
Combining Merkle Hash Tree
and Chaotic Cryptography for Secure

Data Fusion in IoT

Nashreen Nesa(B) and Indrajit Banerjee

Department of Information Technology, Indian Institute of Engineering Science
and Technology, Shibpur, Howrah 711103, West Bengal, India

{nashreennesa.rs2016,ibanerjee}@it.iiests.ac.in
http://www.iiests.ac.in

Abstract. With the wide applicability of sensors in our daily lives, secu-
rity has become one of the primary concerns in an Internet of Things
(IoT) environment. Particularly, user’s privacy and unauthorized access
to sensitive information needs to be kept in mind while designing security
algorithms. This paper puts forward a security protocol that integrates
authentication of the deployed IoT devices and encryption of the gener-
ated data. We have modified the well-known Merkle Hash Tree to adapt
to an IoT environment for authenticating the devices and utilized the
concepts of Chaos theory for developing the encryption algorithm. The
use of chaos in cryptography are known to satisfy the basic requirements
of the cryptosystem such as, high sensitivity, high computational speed
and high security. In addition, we have proposed a chaotic map named
Quadratic Sinusoidal Map which exhibits better array of chaotic regime
when compared to the traditional quadratic map. The security analysis
demonstrate that the proposed protocol is simple having low computa-
tional requirements, has strong security capabilities and highly resilient
to security attacks.

Keywords: Chaos theory · Merkle Hash Tree · IoT · Security ·
Encryption

1 Introduction

Past researches in the field of Internet security are limited to traditional inter-
net, but with the recent advancement of IoT technologies, these solutions need
to be refined so as to cater to the specific needs of IoT [1,2]. Security algorithms
for IoT applications should be such that it ensures source authentication, confi-
dentiality, data integrity and resistance against attacks [3]. There is no denying
the fact that every smart object in an IoT environment carries the potential
of becoming the entry point of malicious activity. Essentially in IoT, security
is of paramount importance since this emerging technology revolution entirely
depends on the acceptability of its customers. As a result, fusion of data, that
c© Springer-Verlag GmbH Germany, part of Springer Nature 2020
M. L. Gavrilova et al. (Eds.): Trans. on Comput. Sci. XXXV, LNCS 11960, pp. 85–105, 2020.
https://doi.org/10.1007/978-3-662-61092-3_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-61092-3_5&domain=pdf
http://orcid.org/0000-0002-9979-4896
https://doi.org/10.1007/978-3-662-61092-3_5

86 N. Nesa and I. Banerjee

is the basis upon which the critical decisions are taken, becomes more chal-
lenging if end-to-end security between a sender and a receiver is not ensured.
In IoT applications, nodes are constantly communicating highly sensitive data
and due to this, such data are vulnerable to security attacks. Authentication
is a prerequisite and the most important requirement for secure communica-
tion in IoT applications since the communicating devices are prone to security
attacks. It is essential for every communicating device in the network to ver-
ify its identity so that no unauthorized device can take part in communication
[4]. Data confidentiality and integrity are also equally important since malicious
alteration of sensor data may result in life-threatening consequences especially
in critical IoT applications such as healthcare [5–7]. Data confidentiality that
is achieved through encryption of the sensed data is vital in order to ensure
that no unwarranted disclosure of sensitive information is possible [8]. Thus, in
our work, we have proposed a data fusion approach that ensures the security
of the devices as well as the data generated to form useful, reliable and secured
result. In our proposed security scheme, Chaos theory is used for encryption and
decryption of the data and Merkle Hash Tree for device authentication. Since
IoT devices have in-built radio frequency identification (RFID) tags for device
identification, we have found its application in our work where it is used for
the purpose of authentication by exploiting its uniqueness to serve our purpose.
Moreover, we have proposed a sinusoidal chaotic map that is used for encryp-
tion; the initial condition and the control parameters of which are produced from
the Merkle Hash Tree that forms the basis upon which the maps are created.
Our work uses lightweight computation modules, such as one-way hash functions
and bitwise exclusive-or operation, for designing the secure data fusion protocol.
Besides being a lightweight computation tool, the use of hash operations also
preserves anonymity since the hash values are impossible to regenerate. In secure
communication, the receiver should also have the provision to examine whether
the message has been altered during transmission. For this purpose, this paper
adopts a simple mechanism for integrity checking by padding the number of zeros
in the original ciphertext. Although researchers have investigated the concept of
designing cryptosystem based on chaotic maps in the past, but to the best of
our knowledge, this is the first attempt at combining Merkle hash Tree with a
novel chaotic map in order to achieve security. Specifically, our contributions are
listed as follows:

– First, we present an authentication scheme based on the Merkle hash tree
technique where the hash values of the leaves are calculated on the unique
RFID tags attached to IoT devices.

– Second, we propose a novel Quadratic Sinusoidal chaotic map whose dynami-
cal characteristic properties are studied and confirmed to belong to the chaotic
community.

– Third, an efficient data fusion protocol that is based on the Merkle Hash Tree
and the chaos theory is proposed. The Merkle Hash Tree generates the initial
conditions and the control parameters of the chaotic map that are used for

Combining Merkle Hash Tree and Chaotic Cryptography 87

Table 1. Common Notations used in this work

Notation Description

Di ith IoT device

n Number of devices in the network

TC Trusted Data Fusion Centre

l Number of levels in MHT

φi,j Merkle hash assignment of the ith node at the jth Level of MHT

H(.) Secure one-way Hash operation i.e. SHA-1

⊕ XOR operation

|| Concatenation operation

l Number of levels in Merkle Hash Tree

θ Merkle Hash Path

S Pre-shared Session key

K Initial condition of the map; also serves as the key

Itr Number of iterations in the map

Pt
i Plaintext from the ith device at the tth instant

Ct
i Ciphertext from the ith device at the tth instant

N (0) Zero count in ciphertext Ct
i

Cipher Final ciphertext after appending N (0) i.e., Ct
i |N (0)

encryption/decryption of messages. After which they are effectively fused to
derive the intended result.

– Lastly, extensive security analysis indicates that the proposed scheme can
resist all kinds of attacks in addition to ensuring data integrity, confidentiality
and authenticity.

The remainder of the paper is organized as follows: a related study on the recent
trends in research is presented in Sect. 2, followed by the introduction of concepts
of Merkle Hash Tree with its key definitions in Sect. 3. Details about our pro-
posed Modified Sinusoidal Quadratic map is presented in Sect. 4. Next, in Sect. 5,
a description of all the phases in our proposed architecture is given. Section 6
describes an experimental scenario of our proposed algorithm for easy under-
standing, followed by the security analysis of the algorithms in Sect. 7. Finally,
the paper is concluded with its ending remarks in Sect. 8.

