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Preface

This book contains the papers presented at the 7th International Workshop on Logic,
Rationality, and Interaction (LORI-VII 2019), held during October 18–21, 2019, in
Chongqing, China, and hosted by the Institute of Logic and Intelligence (ILI) of
Southwest University.

As with previous LORI conferences, the focus of the workshop was on the fol-
lowing topics: Agency, Argumentation, and Agreement; Belief Revision and Belief
Merging; Belief Representation, Cooperation, Decision Making, and Planning; Natural
Language, Philosophy, and Philosophical Logic; and Strategic Reasoning. We received
56 full paper submissions and ended up selecting 33 of them (the authors of two
accepted papers chose not to have them published here). The papers were selected on
the basis of at least two blind reviews. We decided not to impose a
long-paper/short-paper distinction, and to allow all authors 30 minutes of presentation
time; this meant that we had to have a number of parallel sessions at the workshop.

In addition, there were presentations by six keynote speakers:

Leila Amgoud IRIT-CNRS, Toulouse University, France
Kevin Kelly Carnegie Mellon University, USA
Rineke Verbrugge University of Groningen, The Netherlands
Michael Wooldridge University of Oxford, UK
Yanjing Wang Peking University, China
Thomas Ägotnes University of Bergen, Norway,

and Southwest University, China

The LORI series dates back to August 2007, when the first meeting was held at
Beijing Normal University. Since then, a meeting has been held every two years: for
further information about the previous conferences, see www.golori.org. Here we will
simply remark that over the past 12 years the LORI series has acted as a focus point for
research in East Asia on the topics related to logic, rationality, and interaction, and has
simultaneously succeeded in drawing scholars from out-side the region to interact and
collaborate in this area. The “LORI-community” which has been built up in this way
seems destined to become bigger, broader in scope, and to give rise to new and exciting
research in the coming years.

As Organizing and Program Committee chairs we would like to thank all the
members of the Program Committee for their hard work in a short space of time; the
reviewing called forth intense and generous efforts, for which we are deeply grateful.

We are also grateful to Zuojun Xiong who handled the website practicalities and
responded fast to our emails, and to Fenrong Liu, Johan van Benthem, and Jeremy
Seligman whose timely advice, based on their experience with all the previous LORI
conferences, helped us to keep things on track.

http://www.golori.org


Finally, special thanks must also go to the School of Political Science and Public
Administration at Southwest University and Institute of Logic and Intelligence (ILI) of
Southwest University, China, for their sponsorship for the conference and for finan-
cially supporting the proceedings of LORI-VII 2019.

October 2019 Patrick Blackburn
Emiliano Lorini

Meiyun Guo

vi Preface
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The Dynamics of Group Knowledge and Belief

Thomas Ågotnes

University of Bergen/Southwest University
Thomas.Agotnes@uib.no

Principles of reasoning about group knowledge and belief have received attention over
the past decade, in particular in the context of reasoning about the dynamics of
interaction. In the talk I will review some of this work, hopefully provide some new
insights, and pose some open problems. I will focus on formalisations in modal logic.

What we mean when we say that a group knows something can be radically
different depending on context. Well-known notions of group knowledge that have
been proposed in the literature include general knowledge (everybody-knows), dis-
tributed knowledge, common knowledge, relativised common knowledge. What group
belief is, however, is murkier. Applying the same definitions to belief, group belief is
not actually always belief. The existence of group belief depends on the particular
properties one assumes of belief, and I will map out different possible notions of group
belief under different notions of belief. I will also discuss intermediate notions of group
belief between distributed and common belief.

Moving to dynamics, we first look at the consequences of adding new group
knowledge operators to dynamic epistemic logics such as public announcement logic
and action model logic. The relationship between distributed and common knowledge
has been of special interest in the dynamic setting, an intuitive idea being that dis-
tributed knowledge is potential common knowledge. However this idea is clearly false:
it is possible to have distributed knowledge of a Moore-like sentence, which can never
even become individual knowledge. I will discuss a dynamic operator that exactly
captures what is true after the group have shared all their information with each other;
this is what we call resolving distributed knowledge. Intuitions about group knowledge,
such as the one just mentioned, are often related to group ability; which states of
knowledge a group can make come about. I will thus discuss group knowledge first in
the context of general group ability operators such as those found in Alternating-time
Temporal Logic and Coalition Logic, and then circle back to dynamic epistemic logics
again and discuss cases where ability means ability to achieve some state of knowledge
by using public announcements. I will have something to say about how all these
different static and dynamic takes on group knowledge and belief are tied together.



Argument-Based Paraconsistent Logics

Leila Amgoud

CNRS
Leila.Amgoud@irit.fr

Handling inconsistency in propositional knowledge bases (KBs) has been studied in AI
for a long time. Several two-level logics have been defined: They start with classical
propositional logic and define on top of it a non-monotonic logic that infers non-trivial
conclusions from an inconsistent KB. There are at least two families of such logics:
coherence-based and argument-based logics. The former compute the set of all max-
imal (for set inclusion) consistent subbases (MCSs) of a KB, and then they apply an
inference mechanism for drawing consequences from the MCSs. Argument-based
logics follow another process. They justify every candidate consequence of a KB by
arguments, generated using the classical consequence relation, then they identify
possible conflicts between arguments, evaluate arguments using a formal method,
called semantics, and finally keep among the candidate consequences those that are
supported by “strong” arguments.

In this talk, I present three families of argument-based logics that use respectively
on extension semantics, ranking semantics, and gradual semantics in the evaluation
step. I discuss the properties of those logics, and compare them with coherence-based
logics.



Realism, Simplicity, and Topology

Kevin Kelly

Carnegie Mellon University
kk3n@andrew.cmu.edu

This is joint work with Hanti Lin, University of California, Davis and Konstantin
Genin, University of Toronto.

Scientific realists assure us that simpler theories are better-confirmed by simple data
and are, therefore, more worthy of belief. Scientific anti-realists respond that the data
might look simple for eternity if the complex theory is true, in which case the realist’s
assurance would lead to eternal error. We show that the realist’s position follows from a
learning-theoretic argument for Ockham’s razor. The argument is based on the inter-
action of two topologies on possible worlds: the realist topology of arbitrary similarity
in reality, and the empirical topology of arbitrary empirical similarity. The former
pertains to the ends of inquiry, and the latter characterizes the means.



Reasoning in Dynamic Games: From
Rationality to Rationalization

Rineke Verbrugge

Department of Artificial Intelligence, Bernoulli Institute,
University of Groningen

L.C.Verbrugge@rug.nl

Game theorists have proposed backward induction as the reasoning procedure that
rational players follow in dynamic games, on the basis of their collective belief that all
participating players are rational. An alternative reasoning procedure is forward
induction, in which a player rationalizes any previous apparently irrational move by the
opponent. Do people’s choices in centipede-like dynamic games fit better with back-
ward or forward induction?

In our experiments (with Sujata Ghosh, Aviad Heifetz, and Harmen de Weerd),
participants played a centipede-like game called Marble Drop. The computer opponent
was programmed to surprise the participant by deviating often from its backward
induction strategy at the beginning of the game. Participants had been told that the
computer was optimizing against some belief about the participant’s future strategy.

In the aggregate, participants tended to favor the forward induction choice. How-
ever, their verbalized strategies usually depended on other features, such as risk
aversion, trust or cooperativeness. In a follow-up experiment we compared participants
from India, Israel and The Netherlands in the Marble Drop game, with surprising
results.



Understanding Equilibrium Properties
of Multi-agent Systems

Michael Wooldridge

University of Oxford
michael.wooldridge@cs.ox.ac.uk

Over a twenty minute period on the afternoon 6 May 2010, the Dow Jones industrial
average collapsed, at one point wiping a trillion dollars off the value of the US markets.
Remarkably, the market recovered in a similarly short period of time, to nearly its
position before the collapse. While the precise causes of the so-called “Flash Crash” are
complex and controversial, the Flash Crash was only possible because modern inter-
national markets are multi-agent systems, in which high frequency trading agents
autonomously buy and sell on timescales that are so small that they are far beyond
human comprehension or control. There is no reason to believe that the 2010 Flash
Crash was an isolated event: and the next one could be even bigger, with potentially
devastating global consequences. The 2010 Flash Crash provides a stark illustration of
something we have long known: that systems composed of large numbers of multiple
interacting components can be subject to rapid, unpredictable swings in behaviour. We
urgently need to develop the theory and tools to understand such multi-agent system
dynamics.

In this talk, I will present two very different approaches to this problem.
The first views a multi-agent system as a game, in the sense of game theory, with

decision-makers interacting strategically in pursuit of their goals. I describe a model we
have developed in which players in such a game act in pursuit of temporal logic goals.
In such a setting, the key decision problems relate to the properties of a system that
hold under the assumption that players choose strategies in (Nash) equilibrium. I con-
clude by describing a tool, developed by DPhil student Muhammed Najib, through
which we can automatically analyse the properties of such equilibria.

The second approach takes a very different approach, in which we use agent-based
financial models, involving very large numbers of agents, to understand specifically the
factors that can contribute to Flash Crash events, and in particular the phenomenon of
“contagion”, where stress on one asset leads to other assets being stressed.

This talk will report joint work with Ani Calinescu, Julian Gutierrez, Paul Har-
renstein, Muhammed Najib, James Paulin, and Giuseppe Perelli.



Beyond Knowing that: A New Generation
of Epistemic Logics

Yanjing Wang

Peking University
wangyanjing@gmail.com

Epistemic logic is a major field of philosophical logic studying reasoning patterns
about knowledge and belief. Despite its various applications in epistemology, theo-
retical computer science, AI, and game theory, the technical developments in the field
have been mainly focusing on the propositional part, i.e., the propositional modal
logics of “knowing that”. However, knowledge is also expressed in everyday life by
“knowing whether”, “knowing what”, “knowing how”, “knowing why” and so on
(know-wh hereafter). Recent years witnessed a growing interest in new epistemic
logics of know-wh motivated by questions in philosophy, AI and linguistics. The new
epistemic modalities introduced in those logics usually share, in their semantics, the
general schema of ‘exists x [] phi’ (where [] is a box-modality), e.g., knowing how to
achieve phi roughly means that there exists a way such that you know that it is a way to
make sure that phi. Therefore they are natural fragments of first-order modal logic. The
new axioms of those logics intuitively capture the essential interactions of know-that
and other know-wh operators, and the resulting logics are non-normal but decidable.

In this talk, I will first explain the core ideas behind this new research program with
some examples, and then propose a more general framework inspired by the concrete
know-wh logics, which leads to the discovery of new decidable fragments of first-order
modal logic.
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On the Right Path: A Modal Logic
for Supervised Learning

Alexandru Baltag1, Dazhu Li1,2(B), and Mina Young Pedersen1

1 ILLC, University of Amsterdam, Amsterdam, The Netherlands
thealexandrubaltag@gmail.com, minaypedersen@gmail.com

2 Department of Philosophy, Tsinghua University, Beijing, China
lidazhu91@163.com

Abstract. Formal learning theory formalizes the process of inferring
a general result from examples, as in the case of inferring grammars
from sentences when learning a language. Although empirical evidence
suggests that children can learn a language without responding to the
correction of linguistic mistakes, the importance of Teacher in many other
paradigms is significant. Instead of focusing only on learner(s), this work
develops a general framework—the supervised learning game (SLG)—to
investigate the interaction between Teacher and Learner. In particular,
our proposal highlights several interesting features of the agents: on the
one hand, Learner may make mistakes in the learning process, and she
may also ignore the potential relation between different hypotheses; on
the other hand, Teacher is able to correct Learner’s mistakes, eliminate
potential mistakes and point out the facts ignored by Learner. To reason
about strategies in this game, we develop a modal logic of supervised
learning (SLL). Broadly, this work takes a small step towards studying
the interaction between graph games, logics and formal learning theory.

Keywords: Formal learning theory · Modal logic · Dynamic logic ·
Undecidability · Graph games

1 Introduction

Formal learning theory formalizes the process of inferring a general result from
examples, as in the case of inferring grammars from sentences when learning a
language. A good way of understanding this general process is by treating it as
a game played by Learner and Teacher. It starts with a class of possible worlds,
where one of them is the actual one chosen by Teacher. Learner’s aim is to get to
know which one it is. Teacher inductively provides information about the world,
and whenever receiving a piece of information Learner picks a conjecture from
the class, indicating which one she thinks is the case. Different success conditions
for Learner can be defined. In this article we require that at some finite stage of
the procedure Learner decides on a correct hypothesis. This kind of learnability
is known as finite identification [14].
c© Springer-Verlag GmbH Germany, part of Springer Nature 2019
P. Blackburn et al. (Eds.): LORI 2019, LNCS 11813, pp. 1–14, 2019.
https://doi.org/10.1007/978-3-662-60292-8_1
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Although empirical evidence suggests that children can learn a language with-
out responding to the correction of linguistic mistakes [11], the importance of
teachers in many other paradigms is significant. For instance, in the paradigm
of learning from queries and counterexamples [1], Teacher has a strong influence
on whether the process is successful. Moreover, results in [10] suggest that a
helpful Teacher may make learning easier. In this work, instead of focusing only
on Learner, we highlight the interactive natural of learning.

As noted in [10], a concise model for characterizing the interaction between
Learner and Teacher is the sabotage game (SG). A SG is played on a graph with
a starting node and a goal node, and it goes in rounds: Teacher first cuts an edge
in the graph, then Learner makes a step along one of the edges still available.
Both of them win iff Learner arrives at the goal node [16]. From the perspective
of formal learning theory, this step-by-step game depicts a guided learning situ-
ation. Say, a natural interpretation is the situation of theorem proving. In this
case, the starting node is given by axioms, the goal node stands for the theorem
to be proved, other nodes represent lemmas conjectured by Learner, and edges
capture Learner’s possible inferences between them. Inferring is represented by
moving along those edges. The information provided by Teacher can be treated
as his feedback, i.e., removing edges to eliminate wrong inferences. The success
condition is given by the winning condition: the learning process has been suc-
cessful if Learner reaches the goal node, i.e., proving the theorem. For the general
correspondence between SG and learning models, we refer to [10].

However, we would argue that this application of SG gives a highly restricted
model of learning. For instance,

• Intuitively, all links in the graph are inferences conjectured by Learner, which
may include mistakes. From the perspective of Learner, the wrong inferences
cannot be distinguished from the correct ones. Although it is reasonable to
assume that Teacher is able to do so, SG does not highlight that Learner
lacks perfect information. Besides, Teacher in SG has to remove a link in
each round, which is overly restrictive.

• Links removed represent wrong inferences between lemmas. So, whether or
not a link deleted occurs in Learner’s current proof (i.e., the current process)
is important. If the proof includes a mistake, any inference after the mistake
should not make sense. However, if a potential transition having not occurred
in the proof is wrong, Learner can continue with her current proof. Clearly,
SG cannot distinguish between these two cases.

• The game does not distinguish between all the various ways Learner can reach
the goal. That is, as long as Learner has come to the right conclusion, the
game cannot tell us whether Learner has come to this conclusion in a coherent
way. Reaching the correct hypothesis by wrong transitions is not reliable.
The well-known Gettier cases [9] where one has justified true belief, but not
knowledge are also examples of situations in which one wrongly reaches the
right conclusion. Thus, the theory developed in [10] is subject to the Gettier
problems.
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• Teacher can only delete links to decide what Learner will not learn, and
thus he only teaches what Learner has already conjectured. However, during
the process of learning, ‘possibilities may also be ignored due to the more
questionable practice if assuming that one of the theories under consideration
must be true. And complexity can come to be ignored through convention or
habit’ ([13], p. 260). Hence, it is natural to assume that Learner may ignore
the correct relation between different hypotheses.

In this paper, we therefore propose a new game, called the supervised learning
game (SLG). This game differs from the SG on several accounts, motivated by
the mentioned restrictions. Before introducing its definition, we first define some
auxiliary notions.

Let S = 〈w0, w1, ..., wn〉 be a non-empty, finite sequence. We use e(S) to
denote its last element. Define Set(S) := {〈w0, w1〉, 〈w1, w2〉, ..., 〈wn−1, wn〉}.
For the particular case when S is a singleton, Set(S) := ∅. Besides, for any
〈wi, wi+1〉 ∈ Set(S), define S|〈wi,wi+1〉 := 〈w0, w1, ..., wu〉, where 〈wu, wu+1〉 =
〈wi, wi+1〉 and 〈wu, wu+1〉 �= 〈wj , wj+1〉 for any j < i. Intuitively, S|〈wi,wi+1〉 is
obtained by deleting all elements occurring after wu from S, where 〈wu, wu+1〉
is the first occurrence of 〈wi, wi+1〉 in S. Say, when S = 〈a, b, c, a, b〉, we have
S|〈a,b〉 = 〈a〉. Now let us introduce SLG.

Definition 1 (SLG). A SLG 〈W,R1, R2, 〈s〉, g〉 is given by a graph 〈W,R1, R2〉,
the starting node s and the goal node g. A position of the game is a tuple 〈Ri

1, S
i〉.

The initial position 〈R0
1, S

0〉 is given by 〈R1, 〈s〉〉. Round n + 1 from position
〈Rn

1 , Sn〉 is as follows: first, Learner moves from e(Sn) to any of its R1-successors
s′; then Teacher does nothing or acts out one of the following three choices:

(1) Extend Rn
1 with some 〈v, v′〉 ∈ R2;

(2) Transfer 〈Sn, s′〉 to 〈Sn, s′〉|〈v,v′〉 by cutting 〈v, v′〉 from Set(〈Sn, s′〉) \ R2;
(3) Delete some 〈v, v′〉 ∈ (R1 \ R2) \ Set(〈Sn, s′〉) from R1.

The new position, denoted 〈Rn+1
1 , Sn+1〉, is 〈Rn

1 , Sn〉 (when Teacher does noth-
ing), 〈Rn

1 ∪{〈v, v′〉}, 〈Sn, s′〉〉 (when he chooses (1)), 〈Rn
1 \{〈v, v′〉}, 〈Sn, s′〉|〈v,v′〉〉

(if he acts as (2)), or 〈Rn
1 \ {〈v, v′〉}, 〈Sn, s′〉〉 (if he chooses (3)). It ends if

Learner arrives at g through an R2-path 〈s, ..., g〉 or cannot make a move, with
them winning in the former case and losing in the latter.

Intuitively, the clause for Learner illustrates that she cannot distinguish the
links starting from the current position. The sequence Si is her current learning
process, which may include mistakes; R1 represents Learner’s possible inferences
between conjectures; and R2 is the correct inferences. For any position 〈Rn

1 , Sn〉
we have Set(Sn) ⊆ Rn

1 . Besides, both (2) and (3) above are concerned with
the case that Teacher eliminates wrong transitions, but there is an important
difference. The former one concerns the case that Teacher gives Learner a coun-
terexample to show that she has gone wrong somewhere in her current process, so
Learner should move back to the conjecture right before the wrong transition. In
contrast, (3) illustrates that Teacher eliminates a wrong transition conjectured
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that has not occurred in Learner’s process yet, therefore this action does not
modify Learner’s current process.

From the winning condition, we know that both the players cooperate with
each other. It is important to recognize that Learner’s action does not conflict
with her cooperative nature: she makes an effort to achieve the goal in each
round. Moreover, it is not hard to see that players cannot win when there exists
no R2-path from the starting node to the goal node. This is reasonable, since
their interaction makes sense only when the goal is learnable. The correlation
between the situation of theorem proving and SLG is shown in Table 1.

Table 1. Correspondence between theorem proving and supervised learning games.

Theorem proving Supervised learning games

Axioms Starting node

Theorem Goal node

Lemmas conjectured by Learner Other states except the
starting state and the goal
state

Learner’s possible inference from a to b R1-edge from a to b

Correct inference from a to b R2-edge from a to b

Inferring b from a Transition from a to b

Proof for a R1-sequence from the
starting node to a

Correct proof for a R1-sequence S from the
starting node to a and
Set(S) ⊆ R2

Giving a counterexample to the inference
from a to b in the proof S

Modifying S to S|〈a,b〉
(〈a, b〉 ∈ Set(S))

Giving a counterexample to the conjectured
inference from a to b not in the proof S

Deleting 〈a, b〉 from R1

(〈a, b〉 �∈ Set(S))

Pointing out a potential inference from a to
b not conjectured by Learner before

Extending R1 with 〈a, b〉

Remark 1. The interpretation of SLG presented in Table 1 can be easily adapted
to characterize other paradigms in formal learning theory, such as language
learning and scientific inquiry. More generally, any single-agent games, such
as solitaire and computer games, can be converted into SLG. Say, the player
(Learner) does not know the correct moves well, but she knows the starting
position and the goal position, and has some conjectures about the moves of the
game. Besides, she can be taught by Teacher: she just attempts to play it, while
Teacher instructs her positively (by revealing more correct moves) or negatively
(by pointing out incorrect moves, in which case Learner may have to be moved
back to the moment previous to the first incorrect move, if she made any).
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Example 1. Let us consider a simple example of SLG, as depicted in Fig. 1.
The starting node is a and the goal node is G. We show that players have a
winning strategy by depicting the game to play out as follows. Learner begins
with moving along the only available edge to node b. Teacher in his turn can make
〈e, f〉 ‘visible’ to Learner by adding it to R1. Then, Learner proceeds to move
along 〈b, c〉, and Teacher extends 〈b, e〉 to R1. Afterwards, Learner continues on
the only option 〈c,G〉. Although she now has already arrived at the goal node,
her path 〈a, b, c,G〉 is not an R2-sequence. So, Teacher can remove 〈b, c〉 moving
Learner back to node b. Next, Learner has to move to e, and Teacher can delete
〈c,G〉 from R1. Finally, Learner can arrives at G in 2 steps with Teacher doing
nothing. Now we have Set(〈a, b, e, f,G〉) ⊆ R2, so they win.

a

b

c

e

G

f

1, 2

2 1, 2
1

1

2
2

Fig. 1. A SLG game (R1 is labelled with ‘1’ and R2 with ‘2’).

To reason about players’ strategies in SLG, in what follows we will study
SLG from a modal perspective. Sabotage modal logic (SML) [5] is known to
be a suitable tool to characterize SG, which extends basic modal logic with a
sabotage modality 〈−〉ϕ stating that there is an edge such that, ϕ is true at
the evaluation node after deleting the edge from the model. However, given the
differences between SG and SLG, we will develop a novel modal logic of supervised
learning (SLL) to capture SLG.

Outline. Section 2 introduces SLL along with its application to SLG and some
preliminary observations. Section 3 studies the expressivity of SLL. Section 4
investigates the model checking problem and satisfiability problem for SLL. We
end this paper by Sect. 5 on conclusion and future work.1

2 Modal Logic of Supervised Learning (SLL)

To be an ideal tool, the logic SLL should at least be able to precisely express play-
ers’ actions and depict their winning strategies. In this section, we first introduce
its language and semantics. Then we analyze its applications to SLG. Finally,
we make various observations, including some logical validities and relations
between SLL and other logics.
1 Due to page-limit constraints, in this Proceedings version all the proofs are omit-

ted, as well as some auxiliary definitions. The reader interested in these details is
encouraged to communicate with the authors.
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2.1 Language and Semantics

We begin by considering the action of Learner. In SML, the standard modality
♦ characterizes the transition from a node to its successors and corresponds
well to Learner’s actions in SG. However, operator ♦ is not any longer sufficient
in our case. Note that after Teacher cuts a link 〈w, v〉 from Learner’s current
process S, Learner should start from w with the new path S|〈w,v〉 in the next
round. Therefore, the desired operator should remember the history of Learner’s
movements.

To capture Teacher’s action, a natural place to start is by defining opera-
tors that correspond to link addition and deletion. There is already a body of
literature on logics of these modalities, such as the sabotage operator 〈−〉 and
the bridge operator 〈+〉 [3]. As mentioned, each occurrence of 〈−〉 in a formula
deletes exactly one link whereas the bridge operator adds links stepwise to mod-
els. Yet, including these two modalities is still not enough. For instance, we need
to take into account whether or not a link deleted by Teacher is a part of the
path of Learner’s movements. We now introduce SLL. First, let us define its
language.

Definition 2 (Language L). Let P be a countable set of propositional atoms.
The formulas of L are recursively defined in the following way:

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | �ϕ | 〈−〉1ϕ | 〈−〉2ϕ | 〈+〉ϕ

where p ∈ P. Notions 
, ⊥, ∨ and → are as usual. Besides, we use �, [−]1, [−]2
and [+] to denote the dual operators of �, 〈−〉1, 〈−〉2 and 〈+〉 respectively.

Several fragments of L will be studied in the following of the article. For
brevity, we use a notational convention listing in subscript all modalities of the
corresponding language. For instance, L� is the fragment of L that has only the
operator � (besides Boolean connectives ¬ and ∧); L〈−〉2 has only the modality
〈−〉2; L�〈−〉1 has only the modality � and 〈−〉1, etc. We now proceed to define
the models of SLL.

Definition 3 (Models, Pointed Models and Frames). A model of SLL
is a tuple M = 〈W,R1, R2, V 〉, where W is a non-empty set of possible worlds,
Ri∈{1,2} ⊆ W 2 are two binary relations and V : P → 2W is a valuation function.
F = 〈W,R1, R2〉 is a frame. Let S be an R1-sequence, i.e., Set(S) ⊆ R1. We
name 〈M, S〉 a pointed model, and S an evaluation sequence. Usually we write
M, S instead of 〈M, S〉.

For brevity, we call R1 the conjectured relation and R2 the correct relation.
Besides, we use M to denote the class of pointed models and M• the class of
pointed models whose sequence S is a singleton. Before introducing the seman-
tics, let us define some preliminary notations.

Assume that M = 〈W,R1, R2, V 〉 is a model, w ∈ W and i ∈ {1, 2}. We
use Ri(w) := {v ∈ W |Riwv} to denote the set of Ri-successors of w in M.
Besides, for a sequence S, define Ri(S) := Ri(e(S)), i.e., the Ri-successors of a
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sequence S are exactly the Ri-successors of its last element. For brevity, we also
use S; v to denote the sequence extending S with node v. Moreover, M�〈u, v〉 :=
〈W,R1 \ {〈u, v〉}, R2, V 〉 is the model obtained by removing 〈u, v〉 from R1, and
M ⊕ 〈u, v〉 := 〈W,R1 ∪ {〈u, v〉}, R2, V 〉 is obtained by extending R1 in M with
〈u, v〉. We now have enough background to introduce the semantics of SLL.

Definition 4 (Semantics). Let 〈M, S〉 be a pointed model and ϕ ∈ L. The
semantics of SLL is defined as follows:

M, S � p ⇔ e(S) ∈ V (p)
M, S � ¬ϕ ⇔ M, S �� ϕ

M, S � ϕ ∧ ψ ⇔ M, S � ϕ and M, S � ψ
M, S � �ϕ ⇔ ∃v ∈ W s.t. R1e(S)v and M, S; v � ϕ

M, S � 〈−〉1ϕ ⇔ ∃〈v, v′〉 ∈ Set(S) \ R2 s.t. M � 〈v, v′〉, S|〈v,v′〉 � ϕ
M, S � 〈−〉2ϕ ⇔ ∃〈v, v′〉 ∈ (R1 \ R2) \ Set(S) s.t. M � 〈v, v′〉, S � ϕ
M, S � 〈+〉ϕ ⇔ ∃〈v, v′〉 ∈ R2 \ R1 s.t. M ⊕ 〈v, v′〉, S � ϕ

By the semantics, a propositional atom p is true at a sequence S if and only
if p is true at the last element of S. The cases for ¬ and ∧ are as usual. Formula
�ϕ states that e(S) has an R1-successor v such that ϕ is true at sequence S; v.
Additionally, 〈−〉1ϕ means that after deleting a link 〈v, v′〉 from Set(S) \ R2, ϕ
is true at S|〈v,v′〉. Moreover, 〈−〉2ϕ states that ϕ holds at S after cutting a link
〈v, v′〉 belonging to (R1 \R2) \Set(S). Both 〈−〉1 and 〈−〉2 require that the link
deleted cannot be an R2-edge. Intuitively, whereas 〈−〉1 depicts the case when
Teacher deletes a link from Learner’s path S, 〈−〉2 captures the situation that
the link deleted is not a part of S. Finally, 〈+〉ϕ means that after extending R1

with a new link belonging to R2, ϕ holds at the current sequence.
A formula ϕ is satisfiable if there is a pointed model 〈M, S〉 ∈ M with

M, S � ϕ. Validity in a model and in a frame is defined in the usual way. Note
that the relevant class of models to specify SLL is M•, that is, models where the
evaluation sequence S starts with a singleton. Hence SLL is the set of L-formulas
that are valid in the class M•.

For any 〈M, S〉 and 〈M′, S′〉, we say that they are learning modal equivalent
(notation: 〈M, S〉 �l 〈M′, S′〉) iff M, S � ϕ ⇔ M′, S′ � ϕ for any ϕ ∈ L.
Besides, we define a relation U ⊆ M × M with 〈〈M, S〉, 〈M′, S′〉〉 ∈ U iff
〈M′, S′〉 is 〈M � 〈v, v′〉, S|〈v,v′〉〉 for some 〈v, v′〉 ∈ Set(S) \ R2, 〈M � 〈v, v′〉, S〉
for some 〈v, v′〉 ∈ (R1\R2)\Set(S), or 〈M⊕〈v, v′〉, S〉 for some 〈v, v′〉 ∈ R2\R1.
We can also iterate this order, to talk about models reachable in finitely many
U-steps, obtaining the relation U∗.

2.2 Application: Winning Strategies in SLG

By Definition 4, � captures the actions of Learner, and operators 〈+〉, 〈−〉1 and
〈−〉2 characterize those of Teacher. Besides, our logic is expressive enough to
describe the winning strategy (if there is one) for players in finite graphs.2

2 Generally speaking, to define the existence of winning strategies for players, we need
to extend SLG with some fixpoint operators. We leave this for future inquiry.
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Given a finite SLG, let p be a distinguished atom holding only at the goal
node. Generally, the winning strategy of Learner and Teacher will be of the
following form:

� ©0 � ©1 � · · · ©n �(p ∧ [−]1⊥) (1)

where ©i is blank or one of 〈−〉1, 〈−〉2 and 〈+〉 for each i ≤ n. In this formula, the
recurring � operator depicts Learner’s actions and ©i Teacher’s response. The
proposition p signalizes Learner’s arrival at the goal, and [−]1⊥ states that there
are no edges in Learner’s path that Teacher can cut. Hence, we can conclude that
Learner has reached the goal through a sequence of correct edges. It is worth
noting that in formula (1) we use �, other than �, to represent Learner’s action,
although SLG is a cooperative game. Recall the graph in Fig. 1. We observe that
�〈+〉�〈+〉�〈−〉1�〈−〉2��(p ∧ [−]1⊥) holds at the starting node a, so there
exists a winning strategy in this specific SLG.

Remark 2. In SG we know that links cut by Teacher represent wrong inferences.
However, SG does not tell us anything about the links that remain in the graph.
Therefore, winning strategies of the players in SG cannot guarantee against
situations like Gettier cases. In contrast, the formula [−]1⊥ in (1) ensures that
Teacher is not allowed to remove any more links from Learner’s path. In SLG,
a Gettier-style case is that Learner arrives at the goal node with some 〈u, v〉 ∈
R2 \ R1 occurring in her path, so Teacher now would be allowed to cut those
links. Therefore Gettier cases cannot be winning strategies in SLG.

2.3 Preliminary Observations

As observed, the semantics of SLL is not simple. In this section, we make some
preliminary observations on SLL. In particular, we will discuss the relations
between SLL and other related logics, and present some logical validities.

First of all, we have the following result on the relation between L� and
standard modal logic:

Proposition 1. Let M = 〈W,R1, R2, V 〉 be a model. For any 〈M, S〉 ∈ M and
ϕ ∈ L�, we have M, S � ϕ ⇔ 〈W,R1, V 〉, e(S) � ϕ∗, where ϕ∗ is a standard
modal formula obtained by replacing every occurrence of � in ϕ with ♦.

Therefore, essentially the fragment L� of L is the standard modal logic.
Moreover, the operator 〈−〉2 is much similar to the sabotage operator 〈−〉:

Proposition 2. Let M = 〈W,R1, R2, V 〉 be a model, and R = R1 \R2. For any
〈M, w〉 ∈ M• and ϕ ∈ L〈−〉2 , we have M, w � ϕ ⇔ 〈W,R, V 〉, w � ϕ′, where ϕ′

is a SML formula obtained by replacing every occurrence of 〈−〉2 in ϕ with 〈−〉.

