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Abstract. Classic methods for detecting gerrymandering fail in multi-
party partially-contested elections, such as the Polish local election of
2014. A new method for detecting electoral bias, based on the assump-
tion that voting is a stochastic process described by Pólya’s urn model, is
devised to overcome these difficulties. Since the partially-contested char-
acter of the election makes it difficult to estimate parameters of the urn
model, an ad-hoc procedure for estimating those parameters in a manner
untainted by potential gerrymandering is proposed.
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1 Introduction

Most political representative bodies in the world are chosen through multi-
district elections, where seats are apportioned among n parties within each of c
districts independently, i.e., solely on the basis of the district vote. In such elec-
tions, jurisdiction-wide distribution of seats (the seat distribution) depends heav-
ily not only on the overall voting result (i.e., a vector of party vote shares), but
on the geographical distribution of each party’s support over the set of electoral
districts (the vote distribution). Anomalous vote distributions can lead to skewed
electoral results, such as the well-known referendum paradox [11,49,59]. While
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such anomalous distributions can arise through natural causes, such as voter self-
segregation and other population clustering effects [18,38,42,43,75] (the U.S.
electoral college, where two out of five most recent elections involved instances
of the referendum paradox favoring the Republican Party, affords a prominent
example), they can also be facilitated through deliberate manipulation of elec-
toral district boundaries. Such manipulation, especially when undertaken for the
purpose of obtaining an advantage for the party or block of parties controlling
the redistricting process, is known as gerrymandering.

Gerrymandering is possible under all kinds of voting rules [6], but is most
common under the combination of single-member electoral districts and the plu-
rality rule (known in political science as the FPTP system). A classic gerry-
mander under FPTP is based on a combination of two strategies: assigning as
many opposition voters as possible into a small number of districts (packing)
(obviously, that number needs to be smaller than c/2), while spreading out the
remainder roughly equally across other districts in such manner that they do
not constitute a majority in any of them (cracking) [5,27]. When done correctly,
this results in a substantial number of opposition votes in the “packed” districts
being wasted, while the opposition supporters in other districts are so diluted
that they are incapable of securing a plurality in any of them. If there are more
than two parties, other strategies also become possible, such as stacking, balanc-
ing the number of supporters of different opposition parties in such manner that
enables the preferred candidate to win with less than majority, but they tend to
require more detailed knowledge about voter preferences and their distribution.

Ultimately, however, even as both strategies and objectives of gerrymander-
ing are well-understood, the concept itself, as we will see below, remains diffi-
cult to formalize. Even apart from difficulties necessarily involved in discerning
intent (and hence distinguishing manipulation from unintentional bias), there is
no accepted standard by which a specific vote distribution can be judged “fair”
or “natural” [16,36,39]. Without such standard, the concepts of distributional
“unfairness” or “anomalousness” are fuzzy at best and meaningless at worst.
This obviously makes it more difficult to detect and identify gerrymandering, as
resort has to be had to circumstantial or otherwise indirect evidence.

2 Methodological Approaches to Detecting
Gerrymandering

Altman et al. [2] distinguish six basic methodological approaches to detecting
gerrymandering: method of stated intent, which relies on public statements of the
authors of the districting plan; method of totality of the circumstances, which
focuses on the political circumstances (well-known geographical rivalries, past
practice, etc.); method of evaluation of process, which analyzes the districting
process; methods of inspection, where gerrymandering is inferred from some qual-
itative or quantitative characteristics of the districting plan; method of post-hoc
comparisons, where the districting plan is compared against a random sample of
alternative plans; and method of revealed preferences, where the districting plan
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is compared against alternatives rejected during the districting process. Of those,
the first three are purely qualitative and only rarely will suffice to prove gerry-
mandering, or even systemic bias. In addition, they require extensive extrinsic
knowledge about the districting process that cannot be obtained from election
results and districting plans alone. The method of revealed preferences, while
advocated by [2], also requires such extrinsic knowledge (namely the set of plans
that were known to the districting authority but have been rejected).

That leaves us with only two classes of quantitative methods for detecting ger-
rymandering that can be applied when extrinsic knowledge is unavailable: the
methods of inspection and the method of post-hoc comparisons. As noted, in the
former we focus on some observable characteristics of the districting plan and com-
pare them against a well-known standard. Most of such methods focus on one of
the basic types of plan characteristics: district geometry and the relation between
seats and votes. Geometric methods involve tests of district contiguity and of var-
ious measures of district compactness [1,28,62,77], trying to formalize the intu-
ition that gerrymandered electoral districts are oddly shaped. Yet the evidence of
manipulation provided by such methods is circumstantial at best, as irregularity
of shape is neither necessary nor sufficient condition for gerrymandering.

