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Abstract. We deal with networks in which there are more than one
arc connecting two nodes. These multiple arcs connecting two nodes
are labeled in order to differentiate each other. Likewise, there is traffic
or flow among the nodes of the network. The links can have different
meanings as such roads, wire connections or social relationships; and the
traffic can be for example passengers, information or commodities. When
we consider that labels of a network are controlled or owned by differ-
ent agents then we can analyze how the worth (cost, profit, revenues,
power...) associated with the network can be allocated to the agents.
The Shapley quota allocation mechanism is proposed and characterized
by using reasonable properties. Finally, in order to illustrate the advan-
tages of this approach and the Shapley quota allocation mechanism,
an application to the case of the Metropolitan Consortium of Seville is
outlined.

Keywords: Allocation mechanisms · Networks · Shapley quota
allocation mechanism

1 Introduction and Literature Review

Networks are very often used to graphically represent many different situations
from social relationships to real physical problems such as road maps. For exam-
ple, in Operations Research and Management Science, due to the possibilities
offered by such a representation, it is commonplace. We draw attention to the
volumes by Ball et al. (1995a and 1995b) for a very informative survey. Networks
also play an important role to analyze social and economic problems (see, for
example, Megiddo 1978; Sharkey 1995; Slikker and van den Nouweland 2001;
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Jackson and Zenou 2014; Algaba et al. 2017, 2018). Networks are also used to
model the interaction between parts of information or computer systems (see
Tardos (2004) and references herein). Therefore, network models are interesting
enough to go further in their analysis.

In this paper, we consider networks in which there is one perfectly divisible
unit of flow or traffic between different nodes of the network. Somehow, we
have multi-flow networks because the flow between each pair of nodes can be
considered different from others. Likewise, multiple arcs connecting two nodes
are allowed, for this reason they are labeled in order to distinguish each other.
The part of the unit of flow between two nodes can go throughout different routes
and this is known due to different reasons, for example capacity conditions. In
the network there are agents who control different sets of labels. Thus, the set
of arcs of the network is partitioned among the agents. This network model is
more general than the one introduced by Algaba et al. (2019a) to study the profit
allocation problem in horizontal cooperation in public transport systems. We call
labeled networks the situations described above and labeled network allocation
problem the problem of allocating the worth associated with the network among
the agents controlling its different components.

Moreover, allocation network problems start from an existing network, and
often deal with the problem of allocating profits and/or costs for building and/or
maintaining the network among the users. For example, Granot and Hojati
(1990) study how to allocate the cost of constructing a communication network.
They consider two possible situations and for both determine the nucleolus and
the Shapley value. Tijs et al. (2006) study the Bird core correspondence for min-
imum cost spanning tree games. Koster et al. (2001) study the core of standard
fixed tree games and prove that the core of these games coincides with the set of
all weighted constrained egalitarian solutions. Bjorndal et al. (2004) study stan-
dard fixed tree games, for which each vertex unequal to the root is inhabited by
exactly one player, and give an alternative proof of that their cores equal their
corresponding sets of weighted Shapley values. Gupta et al. (2004) study how to
define good cost-sharing mechanisms for single-source network design problems.
Maschler et al. (2010) introduce a new algorithm to compute the nucleolus of
standard tree games. Bergantiños et al. (2014) introduce an allocation rule to
divide the cost of a network which connects the agents to a service provided
from a source. Roughgarden and Schrijvers (2014) study network cost-sharing
games in which the cost of each edge is shared using the Shapley value. They
then study the equilibria of the associated non cooperative games. In all the
previous papers, how to distribute the cost of building or maintaining a network
that connects the agents to a source that provides a useful service is studied,
while in this paper we study how to distribute the known flow that circulates
through a network between the agents who control that network. On the other
hand, there is a number of papers that study from a game theoretical point of
view flow problems in networks. Kalai and Zemel (1982), Curiel et al. (1989) and
Reijnierse et al. (1996) study the nonemptiness of the core of different simple
flow games. Derks and Tijs (1985, 1986) study the case of multi-commodity flow
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situations and also study the nonemptiness of the core of associated games. In
all these papers, how to distribute the maximum flow that can be obtained from
cooperation between the agents that control the network is studied, while in this
paper we study how to distribute the flow (or the profit/cost associated with this
flow), which has effectively occurred, among the agents that control the network.
In addition, we focus on the allocation problem rather than studying the game
associated with this problem.