Next, we have the following result on the relation between L�〈+〉 and the
‘bridge modal logic (BML)’ (i.e., the logic expanding the standard modal logic
with the bridge operator):
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Proposition 3. Let M = 〈W,R1,W
2, V 〉 be a model. For any 〈M, S〉 ∈ M and

ϕ ∈ L�〈+〉, we have M, S � ϕ ⇔ 〈W,R1, V 〉, e(S) � ϕ�, where ϕ� is a bridge
modal formula obtained by replacing every occurrence of � in ϕ with ♦.3

From Propositions 1–3, we know that several fragments of SLL are similar
to other logics that have been studied. However, as a whole, SLL is not a loose
aggregation of these fragments: different operators interact with each other. A
typical example is that, for any 〈M, w〉 ∈ M•, the formula

[−]1ϕ (2)

is valid, as Set(w) = ∅. However, formula �¬[−]1ϕ is satisfiable. This presents
a drastic difference between SLL and other logics mentioned so far: in those
logics, it is impossible that the evaluation point has access to a node satisfying
a contradiction. In order to understand how operators in SLL work, we present
some other validities of SLL.

Proposition 4. Let p ∈ P and ϕ,ψ ∈ L. The following formulas are validities
of SLL (w.r.t. M•):

p → �[−]1p (3)
p ∧ �
 → �[−]1p (4)
p → ©p © ∈ {[−]2, [+]} (5)
© (ϕ → ψ) → (©ϕ → ©ψ) © ∈ {[−]2, [+]} (6)
�n[−]1(ϕ → ψ) → (�n[−]1ϕ → �n[−]1ψ) n ∈ N (7)

�n〈−〉1ϕ → �n+m〈−〉1ϕ n,m ∈ N (8)

�n〈−〉1ϕ →
∨

m<n

�m〈−〉2ϕ 1 ≤ n ∈ N (9)

Note that formulas (3)–(5) above are not schemata. Although they will still be
valid if we replace each propositional atom occurring in them with any Boolean
formula, substitution fails in the general case.

Proposition 5. Validities of SLL are not closed under substitution.

Interestingly, SLL also has other features that are very different from stan-
dard modal logic. For instance, it lacks the tree model property, which holds
directly by the following result:

Proposition 6. L�〈−〉1 does not have the tree model property.

As observed, many instances of validities in our logic are not straightforward,
and SLL has some distinguishing features. The results that we have so far are
not sufficient enough to understand SLL. In the sections to come we will make
a deeper investigation into our logic.
3 By abuse of notation, for any ϕ ∈ L�〈+〉, ϕ� is a formula of the bridge modal logic.
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3 Expressive Power of SLL

In this section, we study the expressivity of SLL. First, we will show that SLL is
still a fragment of first-order logic even though it looks complicated. After this,
a suitable notion of bisimulation for SLL is introduced. Finally, we provide a
characterization theorem for the logic.

3.1 First-Order Translation

Given the complicated semantics, is SLL still a fragment of FOL? In this section
we will provide a positive answer to this question. To do so, we will describe a
translation from SLL to FOL. However, compared with that for standard modal
logic [7], we now need some new devices.

Let L1 be the first-order language consisting of countable unary predicates
Pi∈N , two binary relations Ri∈{1,2}, and equivalence ≡. Take any finite, non-
empty sequence E of variables. Let y and y′ be two fresh variables not appearing
in E. When there exists 〈x, x′〉 ∈ Set(E) with x ≡ y and x′ ≡ y′, we define
E|〈y,y′〉 := E|〈x,x′〉. Now let us define the first-order translation.

Definition 5 (First-Order Translation). Let E = 〈x0, x1, ..., xn〉 be a finite
sequence of variables (non-empty), and E− = {〈v0, v′

0〉, ..., 〈vi, v
′
i〉} and E+ =

{〈u0, u
′
0〉, ..., 〈uj , u

′
j〉} two finite sets of links. The translation T (ϕ,E,E+, E−)

from L-formulas ϕ to first-order formulas is defined recursively as follows:

T (p, E, E+, E−) = Pe(E)

T (¬ϕ, E, E+, E−) = ¬T (ϕ, E, E+, E−)

T (ϕ ∧ ψ, E, E+, E−) = T (ϕ, E, E+, E−) ∧ T (ψ, E, E+, E−)

T (�ϕ, E, E+, E−) = ∃y((
∨

〈x,x′〉∈E+

(e(E) ≡ x ∧ y ≡ x′) ∨ (R1e(E)y∧

¬
∨

〈v,v′〉∈E−
(e(E) ≡ v ∧ y ≡ v′))) ∧ T (ϕ, E; y, E+, E−))

T (〈−〉1ϕ, E, E+, E−) = ∃y∃y′(
∨

〈x,x′〉∈Set(E)\(E−∪E+)

(y ≡ x ∧ y′ ≡ x′)∧

R1yy′ ∧ ¬R2yy′ ∧ T (ϕ, E|〈y,y′〉, E
+, E− ∪ {〈y, y′〉}))

T (〈−〉2ϕ, E, E+, E−) = ∃y∃y′(R1yy′ ∧ ¬
∨

〈x,x′〉∈Set(E)∪E−∪E+

(y ≡ x ∧ y′ ≡ x′)∧

¬R2yy′ ∧ T (ϕ, E, E+, E− ∪ {〈y, y′〉}))

T (〈+〉ϕ, E, E+, E−) = ∃y∃y′(¬
∨

〈x,x′〉∈E−∪E+

(y ≡ x ∧ y′ ≡ x′) ∧ ¬R1yy′ ∧ R2yy′∧

T (ϕ, E, E+ ∪ {〈y, y′〉}, E−))

From the perspective of SLG, the sequence E denotes Learner’s process, and
sets E+ and E− represent the links that have already been added and deleted
respectively. In any translation τ(ϕ,E,E+, E−), each of E+ and E− may be
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extended. For any their extensions E+ ∪ X and E− ∪ Y , we have X ∩ Y = ∅.
Intuitively, this fact is in line with our semantics: for any 〈〈W,R1, R2, V 〉, S〉,
we always have Set(S) ⊆ R1 and (R1 \ R2) ∩ (R2 \ R1) = ∅, therefore links
deleted are different from those added. Another point worth mentioning is that,
unlike the case of standard modal logic, generally the translation does not yield
a first-order formula with only one free variable. However, it does so when we set
E, E+ and E− to be a sequence consisting of a singleton, ∅ and ∅ respectively.
By Definition 5, we have the following result:

Lemma 1. Let M be a model and τ(ϕ,E,E+, E−) a translation s.t. E+∩E− = ∅.
Assume that y and y′ are two fresh variables. For any assignment σ, we have M�
〈v, v′〉 � T (ϕ,E,E+, E−)[σ] iff M � T (ϕ,E,E+, E− ∪ {〈y, y′〉})[σy(′):=v(′) ], for
any 〈v, v′〉 ∈ R1\R2; and M⊕〈v, v′〉 � T (ϕ,E,E+, E−)[σ] iff M � T (ϕ,E,E+∪
{〈y, y′〉}, E−)[σy(′):=v(′) ], for any 〈v, v′〉 ∈ R2 \ R1.

With Lemma 1, we now can show the correctness of the translation:

Theorem 1. Let 〈M, S〉 be a pointed model and E an R1-sequence of variables
with the same size as S. For any ϕ ∈ L, M, S � ϕ iff M � T ϕ,E, ∅, ∅)[σE:=S ].

Note that the translation in Theorem1 has an extra requirement on the
sequence E, i.e., Set(E) ⊆ R1. Intuitively, this restriction corresponds to the
definition of pointed models. For each 〈M, w〉 ∈ M•, any extension E′ of w
fulfils the requirement naturally by Definition 5.

3.2 Bisimulation and Characterization for SLL

The notion of bisimulation serves as a useful tool for establishing the expressive
power of modal logics. However, it is not hard to see that SLL is not closed
under the standard bisimulation [7]. In this section we introduce a novel notion
of ‘learning bisimulation (l-bisimulation)’ tailored to our logic, which leads to a
characterization theorem for SLL as a fragment of first-order logic.

Definition 6 (l-Bisimulation). For any two models M = 〈W,R1, R2, V 〉 and
M′ = 〈W ′, R′

1, R
′
2, V

′〉, a non-empty relation Zl ⊆ U∗(〈M,S〉)×U∗(〈M′,S′〉) is
an l-bisimulation between the two pointed models 〈M, S〉 and 〈M′, S′〉 (notation:
〈M, S〉Zl〈M′, S′〉) if the following conditions are satisfied:

Atom: M, S � p iff M′, S′ � p, for each p ∈ P.
Zig�: If there exists v ∈ W1 s.t. R1wv, then there exists v′ ∈ W1 s.t. R′

1w
′v′

and 〈M, S; v〉Zl〈M′, S′; v′〉.
Zig〈−〉1 : If there is 〈u, v〉 ∈ Set(S)\R2, then there is 〈u′, v′〉 ∈ Set(S′)\R′

2 with
〈M � 〈u, v〉, S|〈u,v〉〉Zl〈M′ � 〈u′, v′〉, S′|〈u′,v′〉〉.

Zig〈−〉2 : If there exists 〈u, v〉 ∈ (R1 \ R2) \ Set(S), then there exists 〈u′, v′〉 ∈
(R′

1 \ R′
2) \ Set(S′) with 〈M � 〈u, v〉, S〉Zl〈M′ � 〈u′, v′〉, S′〉.

Zig〈+〉: If there exists 〈u, v〉 ∈ R2 \ R1, then there exists 〈u′, v′〉 ∈ R′
2 \ R′

1 with
〈M ⊕ 〈u, v〉, S〉Zl〈M′ ⊕ 〈u′, v′〉, S′〉.
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Zag�, Zag〈−〉1 , Zag〈−〉2 and Zag〈+〉: the analogous clauses in the converse
direction of Zig�, Zig〈−〉1 , Zig〈−〉2 and Zig〈+〉 respectively.

For brevity, we write 〈M1, w〉↔l〈M2, v〉 if there is an l-bisimulation Zl with
〈M1, w〉Zl〈M2, v〉.

The clauses for � is similar to those for the basic modality in the standard
bisimulation: they keep the model fixed and extend the evaluation sequence with
some of its R1-successors. In contrast, all of the conditions for 〈−〉1, 〈−〉2 and
〈+〉 change the model. In particular, clauses for 〈−〉2 and 〈+〉 do not modify
the evaluation sequence, while those for 〈−〉1 change both the model and the
current sequence. Now we can show the following result:

Theorem 2 (↔l ⊆�l). For any pointed models 〈M, S〉 and 〈M′, S′〉, it holds
that: 〈M, S〉↔l〈M′, S′〉 ⇒ 〈M, S〉 �l 〈M′, S′〉.

Moreover, the converse direction of Theorem2 holds for the models that are
ω-saturated. To introduce its definition, we need some auxiliary notations. For
each finite set Y , we denote the expansion of L1 with a set Y of constants with
LY
1 , and denote the expansion of M to LY

1 with MY . Let x be a finite tuple of
variables. A model M = 〈W,R1, R2, V 〉 is ω-saturated if, for every finite subset
Y of W , the expansion MY realizes every set Γ (x) of LY

1 -formulas whose finite
subsets Γ ′(x) are all realized in MY .

Theorem 3 (�l⊆ ↔l). For any ω-saturated 〈M, S〉 and 〈M′, S′〉, it holds
that: 〈M, S〉 �l 〈M′, S′〉 ⇒ 〈M, S〉↔l〈M′, S′〉.

Thus we have established a match between learning modal equivalence and
learning bisimulation for the ω-saturated models. Now, by a simple adaptation
of standard arguments (cf. [5,7]), we can show the following result:

Theorem 4. For any α(x) ∈ L1 with only one free variable, α(x) is equivalent
to the translation of some L-formula ϕ iff α(x) is invariant under l-bisimulation.

Therefore, in terms of the expressivity, SLL is as powerful as the one free
variable fragment of first-order logic that is invariant for l-bisimulation.

4 Model Checking and Satisfiability for SLL

In this section, we consider the model checking problem and satisfiability problem
for SLL. Fortunately, the results that we have already shown are quite helpful
to establish the complexity result for its model checking problem.

Theorem 5. Model checking for SLL is PSPACE-complete.

Note that Theorem 5 also establishes an upper bound for the complexity of
SLG. Now we move to considering the satisfiability problem for SLL. In partic-
ular, we have the following result:
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Theorem 6. L�〈−〉1 does not enjoy the finite model property, and its satisfia-
bility problem is undecidable.

Therefore, it holds directly that:

Theorem 7. SLL lacks the finite modal property, and its satisfiability problem
is undecidable.

5 Conclusion and Future Work

Summary. Motivated by restrictions on learning in SG, we have extended the
game to SLG by naming right and wrong paths of learning, and let Teacher
not only delete but also add links. Afterwards, logic SLL was presented, which
enables us to reason about players’ strategies in SLG. Besides, to understand
the new device, we provided some interesting observations and logical validities.
Next, we studied basics of its expressivity, including its first-order translation,
a novel notion of bisimulation and a characterization theorem for SLL as a
fragment of FOL that is invariant under the bisimulation introduced. Finally,
it was proved that model checking for SLL is PSPACE-complete, and via the
research on L�〈−〉1 we shown that SLL does not enjoy the finite model property
and its satisfiability problem is undecidable.

Relevant and Future Research. Broadly, this work takes a small step
towards studying the interaction between graph games, logics and formal learn-
ing theory. We are inspired by the work on SG [16], SML [5] and their application
to formal learning theory [10]. This article is also relevant to other work studying
graph games with modal logics, such as [8,12,15,17]. Technically, the logic SLL
has resemblances to several recent logics with model modifiers, such as [2–4].
Besides, instead of updating links, [18] considers a logic of stepwise point dele-
tion, which sheds light on the long-standing open problem of how to axiomatize
the sabotage-style modal logics. Moreover, [18] is also helpful to understand the
complexity jumps between dynamic epistemic logics of model transformations
and logics of freely chosen graph changes recorded in current memory. Another
relevant line of research for this paper is epistemic logics. As mentioned already,
one goal of our work is to avoid the Gettier problem. Similar to this, [6] uses the
topological semantics to study the full belief.

Except what have been studied in this article, there are still various open
problems deserving to be studied. From the logic point of view, Sect. 2.2 shows
that logic SLL is able to express the winning positions for players in finite games,
but to capture those for infinite games, can SLL be expanded with some least-
fixpoint operators? From the translation described in Definition 5 we know that
SLL are effectively axiomatizable. However, is it possible to axiomatize the logic
via a Hilbert-style calculus? In terms of games, we do not know the complexity
of SLG, although Theorem5 provides us with an upper bound. Besides, SLG
includes exactly two players, and it is also meaningful to study the cases that
are more general.
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Abstract. Recent work has considered the problem of extending to the case of
iterated belief change the so-called ‘Harper Identity’ (HI), which defines single-
shot contraction in terms of single-shot revision. The present paper considers the
prospects of providing a similar extension of the Levi Identity (LI), in which the
direction of definition runs the other way. We restrict our attention here to the
three classic iterated revision operators–natural, restrained and lexicographic, for
which we provide here the first collective characterisation in the literature, under
the appellation of ‘elementary’ operators. We consider two prima facie plausible
ways of extending (LI). The first proposal involves the use of the rational closure
operator to offer a ‘reductive’ account of iterated revision in terms of iterated
contraction. The second, which doesn’t commit to reductionism, was put for-
ward some years ago by Nayak et al.. We establish that, for elementary revision
operators and under mild assumptions regarding contraction, Nayak’s proposal
is equivalent to a new set of postulates formalising the claim that contraction by
¬A should be considered to be a kind of ‘mild’ revision by A. We then show that
these, in turn, under slightly weaker assumptions, jointly amount to the conjunc-
tion of a pair of constraints on the extension of (HI) that were recently proposed
in the literature. Finally, we consider the consequences of endorsing both sug-
gestions and show that this would yield an identification of rational revision with
natural revision. We close the paper by discussing the general prospects for defin-
ing iterated revision in terms of iterated contraction.

Keywords: Belief revision · Iterated belief change · Levi identity

1 Introduction

The crucial question of iterated belief change–that is, the question of the rationality con-
straints that govern the beliefs resulting from a sequence of changes in view–remains
very much a live one.

In recent work [3], we have studied in some detail the problem of extending, to the
iterated case, a principle of single-step change known as the ‘Harper Identity’ (henceforth
‘(HI)’) [15]. This principle connects single-step contraction and revision, the two main
types of change found in the literature, in a manner that allows one to define the former
in terms of the latter. We presented a family of extensions of (HI) characterised by the
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satisfaction of an intuitive pair of principles and showed how these postulates could be
used to translate principles of iterated revision into principles of iterated contraction.

But (HI) also has a well known companion principle which reverses the direction
of definition, allowing one to define single-step revision in terms of single-step con-
traction: the Levi Identity (henceforth ‘(LI)’) [20]. To date, furthermore, the issue of
extending (LI) to the iterated case has barely been discussed. Two noteworthy excep-
tions are the short papers of Nayak et al. [21] and of Konieczny and Pino Pérez [17].
The second paper argues that no reasonable extension of (LI) will enable us to reduce
iterated revision to iterated contraction. The first paper introduces a non-reductionist
extension of (LI) consonant with this claim.

The present contribution aims to provide a more comprehensive discussion of the
issue, carried out against the backdrop of the aforementioned recent work on (HI). The
plan of the paper is as follows. After a preliminary introduction of the formal framework
in Sect. 2, we provide, in Sect. 3, a novel result that is of general interest in itself. We
collectively characterise the three classic belief revision operators that are the focus of
the paper (natural, restrained and lexicographic) under the appellation of ‘elementary’
operators, showing that they are in fact the only operators satisfying a particular set of
properties. Section 4 turns to the issue of extending (LI) to the iterated case. We present,
in Sect. 4.1, an extension of (LI) based on the concept of rational closure, which would
result in a reduction of two-step revision to two-step contraction. Section 4.2 then dis-
cusses the non-reductive proposal of [21]. We first establish that, for elementary revision
operators and under mild assumptions regarding contraction, it is in fact equivalent to a
new set of postulates formalising the claim that contraction by ¬A should be considered
to be a kind of ‘mild’ revision by A. These, in turn, under slightly weaker assumptions,
are proven to jointly amount to the conjunction of the aforementioned constraints on the
extension of (HI) that were proposed in [3]. In Sect. 4.3, we consider the consequences
of endorsing both suggestions and show that this would yield an identification of ratio-
nal revision with natural revision. In Sect. 5, we briefly discuss the general prospects
for defining iterated revision from iterated contraction, critically assessing the central
argument of [17]. We conclude, in Sect. 6, with some remaining open questions.

Due to space limitations, only sketches of the more important proofs have been
provided. A version of the paper containing all proofs can be accessed online at https://
arxiv.org/abs/1907.01224.

2 Preliminaries

The beliefs of an agent are represented by a belief state Ψ . The latter determines a
belief set [Ψ ], a deductively closed set of sentences, drawn from a finitely generated,
propositional, truth-functional language L. The set of classical logical consequences of
Γ ⊆ L will be denoted by Cn(Γ ). The set of propositional worlds or valuations will be
denoted by W , and the set of models of a given sentence A by [[A]].

We consider the three classic belief change operations mapping a prior state Ψ and
input sentence A in L onto a posterior state. The operation of revision ∗ returns the
posterior state Ψ ∗A that results from an adjustment of Ψ to accommodate the inclusion
ofA, in such a way as to maintain consistency of the resulting belief set when¬A ∈ [Ψ ].

https://arxiv.org/abs/1907.01224
https://arxiv.org/abs/1907.01224
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The operation of expansion + is similar, save that consistency of the resulting beliefs
needn’t be ensured. Finally, the operation of contraction ÷ returns the posterior state
Ψ ÷ A that results from an adjustment of Ψ to accommodate the retraction of A.

2.1 Single-Step Change

In terms of single-step change, revision and contraction are assumed to satisfy the pos-
tulates of Alchourrón, Gärdenfors and Makinson [1] (henceforth ‘AGM’), while the
behaviour of expansion is constrained by [Ψ + A] = Cn([Ψ ] ∪ {A}). AGM ensures
a useful order-theoretic representability of the single-shot revision or contraction dis-
positions of an agent, such that each Ψ is associated with a total preorder (henceforth
‘TPO’) �Ψ over W , such that [[[Ψ ∗ A]]] = min(�Ψ , [[A]]) ([14,16]). In this context,
the AGM postulate of Success (A ∈ [Ψ ∗ A]) corresponds to the requirement that
min(�Ψ∗A,W ) ⊆ [[A]]. We denote by TPO(W ) the set of all TPOs over W and shall
assume that, for every �∈ TPO(W ), there is a state Ψ such that �=�Ψ .

Equivalently, these revision dispositions can be represented by a ‘conditional belief
set’ [Ψ ]c. This set extends the belief set [Ψ ] by further including various ‘conditional
beliefs’, expressed by sentences of the form A ⇒ B, where ⇒ is a non-truth-functional
conditional connective and A,B ∈ L (we shall call Lc the language that extends L
to include such conditionals). This is achieved by means of the so-called Ramsey Test,
according to which A ⇒ B ∈ [Ψ ]c iff B ∈ [Ψ ∗ A]. In terms of constraints on [Ψ ]c,
AGM notably ensures that its conditional subset corresponds to a rational consequence
relation, in the sense of [19] (we shall say, in this case, that [Ψ ]c is rational).

Following convention, we shall call principles couched in terms of belief sets ‘syn-
tactic’, and call ‘semantic’ those principles couched in terms of TPOs, denoting the
latter by subscripting the corresponding syntactic principle with ‘�’.

The operations ∗ and ÷ are assumed to be related in the single-shot case by the Levi
and Harper identities, namely

(LI) [Ψ ∗ A] = Cn([Ψ ÷ ¬A] ∪ {A})
(HI) [Ψ ÷ A] = [Ψ ] ∩ [Ψ ∗ ¬A]

with single-shot revision determining single-shot expansion via a third identity:

(TI) [Ψ + A] = [Ψ ∗ A], if ¬A /∈ [Ψ ]
= L, otherwise

(LI) can of course alternatively be presented as [Ψ ∗ A] = [(Ψ ÷ ¬A) + A]. Note that,
given (HI) and (LI), the constraint [[[Ψ ∗ A]]] = min(�Ψ , [[A]]) is equivalent to [[[Ψ ÷
¬A]]] = min(�Ψ ,W )∪min(�Ψ , [[A]]), so that �Ψ equally represents both revision and
contraction dispositions.

The motivation for (LI) is the following: The most parsimonious way of modifying
[Ψ ] so as to include A is to simply add the joint logical consequences of [Ψ ] and A.
However, Cn([Ψ ] ∪ {A}) needn’t be consistent. Hence we first ‘make room’ for A
by considering instead the belief set [Ψ ÷ ¬A] that results from making the relevant
minimal change necessary to achieve consistency.
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2.2 Iterated Change

In terms of iterated revision, we shall considerably simplify the discussion by restricting
our attention to the three principal operators found in the literature. These are natural
revision [8]:

x �Ψ∗NA y iff (1) x ∈ min(�Ψ , [[A]]), or (2) x, y /∈ min(�Ψ , [[A]]) and x �Ψ y

restrained revision [6]:

x �Ψ∗RA y iff (1) x ∈ min(�Ψ , [[A]]), or (2) x, y /∈ min(�Ψ , [[A]]) and either (a)
x ≺Ψ y or (b) x ∼Ψ y and (x ∈ [[A]] or y ∈ [[¬A]])

and lexicographic revision [22]:

x �Ψ∗LA y iff (1) x ∈ [[A]] and y ∈ [[¬A]], or (2) (x ∈ [[A]] iff y ∈ [[A]]) and
x �Ψ y.1

See Fig. 1.

A ¬A
z x
y

w

A ¬A
x

z
w

y

A ¬A
x
w

z
y

A ¬A
z x

w
y

∗R A
∗L A ∗N A

Fig. 1. Elementary revision by A. The boxes represent states and associated TPOs. The lower
case letters, which represent worlds, are arranged in such a way that the lower the letter, the
lower the corresponding world in the relevant ordering. The columns group worlds according to
the sentences that they validate. So, for example, in the initial ordering, we have w ≺ y ≺ x ∼ z,
with y, z ∈ [[A]] and x, w ∈ [[¬A]] and then, after lexicographic revision by A, y ≺ z ≺ w ≺ x.

All three suggestions operate on the assumption that a state Ψ is to be identified with
its corresponding TPO �Ψ and that belief change functions map pairs of TPOs and
sentences onto TPOs, in other words, they entail:

(Red) If �Ψ=�Ψ ′ , then, for any A, �Ψ∗A=�Ψ ′∗A

1 These are three of the four iterated revision operators mentioned in Rott’s influential survey
[23]. The remaining operator the irrevocable revision operator of [24], which has the unusual
characteristic of ensuring that prior inputs to revision are retained in the belief set after any
subsequent revision.
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The proposals ensure that ∗ satisfies the postulates of Darwiche and Pearl [10]. In their
semantic forms, these are:

(C1∗
�) If x, y ∈ [[A]] then x �Ψ∗A y iff x �Ψ y

(C2∗
�) If x, y ∈ [[¬A]] then x �Ψ∗A y iff x �Ψ y

(C3∗
�) If x ∈ [[A]], y ∈ [[¬A]] and x ≺Ψ y, then x ≺Ψ∗A y

(C4∗
�) If x ∈ [[A]], y ∈ [[¬A]] and x �Ψ y, then x �Ψ∗A y

Regarding÷, we assume that it satisfies the postulates of Chopra et al. [9], given seman-
tically by:

(C1÷
�) If x, y ∈ [[¬A]] then x �Ψ÷A y iff x �Ψ y

(C2÷
�) If x, y ∈ [[A]] then x �Ψ÷A y iff x �Ψ y

(C3÷
�) If x ∈ [[¬A]], y ∈ [[A]] and x ≺Ψ y then x ≺Ψ÷A y

(C4÷
�) If x ∈ [[¬A]], y ∈ [[A]] and x �Ψ y then x �Ψ÷A y

Concerning the relations between the belief change operators in the iterated case, we
will be discussing the extension of (LI), as well as that of (TI), later in the paper.
Regarding (HI), a proposal for extending the principle to the two-step case was recently
floated in [3]. Semantically speaking, this involved the characterisation of a binary TPO
combination operator ⊕, such that �Ψ÷A=�Ψ ⊕ �Ψ∗¬A. Among the baseline con-
straints on ⊕, were a pair of conditions that were shown to be respectively equivalent,
in the presence of (C1∗

�) and (C2∗
�), to the following joint constraints on �Ψ÷A, �Ψ

and �Ψ∗¬A:

(SPU�) If x ≺Ψ y and x ≺Ψ∗¬A y then x ≺Ψ÷A y

(WPU�)If x �Ψ y and x �Ψ∗¬A y then x �Ψ÷A y

We called operators satisfying such postulates, in addition to (HI), ‘TeamQueue com-
binators’.

3 Elementary Revision Operators

In this section, we demonstrate the relative generality of the results that follow by pro-
viding a characterisation result according to which natural, restrained and lexicographic
revision operators are the only operators satisfying a small set of potentially appealing
properties. We shall call operators that satisfy these properties elementary revision oper-
ators. We define elementary revision operators semantically by:

Definition 1. ∗ is an elementary revision operator iff it satisfies (C1∗
�)–(C4

∗
�),

(IIAP∗
�), (IIAI

∗
�) and (Neut∗

�).

We have already introduced (C1∗
�)-(C4

∗
�). The remaining principles are new. We call

the first of these ‘Independence of Irrelevant Alternatives with respect to the prior TPO’,
after an analogous precept in social choice. For this, we first define the notion of ‘agree-
ment’ between TPO’s on a pair of worlds:
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Definition 2. Where �Ψ ,�Ψ ′∈ TPO(W ), �Ψ and �Ψ ′ agree on {x, y} iff
�Ψ ∩{x, y}2 = �Ψ ′ ∩{x, y}2.
then offer:

(IIAP∗
�) If x, y /∈ min(�Ψ , [[A]]) ∪ min(�Ψ ′ , [[A]]), then, if �Ψ and �Ψ ′ agree on

{x, y}, so do �Ψ∗A and �Ψ ′∗A

The second new principle–‘Independence of Irrelevant Alternatives with respect to the
input’–is formally similar to the first. For this we first introduce some helpful notation:

Definition 3. (i) x �A y iff x ∈ [[A]] or y ∈ [[¬A]], (ii) x ∼A y when x �A y and
y �A x, and (iii) x ≺A y when x �A y but not y �A x.

The principle is then given by:

(IIAI∗
�) If x, y /∈ min(�Ψ , [[A]]) ∪ min(�Ψ , [[B]]), then, if �A and �B agree on

{x, y}, so do �Ψ∗A and �Ψ∗B

The final principle is a principle of ‘Neutrality’, again named after an analogous condi-
tion in social choice. To the best of our knowledge, it appears here for the first time in
the context of belief revision. Its presentation makes use of the following concept:

Definition 4. Where A ∈ L, π is an A-preserving order isomorphism from 〈W,�Ψ ,
�A〉 to 〈W,�Ψ ′ ,�A〉 iff it is a 1:1 mapping from W onto itself such that

(i) x �Ψ y iff π(x) �Ψ ′ π(y), and
(ii) x �A y iff π(x) �A π(y)

and proceeds as follows:

(Neut∗
�) x �Ψ∗A y iff π(x) �Ψ ′∗A π(y), for any A-preserving order isomorphism π

from 〈W,�Ψ ,�A〉 to 〈W,�Ψ ′ ,�A〉

(IIAP∗
�) and (IIAI∗

�) say that the relative ordering of x and y after revising by A
depends on only (i) their relative order prior to revision (from (IIAP∗

�)) and (ii) their
relative positioning with respect to A (i.e., whether or not they satisfy A) unless one
of x or y is a minimal A-world, in which case this requirement acquiesces to the Suc-
cess postulate (from (IIAI∗

�)). (Neut
∗
�) is a form of language-independence property,

stating that the labels (in terms of valuations) of worlds are irrelevant in determining
the posterior TPO. The prima facie appeal of these principles is similar to that of their
analogues in social choice, substituting a doxastic interpretation of the ordering for a
preferential one.

With this in hand, we can now report that:

Theorem 1. The only elementary revision operators are lexicographic, restrained and
natural revision.
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Proof Sketch: The claim that lexicographic, restrained and natural revision operators
are elementary operators is straightforward to establish and we shall not provide it here.

Regarding the other direction of the result: (IIAP∗
�) and (Neut∗

�) jointly allows us
to represent revision by a given sentence A as a quadruple of functions from prior to
posterior relations between two arbitrary worlds x and y, such that x, y /∈ min(�Ψ ,
[[A]]), one for each of the three following possibilities: (1) x ∈ [[A]], y ∈ [[¬A]], (2)
x, y ∈ [[A]], (3) x, y ∈ [[¬A]] (the case in which x ∈ [[¬A]], y ∈ [[A]] is determined
by (1), by virtue of (Neut∗

�)). These functions can be represented by state diagrams in
which the set of states is {x ≺ y, x ∼ y, y ≺ x} and the edges represent revisions by
A. The postulates (C1∗

�) and (C2∗
�) entail that, whatever degrees of freedom there are,

they are associated with (1). Furthermore, (C3∗
�) and (C4

∗
�) then leave us with at most

six possible diagrams for (1) (see Fig. 2).
Diagrams (a), (b) and (c) respectively correspond to ∗RA, ∗LA and ∗NA. However,

(d) and (e) are inconsistent with (C2∗
�), on pains of triviality. Indeed assume that there

exist two worlds y, z ∈ [[¬A]] and a world x ∈ [[A]], such that z ≺Ψ y ≺Ψ x. Then
z ∼Ψ∗A y, in violation of (C2∗

�). (f) exhibits a similar inconsistency. Consider this
time the prior TPO given by y ≺Ψ {x,w}. We have z ≺Ψ∗A y. Given y ≺Ψ z, this is
again inconsistent with (C2∗

�).
So we have established that (IIAP∗

�) and (Neut∗
�) collectively entail that, for any

A, Ψ ∗A is equal to one of either Ψ ∗R A, Ψ ∗L A or Ψ ∗N A. But it still remains the case
that ∗ coincides with one elementary operator for one input but with another elementary
operator for another, so that, for example, Ψ ∗A = Ψ ∗R A while Ψ ∗A = Ψ ∗L A. This
is ruled out by the final condition (IIAI∗

�). �

x ≺ y

x ∼ y

y ≺ x

(a)

x ≺ y

x ∼ y

y ≺ x

(b)

x ≺ y

x ∼ y

y ≺ x

(c)

x ≺ y

x ∼ y

y ≺ x

(d)

x ≺ y

x ∼ y

y ≺ x

(e)

x ≺ y

x ∼ y

y ≺ x

(f)

Fig. 2. State diagrams for all x ∈ [[A]] and all y ∈ [[¬A]].

(IIAP∗
�) significantly weakens a principle introduced under the name of ‘(IIA)’ in [12],

which simply corresponds to the embedded conditional: If�Ψ and�Ψ ′ agree on {x, y},
so do �Ψ∗A and �Ψ ′∗A. (IIAI∗

�) amounts to a similar weakening of a condition found
in [7]. An interesting question, therefore, arises as to why the stronger principles do not
figure in our characterisation.

