PCA-based imputation we have used log-scaled data, under the assumption
that the data after log-transformation are perhaps a little bit more regular—in the
other case that did not matter since we were taking the smallest value for each
column. A very natural question is: what are the imputed values? Figure 11.3 shows
the histograms. It is clear that the PCA-imputed values cover a much wider range
than the column minima. Still, they are at the lower end of the data range.
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Fig. 11.3 Distribution of measured and imputed values in the arabidopsis data set

11.1.3 Multiple Imputation

Obviously we would like to assess how much our imputed values influence the
scores. One way of doing this is to impute multiple times, and plot the scores as a
much bigger point cloud. For the imputations, a more elaborate mechanism is needed
than simply taking the mean or smallest value per column (repeating such an action
would not be very informative). Function MIPCA from package missMDA (Josse
and Husson 2016) provides several possible strategies. The default is to start with
the imputed matrix from the iterative PCA algorithm in the previous paragraph.
Parametric bootstrapping is used to sample residuals (assuming a normal distribution
around zero, with the standard deviation given by the empirical standard deviation
of the PCA residuals) which are used to generate (by default one hundred) bootstrap
samples. Each of these bootstrap samples is then subjected to PCA. Finally, so-called
Procrustes analysis is used to rotate all PCA solutions in such a way that the data are
maximally overlapping (Josse et al. 2011).

To see how the method is applied we concentrate on the first twenty columns,
where the following columns contain missing values:

> rownames(X.ara.l) <- rep("", nrow(X.ara.l))
> colnames(X.ara.l) <- paste("V", 1:ncol(X.ara.l), sep = "")
> countNAs <- apply(X.ara.l[, 1:20], 2, function(x) sum(is.na(x)))
> countNAs[countNAs > 0]
V6 V8 V10 V13 V15 V16 V17 V19 V20

220 259 260 223 139 252 16 246 3

We would expect most variability in the variables containing many missing values.
Let’s apply MIPCA:

> ara.PCA.Minput <- MIPCA(X.ara.l[, 1:20], ncp = 2, scale = TRUE)
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Fig. 11.4 Multiple imputation for the first twenty columns in the log-scaled arabidopsis data.
The plot on the left shows that in each bootstrap sample the PCs are defined in a very similar way.
The loading plot on the right shows point clouds for variables containing missing values—again
the effect of the imputation seems limited here

The result is an object of classMIPCAwhich allows a variety of plots. Here we show
two of them in Fig. 11.4, created by:

> plot(ara.PCA.Minput, choice = "dim", new.plot = FALSE)
> plot(ara.PCA.Minput, choice = "var", new.plot = FALSE)

The first one shows the variability in the definition of the principal components in the
individual bootstrap sets. Clearly, there is little variation: both PC1 and PC2 remain
very much in the same position. The second plot, a loading plot, confirms this: for
those variables containing missing values a small point cloud can be seen around
the loading arrow indicating the variability of the estimate due to bootstrap sets. For
variables without missing values, no variability is observed.

11.2 Outlier Detection with Robust PCA

Identifying outliers, i.e., samples that do not conform to the general structure of the
data, is a difficult and dangerous task, prone to subjective judgements. Once one has
detected an outlier, or even several outliers, the question is what to do: should one
remove these before further analysis, downweight their importance in some way,
or simply leave them as they are and pay special attention to things like residuals?
All are sensible strategies, and could be valid choices depending on the question at
hand and the data available. Generally one is advised to not remove outliers, unless
there are very good reasons to do so. Very often these reasons are required to include
meta-information: deviating numbers in themselves may not be enough reason to
remove outlying observations, but if one also knows that there was a power cut in the



11.2 Outlier Detection with Robust PCA 257

lab just before that particular measurement, or something else happened that may be
related to this sample, then it may be more easy to decide to not take this particular
record into account.

At the same time, it is important to realize that outlying samples will occur in
practice, also if everything seems to have gone according to plan in the lab: whole
microarrays with expressions of tens of thousands of genes can be useless because of
some experimental artifact, and including them could be detrimental to the results.
One of the problems is that if several outliers are present, they may make each
other seem “normal”, an effect that is calledmasking. Additionally, high-dimensional
space, as we know, is mostly empty and every object of a small-to-medium-sized data
set can be seen as an outlier. Only if we can assume that the samples are occupying a
restricted subspace we may have hopes of performing meaningful outlier detection.

The area of robust statistics (Maronna et al. 2005) is a rich and flourishing field in
which methods are studied that are less affected by individual values and will yield
consistent results even in the presence of a sizeable fraction of outliers. A typical
example of a robust location estimator is the median. Its value will not change if all
data points above the median are suddenly ten units higher, or multiplied by a factor
of one thousand. It is said to have a breakdown point of 0.5, meaning that half of the
data can be “wrong” without affecting the estimate. Higher breakdown points than
0.5 obviously do not make too much sense. Note that the average as an estimator of
location has a breakdown point of 0.0: any change to the measurements will lead to
a different result. Many classical estimators have robust counterparts, that typically
rely on fewer assumptions. The price to pay is usually a lower accuracy or a loss of
power: typically one would need more samples to obtain comparable results. Robust
methods therefore decrease the influence of outlying observations – interestingly,
this makes them also very suited to identify these observations in the first place.

11.2.1 Robust PCA

From the above it may seem natural to conclude that a robust form of PCA would
be a good candidate to identify outliers in a multivariate data set. In some cases even
classical PCA will work: what would be easier than to apply PCA to the data, and
see the outliers far away from the bulk of the data? Although this sometimes does
happen, and PCA in these cases is a valuable outlier detection method, in other cases
the outliers are harder to spot. The point is that PCA is not a robust method: since it is
based on the concept of variance, outliers will greatly influence scores and loadings,
sometimes even to the extent that they will dominate the first PCs. What is needed in
such cases is a robust form of PCA (Hubert 2009). Many different approaches exist,
each characterized by their own breakdown point, the fraction of outliers that can be
present without influencing the covariance estimates.

The simplest form is to perform the SVD on a robust estimate of the covariance
or correlation matrix (Croux and Haesbroeck 2000). One such estimate is given
by the Minimum Covariance Determinant (MCD, Rousseeuw 1984), which has a
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breakdown point of up to 0.5. As the name already implies, the MCD estimator
basically samples subsets of the data of a specific size, in search of the subset that
leads to a covariance matrix with a minimal determinant, i.e., covering the smallest
hypervolume. The assumption is that the outlying observations are far away from
the other data points, increasing the volume of the covariance ellipsoid. The size
of the subset, to be chosen by the user, determines the breakdown point, given by
(n − h + 1)/n, with n the number of observations and h the size of the subset. Unless
one really expects a large fraction of the data to be contaminated, it is recommended
to choose h ≈ 0.75n. The resampling approach can take a lot of time, and although
fast algorithms are available (Rousseeuw and van Driessen 1999), matrices with
more than a couple of hundred variables remain hard to tackle.

The MCD covariance estimator is available in several R packages. One example
is cov.mcd in packageMASS. If we use this in combination with the princomp
function, we can see the difference between robust and classical covariance estima-
tion. Let’s focus on the Grignolino samples from the wine data:

> X <- wines[vintages == "Grignolino", ]
> X.sc <- scale(X)
> X.clPCA <- princomp(X.sc)
> X.robPCA <- princomp(X.sc, covmat = cov.mcd(X.sc))

Visualization using biplots leads to Fig. 11.5:

> biplot(X.clPCA, main = "Classical PCA")
> biplot(X.robPCA, main = "MCD-based PCA")

There are clear differences in the first two PCs: in the classical case PC 1 is dominated
by the variables OD ratio, flavonoids, proanth and tot. phenols,
leading to samples 63, 66, 15 and 1, 2, and 3 to having extreme coordinates. In
the robust version, on the other hand, these samples have very relatively small
PC 1 scores. Rather, they are extremes of the second component, the result of
increased influence of variables (inversely) correlated with ash on the first com-
ponent. Although many of the relations in the plots are similar (the main effect
seems to be a rotation), the example shows that even in cases where one would not
expect it applying (more) robust methods can lead to appreciable differences.

An important impediment for the application of the MCD estimator is that it
can only be calculated for non-fat data matrices, i.e., matrices where the number of
samples is larger than the number of variables—in other cases, the covariance matrix
is singuar, with a determinant of zero. In such cases another approach is necessary.
One example is ROBPCA (Hubert et al. 2005), combining Projection Pursuit and
robust covariance estimation: PP is employed to find a subspace of lower dimension
in which the MCD estimator can be applied. ROBPCA has one property that we also
saw in ICA (Sect. 4.6.2): if we increase the number of PCs there is no guarantee that
the first PCs will remain the same—in fact, they usually are not. Obviously, this can
make interpretation somewhat difficult, especially since the method to choose the
“correct” number of PCs is less obvious in robust PCA than in classical PCA (Hubert
2009).
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Fig. 11.5 Biplots for the Grignolino samples: the classical PCA solution is shown on the left,
whereas the right plot is based on the MCD covariance estimate

Since the details of the ROBPCA algorithm are a lot more complicated than
can be treated here, we just illustrate its use. ROBPCA, as well as several other
robust versions of PCA, is available in package rrcov as the function PcaHubert.
Application to the Grignolino samples using five PCs leads to the following result:

> X.HubPCA5 <- PcaHubert(X.sc, k = 5)
> summary(X.HubPCA5)

Call:
PcaHubert(x = X.sc, k = 5)
Importance of components:

PC1 PC2 PC3 PC4 PC5
Standard deviation 1.766 1.502 1.217 1.039 0.923
Proportion of Variance 0.355 0.257 0.169 0.123 0.097
Cumulative Proportion 0.355 0.612 0.780 0.903 1.000

Note that the final line gives the cumulative proportion of variance as a fraction
of the variance captured in the robust PCA model, and not as the fraction of the
total variance, usual in classical PCA. If we do not provide an explicit number of
components (the default, k = 0) the algorithm chooses the optimal number itself:

> X.HubPCA <- PcaHubert(X.sc)
> summary(X.HubPCA)

Call:
PcaHubert(x = X.sc)
Importance of components:

PC1 PC2 PC3 PC4 PC5 PC6 PC7
Standard deviation 1.751 1.537 1.276 1.125 0.9862 0.8695 0.6062
Proportion of Variance 0.294 0.227 0.156 0.121 0.0934 0.0726 0.0353
Cumulative Proportion 0.294 0.521 0.677 0.799 0.8922 0.9647 1.0000
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Fig. 11.6 Outlier map for
the Grignolino data, based
on a seven-component
ROBPCA model
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Apparently this optimal number equals seven in this case. The rule-of-thumb to
calculate the “optimal” number of components is based on the desire to explain a
significant portion of the variance explained by the model (a fraction of 0.8 is used
as the default) while not taking into account components with very small standard
deviations—the last component of the model should have an eigenvalue at least .1%
of the largest one. If the number of variables is small enough, the MCD algorithm
is used directly; if not, the ROBPCA algorithm is used. One can force the use of
ROBPCA by setting mcd = FALSE. Note that the standard deviations of the first
components are not the same as the ones calculated for the five-component model.

