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Abstract. Recent studies investigated the problems of analysing Petri
nets and synthesising them from labelled transition systems (LTS) with
two labels (transitions) only. In this paper, we extend these works by
providing new conditions for the synthesis of Weighted Marked Graphs
(WMGs), a well-known and useful class of weighted Petri nets in which
each place has at most one input and one output.

Some of these new conditions do not restrict the number of labels;
the other ones consider up to 3 labels. Additional constraints are inves-
tigated: when the LTS is either finite or infinite, and either cyclic or
acyclic. We show that one of these conditions, developed for 3 labels,
does not extend to 4 nor to 5 labels. Also, we tackle geometrically the
WMG-solvability of finite, acyclic LTS with any number of labels.

Keywords: Weighted Petri net · Marked graph · Synthesis · Labelled
transition system · Cycles · Cyclic words · Circular solvability · Theory
of regions · Geometric interpretation

1 Introduction

Petri nets form a highly expressive and intuitive operational model of discrete
event systems, capturing the mechanisms of synchronisation, conflict and concur-
rency. Many of their fundamental behavioural properties are decidable, allowing
to model and analyse numerous artificial and natural systems. However, most
interesting model checking problems are intractable, and the efficiency of syn-
thesis algorithms varies widely depending on the constraints imposed on the
desired solution. In this study, we focus on the Petri net synthesis problem from
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a labelled transition system (LTS), which consists in determining the existence
of a Petri net whose reachability graph is isomorphic to the given LTS, and
building such a Petri net solution when it exists.

In previous studies on the analysis or synthesis of Petri nets, structural
restrictions encompassed plain nets (each weight equals 1; also called ordinary
nets) [1], homogeneous nets (meaning that for each place p, all the output weights
of p are equal) [2,3], free-choice nets (the net is homogeneous, and any two tran-
sitions sharing an input place have the same set of input places) [2,4], choice-free
nets (each place has at most one output transition) [5,6], marked graphs (each
place has at most one output transition and one input transition) [7–10], join-free
nets (each transition has at most one input place) [2,3,11,12], etc.

More recently, another kind of restriction has been considered, limiting the
number of different transition labels of the LTS in combination with restrictions
on the LTS structure: for the binary case, feasibility of net synthesis from finite
linear LTS and LTS with cycles1 has been characterised by rates of labels in the
transition system [13,14] and by pseudo-regular expressions [15], giving rise to
fast specialised synthesis algorithms; moreover, a complete enumeration of the
shapes of synthesisable transition systems is presented in [16].

In this paper, we combine the restriction on the number of labels with the
weighted marked graph (WMG) constraint. In addition, we study constraints
on the existence of cycles in the LTS: when the LTS is acyclic, i.e. it does not
contain any cycle, and when it is cyclic, i.e. it contains at least one cycle. In the
latter case, we also study the finite circular LTS, meaning strongly connected
LTSs that contain a unique cycle: we investigate the cyclic solvability of a word
w, meaning the existence of a Petri net solution to the finite circular LTS induced
by the infinite cyclic word w∞.

An important purpose of studying such constrained LTSs is to better under-
stand the relationship between LTS decompositions and their solvability by Petri
nets. Indeed, the unsolvability of simple subgraphs of the given LTS, typically ele-
mentary paths (i.e. not containing any node twice) and cycles (i.e. closed paths,
whose start and end states are equal), often induces simple conditions of unsolv-
ability for the entire LTS, as highlighted in other works [13,15,17]. Moreover,
cycles appear systematically in the reachability graph of live and/or reversible
Petri nets [5,18], which are used to model various real-world applications, such
as embedded systems [19].

Contributions. In this work, we study further the links between simple LTS
structures and the reachability graph of WMGs, as follows.

First, we provide a characterisation of the 2-label (i.e. binary) words being
cyclically solvable by a WMG (i.e. WMG-solvable), and extend the analysis to
finite cyclic LTSs. We also tackle the case of infinite cyclic LTSs with 2 labels.

1 A set A of k arcs in a LTS G defines a cycle of G if the elements of A can be ordered
as a sequence a1 . . . ak such that, for each i ∈ {1, . . . , k}, ai = (ni, �i, ni+1) and
nk+1 = n1, i.e. the i-th arc ai goes from node ni to node ni+1 until the first node
n1 is reached, closing the path. Cycles are also sometimes called circuits, circles and
oriented cycles.
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Then, when the number of labels is arbitrary, we provide a geometric charac-
terisation of the finite, acyclic, WMG-solvable LTS, as well as a general sufficient
condition of WMG-solvability for a cyclic word, using a decomposition into spe-
cific cyclically WMG-solvable binary subwords. We prove that this sufficient
condition becomes a characterisation of cyclic WMG-solvability for a subclass of
the 3-label words. Furthermore, we show, with the help of two counter-examples,
that this characterisation does not hold for words with four or five labels.

Comparing with [20], we refine the results and explanations on WMG-
solvable, finite, cyclic, binary LTSs by introducing Lemma1 and upgrading The-
orem 2, in Subsect. 3.1. We also provide the new geometric characterisation of
WMG-solvability for acyclic LTS with any number of labels, and we sharpen the
counter-examples to the characterisation of cyclically solvable ternary words in
the cases of four and five labels.

Organisation of the Paper. After recalling classical definitions, notations and
properties in Sect. 2, we present the results of WMG-solvability for 2-label words
in Sect. 3. Then, in Sect. 4, we propose the geometric characterisation of WMG-
solvability for an acyclic LTS with any number of labels. In Sect. 5, we develop
the general sufficient condition of circular WMG-solvability for any number of
labels. In Sect. 6, we tackle the ternary case and exhibit counter-examples for 4
and 5 labels. Finally, Sect. 7 presents our conclusions and perspectives.

2 Classical Definitions, Notations and Properties

LTSs, Sequences and Reachability. A labelled transition system with initial
state, abbreviated LTS, is a quadruple TS = (S,→, T, ι) where S is the set of
states, T is the set of labels, →⊆ (S × T × S) is the labelled transition relation,
and ι ∈ S is the initial state.

