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Abstract. A cache server configuration describes an assignment of data
fragments to cache manager instances (CMIs). A load balancer may
change this assignment by migrating fragments from one CMI to another.
Similarly, an auto-scaling component may change the assignment by
either inserting or removing CMIs in response to load fluctuations. These
changes may generate stale cache entries. Rejig is a scalable online algo-
rithm that manages configuration changes while providing read-after-
write consistency. It is novel for several reasons. First, it allows for a
subset of its clients and CMIs to use different configurations. Second,
its client components propagate configuration changes to one another
on demand and by using CMIs. This enables Rejig to scale and support
diverse application classes including trusted mobile clients accessing the
caching layer. When clients have intermittent network connectivity, Rejig
detects if their cached configurations may result in stale data and updates
them to the latest with no performance impact on either the CMIs or
other clients. Rejig’s overhead is in the form of 4 extra bytes of memory
per cache entry and 4 extra bytes of the network bandwidth per request
from a client to a CMI.

1 Introduction

Caches such as memcached [32], Redis [35], Ignite [15], KOSAR [17], and oth-
ers improve the performance of traditional database management systems with
workloads that exhibit a high read to write ratio [6,7,40]. A caching layer may
consist of tens of servers for a small installation and thousands of servers with a
popular site such as Facebook [33].

A physical server with many cores may host several Cache Manager Instances,
CMIs. Each CMI is a process that might be multi-threaded. It is assigned a fixed
number of cores and some amount of memory. It is also assigned a fraction of
cache entries, a fragment. Multiple fragments are assigned to one CMI for load
balancing. A load balancer may consider factors such as imposed load and cache
hit rate to adjust the assignment of fragments to CMIs to enhance a performance
metric such as system throughput [1,38].

A configuration is an assignment of fragments to CMIs. A coordinator man-
ages configuration changes. A configuration changes due to: (1) addition or
removal of CMIs by an auto-scaling component (or a system administrator),
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(2) re-assignment of fragments to CMIs by a load-balancer, (3) re-assignment
of fragments to CMIs in the presence of network partitions, (4) re-partitioning
of data across fragments by a re-organization component in the form of either
increasing or decreasing the number of fragments, or (5) a combination of these.

Configuration changes must preserve the application’s read-after-write con-
sistency defined as a read of a cache entry observing the value produced by the
last committed write of the entry [31]. Configuration changes may compromise
read-after-write consistency for two reasons. First, during the window of time
when the coordinator publishes a new configuration, a few clients may have the
old configuration while others have the new configuration. This discrepancy may
cause two or more clients that reference the same cache entry to contact different
CMIs, observing different values. If they write this cache entry then they will
generate different values in different CMIs. The value observed by a subsequent
read depends on whether this read is issued using the old or the new config-
uration, potentially compromising read-after-write consistency and correctness
of an application. Second, a configuration change may re-assign a fragment to
a new destination CMI without physically deleting its cache entries from the
source CMI, leaving these entries to become cold at the source CMI and evicted
by its cache replacement technique. In the presence of updates and a subsequent
configuration change that assigns the fragment back to the source, the appli-
cation may observe stale cache entries. To elaborate, consider a system that
migrates Fk from CMIi to CMIj without deleting Fk’s cache entries stored at
CMIi. Should the application update Fk’s cache entries assigned to CMIj then
the value of their replicas on CMIi become stale. If a subsequent configuration
change assigns Fk back to CMIi, references to these cold cache entries observe
stale values. This violates read-after-write consistency.

An ideal solution to these two challenges should (1) be pauseless by pro-
cessing user requests in the presence of configuration changes, (2) provide read-
after-write consistency that guarantees data produced by a committed write
is observed by all subsequent reads, (3) be agnostic to the number of clients,
and (4) preserve as many valid keys as possible in the presence of configuration
changes. With the latter, with v fragments assigned to CMIi, if a configuration
change assigns one fragment to a different CMI then keys of the remaining v − 1
fragments of CMIi should remain valid.

The primary contribution of this paper is Rejig1 [16], a scalable online
algorithm that satisfies the above requirements. Rejig extends existing sys-
tems [21,33]. While it allows multiple clients to use different configurations, it
guarantees consensus on a fragment’s replica by requiring clients that reference
the fragment to use its latest CMI assignment always. Moreover, it allows cache
entries of an old replica of a re-assigned fragment to become cold and evicted by
the CMI’s replacement technique. With those entries that remain, Rejig detects
when the application references them and treats them as cache misses. Rejig
may be configured to delete these cache entries to free the CMI’s memory.

1 The definition of Rejig is to rearrange or organize differently.
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Fig. 1. A candidate architecture for Rejig. Concepts underlying Rejig are applicable
to those architectures that tightly integrate the cache with the application [17] or
represent the caching layer as a middleware [15,28,34].

Rejig is designed for clients and CMIs deployed in a data center. Rejig does
not require the coordinator to propogate a new configuration to all CMIs. It
employs clients to perform this task on demand, making it appropriate for other
deployments. For example, it may be used with trusted mobile clients2 that have
intermittent network connectivity to the caching layer. It also functions with
CMIs deployed across two or more geographically distributed data centers [3].
These deployments are possible because Rejig satisfies the following properties.
First, CMIs are passive entities that respond to requests. Second, clients do
not transmit a configuration to one another directly. They use CMIs and the
coordinator intelligently to obtain the latest configuration on demand, i.e., once
a Rejig client detects that its request was issued using an old configuration.
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Fig. 2. A configuration with two partitioning techniques.

2 Untrusted mobile clients may open possibilities for a Denial of Service (DoS) attack
or data corruption.
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The software architecture of Rejig hides its implementation details. Its trans-
parency frees software developers to focus on their application and its require-
ments (instead of configuration changes and how to manage impacted frag-
ments). Central to its design is a monotonically increasing global unique identifier
for each configuration published by the coordinator, GlobalCfgID. Each updated
and inserted cache entry is tagged with the current GlobalCfgID. Moreover,
each client must piggyback the GlobalCfgID of its cached configuration with the
request it issues to a CMI. Hence, Rejig imposes two types of overhead. First, it
requires 4 extra bytes of memory per cache entry to store GlobalCfgID. Second,
a client request consumes 4 extra bytes of the available network bandwidth per
request to transmit GlobalCfgID of its configuration.