The default plotting method is different from the classical plot: it shows an outlier
map, or distance-distance map, rather than scores or loadings. The main idea of this
plot is to characterise every sample by two different distances:

• the Orthogonal Distance (OD), indicating the distance between the true position
of every data point and its projection in the space of the first few PCs;

• the Score Distance (SD), or the distance of the sample projection to the center of
all sample projections.

Or, put differently, the SD of a sample is the distance to the center, measured in the
hyperplane of the PCA projection, and the OD is the distance to this hyperplane.
Obviously, both SD and OD depend on the number of PCs. When a sample is above
the horizontal threshold it is too far away from the PCA subspace; when it is to the
right from the vertical threshold it is too far from the other samples within the PCA
subspace. The horizontal and vertical thresholds are derived from χ2 approxima-
tions (Todorov and Filzmoser 2009). For the Grignolino data, this leads to the plot
in Fig. 11.6:
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> plot(X.HubPCA)

Several of the most outlying samples are indicated with their indices, so that they
can be inspected further. Also a biplot method is available, which shows a plot that
is very similar to the right plot in Fig. 11.5. Inspection of the data shows that objects
63 and 15 do contain some extreme values in some of the variables—indeed, object
63 is also the object with the smallest score on PC 1 in a classical PCA. However, it
would probably be too much to remove them from the data completely.

11.2.2 Discussion

A robust approach can be extremely important in cases where one suspects that some
of the data are outliers. Classical estimates can be very sensitive to extreme values,
and it frequently occurs that only one or very few samples dominate the rest of the
data. This need not be an error, because influential observations may be correct, but
in general one would put more trust in a model that is based on many observations
rather than a few. This is not in contradiction with the desire to build sparse models,
as seen in the section on SVMs, for example: there, the sparseness was obtained by
selecting only those objects in the relevant part of the space, using all other objects
in the selection process.

The robust methods in this section have a wider applicability than just outlier
detection: they can be used as robust plugin estimators in classification and regression
methods. Robust LDA can be obtained, for example, by using a robust estimate of the
pooled covariance matrix; robust QDA by using robust covariances for all classes.
PCR can be robustified in several ways, e.g., by applying SVD to a robust covariance
matrix estimate; an alternative is formed by regressing on robust scores, for instance
from the ROBPCA algorithm. One can even replace the least squares regression by
robust regression methods such as least trimmed squares (Rousseeuw 1984). Also
robust versions of PLS regression exist (Hubert and Branden 2003; Liebmann et al.
2009). These robust versions of classification and regression methods share the big
advantage that one can safely leave in all objects, even though some of them may
be suspected outliers: the analysis will not be influenced by only a couple atypical
observations. And to turn the question of outliers around: if robust and classical
analyses give the same or similar results, then one can conclude that there are no
(influential) outliers in the data.

Note that here we have concentrated on identifying whole records as outlying
observations, i.e., rows in our data matrix. This is not the only way to approach the
issue. One could also say that certain variables, columns in the data matrix, show
deviating behaviour. This is a situation, however, that is less likely to wreak havoc:
many multivariate methods, especially in supervised approaches, are geared towards
obtaining the optimal weights for each of the variables. If the outlying column would
lead to worse results it would probably get a low weight anyway. In unsupervised
approaches such as PCA the variablewould stand out, and one then can easily identify
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it as a potential problem and decide how to tackle it. Only in distance- or kernel-
basedmethodswewould run the risk of obtaining suboptimal results. Finally, it is also
possible—in fact, rather likely – that individual data values are grossly incorrect, for
whatever reason. Since these have less influence on the overall model than outlying
whole rows, in many cases they can be disregarded. However, approaches have been
developed recently identifying such cases (Rousseeuw and den Bossche 2018).

R contains many packages with facilities for robust statistics, the most important
one probably being robustbase. According to the taskview on CRAN, plans exist to
further streamline the available packages, using robustbase as the basic package for
robust statistics, and several more specialized packages building on that, such as is
the case already for packages like rrcov.

11.3 Multivariate Process Monitoring

Robust methods like the PCA methods from the previous paragraph try to focus on
the big picture, simply ignoring individual data points that do no conform to the
general trend. However, such data points may also contain valuable information,
especially when occuring in groups or in a particular order: then, they may point to
imminent changes in process conditions that are not always beneficial. The idea is
that these deviations, when noticed early enough, can be corrected for by changing
appropriate process parameters. In this simple way, a control mechanism can be
implemented. Normal operating behaviour is typically defined by expert knowledge
and historical data. In industry, statistical process control (Montgomery 2001) has
been in use for decades to monitor and control deviations from normal operating
behaviour; in pharmaceutical industry it has become known as Process Analytical
Technologry (Chanda et al. 2015). Also in Chemometrics much research has been
devoted to it over the years (Kourti and MacGregor 1995; Westerhuis et al. 2000;
Kourti 2005; Challa and Potumarthi 2013).

A large number of tools are available, often based on simple plots of parameter
values or functions of parameter values over time. A well-known example is given
by the so-called Western Electric Rules (Western Electric Co. 1956), that provide
decision rules for detecting out-of-control samples or non-random variation, e.g., a
single point falling outside the 3σ limits, two consecutive points on the same side of
the mean outside 2σ limits, or a larger number of consecutive points (often seven, or
nine) falling at the same side. Many sets of rules exist, all depending on heuristically
defined control limits and/or action limits. What type of action needs to be taken
depends on the situation; also for a process that is in control one would expect these
rules to be activated quite regularly, so the usual approach is to first investigate the
matter more closely and only take further action if something is shown to be clearly
wrong.
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The most well-known example is the so-called Shewhart control chart1 showing
either individual measurement values or averages of groups of samples over time. In
what is usually called Phase 1, a subset of the (groups of) samples, known to be “in
control”, are used to calculate the central value and the so-called upper and lower
control limits. These are often taken to be the average and three standard deviations
above and below the average, respectively. Such an approach implicitly assumes a
normal distribution of the in-control data; obviously this may be an underestimation
of the complexity of real-world data. An example where a mixture of normal distri-
butions is used to describe normal operating conditions (NOCs) is given in Thissen
et al. (2005). The key is to describe variation that can happen without any need for
action. In Phase 2 then, the data of interest are plotted in a chart containing the central
value and the control limits, and decision rules like the ones mentioned above can
be applied.

Similar procedures can be used to monitor other statistics, such as the range or
standard deviation of (groups of) data, but in the majority of cases one focuses on
measures of location. Particularly interesting are CUSUM charts (Page 1961), plot-
ting cumulative deviations in either positive or negative direction, and exponentially-
weightedmoving average (EWMA) charts (Roberts 1959). Both are able to flag cases
where individual deviations are relatively small.

The basic ideas will be illustrated here using the Arabidopsis thaliana data seen
in Sect. 11.1. Since the number of samples is quite big, the measurement series
was split up in several batches, a common procedure in many metabolomics exper-
iment. Unfortunately, the experiment was marred by a particularly unlucky series
of events (including a broken oil pump and multiple power cuts), leading to quite
substantial differences between (and even within) batches. The data are available
as the arabidopsis data set in the ChemometricsWithR package. Here we are
focusing on the second metabolite, which is present in all samples in these batches
(the first metabolite contains a lot of missing values). We will use the first batch B1
to define NOCs, and then investigate whether we see evidence of changes in batches
B2 and B3.

> metabNr <- 2
> B1 <- which(arabidopsis.Y$Batch == "B1")
> B23 <- which(arabidopsis.Y$Batch %in% c("B2", "B3"))
> ara.qcc <- qcc(data = arabidopsis[B1, metabNr], type = "xbar.one",
+ newdata = arabidopsis[B23, metabNr],
+ plot = FALSE)
> ara.cusum <- cusum(data = arabidopsis[B1, metabNr],
+ newdata = arabidopsis[B23, metabNr],
+ plot = FALSE)

The qcc function (from the package with the same name) implements the She-
whart chart for groups of samples (showing group averages in the chart), as well
as for individual samples. In the latter case, like here, the type argument gets the
value "xbar.one". The first argument of the qcc and cusum functions presents

1After Walter A. Shewhart, the pioneer in the field working at Bell Labs in the 1920s.
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Fig. 11.7 Shewhart (left) and CUSUM (right) charts for the second metabolite in the
arabidopsis data, batches B1, B2 and B3 only. Batch B1 is used to set the upper and lower
control limigs.Warning points are indicated as orange triangles, out-of-control points as red squares.
Clearly, stability is not maintained across batches

the data for which the NOCs are known to be satisfied—these will be used to calcu-
late the upper and lower control limits (indicated by UCL and LCL in the figures)
if not provided by the user. Argument newdata contains the rest of the data that
should be included in the plots, typically the most interesting part.

