
12. Correlation Analysis in GF(2n)

This chapter is based on Appendix A of the first edition of this book and [52].
In the specification of Rijndael in Chap. 3, we have extensively used opera-
tions in a finite field, where the bytes of the state and key represent elements
of GF(28). Still, as for most block ciphers, Rijndael operates on plaintext
blocks, ciphertext blocks and keys that are strings of bits. Apart from some
exceptions such as interpolation attacks [73] and algebraically oriented anal-
ysis [61, 115], cryptanalysis of ciphers is also generally conducted at the bit
level. In particular, linear cryptanalysis exploits high correlations between
linear combinations of bits of the state in different stages of the encryption
process; see Chap. 7. Differential cryptanalysis (see Chap. 8) exploits high
propagation probabilities between bitwise differences in the state in different
stages of the encryption.

In Section 12.4, we demonstrate how Rijndael can be specified completely
with algebraic operations in GF(28). How the elements of GF(28) are repre-
sented in bytes can be seen as a detail of the specification. Addressing this
representation issue in the specification is important for different implemen-
tations of Rijndael to be interoperable, but not more so than for instance the
ordering of the bits within the bytes, or the way the bytes of the plaintext
and ciphertext blocks are mapped onto the state bytes.

We can abstract away from the representation of the elements of GF(28)
and consider a block cipher that operates on strings of elements of GF(28). We
call this generalization Rijndael-GF. Rijndael can be seen as an instance of
Rijndael-GF where the representation of the elements has been specified.
In principle, this can be applied to most block ciphers. Each block cipher
with block length and key length that are a multiple of n can in principle
be generalized to operate on strings of elements of GF(2n). However, unlike
for Rijndael, the specification of these generalized ciphers may become quite
complicated.

Intuitively, it seems obvious that if Rijndael has a cryptographic weak-
ness, this is inherited by Rijndael-GF and any instance of it, whatever the
representation of the elements of GF(28). Still, in the correlation analysis
as described in Chap. 7, we work at the bit level and must assume a spe-
cific representation to study the propagation properties. In this chapter, we

© Springer-Verlag GmbH Germany, part of Springer Nature 2020 
J. Daemen, V. Rijmen, The Design of Rijndael, Information Security and Cryptography, 
https://doi.org/10.1007/978-3-662-60769-5_12 

181

https://doi.org/10.1007/978-3-662-60769-5_12
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-60769-5_12&domain=pdf


182 12. Correlation Analysis in GF(2n)

demonstrate how to conduct correlation analysis at the level of elements of
GF(2n), without having to deal with representation issues.

This chapter is devoted to functions over fields with characteristic two.
However, building on the generalization of linear cryptanalysis published in
[8] all properties and theorems can be generalized to finite fields with odd
characteristic.

We start by describing correlation properties of functions over GF(2)
n

and of functions over GF(2n), with the focus on linear functions. This is fur-

ther generalized to functions over GF(2n)
�
. We then discuss representations

and bases in GF(2)
n
and show how propagation in functions over GF(2n)

maps to propagation in Boolean functions by the choice of a basis. Subse-
quently, we prove two theorems that relate representations of linear functions
in GF(2)

n
and functions in GF(2n) that are linear over GF(2). Finally we

specify Rijndael-GF.

12.1 Description of Correlation in Functions over
GF(2n)

In this section we study the correlation properties of the functions over
GF(2n):

f : GF(2n) → GF(2n) : a �→ b = f(a).

For Boolean functions, correlation is defined between parities. For a func-
tion over GF(2n), individual bits cannot be distinguished without adopting
a representation, and hence speaking about parities does not make sense. A
parity is a function that maps GF(2)

n
to GF(2) and is linear over GF(2). In

GF(2n), we can find functions with the same properties. For that purpose,
we use the trace function in a finite field (see Section 2.1.8).