The rest of this paper is organized as follows. Section 2 details Rejig’s design.
Section 3 presents an implementation of this design. We evaluate this implemen-
tation using microbenchmarks and traces from Azure [10] and WorldCup ’98 [4]
in Sect. 4. Section 5 contains related work. Brief conclusions are presented in
Sect. 6.

2 General Design of Rejig

Rejig’s software architecture consists of cache manager software, a coordinator
responsible for maintaining the configuration, and a client component used by
the application to issue requests. Figure 1 shows an example deployment of this
software architecture. A cache server hosts one or more Rejig cache manager
instances, CMIs. Each CMI is identified using the combination of its IP and
port number, see Fig. 2. The coordinator represents a configuration as F frag-
ments assigned to different CMIs. We detail a space efficient implementation of
a configuration in Appendix B.

Rejig supports hash and range partitioning techniques to shard the applica-
tion’s data across CMIs. With the former, a hash function is used to identify the
fragment containing a referenced key K. With the latter, the configuration main-
tains the range of values assigned to each fragment. It performs a binary search
to identify the fragment containing K. Rejig also supports a hybrid partition-
ing technique [1] that applies a hash function to map K to an order preserving
space that is range partitioned across CMIs. We describe how Rejig’s coordina-
tor increases the number of fragments F with the hash partitioning strategy in
Appendix B.1.

Rejig’s coordinator uses a monotonically increasing integer, GlobalCfgID, to
identify a configuration. Rejig’s client and server components maintain their
latest value of GlobalCfgID. Rejig’s client component caches a local copy of the
latest configuration for efficient processing of requests. When the coordinator
computes a new configuration, it increments GlobalCfgID. For each impacted
fragment, the coordinator informs either a subset or all impacted CMIs of the
new GlobalCfgID and inserts the corresponding configuration in these CMIs. As
an example of updating a subset of the impacted CMIs, consider a scenario that
migrates a fragment from a source CMI to a destination CMI. It is sufficient
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Table 1. Terms and their Definitions.

Term Definition

F Number of fragments

CMIi Cache manager instance i

Configuration Mapping of F fragments to CMIs

Fk Fragment k

GlobalCfgID Coordinator maintained monotonically increasing value
that identifies a configuration

FragCfgIDk GlobalCfgID value of the configuration that either created
or changed the assignment of fragment Fk

Vcid Configuration id associated with a cache entry when it is
either inserted or updated in a CMI

α Number of CMIs a client inserts GlobalCfgID and
configuration into once it obtains the latest configuration

for Rejig to update the source CMI with the new GlobalCfgID and insert the
latest configuration in this CMI only. As an example of updating all impacted
CMIs, when a CMI is removed, its fragments are assigned to different CMIs.
The coordinator updates the GlobalCfgID of these CMIs and inserts the new
configuration in all (Table 1).

Rejig’s clients and CMIs use a distributed collaborative algorithm to update
their GlobalCfgID value and cached configuration. Section 2.1 details this algo-
rithm.

Rejig’s coordinator implements a re-organization algorithm that changes the
assignment of fragments to CMIs in response to an evolving workload. The effi-
ciency of a configuration change and how it re-organizes fragments’ assignment
is the responsibility of this algorithm (and not Rejig). At any given time, there
is one active coordinator. However, there may be multiple standby coordinators,
each of which is prepared to take over if the active coordinator crashes. The active
coordinator stores the latest configuration and its GlobalCfgID on an external
storage system that is highly available (such as ZooKeeper [26]). The standby
coordinators use the external storage system to detect failure of the active coor-
dinator, select a new active coordinator, and recover the configuration and its
GlobalCfgID.

With each configuration change, the coordinator maintains the value of Glob-
alCfgID for each fragment Fk impacted by that change, FragCfgIDk. A frag-
ment’s FragCfgIDk is initialized to the GlobalCfgID value that created it. A
fragment is impacted by one configuration change. However, a configuration
change may impact several different fragments. For example, removal of a cache
server in Fig. 2 impacts multiple CMIs and their assigned fragments. Thus, at
any instance in time, different fragments may have different FragCfgIDk values,
identifying the GlobalCfgID value that changed their assignment to a CMI.
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Table 2. Rejig and its variants.

Rejig A client always inserts its newly obtained configuration in
the next α unique CMIs

RejigC A client inserts its newly obtained configuration in the
next α unique CMIs only if it fetches the latest
configuration from the coordinator

RejigT Similar to Rejig with the following termination condition.
A client stops inserting its obtained configuration in CMIs
once a CMI reports it has the latest configuration

Example 2.1. In Fig. 2(b), Fj ’s FragCfgID is 765. Assume the current Global-
CfgID value is also 765, GlobalCfgID = 765. If the coordinator assigns a different
fragment, say F0, to a different CMI then it increments GlobalCfgID by one,
GlobalCfgID = 766. It produces a new configuration with F0’s FragCfgID set to
766 along with IP and port number of its newly assigned CMI. Other fragments’
FragCfgID including Fj ’s FragCfgID remain unchanged.�

2.1 Processing Get Requests

Algorithms 1 and 2 provide Rejig’s protocol to process the get command by
a client and a CMI, respectively. Appendix A provides a formal proof of this
protocol. A client piggybacks its value of GlobalCfgID with every request it issues
to a CMIi, see line 3 of Algorithm 1. A cache manager instance, CMIi, compares
its latest known GlobalCfgID to the one provided by the client. There are three
possibilities, see lines 1 to 8 of Algorithm 2. Either the two are equal, CMIi’s
GlobalCfgID is greater than the client’s GlobalCfgID, or the CMI’s GlobalCfgID
is less than client’s GlobalCfgID. Consider each in turn.

CMIi’s GlobalCfgID Equals Client Provided GlobalCfgID: If CMIi has
the value associated with the referenced key then it returns this value including
its configuration id, Vcid. Vcid identifies the configuration in which this cache
entry was either inserted or updated in CMIi (line 10 in Algorithm 2). The client
compares Vcid with its assigned fragment’s FragCfgIDk. If Vcid is greater than
or equal then the value is valid and the client provides it to the application.
Otherwise, the value was created in an older configuration that mapped this
fragment to the same CMI and the value may be stale. Hence, the client discards
the value and reports a cache miss. One may configure Rejig clients to delete
this cache entry, freeing the available cache space of the CMI, see lines 19 to 24
in Algorithm 1.