Finally, in order to illustrate how our network model can be applied to a real-
life situation, we consider the case of the Metropolitan Consortium of Seville.
In particular, a reduced and stylized situation from the real transport system
is simulated. In this case, when the members of the consortium cooperate, 405
feasible routes connecting different points of the transport network in the city
center are determined, but only 92 of these feasible routes are operated by a single
company. Therefore, the advantage of cooperation is clear. For this problem, we
propose the Shapley quota allocation which takes into consideration not only the
number of routes, but also the traffic flow. Furthermore, this solution is compared
with a proportional distribution based on the number of routes in which each
company is involved. Some interesting examples which relate to this situation are
the following. Fragnelli et al. (2000b) study how to share the profit of a shortest
path situation and Sánchez-Soriano (2003 and 2006) proposes two solutions for
the profit allocation problem arising from the classic transport problem, based
on pairwise distributions. We can also find real-life applications to transport
situations in which there is an underlying network. For example, Fragnelli et al.
(2000a) and Norde et al. (2002) study how to allocate the cost of a railway line
used by different trains, each of which has different needs and requirements; and
Sánchez-Soriano et al. (2002) study how to share the cost of a public transport
system for students in the area of Alicante.

The rest of the paper is organized as follows. In Sect. 2, we introduce the
network allocation problem which we analyze in this paper. In Sect. 3, the Shap-
ley quota allocation mechanism for labeled network problems is characterized
by using reasonable properties related to the context of networks. In Sect. 4, the
labeled network allocation problem is applied to the Metropolitan Consortium of
Seville and the Shapley quota allocation is computed and commented. Section 5
concludes.

2 The Labeled Network Allocation Problem

We consider networks in which there is one perfectly divisible unit of flow or
traffic between different nodes of the network. Somehow we have multi-flow
networks because the flow between each pair of nodes can be considered different
from others. Likewise, multiple arcs connecting two nodes are allowed, for this
reason they are labeled in order to distinguish each other. The part of the unit of
flow between two nodes can go throughout different routes and this is known due
to different reasons, for example capacity conditions. In the network there are
agents who control different sets of labels. Thus, the set of arcs of the network is
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partitioned among the agents. The worth obtained by a subset of agents is the
part of the unit of flow that they can obtain by using only their arcs.

Formally, a labeled graph is described by the 3-tuple G = (V,L,A), where V
is a finite set of nodes; L is a finite set of labels; and A ⊂ V ×V ×L is a finite set
of labeled directed arcs connecting nodes of V , such that (i, j, l) ∈ A means that
i is the initial node, j is the end node and l is the label. Moreover, we assume
that (i, i, l) /∈ A,∀ i ∈ V,∀ l ∈ L, i.e., loops are not allowed.

A labeled route connecting two nodes i, j ∈ V in a labeled graph (V,L,A) is
a sequence of labeled arcs {(i, i1, l1), (i1, i2, l2), ..., (ik−1, j, lk)} ⊆ A.

Let R be a set of feasible labeled routes connecting two nodes of V . R could
be a proper subset of the set of all possible labeled routes connecting two nodes
of V , R(A). In this situation, some labeled routes would have been discarded
because they are useless or impossible. Let f be a function describing how a
(perfectly divisible) unit of flow is distributed throughout all labeled routes, i.e.,
f : R(A) → [0, 1] such that

• f(r) = 0, if r /∈ R, and f(r) ≥ 0, if r ∈ R.
• ∑

r∈R f(r) = 1.

Therefore, we assume that the distribution of the unit of flow throughout
the graph is perfectly determined. This could occur due to different reasons, for
example, capacity constraints, ex-post observation of the traffic, preferences of
individuals using the network, a centralized management of the network control-
ling the traffic throughout the graph, an exogenous condition, etc. Likewise, this
function f can be derived from an origin-destination (OD) matrix and it can
measure the probability of a particular labeled route to be used in the network.

A labeled network arises when we consider a labeled graph and the flow
throughout it. Therefore, a labeled network is described by the 3-tuple N =
(G,R, f), where G = (V,L,A) is a labeled graph, R is a set of feasible labeled
routes and f is a distribution of one unit of flow among all feasible labeled routes.

We now provide a simple example to illustrate the different elements of a
labeled network.

Example 1. Consider a simple network as depicted in Fig. 1 with 5 nodes, three
labels R (continuous line), B (dotted line) and G (dashed line) and the arcs
always go from i to j such that i < j.

R =
G =
B =

��

��

1
��

��

2
��

��

3
��

��

4
��

��

5

Fig. 1. A simple network

The possible origin-destination (OD) pairs are 1–2, 1–3, 1–4, 1–5, 2–3, 2–4,
2–5, 3–4, 3–5 and 4–5.
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We can consider the following set of non-exhaustive labeled routes:

OD Feasible labeledroute #labeledroute
1 → 2 (1, 2, R) 1
1 → 3 (1, 2, R)(2, 3, R) 2