A label t is enabled at s ∈ S, written s[t〉, if ∃s′ ∈ S : (s, t, s′) ∈→, in which
case s′ is said to be reachable from s by the firing of t, and we write s[t〉s′.
Generalising to any (firing) sequences σ ∈ T ∗, s[ε〉 and s[ε〉s are always true;
and s[σt〉s′, i.e. σt is enabled from state s and leads to s′, if there is some s′′

with s[σ〉s′′ and s′′[t〉s′. A state s′ is reachable from state s if ∃σ ∈ T ∗ : s[σ〉s′.
The set of states reachable from s is denoted by [s〉.
Petri Nets, Reachability and Languages. A (finite, place-transition)
weighted Petri net, or weighted net, is a tuple N = (P, T,W ) where P is
a finite set of places, T is a finite set of transitions, with P ∩ T = ∅, and
W : ((P × T ) ∪ (T × P )) → N is a weight function giving the weight of each
arc. A Petri net system, or system, is a tuple S = (N,M0) where N is a net and
M0 is the initial marking, which is a mapping M0 : P → N (hence a member of
NP ) indicating the initial number of tokens in each place. If W (x, y) > 0, y is said
to be an output of x, and x is said to be an input of y. The incidence matrix C of
the net is the integer P ×T -matrix with components C(p, t) = W (t, p)−W (p, t).

A transition t ∈ T is enabled by a marking M , denoted by M [t〉, if for all
places p ∈ P , M(p) ≥ W (p, t). A place p ∈ P is enabled by a marking M if
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M(p) ≥ W (p, t) for every output transition t of p, meaning that it is not an
obstacle to enabling transitions. If t is enabled at M , then t can occur (or fire)
in M , leading to the marking M ′ defined by M ′(p) = M(p) − W (p, t) + W (t, p);
we note M [t〉M ′. A marking M ′ is reachable from M if there is a sequence of
firings leading from M to M ′; if this sequence of firings defines a sequence of
transitions σ ∈ T ∗, we note M [σ〉M ′. The set of markings reachable from M
is denoted by [M〉. The reachability graph of S is the labelled transition system
RG(S) with the set of vertices [M0〉, the set of labels T , initial state M0 and
transitions {(M, t,M ′) | M,M ′ ∈ [M0〉 ∧ M [t〉M ′}. A system S is bounded if
RG(S) is finite.

The language of a Petri net system S is the set L(S) = {σ ∈ T ∗ | M0[σ〉}.
These languages are prefix-closed, i.e., if σ = σ′σ′′ ∈ L(S), then σ′ ∈ L(S).
For any language L ⊆ T ∗, we denote by PREF (L) the language formed by its
prefixes.

Vectors. The support of a vector is the set of the indices of its non-null compo-
nents. Consider any net N = (P, T,W ) with its incidence matrix C. A T-vector
is an element of NT ; it is called prime if the greatest common divisor of its com-
ponents is one (i.e. its components do not have a common non-unit factor). A
T-semiflow ν of the net is a non-null T-vector such that C · ν = 0. A T-semiflow
is called minimal when it is prime and its support is not a proper superset of
the support of any other T-semiflow [5].

The Parikh vector P(σ) of a finite sequence σ of transitions is a T-vector
counting the number of occurrences of each transition in σ, and the support of
σ is the support of its Parikh vector, i.e. supp(σ) = supp(P(σ)) = {t ∈ T |
P(σ)(t) > 0}.

Strong Connectedness and Cycles in an LTS. The LTS (S,→, T, ι) is said
reversible if, ∀s ∈ [ι〉, we have ι ∈ [s〉, i.e., it is always possible to go back to the
initial state; reversibility implies the strong connectedness of the LTS.

A sequence s[σ〉s′ is called a cycle, or more precisely a cycle at (or around)
state s, if s = s′. A non-empty cycle s[σ〉s is called small if there is no non-
empty cycle s′[σ′〉s′ in TS with P(σ′) � P(σ), meaning that no component of
the left vector is greater than the corresponding component of the right vector,
and at least one is smaller (the definition of Parikh vectors extending readily to
sequences over the set of labels T of the LTS).

A circular LTS is a finite, strongly connected LTS that contains a
unique cycle; hence, it has the shape of an oriented circle. The circular LTS
induced by a word w = w1 . . . wk is the LTS with initial state s0 defined as
s0[w1〉s1[w2〉s2 . . . [wk〉s0.

All notions defined for labelled transition systems apply to Petri nets through
their reachability graphs.

Petri Net Subclasses. A net N is plain if no arc weight exceeds 1; pure if
∀p ∈ P : (p•∩•p) = ∅, where p• = {t ∈ T | W (p, t) > 0} and •p = {t ∈ T |
W (t, p)>0}; CF (choice-free [5,21]) or ON (place-output-nonbranching [17]) if
∀p ∈ P : |p•| ≤ 1; a WMG (weighted marked graph [8]) if |p•| ≤ 1 and |•p| ≤ 1
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for all places p ∈ P . The latter form a subclass of the choice-free nets; other
subclasses are marked graphs [7], which are plain with |p•| = 1 and |•p| = 1 for
each place p ∈ P , and T-systems [4], which are plain with |p•| ≤ 1 and |•p| ≤ 1
for each place p ∈ P .

Isomorphism and Solvability. Two LTS TS1 = (S1,→1, T, s01) and TS 2 =
(S2,→2, T, s02) are isomorphic if there is a bijection ζ : S1 → S2 with ζ(s01) =
s02 and (s, t, s′) ∈→1 ⇔ (ζ(s), t, ζ(s′)) ∈→2, for all s, s′ ∈ S1.

If an LTS TS is isomorphic to RG(S) where S is a system, we say that
S solves TS . Solving a word w = �1 . . . �k amounts to solve the acyclic LTS
defined by the single path ι[�1〉s1 . . . [�k〉sk. A finite word w is cyclically solvable
if the circular LTS induced by w is solvable. A LTS is WMG-solvable if a WMG
solves it.

Other Classical Notions. An LTS TS = (S,→, T, ι) is fully reachable if
S = [ι〉. It is forward deterministic if s[t〉s′ ∧ s[t〉s′′ ⇒ s′ = s′′, and backward
deterministic if s′[t〉s ∧ s′′[t〉s ⇒ s′ = s′′.