It follows that the functions of the form

f(a) = Tr(wa)

with w ∈ GF(2n) are linear functions mapping GF(2n) to GF(2). There are
exactly 2n such functions, one for each value of w. We call the function Tr(wa)
a trace parity, and the corresponding value w a trace mask.

In the analysis of correlation properties of functions over GF(2n), trace
parities play the role that is played by the parities in the correlation analysis
of Boolean functions, where n = 1. When a representation is chosen, these
functions can be mapped one-to-one to parities (see Sect. 12.3.1).

By working with trace masks, it is possible to study correlation proper-
ties in functions over GF(2n) without having to specify a basis. Hence, the
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obtained results are valid for all choices of basis. Once a basis is chosen, trace
masks can be converted to the usual masks, which we will call selection masks
in this chapter (see Theorem 12.3.1).

For a function f over GF(2n), we denote the correlation between an input

trace parity Tr(wa) and an output trace parity Tr(uf(a)) by C
(f)
u,w. We have

C(f)
u,w = 2−n

∑
a

(−1)Tr(wa)(−1)Tr(uf(a))

= 2−n
∑
a

(−1)Tr(wa)+Tr(uf(a))

= 2−n
∑
a

(−1)Tr(wa+uf(a)).

The value of this correlation is determined by the number of values a that
satisfy

Tr(wa+ uf(a)) = 0. (12.1)

If this equation is satisfied by r such values, the correlation C
(f)
u,w is equal to

21−nr − 1. If it has no solutions, the correlation is −1; if it is satisfied by
all values a, the correlation is 1; and if it is satisfied by exactly half of the
possible values a, the correlation is 0. By using the polynomial expression for
f , (12.1) becomes a polynomial equation in a (see Section 2.1.8):

Tr(wa+ u
∑
i

cia
i) = 0.

For some cases the number of solutions of these polynomials can be analyt-
ically determined, providing provable bounds for correlation properties. See
for example the results on Kloosterman sums in [92] that provide bounds on
the input-output correlation of the multiplicative inverse in GF(2n).

Example 12.1.1. Let us consider the following operation:

b = f(a) = a+ c,

where c is a constant. We can determine the correlation by finding the number
of solutions of

Tr(wa+ u(a+ c)) = 0.

This is equivalent to

Tr((w + u)a+ uc) = 0.

If w + u is different from 0, the trace is zero for exactly half of the values of
a, and the correlation is 0. If w = u this becomes
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Tr(uc) = 0.

This equation is true for all values of a if Tr(uc) = 0, and has no solutions
if Tr(uc) = 1. It follows that the addition of a constant has no effect on the

trace mask and that the sign of the correlation is equal to (−1)Tr(uc).

12.1.1 Functions That Are Linear over GF(2n)

The functions of GF(2n) that are linear over GF(2n) (see Sect. 2.1.2) are of
the form

f(a) = l(0)a,

where l(0) is an element of GF(2n). Hence, there are exactly 2n functions over
GF(2n) that are linear over GF(2n).

To determine the correlation we can find the number of solutions of

Tr(wa+ ul(0)a) = Tr((w + ul(0))a) = 0.

If the factor of a is different from 0, the correlation is 0. The correlation
between Tr(wa) and Tr(uf(a)) is equal to 1 iff

w = l(0)u.

12.1.2 Functions That Are Linear over GF(2)

A function over GF(2n) is linear over GF(2) if it satisfies the following:

∀ x, y ∈ GF(2n) : f(x+ y) = f(x) + f(y) .

Observe that the functions that are linear over GF(2n) are a subset of the
functions that are linear over GF(2). For example, the function f(x) = x2 is
linear over GF(2), but not over GF(2n):

f(x+ y) = (x+ y)2 = x2 + xy + yx+ y2 = x2 + y2

= f(x) + f(y)

f(ax) = a2f(x) 
= af(x) if a 
∈ GF(2).