Methods focusing on the seats-votes relation instead start from some assump-
tions about the desired characteristics of such relation. Such characteristics may
include proportionality [8], responsiveness to shifts in voter support (measured
by the swing ratio, i.e., the derivative of seats with respect to votes) [56,73],
partisan symmetry (a requirement that seats-votes curves by identical for all
competing parties [32,33,35,37,47,57]), or the efficiency principle, requiring that
the number of wasted votes be equal for all parties [53,69]. Then each party’s
seats-votes function (i.e., a function assigning to total vote share v the total
seat share s) is tested for deviation from the chosen characteristics. Those meth-
ods generally share three principal limitations. The first one is of fundamental
nature: most of the methods described above (except the partisan symmetry
method) involve a priori assumptions that certain form of the seats-votes func-
tion is a natural one, but no attempt is made to justify those assumptions, for
instance by showing that they arise from some general or accepted distributional
assumptions. Without such justification it may well be that those methods gen-
erate a large number of false negatives by holding districting plans to a more
restrictive standard than mere absence of distributional anomalies. The second
problem with methods focusing on the seats-votes relation is more technical:
they usually require that the full seats-votes function be known for each party,
yet all that is empirically known is a single data point per election. Extrap-
olation from those data points involves questionable assumptions about how
changes in one party’s vote share translate into changes in its vote distribution
and in other parties’ vote shares (like the uniform partisan swing assumption,
see [14,15,29,35,58]). Finally, virtually all methods focusing on the seats-votes
relation have been developed with two-party elections in mind and usually lack
natural generalization for multiparty elections.

The method of post-hoc comparisons instead compares districting plans with
an ensemble of alternative districting plans [18–20,24,51,60]. The problem is
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that the full set of correct solutions to the districting problem is in all but
simplest cases too numerous to be used for such comparison, so we are reduced
to testing the empirical plan against some sample of algorithmically generated
random plans. But for proper inference to be drawn from such sample, we need
the sample to be drawn from the set of all possible districting plans with some
known probability measure, and we are unaware of any algorithm for generating
districting plans for which such measure has been analytically determined [2,3].

Finally, all of the methods described above fail in partially-contested elec-
tions, i.e., those where only some parties (or even none) field candidates in
all electoral districts, and other parties field candidates in fewer than all dis-
tricts (including one-candidate parties that only run in a single district). In such
cases, the number of candidates can vary across districts, affecting both vote
distributions and seats-votes relationships. In addition, we are no longer free to
generate alternative seat allocations by rearranging districts, since we no longer
have data about each party’s support beyond the districts it contested. It has
been already noted by [45] that traditional statistical methods for dealing with
missing data cannot be applied to partially-contested elections since failure to
contest an election in a district is usually not a random event, but a function
of the party’s forecasted electoral strength in such district. Yet the methods for
dealing with partially-contested elections proposed by, inter alia, [45,50,72,76],
are also insufficient when the patterns of electoral contestation are very chaotic,
and particularly if the election cannot be described as a mixture of relatively
few patterns with multiple districts per each.

We have encountered exactly those problems when analyzing gerrymandering
in Polish local election of 2014, which was held under the plurality rule. Due to
highly personalized nature of local politics in Poland (especially in the smallest
but most numerous class of municipalities, the townships), in 2386 out of 2412
municipalities the election was partially-contested. The chaotic character of elec-
toral contestation patterns is best described by the following selection of facts:

– only 2218 out of 16,971 parties1 have contested the election in all districts
within their respective municipalities,

– if parties were ordered according to the fraction of districts contested within
their respective municipalities, a median party would have contested less than
half of all districts,

– 4733 parties have contested only a single district,
– there are, on average, 8.26 different district contestation patterns per

municipality.

To address the problems described above, we propose a new method for
detecting gerrymandering in partially-contested multiparty elections that are
conducted under identical rules in multiple jurisdictions with separate districting
plans (examples include regional and local elections, but also national elections
1 Under the rules in place for the election, parties are registered at the district level,

and every independent candidate is counted as a distinct party, thence the unusually
large number of parties.



