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Preface

This volume contains five fully revised selected regular papers, covering a wide range
of very hot topics. The focus of the papers is on privacy-preserving top-k query
processing, permissioned distributed ledgers, a tensor data model for logical data
independence and data impedance mismatch, question answering based on mutual
information and reinforced co-occurrence, and a scalable on-line algorithm that
manages configuration changes while providing read-after-write consistency.

We would like to sincerely thank the Editorial Board and the external reviewers for
thoroughly refereeing the submitted papers and ensuring the high quality of this
volume.

Special thanks go to Gabriela Wagner for her high availability and her valuable
work in the realization of this TLDKS volume.

September 2019 Abdelkader Hameurlain
Roland Wagner
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Privacy-Preserving Top-k Query
Processing in Distributed Systems

Sakina Mahboubi1, Reza Akbarinia2(B), and Patrick Valduriez2

1 University of Batna, Batna, Algeria
2 INRIA & LIRMM, Univ. Montpellier, Montpellier, France

{reza.akbarinia,patrick.valduriez}@inria.fr

Abstract. We consider a distributed system that stores user sensitive
data across multiple nodes. In this context, we address the problem of
privacy-preserving top-k query processing. We propose a novel system,
called SD-TOPK, which is able to evaluate top-k queries over encrypted
distributed data without needing to decrypt the data in the nodes where
they are stored. We implemented and evaluated our system over syn-
thetic and real databases. The results show excellent performance for
SD-TOPK compared to baseline approaches.

Keywords: Privacy preserving · Top-k query · Distributed system

1 Introduction

Top-k queries are important for many centralized and distributed applications
such as information retrieval [32], sensor networks [38], data stream management
systems [35], crowdsourcing [7], spatial data analysis [29], social networks [16],
etc. A top-k query allows the user to get the k data items that are most relevant
to the query.

We consider a distributed system where users can outsource their sensitive
data and issue top-k queries. The user data are encrypted (for privacy reasons)
and distributed (for performance reasons) across multiple nodes. In this context,
we address the problem of privacy-preserving top-k query processing.

Privacy preserving top-k query processing is a critical requirement for
some distributed applications that outsource sensitive data. For example, con-
sider a university that outsources the students database in a public cloud, in
Infrastructure-as-a-Service (IaaS) mode, with non-trusted nodes. The database
is vertically partitioned (for performance reasons) and encrypted. Then, an inter-
esting top-k query over the encrypted distributed data is the following: return
the k students that have the worst averages in some given courses.

There are different approaches for processing top-k queries over plaintext
(non encrypted) data. One of the best known approaches is TA [14] that works
on sorted lists of attribute values. However, there is no efficient solution capable
of evaluating efficiently top-k queries over encrypted data in distributed systems
with non-trusted nodes.
c© Springer-Verlag GmbH Germany, part of Springer Nature 2019
A. Hameurlain and R. Wagner (Eds.): TLDKS XLII, LNCS 11860, pp. 1–24, 2019.
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A naive solution is to retrieve the encrypted database from the distributed
system to the user machine that keeps the secret keys, decrypt it, and then eval-
uate the top-k query over plaintext data. This solution is not efficient, because
it does not allow us to take advantage of the distributed system power for eval-
uating queries.

In this paper1, we propose a system, called SD-TOPK (Secure Distributed
TOPK), that encrypts and stores user data in a distributed system, and is able
to evaluate top-k queries over the encrypted data. SD-TOPK comes with a
novel top-k query processing algorithm that finds a set of encrypted data that is
proven to contain the top-k data items. This is done without having to decrypt
the data in the nodes where they are stored. In addition, we propose a powerful
filtering algorithm that removes the false positives as much as possible without
data decryption. We implemented and evaluated the performance of our system
over synthetic and real databases. The results show excellent performance for
SD-TOPK compared to TA-based approaches. They show the efficiency of our
filtering algorithm that eliminates almost all false positives in the distributed sys-
tem, and reduces significantly the communication cost between the distributed
system and the user.

The rest of the paper is organized as follows. Section 2 gives the problem
definition. Section 3 describes the architecture of SD-TOPK system. In Sect. 4,
we present two TA-based algorithms for top-k query processing over encrypted
data. In Sect. 5, we describe the SD-TOPK system, and analyze its security in
Sect. 6. Section 7 presents the performance evaluation results. Section 8 discusses
related work, and Sect. 9 concludes.

2 Background and Problem Definition

In this section, we give a background about top-k queries, and define the problem
which we address.

2.1 Top-k Queries

By a top-k query, the user specifies a number k, and the system should return
the k most relevant answers. The relevance degree of the answers to the query
is determined by a scoring function. A common method for efficient top-k query
processing is to run the algorithms over sorted lists (also called inverted lists)
[14]. Let us define them formally.

Let D be a set of n data items, then the sorted lists are m lists L1, L2, ..., Lm,
such that each list Li contains every data item d ∈ D in the form of a pair
(id(d), si(d)) where id(d) is the identification of d and si(d) is a value that
denotes the local score (attribute value) of d in Li. The data items in each list
Li are sorted in descending order of their local scores. For example, in a relational
table, each sorted list represents a sorted column of the table where the local
score of a data item is its attribute value in that column.
1 This journal paper is a major extension of [23].
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Let f be a scoring function given by the user in the top-k query. For
each data item d ∈ D an overall score, denoted by ov(d), is calculated by
applying the function f on the local scores of d. Formally, we have ov(d) =
f(s1(d), s2(d), ..., sm(d)).

The result of a top-k query is the set of k elements that have the highest
overall scores among all elements of the database. In this work, we assume that
the scoring function is in the class of linear functions with positive coefficients
(denoted by LFPC ).

The sorted lists model can be used for top-k query processing in many appli-
cations. For example, suppose we want to find the top-k tuples in a relational
table according to some scoring function over its attributes. To answer such
query, it is sufficient to have a sorted list for the values of each attribute, and
return the k tuples whose overall scores in the lists are the highest.

2.2 Distributed System and Adversary Model

We suppose that the sorted lists are stored in the nodes of a distributed system.
We make no specific assumption about the distributed system architecture which
can be very general, e.g., a cluster of nodes. Formally, let P be the set of the
nodes in the distributed system. Each sorted list Li is kept in a node p ∈ P . We
call p the owner of Li.

We consider the honest-but-curious adversary model for the nodes of the dis-
tributed system. In this model, the adversary is inquisitive to learn the sensitive
data without introducing any modification in the data or protocols. This model
is widely used in many privacy preserving solutions [21].

2.3 Problem Statement

The problem we attack in this paper is top-k query processing over encrypted
data in distributed systems.

Let D be a database composed of n data items. We want to encrypt the data
items contained in D, and store the encrypted data items in a distributed system.
Then, our goal is to develop a distributed algorithm A that given any top-k query
q (including a scoring function f) returns the k data items that have the highest
overall scores with regard to f . This should be done without decrypting the data
items in the nodes of the distributed system, while minimizing the response time
and the communication cost of the query execution.

3 SD-TOPK System Architecture

The architecture of SD-TOPK has two main components (see Fig. 1):

– Trusted client. It is responsible for encrypting the user data, decrypting
the results and controlling the user accesses. The security keys used for data
encryption/decryption are managed by this part of the system. When a query
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Fig. 1. SD-TOPK architecture

is issued by a user, the trusted client checks the access rights of the user. If
the user does not have the required rights to see the query results, then her
demand is rejected. Otherwise, the query is transformed to a query that can
be executed over the encrypted data.
Note that the trusted client component should be installed in a trusted loca-
tion, e.g., the machine(s) of the person/organization that outsources the data.

– Remote service. It is installed in the nodes of the distributed system, and is
responsible for storing the encrypted data, executing the queries provided by
the trusted client, and returning the results. This component does not keep
any security key, thus cannot decrypt the encrypted data in the distributed
system.

In the trusted client of SD-TOPK, we use two types of schemes. Determin-
istic encryption is an encryption scheme that, for two equal inputs, generates
the same ciphertexts. With a probabilistic encryption, for the same plaintexts
different ciphertexts can be generated, but the decryption function returns the
same plaintext for them [26]. The details of data encryption in SD-TOPK are
described in Sect. 5.1.

4 TA-Based Algorithms

In this section, we present two basic approaches based on the TA algorithm for
top-k query processing over encrypted data in distributed environments: Remote-
TA and Block-TA. Our main contribution, i.e. SD-TOPK, will be presented in
the next section.
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4.1 Data Encryption

To be able to execute TA-based algorithms over encrypted data, the trusted
client stores the database in the nodes of the distributed system as follows. It
encrypts the pairs 〈d, si(d)〉 of the sorted lists using two encryption schemes: (1)
deterministic to encrypt data identifier d; (2) probabilistic to encrypt local score
of the data, i.e., si(d). The encrypted pairs are sorted in the same order as their
initial order. After encrypting the pairs, the trusted client sends each encrypted
sorted list to one node of the distributed system, which is called the owner of
the list.

4.2 Remote-TA

Given a top-k query containing a number k and a scoring function f , Remote-TA
proceeds as follows:

1. The trusted client asks the list owners to return the encrypted pairs
(encrypted data id and score) which are in position j of the lists (initially
j = 1). The list owners return the asked data.

2. The trusted client decrypts the received encrypted scores and calculates a
threshold TH by applying the scoring function on the decrypted scores.

3. Let S be the set of encrypted data items returned from the position j of
the lists. The trusted client demands the list owners to return the encrypted
scores of data items in S. Each list owner does random access in its list to find
the encrypted scores of each data item in S, then sends them to the trusted
client.

4. Trusted client decrypts each returned data item d and calculates its over-
all score ov(d) = f(s1(d), s2(d), ..., sm(d)). Then, it checks if among the yet
received data items there are at least k data items that have an overall score
greater than or equal to TH. If this is the case, then it stops the algorithm
and returns the k received data items that have the highest overall scores to
the user. Otherwise, it increases j by one and restarts from step 1.

4.3 Block-TA

Block-TA is an improvement of the Remote-TA algorithm where the encrypted
data items are read block by block. Indeed, in order to minimize the communi-
cation cost, in the first step of Block-TA, the trusted client asks blocks of prede-
fined size from the list owners. After decrypting the data items of the block, the
trusted client computes the threshold by applying the scoring function on the
scores of the last data items in the blocks, and stops if among yet received data
items there are at least k data items with overall scores higher than or equal to
the threshold. Otherwise it retrieves the next block, and so on.

Example. Consider Table 1 that represents a database composed of three
encrypted lists. There are three sorted lists, and each list Li is stored in a node.
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Table 1. Example of an encrypted database

List 1 List 2 List 3

encrypted
data item

encrypted
local score

encrypted
data item

encrypted
local score

encrypted
data item

encrypted
local score

E(d3) E(30) E(d3) E(29) E(d6) E(27)

E(d1) E(27) E(d6) E(28) E(d3) E(25)

E(d6) E(26) E(d2) E(26) E(d2) E(22)

E(d5) E(24) E(d1) E(24) E(d5) E(21)

E(d8) E(20) E(d7) E(21) E(d1) E(20)

E(d2) E(15) E(d4) E(19) E(d9) E(18)

E(d4) E(14) E(d5) E(16) E(d8) E(17)

E(d7) E(12) E(d9) E(13) E(d7) E(14)

E(d9) E(11) E(d8) E(10) E(d4) E(11)

... ... ... ... ... ...

The user asks for the top-4 data items in the database with SUM as scoring
function.

Let us run Block-TA on the database of Table 1 by using blocks of size 4. The
trusted client asks the list owners to return the 4 first data items in each list.
The owner of the list L1 returns d3, d1, d6 and d5. It also returns E(24) which
is the encrypted score of the last data item in the block. This is used later to
calculate the threshold. The owner of L2 returns d3, d6, d2, d1 and E(24). The
owner of L3 returns d6, d3, d2, d5 and E(21). Then, the trusted client decrypts
the received data and calculates the threshold TH = 24 + 24 + 21 = 69. The
client asks for the encrypted score of the returned data items d1, d2, d3, d5 and
d6. When it gets the asked scores, it decrypts them and calculates the overall
score of each data item: ov(d1) = 71, ov(d2) = 63, ov(d3) = 84, ov(d5) = 61,
ov(d6) = 81. The client finds that only d1, d3 and d6 have an overall score greater
than or equal to the threshold TH, so it asks the next block of four data items
in each list. The owner of L1 returns d8, d2, d4, d7 and E(12). The owner of L2

returns d7, d4, d5, d9 and E(13), and that of L3 returns d1, d9, d8, d7 and E(14).
The trusted client calculates the threshold TH = 12 + 13 + 14 = 39. Then,
the client asks each node to return the encrypted score of the data items and
calculates their overall score: ov(d4) = 44, ov(d7) = 47, ov(d8) = 47, ov(d9) = 42.
The trusted client finds that there are at least 4 data items with overall scores
greater than or equal to TH. Thus, it stops communicating with the list owners,
and returns to the user the data items d1, d2, d3, d6 that have the biggest overall
score among the data items received from the list owners.
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5 SD-TOPK

The TA-based algorithms, presented in the previous section, evaluate correctly
the top-k queries over encrypted data. But, as shown by our experiments
reported in Sect. 7, there may be a high number of false positives which are
sent from the distributed system nodes to the client, and this renders these algo-
rithms inefficient in practice. In this section, we present the SD-TOPK system,
designed for efficient processing top-k queries over encrypted data in distributed
systems. As shown by our experiments, SD-TOPK is much more efficient than
the TA-based algorithms.

The rest of this section is organized as follows. We first describe SD-TOPK’s
method for encrypting the data items and storing them in the distributed system.
Afterwards, we propose an efficient algorithm for processing top-k queries over
the encrypted data. Then, we propose an algorithm for removing the false posi-
tives from the results of the top-k query processing algorithm, without decrypting
the data. Afterwards, we discuss how we can update the encrypted data in the
distributed system. Finally, we propose a technique to enforce the security of
data outsourcing in SD-TOPK.

5.1 Data Encryption and Outsourcing

Before outsourcing a database, SD-TOPK creates sorted lists for all important
attributes, i.e., those that may be used in the top-k queries. Then, each sorted
list is partitioned into buckets. There are several methods for partitioning a
sorted list, for example dividing the attribute domain of the list to almost equal
intervals or creating buckets with equal sizes. In the current implementation of
our system, we use the latter method, i.e., we create buckets with almost the
same size where the bucket size is configurable by the system administrator.

Let b1, b2, ..., bt be the created buckets for a sorted list Lj . Each bucket bi has
a lower bound, denoted by min(bi), and an upper bound, denoted by max(bi).
A data item d is in the bucket bi, if and only if its local score (attribute value) in
the list Lj is between the lower and upper bounds of the bucket, i.e., min(bi) ≤
sj(d) < max(bi).

We use two types of encryption schemes (methods) for encrypting the data
item ids and the local scores of the sorted lists: deterministic and probabilistic.
The deterministic scheme is used to encrypt the ID of the data items. This allows
us to have the same encrypted ID for each data item in all sorted lists.

We use the probabilistic scheme to encrypt the local scores (attribute val-
ues) of data items. By using probabilistic encryption, if two data items have
the same local scores in a sorted list, their encrypted scores may be different.
This protects the scores against the frequency attacks [24] that decrypt order-
preserved encrypted lists given auxiliary information about the database, such
as the distribution of the plaintext values.

After encrypting the data IDs and local scores of each list Li, the trusted
client puts them in their bucket (chosen based on the local score). Then, the
trusted client sends the buckets of each sorted list to one node in the distributed
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system. The buckets are stored in the nodes according to their lower bound
order. However, there is no order for the data items inside each bucket, i.e., the
position of the data items inside each bucket is chosen randomly. This prevents
the nodes to know the order of data items inside the buckets.

5.2 Top-k Query Processing Algorithm

The main idea behind top-k query processing in SD-TOPK is to use the bucket
boundaries and a new technique to decide when to stop reading the encrypted
data from the lists.

For each top-k query, one of the nodes of the distributed system performs
the coordination between the nodes to execute the query. The coordinator may
be the node that initially receives the user’s query or it can be randomly chosen
among the system nodes.

Let us describe our top-k query processing algorithm. Given a top-k query
with a number k and a scoring function f that is linear with positive coefficients,
i.e., it is in the form of f = a1x1 +a2x2 + · · ·+amxm. SD-TOPK chooses a node
as coordinator, and then the following steps are performed to answer the query:

1. The coordinator broadcasts the query in parallel to the nodes, and asks each
node to return the buckets that contain the k first data items in its list. Each
node returns the encrypted identifier of the first k data items, as well as the
lower bound of their including buckets.

2. For each returned data item d, the coordinator calculates its minimum overall
score defined as follows: ovmin(d) = f(v1(d), v2(d), ..., vm(d)) where vi(d) is
the lower bound of the bucket that contains d in the list Li. If d has not been
returned to the coordinator by the owner of a list Lj then vj(d) = 0.

3. The coordinator sorts the received data items according to their minimum
overall score, and chooses the data item d′ that has the kth minimum overall
score denoted by δ. Then, it uses the minimum overall score of d′ to calculate
a threshold θ as follows: θ = δ∑m

i=1 ai
where a1, . . . , am are the coefficients in

the scoring function.
4. The coordinator broadcasts θ in parallel to the nodes. Each node returns to

the coordinator the buckets that have upper bounds greater than or equal
to θ.

5. Let Y be the set of all data items that are sent to the coordinator by at least
one node. We call Y the set of candidate items. The coordinator sends the
encrypted id of all data items contained in Y to the nodes, and they return
the encrypted score of each data item contained in Y .

6. Finally, the coordinator returns to the trusted client the candidate items and
their encrypted local scores.

When the trusted client receives the candidate items, it decrypts them using
the secret keys. Then, it calculates for each candidate d its overall score, extracts
the k data items that have the highest overall scores, and returns them to the
user.
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The following theorem shows that the output of the above algorithm contains
the encrypted top-k data items.

Theorem 1. Given a top-k query with a scoring function f that is linear with
positive coefficients, then the output of the top-k algorithm of SD-TOPK contains
the encrypted top-k results.

Proof. Let the scoring function be f = a1x1 + a2x2 + · · · + amxm. Let Y be the
output of the algorithm, i.e., the set of candidate items. To prove the theorem,
it is sufficient to show that each data item d that has not been sent to the
coordinator in the 4th step of the algorithm, has an overall score less than or
equal to the overall score of at least k data items in Y . Let θ be the threshold
value that is sent to the nodes in the 4th step of the algorithm. For each list Li,
let si be the local score of d in the list Li. The overall score of d is computed
as ov(d) = a1s1 + · · · + amsm. Since d has not been sent to the coordinator,
from the 4th step of the algorithm we know that si < θ. Thus, we have ov(d) <
a1 ×θ+ · · ·+am ×θ =

∑m
i=1 ai ×θ. From the 3rd step of the algorithm, we know

that θ = δ∑m
i=1 ai

. Thus, we have ov(d) < δ. In other words, the overall score of
d is less than the minimum overall score of the data item d′ that is the kth data
item found in the 3rd step of the algorithm. Therefore, the overall score of d is
less than at least k data items found by the top-k algorithm of SD-TOPK, so d
cannot be among the top-k results.

5.3 Filtering Algorithm

In the set Y returned by the top-k query processing algorithm, in addition to the
top-k results there may be false positives. Below, we propose a filtering algorithm
to eliminate most of them in the distributed system nodes, without decrypting
the data items.

Given the set of candidate data items Y , the filtering algorithm executed by
the coordinator proceeds as follows:

1. Calculate the minimum overall score of all candidate data items, sort them
according to their minimum overall score, and take the kth minimum overall
score denoted by δ2.

2. Calculate the maximum overall score of all candidate data items, and elimi-
nate those with maximum overall score less than < δ2. The maximum overall
score of a data item d is computed as follows: ovmax(d) = f(v1(d), v2(d)
, ..., vm(d)) where vi(d) is the upper bound of the bucket that contains d in
the list Li. If d has not been returned to the coordinator by the node that
keeps Li then vi(d) is equal to the lower bound of the last bucket received
from that node.

The above algorithm eliminates almost all false positives (see the experimen-
tal results on filtering rate in Sect. 7.8), and by doing that it improves signifi-
cantly the response time of the queries because the eliminated false positives do
not need to be communicated to the trusted client and should not be decrypted.
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To prove the correctness of the filtering algorithm, we need the following
lemmas.

Lemma 1. Given a top-k query with a scoring function f that is linear with
positive coefficients. The minimum overall score of any data item d is less than
or equal to its overall score.

Proof. The minimum overall score of a data item d is calculated by applying the
scoring function on the lower bound of the buckets in which d is involved. Let
bi be the bucket that contains d in the list Li. Let si be the local score of d in
Li. Since d ∈ bi, its local score is higher than or equal to the lower bound of
bi, i.e. min(bi) ≤ si. Since f is monotonic, we have f(min(b1), ...,min(bm)) ≤
f(s1, ..., sm). Therefore, the minimum overall score of d is less than or equal to
its overall score.

Lemma 2. Given a top-k query with a scoring function f that is linear with
positive coefficients, then the maximum overall score of any data item d is greater
than or equal to its overall score.

Proof. The proof can be done in a similar way as Lemma 1

The following theorem shows that the filtering algorithm works correctly, i.e.,
the removed data are only false positives.

Theorem 2. Given a top-k query with a scoring function f that is linear with
positive coefficients, then any data item removed by the filtering algorithm cannot
belong to the top-k results.

Proof. The proof can be done by considering the fact that any removed data
item d has a maximum overall score that is lower than the minimum overall
score of at least k data items. Thus, according to Lemmas 1 and 2 the overall
score of d is less than or equal to that of at least k data items that are not
removed. Therefore, we can eliminate d.

5.4 Example

To illustrate SD-TOPK, we use the database shown in Table 2 with a top-4 query
and SUM as scoring function. In this example, we suppose that a node n0 is the
coordinator. It sends a messages to all list owners (e.g., n1, n2, n3) and asks for
the 4 first data items in each list (since k = 4), and the minimum of the buckets in
which they are. The node n1 returns 〈d1, 24.6〉 〈d3, 24.6〉 〈d6, 24.6〉〈d2, 14.8〉. The
node n2 returns 〈d6, 25.5〉 〈d3, 25.5〉 〈d2, 25.5〉 〈d1, 18〉 and the node n3 returns
〈d2, 21.9〉 〈d3, 21.9〉 〈d6, 21.9〉 〈d5, 17.7〉. The coordinator calculates the minimum
overall score of the returned data items by using the minimum of their buckets. It
finds that ovmin(d1) = 24.6 + 18 = 42.6, ovmin(d2) = 14.8 + 25.5 + 21.9 = 62.2,
ovmin(d3) = 24.6 + 25.5 + 21.9 = 72, ovmin(d5) = 17.7 and ovmin(d6) = 72.
After sorting the minimum overall scores, the coordinator finds that the 4th
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Table 2. Encrypted database, with 3 data items in each bucket. The encrypted scores
inside buckets are not sorted. The boundaries (minimum and maximum) of buckets
are shown below

List 1 List 2 List 3

bucket

ID

encrypted

data item

encrypted

local score

bucket

ID

encrypted

data item

encrypted

local score

bucket

ID

encrypted

data item

encrypted

local score

B11 E(d1) E(27) B21 E(d6) E(28) B31 E(d2) E(22)

B11 E(d3) E(30) B21 E(d3) E(29) B31 E(d3) E(25)

B11 E(d6) E(26) B21 E(d2) E(26) B31 E(d6) E(27)

B12 E(d2) E(15) B22 E(d1) E(24) B32 E(d5) E(21)

B12 E(d8) E(20) B22 E(d7) E(21) B32 E(d1) E(20)

B12 E(d5) E(24) B22 E(d4) E(19) B32 E(d9) E(18)

B13 E(d4) E(14) B23 E(d5) E(16) B33 E(d8) E(17)

B13 E(d9) E(11) B23 E(d9) E(13) B33 E(d7) E(14)

B13 E(d7) E(12) B23 E(d8) E(10) B33 E(d4) E(11)

... ... ... ... ... ... ... ... ...

Table 3. Bucket boundaries

List 1 List 2 List 3

bucket ID min max bucket ID min max bucket ID min max

B11 24.6 32 B21 25.5 31 B31 21.9 28

B12 14.8 24.1 B22 18 24.1 B32 17.7 21.5

B13 10.7 14.2 B23 9 16.5 B33 10 17.3

minimum overall score is 42.6 (that of d3), so it sets δ = 42.6. Then, it calculates
θ = δ/3 = 14.2. Afterwards, it asks each node to return the encrypted id of the
data items that are in buckets bi such that max(bi) ≥ θ. The data items received
from list owners are called candidate data items. The coordinator calculates for
the candidate items their minimum overall score: ovmin(d1) = 60.3, ovmin(d2) =
62.2, ovmin(d3) = 72, ovmin(d4) = 38.7, ovmin(d5) = 41.5, ovmin(d6) = 72,
ovmin(d7) = 38.7, ovmin(d8) = 33.8 and ovmin(d9) = 37.4. It also calculates δ2 =
60.3, that is the kth minimum overall score among candidate data items (defined
in the filtering algorithm). Then, it calculates the maximum overall scores of
the candidate data items: ovmax(d1) = 77.6, ovmax(d2) = 83.1, ovmax(d3) =
91, ovmax(d4) = 55.6, ovmax(d5) = 62.1, ovmax(d6) = 91, ovmax(d7) = 55.6,
ovmax(d8) = 57.9 and ovmax(d9) = 52.2. According to the filtering algorithm,
the coordinator eliminates the data items that have a maximum overall score
less than 60.3. Then, it remains five data items in the set of candidate items Y =
{d1, d2, d3, d5, d6}. The coordinator asks the list owners to return all encrypted
scores of the candidate items and sends them to the trusted client. When the
client receives the data items, it decrypts them and calculates their real overall
score: ov(d1) = 71, ov(d2) = 63, ov(d3) = 84, ov(d5) = 61, ov(d6) = 81. Finally,
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the trusted client finds that the top-4 data items are d1, d2, d3 and d6. It returns
them to the user who had issued the query (Table 3).

5.5 Update Management

In our system, updating a data item d in the nodes is done by deleting the old
encrypted scores (attribute values) of d and then inserting its new scores.

To delete the old encrypted scores of d from the outsourced database, the
trusted client encrypts the ID of d using the key that has been used for encrypting
the data IDs, and then asks the nodes of the distributed system to find the
encrypted ID in the buckets of their lists and then remove the pairs encrypted
score and encrypted ID of d from the lists.

Inserting the new scores of d is done as follows. The trusted client uses the
metadata of the buckets (i.e., the lower and upper bounds), and for each list Li,
it calculates the bucket of the list to which the data score si should be stored.
Let bi be the corresponding bucket of si. The trusted client encrypts the ID and
scores of d by using the encryption schemes that are used for encrypting the
ID and scores. Then, it asks the nodes to put the encrypted ID and encrypted
scores of d in the corresponding buckets.

5.6 Obfuscating Bucket Boundaries

A drawback of the basic version of SD-TOPK, presented until now, is that the
limits (i.e., lower and upper bounds) of the buckets are disclosed to the nodes of
the distributed system. To strengthen the security of our system, we change the
bucket limits as follows. We choose two random numbers a and c. These numbers
must be kept secret in the trusted client. Before encrypting the database, the
lower and upper bounds of each bucket bi are obfuscated (modified) as follows:

min(bi) := min(bi) × a + c (1)

max(bi) := max(bi) × a + c (2)

Thus, the trusted client multiplies the lower (upper) bounds by the secret
number a, and then adds the secret number c to the result. These obfuscated
bucket limits are sent to the nodes of distributed system together with the
encrypted IDs and scores. By the above strategy, we can hide the limits of the
buckets from the nodes.

The following theorem proves that SD-TOPK works correctly if it uses the
obfuscated lower bounds.

Theorem 3. Assume a top-k query with a scoring function f that is linear with
positive coefficients. If we change the lower bound of the buckets by using Eq. 1,
then the output of SD-TOPK will involve the top-k results.

Proof. Let the scoring function be f = a1x1 + a2x2 + · · · + amxm. Let Y be the
output of SD-TOPK algorithm, i.e., the set of candidate items. We show that
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each data item d that has not been sent to the coordinator by the list owners,
has an overall score that is less than or equal to the overall score of at least k
data items involved in Y . Let bi be the bucket that contains the data d in the list
Li, and thus max(bi) ∗ a + c is the new (modified) upper bound of bi. From the
4th step of Sd-TOPK, we know that in each list Li we have max(bi) ∗ a + c < θ.
Thus, we have a1×(max(b1)∗a+c)+ · · ·+am ×(max(bm)∗a+c) <

∑m
i=1 ai ×θ.

We know that θ = δ∑m
i=1 ai

. Thus, we have the following equation:

a1 × (max(b1) ∗ a + c) + · · · + am × (max(bm) ∗ a + c) < δ (3)

Now, let d′ be the data item that has the kth minimum overall score in
the 3rd step of SD-TOPK. In each list Li, let b′

i be the bucket that contains
d′ in Li, and thus min(b′

i) ∗ a + c is the new (modified) lower bound of b′
i.

From the 3rd step of the algorithm, we know that the minimum overall score
of d′ (computed by using the obfuscated buckets) is equal to δ. Thus, we have
a1 × (min(b′

1) ∗ a + c) + · · · + am × (min(b′
m) ∗ a + c) = δ. Thus, we have the

following equation:

a1 × (min(b′
1) ∗ a + c) + · · · + am × (min(b′

m) ∗ a + c) = δ (4)

By comparing Eqs. 3 and 4, we have: a1 × (min(b′
1) ∗ a + c) + · · · + am ×

(min(b′
m) ∗ a + c) > a1 × (max(b1) ∗ a + c) + · · · + am × (max(bm) ∗ a + c). Since

the numbers a and c are positive, we can write: a1×(min(b′
1)+· · ·+am×min(b′

m)
> a1 × max(b1) + · · · + am × max(bm). This means that the minimum overall
score of the data item d′ is higher than the maximum overall score of d. In other
words, the data item d could not be among the top-k results.

The following theorem shows that the filtering algorithm works correctly, if
it uses the obfuscated bucket limits.

Theorem 4. Assume a top-k query with a scoring function f that is linear with
positive coefficients. If we change the lower bound of the buckets by using Eq. 1,
then the filtering algorithm does not remove any top-k result.

Proof. Let Y be the output of SD-TOPK algorithm, and d′ be the data item
that has the kth minimum overall score among the data items in the 3rd step of
SD-TOPK. In each list Li, let b′

i and s′
i be the bucket and local score of d′

i in
the list.