2 Related Works

Developing security solutions that fulfils the specific requirements of IoT envi-
ronment is a challenging task and currently a lot of researchers are focussing on
this domain. Owing to the distributed network of the IoT devices, security solu-
tions are often integrated with cloud servers and could computing technologies

88 N. Nesa and I. Banerjee

[9–11]. Specifically, in [9], a mutual authentication scheme is presented based on
Elliptic Curve Cryptography (ECC) for secure communication between devices
and cloud servers. The proposed protocol has been verified using AVISPA tool
to be highly efficient with low computational cost. Since, conventional cryp-
tography solutions are not applicable for IoT applications and schemes devel-
oped for IoT must be lightweight. Owing to this requirement, the authors in
[10] propose a light weight authentication protocol for IoT enabled devices. For
mutual authentication, BAN logic has been used and the protocol was simulated
using AVISPA software. Another closely related work is presented in [11], where
a robust authentication scheme for resource-constraint IoT devices with cloud
assistance is designed. The proposed scheme is lightweight since only crypto-
graphic modules such as one-way hash functions and XOR operations are used.
Moreover, security in terms anomaly detection for specific applications can be
found in the available literature. For instance, in [12], the authors have intro-
duced a secured IoT-based traffic system with intelligence that is capable of ana-
lyzing traffic data into good or bad using Support Vector Machine (SVM). The
system was implemented using Raspberry Pi3 and Scikit. Similar to this work,
the authors in [13] used four machine learning algorithms for detecting forest
fire based on real-world dataset. In addition, an IoT architecture is designed
that distinguishes cases when the sensors are faulty and when a fire is detected.
Subsequent measures and alert through the use of IoT technologies have also
been incorporated. Another closely related work is that presented in [14] where
the authors proposed a sequence based learning algorithm to detect inconsistent
data in IoT devices. The proposed algorithm was tested for both faulty node
detection referred to as “Error” and any abnormal activity known as “Event”
using three different real-life datasets. Inspired by the human immunity system
under pathogenic attacks, a bio-inspired security solution is proposed in [15].
The proposed solution leverage supervised k-mean-based learning to first dis-
tinguish the faulty nodes from the good ones, after which it introduces virtual
antibodies to deactivate the fraudulent nodes in the system. Owing to the lim-
ited computational capabilities of IoT objects and with the intention of helping
designers estimate the cost of implementing security solutions, [16] is proposed.
Here, the authors presented a formal framework based on the process calculus
IoT-LySa [17] to ascertain a trade-off between security solutions and their cost.

Our work is an extension of our previous work [18] that uses chaotic cryp-
tography for developing an efficient light-weight encryption algorithm. Chaos
is a popular theory in numerous natural and laboratory systems encompassing
several scientific and research areas as a result of which there is a rich body
of literature dedicated to chaos theory. A review on recent enhancements of
traditional data encryption procedures is given in [19].

Particularly, the work in [20] relates to body area networks (BANs) applica-
tion where the authors used image encryption for testing under the assumption
that a significant part of sensor data are of images. An efficient flood forecasting
model is presented in by studying the data from an area in Brazil through a
WSN network. The data was modelled using machine learning techniques and

Combining Merkle Hash Tree and Chaotic Cryptography 89

chaos theory. Moreover, a lot of applications have adopted chaos theory for
either encryption, detection or authentication [21,22] ranging from pipe leak-
age detection [23], flood forecasting [24,25], Iris recognition [26], network traffic
forecasting [27] to name a few.

In this work we have used the popular Merkle Hash tree (MHT) as an authen-
tication algorithm. MHT has been extensively adopted by researchers in both
IoT [28–30] and non-IoT [31–34] related fields. Focussing on MHT, the authors
in [28] proposed an authentication scheme for securing smart grid communi-
cation. The authentication protocol is based on Merkle Hash Tree where the
authors demonstrated that the proposed scheme incurs less computation cost
compared with RSA-authentication mechanisms. Security analysis presented by
the authors shows that it can resist replay attack, message injection attack, mes-
sage analysis attack, and the message modification attack. However, not much
is discussed about providing integrity and confidentiality in the process of com-
munication. Next, in [29] also proposed a Neighborhood Area Network (NAN)
for authenticating power usage power data in smart grids. The authors incorpo-
rated digital signature schemes for fault tolerance. In addition, fault diagnosis
schemes are also deployed to pinpoint the errors and reduce the computational
and communication load in the system. Another work involving smart grids is
presented in [30] to provide mutual authentication authenticate between smart
meters and the utility servers. A key management protocol is also presented and
the whole system is capable to resisting numerous cryptographic attacks.

As can be observed from the available literature both MHT and Chaos the-
ory are highly efficient standalone secularity tools, the combination of which
has never been attempted before. Therefore, the need for developing a security
algorithm that amalgamates the advantages of both the theories, motivated this
research work. Even though a lot of research have been done on security in IoT,
to the best of our knowledge, this paper is the first attempt at combining Merkle
Hash Tree and chaotic cryptography for developing a security protocol for IoT
environment. Preliminary definitions and notions of both MHT and Chaos the-
ory are briefly discussed next.

3 Merkle Hash Tree

Merkle Hash Tree (MHT) was first introduced in 1989 by Merkle [35] and has
since then been used for verification and integrity checking by various appli-
cations. It is a popular technique among the Git and Bitcoin community for
authenticating users. MHTs have mostly been used as authentication schemes
[28,31]. A typical MHT is a binary tree in which the nodes of the tree are simple
hash values. The nodes at the lowest level (leaf nodes) could be an arbitrary hash
values or the hash values generated from pseudorandom numbers whereas the
nodes at the intermediate levels are the hashes of their immediate children. The
root of the MHT is unique since the collision resistance property of hash function
ensures that no two hash values differing by atleast 1 bit should be same. To
adapt to an IoT environment, the traditional definition of MHT concepts have
been modified.

90 N. Nesa and I. Banerjee

Definition 1 Merkle Hash Assignment. Let T be a MHT created in an IoT
setup with n devices, i.e., having log2 n+1 levels and let RFIDi be the RFID of
ith IoT device in T. The Merkle hash assignment associated with the device with
RFIDi of T at level 1, denoted as φi,1 is computed as

φi,1 = H(RFIDi) (1)

Similarly, the hash values of all node i except for the leaf nodes at level j denoted
as φi,j is computed by the following function:

φi,j = H(φ2i−1,j−1||φ2i,j−1) (2)

where ‘||’ denotes the concatenation operator and H(.) is the hash function.

