Chapter 6 ®)
Multi-index and Multi-variable Grectie
Mittag-Leffler Functions

6.1 The Four-Parametric Mittag-Leffler Function: The
Luchko—Kilbas-Kiryakova Approach

6.1.1 Definition and Special Cases

Consider the function defined for oy, s € R (o} + a3 # 0) and 3, 3, € C by the
series

o0 k
_ Z
Ea],ﬂl;az,ﬁz(z) = ];:O F(alk T ﬂl)r(azk n 52) (Z (S (C) (6]1)

Such a function with positive a; > 0, o, > 0 and real 3}, 5, € R was introduced
by Dzherbashian [Dzh60]. When oy = «, 5y = fand ap = 0, 3, = 1, this function
coincides with the Mittag-Leffler function (4.1.1):

Eu,ﬂ;O,l(Z) = Ea,ﬁ‘(z = Z € (C) (612)
: ,; I'(a k +0)

Therefore (6.1.1) is sometimes called the generalized Mittag-Leffler function or four-
parametric Mittag-Leffler function.

Certain special functions of Bessel type are expressed in terms of
Eq, 81;0,,8,(2):

The Bessel function of the first kind (see e.g., [ErdBat-2, n. 7.2.1-2], [NIST, p.

217, 219))
y 2
1,(2) = (%) Eipirini (—%) . (6.13)

The Struve function (see e.g., [ErdBat-2, n. 7.5.4], [NIST, p. 288])
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2

Z\r+! z
H,(z) = (E) E1y43/2:13)2 <_Z> . 6.1.4)

The Lommel function (see e.g., [ErdBat-2, n. 7.5.5])

T u—v+1 ptv+1 22
Spw(2) = F( F\=F— ) Bl e | =7

4 2 4
(6.1.5)
The Bessel-Maitland function (see e.g., [Kir94, App. E, ii])
Jlit(z) = Eu,VJrl;l,l (—2). (6.1.6)
The generalized Bessel-Maitland function (see e.g., [Kir94, App. E, ii])
o b v+2\
Jya@) = (5) E o101 (—2). (6.1.7)

6.1.2 Basic Properties

First of all we prove that (6.1.1) is an entire function if o} + a > O.

Theorem 6.1 Let oy, an € R and 3y, 3, € C be such that a% + oz% # 0 and oy +
oy > 0. Then E,, 3,.a,.5 (2) is an entire function of 7 € C of order

p= 1 (6.1.8)

041+Oéz

and type

ag

o= (al +a2)ﬂlr:r]‘¥2 (al +a2)“1+u2 ' (619)
lovi] (o5

< Rewrite (6.1.1) as the power series

1
T T(ank + BT (k + ()

oo
Ea pronn(@) =Y ad', (6.1.10)
k=0

Using Stirling’s formula for the Gamma function we obtain

|kl

lcksl

~ lan | az| k4T — +o00 (k — 00).

Thus, E,, 3,:0,.5,(2) is an entire function of z when o + o, > 0.
We use [Appendix B, formulas (B.5) and (B.6)] to evaluate the order p and the
type o of (6.3.1). For this we apply the asymptotic formula for the logarithm of the
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Gamma function I'(z) at infinity [ErdBat-1, 1.18(1)]:

1 1 1
log I'(z) = <z - 5) logz —z+ Elog(Zz) + 0 (Z) (Iz] = oo, |argz| < m).

(6.1.11)
Applying this formula and taking (6.1.10) into account, we deduce the asymptotic
estimate

1
log <a> ~ klog(k)(a; + ap) (k — 00)

from which, in accordance with [Appendix B, (B.5)], we obtain (6.1.8).
Further, according to [Appendix A, (A.24)], we have

ok + ) (6.1.12)

JtBi—L p 1
= 2m""? (ajk +ﬁj)a/k+‘j/ @kt [1 +0 <%>] (k — 00)

for j = 1,2, and we obtain the asymptotic estimate

2
T (aik + BT (ook + Bo) ~ 27 [ [(a;0) " 972670k (k > 00).  (6.1.13)

Jj=1
From (6.1.10) and (6.1.13) we have

2
lim sup (kl/p|ck|1/k) = lim sup kl/”l_[ [(Jajlk) e ]

k—00 k—o00 j=1

2 2
= et 1_[ la;| 7% = el/r 1_[ loi| ™.
j=1 j=1

Substituting this relation into [Appendix B, (B.6)] we obtain

p

1 . _ o1
o=—|[TlsI™ | =1+ (lonl o] ~) 7=

P
aj ap
(051 + az) ajtap <al + az) ajtap
= bl
o | oz

which proves (6.1.9). >

Remark 6.2 For «; > 0 and a; > 0, relations (6.1.8) and (6.1.9) were proved by
Dzherbashian [Dzh60].
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6.1.3 Integral Representations and Asymptotics

The four-parametric Mittag-Leffler function has the Mellin—Barnes integral repre-
sentation

(—2)~*ds, (6.1.14)

E,, S, B (2) =

1 / )1 —s)

2mi J (B — a1) I (B2 — azs)

where £ = L_ is a left loop, i.e. the contour which is situated in a horizontal strip,
starting at —oo 4 i¢; and ending at —oo 4 iy, with —0o < ¢ < 0 < ¢y < 4-00.
This contour separates poles of the Gamma functions I"(s) and I" (1 — s).

By using (6.1.14) the function E,, 3,.q,.53, can be extended to non-real values of
the parameters. If the parameters oy, 3;; aw, 3, are such that Re (a; + ;) > 0, then
the integral (6.1.14) converges for all z # 0. This is a consequence of the following
asymptotic formulas for the function H(s) = % in the integrand of
(6.1.14), where s =t 4+ io, (t — —00), and the properties of the Mellin—Barnes
integral:

— forRea; >0, Reay, >0

Re(a+az)t Re(ay) Re(az)qt
t R R
\H(s)| ~ M, (U) [Re(a) ela) 7T (6.1.15)

| |i [Re(3))+oTm(a;)]!
=

— forRea; <0, Reay >0

—mim(@t, (6 1 16)

Re(a+an)t Re(ap) Re(a)qt
t [IRe(ay) Re(a) ]
[H(s)| ~ M; (U) | 2| e
¢ | |2[Re<ﬂ,»>+alm<a,->r‘
l‘ i=1

— forRea; >0, Reay <0

—mlm(ax)t (6.1.17)

M>Re(a1+0zz)l [Re(al)Re(a]) |Re(a2)|Re(a2)]t .
€

|H ()] ~ M3 ( 3
| lz[Re(a,-HaIm(a,v)r'
t|i=1

We do not present here exact asymptotic formulas for E,, 3,:q,.3,(z) as z = oo. They
can be considered as formulas for a special case of the generalized Wright function
and H-function (see Sect. 6.1.5 below).

From the series representation of the four-parametric Mittag-Leffler function we
derive a simple asymptotics at zero, valid in the case Re {a] + ap} > Oforall N € N:

N k

Z
Emﬂ];azﬂz (z) = Z

0 (zI"*"), z— 0. (6.1.18
k=0 I'(atk + BT (ck + 32) + (|Z| ) 7 — ( )
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The following integral representation of the four-parametric Mittag-Leffler func-
tion (see [RogKor10]) shows its tight connection to the generalized Wright function
(see Chap. 7).

LetO < aj < 2,8; € C, j = 1, 2. Then the following representation of the four-
parametric generalized Mittag-Leffler function E,, 3,; ,,5,(z) holds ([RogKor10]).

Eo 50,3, (2) = (6.1.19)
Io(2), 7€ G (e, p),
B+l {
a2 — + il
Io(2) + — (ﬂ, Mm’z), 2 € GP (e, . o),
2mion an an
B+l 5
z ® « oy — Ghop+1 o
Io(2) + ~— ¢<_l,u;w)
2mian an an
—B1+1 {
L2 ¢(%, M;Z;,), e GP(ew ),
2mion o o
(6.1.20)
with
) 1/a, (=5 +1)
| oy . Coi+D / &2 G dé
I - G —ar d R S
0@ 4200 / ¢ Gomda GG —z
(€ ) (€ p2)
(6.1.21)
00 k
z
,052) = —_— 6.1.22
¢l fi2) ; KT (ok + B) (0122

where ¢ («, 5;z) is the classical Wright function (see Appendix F),
ra; . . .
Wy € (T* min{ma;, 7r}), 0 < p1 < py < 2,and € > 0 is an arbitrary positive num-
ber.
Herey(¢; 0) (e > 0, 0 < € < 7) is acontour with non-decreasing arg ¢ consisting

of the following parts:

(1) theray arg( = —0, |(| > €;
(2) the arc —0 < arg ¢ < 0 of the circle |(| = ¢;
(3) theray arg¢ = 0, (] = €.

In the case 0 < 6 < 7 the complex (-plane is divided by the contour (¢; ) into two
unbounded parts: the domain G~ (¢; 6) to the left of the contour and the domain
G (e; 0) to the right. If § = 7, the contour (¢; 6) consists of the circle || = €
and of the cut —oco < ¢ < —e. In this case the domain G (¢; #) becomes the circle
|¢| < € and the domain G (¢; #) becomes the domain { : |arg (| < 7, || > €}.
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For two different values of 8, 6,, 0 < 8; < 6, < 7 the union of the two unbounded
domains between the curves y(e; 0;) and y(¢; 6,) is denoted by G (¢; 0y, 6,) .

6.1.4 Extended Four-Parametric Mittag-Leffler Functions

Let the contour £ in the Mellin—Barnes integral

1 re)rd—s)
2mi J I'(Br — o) (Br — as)

(—z)~’ds, (6.1.23)

now coincide with the right loop £, i.e. with a curve starting at 400 + i¢; and
ending at +00 + iy (—00 < | < Yy < +00), leaving the poles of I"(s) at the left
and the poles of I" (1 — ) at the right. Then this integral exists for all z 7 0 whenever
Re{a; + az} < 0.

Thus the integral (6.1.23) possesses an extension to another set of parameters.
It defines a new function which is called the extended generalized Mittag-Leffler
Sfunction and is denoted &,, ,:a,.5,(2) (see [KilKor05], [KilKorO6a]).