We do the proof by contradiction. We assume a top-k data item d has been
removed by the filtering algorithm, and show that this assumption yields to a
contradiction. Let bi and si be the bucket and local score of di in the list Li.
Since, d has been removed from the list, its maximum overall score using the
modified limits is lower than or equal to minimum overall score of d′. Thus, we
have: a1 × (max(b1) × a + c), ..., am × (max(bm) × a + c) ≤ a1 × (min(b′

1) × a +
c), ..., am × (min(b′

1)×a+c). Since the parameters a and c are positive, we have:
a1 × max(b1), ..., am × max(bm) ≤ a1 × min(b′

1), ..., am × min(b′
1). This means

that the maximum overall score of the data item d is lower than the minimum
overall score of d′. Thus, d cannot be a top-k result.
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6 Security Analysis and Improvement

In this section, we analyze the different types of information that can be leaked
to the adversary (the nodes of the distributed system), and for each type of
leakage, we propose some techniques to reduce the risk of disclosing sensitive
data.

6.1 Partial Order Leakage

In SD-TOPK, we use the bucketization technique for managing the data in the
distributed system. Inside the buckets, no information is leaked because the data
items are not ordered and the local scores are encrypted using a probabilistic
scheme. But a partial order is leaked about the data items that are in different
buckets (since the buckets are ordered).

Even a partial order leakage may help the adversary to obtain rough infor-
mation about the sensitive data of individuals if he has some background infor-
mation about the data. For example, if the adversary A knows that the age of
a target person u is very high, then A may find the bucket containing u in the
list corresponding to age (i.e., the first bucket of the list). Then, by guessing
the ID of u in the bucket (e.g., if the size of the bucket is too small), A may
find the bucket of u in the salary’s list, and then estimate her salary with some
confidence probability. We show that this probability (i.e., the risk of privacy
violation) is very low, when the size of buckets is not small.

Let u be an individual (data item) in the database, and assume that the
adversary A knows the value of u in some attribute a. We want to compute the
confidence probability that A finds the bucket containing u’s value in a sensitive
attribute s. Let us denote this confidence probability by P (bs,u|a). We assume
that if A finds the bucket of u in the list representing s, then he can make a
good estimation of u’s value, e.g., using some background knowledge about the
values of attribute s.

To find the bucket of u in the sensitive attribute s, the adversary A needs
to perform the following steps: (1) guessing the lists that represent a and s; (2)
finding the bucket of u in the list representing a; (3) guessing the ID of u in
the found bucket; (4) searching u’s ID in the list representing s, and finding its
bucket.

Let P (L1 = a ∧ L2 = s) be the probability that A guesses correctly the
lists representing the attributes a and s. Let m be the number of lists in the
database. In our system, the metadata of sorted lists (e.g., their identification)
is encrypted, and they have the same size and format. Thus, the probability
of finding the correct list of an attribute is 1

m . Therefore, the probability of
correctly guessing the lists representing both attributes a and s is:

P (L1 = a ∧ L2 = s) =
1

m × (m − 1)
(5)

If the adversary A finds correctly the list representing a, then we assume that
A is able to find the bucket containing u by using the background knowledge
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about the value of u in a (and some statistical information). After finding the
bucket, say b, the adversary needs to guess the ID of u. Let size(b) be the number
of encrypted values in the bucket b. Then, the probability of finding u’ ID in the
bucket b, denoted as P (ID = u), is:

P (ID = u) =
1

|size(b)| (6)

If A guesses correctly the ID of u in the bucket b, then he can find the bucket
containing the ID in the list representing the attribute s (if he guesses correctly
the list of s), and then he can roughly estimate the u’s value in s.

The following theorem provides a formula that calculates the probability that
an adversary finds the bucket of an individual u in the sensitive attribute s by
knowing the value of u in an attribute a.

Theorem 5. Let s be a sensitive attribute, size(b) be the size of the buckets,
and m be the number of sorted lists (attributes). Let P (bs,u|a) be the probability
that the adversary detects correctly the bucket of an individual u in the sensitive
attribute s by knowing the value of u in an attribute a. Then, P (bs,u|a) is:

P (bs,u|a) ≤ 1
size(b) × m × (m − 1)

(7)

Proof. The proof can be done using Eqs. 5 and 6.

The above theorem shows that when the size of the buckets is not small, the
probability of privacy violation is negligible.

When the bucket size is one (which is equivalent of preserving the total order),
the risk of privacy violation is the highest. We advise at least the size of 10 for
the buckets, in order to make the privacy violation risk very low. For example,
if the number of sorted lists (i.e., attributes) is m = 5, with the bucket size of
10, the privacy violation risk P (bs,u|a) is less than 0.005.

However, note that choosing very big buckets increases the response time
of query processing (see Sect. 7.5). Therefore, the size of the buckets should be
taken based on the user privacy requirements (e.g., the maximum acceptable
probability of privacy violation) and performance (e.g., response time).

6.2 Obfuscating the Number of Asked Results

In the basic version of our approach, the information about the number of asked
results, i.e., k, is disclosed to the cloud provider. We can obfuscate this informa-
tion as follows. The trusted client generates a random integer s between 0 and
a predefined (small) value, and adds it to k. Then, it sends k′ = k + s to the
cloud as the number of required results. After receiving the encrypted results
from the cloud, the trusted client filters the result set and sends only k results
to the user.
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6.3 Obfuscating the Database Size

Another information which is leaked is the database size (i.e., the number of
tuples). This leakage can be avoided by adding dummy tuples to the database
before sending it to the cloud. But, we have to be careful not to add dummy
tuples which could be returned to the user as a result of top-k queries. For this,
we can proceed as follows. Let n′ be the number of dummy data items that we
want to add to the lists. In each list Li, let si be the last local score in the list.
We generate n′ random data IDs. Then, for each list Li, we generate n′ random
scores smaller than si, and assign them randomly to the n′ data IDs. Afterwards,
we add the generated data IDs and their local scores to the sorted lists. Since
the local scores of the dummy data items are smaller than any real data item,
they have no chance to be returned as a result of top-k queries.

7 Performance Evaluation

In this section, we first describe the experimental setup, and then present the
performance evaluation results.

7.1 Setup

We implemented SD-TOPK and performed experiments on real and synthetic
datasets. As in some previous work on privacy (e.g., [21]), we use the Gowalla
database, which is a location-based social networking dataset collected from users
locations. The database contains 6 million tuples where each tuple represents
user number, time, user geographic position, etc. In our experiments, we are
interested in the attribute time, which is the second value in each tuple. As
in [21], we decomposed this attribute into 6 attributes (year, month, day, hour,
minute, second), and then created a database with the values of those attributes.
In addition to the real dataset, we have also generated random datasets using
uniform and Gaussian distributions.

We compared SD-TOPK with the two TA-Based algorithms: Remote-TA and
Block-TA.

In the experiments, the number of nodes is equal to the number of lists, i.e.,
each node stores one of the lists. The coordinator of SD-TOPK is one of the
nodes of the system (randomly chosen).

We study the effect of several parameters: (1) n: the number of data items in
the database; (2) m: the number of lists; (3) k: the number of required top items;
(4) bsize: the number of data items in the buckets (or blocks) in SD-TOPK and
Block-TA. The default value for n is 2M items. Unless otherwise specified, m is 5,
k is 50, and bsize is 10. The default database is the synthetic uniform database,
and the latency of the messages is around 50 ms.

To evaluate the performance of SD-TOPK, we measured the following met-
rics:

– Response time: includes top-k query processing time, communication time,
filtering time, and the result post-processing time (e.g., decryption).



Privacy-Preserving Top-k Query Processing in Distributed Systems 17

– Filtering rate: the number of false positives eliminated by the filtering algo-
rithm in the distributed system.

– Communication cost: we measure two metrics: (1) the number of mes-
sages communicated between the nodes to answer a top-k query; (2) the total
number of bytes communicated to answer a top-k query.

7.2 Effect of Database Size

In this section, we compare the response time of SD-TOPK, Remote-TA and
Block-TA, while varying the number of data items, i.e., n.

Figure 2 shows how response time evolves, with increasing n, while the other
parameters are set as default values described in Sect. 7.1. Note that the results
are shown in logarithmic scale. The response time of all approaches increases with
increasing the database size. SD-TOPK is the best; its response time is at least
two orders of magnitude better than the other algorithms. This high difference
between SD-TOPK and TA-based algorithms is mainly due to the high number
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of encrypted data items that should be decrypted by TA-based algorithms in the
trusted client, and also the messages needed for communicating them. Block-TA
performs better than Remote-TA, because of reading the lists in blocks, thus it
needs less number of messages.

7.3 Effect of the Number of Lists

Figure 3 shows the response time of SD-TOPK and TA-based algorithms when
varying m (i.e., the number of attributes in the scoring function), and the other
parameters set as default values. We observe that the response time of SD-TOPK
increases slightly comparing to Remote-TA and Block-TA when the number of
lists increases. The reason is that when we increase the number of lists, more
data (sent by the nodes) should be processed by the coordinator for finding the
candidate items.

7.4 Effect of k

Figure 4 shows the response times of SD-TOPK with increasing k, and the other
parameters set as default values. We observe that with increasing k the response
time increases slightly. The reason is that when k increases, SD-TOPK needs
to get more data items from the list owner nodes in each step. In addition,
increasing k augments the number of data items that the trusted client needs to
decrypt (because at least k data items are decrypted by the trusted client).

7.5 Effect of Bucket Size

Figure 7 reports the response time of SD-TOPK when varying the size of buckets,
and the other parameters set as default values. We observe that the response time
increases slightly when the bucket size increases. The reason is that increasing the
bucket size increases the number of data items to be considered in the different
steps of SD-TOP algorithm. It also increases the number of false positives to be
removed by the filtering algorithm.
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7.6 Communication Cost

We measure the communication cost of SD-TOPK, Remote-TA and Block-TA
in terms of the total number of messages exchanged between the different nodes
of the distributed system and the size of the exchanged data.

Figure 5 shows the number of communicated messages while increasing the
number of tuples and fixing the other parameters to the default values. We
observe that SD-TOPK needs to exchange a small number of messages comparing
to the others approaches. The reason is that SD-TOPK runs in only some rounds
of communication, and does not depend on the database size. But for the TA-
based algorithms, the number of messages depends on the position where they
stop in the lists, and that position depends on the database size.

Figure 6 illustrates the size of the communicated data in bytes, while increas-
ing the number of tuples in the database and setting the other parameters to the
default values. We note that the size of the communicated data increases with
the database size. The amount of data transferred by SD-TOPK is less than that
of Remote-TA and Block-TA. The reason is that SD-TOPK uses the obfuscated
bucket boundaries to check the top-k data items and these boundaries have a
size less than the encrypted scores used by other algorithms.

7.7 Performance over Different Datasets

We study the effect of the datasets on the performance of SD-TOPK, Remote-
TA and Block-TA using different datasets: synthetic datasets with uniform and
Gaussian distributions, and real dataset (Gowalla). Figure 8 shows the response
time of the approaches over different datasets, while other parameters are set as
default values. We see that the performance of all approaches over the Gaussian
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database is better than real and uniform databases. The reason is that with the
latter databases, the algorithms need to go deeper into the lists to be sure that
they have found the top-k results.

7.8 Filtering Rate

We study the efficiency of the filtering algorithm of SD-TOPK by using different
datasets. The results are shown in Table 4. The results show that the filtering
algorithm is very efficient over all the tested datasets. However, there is a lit-
tle difference in the filtering rates because of the local score distributions. For
example, in the Gaussian distribution, the local scores of many data items are
very close to each other, thus the filtering rate decreases in this dataset.

Table 4. False positive elimination by the filtering algorithm of SD-TOPK over dif-
ferent databases

Uniform dataset Real dataset Gaussian dataset

filtering Rate 100% 99.995% 99.991%

8 Related Work

Efficient processing of top-k queries is important for many applications such
as information retrieval [32], sensor networks [38], data stream management
systems [28,35], crowdsourcing [7], string matching [34], spatial data analysis
[29], temporal databases [25], graph databases [16,19], uncertain data ranking
[11,30], etc.

One of the most efficient algorithms for top-k query processing is the TA
algorithm [13], which models the general problem of top-k using lists of data
items sorted by their local scores and proposes a simple and efficient algorithm.
Several TA-based algorithms have been proposed for processing top-k queries in
different environments, e.g. [1,3,8]. However, all these algorithms assume that
the data scores are available as plaintext, and not encrypted.

In the literature, there has been some research work to process keyword
queries over encrypted data , e.g., [5,31]. For example [5] and [31] propose match-
ing techniques to search words in encrypted documents. However, the proposed
techniques cannot be used to answer top-k queries. There have been also some
solutions proposed for secure kNN similarity search, e.g., [6,10,12,22,36]. The
problem is to find k points in the search space that are the nearest to a given
point. This problem should not be confused with the top-k problem in which the
given scoring function plays an important role, such that on the same database
and with the same k, if the user changes the scoring function, then the output
may change. Thus, the proposed solutions proposed for kNN cannot deal with
the top-k problem.
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The bucketization technique (i.e., creating buckets) has been used in the
literature for answering range queries over encrypted data, e.g., [17,18,27]. For
example, in [18], Hore et al. use this technique, and propose optimal solutions
for distributing the encrypted data in the buckets in order to guarantee a good
performance for range queries. However, the techniques for range queries no
longer apply to top-k queries, because in a top-k query, we should find the k
tuples that are most relevant to the query using a given scoring function. In a
range query, the objective is simpler, i.e. only to find the tuples whose attribute
values are in a given range.

In [20], Kim et al. propose an approach for preserving the privacy of data
access patterns during top-k query processing. In [33], Vaidya et al. propose a
privacy preserving method for top-k selection from the data shared by individuals
in a distributed system. Their objective is to avoid disclosing the data of each
node to other nodes. But, their assumption about the nodes is different from
ours, because they can trust the node that stores the data (this is why the data
are not crypted), but in our system we trust no node of the distributed system.

When we think about top-k query processing on encrypted data, the first idea
that comes to mind is the utilization of a fully homomorphic encryption cryp-
tosystem, e.g. [15], which allows one to do arithmetic operations over encrypted
data. Using this type of encryption would allow to compute the overall score of
data items over encrypted data. However, fully homomorphic encryption is still
impractical for query processing over large databases, particularly due to the
prohibitive computational time [2,9].

CryptDB [26] is a system designed for processing SQL like queries over
encrypted data. It is capable to execute several types of queries, e.g., exact-
match, join and range queries. However, top-k queries are not supported by
CryptDB.

The Three Phase Uniform Threshold (TPUT) [4] is an efficient algorithm to
answer top-k queries in distributed systems. Like our SD-TOPK algorithm, it is
done in few round-trips between the nodes of the distributed system. However,
TPUT can be used only with the queries in which the scoring function is SUM,
whereas our algorithm can be used for a large range of scoring functions. In
addition, our algorithm finds top-k results over encrypted data, while TPUT
can be used only over plaintext data.

Meng et al. [37] propose a solution for processing top-k queries over encrypted
data in clouds. They assume the existence of two non-colluding nodes, one of
which can decrypt the data (using the decryption key) and execute a TA-based
algorithm. Our assumptions about the nodes of the distributed system are dif-
ferent, as we do not trust any node.

9 Conclusion

In this paper, we proposed SD-TOPK, an efficient system to encrypt and out-
source user data in a distributed system. SD-TOPK is able to evaluate top-
k queries over encrypted data, without decrypting them in the nodes of the
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system. We evaluated the performance of our solution over synthetic and real
databases. The results show excellent response time and communication cost for
SD-TOPK. They show that the response time of SD-TOPK can be several order
of magnitude better than that of the TA-based algorithms. This is mainly due
to its optimized top-k query processing and filtering algorithms. The results also
show a significant gain in communication cost of SD-TOPK compared to the
other algorithms. They also show the efficiency of the filtering algorithm that
eliminates almost all false positives in the distributed system.
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Abstract. Permissioned distributed ledgers have recently captured the
attention of organizations looking to improve efficiency, transparency
and auditability in value network operations. Often the technology is
regarded as trustless or trust-free, resulting in a false sense of security.
In this work, we review the various trust factors present in distributed
ledger systems. We analyze the different groups of trust actors and their
trust relationships to the software layers and inherent components of
distributed ledgers. Based on these analyses, we investigate how insiders
may conduct attacks based on trust in distributed ledger components.
To verify practical feasiblity of these attack vectors, we conduct a techni-
cal study with four popular permissioned distributed ledger frameworks:
Hyperledger Fabric, Hyperledger Sawtooth, Ethereum and R3 Corda.
Finally, we highlight options for mitigation of these threats.

Keywords: Trust frameworks · Distributed systems security ·
Distributed ledger technology · Insider threat

1 Introduction

Distributed ledger technology (DLT) offers great potential to decentralize oper-
ations in collaborative business networks and may even enable new business
models [46]. Benefits include cost reduction and increased transparency in infor-
mation sharing between organizations. However, great potential also entails
great risks and potential security issues. Recent reviews regarding the future
of blockchain technology have pointed out the need to study security and trust
aspects of DLT [13,51].

Blockchain and DLT are often described as trustless or trust-free alterna-
tives to currently established centralized systems (see [29,30,36]). In this work,
we take a closer look at the usage of permissioned distributed ledgers and exam-
ine whether it can really be considered “trustless”. The term “trustless” orig-
inates from the decentralization of control in distributed ledger networks [29],
which aims to replace trusted third parties. The goal of this work is to estab-
lish a framework for reasoning about trust elements in permissioned distributed
c© Springer-Verlag GmbH Germany, part of Springer Nature 2019
A. Hameurlain and R. Wagner (Eds.): TLDKS XLII, LNCS 11860, pp. 25–50, 2019.
https://doi.org/10.1007/978-3-662-60531-8_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-60531-8_2&domain=pdf
https://doi.org/10.1007/978-3-662-60531-8_2


26 B. Putz and G. Pernul

ledgers. These trust elements can also be exploited by insiders, who are aware
of them and in control of crucial components of the trust system.

Insider threats are a tough cybersecurity problem, which remains difficult to
detect and prevent due to abuse of legitimate access permissions by the attacker.
According to the roadmap of cybersecurity research by the US department of
Homeland Security, insider threats are one of the “hard problems” of information
security research [50]. Similarly, the European cybersecurity agency ENISA’s
threat landscape report lists insider threats among the top 10 information secu-
rity threats, with 77% of companies’ data breaches caused by insiders [23].

Insider threats are particularly relevant for distributed ledgers operated by a
network of independent organizations. These networks are called permissioned,
since they are operated by a restricted set of authenticated member nodes. In this
scenario, intra-organizational insiders are supplemented with external insiders
[25] from other organizations, who also have access to information shared on the
network. According to a recent survey on enterprise adoption of DLT, there are at
least 50 corporations with valuations larger than $1 billion looking to implement
DLT to trade digital assets [11]. Many of these are financial institutions looking
to trade high-value assets, leading to an attractive target for insider attacks.

To appropriately assess trust in distributed ledgers, our trust definition is
based on software trust as defined by Amoroso and Watson [3]: “Software trust
is the degree of confidence that the software will be acceptable for ‘one’s needs’. It
is established after one has become convinced, presumably based on a meaningful
set of information, that the software does not include flaws that will prevent it
from meeting its requirements.”

Besides trust in software components, the second form of trust is related to
assessments of the human agents that collectively control the distributed system
(hereafter referred to as trust actors). We follow Gambetta’s definition of trust
[28]: “Trust (or, symmetrically, distrust) is (...) the subjective probability with
which an agent assesses that another agent or group of agents will perform a
particular action, both before he can monitor such action (...) and in a context
in which it affects his own action.”

The remainder of this work is structured as follows: In Sect. 2 we give a short
overview of related work concerning trust and insider threats with regard to
distributed ledgers. Subsequently, we analyze trust actors, layers and compo-
nents of permissioned distributed ledgers in Sect. 3. Based on our assessment
of trust factors we identify relevant attack vectors for the different groups of
insiders in Sect. 4. In Sect. 5 we perform a threat analysis for 5 popular dis-
tributed ledger frameworks, examining how insiders might exploit these vectors
in practice. Finally, we wrap up by giving recommendations for future research
in Sect. 6 and summarize our results in Sect. 7.

2 Related Work

While research on trust in blockchain systems is still scarce, the Global
Blockchain Benchmarking Study by the University of Cambridge points out
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that blockchains always require some degree of trust [32]. Recent blog posts
have highlighted trust factors in public permissionless blockchains [47]. Permis-
sioned blockchains rely on similar trust primitives: trust in application code,
network/cryptographic protocols and hardware. We aim to expand upon these
notions by exploring the trust factors in more detail.

Overall, only partial aspects of trust in blockchain networks have been stud-
ied. Locher et al. [38] create a formal model to examine whether a distributed
ledger may fully replace a trusted third party. In the process, they also evaluate
previously proposed use cases of DLT that still require trust in other organi-
zations and third parties. Hawlitschek et al. [30] review the conceptualization
of trust in the blockchain environment. They argue that it is difficult to assess
whether a system is actually trust-free or not. Correspondingly, another study
claims that blockchain shifts trust from central authorities towards algorithms
[39]. However, for this shift to be successful, the algorithms need to be trusted.
Smart contracts represent the application-level algorithms, and their control flow
immutability and independence of third parties have been shown to be lacking
[26]. In addition to algorithmic properties, researchers have also studied user
trust of different stakeholder groups from an HCI perspective [45]. In summary,
research has established the existence of trust factors that contradict the claim
of a trust-free system [30], but a comprehensive model of trust relationships is
still missing.

Despite the severity of insider threats as pointed out by government agency
assessments [23], research regarding insider threats in distributed ledger consor-
tia is still scarce. Numerous surveys on the security of blockchain systems have
been carried out [17,35], but none of them have focused on insiders in particular.
We intend to fill this research gap and provide direction for future research.

In particular, we go beyond existing work by presenting a novel model of trust
actors, their relationships and trusted DLT software components. We use this
model to derive insider threats that organizations face when implementing per-
missioned DLT. By analyzing frameworks popular in both industry and research,
we show that these attacks are applicable in practice. To protect against these
threats, we outline technical and organizational options to mitigate the insider
threats at hand.

3 Trust Factors in Permissioned Distributed Ledgers

Fig. 1. Trust actors and relationships.
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As noted by other researchers, the requirement for trust does not disappear
simply by employing a distributed ledger. Instead, trust shifts from trust in
other organizations to trust in the technology and its operation [38]. In this
section we focus on analyzing the different components of a distributed ledger
system to establish trust actors, layers and components.

Before examining the trust factors in detail, trust actors need to be identified.
There are four types of actors in the DLT ecosystem, three of which directly con-
tribute to trust relationships in a consortium: software service providers, oper-
ators and users [32]. Peripheral actors (i.e. industry initiatives and researchers)
do not directly interact with consortium networks, as they are not involved with
building or operating DLT software. Nevertheless, they contribute by developing
standards, methods and paradigms to solve current technical challenges [32].

An overview of the resulting trust hierarchy is shown in Fig. 1. Software ser-
vice providers (SSPs) develop the software components of a distributed ledger
consortium. They are trustees responsible for creating trust in the technology
by developing secure and reliable applications. Operators represent distinct
groups of actors responsible for running the distributed ledger overlay network
and applications built on top of it. They act as both trustors and trustees: they
trust the chosen DLT software to operate as expected and are also trusted by
their users to provide reliable operations. Finally, Users place their trust in
these applications and rely on them to work as advertised, without knowledge
of the lower layers.

Fig. 2. Distributed ledger software layers and components.
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The trust actors in Fig. 1 interact using a permissioned distributed ledger
network, which consists of several software layers. Figure 2 shows the layers and
the software components on each layer. They are derived from the three-layer
view of Component Based Systems: platform, middleware and application [43].
The platform in this case consists of various underlying protocols responsible for
storage, cryptography and network communication. Also part of the platform,
but out of scope for this work, are the operating system and hardware layers.
The middleware is represented by an overlay network, which provides config-
urable functionality for operations, identity management and distributed con-
sensus. The applications layer provides replicated application logic (on-chain)
and external logic and data (off-chain). These off-chain applications integrate
with the framework by reading/writing data through its APIs. Each of the com-
ponents within these layers requires software trust: it should be working correctly
and not be maliciously exploitable. Since layers are built on top of each other,
software bugs or vulnerabilities may propagate upwards to affect higher layers.
In the following subsections we elaborate in detail on the layers’ components and
how they are involved in creating trust in the distributed ledger.

Figure 3 integrates trust actors from Fig. 1 with the layers from Fig. 2 by
illustrating which trust actors govern each system layer. While software ser-
vice providers are involved in the development of all three layers, operators do
not interact with the underlying protocols. They merely configure the network
framework and develop applications on top of it. Meanwhile, users only interact
directly with the application layer.

Fig. 3. Intersection of trust actors and layers.

3.1 Protocols

Storage, cryptographic and network protocols carry out the low-level tasks
instructed by the distributed ledger framework and its applications. For this
reason, they form the trust basis of the network.

Storage. A key property of blockchain-based systems is the goal of maintaining
immutability of the underlying chain of blocks. Transaction and block metadata
are stored in relational or key-value databases locally on each node. Replication
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integrity is assured through distributed consensus. The claimed immutability is
a key factor in enabling trust in the technology, but it only holds if storage and
network protocols can be trusted.

Cryptography. A manifold of cryptographic protocols are involved in dis-
tributed ledger operation. They include:

– hash functions for integrity assurance (hash chains, Merkle trees and proofs)
– public key cryptography (authentication of consensus protocol messages and

user-submitted transactions)
– zero knowledge proofs (privacy-preserving transactions)
– symmetric encryption (on-chain confidentiality)

All of these protocols are trusted to not have design or implementation flaws.
Many frameworks assemble their cryptography from a variety of sources, includ-
ing standard libraries, external libraries and custom implementations (see
Sect. 5). While some developers such as the Hyperledger open-source project
perform third-party security audits [33], even the most diligent audits may miss
vulnerabilities. Operators and users must trust protocol design and implemen-
tation, often without the ability to verify due to lack of cryptographic expertise.

Network Protocols. A fundamental trust factor for distributed ledger node
communication is untampered operation of the underlying network. Distributed
ledger networks are overlay networks, so they rely on P2P routing algorithms and
message dissemination protocols for communication. Since all peers are equal,
any single peer may cause disruption in the network by sending anomalous or
malicious traffic. This may cause unexpected behavior and violate the aforemen-
tioned trust assumption.

3.2 Overlay Network

A distributed ledger network is a permissioned overlay network that consensu-
ally maintains a replicated ledger. In this overlay network, independent operators
deploy a software framework previously agreed upon (i.e. Hyperledger Fabric).
There are several tasks that each operator is trusted to fulfill by other partic-
ipants: carry out operations tasks, maintain identity and access privileges and
participate in consensus. The network layer also provides virtualization capabil-
ities for replicated deterministic application execution in the application layer.

Operations. These independent organizations trust each other to perform node
setup and operation without malicious manipulation. While there is some fault
tolerance built into distributed ledgers (see Sect. 3.2), more than two-thirds of
operators must behave honestly if byzantine-fault tolerant protocols are used.

Operation includes consensual admission/removal of members, on-chain
application upgrades and framework upgrades. For the latter, all operators must
agree on a coordinated time for system maintenance. Provided that all partners
agree on the schedule, some partners might not be able to upgrade successfully
[20]. Even if the failure to upgrade is not of malicious intent, it might pose
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considerable challenges to all involved parties, like setting up a new network and
migrating data. Overall, the process requires significant trust in other organiza-
tions that cannot be mitigated by technology.

Identity and Access Control. Since the network is made up of independent
organizations, each entity must be able to manage its users independently. This
means that every organization must trust the others to properly manage iden-
tities and access rights. Since internal screening and job rotation processes are
usually opaque to others in collaborative business networks [25], this can be
considered blind trust.

Fundamental to permissioned distributed ledgers is an access control mech-
anism that ensures only authorized operators are part of the network. This is
usually realized by assigning each node a public key, which is known to the other
nodes and used to authenticate and secure communication. While admission/re-
moval of node operators is based on majority consensus, other participants must
be trusted to only accept legitimate new members. Additionally, compromise
of a single node’s credentials may undermine the trust assumption of a closed
network.

Consensus. The consensus protocol is the distributed agreement protocol at
the core of a permissioned distributed ledger, allowing all nodes to share a single
replicated state. However, due to fundamental limitations underlying determinis-
tic replicated state machines, less than one-third of participants may be malicious
at the same time [12]. This limit means that operators must trust one another
to act honestly and to not manipulate the consensus protocol.

3.3 Applications

Applications implement the business logic specific to each network. Next to
on-chain smart contracts, off-chain applications and data are often required to
implement all functionality and integrate with other enterprise systems.

On-Chain Applications. On-chain applications are generally referred to as
smart contracts, although this depends on their implementation (see Sect. 5.7).
They promise to replace trust through replicated and verifiable deterministic
execution. Since both code and state can be inspected by anyone with access to
the ledger, their execution is predictable to these parties. However, a number of
smart contract vulnerability studies have shown that code is not always law and
may be exploited to an attacker’s advantage. For example, in 2016 a symbolic
execution tool found almost half of all Ethereum contracts at the time to be
vulnerable [40]. In another study, 2 out 5 deployed Ethereum contracts were
shown to require trust in at least one third party, since parts of their control
flow may be changed after deployment [26].

Off-Chain Applications. One example for off-chain applications are web appli-
cations for user interaction with the distributed ledger. Without a way to verify
what is going on behind the scenes, users must blindly trust that the application
does not manipulate any data sent through it. While this is also the case for
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Table 1. Summary of distributed ledger trust components by layer.

Protocols Overlay network Applications

Storage Operations On-chain applications

Cryptography Identity Off-chain applications

Network Consensus Off-chain data

traditional web applications, a distributed system aiming to create trust should
provide stronger guarantees.

Off-Chain Data. Full replication of the blockchain data structure mandates
parsimony w.r.t. transaction sizes. Distributed ledger applications rely on off-
chain storage solutions to manage larger data volumes. In fact, a recent study
found that a majority of DLT operators only include hashes in on-chain trans-
actions [32], which point to off-chain data and serve as integrity timestamps.
Operators must trust their peers to maintain sustained availability, since off-
chain data is not fully replicated. If off-chain data is access protected, the storage
operator must also be trusted to maintain correct access privileges.

Besides referenced data, external data may also be needed as input for
computation (i.e. currency exchange rates). Since external data sources must
return deterministic results, distributed ledgers rely on trusted external content
providers (oracles) - hereby reintroducing trust elements.

A summary of all identified trust components is shown in Table 1. Overall,
the complexity of the DLT software layers results in a high degree of obscurity.
It becomes increasingly difficult to verify correctness and security of the software
stack. The trust actors (operators, users and software service providers) must
trust both software components and each other to act as expected. In the next
section, we focus on how insiders can exploit these trust assumptions.