Figure 11.7 is generated by simply plotting the ara.qcc and ara.cusum
objects, including some additional manipulation (not shown) to keep the figures as
simple as possible. The Shewhart chart on the left shows that samples deviate more
and more from the specifications set up in B1 – initially, the samples are still within
the control limits, but then the first warning signs pop up, samples for which too
many consecutive values are below the central value. These are indicated with orange
triangles. In the last third of the data we see many samples outside the control limits
(indicatedwith red squares), and basically all samples are flagged oneway or another.
The CUSUM chart on the right shows two statistics at the same time: cumulative
positive sums (here almost all zero), as well as cumulative negative sums. The latter
show a clear and continuingmovement away from the central values. CUSUM charts
in general are more sensitive than Shewhart charts—also here deviations are clear
more quickly in the CUSUM chart on the right.

Multivariate charts are very similar, but now the statistic that is shown is derived
from a multivariate analysis and can be, e.g., a principal component score, or a
distance to a nominal value (typically taking the covariance structure into account
by using the Mahalanobis distance, Eq. 7.3). The chart showing the distance to a
central value is known as the Hotelling T 2 chart, and is probably the most popular of
all multivariate control charts. One difference with the Shewhart chart is that since
distances are only non-negative, the only relevant control limit is the upper one. In
PCA-based charts, one can focus on the subspace covered by the chosen number of
PCs, or on the opposite, the residuals (Jackson 1991), completely analogous to the
score and orthogonal distances from Fig. 11.6 in the previous section. In all cases,
much depends on the scaling, and like with the previous multivariate control charts
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one should take care to scale all data according to the reference set in the NOCs.
In a multivariate context one may be interested in trying to assess which variables
contribute to a point being flagged as a warning or outlier point.

The R packageMSQC (Santos-Fernández 2013) provides several examples. We
will show twomultivariate control charts for thearabidopsismetabolomics data.
The first chart is the T 2 control chart. Missing values are not allowed, so we will
either have to impute them, or somehow eliminate them. Here we choose the latter
option by focusing on metabolites without missing values only. For large numbers of
variables the output of themult.chartwith argument type = "t2" (the “real”
T 2 chart) becomes rather lengthy and computing time increases quite dramatically,
caused by calculations trying to identify the variables associated with outlyingness.
Here we use type = "chi" instead, leading to a χ2-chart with virtually the same
results in a fraction of the time.

> idx <-
+ which(apply(arabidopsis, 2, function(x) sum(is.na(x)) == 0))
> chi2chart <-
+ mult.chart(arabidopsis[c(B1, B23), idx], type = "chi",
+ Xmv = colMeans(arabidopsis[B1, idx]),
+ S = cov(arabidopsis[B1, idx]))
> abline(v = length(B1) + .5, lty = 2)
>
> MCUSUMchart <-
+ mult.chart(arabidopsis[c(B1, B23), idx], type = "mcusum2",
+ Xmv = colMeans(arabidopsis[B1, idx]),
+ S = cov(arabidopsis[B1, idx]))
> abline(v = length(B1) + .5, lty = 2)

This leads to the left panel in Fig. 11.8. Again the difference between the samples
from the first batch and the later batches is quite obvious. Multivariate cusum charts
(MCUSUM) follow the same principle: they track a univariate statistic that is cal-
culated from multivariate data. Several different flavours exist; MSQC implements
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two of them (Crosier 1988; Pignatiello and Runger 1990). For the current data they
lead to virtually the same results—the chart is shown in the right panel of Fig. 11.8.

Finally, it is worthmentioning that one can also basemultivariate control charts on
transformations of the original data, such as the scores of aPCAmodel, or if additional
dependent variables are present, scores of a PLSmodel. Thismay eliminate quite a lot
of hopefully less relevant variation, leading to fewer false positiveswhilemaintaining
sensitivity. Also robust forms of PCA can be used, where the effect of single outlying
samples will be much smaller and control will focus on general effects.

The control limits are based on heuristics, although they may be calculated using
some fancy formulas. Whether one really should take action, perhaps changing pro-
cess parameters or flagging data points as “unreliable” depends on the situation and
the costs of both false positive and false negative alarms. Note also that the data here
are quite particular, mainly because of their high dimensionality and large chunks
of systematic variations, and may not resemble typical applications for statistical
process control. In Sect. 11.7 we will go into methods for batch correction that for
these data are probably more appropriate.

11.4 Orthogonal Signal Correction and OPLS

Orthogonal Signal Correction (OSC) was first proposed by Wold and cowork-
ers (Wold et al. 1998) with the aim to remove information from X that is orthogonal
to Y . Several different algorithms have been proposed in literature—a concise com-
parison of several of them has appeared in Svensson et al. (2002). The conclusion
of that paper is that OSC in essence does not improve prediction quality per se but
rather leads to more parsimonious models, that are easier to interpret. Moreover, the
part of X that has been removed before modelling can be inspected as well and may
provide information on how to improve measurement quality.

As an example, we will show one form of OSC, called Orthogonal Projection to
Latent Structures (OPLS, Trygg and Wold 2002), as summarized in Svensson et al.
(2002). Using the weights w and loadings p from an initial PLS model, the variation
orthogonal to the dependent variable is obtained and subtracted from the original
data matrix:

w⊥ = p − wT p

wTw
w (11.1)

t⊥ = Xw⊥ (11.2)

p⊥ = XT t⊥
t T⊥ t⊥

(11.3)

Xc = X − t T⊥ p⊥ (11.4)
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The corrected matrix Xc is then used in a regular PLS model. If desired, more
orthogonal components can be extracted. This procedure basically comes down to
a rotation of PLS components within the selected subspace, followed perhaps by
a further dimension reduction, and focuses even more aggressively than standard
PLS on the information in the dependent variable. In general, OPLS needs fewer
components than PLS.

Let us see how this works out for the gasoline data. From Fig. 8.4 we have
concluded that, based on a training set consisting of the odd rows of the gasoline
data frame, three PLS components are needed. To make things easier, we start by
mean-centering the spectra, based on the mean of the training data only. The OSC-
corrected matrix is then obtained as follows:

> gasolineSC <- gasoline
> gasolineSC$NIR <-
+ scale(gasolineSC$NIR, scale = FALSE,
+ center = colMeans(gasolineSC$NIR[gas.odd, ]))
> gasolineSC.pls <- plsr(octane ˜ ., data = gasolineSC, ncomp = 5,
+ subset = gas.odd, validation = "LOO")
> ww <- gasolineSC.pls$loading.weights[, 1]
> pp <- gasolineSC.pls$loadings[, 1]
> w.ortho <- pp - c(crossprod(ww, pp)/crossprod(ww)) * ww
> t.ortho <- gasolineSC$NIR[gas.odd, ] %*% w.ortho
> p.ortho <- crossprod(gasolineSC$NIR[gas.odd, ], t.ortho) /
+ c(crossprod(t.ortho))
> Xcorr <- gasolineSC$NIR[gas.odd, ] - tcrossprod(t.ortho, p.ortho)

Next, a new PLS model is created using the corrected data matrix:

> gasolineSC.osc1 <- data.frame(octane = gasolineSC$octane[gas.odd],
+ NIR = Xcorr)
> gasolineSC.opls1 <- plsr(octane ˜ ., data = gasolineSC.osc1,
+ ncomp = 5, validation = "LOO")

Removal of a second OSC component proceeds along the same lines:

> pp2 <- gasolineSC.opls1$loadings[, 1]
> w.ortho2 <- pp2 - c(crossprod(ww, pp2)/crossprod(ww)) * ww
> t.ortho2 <- Xcorr %*% w.ortho2
> p.ortho2 <- crossprod(Xcorr, t.ortho2) / c(crossprod(t.ortho2))
> Xcorr2 <- Xcorr - tcrossprod(t.ortho2, p.ortho2)
> gasolineSC.osc2 <- data.frame(octane = gasolineSC$octane[gas.odd],
+ NIR = Xcorr2)
> gasolineSC.opls2 <- plsr(octane ˜ ., data = gasolineSC.osc2,
+ ncomp = 5, validation = "LOO")

Note that the ww vector is the same for every component that is removed (Trygg and
Wold 2002). We now can compare the validation curves of the regular PLS model,
the PLS model having one orthogonal component removed, and the PLS model with
two components removed:
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Fig. 11.9 Crossvalidation
results for the gasolineSC
data (training set only):
removal of one or two
orthogonal components leads
to more parsimonious PLS
models
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> plot(gasolineSC.pls, "validation", estimate = "CV",
+ ylim = c(0.2, 1.5),
+ main = "GasolineSC training data (validation)")
> lines(0:5, c(RMSEP(gasolineSC.opls1, estimate = "CV"))$val,
+ col = 2, lty = 2)
> lines(0:5, c(RMSEP(gasolineSC.opls2, estimate = "CV"))$val,
+ col = 4, lty = 4)
> legend("topright", lty = c(1, 2, 4), col = c(1, 2, 4),
+ legend = c("PLS", "OPLS: 1 OSC component",
+ "OPLS: 2 OSC components"))

The result is shown in Fig. 11.9. Clearly, the best prediction errors for the two OPLS
models are comparable (even slightly better) to the error in the original model using
three components, and the optimal values are reached with fewer latent variables.

To do prediction, one has to deflate the new data in the same way as the training
data; i.e., one has to subtract the orthogonal components before presenting the data
to the final PLS model.