Detecting Gerrymandering in Partially-Contested Elections 5

in which redistricting is done by subnational jurisdictions, as in the case of the
U.S. House of Representatives). We proceed on two general assumptions: that
voting in each district can be modeled by a stochastic process that is identical
(modulo choice of parameters) for all jurisdictions of interest, and that gerry-
mandering is ultimately an exception rather than a rule, so the parameters of
the stochastic model estimated from the set of all jurisdictions are free from the
taint of manipulation. We first formulate a general model of vote distribution,
then propose a procedure for estimating that model’s parameters, and finally
use that model to derive a sampling distribution of seat shares against which
party seat shares can be compared.

3 Modeling District-Level Vote Distribution

3.1 Definitions and Notation

1. An electoral jurisdiction consists of a finite set of electoral districts D, whose
cardinality we denote as c := |D|, a finite set of parties P := {1, . . . , n}, and
a left- and right-total relation R ⊆ P × D such that (i, k) ∈ R if the i-th
party fields a candidate in the k-th district. It is assumed here that in each
district there is exactly one seat to be allocated using the plurality rule and
hence each party is able to field only a single candidate.

2. Let Di ⊆ D be the set of indices of the electoral districts where the i-th
party, i ∈ P , fields candidates, i.e., a set of such k ∈ D that (i, k) ∈ R. Let
ci := |Di|.

3. Let Pk ⊆ P be the set of indices of the parties contesting the k-th district,
k ∈ D, i.e., a set of such i = 1, . . . , n that (i, k) ∈ R. Let nk := |Pk|.

4. Let ∼ be an equivalence relation on D identifying districts contested by the
same set of parties, i.e., such that k ∼ l if and only if Pk = Pl. By [k]∼
we denote an equivalence class of k in D with respect to ∼. We call it a
contestation pattern.

5. The voting result in the k-th district is a vector vk :=
(
vk

i1
, . . . , vk

ink

)
∈ δk,

where δk is an nk-face of the standard (n − 1)-dimensional simplex Δn that
includes vertices i1 to ink

, vk
i is the i-th party’s vote share in the k-th district,

and i1 < · · · < ink
are elements of Pk. Note that δk can be identified with

the standard (nk − 1)-dimensional simplex Δnk
.

6. Let vi :=
(∑

k∈Di
vk

i wk

)
/
(∑

k∈Di
wk

)
, where wk is the number of voters in

the k-th district, be the i-th party’s total vote share.
7. Let Dm be the set of all such districts k ∈ ⋃

D, where the sum is over all
electoral jurisdictions of interest, that nk = m.

8. By quantile mixture of absolutely continuous probability distributions
M1, . . . ,Mm supported on some compact I we understand a probability
distribution characterized uniquely by the inverse cumulative distribution
function Λ−1 : [0, 1] → I given by Λ−1 (x) := 1

m

∑m
i=1 F−1

i (x), where F−1
i

is the inverse cumulative distribution function of Mi [44].
9. Where single-district models are discussed (in Sects. 3.2 and 3.3) index k is

omitted.
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3.2 Overview of Available Models

The problem of modeling voter choice in single-choice electoral systems can be
though of as a special case of the problem of modeling preference orderings, which
is well known in the social choice theory (see, e.g., [65] and [71]). A number of
models has been employed for that purpose, but, since we are only interested in
the first choice, we omit the discussion of those that differ only in their treatment
of the second and subsequent preferences.

1. Under the Impartial Culture (IC) model, each preference ordering (and,
therefore, also each choice of the first candidate) is equiprobable and each
voter decides independently with fixed probabilities [17]. The voting result
v follows a multinomial distribution centered at the barycenter of Δn with
the variance of the square distance from the barycenter O

(
w−1

)
. There is

extensive evidence for the claim that both the equiprobability and inde-
pendence assumptions are not satisfied in empirical elections (recounted by,
inter alia, [65]).