This algorithm may incorrectly identify a value as stale if it was not updated
while its fragment Fk was assigned to some other CMIs. The likelihood of this
false negative is a function of the popularity of the cache entry, the mix of reads
and writes in the workload, and how long Fk was mapped to a different CMI
before being re-assigned. We quantify this in Sect. 4.2.
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Algorithm 1: Client: get
get(key)
Input : key: byte array
Result : cached value or null
Let ConfigKey = the key that identifies the cache entry of a configuration.
Let LatestConfig = Client’s latest copy of the configuration.
Let ClientGCfgID = Client’s current GlobalCfgID value.

1 fragment = getFragment(LatestConfig, key);
2 cache = fragment.CMI; // get the assigned CMI

3 result = cache.get(ClientGCfgID, key);
4 if result.code == RefreshAndRetry then
5 newConfig = cache.get(ConfigKey);
6 if newConfig.value �= null then
7 LatestConfig = newConfig;
8 ClientGCfgID = newConfig.GlobalCfgID;

9 else
/* the configuration cache entry may be evicted */

10 newConfig = coordinator.getLatestConfig();
11 LatestConfig = newConfig;
12 ClientGCfgID = newConfig.GlobalCfgID;

13 end
14 return get(key);

15 else
16 if cache is one of the next α unique CMIs then
17 cache.set(ClientGCfgID, ConfigKey, LatestConfig);
18 end
19 if result.code == hit then
20 if fragment.FragCfgIDk ≤ result.Vcid then
21 return result.value;
22 else
23 cache.delete(ClientGCfgID, key) ; // asynchronously

24 return null;

25 end

26 else
27 if result.code == miss then
28 return null;
29 end

30 end

31 end

CMIi’s GlobalCfgID is Greater than the Client’s GlobalCfgID: This
condition is satisfied when the client’s cached configuration is old and CMIi is
provided with a more recent configuration. CMIi returns a “Refresh & Retry”
response to the client, see line 2 in Algorithm 2. In response, the client fetches the
latest configuration from CMIi and retries its request. If CMIi evicted3 the latest
3 CMIi may pin the latest configuration to prevent its eviction.
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configuration (i.e., reports a cache miss), the client contacts the coordinator for
the latest configuration. Subsequently, it retries its request, see lines 4 to 14
in Algorithm 1. It is possible to reduce the number of roundtrips by requiring
a CMIi to piggyback the new configuration (assuming CMIi has it) with its
“Refresh & Retry” response.

Rejig clients disseminate the latest configuration to one another using the
CMIs. A client that fetches a configuration inserts it into the next α unique
CMIs that it contacts to process a request, piggybacking its GlobalCfgID value
along with each insert, see line 17 in Algorithm 1. A CMI ignores this insertion
when its GlobalCfgID is greater, i.e., the configuration changed and this CMI
has a more recent configuration.

There are other variations of this dissemination technique [12]. We consider
two variants named RejigC and RejigT , see Table 2. With RejigC , a client inserts
its known configuration into the next α unique CMIs only if it fetches the latest
configuration from the coordinator. With RejigT , a client stops inserting once
a CMI reports that it has the latest configuration. We quantify the tradeoffs
associated with Rejig, RejigC , and RejigT in Sect. 4.1.

CMIi’s GlobalCfgID is Less than the Client’s GlobalCfgID: CMIi deletes
its known configuration and sets its GlobalCfgID with the one provided by the
client, see lines 5 to 6 in Algorithm 2. The client may insert its known configu-
ration in CMIi, see line 17 of Algorithm 1.

Algorithm 2: CMI: get
get(ClientGCfgID, key)
Input : ClientGCfgID: integer, key: byte array
Result : response code, the cached value and the cache entry’s configuration id if

found.
// ClientGCfgID is the client’s GlobalCfgID value

Let ConfigKey = the key of the latest known configuration.
Let CMIGCfgID = CMI’s current GlobalCfgID value.

1 if CMIGCfgID > ClientGCfgID then
2 return RefreshAndRetry;

3 else
4 if CMIGCfgID < ClientGCfgID then
5 CMIGCfgID = ClientGCfgID;
6 delete(ConfigKey);

7 end

8 end
9 if key is cached then

10 return cache hit, the cached value and its associated configuration id;
11 end
12 return cache miss;
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When multiple threads of a client receive “Refresh & Retry”, only one thread
obtains the latest configuration from CMIi while other threads wait. Once this
thread obtains the configuration, all threads use it to retry their requests.
Threads referencing CMIs other than CMIi are not blocked.

In sum, Rejig employs clients (instead of the coordinator) to propagate a
new configuration to other CMIs on demand. This prevents the coordinator
from becoming a bottleneck, realizing a scalable Rejig protocol.

Example 2.2. Consider the range partitioned configuration of Fig. 2(b). Cache
entry Ki is assigned to Fragment Fj . Fj is assigned to CMI 1.0. Assuming Glob-
alCfgID = 765, a write of Ki sets its Vcid to 765. Assume a configuration change
that assigns Fj to the CMI hosting F0, CMI 0.5. This results in the following
changes: GlobalCfgID is set to 766, Fj ’s FragCfgID is set to 766, Fj ’s CMI IP
and port number are set to those of CMI 0.5. Another write of Ki is directed to
CMI 0.5, creating this cache entry and setting its Vcid to 766. Now, the copy of
Ki on CMI 1.0 is stale. Should another configuration change assign Fj back to
CMI 1.0, the GlobalCfgID is incremented by one, GlobalCfgID = 767. Moreover,
Fj ’s FragCfgID is also set to 767 and its IP and port number is set to CMI 1.0.
A reference for Ki may observe the stale version. This version’s FragCfgID (765)
is lower than Fj ’s FragCfgID 767. Hence, Rejig discards this version and reports
a cache miss. �

2.2 Read-After-Write Consistency

Intuitively, Rejig provides read-after-write consistency for several reasons. First,
a CMI impacted by a configuration change does not process a request by a client
that does not have a GlobalCfgID pertaining to either this configuration change
or a more recent one. Second, a client must update its configuration when a
CMI provides a “Refresh & Retry” response to the client request, increasing the
response time of this request. This increase is dictated by the amount of time
required for the CMI to transmit the new configuration to the client. Third, a
CMI always updates its GlobalCfgID to the latest GlobalCfgID provided by a
client or the coordinator. Fourth, a cache entry that observes a hit is valid only
if its configuration id4 Vcid is more recent than the configuration that changed
its fragment’s assignment. The latter ensures replicated cache entries from a
previous configuration (that have not yet been evicted and are potentially stale)
are discarded. See Appendix A for a formal proof.