> Xtst <- gasolineSC$NIR[gas.even, ]
> t.tst <- Xtst %*% w.ortho
> p.tst <- crossprod(Xtst, t.tst) / c(crossprod(t.tst))
> Xtst.osc1 <- Xtst - tcrossprod(t.tst, p.tst)
> gasolineSC.opls1.pred <- predict(gasolineSC.opls1,
+ newdata = Xtst.osc1,
+ ncomp = 2)

Predictions for the OPLS model with two OSC components removed are obtained
in the same way:

> t.tst2 <- Xtst.osc1 %*% w.ortho2
> p.tst2 <- crossprod(Xtst.osc1, t.tst2) / c(crossprod(t.tst2))
> Xtst.osc2 <- Xtst.osc1 - tcrossprod(t.tst2, p.tst2)
> gasolineSC.opls2.pred <- predict(gasolineSC.opls2,
+ newdata = Xtst.osc2,
+ ncomp = 1)
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We can now compare the RMSEP values for the different PLS models:

> RMSEP(gasolineSC.pls, newdata = gasolineSC[gas.even, ],
+ ncomp = 3, intercept = FALSE)
[1] 0.2093
> rms(gasolineSC$octane[gas.even], gasolineSC.opls1.pred)
[1] 0.37902
> rms(gasolineSC$octane[gas.even], gasolineSC.opls2.pred)
[1] 0.44888

Although the crossvalidation errors do not increase, the prediction of the unseen test
data deteriorates quite a bit.

Inmetabolomics, OPLSDA (Bylesjö et al. 2006), consisting of the combination of
PLSDA and OSC, is very popular (Worley and Powers 2013). It has the same advan-
tage as OPLS over PLS: the final model may contain fewer components, although
the actual predictions will remain the same (Tapp and Kemsley 2009). OPLSDA
applied to a two-class problem, e.g., by definition should contain one component
only. However, it would be wrong to see this as an excuse to forego crossvalidation
procedures, since it does matter how many original PLS components are taken into
account in order to arrive at the final OPLSDA model. Moreover, there has always
been a tendency in the chemometrics world to attach large meaning to PLS compo-
nents (scores and loadings)—this may have been true in the original spectroscopic
applications based on NIR and UV/Vis data, but in many of the areas in which PLS
and friends are being applied now it is very hard to make sense of loading vectors.
Very oftenmodel inspection ismuch easier by concentrating on the regression vector:
this is after all what new data will be multiplied with when obtaining predictions.

Functions for OPLS and OPLSDA are available in Bioconductor package
ropls (Thévenot et al. 2015).

11.5 Biomarker Identification

Although there are certainly cases where a multivariate fingerprint is used to predict
the class of a new sample, as discussed in the previous paragraph, in many cases the
classification per se is not the ultimate goal.We do not needmillions of lab equipment
to see if someone is healthy or diseased, or a person is aman or awoman. The question
very often is: what exactly is different between the classes? The assumption is that
the classification model we have built can be interrogated to give us some clues.
Important variables are those variables that really influence predictions. If we have
used autoscaled data, as is customary with many methods, then the coefficient size is
a first clue: coefficients with larger absolute sizes exert more influence. If we know
confidence intervals for individual coefficients, e.g., by using the bootstrap methods
from Sect. 9.6, then we can also use these and focus on variables that do not include
zero in their confidence interval. Note that the variable selection methods discussed
in Chap. 10 could be seen in the same light: even though variables are selected
purely on the basis of improving estimated prediction errors the final set can be seen
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as informative—the same holds for penalized regression methods like the lasso that
lead to implicit variable selection.

The important distinction that needs to bemadehere is again the onebetween cause
and effect. Even if we do see a relation, we can never prove that it is causal. Especially
with high-dimensional data sets we will always see many correlated variables. If
variable selection procedures or model coefficients suggest to focus on a particular
subset of the variables, be aware that probably many other subsets exist that are
similarly good in terms of prediction but can be interpreted completely differently.
In some cases it pays to consider highly correlated variables in groups.

Here we will focus on a metabolomics LC-MS data set containing twenty apple
samples (Franceschi et al. 2012), a subset of which is available from the CRAN
package BioMark (Wehrens and Franceschi 2012a). Ten of the apple samples (each
apple leads to one separate sample) were spiked with a mixture of nine chemical
compounds, naturally occurring in apples—the goal is to see how successful different
methods are in highlighting the differences between the unspiked and spiked apples.
The nine compounds have also been measured separately and 5 features that could
be unambiguously assigned to spike-in compounds have been identified. The data
matrix used here has 197 columns.

Since true differences between the samples are so few, we should not expect
unsupervised, global methods like PCA to be very helpful. One approach would be
to simply perform t-tests for each variable, and to see howmany of the truly different
mass peaks are picked up. Alternatively, we could look at the performance of the
lasso, or look at the coefficients of a PLSDA model, and it is these three approaches
we will concentrate on in the following. The t-test and the lasso have automatic
selection rules (based on the chosen level of α and the strength of the L1 penalty,
respectively), but the PLSDA model will lead to a coefficient vector in which all
variables will probably have non-zero values. As always, we should first define the
optimal values for the number of components in the PLSDA model, and the amount
of penalization in the lasso. For simplicity wewill fix the number of PLS components
to 3 here. First, peak intensities are transformed by taking square roots:

> data(spikedApples, package = "BioMark")
> X <- sqrt(spikedApples$dataMatrix)
> Y <- rep(0:1, each = 10)
> apple.df <- data.frame(Y = Y, X = X)
> apple.pls <- plsr(Y ˜ X, data = apple.df, ncomp = 5,
+ validation = "LOO")
> nPLS <- selectNcomp(apple.pls, method = "onesigma")
> apple.lasso <- cv.glmnet(X, Y, family = "binomial")

The model coefficients, together with the t statistics for individual features, are first
arranged in a matrix:
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> tvals <- apply(X, 2,
+ function(x) t.test(x[1:10], x[11:20])$statistic)
> allcoefs <-
+ data.frame(studentt = tvals,
+ pls = c(coef(apple.pls, ncomp = nPLS)),
+ lasso = coef(apple.lasso,
+ lambda = apple.lasso$lambda.1se)[-1])

Next, we visualize them in a pairs plot:

> N <- ncol(spikedApples$dataMatrix)
> biom <- spikedApples$biom
> nobiom <- (1:N)[-spikedApples$biom]
> pairs(allcoefs,
+ panel = function(x, y, ...) {
+ abline(h = 0, v = 0, col = "lightgray", lty = 2)
+ points(x[nobiom], y[nobiom], col = "lightgray")
+ points(x[biom], y[biom], cex = 2)
+ })

The result is shown in Fig. 11.10. The correlation between the t statistics and the
PLSDA coefficients is readily apparent: the four largest PLS coefficients correspond
with the largest negative t statistics and are all related to true biomarkers. In both
cases, the fifth biomarker is not too far behind in the pecking order. The lasso has,
as expected, most (in fact: all but five) coefficients equal to zero and only finds one
biomarker. For the t statistics and PLS coefficients we would have to define cutoff
limits discriminating between potential biomarkers and not-so-interesting variables
in order to proceed, but here we will leave it at this point.

The BioMark package provides a very simple way to perform analyses like the
one above using the get.biom function. Exactly the same results for student’s t
test and the PLS and lasso models can be obtained in one command:

> biomarkerSets <-
+ get.biom(X, factor(Y), type = "coef", ncomp = nPLS,
+ fmethod = c("studentt", "pls", "lasso"))

Since the second argument is a two-level factor, the function assumes classification
is the goal. The result is a list, with an element for each of the fmethod entries. The
"studentt" and "pls" results are simple coefficient vectors, but the "lasso"
element is a matrix, with one column for each of the λ penalties considered. If we
would have selected multiple PLS components, also the PLS result would have been
a matrix.

Apart from variable selection based on coefficient size, BioMark implements
several other criteria. One is Stability Selection (Meinshausen and Bühlmann 2010;
Wehrens et al. 2011), basically repeating a particular selection procedure on different
subsets of the data, and retaining only those choices that are more or less consistently
present across all results. For methods that do not select a subset themselves, such
as PLS, the selection is made on the basis of the coefficient size, so the approach is
very much related to the selection process described above. A second one is called
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Fig. 11.10 Pairs plot for the coefficients calculated with PLSDA and lasso models, combined with
the test statistics from repeated t tests. True biomarkers are indicated in larger black symbols. The
t test and PLSDA pick up four out of five biomarkers as the largest coefficients. The lasso selects
five non-zero coefficients, the largest of which indeed corresponds to a biomarker

Higher Criticism (Donoho and Jin 2004, 2008; Wehrens and Franceschi 2012b)
after an idea originally proposed by John Tukey. This approach basically uses the
deviation of a set of p values from the expected uniform behavior under the null
distribution to select a cut-off point after which differences are no longer interesting.
Neatly summarized by the phrase “the z score of the p value” it assumes that in
the large majority of cases the null hypothesis is true, a situation that should apply
to many cases in metabolomics, and maybe even in -omics sciences in general.
Recently, Generalized Higher Criticism (GHC) was introduced (Barnett et al. 2017)
to explicitly take correlations between variables into account.

An example of applying stability selection to PCDA and PLSDA is shown below:
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> apple.stab <- get.biom(X = X, Y = factor(Y), ncomp = 1:3,
+ type = "stab", fmethod = c("pls", "pcr"))
> selected.variables <- selection(apple.stab)
> unlist(sapply(selected.variables, function(x) sapply(x, length)))

pls pcr
1 38 45
2 46 40
3 48 41

The two methods (indicated with "pls" for PLSDA and "pcr" for PCDA, respec-
tively) lead to approximately the same number of variables that consistently show up
in the top ten of the model coefficients in terms of size. Looking at the top ten is an
arbitrary choice. One can change this using the biom.options function; it is also
possible to indicate the size of the primary selections by a fraction of the original
number of variables.

Just to put the problem into context, it is important to realize that in practice
resources for following up on potential biomarkers are often limited. That means
that the emphasis usually is on prioritization rather than on selecting the “correct”
set. It is quite common to see similar results when comparing lists of biomarkers
obtained with different methods—“different” methods are not always very different
under the hood. However, it is important to remember that these lists of potential
biomarkers are basically hypotheses that should be confirmed or refuted in follow-
up experiments. Using domain knowledge to interpret the results in a useful way is
essential.