The unqualified version of (IIAP∗
�) is only satisfied by ∗L, assuming (C1∗

�) and
(C2∗

�) and that the domain of the revision function isTPO(W ). Indeed, let x ∈ [[A]] and
y ∈ [[¬A]]. Then, for any �Ψ , there will exist �Ψ ′ in TPO(W ) that agrees with �Ψ on
{x, y} and is such that x ∈ min(�Ψ ′ , [[A]]) (and, since y ∈ [[¬A]], y /∈ min(�Ψ ′ , [[A]])).
But by AGM, if x ∈ min(�Ψ ′ , [[A]]) but y /∈ min(�Ψ ′ , [[A]]), then x ≺Ψ ′∗A y. So, by
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the unqualified version of (IIAP∗
�), x ≺Ψ∗A y. Hence, if x ∈ [[A]] and y ∈ [[¬A]], then

x ≺Ψ∗A y, a condition only satisfied by ∗L, assuming (C1∗
�) and (C2∗

�).
2

Similarly, Booth and Meyer’s strong version of (IIAI∗
�), in conjunction with

(C1∗
�)–(C4

∗
�), can be shown to entail a principle that we have called ‘(β1+∗

�)’ in pre-
vious work [5], where we showed (see Corollary 1 there) to characterise lexicographic
revision, given AGM and (C1∗

�)-(C2
∗
�).

4 Extending the Levi Identity

4.1 A Proposal Involving Rational Closure

The most straightforward syntactic extension of (LI) would involve replacing all belief
sets by conditional belief sets, leaving all else unchanged. This would require extending
the domain of Cn to subsets of the conditional language Lc, which can be naturally
achieved by setting, forΔ ⊆ Lc,Cn(Δ) = Δ∪Cn(Δ∩L). So we would be considering
the claim that [Ψ ∗ A]c = Cn([Ψ ÷ ¬A]c ∪ {A}). This, however, is a bad idea, since it
is easy to show that:

Proposition 1. If [Ψ ∗A]c = Cn([Ψ ÷¬A]c ∪{A}), then there are no consistent belief
sets, given the two following AGM postulates:

(K2∗) A ∈ [Ψ ∗ A]
(K2÷) [Ψ ÷ A] ⊆ [Ψ ]

Proof. Assume [Ψ ∗ A]c = Cn([Ψ ÷ ¬A]c ∪ {A}). By Success, A ∈ [Ψ ∗ A]. By the
Ramsey Test, � ⇒ A ∈ [Ψ ∗ A]c and so � ⇒ A ∈ Cn([Ψ ÷ ¬A]c ∪ {A}). But then,
since � ⇒ A /∈ L and, as we have stipulated, for Δ ⊆ Lc, Cn(Δ) = Δ ∪ Cn(Δ ∩ L),
it must be the case that � ⇒ A ∈ [Ψ ÷ ¬A]c. Hence, by the Ramsey Test again, it
follows that A ∈ [Ψ ÷ ¬A]. From (K2÷), we then have A ∈ [Ψ ]. By a similar chain of
reasoning, we can establish that ¬A ∈ [Ψ ]. �
The core issue highlighted by this result is that the right hand side of the equality won’t
generally correspond to a rational consequence relation, due to the fact that Cn simply
yields too small a set of consequences. So a natural suggestion here would be to make
use of the rational closure operator Crat of [19] instead of Cn. Indeed, Crat has been
touted as offering the appropriately conservative way of extending a set of conditionals
to something that corresponds to a rational consequence relation (see [19]). This gives
us the ‘iterated Levi Identity using Rational Closure’ (or ‘(iLIRC)’ for short):

(iLIRC) [Ψ ∗ A]c = Crat([Ψ ÷ ¬A]c ∪ {A})3

2 We note that [12] offers a rather different characterisation of lexicographic revision that also
involves the unqualified version of (IIAP∗

�).
3 Strictly speaking, Crat is an operation on purely conditional belief sets. However, it can be
obviously generalised to the case in which the set includes non-conditionals, since for any
A ∈ L, A ∈ [Ψ ]c iff � ⇒ A ∈ [Ψ ]c.
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4.2 Nayak et al.’s ‘New Levi Identity’

An alternative extension of (LI) can be obtained by using an iterable expansion operator
+. This is the ‘New Levi Identity’ of Nayak et al., which is briefly presented in [21].
Semantically, it is given by:

(NLI�) �Ψ∗A=�(Ψ÷¬A)+A

Syntactically, in terms of conditional belief sets, we then would have: [Ψ ∗A]c = [(Ψ ÷
¬A) + A]c.

It is easily verified that (LI) follows from (NLI�), if one assumes, for instance, that
÷ satisfies (C1÷

�). Indeed, (LI) amounts tomin(�Ψ , [[A]]) = min(�Ψ÷¬A,W )∩[[A]] =
min(�Ψ÷¬A, [[A]]), which immediately follows from (C1÷

�). (NLI�) also has some
other interesting general properties. For example, one can show, rather trivially, that:

Proposition 2. If ∗ and ÷ satisfy (NLI�), then, for i ∈ {1, 2, 3, 4}, (Ci÷
�) entails

(Ci∗�), if + also satisfies (Ci∗�).

This result mirrors a result in [3], in which it was shown that TeamQueue combination
allows one to move from each (Ci∗�) to the corresponding (Ci÷

�).
Assuming, as Nayak et al. do, the following natural semantic iterated version of (TI):

(iTI�) �Ψ+A =�Ψ∗A, ifmin(�,W ) � [[¬A]]
=�Ψ⊥ , otherwise

where Ψ⊥ is an ‘absurd’ epistemic state such that [Ψ⊥] = L,4 (NLI�) is equivalent to:

(iLI∗�) �Ψ∗A=�(Ψ÷¬A)∗A

In what follows, then, we shall use (NLI�) and (iLI∗�) interchangeably. Importantly,
while the proposal considered in the previous section was reductive, in the sense that the
operator ∗ on the left-hand side of the identity did not appear on the right, (iLI∗�) fea-
tures ∗ on both sides.

To date, however, the implications of this principle have not been studied in any
kind of detail. In what follows, we offer some new results of interest. We first note:

Theorem 2. If ∗ is an elementary revision operator and ÷ satisfies (C1÷
�)-(C4

÷
�), then

∗ and ÷ satisfy (NLI�) iff they satisfy the following:

(C1÷/∗
� ) If x, y ∈ [[A]], then x �Ψ÷¬A y iff x �Ψ∗A y

(C2÷/∗
� ) If x, y ∈ [[¬A]], then x �Ψ÷¬A y iff x �Ψ∗A y

(C3÷/∗
� ) If x ∈ [[A]], y ∈ [[¬A]] and x ≺Ψ÷¬A y, then x ≺Ψ∗A y.

(C4÷/∗
� ) If x ∈ [[A]], y ∈ [[¬A]] and x �Ψ÷¬A y, then x �Ψ∗A y.

4 Nayak et al. have little to say about Ψ⊥, aside from its being the case that �Ψ⊥÷A is such
that x ∼Ψ⊥÷A y for all x, y ∈ W . More recently, [11] have suggested that the state resulting
from expansion into inconsistency be defined in a more fine-grained manner, in a proposal that
involves introducing an ‘impossible’ world such that w⊥ |= A for all A ∈ L. We refer the
reader to their paper for further details, since nothing here hinges on the distinction between
these views.
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Proof Sketch: Each direction is proven separately. Regarding the right-to-left direction:

Lemma 1. If ∗ is an elementary revision operator, ÷ satisfies (C1÷
�)-(C4

÷
�), and ÷

and ∗ satisfy (C1÷/∗
� )-(C4÷/∗

� ), then ∗ and ÷ satisfy (NLI�).

Regarding the left-to-right direction, we actually prove the following stronger claim:

Lemma 2. If ∗ satisfies (C1∗
�)–(C4

∗
�), then there exists ÷ such that ∗ and ÷ satisfy

(NLI�) only if ∗ and ÷ satisfy (C1÷/∗
� )–(C4÷/∗

� ). �
The principles (C1÷/∗

� )-(C4÷/∗
� ) are new to the literature and bear an obvious for-

mal resemblance to the postulates of Darwiche and Pearl and of Chopra et al.. Taken
together, they require contraction by ¬A to be a kind of ‘mild revision’ by A, since they
tell us that the position of any A-world with respect to any ¬A-world is at least as good
after revision by A as it is after contraction by ¬A.

Somewhat surprisingly (to us), it turns out that these principles are also closely
connected to the semantic ‘TeamQueue combinator’ approach to extending the Harper
Identity to the iterated case that was proposed in [3]. Indeed, one can show that:

Theorem 3. If ∗ satisfies (C1∗
�)-(C4

∗
�) and ÷ satisfies (C1÷

�)-(C4
÷
�), then ∗ and ÷

satisfy (C1÷/∗
� )-(C4÷/∗

� ) iff they satisfy (SPU�) and (WPU�).

Proof: We prove the result in two parts. Firstly we establish the following strengthen-
ing of the right-to-left direction of the claim:

Lemma 3. Given (SPU�) and (WPU�), for all 1 ≤ i ≤ 4, (Ci∗�) entails (Ci÷/∗
� ).

Regarding i = 1, 2: We provide the proof for i = 1, since the case in which i = 2 is
handled analogously. Assume x, y ∈ [[A]]. From left to right: Assume x �Ψ÷¬A y. By
the contrapositve of (SPU�), either x �Ψ y or x �Ψ∗A y. If the latter holds, we are
done. So assume that x �Ψ y. Then the required result follows by (C1∗

�). From right to
left: Assume x �Ψ∗A y. By (C1∗

�), x �Ψ y. By (WPU�), x �Ψ÷¬A y, as required.
Regarding i = 3, 4: We provide the proof for i = 3, since the case in which i = 4 is

handled analogously (using (SPU�) rather than (WPU�)). We derive the contraposi-
tive. Assume x ∈ [[A]], y ∈ [[¬A]] and y �Ψ∗A x. If y �Ψ x, then, from y �Ψ∗A x, we
have y �Ψ÷¬A x, by (WPU�), as required. So assume x ≺Ψ y. By (C3∗

�), x ≺Ψ∗A y.
Contradiction. This completes the proof of Lemma 3.

Concerning the left-to-right direction of our principal claim, we show:

Lemma 4. (C3÷
�), (C4

÷
�), and (C1÷/∗

� )–(C4÷/∗
� ) entail (SPU�) and (WPU�).

We just prove this in relation to (WPU�), using (C1
÷/∗
� ), (C2÷/∗

� ), (C3÷/∗
� ) and (C4÷

�).
The proof in relation to (SPU�) is analogous but uses (C1

÷/∗
� ), (C2÷/∗

� ), (C4÷/∗
� ) and

(C3÷
�) instead. Assume that x �Ψ y and x �Ψ∗A y. We want to show x �Ψ÷¬A y.

If (a) x, y ∈ [[A]], (b) x, y ∈ [[¬A]], or (c) x ∈ [[¬A]] and y ∈ [[A]], this follows from
x �Ψ∗A y, by (C1÷/∗

� ), (C2÷/∗
� ) or (C3÷/∗

� ), respectively. If (d) x ∈ [[A]] and y ∈ [[¬A]],
then it follows from x �Ψ y, by (C4÷

�). �
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In conjunction with Theorem 2, Theorem 3 entails:

Corollary 1. If ∗ is an elementary revision operator and÷ satisfies (C1÷
�)-(C4

÷
�), then

∗ and ÷ satisfy (NLI�) iff they satisfy (SPU�) and (WPU�).

In this particular context, then, (NLI�) simply amounts to the conjunction of a pair of
constraints proposed in the context of extending (HI) to the iterated case.

4.3 Rational Closure and the New Levi Identity

At this stage, we have considered both a potentially promising reductive proposal and
a promising non-reductive one. A natural question, then, is: How would these two sug-
gestions fare in conjunction with one another? To answer this question, we provide the
semantic counterpart for our first principle, which was formulated only syntactically:

Theorem 4. Given AGM, (iLIRC) is equivalent to :

(iLIRC�) �Ψ∗A=�(Ψ÷¬A)∗NA
5

Proof Sketch: We prove the claim by establishing that (iLIRC) ensures that �Ψ∗A is
the ‘flattest’ TPO such that the following lower bound principle is satisfied: [Ψ ÷¬A]c∪
{A} ⊆ [Ψ ∗ A]c. In view of Definitions 20 and 21 of [19], the upshot of this is then that
�(Ψ÷¬A)∗NA corresponds to the rational closure of [Ψ ÷ ¬A]c ∪ {A}.

We first note that, given AGM, the lower bound principle can be semantically
expressed as follows: (a) If x ≺Ψ÷¬A y, then x ≺Ψ∗A y and (b)min(�Ψ∗A,W ) ⊆ [[A]].
With this in hand, we prove two lemmas, which are individually easy to establish. First:

Lemma 5. If ∗ and ÷ satisfy (iLIRC�), then they satisfy the lower bound principle.

For the second lemma, we make use of the convenient representation of TPOs by their
corresponding ordered partitions of W . The ordered partition 〈S1, S2, . . . Sm〉 of W
corresponding to a TPO � is such that x � y iff r(x,�) ≤ r(y,�), where r(x,�)
denotes the ‘rank’ of x with respect to � and is defined by taking Sr(x,�) to be the cell
in the partition that contains x. The lemma is given as follows:

Lemma 6. �(Ψ÷¬A)∗NA � �, for any TPO � satisfying the lower bound principle.

where:

Definition 5. � is a binary relation on the set of TPOs over W such such that,
for any TPOs �1 and �2, whose corresponding ordered partitions are given by
〈S1, S2, . . . , Sm〉 and 〈T1, T2, . . . , Tm〉 respectively, �1 � �2 iff either (i) Si = Ti

for all i = 1, . . . , m, or (ii) Si ⊃ Ti for the first i such that Si �= Ti.

� partially orders TPO(W ) according to comparative ‘flatness’, with the flatter TPOs
appearing ‘greater’ in the ordering, so that �1 � �2 iff �1 is at least as as flat as �2.

5 Note that [17] explicitly mention (iLIRC�) and flag it out as a potentially desirable principle.
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Let 〈T1, . . . , Tm〉 be the ordered partition corresponding to the TPO �(Ψ÷¬A)∗NA,
which we will denote by �N. Let � be any TPO satisfying the lower bound condition:
(a) If x ≺Ψ÷¬A y, then x ≺ y and (b) min(�,W ) ⊆ [[A]]. Let 〈S1, . . . , Sn〉 be its
corresponding ordered partition. The proof of the lemma then amounts to showing that
�N � �. �
With this in hand, the consequences of endorsing (iLIRC) on the heels of (NLI�)
should be obvious: rational iterated revision would have to coincide with natural
revision.

This raises an interesting question: For each remaining elementary operator ∗, does
there exist a suitable alternative closure operator C, such that [Ψ ∗A]c = C([Ψ ÷¬A]c∪
{A}) iff �Ψ∗A=�(Ψ÷¬A)∗A?6 Indeed, although rational closure is by far the most pop-
ular closure operator in the literature, alternative closure operators have been proposed,
including, for instance the lexicographic closure operator of [18] or again the maxi-
mum entropy closure operator of [13]. Furthermore, there has been some limited work
on potential connections between closure operators and revision operators (namely [2]).
However, this work has only focussed on the relation between lexicographic closure and
lexicographic revision and its pertinence to the current problem remains unclear.

Although we do not currently have an answer to our question, we can report that the
existence of suitable relevant closure operators will very much depend on the manner
in which one extends (HI) to the iterated case. To illustrate, in a previous discussion of
the issue [3], we considered a particular TeamQueue combinator, ⊕STQ. We showed, in
Sect. 6 of that paper, that for ∗ = ∗L or ∗ = ∗R, the equality �Ψ÷A=�Ψ ⊕STQ�Ψ∗¬A

entails that ÷ = ÷STQL, where ÷STQL is an iterated contraction operator that we call
‘STQ-Lex’. We can, however, show the following:

Proposition 3. If ∗ = ∗L or ∗ = ∗R and ÷ = ÷STQL, then there exists no closure
operator C, satisfying the property of Rational Identity:

(RIDc) If Δ is rational, then C(Δ) = Δ.

such that both (NLI�) and [Ψ ∗ A]c = C([Ψ ÷ ¬A]c ∪ {A}) are true.
(RIDc) seems a desirable property of closure operators, which aim to extend a set of
conditionals Δ to that rational set of conditionals whose endorsement is mandated by
that of Δ. The standard postulate of Inclusion (Δ ⊆ C(Δ)) tell us that C must extend
Δ to a rational superset of Δ. (RIDc) adds to this the notion that if Δ ‘ain’t broke’, it
needn’t be ‘fixed’.

Interestingly, the proof of this impossibility result fails to go through when ∗ = ∗L
and ÷ = ÷P, where ÷P is the priority contraction operator of [21]. In [3] we note
that priority contraction can be recovered from lexicographic revision via a particular
TeamQueue combinator. Furthermore, the same combinator can be used to define a
contraction operator from restrained revision (call it ÷R). Again, the proof of the above
result breaks down when ∗ = ∗R and ÷ = ÷R.

6 Note the importance of (Red) in making this kind of correspondence even prima facie possi-
ble. Indeed, if (Red) fails, then�Ψ÷¬A andAwill fail to jointly determine�Ψ∗A. In syntactic
terms, [Ψ ÷ ¬A]c and A will fail to jointly determine [Ψ ∗ A]c.
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5 Is Iterated Revision Reducible to Iterated Contraction?

Konieczny and Pino Pérez [17, Theorem 5] plausibly claim that, for a finitely generated
language, the cardinality of (i) the set of revision operators that satisfy both the AGM
postulates for revision and (C1∗

�)–(C4
∗
�) is strictly greater than the cardinality of (ii)

the set of contraction operators that satisfy both the AGM postulates for contraction
and (C1÷

�)–(C4
÷
�). From this, they conclude that there is no bijection between rational

iterated revision and contraction operators and hence no reduction of iterated revision
to iterated contraction.

But this conclusion is not warranted without a further argument to the effect that
every member of (i) is rational. In other words, it could be the case that (C1∗

�)–(C4
∗
�)

need supplementing. This has certainly been the belief of the proponents of the various
elementary revision operators that we have discussed in the present paper. And indeed,
the proponent of ∗N could claim, endorsing our ⊕STQ-based extension of (HI), that
rational contraction goes by natural contraction. By the same principle, proponents of
∗R or ∗L could respectively claim that rational contraction goes by natural contrac-
tion or STQ-Lex contraction, respectively (see [3, Sect. 6]). Those are three candidate
bijections that are all consistent, furthermore, with (NLI�).

One could nevertheless run an arguably plausible argument to Konieczny and Pino
Pérez’s desired conclusion based on the observation that natural and restrained revision
are both mapped onto natural contraction by the ⊕STQ method. Even if one thinks that
it is implausible to claim that iterated change must comply with one of either restrained
or natural revision, it is not implausible to claim that it sometimes may comply with
either. In other words: There plausibly exists at least one prior TPO that is rationally
consistent with two distinct potential posterior TPOs, respectively obtained via natural
and restrained revision by a given sentenceA. Given the⊕STQ-based extension of (HI),
only one posterior TPO can be obtained by contraction by ¬A, namely the one obtained
by natural contraction by ¬A. But if this is true, iterated revision dispositions cannot be
recovered from iterated contraction dispositions.

6 Conclusions and Further Work

We have considered two possible extensions of (LI) to the iterated case: a reductive
proposal (iLIRC) based on the rational closure operator, and a non-reductive proposal
(NLI�) that involves a contraction step, followed by an expansion. We have shown
that, when restricted to a popular class of ‘elementary’ revision operators, (NLI�) is in
fact equivalent, under weak assumptions, to both (i) a new set of postulates (C1÷/∗

� )-
(C4÷/∗

� ) and (ii) a pair of principles recently defended in the literature on (HI).
However, it has also been noted that (iLIRC) has strong consequences when con-

joined with (NLI�). This suggests the need for (1) a future consideration of various
alternatives to the former that make use of surrogate closure operators.

Furthermore, the revision operators of the class that we have focussed on have been
criticised for their equation of belief states with TPOs (the principle (Red); see [4]).
One obvious extension of our work would be (2) an exploration of the extent to which
the results reported in Sect. 4 carry over to operators that avoid this identification, such
as the POI operators of [5].
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Abstract. Logics based on team semantics, such as inquisitive logic and
dependence logic, are not closed under uniform substitution. This leads
to an interesting separation between expressive power and definability:
it may be that an operator O can be added to a language without a
gain in expressive power, yet O is not definable in that language. For
instance, even though propositional inquisitive logic and propositional
dependence logic have the same expressive power, inquisitive disjunction
and implication are not definable in propositional dependence logic. A
question that has been open for some time in this area is whether the
tensor disjunction used in propositional dependence logic is definable
in inquisitive logic. We settle this question in the negative. In fact, we
show that extending the logical repertoire of inquisitive logic by means
of tensor disjunction leads to an independent set of connectives; that is,
no connective in the resulting logic is definable in terms of the others.

Keywords: Definability · Inquisitive logic · Tensor disjunction ·
Dependence logic · Team semantics · Conjunction

1 Introduction

The notion of definability of a connective in terms of a set of other con-
nectives is one of the basic notions of propositional logic. In classical logic
every truth-functional connective is definable from, say, the set {¬,∧}; for
instance, disjunction can be defined as ϕ ∨ ψ := ¬(¬ϕ ∧ ¬ψ) and implication
as ϕ → ψ := ¬(ϕ ∧ ¬ψ). By contrast, it was shown by McKinsey [20] that in
intuitionistic logic none of the primitive connectives ¬,∧,→,∨ whose semantics
is characterized by the BHK interpretation is definable in terms of the other.
In the setting of classical and intuitionistic logic, questions of definability are
tighly connected to questions about the expressive power of a certain repertoire
of connectives. If a connective ◦ is definable from other connectives, then each
occurrence of this connective can be paraphrased away according to its defini-
tion; therefore, the connective can be omitted from the language without loss of
expressive power. Conversely, if ◦ can be eliminated from the language without
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loss of expressive power, then ◦ can also be defined. To see why, suppose for
concreteness that ◦ is binary. If ◦ can be omitted from the language, then in
particular the formula p ◦ q, where p and q are atomic formulas, is equivalent to
some formula ϕ(p, q) which does not contain ◦. In both classical and intuition-
istic logic, logical equivalences remain valid when we replace atoms by arbitrary
formulas. Therefore, we also have that for all ψ and χ, ψ ◦ χ is equivalent to
ϕ(ψ, χ). This means that the formula ϕ(p, q), when viewed as a scheme where
p and q are placeholders for the two arguments, provides a definition of the
connective ◦.

This connection between definability and expressive power holds because
of an important property of classical and intuitionistic logic, namely, closure
under uniform substitution: logical equivalences remain valid when we replace
atomic formulas by arbitrary formulas. In the recent literature, a number of log-
ics have been studied which lack this property: in these logics, atomic formulas
are not viewed as placeholders for arbitrary sentences, but rather as placehold-
ers for sentences of a particular kind, which may have special logical proper-
ties. Two families of non substitution-closed logics which have been investigated
thoroughly in the last few years are inquisitive logic (see, e.g., [6–8,15,22,23])
and dependence logic (see, e.g., [1,11,12,14,18,19,24,28,30]).1 These approaches
arose independently, and from different enterprises: inquisitive logic is concerned
with extending the scope of logic to questions, while dependence logic is con-
cerned with enriching classical logic with formulas that talk about dependencies
and independencies between variables. However, these two approaches turned
out to be tightly connected from a mathematical perspective [5,28,30]; and the
convergence is not accidental: as discussed in [5,7] the relation of dependency
can be seen as a special case of the relation of entailment, once the latter is
generalized to questions. In the propositional setting, the standard incarnation
of these two approaches is given by the systems of propositional inquisitive logic,
InqB [8], and propositional dependence logic, PD [30]. These systems are inter-
preted in the same semantic setting, namely, in terms of a relation |= which is
assessed relative to sets of propositional valuations. However, these systems differ
in their repertoire of logical operation. The set of primitives in InqB comprises
the constant ⊥ and the binary connectives ∧ (conjunction), → (inquisitive impli-
cation) and (inquisitive disjunction); from these operators negation is defined
as ¬ϕ := ϕ → ⊥. The logical repertoire of PD comprises the connectives ∧
(conjunction, the same operator as in InqB) and ⊗ (tensor disjunction) as well
as two operators that can be applied only to atomic formulas: negation ¬, and
the dependence atom =( ; ) which is an operator of variable arity, taking an
arbitrary sequence of atoms in the first coordinate and an atom in the second.

InqB, PD, and their extensions are not closed under uniform substitution. As
a consequence, in these logics expressive power and definability come apart. It is
quite possible that a connective ◦ can be dropped from the language without loss

1 Other examples of non-substitution closed logics are data logic [25], several dynamic
epistemic logics [2,10,21], as well as logics arising from dynamic semantics [9,16,26]
and from expressivist approaches to modals and conditionals [3,17,27].
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of expressive power, yet this connective is not definable from the remaining con-
nectives. This happens when each particular occurrence of ◦ can be paraphrased
away, but the required paraphrase depends on the specific arguments to which ◦
applies. For instance, it was shown in [4] that every formula of InqB is equivalent
to one in the language , and also to one in the language ; yet,
implication is not definable in terms of ; and conjunction is not definable
in terms of either or {⊥,→,∧}.

More recently, [30] showed that PD has the same expressive power as InqB.
Adding the inquisitive connectives and → to the logical repertoire of PD
would not increase the expressive power of the language. However, one may
still ask whether these operators are definable in PD. As shown in [29], the
answer is negative: both → and are not definable in PD.2 Similarly, adding
the dependence logic operators =( ; ) and ⊗ to the inquisitive repertoire does
not increase the expressive power of InqB. But are these operators definable in
InqB? For the dependence atom, the answer is easy: it is definable in InqB by
means of the inquisitive connectives by the following scheme:

=(p1, . . . , pn; q) := ?p1 ∧ · · · ∧ ?pn → ?q

where ?ϕ is used as an abbreviation for . For tensor disjunction, how-
ever, the question has so far remained open. It was conjectured in [29] and [6]
that ⊗ is not definable from the inquisitive connectives, but a proof has so far
been missing. Our main aim in this paper is to prove this conjecture. In fact, we
will take this opportunity to investigate more thoroughly matters of expressive
power and definability in the context of inquisitive logic extended with the tensor
disjunction connective. We will show that adding ⊗ to InqB leads to an indepen-
dent set of primitives: that is, not only is ⊗ not definable from the inquisitive
connectives, but none of the inquisitive connectives becomes definable from the
other inquisitive connectives in the presence of tensor disjunction.

The paper is structured as follows. In Sect. 2 we specify the notions of defin-
ability and eliminability of a connective and discuss the relations between the
two. In Sect. 3 we define InqB⊗, inquisitive logic with tensor, and mention some
key properties of this logic. In Sect. 4 we look into expressive completeness: we
show that, starting from the repertoire , there is a unique mini-
mal set of connectives which is expressively complete, namely, ; thus,
∧ and ⊗ can be removed from the language without loss of expressive power. In
Sect. 5 we look into definability, showing that no connective in
is definable from the others; the novel results are the undefinability of tensor dis-
junction from the inquisitive connectives, and the undefinability of conjunction
from . Section 6 concludes.

2 For other undefinability results in the setting of dependence logic, see also [12,13].
It is worth noting that, in the dependence logic literature, the standard notion of
definability is called uniform definability ; since there seems to be no special reason
to add the qualification uniform (the notion of definability is intrinsically “uniform”
in the relevant sense) we prefer to stick with the standard terminology.
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2 Definability and Eliminability

Throughout this section, let L be an arbitrary propositional logic with language
L = L[C] generated by a set C of connectives, giving rise to a relation of logical
equivalence ≡L ⊆ L × L. We assume ≡L to be an equivalence relation and a
congruence with respect to the connectives: that is, we suppose that for every
n-ary connective ◦, if ϕi ≡L ψi for i ≤ n then ◦(ϕ1, . . . , ϕn) ≡L ◦(ψ1, . . . , ψn).

Definition 1 (Context). A propositional context ϕ(p1, . . . , pn) consists of a
formula ϕ ∈ L together with a sequence of designated atomic formulas p1, . . . , pn.
Note that ϕ(p1, . . . , pn) is allowed to contain other atoms besides p1, . . . , pn. If
ϕ(p1, . . . , pn) is a context and χ1, . . . , χn ∈ L, we write ϕ(χ1, . . . , χn) for the
result of replacing p1, . . . , pn by χ1, . . . , χn throughout ϕ.

Definition 2 (Definability). We say that an n-ary connective ◦ ∈ C is defined
by a context ξ(p1, . . . , pn) in case for all χ1, . . . , χn ∈ L[C]:

◦(χ1, . . . , χn) ≡L ξ(χ1, . . . , χn)

We say that ◦ is definable from a set C ′ ⊆ C of connectives in case there is a
context ξ(p1, . . . , pn), with ξ ∈ L[C ′] which defines ◦. If we just say that ◦ is
definable then we mean that it is definable from C − {◦}.
In terms of definability we define the notion of an independent set of connectives.

Definition 3 (Independence). We say that a set C ′ of connectives is inde-
pendent if no connective ◦ ∈ C ′ is definable from C ′ − {◦}.
In addition to the notion of definability, we also introduce a notion of eliminabil-
ity of a connective, which means that the connective can be omitted from the
language without a loss in expressive power.

Definition 4 (Eliminability). Let C ′ ⊆ C be a set of connectives. We say
that the set of connectives C ′ is eliminable if for each formula ϕ ∈ L[C] there
is a formula ϕ∗ ∈ L[C − C ′] such that ϕ ≡L ϕ∗. We say that a connective ◦ is
eliminable if {◦} is eliminable.

Notice that definability implies eliminability.

Proposition 1. If a connective ◦ is definable, then it is eliminable.

Proof. Suppose ◦ is defined by ξ(p1, . . . , pn) ∈ L[C −{◦}]. We show by induction
that every ϕ ∈ L[C] is equivalent to some ϕ∗ ∈ L[C − {◦}]. The only non-
trivial case is the one for ϕ = ◦(ψ1, . . . , ψn). By induction hypothesis there are
ψ∗
1 , . . . , ψ

∗
n ∈ L[C −{◦}] s.t. ψi ≡L ψ∗

i for i ≤ n. Then ϕ ≡L ◦(ψ∗
1 , . . . , ψ

∗
n). Since

◦ is defined by ξ we have ◦(ψ∗
1 , . . . , ψ

∗
n) ≡L ξ(ψ∗

1 , . . . , ψ
∗
n). Since ξ, ψ∗

1 , . . . , ψ
∗
n ∈

L[C − {◦}], we have that ξ(ψ∗
1 , . . . , ψ

∗
n) ∈ L[C − {◦}]. So ϕ is L-equivalent to

some formula in L[C − {◦}], which completes the inductive step. �
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Another important notion in this area is the notion of completeness of a set C ′

of connectives, which holds when every formula in the language is L-equivalent
to one built up using only connectives from C ′.

Definition 5 (Completeness). We say that a set of connectives C ′ ⊆ C is
complete for L if for all ϕ ∈ L[C] there exists some ϕ∗ ∈ L[C ′] s.t. ϕ ≡L ϕ∗.
We say that a set C ′ is a minimal complete set of connectives for L if C ′ is
complete for L, and no proper subset C ′′ ⊂ C ′ is complete for L.

The notions of definability and eliminability often go hand in hand. This is
because the logics L one typically considers are closed under uniform substi-
tution. Closure under uniform substitution is usually formulated in terms of
preservation of validity under substitutions. For our purposes, a characteriza-
tion in terms of preservation of equivalence is more suitable. The two coincide if
L validates a deduction theorem, and more generally if ϕ ≡L ψ amounts to the
validity of a formula χ(ϕ,ψ) in L (if the deduction theorem holds, χ(ϕ,ψ) will
be ϕ ↔ ψ).

Definition 6 (Closure under uniform substitution). L is closed under
uniform substitution if for any two contexts ϕ(p1, . . . , pn) and ψ(p1, . . . , pn), if
ϕ ≡L ψ then for all χ1, . . . , χn ∈ L we have ϕ(χ1, . . . , χn) ≡L ψ(χ1, . . . , χn).

In a logic which is closed under uniform substitution, the notions of definability
and eliminability for a connective coincide.

Proposition 2. If L is closed under uniform substitution and ◦ is eliminable,
then ◦ is definable.

Proof. Let p1, . . . , pn be n distinct atomic formulas. Suppose L is closed under
uniform substitution and ◦ is eliminable. Then the formula ◦(p1, . . . , pn) is L-
equivalent to some ξ ∈ L[C −{◦}]. Consider the context ξ(p1, . . . , pn): by closure
under uniform substitution, for all χ1, . . . , χn ∈ L we have ◦(χ1, . . . , χn) ≡L

ξ(χ1, . . . , χn). Thus, ◦ is defined by ξ(p1, . . . , pn). �

As we discussed in the introduction, systems of inquisitive and dependence logic
are typically not closed under uniform substitution. As a consequence, in these
logics we find an interesting gap between the eliminability of a connective and
its definability. We will examine this gap carefully for one particular logic, the
system InqB⊗ introduced in the next section.