According to Definition 1, the Merkle hash value associated with a device Di is
the result of a hash function applied to its RFID tag. To ensure the integrity
of the Merkle hash value of the Trusted Centre (TC), we assume that the root
value φroot is tamper-resistant whose credentials have been thoroughly checked
by top-level security system. Each leaf node in the constructed MHT can be
verified through its Merkle Hash Path θ which is defined next.

Definition 2 Merkle Hash Path. For each level l < log2 n + 1 (height of the
tree), we define Merkle Hash Path θ to be the φ values of all the sibling nodes at
each level l on the path connecting the leaf to the root node. The Merkle Hash Path
signifying the authentication data at level l is then the set θl|1 ≤ l ≤ log2 n + 1.

The authentication procedure of a leaf node is then carried out as: The φ value
at the leaf is first hashed with its sibling θ1, which, in turn, is hashed together
with θ2, and so on till the root is reached. At this stage, the calculated root
value accumulated through the Merkle Hash Path is compared with equal to the
known root value φroot. If it turns out to be equal, then the leaf node is accepted
as authentic. It is obvious that consecutive leaf nodes share a large portion of
the authentication data θ when the leaves are ordered from left to right in the
tree, thereby saving a lot of communication overhead in sending redundant data.

4 Modified Sinusoidal Quadratic Map

Chaotic maps are defined as mathematical functions that characterises the
chaotic behaviour of the system and which depends on their initial conditions
and control parameters. Our proposed chaotic map inspired by the classical
quadratic map [36] is given as

xn+1 = 1 − sin(r + ax2
n) for a > 3 (3)

where the initial condition x0, a and r are the control parameters. For our
proposed equation, the value of a must be above 3 i.e., a > 3 in order to be
chaotic.

Combining Merkle Hash Tree and Chaotic Cryptography 91

r
0 0.5 1 1.5 2 2.5 3

x n
+1

0
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a)

5 10 15 20 25 30

Iteration

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x n

r = 0.5 r = 1 r = 3 r = 4

(b)

Fig. 1. (a) The proposed sinusoidal chaotic map for a = 4 (b) Convergence and period
doubling plot for a = 3 and x0 = 0.02

4.1 Analysis of the Proposed Map

Bifurcation plot in a dynamical system is a visual representation defining the
behaviour of a system when its control parameters undergo some change [37].
The bifurcation diagram of the proposed map is shown in Fig. 1(a) where the
solution was iterated for different values of r for a particular value of a(a = 4).
From the figure, the three regions of chaos, convergence and bifurcation can be
observed clearly. The convergence region can be seen to start at r = 2.2, the

92 N. Nesa and I. Banerjee

5 10 15 20 25 30 35 40 45 50

Iterations(n)

-0.5

0

0.5

1

1.5

2

2.5

x(
n)

 a
nd

 y
(n

)

x0 = 0.500000

y0 = 0.500001

(a)

0 5 10 15 20 25 30 35 40 45 50

Iterations

-7

-6

-5

-4

-3

-2

-1

0

1

lo
g 1

0(
d)

(b)

Fig. 2. (a) Sensitivity to initial conditions for two very close initial conditions of x0 =
0.500000 and x0 = 0.500001 for a = 4 and r = 3.9 (b) Semi-log plot for conditions of
x0 = 0.500000 and x0 = 0.500001 for a = 4 and r = 3.9 (Color figure online)

bifurcation region lies in the range r ∈ [1.5, 2.2] while the region r ∈ [0, 1.5]
can be considered to be chaotic with slight windows of stability that occurs in
r ∈ [0.3, 0.5]. Each of these points are plotted for the particular value that the
system settles towards for a specific value of r. Figure 1(b), on the other hand
shows the phenomenon of period doubling where it can be seen that for r = 0.5,
the system just starts becoming unstable. This is can correlated with the status

Combining Merkle Hash Tree and Chaotic Cryptography 93

Algorithm 1. Authentication Algorithm using MHT
Input: Number of devices in the network n
Output: Authenticated Result

/* Construction of Merkle tree */

1 Number of levels l ← log2 n + 1
2 foreach level j ∈ l do
3 foreach device i ∈ N do
4 if φi,j is a leaf node then
5 Calculate φi,j ← H(RFIDi)

6 else
7 φi,j ← H(φ2i−1,j−1||φ2i,j−1)

/* Authenticating an IoT device with RFID X */

8 if φi,j == φroot then
9 X is authenticated to be a valid device

10 else
11 A threat is detected

of the status at r = 0.5 in Fig. 1(a) where the diagram shows moderate chaos.
Similarly, increasing the values of r results in increase in randomicity until r
reaches 3 where the system fluctuates between two values that are the period
attractors.

Sensitivity to initial conditions is another prime characteristic of chaos which
states that two very close values of initial conditions diverge significantly over
time. This phenomenon can be observed in Fig. 2(a) where two very close initial
conditions x0 = 0.500000 (in pink) and y00.500001 (in blue) are iterated in the
chaotic regime. As can be observed from the figure, the two trajectories are
almost identical for the first 9 iterations. However, after the 10th iteration, the
minuscule difference in the initial conditions diverges exponentially and show
little in common as the number of iterations increases. This phenomenon is
known as sensitivity to initial conditions and can be observed in our proposed
chaotic map thus confirming its ramdomicity. Furthermore, a semi-log plot is
constructed and presented in Fig. 2(b) that highlights the difference between the
changes in the two initial conditions x0 and y0 over time. The difference dn
is calculated as dn =| xn − yn | and its logarithm values and plotted against
the number of iterations n in Fig. 2(b). The exponential increase in the value
log10 d can be clearly observed from the figure over the passage of time. This
plot again gives an indication of the random nature of our map as the number of
iterations increases which has been effectively exploited in our work for designing
the encryption algorithm.

94 N. Nesa and I. Banerjee

5 Proposed Security Protocol

Since our proposed architecture relates to an IoT scenario, adapting the known
concepts of MHT and chaos theory to an IoT environment was necessary. The
processes are explained in detail next.

5.1 Registration

Registration is the first phase where all the n IoT devices Di(i = 1, . . . n) wishing
to form a network register themselves with the Trusted centre (TC) with their
designated n unique RFID tags. TC then constructs the tree by deriving the hash
value of each RFIDi and stores them in a table for future authentication. TC
then distributes the hash values to all leaf nodes. Thus, only the authenticated
devices in the network are in possession of the hash values that is required for
their transmission of data.