2. The multinomial model is a generalization of the IC model which assigns
unequal probabilities to the candidates, but still assumes that each voter
makes an independent choice with fixed probabilities described by vector p.
The voting result v follows a multinomial distribution centered at p with the
variance of the square distance from p behaving as O

(
w−1

)
. As first noted in

[46], this model significantly underestimates the variance of the vote distri-
bution. To avoid that problem, Penrose and others [61,67,74] have proposed
clustered multinomial model, according to which each district’s population
consists of κ equally sized clusters of voters who have identical character-
istics and instead of randomizing individual voters’ choices, we randomize
each cluster’s choice. Under that model, v still follows a multinomial dis-
tribution centered at p, but its variance increases to O

(
κ−1

)
(as κ � w –

Penrose’s original estimate for Great Britain was κ ≈ 14).
3. The Impartial Anonymous Culture (IAC) model treats each preference pro-

file (and, therefore, each voting result) as equiprobable [31,48]. Accordingly,
the voting result v follows the uniform distribution on a discrete grid of
points within Δnk

, which, as w approaches ∞, weakly converges to the
uniform distribution on Δnk

.
4. The Pólya urn model, first introduced by Eggenberger and P ólya in 1923

[22], has been applied in the field social choice theory by, inter alia, [12,
21,40,66]. Voting is treated as a discrete stochastic process where a ball is
drawn from an urn that initially contains αi balls of the i-th color (where
i = 1, . . . , n), and after each draw λ balls of the same color as the one
drawn are returned to the urn. The voting result v follows the multivariate
Pó lya distribution and, as w approaches ∞, converges almost surely to a
random variable having the Dirichlet distribution parametrized by vector
(α1, . . . , αn)/λ [7,41]. Both IC and IAC are special cases of the urn model,
with α1 = · · · = αn = 1 and λ = 1 for IAC and 0 for IC.
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5. Spatial models assume that voter policy preferences are distributed (usually
normally) over a multidimensional policy space, that party policy positions
are either specified or randomly distributed over the same space and that
voters always choose the candidate of the closest party according to some
fixed metric [4,23,55]. Again, some voting clustering has to be assumed to
avoid overestimating homogeneity.

There is considerable evidence that equiprobability and independence assump-
tions fail to match empirical data, and accordingly both IC and IAC fail as empir-
ical models of electoral behavior [65,71]. In [71], spatial models are found to be
most effective in modeling preference profiles, but in single-choice elections such
models involve too many degrees of freedom for estimation unless highly simplify-
ing assumptions are made (for instance, about reduction of the number of dimen-
sions). That leaves only the urn model for our intended applications.

Sociological theory of electoral behavior also provides sound reasons for
adopting the urn model. Contagion mechanisms it is used to model translate
into an observation that most voters are initially undecided and their political
views are shaped through social interactions with others, who include already-
committed supporters of the parties and candidates (cf. [13]). Indeed, political
parties recognize that direct mobilization of voters through personal interaction
is one of the most important tools of electoral campaigning [26]. Even mass media
influence on political views, which would seem to support rather fixed-probability
models, is indirect and effective primarily when the information communicated
by the media is later verified through direct interaction with other members
of the community [54]. It is also recognized that such political contagion pro-
cesses are essentially stochastic, being dependent on the fine structure of social
networks [52] which cannot be predicted deterministically.

3.3 Urn Model of Electoral Behavior

A Pólya urn model is usually characterized by two parameters: a vector of initial
ball numbers (α ∈ R

n
+) and the number of additional balls returned after each

draw (λ ∈ R+ ∪ {0}), but note that by rescaling vector α we can always obtain
λ = 1, thereby reducing our parameter space to R

n
+. In addition, it is often

convenient to express α as a product of an n-element vector p ∈ Δn and of the
concentration parameter α ∈ R+.

Definition 1. Pólya-Eggenberger Urn Model [22,63].

Let us consider a countably infinite set of potential voters. Let Xj ∈ P be
the choice of the j-th voter (j ∈ N, N = {1, 2, 3, . . . }).

Voting is a discrete stochastic process where the probability of the (j + 1)-th
voter choosing the i-th party’s candidate is defined by induction as

Pr (Xj+1 = i) =
αpi + |{k = 1, . . . , j : Xk = i}|

α + j
, (1)

for i = 1, . . . , n.
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Intuitively, the attractiveness of the i-th party to the (j + 1)-th voter is pro-
portional to the sum of the number of voters that already have decided to support
it and its initial strength αpi. In [66] the authors propose that αpi be interpreted
as the number of voters who are committed at the outset to support the i-th
party’s candidate, but this interpretation raises some issues as αpi need not be
an integer.