A system S is forward persistent if, for any reachable markings M,M1,M2,
(M [a〉M1∧M [b〉M2∧a �= b) ⇒ M1[b〉M ′ ∧M2[a〉M ′ for a reachable marking M ′;
it is backward persistent if, for any reachable markings M,M1,M2, (M1[a〉M ∧
M2[b〉M ∧ a �= b) ⇒ M ′[b〉M1 ∧ M ′[a〉M2 for a reachable marking M ′.

Next, we recall classical properties of Petri net reachability graphs.

Proposition 1 (Classical Petri net properties). If S is a Petri net system:

– RG(S) is a fully reachable LTS.
– RG(S) is forward deterministic and backward deterministic.

For the subclass of WMGs, we have the following dedicated properties,
extracted from Proposition 4, Lemma 1, Theorem 2 and Lemma 2 in [10].

Proposition 2 (Properties of WMG). If S = (N,M0) is a WMG system:

– It is forward persistent and backward persistent.
– If N is connected and has a T-semiflow ν, then there is a unique minimal

one π, with support T , and ν = k · π for some positive integer k. Moreover,
if there is a non-empty cycle in RG(S), there is one with Parikh vector π in
RG(S) around each reachable marking and RG(S) is reversible. If there is
no cycle, all the paths starting from some state s and reaching some state s′

have the same Parikh vector.

To simplify our reasoning in the sequel, we introduce the following notation,
which captures some of the behavioural properties satisfied by WMG (Proposi-
tions 1 and 2). We denote by

– b (for basic) the set of properties: forward and backward deterministic, for-
ward and backward persistent, totally reachable;

– c (for cyclic) the property: there is a small cycle whose Parikh vector is prime
with support T .
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A synthesis procedure does not necessarily lead to a connected solution. How-
ever, the technique of decomposition into prime factors described in [22,23] can
always be applied first, so as to handle connected partial solutions and recom-
bine them afterwards. Hence, in the following, we focus on connected WMGs,
without loss of generality. In the next section, we consider the synthesis problem
of WMG with exactly two different labels.

3 Synthesis of a WMG from a Cyclic Binary LTS

In this section, we provide conditions for the WMG-solvability of 2-label cyclic
LTS. In Subsect. 3.1, we investigate the WMG-solvability of a finite cyclic LTS:
first when it is circular, then without this constraint. In Subsect. 3.2, we inves-
tigate the WMG-solvability of an infinite cyclic binary LTS.

3.1 WMG-solvable Finite Cyclic Binary LTS

In this subsection, we first consider any circular LTS with only two different
labels. Each such LTS is defined by a word w ∈ {a, b}∗, corresponding to the
labels encountered by firing the circuit once from ι, leading back to ι. Changing
the initial state in this LTS amounts to rotate w. Clearly, each such LTS satisfies
property b, but is not always WMG- (nor even Petri net-) solvable.

The next results consider circuit Petri nets as represented in Fig. 1, where
places are named following the direction of the arcs, e.g. pa,b is the output place
of a and the input place of b.

i

pa,b

j

pb,a
a b

m n

m n

Fig. 1. A generic WMG solving a finite circular LTS induced by a word w over the
alphabet {a, b}, whose initial marking (i, j) depends on the given solvable LTS. We
assume that P(w) = (n, m) is prime.

Theorem 1 (Cyclically WMG-solvable binary words). Consider a finite
binary word w over the alphabet {a, b}, with P(w) = (n,m) and n ≤ m, the case
m ≤ n being handled symmetrically. Then, w is cyclically solvable if and only
if gcd(n,m) = 1 and w is a rotation of the word w′ = abm0 . . . abmn−1 , where
the sequence m0, . . . ,mn−1 is the sequence of quotients in the following system
of equalities, with r0 = 0:

⎧
⎪⎪⎨

⎪⎪⎩

r0 + m = m0 · n + r1, where 0 ≤ r1 < n
r1 + m = m1 · n + r2, where 0 ≤ r2 < n
. . .
rn−1 + m = mn−1 · n.
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Moreover, m + n − 1 tokens are necessary and sufficient to solve the word cycli-
cally.

Proof. From Proposition 2, for a connected WMG solution to exist, the Parikh
vector of the word must be the minimal T-semiflow μ = (n,m) with support
T = {a, b}, which is prime by definition, thus gcd(m,n) = 1. A variant of
this problem has been studied in [24], Sect. 6. Basing of this previous study, we
highlight the following facts, leading to the claim. If a solution exists, then:

– there exists a WMG solution as pictured in Fig. 1, in which each firing pre-
serves the number of tokens; thus, denoting by Ms(p) the marking of place p
at state s, the sum Ms(pa,b) + Ms(pb,a) is the same for all states.

– Consider any two different reachable markings M ′ and M ′′, then, from the
above, M ′(pa,b) �= M ′′(pa,b) and M ′(pb,a) �= M ′′(pb,a).

– Ms(pa,b) + Ms(pb,a) = m + n − 1. Indeed, with more tokens, a reachable
marking enables both a and b, which is not allowed by the given LTS; with
fewer tokens, a deadlock is reached, i.e. a marking that enables no transition.

– For each i, mi ∈ {�m/n�, �m/n�}, there are (m mod n) b-blocks of size
(�m/n�+1), the other ones have size �m/n�.
Let us start from the state s such that Ms(pa,b) = 0 and Ms(pb,a) = m + n−1,

with r0 = 0. We denote by ri the number of tokens in pa,b at the (i + 1)-th
visited state that enables a. The value m0 is the maximal number of b’s that
can be fired after the first a, and then r1 tokens remain in pa,b; hence, there are
m + n − 1 − r1 tokens in pb,a (which is at least m) before the second a. After
the second a, we have m + r1 tokens in pa,b and we fire m1 b’s. We iterate the
process until the initial state is reached.