5.2 Authenticating the Devices Using MHT

As mentioned earlier, authentication is performed by TC which is assumed to
be secured from any form of attacks and whose credentials are verified from the
top-level security system. Any device Di wishing to initiate data transfer has to
first test for its authenticity. This is done by sending a request message REQi

to TC that indicates its desire for communication. TC, on receiving REQi, asks
for the proof that Di belongs to the network and is a valid device. Di now
sends hash values of the merkle hash path (θ) for authentication. On receiving
the proofs, TC calculates the hash value using Eq. 2, and checks if its stored
hash of the root (i.e., hroot) is equal to the calculated hash. If the two hashes
match, the device Di is an authenticated device and can proceed to the process
of data exchange. Algorithm 1 illustrates the process of authentication for our
proposed system where each device presented as a leaf node is authenticated
by recursively computing and concatenating the hash values along the Merkle
Hash path. Since only the hash functions are computed, the computation cost
of verification is very low.

5.3 Establishment of Keys

In our work, the key of encryption algorithm is produced by our proposed chaotic
map because of its marked nature of randomness. It is a known fact that the
more random a key is, the more difficult it is for an attacker to break. Therefore
on the basis of the bifurcation diagram, it is easy to note the areas the map
produces random chaotic behaviour. The control parameters needed to generate
the bifurcation diagram comes from the MHT. Our proposed chaotic map takes
as input three control parameters: a pre-shared session key S, a key K which
acts as the initial condition of the map and the number of iterations Itr that
signifies the number of times K is iterated in the map. Based on the number of

Combining Merkle Hash Tree and Chaotic Cryptography 95

levels l, keys are produced. These keys are nothing but the value of φ at each
node in the merkle hash path θ for the device Di. After which, K is calculated
as follows

K = key1 ⊕ key2 ⊕ key3 ⊕ ... ⊕ keyl

The value of K in binary is converted into decimal that serves as the initial
condition in the chaotic map. The pre-shared session key S is generated which
is a random number such that the value > 3. This is set keeping in mind that
our proposed chaotic map is chaotic in this range. The iteration number Itr is
calculated using both the values of K and S. The number of digits in K, say,
dig is estimated. Now, in the generated value of S, dig digits after decimal is
extracted and summed up with the value of K that yields the iteration number.

Theorem 1. The key space size of our proposed encryption algorithm is 2280× l
where l denotes the number of levels in the Merkle Hash Tree.

Proof. Since the hash function used in our protocol is SHA-1, which produces a
160-bit binary output, the key space required for K alone is 2160. Furthermore,
in order to ensure the dynamical system falls in the chaotic regime, the range
of a that is also the pre-shared session key is restricted to 32-digits values for
a > 3. This value a or S is a 32 bit decimal number that is generated randomly.
Since the ASCII table supported by MATLAB is composed of 128 values. Each
of these 40-hex digits (output of SHA-1) are mapped to its corresponding ASCII,
the maximum value of which is 128. Therefore, the maximum value of the hash
value at each node, i.e., key1, key2,...,keyl (l is the number of levels), cannot
exceed 40×128 = 5120 which requires ≈ 13-bits each to represent. Therefore,
the value of K which is the XOR operation of key1, key2, ..., keyl also comprises
of 13-bits. Hence, the iteration number Itr that is dependent on the number of
digits in K should also not exceed 13 + 1 (for carry) bits. Summing it all up, the
key size for our proposed algorithm is (2160 × l) × 1032 × 213 ≈ 2280 × l, where l
is the number of levels in the Merkle Hash Tree (Fig. 3).

5.4 Data Encryption/Decryption

The value of ϑ obtained after the iteration process of the chaotic map is then
combined with the plain text P using a XOR operation along with the previous
ciphertext value. The inclusion of previous ciphertext for XOR operation was
adopted for ensuring dynamic feedback in our proposed architecture. Thus, at
any instant t the encrypted data will be given by Cipher = Pt ⊕ ϑ ⊕Ciphert−1.
Algorithm 2 displays the essential steps of our chaos based encryption/decryption
algorithm. This function takes as an input a 256-bits plaintext Pt data. In order
to add provision for integrity check, an alternative coding approach that appends
a count of the ‘0’ bits N (0) in Ct before communicating it to TC. The new
message, C, would be only be log2 256-bit = 8 bits longer than the original 256-bit
message, Ciphert. After appending the zero count N (0) the final ciphertext C is

96 N. Nesa and I. Banerjee

Algorithm 2. Proposed Chaotic Encryption algorithm
Input: Raw data P
Output: Encrypted data C

1 Generate the keys key1, key2, .., keyl based on the number of levels l
2 Final key K ← key1 ⊕ key2⊕, ...keyl

3 Convert K into binary
4 dig ← number of decimal digits of K
5 δ ←take dig digits after decimal from pre-shared session key S
6 Iteration Itr ← K + δ

/* Set initial condition K and S as control parameter and iterate

in the chaotic map Itr number of times */

7 ChaosVal ← Chaos(K, S, Itr)
8 ϑ ← ChaosVal × Itr
9 if P is the first plaintext after registration then Ciphert ← Pt ⊕ ϑ

10 else Ciphert ← Pt ⊕ ϑ ⊕ Ciphert−1

11 C ← Ct|N (0)

12 return C

sent to TC for data fusion through the communication medium. TC, on receiving
C, first checks whether the message has been tampered with by comparing the
last 8 bits that signifies N (0) with the number of zeros in the first 256-bits
in C. If the values do not match, a security threat is detected and subsequent
actions are undertaken to remedy the problem. If however, the values match,
the ciphertext is assumed to be free of any tampering by an intruder and thus
is further processed to extract the plaintext. In our work, since the merkle hash
values φ is used for modulation in the chaotic map, which is known to both
Di and TC, both can generate the chaotic initial value K and the Itr value
individually. In the decryption process, utilizing the symmetric property of XOR
operation TC decrypt the received data Ciphert as Ciphert ⊕ ϑ ⊕ Ciphert−1 =
(Pt ⊕ ϑ ⊕ Ciphert−1) ⊕ ϑ ⊕ Ciphert−1 which equals Pt.