Using the same approach as before, i.e. calculating the integral (6.1.23) by the
Residue Theorem, one can obtain the following Laurent series representation of

5@1,;’51;02,/12 (2):

o0
d,
Ear i n@ = ) (6.1.24)

k=0

where
1

CT(—aitk+1) = )T (—aalk + 1) = B)

dy =

In the case Re {a] 4+ ay} < 0 the series (6.1.24) is convergent for all z € C, z # 0.
The function &,, 8,:a,,5, (z) has an asymptotics at z — 0 similar to that of the standard
four-parametric Mittag-Leffler function E, 3,.a,,3,(2),Re {a; + a2} > 0atz — oo.
The asymptotics of &, 3,:a,.5 (2) at z — 0o can be displayed in the form

N
dy 1
E[ylﬁ];azﬁz(z) = E F “+ 0 <|Z|T+l) , T —> OQ. (6.1.25)
k=0

6.1.5 Relations to the Wright Function and the H-Function

For short, let us use the common notation &,, 3,:q,,3, for the usual four-parametric
Mittag-Leffler function and for its extension in this subsection. For real values of
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the parameters o, a; € R and complex values of 3y, 5, € C the four-parametric
Mittag-Leffler function &,, 3,.0,.3, can be represented in terms of the generalized
Wright function and the H—function.
These representations follow immediately from the Mellin—Barnes integral repre-
sentation of the function &,, ,:q,.3, and the properties of the corresponding integrals.
Let us present some formulas relating &,, 3,:q,.3, to the generalized Wright func-
tion , W, :

(1) If o) + ap > 0 and the contour of integration in (6.1.14) ischosenas £ = L _,
then
(1, D

Ear g (@) =12 [(51, ay), (B2, a2)

z} . (6.1.26)

(2) If oy + an < 0 and the contour of integration in (6.1.14) is chosen as £ = L,
then

1 [(1,1)

Earprianp (@) = —1¥2
Anen Z B1 — ar, —ay), (B — ap, —2)

1} . (6.127)
Z

Analogously, one can obtain the following representation of &,, 3,:q4,,3, in terms
of the H-function:

(1) If oy > 0, ap > 0 and the contour of integration in (6.1.14) is chosen as £ =
L_, then

_ o
Futrioan@ = Fs [(0, D. (1= B ). (1 = o, o)

z} . (6.1.28)

(2) If ay > 0, a; < 0 and the contour of integration in (6.1.14) is chosen as £ =
L_s When ay + ap > 0or L = L, when o) + ap < 0, then

0, 1), (B2, —2)
(07 ])7 (1 - ﬁlv al)

Eun iraonn(2) = H [ x} - (6.1.29)

(3) If a; < 0, ap > 0 and the contour of integration in (6.1.14) is chosen as £ =
L_o whenay +ap > 0or L =L, when a) + a; < 0, then

0, D), (B1, —an)

Ll
Bou e () = H2 [(o, D. (1= B, a2)

x:| . (6.1.30)

(4) If a; <0, ap < 0 and the contour of integration in (6.1.14) is chosen as £ =
L0, then

0,1), , —aq), , —
Eon s (2) = H;!’]l |:E0, 1; B1, —ar), (Br, —a2)

x:| . (6.1.31)
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6.1.6 Integral Transforms of the Four-Parametric
Mittag-Leffler Function

In order to present elements of the theory of integral transforms of the extended four-
parametric Mittag-Leffler function we introduce a set of weighted Lebesgue spaces
L, ,(R;). These spaces are suitable for the above mentioned integral transforms
since the latter are connected with the classical Mellin transform (see, e.g., [Mari83,
p- 36-39]).

Let us denote by £, ,(R}) (1 <r < oo, v € R) the space of all Lebesgue mea-
surable functions f such that || f||, , < oo, where

00 1/r
dt
I flly, = / " f(O)I ] <> (1 <r <09); [Ifllv.co =esssup [[t” f(D)]l.
t>0
0

(6.1.32)
In particular, for v = 1/r the spaces L, , coincide with the classical spaces of
r-summable functions: £y, = L, (R;) endowed with the norm

00 1/r
I/l = /If(t)l’dt <oo (1=r<o0).
0

For any function f € £, ,(Ry) (1 <r < 2) its Mellin transform M f is defined
(see, e.g., [KilSai04, (3.2.5)]) by the equality

+00
M) = / fEeHe' dr (s=v+it; v,t €R). (6.1.33)

If feLl,,()Ly.1, then the transform (6.1.33) can be written in the form of the
classical Mellin transform with Re s = v (see Appendix C):

+00
(Mf)(s)sz(t)f—ldt. (6.1.34)
0

An inverse Mellin transform in this case can be determined by the formula

v+ioo

f(f)=L. / MfF)(s)t™°ds (v =Res).
27 /

We have for the Mellin transform of the generalized hypergeometric Wright func-
tion
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( ) I"(s) ﬁ I'(a; — «;5)

ais Q)1,p . im1

M [quq |:(ij Bidig )IH (s) = ﬁ G — i : (6.1.35)
j

j=1

Re (a;
(a,->0, Bi>0;i=1,....,p; j=1,...,9; 0 <Res < m1n|: e(a)]>’

I<i<p Q;
and, in particular, for the Mellin transform of the classical Wright function

r
Mp(e, 5501 (s) = ﬁ (Res > 0). (6.1.36)

The Mellin transform of the H-function under certain assumptions on its parame-
ters coincides with the function H'}-/ (s) in the Mellin—Barnes integral representation
of the H-function (see [PrBrMa-V3, 8.4.51.11], [KilSai04, Theorem 2.2]).

Let us introduce the following parameters characterizing the behavior of the H-

function (see Appendix F)

H (2) = Mot [

p.q

(aisai)l,p]
bj, Biig

a*zzai_ Z al+Zﬁj Z ﬁj?
i=1

i=n+1 j=m+1
q p
N S L
=1 j=1 i=1
Reb; 1 —Reg;
a=— min [ ° ] 8= min [—e“} (6.1.37)
1<j<m ﬁj 1<i<n Q;
Let a* > 0, s € C be such that
a<Res <f (6.1.38)

and for a* = 0 assume the following additional inequality holds:
ARes +Repu < —1. (6.1.39)

Then the Mellin transform of the H-function exists and satisfies the relation

m,n (alva)lp m,n (atsat)lp
<MH [ <b,,ﬁ,>1qD“) " [(b,,ﬂ,)lq

vi| (6.1.40)
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Since the four-parametric Mittag-Leffler function is related to the generalized
Wright function and to the H-function (see Sect. 6.1.5), then one can use (6.1.35)
or (6.1.40) to define the Mellin transform of the function E,, g,:q,.5,(z) and of its
extension &, 3,:q,,5 (2)-

6.1.7 Integral Transforms with the Four-Parametric
Mittag-Leffler Function in the Kernel

Integral transforms with the four-parametric Mittag-Leffler function in the kernel can
be considered as a special case of the more general H-transform. Let us recall a few
facts from the theory of the H-transform following [KilSai04]). The H-transform is
introduced as a Mellin-type convolution with the H-function in the kernel:

(ai,ai)l,p}f(,)d, (x > 0). (6.1.41)

H = Hmyn
Hf)(x) (/ r-q |:XI (bj,ﬂj)l,q

Let us recall some results on the H-transform in £, >-type spaces following
[KilSai04, Chap. 3] (elements of the so-called £, »-theory of H-transforms). Here
we use the notation (6.1.37) for the parameters a*, u, A, «, 3. We also introduce a
so-called exceptional set £ for the function H(s):

En={WweR:a<1—-—v < Fand H(s) has zeroson Res =1 —v}. (6.1.42)

Let

(i) a <1 —v < 3 and suppose one of the following conditions holds:
@ii) a* > 0, or
(i) a* =0, A(1 —v)+Rep <0.

Then the following statements are satisfied:

(a) There exists an injective transform H* € [L, 5, £1_, »] such that for any f €
L, > the Mellin transform satisfies the relation

o ) =5

si| MfHA —s) Res=1—vr).

(6.1.43)
Ifa*=0, A0 —v)+Repu=0, v ¢ Ey, then H* is bijective from L, , onto
‘[-:1—11,2'
(b) Forany f, g € L, the following equality holds:

o]

ff(X)(H*g)(X) dx = /(H*f)(X)g(X)dX- (6.1.44)
0

0
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(c) Let feL,p, AeCand h > 0. If ReA > (1 —v)h — 1, then for almost all
x > 0 the transform H* can be represented in the form:

H" fHx) = hxl_()‘+])/hdix()\+l)/h

X
m,n+1
/ Hp+l q+1 [

IfRe XA < (1 —v)h — 1, then

]( ﬁé)lhz ((a,,Aa )11ph)} Foydr. (6.1.45)

H" Hx) = —hxl_()“*‘l)/hix()\ﬂ)/h

dx
m+1,n
/Hp+1 q+1 |:

(@i, ai)i,p, (=A h)
=1L, b, Biig

(d) The H*-transform does not depend on v in the following sense: if two values of
the parameter, say v and 7, satisfy condition (i) and one of the conditions (ii) or
(iii), and if the transforms H* and H* are defined by the relation (6.1.43)in £, »
and L3, respectlvely, then H* f = H* fforany f € £,,()Ls2

(e) Ifeithera® > Oora® = 0,and A(1 — v) + Re . < 0, then for any f e L,,we
have H* f = H f, i.e. H* is defined by the equality (6.1.41).

] f@)dr. (6.1.46)

An extended £, ,-theory (for any 1 < r < 4-00) of the H-transform is presented
in [KilSai04].

The integral transform with the four-parametric Mittag-Leffler function in the
kernel is defined for vy, ap € R, Gy, 3, € C by the formula:

(Eay 500, ) (6) = /Eal,a,;az,az(—xt)f(t)dt (x > 0), (6.1.47)

where for a; + as > 0 the kernel &, 8:0,,8, = Eay,81;00,5, (1.€. it is the four-
parametric generalized Mittag-Leffler function defined by (6.1.1)), and for o +
oy < 0 the kernel &,, 3,:0,,5, is the extended four-parametric generalized Mittag-
Leffler function defined by (6.1.23).

The properties of this transform follow from its representation as a special case
of the H-transform.

(1) If g > 0, ap > 0, then

O, 1)
f(t)dz.

(Ewlw@l:az,ﬁzf) (x) Z/Hll;gl xt
0 (O$ 1)9(1 _ﬁlfal)v(l _62, OZQ)

(6.1.48)
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) If a; > 0, ap < 0, then

(07 1)? (527 _OQ)
F(di.  (6.1.49)

(Ealqﬁl;az,ﬁzf) (x) :/H21$,21 xt
0 (07 1)’ (l_ﬂl, Oé])

3) If a1 <0, ap > 0, then

(05 1)’ (619 _Oél)
f(@®)dz. (6.1.50)

(Eﬂlqﬂﬁa’zﬂzf) (x) = / Hzl,’zl xt
0 (O’ 1)3 (1 - /82’ 042)
@) If oy <0, ap <0, then

0, 1), (B, —ar), (B2, —2)
f(t)dz.

(Eal,ﬁl:azﬂzf) (%) = / H31,’11 xt
J 0.1)
(6.1.51)

Based on (6.1.48)—(6.1.51) and on the above presented elements of the £,, »-theory of
the H-transform one can formulate the following results for the integral transforms
with the four-parametric generalized Mittag-Leffler function in the kernel. Let us
present these only in the case (1) (i.e. when a1 > 0, a; > 0). All other cases can be
considered analogously (see, e.g.. [KilKor06a], [KilKor06b]).

Leta; > 0, ap > 0. Then the parameters a*, i, A, «, (3 are related to the param-
eters of the four-parametric Mittag-Leffler function as follows:

af=2—-—a—ay, A=aj+a, u=1-06,—0, a=0, §=1.