In the state enabling the (i + 1)-th a, there are (i · m) mod n tokens in pa,b,
implying that rn equals 0 when the initial state is reached again. In between, we
visited all the values from 0 to n−1 for the ri’s: indeed, if (i·m) mod n = (j ·m)
mod n for 0 ≤ i < j < n, we have ((j − i) · m) mod n = 0, or (j − i) · m = k · n
for some k; but then n must divide j − i since m and n are relatively prime,
which is only possible if i = j.

Finally, some rotation of w′ leads to w and to the associated value of r0. ��
An example is given in Fig. 2, where the elements of the sequence

m0, . . . ,mn−1 are put in bold in the system on the left.

Complexity. The number of operations to determine the sequence of mi’s is
linear in the smallest weight n, i.e. also in the minimal number of occurrences of
a label. In comparison, the previous algorithm of [24] checks a quadratic number
of subwords.

The next lemma characterises the set of states reachable in any WMG whose
underlying net is the one pictured in Fig. 1 and whose initial marking contains
at least n + m − 1 tokens.

Lemma 1 (Reachable states w.r.t. the number of tokens). Let N be a
binary WMG as in Fig. 1, such that μ = (n,m) ≥ 1 with gcd(n,m) = 1. Then
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0 + 21 = 2 .
5 + 21 = 3 .
2 + 21 = 2 .
7 + 21 = 3 .
4 + 21 = 3 .
1 + 21 = 2 .
6 + 21 = 3 .
3 + 21 = 3 .

8 + 5
8 + 2
8 + 7
8 + 4
8 + 1
8 + 6
8 + 3
8 + 0

28

p1

p2

a b

21

21 8

8

Fig. 2. This system solves the word w = ab2ab3ab2ab3ab3ab2ab3ab3 cyclically.

for each positive integer k ≥ m+n−1, and each marking M0 for N , the following
properties are equivalent:
(1) M0 contains exactly k tokens;
(2) RG((N,M0)) contains exactly k + 1 states;
(3) the set of states of RG((N,M0)) is {(kab, kba) ∈ N2 | kab + kba = k}.
Proof. We first prove that (1) implies (2) and (3).

The case k = m+n−1 follows from the proof of Theorem 1: all the markings
of the form (kab,m+n− 1− kab) with kab ∈ [0,m+n− 1] are reachable. By the
preservation of the total number of tokens through firings, these markings are
distinct and their amount is thus n + m, proving the claim for k = m + n − 1.

In the following, let us denote by S⊥ the set of all these markings (i.e. with
exactly m + n − 1 tokens).

The case k = � · (m + n − 1) for some positive integer � is deduced similarly:
denoting M0 as any sum of � markings M1 . . . M� such that each Mi corresponds
to some distribution of k tokens over the two places, firing sequences are allowed
in each (N,Mi) that lead to all the markings of S⊥, i.e. S⊥ is the set of states of
RG((N,Mi)) for each i and all these RG’s differ only by the choice of the initial
state. All these sequences, obtained from all i ∈ [1, �], are allowed independently
(sequentially as well as in a shuffle) in (N,M0). Thus, all the markings of the form
(kab, k − kab) with kab ∈ [0, k] are mutually reachable, describing k + 1 distinct
markings, which correspond to all the possibilities of distributing k tokens over
the two places.

Now, let us consider k > m + n − 1, denoting the initial marking as M0 =
(u + u′, v + v′) such that u + v = � · (m + n − 1), � ∈ N>0, and u′, v′ are non-
negative integers with m+n−1 > u′ +v′ ≥ 1. From the above, all the markings
of the form M + (u′, v′), where M belongs to RG(N, (u, v)) are reachable from
M0, describing u + v + 1 distinct markings. Other markings can be reached by
firing the tokens of u′ and v′: for each x ∈ [0;u′ − 1] and each y ∈ [0; v′ − 1], the
markings (x+n, k −x−n) and (k − y −m, y +m) are reachable, from which we
may fire b and a, respectively, leading to markings (x, k − x) and (k − y, y), and
all these markings are distinct. Thus, we reach at least u+v +1+u′ +v′ = k+1
distinct markings, which describe all the possible distributions of k.

We deduce that (1) implies (2) and (3). Now, assuming (2), and from the
reasoning above, M0 cannot have strictly less nor strictly more than k tokens,
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implying (1). Finally, (3) describes all the k+1 distributions of the k tokens over
the two places, all of these markings being mutually reachable by reversibility,
hence (1) and (2) are obtained. ��

In Theorem 1, we provided a criterion for the cyclic solvability of a given
word. In the next theorem, we abstract the word by a Parikh vector, which
provides less accurate information on the behaviour of the process. This result
investigates the possible WMG-solvable LTS for this vector.

Theorem 2 (WMG-solvable reversible binary LTS). Let us consider μ =
(n,m) ≥ 1 such that gcd(n,m) = 1, and a positive integer k. Up to isomorphism
and the choice of the initial state, when k ≥ n + m, there exists a single finite
WMG-solvable LTS (S,→, {a, b}, ι) that satisfies b, c and |S| = k, and that
contains a small cycle whose Parikh vector is μ. No such WMG-solvable LTS
exists when k < n+m. In the particular case of S = {0, 1, . . . ,m+n−1}, we have
(up to isomorphism) →= {(i, a, i + m)|i, i + m ∈ S} ∪ {(i, b, i − n)|i, i − n ∈ S}.
Proof. If a solution exists, it has the form of Fig. 1. If k ≥ n+m, there are exactly
k−1 tokens in the system by Lemma 1 and the reachability graph is unique up to
isomorphism. From the previous results of this section, if M0 = n + m − 1, then
the RG is circular and contains exactly n + m distinct states: all the values for
i between 0 and n + m − 1 are reached in some order. Moreover, if we identify
the states to i, i.e., the marking of pa,b, the arcs are {(i, a, i + m)|0 ≤ i, i + m <
n + m ∈ S} ∪ {(i, b, i − n)|0 ≤ i, i − n < n + m ∈ S}. As a consequence, if
|S| < n + m, there aren’t enough states to close the circuit, and there is no
solution. The rest of the claim immediately results from Lemma 1. ��

3.2 WMG-solvable Infinite Cyclic Binary LTS

Let us consider an infinite LTS satisfying b and c with only two different labels.
From the previous section, it cannot correspond to a net of the kind illustrated
in Fig. 1 since i + j remains constant, hence yields finitely many states. On the
other hand, a net of the kind illustrated in Fig. 3, or the variant obtained by
switching the roles of a and b, yields infinitely many occurrences of transition a,
leading to infinitely many different reachable markings. Besides, from any state,
there may only be finitely many consecutive b’s. Moreover, this is the only way
to obtain infinitely many cycles with Parikh vector (n,m).

i

pa,b

a b
m n

Fig. 3. A WMG solution for the infinite cyclic case.