(1, 2, R)(2, 3, B) 3
1 → 4 (1, 2, R)(2, 3, R)(3, 4, R) 4

(1, 2, R)(2, 3, B)(3, 4, B) 5
(1, 2, R)(2, 3, R)(3, 4, G) 6
(1, 2, R)(2, 3, B)(3, 4, G) 7

1 → 5 (1, 2, R)(2, 3, R)(3, 4, R)(4, 5, G) 8
(1, 2, R)(2, 3, B)(3, 4, B)(4, 5, G) 9

2 → 3 (2, 3, R) 10
(2, 3, B) 11

2 → 4 (2, 3, R)(3, 4, R) 12
(2, 3, B)(3, 4, B) 13
(2, 3, R)(3, 4, B) 14
(2, 3, R)(3, 4, G) 15
(2, 3, B)(3, 4, G) 16

2 → 5 (2, 3, R)(3, 4, G)(4, 5, G) 17
(2, 3, B)(3, 4, G)(4, 5, G) 18
(2, 3, R)(3, 4, B)(4, 5, G) 19

3 → 4 (3, 4, R) 20
(3, 4, B) 21
(3, 4, G) 22

3 → 5 (3, 4, G)(4, 5, G) 23
(3, 4, R)(4, 5, G) 24
(3, 4, B)(4, 5, G) 25

4 → 5 (4, 5, G) 26

Of course, we may have a more detailed representation, increasing the number
of feasible labeled routes; e.g., considering the feasible labeled route labeled 14 in
which the flow goes from node 2 to node 4, using first the arc (2, 3) labeled with R
and then the arc (3, 4) labeled with B, it is possible to add another feasible labeled
route using first the arc (2, 3) labeled with B and then the arc (3, 4) labeled with R.
On the other hand, we may reduce the number of feasible labeled routes reducing
the number of changes; e.g., referring to the OD 2 → 4, we may consider only
the feasible labeled routes labeled 12 and 13, supposing that when flow goes on
arcs with a particular label it does not change if it is not strictly needed.

Now, we can consider that the unit of flow is distributed among the feasible
labeled routes as follows:

#labeled route 1 2 3 4 5 6 7 8 9 10 11 12 13
f(r) 0.03 0.04 0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.04 0.04
#labeled route 14 15 16 17 18 19 20 21 22 23 24 25 26
f(r) 0.04 0.04 0.04 0.05 0.05 0.05 0.04 0.04 0.04 0.05 0.05 0.05 0.05
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In view of function f , we can say that a 5% of the flow goes along labeled
route 26, i.e., between nodes 4 and 5, or that labeled routes from 12 to 16 that
connect nodes 2 and 4 are equally used.

Now, let us consider that there are several agents controlling different arcs
of the network and labels are used to identify the agents who control the arcs
of the network. In this sense, in Example 1 we would have up to three agents
corresponding to the three labels R, B and G. For example, in a transport
network these labels can represent different companies providing the passenger
transport service between different cities or stops within the same city; or in a
computer network these labels can represent links belonging to different Inter-
net Service Providers (ISPs). If we are interested in knowing the relevance or
contribution of each of the agents involved in the network, one possibility is to
allocate the worth associated with the network in a fair way, i.e. determining
which part of the worth associated with the network can be reasonably or in a
fair way attributed to each agent. Formally, we introduce the following definition
of labeled network allocation problem.

Definition 1. Let N = (G,R, f), where G = (V,L,A), be a labeled network.
A labeled network allocation problem associated with N is given by the 3-tuple
(N, N,L) where:

• N is the labeled network.
• N = {1, 2, . . . , n} is the set of agents who control different arcs of the network.
• L = {L1, L2, ..., Ln} is a partition of the set of labels L, such that each agent

i ∈ N controls the subset Li of labels.

If each agent controls exactly one label, then the problem is called simple
labeled network allocation problem.

We denote by L(r) the set of different labels in labeled route r.

Example 2. In order to illustrate the labeled network allocation problem, we
refer to the situation in Example 1 where we consider that there are two agents,
{A1, A2} controlling labels {R,G} and {B} respectively. The next table shows
the labeled routes controlled by each agent.

Agent i Feasible labeled route r ∈ R : L(r) ⊆ Li

A1 1, 2, 4, 6, 8, 10, 12, 15, 17, 20, 22, 23, 24, 26
A2 11, 13, 21

However, labeled routes {3, 5, 7, 9, 14, 16, 18, 19, 25} need both agents to be
completely controlled.

This labeled network allocation problem is not simple, because agent A1 con-
trols two labels.

We are now interested in how to allocate the unit of flow among all agents
controlling the different arcs of the network. This allocation give us the quotas
or proportions of the unit of flow which are assigned or attributed to each agent.
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These quotas will also measure, in some way, the contribution of each agent to
the network.

Let LNAN be the set of all labeled network allocation problems with set
of agents N , a flow quota allocation mechanism for LNAN is a function γ :
LNAN → R

N such that

1. γi(N, N,L) ≥ 0, ∀ i ∈ N ,
2.