Proposition 1. In the above situation, there exists a random variable V ∼
Dir (n;αp1, . . . , αpn) such that (Pr (Xj = 1) , . . . ,Pr (Xj = n)) a.s.→ V as j → ∞,
where Dir (n;αp1, . . . , αpn) (the Dirichlet distribution) is a continuous multi-
variate probability distribution supported on Δn that has a probability density f
with respect to the Lebesgue measure on Δn given by:

f (v1, . . . , vn) :=
1

B (α1, . . . , αn)

n∏
i=1

vαi−1
i , (2)

where v ∈ Δn and B (α1, . . . , αn) is the multivariate beta function:

B (α1, . . . , αn) :=
∏n

i=1 Γ (αi)
Γ (α)

. (3)

In the above situation we have for i = 1, . . . , n:

Vi ∼ Beta (αpi, α (1 − pi)) ; (4)

E (Vi) = pi; (5)

Var (Vi) =
pi (1 − pi)

α + 1
. (6)

For proof of the above proposition see, inter alia, [7] and [41] (Fig. 1).

3.4 Parameter Fitting – The Expectation Vector

Literature on electoral studies recognizes that district-level vote shares depend on
two principal factors: overall party popularity, measured by the total vote share
vector v, and political geography, i.e., district-specific effects, which are more
difficult to model formally. However, as we consider an idealized distribution
of vote shares in a non-biased election, in essence approximating an average
distribution of district vote shares over the population of non-biased districting
plans, we abstract from the effects of political geography altogether.

It would thus appear from (5) that the vector of party total vote shares v
would be the most natural estimate of parameter p. This, however, is only the
case if the voting results in all districts in D come from a single distribution,
which in turn is equivalent to a condition that the election be fully contested, i.e.,
that every party j field a candidate in every district k. Otherwise, there must
be a different distribution for each equivalence class [k]∼, as each such class
is characterized by the presence of a different set of parties. It follows that in
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0 2 4 6 0 2 4 6

Fig. 1. Density plot of a symmetric Dirichlet distribution on Δ3 with p = ( 1
3
, 1
3
, 1
3
)

and α = 9 (left) and of an asymmetric Dirichlet distribution on Δ3 with p = ( 4
9
, 1
3
, 2
9
)

and α = 8 (right).

partially-contested elections, which are of primary interest to us, voting results
in D will be distributed according to a direct product of Dirichlet distributions
Dk := Dir (nk;αkpk), with nk, pk and αk constant for each equivalence class
[k]∼, and pk and αk being unknown.

We cannot simply assume that pk
i =

∑
j∈[k]∼

vj
i / |[k]∼| for each k ∈ D, since

the empirical vote distribution over equivalence classes [k]∼ may be tainted by
gerrymandering. Instead, we need a theoretical model that is based solely on
district contestation patterns (described by relation R) and party total vote
shares vector v.

In fitting pk to each equivalence class in D with respect to ∼, we seek to
satisfy the following three natural requirements:

R1 For each district k, pk ∈ Δnk
, i.e.,

∑
i∈Pk

pk
i = 1.

R2 For any two districts k, l ∈ D, if k ∼ l, then pk = pl.
R3 For any two parties i, j ∈ P , the order on

{
pk

i , pk
j

}
is identical in every

district k ∈ Di ∩ Dj .
R4 For any two parties i, j ∈ P such that Di = Dj , the order on

{
pk

i , pk
j

}
is

identical with the order on {vi, vj} for each district k ∈ Di.

In addition, there are three postulates that we seek to satisfy approximately
(i.e., to minimize deviation from them):

P5 For each party i ∈ P its mean expected vote share over districts should be
close to its party vote share, i.e.,

∑
k∈Di

pk
i ≈ civi.

P6 For any two districts k, l ∈ D if nk = nl, then pk
i ≈ pl

i for each party
i ∈ Pk ∩ Pl.



10 D. Stolicki et al.

P7 For each party j ∈ P and for any two districts k, l ∈ Dj we have
ϕnk

(
pk

j

)
= ϕnl

(
pl

j

)
, where ϕm : [0, 1] → [0, 1], m ∈ N, is a function map-

ping a party vote share in a district with m contenders to a standardized
value independent of m.