3 Inquisitive Logic with Tensor Disjunction

In this section we introduce the system InqB⊗ that we will be concerned with.
This system extends the standard system of propositional inquisitive logic, InqB
[4,6,8] with the tensor disjunction used in dependence logic [28,30]. We will
present this logic from a purely mathematical point of view. For an introduction
to the motivations of inquisitive logic and to the conceptual interpretation of
formulas in this system, see [6,7].
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Formally, the language L of InqB⊗ is generated by the set of connectives
, where all connectives are binary except for ⊥, which has arity 0:

In addition to the primitive connectives, some defined connectives are used:

In classical propositional logic, the semantics of a formula is given in terms of
truth-conditions relative to a valuation function w : P → {0, 1}, which repre-
sents a complete state of affairs. By contrast, in inquisitive logic, formulas are
interpreted relative to a set of such valuation functions. Informally, such a set s
is taken to represent an information state, where the idea is that s embodies the
information that the actual state of affairs corresponds to one of the valuations
w ∈ s; thus, the smaller the set s, the stronger the information it encodes.

Definition 7 (Information states)
An information state is a set s of valuations for P, i.e., a subset s ⊆ {0, 1}P .

The semantics is given in terms of a relation of support relative to information
states, which is defined inductively as follows.

Definition 8 (Support)

– s |= p ⇐⇒ w(p) = 1 for all w ∈ s
– s |= ⊥ ⇐⇒ s = ∅
– s |= ψ ∧ χ ⇐⇒ s |= ψ and s |= χ
– or s |= χ
– s |= ψ → χ ⇐⇒ ∀t ⊆ s : t |= ψ implies t |= χ
– s |= ψ ⊗ χ ⇐⇒ ∃t1, t2 s.t. t1 |= ψ, t2 |= χ and s = t1 ∪ t2.

It is immediate to see that the defined operators have the following semantics:

– s |= ¬ψ ⇐⇒ ∀t ⊆ s : t |= ψ implies t = ∅
– s |= ?ψ ⇐⇒ s |= ψ or s |= ¬ψ
– s |= � for all information states s.

The support relation has the following properties.

– Persistency: if s |= ϕ and t ⊆ s, then t |= ϕ
– Empty state property: ∅ |= ϕ for all ϕ.

From the notion of support at a state, a notion of truth relative to a valuation
w is recovered by defining truth at w as support with respect to {w}.

Definition 9 (Truth). We say that ϕ is true at w, notation w |= ϕ, if and
only if {w} |= ϕ.
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It is easy to see that the truth-conditions that this delivers are simply the ones
familiar from classical propositional logic, when both and ⊗ are identified
with classical disjunction ∨. Notice that, due to persistency, if a formula ϕ is
supported at s, then it is true at all valuations w ∈ s. The converse is not true
in general, but it may hold for particular formulas. The formulas for which this
is the case are called truth-conditional, since the semantics of these formulas is
completely determined at the level of truth-conditions.3

Definition 10 (Truth-conditionality). We say that ϕ ∈ L is truth-
conditional if for all information states s we have: s |= ϕ ⇐⇒ ∀w ∈ s : w |= ϕ.

There is an important fragment of our language which consists entirely of truth-
conditional formulas. We refer to the formulas in this fragment as declaratives.

Definition 11 (Declaratives). A formula ϕ ∈ L is a declarative if it is
-free. In other words, the set of declaratives is the set L! := L[⊥,∧,→,⊗].

Proposition 3 (cf. [5], Prop. 3). Every α ∈ L! is truth-conditional.

Formulas containing are not in general truth-conditional. For instance, con-
sider ?p (which abbreviates ). Since truth-conditions coincide with truth-
conditions in classical propositional logic, ?p will be true with respect to all
valuations w whatsoever. However, the support-conditions for this formula are:

s |= ?p ⇐⇒ s |= p or s |= ¬p ⇐⇒ (∀w ∈ s : w(p) = 1) or (∀w ∈ s : w(p) = 0)

where the last equivalence uses the fact that p and ¬p are declaratives, and thus
truth-conditional. Thus, ?p is supported at a state s only if all the valuations in s
agree about the truth-value of p. Thus, if s is a state containing some valuations
that make p true and some that make p false, then s �|= ?p, even though ?p is
true at all w ∈ s. This shows that ?p is not truth-conditional.

Logical entailment and equivalence are defined naturally in terms of support.

Definition 12 (Logical entailment and equivalence). We say that:

– ϕ entails ψ, ϕ |= ψ, if for all states s: s |= ϕ implies s |= ψ;
– ϕ and ψ are equivalent, ϕ ≡ ψ, if for all states s: s |= ϕ iff s |= ψ.

In addition to these purely logical notions, it will also be useful to have notions
of entailment and equivalence relativized to an information state s. The idea is
that, when looking at entailment and equivalence relative to s, only valuations
in s are taken into account (for discussion of the significance of logical and
contextual entailment in inquisitive logic, see [6]§1 and [7]).

Definition 13 (Relativized entailment and equivalence). Let ϕ,ψ ∈ L
and let s be an information state. We say that:

– ϕ entails ψ in s, ϕ |=s ψ, if for all states t ⊆ s: t |= ϕ implies t |= ψ;
– ϕ and ψ are equivalent in s, ϕ ≡s ψ, if for all states t ⊆ s: t |= ϕ iff t |= ψ.
3 Truth-conditional formulas are called flat formulas in the dependence logic literature.
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Notice that logical entailment implies entailment relative to any information
state; similarly, logical equivalence implies equivalence relative to any state.

For formulas in the declarative fragment of the language, logical entailment
and equivalence coincide with entailment and equivalence in classical proposi-
tional logic, when the operator ⊗ is identified with classical disjunction. We state
the case of equivalence as a proposition, since we will make use of it below.

Proposition 4 (cf. [5], Prop. 6)
For all α, β ∈ L!: α ≡ β ⇐⇒ α and β are equivalent in classical propositional
logic, when ⊗ is replaced by the classical disjunction symbol ∨.

An important feature of propositional inquisitive logic, which extends to InqB⊗

[5], is that every formula is equivalent to an inquisitive disjunction of declaratives.

Theorem 1 (cf. [5], Prop. 11). For every ϕ ∈ L there are declarative formulas
α1, . . . , αn ∈ L!, called the resolutions of ϕ, such that

Having reviewed the main definitions and facts about InqB⊗, we can now delve
into the issue of eliminability and definability of connectives in this system.

4 Eliminability

In this section we discuss which connectives from our language L are eliminable,
and show that there is a unique minimal complete set of connectives for InqB⊗.
These results are straightforward adaptations to our language of results from [4],
although we will lay out the consequences of these results more systematically.
First, let us show that the connectives ⊥, , and → are not eliminable: omitting
any of these connectives from our language results in a loss of expressive power.

Proposition 5. ⊥ is not eliminable.

Proof. We have to show that no ⊥-free formula of L is equivalent to ⊥. Let wt

be the valuation function mapping all atomic formulas to 1. A straightforward
induction shows that every ⊥-free formula is supported at the state {wt}. Since
{wt} �|= ⊥, it follows that no ⊥-free formula is equivalent to ⊥. �

Proposition 6. is not eliminable.

Proof. We must show that some formula of L is not equivalent to any -free
formula. Consider the formula . Proposition 3 ensures that every

-free formula is truth-conditional. Since we saw above that ?p is not truth-
conditional, it follows that it is not equivalent to any -free formula. �

Proposition 7. → is not eliminable.

Proof. We show that � (defined as ¬⊥, i.e., ⊥ → ⊥) is not equivalent to any
→-free formula. Let wf be the valuation mapping all atomic formulas to 0. A
straightforward induction shows that no →-free formula is supported at {wf}.
Since � is supported at {wf}, no →-free formula is equivalent to �. �
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This shows that, starting from the repertoire of connectives ,
none of ⊥, , and → can be dropped without a loss in expressive power. We are
now going to see that these three connectives together are sufficient to express
anything that is expressible in InqB⊗.

Proposition 8. is a complete set of connectives for InqB⊗.

Proof. We need to show that for all ϕ ∈ L there is a such
that ϕ ≡ ϕ∗. First, it follows from Proposition 4 and the fact that {⊥,→}
is complete for classical propositional logic that any any declarative formula
α ∈ L[⊥,∧,→,⊗] is equivalent to a formula α∗ ∈ L[⊥,→].

Now take any ϕ ∈ L. By Theorem 1 we have for
some formulas α1, . . . , αn ∈ L[⊥,∧,→,⊗]. Now let where
α∗
1, . . . , α

∗
n are defined as above. Since αi ≡ α∗

i for i ≤ n, we have ϕ ≡ ϕ∗. And
since α∗

i ∈ L[⊥,→] for i ≤ n, we have �

Corollary 1. The set of connectives {∧,⊗} is eliminable in InqB⊗. In particu-
lar, both ∧ and ⊗ are eliminable.

Proposition 8 together with the non-eliminability of ⊥, →, and implies that
InqB⊗ admits only one minimal complete set of connectives, namely,

Theorem 2. is the only minimal complete set for InqB⊗.

Proof. It follows from Propositions 5, 6, and 7 that any complete set of connec-
tives C for InqB⊗ must include . Since is itself a complete
set, it is the only minimal one. �

We have thus achieved a complete characterization of:

– which connectives are eliminable in InqB⊗ (∧ and ⊗, but not
– which sets of connectives are complete (those which include
– which sets of connectives are minimal complete (only ).

5 Independence of the Connectives

In this section, we turn to the issue of definability. The main contribution of
the paper is to answer the following question, which is open in the literature:
which connectives of InqB⊗ are definable in terms of the remaining connectives?
We will see that the answer is none: thus, although is not a
minimal set of connectives for InqB⊗, it is an independent set of connectives.

For a start, notice that the question of definability only arises for ∧ and ⊗:
as we saw, the connectives ⊥, and → are not even eliminable in InqB⊗, which
a fortiori implies that they are not definable. We will examine first the case of
tensor disjunction, and then the case of conjunction.
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5.1 Undefinability of ⊗
Fix three propositional letters q1, q2, q3 and consider:

–
– s := {w1, w2, w3} where wi(qi) = 1 and wi(r) = 0 for all r �= qi

Lemma 1. For any context ϕ(p), with not containing
q1, q2, q3, one of the following holds:

ϕ(ψ) ≡s � ϕ(ψ) ≡s ⊥ ϕ(ψ) ≡s ψ

Proof. We proceed by induction on ϕ. To ease notation, given a formula χ(p),
let us write χ� for χ(ψ).

– ϕ = p or ϕ = ⊥. Then ϕ� is either ψ or ⊥, and we are done.
– ϕ = r for an atomic formula r different from p, q1, q2, q3. Then ϕ� = r. Since

r is false at all worlds in s we have r ≡s ⊥.
– ϕ = η ∧ θ. Then ϕ� = η� ∧ θ�. By induction hypothesis, each of η� and θ�

is equivalent modulo s to either one of �,⊥, ψ. Since the conjunction of any
two formulas from {�,⊥, ψ} is logically equivalent to a formula from this set,
we can conclude that ϕ� is equivalent modulo s either to �,⊥ or ψ.

– . Then . This case is similar to the previous one, since
the inquisitive disjunction of any two formulas from {�,⊥, ψ} is logically
equivalent to a formula from this set.

– ϕ = η → θ. Then ϕ� = η� → θ�. We consider three cases:
• η� ≡s �. In this case, by persistency we have ϕ� ≡s � → θ� ≡ θ�. By

induction hypothesis, θ� is equivalent in s to �, ⊥, or ψ, so we are done.
• η� ≡s ⊥. In this case, by the empty state property ϕ� ≡s ⊥ → θ� ≡ �.
• η� ≡s ψ. In this case, we need to distinguish three sub-cases:

* θ� ≡s �. In this case, ϕ� ≡s ψ → � ≡ �.
* θ� ≡s ψ. In this case, ϕ� ≡s ψ → ψ ≡ �.
* θ� ≡s ⊥. In this case ϕ� ≡s ψ → ⊥. We claim that ψ → ⊥ ≡s ⊥.
We need to show that the only t ⊆ s that supports ψ → ⊥ is ∅. Notice
that, by the definitions of ψ and negation,
Suppose for a contradiction that ∅ �= t ⊆ s and
Take a valuation wi ∈ t. By persistency, . But
this is impossible, since by construction {wi} |= qi. �

Now just observe the support conditions for the formulas ψ and ψ⊗ψ relativized
to the given state s. Letting #t be the cardinality of t, for all t ⊆ s we have:

– t |= ψ ⇐⇒ #t ≤ 1
– t |= ψ ⊗ ψ ⇐⇒ #t ≤ 2

This means that we have:

ψ ⊗ ψ �≡s � ψ ⊗ ψ �≡s ⊥ ψ ⊗ ψ �≡s ψ

From this observation and Lemma 1, we get the following proposition.
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Proposition 9. For all which do not contain q1, q2, q3:

It is now easy to get the desired undefinability result.

Theorem 3. ⊗ is not definable from .

Proof. Consider a context ϕ(p1, p2) with (possibly containing
other atoms besides p1, p2). Let q1, q2, q3 be three atoms which do not occur in
ϕ and let . By Proposition 9 we have:

ψ ⊗ ψ �≡ ϕ(ψ,ψ)

which implies that ϕ(p1, p2) does not define ⊗. �

5.2 Undefinability of ∧
We will follow a strategy similar to that we used for ⊗. Fix two atomic formulas
q1, q2, and let s = {w12, w1, w2} where w12 makes both q1 and q2 true, w1 makes
only q1 true, and w2 makes only q2 true. Moreover, suppose that all atoms
different from q1, q2 are false at all three worlds. We will show the following.

Lemma 2. Take a context ϕ(p1, p2), with not containing
q1, q2. Then one of the following claims holds:

1. ϕ(?q1, ?q2) ≡s ⊥
2. ϕ(?q1, ?q2) is supported by all subsets of s of cardinality 1, and by at least one

subset of s of cardinality 2.

Proof. We proceed by induction on ϕ. To ease notation, given a context χ(p1, p2),
let us write χ� for χ(?q1, ?q2).

– ϕ = p1. Then ϕ� = ?q1 is supported by all singleton states, and also by the
state {w12, w1} ⊆ s, which has cardinality 2. So claim 2 holds.

– ϕ = p2. Analogous.
– ϕ = ⊥. Then ϕ� = ⊥, so claim 1 holds.
– ϕ = r for r �= p1, p2, q1, q2. Then ϕ� = r. Since r is false in all worlds in s we

have r ≡s ⊥, so claim 1 holds.
– ϕ = η → θ. We distinguish three cases:

• η� ≡s ⊥ ≡s θ�. Then ϕ� ≡s ⊥ → ⊥ = �, therefore claim 2 holds.
• η� �≡s ⊥ ≡s θ�. Then ϕ� ≡s η� → ⊥. We will show that ϕ� ≡s ⊥. Take

any non-empty t ⊆ s, and let {w} ⊆ t. By the induction hypothesis on
η we have {w} |= η�, but {w} �|= ⊥. Therefore, t �|= η� → ⊥. Thus, ϕ� is
not supported at any non-empty subset of s, which means that ϕ� ≡s ⊥.

• θ� �≡s ⊥. Then by induction hypothesis θ� is supported by all singleton
substates of s, and also by a substate of s of cardinality 2. Since any state
that supports θ� also supports ϕ� = η� → θ�, by persistency, claim 2
holds for ϕ�.
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– or ϕ = η ⊗ θ. If η� ≡s θ� ≡s ⊥ then ϕ� ≡s ⊥ and case 1 applies.
Otherwise, at least one of η� and θ� is not s-equivalent to ⊥. Suppose it is
η�. Then by induction hypothesis η� is supported by all singleton substates
of s, and by a substate of s of cardinality 2. Since any state that supports η�

also supports as well as η� ⊗ θ�, claim 2 applies to ϕ�. �
Now consider the formula ?q1 ∧ ?q2. For all t ⊆ s we have:

– t |= ?q1 ∧ ?q2 ⇐⇒ #t ≤ 1

Thus, ?q1∧?q2 �≡s ⊥, and moreover ?q1∧?q2 is not supported by any substate of
s of cardinality 2. It follows from Lemma 2 that ?q1 ∧ ?q2 �≡s ϕ(?q1, ?q2) for any
context ϕ(p1, p2) which does not contain the atoms q1, q2. Since logical equiva-
lence implies equivalence in every state, we obtain the following proposition.

Proposition 10. For all which do not contain q1, q2:

?q1 ∧ ?q2 �≡ ϕ(?q1, ?q2)

This yields as a corollary the undefinability of ∧.

Theorem 4. ∧ is not definable from

Proof. Take a context ϕ(p1, p2), where (possibly containing
other atoms besides p1, p2). Let q1, q2 be two atoms that do not occur in ϕ. By
Proposition 10 we have ?q1 ∧?q2 �≡ ϕ(?q1, ?q2), which implies that ϕ(p1, p2) does
not define ∧. �
This completes our study of definability in InqB⊗: no connective in InqB⊗ is
definable in terms of the others; although the set of connectives
is not a minimal complete set for InqB⊗, it is an independent set.

6 Conclusion

We have studied connectives in inquisitive logic enriched with tensor disjunction.
We have shown that, starting from the set of primitives , the only
minimal complete subset is {⊥,→,∨}. Thus, ∧ and ⊗ do not add to the expres-
sive power of the language. However, the set is independent,
i.e., no connective is definable in terms of the others. The undefinability results
for ∧ and ⊗ use nontrivial combinatorial arguments. The result for ⊗ answers a
question raised in [6] and [29]. It is worth pointing out that our proof establishes
something slightly stronger than undefinability. Undefinability amounts to:

For every putative definition ϕ(p, q) of connective ◦, there are formulas
ψϕ, χϕ such that ϕ(ψϕ, χϕ) �≡ ψϕ ◦ χϕ.

However, our proofs for ⊗ and ∧ establish results of the following form:

There are ψ, χ such that, for every putative definition ϕ(p, q) of ◦,
ϕ(ψ′, χ′) �≡ ψ′ ◦ χ′, where ψ′, χ′ differ from ψ, χ by a renaming of atoms.

In future work, it would be interesting to extend our study of expressiveness and
definability to a setting where the operators ¬ and ? are taken as primitives.
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Abstract. In this paper we study the logic IVC obtained by adding
Lewis-style counterfactual conditionals to intuitionistic propositional
logic. Building on recent work by Weiss [21], we first show how to intro-
duce a Lewisian counterfactual operator into intuitionistic Kripke seman-
tics. We then establish a complete axiomatization of the resulting logic.
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1 Introduction

Lewis [14] proposed an analysis of counterfactuals within modal logic which
remains the most influential logical approach to counterfactuals to date. In this
semantics, a counterfactual ϕ > ψ is seen as a kind of box modality, which asserts
that the consequent holds throughout a certain set f(w,ϕ) of possible worlds,
depending on the world of evaluation and, crucially, on the antecedent. Lewis’
intuition is that the worlds in f(w,ϕ) are those worlds in which ϕ is true, and
which are otherwise minimally different from w.1 This intuitive characterization
yields certain constraints on the behavior of the selection function f , which give
rise to a specific logic of counterfactuals, called VC. This logic, though not with-
out its issues,2 does a remarkable job at accounting for the ways in which the
logical behavior of counterfactuals differs from that of the implication connective

1 This description of Lewis’s view presupposes the limit assumption, i.e., the assump-
tion that for any w and any entertainable ϕ there be worlds where ϕ is true and
which differ minimally from w in the relevant sense. In our study we will take this
assumption for granted, for two reasons. First, this assumption allows for a nice
characterization of the semantics in terms of selection functions, and does not affect
the resulting propositional logic. Second, there are in fact good conceptual reasons
to make the limit assumption: as [12] showed, this assumption is needed to guarantee
that an entertainable antecedent has a consistent set of counterfactual consequences.

2 For criticism of different aspects of this logic, see, e.g., [2,6,8,9,16].
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in classical (and intuitionistic) logic: for counterfactuals, VC invalidates strength-
ening of the antecedent, transitivity, and contraposition. And for a good reason,
since both Lewis [14] and Stalnaker [19] give examples where these principles
seem to be fallacious.

In the decades following Lewis’ work, VC and its relatives have been thor-
oughly investigated from the perspective of modal logic (see [15] for an overview),
and connected to a number of other topics in logic such as probabilistic reason-
ing [1], belief revision [3,5,11] and default reasoning [13,20]. This body of work
focuses on adding counterfactual-like operators against the background of clas-
sical propositional logic. However, there seems to be no special reason why the
study of such operators should be restricted to a classical setting. The central
ideas of Lewis’s account are fully modular with respect to the specific semantics
used to interpret the constituents of a counterfactual, as long as an intensional
setting is available. Thus, it seems interesting to look at how Lewisian counterfac-
tuals could be added to various non-classical logics. This is particularly natural
in the case of intuitionistic propositional logic, since the most commonly used
semantics for this logic, intuitionistic Kripke semantics, is already intensional in
nature, and therefore provides an ideal environment to implement Lewis’ idea.

Somewhat surprisingly, a study of Lewisian counterfactuals in intuitionistic
Kripke semantics is missing in the literature. Recently, Weiss [21] took a first
step in this direction, showing how to extend intuitionistic Kripke semantics
with the structure needed to interpret a non-monotonic conditional operator
>, and studying the intuitionistic counterparts of some very weak conditional
logics, including the minimal logic CK of Chellas [7]. These weak logics are inter-
esting, as they bring out most clearly the connection between counterfactuals
and modal operators. However, they are generally regarded as too weak to cap-
ture many interesting logical principles about counterfactuals. For instance, they
never allow strengthening of the antecedent, which seems too restrictive. In this
paper, we follow up on Weiss’ work by studying the intuitionistic counterpart of
Lewis’s logic VC. In order to achieve this goal, we will propose a semantics that
departs slightly from the one given by Weiss. The modifications do not affect the
generality of the semantics: it can be shown that a Weiss model can be turned
into one of our models without affecting the satisfaction of formulas, and vice
versa. However, the modified notion of models will facilitate a simple and elegant
correspondence between semantic conditions and syntactic axioms, which seems
hard to obtain using Weiss’ original semantics.

Before delving into the technical material, let us mention two reasons why
adding counterfactuals in an intuitionistic setting is an interesting enterprise.
First, intuitionistic logic is already equipped with its own conditional operator
→. Unlike the material conditional of classical logic, which is truth-functional,
the conditional of intuitionistic logic is an intensional operator, and its semantics
is very similar to the one we will use for the operator >: both check whether
the consequent is satisfied everywhere within a certain set of possible worlds
determined by the antecedent. The difference is which set of worlds is picked
out by each of them. Crucially, → is constrained to quantifying over states of
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affairs which are possible from the perspective of the evaluation world, while
> is allowed to quantify over counterfactual states of affairs as well. A natural
interpretation is to view p → q as standing for an indicative conditional like
(1-a), and p > q as standing for a counterfactual conditional like (1-b).

(1) a. If the butler didn’t do it, the gardener did.
b. If the butler had not done it, the gardener would have.

Second, studying the principles of conditional logic from the perspective of
intuitionistic logic allows us to ask which of these principles stem only from
assumptions about the semantics of counterfactuals, and which stem partly from
the classicality of the logic. As an example, consider a principle central to Lewis’
logic, the rational monotonicity principle. Informally, this principle says that, if
in making a counterfactual assumption ϕ one leaves open the possibility that ψ,
then one is justified in strengthening the antecedent from ϕ to ϕ∧ψ. Classically,
this principle could be equivalently formulated in either of the following ways:

– ((ϕ > χ) ∧ ¬(ϕ > ¬ψ)) → (ϕ ∧ ψ > χ)
– (ϕ > χ) → ((ϕ > ¬ψ) ∨ (ϕ ∧ ψ > χ))

It turns out that, in the intuitionistic setting, the latter, and not the former, is
the appropriate way to capture the rational monotonicity constraint. Thus, the
former can be seen as a consequence of rational monotonicity plus classical logic.

The paper is structured as follows: in Sect. 2 we describe how to extend
intuitionistic Kripke semantics with the structure needed to interpret a coun-
terfactual conditional operator; in Sect. 3 we give intuitionistic versions of the
assumptions of minimal change semantics, which lead to IVC, an intuitionis-
tic counterpart of Lewis’ logic VC; in Sect. 4 we describe an axiomatization of
this logic and show that it is sound; in Sect. 5 we describe how to construct a
canonical model for IVC, and use this construction to prove completeness; Sect. 6
summarizes our findings and outlines some directions for further work.

2 Counterfactuals in Intuitionistic Kripke Semantics

In this section we describe how to extend intuitionistic Kripke semantics with
the structure needed to interpret a counterfactual conditional operator >. The
idea is to enrich a Kripke structure with a selection function, which picks for
each world and each antecedent a set of “relevant antecedent worlds”.

Definition 1 (Intuitionistic selection models). An intuitionistic selection
model is a tuple M = 〈W,≤,A, f, V 〉 where:

– W is a set, whose elements are called worlds.
– ≤ is a partial order on W , the refinement ordering; the set of ≤-successors

of a world w is denoted w↑; in symbols: w↑ := {v ∈ W | w ≤ v}.
– Up≤(W ) denotes the set of up-sets of W , i.e.:

Up≤(W ) = {X ⊆ W | ∀w, v : w ∈ X and w ≤ v implies v ∈ X}
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– A ⊆ Up≤(W ) is a set of up-sets called propositions, which contains ∅ and is
closed under union, intersection, and the following operations:

X,Y �→ {w ∈ W | X ∩ w↑ ⊆ Y } X,Y �→ {w ∈ W | f(w,X) ⊆ Y }
– f : W × A → ℘(W ), the selection function, is a map assigning to each world

w and proposition X a subset f(w,X) ⊆ X (the relevant X-worlds at w).
– V : P → A is a valuation function, assigning to each atom a proposition.

The refinement ordering and the selection function are required to be linked by
the following conditions:

– Upwards-closure: f(w,X) ∈ Up≤(W ) for any w ∈ W and X ∈ A.
– Monotonicity of f in the first coordinate: if w ≤ v then f(w,X) ⊇ f(v,X).

One may think of worlds as partial stages in a process of inquiry. At each world,
a sentence ϕ may or may not have been established. The relation w ≤ v means
that v is a refinement of w: if this holds, then v establishes everything that
w establishes, and possibly more. The closure conditions on A are needed to
ensure that the object |ϕ| expressed by a sentence ϕ in a model is always a
proposition, and thus that the hypothetical context f(w, |ϕ|) needed to interpret
counterfactuals with antecedent ϕ is defined. The intended interpretation of f is
that the elements v ∈ f(w,X) are those worlds which, from the standpoint of w,
may have obtained if X had been the case. We refer to f(w,X) as the hypothetical
context generated at w by the making the counterfactual assumption that X.3

The condition that f(w,X) be upwards-closed can be motivated as follows:
if v ∈ f(w,X), then at w we think that, had X been the case, v may have
obtained. Since v may evolve into any of its successors, any such point may have
obtained if X had been the case. Thus, each successor of v should be in f(w,X).

Finally, the monotonicity condition says that, if w ≤ v, then the hypothetical
context f(v,X) is at least as strong as the context f(w,X). This is a natural
constraint: w ≤ v means that all the information available at w is also available at
v; this includes counterfactual information about how things would be if X were
the case; so, any counterfactual possibility u which can be ruled out at w (u �∈
f(w,X)) can also be ruled out at v (u �∈ f(v,X)). Thus, f(v,X) ⊆ f(w,X).4

3 In the work of Lewis, the selection function takes formulas, rather than proposi-
tions, as its second argument. It would in principle be possible to do the same here.
However, the presentation would become more complicated: some conditions in the
definition of a model (in particular, the requirement that f should yield the same
result when applied to intensionally equivalent formulas) appeal to the semantics of
sentences, which in turn is defined with reference to the notion of a model. Letting
selection functions take propositions allows us to avoid such seeming circularities.

4 Our semantics departs from the one recently proposed by Weiss [21] in two ways: first,
Weiss does not require f(w, X) to be upwards-closed; second, he requires f(w, X) to
be defined for all subsets X ⊆ W , not just for a designated set of such subsets. Both
differences are important for our completeness result. At the same time, however, a
Weiss model can be translated to one of our models, and vice versa, without affecting
the satisfaction of formulas. A detailed comparison must be left for another occasion.
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The addition of the selection function component to intuitionistic Kripke
models allows us to interpret a propositional language extended with a counter-
factual conditional connective >. More precisely, the language L> that we will
work with is given by the following BNF definition:

ϕ ::= p | ⊥ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ → ϕ | ϕ > ϕ

As usual in intuitionistic logic, negation and the biconditional are defined as:

¬ϕ := ϕ → ⊥ ϕ ↔ ψ := (ϕ → ψ) ∧ (ψ → ϕ)

Satisfaction relative to a model M and a world w is defined as follows.

Definition 2 (Semantics)

1. M,w |= p ⇐⇒ w ∈ V (p)
2. M,w �|= ⊥
3. M,w |= ϕ ∧ ψ ⇐⇒ M,w |= ϕ and M,w |= ψ
4. M,w |= ϕ ∨ ψ ⇐⇒ M,w |= ϕ or M,w |= ψ
5. M,w |= ϕ → ψ ⇐⇒ ∀v ≥ w : M,v |= ϕ implies M,v |= ψ
6. M,w |= ϕ > ψ ⇐⇒ ∀v ∈ f(w, |ϕ|) : M,v |= ψ

where the set |ϕ|, called the proposition expressed by of ϕ in M , is defined as:

– |ϕ| := {w ∈ W | M,w |= ϕ}
To lighten notation, in the following we will write f(w,ϕ) instead of f(w, |ϕ|).
Clauses 1–5 are just the standard clauses of intuitionistic Kripke semantics.
Clause 6 says that ϕ > ψ is satisfied at w if ψ is satisfied at all the relevant
ϕ-worlds at w; that is, ϕ > ψ is satisfied at w iff ψ holds throughout the hypo-
thetical context generated from making the counterfactual assumption ϕ at w.

It is interesting to note that the semantics for the two conditionals can be
made more parallel than it looks at first. To see this, notice that we can think
of those ≤-successors of w which satisfy ϕ as those states which may become
actual if ϕ is established. We can then think that supposing ϕ as an indicative
(as opposed to counterfactual) assumption amounts to imagining that we are
in one of these worlds. More technically, let us define a selection function g as
g(w,X) := {v ∈ X | w ≤ v}; then the semantics of the intuitionistic conditional
→ can also be presented in the selection function format:

– M,w |= ϕ → ψ ⇐⇒ ∀v ∈ g≤(w, |ϕ|) : M,v |= ψ

Thus, the difference between the two conditionals lies not in the mathematical
workings of their semantics, but rather in the different selection functions that
they invoke, corresponding to the difference between supposing ϕ an indicative
assumption and as a counterfactual assumption.

As usual in intuitionistic Kripke semantics, we have a persistency property:
whatever is established at a world remains established at any refinement of it.
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Proposition 1 (Persistency). For every ICM M , if w ≤ v then M,w |= ϕ
implies M,v |= ϕ.

Proof. By induction on ϕ. We only give the inductive step for ϕ = ψ > χ.
Suppose w ≤ v and M,w |= ψ > ψ. This means that f(w,ψ) ⊆ |χ|. By the
monotonicity condition we have f(v, ψ) ⊆ f(w,ψ). Therefore also f(v, ψ) ⊆ |χ|,
which means that M,v |= ψ > χ. �

It is worth pointing out that classical selection function semantics (e.g., [6,17])
can be retrieved as a special case: classical selection models can be identified with
intuitionistic selection models where the refinement relation ≤ is the identity;
restricted to these models, our semantic clauses boil down to the classical ones.

3 Minimal Change Conditions

Lewis’s minimal change semantics can be seen as obtained from selection function
semantics by imposing some constraints on how the selection function works (see
[14] §2.7, [6] §1.2). In this section we propose analogues of these constraints in
the intuitionistic setting, and discuss some repercussions of these constraints for
the logical behavior of conditionals.

Definition 3 (Intuitionistic minimal change models). An intuitionistic
selection model M is called an intuitionistic minimal change model if it satisfies
the following conditions:

1. if w ∈ X then w ∈ f(w,X)
2. if w ∈ X then f(w,X) ⊆ w↑

3. if f(w,X) = ∅ and Y ⊆ X then f(w, Y ) = ∅
4. if Y ⊆ X and f(w,X) ∩ Y �= ∅ then f(w, Y ) ⊆ f(w,X)
5. if Y ⊆ X then f(w,X) ∩ Y ⊆ f(w, Y )

Condition 1 is known as the weak centering condition: it says that if X is true
at w, then w is one of the worlds which might be the case if X were the case.
That is, if the antecedent is true, then the consequent must be true in order
for the counterfactual to be true. In our intuitionistic setting, this constraint
implies another interesting property: at every world w, any refinement of w
which satisfies ϕ is relevant to the truth of a conditional ϕ > ψ. To state this
precisely, recall that we used the notation g(w,X) for the set of refinements of
w which are in X, that is, g(w,X) = {v ∈ X | v ≥ w}. We have the following.