φroot = φ1,3 = H(φ1,2||φ2,2)

φ1,2 = H(φ1,1||φ2,1) φ2,2 = H(φ3,1||φ4,1)

RFID3

φ1,1 = φ2,1 = φ3,1 = φ4,1 =
H(RFID1) H(RFID2) H(RFID4)

⊕

H(RFID3)

K

key1

key2

key3

RFID4RFID1 RFID2

Chaotic Map

Itr
Iteration Session key

S

ChaosV al
×Itr

ϑ

levels

1

2

3

Fig. 3. Key generation using Merkle Hash Tree together with the proposed chaotic
map

Combining Merkle Hash Tree and Chaotic Cryptography 97

5.5 Secure Data Fusion

Since the main aim of our work is security in the process of data fusion. There-
fore the authentication, key establishment, encryption processes are extended
to all the IoT devices in the network that participate in the data fusion pro-
cess. TC is the centre for data fusion, where encrypted data from all the devices
arrive. Based on which the process of fusion takes place to arrive to a conclu-
sion. After which, the decision is communicated to the concerned authority. For
instance, in real-time monitoring environment, any critical event needs to be
conveyed at real time. The assessment of the critical event is done by fusion of
the data appropriately at any time instant at the same time ensuring its security
in the process. This idea can be described as follows: assume P t

i , C
t
i represent tth

plaintext and ciphertext respectively from the ith device in the network. Since,
a major portion of an device’s energy is consumed during the process of com-
munication, reducing the data transfer in the network is useful in saving battery
life of energy-constraint IoT devices. To minimize the number of transmissions
from thousands of devices towards the TC, a single session key S is used for all
devices for a particular session; after which it becomes obsolete. This limits the
number of transmission in the network as well as ensures the security since S
is not the only control parameter that is needed to construct the chaotic map.
Thus, TC, on receiving the encrypted message from n devices, decrypts it and
performs its computations to derive its result. The data fusion algorithm used
by TC is beyond the scope of this paper and thus is avoided to facilitate easy
understanding.

6 Experiment

For the sake of simplicity in our experiment, we have simulated an IoT environ-
ment consisting of 8 IoT devices Di|i = 1, 2, .., 8 in MATLAB, each generating
time varying data P t every t time instant. For instance, sensory data (referred to
as the plaintext) generated by device D2 is given as P2 = P 1

2 , P 2
2 , . . . , P t−1

2 , P t
2 .

For our proposed chaotic map xn+1 = 1−sin(r+ax2
n) for a ∈ {1, 4}, the control

parameters are the pre-shared session key S, the initial condition x0 denoted as
K and the iteration number Itr.

Registration

– Step 1: All the 8 IoT devices in the network register themselves with the
trusted data fusion centre (TC) with their designated RFID tags, RFIDi|i =
1, .., 8. RFIDs are 96-bit binary numbers or 24 hex digits. For our experiment,
we have used random 24 hex numbers as RFIDs as shown in Table 2.

– Step 2: TC creates a Merkle Hash Tree with all the devices in the network,
in which all the leaf nodes the RFIDs of the devices. The tree is constructed
as shown in Fig. 4.

98 N. Nesa and I. Banerjee

Table 2. RFID tags corresponding to each device for our experiment

Device RFID tags

D1 45 3d 6c e1 48 16 85 57 e3 29 c5 89

D2 77 c0 23 0e b5 0e 39 63 3a 48 5b bf

D3 2e e0 62 6d 14 ca e6 83 18 7a e7 9e

D4 ba 9d 08 f4 2b 4b 5e 23 51 d5 70 2a

D5 5a 3e ed 7e b4 7f d3 e8 60 40 77 37

D6 3b 0a f1 4a 7c e9 14 ca ac da 3f c9

D7 21 f5 cb a5 80 0f 82 58 aa 90 f2 d5

D8 b4 e0 72 d6 50 72 3a cd 67 85 5c ab

– Step 3: In addition, TC maintains a table where RFID tag of each device is
stored. A randomly generated pre-shared session key S ∈ {1, 4} is stored for
each time instant t. This session key is used by all the devices for communi-
cation for each session, at the expiration of which, the session key S becomes
obsolete.

Authentication using MHT

– Step 4: Device D8 deciding to initiate a communication does so by sending
a request message REQ8 to TC. Figure 4 depicts this situation where device
D8 is denoted by a red circle.

– Step 5: TC on receiving REQ8, asks for the proof that D8 belongs to the
network and is a valid device.

– Step 6: D8 now sends hash values of the merkle hash path for authentication.
That is, D8 sends the value of φ8,1, φ7,1, φ3,2 and φ1,3 as authentication proofs
to the TC. The proofs/sibling nodes are highlighted in blue and the initiator
node φ8,1 in red in Fig. 4.

– Step 7: TC, on receiving the proofs calculates the resultant hash value from
the individual hash values received from D8 according to Eq. 2, as

φ1,4 =H(φ1,3||φ2,3)
=H(φ1,3||H(φ3,2||φ4,2))
=H(φ1,3||H(φ3,2||H(φ7,1||φ8,1)))

– Step 8: TC now compares the resultant value φ1,4 with its own hash φroot.
The φ1,4 obtained in the previous step matches with the stored value of
φroot in our experiment. Since the two hashes are equal, the device D8 is an
authenticated device and thus can proceed to the process of data exchange.

Key Generation and Exchange

– Step 9: Based on the number of levels in the Merkle hash tree, a unique key
is generated at each level denoted as key1, key2, ..., keyn which is nothing but

Combining Merkle Hash Tree and Chaotic Cryptography 99

φroot = φ1,4

φ2,3

levels
1

2

3

D1 D2 D3 D4 D5 D6 D7 D8

4
φ1,1 φ2,1

φ3,1 φ4,1 φ5,1 φ6,1 φ7,1 φ8,1

φ1,2 φ2,2 φ3,2

φ4,2

φ1,3

key1

key2

key3

key4

⊕ K

Fig. 4. Key generation using Merkle Hash Tree together with the proposed chaotic
map (Color figure online)

the hash values of each node in the Merkle Hash Path. In our experiment
number of levels is 4, therefore four keys are generated.

– Step 10: The values of keys i.e., key1, key2, key3 and key4 are not the proofs
that are communicated in the authentication process, but rather the φ values
of those nodes that fall in the path from the device to the TC. That is, for
the device D8, the keys as illustrated in the the Fig. 4 are φ8,1, φ4,2,φ2,3 and
φ1,4 after converting them to their ASCII and summing the resultant values.