2.3 CMI Discarding Stale Cache Entries

Thus far, a Rejig client discards cache entries identified as potentially stale. A
CMI may report a miss instead of transmitting a potentially stale cache entry
to a client. To realize this, Rejig’s client component is extended to provide both
FragCfgIDk and GlobalCfgID with every read. After a CMI verifies that a client

4 The configuration that inserted or updated this entry.
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provided GlobalCfgID is the latest, it must verify the Vcid of the referenced
cache entry is greater than or equal to the FragCfgIDk. If this is the case then
it provides the cache entry to the client. Otherwise, it reports a cache miss
and deletes this entry. This requires extra processing by a CMI and incurs the
overhead of transmitting FragCfgIDk with every read request. However, if con-
figuration changes are the norm and discarded cache entries are large in size
then this approach may save network bandwidth.

2.4 Leases

Rejig assumes an architecture that uses leases to ensure consistency of data in the
presence of server failures and network partitions. These leases are managed by
the coordinator of Fig. 1. A lease is similar to a lock but with a fixed lifetime [25].
A CMI may process requests referencing Fragment Fk as long as the coordinator
grants it a valid lease on Fk. The CMI may contact the coordinator to renew
its lease on Fk prior to its expiration. Once a lease on Fk expires, the CMI
stops servicing requests referencing Fk. The coordinator then assigns Fk to other
available CMIs.

Similarly, before the coordinator changes the assignment of Fk from CMIi to
CMIj , it (1) revokes Fk’s lease from CMIi to stop it from processing requests,
and (2) grants a lease on Fk to CMIj to enable it to process requests referencing
Fk. Subsequently, it changes the configuration and uses Rejig to propagate the
new configuration to the clients.

Leases and Rejig serve different purposes and complement one another. Both
are required to implement read-after-write consistency in the presence of network
partitions and configuration changes. While leases ensure data availability in the
presence of network partitions, Rejig disseminates a new configuration efficiently.
In particular, Rejig enables a CMI to use its eviction policy to delete cache entries
of those fragments that are no longer assigned to it (lazily as the space occupied
by these entries is required).

The coordinator does not publish a new configuration that impacts the
assignment of a fragment from/to a CMI that is unreachable. It waits for the
lease to expire (or the network connection to be restored to issue a revoke/grant
lease) prior to publishing a new configuration.

When a client references a CMI for a cache entry assigned to a fragment with
an expired lease, the CMI may respond with a “Refresh & Retry” response. This
causes the client to look up the CMI for the latest configuration. If the CMI
reports a miss, the client contacts the coordinator for the latest configuration.
If no CMI is assigned to this fragment then the coordinator selects the least
loaded CMI, assigns the lease on the fragment to it, increments its GlobalCfgID
and computes a new configuration, updates the GlobalCfgID of the CMI, inserts
the latest configuration in the CMI, and provides the client with the latest
configuration.
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2.5 Replication for High Availability

A system may construct R replicas of a fragment to enhance data availability
in the presence of CMI failure(s). Below, we describe two popular approaches
to maintain these replicas consistent. For each, we describe how a failure is
represented as a configuration change and supported by Rejig.

The first approach requires (1) a read action to obtain r Shared (S) leases
prior to reading the value of a replica and (2) a write action to obtain ω eXclusive
(X) leases prior to writing all replicas [11]. While S leases are compatible, X leases
conflict with one another and S leases. Conflicts cause the leases to race with the
loser backing off and retrying. For read-after-write consistency, r + ω must be
greater than R. With this approach, failure of a CMI is a configuration change
that removes one replica of a fragment, decrementing R by one.

The second approach designates one copy of a fragment as primary and the
other R − 1 as secondaries [22,39]. All reads and writes are processed by the
primary fragment. The primary is responsible for propagating updates to the
secondaries in the same order it receives them. If the primary fails, the coordi-
nator promotes one of its secondaries to become the primary. With this design,
a configuration change reflects promotion of a secondary to the primary and
demotion of the primary to be a secondary. The coordinator increments Global-
CfgID. The value of FragCfgIDk for the promoted secondary is left unchanged.
If this new primary buffers changes for the demoted primary, then the value of
FragCfgIDk for the demoted primary is also left unchanged. Should the coordi-
nator decide to discard the fragment of the demoted primary, then it simply sets
its FragCfgIDk to the latest value of GlobalCfgID.

Coordinator inserts the new configuration into R−1 secondaries and updates
their GlobalCfgID. A client that fails to issue a request to the failed primary
CMI may contact one of the secondary CMIs for the latest configuration. If it
observes a miss then the client contacts the coordinator for the latest configu-
ration piggybacking the identity of the unavailable CMI. Hence, clients discover
failed CMIs and report them to the coordinator.

2.6 Overhead

Rejig’s overhead is in the form of storage space and network bandwidth. Storage
overhead include (1) a 4-byte configuration id associated with a cache entry, (2)
a configuration cache entry in a CMI. Network overhead include transmission
of (1) a 4-byte client configuration id attached to each request, (2) at most
two round-trips per client to get the latest configuration (clients first retrieve
the configuration from a CMI and, if not found, fetch the configuration from
the coordinator), (3) α roundtrips per client to insert a new configuration into
CMIs.

We quantify Rejig’s overhead based on the statistical models of Facebook’s
production key size and value size [5,19]. Facebook’s mean key size is 35 bytes
and the mean value size is 329 bytes, resulting in the average entry size of 364
bytes. Hence, the average storage overhead of the configuration id associated
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with a cache entry is 1% (4/364). With a configuration consisting of F = 5000
fragments and 12-byte metadata of each fragment, the configuration size is 60,000
bytes. This is equivalent to 165 (60,000/364) of Facebook’s cache entries. Rejig’s
network overhead is 11.5% (4/35) for get and delete requests, and 1% (4/364)
for SET requests with Facebook’s cache entries.