Of those postulates, P7 clearly requires some additional discussion. The
underlying problem consists of comparing vote shares across districts with dif-
ferent number of candidates. Clearly, obtaining 40% of the vote in a district
with two candidates is not equivalent to obtaining an identical vote share in a
district with ten candidates. In formal terms, this intuition can be expressed as
follows: let Xm, m ∈ N, be a random variable given by Xm (i, k) := vk

i , where k
is drawn from a uniform discrete distribution on Dm and i is later drawn from a
uniform discrete distribution on Pk. The distribution of Xm necessarily depends
on m, while for vote shares from different districts to be comparable, we need to
transform Xm into another random variable with a distribution that is constant
with respect to m.

The probability integral transform of Xm is one natural choice of such trans-
formation. Let us consider the cumulative distribution function of Xm. As it is
not injective, Xm being discrete, we formally define ϕm : [0, 1] → [0, 1] as its con-
tinuous approximation obtained by integrating the probit-transformed 2 kernel
density estimator ψm [30] of the distribution of Xm, i.e., ϕm (p) =

∫ p

0
ψm (x) dx

for p ∈ [0, 1]. This assures that ϕm is invertible, and that ϕ−1
m is continuous,

strictly increasing, and the images of the bounds of its domain are, respectively,
0 and 1. It follows that every linear combination of functions ϕ−1

k , where k ∈ N,
with positive coefficients summing up to c > 0, is also continuous and strictly
increasing, and the images of the bounds of its domain are 0 and c. Let i ∈ P .
By the intermediate value theorem there exists a unique qi ∈ [0, 1] such that∑

k∈Di
ϕ−1

nk
(qi) = civi ≤ ci. Hence the definition pk

i := ϕ−1
nk

(qi) would naturally
imply P5. Parameter qi has no natural interpretation, however if we assume the
distribution of the i-th party’s district vote shares to be a quantile mixture of
the distributions Dk, where k ∈ Di , qi will correspond to the value of such
mixture’s cumulative distribution function Λi for the empirical value of vi.

Note that model assuming pk
i = ϕ−1

nk
(qi) satisfies most of the requirements

and postulates specified above:

– P5 and P7 are satisfied by definition of qi and ϕm.
– If nk = nl, pk

i = ϕ−1
nk

(qi) = ϕ−1
nl

(qi) = pl
i for any party i and any two districts

k, l ∈ Di, so P6 is satisfied exactly and therefore implies R2.
– R3 results from the monotonicity of ϕ−1

m .
– From the monotonicity of ϕ−1

m we know that the order on
{
pk

i , pk
j

}
is identical

with the order on {qi, qj} = {Λi (vi) , Λj (vj)}. From Di = Dj it follows that
Λi = Λj . As Λi is strictly increasing, the order on {qi, qj} is identical to that
on {vi, vj}, as desired under R4.

2 We use the probit-transformed kernel density estimator instead of a standard Gaus-
sian density estimation to ensure that the resulting estimator is of bounded support
and that ϕm is surjective onto [0, 1].
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Unfortunately, there is no guarantee that the above model satisfies R1. We
therefore modify it by renormalizing vector pk for each district k. This renor-
malization ensures that R1 is satisfied, R3 is preserved (as renormalization
preserves the ordering of pk

1 , . . . , p
k
n), and so are R2 and R4 (as the renormal-

ization constant does not vary within [k]∼). In turn, such renormalization may
introduce violations of P5, P6, and P7, but we do not need those postulates to
be satisfied exactly.

Note that this method is loosely analogous to the biproportionality method
by [9,10,64].

The distribution of pk
i in all districts k ∈ Dm, m ∈ N, will be of further

interest in the following section (recall that Dm is the set of all districts with m
candidates). We denote its cumulative distribution function by Ψm.

3.5 Parameter Fitting – The Concentration Parameter

The last parameter of our electoral model is the concentration parameter αk.
Unlike the expected vote shares of the contending parties, αk is never observ-
able directly, and in most cases we do not have enough data to fit it to empirical
voting results using some distribution fitting method that produces a reasonable
confidence interval (since such fitting would require large equivalence class [k]∼).
Intuitively, the concentration parameter should depend on at least two further
parameters: the number of candidates and the political homogeneity of the juris-
diction under consideration. The latter, in turn, is likely to depend in a complex
manner on a large number of factors, such as the population and area of the
jurisdiction, historical cleavages, settlement structure, socioeconomic diversity,
etc. We do not have a good theoretical model of those relationships that would
enable us to estimate αk and a formulation of such model would go far beyond
the scope of this paper.