Proposition 2. If 1 holds in M , then for any w and any X: g(w,X) ⊆ f(w,X).

Proof. Suppose v ∈ g(w,X), i.e., v ≥ w and v ∈ X. By condition 1, v ∈ f(v,X).
By the monotonicity condition, f(v,X) ⊆ f(w,X). Therefore, v ∈ f(w,X). �

Since g(w,ϕ) and f(w,ϕ) provide, respectively, the domains of quantifications
used to assess ϕ → ψ and ϕ > ψ, this proposition implies the following corollary.
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Proposition 3. If 1 holds in M , then M,w |= ϕ > ψ implies M,w |= ϕ → ψ.

Condition 2 says that, if ϕ is true at w, then no counterfactual world—i.e., no
world which is not a refinement of w—is relevant to the truth of ϕ > ψ at w. In
combination with Condition 1, this gives the strong centering condition, which
in our setting is formulated as follows.

Proposition 4. Suppose 1 and 2 hold in M . If w ∈ X, then f(w,X) = w↑.

This condition looks a bit different than the classical strong centering condition,
which requires that if w ∈ X then f(w,X) = {w}. Note, however, that the clas-
sical formulation would not be compatible with the upwards-closure requirement
on f(w,X), since {w} is not upwards-closed if w is not an endpoint (i.e., if there
are proper extensions v > w). If f(w,X) includes w, then it must contain the
whole set w↑; thus, w↑ is the smallest hypothetical context which includes w.

Nevertheless, if we look at the special case of classical selection models, that
is, models where the relation ≤ is the identity, then we retrieve the classical
formulation of strong centering: for then w↑ = {w}. Furthermore, in our setting
the condition f(w,ϕ) = w↑ captures exactly the central idea of strong centering,
namely: if ϕ is true at w, then the only world which is relevant to assessing the
truth of a conditional ϕ > ψ is w itself.

Proposition 5. Suppose conditions 1 and 2 hold in M . If w ∈ |ϕ|, for every ψ
we have M,w |= ϕ > ψ ⇐⇒ M,w |= ψ.

Proof. If 1 and 2 hold and w ∈ |ϕ|, by the previous proposition we have f(w,ϕ) =
w↑. Suppose M,w |= ϕ > ψ. Then f(w,ϕ) ⊆ |ψ|, and since w ∈ w↑ = f(w,ϕ)
we have M,w |= ψ. Conversely, suppose M,w |= ψ. By persistency, every v ≥ w
satisfies ψ, so w↑ ⊆ |ψ|. Since f(w,ϕ) = w↑, it follows that M,w |= ϕ > ψ. �

The third condition says that if X cannot be consistently supposed, then any
proposition stronger than X cannot be consistently supposed either. This gives:

Proposition 6. If 3 holds in M , M,w |= ϕ > ⊥ implies M,w |= ϕ ∧ ψ > ⊥.

The fourth condition is a restricted monotonicity constraint. It says that, when
we strengthen an antecedent from X to Y ⊆ X, we must get a stronger hypothet-
ical context f(w, Y ) ⊆ f(w,X), as long as the stronger antecedent is consistent
with the hypothetical context determined by the weaker antecedent.

The fifth condition is also about the effect of strengthening an antecedent.
It says that if v is one of the relevant X-worlds at w, and if v also satisfies a
stronger proposition Y ⊆ X, then v is also one of the relevant Y -worlds at w.

Notice that conditions 4 and 5 jointly determine the effect of strengthening
an antecedent in those cases in which the stronger antecedent is consistent with
the hypothetical context for the weak one.

Proposition 7. Let M obey 4 and 5. If Y ⊆ X and f(w,X) ∩ Y �= ∅, then
f(w, Y ) = f(w,X) ∩ Y .
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Proof. Suppose Y ⊆ X and f(w,X)∩Y �= ∅. By definition of selection function,
f(w, Y ) ⊆ Y , and by condition 4, f(w, Y ) ⊆ f(w,X). So, f(w, Y ) ⊆ f(w,X)∩Y .
The converse inclusion is given by Condition 5.

Notice that, when we restrict ourselves to classical selection models, where ≤
is the identity, the above conditions pick out exactly the class of classical selec-
tion models which characterize Lewis’s logic VC (see [14], §2.7). The logic of
all intuitionistic minimal change models can thus be naturally regarded as an
intuitionistic counterpart of VC. We will denote this logic as IVC.

Definition 4 (Logic IVC). For Φ ∪ {ψ} ⊆ L>, we write Φ |=IVC ψ iff for any
intuitionistic minimal change model M and any world w, if M,w |= ϕ for all
ϕ ∈ Φ, then M,w |= ψ.

4 Axiomatization

In this section we describe a Hilbert-style system for the logic IVC, and show
that it is sound. In the following sections we will show that it is also complete.
The system has three groups of axioms: axioms for intuitionistic propositional
logic; axioms that pertain to selection function semantics in general; and axioms
that correspond to the minimal change conditions.

– Intuitionistic schemata:
• ϕ → (ψ → ϕ)
• (ϕ → (ψ → χ)) → ((ϕ → ψ) → (ϕ → χ))
• ϕ → (ψ → ϕ ∧ ψ)
• ϕ ∧ ψ → ϕ, ϕ ∧ ψ → ψ
• ϕ → ϕ ∨ ψ, ψ → ϕ ∨ ψ
• (ϕ → χ) → ((ψ → χ) → (ϕ ∨ ψ → χ))
• ⊥ → ϕ

– Selection function schemata:
• ϕ > ϕ
• (ϕ > ψ ∧ χ) ↔ (ϕ > ψ) ∧ (ϕ > χ)

– Minimal change schemata:
• (ϕ > ψ) → (ϕ → ψ)
• (ϕ ∧ ψ) → (ϕ > ψ)
• (ϕ > ⊥) → (ϕ ∧ ψ > ⊥)
• (ϕ > χ) → (ϕ > ¬ψ) ∨ ((ϕ ∧ ψ) > χ)
• (ϕ ∧ ψ > χ) → (ϕ > (ψ → χ))

The system has three inference rules: modus ponens, replacement of equivalent
antecedents, and replacement of equivalent consequents:

ϕ ϕ → ψ

ψ
(MP)

ϕ ↔ ψ

(ϕ > χ) ↔ (ψ > χ)
(RCEA)

ϕ ↔ ψ

(χ > ϕ) ↔ (χ > ψ)
(RCEC)

As usual in modal logic, some care is needed when defining derivability from a
set of assumptions in the system. We define this as follows.
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Definition 5. For Φ ∪ {ψ} ⊆ L>, we write Φ �IVC ψ to mean that there exist
ϕ1, . . . , ϕn ∈ Φ such that ϕ1 ∧ · · · ∧ ϕn → ψ is derivable in the system above.

A fact that will be useful below is that, in IVC, conditionals are right monotonic.

Proposition 8. If ψ �IVC χ then ϕ > ψ �IVC ϕ > χ.

Proof. If ψ �IVC χ then �IVC ψ → χ, and therefore by intuitionistic reasoning,
�IVC ψ ↔ ψ∧χ. By closure under replacement of equivalent consequents, we have
�IVC (ϕ > ψ) ↔ (ϕ > ψ ∧ χ). But we also have the axiom (ϕ > ψ ∧ χ) ↔ (ϕ >
ψ)∧(ϕ > χ). By intuitionistic reasoning it follows that �IVC (ϕ > ψ) → (ϕ > χ).
Thus, ϕ > ψ �IVC ϕ > χ. �

Proposition 9 (Soundness). If Φ |=IVC ψ then Φ �IVC ψ.

Proof. As usual, the proof amounts to checking that the axioms of the sys-
tem are valid, and that the inference rules preserve validity. We focus on the
soundness of the minimal change schemata, since the other cases are straight-
forward. The soundness of the first three schemata is an immediate conse-
quence of Propositions 3, 5, and 6. Consider the fourth minimal change schema.
Suppose that M,w |= ϕ > χ, i.e., f(w,ϕ) ⊆ |χ|. We want to show that
M,w |= (ϕ → ¬ψ) ∨ (ϕ ∧ ψ > χ). We distinguish two cases:

– Case 1: f(w,ϕ) ∩ |ψ| = ∅. Take any v ∈ f(w,ϕ). Since f(w,ϕ) is upwards
closed, for any successor u ≥ v we have u ∈ f(w,ϕ), and therefore u �∈ |ψ|.
This means that M,v |= ¬ψ. Therefore, M,w |= ϕ > ¬ψ.

– Case 2: f(w,ϕ)∩|ψ| �= ∅. Then we have |ϕ∧ψ| ⊆ |ϕ| and f(w,ϕ)∩|ϕ∧ψ| �= ∅.
Therefore, Condition 4 implies f(w,ϕ∧ψ) ⊆ f(w,ϕ), and since f(w,ϕ) ⊆ |χ|
we have M,w |= ϕ ∧ ψ > χ.

In both cases, M,w |= (ϕ → ¬ψ) ∨ (ϕ ∧ ψ > χ).
Finally, consider an instance of the schema (ϕ ∧ ψ > χ) → (ϕ > (ψ → χ)).

Suppose M,w |= ϕ∧ψ > χ. Then f(w,ϕ∧ψ) ⊆ |χ|. We need to show that w |=
ϕ > (ψ → χ). So, take any v ∈ f(w,ϕ). We want to show v |= ψ → χ. Consider
any u ≥ v with M,u |= ψ. Since f(w,ϕ) is upwards closed, u ∈ f(w,ϕ). Thus,
u ∈ f(w,ϕ) ∩ |ψ| = f(w,ϕ) ∩ |ϕ ∧ ψ|. By Condition 5, f(w,ϕ) ∩ |ϕ ∧ ψ| ⊆
f(w,ϕ ∧ ψ) ⊆ |χ|. Therefore, u ∈ |χ|, which means that M,u |= χ, as we
wanted.

Notice that the proof makes crucial use of the upwards closure condition of
f(w,ϕ), which distinguishes our semantics from the one of Weiss [21]. It is not
hard to show that, if f(w,ϕ) is not required to be upwards closed, then the last
two minimal change schemata are not sound in general.

5 Canonical Model Construction

In this section we define a canonical model for IVC, which will allow us to show
the completeness of our proof system. As usual in intuitionistic logic, the model
is based on consistent theories with the disjunction property.
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Definition 6. Let Γ ⊆ L>. We say that:

– Γ is an IVC-theory if for all ϕ ∈ L>: Γ �IVC ϕ implies ϕ ∈ Γ ;
– Γ is a consistent IVC-theory if Γ is an IVC-theory and ⊥ �∈ Γ ;
– Γ has the disjunction property if ϕ ∨ ψ ∈ Γ implies ϕ ∈ Γ or ψ ∈ Γ .

The next lemma, familiar in intuitionistic logic, says that there are enough con-
sistent IVC-theories with the disjunction property to witness all non-entailments
in IVC. The standard proof of the lemma is omitted (see, e.g., Lemma 11 in [4]).

Lemma 1. If Φ ��IVC ψ then there exists a consistent IVC-theory with the dis-
junction property Γ such that Φ ⊆ Γ and ψ �∈ Γ .

For an IVC-theory Γ , the set of counterfactual consequences of ϕ in Γ is:

– Cnϕ(Γ ) := {ψ ∈ L> | ϕ > ψ ∈ Γ}
The following feature of Cnϕ(Γ ) will play an important role below.

Lemma 2. If Γ is an IVC-theory, then so is Cnϕ(Γ ).

Proof. Straightforward, using the right monotonicity of > (Proposition 8).

Definition 7 (Canonical model). The canonical model for IVC is the model
M c

IVC = 〈W c,≤c,Ac, fc, V c〉, where:

– W c is the set of consistent IVC-theories with the disjunction property;
– Γ ≤c Γ ′ ⇐⇒ Γ ⊆ Γ ′

– Ac = {ϕ̂ | ϕ ∈ L>} where ϕ̂ := {Γ ∈ W c | ϕ ∈ Γ}
– fc(Γ, ϕ̂) = {Γ ′ ∈ W c | Cnϕ(Γ ) ⊆ Γ ′}
– V c(p) = p̂

We need to make sure that fc is well-defined, i.e., that if ϕ̂ = χ̂ then fc(Γ, ϕ̂) =
fc(Γ, χ̂). This is guaranteed by the following proposition.

Proposition 10. If ϕ̂ = χ̂, then for all Γ ∈ W c: Cnϕ(Γ ) = Cnχ(Γ ).

Proof. Suppose ϕ̂ = χ̂. First, note that this implies �IVC ϕ ↔ χ. For suppose
not: then ϕ ��IVC χ or χ ��IVC ϕ. Without loss of generality, suppose the former.
By Lemma 1 there exists a theory Γ ∈ W c with ϕ ∈ Γ and ψ �∈ Γ , which means
that Γ ∈ ϕ̂ but Γ �∈ χ̂, contrary to ϕ̂ = χ̂. So, �IVC ϕ ↔ χ. By replacement
of equivalent antecedents, it follows that for any ψ, �IVC (ϕ > ψ) ↔ (χ > ψ).
Now take any Γ ∈ W c. Since Γ is an IVC-theory, for any ψ we have (ϕ > ψ) ∈
Γ ⇐⇒ (χ > ψ) ∈ Γ . As this holds for all ψ, it follows that Cnϕ(Γ ) = Cnϕ(Γ ).

The next proposition ensures that M c
IVC satisfies all the conditions required by

Definition 1.

Proposition 11. M c
IVC is an intuitionistic selection model.



Minimal-Change Counterfactuals in Intuitionistic Logic 53

Proof. We need to check that all the conditions in Definition 1 are satisfied.
Clearly, the relation ⊆ is a partial order on W c. Every element of Ac is upwards
closed, and V c(p) ∈ Ac. Four conditions remains to be checked:

– Closure of Ac under logic. We show in detail the most interesting case, namely,
closure of Ac under the operation corresponding to >. So, suppose ϕ̂, χ̂ ∈ A;
we need to show that {Γ | fc(Γ, ϕ̂) ⊆ χ̂} ∈ Ac. This will follow if we can
show that

{Γ | fc(Γ, ϕ̂) ⊆ χ̂} = ϕ̂ > χ

This amounts to the claim that, for Γ ∈ W c: fc(Γ, ϕ̂) ⊆ χ̂ ⇐⇒ ϕ > χ ∈ Γ .
In one direction, suppose ϕ > χ ∈ Γ . Then χ ∈ Cnϕ(Γ ). Therefore any
Γ ′ ∈ fc(Γ, ϕ̂) must contain χ, which means that fc(Γ, ϕ̂) ⊆ χ̂. Conversely,
suppose ϕ > χ �∈ Γ . Then χ �∈ Cnϕ(Γ ). By Lemma 2, Cnϕ(Γ ) ��IVC χ.
Therefore, by Lemma 1 there is Γ ′ ∈ W c with Cnϕ(Γ ) ⊆ Γ ′ and χ �∈ Γ ′.
Thus, Γ ′ ∈ fc(Γ, ϕ̂) but Γ ′ �∈ χ̂, witnessing that fc(Γ, ϕ̂) �⊆ χ̂.
In a similar fashion, it is easy to prove that Ac is closed under intersection,
union, and the operation corresponding to →, since ϕ̂ ∪ χ̂ = ϕ̂ ∨ χ, ϕ̂ ∩ χ̂ =
ϕ̂ ∧ χ, and {Γ ∈ W c | ϕ̂ ∩ Γ ↑ ⊆ ̂ψ} = ϕ̂ → χ.

– fc(Γ, ϕ̂) ⊆ ϕ̂. Take Γ ′ ∈ fc(Γ, ϕ̂). This means that Cnϕ(Γ ) ⊆ Γ ′. By the
axiom ϕ > ϕ we have ϕ ∈ Cnϕ(Γ ). Thus, ϕ ∈ Γ ′, which shows that Γ ′ ∈ ϕ̂.

– fc(Γ, ϕ̂) is upwards closed. This is clear since, if Γ ′ ⊆ Γ ′′ we have Γ ′ ∈
fc(Γ, ϕ̂) ⇐⇒ Cnϕ(Γ ) ⊆ Γ ′ =⇒ Cnϕ(Γ ) ⊆ Γ ′′ ⇐⇒ Γ ′′ ∈ fc(Γ, ϕ̂).

– fc is monotonic in the first coordinate. This is also clear: if Γ ⊆ Γ ′ then
Cnϕ(Γ ) ⊆ Cnϕ(Γ ′), and therefore Γ ′′ ∈ fc(Γ ′, ϕ̂) ⇐⇒ Cnϕ(Γ ′) ⊆ Γ ′′ =⇒
Cnϕ(Γ ) ⊆ Γ ′′ ⇐⇒ Γ ′′ ∈ fc(Γ, ϕ̂). �

Moreover, we can prove that M c
L behaves in the way expected of a canonical

model: satisfaction at a theory Γ amounts to membership in Γ .

Lemma 3 (Truth Lemma). For any Γ ∈ W c and any ϕ ∈ L>: M c
IVC, Γ |=

ϕ ⇐⇒ ϕ ∈ Γ .

Proof. As usual, the proof is by induction on ϕ. We only give the inductive step
for ϕ = χ > ψ, since the other steps are the same as in the case of intuitionistic
propositional logic.

For the right-to-left direction, suppose χ > ψ ∈ Γ . Then ψ ∈ Cnχ(Γ ), so ψ ∈
Γ ′ for every Γ ′ ∈ fc(Γ, χ̂), by definition of fc(Γ, χ̂). By the induction hypothesis
on ψ, this means that for every Γ ′ ∈ fc(Γ, χ̂) we have M c

IVC, Γ ′ |= ψ. Moreover,
by the induction hypothesis on χ we have χ̂ = |χ|. Thus, M c

IVC, Γ |= χ > ψ.
For the converse direction, suppose χ > ψ �∈ Γ . Then ψ �∈ Cnχ(Γ ), which by

Lemma 2 means that Cnχ(Γ ) ��IVC ψ. By Lemma 1 there exists a theory Γ ′ ∈ W c

such that (i) Cnχ(Γ ) ⊆ Γ ′ and (ii) ψ �∈ Γ ′. By (i) we have Γ ′ ∈ fc(Γ, χ̂), and
by (ii) and the induction hypothesis on ψ, M c

IVC, Γ ′ �|= ψ. Moreover, by the
induction hypothesis on χ we have χ̂ = |χ|. Therefore, it is not the case that all
worlds in fc(Γ, |χ|) satisfy ψ, which means that M c

IVC, Γ �|= χ > ψ. �

This lemma implies that any IVC-invalid entailment can be falsified in M c
IVC.
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Proposition 12. If Φ ��IVC ψ, then there exists a world Γ ∈ W c such that
M c

IVC, Γ |= ϕ for all ϕ ∈ Φ but M c
IVC, Γ �|= ψ.

Proof. If Φ ��IVC ψ, by Lemma 1 there is Γ ∈ W c s.t. Φ ⊆ Γ but ψ �∈ Γ . By the
truth-lemma, world Γ in M c

IVC satisfies all formulas in Φ but not ψ. �

To show that our system is complete with respect to the logic of intuitionistic
minimal change models, all that remains to be shown is the following.

Proposition 13. M c
IVC is an intuitionistic minimal change model.

Proof. We will show that each of the five minimal-change axioms of the logic
IVC yields one of the corresponding minimal change properties for M c

IVC.

– Condition 1. Suppose Γ ∈ ϕ̂, which means that ϕ ∈ Γ . We want to show that
Γ ∈ fc(Γ, ϕ̂), which amounts to Cnϕ(Γ ) ⊆ Γ . Consider any ψ ∈ Cnϕ(Γ ).
This means that ϕ > ψ ∈ Γ . By the axiom (ϕ > ψ) → (ϕ → ψ), also
ϕ → ψ ∈ Γ . Since ϕ ∈ Γ , it follows ψ ∈ Γ .

– Condition 2. Take a point Γ ∈ ϕ̂, which means that ϕ ∈ Γ . We want to show
that fc(Γ, ϕ̂) ⊆ Γ ↑. So, take any Γ ′ ∈ fc(Γ, ϕ̂). This means that Cnϕ(Γ ) ⊆
Γ ′. We need to show that Γ ′ ∈ Γ ↑, which amounts to Γ ⊆ Γ ′. This will follow
if we can show that Γ ⊆ Cnϕ(Γ ). So, take any ψ ∈ Γ . Since ϕ,ψ ∈ Γ , also
ϕ ∧ ψ ∈ Γ . By the axiom (ϕ ∧ ψ) → (ϕ > ψ), it follows that ϕ > ψ ∈ Γ , so
ψ ∈ Cnϕ(Γ ).

– Condition 3. Suppose ̂ψ ⊆ ϕ̂. This implies ψ �IVC ϕ: for otherwise, by Lemma
1 there would be a theory Γ ∈ W c such that ψ ∈ Γ and ϕ �∈ Γ ; and then
Γ ∈ ̂ψ − ϕ̂, contrary to the inclusion ̂ψ ⊆ ϕ̂.
Now suppose that fc(Γ, ϕ̂) = ∅. We want to show that also fc(Γ, ̂ψ) = ∅.
First, notice that fc(Γ, ϕ̂) = ∅ implies that Cnϕ(Γ ) �IVC ⊥. For otherwise,
by Lemma 1, Cnϕ(Γ ) could be extended to a world Γ ′ ∈ W c, and then we
would have Γ ′ ∈ fc(Γ, ϕ̂).
By Lemma 2, Cnϕ(Γ ) �IVC ⊥ implies ⊥ ∈ Cnϕ(Γ ), that is, ϕ > ⊥ ∈ Γ .
By the axiom (ϕ > ⊥) → (ϕ ∧ ψ > ⊥) we also have ϕ ∧ ψ > ⊥ ∈ Γ .
Since ψ �IVC ϕ, the counterfactual ϕ ∧ ψ > ⊥ is inter-derivable with ψ > ⊥.
Therefore, ψ > ⊥ ∈ Γ , which implies that ⊥ ∈ Cnψ(Γ ).
Now for every Γ ′ ∈ W c we have ⊥ �∈ Γ ′, and therefore Cnψ(Γ ) �⊆ Γ ′. This
shows that fc(Γ, ϕ ∧ ψ) = ∅.

– Condition 4. Suppose ̂ψ ⊆ ϕ̂. As discussed in the previous point, this implies
ψ �IVC ϕ. Suppose moreover that fc(Γ, ϕ̂) ∩ ̂ψ �= ∅. This means that there is
Γ ′ ∈ W c with Cnϕ(Γ ) ∪ {ψ} ⊆ Γ ′. This implies that ¬ψ �∈ Cnϕ(Γ ), since
otherwise Γ ′ would not be consistent. Hence, ϕ > ¬ψ �∈ Γ .
We want to show that fc(Γ, ̂ψ) ⊆ fc(Γ, ϕ̂). Given the definition of fc, this
will follow if we can show that Cnψ(Γ ) ⊇ Cnϕ(Γ ). So, take χ ∈ Cnϕ(Γ ).
This means that ϕ > χ ∈ Γ . Since Γ is an IVC-theory, by the axiom (ϕ >
χ) → ((ϕ > ¬ψ) ∨ (ϕ ∧ ψ > χ)), it follows that (ϕ > ¬ψ) ∨ (ϕ ∧ ψ > χ) ∈ Γ .
Since Γ has the disjunction property, one of the disjuncts is in Γ . Since we
already know that ϕ > ¬ψ �∈ Γ , it follows that ϕ ∧ ψ > χ ∈ Γ . Since
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ψ �IVC ϕ, the counterfactual ϕ∧ψ > χ is IVC-equivalent to ψ > χ. Therefore,
ψ > χ ∈ Γ , which implies that χ ∈ Cnψ(Γ ). This proves the desired inclusion
Cnψ(Γ ) ⊇ Cnϕ(Γ ).

– Condition 5. Suppose ̂ψ ⊆ ϕ̂, which implies ψ �IVC ϕ. We want to show that
fc(Γ, ϕ̂) ∩ ̂ψ ⊆ fc(Γ, ̂ψ). So, take any Γ ′ ∈ f(Γ, ϕ̂) ∩ ̂ψ: this means that
Cnϕ(Γ ) ⊆ Γ ′ and ψ ∈ Γ ′. We need to prove that Γ ′ ⊆ fc(Γ, ̂ψ), which
amounts to showing that Cnψ(Γ ) ⊆ Γ ′.
So, suppose χ ∈ Cnψ(Γ ). This means that ψ > χ ∈ Γ . Since ψ �IVC ϕ,
the counterfactual ψ > χ is inter-derivable with ϕ ∧ ψ > χ, therefore also
ϕ ∧ ψ > χ ∈ Γ . By the axiom (ϕ ∧ ψ > χ) → (ϕ > (ψ → χ)), it follows that
also ϕ > (ψ → χ) ∈ Γ . Thus, ψ → χ ∈ Cnϕ(Γ ) ⊆ Γ ′. Since also ψ ∈ Γ ′, it
follows that χ ∈ Γ ′. This shows the required inclusion Cnϕ∧ψ(Γ ) ⊆ Γ ′. �

Our main result is now a corollary of Propositions 12 and 13.

Theorem 1 (Completeness). If Φ |=IVC ψ, then Φ �IVC ψ.

6 Conclusion and Outlook

In this paper we saw that it is possible to extend intuitionistic Kripke semantics
in a natural way with a Lewisian counterfactual conditional. The resulting logic,
IVC, is an intuitionistic counterpart of Lewis’ VC: indeed, modulo the replace-
ment of classical propositional logic by intuitionistic logic, the axioms for IVC
are the same as the axioms for VC, provided the formulation of the latter is
chosen in a suitable way. In particular, the rational monotonicity axiom should
be formulated in a constructive form as (ϕ > χ) → (ϕ > ¬ψ) ∨ (ϕ ∧ ψ > χ) and
not, as more common in the literature, as (ϕ > χ) ∧ ¬(ϕ > ¬χ) → (ϕ ∧ ψ > χ).

This work may be taken further in several directions. First, while we focused
here on a specific set of constraints, determining a specific intuitionistic counter-
factual logic IVC, it would be interesting to take a broader perspective, and study
the correspondence between constraints on f and conditional axioms in a more
general way. This may yield intuitionistic counterparts of other notable logics of
counterfactuals, such as Stalnaker’s logic C2. Second, we may study how counter-
factuals can be added not just to intuitionistic logic, but to intermediate logics
more generally. Technically, this could be done by placing constraints not just
on the selection function f , but also on the intuitionistic accessibility relation
≤. Third, it would be interesting to study not only the operator >, which Lewis
denotes by �→ , but also its dual, which Lewis denotes by ♦→ . Whereas in the
classical case the two are inter-definable via negation, in the intuitionistic case
they must be treated as two independent operators, just like � and ♦ need to be
treated both as primitives in intuitionistic modal logic [10,18]. Finally, it would
be interesting to look at the relevance of IVC for the analysis of counterfactuals in
natural language. For instance, recent work [8] provided experimental evidence
that antecedents of the form ¬p ∨ ¬q and ¬(p ∧ q) do not make the same contri-
bution to a counterfactual: sentences of the form (¬p∨¬q) > r and ¬(p∧ q) > r
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do not in general have the same truth value. This runs against the predictions of
any intensional account based on classical logic, since any such account renders
(¬p ∨ ¬q) > r and ¬(p ∧ q) > r equivalent. By contrast, since the relevant de
Morgan law is invalid intuitionistically, this is perfectly compatible with IVC.

References

1. Adams, E.: The Logic of Conditionals: An Application of Probability to Deductive
Logic. Synthese Library, vol. 86. Springer, Dordrecht (1975). https://doi.org/10.
1007/978-94-015-7622-2

2. Alonso-Ovalle, L.: Counterfactuals, correlatives, and disjunction. Linguist. Philos.
32, 207–244 (2009)

3. Baltag, A., Smets, S.: Dynamic belief revision over multi-agent plausibility models.
In: Proceedings of LOFT (2006)

4. Bezhanishvili, N., de Jongh, D.: Intuitionistic logic, lecture Notes. Institute for
Logic, Language and Computation (ILLC), University of Amsterdam (2006)

5. Board, O.: Dynamic interactive epistemology. Games Econ. Behav. 49(1), 49–80
(2004)

6. Briggs, R.: Interventionist counterfactuals. Philos. Stud. 160(1), 139–166 (2012)
7. Chellas, B.: Basic conditional logic. J. Philos. Logic 4(2), 133–153 (1975)
8. Ciardelli, I., Zhang, L., Champollion, L.: Two switches in the theory of counter-

factuals. Linguist. Philos. 41(6), 577–621 (2018). https://doi.org/10.1007/s10988-
018-9232-4

9. Fine, K.: Critical notice on Counterfactuals by D. Lewis. Mind 84(1), 451–458
(1975)

10. Servi, G.F.: Semantics for a class of intuitionistic modal calculi. In: Dalla Chiara,
M.L. (ed.) Italian Studies in the Philosophy of Science. BSPS, vol. 47, pp. 59–72.
Springer, Dordrecht (1980). https://doi.org/10.1007/978-94-009-8937-5 5

11. Grove, A.: Two modellings for theory change. J. Philos. Logic 17(2), 157–170
(1988)

12. Herzberger, H.G.: Counterfactuals and consistency. J. Philos. 76(2), 83–88 (1979)
13. Kraus, S., Lehmann, D., Magidor, M.: Nonmonotonic reasoning, preferential mod-

els and cumulative logics. Artif. Intell. 44(1–2), 167–207 (1990)
14. Lewis, D.: Counterfactuals. Blackwell, Oxford (1973)
15. Nute, D.: Conditional logic. In: Gabbay, D., Guenthner, F. (eds.) Handbook of

Philosophical Logic Synthese Library. SYLI, vol. 165. Springer, Dordrecht (1984).
https://doi.org/10.1007/978-94-009-6259-0 8

16. Santorio, P.: Interventions in premise semantics. Philosophers’ Imprint 19(1), 1–27
(2019)

17. Segerberg, K.: Notes on conditional logic. Studia Logica 48(2), 157–168 (1989)
18. Simpson, A.: The proof theory and semantics of intuitionistic modal logic. Ph.D.

thesis, University of Edinburgh (1994)
19. Stalnaker, R.: A theory of conditionals. In: Rescher, N. (ed.) Studies in Logical

Theory. Blackwell, Oxford (1968)
20. Veltman, F.: Defaults in update semantics. J. Philos. Logic 25(3), 221–261 (1996)
21. Weiss, Y.: Basic intuitionistic conditional logic. J. Philos. Logic 48, 447–469 (2018)

https://doi.org/10.1007/978-94-015-7622-2
https://doi.org/10.1007/978-94-015-7622-2
https://doi.org/10.1007/s10988-018-9232-4
https://doi.org/10.1007/s10988-018-9232-4
https://doi.org/10.1007/978-94-009-8937-5_5
https://doi.org/10.1007/978-94-009-6259-0_8


Consolidation of Belief in Two
Logics of Evidence

Yuri David Santos(B)

University of Groningen, Groningen, The Netherlands
y.david.santos@rug.nl

Abstract. Recently, several logics have emerged with the goal of mod-
elling evidence in a more relaxed sense than that of justifications. Here,
we explore two of these logics, one based on neighborhood models and the
other being a four-valued modal logic. We establish grounds for comparing
these logics, finding, for any model, a counterpart in the other logic which
represents roughly the same evidential situation. Then we propose oper-
ations for consolidation, answering our central question: What should the
doxastic state of a rational agent be in a given evidential situation? These
operations map evidence models to Kripke models. We then compare the
consolidations in the two logics, finding conditions under which they are
isomorphic. By taking this dynamic perspective on belief formation we
pave the way for, among other things, a study of the complexity, and an
AGM-style analysis of rationality of these belief-forming processes.

Keywords: Evidence logics · Epistemic logic · Many-valued logic

1 Introduction

Epistemic and doxastic logics have been used for decades to model the knowledge
and beliefs of agents [16,22]. Intelligent agents, especially in real-world settings,
however, build up their beliefs from inputs that might be incomplete or even incon-
sistent. We think of these inputs as evidence, broadening of the concept of justifica-
tion featured in justification logics [4–6,19,23]. Real agents normally have access to
raw, imperfect data, which they process into a (preferably consistent) set of beliefs,
which only then can be used to make sensible decisions and to act.