4 Insider Threats

Given the aforementioned trust elements required for operating a permissioned
distributed ledger network, insider attacks may pose a significant threat. With
the emergence of business networks and blockchain consortia for data sharing,
the partners’ information systems infrastructures are no longer isolated environ-
ments with a protectable logical perimeter. Access to an organization’s resources
is implicitly simplified for outsiders that are part of the consortium. This is a
direct consequence of sharing information with other organizations.

As a result, a holistic security model must also include actors from net-
work partners. This group of threat actors is also known as external insiders.
External insiders are characterized by having limited access to an organization’s
network as a result of some business relationship [25]. In a distributed ledger con-
text, the relationship may be the result of a collaborative network with multiple
organizations.
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Table 2. Overview of insider threats and consequences.

Insider type Threat MO DE DI DU

Software service provider Vulnerability injection x x x x

Operator Denial of service x

Data manipulation x x x

Credential compromise x x x

Malicious misconfiguration x x

User Unauthorized operations x x

All Vulnerability abuse x x x x

Information leakage x

Subsequently, we describe the various insider threats to distributed ledgers by
analyzing each group of trust actors. Irrespective of an insider’s group, there are
generally four types of consequences an insider might achieve in an attack [37]:

– Modification (MO)
– Destruction (DE)
– Disclosure (DI)
– Denial of use (DU)

Insiders may exist in any of the three groups of trust actors stated in Fig. 1.
Depending on the group, there are different ways to exploit their privileges.
Table 2 lists the major categories of insider threats and their consequences in
distributed ledger consortia. While many of these threats are also applicable to
existing information systems, distributed ledgers are particularly vulnerable due
to the large number of software components and cross-organizational users.

Permanent modification or destruction of data are generally difficult to
achieve with DLT due to built-in fault tolerance and replication. Nevertheless,
collusion-based data manipulation or software vulnerabilities may cause data
manipulation on all nodes. Disclosure of information and denial of use are the
more likely consequences of an insider attack on a distributed ledger. They are
significantly easier to accomplish and may be achieved with user or operator
level permissions. We elaborate on these threats in detail hereafter.

4.1 Software Service Providers

If an insider is in the role of an internal software developer with full code access,
there is significant threat potential for any of the four consequences to happen.
Collins et al. [15] have surveyed a variety of methods that programmers acting as
malicious insiders have used in the past. Common methods are code modification
or injection of malicious code, causing vulnerabilities. Characteristic for this type
of manipulation is a time delay between injection and impact of the attack, since
software builds go through testing and deployment phases. In large software
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projects without strict code review procedures, these types of manipulations
may easily go under the radar of other developers. Vulnerabilities can then be
abused by the programmer or colluding operators/users. They may corrupt the
integrity and availability guarantees that a distributed ledger provides, leading to
manipulation or loss of information. Intentionally timed bugs may cause network
unavailability. Backdoors (either for outsiders or insiders) could be inserted that
lead to disclosure of confidential information.

The potential attack vectors depend on the developer’s area of responsibility
(protocol/framework/application level). Currently, distributed ledger protocols
and overlay-level frameworks are often provided by open-source initiatives. If an
open-source project is subject to peer-review and security audits, these parts
of the software are unlikely to be affected by insider attacks threatening a sin-
gle organization. However, applications built on these frameworks must be cus-
tomized to specific business requirements—either by employees or third party
developers. For this reason, the application level is more prone to software devel-
opment insider threats. Business networks may collaboratively develop applica-
tions, which extends this attack vector to external insiders.

4.2 Operators

Overall operators have the largest number of insider attack options at their dis-
posal, since they directly control a network node. Even though a single operator
controls only one node, malicious behavior may have powerful denial-of-service
effects on networks with few participants, as mentioned in Sect. 3.2.

In larger networks, operators could take advantage of their knowledge about
the current consensus leader. A malicious operator may launch a targeted denial
of service attack to cause network interruptions (see Sect. 5.6). Additionally,
collusion of operators from other organizations (i.e. by external insiders) might
result in denial of service, if it leaves the network unable to reach consensus.
Generally, network operators have a common goal and should not be inclined
to collude against others. This might change if goals shift, or partners feel that
they contribute more to the network than they gain in return.

An insider might attempt to accomplish modification of stored data by coor-
dinating an attempt to replace ledger data in collusion with other nodes. This
type of attack is known as a 51%-attack for permissionless blockchains [35]. Gen-
erally this is only feasible if consensus is stochastic, while permissioned networks
usually rely on deterministic consensus. Nevertheless, availability of off-chain
data with low replication factors is still at risk.

System administrator insiders have access to all relevant credentials for node
operation. These credentials can be leaked, or misused by adding/removing users
or manipulating access control privileges at will.

Another way to subvert data integrity is configuration manipulation. Suc-
cessful configuration manipulation requires collusion, since such changes need to
be approved by a majority of operators in properly configured networks. With-
out automated punishment mechanisms, a single misbehaving node may however
still cause temporary service disruption.
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4.3 Users

Users have only a limited number of options for exploiting the distributed ledger
network. Nevertheless, due to external insiders the number of potential attackers
is higher than in intra-organizational applications. Improperly managed access
rights for these users may enable leakage of confidential information.

Another attack vector are vulnerabilities in custom-developed contracts.
They could enable insiders to carry out unauthorized asset transfers or even shut
down an application. Insiders might have increased knowledge about application
internals such as access to source code and technical documentation, enhanc-
ing their ability to discover programming flaws and carry out unauthorized
operations.

It is important to note that threats are not strictly restricted to a specific
group of trust actors. For example, operators may also impersonate users if
they control the identity component. Conversely, users may gain operator-level
privileges through improper access right management.

In fact, some threats are exploitable by any actor with access to the dis-
tributed ledger network. Whether intentional or inadvertent, vulnerabilities can
be abused by any insider with the required knowledge and skills. Since all nodes
of the network likely run the same software, remote code execution vulnerabil-
ities may lead to irreversible manipulation or loss of data. Similarly, any par-
ticipant with access to distributed ledger data may leak data to parties outside
the network. The extent of information leaked depends on the insider’s access
privileges.

5 Insider Threat Analysis of Popular Frameworks

To demonstrate applicability of the identified insider threats to permissioned
blockchain frameworks, we conduct a technical threat analysis of several pop-
ular blockchain frameworks. Frameworks were selected based on a survey of
industry and research support conducted in July 2019. Regarding industry sup-
port, the Ethereum Enterprise Alliance (240 members), the Hyperledger project
(249 members) and R3 (92 members and 294 partners) were the largest enter-
prise consortia working on open-source permissioned DLT frameworks. To gauge
research interest, we searched several literature databases for mentions of per-
missioned distributed ledger frameworks. We used fulltext search since some
framework names are ambiguous and might be used with a different meaning in
a distributed systems context (i.e. Quorum). The search result counts totaling
close to 1000 academic publications are shown in Fig. 4. As a result of this survey
we decided upon the four frameworks detailed below.

We briefly describe each framework below and summarize the technolog-
ical components in Table 4. To future-proof our analysis, we mainly analyze
threats resulting from architectural design choices, which are unlikely to change
in the future. We assume that operators strive for a secure configuration, which
includes a byzantine-fault tolerant (BFT) consensus algorithm to prevent byzan-
tine manipulations.
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Fig. 4. Research popularity of distributed ledger frameworks (search result count by
search term and academic database).

Hyperledger Fabric is a blockchain framework relying on a novel execute-
order-validate architecture. This architecture was created to rule out source of
non-determinism during consensus and improve performance [4]. We assume that
the BFT-SMaRt consensus algorithm1 [9] is used for ordering service consensus,
since it is to our knowledge the only currently available BFT consensus module
for Fabric.

Hyperledger Sawtooth [49] is a blockchain framework, which modularizes
transaction processing with so-called transaction families. They include prede-
fined families for permissioning and on-chain settings management. Consensus
is also modular, but we assume that the Practical Byzantine Fault Tolerance
(PBFT)2 [12] module is used.

Ethereum [18,24] is a popular permissionless blockchain framework, which
runs smart contracts written in the Solidity language in an isolated environment
called the Ethereum Virtual Machine. The go-ethereum client can also be set
up as a permissioned network with Clique Proof-of-Authority (PoA) consensus.
PoA is a leader-based consensus protocol with stochastic consensus, which only
provides eventual consistency as opposed to strong consistency provided by BFT
algorithms. It only requires 50% for a consensus majority, trading consistency
for availability.

R3 Corda [31,44] is based on a DAG data structure and only shares data
with other nodes when needed. To prevent double spending, mutually agreed
upon notary service clusters are used for consensus. We assume that BFT-SMaRt
consensus is used among notaries, since it is the only built-in consensus algorithm
which tolerates byzantine faults.

All of these frameworks have unique differences in their architecture and
the way applications are built on them. While some threats are applicable to
all frameworks, others apply only to specific frameworks due to architectural

1 github.com/bft-smart/fabric-orderingservice.
2 github.com/hyperledger/sawtooth-pbft.

http://github.com/bft-smart/fabric-orderingservice
http://github.com/hyperledger/sawtooth-pbft
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Table 3. Mapping of insider threats to abused distributed ledger trust components.

Threat 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9

Vulnerability injection x x x x x

Denial of service x x
Data manipulation x x x
Credential compromise x
Malicious misconfiguration x x x

Unauthorized operations x x

Vulnerability abuse x x x x
Information leakage x x x

choices. Subsequently, we survey each framework’s trust components and analyze
where insiders may abuse architectural flaws.

Table 3 highlights which framework components that each type of threat
exploits. The columns represent the subsections corresponding to the affected
trust components. Corresponding to the trust actors that each threat applies
to (Table 2) and their ability to access various trust layers (Fig. 3) some cells
are marked gray (not applicable). Vulnerability injection does not result in a
vulnerability abuse threat if the vulnerability can only be effectively abused by
the software service provider. Hereafter, we explain per component how each
threat may occur. Threats are italicized when they refer to a table entry.

5.1 Storage

The surveyed distributed ledger frameworks mostly rely on existing key-value
databases for data storage (i.e. LevelDB and CouchDB). None of these databases
offer encryption-at-rest, which means anyone with access to the database can
read all historical data contained in the ledger. Corda marks the exception: it
relies on relational databases, some of which offer encryption. Nevertheless, the
database itself is an attractive attack vector for operator insiders, who may
circumvent framework-level access control by directly accessing the underlying
database (information leakage).

5.2 Cryptography

Currently, distributed ledgers almost exclusively use public key cryptography
for authentication. The reviewed frameworks use NIST-recommended ECDSA
curves in combination with SHA2 for digital signatures, with some also offering
EdDSA and RSA. These algorithms are vulnerable to quantum attacks based on
Shor’s algorithm [6] (vulnerability abuse). Such attacks threaten the authenticity
of transactions and network messages (see Sect. 5.5). If symmetric keys were
encrypted using public key cryptography, this may also result in information
leakage. Once quantum computers reach sufficient computational power, current
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ledgers will have to be rebuilt from scratch with new identity schemes. Instead
of relying on a single cryptographic primitive, developers should instead adopt a
more future-proof approach. For example, quantum-proof hash-based signature
schemes use hash combiners, which remain secure if at least one of the input
hash functions is secure [6]. In our review, only Corda offers such a scheme
with SPHINCS2563. Still, no framework provides guidance for migration between
signature schemes.

Due to the unique challenges of trust in distributed environments, some
distributed ledger frameworks rely on new variants of cryptographic protocols
with unproven implementations (especially novel non-interactive zero-knowledge
proofs such as zk-STARKs [8]). While we are not aware of any cryptographic
flaws in the reviewed permissioned frameworks, there are examples among per-
missionless blockchains. Recently, a zero-knowledge proof vulnerability in the
permissionless blockchain Zcash was publicized, which had been kept secret by
the development team for more than 11 months [48]. In this case the developer
that discovered the bug did not have malicious intentions and worked on fixing
the bug instead of exploiting it. But the incident shows that open-source code is
not immune to longstanding hidden vulnerabilities. These may even be inserted
into the code intentionally by members of the development team (vulnerability
injection). If discovered by malicious actors, they could be kept secret for con-
tinued exploitation. Overall, trust in the security of cryptographic protocols is
not guaranteed and may be undermined at any time.

5.3 Network Protocols

The reviewed frameworks rely on different network protocols for node-to-node
communication. The ZeroMQ protocol4 used in Sawtooth and the AMQP proto-
col5 used in Corda have experienced denial of service and remote code execution
vulnerabilities in the past6. External insiders, who know about the underlying
protocols, may abuse these vulnerabilities to cause damage to specific competi-
tors in the network (vulnerability abuse).

Consensus protocols require constant network communication between all
involved nodes. For this reason, they are vulnerable to network-partitioning
attacks such as Border Gateway Protocol (BGP) hijacking and Eclipse attacks
[35]. These attacks have so far mainly been observed and studied on permis-
sionless blockchains. In permissioned blockchains, manipulations of the routing
protocol or network traffic interception can also lead to network partitions [22].
If none of the partitions are large enough to reach consensus, the network will
stop processing incoming transactions (deterministic algorithms) or create com-
peting forks (stochastic algorithms) [21]. For some consensus algorithms, these
network partitions can even allow malicious double-spending transactions (see
Sect. 5.6).
3 sphincs.cr.yp.to.
4 zeromq.org.
5 www.amqp.org.
6 cve.mitre.org.

http://sphincs.cr.yp.to
http://zeromq.org
www.amqp.org
http://cve.mitre.org
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Table 4. Overview of software components used in popular distributed ledger
frameworks

Hyperledger

Fabric v1.4

Hyperledger

Sawtooth v1.1

Go-Ethereum v1.9 Corda v4.1

On-chain

contracts

Chaincode (Go,

nodeJS, Java)

Transaction

Processor (see

below)

Smart Contract

(Solidity)

CorDapps (Java)

Off-chain

applications

Go, Java,

nodeJS, Python

Go, Java, nodeJS,

Python, C++, C#,

Swift

Web3 (nodeJS) Java

Off-chain

data

– – Swarm Oracles

Operations ReST

Operations

Service, CLI

Settings TP, CLI RPC CLI RPC CLI

Identity Membership

Service Provider

Identity Transaction

Processor

Accounts Hierarchical PKI,

Doorman Service

Consensus Endorsements

(custom),

Ordering (Kafka,

BFT-SMaRt)

Journal (PoET,

Raft, PBFT)

PoA, IBFT Notary (Raft,

BFT-SMaRt)

Storage LevelDB,

CouchDB

LMDB LevelDB, RocksDB H2, Postgres,

SQLServer

Cryptography ZKP: idemix

Signature:

ECDSA

P256/384,

Hash: SHA256,

SHA3

Encryption: AES

Hash: SHA256/512

Signature:

libsecp256k1

Hash: Keccak

Signature (using

SHA256/384/512,

AES): ECDSA

P256, P384, P521,

S256, bn256

Hash: SHA256

Signature (using

SHA256/512, AES):

RSA; ECDSA

secp256r1,

secp256k1;

EdDSA-ed25519;

SPHINCS256

Network GRPC, Gossipa ZeroMQ devP2Pa AMQP
acustom protocol

5.4 Operations

Regarding operational tools, the frameworks offer little in terms of monitoring
capabilities. Only command-line interfaces (CLI) and transaction types for on-
chain settings (Hyperledger Fabric and Sawtooth) are offered to retrieve metrics
and update settings. Without significant effort by the operators, this may lead
to manipulations of configuration settings going undetected (malicious miscon-
figuration). Additionally, intentional manipulations of consensus network traffic
are nearly impossible to detect without proper monitoring. For example, TCP or
UDP flooding attacks reduce transaction throughput to a small fraction of peak
throughput [14]. Lack of monitoring facilities effectively allows operator (exter-
nal) insiders to control network throughput by launching attacks when desired
(denial of service).

Despite their initial immutability, smart contracts can be upgraded in all
surveyed frameworks7. If only bytecode is available for inspection, there is no

7 Ethereum only allows upgrades if the contract has been set up in a modular way.
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easy way to tell what part of the contract was changed. Since smart contracts
may contain vulnerabilities or require feature extension, upgrades cannot be
regarded as unusual per default. Individual operator insiders may abuse this
fact by upgrading a contract with malicious functionality (vulnerability injec-
tion). Requiring signatures of multiple operators for a successful upgrade is a
potential mitigation, but the contract needs to be set up with multiple owners
for this to apply (Ethereum, Fabric). Corda requires all participants that share
a state to sign contract upgrades, but contract signature constraints also permit
custom rules that require less signatures for an upgrade [44]. Sawtooth offers
no mechanism for coordinated upgrades. Transaction processors run as indepen-
dent processes next to the validator network and are upgraded by each operator
individually.

5.5 Identity and Access Control

All permissioned networks must admit identities through some form of a gate-
keeper. Distributed ledger frameworks attempt to decentralize admission of val-
idating nodes by voting on new members. This does not apply to users, who
must receive a certificate through a validating node or its certificate authority.
In Ethereum and Sawtooth, there is no certificate infrastructure integration:
users either create accounts themselves or request them from a node administra-
tor. However, account pseudonyms need to be mapped to real-world identities
for many applications. A lack of certificates complicates permission revocations,
which then need to be performed on the application level. Lack of a single source
of truth for identity also leads to excessive access rights over time, which enable
insider abuse [27]. A potential consequence of unchecked access rights is infor-
mation leakage.

Conversely, Hyperledger Fabric and Corda rely on traditional hierarchical
PKIs with a root authority. In these systems, each node operates its own certifi-
cate authority. Certificates are then shared across the network through a feder-
ation service. As a result, each validator node recognizes the identities issued by
its peers. From an insider perspective, this means that any employee with access
to the gatekeeper of a participating organization can create valid identities for
the entire network. By subverting the local certificate authority, operator insiders
may replace associated node’s certificate and impersonate it (credential compro-
mise). Accordingly, a collusion between CA operators can subvert multiple node
identities and overtake the network, thus enabling data manipulation.

Fundamentally, the identity component relies on the underlying crypto-
graphic signature protocols. If a cryptographic primitive is broken, credentials
can be forged by issuing fake signatures. Fake signatures in turn enable data
manipulation and malicious misconfiguration through malicious transactions.

5.6 Consensus

The surveyed permissioned distributed ledger frameworks rely on crash fault-
tolerant (CFT) or byzantine fault-tolerant (BFT) algorithms. CFT algorithms
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do not tolerate any malicious activity and are built only to tolerate crashes [10].
As a result they are prone to manipulation by any one operator and not well
suited for usage in semi-trusted environments like business networks. Despite
this, most frameworks in our survey recommend CFT protocols and mark BFT
consensus implementations as experimental.

If operators use BFT algorithms, up to f malicious nodes among n = 3f + 1
total nodes are tolerated without ceasing operation. Byzantine failures encom-
pass all possible failure modes of a system. The performance of most BFT algo-
rithms is however heavily impacted by the presence of failures and no consensus
is reached with more than f failures. As a result, a single operator can signif-
icantly decrease throughput in PBFT-based networks with n < 7 independent
nodes (3f + 1 = 7 | f = 2) by flooding the network with messages [14]. Collu-
sion between two operators can even shut down network consensus and prevent
new transactions (malicious misconfiguration). Therefore, smaller permissioned
networks are especially at risk of denial of service by a minority of participants.
In addition to flooding-based denial of service, malicious consensus leaders can
also degrade performance in most BFT consensus protocols [5].

The PoA algorithm used by permissioned Ethereum networks is vulnerable
to the Attack of the Clones [22]. In the attack, a single malicious node can
double spend with high probability. By cloning itself and intercepting messages,
a network partition is created. The victim partition is deceived by submitting
a conflicting transaction to the other partition, which is later accepted as the
canonical transaction (data manipulation). Based on the authors’ assessment,
the only viable countermeasures are switching to a BFT algorithm or requiring
a two-thirds majority instead of the current 50%.

In addition to protocol flaws, vulnerability injection in the consensus protocol
implementation may lead to nodes accepting invalid or malicious transactions.
This could be abused by SSP insiders to circumvent on-chain access permissions
and transfer assets or tokens.

Fig. 5. Illustration of injection and delayed abuse of a vulnerability by a SSP insider.
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5.7 On-Chain Applications

Transparency is an often-cited advantage of smart contracts. In the surveyed
frameworks, contract code is rarely transparent to all operators, and never to
users. In Hyperledger Fabric, chaincode source code is only known to the peers
specified in its endorsement policy. For Sawtooth, bytecode is deployed when
using the Seth (Solidity), Sabre and Java SDKs. For transaction processors
based on the Python and nodeJS SDKs the source code is transparent, since
they are interpreted languages. In Ethereum, only compiled Solidity bytecode
is visible to blockchain node operators. Corda’s CorDapps are only shared by
peers concerned with the application, who need to compute the state changes for
notary consensus. A lack of transparency can lead to undetected manipulations,
for example through covert contract upgrades.

To demonstrate how this might occur in practice, Fig. 5 illustrates the three
steps of vulnerability injection and subsequent vulnerability abuse. First, the SSP
insider injects a vulnerability into an on-chain or off-chain application (1). With
the next scheduled operational software upgrade, operators deploy the vulnerable
version of the software to the production network (2), permitting the insider to
abuse the vulnerability (3).

For Hyperledger Fabric, the two most popular SDKs on GitHub are based
on nodeJS and Go. Both languages allow package imports from public version
control sites such as GitHub. This method could be abused by a software service
provider to conceal malicious functionality in the chaincode or insert a backdoor.
By changing the code of a self-controlled dependency, the developer gains the
ability to manipulate dependent code sections, while obscuring the changes from
the client. Additionally, existing vulnerabilities in packages may be knowingly
included by a SSP insider to be exploited later on. Due to the large number
of transitive dependencies, the nodeJS dependency management system npm is
especially prone to attacks based on existing vulnerabilities [19]. For Ethereum
smart contracts, many vulnerability classes are known [35] due to public scrutiny
and open source application bytecode. For Sawtooth and Corda there are not
many production deployments yet, so to the best of our knowledge we are not
aware of any vulnerabilities.

To summarize, chaincode and smart contract vulnerabilities may manipu-
late the output state of a contract (data manipulation), prevent consensus by
introducing non-determinism (denial of service), and leak secrets by sending con-
fidential data to parties outside the network (information leakage). Additionally,
users may be able to conduct unauthorized operations due to a smart contract
permission management vulnerability.

5.8 Off-Chain Applications

Production deployments of DLT must include a client software, since direct
interaction with a blockchain node is not user-friendly and requires command
line skills. This client software relies on Software Development Kits (SDKs)
published by software service providers. Table 4 shows the diverse programming
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languages that these SDKs use. For SDKs using package managers, the same
attack vector from Sect. 5.7 applies (vulnerability injection). SSP insiders may
abuse SDKs or client software to hijack user identities and thus gain access to
the distributed ledger network (credential compromise).

5.9 Off-Chain Data

For referenced off-chain data, the reduced replication factor exposes data avail-
ability to collusion attacks. Depending on the replication factor r of items stored
off-chain, r operators may collude to irreversibly delete a key-value pair stored
off-chain (data manipulation).

Off-chain events providing external data are not natively supported by the
surveyed frameworks. The requirement for code determinism runs counter to
uncertain responses from external sources. Consequently, external data is often
integrated via trusted applications that attempt to guarantee response integrity.
These applications are referred to as validation oracles [52]. They act as auto-
mated arbitrators that sign transactions referencing external data on demand.
Corda is the only framework that provides built-in integration with centralized
oracle services for this purpose. They are accepted as an authoritative source
of data by a set of peers. An insider may compromise that service and manipu-
late transactions at will, without needing access to the distributed ledger (data
manipulation). Depending on the application, such attacks can be hard to dis-
cover, since the oracle service is not transparent to all operators. Alternative
proposals that avoid relying on a centralized provider include secure hardware
architectures such as Town Crier [53], and cryptocurrency-based decentralized
blockchain oracles such as Astraea [1].

6 Mitigations and Future Research

The previous sections have shown how various types of trust actors in a dis-
tributed ledger system may abuse trust components and carry out insider
attacks. Based on these insights, we now elaborate how DLT adopters can better
assess which components they trust, and how they can mitigate resulting insider
threats.

6.1 A Realistic View of Trust in Distributed Ledgers

Instead of regarding blockchain as “trustless”, DLT adopters should be aware
of the technological components that their trust relies on. First and foremost,
software trust management processes should be established to ensure that trust
is warranted. The inherent failure modes and consequences should be integrated
into organizational risk management.

Regarding trust in the various software components of distributed ledgers,
software trust research has established trust principles and an ordered set of
classes for software trust measurement [3]. The classes range from Untrusted
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(T0) to Trusted (T5) and require a progressively larger set of trust principles to
be fulfilled. Classes T4 and T5 aim to prevent malicious activity and could be
used to certify components for inclusion in trusted distributed ledgers.

To reduce the implicit trust resulting from allowing others to manage iden-
tities and access rights, trust-based distributed access control models could be
used. Such frameworks include risk assessment processes that dynamically adapt
to users’ behavior [7]. Additionally, next generation decentralized blockchain-
based identity management could enable consensus-based trust in external users,
instead of relying on federated membership schemes.

To increase trust in smart contracts, a number of approaches have been
proposed. Business and legal smart contract specification languages based on
formal reasoning can help reduce ambiguity for programmers and lock down
edge cases [2].

To make user interaction with distributed ledgers more transparent, “decen-
tralized applications” (DApps) may be used. DApps are web applications relying
solely on an on-chain application backend. DApp frontends should be distributed
as client-only applications, with code only served from, but not executed on a
centralized web server. This ensures that code execution is fully transparent to
end-users. Transaction submission to the blockchain can be explicitly authorized
using open source browser extensions (i.e. MetaMask [42]).

6.2 Insider Threat Mitigation

Techniques for insider threat mitigation have been studied extensively in the past
[16]. They require an interdisciplinary mitigation approach, combining insights
from computer science, psychology and other fields. Correspondingly, mitigation
techniques can be classified as technical or organizational. We have analyzed
mitigation techniques in the literature and applied them to the threats men-
tioned in Table 2. The result of this analysis is shown in Table 5. We emphasize
technical measures, but organizational mechanisms are sometimes required and
often beneficial.

To counter injection of vulnerabilities or flaws by software service
providers, code review processes help assure sufficient oversight and reduce the
probability for malicious activity to go unnoticed. From a framework perspective,
transparency should be assured by embedding on-chain application code into the
distributed ledger framework. Participants should be able to retrieve source code
for a contract at any given time. Re-compiling source-code from a repository is
too time-consuming and error-prone to serve as a verification method for smart
contract bytecode.

Additionally, dedicated vulnerability scanners exist specifically for dis-
tributed ledger on-chain applications [40]. Whether these scanners are suitable
for detecting insider-induced intentional manipulations of program flow has yet
to be shown. Future empirical research may also analyze specific programming
techniques that insiders use to attack distributed ledgers, similar to the study
conducted by Collins et al. [15].
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Table 5. Overview of potential mitigations for insider threats. O: organizational, T:
technical.

Threat Mitigation O/T

Software service

provider

Vulnerability injection Software trust

management

O

Code review and

transparency

O, T

Vulnerability scanners T

Operator Denial of service Legal agreements O

Robust consensus

algorithms

T

Data manipulation Automated detection and

punishment

T

Credential compromise Credential revocation

mechanisms

T

Malicious

misconfiguration

Configuration integrity

checks

T

User Unauthorized operations Activity monitoring O, T

Anomaly detection T

All Information leakage Granular Identity and

Access Management

T

Granular encryption T

Vulnerability abuse Software update

management

T

Intentional denial of service caused by a collusion of operators may be
mitigated through legal agreements and incentives. While research on collusion
in distributed ledger networks is still scarce, trust-based reputation algorithms
could help. They may prevent collusion attempts or at least minimize their
impact on network availability by punishing colluding peers. In the past, repu-
tation systems based on peer-to-peer networks have also faced the issue of col-
lusion [41]. Future research could thus transfer insights on collusion prevention
from peer-to-peer reputation systems research and related areas to distributed
ledgers.

Regarding consensus attacks targeting network availability and throughput,
robust consensus algorithms such as RBFT [5] can help. Robust protocols sacri-
fice some throughput compared to traditional algorithms [14], but maintain high
availability and throughput regardless of attacks.

Activity monitoring tools and corresponding organizational processes assist
with timely detection of data manipulation. The threats listed in this work can
serve as guidance for activities to monitor. To prevent insider abuse by unchecked
node administrators, monitoring should be part of IS security management and
organizationally separated from operational IS administration. Similarly, certifi-
cate authority and DLT node should be managed by separate entities. If any
entity attempts to manipulate node settings, automated configuration integrity
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checks should raise alerts in security monitoring units across the network. In
case of external insiders, attack attempts should be punished either through
legal agreements or a built-in incentive system.

Transaction anomaly detection could help spot unauthorized operations. If
anomalies are detected in time, further abuse of permissions can be prevented.
For traditional database systems, tools have been developed that automatically
determine profiles of normal activity based on application profiles [34]. Similar
security analytics tools can be developed to detect anomalous smart contract
transactions.

One of the main countermeasures for information leakage by users is gran-
ular identity and access management (IAM) [27]. If users cannot send trans-
actions or access ledger data without first being authorized by an application
owner, the attack surface becomes significantly smaller. For authorized users,
automated detection and timely removal of access privileges helps limit per-
mission buildup and impact of insider attacks. Still, it remains challenging to
ensure that each operator of the network keeps its individual permissions and
access rights updated. Future work could examine how to enforce granular IAM
network-wide, for example through automated checks or incentives.

Another tool to limit malevolent information disclosure is granular encryption
of data, ensuring that users are only able to view data they need to access. Orga-
nizations must correctly decide where to encrypt data on the application level.
Additionally, they should be parsimonious regarding confidential data stored on
the ledger. Symmetric encryption keys may eventually be leaked, but on-ledger
data cannot be deleted.

Overall, we observe that a holistic security monitoring concept is necessary
for each organization participating in a distributed ledger network. A set of
standardized monitoring metrics is a necessary prerequisite to detect manipula-
tions of the various trust components. Due to unique differences in distributed
ledger architectures, the metrics need to be customizable to the specific appli-
cation context. One metric should be vulnerabilities in framework components,
with automated software update processes attempting to minimize the number
of vulnerabilities. Future work should focus on creating and evaluating such a
security management framework for permissioned distributed ledger networks.