In general, the functions of GF(2n) that are linear over GF(2) are the so-
called linearized polynomials [95]:

f(a) =

n−1∑
t=0

l(t)a2
t

, with l(t) ∈ GF(2n). (12.2)

The relation between the trace mask at the input and the trace mask at
the output is not trivial.
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Theorem 12.1.1. For a function b =
∑n−1

t=0 l(t)a2
t

an output trace parity
Tr(ub) is correlated to input trace parity Tr(wa) with a correlation of 1 iff

w =
n−1∑
t=0

(l(n−t mod n)u)2
t

. (12.3)

Proof. We will prove that Tr(wa) = Tr(ub) and hence that Tr(wa+ ub) = 0
for all values of a if w is given by (12.3). All computations with variables t, s
and r are performed modulo n, and all summations are from 0 to n− 1.

Tr(wa) = Tr(ub)

Tr

(∑
t

(l(n−t)u)2
t

a

)
= Tr

(
u
∑
t

l(t)a2
t

)

∑
s

(∑
t

l(n−t)2
t

u2ta

)2s

=
∑
s

(∑
t

l(t)ua2
t

)2s

∑
s

∑
t

l(n−t)2
s+t

u2s+t

a2
s

=
∑
s

∑
t

l(t)
2s

u2sa2
s+t

∑
s

∑
t

l(n−t)2
s+t

u2s+t

a2
s

=
∑

r=s+t

∑
t

l(t)
2r−t

u2r−t

a2
r

∑
s

∑
r=n−t

l(r)
2s−r

u2s−r

a2
s

=
∑
s

∑
t

l(t)
2s−t

u2s−t

a2
s

∑
s

∑
t

l(t)
2s−t

u2s−t

a2
s

=
∑
s

∑
t

l(t)
2s−t

u2s−t

a2
s

.

��

We illustrate this with the following example.

Example 12.1.2. We consider two transformations f and g over GF(23), de-
fined by

f(a) = αa

g(a) = a4 + (α2 + α+ 1)a2.

For both functions, we want to derive a general expression that for any output
trace mask u gives the input trace mask w it correlates with. We denote these
expressions by fd and gd, respectively. Applying Theorem 12.1.1, we obtain
for f(a)

l(0) = α, l(1) = l(2) = 0,

and hence
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w = fd(u) = αu. (12.4)

Similarly, for g(a) we have

l(0) = 0, l(1) = α2 + α+ 1, l(2) = 1,

and hence

w = gd = u2 + ((α2 + α+ 1)u)4 = u2 + (α2 + 1)u4. (12.5)

12.2 Description of Correlation in Functions over
GF(2n)�

In this section we treat the correlation properties of functions that operate
on arrays of � elements of GF(2n). We denote the arrays by

A = [a1 a2 a3 . . . a� ]
T
,

where the elements ai ∈ GF(2n). We have

Q : GF(2n)
� → GF(2n)

�
: A �→ B = F (A).

The trace parities can be extended to vectors. We can define a trace mask
vector as

W = [w1 w2 w3 . . . w�]
T
,

where the elements wi ∈ GF(2n). The trace parities for a vector are of the
form

∑
Tr(wiai) = Tr

(∑
i

wiai

)
= Tr(WTA).

We can define a correlation between an input trace parity Tr(WTA) and an
output trace parity Tr(UTQ(A)):

C
(F )
U,W = 2−n�

∑
A

(−1)Tr(W
TA)(−1)Tr(U

TQ(A))

= 2−n�
∑
A

(−1)Tr(W
TA)+Tr(UTQ(A))

= 2−n�
∑
A

(−1)Tr(W
TA+UTQ(A)).
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12.2.1 Functions That Are Linear over GF(2n)

If F is linear over GF(2n), it can be denoted by a matrix multiplication. We
have⎡

⎢⎢⎢⎢⎢⎣

b1
b2
b3
...
b�

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

l1,1 l1,2 l1,3 · · · l1,�
l2,1 l2,2 l2,3 · · · l2,�
l3,1 l3,2 l3,3 · · · l3,�
...