Like [12–15,20,24,30], the paper [29] presents a multi-agent four-valued epis-
temic logic (FVEL) to model evidence. But differently from those, it does not
feature a belief modality. Our initial goal here is to add beliefs to that framework.
It is of little use to model evidence and not derive any beliefs from it. In the
spirit of [12], we assume that rational belief can be determined from evidence.
However, we do not do that by extending FVEL models, similarly to the strat-
egy in [12]. Instead, we extract a doxastic Kripke model representing the agents’
beliefs from the FVEL model, which represents their evidence. With that, we
not only accomplish the first goal of adding beliefs to the FVEL framework,
but also introduce a dynamic perspective on forming beliefs from evidence. This
new perspective, compared to the static one in [14], where evidence and belief
c© Springer-Verlag GmbH Germany, part of Springer Nature 2019
P. Blackburn et al. (Eds.): LORI 2019, LNCS 11813, pp. 57–70, 2019.
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coexist, is akin to public announcement logic [16,25,26] compared to epistemic
logic: it adds a model-changing aspect. Rational beliefs, although pre-encoded
in evidence, are not obtained for free, but require “computation”. This process
of forming beliefs from evidence, which we call consolidation, is represented by
transformations from evidence models to Kripke models. This idea generalises
the static approach, because we can represent the “consolidation” of models
where belief and evidence coexist as an automorphism from these models to
themselves.

This paper is structured as follows. In Sect. 2 we introduce FVEL, a logic
that models evidence but no beliefs. In Sect. 3, we present the main idea of this
paper, the so-called cautious consolidation, a transformation from FVEL evi-
dence models to doxastic Kripke models. We also discuss some of its properties.
The remainder of the paper is concerned with comparing our work with another
approach in the literature: the work started by Van Benthem and Pacuit [14] and
extended together with Fernández-Duque [12,30]. Baltag et al. [8] also built upon
those logics, offering more general topological semantics, but for the purpose of
this paper the models of [14] will suffice. We cannot compare our consolidations
with the ones from Van Benthem et al. if we cannot compare those evidence
models in the first place, so that is what is done in Sect. 4. Then in Sect. 5 we
finally compare the consolidations per se. We lay out our conclusions and ideas
left for future work in Sect. 6. Proofs were omitted, but are available online1.

2 A Multi-agent Logic of Evidence

Now we concisely describe the four-valued epistemic logic (FVEL, in short) [29],
the logic of evidence to which we apply our idea of consolidations.

Definition 1. [29] Let At be a countable set of atomic propositions and A a
finite set of agents. A formula ϕ in the language L n

�˜
is defined as follows:

ϕ:: = p | ˜ϕ | ¬ϕ | (ϕ ∧ ϕ) | �iϕ

with p ∈ At and i ∈ A. Let (ϕ ∨ ψ) def= ¬(¬ϕ ∧ ¬ψ).

The intended readings of literals such as p and ¬p are there is evidence for p
and there is evidence against p, respectively. We read ˜ as classical negation: ˜ϕ
means that it is not the case that ϕ. Formulas with the modal operator such as
�iϕ and �i¬ϕ, finally, have the intended meaning of agent i knows that there is
evidence for ϕ and agent i knows that there is evidence against ϕ, respectively.

Definition 2. [29] Given a set A = {1, 2, ..., n} of agents, an FVEL model is
a tuple M = (S,R,V ), where S �= ∅ is a set of states, R = (R1, R2, ..., Rn) is
an n-tuple of binary relations on S and V : At × S → P({0, 1}) is a valuation

1 https://github.com/ydsantos/appendix cons/blob/master/proofs.pdf.

https://github.com/ydsantos/appendix_cons/blob/master/proofs.pdf
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function that assigns to each proposition at each state one of four truth values2.
With p ∈ At, s ∈ S, i ∈ A and ϕ,ψ ∈ L n

�˜
, the relation |= is defined as follows:

M , s |= p iff 1 ∈ V (p, s) M , s |= ¬p iff 0 ∈ V (p, s)
M , s |= (ϕ ∧ ψ) iff M , s |= ϕ and M , s |= ψ

M , s |= ¬(ϕ ∧ ψ) iff M , s |= ¬ϕ or M , s |= ¬ψ

M , s |= �iϕ iff ∀t ∈ S s.t. sRit : M , t |= ϕ

M , s |= ¬�iϕ iff ∃t ∈ S s.t. sRit and M , t |= ¬ϕ

M , s |= ˜ϕ iff M , s �|= ϕ

M , s |= ¬˜ϕ iff M , s |= ϕ M , s |= ¬¬ϕ iff M , s |= ϕ

Definition 3. [29] The extended valuation function V : L n
�˜

×S → P({0, 1})

is defined as follows: 1 ∈ V (ϕ, s) iff M , s |= ϕ; 0 ∈ V (ϕ, s) iff M , s |= ¬ϕ.

Using Definition 3, we say that ϕ has value both at s, for example, iff V (ϕ, s) =
{0, 1}, which is the case when both M , s |= ϕ and M , s |= ¬ϕ. Semantic con-
ditions for negated and non-negated formulas are defined separately, due to the
independence of positive and negative atoms. Based on this semantics, it will be
handy to define formulas discriminating which of the four truth values a formula
ϕ has:

Definition 4. [29] ϕn def= (˜ϕ ∧ ˜¬ϕ); ϕf def= ˜˜(˜ϕ ∧ ¬ϕ); ϕt def= ˜˜(ϕ ∧ ˜¬ϕ);

ϕb def= ˜˜(ϕ ∧ ¬ϕ).

Now we can read �iϕ
x as Agent i knows that the status of evidence for ϕ is

x (where x ∈ {t, f, b, n}).

p: t

p: f

p: bs3s2

s1

j

j
j

j,kj,k

j,k

Fig. 1. Some evidence about p.

Example 1. John (j) knows that there are studies about health effects of coffee.
However, he never read those articles, so he is sure that there is evidence for or
against (or even both for and against) coffee being beneficial for health (p), but he
does not know what the status of the evidence about p is, only that there is some
information. Looking at Fig. 1, one can see that �j((p∧˜¬p)∨(¬p∧˜p)∨(p∧¬p)),
which is equivalent to �j(p ∨ ¬p), holds in the “actual” world (s3).
2 Abbrev.: {0} is false or f , {1} is true or t, {} is none or n, and {0, 1} is both or b.
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Kate (k), on the other hand, is a researcher on the effects of coffee on health, and
for this reason she knows exactly what evidence is available (Rk has only reflexive
arrows). Notice that M , s3 |= �k(p ∧ ¬p), that is, in the actual state, Kate knows
that there is evidence both for and against the benefits of coffee. Moreover, John
knows Kate and her job, so he also knows that she knows about p, whatever its
status is: �j(�kp

f ∨�kp
t ∨�kp

b). Likewise, Kate knows that John simply knows
that there is some information about p: �k(�j(p ∨ ¬p) ∧ ˜�j(p ∧ ¬p)).

Thus, FVEL expresses two types of facts: whether there is evidence for and/or
against propositions (in a public sense); and first and higher-order knowledge of
agents about these evidential facts.

3 A Consolidation Operation

Now that we have seen how FVEL works, we want to be able to extract a Kripke
model from an FVEL model, representing the beliefs obtained from the evidence
in the latter, constituting a so-called consolidation operation.

3.1 Definitions

To define this operation we will need some essential notions:

Definition 5 (Selection Function and Accepted Valuations). Let Val = {v :
At → {0, 1}} be the set of all binary valuations. Given an FVEL model M =
(S,R,V ) and the set of agents A = {1, 2, ..., n}, we define V = (V1, V2, ..., Vn),
where Vi(s) ⊆ Val and Vi(s) �= ∅, for all i ∈ A and s ∈ S. V is called a
(valuation) selection function for M , and Vi(s) is the set of binary valuations
that agent i accepts at s. Us =

⋃
i∈A Vi(s) are the valuations accepted by some

agent at s.

Intuitively, the selection function V gives the set of valuations that each agent
finds plausible at each state. The idea is that these plausible valuations will bear
a strong connection to the evidence possessed, by means of constraints imposed
on V . In principle, however, V can be any function conforming to Definition 5.

We use sv to denote the pair (s, v), where s ∈ S and v ∈ Val . Now we define
cluster consolidations (Definition 6). Ideally, the consolidation would generate
one state for each state in M , with the same valuation. If FVEL were two-
valued, that would be possible, but since it is four-valued, we generate a cluster
of states for each state s, with one state sv for each valuation v accepted at s
according to V .

Definition 6 (Cluster Consolidation). Let M = (S,R,V ) be an FVEL model,
V be a selection function for M . The cluster consolidation of M (based on V)
is the Kripke model M ! = (S′, R′, V ), where: (i) S′ = {sv | s ∈ S, v ∈ Us}; (ii)
if sv, tu ∈ S′ then: svR

′
itu iff sRit and u ∈ Vi(t); and (iii) V (p, sv) = v(p).3

3 Since the number of states in M ! can be exponential in the number of elements of
At, if At is countably infinite, S′ may be uncountable (by Cantor’s Theorem).
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Definition 6 hopefully covers most reasonable consolidations, modulo some
notion of equivalence. It covers a lot of unreasonable ones too. It does not reflect,
however, any specific “consolidating policy”: it only defines a technically conve-
nient class of consolidations, due to their modular nature (each state generating
a cluster of states) and the way they link accepted valuations and evidence.

Now we define a type of cluster consolidation reflecting an actual policy: cau-
tious consolidation. It is based on the following consolidating principle: If there
is only positive evidence for a proposition, then the agent believes it; if there is
only negative evidence, then the agent believes its negation; otherwise, the agent
has no opinion about it. Consider the set of functions H = {h : P({0, 1}) →
{−1, 0, 1}}, mapping status of evidence to doxastic attitudes (1 standing for
belief, 0 for disbelief and −1 for abstention of judgement). This principle, then,
can be codified in a function h1 such that h1(n) = h1(b) = −1, h1(t) = 1,
h1(f) = 0.4

Definition 75(Compatibility). Let h ∈ H and Valhs = {v ∈ Val | for all p ∈
At, if h(V (p, s)) �= −1 then v(p) = h(V (p, s))} be the set of binary valuations
h-compatible with V at s.

Definition 8 (Implementation). If Vi(s) = Valhs for all s ∈ S and some i ∈ A,
we say that V implements h for agent i.

Definition 9 (h-consolidation). Let h ∈ H. M ! is called an h-consolidation
of M for agent i iff M ! is the cluster consolidation of M based on V , and V
implements h for agent i.

Let cautious consolidation be synonymous with h1-consolidation. A consolida-
tion is characterised in Definition 9 relative to an agent. This allows consolida-
tions to implement different belief formation policies for each agent.

3.2 Examples

Figure 2 (left) shows a simple cautious consolidation, with one agent and one
proposition with value true. The selection function is cautious, so the set of
valuations accepted by the agent has to be h1-compatible with V at s1. This is
the case for a valuation v only if v(p) = 1. Then, according to Definition 6, there
is only one state in the consolidated model (s′

1), which conforms to v (that is, p
holds) and has a reflexive arrow, because the original state s1 has one as well.
In Fig. 2 (right), the value both for p admits two h1-compatible valuations: one in
which p holds, and one in which p does not hold. Then, by Definition 6, two states

4 Out of 81 functions in H, only h1 and h0 (h0(x) = −1, x ∈ {t, f, b, n}) respect some
permissive postulates. They are: if evidence is only positive (negative) then you
should not disbelieve (believe); if only positive (negative) evidence is not enough
to generate belief (disbelief), nothing is; h(n) = h(b) = −1, justified by the fact
that ϕb = (¬ϕ)b (similarly for n), so only abstention can avoid inconsistency; and
h(t) = 1 iff h(f) = 0, justified by the fact that ϕt = (¬ϕ)f and ϕf = (¬ϕ)t in FVEL.

5 For this and coming definitions, keep in mind that whenever V , S or V are mentioned,
they are always relative to an underlying FVEL model M = (S, R,V ).
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p: t s1 =⇒ s′
1

p p: b s1 =⇒ s′
1 s′′

1

p ¬p

Fig. 2. Cautious consolidations on positive (left) and conflicting evidence (right).

must exist in the consolidation, and they should contain all possible arrows,
because the original state has a reflexive arrow. The consolidation would be
identical if p had value none: cautious consolidations do not distinguish between
none and both (due to h1). Figure 3 illustrates cautious consolidation applied to
Example 1.

p: t

p: f

p: bs3s2

s1

j

j
j

j,kj,k

j,k

=⇒
s′
3s′

2

s′
1

s′′
3j

j
j j

j,k

j

j,kj,k j,k

j,k

p

¬p

p
¬p

Fig. 3. Cautious consolidation of Example 1.

3.3 Properties

In this section we explore formal properties of the consolidations. Proposition 1
represents a desideratum for cluster consolidations: that they “respect” the func-
tion h upon which they are based. In a cautious consolidation, for example, we
want that if an agent a knows that the status of evidence for p is t in state s,
that is, M , s |= �ap

t, then in the corresponding state of M ! a will believe p.
Now if �ap

f holds, a will believe ¬p, and otherwise a will believe neither p nor
¬p. Proposition 1 generalises this result for any function h ∈ H, for any number
of “stacked boxes”, and for disjunctions of truth values of p. For example, with
h1, if �a(pb ∨pn) holds, then the agent will not form beliefs about p. Let h−1(y)
be the preimage of y by h: h−1(y) = {x ∈ P({0, 1}) | h(x) = y}.

Proposition 1. Given any FVEL model M = (S,R,V ) and a function h ∈ H,
consider an h-consolidation M ! = (S′, R′, V ) of M for agent i0. For any such
consolidation, for all p ∈ At and s ∈ S: M , s |= �in ...�i0(p

x1 ∨ ... ∨ pxm) ⇒
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

M !, f(s) |= Bin ...Bi0p if {x1, ..., xm} ⊆ h−1(1)
M !, f(s) |= Bin ...Bi0¬p if {x1, ..., xm} ⊆ h−1(0)
M !, f(s) �|= Bin ...Bi0p if {x1, ..., xm} ∩ h−1(1) = ∅
M !, f(s) �|= Bin ...Bi0¬p if {x1, ..., xm} ∩ h−1(0) = ∅

where for all s ∈ S, f(s) = sv for some sv ∈ S′, and Ba is the belief modality
associated with R′

a.
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Function h is respected in a weak way, namely, only for atoms. Now consider the
following translation function for formulas.

Definition 10. Let t : L n
�˜

→ L n
B be a function that translates FVEL formulas

into a standard multimodal language with modal operators Ba for each a ∈ A
such that ˜ is replaced by ¬, �a is replaced by Ba, and the rest remains the
same.

The following result, as Proposition 1, establishes a correspondence between for-
mulas in an FVEL model and in its consolidation. The result is limited to for-
mulas with “classically-valued” atoms, but encompasses all formulas instead of
only atoms.

Proposition 2. Let M = (S,R,V ) be an FVEL model and M ! = (S′, R′, V ) its
cautious consolidation, and let ϕ be an FVEL formula such that for all atoms p
occurring in ϕ, V (p, s) ∈ {{0}, {1}} for all s ∈ S. Then, for all s ∈ S, M , s |= ϕ
iff M !, sv |= t(ϕ), for any sv ∈ S′.

Now let us check the preservation of frame properties under consolidations. Seri-
ality, transitivity and Euclideanicity are preserved in general. Reflexivity and
symmetry, however, are only preserved if there is a certain similarity among
the selection functions Vi. Notice that for all R′

i to be reflexive, all functions
Vi have to be equal. The following propositions are all relative to an FVEL
model M = (S,R,V ) and a cluster consolidation M ! = (S′, R′, V ) of M , where
R = (R1, ..., Rn) and R′ = (R′

1, ..., R
′
n).

Proposition 3. If Ri is serial (transitive, Euclidean), then R′
i is serial (tran-

sitive, Euclidean).

Proposition 4. If Ri is reflexive, then R′
i is reflexive iff for all j ∈ A and all

s ∈ S it holds that Vj(s) ⊆ Vi(s).

Proposition 5. If Ri is symmetric, then R′
i is symmetric iff for all s, t ∈ S

such that sRitRis it holds that Vj(s) ⊆ Vi(s) for all j ∈ A.

In the case where all the agents consolidate in the same manner (for example,
through cautious consolidation), reflexivity, symmetry, transitivity, seriality and
Euclideanicity are all preserved. Since we want the consolidated model to be a
doxastic model, it is desirable that its relation be Euclidean, serial and transitive
(KD45 models). These results provide sufficient conditions for that.

3.4 A Unified Language for Evidence and Beliefs

A detailed study of an extension of the language and logic of FVEL with beliefs
is beyond the scope of this paper, but we will suggest here how this can be done.

First, we have to recall that propositional formulas in FVEL are not about
facts, but about evidence. For this reason, it is better to define belief over for-
mulas of LB , the doxastic language of the consolidated model. We can define
belief in FVEL model as follows:

M , s |= Bat(ϕ) iff M !, sv |= Bat(ϕ)
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where M ! = (S′, R′, V ) is the cautious consolidation of M , and sv ∈ S′.
In this language it is now possible to talk about formulas such as �ap

t↔̃Bap
or �ap

f↔̃Ba¬p, i.e., only positive (negative) evidence equals belief (disbelief),
where ϕ↔̃ψ

def= ˜(ϕ∧˜ψ)∧˜(ψ∧˜ϕ). These formulas are valid, but if we employ
another type of consolidation in the semantic definition above, they may not be.

Notice also that if M ! is a KD45 model, for example, the behaviour of this new
Ba operator in FVEL will be governed by that logic. But since the consolidation
is completely determined by the original FVEL model, it should be possible to
define semantics for Ba in FVEL without mentioning M !.

4 Equivalence Between Evidence Models

Now we introduce Van Benthem and Pacuit’s (hereafter, B&P) models [14].

Definition 11. [14] A B&P model is a tuple M = (S,E, V ) with S �= ∅ a set
of states, E ⊆ S × P(S) an evidence relation, and V : At → P(S) a valuation
function. We write E(w) for the set {X | wEX}. We impose two constraints on
E: for all w ∈ S, ∅ /∈ E(w) and S ∈ E(w).

In B&P models, propositional formulas are about facts (not evidence), as usual.

Definition 12. [12] A w-scenario is a maximal X ⊆ E(w) such that for any
finite X ′ ⊆ X ,

⋂ X ′ �= ∅. Let SceE(w) be the collection of w-scenarios of E.

Definition 13. [14] A standard bimodal language L�B (with � for evidence
and B for belief) is interpreted over a B&P model M = (S,E, V ) in a standard
way, except for B and �:

M,w |= �ϕ iff ∃X with wEX and ∀v ∈ X : M,v |= ϕ

M,w |= Bϕ iff ∀X ∈ SceE(w) and ∀v ∈
⋂

X ,M, v |= ϕ

Formulas such as �ϕ mean that the agent has evidence for ϕ. Notice that an
agent can have evidence for ϕ and ¬ϕ at the same time, or have no evidence
about ϕ whatsoever. This makes the status of evidence (in any given state)
four-valued, just as in FVEL. Note also that the conditions for the satisfaction
of Bϕ tell us how the consolidation in B&P logic is done: You believe what
is supported by all pieces of evidence in all maximal consistent subsets of your
evidence (w-scenarios).

Now we want to be able to compare consolidations of B&P models to consol-
idations of FVEL models. For this, first, we need a way of establishing that an
FVEL model and a B&P model are “equivalent” with respect to how evidence is
represented. It only makes sense to compare consolidations if they depart from
(roughly) the same evidential situation.

The “logics of evidence” in B&P logic and FVEL differ, the former being
non-normal (so, for example, �ϕ ∧ �ψ does not imply �(ϕ ∧ ψ) in B&P logic,
while in FVEL it does), and the latter being First Degree Entailment (FDE)
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[17,27]6. Note, however, that this difference is more about how evidence is manip-
ulated in these logics, than about how it is represented. For this reason, our
equivalence in evidence is, fittingly, limited to literals.

Definition 14 (ev-equivalence). Let M = (S,E, V ) be a B&P model and let
M = (S′, R,V ) be an FVEL model. A relation �⊆ S × S′ is an ev-equivalence
between M and M iff:

1. � is a bijection;
2. If s � s′, where s ∈ S and s′ ∈ S′, then, for all p ∈ At: M, s |= �p iff

M , s′ |= �p; and M, s |= �¬p iff M , s′ |= �¬p.

We write M � M if there exists an ev-equivalence between M and M .
M � M ′, M � M and M � M ′ are defined analogously.

Now our job is to find, for each B&P or FVEL model, a model of the other
type which is ev-equivalent to it, that is, that represents the same evidence7.
Since B&P models are single-agent, we assume from now on that all models are
single-agent. Much of the conversions between models that follow will be about
removing aspects of evidence that are not represented in the other type of model.

4.1 From B&P to FVEL Models

Consider the following conversion from B&P to FVEL models:

Definition 15. Let M = (S,E, V ) be a B&P model. Define the FVEL model
FV(M) = (S,R,V ), where R = {(s, s) | s ∈ S} and for all p ∈ At and states
s ∈ S: 1 ∈ V (p, s) iff M, s |= �p; and 0 ∈ V (p, s) iff M, s |= �¬p.

We cannot expect a complete correspondence between M and FV(M) in terms
of satisfaction of formulas (in the vein of Proposition 11), for while proposi-
tional formulas in B&P models represent facts and � formulas represent the
agent’s evidence, inFVELpropositional formulas represent generally available evi-
dence, while � formulas represent agents’ knowledge of such evidence. This pub-
lic/personal distinction for evidence inFVELwouldbe superfluous inB&Pmodels,
since they are notmulti-agent.Nevertheless, we have the following correspondence:

Proposition 6. For any B&P model M = (S,E, V ) and its FVEL counterpart
FV(M), for all states s ∈ S and all literals l ∈ {p,¬p}, with p ∈ At, we have:

M, s |= �l iff FV(M), s |= l iff FV(M), s |= �l

Corollary 1. For any B&P model M , M � FV(M).
6 In other words: if there is evidence for Σ and Σ �FDE ϕ, then there is evidence for ϕ.
7 I opted for Definition 14 instead of an equivalence between �p in B&P and p in

FVEL models, because even though we do restrict FVEL models to the single-agent
case, these models are still multi-agent in nature. So, while M , s |= p indicates that
there is evidence for p (at s), it is only when M , s |= �ap holds that we should think
that an agent a has (knowledge of) this evidence. On the other hand, in single-agent
B&P models there is no semantic difference between there is evidence for p and the
agent has evidence for p.



66 Y. D. Santos

4.2 From FVEL to B&P Models

This direction is less straightforward than the conversion discussed above. Again
we run into the problem of representing a four-valued model as a two-valued one.

Definition 16. Let M = (S,R,V ) be an FVEL model. We build a B&P model
BP(M ) = (S′, E, V ) where S′ = {sv | s ∈ S and v ∈ Valh1

s } and sv ∈ V (p) iff
v(p) = 1. Let C(s) = {tv ∈ S′ | sRt}. E is defined as follows: E(sv) = {S′} ∪
{Xp ⊆ C(s) | Xp �= ∅, p ∈ At; tu ∈ Xp iff M , s |= �p and tu ∈ V (p)} ∪ {X¬p ⊆
C(s) | X¬p �= ∅, p ∈ At; tu ∈ X¬p iff M , s |= �¬p and tu /∈ V (p)}.
Definition 16 creates clusters of states for each original state in M (similarly to
the technique for cluster consolidations). Then, all clusters accessible from a state
sv are grouped together and “filtered” to form the “pieces of evidence” in E(sv),
one for each literal that is known to be evidence in the corresponding state of the
FVEL model. E.g. if in a state s only evidence for the literal ¬p is known (that is,
M , s |= �¬p), then E(sv) will be {S′,X¬p}, where X¬p is a piece of evidence made
up of all states accessible from sv where ¬p holds. See Fig. 4.

p: f,q:t
�¬p,�q

p: t,q:b
�p,�¬q

p: t,q:f
�p,�¬q

s3s2

s1
=⇒

s′
1

s′
2 s′′

2

s′
3

¬p, q
p, q p,¬q

p,¬q

E(s′
1) = {S, {s′

1}}
E(s′

2) = E(s′′
2 ) =

E(s′
3) = {S, {s′

2, s
′′
2 , s

′
3}, {s′′

2 , s
′
3}}

Fig. 4. An example of BP being applied to an FVEL model.

Proposition 7. Let M = (S,R,V ) be a serial FVEL model with BP(M ) =
(S′, E, V ). Then, for all s ∈ S, all v such that sv ∈ S′ and all l ∈ {p,¬p}, with
p ∈ At: M , s |= �l iff BP(M ), sv |= �l.

Corollary 2. For all serial FVEL models M , BP(M ) � M .

4.3 Evaluating the Conversions

Our conversions are satisfactory enough to produce ev-equivalent models, but
unfortunately the following proposition can be easily verified:

Proposition 8. Let M be a B&P model and M be an FVEL model. Then,
neither BP(FV(M)) ∼= M nor FV(BP(M )) ∼= M are guaranteed to hold; where
M ∼= M ′ denote that M is isomorphic to M ′, and similarly for M ∼= M ′.

One reason why the above do not hold in general is simple: BP(M ) has more
states than M if the latter has any state where some atom has value b or n.
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Definition 17. Let M = (S,E, V ) be a B&P model. We define the following
conditions on M :

– Consistent Evidence (CONS) ∀s ∈ S∀X,Y ∈ E(s): if ∀x ∈ X,M, x |= l
then ∃y ∈ Y,M, y |= l, for all literals l ∈ {p,¬p}, p ∈ At;

– Complete Evidence (COMP) ∀s ∈ S∀p ∈ At∃X ∈ E(s) s.t. ∀x ∈
X,M, x |= p or ∀x ∈ X,M, x |= ¬p;

– Good Evidence (GOOD) s ∈ V (p) iff ∃X ∈ E(s) s.t. ∀x ∈ X,M, x |= p
– Simple Evidence (SIMP) ∀s ∈ S,E(s) = {{s}, S}.

Proposition 9. SIMP entails CONS, COMP and GOOD. CONS and COMP
are sufficient and necessary for the preservation of S. CONS, COMP and GOOD
are sufficient (but GOOD is not necessary) for preservation of V . SIMP is suf-
ficient and necessary for preservation of E.

Corollary 3. BP(FV(M)) ∼= M iff SIMP holds.

Definition 18. Let M = (S,R,V ) be an FVEL model. We define the following
conditions on M :

– Classicality (CLAS) ∀p ∈ At,∀s ∈ S : V (p, s) ∈ {t, f};
– Knowledge of Evidence (KNOW) M , s |= p iff M , s |= �p; M , s |= ¬p

iff M , s |= �¬p;
– Only-Reflexivity (REFL) R = {(s, s) | s ∈ S}
Proposition 10. REFL entails KNOW. CLAS is necessary and sufficient for
preservation of S. CLAS and KNOW are sufficient (but KNOW is not neces-
sary) for preservation of V . CLAS and REFL are the necessary and sufficient
conditions for preservation of R.

Corollary 4. FV(BP(M )) ∼= M iff CLAS and REFL hold.

The desired correspondences only hold under fairly strong conditions. These
conditions are not arbitrary restrictions, but idealising conditions8. This means
that B&P and FVEL models have perfectly (ev-)equivalent counterparts under
idealised scenarios, where evidence is factive, always present, complete and con-
sistent, and where agents have perfect knowledge of what evidence is available.
This correspondence breaks when we deviate from these assumptions to cover
situations of imperfect evidence and imperfect knowledge. Now we can compare
the two consolidations.

5 Comparing Consolidations

In [12], a method for obtaining a relation from B&P models is provided:

8 S is added in SIMP and in the evidence sets generated by BP just to comply with
the last condition of Definition 11. If we remove it from both places, Proposition 9
still holds.
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Definition 19. [12] Given a B&P model M = (S,E, V ), define BE ⊆ S × S by
sBEt if t ∈ ⋂ X for some X ∈ SceE(s).

Consider a monomodal language LB with B as its modality.

Proposition 11. Let M = (S,E, V ) be a B&P model and M ! = (S,BE , V ) its
relational counterpart. Then, for all ϕ ∈ LB and s ∈ S: M, s |= ϕ iff M !, s |= ϕ.

This effectively proves that M ! is the consolidation for M found “implicitly” in
[12]. Now given two models M (B&P) and M (FVEL) such that M � M , how
does M ! compare to M ! (M ’s cautious consolidation)?

Definition 20. Given M � M under bijection f , we say that V matches V iff:
for all p ∈ At and all s′ ∈ S′, V (p, s′) ∈ {t, f}; and s ∈ V (p) iff V (p, f(s)) = t.

Proposition 12. Let M � M under bijection f . M ! ∼= M ! iff: V matches V ,
and f(s)Rf(t) iff t ∈ ⋂ X for some X ∈ SceE(s).

So the conditions for consolidations of ev-equivalent B&P and FVEL models to
be isomorphic are rather strong: they must have matching valuations and M ’s
relation has to mirror BE .

6 Conclusion

We introduced consolidation as the process of forming beliefs from a given evi-
dential state, formally represented by transformations from evidential (FVEL and
B&P) models into doxastic Kripke models. We established the grounds for com-
parison between these different models, and then found the conditions under which
their consolidations are isomorphic. Future work can use bisimilarity instead of iso-
morphism, and extend this methodology to other evidence logics. Would it be pos-
sible to define belief without resorting to two-valued Kripke models? Certainly, as
all information used in the consolidation is already in the initial evidential models.
The rationale here is that, since Kripke models are standard and widely-accepted
formal representations of belief, we should be able to represent the beliefs that
implicitly exist in evidential models using this tool. We also wanted to highlight
the process of transforming evidence into beliefs.

The dynamic perspective on consolidations allows us to study, for example,
the complexity of these operations, which is important if we are concerned with
real agents forming beliefs from imperfect data. It is clear that consolidations of
FVEL models tend to be much larger than those of B&P models, but, on the
other hand, might be much easier to compute, given that B&P consolidations
rely on the hard-to-compute concept of maximally consistent sets. FVEL models
can also deal with multiple agents, and accept a function from status of evidence
to doxastic attitude as a parameter (in this case, function h1 ∈ H), allowing for
some flexibility in consolidation policies. It would also be interesting to see if a
consolidation like B&P’s, where maximal consistent evidence sets are taken into
account, would be possible in the context of FVEL. Is the converse possible: to
apply the idea of H functions in B&P models?
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A future extension of this work taking computational costs of consolidations
into account would be in line with other work that tries to fight “logical omni-
science” or to model realistic resource-bounded agents [1–3,7,18]. Other aspects
of evidence can also be considered, such as the amount of evidence for or against
a certain proposition, the reliability of a source or a piece of evidence, etc.

Agents form different beliefs in ev-equivalent situations when departing from
an FVEL or a B&P model. Part of this is explained by the fact that these log-
ics do not represent exactly the same class of evidence situations. But clearly
the consolidation policies also differ. Is one better than the other? At first
glance, both seem to be reasonable, but more investigation could be done in this
direction.

Moreover, how are changes in an FVEL (or other) evidence model reflected
in its consolidation? Evidence dynamics for B&P logic are explored in [14], in
line with other dynamic logics of knowledge update and belief revision [9–11,16,
21,26,28,31].
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Abstract. In this paper we use formal argumentation to design non-
monotonic deontic logics, based on two monotonic deontic logics. In par-
ticular, we use the structured argumentation theory ASPIC+ to define
non-monotonic variants of well-understood modal logics. We illustrate
the approach using argumentation about free-choice permission.

1 Using ASPIC+ to Design Non-monotonic Deontic
Logics

Deontic logic is the logic of obligation, prohibition and permission [7,18]. Many
axioms of deontic logic have been criticised, and non-monotonic techniques have
been applied widely [3,11,17,20,21,23]. In this paper we consider the use of
so-called ASPIC+ to design deontic argumentation systems and non-monotonic
deontic logics and, in particular, to study strong and free-choice permission [9].

Modgil and Prakken [15] observe that “in ASPIC+ and its predecessors, going
back to the seminal work of John Pollock, arguments can be formed by combining
strict and defeasible inference rules and conflicts between arguments can be
resolved in terms of a preference relation on arguments. This results in abstract
argumentation frameworks (a set of arguments with a binary relation of defeat),
so that arguments can be evaluated with the theory of abstract argumentation.”

In this paper, we use argumentation systems to define non-monotonic logics.
Our ASPIC+-based methodology consists of three steps.

Arguments We take literally Modgil and Prakken’s idea that “Rule-based
approaches in general do not adopt a single base logic but two base log-
ics, one for the strict and one for the defeasible rules” [15]. We use monotonic
modal logics as our base logics with Hilbert-style proof theory.
Strict arguments use only strict rules defined in terms of a “lower bound”

logic, in the sense that it defines the minimal inferences which must be
made. We use a variant of Von Wright’s standard deontic logic [24].
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Defeasible arguments use also defeasible rules defined in terms of an
“upper bound” logic in the sense that it defines all possible inferences
that can be made. We use a variant of Van Benthem’s logic of strong
permission [4].