7 Conclusion

While distributed technology offers great benefits, organizations planning to take
advantage of it should be aware of the trust relationships they enter. In this
work, we established key trust actors and components for distributed ledgers to
provide a better understanding of hidden trust factors and security risks. On
the one hand, software trust in the components of a distributed ledger system
is a key factor. If there are vulnerabilities or bugs, trust assumptions may be
violated with grave consequences. Additionally, operators must still trust one
another to some degree to cooperatively run a network. If this trust turns sour
during operation, the distributed ledger network may become subject to denial
of service or collusion attacks.
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These attacks may be especially severe if carried out by insiders. They pos-
sess unique access to organizational resources that may facilitate subversion of
distributed ledger trust assumptions. Insiders involved in application develop-
ment may willingly inject vulnerabilities or malicious code. Node administrator
insiders have elevated access rights to credentials and configuration. Malicious
manipulation of these components may result in denial of service for the entire
network. Modification or destruction of data are also possible in some cases (see
Sect. 4), despite the integrity guarantees that distributed ledgers normally pro-
vide. Both internal and external insiders may leak data or abuse vulnerabilities
in the distributed ledger software stack.

Due to the current lack of productive deployments of distributed ledger net-
works, this work focused on analyzing the potential impact of insider attacks
from a theoretical perspective. To reinforce these claims, we elaborated on how
insiders may exploit the architecture of popular distributed ledger frameworks.
Future research may conduct case studies with real deployments of these frame-
works to validate the listed insider threats and to further develop mitigations.
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Abstract. This paper presents a Tensor based Data Model (TDM) for
polystore systems meant to address two major closely related issues in
big data analytics architectures, namely logical data independence and
data impedance mismatch. The TDM is an expressive model that sub-
sumes traditional data models, it allows to link different data models
of various data stores, and which also facilitates data transformations
by using operators with clearly defined semantics. Our contribution is
twofold. Firstly, it is the addition of the notion of a schema for the ten-
sor mathematical object using typed associative arrays. Secondly, it is
the definition of a set of operators to manipulate data through the TDM.
In order to validate our approach we first show how our TDM model is
inserted into a given polystore architecture. We then describe some use
cases of real analyses using our TDM and its operators in the context of
the French Presidential Election in 2017.

Keywords: Polystore · Data model · Logical data independence ·
Impedance mismatch · Tensor

1 Introduction and Motivations

In a globalized economy, driven by digital technologies, data become an element
of added value and wealth. In addition to their volume, data are also becoming
increasingly diverse in their production mode and their use. As all sectors of
the economy are undergoing deep transformations of their activities, we observe
an increase of demands to manipulate and analyze heterogeneous data (struc-
tured, semi-structured, and unstructured data). For example, the agriculture
industry needs to forecast product demand and analyze weather conditions in
order to decide when to sow, etc. Large cities are being converted into smart
cities, with applications covering a wide range of citizen needs, such as public
transportation or optimization of traffic. Insurances and financial institutions
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have significant needs for domain specific applications of big data analytics in
order to be able to trace and detect potential risks for their clients, products
and customers. In the energy sector, the implementation of sensors, remote con-
trol tools and smart-grids generate data which can be used to optimize and
adapt network delivery to user needs. In the field of health, sociodemographic
and health data available from different sources can be used to support diagno-
sis, to identify disease risk factors, or to assist practitioners with the choice of
treatments. In marketing, social networks data are used to discover communi-
ties, opinion leaders or to detect and study the propagation of fake news. Even
though all these domains use data from various sources, two main underlying
principles can be observed in the previous examples: the first is to store data
as events (i.e., actions, measures, logs) and the other is to store data as entities
described by properties with operations that implement state changes.

In order to study these different kinds of data in depth, i.e., to go through
data, information and knowledge layers, complex analytics processes are defined.
Nevertheless, data analysis tasks are conditioned by objectives and therefore such
tasks require compliant data structures, e.g., time series, grids, cubed sphere,
complex networks, multi-layer networks, co-occurrence matrices, etc. These data
structures can be completely different from models supported by storage systems.

Thus, big data analytics infrastructures must support all corresponding activ-
ities and not just the execution of algorithms which have different theoretical
foundations such as graph theory, linear algebra, statistical models, Markov mod-
els. In this context, ETL (Extract Transform Load) processes are commonly
used. Their role is not limited to the data ingestion phase but they are also used
for extracting data from data storage systems to feed algorithms. As pointed
out by Byron Ruth in a presentation entitled “ETL: The Dirty Little Secret of
Data Science” at the OSCON conference in 2014, ETL processes are expensive
to define and to set up. Moreover the data transformation scripts usually include
implicit knowledge that hampers their reuse.

The logical data independence property in database systems insulates pro-
grams from the logical database schema. It was introduced to cope with changes
of the logical database design or to maintain schema structure required by legacy
applications [61]. This property has also been studied in the context of database
interoperability [41] and federated database architectures [33,72,84]. The same
property is also of considerable importance in the analysis of big data, and more
particularly in the analysis of scientific data. The subjects, objects or entities
on which analyses are carried out are not necessarily well-defined. This is espe-
cially true when the aim of analyses is scientific research or when the phenomenon
being analyzed is poorly understood. Consider, for example, complex networks
or the emerging science of networks [11] where an interdisciplinary community of
researchers tries to elaborate tools and theories to study complex systems. These
characteristics are not typically observed in Business Intelligence where enterprise
data semantics is usually well-defined (e.g., there is no ambiguity about a person
who is a customer and about its attributes). Thus, ensuring logical independence
is a key issue for systems that analyze complex data (e.g., scientific data) using
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multiple types of algorithms (and a priori unknown), as it makes model transfor-
mations explicit and can therefore limit the role of ETLs.
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Fig. 1. Examples of programming abstractions used in Hadoop eco-system

The impedance mismatch describes mutual incompatibility between pro-
gramming paradigms and database capabilities, mostly at the data model level
[18,53]. As stated by Gray in [30], the impedance mismatch has made it diffi-
cult to map numerous science applications into conventional relational database
systems. This problem has also been identified in big data platforms [57], where
lots of different systems are used in a large software analytics stack to efficiently
address specific issues. Before looking at algorithm data structures, it should
be noted that different big data analysis tools use different programming and
language paradigms. In [85] authors have identified eight main classes of pro-
gramming paradigms. Figure 1 provides examples of programming abstractions
used in the Hadoop eco-system. MapReduce forces the developer to decom-
pose, if possible, algorithms into a sequence of mapping and reducing tasks.
Streaming systems, such as Apache Kafka1 or Flink2, require algorithms to per-
form repeatedly simple operations on streams with or without a shared state. It
turns out that incremental algorithms [27,62,73] are well-suited for this program-
ming model. The GPU computing requires to organize computation in a SIMD3

like approach, and linear algebra algorithms fit well with this paradigm. Algo-
rithms have also their own internal data structures that amplify the problems of
impedance mismatch, e.g., graph algorithms can use adjacency lists, adjacency
matrices or laplacian matrices. Thus, the impedance mismatch problem between
storage systems and analytics tools is at least existing at three different levels:
at the computing paradigm level, at the programming language level, and at the
data structure level. In order to overcome the impedance mistmatch, developers,
same as in the case of the problem of logical data independence, set up complex

1 https://kafka.apache.org/.
2 https://flink.apache.org/.
3 Single Instruction Multiple Data.

https://kafka.apache.org/
https://flink.apache.org/
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model transformations to extract data from storage systems, while conforming
to the programming paradigm and to the data structure required by algorithms.

We propose to revisit the issues of logical data independence and impedance
mismatch in the context of polystore. We develop an approach that integrates
analysis tools, such as Spark, R, Drill, TensorFlow, with storage systems in
a loosely coupled architecture. Our approach relies on a definition of a Tensor
based Data Model (TDM) that subsumes traditional data models (relational,
NoSQL, graph, etc.) and proposes a set of operators for defining virtual and
materialized views to be able to dynamically transform data into appropriate
data structures required by algorithms. The use of the tensor mathematical
object as the foundation for a data model brings additional benefits. Tensor
decompositions are powerful tools for extracting latent information [69]. TDM
and its operators allow users to quickly feed algorithms with data originating
from several storage systems, thus helping to reduce the complexity of ETL
tools by specifying models and data transformations as sequences of operations
in TDM. At the same time, it also reduces the impedance mismatch among
components by establishing specific views. Moreover, storage systems included in
the polystore architecture can continue to be used directly by programs written
in native languages of such systems (e.g., SQL, Cypher, REST API, etc.).

The remainder of the paper is organized as follows. Section 2 describes
and discusses multi-model data management approaches including multi-model
database systems, multi-paradigm systems and polystore. Section 3 discusses
DBMS architectures and describes our polystore architecture. Sections 4 and 5
present TDM a Tensor based Data Model and define its main operators. Section 6
relates experiments with the software architecture and provides two different
use cases. Experiments have been carried out within the TEP 2017 project
which studies the use of Twitter during the French Presidential Election in 2017.
Section 7 studies two aspects of performance of TDM: (1) in terms of space com-
plexity for data structures and time complexity for operators, and (2) in terms
of experimental evaluation.

2 Related Work on Multi-model Data Management

During the 1990s, the need for non-relational data processing has been identi-
fied in many application areas, and thus a number of database systems have
focused on a specific type of applications, e.g., object-oriented databases, XML
databases, spatial databases or RDF databases. In the early 2010s, a large num-
ber of NoSQL systems have been created to tackle specific issues without main-
taining all the properties of database management systems. A number of research
projects are now shifting the focus to building systems for support of multiple
data models. We can distinguish two existing approaches to definition, manipu-
lation and querying multi-model data.

Multi-model database systems manage different data models with a fully
integrated backend i.e., within a single system. They thus contribute to the
logical data independence, as such a system can handle complex and costly data
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transformations (i.e., feature selection, export and conversion of data) before
applying analysis algorithms.

Multi-paradigm systems include multiple dedicated DBMSs under the
umbrella of an integrated platform, i.e., a mediator. These systems are designed
as an answer to some pragmatic considerations. First, limiting heterogeneous
data in order to fit them into a single data model could be a hindrance for
establishment of complex data analyses and could lead to performance prob-
lems. Second, as stated by Stonebraker in [76,77], “one size fits all” is not an
appropriate solution for modern data-intensive applications. Likewise, Ghosh [28]
explains that storing data in the same way as within an application simplifies
programming and makes it easier to decentralize data processing.

The study of these two approaches is essential for developing a multi-model
storage system architecture. We detail and discuss these two approaches below.

2.1 Multi-model Databases

The first category of approaches, called multi-model databases, aims at building
or extending a single database system to manage multi-model data. Multi-model
databases offer a unifying query language and an API that cover all data mod-
els and allow a joint use of different models within a single query. Currently,
many database systems claim to be multi-model databases. However, the level
of support for multi-model data varies widely, offering different capabilities to
write queries across multiple distinct models, and to optimize query plans with
different models.

A Taxonomy. A database system can acquire multi-model properties either by
offering layers for additional data models or by supporting different data models
directly in its storage engine.

The first wave of multi-model databases has appeared after the year 2000
with the object-oriented paradigm and the emergence of XML. Major relational
DBMSs were extended to store and to process various types of data including
XML, geographical, textual and object. SQL was extended by the SQL/XML
standard or its variants. More recently, these database systems were often
enhanced to support the JSON format. For this type of multi-model databases,
only the relational model is the first class citizen, which means that all other
models are developed on the top of the relational technology. The second wave
has appeared after the year 2010 with the era of Big Data and the appearance of
NoSQL databases; the need to process a wide variety of data was well identified
and some NoSQL databases have proposed to natively support different models.

Representative Systems. We present some representative multi-model
database systems by classifying them according to the original data types
supported.

The first original database type is relational. Oracle8 was released in 1997
with an object-relational layer. Oracle 9i introduced in 2001 the ability to store
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XML and use it in queries. Oracle 12c was designed in 2013 for the cloud, and it
featured an in-memory column store, the JSON support for documents, as well as
RDF data with the Oracle Graph module. Oracle provides in-database analytics
queries implemented as packages, including functions available in SQL. Since
2006, PostgreSQL, a classical relational DBMS, supports storage of key/value
pairs in a specific data type hstore which maps keys to string values or to
other hstore values. Since 2013, PostgreSQL supports storage of the JSON
format with specific data types json and jsonb, which can be queried using
SQL extensions for JSON. HPE Vertica, a commercial version of C-Store [78],
stores data tables as columns (i.e., not as rows). It was also extended with
flex tables4 which do not require schema definitions and allow to store semi-
structured data (XML, JSON). Creating flex data is similar to creating classical
tables. Vertica implicitly adds a column raw which stores the loaded semi-
structured data. Vertica also adds an auto-incrementing column identity for
flex table without an additional column definition. The loaded data are stored
in an internal map data format VMap which is a set of key/value pairs. Vertica
supports standard SQL interface enhanced by a variety of in-database analysis
algorithms, including linear regression, logistic regression, k-means clustering,
naive Bayes classification, random forest decision trees, and it also supports
vector machine regression and classification.

The second type of systems has its roots in the NoSQL wave. ArangoDB5 is
an open source document database which was from the beginning (2011) created
as a native multi-model database. In ArangoDB, documents are represented in
the JSON format and grouped into collections. A document collection has a pri-
mary key and in the absence of other attributes the document collection behaves
like a simple key/value store. More recently, ArangoDB supports graph data
model. It has extended its original storage strategy with special edge collections.
They include two special attributes, from and to, which allow to create rela-
tions between documents (vertices). ArangoDB query language (AQL) is similar
to SQL with graph traversal. OrientDB6 supports graph, key/value, document,
and object models. An element of storage is a record having a unique id cor-
responding to a document (formed by a set of key/values), and a vertex or an
edge. Relationships are managed as in graph databases with direct connections
between records. OrientDB supports schema-less, schema-full and schema-hybrid
modes. OrientDB allows to query data with graph traversal language Gremlin
or SQL extended for graph traversal where the navigation across relations is
possible using the dot notation.

Another type of system differentiates itself by the use of an hybrid database
engine suitable for different kind of applications, e.g., OLTP, OLAP and stream
processing. In OctopusDB7 [23], all database operations create logical log-entries.

4 https://www.vertica.com/docs/9.2.x/HTML/Content/Authoring/FlexTables/
FlexTableHandbook.htm.

5 https://docs.arangodb.com/3.4/Manual/index.html.
6 https://orientdb.com/graph-database/.
7 https://bigdata.uni-saarland.de/projects/octopusdb.php.

https://www.vertica.com/docs/9.2.x/HTML/Content/Authoring/FlexTables/FlexTableHandbook.htm
https://www.vertica.com/docs/9.2.x/HTML/Content/Authoring/FlexTables/FlexTableHandbook.htm
https://docs.arangodb.com/3.4/Manual/index.html
https://orientdb.com/graph-database/
https://bigdata.uni-saarland.de/projects/octopusdb.php
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Each log entry contains a unique log sequence number, the database operation
performed, and the input parameter. Based on this log, several physical represen-
tations of the log (called storage views SV) are defined: for instance, OctopusDB
can create RowSV for transactional queries, or ColumnSV for read-only queries. As
another example, SAP Hana [25] is a distributed in-memory database with fea-
tures for the integration of OLTP and OLAP and the unification of structured,
semi-structured (graph) and unstructured (text) data. All data are kept in mem-
ory as long as there is enough space available, otherwise data are unloaded from
memory. SAP Hana provides rich data analytics functionalities through multiple
query language interfaces, such as SQL, R and temporal queries.

Table 1. Classification of multi-model databases

Data model DBMS Supported formats Storage strategy Query languages

Relational Oracle XML, JSON,
RDF, object

row store SQL, XML based
or JSON extension

Relational PostgreSQL 9.4 key/value, XML,
JSON, object

row store Extended SQL

Relational Vertica JSON, XML column store, flex
tables + Vmap

SQL-like

Document ArangoDB JSON, key-value,
graph

document store
allowing references

SQL-like AQL

Graph OrientDB JSON, key-value,
graph

key/value pairs +
object-oriented
links

Gremlin, SQL
extended with
path traversal

In summary, since 2017 all leading DBMSs offer multiple data models. The
supported data models include relational, document, XML, graph and object.
Cross-model languages are based on the extension of SQL, XML query languages,
and graph languages. Table 1 presents various multi-model databases and criteria
retained. Lu et al. [59] in their survey analyze multi-model databases using
different criteria which also correspond to “one size fits a bunch” viewpoint [5].

2.2 Multi-paradigm Storage Systems

The problem of access to heterogeneous data sources has been addressed for
many years by research communities using schema integration and multi-
database systems [67]. As a result, several research projects have been inspired
by previous work on distributed databases in order to take advantage of a feder-
ation of specialized storage systems with different models8. Multi-paradigm data
storage relies on multiple data storage technologies, chosen according to the way
data is used by applications and/or by algorithms [71]. However, the problem of
accessing multiple heterogeneous and autonomous data sources is amplified by

8 http://wp.sigmod.org/?p=1629.

http://wp.sigmod.org/?p=1629
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some other issues: (1) NoSQL systems do not always have a well-established sep-
aration between their logic model and physical model, so the traditional export
schema [72] can be difficult to define; (2) to achieve flexibility, new systems do
not necessarily provide a well-defined schema but rather an intricate application
oriented schema that does not promote reuse.

A Taxonomy. In [79] authors propose a survey of such systems and a tax-
onomy in four classes: (1) federated database systems as a collection of
homogeneous data stores and a single query interface; (2) polyglot systems
as a collection of homogeneous data stores with multiple query interfaces; (3)
multistore systems as a collection of heterogeneous data stores with a single
query interface; (4) polystore systems as a collection of heterogeneous data
stores with multiple query interfaces.

In order to obtain more meaningful groups of systems we adopt a slightly
different classification that replaces federated database systems by a more spe-
cific class of pragmatic systems characterized by a common query language.
Thus, our updated classification is based on data models and query languages
by: (1) considering multi-database query language approach [58] instead of fed-
erated systems to better represent the autonomy of data sources and the exist-
ing enterprise-oriented systems; (2) replacing homogeneity of data model by
relational-like models, for example for JSON and the relational model [10,22];
(3) instead of using architecture elements such as query interface or query engine
as a criterion we prefer query language. According to these criteria our classifi-
cation is (Table 2): multi-database query language (unique language), polyglot
system including relational-like data models (with multiple languages), multi-
store, and polystore. For each of these classes we describe some of the most
significant representative systems.

Table 2. Classification of multi-paradigm storage approaches

Data model Query language

Single Multiple

Single or “relational-like” Multi-database Polyglot

Multiple Multistore Polystore

Representative Systems. Spark SQL9 is the major representative of multi-
database query language. It allows us to query structured data from relational-
like data sources (RDBMS, JSON, Parquet, etc.) in Spark programs using SQL.
Connections to major RDBMS are established using JDBC. Apache Drill10 is
similar to Spark, but without having a very large support of analysis algorithms

9 https://spark.apache.org/sql/.
10 https://drill.apache.org/.

https://spark.apache.org/sql/
https://drill.apache.org/
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as Spark has with MLlib and GraphX. In Icarus [82], multiple data store engines
(row- or column-store) are queried by PolySQL, a SQL dialect used as a common
query language. All data are stored in all stores, and the per-query routing
mechanism is able to select, for each query, the best data store. The performance
benchmark of Icarus is based on the Gavel benchmark. The joint use of different
stores specialized in OLTP or OLAP has shown a speedup of up to a factor of
three. Giannakouris et al. [29] propose MuSQLE, a multi-database system built
using Spark. It supports a multi-engine execution cost estimation for each SQL
engine.

According to our classification, CloudMdsQL [51] is a polyglot system, rather
than a multistore system as suggested by the title of one of the articles of these
authors published before the first taxonomy proposal. CloudMdsQL is a func-
tional SQL-like language, designed for querying multiple data store engines (row-
or column-store) within a query that may contain sub-queries to each data store’s
native query interface. SQL++, which is a part of the FORWARD platform11,
is a semi-structured query language that encompasses both SQL and JSON [64].

HadoopDB [2] coupled to Hive12 is a multistore that uses the map-reduce
paradigm to push data access operations on multiple data stores. D4M (Dynamic
Distributed Dimensional Data Model) [44] is a multistore that provides a well-
founded mathematical interface to row stores. D4M allows matrix operations and
linear algebra operators composition and applies them to the row stores. D4M
reduces the autonomy of data stores to achieve a high level of performance [45].

The BigDAWG system [24,26] is a polystore allowing to write multi-database
queries with reference to islands of information, each island corresponding to
a type of data model (PostgreSQL, SciDB and Accumulo). Myria [83] supports
multiple data stores, as well as different data computing systems such as Spark.
Myria supports SciDB for array processing, RDBMS, and HDFS. The RACO
(Relational Algebra COmpiler) acts as a query optimizer and processor for Myr-
iaL language. Myria also supports user data functions in different other languages
such as Python. Morpheus [4] is a polystore approach, implemented using Spark,
that focuses on Cypher query language instead of SQL and takes advantage of
graph analysis algorithms implemented in Neo4j. ESTOCADA [15,16] combines
multiple data stores with different data models; it allows to query these stores
using their native languages and provides an unified API to combine partial
answers relying on query reformulation techniques under constraints. In QUEPA
[60], users are able to query the polystore without knowing the exact structure
of each data store. Using record linkage, QUEPA returns records enriched with
relevant tuples from other stores. MISO [55] has focused on the tuning of the
physical design of polystores by optimizing the placement of data on data stores
with the objective to reduce data movement during query processing.

11 http://forward.ucsd.edu/.
12 https://hive.apache.org/.

http://forward.ucsd.edu/
https://hive.apache.org/
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2.3 Discussion and Other Approaches

In multi-model databases, the independence mismatch is not really solved, as
data still need to be restructured before applying algorithms or functions. In the
in-database analytics approach, algorithms are implemented as black-boxes and
naturally not all new algorithms could be implemented. Recent algorithms are
rarely implemented in DBMSs, and matrix operations and associated factoriza-
tions are not directly supported by traditional storage systems. In the case of
graph analysis tools, only a few NoSQL systems like Neo4j support a small set
of algorithms13. However, Neo4j does not allow to manage very large amount
of data with attributes as the column-oriented systems would do [37]. The sit-
uation for machine learning algorithms and tools is almost similar. Only some
recent systems such as Vertica14 or SciDB15 support standard machine learning
algorithms as black-boxes. Extending the capabilities of the system by adding
new algorithms require specific and complex development using User Defined
Functions (UDF).

Polystores are designed to make the best use of the data models, combin-
ing systems by unification with languages. They do not need to re-implement
data management functionalities and can instead reuse proven storage systems.
Data exchange between storage systems is a rather expensive operation and
administration of multiple separate storage systems increases the management
costs compared to multi-model databases. Moreover, polystores add complexity
because they do not possess a global schema and they use different languages.
Developers must have an implicit knowledge of different schemas on which the
application is based. Recently, new work publications trying to solve this problem
have appeared. Data Civilizer [21,65] has a linkage graph computation module
to build a linkage graph for the data and a data discovery module which utilizes
the linkage graph to help users to identify data for their analyses. The linkage
graph is also used to determine possible join path in the queries. SemTK [63] pro-
vides capabilities to interact with a knowledge graph to facilitate essential tasks
such as ingesting, querying and manipulating data. It simplifies user tasks by
providing the users with a single logical interface for retrieving and integrating
data from multiple repositories. In [36] the authors propose a hypergraph-based
approach for representing the catalog of metadata in a polystore system. They
also provide a simple query rewriting algorithm using this catalog.

Several kinds of data analytics platforms have also been defined in the last
few years [74]. They are usually an aggregation of existing technologies and can
be classified into computation-centric architecture or data-centric architecture.
Two main typical architectures are data analytics stacks and data lakes.

New data analytics stacks have emerged as a suitable infrastructure for pro-
viding access to data stores and enabling data processing workflows to execute

13 https://neo4j.com/developer/graph-algorithms/.
14 https://www.vertica.com/product/database-machine-learning/.
15 https://www.paradigm4.com/.

https://neo4j.com/developer/graph-algorithms/
https://www.vertica.com/product/database-machine-learning/
https://www.paradigm4.com/
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data analytics operations. Frameworks such as TensorFlow16, Theano17, Keras18

or MLlib in Spark19 have been developed to design machine learning tools using
data structures linked to algorithms. As a result, these systems require the devel-
opment of complex, hard to reuse and often error-prone programs for loading and
transforming data [1,35]. These systems supply neither storage mechanism nor
simple tools for connecting to data sources. The Berkeley Data Analytics Stack
(BDAS) from the AMPLAb project20 is a multi-layer architecture that provides
data processing using the Apache Spark ecosystem and a multiple storage layer
(multistore) using Alluxio21.

The IT industry uses the metaphor of data lake to define shared data environ-
ment consisting of multiple repositories. A data lake provides data to a variety of
processing systems including streaming. The solutions are mature and there are
products available on the market, such as the Microsoft Azure data lake22, and
the IBM data lake23. Alluxio included in BDAS is also a data lake system. The
value that can be extracted directly is low compared to investments required
to implement data mining and business intelligence solutions. Indeed, the poly-
stores differ from the data lake in two aspects. The first aspect concerns the
objective, data stored in a polystore are meant for a short-term analysis, while
those in a data lake are annotated for medium-term or long-term use. The second
aspect concerns performance, as polystores are designed to make the best use
of the most suitable data storage models by combining them, while data lakes
store (most of the time) data in their original format.

3 Architecture

In this section, we present our polystore architecture, before we recall the found-
ing principles for RDBMS in terms of functional and logical architectures.

3.1 Software Architectures of RDBMS

As for operating systems or network protocols, Härder and Reuter [31,34] have
proposed a decomposition of the functional architecture of a DBMS in five lay-
ers: (i) file management that operates on blocks and files, (ii) propagation con-
trols that define and manage segments and pages, (iii) records and access path
management that works on access path and physical records, (iv) record ori-
ented navigational access that describes records, sets, hierarchies and (v) non-
procedural or algebraic access that defines tuples, relations, views and operators

16 https://www.tensorflow.org/.
17 http://deeplearning.net/software/theano/.
18 https://keras.io/.
19 https://spark.apache.org/mllib/.
20 https://amplab.cs.berkeley.edu/software/.
21 http://www.alluxio.org/.
22 https://azure.microsoft.com/en-us/services/data-lake-analytics/.
23 https://www.ibm.com/analytics/data-lake.

https://www.tensorflow.org/
http://deeplearning.net/software/theano/
https://keras.io/
https://spark.apache.org/mllib/
https://amplab.cs.berkeley.edu/software/
http://www.alluxio.org/
https://azure.microsoft.com/en-us/services/data-lake-analytics/
https://www.ibm.com/analytics/data-lake
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for logical schema description and data retrieval. Yet most of RDBMS rather
use fewer layers following System R [7] which defines two layers: (1) the Rela-
tional Storage System (RSS) with a Relational Storage Interface (RSI) handles
access to tuples and manages devices, space, allocation, storage buffers, transac-
tion consistency and locking as well as indexes; (2) the Relational Data System
(RDS) with a Relational Data Interface (RDI) provides authorization, integrity
enforcement, and support views of data, as well as a definition, manipulation
and query language. The RDS also maintains the catalogs of names to establish
correspondences with internal names in RSS.

From a logical point of view, the ANSI/SPARC architecture [14] character-
izes classical data management systems (relational, object-oriented) by propos-
ing a 3-layer decomposition that reflects the abstraction levels of data: (i) the
external data schemas describing the different external views over data dedicated
to end-users or applications; (ii) the logical or conceptual schema describing enti-
ties and relationships among them, including integrity constraints and (iii) the
physical schema describing the storage and the organization of data.
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Fig. 2. Architecture of the polystore system using TDM

NoSQL systems, beyond their model differences, exhibit a common char-
acteristic with respect to the architecture: the external and logic levels disap-
pear [80]. As a consequence, the applications are close to the physical level with
no real logical independence between programs and data schema. Moreover, due
to the nature of schema-less NoSQL systems, the source code contains implicit
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assumptions about the data schema. These drawbacks can lead to maintenance
and performance problems and can make it difficult to set up a data curation
process. The ingestion phase can be accomplished quite easily (i.e., a feature
puts forward by data lake vendors) but the data transformation, schema inte-
gration, data cleaning and entity consolidation are heavily hindered by the lack
of logical and external schemata. All these systems leave aside good principles
of the RDBMS which go beyond the relational model and SQL language.

3.2 TDM and Polystore Architecture

The architecture setup includes a polystore storage layer built on the top of Post-
greSQL, HDFS, and Neo4j and an abstraction layer developed using R and Spark
connectors (Fig. 2). The abstraction layer comprises the Tensor Data Model and
can include different analysis frameworks such as R, Spark, Drill and Tensor-
Flow. TensorFlow is similar to libraries supporting tensors in R or Spark, but it
has been designed with a workflow orientation, rather than with a data model
orientation. In this particular case, a tensor is a structure of exchange among
processes of a complex workflow, rather than a model to represent real/native
data.
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Fig. 3. Logical architecture of the polystore system using TDM

Our objective is to preserve the local autonomy of the storage systems with-
out considering updates of the data except those consisting in materializing
results of model transformations or results of analyses. According to the poly-
store approach, it is possible to use either the native language of each system or



64 É. Leclercq et al.

our Tensor-based Data Model to express queries. TDM supports the logical data
independence using TDM operators to define views (virtual views or material-
ized views). The impedance mismatch problem is addressed at the application
level using the most appropriate TDM view and its materialization in a storage
system (Fig. 3). For example, a virtual TDM view is used to define an adjacency
matrix that represents a co-occurrence graph of hashtags that is then stored in
SciDB to be used by a R program.

The first class citizen of TDM is the tensor mathematical object. A ten-
sor is often defined as a generalized matrix, 0-order tensor is a scalar, 1-order
tensor is a vector, 2-order tensor is a matrix, tensors of order 3 or higher are
called higher-order tensors. Tensor dimensions/orders and tensor elements are
represented by associative arrays. Queries for tensor construction are submit-
ted to the wrappers; the wrappers send back N + 1 attributes where the first
N attributes are dimensions and the last attribute serves as a value for the
elements of the tensor (obtained with GROUP BY-like queries on attributes that
represent the dimensions). This feature allows us to implement wrappers having
all the same structure and thus to simplify model transformations. For example,
Fig. 4 presents SQL queries submitted to PostgreSQL, and where the resulting
tensor represents tweets published by users by time slice. For the R language,
the wrappers are implemented using the packages R DBI, RNeo4j24, RMongo,
RCassandra et RHBase25. In Spark, we work with the SQL layer, data frame
and the RDD (Resilient Data Sets) abstractions.
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Fig. 4. Tensor construction from relational table

24 https://github.com/nicolewhite/RNeo4j.
25 https://github.com/RevolutionAnalytics/rhbase.

https://github.com/nicolewhite/RNeo4j
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4 Core Concepts of TDM

This section addresses the definition of Tensor Data Model (TDM), starting
with the tensor mathematical object, adding the notion of typed schema based
on associative arrays and then defining a set of data manipulation operations.
We also study mappings between TDM and other data models.