– Step 11: All 4 keys key1, key2, key3 and key4 are XORed to produce the
final key K, after which it is converted into decimal that serves as the initial
condition for our chaotic map. In our experiment, value of K (note that the
XOR operations are all done in binary, in order to save space, the values are
replaced by their decimal equivalent) is

K = 2787 ⊕ 2736 ⊕ 2671 ⊕ 2907
= 2620

The value of K = 2620 is the initial condition for the map generation.
– Step 12: At this point, a shared session key S is generated between the TC

and D8. S ∈ {1, 4} is generated such that it falls in the chaotic region of the
proposed map. For our experiment we have randomly generated the value as

S = 3.0362054645733205227031703543616

– Step 13: The value of Itr that denotes the number of iterations is calculated
next. The device/TC first estimates the number of digits in K as dig. In our
experiment, dig = 4. Adding dig number of digits after decimal of the value
S to the value of K yields the value of Itr. That is,

Itr = 4 (value of dig) digits after decimal of S + K
= 0362 + 2620
= 2982

100 N. Nesa and I. Banerjee

10.2 11.6
7.23 -6.96
99.02 55.1
-60.29 42.9
23.65 76.2

(a)

¡ĤĨĩĨĶķıĲĴľĴĳļ"'ZÆ~ _¤ĲīĽĮĳĶĵĨĤĩ¡ĢĹħ
ĦħĶĨĪĸİļģĮ"#(óvĎÞë¡ĲĲĹĥĪĢĽĸķĨħĦĦ
ħĽĢĽĢľĪıĻĻy:| h<ă¡ħĵĽľĥħķģĤ¡ĩĴĹĺĭĥĤ
ĬĺĨĸĴĢ({Ġ ĸĄÌ¯áļİĺĥĸļĺĩĨĢĬĦıĤģĽľĬĴģĨģį,
~³ë ÆNĒáĦľĮĽķĲıĶĢĬĨĸĦİĢħİĺĦķĶģİ"
»ĊĖ_Iú ľĥķĴĳİĲĮĤĪİĭļĽĴĥĳĭľĪĶıħĵ#|Ê6$"
ºQģħģĻĺĥĭĥĲĽ¡İĹĤįĳħĳģĲĺİĮĦ"č ¥g
čĢķĹĪĥĬĺĺĵĽ¡ĻĢīĸīĳįĢĳĳĴīİ#ÄwíE ĆáĶĻģ
ĤĴĸľĥĬĵ¡įĢģļıĬĬĦĦĬīĸİ"nù¢0âKēįĥĻĵĺĵľľĩĴ

(b)

Fig. 5. Analysis of our proposed Chaotic map for (a) Plaintext (b) Encryption with
correct key

Encryption

– Step 14: The values of ChaosV al and ϑ after the map is iterated Itr number
of times are as follows:

ChaosV al = − 1.2054
ϑ = ChaosV al × Itr

= − 1.2054 × 2982 = −3594.4

– Step 15: The plaintext produced by D8 at time instant t and (t−1) in our
experiment be given as Pt−1 = 10.2 and Pt = 11.6. The plaintext is encrypted
as explained in Sect. 5.4.

– Step 16: The next step is to perform XOR operation of the plaintext Pt,
chaotic output ϑ and the previous cipher Ct−1 after converting them into
their binary 256-bit equivalent as

Ct =

{
Ct = Pt ⊕ ϑ ⊕ Ct−1 if t �= 1 or,
Pt ⊕ ϑ otherwise

– Step 17: Similarly, for integrity checking since the size of Ct is 256 bits, then
the maximum size of N0 will be log2 256 = 8 bits.

– Step 18: The resultant Ct i.e., 256 + 8 bits is converted into their ASCII
values generating 32 + 1 characters of ASCII which is the final cipher Cipher.
Figure 5(a) and (b) shows the plaintext/sensor data corresponding to each of
the 8 ciphertexts respectively.

– Step 19: The ciphertext Cipher is then sent to TC for decrypting.

Decryption

– Step 20: TC, on receiving the ciphertext Cipher, now performs the reverse
operation by first estimating the value K from the information provided by
the device D8.

Combining Merkle Hash Tree and Chaotic Cryptography 101

– Step 21: Value of Iteration Itr and is calculated using similar approach with
the help of the pre-shared session key S. Ultimately ϑ is calculated through
iteration on the chaotic map with the help of the control parameters, i.e., K,
S and Itr.

– Step 22: TC extracts the plaintext by performing XOR operation of the previ-
ous known cipher Ci−1, the current cipher value Ci and the output produced
by the chaotic map ϑ.

– Step 23: The value obtained after the XOR operation is the plaintext P after
converting to its decimal form, i.e., the value of 10.2 is successfully decrypted
by the TC.

Secure Data Fusion

– Step 24: TC individually decrypts the values from each of the devices. After
the Ciphertexts Ct

1, C
t
2, . . . , C

t
8 from devices D1,D2, . . . , D8 respectively are

successfully decrypted into the plaintexts Pt
1,Pt

2, . . . ,Pt
8, the process of data

fusion begins.
– Step 25: In this phase, all the sensor information in the form of plaintexts are

fused to form a decision. (Note that the algorithm for data fusion is beyond
the scope of this paper and thus is not added in order to avoid complication.)

– Step 26: The decision is conveyed to the concerned authority to the IoT
application wirelessly or through the monitoring app.

All the steps above are explained with respect to a single device D8. Similar
procedure is followed by all devices in the network, i.e., Di|i = 1 . . . 8 each follow
through the steps of authentication, key exchange, encryption and decryption.

7 Security Analysis

Accomplishment of Anonymity. Anonymity ensures that even if the attacker
A eavesdrops on any ongoing communication, he/she should not be able to detect
the identity of either the sender or receiver of the intercepted message, i.e. the
identity of a device Di is completely anonymous. This is achieved in our protocol
by the one-way property of Hash functions which is the heart of our work in this
paper. Intuitively, a one way function is one which is easy to compute but difficult
to invert. Thus, even if the hash proofs of the device Di are intercepted by the
attacker, it is impossible for him/her to extract the identity or the RFID of Di

thus achieving device anonymity.

Accomplishment of the Device Authentication. Since our security proto-
col is based on the MHT where the values at each node are the hash of RFID
tags and the RFID tags uniquely identifies a device, the generated hash values
are also unique. In our protocol, any attacker attempting to initiate commu-
nication with the TC cannot forge the RFID of the authentic device and thus
cannot deliver the accurate proofs. Moreover, even if the attacker in some way

102 N. Nesa and I. Banerjee

intercepts the RFID of the device, it is impossible to get hold of the hash values
of all its siblings that constitutes the valid proof. In this way, TC authenticates
a legitimate device and prevents unwanted communication from untrusted third
parties.

Accomplishment of Data Integrity. To achieve data integrity, we have incor-
porated a mechanism where the ciphertext includes few bits for integrity check-
ing. Suppose the ciphertext C be 11000110. The number of 0s is 4 or N (0) = 100.
Then Cipher would be Cipher = 11000110|100 (where | signifies the division
of Cipher into Ct and its 0 count N (0)). Now if the ciphertext 11000110 were
tampered by an attacker to 11000100 by changing the seventh bit to a 0, the
value of N (0) being the same, the cipher would then be Cipher = 11000100|100.
For the Cipher to be a valid codeword, the count N (0) = 100 would also have
to be changed to 101 because we now have 5 0s, not 4. But this requires chang-
ing a 0 to a 1, something that is forbidden. If the codeword were changed to
11000110|110 by altering N (0), then C would have to be changed so that it had
6 0’s instead of 4. Again, this requires changing a 0 to 1 which is not possible.
In this way, our algorithm guarantees data integrity.