Preferences among arguments can be generic or depend on the logical lan-
guages used to build the arguments. We focus on Argument types defined
in ASPIC+ which distinguish between defeasible and plausible arguments.

Nonmonotonic inference relations can be based on skeptical or credulous
relation, and on one of the argumentation semantics.

The layout of this paper is as follows. We first introduce the running exam-
ple of this paper. Then we introduce the monotonic deontic logics, and we use
the logics to define ASPIC+ argumentation systems. Finally we define the non-
monotonic deontic logics in terms of the argumentation systems.

2 Running Example: Free-Choice Permission

There are many ways in which the relation between obligation and permission
has been defined. For example, in some papers permission is used to define excep-
tions to general obligations and prohibitions, and in such approaches, permission
overrides obligation [13]. In other approaches, we can see examples where obli-
gations and prohibitions override permissions [4,10]. For example, the general
norm that product placement in TV programs is strongly permitted, is over-
ridden by the particular case that product placement is forbidden in children
programs. In this paper we work with an example where this latter is the case.

In particular, we take standard deontic logic without weak permission as our
logic for strict rules, and for the defeasible rules we use an extension of this logic
with strong permission, proposed by Van Benthem [4]. We consider three com-
binations of monotonic deontic logics and three ways to define the preferences,
and we only consider stable semantics. So we define six non-monotonic deontic
logics in this paper.

In Van Benthem’s logic, what is obligated is the necessary condition of being
ideal, while what is permitted is the sufficient condition for ideality. An intuitive
example is the so-called “free-choice permission” [10]. If having a tea or having a
coffee is permitted, then free-choice implies that both cases are permitted. Here
we consider the following example in legal reasoning, and see that in what sense
of non-monotonicity we say a free-choice permission holds or not.

1. It is permitted to freely use any of your property, for example, a knife.
2. It is forbidden to murder.

The question now is, is it permitted to use your knife to kill someone? The
solution we adopt is that it is permitted to use the knife in normal situations,
in sense of being non-defeated in ASPIC+. So we can derive that (normally):

3. Knifes are not used to murder.
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If we now add the information that “The knife is used to murder”, or “The
knife can be used to murder”, and in addition we prefer this statement over
the previous ones, then we would expect no longer to derive that (normally)
knifes are not used for murder, and neither we would derive that knifed murder
is permitted. However, we would still expect to predict that, for example, knifes
can be used to cut the bread, because no more preferable argument for the
contrary exists.

From a formal point of view, the problem of free-choice permission we focus
on in this paper is the derivation of P (φ ∧ ψ) from Pφ. It has been observed by
Glavaničová [8] that this is a strong rule which should not hold in case it leads
to inconsistency. We adopt ASPIC+ to explain it.

Example 1 (Knifed murder). Our aim is to define a logic such that the defeasible
permission to use the knife, Pk, can infer the permission to cut the bread with
the knife, P (k∧b), but in some exceptional cases, for instance in case of murder,
{Pk,O¬m} we cannot infer P (k∧m). In the latter case, without the prohibition
and in analogy with cutting the bread, the logic also derives P (k ∧ m) from Pk
only, and thus the logic is non-monotonic.

Each level of our approach can be analysed using the methods of that disci-
pline, i.e. monotonic logic (e.g. possible world semantics), argumentation theory
can be studied using rationality postulates [6], and non-monotonic inference can
be analysed using, for example, the approach advocated by Kraus et al. [12].

3 Step 1: Arguments Based on Two Monotonic Logics

We use two monotonic logics to define the strict and defeasible rules of ASPIC+,
and use the crude approach to define arguments [15]: “A crude way is to simply
put all valid propositional (or first-order) inferences over your language of choice
in [the strict rules] Rs. So if a propositional language has been chosen, then
Rs can be defined as follows (where $PL denotes standard propositional-logic
consequence). For any finite S Ď L and any φ ∈ L: S → φ ∈ Rs if and only
if S $PL φ.” This method can be applied to define defeasible rules, and this
application, as stated in [15], is based on some cognitional or rational criteria.
By using the crude method to define strict rules in the lower-bounded logic S−

and to defeasible rules in the upper-bounded logic S+, even when Hilbert style
derivations are quite long, the arguments can be short.

Besides this way to define the defeasible rules, all the other definitions in
this section like the arguments and the extensions are standard and taken from
the handbook article of Modgil and Prakken. In particular, we consider three
instantiations of ASPIC+, by taking different monotonic logics (D−1 or D−2

defined later) as the basic logic and then treating either merely FCP or it together
with OWP (in Table 1) as defeasible. In this section, we define the notion of
argumentation theory. In the following section we use the argumentation theory
to define non-monotonic logic as a combination of two selected monotonic logics
S−,S+.
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We first present a version of Van Benthem’s deontic logic of obligation and
permission [4]. This logic is different than Standard Deontic Logic [18], in the
latter obligation and permission are a dual pair, while in the former they are
the necessary and sufficient conditions of being ideal. The modal language con-
tains the classic negation ¬, conjunction ∧, universal modality �, as well as two
additional deontic modalities, O for obligation and P for permission.

Definition 1 (Deontic Language). Let p be any element of a given (count-
able) set Prop of atomic propositions. The deontic language L of modal formulas
is defined as follows:

φ := p | ¬φ | (φ ∧ φ) | �φ | Oφ | Pφ

The disjunction _, the material condition → and the existential modality ♦ are
defined as usual: φ _ ψ := ¬(¬φ ∧ ¬ψ), φ → ψ := ¬(φ ∧ ¬ψ) and ♦φ := ¬�¬φ.

The axiomatization presented in Table 1 is a variant of Van Benthem’s
logic [4]. We use D to denote it. D not only takes obligation and universal
modality into account, but also considers free-choice permission and the con-
nection between obligation and permission. In the logic D, except the essential
K�, E�, T�, 4�, B�, and NEC�, the axioms �O and �P are the core of the
universal modality in normal modal logic. Moreover, �O claims that what is
always the case is obligatory, but �P leaves the space for what is never the case
to be permitted. The axiom DO maintains obligation to be ideally consistent as
usual. OWP states that “obligation as the weakest permission” [1,4]. RFC is one
direction of free-choice permission, and FCP is the other. For further information
about the logic and its motivations, see Van Benthem’s paper.

Table 1. The logic D of obligation and permission.

- All instances of propositional tautologies - K�: �(φ → ψ) → (�φ → �ψ)

- E�: �φ ↔ ¬♦¬φ - T�: �φ → φ

- 4�: �φ → ��φ - B�: φ → �♦φ

- �O: �φ → Oφ - �P : �¬φ → Pφ

- DO: ¬(Oφ ∧ O¬φ) - OWP: Oφ ∧ Pψ → �(ψ → φ)

- RFC: Pφ ∧ Pψ → P (φ ψ) - FCP: Pψ ∧ �(φ → ψ) → Pφ

- MP: φ, φ → ψ/ψ - NEC�: φ/�φ

where � ∈ {�, O}

In this paper we consider sub-systems of D that contain a strict subset of
the axioms and inference rules of D. In particular, we define D−1 as the axiom-
atization which does not contain FCP, and we define D−2 as the axiomatization
which does not contain FCP and OWP.

We define the notions of derivation based on modal logic S ∈ {D,D−1,D−2}
in the usual way, see e.g. [5]. Note that modal logic provides two related kinds
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of derivation according to the application of necessitation, i.e. necessitation can
only be applied to theorems but not to an arbitrary set of formulas. We use both
notions in the formal argumentation theory.

Definition 2 (Derivations without Premises). Let S ∈ {D,D−1,D−2} be
a deontic logic. A derivation for φ in S is a finite sequence φ1, . . . , φn−1, φn such
that φ = φn and for every φi(1 ď i ď n) in this sequence is

1. either an instance of one of the axioms in S;
2. or the result of the application of one of the rules in S to those formulas

appearing before φi.

We write $S φ if there is a derivation for φ in S, or, $ φ when the context
of S is clear. We say φ is a theorem of S or S proves φ. We write Cn(S) as the
set of all theorems of S.

Definition 3 (Derivations from Premises). Let S ∈ {D,D−1,D−2} be a
deontic logic. Given a set Γ of formulas, a derivation for φ from Γ in S is a
finite sequence φ1, . . . , φn−1, φn such that φ = φn and for every φi(1 ď i ď n) in
this sequence

1. either φi ∈ Cn(S) ∪ Γ ;
2. or the result of the application of one of the rules (which is neither NEC�

nor NECO) to those formulas appearing before φi.

We write Γ $S φ if there is a derivation from Γ for φ in S1, or, Γ $ φ when
the context of S is clear. We say this that φ is derivable in S from Γ . We write
CnS(Γ ) as the set of formulas derivable in S from Γ , or Cn(Γ ) if the context
of S is clear.

A system S is consistent iff K �∈ Cn(S); otherwise, inconsistent. A set Γ is
consistent iff K �∈ Cn(Γ ); otherwise, inconsistent. A set Γ ′ Ď Γ is maximally
consistent subset of Γ , denoted as Γ ′ ∈ MC(Γ ′) iff there is no Γ ′′ Ą Γ ′ such
that Γ ′′ is consistent.

The following example explains in what sense in monotonic logics we can
say that Pk and O¬m are in conflict. Notice that the set of Pk and O¬m is
consistent even in D. This matches our intuition. We say that it is not consistent,
as shown below, when it is not normal that using a knife is not a murder, i.e.
♦(k∧m) holds. The conditional will play an important role in the ASPIC+-based
analysis of the running example.

Example 2 (Knifed murder, continued). The following derivation shows that
{Pk,O¬m,♦(k ∧ m)} is inconsistent in D−1 or D.

1. O¬m ∧ ♦(k ∧ m) assumption
2. O¬m ∧ Pk → �(k → ¬m) OWP
3. ♦(k ∧ m) ↔ ¬�(k → ¬m) E�
4. O¬m ∧ ♦(k ∧ m) → ¬Pk 2, 3, MP
5. ¬Pk 1, 4, MP

1 Alternatively, it can be seen as a theorem $S

∧
Γ → φ by the so-called deduction

theorem.
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Since we want to represent {Pk,O¬m,♦(k ∧ m)} in a consistent way, we use D
only to derive conclusions which are defeasible, and we use one of the subsystems
of D to define the monotonic conclusions.

We involve one spirit of ASPIC+ by considering the inference rules which
are uncertain and fallible defeasible rules, while the ones which are unfallible are
strict rules. This type of uncertainty or fallibility is represented by the distinction
between lower-bounded and upper-bounded logics. However, to simplify the issue
addressed, namely, how we can use ASPIC+ to define non-monotonic logics, we
are not necessary to fully adopt all methods in ASPIC+ to define arguments.
We only consider a general knowledge base here. To distinguish the types of
knowledge we leave it to the future work.

Definition 4 (Argumentation Theory). Let L be the deontic language and
(S−;S+) ∈ {(D−2;D−1), (D−2;D), (D−1;D)} be a Cartesian product of two
monotonic logics. An argumentation theory AT based on (S−;S+) is a tuple
(AS,K) where AS is an argumentation system (L, R), K Ď L is a knowledge
base, and R = Rs ∪ Rd is a set of rules, such that

– Rs = {φ1, . . . , φn �→ φ | {φ1, . . . , φn} $S− φ} is the set of strict rules, and
– Rd = {φ1, . . . , φn ñ φ | {φ1, . . . , φn} $S+ φ & {φ1, . . . , φn} �$S− φ} is the

set of defeasible rules.

If the context of (S−;S+) is clear, we mention AT without (S−;S+).

So the requirement of Rs X Rd = H holds.
In contrast to derivations, arguments are different structures. Although each

argument corresponds to a derivation defined as a top rule, the former has to
explicitly consider each step of this derivation as a finite sequence.

Definition 5 (Arguments). Let AT be an argumentation theory with a knowl-
edge base K and an argumentation system (L, R). Given each n ∈ N, the set An

where n ∈ N is defined by induction as follows:

A0 = K

An+1 = An ∪ {B1, . . . , Bm Ź ψ | Bi ∈ An for all i ∈ {1, . . . ,m}}
where for an element B ∈ Ai with i ∈ N:
– If B ∈ K, then Prem(B) = {φ}, Conc(B) = φ, Sub(B) = {φ}, Rulesd(B) =

H, TopRule(B) = undefined where ψ ∈ K.
– If B = B1, . . . , Bm Ź ψ where Ź is �→ then

{Conc(B1), . . . , Conc(Bm)} �→ ψ ∈ Rs with
Prem(B) = Prem(B1) ∪ . . . ∪ Prem(Bm), Conc(B) = ψ,
Sub(B) = Sub(B1) ∪ . . . ∪ Sub(Bm) ∪ {B},
Rulesd(B) = Rulesd(B1) ∪ . . . ∪ Rulesd(Bm),
TopRule(B) = Conc(B1), . . . , Conc(Bm) �→ ψ.

– If B = B1, . . . , Bm Ź ψ where Ź is ñ, then each condition is similar
to the previous item, except that the rule is defeasible and Rulesd(B) =
Rulesd(B1) ∪ . . . ∪ Rulesd(Bm) ∪ {Conc(B1), . . . , Conc(Bm) ñ ψ}.
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We define A =
⋃

n∈N
An as the set of arguments on the basis of AT , and

define Conc(E) = {ϕ Ď Conc(A) | A ∈ E} where E Ď A.

The following example illustrates the arguments in the running example. We
consider the defeats (arrows) in Fig. 1 in the following section.

Example 3 (Knifed murder, continued). We illustrate the argumentation the-
ory in our running example shown in Fig. 1. Let (S−;S+) ∈ {(D−2;D−1),
(D−2;D), (D−1;D)} be a pair of two monotonic logics, and AT be an argumen-
tation theory based on (S−;S+) that takes K = {♦(k ∧ m), O¬m,Pk} where k
(using knife) and m (murder) are atomic propositions. We know that K $S K
for any consistent system S ∈ {D−1,D}. Three arguments refer to the knowl-
edge that it is forbidden to kill (A), it is permitted to use the knife (B), and
knifed murder is possible (C). In the logic D−2, we can derive, for example,
that knifed murder is forbidden from the premise that murder is forbidden. This
derivation is the strict rule to construct the argument A′′′ (in closed circle)
from the knowledge A. Also, TopRule(A′′′) is this derivation. In the stronger
logic D−1, we can derive, for example, that knifed murders are not permitted
from the premises that murder is forbidden and knifed murder is possible. This
derivation as a defeasible rule together with the knowledges A and C construct
the argument A′′ (in densely dashed circle). In the strongest logic D, we can
derive, for example, that knifed murders are permitted (loosely dashed circles
for B′′, B′′′′).

C k m

A O m

A A,C Pk

A A,C P k m

A A O k m

B B P k b

B Pk

B B,C O m

B B P k m

B B,C O k m

C A,B k m

A

A

A

A

B

B

B

B

B

C

C

Fig. 1. It shows some of the arguments and defeats. Closed circles are arguments of
D−2, densely dashed circles are arguments of D−1, and loosely dashed circles are
arguments of D. Straight arrows are defeats among these arguments in the rule-based
ordering for S+ = D−2, and the dashed arrows are defeats in all orderings.
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4 Step 2: Preferences Among Arguments

In this paper we consider three orders: universal, rule-based, and premise-based.
They emphasize different perspectives of selecting proper arguments for con-
structing non-monotonic inferences.

Definition 6 (Argument Properties). Let A be an argument and E a set
of arguments. Then A is strict if Rulesd(A) = H; defeasible if Rulesd(A) �= H;
firm if Prem(A) Ď K; plausible if Prem(A) X K �= H. We define Concs(E) =
{Conc(A) | A ∈ E}. The partial order ď rule-based iff we have A ď B iff A is
defeasible; and premise-based iff A ď B iff A is plausible.

We use ďτ to denote the τ -ordering with τ ∈ {r, p}, where r for rule-based and p
for premise-base. Next we introduce the notion of defeat. The first is a rebuttal
while the second is a undermining [15]. In the next section this distinction will
give different consequences in non-monotonic reasoning.

Definition 7 (Argumentation Frameworks). An abstract argumentation
framework AF corresponding to xAT, ďy is a pair (A,D), where D is a set of
pairs of arguments in which argument A defeats argument B is defined as:

– either Conc(A) = ¬φ for some B′ ∈ Sub(B) and TopRule(B′) ∈
Rd, Conc(B′) = φ and A ă B′.

– or Conc(A) = ¬φ for knowledge φ ∈ Prem(B) of B and A ă φ.

As shown in Fig. 1, A′′ rebuts B′′ but B′ does not undermine A′′′ when it is in
the rule-based ordering. This shows a case of obligation overriding permission
but not vice versa. In the universal and premise-based ordering, we then have
permission overrides obligation, that is B′ undermines A′′′.

Definition 8 (Dung Extensions). Let AF = (A,D) and E Ď A is a set of
arguments. Then

– E is conflict-free iff ∀A,B ∈ E we have (A,B) ∈ D.
– A ∈ A is acceptable w.r.t. E iff when B ∈ A such that (B,A) ∈ D then

∃C ∈ E such that (C,B) ∈ D.
– E is an admissible set iff E is conflict-free and if A ∈ E then A is acceptable

w.r.t. E.
– E is a complete extension iff E is admissible and if A ∈ A is acceptable w.r.t.

E then A ∈ E.
– E is a stable extension iff E is conflict-free and ∀B �∈ E ∃A ∈ E such that

(A,B) ∈ D.

The following example illustrates a different sense of consistency in ASPIC+

by using stable extensions, in order to explain, given the inconsistent knowledge
base K, why B ñ P (k ∧ m) is sometimes defeated and why B ñ P (k ∧ b) is
always non-defeated.
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Example 4 (Knifed murder, continued). Consider the arrows in Fig. 1. The
straight arrows represent defeat relations under the rule-based ordering, and the
dashed arrows represent additional defeat relations under the premise-based or
universal ordering. Under the rule-based ordering the arguments A, B and C will
not be defeated and thus in every extension, whereas in the premise-based or uni-
versal ordering, they will not. For this reason, we prefer the rule-based ordering
in this example. Furthermore, under the rule-based ordering, we at least have two
stable extensions, one contains B ñ P (k ∧ m) and another A,C ñ ¬P (k ∧ m).
As B′′′′ = B ñ P (k ∧ b) will be non-defeated, we have B′′′′ in every stable
extension. Similarly, arguments in form of A1, . . . , An �→ Pk _ O¬m _ ♦(k ∧ m)
are contained in every stable extension.

Apart from comparing plausible and defeasible arguments in the preference
ordering, factual statements can be preferred over deontic statements, prohibi-
tions over permissions, or vice versa. We leave such further investigations for the
journal extension of this paper.

5 Step 3: Designing Non-monotonic Logics

Our non-monotonic logics are designed by using the stable extensions regarding
to different monotonic logics and to different orderings. In order to do so, the
following proposition provides a guideline to search for these stable extensions.
In the case of universal/premise-based ordering, strict rules are as equally prefer-
able as defeasible rules. So a stable extension can be considered as a maximally
consistent subset of the knowledge base K. We call this the undermining mech-
anism, see e.g. [2,22]. But this is not enough to capture the case of rule-based
ordering, in which the defeasible argument is less preferable than the others.
So the second item of this proposition provides a general method to construct
the desired extensions, stable extensions. We construct each stable extension in
the style of Lindenbaum’s Lemma [5]. That is, we first consider the maximally
consistent subset K ′ of the knowledge base w.r.t. the lower-bounded logic S− for
strict rules, and then a consistent subset of K ′ w.r.t. the upper-bounded logic
S+ for defeasible rules, such that no argument w.r.t. S+ defeat that w.r.t. S−

and it is a maximal set satisfying these two conditions. This is called the rebuttal
mechanism. See the following for details.

Proposition 1.2 Consider the deontic languageL and a combination of twomono-
tonic logics (S−;S+) ∈ {(D−2;D−1), (D−2;D), (D−1;D)}. Let AF correspond-
ing to xAT, ďτ y be an abstract argumentation framework (A,D), such that AT is
based on (S−;S+), K is a knowledge base, and τ ∈ {p, r}. We define F (D) =
Prem(D) ∪ {Conc(D)} where D ∈ A. Let F (E) =

⋃{F (D) | D ∈ E Ď A}.

2 For the proof please check: https://pan.zju.edu.cn/share/793a363c53083fbf2c00433b1b

.

https://pan.zju.edu.cn/share/793a363c53083fbf2c00433b1b.
https://pan.zju.edu.cn/share/793a363c53083fbf2c00433b1b.
https://pan.zju.edu.cn/share/793a363c53083fbf2c00433b1b.
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1. When τ = p then E = {D ∈ A | Conc(D) ∈ CnS+(Γ )} is a stable extension
if and only if Γ is a maximally consistent subset of the knowledge base K in
AT w.r.t. S+.

2. We define E1 = {D ∈ A | F (D) Ď CnS−(Γ1)} where Γ1 is a maximally
consistent subset of K w.r.t. S−. Let E2 = {D ∈ A | F (D) Ď CnS+(Γ1)}
such that (i) F (D) is consistent w.r.t. S+; (ii) F (D)∪{ϕ} is consistent w.r.t.
S− where ϕ ∈ CnS−(Γ1); (iii) there is no Γ Ą F (D) such that Γ is consistent
w.r.t. S+, and for any ϕ ∈ CnS−(Γ1) we have Γ ∪ {ϕ} be S−-consistent. If
τ ∈ {p, r} then E = E1 ∪ E2 is a stable extension.

Given the knowledge base K = {Pk,O¬m,♦(k ∧ m)} of the running example,
ASPIC+ provides a mechanism to decide whether the two arguments A,C ñ
¬P (k ∧ m) and A,C ñ ¬Pk can be accepted. In the case of premise-based, the
undermining together with stability is a mechanism to ensure that in conflict
like K the maximally consistent subsets form the stable extensions. In the case
of rule-based ordering, we cannot use the undermining mechanism to ensure
that we derive the first but not the second. Instead, we need to use the rebuttal
mechanism. Rebuttal corresponds to closed world assumption. So the above two
arguments hold, unless there is a proof to the contrary. That is how the two are
then distinguished in the logics.

We now present the central definition of the paper, namely the definition of
the non-monotonic logic in terms of the formal argumentation theory. This is well
in line with current practice in ASPIC+. We first take the desired conclusions
in each stable extension (as shown in Proposition 1) and then the intersection
of all the stable extensions.

Definition 9 (Non-Monotonic Inferences). Let Γ Ď L, φ ∈ L, (S−;S+) ∈
{(D−2;D−1), (D−2;D), (D−1;D)} be a Cartesian product of two monotonic log-
ics, and ďτ be a τ -ordering such that τ ∈ {r, p}. Let AT be the Γ -argumentation
theory based on (S−;S+) iff the argumentation theory AT obtains with K = Γ ,
and AF τ = xAT, ďτ y. The non-monotonic inference ||„τ

S−;S+ is defined as fol-
lows:

– Γ ||„τ
S−;S+φ iff every stable extension of the Γ -AT based on (S−;S+) corre-

sponded by AF τ contains an argument A with Conc(A) = φ.

We define the closure operator corresponding to this inference relation as usual:
Cτ
S−;S+(Γ ) = {φ | Γ ||„τ

S−;S+φ}. Moreover, we write ||„τ
S−;S+φ when H||„τ

S−;S+φ.

The resulting non-monotonic inference relations are standard relations among
sets of formulas of the logical language, i.e. they no longer refer to ASPIC+. An
alternative way to define non-monotonic logics is to first consider the intersection
of all stable extensions and then the conclusions. For instance, Pk _ O¬m _
♦(k ∧ m) is an element in Cτ

D−2;D
({Pk,O¬m,♦(k ∧ m)} where τ ∈ {p, r}. If the

proposed order is reversed, this cannot be inferred. Because it is possible to have
many different arguments which contain the same conclusion but from different
premises.



From Classical to Non-monotonic Deontic Logic Using ASPIC+ 81

The following proposition offers a detailed explanation of the mechanisms we
proposed. First, the undermining mechanism states that the non-monotonic con-
sequences are the intersection of all maximally consistent subsets of the knowl-
edge base under the universal or premise-based ordering. Second, and more gen-
erally, the rebuttal mechanism states that the non-monotonic consequences are
encased by all unions of a maximally consistent subset of the knowledge base
w.r.t. the lower-bounded logic and a consistent subset of it w.r.t. the upper-
bounded logic in certain maximal behavior.

Proposition 2. Let Γ Ď L, (S−;S+) ∈ {(D−2;D−1), (D−2;D), (D−1;D)} be
a Cartesian product of two monotonic logics, ďτ be a τ -ordering such that τ ∈
{r, p}, and K be a knowledge base of AT . Then

1. Cτ
S−;S+(K) =

⋂
Γ∈MC(K) CnS+(Γ ), where τ = p.

2. We define Γ ′ ∈ M(Γ ) as follows: (i) Γ ′ is a consistent subset of Γ w.r.t. S+,
(ii) CnS+(Γ ′) is consistent with ϕ w.r.t. S− where ϕ ∈ CnS−(Γ ), and (iii)
there is no Γ ′′ Ď Γ ′ such that Γ ′′ is S+-consistent and for all ϕ ∈ CnS−(Γ )
we have Γ ′′ ∪ {ϕ} be S−-consistent. Then

Cr
S−;S+(K) =

⋂

Γ∈MC(K)

⋂

Γ ′∈M(Γ )

(CnS−(Γ ) ∪ CnS+(Γ ′)),

where τ ∈ {r, p}.
To prove Proposition 2, as inspired by Proposition 1, we first consider the maxi-
mally consistent subset of the knowledge base w.r.t the lower-bounded logic S−,
and then consider the consistent subset of the knowledge base w.r.t. the upper-
bounded logic S+, such that this set is maximal in the sense that it is consistent
with each element of the previous set w.r.t. the lower-bounded logic. Moreover,
Proposition 2.2 illustrates a new understanding of maximality of consistency,
which not only has to consider the consistency of the upper-bounded logic but
also the consistency with each element in the lower-bounded logic.

A formal analysis of the non-monotonic inference relation is left to further
research, as well as the development of alternative non-monotonic relations in
terms of the formal argumentation theory.

Example 5 (Knifed murder, continued). Given the set K = {♦(k∧m), O¬m,Pk}
as the premises, we have different non-monotonic consequences shown in Table 2,
depending on the combinations of monotonic logics and the orderings. They are
non-monotonic, in the sense that, even given Pk as one premise, P (k ∧ m) is
excluded in every non-monotonic consequences, while P (k∧b) is a non-monotonic
consequence w.r.t. (D−2;D) under the rule-based ordering.
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Table 2. Examples of the non-monotonic inferences in the case of knifed murder. We
have Tu =

⋂
Γ∈MC(K) CnD−1(Γ ) and T 1

r =
⋂

Γ∈M(K)(CnD−2(K) ∪ CnD−1(Γ )) and

T 2
r =

⋂
Γ∈M(K)(CnD−2(K) ∪ CnD(Γ )).

Order K Example of Consequences {♦(k ∧ m), O¬m, Pk}
(D−2;D−1) p Tu

∨
K

(D−2;D−1) r T 1
r ♦(k ∧ m), O¬m, Pk, O¬(k ∧ m),

∨
K

(D−2;D) p Tu

∨
K

(D−2;D) r T 2
r ♦(k ∧ m), O¬m, Pk, O¬(k ∧ m), P (k ∧ b),

∨
K

(D−1;D) p, r Tu

∨
K

6 Related Work

Concerning the formalization of non-monotonic reasoning about norms, obliga-
tions and permissions, there is a large amount of work. For instance, Horty [11]
formalized the reasoning in the presence of conflicting obligations and reason-
ing with conditional obligations based on default logic and a model preference
logic, Prakken [20] proposed a combination of standard deontic logic with an
early-generation formal argumentation system to formalize defeasible deontic
reasoning, and Prakken and Sartor [21] formulated arguments about norms as
the application of argument schemes to knowledge bases of facts and norms,
among others. Our work is in line with the existing methodology by using non-
monotomic formalisms to deal with the conflicts between norms, obligations and
permissions. Besides this point, our work focuses more on how to capture the
intuition of reasoning about free-choice permission, by using different monotonic
logics (lower bound and upper bound) to define strict rules and defeasible rules,
and different types of arguments (rule-based, premise-based and universal) to
define the preference relation between arguments.

Connecting formal argumentation and deontic logic is an increasingly active
research topic in recent years [19]. In the direction of using argumentation to rep-
resent various non-monotonic logics, Young et al. [25] proposed an approach to
represent prioritized default logic by using ASPIC+. Liao et al. [14] represented
three logics of prioritized norms by using argumentation. While existing works
use argumentation to represent existing non-monotonic logics or non-monotonic
reasoning, this paper uses argumentation to define new logics. A recent work
that is close to our work is by Straßer and Arieli [22], which presented an argu-
mentative approach to normative reasoning by using standard deontic logic as
base logic. Similar to this paper, our logic D−2 is also a variant of standard
deontic logic. The difference is that we use the extension D−1 and D to capture
the permission by using FCP and OWP.
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7 Summary and Concluding Remarks

In this paper, ASPIC+ relates formal argumentation to non-monotonic logic. We
believe this approach benefits both areas. For formal argumentation, the result-
ing non-monotonic logics can be studied to provide new insights in the adopted
argumentation systems, for example in the effect of the adopted argumentation
semantics. For the non-monotonic logics, the underlying argumentation theory
can be used for explaining deontic conclusions. Our case-study with the logic of
obligations and permissions provides first evidence for this.

Within this general ambitious setting, the contributions of this paper are as
follows. First, concerning the definitions, in Definition 4 we show how to use two
logics in ASPIC+, and in Definition 9 we show how to build a non-monotonic
logic on top of ASPIC+. For the formal results, Propositions 1 and 2 characterise
the consequences of the non-monotonic logic. Finally, the example illustrates how
to apply this approach to formalise the analysis of Glavaničová [8] of strong and
free-choice permission.

The relation between the argumentation system and the non-monotonic logic
can be studied in more detail. Consider the possibility of post-rationalization in
law. The models describing decision making as people deliberate and argue and
then, at the end, a group decision is proposed might be considered as naive: we
cannot identify the cases of post-rationalization, where a decision is made first,
then arguments in favour of that decision are sought. The interaction between the
argumentation system and the non-monotonic logic is not a trivial relation where
one is the master and the other is the slave, but both the argumentation system
and the non-monotonic logic should be seen as different conceptualizations with
different concerns, which are related, but one cannot be reduced to the other.

The main tool for studying formal argumentation in the setting of ASPIC+

is based on the use of rationality postulates [6]. It immediately follows from the
two propositions of this paper, that all rationality postulates are satisfied. This
can also be proven as a corollary of the more general theorems of Caminada,
and of Modgil and Prakken.

Our study opens up many lines of further research. For example, as done
by Beirlaen et al. [3], we can consider the alternatives of monotonic combina-
tions, like D minus KO and NECO as the logic for strict rules and SDL minus
weak permission as the logic for defeasible rules. In this case, we can go for the
approach of permission overriding obligation. Second, we can study the sophis-
ticated method rather than the crude method by using the natural deduction
proof theories [16], in which we take axioms as the knowledge base and the others
as the rules for arguments. Also, we then can explore the challenge of obtaining
a normalizing system of natural deduction for deontic logic with the sub-formula
property. Further, we have discussed the distinction of strict/defeasible rules in
this paper, and have checked the relation of the non-monotonic inferences with
the monotonic one. We can distinguish the premises of arguments from strict
to defeasible, and then study the relation with supra-classical logics. We believe
that this future work will bring us an interesting insight of non-monotonicity.
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Abstract. We characterize those doubly ordered frames 〈X, ≤1, ≤2〉
that are embeddable into the canonical frames of their complex algebras
defined by Alasdair Urquhart in his representation theorem for bounded
general lattices [31]. Our result together with the topology-free version of
Urquhart’s representation leads to a discrete (i.e. topology free) duality
for bounded general lattices. We also show that doubly ordered frames
are definable neither in a logic endowed with only a possibility operator
nor a logic with only a sufficiency operator, but in a logic based on mixed
algebras with both a possibility and a sufficiency operator.

1 Introduction

Let A be a class of structures, and B a subclass of A. A representation of A
with respect to B says that every member of A is isomorphic to a member of B.
For algebras, famous examples include

– Every group is isomorphic to a permutation group [2].
– Every Boolean algebra is isomorphic to the algebra of clopen sets of a zero–

dimensional compact topological space [29].
– Every distributive lattice is isomorphic to an algebra of increasing subsets of

a compact totally order disconnected topological space [28].