Tensors are very general abstract mathematical objects which can be consid-
ered according to various points of view. A tensor can be seen as a multi-linear
application, as the result of the tensor product, as an hypermatrix. We will use
the definition of a tensor as an element of the set of the functions from the
product of N sets Ij , j = 1, . . . , N to R : X ∈ R

I1×I2×···×IN , where N is the
number of dimensions of the tensor or its order or its mode. In a more general
definition, a tensor is a family of values indexed by N finite sets, thus, a ten-
sor is often treated as a generalized matrix. Tensor operations, by analogy with
operations on matrices and vectors, are multiplications, transposition, unfolding
or matricization and factorizations (also named decompositions) [19,50].

In the rest of the article, we use the boldface Euler script letters to indicate
a tensor X , boldface capital letters M for matrices, boldface lowercase letters
to indicate a vector v, and an element of the tensor or a scalar is noted in italic,
for example xijk is ijk-i-th element of 3-order tensor X .

4.1 TDM’s Data Model

In TDM, tensor dimensions and values are represented by associative arrays. In
the general case, an associative array is a map from a key space to a value space
and can be implemented using a hash table or a tree.

Definition 1 (Associative Array). An associative array is a map that asso-
ciates keys to values as follows A : K1 × · · ·×KN → V where Ki, i = 1, .., N are
the sets of keys and V is the set of values.

The definition given in [40] restricts V to have a semi-ring structure and the
associative array to have a finite support. In TDM we use associative arrays in
three different cases.

First, we use different associative arrays denoted by Ai for i = 1, .., N to
model dimensions of a tensor X , in this case the associative array has only one
set of keys associated with integers Ai : Ki → N and Ai represents a bijection
function. For example A1 : String → N associates integers to user names. The
user name values are obtained by native queries sent to storage systems.

Second, an associative array can be used to represent values of a sparse
N -order tensor by associating compound keys from dimensions to values (real,
integer) Avst : K1 × · · · × KN → V.

Third, for tensors with non-numerical values, two associative arrays are used
as an indirection, one array to map key dimensions to a set integer keys (Avst)
and another array to map the integer keys to non-numerical domains values (one
integer is associated with each different value).
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Definition 2 (Named Typed Associative Array). A named and typed
associative array is a triple (Name,A, T ) where Name is a unique string that
represents the name of a dimension, A is the associative array, and T is the
type of the typed associative array, i.e., K → N.

The schema of a named typed associative array is Name : K, application A is
implicit. DomName is the domain of values taken by the keys of A, i.e., a subset
of K.

Definition 3 (Typed Tensor). A typed tensor X is a tuple (Name,D, V, T )
where Name is the name of the tensor, D is a list of named typed associative
arrays, i.e., one named typed associative array per dimension, V is the values of
the tensor and T is the type of the tensor, i.e., the type of its values.

For example, if a tensor represents the number of times a hashtag is published
by a user during one hour, the schema will be UHT (U : String,H : String, T :
Integer) : Integer. Figure 4 shows the tensor UT T (U : String, T : Integer, T :
Integer) : Integer that represents tweets published per user and per hour.

Remark 1 (Tensor and domain). The domain of a tensor DomX is the set of
tensor values. Another way of seeing the values of the tensor, by analogy with
the formalization of the relational model proposed by [42], is to consider it as the
subset of the Cartesian Product of the dimension domains and the proper domain
of X , i.e., Domd1×Domd2×· · ·×DomdN

×DomX or K1×K2×· · ·×KN ×DomX .
D refers to the set of named typed associative arrays representing the dimensions
or domains of X . Thus the Cartesian Product of the domains can also be written:( ∏

d∈D

Domd

)
× DomX or

⎛
⎝ ∏

i=1,...,N

Domdi

⎞
⎠ × DomX

The schema of a typed tensor is Name(S) : T where S is the list of schemas
of its dimensions, i.e., associative arrays of D. More strictly and by analogy
with the relational model, the formal schema of a tensor is the list of names of
dimensions to which the name of the tensor is added. A TDM schema is a set of
typed tensor schemas.

If we consider the representation of tensor values, V handles the sparsity of
tensors. Sparse tensors have a default value (e.g., 0) for all the entries that do
not explicitly exist in the associative array.

An associative array refers to the general mathematical concept of a map
or a function. As we want to conform to the separation of logical and physi-
cal levels, the associative arrays in the model are abstract data types that can
be implemented using various representation techniques. For example, Kuang
et al. [52] describe a unified tensor model for representing unstructured, semi-
structured, and structured data. These authors also propose a tensor extension
operator for representing various types of data as sub-tensors merged into a
unified tensor. Lara [38,39] proposes a logical model and an algebra using an
associative array (called associative table) with a set of operations for unifying
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different data models, such as relational, array and key-value. The authors show
how to use Lara as a middleware algebra, and how their approach is directed
towards operator translation and optimization. However their model is not very
suitable for expressing high-level data transformations as tensors can do with
their capacity of modeling complex relationships (i.e., not being only binary).
Moreover, tensors support complex and powerful factorization or decomposition
operators, such as CP or Tucker, that have proved their efficiency for data mining
[69]. A lot of work has been directed towards scaling up tensor decompositions
by exploiting their sparsity. For example, Kang et al. [43] propose a method for
avoiding intermediate data explosion induced by ALS and benefiting from map-
reduce paradigm. The MLog system [56] is an hybrid approach which defines
a tensor data model with operators. The authors study optimization techniques
for queries over TensorFlow.

4.2 Mapping Between TDM and Other Data Models

In this subsection, we establish mappings between TDM and other data models
with the assumption that associative arrays are invariant to permutation of keys.

1. Relation: A relation R is a set of tuples (v1, v2, . . . , vk), where each element
vj is a member of a domain Domj , so the set-theoretic relation R is a subset
of the cartesian product of the domain Dom1 × Dom2 × · · · × Domk. We
can write a typed tensor X using the name of each associative array in D as
domain Domi, i = 1, . . . , N for R and by adding an attribute whose domain is
the name of the tensor. The values of a tuple are those corresponding to keys
of each D associated with the values of X . The names of D form a compound
key for R. The reverse mapping from a relation R to typed tensors produces a
set of tensors X i where the dimensions are the n attributes that form together
the key of R and for the k−n remaining attributes we create a tensor for each.
The keys of each D are formed of different values of each attribute domains.
In Fig. 5(a), we show an example of relation R(A, B, C, D), which has a key
consisting of two attributes A and B, with three tuples. The key is represented
by two associative arrays in bold in Figs. 5(b) and (c), and for the remaining
two attributes we create two tensors. In Fig. 5(b) we represent the attribute
C with X 1(A : String,B : String) : Integer and in Fig. 5(c) we represent the
attribute D with X 2(A : String,B : String) : Integer. As the domain of D
is a string, we use another associative array as an indirection. If an attribute
is a foreign key, its corresponding associative array is then re-used.

2. Key-value: Most of key-value stores save data as ordered (key, value) pairs
in a distributed hash table [8]. As typed tensors are described by associative
arrays, there is a straight mapping between this type of NoSQL store and our
Tensor Data Model.

3. Column: A column store system, like Vertica or Cassandra, uses a relational-
like schema, so their mapping to Tensor Data Model is the same as for the
relation.
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Fig. 5. An example of relational model - TDM mapping

4. Graph: A simple graph G = (V,E), where V is the set of vertices and
E ⊂ V × V is the set of edges, can be represented by its adjacency or inci-
dence matrices, i.e., as a 2-order tensor. Matrices can also represent oriented,
weighted graphs. A hypergraph is a (V,E) pair where V is a set of nodes and
E is a set of hyperlinks. Each hyperlink e ∈ E can contain multiple nodes,
so E is defined as a subset of 2V . A hypergraph can be represented by its
incidence matrix Aie with integer coefficients belonging to the set {0,+1,−1}
such that each column corresponds to a hyperlink e, and each row to a node
i of H. If a hyperlink r arrives at the i node, then Aie = 1; if a hyperlink r
leaves the i node, then Aie = −1; otherwise Aie = 0. Hypergraphs can also
be taken into consideration in a tensor model. Kivela et al. [47] show differ-
ent mapping strategies for tensors. In the case of a multigraph, i.e., a graph
with different types of links E = {E1, E2, . . . , Ek} where E is a partitioned
set of links, the multigraph can be represented by a 3-order tensor where
one dimension is used to specify different types of edges. In Fig. 6, we show
an example of a multigraph with four nodes and three types of links (denoted
by E1, E2, E3), we obtain a 3-order tensor X of size 4 × 4 × 3. (i, j, k) is 1
if the ith node is connected to the jth node by the kth type of link and each
frontal slice X ::k represents a type of link.
Recently, several research studies have proposed to improve and generalize
the existing graph model approaches to take into account complex networks
that include several subsystems and different levels of connectivity between
systems. Although the terminology varies widely, depending on each specific
case, such networks can generally be called multi-layer networks [47].
The construction of a higher-order tensor for multi-layer networks is studied
in [20,47]. In the most general case, a (2(M + 1))-order tensor is required to
model multi-layer networks without constraints. It considers edges between
two vertices (2-order tensor) and adds all combinations of each vertex into
the M different layers 2 × M -order, giving a (2 + 2M)-order tensor.
Graph databases handle in a different way theoretical models of graphs [6],
most of them, except perhaps the nested-graph, can be generalized by a multi-
layer graph and specified using tensors.
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Fig. 6. An example of a mapping between a multigraph and TDM

All the above models are structurally equivalent to our TDM. The most
appropriate storage system can be chosen based on the nature of the data and
the cost models associated with the preferred operations. Moreover, in specific
cases part of data can be duplicated. We have studied some real examples of
such equivalences in [54].

5 TDM’s Operators

In order to carry out a wide range of queries, it is desirable to define an analogy
for several of the standard operators of the relational algebra in terms of tensor
operations. In [39,40] the authors define a model and operators over associa-
tive arrays to unify relational, array, and key-value algebras. LaraDB and D4M
models rely essentially on binary relations. The universality of binary relations
makes it possible to represent almost all models. However, operations to recon-
struct complex relationships are expensive and such models do not benefit from
the potentiality of tensor decomposition operations.

Our operators are defined to provide programmers with views achieving log-
ical data independence, i.e., to bridge the gap between the variety of analysis
algorithms and storage systems. Our operators define a closed subset over ten-
sors and works on typed tensors at two different levels: at the associative array
level (i.e., the schema) and at the tensor value level. We focus on the following
subset of operators on typed tensors: selection, projection, restriction, union,
intersection, join, nest and some analytic operators such as aggregation and ten-
sors decomposition. The definitions proposed in the following section are based
on the formalism of [42] used to define the relational model. Our definitions are
constructed as follows:

– clause (1) describes the operator’s behavior on the schema, i.e., restrictions
on operand schemas and specification of the result schema;

– clause (2) gives the operator’s semantics on values.
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We note that α(X ) refers to the schema of the typed tensor X .

5.1 Data Manipulation Operators

Projection operators are usual operators in tensor algebra and they produce
tensors with specific names. A fiber of a tensor X is a vector obtained by fixing
all but one X ’s indices: X :jk, X i:k and X ij:. Fibers are always assumed to be
column vectors, similar to matrix rows and columns. A slice of a tensor X is
a matrix obtained by fixing all but two of X ’s indices: X i::, X :j: et X ::k. A
project operator can be generalized by using the mode-n product ×n (mode-n
product behavior is detailed in [50]).

Definition 4 (Project). The projection of a N -order typed tensor X , noted
as π[expr]X , where expr is a pair (d, c), and where d ∈ D and c ∈ Domd which
translates an equality between the name of an associative array (dimension) and
a constant value, reduces the dimensions of the tensor by keeping the values over
the others dimensions.

(1) α(π[expr]X ) = α(X ) − {dk} where expr is (dk, :)
(2) π[expr]X = {(x, v), x ∈ Domd1 ×· · ·×Domdk|c×· · ·×DomdN

, v ∈ DomX }26

The project operator can be computed by using the n-mode product with
a boolean vector that contains 1 for the elements of the mode(s) to retain: X×nb.

For example, consider a 3-order tensor, with the dimensions users, hashtags
and time used to store the number of times a hashtag is used in tweets by
a user per time slice (e.g., 1 h), the schema is UHT (U : String,H : String, T :
Integer) : Integer. For notation purpose we assume that the names UHT and
X 1 are equivalent. The expression π[U=′u1′]X 1 produces a 2-order tensor with
the following schema HT 1(H : String, T : Integer) : Integer and where tensor
values represent the number of times each hashtag is used by a user u1, for all
time slices (Fig. 7b). This number can be computed using HT 1 = X 1 ×1 b with
bi = 1, bj = 0, ∀j �= i (in our case i = 1 for the user u1, 1-mode product is used
because U is the first dimension in the definition of the tensor).

A selection operator can be defined at two different levels: (1) on the val-
ues contained in the tensor or (2) on the values of the dimensions, i.e., typed
associative arrays Ai, i = 1, .., N .

Definition 5 (Select on tensor values). The operator σ[expr]X selects values
of the tensor that satisfy expr27 and thus produces a new tensor with the same
schema.
26 The notation | is the restriction applied to sets, A|B = A − (A − B).
27 expr is a logical expression to compare values of X to constants. Its form is

as follows: expr ::= <condition> | <condition> <logical operator> <condition>
|¬ <condition> | (<condition>)
Logical operators are {∧, ∨}
<condition> ::= values of X (implicit) <comparison operator> constant
Comparison operators are {<, ≤, =, �=, ≥, >}.
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(1) α(σ[expr]X ) = α(X )
(2) σ[expr]X = {(x, v), x ∈ Domd1 × · · · × DomdN

, v ∈ DomX such as expr(v)}
∪{(x, z), x ∈ Domd1 × · · · × DomdN

,

z ∈ Domnull such as ∃(x, v), v ∈ DomX ,¬expr(v)}

For example, σ[>10]X 1 selects users that have emitted the same hashtag
during one time slice more than 10 times (Fig. 7(c)).

Remark 2 (Select and null values). When evaluating this operator, values not
satisfying expr can be replaced by 0. If all the values associated with a key
of a dimension are equal to 0, then the value of this key is removed from the
corresponding typed associative array (represented in Fig. 7(c) by the blue dotted
line). In the previous definition, Domnull is reduced to a singleton, e.g., it may
be 0 or another value interpreted as null.

Definition 6 (Restriction on dimensions values). The operator ρ[expr]X
restricts the tensor shape by selecting some values of the dimensions contained
in the propositional formula expr28.

(1) α(ρ[expr]X ) = α(X )
(2) ρ[expr]X = {(x, v), x ∈ Dom′

d1 × · · · × Dom′
dN

, v ∈ Dom′
X

with Dom′
di

= {y, y ∈ Domdi , such as expr(y)} for i = 1, . . . , N
and Dom′

X ⊆ DomX}

The schema of a tensor is affected neither by the restriction operator nor by
the schema of its typed associative arrays.

The example, in Fig. 7d selects for each hashtag used by the user u1 for time
slices between 19-02-28 and 19-03-08, from the tensor X 1, the number of hahstag
uses:

ρ[U=’u1’∧T≥’19-02-28’∧T≤’19-03-08’]X 1

Definition 7 (Union). The union of two typed tensors X 1 and X 2 having the
same schema, denoted ∪θ, where θ ∈ {+,−,×,÷,max,min} is a typed tensor
X 3 with the same schema and DomX 3

di
= DomX 1

di
∪ DomX 2

di
, for i = 1, . . . , N .

Values of X 3 are values from X 1 and X 2 except for keys in common for which
the operator θ is applied.

(1) α(X 1 ∪θ X 2) = α(X 1) and α(X 1 ∪θ X 2) = α(X 2)

28 expr allows to compare keys of the dimensions with constants. Its shape is the same
as for the operator σ except for
<condition> ::= name of a dimension <comparison operator> constant.
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Fig. 7. Project, select and restriction operators applied to the tensor UHT for the
values of u1 (other values are not shown in the example) (Color figure online)

(2) X 1 ∪θ X 2 = {(x, v), x ∈ Dom′
d1

× · · · × Dom′
dN

with Dom′
di

= DomX1
di

∪ DomX2
di

for i = 1, . . . , N

v =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v1, if ∃(x, v1), x ∈ DomX1
d1

× · · · × DomX1
dN

,

x /∈ DomX2
d1

× · · · × DomX2
dN

, v1 ∈ DomX1

v2, if ∃(x, v2), x ∈ DomX2
d1

× · · · × DomX2
dN

,

x /∈ DomX1
d1

× · · · × DomX1
dN

, v2 ∈ DomX2

v1θv2, if ∃(x, v1), x ∈ DomX1
d1

× · · · × DomX1
dN

, v1 ∈ DomX1 ,

∃(x, v2), x ∈ DomX2
d1

× · · · × DomX2
dN

, v2 ∈ DomX2}

Figure 8 shows the operator ∪+ applied to two typed tensors representing the
number of hashtags used by Twitter and Instagram users. When users exist in
both social networks (i.e., having the same key in the corresponding associative
arrays), the operator + is applied, otherwise the values from either tensor can
be retained.
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Fig. 8. ∪ operator applied on two tensors

Definition 8 (Intersection). The intersection of two typed tensors X 1 and
X 2 having the same schema, denoted ∩θ, where θ ∈ {+,−,×,÷,max,min}
is a typed tensor X 3 with the same schema and whose dimension key sets are
intersection of the operand dimension key sets: DomX 3

di
= DomX 1

di
∩ DomX 2

di
,

for i = 1, . . . , N . Values of X 3 are values associated to common keys of each
dimension on which the operator θ is applied.

(1) α(X 1 ∩θ X 2) = α(X 1) and α(X 1 ∩θ X 2) = α(X 2)
(2) X 1 ∩θ X 2 = {(x, v), x ∈ Dom′

d1
× · · · × Dom′

dN

with Dom′
di

= DomX 1
di

∩ DomX 2
di

for i = 1, . . . , N, and

v = v1θv2,∃(x, v1), x ∈ DomX 1
d1

× · · · × DomX 1
dN

, and

∃(x, v2), x ∈ DomX 2
d1

× · · · × DomX 2
dN

}
Figure 9 shows a use of the operator ∩+ applied to the two previous typed

tensors. It represents the number of hashtags shared between Twitter and Insta-
gram users. We thus only obtain the existing users in both social networks and
the operator + is applied for these users.
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Fig. 9. ∩ operator applied on two tensors
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Definition 9 (Natural-Join). The natural-join of two typed tensors X 1 and
X 2 having at least one common dimension (i.e., at least two associative arrays
with the same type), denoted ��, is a typed tensor X 3 whose schema is the union
of the two tensor schemata. The keys retained in the common dimensions are
those which are equal, values of X 3 are those of the first operand.

(1) α(X 1 �� X 2) = α(X 1) ∪ α(X 2)
(2) X 1 �� X 2 = {(x, v), x ∈ ∏

d∈DD Domd,

DD = {DomX 1
d1 , d1 ∈ DX 1} ∪ {DomX 2

d2 , d2 ∈ DX 2}
v ∈ DomX 1 ,∃(y, z, v) such as x = (y, z)

and (y, v) ∈
(∏

d∈DX1
Domd

)
× DomX 1

and z ∈
∏

d∈DX2−DX1
Domd}

For example, consider following two tensors X 1 and X 4. X 4 dimensions are
hashtag, category and percentage that specifies for each hashtag its relative part
in its category or categories. The expression X 1 �� X 4 produces a tensor with
dimensions user, hashtag, time, category, the values are the number of uses of
hashtags per user, per time slice, and per category. The element-wise product of
X 1 �� X 4 by X 4 �� X 1 gives a tensor with weighted values (Fig. 10).
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Fig. 10. �� operator applied on two tensors

The nest operator allows to transform values into dimensions. Thus, the nest
operator increases the number of dimensions and produces a boolean tensor.

Definition 10 (Nest). The nest operator applied to a N-order typed tensor X
creates a new N +1-order typed tensor X 1 by appending to the dimensions of X
an additional dimension d′ (D′ = D ∪ {d′}). The keys of the associative array
d′ is the list of unique values in the tensor X , where values of X 1 are 1 for the
dimensions corresponding to those X and d′, otherwise 0.



A Tensor Data Model for Polystore 75

Boolean tensors are a specific class which can be used: (1) to represent com-
plex relationship among data by focusing on the existence of the relationship
rather than on a measure of its intensity and (2) to perform joins between other
tensors, they can be compared to association tables in a relational schema.

Figure 11 shows an example of the nest operator applied to a 2-order tensor
whose values are strings and produces a 3-order boolean tensor.
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Fig. 11. nest operator applied to 2-order tensor

5.2 Analytical Operators

“Group by like” operations [48,66] can be defined on typed tensors applying
aggregation function with selection of tensor dimension values to aggregate.

Definition 11 (Aggregation). The aggregation on a typed tensor X is
denoted Fop(d)(Dim), where op ∈ {SUM,AV G,COUNT,MIN,MAX} and d
is the name of an associative array in D, Dim is a list of names of associative
arrays in D. It produces a typed tensor with a schema specified by Dim. The
values are given by the application of the operator op on the specified dimension
d for values of keys in Dim.

Note that for aggregation operator, all the dimensions must be present either
in d or in Dim.

For example, this operator is useful for transforming a time series represented
by a 3-order tensor (i.e., with the dimensions user, hashtag, time) to a 2-order
tensor with user and hashtag dimensions representing the number of times each
hashtag was used by a user: FSUM(T )(U,H)X 1

Tensor decompositions such as CANDECOMP/PARAFAC (CP), Tucker,
HOSVD can be used to perform dimensionality reductions and/or to extract
latent relationships between dimensions [50]. Since tensor representations of data
may be multiple and their semantics are not explicit, the results of tensor decom-
positions can be complex to interpret. In [69] the authors give guidelines for each
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type of decomposition. Researches on tensor decomposition constitute an impor-
tant field in applied mathematics. These researches focus on different problems
such as robustness of numerical methods, scalability and parallel computation,
as well as value reconstruction [9,12,43]. In order to be used in a real high perfor-
mance analysis platform, cost models of the manipulation and analysis tensors
operators need to be defined and studied carefully with respect to sparsity. The
tensor decompositions in TDM rely on the underlying libraries such as Spark
or R.

6 Use Cases and Experiments

We validate our approach by a proof-of-concept, showing how TDM is used
in a polystore architecture with real data from a multi-disciplinary project
(TEP 2017) involving collaborations with social scientists and communication
science researchers. The main research objective of TEP 2017 is to study the
structure and the dynamics of political discourse on Twitter during the French
Presidential Election in March-May 2017.

6.1 Polystore and TDM Views

The architecture setup to carry out our experiments includes a polystore built
on the top of PostgreSQL, HDFS, and Neo4j connected to three analysis frame-
works, namely R, Apache Spark and TensorFlow. The data set is a tweets corpus
harvested during the period from 2017-02-27 to 2017-05-18. The data set contains
49 million tweets emitted by more than 1.8 million users which used 288, 221 dif-
ferent hashtags. Of the 49 million tweets, 36 million are retweets. Raw data were
stored in the JSON file format in HDFS (720Go), most important attributes
(around fifty) of tweets were stored in a relational database (PostgreSQL) in
a unique table (50Go), and then in another database with a normalized schema
(55Go). The links between main entities (i.e., tweets, users, hashtags) were stored
in Neo4j (23Go).

We have defined the following views using TDM operators:

– a view for selecting Twitter accounts that have been retweeted and their
number of retweet during the period. This 1-order tensor has the schema
NRT (U : String) : Integer corresponding to the following Cypher query to
retrieve data from Neo4j:

MATCH (u:USER)-[rt:RT]->(t:TWEET)<-[p:Publish]-(u1:USER)
WHERE t.date>"2017-02-27" AND t.date<="2017-05-18"
RETURN u1.name, COUNT(RT) AS NRT

– a view giving the number of retweets between users, this 2-order tensor as
the schema RT (U : String, U1 : String) : Integer corresponding to the
following Cypher query:



A Tensor Data Model for Polystore 77

MATCH (u:USER)-[rt:RT]->(t:TWEET)<-[p:Publish]-(u1:USER)
WHERE t.date>"2017-02-27" AND t.date<="2017-05-18"
RETURN u.name, u1.name, COUNT(RT) AS RT

– a view (UHT ) for selecting the number of times each user emitted an hashtag
per time slice (e.g., 1 h). This view is obtained from the PostgreSQL normal-
ized schema and has the schema UHT (U : String,H : String, T : Integer) :
Integer corresponding to the following simplified SQL query (where 414717
define the beginning of the period) :

SELECT U.from_user, H.hashtag, floor(time/3600)-414717 T,
count(*) nbocc FROM UHTTP2, User U, Hashtag H
WHERE UHTTP2.user_id=U.user_id AND UHTTP2.ht_id=H.ht_id
GROUP BY U.from_user, H.hashtag, floor(time/(3600)) - 414717;

– a view named popular accounts (PA) for selecting Twitter accounts that have
been retweeted at least n times: PA = σ[>n]NRT . We note that according
to Definition 5, users with a number of retweets less than n do not appear in
the results.

– a view (AU) for selecting active users (i.e., which have emitted more than r
retweets) which also retweet popular accounts: AU = σ[>r](RT �� PA)

6.2 Study Viral Tweets and Role of Bots

In order to study the possible influence of robots on the circulation of viral
tweets, we sought to detect robots among Twitter accounts that had retweeted
at least 1,000 times over the period between the two rounds of this election (from
23rd April until 7th May 2017), thus reducing the corpus of 49M of tweets to one
thousand. In order to reduce the number of accounts to analyze, only accounts
having tweeted more hundred times in the two-week period are retained. 1,077
accounts were selected in this way. This corresponds to the hypothesis that robots
are tweeting intensively during this final period of the election campaign. The
second hypothesis is that robots do not tweet at random so we retrieve hashtags
contained in these tweets.

Using UHT and AU we built a 3-order tensor for these accounts during the
two-week period. We obtained a tensor containing potentially 1, 077× 568× 336
items. In the first approach the tensor construction from the relational data set
of 49M of tweets shows that the time required for production of tensors data lies
between 1 and 2 min for tensor size of 205M values. One explanation may come
from the sparsity of data, and we give details on performance question in the
next section.

We performed a CP decomposition in order to reduce the user space based on
the user behavior; this produces n groups of three 1-order tensors, here vectors a,
h, t. We then applied the k-means clustering algorithm to identify groups of users
having similar behavior during the period. The k-means algorithm determines
four groups of users: a group of one account previously detected as a robot and
suspended by Twitter, a group of three accounts, a group of about thirty accounts
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and the last group containing other users. The first two groups are shown in the
far left column with label from user in Fig. 13; for confidentiality reasons we hide
other accounts. The group of three accounts, revealed after manual study, are to
be merged (same behavior and hashtags) and they are probably assisted by an
algorithm that retweets messages against the Macron candidate. Each of these
accounts have tweeted between 1,000 and 1,800 times during the period with a
vast majority of retweets.

In order to obtain a deeper insight on these data, we also used the commu-
nity discovery Louvain algorithm [13] to detect accounts which retweet or are
retweeted frequently by the other accounts and which tend to share the same
retweets. The retweet graph represented by its adjacency matrix is obtained from
a 3-order tensor UUT (U : String, U : String, T : Integer) : Integer by using
the aggregation operator: FSUM(T )(U,U)UUT . The result of the CP decompo-
sition is confirmed (Fig. 12): yellow community corresponds to the user detected
as a robot, pink community corresponds to the group of three users, and the
third group are users of the blue and green communities. The biggest nodes
are accounts from the four clusters obtained by the CP decomposition and the
k-means algorithm.

 of s

TUsers of the 
thrid group

Users of the third group

Fig. 12. Communities obtained from retweet graph using Louvain algorithm (Color
figure online)
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Our result is consistent with the use of OSoMe API Botometer29 which pro-
vides an overall probability score that an account studied is automated. It uses
1,150 criteria and machine learning techniques to calculate the probability [81].
The group of about thirty accounts comprises more than half users with a prob-
ability of being a robot greater than 0.42 (sixth column with label proba in
Fig. 13). But we note that the values of probabilities were not sufficiently sig-
nificant to detect robots during the studied period. One of the assumptions was
that there were hybrid accounts of users assisted by algorithms. However, simple
criteria such as the maximum number of tweets published in one hour make it
possible to unambiguously find some of the accounts with automated behavior,
and later confirmed by the manual study.

Fig. 13. Results given by Botometer (sixth column with label proba) and cluster num-
ber obtained by the CP decomposition (far right column with label cluster)

6.3 Study of Influence in Multi-relational Networks

Influence on Twitter is defined as the potential of a user’s action to initiate
a follow-up action by another user. The term “action” means various possible
interactions between users. Hence, measuring influence on Twitter isn’t that sim-
ple as the network provides several forms of interactions: retweet, mention, reply.
In [3,70] the authors have produced state-of-the-art studies on the estimation of
influence in social networks, including Twitter. Three main types of approaches
have been identified: they are based on popularity measures, network topology
and information fusion. Topology-based approaches include algorithms such as
PageRank [68] for ranking most influential users.
29 https://botometer.iuni.iu.edu/.

https://botometer.iuni.iu.edu/
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The main idea of PageRank is that “The most important pages (of websites)
are likely to receive most links from other pages”. PageRank assumes that the
importance of a web page is determined by the quantity and quality of the
pages associated with it. Initially, each node (i.e., page) receives a PR value.
Then, each node uniformly distributes its PR value to its neighbors through
the outgoing links. To guarantee convergence, a teleportation factor has been
introduced, assuming that the user navigates between web pages following the
links with the probability s, and leaves the current page for a random page with
a probability of 1 − s, s ∈ [0.1]. The probability s is usually empirically fixed
around 0.85, the PR formula is as follows:

PRi(t) = s

n∑
j=1

aji
PRj(t − 1)

kout
j

+ (1 − s)
1
n

where n is the total number of nodes in the network, A is the adjacency matrix
such that aji = 1 if j is connected to i, otherwise aji = 0, and where kout

j (out-
degree of j) represents the number of edges outgoing from j. The above iteration
stops when the PR values of all nodes reach a steady state.

We wish to find out the influence of the eleven candidates in the first
round of the French presidential election in 2017 (candidates are on the x-
axis in Fig. 14). To do this, we considered the candidates and users who inter-
acted with the candidates according to the three relations Retweet, Mention
and Reply. We obtained 320,803 accounts; 2,708,751 retweets; 29,652 men-
tions and 349,663 replies. Then, we applied the PageRank algorithm to the
three graphs, PageRank scores are on y-axis and three relations are repre-
sented by a color, the results being presented in Fig. 14. These graphs are rep-
resented by their adjacency matrix that can be obtained from a 3-order tensor
UUR(U : String, U : String,R : String) : Integer by selecting each relation
corresponding to keys of R independently. The PageRank scores obtained by the
candidates reflect the interest they elicited during the campaign: “small” can-
didates have low scores compared to the candidates supported by major parties
or compared to the novelty carried by the Macron candidacy.