...
...

. . .
...

l�,1 l�,2 l�,3 · · · l�,�

⎤
⎥⎥⎥⎥⎥⎦×

⎡
⎢⎢⎢⎢⎢⎣

a1
a2
a3
...
a�

⎤
⎥⎥⎥⎥⎥⎦ .

Or for short B = LA. The elements of the matrix are elements of GF(2n).

For the correlation, we have

Tr(WTA+UTLA) = Tr(WTA+ (LTU)TA)

= Tr((W + LTU)TA).

Hence, the correlation between Tr(WTA) and Tr(UTB) is equal to 1 if

W = LTU. (12.6)

12.2.2 Functions That Are Linear over GF(2)

Generalizing equation (12.2) to vectors of GF(2n) yields

bi =
∑
j

∑
t

l
(t)
i,ja

2t

j 0 ≤ i < n.

If we introduce the following notation:

A2t =
[
a2

t

1 a2
t

2 a2
t

3 . . . a2
t

�

]
,

this can be written as

B =
∑
t

L(t)A2t .

For the relation between the input trace mask and the output trace mask,
it can be proven that

W =
∑
t

(L(n−t mod n)TU)2
t

.



188 12. Correlation Analysis in GF(2n)

12.3 Boolean Functions and Functions in GF(2n)

12.3.1 Relationship Between Trace Masks and Selection Masks

If we study correlations in GF(2)
n
, then we have to use selection masks, and

we need to specify a basis. We can avoid specification of a basis if we study
instead the correlations in GF(2n), and work with trace masks. Since there
exists an isomorphism between GF(2)

n
and GF(2n), we can expect that for

every selection mask w there exists a trace mask w, and vice versa.

Since generally Tr(wa) 
= φe(w)
T
a, a selection mask w = φe(w), with φ

defined in Sect. 2.1.9, usually does not correspond to the trace mask w. This
is illustrated by the example below.

Example 12.3.1. We use basis e defined in Example 2.1.10. We take w = α,
hence wT = [011]. Then it follows from Table 12.1 that Tr(wa) 
= wTa.

Table 12.1. Tr(wa) �= wTa

a aT Tr(αa) [011]Ta

0 000 0 0

1 001 0 1

α+ 1 010 0 1

α 011 0 0

α2 + α+ 1 100 1 0

α2 + α 101 1 1

α2 110 1 1

α2 + 1 111 1 0

In the following theorem, we give and prove the correct relation between
trace masks and selection masks.

Theorem 12.3.1. Let a =e (a). Then the trace mask w corresponds to φd(w)
with d the dual basis of e.

Proof. We prove that

Tr(wa) = wd
Ta,

and hence that the correlations in GF(2)
n
and GF(2n) have the same value

if the relation between the masks is satisfied. Applying (2.42) to w and a, we
get

Tr(wa) = Tr

⎛
⎝
⎛
⎝∑

i

Tr(e(i)w)d(i)

⎞
⎠

⎛
⎝∑

j

Tr(d(j)a)e(j)

⎞
⎠
⎞
⎠ .
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Since the output of the trace map lies in GF(2), and since the trace map is
linear over GF(2), we can convert this to

Tr(wa) =
∑
i

Tr(e(i)w)
∑
j

Tr(d(j)a)Tr(d(i)e(j))

=
∑
i

Tr(e(i)w)
∑
j

Tr(d(j)a)δ(i⊕ j)

=
∑
i

Tr(e(i)w)Tr(d(i)a).

Applying (2.41) twice completes the proof. ��

12.3.2 Relationship Between Linear Functions in GF(2)
n

and
GF(2n)

A linear function of GF(2)
n
is completely specified by an n× n matrix M:

b = Ma.