∑
i∈N γi(N, N,L) = 1.

Considering this definition, we can introduce many different quota alloca-
tion mechanisms. A simple possibility is the following. The flow of each feasible
labeled route is divided equally among all agents involved. Summing up the
results for agents, we obtain the amount of flow assigned to each agent. It is
intuitive because the agents that are not involved in the flow of a given feasible
labeled route do not take part in the division of the flow and those that are
needed for determining the labeled route are rewarded equally, as each of them
is equally important for that particular feasible labeled route. This procedure
can be related to the well-known Shapley value (Shapley 1953) (see Algaba et
al. 2019b), in the same way as in Algaba et al. (2019a).

Let (N, N,L) be a labeled network allocation problem, the Shapley quota
allocation mechanism is defined for each i ∈ N as follows:

φi(N, N,L) =
∑

r∈R

f(r)
∑

j∈N δj(L(r))
δi(L(r)),

where δi(L(r)) = 1, if L(r) ∩ Li 	= ∅, and δi(L(r)) = 0, otherwise.
This flow quota allocation mechanism distributes the total flow 1 by labeled

routes and within each labeled route equally among all agents involved in it.
Furthermore, this allocation can be seen as a mixture of proportional alloca-
tion (of common revenue to the paths) and equal sharing (of path-revenue to
providers). An alternative could be a proportional allocation of common rev-
enue to the paths and proportional sharing of path-revenue to the arcs of each
provider involved. Thus, we can define the doubly proportional quota allocation
mechanism as follows:

ψi(N, N,L) =
∑

r∈R

f(r)
∑

j∈N εj(r)
εi(r), i ∈ N,

where εi(r) = |{(ik, jk, lk) ∈ r : lk ∈ Li}|, i.e. the number of labeled arcs of route
r whose labels belong to Li.

Finally, we could also take into account different costs per route, different
profits per route or different ticket prices by simply multiplying the function
f(r) in the numerator of the quota allocation mechanism by the corresponding
cost, profit or ticket price.
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3 Properties and Characterization

In this section, we deal with the problem of providing a set of properties that
allow for the characterization of the Shapley quota allocation. In this context, we
consider efficient solutions in order to allocate the full flow. The characterization
of a solution is important because each proposed mechanism will give a different
allocation of the flow. Consequently, it is not possible for all agents to agree on
any solution. The axiomatic approach allows us to switch from a choice based on
the amount each agent receives (or pays) to a choice focused on the fairness of
the solution. Another positive aspect for studying the properties of a solution is
that they can be used to explain the advantages of a solution more convincingly
and so make it easier for the agents to accept. Some properties are the following:

• No flow controlled property (NFC): Let γ be a flow quota allocation mecha-
nism defined on LNAN . It is said to satisfy the no flow controlled property,
if for all i ∈ N , such that for all r ∈ R, L(r) ∩ Li = ∅, then γi = 0.

• Equal treatment of equals property (ETE): Let γ be a flow quota allocation
mechanism defined on LNAN . It is said to satisfy the equal treatment of
equals property, if for all i, j ∈ N , such that for all r ∈ R, L(r) ∩ Li 	= ∅ if
and only if L(r) ∩ Lj 	= ∅, then γi = γj .

The meaning of the no flow controlled property (NFC) is that agents which
do not control any flow, will not be relevant to cooperation. The equal treatment
of equals property (ETE) means that those agents which are symmetric, with
respect to the number of labeled routes they participate in, must receive the
same. Both properties seem reasonable and fair in the context of this problem.

An interesting question is how to merge two different labeled networks when
both have the same set of labels and agents controlling the same labels. They
could have different nodes, arcs and feasible labeled routes, but the merging of
the two systems should provide a new labeled network involving all the structural
elements of both. Additionally, one important aspect is that each system can
have a different weight, relevance or size in terms of flow, so we should take this
into account when merging both systems.

Let (N, N,L) and (N′, N,L) be two labeled network allocation problems with
set of agents N , and labeled networks N = (G,R, f) and N′ = (G′,R′, f ′), such
that G = (V,L,A) and G′ = (V ′, L,A′), and with relative weights w and w′

(w + w′ = 1;w,w′ > 0), then a merging of both networks

(N′′, N,L) ≡ (N, N,L) ⊕ (N′, N,L)

is defined as follows:

• G′′ = (V ∪ V ′, L,A ∪ A′)
• R′ ∪ R ⊆ R′′

• f ′′ = wf + w′f ′ is given by
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f ′′(r) =

⎧
⎪⎪⎨

⎪⎪⎩

wf(r) + w′f ′(r), if r ∈ R ∩ R′

wf(r), if r ∈ R − R′

w′f ′(r), if r ∈ R′ − R

0, if r ∈ R′′ − (R ∩ R′)

∀ r ∈ R′′

It is not difficult to check that all elements are well-defined1. Likewise,
f ′′(r) = 0, ∀r ∈ R′′(A′′)\R′′. Therefore, the definition of f ′′ implies that new
possible labeled routes do not generate new flow when merging the labeled net-
works.