3 Implementation

We implemented a prototype of Rejig using memcached’s Whalin client [41]. Its
client library is implemented with around 500 lines of Java code. Client interfaces
to communicate with a CMI is unchanged.

We implemented Rejig’s coordinator using Google RPC [24] with 800 lines
of Java code. The coordinator increases or decreases the number of CMIs based
on the system load and adjusts the assignment from fragments to CMIs with
the goal to ensure each CMI receives a similar number of fragments.

We extended IQ-Twemcached [21] (the Twitter extended version of mem-
cached with Inhibit and Quarantine leases) to store GlobalCfgID and associate
each cache entry with a configuration id. We extended standard APIs, e.g., get,
set, and delete, to accept an optional configuration id. We also added a new API
in IQ-Twemcached to allow the coordinator to update a CMI’s configuration id.
The extension to the IQ-Twemcached only requires 40 lines of C code.

4 Evaluation

We answer the following questions in this section: (1) How fast can Rejig dissem-
inate a new configuration? (2) How much stale data does Rejig prevent? (3) Does
Rejig impact cache hit rate in the presence of graceful and drastic configuration
changes?

Factors that impact Rejig’s dissemination rate are the number of clients and
CMIs. CMIs are passive providers of a new configuration. Once all CMIs receive
a new configuration, all clients receive the new configuration as soon as they issue
a request to a CMI. The load imposed on the coordinator and the number of
configuration insertions to CMIs are an interplay of α, Rejig and its variants, and
the duration of time a CMI caches a configuration. In the worst case scenario,
the size of a configuration cache entry is larger than the available memory of
each CMI, causing the load imposed on the coordinator to equal the number of
clients. In the best case scenario, each CMI has sufficient memory to cache the
configuration and never evicts it. In this case, a larger α expedites dissemination
of the configuration to all CMIs, reducing the number of clients that fetch the
configuration from the coordinator. RejigC bounds the number of configuration
fetches from the coordinator to be the number of CMIs. This is because a client
must discover a new configuration from a CMI and fetches the configuration
from the coordinator before the client propagates the new configuration to other
CMIs. RejigT bounds the number of repeated configuration insertions in CMIs to
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the number of clients since a client terminates the insertion once it encounters a
CMI with a copy of the configuration. Section 4.1 quantifies Rejig’s dissemination
rate.

We use Azure virtual machine event traces [10] and WorldCup ’98 request
traces [4] to demonstrate the number of stale data Rejig prevents and its impact
on the cache hit rate. Azure trace exhibits graceful configuration changes while
WorldCup ’98 trace exhibits drastic configuration changes with a diurnal pattern.

Lastly, we use YCSB [8] benchmark to evaluate the performance impact of
Rejig, namely, tagging a request with the client’s configuration id and returning
a cache entry’s configuration id along with its value upon a cache hit. Our
evaluation shows that Rejig’s network overhead is insignificant. The average
read latency increases by less than 2% with Rejig when compared to without it.

Rejig can also be extended to support diverse migration techniques [27,33,36,
42]. In its current format, once the coordinator assigns a fragment to a different
CMI, the new CMI starts with an empty replica of the fragment. If migration is
enabled, a cache miss on the new CMI migrates the cache entry from the original
CMI.

Main lessons are as follows:

– Rejig disseminates a new configuration to all clients and CMIs efficiently and
quickly.

– Collaborative dissemination reduces the number of clients that contact the
coordinator for the latest configuration significantly.

– Rejig preserves read-after-write consistency in the presence of configuration
changes by detecting and discarding all consistency violations.

– In all experiments, the cache hit rate remains high even though a configuration
change does not migrate cache entries. With the trace driven analysis, the
cache hit rate is always higher than 99%.

– With α ≥ 1, if the objective is to minimize the number of configuration
fetches from the coordinator then Rejig is superior to the alternatives shown
in Table 2. On the other hand, if the objective is to minimize the number of
repeated configuration insertions into CMIs then RejigC is a superior tech-
nique. RejigC is superior to RejigT .

Below, we describe experiments in turn.

4.1 Scalable Configuration Dissemination

We design a microbenchmark to evaluate Rejig’s configuration dissemination. It
consists of 100 CMIs, a fixed number of clients, and one coordinator. There are
5000 fragments, F = 5000. We use Facebook’s published cache entry size of 364
bytes [5]. The size of a configuration is 60,000 bytes, F×12; twelve bytes assuming
8 bytes for CMI address + 4 bytes for FragCfgID. For experiments of Sects. 4.1
and 4.1, we assume the total available memory is greater than the database size
and there are no evictions. We consider limited memory in Sect. 4.1.

An experiment performs a sequence of iterations. In each iteration, each
client issues a read for a randomly selected key Ki assigned to CMIi,
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i = Config[h(Ki)].CMI. The experiment starts with the coordinator publishing
a new configuration that assigns a fragment from a source CMI to a destina-
tion CMI. The coordinator inserts the new configuration into the source CMI.
The experiment terminates when all clients and CMIs have the latest Global-
CfgID and configuration. We report the number of iterations required for Rejig
to disseminate a configuration change.

Configuration Dissemination Rate. The number of clients impacts how
fast Rejig disseminates a configuration change. As we increase the number of
clients from 100 to 1,000 and 10,000, Rejig requires 12± 1.7, 5 ± 0.5, 4 ± 0
(mean ± standard deviation) iterations, respectively. This is also an upper bound
on the number of client configuration insertions into a CMI. For a CMI to receive
the latest GlobalCfgID, a client with the latest GlobalCfgID must issue a request
to it. With a larger number of clients, a larger number of requests are issued to
CMIs in each iteration. This increases the likelihood of clients referencing all
CMIs in an iteration, causing the experiment to terminate with fewer iterations.
The reported number of iterations is orthogonal to the value of α because a CMI
always updates its configuration id if the client provided one is more recent.