Accomplishment of the Data Confidentiality. Data confidentiality is main-
tained in our protocol as there is no requirement of exchanging keys in the
network. As a result, any attempt by an unauthorized user to forge identity
is nullified. Therefore, the entire process of our proposed architecture is highly
confidential and the exchanged data is highly secured against tampering.

Resistance to Replay Attacks. Our proposed is resilient to replay attacks
by using a random value of S. In this way, an attacker cannot replay the same
message again and again with the intention of passing the authentication phase.
Others key parameters such as K and Itr are not shared in the insecure channel
and thus they cannot be intercepted by the attacker. These keys are generated at
both ends separately through the control parameters, thus making our proposed
scheme secure against from unwanted replay attacks.

Resistance to Forgery Attacks. An attacker may also attempt to use the
RFID of any legal validated device to pass the verification process of the TC.
In that case, the attacker needs to construct a valid request message REQ with
valid proofs to pass the TC’s verification. However, to do that, he/she needs
to not only know the hash of the RFID but in addition the individual hash
values of all the sibling nodes in its path to the TC i.e. apart from H(RFID),
other proofs that includes the φ values calculated for every node j at level i as
φi,j = H(φ2i−1,j−1||φ2i,j−1), which is quite impossible for him/her to figure out
as these are the unknown secrets and therefore an attacker cannot convince TC
of its identity. In this way, our proposed scheme can resist forgery attacks.

Combining Merkle Hash Tree and Chaotic Cryptography 103

8 Conclusion

Owing to the urgent need for developing security algorithms for Internet of
Things (IoT) environment, this paper presents a security protocol by combining
the advantages of both Merkle Hash Tree and Chaotic Cryptography. Our contri-
bution is two-fold. First, we develop an authentication protocol based on Merkle
Hash Tree that we have improved to suit to an IoT application by utilizing the
RFID tags for generating the tree. Secondly, we have designed an encryption
algorithm inspired by the chaos theory in cryptography. Additionally, we have
proposed a novel chaotic map that has been used for designing the encryption
algorithm. The proposed security protocol use lightweight computations that is
well suited for the resource-constrained IoT devices. Experimental and security
analysis proves the effectiveness of our algorithms and its resilience to security
attacks.

Acknowledgement. This work is supported by the Ministry of Electronics & Infor-
mation Technology (MeitY), Government of India under the Visvesvaraya PhD Scheme
for Electronics & IT (PhD-PLA/4(71)/2015-16).

References

1. Guo, B., Zhang, D., Yu, Z., Liang, Y., Wang, Z., Zhou, X.: From the Internet of
Things to embedded intelligence. World Wide Web 16(4), 399–420 (2013)

2. Satyadevan, S., Kalarickal, B.S., Jinesh, M.K.: Security, trust and implementation
limitations of prominent IoT platforms. In: Satapathy, S.C., Biswal, B.N., Udgata,
S.K., Mandal, J.K. (eds.) Proceedings of the 3rd International Conference on Fron-
tiers of Intelligent Computing: Theory and Applications (FICTA) 2014. AISC, vol.
328, pp. 85–95. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-12012-
6 10

3. Weber, R.H.: Internet of Things-new security and privacy challenges. Comput. Law
Secur. Rev. 26(1), 23–30 (2010)

4. Lampropoulos, K., Denazis, S.: Identity management directions in future Internet.
IEEE Commun. Mag. 49(12), 74–83 (2011)

5. Suhardi, R.A.: A survey of security aspects for Internet of Things in healthcare.
In: Kim, K., Joukov, N. (eds.) Information Science and Applications (ICISA)
2016. Lecture Notes in Electrical Engineering, vol. 376. Springer, Singapore (2016).
https://doi.org/10.1007/978-981-10-0557-2 117

6. Alasmari, S., Anwar, M.: Security & privacy challenges in IoT-based health cloud.
In: 2016 International Conference on Computational Science and Computational
Intelligence (CSCI), pp. 198–201. IEEE (2016)

7. Islam, S.R., Kwak, D., Kabir, M.H., Hossain, M., Kwak, K.-S.: The Internet of
Things for health care: a comprehensive survey. IEEE Access 3, 678–708 (2015)

8. Roman, R., Najera, P., Lopez, J.: Securing the Internet of Things. Computer 44(9),
51–58 (2011)

9. Kalra, S., Sood, S.K.: Secure authentication scheme for IoT and cloud servers.
Pervasive Mob. Comput. 24, 210–223 (2015)

10. Amin, R., Kumar, N., Biswas, G., Iqbal, R., Chang, V.: A light weight authentica-
tion protocol for IoT-enabled devices in distributed cloud computing environment.
Future Gener. Comput. Syst. 78, 1005–1019 (2018)

https://doi.org/10.1007/978-3-319-12012-6_10
https://doi.org/10.1007/978-3-319-12012-6_10
https://doi.org/10.1007/978-981-10-0557-2_117

104 N. Nesa and I. Banerjee

11. Zhou, L., Li, X., Yeh, K.-H., Su, C., Chiu, W.: Lightweight IoT-based authentica-
tion scheme in cloud computing circumstance. Future Gener. Comput. Syst. 91,
244–251 (2019)

12. Mookherji, S., Sankaranarayanan, S.: Traffic data classification for security in IoT-
based road signaling system. In: Nayak, J., Abraham, A., Krishna, B.M., Chandra
Sekhar, G.T., Das, A.K. (eds.) Soft Computing in Data Analytics. AISC, vol.
758, pp. 589–599. Springer, Singapore (2019). https://doi.org/10.1007/978-981-
13-0514-6 57

13. Nesa, N., Ghosh, T., Banerjee, I.: Outlier detection in sensed data using statistical
learning models for IoT. In: 2018 IEEE Wireless Communications and Networking
Conference (WCNC), pp. 1–6. IEEE (2018)

14. Nesa, N., Ghosh, T., Banerjee, I.: Non-parametric sequence-based learning app-
roach for outlier detection in IoT. Future Gener. Comput. Syst. 82, 412–421 (2018)

15. Rathore, H., Jha, S.: Bio-inspired machine learning based wireless sensor network
security. In: 2013 World Congress on Nature and Biologically Inspired Computing,
pp.140–146. IEEE (2013)

16. Bodei, C., Chessa, S., Galletta, L.: Measuring security in IoT communications.
Theor. Comput. Sci. 764, 100–124 (2019)