LetO <v < 1,1 >0,a; > 0and 3y, B, € Cbesuchthatay + ap < 2o0rag +
ay =2and 3 — 2v < Re (B; + 3,). Then:

(a) There exists an injective mapping E*'l, Brionfs € [Ly,z, Ll_y,z] such that for any

«

f € L, the following relation holds:

. ~ re)ra—s B L
(MES, 510005, F) ) = F i ( —aay M=) Res =1-0),
(6.1.52)

If either o + ap < 2 ora; + ap =2 and 3 — 2 < Re () + (32) and the addi-
tional conditions
B +k B +1

s # (k,1 =0,1,2,---), forRes =1—v, (6.1.53)
o (6%)

s #

are satisfied, then the operator E* is bijective from £, ; onto £;_, ».
(b) For any f, g € £, » we have the integration by parts formula
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[e¢]

o0
/.f(x)Ezlﬁl;azﬁzg(x)dx = /EZ“@I;azﬂzf(x)g(x)dx. (6.1.54)
0

0

@ If feLl,o,\eC,h>0,then E? f is represented in the form:

ay, 150,05

d
_ I=(A\+D/h A\+1)/h
(Ezl,ﬂ];az,ﬂzf) (x) = hx M —x /

dx
1,2 (_)\7 h)a (01 1)
x / o [’” ©0,1), (1= B, a1), (1 = B, @2), (A — 1, h)} S
0
(6.1.55)
when Re A > (1 — v)h — 1, and in the form:
(Ezl_gl;(YZ_ng) (x) — _hxl—()\-‘rl)/h%x()\-‘rl)/h
[ i [ ]0.1), (=X )
x / i [“ (=2 = 1,1, (0, 1), (1 = By, ), (1 = B, az)} Jndr
0
(6.1.56)

whenRe A < (1 —v)h — 1.

(d) The mapping E Brion.n doF:s not depend on v in the following sense: if
0 <y, v < 1 and the mappings Ef 5. 5., ES ;.. 5, are defined on the
spaces Ly, 2, Ly, respectively, then E . f= g, f for all
f € ‘CV],2 m £V2,2'

(e) If f € L, ,andeithera; + ap <2o0ra; +ap; =2and3 — 2v < Re (8; + (),
then for all f € £, we have E} ;. o f =Eq, 50,4 f, i.e. the mapping
E* 5 is defined by the formula (6.1.48).

ar,friaa,

Bl Y T Hag P,

6.1.8 Relations to the Fractional Calculus

Let us present a number of (left- and right-sided) Riemann-Liouville fractional inte-
gration and differentiation formulas for the four-parametric Mittag-Leffler function.
Both cases (a; + ap > 0 and o + ap < 0) will be considered simultaneously (see
[KiKoRo13]). For simplicity we use the notation &,, 3,;a,.3, for the four-parametric
Mittag-Leffler function in both cases.

Letag, ap € R, a1 #0, ap # 0, By, 52 € C, and let the contour of integration in
(6.1.14) be chosen as L = L_,, when a; +ay > 0, and as £ = L, when o +
a; < 0. Let the additional parameters v, o0, A € C be such thatRey > 0, Rec > 0
andw € R, (w # 0).
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The left-sided Riemann—Liouville fractional integral of the four-parametric
Mittag-Leffler function is given by the following formulas:

(a) If a; < 0and ap > 0, then forx > 0

(I(;y+t0_l€(x1,/31; (yzﬂz()\tw)) ()C) =

O, D, d=0o,w), (B, —)

0+/~,/_1 1,2 _ w
X Hy3 [ Ax O0,1), =0 —7v,w), (1 =5, a)

} (w>0),

(Oa 1)’ (0 +% _LU), (617 _Oél)

oty—1g21 | _y,w
X H3,3[ Ax 0,1, (0,—w), (1 —/pr )

i| (w < 0).
(b) If ¢y < 0and ap < 0, then for x > 0

(I(’)y+t0-718(¥1,ﬁ1; Oéz,ﬁz(Atw)) (x) =

(Os 1)1 (1 -0, (U), (ﬂlv _Oél), (ﬁ21 _az) i|

oty—1ggl2 | _y,w
x H“[ A0.1), (-0 -7 w)

(w>0),
o+y— 2,1 w (05 1)7 (O—+FY’ _W), (/Blv_al)7 (ﬂZa —0[2)
X+ 1H4,2 |:—)\x ©.1). (o _w)i|
(w<0).
(¢) If oy > 0 and oy > O, then for x > 0
(1(’)\f+to-_lga],ﬂ1; a'z,ﬁz()\tw)) (x) =
it g2 [ 3w [0 D, (=0, w) }
* H2’4 |: )\x (O, 1)7 (1 — 0 —7, W), (1 - 617 Oél), (1 - 52»042)
(w>0),
it g2t [y oo |0, (@ 47, —w)
R [ Mo, (0, -w), (1 =Bran, A —527042)}
(w < 0).

The right-sided Riemann-Liouville fractional integral of the four-parametric
Mittag-Leffler function is given by the following formulas:

(a) If a; < 0and ap > 0, then forx > 0

(Ijt_agalﬁll az, B ()‘t_w)) (x) =

©. 1, =0+ w), (B, —)

y—o g l2 | _ —w
X177 Hy s |: Ax 0,1, d-0o,w), (1=7pra)

] (w>0),

(Ov 1)9 (Ua _w)’ (ﬁl’ _al)

o2l y,—w
x H3,3|: Ax 0, 1), (c—7v,—w), 1 = B, )

:| (w<0).
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(b) If &y < 0and o, < 0, then forx > 0

(Iztig ar,f1; az, ()\tiw)) (.X) =

(09 1)’ (1 — 0 +’Ya (U), (ﬁl’ _al)v (629 —042) ]

o 12|y e—w
> H‘“[ A 0.1, (1-0.w)

(w > 0),

(O, 1)s (Uv _(U), (/Bls _al)v (529 —052)

y—0o 21 _ —w
* H“[ A 0.1, (0 =7 —w)

(w<0).
(¢) If oy > 0and ap > 0, then forx > 0
(Izt_ggalﬁﬂ az, (At_w)) (x) =
y—ogl2| _ —w (O» 1)s (l —O'+’Y, Ld)
* H2.4 |: )\x (O’ 1)1 (1 — 0, LU), (] - ﬁl’ Oé]), (1 _627 Oé2):|
(w>0),
y—o 21| _ —w (Oa 1)5 (Uv —OJ)
. H2’4 [ Ax (O, 1)7 (U - 79 _w)s (1 - ﬁls al)v (l - /827 az)
(w < 0).

The left-sided Riemann—Liouville fractional derivative of the four-parametric Mittag-
Leffler function is given by the following formulas:

(@) If oy <0and ay > 0, then forx > 0

(D(;thgilgmﬁ]; a2, (Atw)) (X) =

(0’])7 (] _U,W), (ﬁlv_al)

o—y=1pgg21 | _y, w
* H-“[ A 0.1, (1= 0 +7.w), (1 B, a2)

} (w>0),

(07 1)7 (O— -7 —UJ), (ﬂl’ —Oél)

o—y—1pggl2 | _y,w
X7 H3,3 [ Ax (0’ 1), (O', —CU), (l — ﬂz, 0[2)

i| (w<0).
(b) If ; < 0and ap < 0, then for x > 0

(D(};&-ta_lgalqﬁl; .3 ()‘tw)) () =

0,1, d-0o,w), B, —a1), (b2, —x2)

0—7—1H1,2 v
* 42[ oD, (-0 +7,w)

(w>0),

o—y—1pgg2.1 | _y,w
x H“[ A10.1), (0, —w)

(07 1)7 (U -7 _W), (517 _Oél), (ﬁZ’ _a2) }

(W < 0).
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(¢) If oy > 0and ay > 0, then forx > 0

(Dg+t0-715(1],[f|; ()Q,ﬁz()\tw)) ('x) =

0, 1), (1 =0,w) }
O, D, =0+~ w), Ad=751a), (1=75,a)
(w > 0),

—y— 1,2 ¢
X7 1H2’4 |:_)\xw

0. 1), (0 =7 ~w) }
(Os 1)5 (U’ _(U), (1 _ﬁlval)’ (1 _623 az)
(w<0).

1 gy2.1 w
x° 7 Hy, |:—)\xw

The right-sided Riemann—Liouville fractional derivative of the four-parametric
Mittag-Leffler function is given by the following formulas:

(@) If oy <0and ay > 0, then forx > 0

(DZI_U Oq,ﬁ]; Déz,@g(At_w)) (-x) =

0.0, d=0—=7vw), (B, —u)

©,1), (1 -0,w), (1 — s, ) i| (w > 0),

x0T H3231 |:—)\x_'“"

(O, 1)7 (Ua —W), (/617 —Oél)

o gl2 | _ v
’ > [ T 0D, (07, —w), (1= B, @)

:| (w < 0).
(b) If ¢y < 0 and ap < 0, then for x > 0

(th—o ar, B ﬂzﬂz(_)‘t_w)) (x) =

O, D, I =0—=7w), Bi,—), (B2, —x2)

o2t |y mw
* H“[ M0, (- 0,w)

(w=>0),

x_g_»yH‘t],,zz [_)\x—w (O’ 1)7 (Ua —(.()), (ﬂlv —O[]), (/6)27 _OIZ) }

O, 1, (c+7v, —w)

(w < 0).
(¢) Ifa; > 0and ap > 0, then forx > 0

(th_agal,ﬂ]; az,fh (_)‘t_w)) (x) =
O,D, 1 —-—0—7v,w)

0, D, I-0o,w), (A=pFLao), (1-75,m) }
(w>0),

X7 H22241 |:—)\x_“

O, 1), (o, —w) :|
0, 1), (c+7,—w),d =1, a1), (1 =752, az)
(w < 0).

—o—y pyl.2 —
x"77H,, |:—)\x w
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6.2 The Four-Parametric Mittag-Leffler Function: A
Generalization of the Prabhakar Function

In this section we mainly follow the article [SriTom09].

6.2.1 Definition and General Properties

A generalization of the Prabhakar function (5.1.1) is proposed in [SriTom09] in the
following form

o]

V K (A/)Kn Zn
Elﬂ(z) = E mz(l; 3,7 € C; Rea > max{0, Rek — 1}; Re k > 0),
n=0
6.2.1)
L+0)

where (y); with § > 0 is the generalized Pochhammer symbol (v)s = o)
(cf. Appendix A, Sect.A.1.5). The function (6.2.1) is sometimes called the four-
parametric Mittag-Leffler function (a four-parametric generalization of the Prab-
hakar function). With k = g € Ny, min{Re 3, Rey} > 0, this definition coincides
with the definition proposed in [ShuPra07].

Theorem 6.3 ([SriTom09, Thm. 1]) The four-parametric Mittag-Leffler function
E:’;:;(z) defined by (6.2.1) is an entire function in the complex z-plane of order p and

type o given by

1 1 [ (Rek)Rer\”
p=——, o=—|—--77+) . (6.2.2)
Re(a— k) +1 p \ (Re a)Rea
Moreover, the power series in the defining equation (6.2.1) converges absolutely in
Rea
the disc |z| < (@Zﬂm whenever

Reao=Rex —1>0.