The number of configuration fetches from the coordinator depends on the
value of α. With α = 0, it is approximately the same as the number of clients:
93 ± 2.2, 962 ± 5.4, 9745 ± 16.3 with 100, 1000, and 10,000 clients, respectively.
The explanation for this is as follows. Once the coordinator publishes the new
configuration in one CMI, say CMIi, it also notifies this CMI of the new Glob-
alCfgID. A client that references CMIi and obtains the latest GlobalCfgID will
subsequently reference another CMIj and cause its GlobalCfgID to reflect the
latest without providing it with the latest configuration. Those clients that refer-
ence this CMIj observe a cache miss for the configuration and fetch the configu-
ration from the coordinator. The number of configuration fetches is slightly less
than the number of clients because those that observe a hit for the configuration
using CMIi do not contact the coordinator.

Next section discusses α ≥ 1.

Collaborative Dissemination, α ≥ 1. In a second experiment, we evaluate
the impact of requiring a client to insert a new configuration in its next unique
α ≥ 1 referenced CMIs. This is the standard Rejig. We consider its variants
RejigC and RejigT , see Table 2. Results of this section show RejigC is superior
to RejigT .

Figure 3 shows the number of configuration fetches with these variants as a
function of α. With Rejig, the number of configuration fetches from the coor-
dinator drops 100 folds with α = 1 and 10,000 clients when compared with
α = 0, see Fig. 3(c). When a client inserts its configuration in the next α = 1
unique CMI it visits, other clients that reference CMIj and observe a “Refresh &
Retry” reply will now observe a cache hit for the configuration. Hence, they will
not fetch the configuration from the coordinator. The number of configuration
fetches from the coordinator continues to drop as we increase the value of α.
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Fig. 3. The impact of α on the number of configuration fetches from the coordinator.
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Fig. 4. The impact of α on the number of repeated configuration insertions in CMIs.

With Rejig and α ≥ 4, there are almost no client fetches from the coordinator.
Clients and CMIs facilitate propagation of the configuration among themselves
without further involvement of the coordinator.

With RejigC , the number of configuration fetches from the coordinator is
higher than 10 as we increase α beyond 4. RejigC requires a client to insert a
configuration only if it fetches the configuration from the coordinator. Hence, it
is less aggressive in spreading the latest configuration when compared with Rejig.
This increases the likelihood of a client observing a miss for a configuration in a
CMI. Hence, the number of configuration fetches from the coordinator is higher.

A larger α causes two or more clients to insert the same configuration into
the same CMI repeatedly. Figure 4 shows the total number of repeated insertions
with different variants. RejigC performs the fewest repeated insertions because
it is the least aggressive. The standard Rejig performs the most because every
client that obtains the latest configuration (either from the coordinator or a
CMI) will insert into the next α unique CMIs. RejigT is moderately aggressive
by requiring a client to terminate configuration insertion once a CMI reports
that it has the configuration.

These results show RejigC is superior to RejigT for two reasons. First, it per-
forms significantly fewer configuration insertions than RejigT , see Fig. 4. Second,
its overall number of configuration fetches from the coordinator is comparable,
see Fig. 3.
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Worst Case Scenario. Consider a worst case scenario where the size of a
configuration equals the amount of memory assigned to each CMI. (This is highly
unlikely because the size of a configuration is in the order of hundreds of kilobytes
with thousands of nodes and memory sizes are typically much larger.) Thus,
the coordinator’s insertion of a configuration evicts all cached entries of that
CMI. Similarly, a client that inserts a cache entry upon a cache miss will evict
the configuration cache entry. With α = 0, almost all clients (9998) fetch the
configuration from the coordinator. The coordinator populates at least one CMI
and this copy is fetched by 1 or 2 clients. As we increase α, the number of
configuration fetches drops dramatically; 9998± 0.15, 2197 ± 133.93, 110 ± 10.39
and 24 ± 5.26 for α values of 0, 1, 2 and 3, respectively. This is because a client’s
insertion of the configuration in a CMI may observe a reference by another client
prior to an entry’s insertion that evicts the configuration. The likelihood of this
hit increases with a larger values of α, reducing the number of configuration
fetches from the coordinator.

4.2 Trace Driven Evaluation

We use two traces to evaluate Rejig: Azure virtual machines (VM) trace [10] and
92 days of WorldCup 1998 request trace [4]. The first trace provides a dynamic
addition and removal of VMs. We augment it with a database and use its trace
to emulate addition and removal of CMIs from a configuration. WorldCup 1998
provides request traces (HTTP GET/POST on a page) with approximately 1.3
billion requests. It exhibits drastic workload fluctuations. We augment it with
an auto-scaling framework that adjusts addition (Addi) and removal (Removei)
of CMIs based on the imposed load.

With both traces, when Addi new CMIs are inserted in a configuration, the
coordinator assigns fragments of existing CMIs to the new CMIs until the number
of fragments per CMI is approximately the same. No data is migrated. Similarly,
when Removei CMIs are removed, the coordinator assigns the orphaned frag-
ments to other CMIs until the same number of fragments are assigned to each
CMI. Once again, no data is migrated.

In all experiments, the values stored in a CMI are known and the workload
generator can verify the correctness of the fetched values. We establish the fol-
lowing metrics: (1) the cache hit rate, (2) the number of discarded keys, and (3)
the percentage of discarded keys. The percentage of discarded keys highlights the
percentage of read requests that may observe stale entries. If a client produces a
discarded key as an output, then the read request may violate read-after-write
consistency. The number of invalid discarded entries highlights how many read
requests violate read-after-write consistency with a system that does not use
our techniques. Rejig eliminates these stale entries. We describe each trace and
obtained results in turn.
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Fig. 5. Azure trace.

Azure VM Trace. Azure virtual machines (VM) trace [10] provides a represen-
tative subset of the first-party Azure VM workload in one geographical region.
It monitors VMs in a consecutive 30-day period and contains a total of 2 million
VMs. It provides the exact lifetime of each virtual machine with approximately
145,000 VMs running at a time. This trace has no data set. Hence, we generate
a database with 10 million key-value records partitioned into 100,000 fragments
for our evaluation using this trace. Before a configuration change, we randomly
select 20% of entries and update their values. Since a configuration change does
not migrate data, copies of these entries in the impacted CMIs are now stale.