If n = 1, i is the maximum number of consecutive executions of b from ι; we
can then verify if the given LTS corresponds to the constructed net. Otherwise,
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let k and l be the Bezout coefficients corresponding to the relatively prime num-
bers m and n, so that k · m + l · n = 1. If l ≥ 0 ≥ k, i is the maximum number
of times we may execute a−kbl consecutively from ι, and we can check again if
the given LTS corresponds to the constructed net (this is a direct generalisation
of the case n = 1). Otherwise, since −n · m + m · n = 0, by adding this relation
enough times to the previous one, we get k′ · m + l′ · n = 1 with l′ ≥ 0 ≥ k′, and
we apply the same idea.

4 WMG-solvable Acyclic LTS: A Geometric Approach

In what follows, we consider any acyclic LTS satisfying property b. First, in
Subsect. 4.1, we give a geometric interpretation of WMG-solvability for acyclic
LTS with only two different labels. Then, in Subsect. 4.2, we extend this result
to any number of labels.

4.1 Geometric Characterisation for 2 Labels

In the following, we specialise to the WMG case the more general framework
considered in [16], Theorem 2, using convex sets of N2. The standard definition
of convex sets of R2 is given by the segment-inclusion property: a set C ⊆ R2

is convex if and only if, for any x, y ∈ C, [x, y] ⊆ C, where [x, y] is the linear
segment with extremities x and y. However, this does not work for N2 (nor Z2),
as illustrated by Fig. 4: in the set C = {x, y, z} with x = (0, 0), y = (1, 2) and
z = (2, 1), we have [x, y] = {x, y}, [y, z] = {y, z} and [z, x] = {z, x}; hence
we have the segment-inclusion property; however, clearly, this set should not be
considered as convex since the node X = (1, 1) is missing.

In [25], two equivalent definitions of convex sets in lattices like Z2 are pro-
vided, which immediately extend to N2:

1. either as the intersection of a convex set of R2 with Z2,
2. or as the intersection of half planes Li, with Li = {(x, y) ∈ Z2|ai · x + bi · y ≥

ci for some ai, bi, ci ∈ Z}. If the convex set is finite, we can use a finite set of
such half-planes, otherwise we may need (countably) infinitely many of them
(notice that infinite convex sets exist with a boundary defined by finitely
many half-planes).

In order to characterise the acyclic LTS that are solvable by WMG nets with
two labels, we first identify isomorphically each state s with:
Δs = (number of a’s in any path from ι to s, number of b’s in any path from ι to s)

(this is coherent from Proposition 2), which amounts to consider for S a part
of N2 containing (0, 0)(= ι). From the full reachability, S is connected (there is a
directed path from (0, 0) to any (i, j) ∈ S, hence an undirected path between any
two states). From Keller’s theorem [26] (due to determinism and persistence),
full reachability and Proposition 2, we have that (i, j) a→ (i′, j′) ⇐⇒ i′ =
i + 1 ∧ j′ = j and (i, j) b→ (i′, j′) ⇐⇒ i′ = i ∧ j′ = j + 1.
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•x • •

• X • z

• •
y

•

Fig. 4. Non-convex set in Z2 with the segment-inclusion property.

ma,b

pa,b

a b
Wa Wb ma,∗

pa,∗

a
Wa m∗,b

p∗,b

b
Wb

Fig. 5. General places for a WMG synthesis, with initial marking ma,b = M0(pa,b),
ma,∗ = M0(pa,∗) and m∗,b = M0(p∗,b).

If the system is WMG-solvable, it must be defined by a finite set of places
of the kind pa,b and pb,a in Fig. 5 (with gcd(Wa,Wb) = 1 and ma,b,mb,a ≥ 0),
including the special cases p∗,b (with Wa = 0, Wb = 1 and m∗,b > 0, the case
m∗,b = 0 only serving to make b non-firable but we assumed the system weakly
live) or p∗,a, and pa,∗ (with Wb = 0, Wa = 1 and m∗,a = ma,∗ = 0) or pb,∗. For
a place pa,b, we have for each state s = (i, j) that the corresponding marking is
Ms(pa,b) = M0(pa,b) + i · Wa − j · Wb, and since we must have Ms(pa,b) ≥ 0,
this defines a ‘region’, both in the sense of [27] and in an intuitive geometric
meaning: Rpa,b

= {(i, j)|M0(pa,b) + Wa · i − Wb · j ≥ 0} or, permuting the roles
of a and b, Rpb,a

= {(i, j)|M0(pb,a) − Wa · i + Wb · j ≥ 0}, i.e. in either case
the intersection of N2 with a half plane of Z2. These regions will be called in
the following WMG-regions. Notice that [16] considers additional regions, where
Wa < 0 or Wb < 0. Each such region is convex, as well as any intersection of
such regions.

We deduce the next specialisation of Theorem 2 in [16].

Theorem 3 (WMG-solvable acyclic binary LTS). An acyclic LTS sat-
isfying property b is WMG-solvable if and only if, when applied on N2, its set
of states S is connected, convex and delimited by (i.e., it is the intersection of)
a finite set of WMG-regions. A possible solution is then provided by the places
corresponding to these regions.

For any finite LTS, if it is the intersection of WMG-regions, it is the inter-
section of a finite set of such regions. However, the result may be extended to
an infinite LTS, but then it may be necessary to specify that only a finite set of
regions is allowed. This is illustrated by Fig. 6.

Note that total reachability does not arise from WMG-regions alone, as illus-
trated by Fig. 7: on the left, the points ι = (0, 0), (1, 0) and (2, 1) form a convex
set of N2, intersection of the WMG-regions i − 2 · j ≥ 0 and 1 − i + j ≥ 0
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Fig. 6. Illustration of Theorem 3.