The interpretation of the merging operation is that we construct a new
labeled network whose graph structure consists of all the structural elements
of both graphs and the weights are used to redefine the distribution of the unit
of flow adapted to the new structure.

We now introduce the following property for solutions in labeled networks
with set of agents N .

• Weighted merging property (WM): Let (N, N,L) and (N′, N,L) be two labeled
network allocation problems with set of agents N , and labeled networks N =
(G,R, f) and N′ = (G′,R′, f ′), such that G = (V,L,A) and G′ = (V ′, L,A′),
and with relative weights w and w′. And let γ be a flow quota allocation mech-
anism defined on LNAN . It is said to satisfy the weighted merging property,
if the following holds

γ((N, N,L) ⊕ (N′, N,L)) = wγ(N, N,L) + w′γ(N′, N,L).

Proposition 1. The Shapley quota allocation mechanism satisfies NFC, ETE
and WM.

Proof. It is straightforward to prove that the Shapley quota allocation mecha-
nism satisfies NFC and ETE. Let (N, N,L) and (N′, N,L) be two labeled network
allocation problems with set of agents N , and labeled networks N = (G,R, f)
and N′ = (G′,R′, f ′), such that G = (V,L,A) and G′ = (V ′, L,A′), and with
relative weights w and w′. On the one hand, we have for every i ∈ N

φi(N, N,L) =
∑

r∈R

f(r)
∑

j∈N δj(L(r))
δi(L(r)),

and

φi(N′, N,L) =
∑

r∈R′

f ′(r)
∑

j∈N δj(L(r))
δi(L(r)).

On the other hand, for every (N′′, N,L) ≡ (N, N,L) ⊕ (N′, N,L), we have
that

φi(N′′, N,L) =
∑

r∈R′′

f ′′(r)
∑

j∈N δj(L(r))
δi(L(r))

1 The difference of two sets A and B in the definition of f ′′(r) is as follows: A − B =
A \ (A ∩ B).
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=
∑

r∈R∩R′

wf(r) + w′f ′(r)
∑

j∈N δj(L(r))
δi(L(r)) +

∑

r∈R−R′

wf(r)
∑

j∈N δj(L(r))
δi(L(r))

+
∑

r∈R′−R

w′f ′(r)
∑

j∈N δj(L(r))
δi(L(r))

=
∑

r∈R

wf(r)
∑

j∈N δj(L(r))
δi(L(r)) +

∑

r∈R′

w′f ′(r)
∑

j∈N δj(L(r))
δi(L(r))

= w
∑

r∈R

f(r)
∑

j∈N δj(L(r))
δi(L(r)) + w′ ∑

r∈R′

f ′(r)
∑

j∈N δj(L(r))
δi(L(r))

= wφi(N, N,L) + w′φi(N′, N,L).

Therefore, the statement holds. �
Theorem 1. The Shapley quota allocation mechanism is the unique flow quota
allocation mechanism satisfying NFC, ETE and WM on LNAN .

Proof. Let (N, N,L) be a labeled network allocation problem with set of agents
N , labeled networks N = (G,R, f), such that G = (V,L,A) and let γ be a quota
solution satisfying NFC, ETE and WM on LNAN .

Let |R| = 1, i.e., R contains a single labeled route r and f(r) = 1. Since γ
satisfies NFC we have that for all i such that L(r) ∩ Li = ∅, γi(N, N,L) = 0.
Now as γ satisfies ETE, we obtain that for all i such that L(r) ∩ Li 	= ∅,
γi(N, N,L) = 1∑

j∈N δj(L(r)) . Now by definition of the Shapley quota allocation
mechanism φ, we have that

φi(N, N,L) =

{
1∑

j∈N δj(L(r)) , if L(r) ∩ Li 	= ∅
0, if L(r) ∩ Li = ∅

, ∀ i ∈ N.

Therefore, γ = φ.
Let us suppose by induction that γ = φ for every (N, N,L) ∈ LNAN such

that |R| ≤ m − 1,m > 1, and let us consider (N,G,R, f) ∈ LNN such that
|R| = m > 1.

We choose one labeled route r ∈ R, and we construct the two following
labeled networks with set of agents N :

• N1 = (G1,R1, f1):
1. G1 = G.
2. R1 = R − {r}.

3. f1(s) =
f(s)

1 − f(r)
, ∀ s ∈ R1.