7 Performance Evaluation

In this section, we study two aspects of TDM’s performance: (1) in terms of space
complexity for tensor data structure, time complexity for operators including
a comparison with the relational model, and using hashtable structures (Sub-
sect. 7.1); (2) with real data using existing algorithms implemented in different
programming paradigms (Subsect. 7.2).
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Fig. 14. Ranking of French presidential candidates by using PageRank (Color figure
online)

7.1 Theoretical Evaluation

The storage of tensors is highly correlated with the data modeling choices such as
array, matrix or graph. As we work with the closed world assumption, i.e., only
what is known to be true is stored, we often obtain sparse data. For example,
a graph is considered to be sparse if nnz = O(n), where nnz is the number of
edges and n is the number of vertices, for an array or a matrix nnz is the number
of non-zero values.

It is often more convenient to represent tensors as matrices. The unfolding of
a tensor performs a reordering of elements of a N-order tensor into a matrix [19].
Compressed Sparse Column (CSC) or Compressed Sparse Row (CSR) [17] are
common data structures used to store sparse matrices and to perform linear
algebra operations on sparse matrices. The total space complexity of CSC is
O(n + nnz). CSC allows fast access to columns of a matrix, yet it is very slow
when accessing rows. Storing CSR along with CSC can overcome this problem,
but it is rarely used as it doubles the storage size. These structures have been
extended to represent sparse tensors with the Compressed Sparse Fiber (CSF)
format [75]. Nevertheless, all of these structures promote only a few operators
such as multiplication and thus are not suitable for supporting TDM operators.

We assume that tensor values are stored as tuples. We note by TX the repre-
sentation of a N-order tensor X as tuples with N +1 attributes and nnz values.
As tensors are in most cases sparse, tuples store only non-null values. The schema
of TX is the following TX (d1, . . . , dN ,X ) where di ∈ D for i = 1, . . . , N . Table 3
gives an example of TUHT (Fig. 7a). For sparse tensor a tuple representation has
a space complexity of O(nnzN + nnz), which is the same as for a relation with
N + 1 attributes.

In order to study time complexity, we will identify the asymptotic upper
bound of TDM operators using Relational Algebra operators as a reference with
the assumption of a tuple representation. In order to specify the behavior of
TDM operators in more details, we study another representation assumption
using associative arrays implemented as hash tables and linked lists [49]. Thus,
for each operator we provide two descriptions, the first one is the comparison
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Table 3. Tensor UHT stored as tuples

U H T UHT
u1 ht1 t1 25

u1 ht1 t2 5

u1 ht1 t3 8

u1 ht2 t1 0

u1 ht2 t2 0

u1 ht2 t3 1

u1 ht3 t1 0

u1 ht3 t2 18

u1 ht3 t3 9

with Relational Algebra expressions, while the other one is the cost of operators
with hash tables.

For a representation based on hash tables, we assume that the hash function
is uniform. The density α and the estimation of the number of elements for
dimension μdi

(e.g., a slice for a 3-order tensor) are given by:

α =
nnz

|Domd1 | × · · · × |DomdN
| and μdi

=
nnz

|Domdi
|

Table 4 gives for each of operators of TDM their complexity in terms of access.

Table 4. Complexity of main TDM’s operators

Operator Relational algebra expression Complexity

π[expr]X π({d1, . . . , dN ,X} − dk)σ(dk = c)TX O(1 + μd)

σ[expr]X σ(expr)TX O(1 + nnz)

ρ[expr]X σ(expr)TX O(1 + nnz)

Let TX3 := σ(dX1
i = dX2

i )(TX1 × TX2 )

X 1 ∪θ X 2 ((TX1 ∪ TX2 ) − π(dX1
i ,X 3)TX3 ) O(2 + nnz(X 1) + nnz(X 2))

∪ π(dX1
i ,X 1θX 2)TX3

X 1 ∩θ X 2 π(dX1
i ,X 1θX 2)TX3 O(2 + nnz(X 1) + nnz(X 2))

X 1 �� X 2 π(
⋃

j=1,2
i=1,...NXj

d
X j

i ,X 1)TX3 O(
∑

d∈DomX2

|Domd| + nnz(X 1))

In conclusion, for the hypothesis of a representation with tuples, the opera-
tors select, project, restriction and natural join have all their costs of the same
order as those of the relational algebra. For union and intersection, applying the
θ operation on the common elements induces a costly Cartesian Product. For
representation with hash tables and linked lists, union and intersection opera-
tions have a moderate cost.
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7.2 Empirical Evaluation

In order to evaluate the performance of the TDM in real analytics use cases,
two experiments were carried out. The first experiment uses a 3-order tensor to
detect potential robots among active Twitter users, and the second experiment
executes the Multiplex PageRank [32], again on a 3-order tensor to measure
the influence of individual Twitter users. For each of these experiments, we
compare the construction times of tensors and execution times of algorithms in
the unoptimized case, as well as in our optimized TDM environment. We also
assume that intermediate tensors and results are stored in memory. We perform
experiments on a single type of storage system, i.e., PostgreSQL.

The goal of the first experiment is to compare the performance of TDM
operators against SQL transformations exclusively executed within the database.
Selection, natural join and aggregation TDM operators are implemented in R. In
the robot detection experiment, we seek to build a tensor UHT (U : String,H :
String, T : Integer) : Integer that represents the number of emissions of hash-
tags by users each hour. As we are interested in users who could potentially be
robots, we retrieve values for users who have retweeted at least 100 times sus-
pected viral tweets (namely tweets that have been retweeted at least 50 times).

With the SQL transformations we build successively: (1) a table containing
suspected viral tweets; (2) a table containing users who have retweeted at least
100 times the potentially viral tweets; and (3) a table containing the values of
the UHT tensor for the users obtained at Step 2.

With TDM operators in R, we perform two tasks at the storage system level
and four tasks at the TDM level: (1) retrieve the potential viral tweets; (2)
retrieve all the tweets which are retweets, including the user who emitted them,
(3) perform a join in R between the values of the previous two steps, in order to
retrieve users who have retweeted at least one of the viral tweets; (4) perform
a selection in order to retain only users who have retweeted at least 100 times
the viral tweets; (5) retrieve UHT values for all users; and (6) perform a join
between users from Step 4 and UHT to retain values only for those users we
are interested in.

The time needed to build the final tensor is shown in Fig. 15. The number of
tweets retained in Step 1 is the parameter being varied. We progress from 2,000
up to 22,000 tweets, in increments of 2,000. With TDM operators implemented
using R, it takes less time to retrieve the data in comparison to in-database
SQL operations, yet more data are obtained directly from the database. Thus,
TDM operators implementation is more efficient for tensor sizes exceeding 300B
values. A coarse grained parallel version of the tensor construction has also been
tested for exploiting the independence of certain of the above six steps.

The goal of second experiment is to evaluate the overhead induced by the
TDM abstraction layer. For this experiment we do not need complex data trans-
formations. As for the PageRank experiment in the previous section, we build a
3-order tensor UUI(U : String, U : String, I : String) : Integer. The first two
dimensions correspond to a matrix representing users, and the third dimension
represents the interaction types: retweet, mention, reply (Fig. 6b). Three methods
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Fig. 15. Time needed to obtain values for tensor UHT with relational database tables
and with TDM operators in R

are compared: (1) the naive one, in which CSV files are produced using queries
on the relational database and then used to fill the tensor; (2) the Scala TDM
wrapper, which directly connects to the database to execute queries needed for
the three interactions layers; and (3) the Scala TDM parallel wrapper, where
queries for retrieving values of different interactions are sent in parallel. Once
the tensor is built, the Multiplex PageRank algorithm is performed to measure
influence of individual users. We tried out three different implementations of
the algorithm. The reference algorithm is written in Matlab30 and takes advan-
tage of optimized and multi-threaded libraries. The second implementation is a
rewrite of the reference algorithm in Scala31 using Breeze library32 (linear alge-
bra for Scala), while the third implementation is a parallel version of the second
implementation.

In order to evaluate the performances with the Multiplex Page Rank, we build
our tensor with a number of users varying from 10,000 to 300,000 in increments
of 10,000. We tried out the three implementations, and the results obtained are
shown in Fig. 16. The wrapper based extraction or CSV extraction takes almost
the same time, yet the use of a wrapper simplifies the workflow. The parallel
wrapper outperforms the other two methods and it seems to be very effective
in building tensors for analysis of multi-layer networks. The execution efficiency
of the Multiplex PageRank in Scala is also comparable to that of the Matlab
execution, especially for the multi-threaded version.

In concluding we note that these experiments show that the TDM unification
layer does not induce noticeable overhead in the data abstraction layer and can
profit from an abstract representation that can also help parallelization.

30 https://github.com/ginestrab/Multiplex-PageRank.
31 https://github.com/AnnabelleGillet/Multiplex-PageRank.
32 https://github.com/scalanlp/breeze.

https://github.com/ginestrab/Multiplex-PageRank
https://github.com/AnnabelleGillet/Multiplex-PageRank
https://github.com/scalanlp/breeze
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Fig. 16. Multiplex PageRank applied with TDM compared to a reference implemen-
tation using Matlab and CSV files

8 Conclusion

In this article, we described a Tensor based Data Model for polystore systems
to achieve logical data independence and to solve data impedance mismatch
problems in big data analytics architectures. We studied its ability to gener-
alize major types of data models, such as relational, column, key-value, graph
(including multi-layer networks). Using associative arrays we added the notion
of schema to the tensor mathematical object. We defined a set of manipulation
and analytics operators.

We described our experiments on Twitter data set from the French presi-
dential election carried out to evaluate the ease of use of the operator toolkit as
well as to study their performance. We detected the possible impact of robots
on the circulation of viral tweets and evaluated the influence of candidates. Our
results have been validated by researchers in the communication science. The
experiments demonstrated the TDM capabilities by showing the ease of data
transformations in our analyses.

Our upcoming work will concentrate on the storage of tensors as materialized
views in SciDB through a matricization process [46]. As there are multiple ways
of performing matricization, one particular way must be chosen based on the
privileged operators and it may be necessary to specify normal forms to guide
matricization. We are working on an implementation of each operator in Apache
Spark and R using partition hashing. We did not consider the tensor algebra
operators as a foundation for a user query language; instead we are implementing
them, in a functional programming point of view, as Scala operators associated
these objects. We also plan to study the behavior of operators in relation to each
other in order to integrate them into a query optimizer such as Spark Catalyst.
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We are selecting use case queries to carry out a performance evaluation study
for operators and storage systems in order to provide users with needed guide-
lines.

On a more theoretical side, we need to add additional operators to the tensor
algebra to manipulate dimensions and to allow renaming. We also need to study
the expressive power of the set of operators including operators for manipulation
of values and structures, as the first order logic is not being sufficient.
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66. Özsoyoğlu, G., Özsoyoğlu, Z.M., Matos, V.: Extending relational algebra and rela-
tional calculus with set-valued attributes and aggregate functions. ACM Trans.
Database Syst. 12(4), 566–592 (1987)

67. Özsu, M.T., Valduriez, P.: Principles of Distributed Database Systems. Springer,
New York (2011)

68. Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank citation ranking:
bringing order to the Web. In: Proceedings of the 7th International World Wide
Web Conference, pp. 161–172 (1999)

69. Papalexakis, E.E., Faloutsos, C., Sidiropoulos, N.D.: Tensors for data mining and
data fusion: models, applications, and scalable algorithms. ACM Trans. Intell. Syst.
Technol. (TIST) 8(2), 16 (2017)
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Abstract. As a result of the continuously growing volume of informa-
tion available, browsing and querying of textual information in search of
specific facts is currently a tedious task exacerbated by a reality where
data presentation very often does not meet the needs of users. To satisfy
these ever-increasing needs, we have designed an solution to provide an
adaptive and intelligent solution for the automatic answer of multiple-
choice questions based on the concept of mutual information. An empir-
ical evaluation over a number of general-purpose benchmark datasets
seems to indicate that this solution is promising.
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1 Introduction

With the increasing amount of information that is available online, efficient and
reliable computational techniques for accessing that information are needed. In
fact, an ever-increasing amount of professionals from a wide range of disciplines
agree that the information explosion that we are currently experiencing makes
their work more tedious and even error-prone. The major reasons therefor are the
fact that newly generated information is usually formatted in an unstructured
way, and that the huge volume and speed at which that information is made
available usually lead to information overload in their daily activities.

It is widely known that working with huge volumes of information has always
been a major issue for computer scientists and practitioners in their efforts for
applying for the latest advances in information technologies to offer solutions for
the aforementioned problems. In fact, the latest advances in Big Data and Nat-
ural Language Processing have proven to be extremely useful for solving many
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problems that have traditionally affected the field of information processing.
In practice, the daily operations of a wide range of professions require reading
a large amount of textual material to identify the relevant documents and to
locate the right piece of information needed. One step in the evolution towards
the improvement of these processes emerges from Question Answering (QA) sys-
tems as a sub-field of Information Retrieval (IR). The design of QA systems is
widely considered as an alternative to overcome traditional processes by pro-
viding accurate and understandable answers to specific questions, rather than
presenting the user with a list of search-related documents [16].

The research community agrees that systems allowing generating automatic
responses to textual questions could have a strong impact and practical implica-
tions in many diverse disciplines. In this way, efficient techniques for answering
specific questions are in high demand and some systems implementing methods
for answering questions have been designed to meet this need. However, QA
technology faces some problems that prevent its progress. For example, typical
approaches try to initially generate many possible responses for each question
and then try to choose the right answer from all possible answers. However, the
techniques for choosing the right answer need to be further improved. Moreover,
the old assumption that answers to most of the questions are often explicitly
stated somewhere, and the only remaining factor needed in addition is the access
to a sufficiently large corpus have been proved to be inaccurate.

To effectively reason over knowledge derived from the text, QA systems must
handle incomplete and potentially noisy knowledge. To tackle this problem, we
have focused on computational techniques for mutual information exchange and
reinforced co-occurrence analysis. Techniques of this kind have been widely used
in various forms of research on content analysis, text mining, thesauri building,
and ontology learning. Since the problem to be faced is too huge, our focus in
this paper is laid in a particular sub-problem: multiple choice QA, i.e. answering
questions in a scenario where the possible answers are already given before-
hand [1]. This problem is very common in practice, as many people know how
to determine the number of potential answers beforehand, and the fact that
some potential clues are already given can also significantly help to reduce the
workload. This is mainly because a QA system would be able to automatically
process a huge amount of textual resources to find the answer that best matches
a question, and that means that QA systems could save resources in the form
of effort, costs and time in many fields where the explosion of information is
causing problems.

Therefore, we propose here a novel framework intended to operate over huge
text corpora to discover latent textual structures of existing textual representa-
tions that allow to automatically answer multiple-choice questions on any sub-
ject. Unlike our previous work [22], we envision our solution as a general-purpose
framework so that conclusions being drawn apply to a wide range of specific
domains. Therefore, with this idea in mind, we present here our research from
which the following contributions can be highlighted:
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– Contribution 1: We propose a new method for the automatic answer of
multiple-choice questions based on the notion of mutual information exchange
and reinforced co-occurrence. The advantages of this proposal in comparison
with the existing ones are:
(1) Advantage 1: Our approach can generate a ranking of answers without

the need of a training phase over the data
(2) Advantage 2: Unlike most existing systems, our approach does not need

to consume textual corpora whereby the correct answer to the question
is explicitly stated

(3) Advantage 3: Our approach can explain the results so that a human
operator can understand the ranking of the generated answers

– Contribution 2: We have empirically evaluated our approach using some
of the most common benchmark datasets for the automatic answering of
questions in the legal, geographical, and historical field. And we have verified
that the results are in line with those of the state-of-the-art despite having
the present solution presents the aforementioned advantages over the most
advanced techniques.

The remainder of this work is organized as follows: Sect. 2 reports the state-
of-the-art on question answering methods and tools that have proven to be suc-
cessful in the past. Section 3 presents the fundamentals of our contribution con-
cerning the computation of the reinforced co-occurrence over huge corpora of
text. Section 4 reports the empirical evaluation of our novel approach over some
benchmark datasets and the analysis of the results that we have achieved from
that evaluation. Finally, we outline the conclusions and future lines of research.

2 State-of-the-art

QA systems are traditionally considered as groups of interacting software compo-
nents intended to automatically reply questions by analyzing different sources of
either structured or unstructured information. In practice, these sources are usu-
ally called Knowledge Bases (KBs) and can lead to two different approaches to
address the problem depending on the nature of the information to be exploited:
structured or unstructured solutions. Each of them has different advantages and
disadvantages. For example, working with structured KBs allows exploiting the
knowledge represented by using the so-called inference engines, to infer new
knowledge and to answer questions [35]. However, at present, there is not an
automatic way to introduce a new entity into the KB nor to determine with
which existing entities should be related and how [24]. Therefore, finding prac-
tical solutions is considered as an important research challenge and it currently
matters of intense research [13].

The fact is that, in practice, it is not easy to implement these systems, so they
have been progressively replaced by another type of more efficient systems based
on lighter knowledge models such as knowledge graphs [8] and other enhanced
lexical semantic models [34], but in general, it is widely assumed that building a
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fully structured KB is expensive in terms of resource consumption, it is subject
to many errors, it is usually difficult and expensive to maintain, and last but not
least, it is usually hardly reusable in other contexts.

In contrast, systems exploiting unstructured KBs have more practical bene-
fits as most of them have been specifically designed to efficiently process huge
amounts of textual data (usually represented in natural language). These huge
amounts of data come from existing documents, databases, websites, and so on.
For this reason, the most frequent type of QA system that is mentioned in the
literature is the one that uses different collections of unstructured natural lan-
guage KBs. The current generation of QA systems has evolved to extract answers
from a wide range of different plain machine-readable resources. These QA sys-
tems exploit the massive set of unstructured information available on some data
sources to retrieve information about any particular question. It is important
to note that these QA systems are only possible mainly due to recent advances
in big data [12] and natural language technologies [18]. Moreover, since these
novel QA systems are capable of processing questions about different domains
and topics, they are now used in a wide range of different scenarios [23].

IR-based solutions represent words in the form of discrete and atomic units.
For example, given the fact that today’s web search engines can successfully
retrieve simple answers to many queries expressed by a human operator just by
searching the Web. Therefore, the first approach could be to query the number
of Google results for a specific question and a given answer together. However,
this solution has brought several problems like the lack of context (not to men-
tion very serious problems related to denial of service). Li et al. proposed the
exploitation of structured lexical databases and corpus statistics [21]. However,
the method is not optimized for dealing with QA scenarios. To overcome these
problems, word processing models such as LSA [7] and term frequency-inverse
document frequency (TF-IDF) partially solve these ambiguities by using terms
that appear in a similar context based on their vector representation, and then
they group the semantic space into the same semantic cluster. In this context,
one of the best-known QA systems is IBM Watson [10], that it is very popular for
its victory in the televised show Jeopardy [11]. Although in recent times, IBM
Watson has become a generic umbrella that includes other business analytics
capabilities.

There is a second possible classification that distinguishes QA systems
between closed-domain and open-domain. If we focus strictly on QA in closed-
domain, we find that this technology has been used in real information systems,
and especially in knowledge management systems [2]. The logic behind these sys-
tems is that given an issue, the extraction of relevant resources and the decision
whether or not to use that content to answer the question are two key steps in
building a system. In recent times, this approach has delivered many successful
applications, e.g. in the legal area. In the literature we can distinguish between
two major approaches: (a) with structured KB. For example, Lame et al. [19] and
Fawei et al. [9] using ontologies, or Xu et al. [33] by exploiting other KBs such
as Freebase. And (b) exploiting unstructured KBs. For example, Brueninghaus
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and Ashley with a classical IR approach [4], Bennet et al. with strong focus on
scalability [2], Maxwell and Schafer paying attention to context [26], Mimouni
et al. with the possibility to make use of complex queries [27], or most modern
deep learning techniques from Marimoto et al. [28] and Nicula et al. [29], the
latter with good results, although with issues concerning the interpretability of
the results.

Concerning open-domain, several systems capable to operate in general-
purpose scenarios have been proposed. For example, the open-source system
Calcipher [31], or the more advanced IR solver which uses the Waterloo cor-
pus from Clark et al. [5]. The IR solver tries to determine if the question along
with an answer option is explicitly stated in the textual corpus, and returns
the confidence that such a statement was found. Another outstanding system is
the DrQA system1 that is available under an open-source license. This system
addresses the challenge of open domain question answering using Wikipedia as
unstructured KB. This means that the system has to combine the challenges of
finding the relevant Wikipedia pages with that of identifying the answers from
those pages. What we present here is an open-domain system that uses unstruc-
tured KBs to face multiple-choice questionnaires about any subject. Our system
benefits from features such as no need for training (typical of systems that use
machine learning), no need to find explicit answers in the textual corpus which
it is used as background (typical of early QA systems), and the ability to provide
answers with a high degree of interpretability (as opposed to proposals based on
neural models).

3 General Framework for Multiple Choice Question
Answering Based on Mutual Information

Our approach is intended to automatically process massive amounts of textual
information to look for evidence allowing to infer the most promising answers
with regards to the huge range of questions that people can make. In this way, our
contribution is a novel framework for automatically answering multiple-choice
questions concerning a wide range of topics. This approach needs to fulfill two
stages: first, we need to calculate alignment matrices between the question and
the possible choices using textual corpora, and in the next stage, we need to
normalize the results to produce a final result and associated ranking of possible
answers. Next subsections introduce the technical preliminaries, the notion of
reinforced co-occurrence, the normalization process, the implementation of our
approach, and several running examples that show how this approach works in
practice.

3.1 Technical Preliminaries

To overcome the current limitations of exiting QA approaches, we propose
to automatically analyze the mutual information exchange [6] between a pre-
processed version of the question and each of the possible choices in the context
1 https://github.com/facebookresearch/DrQA.

https://github.com/facebookresearch/DrQA
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of different corpora of unstructured text. In this context, the mutual informa-
tion exchange of two random variables is a measure of the mutual dependence
between the two variables, i.e. the mutual information I(Q; C) between two ran-
dom variables Q and C is the amount of information that the choice C gives
about the question Q. This can be formally defined as:

Let (q, cn) be a question and a possible answer with values over the space
Q×C. If their joint distribution is P(Q,C) and the marginal distributions are PC ,
the mutual information between them could be:

I(Q;C) = DKL(P(Q,C)‖PQ ⊗ PC) (1)

Our framework considers a pair of entities q and cn that belong to two discrete
random variables Q and C quantifies the probability of their co-occurrence given
their joint distribution and their specific distributions. It can be mathematically
expressed such as:

P(q, cn) ≡ log
p(q, cn)

p(q)p(cn)
= log

p(q|cn)
p(q)

. (2)

Our approach minimizes when the information overlap between the question
and the potential choice is 0 (i.e. p(q|c) = 0 or p(c|q) = 0), which means that
the two variables considered are independent. On the other hand, our approach
maximizes in the (rare case of) the question and the potential choice might be
perfectly associated (i.e. p(q|c) = 1 or p(c|q) = 1), yielding the following bounds:

− ∞ ≤ P(q, cn) ≤ min [− log p(q),− log p(cn)] . (3)

Therefore, we treat the QA problem of ranking the choice set such that the
correct hypothesis is the one associated with a higher score and therefore, it
is placed on the top of the ranking. We learn a scoring function S(H, z) with
a normalization parameter z such that the score of the correct choice (i.e. its
corresponding co-occurrence probability) is higher than the score of the other
hypotheses and their corresponding co-occurrence probabilities. Some interesting
properties are:

(1) If Q ⊥ C, I(Q;C) = 0 because H(Q) = H(Q|C)
(2) If Q = C, I(Q;C) = H(Q)
(3) If Q = f(C), I(Q;C) = H(Q) where f is deterministic
(4) If C = g(Q), I(Q;C) = H(C)

As a final note, it is necessary to remark that mutual information is symmet-
ric, i.e. I(Q;C) = I(C;Q), this means that in our application we do not need to
worry about one direction than the other since though mathematically they are
the same. The symmetry can be proven such as:

H(Q) + H(C|Q) = H(Q,C) = H(C,Q) = H(C) + H(Q|C)

H(Q) − H(Q|C) = H(C) − H(C|Q)

I(Q;C) = I(C;Q)
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3.2 Reinforced Co-occurrence

Our text mining approach works under the distributional assumption [20]. This
assumption has proven to perform well for several problems in the past. We
hypothesize that the most important words of the question and the answers will
co-occur in a small fraction of the given textual corpora. Our goal is to identify
and analyze this co-occurrence, to present to the user our suggestions based on
the automatic interpretation and normalization of that co-occurrence.

As the mutual information method can measure how much the actual proba-
bility of a particular co-occurrence of the question and the possible choice differs
from what we would expect it to be based on the probabilities of the individual
events and the assumption of independence. The question arises when dealing
with the concept of co-occurrence itself. Many authors use the same text sen-
tence whereas others assume that a text frame of n-units should be considered.
Many others applied the notion of the paragraph, and so on. Our proposal con-
siders an intelligent aggregation of all of them. That is why we call it reinforced
co-occurrence. Formally, reinforced co-occurrence takes input a set of numeric
values from the different aspects to be analyzed and outputs an aggregated
number that it is supposed to represent in a meaningful way some of the most
important characteristics of the input set. And it can formally be expressed in
the following way:

Pr =
i=n∏

i=0

Pi(q, cn) (4)

The key research question is how this aggregation should be performed to
deliver the best possible results. To answer that question, we propose a software
framework to experiment on how that aggregation could be carried out. At this
point, it is important to remark that we handle the concept of trust in terms
of physical proximity [25]. For example, if a given (pre-processed) question and
potential answers appear in the same paragraph of a document, we will have, at
least, low evidence of a relation between them. But if this pair seems to appear
together frequently, in the same sentences, or pre-defined text frames, or even
in the context of the same regular expressions from the textual corpora, then
we could infer that we could have an answer for the given question. This is
precisely what can be achieved through the reinforced co-occurrence. However,
exact technical details have to be defined using proper fine-tuning.

Moreover, it is obvious to see that the design of such a framework in this
context is far from being trivial. However, our experience in rapid prototyping
and testing text mining pipelines has shown us that it is possible to reach a
reasonable level of success [23]. According to our experience, a solution that
works very well is a method with four levels of co-occurrence depending on
the context whereby the question and the choice being evaluated can be found
together. For this reason, we propose to work with various levels of co-occurrence,
ranging from quite low degrees of restriction to very high degrees: text frame,
regular expression, sentence, and paragraph. This way of working means that
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very few co-occurrences can be found, but the key to all of this is that those co-
occurrences found will be very precise. Therefore, the corpus of text to be used
must be huge. Otherwise, it is quite probable that our technique will not be able
to obtain the values (since the restrictions that we impose are very strict).

Finally, it is necessary to remark that the problem addressed here is based on
short response models. The reason is that these models provide the potentially
correct answer in the form of a number, a name, a date, or even a short phrase or
text fragment. This makes the work of our text mining engine much easier. It is
also important to note, that this assumes that there are different ways of asking
questions, and most of them are characterized by the formulation of questions
expressed by interrogative particles (i.e. what, who, why, when, where, where)
or some kind of is-a or have-a association. At the same time, the aforementioned
possible choices are expressed in natural language, and therefore, they need some
pre-processing too.

3.3 Normalization

In cases where the decision is not clear, for example, several answers have all
the cells in their associated column filled with values, we apply normalization.
Normalization is the process of mitigating the impact of the outliers on the final
decision. This is done using adjusting the values from different scales to a com-
mon scale. Some words are much more common than others. Therefore, their
associated co-occurrence values will be always much higher than others. To mit-
igate this effect, we applied an exponential reduction of the values obtained, so
the highest values are significantly reduced in comparison with the lower ones.
More formally, α = 1 − e(−1/w). With exponential normalization, the averag-
ing window w includes the desired number of reinforced co-occurrence values,
although the lowest values weight more.

3.4 Implementation

Although the concept seems to be not quite straight forward, there is a huge tech-
nical limitation for its development from a pure engineering perspective. This
approach is limited by an important number of technical issues which should be
overcome. These limitations, originally identified by [3], are inherent to the pro-
cess of massive text mining and include: Limitations concerning the corpora size,
variability inherent to the processing of natural language (verbal forms, plurals,
etc.), issues concerning the different domain nomenclatures, degree of uncer-
tainty on the accuracy of the contents, and language in which the information
is represented.

Accordingly, IR systems are usually designed in the form of a pipeline, i.e. a
workflow whereby the data is processed in a way that the output of one module
is the input of the next one. Figure 1 shows us an overall view of our IR pipeline.
These components are related to each other and process the textual informa-
tion available on different levels until the QA process has been completed. The
questions formulated which serve as input for our system are initially processed
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by the question analysis component. This process is very important to trans-
fer just meaningful data into the mining phase, whereby the calculation of the
reinforced co-occurrence will take place. Answer extraction [32] will assign the
proper results to each of the possible choices. Finally, it is necessary to normalize
the raw data and create the final ranking to be delivered. The main modules of
our QA system could be summarized in the following steps:

Fig. 1. Overall view of a pipeline designed to answer the multiple-choice tests. First of
all, questions and answers need to be pre-processed. After this, a text mining engine is in
charge of mining reinforced co-occurrence patterns. Then, these patterns are analyzed.
Finally, the results are normalized and a ranking of potential choices is delivered

– Question Analysis. It is in charge of pre-processing both the question and the
possible answers. To do that, it is necessary to remove the stop words and
very common words (prepositions, adverbs, articles, etc.), to proceed with a
lemmatization process, determining the root of the words to prevent irregular
forms (i.e. plurals, third persons, etc.) to affect the co-occurrence.

– Reinforced Co-occurrence Calculation. The logic behind this module consists
of counting how many times the pre-processed question and the evaluated
answer co-occur together in the same text frame, in the same text expression,
in the same sentence, and the same paragraph. Some parameters should be
manually tuned.

– Answer Extraction. It consists of compiling the results and assign them to
each of the possible choices. After this process, we have just raw values that
need to be refined.
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– Answer Normalization and Ranking. In this work, we usually work with expo-
nential reductions, but other methods need to be considered in future work.
The ranking consists of creating an ordered list of response according to the
score obtained after normalization. Also, a heatmap is automatically created
to deliver an explanation suitable for humans who need to understand how
the ranking has been created.

3.5 Running Examples

To illustrate how our approach works, we have designed a running example to
better understand how our pipeline processes the information. Let us see a couple
of examples.