To circumvent this issue we treat the concentration parameter as another
random variable distributed, for each class of districts Dm, with a gamma dis-
tribution with parameters κm and θm. To apply our model to a particular class
of elections, we still need to estimate those parameters of the distribution of the
concentration parameter. We proceed as follows: let Ym, m ∈ N, be a random
variable given by Ym (i, k) := V k

i , where V k
i is the i-th barycenteric coordinate

of Vk ∼ Dir (nk;αkpk), k is drawn from a uniform discrete distribution on Dm

and i is later drawn from a uniform discrete distribution on Pk. Intuitively,
it is the theoretical vote share of a random party in a random district in an
ideal unbiased election. Under our model, the distribution of Ym is a compound
beta distribution with parameters (αp, α − αp) (see (4)), where p ∼ Ψm and
α ∼ Gamma (κm, θm). Accordingly, the density of that distribution is given by:

fm (x) =
∫ 1

0

∫ ∞

0

xαp−1 (1 − x)α−αp−1

B (αp, α − αp)
ακm−1e− α

θm

Γ (κm) θκm
m

dα dΨm (p) . (7)

The function Φm is known at this stage (having been estimated in the preceding
section), so the only two unknowns in this formula are the gamma distribution
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parameters κm and θm. But note that under our general assumption that gerry-
mandering is not ubiquitous, the distribution of Ym should closely approximate
the distribution of Xm provided the model is correct. Therefore, we can use that
property to obtain κm and θm. We do that by numerically minimizing, for each
m ∈ N, the total variation distance [34,68] between the distributions of Xm

and Ym.

4 Modeling the Sampling Distribution of Seats

By this point, we have estimated all the parameters necessary to model the
ideal unbiased distribution of votes in each electoral district in every jurisdiction,
namely, nk and pk for each district k, and κm and θm for each class of districts
Dm, m ∈ N. Of course, not all anomalies in the vote distribution of a party
are of interest to us when seeking to detect gerrymanders, but only those that
translate into biases in the allocation of seats. To detect such biases, we run
a Monte Carlo simulation for each jurisdiction of interest, generating a large
number of simulated election results. We proceed as follows:

1. For each district k ∈ D, we generate a single realization of the random
variable αk ∼ Gamma (κnk

, θnk
), which we will denote as α̂k.

2. For each district k ∈ D, we then generate a single realization of the random
vector Vk ∼ Dir (nk; α̂kpk), which we will denote as V̂k.

3. We distribute seats within each district k ∈ D according to the plurality
rule, awarding a single seat to the party with the greatest vote share, i.e.,
to the one corresponding to the greatest barycentric coordinate of V̂k.

4. For each party i ∈ P we sum seats over districts.

This procedure is repeated 220 times for each electoral jurisdiction. Through
this process, we obtain a joint discrete sampling distribution of party seat vectors
S on

∏n
i=1 {0, . . . , ci}, and for each party i ∈ P we denote the marginal sampling

distribution of seats by Si. In the process of estimating the above distributions we
do not rely on the empirical distribution of voters among districts, and therefore
they are untainted by the possible gerrymandering.

To measure the distance between actual seat count of the i-th party, si, and
the distribution Si obtained above, we introduce a simple measure analogous to
the well-known p-value used in statistical hypothesis testing:

πi := min (Si ([0, si]) ,Si ([si, ci])) . (8)

In other words, πi is the probability of a party obtaining the number of seats
that is equal to or more extreme than its actual number of seats. Low values of
πi are indicative not only of anomalies in the vote distribution, but also of the
fact that they translate into a rather improbable deviation from the expected
number of seats.

To obtain a jurisdiction-level index, we could simply average the values of πi

over i ∈ P . However, to account for the fact that we are primarily interested in
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cases of gerrymandering affecting parties contesting most districts, we weigh πi

by the number of districts ci. The resulting index,

π :=
∑n

i=1 πici∑n
i=1 ci

, (9)

is our final measure of electoral bias. While not conclusive evidence of gerryman-
dering, since we still lack proof of intent, as electoral bias can be unintentional
and arise due to pecularities of spatial distribution of party voters), it allows
us to identify the outlier jurisdictions which can then be analyzed using other,
possibly more qualitative methods.