Since |R| ≥ 2, p1(s) is well-defined because 0 < f(r) < 1.
• N2 = (G2,R2, f2):

1. G2 = G.
2. R2 = {r}.
3. f2(r) = 1, r ∈ R2.
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If we consider the merging of (N1, N,L) and (N2, N,L) with R = R1 ∪ R2 and
relative weights 1 − f(r) and f(r) respectively, then applying the definition of
merging of two labeled networks we obtain that

(N, N,L) ≡ (N1, N,L) ⊕ (N2, N,L).

Now, by the induction hypothesis, we have that

γ(N1, N,L) = φ(N1, N,L),

γ(N2, N,L) = φ(N2, N,L).

By Proposition 1, φ satisfies WM and by hypothesis γ satisfies WM, then we
have the following chain of equalities:

γ(N, N,L) = γ((N1, N,L) ⊕ (N2, N,L)) = (1 − f(r))γ(N1, N,L) + f(r)γ(N2, N,L)

= (1 − f(r))φ(N1, N,L) + f(r)φ(N2, N,L) = φ((N1, N,L) ⊕ (N2, N,L))

= φ(N, N,L).

Therefore γ = φ, and the result follows. �
Theorem 2. The properties NFC, ETE and WM are logically independent.

Proof. (1) The egalitarian solution satisfies ETE and WM but not NFC. Indeed,
the egalitarian solution is defined as follows:

εi(N, N,L) =
1

|N | , ∀ i ∈ N.

It can immediately be proved that the egalitarian solution does not satisfy
NFC. Furthermore, it trivially satisfies ETE because all agents receive the same.
Since the egalitarian solution is a constant solution on LNAN , it also satisfies
WM.

(2) Let us consider the following version of the egalitarian solution:

αi(N, N,L) =

{
1

|K| , if i ∈ K ⊆ N

0, otherwise
, ∀ i ∈ N,

where K = {i ∈ N : ∃ r ∈ R s.t. L(r) ∩ Li 	= ∅}. It is easy to prove that
this solution satisfies NFC and ETE. However, it does not satisfy WM. Let us
consider the following two labeled networks with set of agents N = {1, 2, 3, 4, 5}
and L = {{1}, {2}, {3}, {4}, {5}}:

• N1 = (G,R1, f1) : R1 = {r};L(r) = {1, 2, 3}; f1(r) = 1,
• N2 = (G,R2, f2) : R2 = {s};L(s) = {4, 5}; f2(s) = 1,



Labeled Network Allocation Problems 101

with relative weights equal to 1
2 . Then we have that

α((N1, N,L) ⊕ (N2, N,L)) =
(

1
5
,
1
5
,
1
5
,
1
5
,
1
5

)

,

while α(N1, N,L) =
(

1
3
,
1
3
,
1
3
, 0, 0

)

and α(N2, N,L) =
(

0, 0, 0,
1
2
,
1
2

)

.

Thus,
1
2

(
1
3
,
1
3
,
1
3
, 0, 0

)

+
1
2

(

0, 0, 0,
1
2
,
1
2

)

=
(

1
6
,
1
6
,
1
6
,
1
4
,
1
4

)

. Hence α does not

satisfies WM.
(3) Let us consider the solution defined, for each i ∈ N , as follows:

ϕi(N, N,L) =
∑

r∈R

i · f(r)
∑

j∈N j · δj(L(r))
δi(L(r)).

This solution satisfies NFC and also WM but not ETE. �

4 A Stylized Application to the Metropolitan Consortium
of Seville

The purpose of this section is to illustrate how labeled networks can describe real-
life situations such as a public transport system. Furthermore, the Shapley quota
allocation mechanism is not difficult to compute and is easy to apply, because
we only need to know the labeled routes and the distribution of one unit of flow
among all labeled routes. Of course, in real-life situations both elements should
be updated from time to time.

In particular, we apply labeled networks and the Shapley quota allocation
mechanism to the Transport Consortium of Seville in which collaborate several
transport companies to offer a better service to the passengers, in particular the
Consortium offers travel tickets which can be used in whatever of the transport
companies including transfers between the different companies. This transport
system covers six zones (A,...,F) and connects different points of Seville and its
metropolitan area. This network uses three modes: trains, metro and buses. In
fact, there are 5 lines operated by trains, 3 by underground and 64 by buses which
correspond to seven different companies. The complete map can be found at
the web page www.consorciotransportes-sevilla.com (see also Fig. 2). We should
mention that the urban buses are not included in the transport consortium of
Seville.

A public transport system as described above can be modeled by means of a
simple labeled network allocation problem as follows:

• The labeled graph G:
– V = { the set of all stops }.
– L = { the set of all companies operating in the transport system }.
– A = { each connection between two consecutive stops operated by each

transport company }.

www.consorciotransportes-sevilla.com
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• The set of agents N =
{

the set of all companies operating in the transport
system

}
.

• The partition of the labels, L =
{{company 1}, {company 2}, . . . ,

{company n}}.
• The feasible labeled routes R =

{
the set of all labeled routes used by

passengers
}
.