A linear function of GF(2n) is specified by the n coefficients l(t) ∈ GF(2n) in

b =

n−1∑
t=0

l(t)a2
t

.

After choosing a basis e over GF(2n), these two representations can be con-
verted to one another.

Theorem 12.3.2. Given the coefficients l(t) and a basis e, the elements of
the matrix M are given by

Mij =

n−1∑
t=0

Tr

(
l(t)d(i)e(j)

2t
)
.

Proof. We will derive an expression of bi as a linear combination of aj in
terms of the factors l(t). For a component bi we have

bi = Tr(bd(i))

= Tr

(∑
t

l(t)a2
t

d(i)

)

=
∑
t

Tr(l(t)a2
t

d(i)). (12.7)

The powers of a can be expressed in terms of the components aj :
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a2
t

=

⎛
⎝∑

j

aje
(j)

⎞
⎠

2t

=
∑
j

aje
(j)2

t

, (12.8)

where we use the fact that exponentiation by 2t is linear over GF(2) to obtain
(12.8). Substituting (12.8) in (12.7) yields

bi =
∑
t

Tr

⎛
⎝l(t)

∑
j

aje
(j)2

t

d(i)

⎞
⎠

=
∑
t

∑
j

Tr

(
l(t)e(j)

2t

d(i)aj

)

=
∑
j

(∑
t

Tr(l(t)e(j)
2t

d(i))

)
aj .

It follows that

Mij =
∑
t

Tr

(
l(t)e(j)

2t

d(i)
)
,

proving the theorem. ��

Theorem 12.3.3. Given matrix M and a basis e, the elements l(t) are given
by

l(t) =

n∑
i=1

n∑
j=1

Mijd
(j)2

t

e(i).

Proof. We will express b as a function of powers of a in terms of the elements
of the matrix M. We have

b =
∑
i

bie
(i), (12.9)

and

bi =
∑
j

Mijaj

=
∑
j

MijTr(ad
(j))

=
∑
j

Mij

∑
t

a2
t

d(j)
2t

. (12.10)
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a

b =
∑

t l
(t)a2t

b

�a = aTe

b = bTe

a

b = Ma

b

Tr(wa)

w =
∑

t

(
l(n−t)u

)2t

Tr(ub)

� w = wT
d d

u = uT
d d

wT
d a

wd = MTud

uT
d b

choice of basis e and its dual basis d

	 �(12.6)

	 �(12.3)

Fig. 12.1. The propagation of selection and trace masks through a function that
is linear over GF(2)

Substituting (12.10) into (12.9) yields

b =
∑
i

∑
j

Mij

∑
t

a2
t

d(j)
2t

e(i)

=
∑
t

⎛
⎝∑

i

∑
j

Mijd
(j)2

t

e(i)

⎞
⎠ a2

t

.

It follows that

l(t) =
∑
i

∑
j

Mijd
(j)2

t

e(i),

proving the theorem. ��

Figure 12.1 illustrates the relations between the selection mask and trace
mask at the input and output of linear functions in GF(2n). Remember that
we always express the input mask w as a function of the output mask u.

We illustrate this in the next example.

Example 12.3.2. We take the functions f and g of Example 12.1.2 and the
bases e and d of Example 2.1.10. Table 12.2 shows the coordinates of the
elements of GF(23), as well as the coordinates of the images of f and g with
respect to e.
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Table 12.2. Coordinates of the field elements, and the images of f and g with
respect to the basis e

a a b = f(a) b = g(a)

0 000 000 000

1 001 011 101

α+ 1 010 101 001

α 011 110 100

α2 + α+ 1 100 111 100

α2 + α 101 100 001

α2 110 010 101

α2 + 1 111 001 000

Once the coordinates of the inputs and outputs of f and g have been
determined, we can derive the matrices M and N that describe the functions
f and g in the vector space:

M =

⎡
⎣ 1 1 0
1 0 1
1 1 1

⎤
⎦ , N =

⎡
⎣ 1 0 1
0 0 0
0 1 1

⎤
⎦ .