Figure 5(a) shows the number of configuration changes we extracted from
the Azure trace. It shows both the number of added CMIs, removed CMIs, and
total CMIs per configuration change. Figure 5(b) shows both the observed cache
hit rate and the percentage of keys discarded by Rejig with each configuration.
The cache hit rate remains higher than 99% even though a configuration change
may add 1800 CMIs. The variation in cache hit rate is higher with a larger
number of CMIs either added or removed from a configuration. This is expected
because a higher number of fragments are assigned to different CMIs that results
in more cache misses. Note the percentage of discarded keys is low (less than
0.003%) in this experiment. Among all discarded keys, 99% are stale. These are
read-after-write inconsistencies prevented by Rejig.

WorldCup 1998 Trace. WorldCup 1998 [4] exhibits a diurnal pattern and
drastic workload fluctuations. It contains 92 days of request traces at the gran-
ularity of seconds. A large percentage (99.98%) of its approximately 1.3 billion
requests are reads. Peak system load observes 10 million requests per hour. The
traces reference 89,997 unique keys. We start the simulation from Day 5 (The
first four days have no data).

We use the following auto-scaling framework with this trace. We assume the
peak processing capacity of a CMI is C = 1000 requests per second. We define
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Fig. 6. WorldCup 1998 trace.

the imposed system load as the number of requests at a given time, Loadi. The
number of required CMIs is a function of these two parameters, the number of
CMIs to be added Addi = max(Loadi

C − Si−1, 0) and the number of CMIs to be
removed Removei = max(Si−1 − Loadi

C , 0). These ensure the caching layer has
sufficient number of CMIs to handle Loadi at a given hour i. This auto-scaling
is performed every hour of the trace for its entire 92 days.

Figure 6(a) reports the total number of added and removed CMIs per hour.
As expected, more CMIs are added during the daytime. They are removed during
the nighttime. The resulting drastic configuration change causes the cache hit
rate to fluctuate as we do not migrate data, see Fig. 6(b). However, the percent-
age of discarded keys remains low. The 0% cache hit rate on Day 60 is because
there is no data for a few hours on that day. The number of read-after-write con-
sistency anomalies avoided by Rejig is still significant even though the update
ratio is only 0.02%, see Fig. 6(c).

5 Related Work

Existing work [20,21,33] on cache augmented database systems focus on elimi-
nating or minimizing inconsistency between the caching layer and the data store.
IQ-framework [21] uses leases to ensure a cache entry’s replica in the caching
layer is consistent with its replicas in the data store. Gumball [20] minimizes
inconsistency by rejecting reads and writes referencing a cache entry for a cer-
tain duration after the entry is deleted. Facebook [33] sets this duration to two
seconds. Rejig complements these systems by preserving consistency in the pres-
ence of configuration changes.

The CAP theorem [23] states that a distributed data store must choose two
out of the three properties: consistency, availability, and partition tolerance.
Rejig does not address these properties directly. Rejig is a scalable online algo-
rithm for cache server configuration changes. Rejig assumes an architecture that
uses heartbeat messages to detect network partitions and leases to re-claim frag-
ments assigned to unreachable nodes. While it strives to preserve consistency,
one may use Rejig with an architecture that uses eventual consistency.
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Two-phase commit [37] based systems (e.g., Sinfonia [2]) and Paxos [29] based
systems (e.g., Spanner [9]) ensure consistency between multiple replicas. Rejig
does not ensure consistency across all replicas. Instead, it detects and discards
stale cache entries caused by configuration changes.

Rejig’s configuration dissemination protocol is inspired by Demers et al.’s
work [12] on epidemic algorithms where all sites of a data store actively partici-
pate in propagating an update made by one site. Rejig propagates a configuration
made by the coordinator using both clients and CMIs. Its CMIs are passive enti-
ties that respond to client requests. Its clients actively propagate configuration
to other clients using CMIs. Rejig’s dissemination protocol is also applicable to
a data store.

Rejig’s configuration management is inspired by previous work, e.g., Google
File System [22], Hyperdex [13], and Slicer [1]. Rejig is unique because it is
designed for a caching solution and not a data store. With Rejig, there is a
permanent copy of data elsewhere and loss of cached data does not result in
data loss. Another novel feature of Rejig is that it is intended for frameworks
that allow for stale cache entries to exist. Rejig detects these entries by storing a
configuration id with each cache entry and its fragment, see Sect. 2. This concept
is missing from prior work. Below, we provide an overview of each related system
and how Rejig is different.

Google File System (GFS) [22] is a distributed file system. A GFS file contains
a list of chunks. Each chunk is associated with a chunk version number. The
master maintains the latest chunk version number for each chunk. Once a chunk
server recovers from a failure, the master detects a stale chunk if its version
number is less than the master’s chunk version number. Rejig stores configuration
id with each cache entry and fragment to detect stale cache entries.

Hyperdex [13] is a novel distributed key-value store that supports index struc-
tures on more than one attribute. Similar to Rejig, it employs a coordinator
that manages its configuration with a strictly increasing configuration id. Upon
a configuration change, the coordinator increments the configuration id and dis-
tributes the latest configuration to all servers. Both Hyperdex servers and its
clients cache the configuration id. A client embeds its local configuration id on
every request to a server and discovers its cached configuration is stale if the id
does not match the server’s configuration id. Hyperdex is a data store and pre-
vents stale values for data items. Rejig is for a caching environment where stale
entries may exist. It assigns a configuration id to every cache entry and uses this
information to detect stale entries and discard them to provide read-after-write
consistency.

Slicer [1] is Google’s general purpose sharding service that is transparent to its
applications. It maintains assignments using generation numbers (equivalent to
Rejig’s GlobalCfgID). Slicer employs leases to ensure that a key is assigned to one
slicelet (equivalent to Rejig’s CMI) at a time. Applications are unavailable for at
most 4 s during an assignment change due to updating leases to reflect the latest
generation number (and assignment) to slicelets. Also, Slicer must provision
resources for a large number of distributors to disseminate a new assignment to
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clients and slicelets. Rejig is designed for caches and is different in several ways.
First, while its CMIs may cache a copy of configuration (Slicer’s assignment),
they do not use it to decide whether to process a client request or not. CMIs
use GlobalCfgID (Slicer’s generation number) for this purpose. Moreover, Rejig
requires its coordinator to update impacted CMIs only and employs both clients
and CMIs to participate in distributing a new configuration. Finally, Slicer does
not either prevent or detect stale data. Rejig is novel because it detects stale
cache entries by storing the configuration id with each entry and fragment.