Remark 1. Note that for our primary data set of interest, Polish local elections
of 2014, π is quite well approximated by a normal distribution, see Fig. 2. This
indicates an absence of pervasive gerrymandering, which agrees with the intuition
that gerrymandering (or at least successful gerrymandering) is more difficult in
less orderly party systems.
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Fig. 2. A kernel density estimate of the empirical density of π for Polish local election
of 2014 (black) and a normal density curve with μ ≈ 0.388 and σ ≈ 0.0945 (red).
(Color figure online)

To conclude, we have seen that classic methods for detecting gerrymandering
fail when applied to multiparty partially-contested elections. We propose an
alternative method based on a probabilistic model of voting behavior, together
with a procedure for estimating the parameters of such model in a manner
insulated from the possible taint of gerrymandering. We admit that the method
is complex and involves simplifying assumptions and ad-hoc solutions, but they
are made necessary due to the complexity of the problem and the limitations of
the available data. Ultimately, we are unable to secure any conclusive evidence
of gerrymandering, but we do obtain a single index that can be used to identify
the suspect jurisdictions for further analysis.
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A Appendix

We have developed two proof-of-concept tests to evaluate the correctness of the
proposed method for detecting gerrymandering. First, for any set of jurisdic-
tions to which we seek to apply the proposed method we can test whether the
empirical marginal distribution of Xm, m = 1, . . . , 11, agrees with the theoretical
marginal distribution expressed by (7). We have run such test for our primary
data set of interest, Polish local election of 2014, producing, for the following val-
ues of parameters κm and θm (fitted in accordance with the procedure described
in Sect. 3.5), the following total variation distances dTV between the theoret-
ical density function and the kernel density estimator of the empirical density
(Fig. 3):

m κm θm dTV m κm θm dTV

2 10.9656 1 4.97 E− 04 7 15.1239 1 2.51 E− 03

3 9.7069 1 1.42 E− 03 8 16.4486 1 2.73 E− 03

4 10.8787 1 2.02 E− 03 9 18.3641 1 2.93 E− 03

5 12.5535 1 2.22 E− 03 10 18.1292 1 3.24 E− 03

6 13.9117 1 2.27 E− 03 11 24.6423 1 4.33 E− 03

Even if the probabilistic model underlying the test is correct, it remains to be
seen if the method is sensitive enough to detect actual gerrymandering (or other
instances of electoral bias) and specific enough to keep the level of false positives
low. Ideally, we would test the above using an empirical dataset that includes
some known instances of gerrymandering, but our main dataset included none.
Therefore, we have tested the sensitivity and specificity of the method against an
artifical dataset, although one based on empirical data. We have algorithmically
created a sample of 1024 districting plans for our home city of Kraków, each hav-
ing 43 seats (as is the case in reality). Of those, 1020 were generated randomly
using a Markov chain Monte Carlo districting algorithm developed by [25] and
implemented in R package redist. The remaining four have been generated using
two algorithms from [70], designed to produce districting plans gerrymandered in
favor of one of the two largest parties (the first algorithm has also been designed
to try to keep the districts relatively compact, while the second has been freed
of all compactness constraints). Under each of those districting plans, we have
calculated simulated election results using the 2014 precinct-level data. We treat
each of such simulated elections as a single jurisdiction for which we carry out
the procedure described in the article to obtain π. There are 12 distinct outcomes
arising in simulated elections. As under all 1024 plans, all seats are won by the
two largest parties, those outcomes are uniquely characterized by s1 (or s2).
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Fig. 3. The theoretical (red) and empirical (black) densities of vk
i for different values

of m. The empirical density is a kernel density estimate with the number of points and
the bandwidth given below each plot. (Color figure online)
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We list all of them, with corresponding π values, in the table below (the
outcomes arising under the four intentionally gerrymandered plans are identified
by the bold font):

s1 s2 No. of plans % of plans π

36 7 1 0.10% 7.8E − 06

31 12 1 0.10% 0.39%

26 17 1 0.10% 13.67%

25 18 3 0.29% 21.53%

24 19 43 4.20% 31.47%

23 20 226 22.07% 42.94%

22 21 433 42.29% 55.04%

21 22 262 25.59% 44.96%

20 23 48 4.69% 33.32%

19 24 4 0.39% 23.09%

13 30 1 0.10% 0.48%

6 37 1 0.10% 4.4E − 07

As can be seen from the above table, for all four intentionally gerrymandered
plans the value of π are small enough to identify them as suspect, while none of
the unbiased plans are so identified.
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