<1 The proof follows from the asymptotic properties of the Gamma function
r@=ze |21y 1 ol
TN 127 ' 2882 21

(z — oo, largz] <™ —¢e(0 <& <)),

where

and

r'z+a) ., (a—=>b)a+b-1) <i):|
Fz+b ° [1+ 2z o ’
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where a,b € C and z — oo along any curve joining z = 0 and z = co provided
z#—a,—a—1,...andz # —b, b —1
[e¢]
To determine the radius of convergence R of the power series Y ¢,z" one can
n=0
use the Cauchy—Hadamard formula

R = limsup
n—00

El

Cn+1

and for the order p and the type o of an entire function the following standard formulas

(see [Lev56])
_ nlogn . | |£
imsup —————, epo = limsupn|c,|~.
n—o0o 1 g1/| nl n—00

>
A number of further properties of the four-parametric Mittag-Leffler function
follows from its relation with the Fox—Wright function

1 (v, &
E) () = o Wi(z) [ ’ ] (6.2.3)
and with the Fox H-function (see [AgMiNil5])
’\/h 1,2 (1 -7, K’)?(O» 1)
(Z) (’Y) 2,2 (Z) [Z (0’ 1)’ (1 . ﬁ, Oé):| . (624)

6.2.2 The Four-Parametric Mittag-Leffler Function of a Real
Variable

Following [SriTom09] one can introduce an integral operator with the four-parametric
Mittag-Leffler function in the kernel

( jj;ﬂ@ (x) _/(x—t)d 'EL N (w(x — 0 (e (6.2.5)

It is well-defined for the following values of parameters:
v,w € C; Rea > max{0, Rex — 1}, min{Re 3, Re k} > 0.
Moreover, this operator is bounded in the Lebesgue space L; on any finite interval

a,bl,b > a:
1€ sl < Cillell,
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where

= 1Y) ke lw(® — a)Ree|r
Re
@) X:(;(nRea—i—Reﬁ)H“(an—i-ﬂ)l ! '

The following theorem describes the action of the Riemann—Liouville fractional

integral 1), and derivative D/, as well as the generalized Riemann—Liouville frac-
tional derivative (the Hilfer fractlonal derivative)

(De9) () = ( 0 (10 %)) (x) (6.2.6)

on the four-parametric Mittag-Leffler function E_ (1)
Theorem 6.4 ([SriTom09, Thm3]) Letx > a,a e R;,0<pu<1,0<v <1,and

Re o > max{0,Rex — 1}, min{Re 3, Rex,Re A} > 0, v,w € C.

Then the following relations hold:

(12 (€ = EXf i — ) ) @) = (¢ = )P ELS, @i — @),

(6.2.7)
(D (€ =@ ELSwi —a™)) () = (& = @) T E @i — a)),

(6.2.8)
(1)51’ ((z @) EL (- a)® )))(x) (=) FENE (Wt —a)®).

(6.2.9)

The Laplace transform of the four-parametric Mittag-Leffler function is given by
the following formula, which can be obtained using a term-by-term transformation
of the corresponding power series

L[ a- lE“(wxb)] (s) = 7) v [E‘é Z)) (. £) :‘;] (6.2.10)

6.3 Mittag-Leffler Functions with 2n Parameters

6.3.1 Definition and Basic Properties

Consider the function defined for «; € R (a% + -4 a,% #0)and 5; €eC (i =
I,---,n eN)by
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E (o, Pn;2) = Z 1_[] IF(oz,k+ﬂ, (z € O). 6.3.1)

When n = 1, (6.3.1) coincides with the Mittag-Leffler function (4.1.1):

E ((a, D)1;2) = Eq p5(2) = (z €0, (6.3.2)
;F( k+03)

and, for n = 2, with the four-parametric function (6.1.1):

0 k

_ Z
E ((a7 5)2’ Z) = Ealsﬂ];abﬂZ(Z) - ; F(Oélk + ﬁl)F(Olzk + 52) (Z © C)
(6.3.3)

First of all we prove that (6.3.1) under the condition oy + ay +--- + @, > 0O is
an entire function.

Theorem 6.5 Letn € Nando; e R, 3; e C(i =1,2,---,n) be such that
a%—i—ou—i—ai;ﬁo, al+ay+ -+ a, > 0. (6.3.4)

Then E ((«v, B)n; z) is an entire function of z € C of order

1
- 63.5
P @it ort o tan) (03

and type

a

o=]] (al +|~ : ~|+ a) o (6.3.6)
Q;

i=1

< Rewrite (6.3.1) as the power series
oo n
E(. P =Y af. a= ][I @k+8)]| - (6.3.7)
— j=I1

According to the asymptotic property (A.27) we have

ekl

[Ckr1]

~ 1_[| Jk|ﬂj — 1_[ |aj|ajkul+az+---+an s +OO (k N OO)

j=1

Then, if oy + o - - + «, > 0, we see that R = oo, where R is the radius of con-
vergence of the power series in (6.3.7). This means that E ((«, 3),; z) is an entire
function of z.
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We use [Appendix B, (B.5) and (B.6)] to evaluate the order p and the type o of
(6.3.1). Applying Stirling’s formula for the Gamma function I"(z) at infinity and
taking (6.3.7) into account, we have

1 n
log <a> =log l_[ I'(ajk+5))

j=1

n

- 1 1
= Z <ajk +8; — E) log(ak) — Z (k) + %log(Zﬂ) +0 (%> (k — 00).
j=I1

j=1

Hence the following asymptotic estimate holds:
1
log <—) ~klog(k)(a; + aa + -+ ) (k — 00). (6.3.8)
Ck

Thus, in accordance with [Appendix B, (B.5)], we obtain (6.3.5).
Further, according to (6.1.12) we obtain the asymptotic estimate

]_[ I(ajk+ 6;) ~ @m)"? H(ajk)af"”f*%e*“-f" (k — 00). (6.3.9)
Jj=1 j=1
By (6.3.7) and (6.3.9) we have
n
lim sup (k'*|cy|'/¥) =1lim sup k"7 [ | [(la;1k)~e™]

k—o00 k—00 =
j=1

n n
=eal+az+“-+a,,l—[|aj|7(l,' =el/pl—[|aj|7a,-.
j=1 j=1

Substituting this relation into [Appendix B, (B.6)] we have

L P . e
o==|[]l;™ | =@ +az+-+an) |[[]lo;I™
P\ j=i j=1
1_[ (al 4+ ... _l’_an>u1+---+un
— -, ]
j=1 lov|

which proves (6.3.6). >

Remark 6.6 In the general case a; + - - - o, > O the relations (6.3.5) and (6.3.6)
have been proved by Kilbas and Koroleva [KilKor05] (and also in a paper by
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Rogosin, Kilbas and Koroleva [KiKoRo13]), while in the particular case «; > 0
(j =1,...,n), in the works of Kiryakova, as [Kir99], [Kir00]. Note that if n > 1
the type o in (6.3.6) is greater than 1 (Th.1, Kiryakova [Kir10b]).

Remark 6.7 Whenn = 1,a; = a > 0and 8; = (3 € C, relations (6.3.5) and (6.3.6)
yield the known order and type of the Mittag-Leffler function E, 3(z) in (4.1.1) [Sect.
4.1]:

p=—, o=1. (6.3.10)

Remark 6.8 Whenn =2,a; eR, 3, € C(j =1,2) witha% +a§ #0and oy +
ay > 0, formulas (6.3.5) and (6.3.6) coincide with (6.1.8) and (6.1.9), respectively.

6.3.2 Representations in Terms of Hypergeometric Functions

We consider the generalized Mittag-Leffler function E ((«, 3),; z) in (6.3.1) under
the conditions of Theorem 6.5. First we give a representation of E ((«, 8),; 2)
in terms of the generalized Wright hypergeometric function ,W,(z) defined in
Appendix F, (F.2.6)]. By (A.17), (1) = k! = I'(k + 1) (k € Ny) and we can rewrite
(6.3.1) in the form

. re+1 2
E ((a, Bn; 2) = ZH, lr(ﬁ]+a,k)ﬁ (z € C). (6.3.11)

This yields the following representation of E ((«, 3),; z) via the generalized Wright
hypergeometric function 1\, (z):

(1, 1)
E ((a, B)ny 2) = 10 z| (zeQ). (6.3.12)
(ﬁls al)v ) (ﬁns Oén)

Next we consider the generalized Mittag-Leffler function (6.3.1) with n > 2 and
aj=m; eN({G=1,---,n):

E((m,B)n;2) = Zl’[, 1F(m,k+5/

- (D 2t
- Z “ 1= Tmjk + 53)) k! (Z €O. (6.3.13)

According to (A.14) with z = k + ;Z—’,m =m;(j=1,---,n)and (A.17) we have
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J

= (ZW)(lfmf)/zmT"k%" : l—[ (ﬁ’ +s +k>
o
s=0 J

~

_ @m0 T (5J H) <ﬁj +S>
s=0 m;j m;j k
mj—1 m;—1
_ o omik (=mp/2. Bi—% Bj+s Bj+s
=m"* | 2 D124 r(22r: PiTsy
' | @)=/ 11 ( )T (%),

Then applying (A.14) with z = & ,m=m;j, we get

F(th‘*‘ﬁj)zm F(ﬁ])l_[ <ﬁ]+s)

Hence
k

1 nd 1
Em o= 53 o | |
1—[ F(ﬁj) k=0 l—[ 1—[ (}+v> 1—[ m';l’ !

j=1 s=0 k o\ Jj=1

j=1s

Therefore, we obtain the following representation of the 2n-parametric Mittag-Leffler
function via a generalized hypergeometric function in the case of positive integer first

parameters o; =m; e N(j=1,---,n)

E ((m, B)n; 2) = ; (6.3.14)

B Br+m—1 ,

XlFm1+..»+m,1 1’ 3oy m 3-'~’m’~-‘7 m L
1 n n 1—[ m;j

m .
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6.3.3 Integral Representations and Asymptotics

The 2n-parametric Mittag-Leffler function can be introduced either in the form of a
series (6.3.1) or in the form of a Mellin—Barnes integral

1 rs)r({—
Ea.p),(2) = _/M

2mi z 1 T Bj—ajs)
j=1

(—=2)~*ds (z #0). (6.3.15)

ForRe a; + ... 4+ a,, > 0 one can choose the left loop £_, as a contour of integra-
tion in (6.3.15). Calculating this integral by using Residue Theory we immediately
obtain the series representation (6.3.1).

Ifa; > 0; 3, e R (j =1, ..., n),thenthe 2n-parametric Mittag-Leffler function
E((a, B),; z) is an entire function of the complex variable z € C of finite order, see
Theorem 6.5.

This result gives an upper bound for the growth of the 2n-parametric Mittag-
Leffler function at infinity, namely, for any positive € > 0 there exists a positive r.
such that

|Eq,, @) < expl(o +©)zlf}, ¥z, [z] > r-. (6.3.16)

More precisely, the asymptotic behavior of the function E,,, 3, (z) can be described
using the representation of the latter in terms of the H-function with special values
of parameters (see Sect. 6.3.7 below) and asymptotic results for the H-function (see
[KilSai04]).