11.6 Calibration Transfer

Imagine a company with high-quality expensive spectrometers in the central lab
facilities, and cheap simple equipment on the production sites, perhaps in locations
all over the world—you can easily see why a calibration model set up with data from
the better instruments (the “master” instruments) may do a better job in capturing
the essentials from the data. In general, however, it is not possible to directly use
the “good” model for the inferior (“slave”) instruments: there will be systematic
differences, such as differentwavelength ranges and resolutions, aswell as some less-
clear ones; every measuring device has its own characteristics. Predictions directly
using the model from the master instrument, if possible at all, will not always be of
a high quality.

Constructing individual calibration models for every instrument separately is of
course the best strategy to avoid incompatibilities. However, this may be difficult
because calibration samples may not be available, or very expensive. Ideally then,
onewouldwant to use themodel of themaster instrument for the slave spectrometers,
too. Several ways of achieving this have been proposed in the literature (de Noord
1994). For one thing, one may try to iron out the differences between the slaves and
the master by careful preprocessing, usually including variable selection. In this way,
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parts of the data that are not too dependent on the instrument—but are still relevant for
calibration purposes—can be utilized. This is sometimes called robust calibration in
chemometrics literature, and is not to be confused with robust regression as is known
in statistics.

Another approach has become known under the phrase calibration transfer or
calibration standardization (Wang et al. 1994). The goal is to use a limited number
of common calibration samples on the slave instruments to adapt the model devel-
oped on the master. This strategy is also useful in cases where instrument response
changes over time, or when batch-to-batch differences occur. Although a complete
recalibration is always better, it has been reported that an approach using standard-
ization leads to an increase in errors by only 20–60%, which in practice may still be
perfectly adequate.

Several variants of calibration transfer have been published (Wang et al. 1995;
Bouveresse et al. 1995). The simplest isdirect standardization (DS,Wanget al. 1994).
For a set of samples measured on both instruments, one constructs a transformation
F relating the measurements on the master instrument, X1, to the measurements on
the slave X2:

X1 = X2F (11.5)

The transformation can be easily obtained by a generalized inverse:

F = X+
2 X1 (11.6)

Alternatives are to use PCR or PLS regression, which are less prone to overfit-
ting. Thus, responses measured on the slave instrument can then be transformed to
what they would look like on the primary instrument. Consequently, the calibration
model of the primary instrument applies—this approach is also known as backward
calibration transfer. The reverse (forward transfer) is also possible: spectra of the
high-resolution master instrument can be transformed to be similar to the data mea-
sured on the lower-quality slaves. The latter option is usually preferred in on-line
situations, where speed is an issue.

To illustrate this, we will use the shootout data available from theChemomet-
ricsWithR package. It consists of NIR data of 654 pharmaceutical tablets, measured
at two Multitab spectrometers. Each tablet should contain 200 mg of (undisclosed)
active ingredient. The data have already been divided into training, validation and
test sets. The complete wavelength range is from 600 to 1898 nm; we will use the
first-derivatives of the area between 1100 and 1700 nm (calibrate.1). Let us
first build a PLS model for the training data, using the pls package:



11.6 Calibration Transfer 275

−4
−2

0
2

4

wavelength (nm)

m
od

el
 c

oe
ffi

ci
en

ts
set 1
set 2

1100 1200 1300 1400 1500 1600 1700 1600 1620 1640 1660 1680 1700

−4
−2

0
2

4

wavelength (nm)

m
od

el
 c

oe
ffi

ci
en

ts

Fig. 11.11 Regression coefficients for the 3-LV PLS models of the NIR shootout data. The right
plot zooms in on the area between 1600 and 1700 nm

> data(shootout)
> wl <- seq(600, 1898, by = 2)
> indices <- which(wl >= 1100 & wl <= 1700)
> nir.training1 <-
+ data.frame(X = I(shootout$calibrate.1[, indices]),
+ y = shootout$calibrate.Y[, 3])
> mod1 <- plsr(y ˜ X, data = nir.training1,
+ ncomp = 5, validation = "LOO")
> RMSEP(mod1, estimate = "CV")
(Intercept) 1 comps 2 comps 3 comps 4 comps

22.052 17.954 5.827 4.946 4.896
5 comps

4.724

Three components should be enough. The model based on the spectra measured at
the second instrument (mod2) is made in the same way, and also requires three latent
variables.

Figure 11.11 shows the regression vectors of the two models. Some small dif-
ferences are visible, in particular in the areas around 1100, 1600 and 1700 nm. As
a consequence, mod1 fares very well in predictions based on spectra measured on
instrument 1:

> RMSEP(mod1, estimate = "test", ncomp = 3, intercept = FALSE,
+ newdata = data.frame(y = shootout$test.Y[, 3],
+ X = I(shootout$test.1[, indices])))
[1] 4.974

Then again, predictions for data from instrument 2 are quite a bit off:

> RMSEP(mod1, estimate = "test", ncomp = 3, intercept = FALSE,
+ newdata = data.frame(y = shootout$test.Y[, 3],
+ X = I(shootout$test.2[, indices])))
[1] 9.983

The average error for predictions based on data from instrument 2 is twice as large—
maybe surprising, because the model coefficients do not seem to be very different.
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Keep in mind, though, that the intercept is usually not shown in these plots—in this
case, a difference of more than twenty units is found between the intercepts of the
two models.

Now suppose that five samples (numbers 10, 20, ... 50) are available for standard-
ization purposes: these have been measured at both instruments. Let us transform
the data measured on instrument 2, so that the model of instrument 1 can be applied.
Now we can use an estimate of transformation matrix F to make the data from the
two instruments comparable:

> recalib.indices <- 1:5 * 10
> F1 <- ginv(shootout$calibrate.2[recalib.indices, indices]) %*%
+ shootout$calibrate.1[recalib.indices, indices]
> RMSEP(mod1, estimate = "test", ncomp = 3, intercept = FALSE,
+ newdata = data.frame(y = shootout$test.Y[, 3],
+ X = I(shootout$test.2[, indices] %*% F1)))
[1] 4.485

Immediately, we are in the region where we expect prediction errors of mod1 to be.
Matrix F1 can be visualized using the contour function, which sheds some light
on the corrections that are made:

> levelplot(F1, contour = TRUE)

The result is shown in Fig. 11.12. All numbers are quite close to zero. Horizontal
bands correspond with columns in F1, containing the corrections for the spectra of
the second instrument X2. The largest changes can be found in the final thirty or so
variables corresponding to the area between 1640 and 1700 nm, not surprisingly the
area where the largest differences in regression coefficients are found as well.

Because spectral variations are often limited to a small range, it does not nec-
essarily make sense to use a complete spectrum of one instrument to estimate the
response at a particular wavelength at the other instrument. Wavelengths in the area
of interest are much more likely to have predictive power. This realization has led
to piecewise direct standardization (PDS, Wang et al. 1994), where only measure-
ments xi−k, . . . , xi , . . . , xi+k of one spectrometer are used to predict xi at the other
spectrometer. This usually is done with PLS or PCR. The row-wise concatenation of
these regression vectors, appropriately filled with zeros to obtain the correct overall
dimensions, will then lead to F, in the general case a banded diagonal matrix.

An obvious disadvantage of the method is that it takes many separate multivariate
regression steps.Moreover, one needs to determine the window size, and information
is lost at the first and last k spectral points. Nevertheless, some good results have
been obtained with this strategy (Wang et al. 1994).

Methods that directly transform the model coefficients have been described as
well, but results were disappointing (Wang et al. 1992). Apart from this, a distinct
disadvantage of transforming the model coefficients is that the response variable y
is needed. The DS and PDS approaches described above, on the other hand, can be
applied even when no response information is available: in Eq. 11.6 only the spectral
data are used.
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Fig. 11.12 Contour lines of the transformation matrix F1, mapping spectral data of one NIR
instrument to another

11.7 Batch Correction

In the previous sectionwe tried tomake two analytical instruments comparable, in the
sense that data measured on one instrument could be analyzed with a model created
usingdata from theother instrument. Thisworks for relatively stable technologies like
NIR spectroscopy, but if one is really looking for maximal sensitivity and resolution,
even data measured on the same instrument may be not completely comparable. A
case in point is mass spectrometry. Large numbers of samples are typically measured
in batches, in between which maintenance or cleaning may take place. As a result,
batches often show systematic differences, which may or may not be large enough
to influence the result. In the area of (MS-based) metabolomics, for example, batch
correction is a more or less standard data preprocessing step. The first question
obviously is: do we see batch effects in our data? As so often, PCA is very helpful
here, the reason being that batch effects, even when small, are typically occurring
very consistently across all samples and therefore are likely to show up in global
visualization methods like PCA.

Again we look at the arabidopsis data set introduced in Sect. 11.1. In this
case, missing values have been imputed by column means. From the PCA scoreplot
in Fig. 11.13 it is clear that batches 1 and 2 stand out from the rest; for some other
batches we see reasonably good overlap. Batch 8 is an interesting case: one of the
power cuts took place in the middle of measuring this batch, and one can clearly
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Fig. 11.13 PCA visualization of autoscaled metabolomics data from a ten-batch LC-MS measure-
ment of Arabidopsis thaliana samples. Batch effects are clearly visible—in particular, batches 1, 2
and 8 (highlighted) stand out. The average Bhattacharyya distance between the batches is shown in
the plot title

see two point clouds: it could be a good idea to split this batch into two sub-batches
before applying batch correction methods (we will not do so here). Batch-to-batch
differences can be quantified using the Bhattacharyya distance which measures the
distance between two normal distributions (note that the batch PCA scores do resem-
ble normal distributions). It is defined by

DB = 1

8
(μ1 − μ2)

TΣ−1(μ1 − μ2) + 1

2

(
detΣ√

detΣ1 detΣ2

)

where μ1, μ2, Σ1 and Σ2 are the means and covariance matrices of the two distri-
butions, and

Σ = Σ1 + Σ2

2
.

Rather than using the full data, we use the PCA scores in, e.g., two dimensions,
which leads to pleasantly simple covariance matrices and easy calculations. If no
batch effects are present, the batches should overlap and the distances should be very
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close to zero. Figure 11.13 contains the average between-batch distance in the figure
title.