6 Conclusion

Rejig is a scalable online algorithm for cache server configuration changes that
preserves read-after-write consistency. It does not require deletion of cached
entries impacted by a configuration change, leaving them to be evicted by the
cache replacement technique. It serves as the building block for a fragment re-
organization algorithm to balance system load, an auto-scaling framework that
grows and shrinks the size of a caching layer, a data availability technique that
re-assigns fragments in response to network partitions, and a persistent caching
layer [18] that must recover cached entries after a failure.
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Appendix

A Proof for Read-After-Write Consistency

This section presents a formal proof for read-after-write consistency with Rejig.

Theorem 1. Rejig preserves read-after-write consistency for a cache entry rep-
resented as (K, V) mapped to a fragment Fi across N configurations Configi, i ∈
[1, N ].

The coordinator creates Fi at Config1. At a configuration Configp, p ∈ [1, N ],
the fragment Fi is assigned to a cache instance CMIi,p. At configuration Config1,
the coordinator’s global configuration id is one and Fi’s configuration id is also
one. Initially, (K, V) does not exist in CMIi,1.

Lemma 1. Rejig preserves read-after-write consistency for a cache entry (K,
V) if Fi’s assigned CMI remains the same from Config1 to Configj , j ∈ [1, N),
i.e., ∀p, p ∈ [1, j],CMIi,p = CMIi,1.

Proof. Since Fi remains on CMIi,1, its fragment id remains one for all configura-
tion changes from 1 to j. Every entry (K, V) is tagged with the configuration id
Vcid that sets its value. When a write inserts or updates K (belonging to CMIi,1)
at a configuration 1 to j, its Vcid is set to the configuration id of CMIi,1. A read
is able to consume (K, V) because its Vcid is greater than or equal to 1, the
configuration id of Fi. �
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Corollary 1. Rejig preserves read-after-write consistency for a cache entry (K,
V) in CMIi,j at Configj if K does not exist in CMIi,j initially.

Lemma 2. Rejig preserves read-after-write consistency for a cache entry (K,
V) if Fi’s assigned CMI changes for the first time at Configj+1, i.e. CMIi,j �=
CMIi,j+1,∀p, p ∈ [1, j],CMIi,p = CMIi,1.

Proof. According to Lemma 1, Rejig preserves read-after-write consistency for
K from Config1 to Configj , j ≥ 1. During the configuration change from Configj
to Configj+1, we have

1. the coordinator changes CMIi,j ’s configuration id to j + 1
2. a client’s local configuration id is still c, c ≤ j.

A client request that references K is directed to CMIi,j . CMIi,j rejects the request
since j + 1 > c. Then, the client fetches the latest configuration and issues its
request to CMIi,j+1. At configuration Configj+1, Corollary 1 shows that Rejig
preserves read-after-write consistency. �

Lemma 3. Rejig preserves read-after-write consistency for a cache entry (K,
V) at Configq if ∃o, p, q, o < p < q ≤ N,CMIi,o = CMIi,q and CMIi,o �= CMIi,p.

Proof. At configuration Configq, there are two cases:

Case I: If (K, V) is inserted in CMIi,o at Configo, updated at Configp, and still
exists in CMIi,q at Configq. Since ∃o, p, q, o < p < q ≤ N,CMIi,o = CMIi,q
and CMIi,o �= CMIi,p, Fi’s configuration id at Configq > Fi’s configuration id at
Configp > Fi’s configuration id at Configo. Then, the configuration id associated
with (K, V) in CMIi,q must be lower than Fi’s configuration id at Configq. A
read request that references K at Configq discards the entry.

Case II: If K does not exist in CMIi,q, Corollary 1 proves Rejig preserves read-
after-write consistency. �

B Physical Representation of a Configuration

A configuration consists of F fragments where F may be significantly larger
than the number of CMIs. It is undesirable to repeat the CMI’s IP address and
port number as it increases the size of the configuration and its serialized rep-
resentation, and time to serialize and deserialize a configuration. One approach
to address this is to maintain the IP address and port number of each CMI
in a separate array. Each element of a configuration representing a fragment
stores index of the array element corresponding to its assigned CMI. Represent-
ing a CMI array element as a short (two bytes) accommodates a maximum of
65,536 CMIs. With 1000 fragments assigned to the same CMI, the memory foot-
print would be 2000 bytes. This is more compact than repeating IP and port
numbers a thousand times. While it makes the software to serialize and deseri-
alize a configuration more complex, it reduces network transmission time of a
configuration.
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B.1 Configuration Changes that Modify the Number of Fragments

A re-assignment algorithm may break a fragment into q fragments or merge
p fragments into one fragment, changing the number of fragments F. These
are trivial with range partitioning because they translate into breaking a sub-
range into q sub-ranges and merging p adjacent ranges into one, respectively. In
its extreme, breaking a fragment may result in sub-ranges that correspond to
points. Each point may consist of only one data item. This is justified when the
data item is extremely hot [38].

With hash partitioning, when a hash function depends on the value of F,
breaking and merging of fragments must be done in a manner that is consistent
with the hash function. As an example, assume a simple mod function as the
hash function, h(Ki) = Ki % F. Incrementing (or decrementing) the value of F by
one would re-assign key-value pairs across all fragments. Rejig does not support
these configuration changes. (Rejig supports re-assignment of fragments to CMIs
only.) To use Rejig, one must modify the value of F in a manner that changes
the assignment of key-value pairs for the impacted fragment only. This would be
similar to extendible [14] and linear [30] hashing algorithms. For example, with
the mod hash function, to break a fragment into two, F should double. This
would generate a buddy for each existing fragment. The buddy of a fragment
is assigned to the same CMI as the fragment. The buddy of the fragment that
is broken into two is assigned to a different CMI. To merge two fragments into
one, we would change the assignment of its buddy to be the same CMI as the
fragment. Subsequently, we scan the array to detect if a fragment and its buddy
are assigned to the same CMI. If this is the case then we halve F, F = F

2 .
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