6.3.4 Extension of the 2n-Parametric Mittag-Leffler
Function

An extension of the 2n-parametric Mittag-Leffler function is given by the represen-
tation

E((a, Bui ) = 2L f LOFAZS (g @ £0. (63.17)
i z l_[ I'(B; — «ajs)
J

=1

where the right loop £ = £ is chosen as the contour of integration L.
By using Stirling’s asymptotic formula for the Gamma function

[T (x +iy)| = @m)!2Lx =1 2e 7 T2 y € R [x] — 00), (6.3.18)
one can show directly that with the above choice of the integration contour the integral

(6.3.17) is convergent for all values of parameters oy, ..., o, € C, 51,..., 08, € C
such that Re o) + ... 4+ o, < 0 (cf,, e.g., [KilKor05]).
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Under these conditions (the choice of contour and assumption on the parameters)
the integral (6.3.17) can be calculated by using Residue Theory. This gives the fol-
lowing Laurent series representation of the extended 2n-parametric Mittag-Leffler
function: let oj, 8; € C (j = 1..n),z € C(z #0) withRe vy + ... + a, < O and
L = L, then the function £((«, B),; z) has the Laurent series representation

o0 dk n l
Ea, B)s2) =) —» di= . (6.3.19)
£t ke ‘ jl:! Ir'(-ajk —a;+B))

The series in (6.3.19) is convergent for all z € C \ {0}. Convergence again follows
from the asymptotic properties of the Gamma function, which yield the relation

. .
~ Y Re(ay)

|[|1dk| | N l—[ [oyj| "Re(@elm @arg(-a;0] g~ = "k = o0).

k1

Jj=1

By using the series representation of the extended 2n-parametric Mittag-Leffler
function it is not hard to obtain an asymptotic formula for z — oco. Namely, if
aj,B;€eC(j=1,...,n),ze€C (z#0) and Rea; +... + a,) < 0, with con-
tour of integration in (6.3.17) chosen as £ = L, then for any N € N we have for
z — oo the asymptotic representation

(o D)=y = ! [1 +0 <l>} (z = 00).
k=0 [ I'(—ajk —a; + ;)zk+! <
j=1

=

The main term of this asymptotics is equal to

n

1 1
e 99 =I17ma v [1 Lo <Z>] (z — 00).

j=1

The asymptotics at z — 0 is more complicated. It can be derived by using the
relations of the extended 2n-parametric Mittag-Leffler function with the generalized
Wright function and the H-functions (see Sect. 6.3.5 below) and the asymptotics of
the latter presented in [KilSaiO4].

Another possible way to get the asymptotics of £((«, (3),; z) for z — 0 is to
use the following. If a;, 3; e C (j =1..n),z€ C(z #0),Rea; + ... + o, <O,
L = L, then the extended 2n-parametric Mittag-Leffler function can be presented
in terms of the “usual” 2n-parametric Mittag-Leffler function:

1 1
E(a, Bl 2) = ZE ((—a, B—a),; Z) ) (6.3.20)
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6.3.5 Relations to the Wright Function and to the H-Function

In this section we present some formulas representing the 2n-parametric Mitttag-
Leffler function E((«a, (3),; z) and its extension £((«, (3),; z) in terms of the gen-
eralized Wright function ,¥, and the H-function.

For short, we use the same notation £((«, 3),; z) for the 2n-parametric Mitttag-
Leffler function and for its extension. These functions differ in values of the param-
eters «; and in the choice of the contour of integration £ in their Mellin—Barnes
integral representation.

For real values of the parameters o; € R and complex 5; e C (j =1,...,n)
the following representations hold:

(D) if )" a; >0,L =L_, then

j=1
Doy — (1,1 .
E((a, B)yi2) = 1Wn [(m A B ) z} ; (6.3.21)
2) if zn: aj <0, L =Ly, then
j=1
g [ 1
Ea, By 2) = 1‘112 |:(ﬁl Zar—ar), .. By — . —a) Z] . (6.3.22)

The above representations can be obtained by comparing the series representation
of the corresponding functions. In the case (6.3.22) one can also use the relation
(6.3.20).

In the same manner one can obtain the following representations of the 2n-
parametric Mittag-Leffler function and its extension in terms of the H-function:

(1) ifa; >0( =1,...,n),and £L = L_, then

gt [O.D
(@ D = Hip [(0, D0 = Br ), -, (1= By )

z:| . (6.3.23)

2)if a; >0 (j=1,...,p, p<n) aj <0 (j=p+1,...,n), and either
Zaj>0£1 E,oo,orZaj<0[, L0, then
]

j=1 j=1
(6.3.24)
@3 if a; <0 (j=1,...,p, p<n) a; >0 (j=p+1,...,n), and either

Za, >0,L= E_oo,orZa, <0, L = L4o0, then
j=1 j=1

O, DBy, —pi1) - Bor — )
E(a. B 2) = Hylypuy, f’“[(o, DA = Br ). (L By )
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(09 1)(ﬁ17_a1)"'(ﬁp9 ap)

El(a Bi) = Hylh o p+1[<0,1><1—ﬁp+1,ap+1> B ) ]
(6.325)

@) ifa; <0,(j=1,...,n)and £ = L, then

0,1 , =), .o, (B, —ay
£ iy = i [ 0 DO 0o

z] . (63.26)

6.3.6 Integral Transforms with the Multi-parametric
Mittag-Leffler Functions

Here we consider only the case when the parameters «; in the definition of the
2n-parametric Mittag-Leffler function and its extension are real numbers.

Since the 2n-parametric Mittag-Leffler function is related to the generalized
Wright function and to the H-function with special values of parameters (see Sect.
6.3.5), one can use (6.1.35) or (6.1.40) to define the Mellin transform of the function
E((a, B),; z) and of its extension £((a, B),; 2).

Now we present a few results on integral transforms with the 2n-parametric func-
tion in the kernel. The transforms are defined by the formula

(E(, B, f) (x) = /E((a, B),; —xt) f(H)dt (x > 0), (6.3.27)
0

with the 2n-parametric Mittag-Leffler function in the kernel. These transforms are
special cases of more general H-transforms (see Sect. 6.1.7). This can be seen from
the definition of the H-transforms (6.1.32) and the following formulas which relate
E(a, (),-transforms to H-transforms under different assumptions on the parameters.

(1) Leta; >0(j=1,...,n), L= L_q, then

E(a, B), /)x) = (6.3.28)

/HMH[

2) Let a; >0 (j=1,. ..,p p<n), aj<0 (j=p+1,...,n) and either

Za]>0ﬁ L_ OCorZ:04]<OE L, then
Jj=1 j=1

0.1, (1= Broa..... (1 B, anJ fndr.
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E(a, B), f)x) = (6.3.29)

/ ZR— [ ~aps): s G _a”)] flodr,
0

(0 1) (1 =B, ai),. (1 = Bps ap)
(3) Let aj <0 (j =1, ..,p p<n), a;j>0 (j=p+1,...,n) and either
Zaj>0£ £,Oo,orZaj<0[, Lo, then

j=1 j=1
(E(a, §),f) = (6.3.30)
11 O, D), (Br, —a1), ..., (Bp, —ap)
/HP“" pH [’“ 0.1, (1= Bysrs apsr)s - (1 —Bn,a»}f(’)d"
0
(6.3.31)
4) Leta; <0,(j=1,...,n)and £ = L, then
(E(a, 8),£)(x) =anl+11 1[ t Eg’ B’(5"_O“)""’(ﬂ”’_o‘")}f(r)dt.
’ (6.3.32)

Convergence of the integrals depends on the values of some constants (as defined
in formula (F.4.9), Appendix F). The constant a* takes different values in the above
cases:

n
Da*=2- 3% aj; (2) a* —Z—Za]—i- Z aj;
j=1 j=1 Jj=p+1
)4 n
Na*=2+Y aj— Y aj; 4a* :2+Zo¢,»;
=1 j=pt =

and the constants A, p, «, [ take the same values in all four cases:

We present results on E(«, 3),-transforms for two essentially different cases,
namely for the case when all «; are positive, and for the case when some of them
are negative.

A.Let0 <v < 1, ozj>0(j—1 ., n), ﬁje(C(]_l ., n) be such that either
0< Zal <20r2a1 =2and2v + ZReﬁ, >24 3.
Jj=l1 =1 =1
(a) There exists an injective mapping (transform) E*(a, f3), € [/3,,,2, El_,,yz] such
that the equality
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I'(s)I'(1—
(ME @, §),1) ) = L= vy -5, Res=1-1)
l:[l I'(B; — ajs)
"~ (6.3.33)
holds for any f € £, ».
Ifﬁ:aj =2,2v+ iReﬁj =2+ 7 and
j=1 j=1
s;s%,,.., s # ﬁ”;l (k,1=0,1,2,---) forRes = 1 — v, (6.3.34)
1 n

then the mapping E*(«, 3),, is bijective from £, onto £, 5.
(b) Forany f, g € L, the following integration by parts formula holds:

o0

/f(x) (E*(a, B),9) (x)dx —/(E*(a D f) )gxdx.  (6.3.35)

0

() If f eL,2,AeC,h >0, then the value E*(c, 3), f can be represented in the

form:
(E*(a, B),f) (x) = hx'=OFD/ hdix(“”/ h (6.3.36)
X

(=, h), (0, 1)
/H 242 [ O, 1), (1= By 1), (1= By ), (<A = l,h)} fad,
(6.3.37)

whenRe (\) > (1 —v)h — 1, or
(E*(a, B),f) (x) = —hx'~O+D/ hdﬂx“*”/ h (6.3.38)

X

2,1 O, 1), (=X h)

/H2 w2 [ — L), O, 1), (L= B an, ... (L= B, an)} Fioads,

(6.3.39)

whenRe (\) < (1 —v)h — 1.

(d) The mapping E*(«, 3), does not depend on v in the following sense: if
two values of the parameter 0 < v, 1, < 1 and the corresponding mappings
E*(a, B),.1, E*(a, §),., are defined on the spaces L, 5, L,, 2, respectively,
then E*(a, £),,, f = E*(ct, B)nf forall f € Ly, 2 Lono.
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(e) If feL,, and either 0 < Za] <2 or Zal =2 and 2v + ZReﬁj >
j=1 Jj=1 j=I1
2+ 12 5, then the mapping (transform) E*(c, 0),, coincides with the transform
E(a, ), given by the formula (6.3.27), i.e. E*(a, 8),f = E(a, 8),f,Vf €
L.

B. Let O<v<l, ;>0 (j=1,...,jp,jp<n) and aj<0 (Jj=p+1,

.,n), B €C(j=1,...,n), be such that either 2 — Z%"’ Z a; > 0or
j=1 Jj=p+1

P n n n
2—> i+ Y a;j=0and(I1-v)Y a;+5<> 4
=1

j=1 j=p+1 j=1
(a) There exists an injective mapping (transform) E*(cv, ), € [£,.2. L1-v2] such
that the equality (6 3.33) holds for any f €L,
If2—Za,+ Z a; =0, (l—u)2a1+2 Y~ (3 and the parameter s
i=1

j=1 Jj=p+1 j=
(which determines the line of 1ntegrat10n for the inverse Mellin transform in

(6.3.33)) satisfies (6.3.34), then the mapping E*(«, ), is bijective from L, »
onto L£i_,2.

(b) Forany f, g € L, the integration by parts formula (6.3.35) is satisfied.
@©If feLl,r XeC,h > 0, then the value E*(a, (3), f can be represented in
the form:

(E*(c, B),f) (x) = hx!=OFD/ 4o (6.3.40)

dx
/ n— p+2 p+2 |:xt

(=X 1), 0, 1), Bpt1, —aps1), .-, By, —ain)
whenRe (\) > (1 —v)h — 1, or

} f(®de,
O, D, (1=Br,01), ..., (1= Bp,ap), (A —1,h)

d
(E*(a, B), f) (x) = —hx““*”/”d—x“*”/’l (6.3.41)
X
2,1
X / Hn p+2,p+2 [xt
0

whenRe (\) < (1 —v)h — 1.