Many different techniques can be applied for batch correction (Dunn et al. 2011;
Hendriks et al. 2011). Typically, one concentrates on quality control (QC) sam-
ples, injected several times in each batch. These can then be used to assess average
response values within each batch, and even to model and later correct trends within
a batch. The top panel in Fig. 11.14 presents data for the second metabolite in the
arabidopsis data set also discussed in Sect. 11.3:

> ara.df <- cbind(data.frame(X = arabidopsis[, 2]),
+ arabidopsis.Y)
> ref.idx <- ara.df$SCode == "ref"
> plot(X ˜ SeqNr, data = ara.df, ylim = c(20, 24),
+ col = as.numeric(ref.idx) + 1,
+ pch = c(1, 19)[as.numeric(ref.idx) + 1],
+ xlab = "Injection number", ylab = "Intensity (log-scaled)",
+ main = paste("Metabolite 2 before correction"))
> batch.lims <- aggregate(ara.df$SeqNr,
+ by = list(ara.df$Batch),
+ FUN = range)$x
> abline(v = batch.lims[-1, 1] - 0.5, lty = 2)

There are clear differences between the batches, and in several cases also clear trends
within batches. After correcting using the straight lines through the QC samples, the
behaviour is much more uniform, as indicated in the bottom panel. For this example,
the correction can be easily performed in a few line of code. First we estimate the
regression lines through theQC samples for the individual batches. These correspond
to the values that would be expected for QC samples at these locations, indicated in
Fig. 11.14 as red lines:

> BLines <- lm(X ˜ SeqNr * Batch, data = ara.df,
+ subset = SCode == "ref")
> ara.df$QCpredictions <- predict(BLines, newdata = ara.df)
> for (ii in levels(ara.df$Batch))
+ lines(ara.df$SeqNr[ara.df$Batch == ii],
+ predict(BLines, newdata = ara.df[ara.df$Batch == ii, ]),
+ col = 2)

Next, we simply subtract these QC predictions from the actual data, and add the
global mean to get the data to a “normal” level:

> ara.df$corrected <-
+ ara.df$X - ara.df$QCpredictions + mean(ara.df$X)

Plotting the corrected values then leads to the bottompanel inFig. 11.14.Bydefinition
all lines through the QCs are horizontal and at the same level, but also the variation in
the study sample intensities has decreased markedly. A particular advantage of this
method is that it is capable of handling missing values: only if too few QC samples
are available to estimate the within-batch trends or batch averages the correction
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Fig. 11.14 Intensities of one of the metabolites in the arabidopsis data set. Batches are indi-
cated with vertical dashed lines; QC samples—on which the straight lines are based—are indicated
with filled circles. To facilitate easy comparison, the vertical scales of the two plots are equal

cannot be performed. Note that the PCA score plots and the associated between-
batch distance measures cannot handle missing values, and these have been imputed
by column means in order to least affect the plots and the numerical results.

Limiting ourselves to those metabolites showing fewer than 50 missing values,
and estimating linear trends within batches using not only the QC samples but also
the study samples, we can easily obtain a full corrected data matrix:

> correctfun <- function(x, seqnr, batch) {
+ huhn.df <- data.frame(x = x, seqnr = seqnr, batch = batch)
+ blines <- lm(x ˜ seqnr * batch, data = huhn.df)
+ huhn.df$qcpred <- predict(blines, newdata = huhn.df)
+ huhn.df$x - huhn.df$qcpred
+ }
>
> nna.threshold <- 50
> x.idx <- apply(arabidopsis, 2, function(x) sum(is.na(x)) < 50)
> correctedX <- apply(arabidopsis[, x.idx], 2, correctfun,
+ seqnr = arabidopsis.Y$SeqNr,
+ batch = arabidopsis.Y$Batch)
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Fig. 11.15 The
arabidopsis data from
Fig. 11.13 after batch
correction. No particular
batch structure can be
observed, in agreement with
the very low Bhattacharyya
distance shown in the plot
title
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Well, “full”: only 163 metabolites satisfy the missing-values criterion. The PCA
scoreplot of this corrected matrix is shown in Fig. 11.15. In comparison to Fig. 11.13
the batches are much more overlapping, also indicated by the much lower between-
batch distance in the plot title.2

Not only linear but also non-linear approximations for trends, often based on
smoothing techniques like the loess have been used—note that when the number
of QC samples is low, non-linear smoothing like the loess function mentioned in
Chap. 3 is not without risks. Alternatively, one may use all samples, including QC as
well as study samples to estimate averages and trends within batches (Wehrens et al.
2016), provided that the injection order is properly randomized. This leads to more
variation, so if one applies smoothing techniques one should be careful not to follow
local variations too quickly, but has the advantage that many more points become
available. Since missing values are a common problem in metabolomics, including
more samples leads to more chances for succesful batch correction.

So far, we have corrected each variable individually, and inspection of the cor-
rection factors shows that this indeed is necessary: apparently batch effects differ
for individual metabolites. Still, we could hypothesize that a multivariate correction
would be able to benefit from correlations between metabolites. A method that does

2One may object here: many metabolites were not taken into account because they contained too
manymissing values. However, the between-batch distance for the subset of the original data matrix
corresponding to the columns that could be corrected is even larger than the one of the full matrix:
3.868. This may be surprising at first, but on second thought it makes sense: batch effects are most
visible in columns that contain few missing values.
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this is called “Removal of Unwanted Variation” (RUV), and implemented in the R
package RUVSeq (Risso et al. 2014). Originally devised for genomics data, it is
based on a PCA decomposition of the data from the QC samples (Gagnon-Bartsch
and Speed 2012; Livera et al. 2015). Projecting the study samples in this subspace
gives an idea of the unwanted variation present in the data, and an opportunity to
remove it. The only choice that the user needs to make is the dimensionality of the
subspace – it has been reported that values in the range of three to ten PCs lead to
very similar results (Wehrens et al. 2016). The disadvantage of this approach is that
missing values need to be imputed before the method can be applied. For the visual-
isation of batch effects in PCA score plots we used column means to impute missing
values (the correction itself would not use these imputed values), but to do so here
would be quite wrong. One would rather use a value like the smallest intensity mea-
sured in the data set (Wehrens et al. 2016) or even draw from estimated log-normal
districutions (Uh et al. 2008). Note that imputation by zeroes would be among the
worst possible choices since actual values typically are very far away from zero.

As an example, let’s apply the RUVmethod to the column subset with fewer than
50 missing values, imputing them by column minima.

> X <- arabidopsis[, x.idx]
> na.idx <- is.na(X)
> X[na.idx] <- min(X, na.rm = TRUE)

The RUVs function uses the scIdx argument to specify which samples are the
actual replicates. Here, these are the QC samples. For the correction itself we use a
three-dimensional PCA subspace, indicated by the k = 3 argument:

> idx <- which(arabidopsis.Y$SCode == "ref")
> replicates.ind <-
+ matrix(-1, nrow(X) - length(idx) + 1, length(idx))
> replicates.ind[1, ] <- idx
> replicates.ind[-1, 1] <- (1:nrow(X))[-idx]
> X.RUVcorrected <-
+ t(RUVs(x = t(X), cIdx = 1:ncol(X), k = 3,
+ scIdx = replicates.ind, isLog = TRUE)$normalizedCounts)
> X.RUVcorrected[na.idx] <- NA

Note that the data matrix is transposed in the call to RUVs – the result of the fact that
the methodology was originally developed for gene expression data, where columns
of a data matrix usually refer to samples rather than to variables. The result of the cal-
culation should be transposed, too, to get back to our usual conventions. The scIdx
argument is used to indicate which samples are the QC samples. For more informa-
tion on its exact definition consult the manual page of RUVs. The last line reinserts
the missing values. This corrected data matrix leads to an average Bhattacharyya
distance of 0.032, slightly smaller than our series of univariate corrections.
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11.8 Multivariate Curve Resolution

InMultivariate Curve Resolution (MCR, sometimes indicatedwithAlternating Least
Squares, ALS, or even MCR-ALS), one aims at decomposing a data matrix in such
a way that the individual components are corresponding directly to chemically rele-
vant characteristics, such as spectra and concentration profiles. In contrast to PCA, no
orthogonality is imposed. This comes at a high price, however: in PCA, the orthogo-
nality constraint ensures that only one linear combination of original variables gives
the optimal approximation of the data (up to the sign ambiguity). In MCR, usually a
band of feasible solutions is obtained. On the other hand, the orthogonality constraint
in PCA prevents one from direct interpretation of the PCs: real, “pure” spectra will
almost never be orthogonal. This direct interpretation is the goal of MCR.

Monitoring a reaction by some form of spectroscopy is a classical example: during
the reaction products are formed which may, in turn, react to form other compounds.
The concentrations of the starting compounds go down over time, those of the end
products go up, and those of the intermediates first go up and finally go down again.
Some of the components may be known to be present, others may be unexpected and
their spectra unknown. Another example, often encountered, is given by data from
HPLC-UV analyses: the sample is separated over a column and at certain points in
time the UV-Vis spectra are measured. Again, this results in concentration profiles
over time for all compounds in the sample, as well as the associated pure spectra.