Fig. 7. Convex sets defined by WMG-regions may be non-totally reachable in N2.

(plus j ≥ 0 to certify being in N2), but (2, 1) is not reachable from ι. These
WMG-regions yield the WMG system on the right of the same figure.

A closer look shows that state ι corresponds to marking (1, 0), state (1, 0)
to marking (0, 1) and (2, 1) to marking (0, 0). The latter is not reachable, but
is potentially reachable in the sense of [5]. Let us recall that, from the classical
state equation M [σ〉M ′ ⇒ M ′ = M + C ·P(σ) where C is the incidence matrix,
and that a marking M is potentially reachable from the initial marking M0 if
M = M0 + C · α for some T -vector α ≥ 0 (non-necessarily the Parikh vector of

some firing sequence). Indeed, here C =
(−1 1

1 −2

)

, and (0, 0) = (1, 0)+C ·(2, 1)

(caution: here the vectors are to be considered as column vectors).
Another possible interpretation is to consider the net on the right of Fig. 7

as a continuous or fluid one, in the sense of [28]. In those models, a transition
may be executed fractionally and reachable markings may be real vectors with
no negative component. Thus, in our case, we can have the firing sequence

(1, 0)[a〉(0, 1)[b1/2〉(1/2, 0)[a1/2〉(0, 1/2)[b1/4〉(1/4, 0)[a1/4〉(0, 1/4)[b1/8〉(1/8, 0) . . .
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We cannot finitely reach the marking (0, 0), but if we allow limit-reachability,
then the accumulated firings 2 · a + b finally lead to the marking (0, 0). More
generally, the whole interior of the shown convex set becomes reachable.

Next, we generalise these notions and results to any number of labels.

4.2 Geometric Characterisation for Any Number of Labels

Let us consider an acyclic LTS satisfying property b with n labels t1, t2, . . . , tn.
Again, we identify each state s to its distance Δs ∈ Nn, giving for each i the
number of ti’s in any path from ι to s. Arcs are defined by the relations s[ti〉s′

when s, s′ ∈ S, Δs′(ti) = Δs(ti) + 1 and Δs′(tj) = Δs(tj) for some i and any
j �= i.

We consider special WMG-regions of the kind k + h · xi − l · xj ≥ 0 for some
k, h ≥ 0, l > 0 and i �= j. In particular, each of them is either parallel to a plane
including two axes (if h > 0), or perpendicular to one axis (if h = 0). From the
specialisation of [16], we deduce the following.

Theorem 4 (WMG-solvable acyclic n-ary systems). An acyclic LTS sat-
isfying property b with n different labels is WMG-solvable if and only if, when
applied on Nn, its set of states S is connected, convex and delimited by (i.e., it
is the intersection of) a finite set of WMG-regions. A possible solution is then
provided by the places corresponding to these regions.

However, this characterisation is less intuitively (visually) interpretable when
n > 2. Hence it will usually be more efficient to use the general WMG synthesis
procedure described in [10].

5 A Sufficient Condition of Circular WMG-solvability
for Any Number of Labels

In this section, we provide a general sufficient condition for the cyclic solvability
of k-ary words, for any positive integer k. This condition, embodied by the next
theorem, uses binary subwords obtained by projection2 and containing occur-
rences of two different labels that are contiguous somewhere in the k-ary word.
The other binary subwords are not needed since they lack this contiguity and
do not capture the direct causality.

Theorem 5. Consider any word w over any finite alphabet T such that P(w) is
prime. Suppose the following: ∀u = w t1t2 (i.e., the projection of w on {t1, t2})
for some t1, t2 such that t1 �= t2 ∈ T , and w = (w1t1t2w2) or w = (t2w3t1),
u = v� for some positive integer �, P(v) is prime, and v is cyclically solvable by
a circuit. Then, w is cyclically solvable with a WMG.

2 The projection of a word w ∈ A∗ on a set A′ ⊆ A of labels is the maximum subword
of w whose labels belong to A′, noted w A′ . For example, the projection of the word
w = �1 �2 �3 �2 on the set {�1, �2} is the word �1 �2 �2.
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Proof. For every such pair (ti, tj), i < j, let Ci,j = ((Pi,j , Ti,j ,Wi,j),Mi,j) be
a circuit solution of v for the subword vl = ui,j = w titj , obtained as in the
construction of Theorem 1. Assuming all these nets are place-disjoint (which is
always possible since the Petri net solutions are considered up to isomorphism),
consider the transition-merging3 of all these marked circuits. The result is a
WMG S ′ = (N ′,M ′

0) such that N ′ = (P ′, T,W ′) with P ′ = ∪i,jPi,j , T =
∪i,jTi,j , W ′ = ∪i,jWi,j , and M ′

0 = ∪i,jMi,j .
Let w be of the form aw′. We prove that a is the only transition enabled

in S ′.
All the subwords of the form w a,t necessarily start with a. All the input

places of the transition a belong to the binary circuits defined by these subwords.
Since these subwords are solvable by marked circuits which we merged together,
all the input places of a are initially enabled. Now, let us suppose that another
transition d is also initially enabled in S ′. Since d is not the first label of w,
another label q appears in w just before the first occurrence of d. In the solution
of w d,q, d is not initially enabled since q must occur before; hence it is not
enabled in the merging either. We deduce that a is the only transition that is
enabled in S′.

Now, the same arguments apply to w′′ = w′a whose relevant subwords are
solvable by the circuits in the same way, and we deduce that the WMG S ′ has
the language PREF (w∗).

Note that we did not use explicitely above the special form of u. Simply, the
latter is necessary to build a circuit system Ci,j with the language PREF (u∗) =
PREF (v∗). Ci,j is a circular solution for v, but not for u unless � = 1. The
fact that the merging S ′ of all the Ci,j ’s yields not only a system with the ade-
quate language PREF (w∗) but a circular solution of w arises from the fact that
P(w) is prime (by Proposition 2). We thus deduce that the WMG S ′ solves w
cyclically. ��

6 Synthesis of WMGs from Live Ternary LTS

In this section, we provide several conditions of WMG-solvability for a ternary
LTS. We first develop a characterisation of WMG-solvability for a subclass of
the cyclic ternary words in Subsect. 6.1. Then, in Subsect. 6.2, we construct two
counter-examples to this condition: one for four labels with three different values
in the Parikh vector, and another one for five labels with only two different values.