Running Example 1. Let us think in a question whereby we would like to
know in which island is the volcano Etna situated. Let us think how the question
could be, and how the different choices would look like.

On which island is Etna volcano located?

(a) Sicily

(b) Corsica

(c) Rhodes

(d) Sardinia

To do that, we can see in Fig. 2 the graphical summary of how this process
is performed: The question and the associated choices have to be preprocessed
to remove non-relevant words, perform lemmatization, etc. Then, the system
continues working by conveniently dividing the information into different parts
which will be transferred to the following process which is a text mining engine
that looks for the reinforced co-occurrence of the question and each possible
answer. As a result, we get the reinforced co-occurrence values that have to be
normalized so the outliers might not behave an extreme weight in the final value.
As we see, the word island presents relatively high co-occurrence values, which
makes sense since the island is a very common word. One would expect to find
that word many times in the corpus, so in case that the answer is not clear, this
effect will be mitigated with an exponential reduction of the highest values.

After repeating this process for each of the possible choices (Sicily, Corsica,
Rhodes, or Sardinia), we have must discern whether it is the correct one. After
performing the corresponding pre-processing, and reinforced co-occurrence cal-
culation, we get the Table 1 the raw results. Since just one column has all its
cells with values, these results are definitive, and they give a very clear clue that
the option chosen is going to be Sicily (which on the other hand is the correct
answer).

Therefore, the choice that our system would select as the most promising one
is (a) Sicily, also the correct answer according the ground truth. The other three
possible choices has a strong relation with the word island but not to volcano
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Fig. 2. Overall view of one iteration whereby a question (On which island is Etna
volcano located?) and a potential answer (Sicily) is evaluated

Table 1. Raw results obtained for the reinforced co-occurrence of using WikiCorpus

Reinforced co-occur. Sicily Corsica Rhodes Sardinia

Island 310 161 262 142

Volcano 10 0 0 0

Etna 28 0 0 0

or Etna, so they would not even be considered as the final answer. In the next
subsection, we also explain how a heatmap might allow to visually inspect the
rationale behind the result for interpretability issues.
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Running Example 2. Let us think in a question whereby we would like to
know from which country did Papua New Guinea got its independence. Let us
think how the question could be, and how the different choices would look like.

From which country did Papua New Guinea got its independence?
(a) Mozambique
(b) Australia
(c) Indonesia
(d) New Zealand

After the three first processing stages, i.e. Question Analysis, Reinforced Co-
occurrence Calculation, and Answer Extraction; we have been able to get the
values that we see in Table 2.

Table 2. Raw results obtained for the reinforced co-occurrence of using WikiCorpus

Reinforced co-occur. Mozambique Australia Indonesia New Zealand

Country 256 6028 1033 2309

Papua New Guinea 5 411 137 144

Independence 134 225 611 114

Everything seems to indicate that Australia will be the option finally chosen.
Please note that Australia, Indonesia, and New Zealand as countries appear
very frequently. However, in this case, normalization will reduce the impact of
this fact on the final result. Therefore, the choice that our system would select
as the correct one is (b) Australia, what is also the correct one according to
the ground truth. The second would be (b) New Zealand. And the other two
possible choices has lower values for reinforced co-occurrence, so they would not
even be considered as plausible answers. As in the previous example, a heatmap
allows to visually inspect the rationale behind the result for accountability and
interpretability issues.

3.6 A Brief Note on the Interpretability of Our Solution

The higher the interpretability of a solution, the easier it is for a human user to
understand why the predictions have been made. A solution is assumed to be
more interpretable than another one if its decisions are easier for a human to
understand than decisions from the other solution. For this reason, we envision
the result of our process by not just choosing the most promising choice, but
also we figure out how to represent the final answer in the form of a heatmap.
The idea behind that it is offering a heatmap so that our solution might be more
interpretable. This is mainly because, in some scenarios requiring accountability
and/or interpretability, it is not just enough to provide the answer, but some
reasons for that answer. By visually inspecting the heatmap, a human operator
can understand how the decision has been made.
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Figure 3 shows the heatmap corresponding to Running Example 1. The pres-
ence of values in each of the cells of the column Sicily indicates that the choice
Sicily will be ranked first.

Fig. 3. Heatmap obtained for the scenario whereby an user wants to know in which
island is the volcano Etna located. Higher values in the column Sicily correctly indicates
that the desired answer is Sicily

Figure 4 shows the heatmap corresponding to Running Example 2. The high-
est values in the column Australia clearly indicates that this choice will be ranked
first.

Fig. 4. Heatmap obtained for the scenario whereby an user wants to know from which
country did Papua New Guinea got its independence. Higher values in the column
Austria indicates that the desired answer is Australia
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We want to emphasize that the heatmap can be generated in two different
approaches: with raw values or with normalized values. It is up to the user to
decide what it is better for a specific purpose.

4 Results

We explain here the results. It is important to remark that results are highly
dependent on the base textual corpus that will be processed. Choosing a relevant,
specific base corpus to evaluate each of the possible choices is important in this
situation. On the other hand, the task of evaluating the system is a vital stage,
as it will assess the performance, as well as the accuracy of the techniques. In
this work, we have chosen the strictest methodology to evaluate systems, which
consists of a binary classification. The answer was right or wrong. However,
there are many proposals in this sense, being some of the most popular those
that grant a score according to the ranking that the evaluated system gives to
the correct answer.

4.1 Setup Configuration

We explain here the implementation decisions that we have taken to achieve a
prototype for testing our hypothesis. The most important implementation details
of our approach include:

– Limitations concerning the corpus size. With the emergence of new paradigms
approaches for big data management, this kind of problems is losing impor-
tance. In this work, we have used WikiCorpus [30] which is a reduced version
of Wikipedia. Wikicorpus is widely popular in the text mining community
since it combines a great number of general-purpose articles represented in
almost 5 GB of plain text.

– Variability is inherent to the processing of natural language. In this work, we
have relied on the Krovetz solution [17] to proceed with the lemmatization.
Besides, we have implemented some functionality to avoid processing verbs,
common stop words, and nouns with a low meaning load.

– Issues concerning domain nomenclature. The problem for methods trying to
exploit information extraction strategies is that they should be adapted to
each different domain. It is widely assumed that meaning is usually repre-
sented by nouns (and noun phrases) so that it is common to built retrieval
methods based on noun representations extracted. Since we are building a
framework intended for general purpose, we have not taken design decision
within this regard.

– Degree of uncertainty on the accuracy of the contents. In this work, we assume
the fact that it is quite likely that the corpus to be analyzed might have some
errors or inaccurate information. However, we foresee that the impact of these
errors might be blurred by the overwhelming presence of correct information.
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– Language in which the information is represented. To overcome this lim-
itation, we have decided to use only English in this version of the work.
WikiCorpus [30] is represented in English, so we have no problems with this
regard.

– Other additional parameters: Other additional parameters are the size of the
text frame (we have chosen a text frame of 5 units), and the kind of regular
expressions to be considered that we have chosen are (is-a) and (have-a), the
exploration of more sophisticated regular expressions is pending as future
work.

4.2 Experiments

As a demonstration, we report here the results from three different datasets:
legal, geographical, and historical. We have chosen 60 multiple-choice questions
(20 for each dataset), and we have compared the results with those achieved by
several publicly available QA systems. The legal questions have been retrieved
from textbooks by the editorial Oxford University Press2.

At the same time, the multiple-choice questionnaires on geography and his-
tory have been taken from the OpenTrivia approach [15]. But please note that
since ours is a general-purpose framework, in principle, there would be no restric-
tion to operate on other datasets. On the other hand, the proposals we are going
to compare with are: the open-source system Calcipher [31], the once-outstanding
solution Li et al. [21], and the classic but yet very powerful [7] using the classical
configuration. Finally, since there is a 25% chance of making the right choices
just by answering randomly, that result will be our baseline.

Legal Dataset. We have worked with a dataset on questions of legal nature.
The reason is to check if our solution could help to alleviate the problem of
information overload in the legal area, which is currently one of the professional
fields that needs it the most. An example of question is

A procedure of peaceful settlement of international dispute is a:
(a) Conciliation (correct)
(b) Cooperation procedure
(c) Jurisdiction
(d) Resolution

The summary of results that we have achieved are summarized in Table 3.
Our approach is able to beat the rest of solutions by correctly answering

around one third of the 20 questions. Rest of QA systems are not able to properly
answer even half of the questions, although they manage to beat the baseline.

2 http://www.oup.com.

http://www.oup.com
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Table 3. Comparison with other approaches regarding the legal dataset

Approach Correct answers Accuracy

Baseline 5/20 25%

Calcipher [31] 7/20 35%

Li et al. [21] 9/20 45%

LSA-classic [7] 9/20 45%

Our approach 13/20 65%

Geographical Dataset. The second benchmark dataset is about questions of
general geography. Sometimes it is very difficult to know a certain data about
geography. We now want to see if our proposal could satisfactorily help a human
operator. An example of multiple-choice question is

What is the deepest freshwater lake on Earth?
(a) Onega
(b) Ladoga
(c) Huron
(d) Baikal (correct)

The results achieved by all the approaches considered are summarized in
Table 4.

Once again, our solution has managed to correctly answer more questions
than the rest of the proposals, which this time also fail to reach half the desired
answers.

Table 4. Comparison with other approaches regarding the geographical dataset

Approach Correct answers Accuracy

Baseline 5/20 25%

Calcipher [31] 7/20 35%

Li et al. [21] 6/20 30%

LSA-Classic [7] 9/20 45%

Our approach 12/20 60%

Historical Dataset. The third dataset is about questions about the history of
mankind, regardless of date or geographical region. It is very difficult for a human
operator to store all this encyclopedic knowledge. For this reason, we want to
know if our proposal could be useful in this sense. One example question is:
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Name the first great Greek tragic playwright who is now acknowledged

as the Father of Drama

(a) Aeschylus (correct)

(b) Aesop

(c) Euripides

(d) Sophocles

The results that the QA systems considered have achieved are summarized
in Table 5.

Table 5. Comparison with other approaches regarding the historical dataset

Approach Correct answers Accuracy

Baseline 5/20 25%

Calcipher [31] 5/20 25%

Li et al. [21] 8/20 40%

LSA-Classic [7] 8/20 40%

Our approach 13/20 65%

Once again, our proposal is ranked first, just ahead of LSA and Li et al.
which also fail to reach half the correct answers this time. Calcipher presents
the worst performance.

4.3 Discussion

QA technology is becoming an important solution in many areas overloaded
by the constant generation of large amounts of information in the form of free
text. In this context, being able to automatically answering specific questions
correctly can contribute to alleviating the problem of dealing with those huge
amounts of unstructured text. This technology, however, faces some obstacles in
its development. And it requires engineering work to properly tune some of the
parameters associated with the processes that intervene in the pipeline.

The lessons learned from this work can be applied in more advanced situa-
tions where the possible choices are not present. At this point, we would need a
way to automatically generate possible choices, which will then be evaluated by
our system. Moreover, it is important to remark that the choice of the different
alternatives for answering the questions is a critical point. Therefore, it is nec-
essary to evaluate the fairness of the choices to be evaluated. In the future, we
want to use the knowledge base YAGO [14] for automatically generate candidate
choices.
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5 Conclusions and Future Work

Methods and techniques for automatically answering specific questions are in
high demand, and as a result, many solutions for QA have been developed
to respond to this need. The major reason for that is that the capability to
automatically answer questions using computers could help alleviate a prob-
lem involving tedious tasks such as an extensive information search what is, in
general, time-consuming. By automatically providing hints concerning a wide
number of topics, lots of resources in the form of effort, costs and time can be
preserved. In this work, we have presented our general framework for automat-
ically addressing multiple-choice questions and the development of techniques
for automatically finding the correct answer through mutual information and
reinforced co-occurrence.

We have seen that although approaches based on structured KB often yield
good results, it is difficult to use them in practice mainly due to the time and
associated cost when building such structured KB (i.e. it is expensive in terms
of effort, costs and time needed) and it is often very difficult to find experts for
curating the KBs. In contrast, our approach is more suitable when selecting the
actual right choice from a list of the possible answers due to the advances in
big data processing and natural language technology. Although with some limi-
tations, the experiments that we have performed over general-purpose datasets
yields good results and seem to be promising. Moreover, in the present work,
we have not yet fully explored the characteristics of many texts to utilize these
features for building our QA system. For example, properties such as references
between articles should be investigated more deeply as part of future work.

As additional future lines of research, we also need to work towards improv-
ing the technical limitations that we were not able to overcome within the frame
of this work. This includes the capability to work with different multilingual tex-
tual corpora at the same time, the proper processing of verbs when formulating
questions and preparing potential answers, the sentiment analysis of the ques-
tions and answers, and the proper aggregation of the different features through
a training phase that can help to appropriately configure the complete pipeline.
We think that by successfully addressing these challenges, it is possible to build
solutions that can help to the many users to overcome one of the most serious
problems that they have to face in their daily activities.
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Abstract. A cache server configuration describes an assignment of data
fragments to cache manager instances (CMIs). A load balancer may
change this assignment by migrating fragments from one CMI to another.
Similarly, an auto-scaling component may change the assignment by
either inserting or removing CMIs in response to load fluctuations. These
changes may generate stale cache entries. Rejig is a scalable online algo-
rithm that manages configuration changes while providing read-after-
write consistency. It is novel for several reasons. First, it allows for a
subset of its clients and CMIs to use different configurations. Second,
its client components propagate configuration changes to one another
on demand and by using CMIs. This enables Rejig to scale and support
diverse application classes including trusted mobile clients accessing the
caching layer. When clients have intermittent network connectivity, Rejig
detects if their cached configurations may result in stale data and updates
them to the latest with no performance impact on either the CMIs or
other clients. Rejig’s overhead is in the form of 4 extra bytes of memory
per cache entry and 4 extra bytes of the network bandwidth per request
from a client to a CMI.

1 Introduction

Caches such as memcached [32], Redis [35], Ignite [15], KOSAR [17], and oth-
ers improve the performance of traditional database management systems with
workloads that exhibit a high read to write ratio [6,7,40]. A caching layer may
consist of tens of servers for a small installation and thousands of servers with a
popular site such as Facebook [33].

A physical server with many cores may host several Cache Manager Instances,
CMIs. Each CMI is a process that might be multi-threaded. It is assigned a fixed
number of cores and some amount of memory. It is also assigned a fraction of
cache entries, a fragment. Multiple fragments are assigned to one CMI for load
balancing. A load balancer may consider factors such as imposed load and cache
hit rate to adjust the assignment of fragments to CMIs to enhance a performance
metric such as system throughput [1,38].

A configuration is an assignment of fragments to CMIs. A coordinator man-
ages configuration changes. A configuration changes due to: (1) addition or
removal of CMIs by an auto-scaling component (or a system administrator),
c© Springer-Verlag GmbH Germany, part of Springer Nature 2019
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(2) re-assignment of fragments to CMIs by a load-balancer, (3) re-assignment
of fragments to CMIs in the presence of network partitions, (4) re-partitioning
of data across fragments by a re-organization component in the form of either
increasing or decreasing the number of fragments, or (5) a combination of these.

Configuration changes must preserve the application’s read-after-write con-
sistency defined as a read of a cache entry observing the value produced by the
last committed write of the entry [31]. Configuration changes may compromise
read-after-write consistency for two reasons. First, during the window of time
when the coordinator publishes a new configuration, a few clients may have the
old configuration while others have the new configuration. This discrepancy may
cause two or more clients that reference the same cache entry to contact different
CMIs, observing different values. If they write this cache entry then they will
generate different values in different CMIs. The value observed by a subsequent
read depends on whether this read is issued using the old or the new config-
uration, potentially compromising read-after-write consistency and correctness
of an application. Second, a configuration change may re-assign a fragment to
a new destination CMI without physically deleting its cache entries from the
source CMI, leaving these entries to become cold at the source CMI and evicted
by its cache replacement technique. In the presence of updates and a subsequent
configuration change that assigns the fragment back to the source, the appli-
cation may observe stale cache entries. To elaborate, consider a system that
migrates Fk from CMIi to CMIj without deleting Fk’s cache entries stored at
CMIi. Should the application update Fk’s cache entries assigned to CMIj then
the value of their replicas on CMIi become stale. If a subsequent configuration
change assigns Fk back to CMIi, references to these cold cache entries observe
stale values. This violates read-after-write consistency.

An ideal solution to these two challenges should (1) be pauseless by pro-
cessing user requests in the presence of configuration changes, (2) provide read-
after-write consistency that guarantees data produced by a committed write
is observed by all subsequent reads, (3) be agnostic to the number of clients,
and (4) preserve as many valid keys as possible in the presence of configuration
changes. With the latter, with v fragments assigned to CMIi, if a configuration
change assigns one fragment to a different CMI then keys of the remaining v − 1
fragments of CMIi should remain valid.

The primary contribution of this paper is Rejig1 [16], a scalable online
algorithm that satisfies the above requirements. Rejig extends existing sys-
tems [21,33]. While it allows multiple clients to use different configurations, it
guarantees consensus on a fragment’s replica by requiring clients that reference
the fragment to use its latest CMI assignment always. Moreover, it allows cache
entries of an old replica of a re-assigned fragment to become cold and evicted by
the CMI’s replacement technique. With those entries that remain, Rejig detects
when the application references them and treats them as cache misses. Rejig
may be configured to delete these cache entries to free the CMI’s memory.

1 The definition of Rejig is to rearrange or organize differently.
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Fig. 1. A candidate architecture for Rejig. Concepts underlying Rejig are applicable
to those architectures that tightly integrate the cache with the application [17] or
represent the caching layer as a middleware [15,28,34].

Rejig is designed for clients and CMIs deployed in a data center. Rejig does
not require the coordinator to propogate a new configuration to all CMIs. It
employs clients to perform this task on demand, making it appropriate for other
deployments. For example, it may be used with trusted mobile clients2 that have
intermittent network connectivity to the caching layer. It also functions with
CMIs deployed across two or more geographically distributed data centers [3].
These deployments are possible because Rejig satisfies the following properties.
First, CMIs are passive entities that respond to requests. Second, clients do
not transmit a configuration to one another directly. They use CMIs and the
coordinator intelligently to obtain the latest configuration on demand, i.e., once
a Rejig client detects that its request was issued using an old configuration.
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Fig. 2. A configuration with two partitioning techniques.

2 Untrusted mobile clients may open possibilities for a Denial of Service (DoS) attack
or data corruption.
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The software architecture of Rejig hides its implementation details. Its trans-
parency frees software developers to focus on their application and its require-
ments (instead of configuration changes and how to manage impacted frag-
ments). Central to its design is a monotonically increasing global unique identifier
for each configuration published by the coordinator, GlobalCfgID. Each updated
and inserted cache entry is tagged with the current GlobalCfgID. Moreover,
each client must piggyback the GlobalCfgID of its cached configuration with the
request it issues to a CMI. Hence, Rejig imposes two types of overhead. First, it
requires 4 extra bytes of memory per cache entry to store GlobalCfgID. Second,
a client request consumes 4 extra bytes of the available network bandwidth per
request to transmit GlobalCfgID of its configuration.

The rest of this paper is organized as follows. Section 2 details Rejig’s design.
Section 3 presents an implementation of this design. We evaluate this implemen-
tation using microbenchmarks and traces from Azure [10] and WorldCup ’98 [4]
in Sect. 4. Section 5 contains related work. Brief conclusions are presented in
Sect. 6.

2 General Design of Rejig

Rejig’s software architecture consists of cache manager software, a coordinator
responsible for maintaining the configuration, and a client component used by
the application to issue requests. Figure 1 shows an example deployment of this
software architecture. A cache server hosts one or more Rejig cache manager
instances, CMIs. Each CMI is identified using the combination of its IP and
port number, see Fig. 2. The coordinator represents a configuration as F frag-
ments assigned to different CMIs. We detail a space efficient implementation of
a configuration in Appendix B.

Rejig supports hash and range partitioning techniques to shard the applica-
tion’s data across CMIs. With the former, a hash function is used to identify the
fragment containing a referenced key K. With the latter, the configuration main-
tains the range of values assigned to each fragment. It performs a binary search
to identify the fragment containing K. Rejig also supports a hybrid partition-
ing technique [1] that applies a hash function to map K to an order preserving
space that is range partitioned across CMIs. We describe how Rejig’s coordina-
tor increases the number of fragments F with the hash partitioning strategy in
Appendix B.1.

Rejig’s coordinator uses a monotonically increasing integer, GlobalCfgID, to
identify a configuration. Rejig’s client and server components maintain their
latest value of GlobalCfgID. Rejig’s client component caches a local copy of the
latest configuration for efficient processing of requests. When the coordinator
computes a new configuration, it increments GlobalCfgID. For each impacted
fragment, the coordinator informs either a subset or all impacted CMIs of the
new GlobalCfgID and inserts the corresponding configuration in these CMIs. As
an example of updating a subset of the impacted CMIs, consider a scenario that
migrates a fragment from a source CMI to a destination CMI. It is sufficient
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Table 1. Terms and their Definitions.

Term Definition

F Number of fragments

CMIi Cache manager instance i

Configuration Mapping of F fragments to CMIs

Fk Fragment k

GlobalCfgID Coordinator maintained monotonically increasing value
that identifies a configuration

FragCfgIDk GlobalCfgID value of the configuration that either created
or changed the assignment of fragment Fk

Vcid Configuration id associated with a cache entry when it is
either inserted or updated in a CMI

α Number of CMIs a client inserts GlobalCfgID and
configuration into once it obtains the latest configuration

for Rejig to update the source CMI with the new GlobalCfgID and insert the
latest configuration in this CMI only. As an example of updating all impacted
CMIs, when a CMI is removed, its fragments are assigned to different CMIs.
The coordinator updates the GlobalCfgID of these CMIs and inserts the new
configuration in all (Table 1).

Rejig’s clients and CMIs use a distributed collaborative algorithm to update
their GlobalCfgID value and cached configuration. Section 2.1 details this algo-
rithm.

Rejig’s coordinator implements a re-organization algorithm that changes the
assignment of fragments to CMIs in response to an evolving workload. The effi-
ciency of a configuration change and how it re-organizes fragments’ assignment
is the responsibility of this algorithm (and not Rejig). At any given time, there
is one active coordinator. However, there may be multiple standby coordinators,
each of which is prepared to take over if the active coordinator crashes. The active
coordinator stores the latest configuration and its GlobalCfgID on an external
storage system that is highly available (such as ZooKeeper [26]). The standby
coordinators use the external storage system to detect failure of the active coor-
dinator, select a new active coordinator, and recover the configuration and its
GlobalCfgID.

With each configuration change, the coordinator maintains the value of Glob-
alCfgID for each fragment Fk impacted by that change, FragCfgIDk. A frag-
ment’s FragCfgIDk is initialized to the GlobalCfgID value that created it. A
fragment is impacted by one configuration change. However, a configuration
change may impact several different fragments. For example, removal of a cache
server in Fig. 2 impacts multiple CMIs and their assigned fragments. Thus, at
any instance in time, different fragments may have different FragCfgIDk values,
identifying the GlobalCfgID value that changed their assignment to a CMI.
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Table 2. Rejig and its variants.

Rejig A client always inserts its newly obtained configuration in
the next α unique CMIs

RejigC A client inserts its newly obtained configuration in the
next α unique CMIs only if it fetches the latest
configuration from the coordinator

RejigT Similar to Rejig with the following termination condition.
A client stops inserting its obtained configuration in CMIs
once a CMI reports it has the latest configuration

Example 2.1. In Fig. 2(b), Fj ’s FragCfgID is 765. Assume the current Global-
CfgID value is also 765, GlobalCfgID = 765. If the coordinator assigns a different
fragment, say F0, to a different CMI then it increments GlobalCfgID by one,
GlobalCfgID = 766. It produces a new configuration with F0’s FragCfgID set to
766 along with IP and port number of its newly assigned CMI. Other fragments’
FragCfgID including Fj ’s FragCfgID remain unchanged.�

2.1 Processing Get Requests

Algorithms 1 and 2 provide Rejig’s protocol to process the get command by
a client and a CMI, respectively. Appendix A provides a formal proof of this
protocol. A client piggybacks its value of GlobalCfgID with every request it issues
to a CMIi, see line 3 of Algorithm 1. A cache manager instance, CMIi, compares
its latest known GlobalCfgID to the one provided by the client. There are three
possibilities, see lines 1 to 8 of Algorithm 2. Either the two are equal, CMIi’s
GlobalCfgID is greater than the client’s GlobalCfgID, or the CMI’s GlobalCfgID
is less than client’s GlobalCfgID. Consider each in turn.

CMIi’s GlobalCfgID Equals Client Provided GlobalCfgID: If CMIi has
the value associated with the referenced key then it returns this value including
its configuration id, Vcid. Vcid identifies the configuration in which this cache
entry was either inserted or updated in CMIi (line 10 in Algorithm 2). The client
compares Vcid with its assigned fragment’s FragCfgIDk. If Vcid is greater than
or equal then the value is valid and the client provides it to the application.
Otherwise, the value was created in an older configuration that mapped this
fragment to the same CMI and the value may be stale. Hence, the client discards
the value and reports a cache miss. One may configure Rejig clients to delete
this cache entry, freeing the available cache space of the CMI, see lines 19 to 24
in Algorithm 1.

This algorithm may incorrectly identify a value as stale if it was not updated
while its fragment Fk was assigned to some other CMIs. The likelihood of this
false negative is a function of the popularity of the cache entry, the mix of reads
and writes in the workload, and how long Fk was mapped to a different CMI
before being re-assigned. We quantify this in Sect. 4.2.
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Algorithm 1: Client: get
get(key)
Input : key: byte array
Result : cached value or null
Let ConfigKey = the key that identifies the cache entry of a configuration.
Let LatestConfig = Client’s latest copy of the configuration.
Let ClientGCfgID = Client’s current GlobalCfgID value.

1 fragment = getFragment(LatestConfig, key);
2 cache = fragment.CMI; // get the assigned CMI

3 result = cache.get(ClientGCfgID, key);
4 if result.code == RefreshAndRetry then
5 newConfig = cache.get(ConfigKey);
6 if newConfig.value �= null then
7 LatestConfig = newConfig;
8 ClientGCfgID = newConfig.GlobalCfgID;

9 else
/* the configuration cache entry may be evicted */

10 newConfig = coordinator.getLatestConfig();
11 LatestConfig = newConfig;
12 ClientGCfgID = newConfig.GlobalCfgID;

13 end
14 return get(key);

15 else
16 if cache is one of the next α unique CMIs then
17 cache.set(ClientGCfgID, ConfigKey, LatestConfig);
18 end
19 if result.code == hit then
20 if fragment.FragCfgIDk ≤ result.Vcid then
21 return result.value;
22 else
23 cache.delete(ClientGCfgID, key) ; // asynchronously

24 return null;

25 end

26 else
27 if result.code == miss then
28 return null;
29 end

30 end

31 end

CMIi’s GlobalCfgID is Greater than the Client’s GlobalCfgID: This
condition is satisfied when the client’s cached configuration is old and CMIi is
provided with a more recent configuration. CMIi returns a “Refresh & Retry”
response to the client, see line 2 in Algorithm 2. In response, the client fetches the
latest configuration from CMIi and retries its request. If CMIi evicted3 the latest
3 CMIi may pin the latest configuration to prevent its eviction.
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configuration (i.e., reports a cache miss), the client contacts the coordinator for
the latest configuration. Subsequently, it retries its request, see lines 4 to 14
in Algorithm 1. It is possible to reduce the number of roundtrips by requiring
a CMIi to piggyback the new configuration (assuming CMIi has it) with its
“Refresh & Retry” response.

Rejig clients disseminate the latest configuration to one another using the
CMIs. A client that fetches a configuration inserts it into the next α unique
CMIs that it contacts to process a request, piggybacking its GlobalCfgID value
along with each insert, see line 17 in Algorithm 1. A CMI ignores this insertion
when its GlobalCfgID is greater, i.e., the configuration changed and this CMI
has a more recent configuration.

There are other variations of this dissemination technique [12]. We consider
two variants named RejigC and RejigT , see Table 2. With RejigC , a client inserts
its known configuration into the next α unique CMIs only if it fetches the latest
configuration from the coordinator. With RejigT , a client stops inserting once
a CMI reports that it has the latest configuration. We quantify the tradeoffs
associated with Rejig, RejigC , and RejigT in Sect. 4.1.

CMIi’s GlobalCfgID is Less than the Client’s GlobalCfgID: CMIi deletes
its known configuration and sets its GlobalCfgID with the one provided by the
client, see lines 5 to 6 in Algorithm 2. The client may insert its known configu-
ration in CMIi, see line 17 of Algorithm 1.

Algorithm 2: CMI: get
get(ClientGCfgID, key)
Input : ClientGCfgID: integer, key: byte array
Result : response code, the cached value and the cache entry’s configuration id if

found.
// ClientGCfgID is the client’s GlobalCfgID value

Let ConfigKey = the key of the latest known configuration.
Let CMIGCfgID = CMI’s current GlobalCfgID value.

1 if CMIGCfgID > ClientGCfgID then
2 return RefreshAndRetry;

3 else
4 if CMIGCfgID < ClientGCfgID then
5 CMIGCfgID = ClientGCfgID;
6 delete(ConfigKey);

7 end

8 end
9 if key is cached then

10 return cache hit, the cached value and its associated configuration id;
11 end
12 return cache miss;
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When multiple threads of a client receive “Refresh & Retry”, only one thread
obtains the latest configuration from CMIi while other threads wait. Once this
thread obtains the configuration, all threads use it to retry their requests.
Threads referencing CMIs other than CMIi are not blocked.

In sum, Rejig employs clients (instead of the coordinator) to propagate a
new configuration to other CMIs on demand. This prevents the coordinator
from becoming a bottleneck, realizing a scalable Rejig protocol.

Example 2.2. Consider the range partitioned configuration of Fig. 2(b). Cache
entry Ki is assigned to Fragment Fj . Fj is assigned to CMI 1.0. Assuming Glob-
alCfgID = 765, a write of Ki sets its Vcid to 765. Assume a configuration change
that assigns Fj to the CMI hosting F0, CMI 0.5. This results in the following
changes: GlobalCfgID is set to 766, Fj ’s FragCfgID is set to 766, Fj ’s CMI IP
and port number are set to those of CMI 0.5. Another write of Ki is directed to
CMI 0.5, creating this cache entry and setting its Vcid to 766. Now, the copy of
Ki on CMI 1.0 is stale. Should another configuration change assign Fj back to
CMI 1.0, the GlobalCfgID is incremented by one, GlobalCfgID = 767. Moreover,
Fj ’s FragCfgID is also set to 767 and its IP and port number is set to CMI 1.0.
A reference for Ki may observe the stale version. This version’s FragCfgID (765)
is lower than Fj ’s FragCfgID 767. Hence, Rejig discards this version and reports
a cache miss. �

2.2 Read-After-Write Consistency

Intuitively, Rejig provides read-after-write consistency for several reasons. First,
a CMI impacted by a configuration change does not process a request by a client
that does not have a GlobalCfgID pertaining to either this configuration change
or a more recent one. Second, a client must update its configuration when a
CMI provides a “Refresh & Retry” response to the client request, increasing the
response time of this request. This increase is dictated by the amount of time
required for the CMI to transmit the new configuration to the client. Third, a
CMI always updates its GlobalCfgID to the latest GlobalCfgID provided by a
client or the coordinator. Fourth, a cache entry that observes a hit is valid only
if its configuration id4 Vcid is more recent than the configuration that changed
its fragment’s assignment. The latter ensures replicated cache entries from a
previous configuration (that have not yet been evicted and are potentially stale)
are discarded. See Appendix A for a formal proof.