An example of such a data set is bdata. It consists of UV measurements at
73 wavelengths, measured at 40 time points. Two data matrices are available; at this
moment wewill concentrate on the first. The sample is amixture of three compounds,
two of which are diazinon and parathion-ethyl, both organophosphorus pesticides
(Tauler et al. 1996). A perspective plot of the data is shown in Fig. 11.16.
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Fig. 11.16 The HPLC-UV data set, a mixture of two compounds eluting at different time points.
The left panel shows a perspective plot of the first data matrix; the right panel shows the spectra of
the two compounds
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11.8.1 Theory

The basis of the method is laid in a seminal paper by Lawton and Sylvestre (Lawton
and Sylvestre 1971), but the real popularity within the chemometrics community
came two decades later (Tauler 1995; de Juan et al. 2000). In the ideal case, only the
number of components and suitable initial estimates for either concentration profiles
or pure spectra should have to be provided to the algorithm. The data matrix typically
contains the spectra of the mixture at several time points, and can be decomposed as

X = CST + E (11.7)

where C is the matrix containing the “pure” concentration profiles, S contains the
“pure” spectra and E is an error matrix. The word “pure” is quoted since there is
rotational ambiguity: CR−1 and RST will, for any rotation matrix R, lead to the
same approximation of the data:

X = CST = CR−1RST (11.8)

Whether it is possible to identify one particular set of CR−1 and RST as better than
others depends on the presence of additional information. This often takes the form
of constraints. If C indeed corresponds to a concentration matrix, it can only contain
non-negative elements. Such a non-negativity constraint is applicable formany forms
of spectroscopy as well, like a number of other constraints that will be briefly treated
below.

The decomposition of Eq. 11.7 is usually performed by repeated application of
multiple least squares regression—hence the name ALS. Given a starting estimate
of, e.g., C, one can calculate the matrix S that minimizes the residuals E in Eq. 11.7,
which in turn can be used to improve the estimate of C , etcetera.

Ŝ = XTC(CTC)−1 = XTC+ (11.9)

Ĉ = XS(ST S)−1 = X
(
ST

)+
(11.10)

Equations 11.9 and 11.10 alternate until no more improvement is found or until the
desired number of iterations is reached.

11.8.2 Finding Suitable Initial Estimates

The better the initial estimates, the better the quality of the final results—moreover,
the MCR algorithm will usually need fewer iterations to converge. Therefore it pays
to invest in a good initialization. Several strategies have been proposed. Perhaps
the most simple, conceptually, is to calculate the ranks of submatrices, a procedure
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that has become known in chemometrics as Evolving Factor Analysis (EFA, Maeder
1987). The original proposal was to start with a small submatrix, andmonitor the size
of the eigenvalues upon adding more and more columns (or rows) to the data matrix;
later approaches apply a moving window, e.g., Evolving Windowed Factor Analysis
(EWFA, Keller and Massart 1991). Several other methods such as the Orthogonal
Projection Approach (OPA, Sanchez et al. 1994) and SIMPLISMA (Windig and
Guilment 1991) are not based on SVD, but on dissimilarities between the spectra.
These typically return the indices of the “purest” variables or objects. Here, we focus
on EFA and OPA.

11.8.2.1 Evolving Factor Analysis

EFA basically keeps track of the number of independent components encountered
in the data matrix upon sequentially adding columns (often corresponding to time
points). This is especially useful in situations where there is a development over
time, such as occurs when monitoring a chemical reaction—the reaction proceeds
in a number of steps and it can be interesting to see when certain intermediates are
formed, and what the order of the formation is. In this context, the result of an MCR
consists of the pure spectra of all species, and their concentration profiles over time.

Themost basic implementation of EFA takes a datamatrix and the desired number
of components as arguments. A basic R implementation could be the following:

> efa <- function(x, ncomp) {
+ nx <- nrow(x)
+ Tos <- Fros <- matrix(0, nx, ncomp)
+ for (i in 3:nx)
+ Tos[i, ] <- svd(scale(x[1:i, ], scale = FALSE))$d[1:ncomp]
+ for (i in (nx-2):1)
+ Fros[i, ] <- svd(scale(x[i:nx, ], scale = FALSE))$d[1:ncomp]
+
+ Combos <- array(c(Tos, Fros[, ncomp:1]), c(nx, ncomp, 2))
+ list(forward = Tos, backward = Fros,
+ pure.comp = apply(Combos, c(1, 2), min))
+ }

In the forward pass, starting from a submatrix containing only three rows, the singular
values of iteratively growing matrices are stored. The backward pass does the same,
but now the growth starts at the end and is in the backward direction. The “pure”
profiles then are obtained by combining the forward and backward traces, where it is
assumed that the first compound to come up is also the first one to disappear. Should
one be interested in initial estimates of the other dimension, it suffices to present a
transpose matrix as the first argument.

For the HPLC-UV data mentioned above, the forward and backward passes give
the result shown in Fig. 11.17:
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Fig. 11.17 Forward (left plot) and backward (right) traces of EFA on the HPLC-UV data

> X <- bdata$d1
> X.efa <- efa(X, 3)
> matplot(X.efa$forward, type = "l", ylab = "Singular values", lty=1)
> matplot(X.efa$backward, type = "l", ylab = "Singular values", lty=1)

In the left plot, showing the forward pass of the EFA algorithm, the first compounds
starts to come up at approximately the fifth time point. The second and third come
in at about the thirteenth and nineteenth time points. In the backward trace we see
similar behaviour. Estimates of the “pure” traces are obtained by simply taking the
minimal values—we combine the first component in the forward trace with the last
component in the backward trace, etcetera.

> matplot(X.efa$pure.comp, type = "l", lty = 1,
+ xlab = "wavelength number", ylab = "response")
> legend("topright", legend = paste("Comp", 1:3),
+ lty = 1, col = 1:3, bty="n")

The result is shown in Fig. 11.18. Although the elution profiles do not yet resemble
neat chromatographic peaks, they are good enough to serve as initial guesses and start
the MCR iterations. In some cases, logarithms are plotted rather than the singular
values themselves—this can make it easier to see when a compound starts to go up.

11.8.2.2 OPA—The Orthogonal Projection Approach

Rather than estimating concentration profiles, where the implicit assumption is that
a compound that comes up first is also the first to disappear, one can also try to
find wavelengths that only lead to absorption for one particular compound in the
mixture. Methods like the Orthogonal Projection Approach (Sanchez et al. 1994)
and SIMPLISMA (Windig and Guilment 1991) have been developed exactly for that
situation. Put differently, they focus on finding time points in the chromatograms
in which the spectra are most dissimilar. Several related methods are published as
well—an overview is available in Sanchez et al. (1996). Here, we will treat OPA
only.
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Fig. 11.18 Estimated pure traces using EFA for the HPLC-UV data

The key idea is to calculate dissimilarities of all spectra with a set of reference
spectra. Initially, the reference set contains only one spectrum, usually taken to be
the average spectrum. In every iteration except the first, the reference set is extended
with the spectrum that is most dissimilar—only in the first iteration, the reference
is replaced rather than extended by the most dissimilar spectrum. As a dissimilarity
measure, the determinant of the crossproduct matrix of Yi is used:

di = det(Y T
i Yi ) (11.11)

where Yi is the reference set, augmented with spectrum i :

Yi = [Yref yi ] (11.12)

Several scaling issues should be addressed; usually the spectra in the reference set
are scaled to unit length (Sanchez et al. 1996), and that is the convention we will also
use.

A version of opa is available in the alsace package. Just like efa, opa takes a
data matrix and the desired number of components as arguments—in addition, the
user can supply one or several components that will be used as the reference spectra,
the starting point of the OPA algorithm. For the HPLC-UV data, this leads to

> X.opa <- opa(X, 3)

In this case, the pure spectra rather than the pure elution profiles are obtained as the
columns in X.opa. The result is shown in Fig. 11.19. Clearly, the first component
represents something very strange and is probably not a valid spectrum. The other
two components look better.
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Fig. 11.19 Pure spectra obtained using OPA for the HPLC-UV data set

11.8.3 Applying MCR

The initial estimates of either elution profiles or pure spectra can be used to initiate
the MCR iterations of Eqs. 11.9 and 11.10. The simplest possible form of MCR is
based on a combination of only a couple of functions. The first, normS, takes a set
of spectra and normalizes them to unit length:

> ## spectra are stored in the rows of the matrix here
> normS <- function(S) {
+ sweep(S,
+ 1,
+ apply(S, 1, function(x) sqrt(sum(xˆ2))),
+ FUN = "/")
+ }

Functions getS and getC take the data to estimate spectra given profiles, or the
other way around:

> getS <- function(data, C) {
+ normS(ginv(C) %*% data)
+ }
> getC <- function(data, S) {
+ data %*% ginv(S)
+ }

The mcr function determines which of these to call first, and then continues to call
both alternatingly, using updated versions of the estimated spectra or profiles. This
continues until the maximum number of iterations is reached, or until convergence:
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> mcr <- function(x, init, what = c("row", "col"),
+ convergence = 1e-8, maxit = 50) {
+ what <- match.arg(what)
+ if (what == "col") {
+ CX <- init
+ SX <- getS(x, CX)
+ } else {
+ SX <- normS(init)
+ CX <- getC(x, SX)
+ }
+
+ rms <- rep(NA, maxit + 1)
+ rms[1] <- sqrt(mean((x - CX %*% SX)ˆ2))
+
+ for (i in 1:maxit) {
+ CX <- getC(x, SX)
+ SX <- getS(x, CX)
+
+ resids <- x - CX %*% SX
+ rms[i+1] <- sqrt(mean(residsˆ2))
+ if ((rms[i] - rms[i+1]) < convergence) break;
+ }
+
+ list(C = CX, S = SX, resids = resids, rms = rms[!is.na(rms)])
+ }

Depending on the nature of the initialization, the algorithm starts by estimating
pure spectra (input parameter what == "col") or elution profiles (what ==
"row"). For theMoore-Penrose inversewe again use functionginv from theMASS
package. The RMS error for the initial estimate is calculated and the iterations are
started. The algorithm stops when the improvement is too small. Alternatively, the
algorithm stops when a predetermined number of iterations has been reached.