6.1 WMG-solvability in a Subclass of the Finite Circular Ternary
LTS

First, we prove the other direction of Theorem5, leading to a full characterisation
of WMG-solvability for a special subclass of the ternary cyclic words.

The proof exploits a WMG with 3 transitions and 6 places, connecting 2
places to each pair of transitions, as illustrated in Fig. 8. In some cases, a smaller
3 Also called sometimes the synchronisation on transitions.



186 R. Devillers et al.

number of places can solve the same LTS, but we do not aim here at minimising
the number of nodes in a solution.

Fig. 8. A generic WMG with three labels, with minimal T-semiflow (x, x, y) and
gcd(x, y) = 1.

Theorem 6 (Cyclic solvability of ternary words). Consider a ternary
word w over the alphabet T with Parikh vector (x, x, y) such that gcd(x, y) = 1.
Then, w is cyclically solvable with a WMG if and only if ∀u = w t1t2 such that
t1 �= t2 ∈ T , and w = (w1t1t2w2) or w = (t2w3t1), u = v� for some positive
integer �, P(v) is prime, and v is cyclically solvable by a circuit (i.e. a circular
net).

Proof. The right-to-left direction of the equivalence, assuming the properties on
the projections, is true by Theorem5, for the particular case that |T | = 3. We
thus deduce the cyclic solvability.

In the rest of this proof, we consider the other direction, assuming circular
solvability. If x = y = 1, the claim is trivially obtained since w = t1t2t3, up to
some permutation, and an easy marked graph solution may be found. Let us
thus assume that x �= y.

Let us write T = {a, b, c}. The general form of a solution has 3 transitions
and 6 places (one for each ordered pair of transitions). Additional places are
never necessary in the presence of a T-semiflow. Indeed, let pu,v be a place
between transitions u and v, Wu the weight on the arc to this place and Wv

the one from this place. Due to the presence of the T-semiflow P(w), we have
P(w)(u) · Wu = P(w)(v) · Wv, and we may choose Wu = P(w)(v) as well as
Wv = P(w)(u). We may also divide the weights around each place by their gcd.
In our case, this leads to the configuration illustrated by Fig. 8. We denote by
RG the reachability graph of a solution based on this net.

We show first that the projection w ab of w on {a, b} is of the form (ab)k or
(ba)k for some positive integer k.

There is no pattern aab in w2 (which allows to consider sequences on the bor-
der of two consecutive w’s) because, if M1[a〉M2[a〉M3[b〉, M1(pc,b) = M2(pc,b) =
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M3(pc,b) ≥ y and M2(pa,b) ≥ 1, which would also allow to perform b after the
first a and RG is not circular.

If there is a pattern aac and M1[a〉M2[a〉M3[c〉M4, M2(pa,c) ≥ y and
M1(pb,c) = M2(pb,c) = M3(pb,c) ≥ x, hence y < x otherwise M2 already
enables c and RG is not circular. Then M4(pa,b) ≥ 2, M4(pc,b) ≥ x > y and
M4(pc,a) ≥ x > y, so that M4[b〉; hence M4(pb,a) = 0 since otherwise we also
have M4[a〉 and RG is not circular. We thus have M4[ba〉M5 for some marking
M5, with M5(pb,a) = 0, so that M5 does not enable a; M5 does not enable b
either since otherwise we could also perform M4[bb〉 and again RG is not circular.
Thus, we have M4[bac〉, and then we are in a situation similar to the one after
the first c. As a consequence, we must have a sequence M1[aa(cba)ω〉, and RG
is not circular.

Hence, in w2 we cannot have a sequence aa, nor bb by symmetry.
Let us now assume that a pattern acka exists in w2 for some k ≥ 1. Since

the first firing of a puts a token in pa,b and the next firing of c does not enable b,
we must have x < y. Let us assume in the circular RG that M1[acka〉M2[σ〉M1.
σ is not empty since it must contain x times b. It cannot end with an a, since
otherwise we have a sequence aa, which we already excluded. It cannot end with
a b either, since M1(pb,a) ≥ 2 (in order to fire a twice without a b in between),
so that if M3[b〉M1[a〉, M3(pb,a) ≥ 1, we must also have M3[a〉, and RG is not
circular. Hence, σ ends with a c and for some reachable markings M ′

2 and M3

we have M3[c〉M1[ack〉M ′
2[a〉M2.

We deduce that M ′
2(pa,b) ≥ 1, M ′

2(pc,b) ≥ (k + 1) · x; hence (k + 1) · x < y
otherwise M ′

2 also enables b and RG is not circular. Also, M3(pb,a) ≥ 2 and
M3(pc,a) ≥ 2 · y − (k + 1) · x > y, so that M3 also enables a and again RG
is not circular. As a consequence, we cannot have a pattern acka, nor bckb by
symmetry, and w ab = (ab)k or w ab = (ba)k for the positive integer k = x. With
v = ab or v = ba, we have the adequate solvability property for w ab, and we
can assume in the following that the sum of the tokens present in places pa,b and
pb,a is 1 for all reachable markings.

Let us now suppose that we have a WMG S solving w cyclically, whose
underlying net is pictured in Fig. 8. From the previous results, we can assume
that M0(pa,b)+M0(pb,a) = 1 in S, this equality being preserved by all reachable
markings. To show that u = w ac has the adequate form (the case for w bc is
symmetrical), let us consider the circuit Cac, restriction of S to pa,c, c, pc,a, a.