The transformations to derive input selection masks from output selection
masks are determined by MT and NT:

fd(ud) = MTud (12.11)

gd(ud) = NTud. (12.12)

Table 12.3 shows for all the elements of GF(23) the coordinates with respect
to basis d in the first column, and the coordinates of the images of fd and gd

calculated according to (12.11) and (12.12) in the second and third column.
The fourth column gives the elements of GF(23), the fifth and the sixth
column give the functions f and g according to (12.4)–(12.5). It can now
be verified that the coordinates in the second, respectively the third column
correspond to the field elements in the fifth, respectively the sixth column.

12.4 Rijndael-GF

We will now define Rijndael-GF. This is a block cipher very much like
Rijndael, but with keys, plaintext and ciphertexts that consist of sequences
of elements of GF(28) rather than bytes. We will express constants in this
specification by powers of α, where α is a root of the primitive polynomial
x8 + x4 + x3 + x2 + 1 and hence a generator of the multiplicative group of
GF(28).

We will first specify the Rijndael-GF round transformation. It operates
on a state in GF(28)

nt where nt ∈ {16, 20, 24, 28, 32}.
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Table 12.3. The functions fd and gd

ud wd = fd(ud) wd = gd(ud) u w = fd(u) w = gd(u)

000 000 000 0 0 0

001 111 011 α2 + 1 1 α+ 1

010 101 000 α2 + α α2 + α+ 1 0

011 010 011 α+ 1 α2 + α α+ 1

100 110 101 α α2 α2 + α+ 1

101 001 110 α2 + α+ 1 α2 + 1 α2

110 011 101 α2 α+ 1 α2 + α+ 1

111 100 110 1 α α2

The step SubBytes-GF operates on the individual elements of the state.
It is composed of two sub-steps. The first step is taking the multiplicative
inverse in GF(2n):

g(a) = a−1, (12.13)

with 0 mapping to 0. The second sub-step consists of applying the following
linearized polynomial:

f(a) = α2a+α199a2+α99a2
2

+α185a2
3

+α197a2
4

+a2
5

+α96a2
6

+α232a2
7

,

(12.14)

followed by the addition of the constant α195.

The step ShiftRows-GF is a transposition that does not modify the values
of the elements in the state but merely changes their positions. It is the same
as in Rijndael.

The mixing step MixColumns-GF operates independently on four-element
columns and mixes them linearly by multiplication with the following matrix:⎡

⎢⎢⎣
α25 α 1 1
1 α25 α 1
1 1 α25 α
α 1 1 α25

⎤
⎥⎥⎦

Finally, the addition of a round key AddRoundKey-GF consists of the ad-
dition of a round key by a simple addition in GF(28).

The key expansion is the same as that in Rijndael, with the exception
that the Rijndael S-boxes are replaced by the Rijndael-GF S-box and the
round constants defined as RC[i] = α25(i−1).

Rijndael-GF, together with the choice of a representation of the ele-
ments of GF(28) as bytes constitutes a block cipher operating on bit strings.
We can now show that Rijndael-GF is equivalent to Rijndael. As a matter
of fact, the choice of the following basis converts Rijndael-GF into Rijndael:
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e =
(
1, α25, α50, α75, α100, α125, α150, α175

)
.

We can compute the corresponding dual basis d by solving (2.40). This yields:

d =
(
α166, α187, α37, α26, α236, α191, α196, α48

)
.

In Rijndael the second sub-step of the S-box is specified as the multiplication
with a binary matrix. This matrix can be reconstructed by applying Theo-
rem 12.3.2 to (12.14) using these bases. The equivalence of the matrices of
MixColumns and MixColumns-GF follows from the fact that φ−1

e (02) = α25

and φ−1
e (03) = 1 + α25 = α.
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