(d) The mapping E*(«, 3), does not depend on v in the following sense: if
0 < v, < 1 and the mappings E*(a, f3),.;, E*(a, 3),., are defined on the
spaces Ly, 2, L,, 2, respectively, then E*(a, 3),.f = E*(a, 3),.,f for all
f € ‘CV1Y2 m ‘CVLZ'

(O.1). Byt —atps1). .. G —an). (A, )
(“A=11),©0,1).(1 = B an), ... (1 - 5,,,(1,,)] fdr,
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(e) If f € L,, and either Z—Za,—i— Z a; >0 or Z—Za,—i— Z o =
1_1 i=p+1 i=1 i=p+1

0 and (1 —v) Z ai+5 < Z Gi, then the mapping (transform) E*(«, ),

coincides Wlth the transform E(a 08), given by the formula (6.3.27), i.e.
E*(OL, ﬂ)nf E(O[, B)nfv Vf S EI/,Z-

6.3.7 Relations to the Fractional Calculus

In this subsection we present a few formulas relating the 2n-parametric Mittag-
Leffler function (with different values of the parameters ;) to the left- and right-
sided Riemann-Liouville fractional integral and derivative. For short, we use the
same notation £ ((a, (3),; z) for the 2n-parametric Mitttag-Leffler function and for its
extension. These functions differ in values of the parameters «; and in the choice of the
contour of integration £ in their Mellin—Barnes integral representation. The results
in this subsection are obtained (see [KiKoRo13]) by using known formulas for the
fractional integration and differentiation of power-type functions (see [SaKiMa93,
(2.44) and formula 1 in Table 9.3]).

Letaj e R,a; #0(j=1,...,n), 01 <0,..., 00 <0,q41 >0,...,0, >0
(1 <1 < n) and let the contour £ be given by one of the following:

L=L yifaj+...+a,>0orL=L,yifa;+...+a, <O.

Let~, o, A € Cbe such that Re(y) > 0,Re (¢) > 0andw € R, (w # 0). Then the
following assertions are true.
A. Calculation of the left-sided Riemann-Liouville fractional integral.

(a) If w > 0, thenforx > 0

(Ig, 17" E(c, Brn: A1) (x) (6.3.42)
_ oty—1 12 w I —o0,w), Bj, =
= i ’[ M0, (1= 0 — @), (1 By s }

(b) If w < 0, then for x > 0

(19,17 E(a, Brus At9)) (x) (6.3.43)

Ov 1)7 (’Y+O—7 _w)’(ﬂjv_aj)l,l :|
(Ov 1)7 (01 _Q}), (1 - ﬁj’ aj)l+1,n ’

o+vy—1 2,1 w
=X Hyngn—y | =X

B. Calculation of the right-sided Liouville fractional integral.

(a) If w > 0, then forx > 0



194 6 Multi-index and Multi-variable Mittag-Leffler Functions

(I Bu: M) (x) (6.3.44)
_ —0 1,2 w (Os 1)1 (l _U+’Y1 CLJ),(,@',_O[‘)L[
=" i [‘” 0.1, A—a.w). (1= B o ] '

(b) If w < 0, then for x > 0

(1717 7E (v, BYn: At™9)) (x) (6.3.45)
0 2.1 _ —w (Oa 1)a (O—’ —W), (ﬂa - ')l,l
= H2+l’2+n_l [ Ax (Os 1)1 (U - _W), (lj_ 5jvjaj)l+l,n } '

C. Calculation of the left-sided Riemann—-Liouville fractional derivative.

(a) If w > 0, then forx > 0

(Dg 17 E((a, B)us M) (x) (6.3.46)
_ o—y—1py12 o w (Os 1)7 (] -0, LU), (ﬁjs_aj)l,l
=x7 Hy)loiny [ Ax 0,1, (1—0+7w), (I =), 0) 51 i| .

(b) If w < 0, then for x > 0

(Dg, 17 E((a, B)us At)) (x) (6.3.47)
_ o—y—1g42,1 w (07 1)7 (7—07 _w)v(ﬁ'ﬂ_a')l,l
=% e [‘“ O 1), (@~ (=B )i } '

D. Calculation of the right-sided Liouville fractional derivative.

(a) If w > 0, then for x > 0

(DL 7E((, B)us =A™)) (x) (6.3.48)

_ o=y g2l _ —w (05 1)’ (1 —0—7, W)v (ﬁ]’ _aj)l,l
= H2+f’2+"—’[ A0, L—avw), (=B aimin |

(b) If w < O then forx > 0

(D177 E((0, B M) () (6.3.49)
_ —o—yrl.2 —w (Ov 1)7 (O', —w), (ﬁv — ')1,1
=X o2 [‘“ 0. 1), (47, =), (I = B, t))s1n ] :

6.4 Mittag-Leffler Functions of Several Variables

In this section we present a few results on Mittag-Leffler function of several variables
(see, e.g., [Lav18])
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my_my .

21 2 . 2y
Ew,3z1,22, -0, 20) =
(@ 3215 225+ -5 Zn) > N T ———

ny

l'll

= 9 ERCIEIR) n Cn,R i O, C. 6.4.1
T (m) 1) (o1, ) € ea; >0, BeC. (6.4.1)

=M8

Other forms of the Mittag-Leffler type functions of several variables can be found
too (see, e.g., [GaMaKal3], [Dual8], [Mam18] and references therein). There is a
natural interest in studying the properties of this class of functions as it is related to
the presentation of solutions of systems of linear fractional differential equations (in
particular, of incommensurate orders).

In order to avoid additional technical details we focus here only on the case of two
variables. The definition of the Mittag-Leffler function of two complex variables is
similar the above presented for n variables (to avoid additional indexing we use the
following variable names: x =z|,y =z, a =, =a,y=f[, n =m;,m =
my)

xnym
Eopy(x,y) = —_—, o, 0, C, Rea, R 0. (64.2
By (X, Y) Z Flont fm+) a, B, € ea,Re 3 > ( )

n,m=>0
It is straightforward to check that, under above conditions, E, s, (x, y) is an entire
function of two complex variables (x, y) € C>.

6.4.1 Integral Representations

For applications it is interesting to describe the behavior of the function (6.4.2) for
large values of arguments. For this we use the known results in the case of the
Mittag-Leffler function of one variable. First, we find the integral representations
of the considered function E, g,,(x, y). Let us recall the definition of the Hankel
path (see Sect. 3.4). For fixed 6 € (0, 7), € > 0 it is denoted by w(e, #). The path
oriented by non-decreasing arg ¢ consists of tworays Sy := {( € C:arg( =0, || >
e}, S_g:={arg{ = —0, || > €} and a part of the circle C.(0) :={C € C: (] =
e, —0 < arg( < 0}. When § = 7 the rays S+ degenerate into parts of the sides of
negative semi-axes. This path divides the complex plane into two domains 27 (¢; 6)
and 2 (g; ) which are situated, respectively, to the left and to the right of w(#, )
with respect to the orientation on it.

Below we derive integral representations of E g.(x, y) in four different domains
in C2, namely 2 (cn;0.) x 27 (5 05), 2P (ea; 0a) x 27 (55 0p),
2 (ea; 04) x 2P (e5; 05),and 2T (g4; 0,) x 2 (e4; 05). For this we use two
representations of the reciprocal to the Gamma functions appearing in definition
(6.4.2) (see Sect. 3.4 of this book).
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1 1 1 _an—Bm—y+1
= CreTad 6.4.3
T'an+Pm+7v) 2rmia / e G (6.4.3)
w(e,0,)
1 1 L an—pm—ys
= T e dC. 6.4.4
F(an+fm+~)  2mip / e ¢ ¢ ©44
W(Evexi)

In the first integral (6.4.3) we have inequalities for 6, (see, e.g., Sect. 3.4)

To .
- < 0, < min {m; Tar},

and in the second integral (6.4.4) we have analogous inequalities for 03 (see, e.g.,
Sect. 3.4)

? < 03 < min {m; 73}.
In order to satisfy both sets of inequalities we put 6, = % 05 = % and fix 6 such
that 5
% < 0 < min{r, , 7a, 78, 78}, (6.4.5)

and write ¢, := /9, €g = e/® 1In all cases we also suppose that «, 5 are “small”,
ie.
O<a, B<2, af <?2. (6.4.6)

Note that it follows from (6.4.6) that the left-hand side is smaller than the right-hand
side in (6.4.5).

Let us start with the derivation of the integral representation in the first domain.
Lety € 2 (ep; 03), x € C, |x| < &,. Then

sup  |x¢7P < 1.
Cew(ls,e5)

This allows us to reduce to the one-dimensional case, due to the identity

ym
Eapn(x. y) = Z Z I'(Bm + (an+ 7)) - Zx Ep.ans7 (7).

n=0 m=0

and the corresponding integral representation for Eg 4,4 ()):

I/f l-an— mx—

Ea,ﬂ;'y(x’ y) lﬁ / C

"= 0 w(ep,0p)
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eo/ dC e e
271'15 / Z 27”5 / (& )’)(C“/ﬂ—x)

w(ep,0p) n=0 w(eg,p)

By changing variables ¢ = £/ we arrive at the following representation

e&*g i’a”ldg
2miaf (&5 —x)(EVe —y)’

w(e,

x| < ea, ¥ €27 (s 09).

Euop(x,y) =

(6.4.7)

Since the circle x € C, |x| < &4, is contained in the domain of analyticity of the

right-hand side of (6.4.7), by the Principle of Analytic Continuation formula (6.4.7)
is valid in 2 (g,; 0,) x 27 (5; 0p).

In order to prove the formula for the domain 2 (e,; 0,) x 2 (e5; 03) we

take e' > . Then by the previous case we obtain for y € 27 (c}; 65), y < ¢} and

x € 2 (e,; 0,) the following representation

e Lta—y

¢ dC
2 15 (C (P —

W(EJ 91)

Ea,;ﬁ;'y(xv y) = (6.4.8)

On the other hand, for each €3 < |y| < 553, larg y| < 05, we have by the Cauchy
theorem

1/8

f C]/,C l+§—7d< B l e}’ ( y H»(;—v
i3 €=M —x) Byl —

w(el,03)—w(es.05)

En,,[i;’y(xa y) = (649)

By adding the difference between the right-hand side and the middle integral in the
last formula to the right-hand side of (6.4.8) and performing the change of variables
in the integral term we arrive at the following representation

1/8 1+a—y
e y 7 n 1
By —x " 2miaf (M—x)(gl/a s

w(e,0)

fﬁ

Eqpy(x,y) = (6.4.10)

valid for all (x,y) € 2 (g4; 0a) x 2 (e4; 05). The result in the domain
2 (e,: 0,) x 2 (e5; 03) has a symmetric form, namely

48—y
)l/ux +a y

1 e
Bapa ) =4 mm =y +2ma6 / (61“—x)(£‘/“—y)'

(6.4.11)
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Finally, by unifying the argument of the previous cases we obtain an inte-
gral representation of the Mittag-Leffler function of two variables in the domain
2B (g3 00) x 2T (e4; 05):

o 1+6—y 1/1 |+rxr
le X a 1e”

« _xﬁ/a — + ﬁ y(l/ﬁ —_

a 1’*,(x y) (6412)

27Tlaﬁ / (5‘/f’—X)(§'/”—y)

w(e,0)

By assumption, each of the points x and y lies on the right-hand side of the
Hankel contours w(e,; 8,) and w(eg; 03), respectively. Note that the parameters in
the definition of the above paths depend on a certain number € > 0. Now choose ¢!
(¢! > ¢) such that one of the coordinates is to the right of the contour (say y) and the
other coordinate to its left (i.e. x). This means (x, y) € 2 )(eu, 00) x 2P (el 05).
In this case we have representation (6.4.11) with ¢ replaced by ¢! in the integral. This
integral can be rewritten as

1+8—y

1 / e d¢
2ria (€ —x) (¢ —y)

w(el 0a)

For each ¢, < |x| < 5 , larg x| < 6, we have by the Cauchy theorem

1+6—y e 148

1 ¢resatd le""x o
_ / ¢ dg L (6.4.13)
27i 3 (C—x)(Cj/”—x) a xPla—y

w(el,00)—w(en.ba)

As before, this immediately yields the desired formula (6.4.12), valid in the domain
2P (e4: 0,) x 2 (e53: 05).