The result of applying this algorithm is visualized in Fig. 11.20:

> X.mcr.efa <- mcr(X, X.efa$pure.comp, what = "col")
> matplot(X.mcr.efa$C, type = "n",
+ main = "Concentration profiles", ylab = "Concentration")
> abline(h = 0, col = "lightgray")
> matlines(X.efa$pure.comp * 5, type = "l", lty = 2, col = 1:3)
> matlines(X.mcr.efa$C, type = "l", col = 1:3, lty = 1, lwd = 2)
> legend("topright", legend = paste("Comp", 1:3),
+ col = 1:3, lty = 1, bty = "n")
> matplot(t(X.mcr.efa$S), col = 1:3, type = "l", lty = 1,
+ main = "Pure spectra", ylab = "Intensity")
> abline(h = 0, col = "lightgray")
> legend("topright", legend = paste("Comp", 1:3), lty = 1,
+ bty = "n", col = 1:3)

The original concentration profile estimates from EFA have been indicated in dahsed
lines in the left plot. Clearly, the new estimates are much better. The peak shapes
now are close to what one should expect from a chromatographic separations. There
are also a couple of problems: all three compounds seem to have at least two peaks,
and some of the concentration values are negative. The corresponding estimates of
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Fig. 11.20 Estimates of concentration profiles (left) and spectra of pure compounds (right) for the
HPLC-UV data with MCR. The dashed profiles in the left plot, blown up by a factor of five to show
them more clearly, indicate the initialization values from EFA

the pure spectra are shown on the right. Compared to the “true” spectra shown in
Fig. 11.16, we see that components 1 and 3 do rather well (although also here we
see negative values). Component 2, corresponding to the component with the lowest
concentration estimates, seems to be a false positive, or corresponds to an unknown
contamination.

The quality of the model can be assessed by looking at the succession of RMS
values during the MCR iterations:

> X.mcr.efa$rms
[1] 0.02185517 0.00013678 0.00013658 0.00013658
> X.mcr.opa$rms
[1] 0.00487332 0.00345439 0.00014360 0.00013658 0.00013658

Both the EFA- and OPA-based models end up with the same error value; note that
the initial guess provided by OPA is already very close to the final result. Although
both models achieve the same RMS error, they are not identical: this is a result of
the rotational ambiguity, where there is a band of solutions with similar or identical
quality.

11.8.4 Constraints

One remedy for the rotational ambiguity is to use constraints. From the set of equiv-
alent solutions, only those are considered relevant for which certain conditions hold.
In this particular case two constraints are immediately obvious: a non-negativity con-
straint can be applied to both concentration profiles and spectra, and in addition the
concentration profiles can be thought to be unimodal—compounds show a unimodal
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distribution across the chromatographic column. A non-negativity constraint can be
crudely implemented by inserting lines like

> SX[SX < 0] <- 0

and

> CX[CX < 0] <- 0

in the mcr function, but a better way to do this is to use non-negative least squares.
This (as well as several other constraints) has been implemented in the als function
of packageALS.Again, the function requires initial estimates of eitherC or S. Several
ways of normalizing spectra are available—here, we choose normS = 0.5 which
corresponds to scaling the spectra to vectors of unit length. Let us see what this leads
to:

> X.als.efa <- als(CList = list(X.efa$pure.comp),
+ PsiList = list(X), S = matrix(0, 73, 3),
+ nonnegS = TRUE, nonnegC = TRUE,
+ normS = 0.5, uniC = TRUE)
Initial RSS 1.6477
Iteration (opt. S): 1, RSS: 1.3928, RD: 0.15471
Iteration (opt. C): 2, RSS: 0.00071595, RD: 0.99949
Iteration (opt. S): 3, RSS: 0.00039749, RD: 0.44481
Iteration (opt. C): 4, RSS: 0.00022507, RD: 0.43378
Iteration (opt. S): 5, RSS: 0.00020012, RD: 0.11084
Iteration (opt. C): 6, RSS: 0.0001692, RD: 0.15453
Iteration (opt. S): 7, RSS: 0.00016206, RD: 0.042201
Iteration (opt. C): 8, RSS: 0.00015392, RD: 0.050228
Iteration (opt. S): 9, RSS: 0.00015045, RD: 0.022493
Iteration (opt. C): 10, RSS: 0.00014986, RD: 0.0039409
Iteration (opt. S): 11, RSS: 0.00014783, RD: 0.013575
Iteration (opt. C): 12, RSS: 0.00014789, RD: -0.00046161
Initial RSS / Final RSS = 1.6477 / 0.00014789 = 11141

The output shows the initial RSS, which in this case—since we specify zeros as the
initial estimate of S—equals the sum of squares in X. After estimating S, the RSS
value has decreased to 0.533. The “RD” in the output signifies the improvement
in the corresponding step: using the first estimate for the pure spectra to estimate
concentration profiles virtually eliminates the fitting error. After ten iterations, the
algorithm stops because there is no further improvement.

The non-negativity constraints for both spectra and diffusion profiles are given
by the nonnegS and nonnegC arguments; optS1st = TRUE indicates that the
first equation to be solved is Eq. 11.9—giving S0 as an argument is therefore not
necessary, although it is necessary to provide a (dummy) matrix of the correct size.
The unimodality constraint is indicated with uniC = TRUE. The results are shown
in Fig. 11.21. The two initializations lead to very similar models in terms of elution
profiles, although the spectra are quite different.Note that the order of the components
is not the same. Here, the RSS value of the OPA-based model is slightly better:
9.4 × 10−5 vs. 1.48 × 10−4.
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Fig. 11.21 Results for the HPLC-UV data with non-negativity and unimodality constraints: the
top row shows the fit after initialization with EFA, the bottom line with OPA

As already stated, constraints are a way to bring in prior knowledge and to limit
the number of possible solutions to the chemically relevant ones. Apart from the non-
negativity and unimodality constraints encountered in the previous section, several
others can be applied. An important example is selectivity: in some cases one knows
that certain regions in a particular spectrumdo not contain peaks fromone compound.
This forces the algorithm to assign any signal in that region to spectra of other
components. Knowledge of mass balances in chemical reactions can lead to closure
constraints, indicating that the sum of certain concentrations is constant.

The most stringent constraint is to impose an explicit model for one or even both
of the data dimensions. One example can be found in the area of diffusion-ordered
spectroscopy (DOSY), a form of NMR in which proton patterns of compounds in
a mixture are separated on the basis of diffusion coefficients. Theoretical consid-
erations lead to the assumption that the diffusion profiles follow an exponential
curve (Stilbs 1981, 1987). Indeed, so-called single-channel algorithms for interpret-
ing DOSY data concentrate on fitting mono- or bi-exponentials to individual vari-
ables (Huo et al. 2003). Such data may conveniently be tackled with MCR, where
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the diffusion profiles are fit using exponential curves. This is reported to lead to more
robust results than less stringent constraints (Huo et al. 2004). An extension of the
ALS package, TIMP, allows to do this in R as well. A well-documented example of
the use ofTIMP in the realm of GC-MS data, where individual peaks are represented
by generalized normal distributions, can be found in Mullen et al. (2009).

11.8.5 Combining Data Sets

In the classical application, MCR-ALS leads to estimates of pure spectra and pure
concentration profiles, given amatrix of several measurements of themixture. Exten-
sions are possible in cases where either one mixture is studied with different mea-
surement methods, or where several mixtures containing the same components are
studied (Munoz and de Juan 2007). In the first case, the concentration profiles of the
individual components C are the same, but it is possible to estimate the pure spectra
for two or more spectroscopic techniques:

[X1|X2|...|Xn] = C
[
ST
1 |ST

2 |...|ST
n

]
(11.13)

In the other situation one assumes that the constituents of the different samples are
the same, but the concentrations are not:

⎡
⎢⎢⎣
X1

X2

...

Xn

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
C1

C2

...

Cn

⎤
⎥⎥⎦ ST (11.14)

An example of an application where common spectra and distinct concentration
profiles are estimated is available from the als manual page. This particular form
of MCR allows one to quantify compounds in the presence of unknown interferents:
one of the additional data matrices is then the outcome of a measurement of a known
quantity of the compound of interest. Because of the linearity of the response in most
forms of spectroscopy, it is then possible to relate the concentration in the mixture
to that of the standard.

The HPLC-UV data provide a way to see how this works: a second data matrix
is present, containing the same three compounds. Since the variability of the chro-
matographic separation is much larger than the variability in spectral response, we
assume common spectra, and will estimate two sets of concentration profiles. This
can be done with the following code:
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> C0 <- matrix(0, 40, 3)
> X2.als.opa <-
+ als(CList = list(C0, C0),
+ PsiList = list(bdata$d1, bdata$d2),
+ S = X.opa, normS = 0.5,
+ nonnegS = TRUE, nonnegC = TRUE,
+ optS1st = FALSE, uniC = TRUE)

We can assess how well the true spectra are approximated by the MCR results by
looking at the correlations:

> cor(X.als.opa$S, cbind(c(bdata$sp1), c(bdata$sp2)))
[,1] [,2]

[1,] 0.6675 0.9996
[2,] 0.1112 0.3963
[3,] 0.9991 0.6527
> cor(X2.als.opa$S, cbind(c(bdata$sp1), c(bdata$sp2)))

[,1] [,2]
[1,] 0.6609 0.9998
[2,] 0.9573 0.5535
[3,] 0.9839 0.7053

In both cases the third and first MCR component correspond to the true spectra.
Clearly, in this case the gain of using two data matrices rather than one is limited:
although the spectrum of the second pure compound is estimated better, the first is
actually estimated with less accuracy.

Thiswayof combining datamatrices also provides an opportunity for quantitation:
when some of the components of the mixture are known, one can measure samples
in which these components are present in known concentrations. This immediately
enables the analyst to convert the area under the curve in the concentration profiles to
true concentrations.Additionally, in complex situations such asmetabolomics,where
many different metabolites are present, some of which having exactly the same UV-
Vis spectra because of identical chromophores (parts of the chemical structure leading
to absorbance of light at specific wavelengths), it may be extremely difficult to arrive
at meaningful solutions (Wehrens et al. 2013). Injecting a couple of standards, or
evenmixtures of standards, in such cases can really help to disentangle the individual
spectra and put the MCR algorithm on the right track. The alsace package (Wehrens
et al. 2015b) mentioned earlier was designed just for this situation, and provides
tools to align and group peaks across samples, split data into several time windows
that can be analysed separately, and quantify peak intensities in chromatographic
profiles.
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