Let us assume in the following that u cannot be written under the form
u = v� for some positive integer �, where P(v) is prime and v is cyclically
solvable. Since gcd(x, y) = gcd(P(w)(a),P(w)(c)) = gcd(P(u)(a),P(u)(c)) = 1,
P(u) is prime and u = v with � = 1, hence u is not cyclically solvable. For
the net N considered, this implies the existence of some prefix σac of u such
that, for every initial marking of Cac that enables the sequence u in this circuit,
the marking reached by firing σac necessarily enables both places pa,c and pc,a.
Indeed, Theorem 1 specifies the finite set of all possible minimal markings that
allow cyclic solvability, and each such marking enables exactly one place of the
circuit. Every other non-circular reachability graph is defined by some larger
initial marking and contains a marking that enables both places.
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Thus, for any initial marking M0 that makes the system S = (N,M0) solve w
cyclically, the smallest prefix of w whose projection on {a, c} equals σac leads to
a marking M in the WMG that enables pa,c and pc,a.

Hereafter, we consider all the cases in which either a or c is enabled from M .
In each case, we describe the shape of the LTS and deduce from it a reachable
marking that enables two transitions, hence a contradiction.

Case x > y: In this case, in S, we cannot have two consecutive c’s.

– Subcase in which M enables the place pa,c as well as the transition a in
the WMG, hence its input places pb,a and pc,a. Since M [a〉, transition c
is not enabled at M , implying that pb,c is not enabled by M . We deduce:
M(pa,c) > M(pb,c). Since pa,c is enabled by M , the last occurrence of a tran-
sition before the next firing of c is necessarily b, implying: M [(ab)kc〉M1 for
some integer k ≥ 1 and some marking M1. The inequality mentioned above is
still valid at M1, i.e. M1(pa,c) > M1(pb,c), and we iterate the same arguments
from M1 to deduce that the rotation wM of w starting at M is of the form
(ab)k1c . . . (ab)kyc with

∑
i=1..y ki = x and each ki is positive.

– Subcase in which M enables the place pc,a as well as the transition c in the
WMG, hence its input places pa,c and pb,c. Thus, the firing of c from M
cannot enable a, implying that M(pc,b) < M(pc,a) and that M [c(ba)kc〉M1

for some positive integer k and a marking M1. The inequality is still valid at
M1, i.e. M1(pc,b) < M1(pc,a), from which we deduce that the rotation wM

of w starting at M is of the form c(ba)k1 . . . c(ba)ky with
∑

i=1..y ki = x and
each ki is positive.

Case x ≤ y:

– Subcase in which M enables the place pa,c as well as the transition a in the
WMG, hence its input places pc,a and pb,a. Thus, the firing of a from M
cannot enable c, implying that M(pb,c) < M(pa,c) and that M [abck〉M1 for
some positive integer k and a marking M1, at which the same inequality is
still valid. We deduce that the rotation wM of w starting at M is of the form
abck1 . . . abckx with

∑
i=1..x ki = y and each ki is positive.

– Subcase in which M enables the place pc,a as well as the transition c in the
WMG, hence its input places pa,c and pb,c. Thus, firing one or several c’s from
M does not enable a, and M(pc,b) < M(pc,a), implying that M [ckba〉M1 for
some positive integer k and a marking M1, at which the same inequality is
still valid. We deduce that the rotation wM of w starting at M is of the form
ck1ba . . . ckxba with

∑
i=1..x ki = y and each ki is positive.

In each of the four cases developed above, we observe that each sequence of
ab or ba could be seen as an atomic firing, and wM b,c is obtained from wM a,c

by renaming each a into one b. This implies that the deletion of the initial useless
tokens (also known as frozen tokens, i.e. never used by any firing) yields a system
in which some reachable marking distributes the tokens in the same way in the
places between c and a as in the places between c and b. This is for example the
case of the marking M if it does not contain useless tokens.
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We deduce that M (with or without useless tokens) enables all four places
pa,c, pc,a, pb,c and pc,b, thus enabling two transitions of the WMG at least. This
contradicts the cyclic solvability of w, implying that v = u is cyclically solvable
by a circuit. Hence the claim. ��

6.2 Counter-Examples for 4 and 5 Labels

In Theorem 6, we provided a characterisation of cyclic WMG-solvability for
ternary words w such that P(w) is prime with two values. However, this
result does not apply to words w over 4 labels with 3 values nor 5 labels
with 2 values, even if P(w) is prime. Indeed, Fig. 9 pictures two counter-
examples: on the left, the WMG cyclically solves the word w = aacbbdabd with
P(w) = (3, 3, 1, 2), which is prime, while its projection u = aabbab on {a, b}
leads to v = u, and P(v) = (3, 3) is not prime, hence is not cyclically solvable by
a WMG; on the right, the WMG cyclically solves the word w = aacbbeabd with
P(w) = (3, 3, 1, 1, 1), which is prime, while its projection u = aabbab on {a, b}
leads to v = u, and P(v) = (3, 3) is not cyclically solvable by a WMG.

a

2
b

2

c
3 3

d
33

a b

c
3 3

d
33

e
3 3

Fig. 9. The WMG on the left solves aacbbdabd cyclically, and the WMG on the right
solves aacbbeabd cyclically.

However, presently we do not know what happens for ternary words w such
that P(w) is prime with three values, nor when w has four labels and P(w) is
prime with two values.

7 Conclusions and Perspectives

In this work, we specialised previous methods dedicated to the analysis and syn-
thesis of weighted marked graphs, a well-known and useful subclass of weighted
Petri nets allowing to model various real-world applications.

By restricting the size of the alphabet to 2 labels, we provided a characteri-
sation of the WMG-solvable labelled transition systems formed of a single cycle.
We also extended this investigation to finite LTS containing several cycles, and
to infinite LTS.
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Then, leaving out the restriction on the number of labels, we developed a
geometric characterisation for acyclic LTS, using convex sets and the theory of
regions; in the case circular LTS, we proposed a sufficient condition of WMG-
solvability.

We exploited this sufficient condition to obtain a full characterisation of
circular WMG-solvability for a subset of the possible Parikh vectors over three
labels.

Finally, we proved that this condition for 3 labels does not extend to circular
LTSs with 4 labels and three different Parikh values, nor with 5 labels and two
Parikh values.

As perspectives of this work, we believe that relaxations of our statements
may lead to other characterisations of WMG-solvable LTS, together with efficient
algorithms for their analysis and synthesis.
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