6.4.2 Asymptotic Behavior for Large Values of Arguments

Here we describe the asymptotic behavior of the Mittag-Leffler function E,, 4.~ (x, ¥)
of two complex variables x and y for large values of |x| and |y|. The result follows
from the above integral representations and the standard techniques for the descrip-
tion of the asymptotics of the corresponding integrals presented in Sects. 3.4 and 4.4.

Theorem 6.9 ([Lavl8, Thm. 3.1]) Let 0 < o, 8 < 2, a8 < 2 and the angle 0 be
chosen as
iges}

— < 0 < min{m, ra, 73, Tab}.
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Then, for all pairs of positive integers p = (Pa, P3), Pa> Pg > 1, the following
asymptotic formulas for the function E, g.(x, y) hold as |x| — oo, |y| — oo.
(i) If larg x| < % larg y| < % then

xl/a 1+i—7 ley1/3y1++*"r
Ea,ﬂ;"/(-x’ y) = a Xﬁ/a —y B ya/ﬁ ¥ (6414)
Pa  Ps X y,m
Y o Iyl k7)o (xyl Ty :
et '(y—an—[0m
(ii) If larg x| < g, % < Jargy| <, then
1 exl/axHZﬂ'
E,p(X,y) = ——— " 6.4.15
a,/i,/( y) a Xﬂ/a—y ( )
+ ——————— 4o (lxy[7'x77) + o (Jxyl 'y 7P) 5
== '(y—an—0m
(iii) If § < |argx| <, |arg y| < £, then
1 eyl/ﬂy l+f;7ﬁl
Eopq(x,y) = 5y % (6.4.16)
Sy o ) ol
+ ———————— o (lxyI 7 7P) + o (lxy Tyl
== '(y—an—[0m
(iv) If § < largx| <7, & < |arg y| < m, then
Eq p5(x,y) = —————————— + o (Jxy x7P) 4 o (Jayl Ty 7).
== I'(y—an—fm
(6.4.17)

The result of the theorem is obtained by expanding and further estimating the kernel
in the integral terms. The complete proof is presented in [Lav18] (cf. [GoLoLu02]).
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6.5 Mittag-Leffler Functions with Matrix Arguments

In this section the problem of defining and evaluating Mittag-Leffler functions with
matrix arguments is discussed. The idea to generalize a given function of a scalar
variable to matrix arguments goes back to the work of Cayley (1858) and nowadays
this topic attracts the attention of researchers due to its applications to numerical solu-
tions of fractional multiterm differential equations and fractional partial differential
equations, in control theory and so on.

Since Mittag-Leffler functions are entire, it is not a problem to introduce the
formal definition

00 A
E.p3(A) = _—, (6.5.1)
; I'(aj+0B)

which is valid for any n x n square matrix A. This series representation is suitable
for defining the value of a Mittag-Leffler function with matrix argument but not for
practical and computational needs since the main issues related to the slow con-
vergence of (6.5.1) and the possible numerical cancellation in summing terms with
alternate signs are amplified by the presence of the matrix argument.

The Jordan canonical form provides an alternative way to introduce a function
with matrix argument which (if suitably modified) can also be exploited for compu-
tational purposes.

If the n x n matrix A has s distinct eigenvalues \;, k = 1, ..., s, each with geo-
metric  multiplicity m; (namely the smallest integer such that
(A — M\ I)™ = 0), the Jordan canonical form of A is

Ji Ak 1

Z_l, Jk = Ak - € Crmxmi
. ',. 1
Js A

Based on the Jordan canonical form it is possible to define the extension of a
Mittag-Leffler function to a matrix argument according to

Ea,ﬂ(-’l)
Ea,ﬂ(JZ) 1
E,3(A) =2 . Z~
E(y.ﬁ(-]s)

with each Jordan block Ji, k =1, ..., s, being mapped to
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Eos() ENLO0) E[Zh(m L EMNO
a,ﬂ(/\k) ][,()\k) E[’"k 2]()\ )
En,,ﬁ(*]k) = L . ’

E,, a<Ak> El M)
a,ﬁ()\k)

where, for compactness, we denote by E([f {g(z) the k-th term in the Taylor expansion
of E, 3(z), for which we incidentally note its relationship with the Prabhakar function

E("!ﬁ (z) since
k

Eqy(@) = 7 ; Eas(@ = BT 5@

It is clear that the evaluation of a Mittag-Leffler function with matrix arguments
reduces to the evaluation of derivatives of the scalar function in the spectrum of
the matrix. We refer to Sect.4.3 for a more detailed discussion about derivatives of
Mittag-Leffler functions.

From the practical point of view, however, evaluating the Jordan canonical form
is an ill-conditioned problem and, except for matrices with favorable properties, in
most cases it cannot be used in practice. A more efficient strategy considers the
Schur—Parlett algorithm [DavHig03], which is based on the Schur decomposition of
the matrix argument combined with Parlett recurrence to evaluate the matrix function
of the triangular factors. In this case extensive computation of derivatives of scalar
Mittag-Leffler functions is required. This problem has been extensively discussed in
[GarPop18], where a series of applications to fractional calculus are also illustrated.

The numerical experiments presented in [GarPop18] have shown that combin-
ing the Schur—Parlett algorithm with techniques for the evaluation of derivatives of
Mittag-Leffler functions makes it possible to evaluate the matrix Mittag-Leffler func-
tions with high accuracy, in some cases very close to machine precision. A Matlab
code for evaluating Mittag-Leffler functions with matrix arguments is freely available
in the file exchange service of the Mathworks website. !

6.6 Historical and Bibliographical Notes

In recent decades, starting from the eighties in the last century, we have observed
a rapidly increasing interest in the classical Mittag-Leffler function and its general-
izations. This interest mainly stems from their use in the explicit solution of certain
classes of fractional differential equations (especially those modelling processes of
fractional relaxation, oscillation, diffusion and waves). This topic is under develop-

' www.mathworks.com/matlabcentral/fileexchange/66272-mittag- leffler- function- with-matrix-

arguments.


www.mathworks.com/matlabcentral/fileexchange/66272-mittag-leffler-function-with-matrix-arguments
www.mathworks.com/matlabcentral/fileexchange/66272-mittag-leffler-function-with-matrix-arguments
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ment and scientists are looking for further applications of the results presented in
this chapter and their generalizations.

Foray, ap e R (a? + a% # 0) and (3}, 5, € C the four-parametric Mittag-Leffler
function is defined by the series

& k
Z <
Eal,ﬂl;az,ﬂz (Z) = rr F(alk + ﬁl)[‘(azk + ﬂz) (Z € C) (661)

For positive o; > 0, a; > 0 and real 3y, 8, € R it was introduced by Djrbashian
[Dzh60]. When o1 = «, 5y = B and ap = 0, 5, = 1, it coincides with the Mittag-
Leffler function E, g(z):

oo

Eup:01(2) = Eap(2) = Z e k 5 G© ). (6.6.2)

k=0

Generalizing the four-parametric Mittag-Leffler function, Al-Bassam and Luchko
[Al-BLuc95] introduced the Mittag-Leffler type function

% k
E(a B =) - (neN) (6.6.3)
=0 ]_[1 I'(ajk + 3))
e

with 2n real parameters o; > 0; 3; € R (j =1, ..., n) and with complex z € C. In
[Al-BLuc95] an explicit solution to a Cauchy type problem for a fractional differ-
ential equation is given in terms of (6.6.3). The theory of this class of functions
was developed in a series of articles by Kiryakova et al. [Kir99], [Kir00], [Kir08],
[Kirl10a], [Kir10b].

Among the results dealing with multi-index Mittag-Leffler functions we point
out those which show their relation to a general class of special functions, namely
to Fox’s H-function. Representations of the multi-index Mittag-Leffler functions as
special cases of the H-function and the generalized Wright function are obtained in
[AIKiKa02], [Kir10b]. Relations of such multi-index functions to the Erdelyi—Kober
(E-K) operators of fractional integration are discussed. The novel Mittag-Leffler
functions are also used as generating functions of a class of so-called Gelfond—
Leontiev (G-L) operators of generalized differentiation and integration. Laplace-
type integral transforms corresponding to these G-L operators are considered too.
The multi-index Mittag-Leffler functions (6.6.3) can be regarded as “fractional index”
analogues of the hyper-Bessel functions, and the multiple Borel-Dzrbashian integral
transforms (being H-transforms) as “fractional index” analogues of the Obrechkoff
transforms (being G-transforms).

In a more precise terminology, these are Gelfond-Leontiev (G-L) operators of
generalized differentiation and integration with respect to the entire function, a multi-



6.6 Historical and Bibliographical Notes 203

index generalization of the Mittag-Leffler function. Fractional multi-order integral
equations

y(@) = ALy(2) = f(2) (6.6.4)

and initial value problems for the corresponding fractional multi-order differential
equations

Dy(2) — M@ = f(2) (6.6.5)

are considered. From the known solution of the Volterra-type integral equation with
m-fold integration, via a Poisson-type integral transformation P as a transformation
(transmutation) operator, the corresponding solution of the integral equation (6.6.4)
is found. Then a solution of the fractional multi-order differential equation (6.6.5)
comes out, in an explicit form, as a series of integrals involving Fox’s H-functions.
For each particularly chosen right-hand side function f(z), such a solution can be
evaluated as an H-function. Special cases of the equations considered here lead to
solutions in terms of the Mittag-Leffler, Bessel, Struve, Lommel and hyper-Bessel
functions, and some other known generalized hypergeometric functions.

In [Kir10b] (see also [Kirl0a]) a brief description of recent results by Kiryakova et
al. on an important class of “Special Functions of Fractional Calculus” is presented.
These functions became important in solutions of fractional order (or multi-order)
differential and integral equations, control systems and refined mathematical models
of various physical, chemical, economical, management and bioengineering phe-
nomena. The notion “Special Functions of Fractional Calculus” essentially means
the Wright generalized hypergeometric function ,W,, as a special case of the Fox
H-function.