17. Bodei, C., Degano, P., Ferrari, G.-L., Galletta, L.: Where do your iot ingredients
come from? In: Lluch Lafuente, A., Proença, J. (eds.) COORDINATION 2016.
LNCS, vol. 9686, pp. 35–50. Springer, Cham (2016). https://doi.org/10.1007/978-
3-319-39519-7 3

18. Nesa, N., Ghosh, T., Banerjee, I.: Design of a chaos-based encryption scheme for
sensor data using a novel logarithmic chaotic map. J. Inf. Secur. Appl. 47, 320–328
(2019)

19. Shukla, P.K., Khare, A., Rizvi, M.A., Stalin, S., Kumar, S.: Applied cryptography
using chaos function for fast digital logic-based systems in ubiquitous computing.
Entropy 17(3), 1387–1410 (2015)

20. Wang, W., et al.: An encryption algorithm based on combined chaos in
body area networks (2017). http://www.sciencedirect.com/science/article/pii/
S0045790617324138

21. Hamad, N., Rahman, M., Islam, S.: Novel remote authentication protocol using
heart-signals with chaos cryptography, In: International Conference on Informatics,
Health & Technology (ICIHT), pp. 1–7. IEEE (2017)

22. Ning, H., Liu, H., Yang, L.T.: Aggregated-proof based hierarchical authentication
scheme for the Internet of Things. IEEE Trans. Parallel Distrib. Syst. 26(3), 657–
667 (2015)

23. Liu, J., Su, H., Ma, Y., Wang, G., Wang, Y., Zhang, K.: Chaos characteristics
and least squares support vector machines based online pipeline small leakages
detection. Chaos, Solitons Fractals 91, 656–669 (2016)

24. Furquim, G., Pessin, G., Faiçal, B.S., Mendiondo, E.M., Ueyama, J.: Improving
the accuracy of a flood forecasting model by means of machine learning and chaos
theory. Neural Comput. Appl. 27(5), 1129–1141 (2016)

25. Furquim, G., Mello, R., Pessin, G., Faiçal, B.S., Mendiondo, E.M., Ueyama, J.: An
accurate flood forecasting model using wireless sensor networks and chaos theory:
a case study with real WSN deployment in Brazil. In: Mladenov, V., Jayne, C.,
Iliadis, L. (eds.) EANN 2014. CCIS, vol. 459, pp. 92–102. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-11071-4 9

26. Yang, L., Fei, L.Y., Dong, Y.X., Yan, H.: Iris recognition system based on chaos
encryption. In: 2010 International Conference on Computer Design and Applica-
tions (ICCDA), vol. 1, pp. V1–537. IEEE (2010)

https://doi.org/10.1007/978-981-13-0514-6_57
https://doi.org/10.1007/978-981-13-0514-6_57
https://doi.org/10.1007/978-3-319-39519-7_3
https://doi.org/10.1007/978-3-319-39519-7_3
http://www.sciencedirect.com/science/article/pii/S0045790617324138
http://www.sciencedirect.com/science/article/pii/S0045790617324138
https://doi.org/10.1007/978-3-319-11071-4_9

Combining Merkle Hash Tree and Chaotic Cryptography 105

27. Liu, X., Fang, X., Qin, Z., Ye, C., Xie, M.: A short-term forecasting algorithm for
network traffic based on chaos theory and SVM. J. Netw. Syst. Manage. 19(4),
427–447 (2011)

28. Li, H., Lu, R., Zhou, L., Yang, B., Shen, X.: An efficient merkle-tree-based authen-
tication scheme for smart grid. IEEE Syst. J. 8(2), 655–663 (2014)

29. Li, D., Aung, Z., Williams, J.R., Sanchez, A.: Efficient authentication scheme for
data aggregation in smart grid with fault tolerance and fault diagnosis. In: 2012
IEEE PES Innovative Smart Grid Technologies (ISGT), pp. 1–8. IEEE (2012)

30. Nicanfar, H., Jokar, P., Leung, V.C.: Smart grid authentication and key manage-
ment for unicast and multicast communications. In: 2011 IEEE PES Innovative
Smart Grid Technologies, pp. 1–8. IEEE (2011)

31. Xu, K., Ma, X., Liu, C.: A hash tree based authentication scheme in SIP appli-
cations. In: IEEE International Conference on Communications, 2008. ICC 2008,
pp. 1510–1514. IEEE (2008)

32. Liu, C., Ranjan, R., Yang, C., Zhang, X., Wang, L., Chen, J.: MuR-DPA: top-down
levelled multi-replica merkle hash tree based secure public auditing for dynamic
big data storage on cloud. IEEE Trans. Comput. 64(9), 2609–2622 (2015)

33. Zhang, H., Tu, T., et al.: Dynamic outsourced auditing services for cloud storage
based on batch-leaves-authenticated Merkle hash tree. IEEE Trans. Serv. Comput.
PP(99), 1 (2017)

34. Garg, N., Bawa, S.: RITS-MHT: relative indexed and time stamped Merkle
hash tree based data auditing protocol for cloud computing. J. Netw. Comput.
Appl. 84(Supplement C), 1–13 (2017). http://www.sciencedirect.com/science/arti
cle/pii/S1084804517300668

35. Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) Advances in
Cryptology — CRYPTO 1989 Proceedings. CRYPTO 1989. Lecture Notes in Com-
puter Science, vol. 435, pp. 218–238. Springer, New York (1990). https://doi.org/
10.1007/0-387-34805-0 21

36. Moreira, F.J.S.: Chaotic dynamics of quadratic maps. IMPA (1993)
37. Lawande, Q., Ivan, B., Dhodapkar, S.: Chaos based cryptography: a new approach

to secure communications, vol. 258, no. 258. BARC newsletter (2005)

http://www.sciencedirect.com/science/article/pii/S1084804517300668
http://www.sciencedirect.com/science/article/pii/S1084804517300668
https://doi.org/10.1007/0-387-34805-0_21
https://doi.org/10.1007/0-387-34805-0_21

	Combining Merkle Hash Tree and Chaotic Cryptography for Secure Data Fusion in IoT
	1 Introduction
	2 Related Works
	3 Merkle Hash Tree
	4 Modified Sinusoidal Quadratic Map
	4.1 Analysis of the Proposed Map

	5 Proposed Security Protocol
	5.1 Registration
	5.2 Authenticating the Devices Using MHT
	5.3 Establishment of Keys
	5.4 Data Encryption/Decryption
	5.5 Secure Data Fusion

	6 Experiment
	7 Security Analysis
	8 Conclusion
	References