• The distribution of one unit of the flow f(r) = proportion of all
passengers using labeled route r.

If we consider that the price of one ticket is constant, which is true within the
same zone, then we can consider that this price is exactly 1, and f measures the
proportion of profit derived of the use of each labeled route. Thus, the application
of a flow quota allocation mechanism provides the proportion of the ticket price
that corresponds to each agent when they cooperate.

Fig. 2. Map of the metropolitan consortium of Seville

The real network is too large to be illustrated in the paper, so we have decided
to give our attention to a limited problem in which we consider only zone A which
corresponds to the city center of Seville. Moreover, we aggregate different stops,
if they serve the same area and different lines, if they have common labeled
routes and common stops in the area under consideration. We do not consider
those companies that do not operate at all in the area or if the service they
provide is limited to few stops. This leads us to consider three bus companies,
Carjema (B1), Casal (B2), and Los Amarillos (B3); underground, Metro (M),
and trains, Renfe (T). The resulting network has 15 nodes and 15 edges some of
which are connected by different companies (see Fig. 3). All these simplifications
do not affect the way in which the Shapley quota allocation mechanism would
be applied, therefore, this example adequately illustrates how this mechanism
would be calculated in a real-life situation. In fact, the computational complexity
of the problem lies in the algorithm for determining all possible routes and not
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Fig. 3. Simplified map of the Zone A of the metropolitan network of Seville

in the application of the quota allocation mechanism. But the first is not the
subject of this paper.

Starting from the simplified network, we compute the feasible labeled routes
according to the following hypotheses: a passenger enters the origin node and
takes the first public transport available traveling towards the destination. The
passenger remains on this public transport as long as possible. When the passen-
ger leaves that public transport s/he then takes again the first public transport
available going to the destination, and so on until reaching the final destination.
Following this procedure, we obtained a total of 405 feasible labeled routes (see
Table 1). The number of labeled routes operated by each company are shown in
Table 2

For instance, let us consider a passenger who wants to go from Plaza de
Armas (node 5) to San Jerónimo (node 2). We assume that there is just one
feasible labeled route, because in Plaza de Armas the only transport is by Casal
company (B2) bus that goes directly to the final destination of San Jerónimo. In
other words, we do not consider as feasible the labeled route that uses the B2 bus
from Plaza de Armas to Parlamento (node 4) and the Carjema company (B1)
bus from Parlamento to San Jerónimo, and the labeled route that uses the B2
bus from Plaza de Armas to Dr. Fedriani (node 3) and B1 bus from Dr. Fedriani
to San Jerónimo. On the other hand, for the path in the opposite direction, from
San Jerónimo to Plaza de Armas, the direct labeled route with B2 bus and the
labeled route that uses B1 bus from San Jerónimo to Parlamento and B2 bus
from Parlamento to Plaza de Armas, both are feasible, depending on which bus
arrives first at San Jerónimo, but we do not consider as feasible the labeled route
that uses the B1 bus from San Jerónimo to Dr. Fedriani and the B2 bus from
Dr. Fedriani to Plaza de Armas because Dr. Fedriani is not the last possible stop
for bus B1.
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Table 1. # of labeled routes for each pair O-D

OD 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 – 1 2 2 2 1 1 1 1 2 2 2 1 1 1

2 1 – 2 2 2 1 1 1 1 2 2 2 1 1 1

3 2 2 – 2 2 2 2 2 2 4 3 3 2 2 2

4 2 2 2 – 1 2 2 2 2 4 3 3 2 2 2

5 1 1 1 1 – 1 1 1 1 2 1 1 1 1 1

6 1 1 2 2 2 – 1 1 1 2 2 2 1 1 1

7 1 1 2 2 2 1 – 1 1 2 2 2 1 1 1

8 1 1 2 2 2 1 1 – 1 2 2 2 3 3 1

9 1 1 2 2 2 1 1 1 – 1 1 1 2 2 1

10 2 2 4 4 4 2 2 2 2 – 1 1 3 3 2

11 1 1 2 2 2 1 1 1 1 1 – 1 2 2 1

12 1 1 2 2 2 1 1 1 1 1 1 – 2 2 1

13 3 3 6 6 6 3 3 3 3 3 3 3 – 2 3

14 4 4 7 7 8 4 4 4 4 4 3 4 2 – 4

15 1 1 2 2 2 1 1 1 1 1 1 1 2 2 –

Table 2. The labeled routes and the companies

Companies M T B1 B2 B3

# of labeled routes involving each company 180 315 89 203 88

# of labeled routes operated by a unique company 20 42 6 18 6

After the previous modifications to the network, we have simulated the O-D
matrix, taking into consideration the population distribution in the metropolitan
area and available data of passengers in 2014.