A generalization of the Prabhakar type function was given by Shukla and Prajapati
[ShuPra07]:

VK _ . . _ = (’Y)mZ"
ElN(@) = E(a, 357, k5 2) = ; Tanth (n e N), (6.6.6)

where the generalized Pochhammer symbol is defined by

I'(y+ kn)

(7)/«;n = r (’)/)

In [SriTom09] the existence of the function (6.6.6) for a wider set of parameters
was shown, and its relation to the fractional calculus operators was described (see
also [AgMiNil5], [GaShMal5]). Definition (6.6.6) was combined with (6.6.3) in
[SaxNis10] (see also [Sax-et-al10]). As a result, the following definition of the gen-
eralized multi-index Mittag-Leffler function appears:
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o0
Eqr i, @ = Evn((0y. 1) = )

=0 T Moy +5)
j=1

n?” meN). (667

A four-parametric generalization of the Mittag-Leffler function similar to (6.6.6)
(a so-called k-Mittag-Leffler function) was proposed in [DorCer12]

oo

I (W)n k
E] = E _ 6.6.8
k.o, B = Ii(an + ﬁ)n!Z ( )

with Pochhammer k-symbol
(@Dni =2z +k)...(z+ (n— k)

and k-Gamma function

o0

Ik 4
() =/tz_le_7dt =k (7). @u=

0

I'v(z + nk)
I (2)

k]

appearing in the definition. A generalization of the function (6.6.8) (a (p — k)-Mittag-
Leffler function) was proposed and studied in [CeLuDo18]:

o0

y (’Y)nk
£ =3k oa (6.6.9)

PPk, ;prk(an+6)n!

_ P (P P P _

p(Z)n,k~—k<k+p)(k+2p)...<k+(n l)p),
o0 -
L Pz Tz + nk)
I; = =1 rdt = —p I (- nk = : .
pT(@) fr e e () r@ne ="
0

Generalizations of the Mittag-Leffler function involving the Beta function and
generalized Beta function were defined and studied in [OzaYlm14], [MiPaJo16].

Chudasama and Dave proposed a unification of the Mittag-Leffler and Wright
functions in the following form, with conditions on the parameters (Re(ad) > 0,
Re(Bd+o0v—90/2—r+1)>0,a,0 #0,u€C)

o k

o () rk Z
E”"] 17) = —. 6.1
T 2) g TP TPy (6.6.10)
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On the basis of the above described results a special H -transform was constructed
in [AI-MKiVu02] (see also [KilSai04]). This transform turns out to exhibit many
properties similar to the Laplace transform. Moreover, the inverse transform and
the operational calculus, which is based on it, are related to the recently introduced
multi-index Mittag-Leffler function. Some basic operational properties, complex and
real inversion formulas, as well as a convolution theorem, have been derived.

Further generalizations of the Mittag-Leffler functions have been proposed
recently in [Pan-K11], [Pan-K12], [Pan-K13].

The 3m-parametric Mittag-Leffler functions generalizing the Prabhakar three pa-
rametric Mittag-Leffler function are introduced by the relation

(o]

vj).m ’Yl)k ('Ym)k Zk
) 6.6.11
Eapin ,; T(aik+ 1) ... T(ank + By) k! (611
where (), is the Pochhammer symbol, o, 8;,v; € C, j=1,...,m, Rea; > 0.

These are entire functions for which the order and the type have been calculated. Rep-
resentations of the 3m-parametric Mittag-Leffler functions as generalized Wright
functions and Fox H-functions have been obtained. Special cases of novel spe-
cial functions have been discussed. Composition formulas with Riemann-Liouville
fractional integrals and derivatives have been given. Analogues of the Cauchy—
Hadamard, Abel, Tauber and Hardy-Littlewood theorems for the three multi-index
Mittag-Leffler functions have also been presented.

Pathway type fractional integration of the 3m-parametric Mittag-Leffler functions
is performed in [JaAgKil7].

Two important families of special functions, namely the Bessel functions and
Mittag-Leffler functions, and their multi-parametric generalizations are discussed in
[Pan-K16]. The following main problems related to the classical and generalized
functions of Bessel and Mittag-Leffler type are studied: integral representations and
convergence, asymptotic behavior, Tauberian type theorems, completeness of sys-
tems of these functions, representations in terms of the generalized Wright function,
the Meijer G- and the Fox H-functions with special values of parameters. Special
attention is paid to the relations of these functions to the problems of Fractional
Calculus.

The extension of the Mittag-Leffler function to a wider set of parameters by using
Mellin—Barnes integrals was realized in a series of papers [KilKor05]-[KilKor0O6¢]
(see also the paper [Han-et-al09]). The method of extension of different special
functions having a representation via a Mellin—Barnes integral has been developed
recently.

First of all we have to mention the paper [Han-et-al09]. In this paper the Mittag-
Leffler function E, g(z) for negative values of the parameter « is introduced. This
definition is based on an analytic continuation of the integral representation

1 et
E.p5(z) = f ; dt, zeC, (6.6.12)
*—z
Ha
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where the path of integration Ha is the Hankel path, a loop starting and ending at —oo,
and encircling the disk 7| < |z|'/® counterclockwise in the positive sense: —7 <
arg? < 7 on Ha. The integral representation of E, 3(z) given in Eq. (6.6.12) can be
shown to satisfy the criteria for analytic continuation by noting that for the domain
a > 0, Eq.(6.6.12) is equivalent to the infinite series representation for the Mittag-
Leffler function. This is accomplished by expanding the integrand in Eq. (6.6.12) in
powers of z and integrating term-by-term, making use of Hankel’s contour integral
for the reciprocal of the Gamma function (see, e.g., [NIST]).

To find a defining equation for E_, 3(z), the integral representation of the Mittag-
Leffler function is rewritten as

1 e’
E.p(z) = 5 [ mdh zeC. (6.6.13)

Ha
By expanding a part of the integrand in Eq. (6.6.13) into partial fractions

1 1 1
18 — Zt—<x+ﬁ - ﬁ - 18— Z—ltcv-‘rﬂ’

substituting it into (6.6.13) we get another representation

Eas@) = —— [ Car -] S C\{0).  (66.14
a,@(Z)—% ﬁt_% mfs z € C\{0}. (6.6.14)
Ha Ha

Thus we arrive at the following definition of the Mittag-Leffler function E, (z) for
negative values of the parameter a::

1 1
E_.p5() = TG E.p (Z) . (6.6.15)

General properties of E_, g(z) were discussed and many of the common rela-
tionships between Mittag-Leffler functions of negative o were compared with their
analogous relationships for positive .. A special case of (6.6.15), namely the function
E_.(z), has found application in the analysis of the transient kinetics of a two-state
model for anomalous diffusion (see [Shu01]). The Mittag-Leffler functions with neg-
ative v and the results of this work are likely to become increasingly important as
fractional-order differential equations find more applications.

This method of extension was also applied recently in [Kil-et-al12] for the gener-
alized hypergeometric functions. This paper is devoted to the study of a certain func-

tion ,Fylz] = pF, [ar, -+ .ap; by, -+, by; z] (with complex z # 0 and complex
parameters a; (j =1,---p) and b; (j =1,---,q)), represented by the Mellin—
Barnes integral. Such a function is an extension of the classical generalized hyperge-
ometric function , Fylai, - -+, ap; b1, - - -, by; z] defined for all complex z € C when

p < g+ 1andfor |z] < 1 when p = g + 1. Conditions are given for the existence
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of ,F,[z] and of its representations by the Meijer G-function and the H-function.
Such an approach allows us to give meaning to the function ,F,[z] for all ranges of
parameters when p < g+ 1, p =g + 1 and p > g + 1. The series representations
and the asymptotic expansions of ,F,[z] at infinity and at the origin are established.
Special cases have been considered.

In Sect. 6.4 we mainly follow the article [Lav18]. Several other attempts to con-
sider Mittag-Leffler functions and their generalizations as functions of several com-
plex variables have to be mentioned: [SaKaSal 1], [GaMaKal3], [Dual8], [Mam18]
along with the book [SrGuGo82] devoted to the multivariable analog of the Fox
H-function. We also have to mention here the article [ YuZha06] in which an (n + 1)-
variable analog of the Mittag-Leffler function is introduced and studied

et, y; o, B,7) = t""VE, s(~=Dly|'t*),

where ¢ > 0 is a time variable, y = (y1, y2, ..., y») € R", a, 3, y are arbitrary real
parameters and D is a physical constant. This function is used in the study of the
diffusion-wave equation in (n + 1) variables.

Section 6.5 presents in a condensed way the results from [GarPop18], which is
devoted to the numerical evaluation of Mittag-Leffler functions with a matrix argu-
ment. The corresponding routine implemented in Matlab is also mentioned there.
The evaluation of matrix Mittag-Leffler functions is closely related to the evalua-
tion of exponential functions, a problem which has been deeply investigated due its
applications to the solution of ordinary differential equations. Several methods have
been proposed for matrix exponentials and a comparative discussion is available
in the famous review paper by Moler and Van Loan [MolvLoa78] and in its 2003
extension [MolvLoa03]. Unfortunately, not all the methods presented in these two
papers can be applied to Mittag-Leffler functions, often due to the absence of the
semigroup property, which is exploited in several methods for the computation of
the exponential.

The method described in Sect. 6.5 is however based on the work in [DavHig03]
which is successive to the two reviews by Moler and Van Loan. Although it exploits
some ideas (such as the Schur decomposition) already discussed in these papers, it
exploits the more sophisticated Schur—Parlett algorithm, which is presently one of
the most powerful methods for matrix computations.

6.7 Exercises

6.7.1 Let I&r be the left-sided Riemann-Liouville fractional integral and
Eon Br:an. (2) be either the four-parametric Mittag-Leffler function or its extension.
In the case o) > 0, a; < 0O calculate the following compositions

a) (I 1" & prian s A9)) (X) (W, A >0, 0 < x <d < +00);
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b) (I&rt_” u1,,31;(12,,32()\t_“)) x) W, A>0,0<x<d < +00).

6.7.2 Let D . be the left-sided Riemann-Liouville fractional derivative and
Eon.Br:an. (2) be either the four-parametric Mittag-Leffler function or its extension.
In the case o) > 0, a; < 0 calculate the following compositions

(@) (Dgyt” "y prian.ss AE9)) (X) (W, A >0, 0 < x <d < +00);
(B) (Dgst 70 prianpnAT)) () (W, A >0, 0 <x <d < +00).

6.7.3 In the case of positive integer a; = m; and ap = m, represent the four-
parametric Mittag-Leffler function E,,, g,.m,,4,(z) in term of a generalized hyper-
geometric function ,F;, with appropriate p, g.

6.7.4 [KirLucl0, p. 601]. Prove that the Laplace transform of a hyper-Bessel type
generalized hypergeometric function (W, is related to the 2n-parametric Mittag-
Leffler function as follows

- 1 1
(208 5,00 0 )) 0= Bt ()

6.7.5 [KirLucl0, p. 603-604]. Let I} £ (2) = [1‘[ 1};’7‘;;5‘5")] f(2) be the gener-
Mt Ts [=1 Mi)s

alized fractional integral of multi-order, where

1
°f@) = % f (1—0)"'0" f(x)o'/7do (5, B> 0,7 € R)
0

is the Erdelyi—Kober fractional integral.
Prove the following formulas

Bi=1).(ey
(A\2) (I((l/a,-;,)n( )E(ai)v(ﬂi)) (Az) = E(ai)v(ﬁi)()\z) -

3

=

lf(ﬂi)

l

(Df};’_])j,“’)’(“")E<a;),(3i>> (A2) = (A E(a),3)(A2) + .
[1r@ —a)
i=1
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