2.3 CMI Discarding Stale Cache Entries

Thus far, a Rejig client discards cache entries identified as potentially stale. A
CMI may report a miss instead of transmitting a potentially stale cache entry
to a client. To realize this, Rejig’s client component is extended to provide both
FragCfgIDk and GlobalCfgID with every read. After a CMI verifies that a client

4 The configuration that inserted or updated this entry.
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provided GlobalCfgID is the latest, it must verify the Vcid of the referenced
cache entry is greater than or equal to the FragCfgIDk. If this is the case then
it provides the cache entry to the client. Otherwise, it reports a cache miss
and deletes this entry. This requires extra processing by a CMI and incurs the
overhead of transmitting FragCfgIDk with every read request. However, if con-
figuration changes are the norm and discarded cache entries are large in size
then this approach may save network bandwidth.

2.4 Leases

Rejig assumes an architecture that uses leases to ensure consistency of data in the
presence of server failures and network partitions. These leases are managed by
the coordinator of Fig. 1. A lease is similar to a lock but with a fixed lifetime [25].
A CMI may process requests referencing Fragment Fk as long as the coordinator
grants it a valid lease on Fk. The CMI may contact the coordinator to renew
its lease on Fk prior to its expiration. Once a lease on Fk expires, the CMI
stops servicing requests referencing Fk. The coordinator then assigns Fk to other
available CMIs.

Similarly, before the coordinator changes the assignment of Fk from CMIi to
CMIj , it (1) revokes Fk’s lease from CMIi to stop it from processing requests,
and (2) grants a lease on Fk to CMIj to enable it to process requests referencing
Fk. Subsequently, it changes the configuration and uses Rejig to propagate the
new configuration to the clients.

Leases and Rejig serve different purposes and complement one another. Both
are required to implement read-after-write consistency in the presence of network
partitions and configuration changes. While leases ensure data availability in the
presence of network partitions, Rejig disseminates a new configuration efficiently.
In particular, Rejig enables a CMI to use its eviction policy to delete cache entries
of those fragments that are no longer assigned to it (lazily as the space occupied
by these entries is required).

The coordinator does not publish a new configuration that impacts the
assignment of a fragment from/to a CMI that is unreachable. It waits for the
lease to expire (or the network connection to be restored to issue a revoke/grant
lease) prior to publishing a new configuration.

When a client references a CMI for a cache entry assigned to a fragment with
an expired lease, the CMI may respond with a “Refresh & Retry” response. This
causes the client to look up the CMI for the latest configuration. If the CMI
reports a miss, the client contacts the coordinator for the latest configuration.
If no CMI is assigned to this fragment then the coordinator selects the least
loaded CMI, assigns the lease on the fragment to it, increments its GlobalCfgID
and computes a new configuration, updates the GlobalCfgID of the CMI, inserts
the latest configuration in the CMI, and provides the client with the latest
configuration.
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2.5 Replication for High Availability

A system may construct R replicas of a fragment to enhance data availability
in the presence of CMI failure(s). Below, we describe two popular approaches
to maintain these replicas consistent. For each, we describe how a failure is
represented as a configuration change and supported by Rejig.

The first approach requires (1) a read action to obtain r Shared (S) leases
prior to reading the value of a replica and (2) a write action to obtain ω eXclusive
(X) leases prior to writing all replicas [11]. While S leases are compatible, X leases
conflict with one another and S leases. Conflicts cause the leases to race with the
loser backing off and retrying. For read-after-write consistency, r + ω must be
greater than R. With this approach, failure of a CMI is a configuration change
that removes one replica of a fragment, decrementing R by one.

The second approach designates one copy of a fragment as primary and the
other R − 1 as secondaries [22,39]. All reads and writes are processed by the
primary fragment. The primary is responsible for propagating updates to the
secondaries in the same order it receives them. If the primary fails, the coordi-
nator promotes one of its secondaries to become the primary. With this design,
a configuration change reflects promotion of a secondary to the primary and
demotion of the primary to be a secondary. The coordinator increments Global-
CfgID. The value of FragCfgIDk for the promoted secondary is left unchanged.
If this new primary buffers changes for the demoted primary, then the value of
FragCfgIDk for the demoted primary is also left unchanged. Should the coordi-
nator decide to discard the fragment of the demoted primary, then it simply sets
its FragCfgIDk to the latest value of GlobalCfgID.

Coordinator inserts the new configuration into R−1 secondaries and updates
their GlobalCfgID. A client that fails to issue a request to the failed primary
CMI may contact one of the secondary CMIs for the latest configuration. If it
observes a miss then the client contacts the coordinator for the latest configu-
ration piggybacking the identity of the unavailable CMI. Hence, clients discover
failed CMIs and report them to the coordinator.

2.6 Overhead

Rejig’s overhead is in the form of storage space and network bandwidth. Storage
overhead include (1) a 4-byte configuration id associated with a cache entry, (2)
a configuration cache entry in a CMI. Network overhead include transmission
of (1) a 4-byte client configuration id attached to each request, (2) at most
two round-trips per client to get the latest configuration (clients first retrieve
the configuration from a CMI and, if not found, fetch the configuration from
the coordinator), (3) α roundtrips per client to insert a new configuration into
CMIs.

We quantify Rejig’s overhead based on the statistical models of Facebook’s
production key size and value size [5,19]. Facebook’s mean key size is 35 bytes
and the mean value size is 329 bytes, resulting in the average entry size of 364
bytes. Hence, the average storage overhead of the configuration id associated
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with a cache entry is 1% (4/364). With a configuration consisting of F = 5000
fragments and 12-byte metadata of each fragment, the configuration size is 60,000
bytes. This is equivalent to 165 (60,000/364) of Facebook’s cache entries. Rejig’s
network overhead is 11.5% (4/35) for get and delete requests, and 1% (4/364)
for SET requests with Facebook’s cache entries.

3 Implementation

We implemented a prototype of Rejig using memcached’s Whalin client [41]. Its
client library is implemented with around 500 lines of Java code. Client interfaces
to communicate with a CMI is unchanged.

We implemented Rejig’s coordinator using Google RPC [24] with 800 lines
of Java code. The coordinator increases or decreases the number of CMIs based
on the system load and adjusts the assignment from fragments to CMIs with
the goal to ensure each CMI receives a similar number of fragments.

We extended IQ-Twemcached [21] (the Twitter extended version of mem-
cached with Inhibit and Quarantine leases) to store GlobalCfgID and associate
each cache entry with a configuration id. We extended standard APIs, e.g., get,
set, and delete, to accept an optional configuration id. We also added a new API
in IQ-Twemcached to allow the coordinator to update a CMI’s configuration id.
The extension to the IQ-Twemcached only requires 40 lines of C code.

4 Evaluation

We answer the following questions in this section: (1) How fast can Rejig dissem-
inate a new configuration? (2) How much stale data does Rejig prevent? (3) Does
Rejig impact cache hit rate in the presence of graceful and drastic configuration
changes?

Factors that impact Rejig’s dissemination rate are the number of clients and
CMIs. CMIs are passive providers of a new configuration. Once all CMIs receive
a new configuration, all clients receive the new configuration as soon as they issue
a request to a CMI. The load imposed on the coordinator and the number of
configuration insertions to CMIs are an interplay of α, Rejig and its variants, and
the duration of time a CMI caches a configuration. In the worst case scenario,
the size of a configuration cache entry is larger than the available memory of
each CMI, causing the load imposed on the coordinator to equal the number of
clients. In the best case scenario, each CMI has sufficient memory to cache the
configuration and never evicts it. In this case, a larger α expedites dissemination
of the configuration to all CMIs, reducing the number of clients that fetch the
configuration from the coordinator. RejigC bounds the number of configuration
fetches from the coordinator to be the number of CMIs. This is because a client
must discover a new configuration from a CMI and fetches the configuration
from the coordinator before the client propagates the new configuration to other
CMIs. RejigT bounds the number of repeated configuration insertions in CMIs to
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the number of clients since a client terminates the insertion once it encounters a
CMI with a copy of the configuration. Section 4.1 quantifies Rejig’s dissemination
rate.

We use Azure virtual machine event traces [10] and WorldCup ’98 request
traces [4] to demonstrate the number of stale data Rejig prevents and its impact
on the cache hit rate. Azure trace exhibits graceful configuration changes while
WorldCup ’98 trace exhibits drastic configuration changes with a diurnal pattern.

Lastly, we use YCSB [8] benchmark to evaluate the performance impact of
Rejig, namely, tagging a request with the client’s configuration id and returning
a cache entry’s configuration id along with its value upon a cache hit. Our
evaluation shows that Rejig’s network overhead is insignificant. The average
read latency increases by less than 2% with Rejig when compared to without it.

Rejig can also be extended to support diverse migration techniques [27,33,36,
42]. In its current format, once the coordinator assigns a fragment to a different
CMI, the new CMI starts with an empty replica of the fragment. If migration is
enabled, a cache miss on the new CMI migrates the cache entry from the original
CMI.

Main lessons are as follows:

– Rejig disseminates a new configuration to all clients and CMIs efficiently and
quickly.

– Collaborative dissemination reduces the number of clients that contact the
coordinator for the latest configuration significantly.

– Rejig preserves read-after-write consistency in the presence of configuration
changes by detecting and discarding all consistency violations.

– In all experiments, the cache hit rate remains high even though a configuration
change does not migrate cache entries. With the trace driven analysis, the
cache hit rate is always higher than 99%.

– With α ≥ 1, if the objective is to minimize the number of configuration
fetches from the coordinator then Rejig is superior to the alternatives shown
in Table 2. On the other hand, if the objective is to minimize the number of
repeated configuration insertions into CMIs then RejigC is a superior tech-
nique. RejigC is superior to RejigT .

Below, we describe experiments in turn.

4.1 Scalable Configuration Dissemination

We design a microbenchmark to evaluate Rejig’s configuration dissemination. It
consists of 100 CMIs, a fixed number of clients, and one coordinator. There are
5000 fragments, F = 5000. We use Facebook’s published cache entry size of 364
bytes [5]. The size of a configuration is 60,000 bytes, F×12; twelve bytes assuming
8 bytes for CMI address + 4 bytes for FragCfgID. For experiments of Sects. 4.1
and 4.1, we assume the total available memory is greater than the database size
and there are no evictions. We consider limited memory in Sect. 4.1.

An experiment performs a sequence of iterations. In each iteration, each
client issues a read for a randomly selected key Ki assigned to CMIi,
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i = Config[h(Ki)].CMI. The experiment starts with the coordinator publishing
a new configuration that assigns a fragment from a source CMI to a destina-
tion CMI. The coordinator inserts the new configuration into the source CMI.
The experiment terminates when all clients and CMIs have the latest Global-
CfgID and configuration. We report the number of iterations required for Rejig
to disseminate a configuration change.

Configuration Dissemination Rate. The number of clients impacts how
fast Rejig disseminates a configuration change. As we increase the number of
clients from 100 to 1,000 and 10,000, Rejig requires 12± 1.7, 5 ± 0.5, 4 ± 0
(mean ± standard deviation) iterations, respectively. This is also an upper bound
on the number of client configuration insertions into a CMI. For a CMI to receive
the latest GlobalCfgID, a client with the latest GlobalCfgID must issue a request
to it. With a larger number of clients, a larger number of requests are issued to
CMIs in each iteration. This increases the likelihood of clients referencing all
CMIs in an iteration, causing the experiment to terminate with fewer iterations.
The reported number of iterations is orthogonal to the value of α because a CMI
always updates its configuration id if the client provided one is more recent.

The number of configuration fetches from the coordinator depends on the
value of α. With α = 0, it is approximately the same as the number of clients:
93 ± 2.2, 962 ± 5.4, 9745 ± 16.3 with 100, 1000, and 10,000 clients, respectively.
The explanation for this is as follows. Once the coordinator publishes the new
configuration in one CMI, say CMIi, it also notifies this CMI of the new Glob-
alCfgID. A client that references CMIi and obtains the latest GlobalCfgID will
subsequently reference another CMIj and cause its GlobalCfgID to reflect the
latest without providing it with the latest configuration. Those clients that refer-
ence this CMIj observe a cache miss for the configuration and fetch the configu-
ration from the coordinator. The number of configuration fetches is slightly less
than the number of clients because those that observe a hit for the configuration
using CMIi do not contact the coordinator.

Next section discusses α ≥ 1.

Collaborative Dissemination, α ≥ 1. In a second experiment, we evaluate
the impact of requiring a client to insert a new configuration in its next unique
α ≥ 1 referenced CMIs. This is the standard Rejig. We consider its variants
RejigC and RejigT , see Table 2. Results of this section show RejigC is superior
to RejigT .

Figure 3 shows the number of configuration fetches with these variants as a
function of α. With Rejig, the number of configuration fetches from the coor-
dinator drops 100 folds with α = 1 and 10,000 clients when compared with
α = 0, see Fig. 3(c). When a client inserts its configuration in the next α = 1
unique CMI it visits, other clients that reference CMIj and observe a “Refresh &
Retry” reply will now observe a cache hit for the configuration. Hence, they will
not fetch the configuration from the coordinator. The number of configuration
fetches from the coordinator continues to drop as we increase the value of α.
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Fig. 3. The impact of α on the number of configuration fetches from the coordinator.
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Fig. 4. The impact of α on the number of repeated configuration insertions in CMIs.

With Rejig and α ≥ 4, there are almost no client fetches from the coordinator.
Clients and CMIs facilitate propagation of the configuration among themselves
without further involvement of the coordinator.

With RejigC , the number of configuration fetches from the coordinator is
higher than 10 as we increase α beyond 4. RejigC requires a client to insert a
configuration only if it fetches the configuration from the coordinator. Hence, it
is less aggressive in spreading the latest configuration when compared with Rejig.
This increases the likelihood of a client observing a miss for a configuration in a
CMI. Hence, the number of configuration fetches from the coordinator is higher.

A larger α causes two or more clients to insert the same configuration into
the same CMI repeatedly. Figure 4 shows the total number of repeated insertions
with different variants. RejigC performs the fewest repeated insertions because
it is the least aggressive. The standard Rejig performs the most because every
client that obtains the latest configuration (either from the coordinator or a
CMI) will insert into the next α unique CMIs. RejigT is moderately aggressive
by requiring a client to terminate configuration insertion once a CMI reports
that it has the configuration.

These results show RejigC is superior to RejigT for two reasons. First, it per-
forms significantly fewer configuration insertions than RejigT , see Fig. 4. Second,
its overall number of configuration fetches from the coordinator is comparable,
see Fig. 3.
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Worst Case Scenario. Consider a worst case scenario where the size of a
configuration equals the amount of memory assigned to each CMI. (This is highly
unlikely because the size of a configuration is in the order of hundreds of kilobytes
with thousands of nodes and memory sizes are typically much larger.) Thus,
the coordinator’s insertion of a configuration evicts all cached entries of that
CMI. Similarly, a client that inserts a cache entry upon a cache miss will evict
the configuration cache entry. With α = 0, almost all clients (9998) fetch the
configuration from the coordinator. The coordinator populates at least one CMI
and this copy is fetched by 1 or 2 clients. As we increase α, the number of
configuration fetches drops dramatically; 9998± 0.15, 2197 ± 133.93, 110 ± 10.39
and 24 ± 5.26 for α values of 0, 1, 2 and 3, respectively. This is because a client’s
insertion of the configuration in a CMI may observe a reference by another client
prior to an entry’s insertion that evicts the configuration. The likelihood of this
hit increases with a larger values of α, reducing the number of configuration
fetches from the coordinator.

4.2 Trace Driven Evaluation

We use two traces to evaluate Rejig: Azure virtual machines (VM) trace [10] and
92 days of WorldCup 1998 request trace [4]. The first trace provides a dynamic
addition and removal of VMs. We augment it with a database and use its trace
to emulate addition and removal of CMIs from a configuration. WorldCup 1998
provides request traces (HTTP GET/POST on a page) with approximately 1.3
billion requests. It exhibits drastic workload fluctuations. We augment it with
an auto-scaling framework that adjusts addition (Addi) and removal (Removei)
of CMIs based on the imposed load.

With both traces, when Addi new CMIs are inserted in a configuration, the
coordinator assigns fragments of existing CMIs to the new CMIs until the number
of fragments per CMI is approximately the same. No data is migrated. Similarly,
when Removei CMIs are removed, the coordinator assigns the orphaned frag-
ments to other CMIs until the same number of fragments are assigned to each
CMI. Once again, no data is migrated.

In all experiments, the values stored in a CMI are known and the workload
generator can verify the correctness of the fetched values. We establish the fol-
lowing metrics: (1) the cache hit rate, (2) the number of discarded keys, and (3)
the percentage of discarded keys. The percentage of discarded keys highlights the
percentage of read requests that may observe stale entries. If a client produces a
discarded key as an output, then the read request may violate read-after-write
consistency. The number of invalid discarded entries highlights how many read
requests violate read-after-write consistency with a system that does not use
our techniques. Rejig eliminates these stale entries. We describe each trace and
obtained results in turn.
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Fig. 5. Azure trace.

Azure VM Trace. Azure virtual machines (VM) trace [10] provides a represen-
tative subset of the first-party Azure VM workload in one geographical region.
It monitors VMs in a consecutive 30-day period and contains a total of 2 million
VMs. It provides the exact lifetime of each virtual machine with approximately
145,000 VMs running at a time. This trace has no data set. Hence, we generate
a database with 10 million key-value records partitioned into 100,000 fragments
for our evaluation using this trace. Before a configuration change, we randomly
select 20% of entries and update their values. Since a configuration change does
not migrate data, copies of these entries in the impacted CMIs are now stale.

Figure 5(a) shows the number of configuration changes we extracted from
the Azure trace. It shows both the number of added CMIs, removed CMIs, and
total CMIs per configuration change. Figure 5(b) shows both the observed cache
hit rate and the percentage of keys discarded by Rejig with each configuration.
The cache hit rate remains higher than 99% even though a configuration change
may add 1800 CMIs. The variation in cache hit rate is higher with a larger
number of CMIs either added or removed from a configuration. This is expected
because a higher number of fragments are assigned to different CMIs that results
in more cache misses. Note the percentage of discarded keys is low (less than
0.003%) in this experiment. Among all discarded keys, 99% are stale. These are
read-after-write inconsistencies prevented by Rejig.

WorldCup 1998 Trace. WorldCup 1998 [4] exhibits a diurnal pattern and
drastic workload fluctuations. It contains 92 days of request traces at the gran-
ularity of seconds. A large percentage (99.98%) of its approximately 1.3 billion
requests are reads. Peak system load observes 10 million requests per hour. The
traces reference 89,997 unique keys. We start the simulation from Day 5 (The
first four days have no data).

We use the following auto-scaling framework with this trace. We assume the
peak processing capacity of a CMI is C = 1000 requests per second. We define
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Fig. 6. WorldCup 1998 trace.

the imposed system load as the number of requests at a given time, Loadi. The
number of required CMIs is a function of these two parameters, the number of
CMIs to be added Addi = max(Loadi

C − Si−1, 0) and the number of CMIs to be
removed Removei = max(Si−1 − Loadi

C , 0). These ensure the caching layer has
sufficient number of CMIs to handle Loadi at a given hour i. This auto-scaling
is performed every hour of the trace for its entire 92 days.

Figure 6(a) reports the total number of added and removed CMIs per hour.
As expected, more CMIs are added during the daytime. They are removed during
the nighttime. The resulting drastic configuration change causes the cache hit
rate to fluctuate as we do not migrate data, see Fig. 6(b). However, the percent-
age of discarded keys remains low. The 0% cache hit rate on Day 60 is because
there is no data for a few hours on that day. The number of read-after-write con-
sistency anomalies avoided by Rejig is still significant even though the update
ratio is only 0.02%, see Fig. 6(c).

5 Related Work

Existing work [20,21,33] on cache augmented database systems focus on elimi-
nating or minimizing inconsistency between the caching layer and the data store.
IQ-framework [21] uses leases to ensure a cache entry’s replica in the caching
layer is consistent with its replicas in the data store. Gumball [20] minimizes
inconsistency by rejecting reads and writes referencing a cache entry for a cer-
tain duration after the entry is deleted. Facebook [33] sets this duration to two
seconds. Rejig complements these systems by preserving consistency in the pres-
ence of configuration changes.

The CAP theorem [23] states that a distributed data store must choose two
out of the three properties: consistency, availability, and partition tolerance.
Rejig does not address these properties directly. Rejig is a scalable online algo-
rithm for cache server configuration changes. Rejig assumes an architecture that
uses heartbeat messages to detect network partitions and leases to re-claim frag-
ments assigned to unreachable nodes. While it strives to preserve consistency,
one may use Rejig with an architecture that uses eventual consistency.



Rejig: A Scalable Online Algorithm for Cache Server Configuration Changes 129

Two-phase commit [37] based systems (e.g., Sinfonia [2]) and Paxos [29] based
systems (e.g., Spanner [9]) ensure consistency between multiple replicas. Rejig
does not ensure consistency across all replicas. Instead, it detects and discards
stale cache entries caused by configuration changes.

Rejig’s configuration dissemination protocol is inspired by Demers et al.’s
work [12] on epidemic algorithms where all sites of a data store actively partici-
pate in propagating an update made by one site. Rejig propagates a configuration
made by the coordinator using both clients and CMIs. Its CMIs are passive enti-
ties that respond to client requests. Its clients actively propagate configuration
to other clients using CMIs. Rejig’s dissemination protocol is also applicable to
a data store.

Rejig’s configuration management is inspired by previous work, e.g., Google
File System [22], Hyperdex [13], and Slicer [1]. Rejig is unique because it is
designed for a caching solution and not a data store. With Rejig, there is a
permanent copy of data elsewhere and loss of cached data does not result in
data loss. Another novel feature of Rejig is that it is intended for frameworks
that allow for stale cache entries to exist. Rejig detects these entries by storing a
configuration id with each cache entry and its fragment, see Sect. 2. This concept
is missing from prior work. Below, we provide an overview of each related system
and how Rejig is different.

Google File System (GFS) [22] is a distributed file system. A GFS file contains
a list of chunks. Each chunk is associated with a chunk version number. The
master maintains the latest chunk version number for each chunk. Once a chunk
server recovers from a failure, the master detects a stale chunk if its version
number is less than the master’s chunk version number. Rejig stores configuration
id with each cache entry and fragment to detect stale cache entries.

Hyperdex [13] is a novel distributed key-value store that supports index struc-
tures on more than one attribute. Similar to Rejig, it employs a coordinator
that manages its configuration with a strictly increasing configuration id. Upon
a configuration change, the coordinator increments the configuration id and dis-
tributes the latest configuration to all servers. Both Hyperdex servers and its
clients cache the configuration id. A client embeds its local configuration id on
every request to a server and discovers its cached configuration is stale if the id
does not match the server’s configuration id. Hyperdex is a data store and pre-
vents stale values for data items. Rejig is for a caching environment where stale
entries may exist. It assigns a configuration id to every cache entry and uses this
information to detect stale entries and discard them to provide read-after-write
consistency.

Slicer [1] is Google’s general purpose sharding service that is transparent to its
applications. It maintains assignments using generation numbers (equivalent to
Rejig’s GlobalCfgID). Slicer employs leases to ensure that a key is assigned to one
slicelet (equivalent to Rejig’s CMI) at a time. Applications are unavailable for at
most 4 s during an assignment change due to updating leases to reflect the latest
generation number (and assignment) to slicelets. Also, Slicer must provision
resources for a large number of distributors to disseminate a new assignment to
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clients and slicelets. Rejig is designed for caches and is different in several ways.
First, while its CMIs may cache a copy of configuration (Slicer’s assignment),
they do not use it to decide whether to process a client request or not. CMIs
use GlobalCfgID (Slicer’s generation number) for this purpose. Moreover, Rejig
requires its coordinator to update impacted CMIs only and employs both clients
and CMIs to participate in distributing a new configuration. Finally, Slicer does
not either prevent or detect stale data. Rejig is novel because it detects stale
cache entries by storing the configuration id with each entry and fragment.

6 Conclusion

Rejig is a scalable online algorithm for cache server configuration changes that
preserves read-after-write consistency. It does not require deletion of cached
entries impacted by a configuration change, leaving them to be evicted by the
cache replacement technique. It serves as the building block for a fragment re-
organization algorithm to balance system load, an auto-scaling framework that
grows and shrinks the size of a caching layer, a data availability technique that
re-assigns fragments in response to network partitions, and a persistent caching
layer [18] that must recover cached entries after a failure.

Acknowledgments. We thank the anonymous reviewers of the TLDKS journal for
their valuable comments and helpful suggestions.

Appendix

A Proof for Read-After-Write Consistency

This section presents a formal proof for read-after-write consistency with Rejig.

Theorem 1. Rejig preserves read-after-write consistency for a cache entry rep-
resented as (K, V) mapped to a fragment Fi across N configurations Configi, i ∈
[1, N ].

The coordinator creates Fi at Config1. At a configuration Configp, p ∈ [1, N ],
the fragment Fi is assigned to a cache instance CMIi,p. At configuration Config1,
the coordinator’s global configuration id is one and Fi’s configuration id is also
one. Initially, (K, V) does not exist in CMIi,1.

Lemma 1. Rejig preserves read-after-write consistency for a cache entry (K,
V) if Fi’s assigned CMI remains the same from Config1 to Configj , j ∈ [1, N),
i.e., ∀p, p ∈ [1, j],CMIi,p = CMIi,1.

Proof. Since Fi remains on CMIi,1, its fragment id remains one for all configura-
tion changes from 1 to j. Every entry (K, V) is tagged with the configuration id
Vcid that sets its value. When a write inserts or updates K (belonging to CMIi,1)
at a configuration 1 to j, its Vcid is set to the configuration id of CMIi,1. A read
is able to consume (K, V) because its Vcid is greater than or equal to 1, the
configuration id of Fi. �
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Corollary 1. Rejig preserves read-after-write consistency for a cache entry (K,
V) in CMIi,j at Configj if K does not exist in CMIi,j initially.

Lemma 2. Rejig preserves read-after-write consistency for a cache entry (K,
V) if Fi’s assigned CMI changes for the first time at Configj+1, i.e. CMIi,j �=
CMIi,j+1,∀p, p ∈ [1, j],CMIi,p = CMIi,1.

Proof. According to Lemma 1, Rejig preserves read-after-write consistency for
K from Config1 to Configj , j ≥ 1. During the configuration change from Configj
to Configj+1, we have

1. the coordinator changes CMIi,j ’s configuration id to j + 1
2. a client’s local configuration id is still c, c ≤ j.

A client request that references K is directed to CMIi,j . CMIi,j rejects the request
since j + 1 > c. Then, the client fetches the latest configuration and issues its
request to CMIi,j+1. At configuration Configj+1, Corollary 1 shows that Rejig
preserves read-after-write consistency. �

Lemma 3. Rejig preserves read-after-write consistency for a cache entry (K,
V) at Configq if ∃o, p, q, o < p < q ≤ N,CMIi,o = CMIi,q and CMIi,o �= CMIi,p.

Proof. At configuration Configq, there are two cases:

Case I: If (K, V) is inserted in CMIi,o at Configo, updated at Configp, and still
exists in CMIi,q at Configq. Since ∃o, p, q, o < p < q ≤ N,CMIi,o = CMIi,q
and CMIi,o �= CMIi,p, Fi’s configuration id at Configq > Fi’s configuration id at
Configp > Fi’s configuration id at Configo. Then, the configuration id associated
with (K, V) in CMIi,q must be lower than Fi’s configuration id at Configq. A
read request that references K at Configq discards the entry.

Case II: If K does not exist in CMIi,q, Corollary 1 proves Rejig preserves read-
after-write consistency. �

B Physical Representation of a Configuration

A configuration consists of F fragments where F may be significantly larger
than the number of CMIs. It is undesirable to repeat the CMI’s IP address and
port number as it increases the size of the configuration and its serialized rep-
resentation, and time to serialize and deserialize a configuration. One approach
to address this is to maintain the IP address and port number of each CMI
in a separate array. Each element of a configuration representing a fragment
stores index of the array element corresponding to its assigned CMI. Represent-
ing a CMI array element as a short (two bytes) accommodates a maximum of
65,536 CMIs. With 1000 fragments assigned to the same CMI, the memory foot-
print would be 2000 bytes. This is more compact than repeating IP and port
numbers a thousand times. While it makes the software to serialize and deseri-
alize a configuration more complex, it reduces network transmission time of a
configuration.
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B.1 Configuration Changes that Modify the Number of Fragments

A re-assignment algorithm may break a fragment into q fragments or merge
p fragments into one fragment, changing the number of fragments F. These
are trivial with range partitioning because they translate into breaking a sub-
range into q sub-ranges and merging p adjacent ranges into one, respectively. In
its extreme, breaking a fragment may result in sub-ranges that correspond to
points. Each point may consist of only one data item. This is justified when the
data item is extremely hot [38].

With hash partitioning, when a hash function depends on the value of F,
breaking and merging of fragments must be done in a manner that is consistent
with the hash function. As an example, assume a simple mod function as the
hash function, h(Ki) = Ki % F. Incrementing (or decrementing) the value of F by
one would re-assign key-value pairs across all fragments. Rejig does not support
these configuration changes. (Rejig supports re-assignment of fragments to CMIs
only.) To use Rejig, one must modify the value of F in a manner that changes
the assignment of key-value pairs for the impacted fragment only. This would be
similar to extendible [14] and linear [30] hashing algorithms. For example, with
the mod hash function, to break a fragment into two, F should double. This
would generate a buddy for each existing fragment. The buddy of a fragment
is assigned to the same CMI as the fragment. The buddy of the fragment that
is broken into two is assigned to a different CMI. To merge two fragments into
one, we would change the assignment of its buddy to be the same CMI as the
fragment. Subsequently, we scan the array to detect if a fragment and its buddy
are assigned to the same CMI. If this is the case then we halve F, F = F

2 .
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