Based on data provided by the Metropolitan Consortium of Seville, we have
assigned a weight to each node that represents its relevance in the traffic (see
Table 3) and consider an average of 13.500.000 passengers per year. We have
simulated the O-D matrix, where the average of passengers in each O-D has
been calculated proportional to the products of the assigned weights to each
node in the pair O-D. For each pair O-D, we apply a normal distribution with
the average previously obtained and a relative standard deviation (coefficient of
variation) of 7.5%. Next, we have generated random numbers for the matrix O-D.
Using these numbers and the normal distribution we have obtained a traffic flow
throughout the transport network (see Table 4). We would like to emphasize
that we have implemented a program on spreadsheets to simulate the traffic
of passengers taking as input the stop weights, the relative standard deviation
and the average of total passengers in order to calculate the Shapley quota
allocation mechanism and a proportional solution according to the number of
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Table 3. Weights of the nodes

Node 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Weight 1 3 3 3 10 8 2 8 2 10 5 5 8 4 2

Table 4. Number of passengers for each pair O-D

OD 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 – 7904 8771 8176 29245 22734 5617 20740 5306 25433 13508 14606 20544 9116 5135

2 8145 – 23641 25489 85749 64302 14529 61720 13393 75368 36430 39825 66047 32446 16654

3 7102 19765 – 22741 84691 69579 16014 62701 17586 82785 38789 48299 65673 30181 15968

4 8969 24321 23690 – 81794 56529 17777 71428 16933 84858 43108 41902 65342 28700 17068

5 25786 89615 89606 76253 – 222254 57499 218904 49359 274017 138958 145169 218926 103733 46576

6 20761 64905 64244 66932 221379 – 41907 157638 47267 214889 115142 112964 158628 80630 43869

7 5110 16674 18278 16230 54424 43022 – 40096 10441 60367 30912 31284 36590 21881 10431

8 22536 55140 64589 62622 237452 173367 42101 – 44490 249182 108662 120792 175477 81645 40405

9 6408 16724 17832 16488 52697 42572 12117 50059 – 61691 30058 27738 44548 21937 10662

10 26936 67826 78332 91698 305185 207276 59092 207887 58424 – 150398 138593 214263 106047 55600

11 12315 41216 44813 42168 144143 107359 28061 116516 30423 118116 – 63994 107589 54928 30030

12 15915 37891 38309 40060 138808 103039 25341 106975 29109 128213 65672 – 103663 48972 28294

13 23586 61210 57843 59137 214729 190465 45843 193877 34290 202610 108369 109267 – 89055 45269

14 11006 31567 33569 30413 95339 86084 24804 94003 21720 127600 60320 54098 89252 – 24125

15 5139 16814 15119 16717 51685 48327 10831 42964 9987 58279 26595 27805 37667 21015 –

labeled routes. We would like to point out that if a real traffic matrix is available
then it can be easily imported.

In our problem the number of labeled routes is fixed. Notice that this is
not a strong assumption since the licenses are conceded to the companies for a
long period of time. Although the computation of the number of feasible labeled
routes is an NP-hard problem, this is initially solved by the metropolitan con-
sortium and it is beyond the scope of this paper.

Once simulation is applied to the previous data, the Shapley quota alloca-
tion mechanism is obtained together with a proportional solution based on the
number of labeled routes in which every company operates (see Table 2). These
solutions, as a percentage of the total price of the ticket, are reported in Tables 5
and 6.

Table 5. The Shapley quota allocation mechanism

M T B1 B2 B3

24.98 37.82 5.34 25.17 6.69

In Tables 5 and 6, we can observe that the results are quite different. For
instance, Company B1 would obtain a quota of 5.34% with the Shapley quota
allocation mechanism and 10.17% considering the proportional solution. We
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Table 6. Proportional quota according to the number of labeled routes

M T B1 B2 B3

20.57 36.00 10.17 23.20 10.06

highlight that, whereas the proportional quota only takes into account the num-
ber of labeled routes, the Shapley quota allocation mechanism is based not only
on the number of labeled routes, but also on the traffic flow in the network. In
this case, this solution is also easily computed which is a relevant advantage when
working with examples from the real world and has a clear interpretation. Note
that we have assumed in this case, that if there is more than one labeled route
connecting the same pair OD, we consider them equally probable. However, dif-
ferent probabilities could have been considered as shown in the theoretical part.
In that case, only one additional input should be added to the program which
can easily be implemented.

5 Conclusions

In this paper, we have introduced a class of network problems, the labeled net-
work allocation problems. Furthermore, we have studied and characterized the
so-called Shapley quota allocation mechanism, which is based on the structure
of the Shapley value but directly used with the labeled network.

Finally, we have illustrated the application of labeled network models to
real-life situations by using a stylized example of the Metropolitan Consortium
of Seville.
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