Many of such theorems embed a class of algebras into a class of subsets of
topological spaces, which, invariably, involves second order constructions. A dif-
ferent approach can be learned from the two kinds of semantics of propositional
modal logic, namely, frame semantics and algebraic semantics. This leads to the
concept of duality via truth, proposed in [25]: Here, a class of algebras and a
class of relational structures (frames) are considered dual, if both are semantics
for the same logic; in this sense, algebras and frames are considered on an equal
footing. More concretely, a discrete duality relates a class Alg of algebras to a
class Frm of frames and vice versa in the following way:

1. With each algebra A from Alg associate a relational structure Cf(A) from
Frm, called the canonical frame of A.

c© Springer-Verlag GmbH Germany, part of Springer Nature 2019
P. Blackburn et al. (Eds.): LORI 2019, LNCS 11813, pp. 86–97, 2019.
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2. With each frame F = 〈U,R, S, . . .〉 from Frm associate an algebra Cm(F)
from Alg, called the complex algebra of F.

3. Prove two representation theorems:
(a) For each A ∈ Alg there is an embedding h : A ↪→ CmCf(A).
(b) For each frame F ∈ Frm there is an embedding k : F ↪→ Cf Cm(F).

Many such discrete dualities have been established for structures in various
areas relevant to the theme of the conference, among others in

– Information logics [3] ,
– Spatial reasoning [10],
– Preference relations [8],
– Apartness frames [7],
– Substructural logics [24].

In [21] applications of discrete duality to prove completeness theorems, corre-
spondence theory, data analysis and reasoning with incomplete information are
outlined. In [22] we presented duality via truth for some nonclassical logics, and
outlined its extension to duality of maps. For a comprehensive treatment and
many examples, the reader is invited to consult [23].

While dualities were found for many classes of algebras based on Boolean
algebras and also on distributive lattices, the known representations of general
lattice frames as canonical frames of their complex algebras all involved some
kind of topology. The earliest duality for general lattices was found by Urquhart
[31], followed by those of Hartung [19], Hartonas and Dunn [18], Ploščica [27]
and others. A first order representation theorem for general lattice frames which
would enable us to prove a discrete duality for bounded lattices, however, was
still missing. In this paper we present such a representation based on Urquhart’s
work. Independently, Hartonas [17] presented a representation based on his con-
struction using frames with two universes introduced in [18]. We note in passing
that formal presentation of nonclassical logics that are considered in philosoph-
ical logic is often based on general lattices.

We also show that doubly ordered sets are not definable by a possibility
operator, neither are they definable by a sufficiency operator, but require both.

2 Notation and First Definitions

Throughout, 〈L,∨,∧, 0, 1〉 is a bounded lattice. If no confusion can arise we shall
identify algebras with their base set. If a ∈ L, then ↓≤ a

df= {b ∈ L : b ≤ a}, and

↑≤ a
df= {b ∈ L : b ≥ a}.

An operator f on a Boolean algebra B is called a possibility operator, if
f(0) = 0, and f(a ∨ b) = f(a) ∨ f(b) for all a, b ∈ B. In this case, 〈B, f〉 is
called a possibility algebra. Similarly, g is a sufficiency operator, if g(0) = 1, and
g(a ∨ b) = g(a) ∧ g(b) for all a, b ∈ B. The pair 〈B, g〉 is called a sufficiency
algebra. A PS algebra is a structure 〈B, f, g〉, where B is a Boolean algebra, f is
a possibility operator, and g a sufficiency operator.
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If R,S are binary relations on a set X and x ∈ X, we set R(x) df= {y : xRy},
and R ; S

df= {〈x, y〉 : (∃z)xRzSy} is the relational composition. The converse
of R is the relation R˘ df= {〈y, x〉 : xRy}.

[R] is the necessity operator and 〈R〉 is the possibility operator induced by
R; in other words, for Y ⊆ X,

[R](Y ) df= {x : R(x) ⊆ Y }, 〈R〉(Y ) df= {x : R(x) ∩ Y �= ∅}. (2.1)

We note that 〈R〉 is completely additive and [R] is completely multiplicative.
We also define the sufficiency operator induced by R as

[[R]](Y ) = {x ∈ X : Y ⊆ R(x)}. (2.2)

The identity relation on X is denoted by 1′. We follow the convention that
embeddings of relational structures are strong. In other words, f : 〈X,R〉 →
〈X ′, R′〉 is an embedding, if it is injective, and f(x)R′f(y) if and only if xRy.

3 Urquhart’s Lattice Representation

If L is not distributive, then prime ideals and prime filters need not exist, and
more involved constructions are required. Urquhart [31] uses filter – ideal pairs
〈F, I〉 instead of prime ideals (or prime filters), where F and I are mutually
maximally disjoint.

The collection of proper filters of L is denoted by F , and the collection of
proper ideals of L is denoted by I. A filter – ideal pair is a pair 〈F, I〉 where
F ∈ F , I ∈ I, and F ∩ I = ∅. A filter – ideal pair 〈F, I〉 is called maximal, if F
is maximally disjoint to I and I is maximally disjoint to F . In other words, if
F ′ ∈ F such that F � F ′, then F ′ ∩ I �= ∅, and if I ′ ∈ I such that I � I ′, then
F ∩ I ′ �= ∅. The following result is decisive:

Lemma 1 [31]. Each filter – ideal pair can be extended to a maximal pair.

Let XL be the set of all maximal filter – ideal pairs. To facilitate notation, if
x ∈ XL with x = 〈F, I〉 we let x1 = F and x2 = I. We define two relations ≤1,≤2

on XL by x ≤i y if and only if xi ⊆ yi. Clearly, ≤1 and ≤2 are quasiorders on
XL. For i = 1, 2 and x ∈ X, we set ↑i x

df= {y : x ≤i y}.
A doubly ordered frame is a structure 〈X,≤1,≤2〉 such that

DO1. ≤1 and ≤2 are quasiorders on X.
DO2. If x ≤1 y and x ≤2 y, then x = y for all x, y ∈ X.

The structure 〈XL,≤1,≤2〉 is called the (Urquhart) canonical frame of L,
denoted by Cf(L). Note that for any Y ⊆ X and i = 1, 2,

[≤i](Y ) ⊆ Y ⊆ 〈≤i〉(Y ), (3.1)

since ≤i is reflexive.
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For Y ⊆ X,

l(Y ) df= {x :↑1 x ∩ Y = ∅} = [≤1](−Y ), (3.2)

r(Y ) df= {x :↑2 x ∩ Y = ∅} = [≤2](−Y ). (3.3)

Y is called an l–stable set, if Y = l(r(Y )). The collection of l–stable sets is
denoted by LX . Y is called an r–stable set, if Y = r(l(Y )). Observe that

l(r(Y )) = l([≤2](−Y )) = [≤1](−[≤2](−Y )) = [≤1]〈≤2〉(Y ). (3.4)

For an l–stable Y we have [≤1](Y ) = Y .
Galois connections play an important role in the theory of ordered sets and

data analysis, see e.g. [11] and [12]. If 〈A,≤〉 and 〈B,�〉 are partially ordered
sets, a Galois connection is a pair of antitone (order reversing) functions f :
A → B, g : B → A such that for all a ∈ A, b ∈ B

b � f(a) ⇐⇒ a ≤ g(b). (3.5)

Lemma 2 [31]. Let (X,≤1,≤2) be a doubly ordered frame. The mappings l and
r form a Galois connection between the lattice of ≤1–increasing subsets of X
and the lattice of ≤2–increasing subsets of X.

Thus, if Y is ≤1–increasing and Z is ≤2–increasing, then Y ⊆ l(Z) if and
only if Z ⊆ r(Y ).

Corollary 1

1. l(Y ) is ≤1–increasing, and r(Y ) is ≤2–increasing.
2. If Y is ≤2 increasing, then l(Y ) is an l–stable set, and if Y is ≤1 increasing,

then r(Y ) is an r–stable set.
3. lr is a closure operator on the ≤1–increasing sets and rl is a closure operator

on the ≤2–increasing sets.

3. is not necessarily true if Y is not increasing: Suppose that X = {x, y},
≤1= 1′ ∪ {〈x, y〉}, and ≤2= 1′. Then, [≤1]〈≤2〉({x}) = ∅.

For Y,Z ∈ LX let

Y ∨X Z
df= [≤1]〈≤2〉(Y ∪ Z), (3.6)

Y ∧X Z
df= Y ∩ Z. (3.7)

Theorem 1 [31]. The structure 〈LX ,∨X ,∧X , ∅,X〉 is a complete bounded
lattice.

We call this structure the (Urquhart) complex algebra of X, and denote it by
Cm(X). Urquhart’s representation theorem now is as follows:

Theorem 2 [31]. Define h : L → 2XL by h(a) df= {x ∈ XL : a ∈ x1}. Then h is
a lattice embedding into CmCf(L).
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4 Modal Definability of Doubly Ordered Frames

A common form of a mathematical theorem states that the truth of some prop-
erties for some objects is a necessary and/or sufficient condition for other prop-
erties to hold for the same or other objects. The treatment of “necessity” has
a reliable foundation in the logic K, but what about formalizing “sufficiency”?
Reducing “sufficiency” grammatically to “necessity” by simply stating that

x is sufficient for q if and only if q is necessary for x

is true, but not useful, as it does not enhance our knowledge. In 1985, Solomon
Passy (under the name Sulejman Tehlikely) [30] presented a sufficiency coun-
terpart K� to K with the unary modal operator � (“window”) and additional
axiom and rule

� �¬(ϕ =⇒ ψ) =⇒ (�¬ϕ =⇒ �¬ψ) (4.1)

If � ϕ, then � �¬ϕ. (4.2)

Let Fml∗ be the set of formulas in the language of K∗. The frame semantics
is given by relational structures 〈X,S, v〉 in such a way that for a valuation
v : Fml∗ → 2X which acts on the Boolean connectives in the usual way; its
action with respect to � is given by

x ∈ v(�ϕ) ⇐⇒ v(ϕ) ⊆ S(x), (4.3)

which may be interpreted as ϕ is sufficient for accessibility from x if and only
if v(ϕ) ⊆ S(x), in other words,

Whenever y |=v ϕ, then xSy.

Assuming the usual interpretation of �, it is easy to see that

〈X,S, v〉, x |= �ϕ ⇐⇒ 〈X,X2 \ S, v〉, x |= �¬ϕ, (4.4)

so that axiomatization, completeness etc. of K� are reducible to the correspond-
ing properties of K. Thus, K∗ has all the positive as well as the negative qualities
of K. Both K and K� are lacking in expressive power, and “necessity and suffi-
ciency split the modal theory into two dual branches each of which spreads over
less than a half of the Boolean realm” [13].

Independently of earlier work by Goldblatt [14], van Benthem [1], Humber-
stone [20] and others, members of the logic group at Sofia University presented a
bimodal logic K˜ which unified the two approaches. Its modal operators are the
normal modality �, the operator � satisfying (4.1), (4.2) and the condition that
the auxiliary operator [U ]ϕ df= �ϕ ∧ �¬ϕ is an S5 modality [13]. Its algebraic
semantics were presented in [9], and a somewhat simplified version in [4].
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While the possibility algebras are the algebraic models of the logic K and
the sufficiency algebras are the algebraic models of its sufficiency counterpart
K�, both are limited in their powers of expression if considered separately. For
example, 〈2X , 〈R〉〉 can express reflexivity by Y ⊆ 〈R〉(Y ) but it cannot express
irreflexivity of R. On the other hand, 〈2X , [[R]]〉 can express irreflexivity by
[[R]](Y ) ⊆ −Y , but not reflexivity. Neither 〈2X , 〈R〉〉 nor 〈2X , [[R]]〉 can express
antisymmetry on its own, but together they can [6]. Other results of definability
in extended modal languages can be found in [16].

In this section we show that condition DO2 in the definition of a doubly
ordered set requires both a possibility and a sufficiency operator to be modally
definable.

If F = 〈X,R1, . . . , Rn〉 and F ′ = 〈X ′, R′
1 . . . , R′

n〉 are binary frames, a map-
ping f : X → X ′ is a bounded morphism if

BM1. xRiy implies f(x)R′
if(y) for all 1 ≤ i ≤ n and x, y ∈ X.

BM2. If f(x)R′
iy

′, then there exists some y ∈ X such that xRiy and f(y) = y′.

f : X → X ′ is a co–bounded morphism if

cBM1. x(−Ri)y implies f(x)(−R′
i)f(y) for all 1 ≤ i ≤ n and x, y ∈ X.

cBM2. If f(x)(−R′
i)y

′, then there is some y ∈ X such that x(−Ri)y and f(y) =
y′.

In the proof of the main theorem, we shall use (part of) the famous Goldblatt–
Thomason Theorem and its analogue for sufficiency structures:

Lemma 3

1. [15, Theorem 3] If a class of frames is definable by a possibility operator, then
it is closed under bounded morphisms.

2. [5, Proposition 9] If a class of frames is definable by a sufficiency operator,
then it is closed under co–bounded morphisms.

Theorem 3

1. The class of doubly ordered frames is not definable by a possibility logic.
2. The class of doubly ordered frames is not definable by a sufficiency logic.
3. The class of doubly ordered frames is definable by a mixed logic.

Proof 1. By Lemma 3(1) it is enough to show that the class is not closed under
bounded morphisms. Let F = 〈X,R1, R2〉 be a frame such that X = {x, y, z},
R1 = 1′ ∪ {〈x, y〉}, and R2 = 1′ ∪ {〈x, z〉}; then, F is a doubly ordered frame.
Next, let F ′ = 〈Y, S1, S2〉, where Y = {s, t}, S1 = 1′ ∪ {〈s, t〉}, and S2

df= S1;
observe that F ′ is not doubly ordered. Let f : X � Y be defined by f(x) =
s, f(y) = f(z) = t (Fig. 1). Clearly, f preserves R1 and R2, and thus, it satisfies
BM 1.
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y z t

x
≤1 ≤2

s

≤1,≤2

f (x) = s, f (y) = f (z) = t

Fig. 1. Doubly ordered frames are not definable by possibility operators

For BM2, let f(u)S1v. We need to find some w ∈ X such that uR1w and
f(w) = v. If v = s, then x = u. If v = s, then set w = x, if v = t, then set
w = y. If f(u) = t, then v = t, and the reflexivity of R1 gives the result. For R2

the procedure is analogous, using z instead of y.
Thus F ′ is a bounded image of a doubly ordered frame. On the other hand,

s �= t implies that F ′ is not doubly ordered.

yx

y

≤1

x

≤2

s

≤1

≤1 and ≥1
t

≤1

s

≤2

≤2 and ≥2
t

≤2

Fig. 2. Doubly ordered frames are not definable by sufficiency operators

2. By Lemma 3(2) it is enough to show that the class of doubly ordered frames
is not closed under co–bounded morphisms. Let X = {x, y}, X ′ = {x, y, s, t} with
the quasiorders shown in Fig. 2. Then, 〈X,≤1,≤2〉 is a doubly ordered frame,
while 〈X ′,≤1,≤2〉 is not. On the other hand, the mapping f : X → X ′ defined
by f(x) = x, f(y) = y is a co–bounded morphism.

3. As the properties of quasi–orders are definable in a logic with a possibility
operator, all we need to express is DO2. Let F = 〈X,≤1,≤2〉 be a frame, where
≤1,≤2 are quasiorders. Consider the statement

(∀Y ⊆ X)〈≤1〉([[≥2]](−Y ) ∩ Y ) ⊆ Y. (4.5)

DO2 ⇒ (4.5): Suppose that F is doubly ordered, i.e. F satisfies DO2. Assume
that there is some Y ⊆ X such that x ∈ 〈≤1〉([[≥2]](−Y )∩Y ) and x �∈ Y . Then,
↑1 x ∩ [[≥2]](−Y ) ∩ Y �= ∅, so there is some y ∈ X such that x ≤1 y and
y ∈ [[≥2]](−Y ) ∩ Y . Now, y ∈ [[≥2]](−Y ) implies that −Y ⊆↓2 y, and thus,
x �∈ Y implies x ≤2 y. DO2 implies x = y which contradicts y ∈ Y, x �∈ Y .
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(4.5) ⇒ DO2: Let x, y ∈ X, x ≤1 y, x ≤2 y, and assume that x �= y. Set
Y

df= X \ {x}. Substituting X \ {x} for Y we obtain the following equivalent
conditions:

〈≤1〉([[≥2]]({x}) ∩ (X \ {x})) ⊆ X \ {x},

x �∈ 〈≤1〉([[≥2]]({x}) ∩ (X \ {x}),
↑1 x ∩ ([[≥2]]({x}) ∩ (X \ {x}) = ∅.

Thus, y �∈ [[≥2]]({x}) ∩ (X \ {x}), and therefore, y �∈ [[≥2]]({x}), since x �= y by
our assumption. On the other hand,

y �∈ [[≥2]]({x}) ⇐⇒ x �∈ (≥2)(y) ⇐⇒ y �≥2 x,

contradicting x ≤2 y. �

5 Representability of Lattice Frames

Urquhart [31] proved that every doubly ordered frame endowed with a suitable
topology can be embedded into the dual frame of its dual lattice. We show below
on a first order level that his conditions suffice to prove that a suitably defined
lattice frame can be embedded into the canonical frame of its complex algebra.

A lattice frame is a doubly ordered frame 〈X,≤1,≤2〉 which satisfies the
following conditions:

LF1. Each element of X is below a ≤1 maximal one and a ≤2 maximal one,
LF2. x �≤1 y ⇒ (∃z)[y ≤1 z and (∀w)(x ≤1 w ⇒ z �≤2 w)],
LF3. x �≤2 y ⇒ (∃z)[y ≤2 z and (∀w)(x ≤2 w ⇒ z �≤1 w)].

LF2 and LF3 are the conditions given by Urquhart [31] for lattices of finite
length. In such lattices, they guarantee embeddability of X into Cf Cm(X).
Indeed, they hold in all canonical frames:

Theorem 4. If L is a lattice, then the structure 〈XL,≤1,≤2〉 is a lattice frame.

Proof. LF1 : By Zorn’s Lemma, each filter (ideal) is contained in a maximal one.
LF2 Assume that LF2 is not true. Then,

(∃x, y)[x �≤1 y and (∀z)(y ≤1 z ⇒ (∃w)(x ≤1 w and z ≤2 w))]. (5.1)

Let x, y ∈ X witness (5.1). Since x1 �⊆ y1, there is some a ∈ x1, a �∈ y1. Thus,
↓≤ a∩y1 = ∅, and so there is a maximal pair z such that y1 ⊆ z1 and a ∈ z2. The
assumption (5.1) implies that there is a maximal pair w such that x1 ⊆ w1 and
z2 ⊆ w2. Since w is a maximal pair, w1 ∩ w2 = ∅ which contradicts a ∈ x1 ∩ z2.
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LF3: This is shown similarly: Assume that LF3 is not true. Then,

(∃x, y)[x �≤2 y and (∀z)(y ≤2 z ⇒ (∃w)(x ≤2 w and z ≤1 w))]. (5.2)

Since x2 �⊆ y2, there is some a ∈ x2, a �∈ y2. Thus, ↑ ≤a∩y2 = ∅, and so there
is a maximal pair z such that y2 ⊆ z2 and a ∈ z1. The assumption (5.2) implies
that there is a maximal pair w such that x2 ⊆ w2 and z1 ⊆ w1. Since w is a
maximal pair, w1 ∩ w2 = ∅ which contradicts a ∈ x2 ∩ z1. �

We can now show the representation theorem for lattice frames. In prepara-
tion we prove a lemma:

Lemma 4. Let LX be the lattice of the l–stable sets of X. Define k1, k2 : X →
2LX by k1(x) df= {Y ∈ LX : x ∈ Y }, and k2(x) df= {Y ∈ LX : ↑2 x ∩ Y = ∅}.
Then, Y ∈ k2(x) if and only if x ∈ r(Y ), and

1. k1(x) is the filter of 2LX generated by ↑1 x.
2. k2(x) is the ideal of 2LX generated by l(↑2 x).

Proof. 1. Clearly, k1(x) is a filter of 2LX . All that remains to be shown is that
↑1 x ∈ LX , i.e. that [≤1]〈≤2〉(↑1 x) =↑1 x.

“⊆”: We show the contrapositive: Suppose that x �≤1 y. By LF2, there is some
z ∈ X such that y ≤1 z and ↑1 x∩ ↑2 z = ∅. This implies that ↑1 y �⊆ 〈≤2〉(↑1 x).

“⊇”: This follows from the fact that [≤1]〈≤2〉 is a closure operator on the
≤1–increasing sets.

Observe that this implies that the smallest l–stable set containing x is ↑1 x
for any x ∈ X.

2. Clearly, k2(x) is an ideal of 2LX . Since ↑2 x is ≤2 – increasing, l(↑2 x) is
l–stable by [23, Lemma 2.8.3(b)]. Finally, suppose that Y ∈ k2(x); it is enough
to show that Y ⊆ l(↑2 x). Now, Y ∈ k2(x) implies that Y ∩ ↑2 x = ∅, i.e.
Y ⊆ − ↑2 x. Therefore, [≤1](Y ) ⊆ [≤1](− ↑2 x) = l(↑2 x), and the facts that
Y = [≤1]〈≤2〉(Y ) and ≤1 is transitive imply that Y = [≤1](Y ). �

Theorem 5. Let X be a lattice frame. Then, X is embeddable into Cf Cm(X).

Proof. Let LX be the lattice of the l–stable sets of X. Define k1, k2 as in Lemma
4, and set k(x) df= 〈k1(x), k2(x)〉. We shall show that

1. For all x, y ∈ X, x ≤i y if and only if ki(x) ⊆ ki(y), i = 1, 2.
2. k is injective.
3. k(x) is a maximal pair of Cm(X).

Preservation of ≤1 and ≤2 is immediate. Conversely, let k1(x) ⊆ k1(y). Since
k1(x) is the filter of LX generated by ↑1 x, and k1(y) is the filter of LX generated
by ↑1 y, we have ↑1 y ⊆↑1 x which implies x ≤1 y. Next, suppose that x �≤2 y.
By LF3, there is some z ∈ X such that y ≤2 z and ↑2 x ∩ ↑1 z = ∅. Then,
↑1 z ∈ k2(x) and ↑1 z �∈ k2(y).

For injectivity, let x �= y and assume k(x) = k(y), i.e. k1(x) = k1(y) and
k2(x) = k2(y). Then, by Lemma 4(1), k1(x) = k1(y) implies ↑1 x =↑1 y, i.e.
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x ≤1 y and y ≤1 x. Since X is doubly ordered we may suppose w.l.o.g. that
x �≤2 y. By LF3 there is some z such that y ≤2 z and ↑2 x ∩ ↑1 z = ∅. Then,
x ∈ r(↑1 z) and y �∈↑1 z, contradicting k2(x) = k2(y).

Clearly, k1(x) ∩ k2(x) = ∅. All that is left to show is that k(x) is a maximal
pair. Assume that F is a filter of LX strictly containing k1(x) and F ∩ k2(x) =
∅. Let Y ∈ F \ k1(x). Since ↑1 x ∈ k1(x) and F is a filter, it follows that
Z

df= Y ∩ ↑1 x ∈ F and Z ⊆↑1 x. Then, t ∈ Z implies x �1 t, and thus, x �≤2 t
for all t ∈ Z. By the assumption we have Z �∈ k2(x), and thus, x �∈ r(Z). Hence,
x �∈ [≤2](−Z), and there is some z such that x ≤2 z and z ∈ Z. This contradicts
x �≤2 t for all t ∈ Z, and thus, k1(x) is maximally disjoint from k2(x).

Finally, we show that k2(x) is maximally disjoint from k1(x). Suppose that
I is an ideal of LX which strictly contains k2(x), and let Y ∈ I \ k2(x). Then,
Y �⊆ l(↑2 x) by Lemma 4(2), and it follows that there is some y ∈ Y with
y �∈ l(↑2 x); hence, ↑1 y ∩ ↑2 �= ∅, and there is some t such that y ≤1 t and x ≤2 t.
Since y ∈ Y , we have ↑1 t ⊆↑1 y ⊆ Y , and Y ∈ I implies that ↑1 t ∈ I \ k2(x);
therefore, l(↑2 x)∨X ↑1 t ∈ I. Now,

l(↑2 x)∨X ↑1 t = [≤1](− ↑2 x)∨X ↑1 t = [≤1]〈≤2〉[≤1]((− ↑2 x)∪ ↑1 t) ∈ I.

Therefore, x ∈ [≤1]〈≤2〉([≤1](− ↑2 x)∪ ↑1 t)

⇐⇒↑1 x ⊆ 〈≤2〉([≤1](− ↑2 x)∪ ↑1 t)
⇐⇒ (∀y)[x ≤1 y ⇒ (∃z)(y ≤2 z and z ∈ ([≤1](− ↑2 x)∪ ↑1 t))]
⇐⇒ (∀y)[x ≤1 y ⇒ (∃z)(y ≤2 z and [(∀u)(z ≤1 u ⇒ x �≤2 u) or t ≤1 z])],
⇐⇒ (∀y)[x ≤1 y ⇒ (∃z)(y ≤2 z and [↑1 z ∩ ↑2 x = ∅ or t ≤1 z])]

For the right hand side, we consider two cases:

1. x = y: Then, setting z = t, we have x ≤2 z by the property of t, and t ≤1 z,
so that x is in the right hand side.

2. x �1 y: Then, x �≤2 y, and LF3 implies that there is some z such that
↑2 x ∩ ↑1 z = ∅.

Thus, the right hand side is fulfilled for all x ≤1 y, and it follows that
x ∈ l(↑2 x)∨X ↑1 t ∈ I. Hence, I ∩ k1(x) �= ∅. �

6 Summary and Outlook

In the present article we have filled a gap in the project of discrete dualities for
various classes of general bounded lattices by defining a general lattice frame and
showing that it is embeddable into the canonical frame of its Urquhart complex
algebra. We have also shown that doubly ordered frames are not definable by
possibility or sufficiency operators alone, but require both.

Future work will include extending the frames by relations corresponding to
various modal logics, and show or disprove that a frame duality exists. In view of



96 I. Düntsch and E. Or�lowska

the representation theorems for lattice based modal (i.e., possibility, necessity,
sufficiency, and dual sufficiency, respectively) algebras presented by Orlowska
and Vakarelov [26], the existence of representation theorem for modal frames
will lead to discrete duality and duality via truth for the corresponding logics.

The two major groups of logics considered in philosophical logic are substruc-
tural logics and paraconsistent logics. For several substructural logics we have a
discrete duality, however, we have not yet considered dualities for paraconsistent
logics. This will also be a task for future work.
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Abstract. Public announcement logic (PAL) is an extension of epistemic logic
with dynamic operators that model the effects of all agents simultaneously and
publicly acquiring the same piece of information. One of the extensions of PAL,
group announcement logic (GAL), allows quantification over (possibly joint)
announcements made by agents. In GAL, it is possible to reason about what
groups can achieve by making such announcements. It seems intuitive that this
notion of coalitional ability should be closely related to the notion of distributed
knowledge, the implicit knowledge of a group. Thus, we study the extension of
GAL with distributed knowledge, and in particular possible interaction properties
between GAL operators and distributed knowledge. The perhaps surprising result
is that there in fact are no interaction properties, contrary to intuition. We make
this claim precise by providing a sound and complete axiomatisation of GAL
with distributed knowledge.

Keywords: Distributed knowledge · Resolved distributed knowledge ·
Group announcement logic · Dynamic epistemic logic

1 Introduction

The main contribution of this paper is extending Group Announcement Logic (GAL)
[1] with distributed knowledge [11], and a sound and complete axiom system for the
resulting logic GALD.

Our motivation for studying this combination of modalities is twofold. First, extend-
ing epistemic logics with quantifiers over information-changing actions [2,7,8,16], of
which GAL is a representative, with group knowledge modalities is an open problem.
Second, the quest for a better understanding of both types of logical operators and
their interaction is interesting in its own right. Distributed knowledge is often intu-
itively understood as closely related to the knowledge the agents would arrive at if they
could communicate their individual knowledge to each other. Deep analyses of this
intuition [4,17,20] shows that it is not always accurate, but when we started investi-
gating GAL with distributed knowledge operator D we nevertheless expected to find
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non-trivial interaction axioms. We consider several plausible candidates for such inter-
action axioms, and show that none of them are actually valid. Then we show that in
fact there are no interaction axioms at all: the axiom system obtained by the indepen-
dent combination of axioms for epistemic logic with distributed knowledge and GAL
is complete. This is contrary to intuition, and therefore an interesting result.

We also consider the relationship between resolved distributed knowledge [4] and
distributed knowledge in the context of announcement logics, and give some prelimi-
nary results on their relative expressive power.

The paper is organised as follows. In the next section we briefly review the techni-
cal background. In Sect. 3 we look at some potential interaction axioms relating group
announcements and group knowledge. In Sect. 4 we present a Hilbert-style axiomatic
system for group announcement logic with distributed knowledge, and show that it is
sound and complete. Resolved distributed knowledge is discussed in Sect. 5, before we
conclude in Sect. 6.

2 Background

In this section, we introduce the necessary background information on epistemic and
group announcement logic.

2.1 Languages

The language of GALD is defined relative to a finite set of agents A and a countable set
of propositional variables P . Below we also define a positive fragment of this language.

Definition 1. The language of group announcement logic with distributed knowledge
and its positive fragment are defined by the following BNFs:

LGALD ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kaϕ | DGϕ | [ϕ]ϕ | [G]ϕ

LGALD+ ϕ+ ::= p | ¬p | ϕ+ ∧ ϕ+ | ϕ+ ∨ ϕ+ | Kaϕ+ | DGϕ+ | [¬ϕ+]ϕ+ | [G]ϕ+

where p ∈ P , a ∈ A and G ⊆ A.

The sublanguage only containing Ka modalities in addition to the propositional opera-
tors and variables is referred to as LEL (epistemic logic) [11], with addition of DG it
becomes LELD, LEL with announcements [ϕ] is referred to as LPAL [19], with DG

as LPALD, and LGALD without DG is LGAL. The intuitive meaning of formulas is
as follows: Kaϕ means that agent a knows that ϕ; DGϕ means that G has distributed
knowledge of ϕ (ϕ is true in the set of states that all agents inG consider possible); [ϕ]ψ
means that if ϕ is true, then after it is announced (and everyone’s knowledge updated by
removing states not satisfying ϕ), ψ is true; [G]ϕ means that after any joint announce-
ment by agents in G of formulas they know, ϕ is true. The quantification in the latter
modality is over conjunctions of formulas of LELD prefixed by Ka for a ∈ G.

Duals are defined as ̂Kaϕ := ¬Ka¬ϕ, 〈ϕ〉ψ := ¬[ϕ]¬ψ, and 〈G〉ϕ := ¬[G]¬ϕ.
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2.2 Models and Bisimulation

Definition 2. An epistemic modelM is a triple (S,∼, V ), where S is a non-empty set of
states, ∼: A → 2S×S assigns to each agent an equivalence relation, and V : P → 2S

is a valuation. If necessary, we refer to the elements of the tuple as SM , ∼M , and V M .
A model M with a designated state s ∈ S is called a pointed model and denoted by

Ms.
Model M is called finite if S is finite. Also, we write M ⊆ N if SM ⊆ SN , ∼M

and V M are results of restricting ∼N and V N to SM , and call M a submodel of N .
An updated model Mϕ is (Sϕ,∼ϕ, V ϕ), where Sϕ = {s ∈ S | Ms |= ϕ}, ∼ϕ

a =
∼a ∩ (Sϕ × Sϕ) for all a ∈ A, and V ϕ(p) = V (p) ∩ Sϕ (|= is given in Definition 5).

For a group G ⊆ A, ∼G denotes
⋂

a∈G ∼a.

Definition 3 (Bisimulation). Let M = (SM ,∼M , V M ) and N = (SN , ∼N , V N ) be
two models. A non-empty binary relation Z ⊆ SM ×SN is called a bisimulation if and
only if for all s ∈ SM and u ∈ SN with (s, u) ∈ Z:

– for all p ∈ P , s ∈ V M (p) if and only if u ∈ V N (p);
– for all a ∈ A and all t ∈ SM : if s ∼M

a t, then there is a v ∈ SN such that u ∼N
a v

and (t, v) ∈ Z;
– for all a ∈ A and all v ∈ SN : if u ∼N

a v, then there is a t ∈ SM such that s ∼M
a t

and (t, v) ∈ Z.

If there is a bisimulation between models M and N linking states s and u, we say
that Ms and Nu are bisimilar, and write Ms � Nu.

Definition 4 (Bisimulation contraction). Let M = (S,∼, V ) be an epistemic model.
The bisimulation contraction of M is the model ‖M‖ = (‖S‖, ‖ ∼ ‖, ‖V ‖), where
‖S‖ = {[s] | s ∈ S} and [s] = {t ∈ S | Ms � Nt}, [s]‖∼‖a[t] if and only if ∃s′ ∈ [s],
∃t′ ∈ [t] such that s′ ∼a t′ in M , and [s] ∈ ‖V ‖(p) if and only if ∃s′ ∈ [s] such that
s′ ∈ V (p).

It is a known result that Ms � ‖M‖[s] [15].

2.3 Semantics of GALD

Let us denote by ψG a formula of the form
∧

a∈G Kaψa where ψa ∈ LEL. We refer to
this fragment as LG

EL. We will also write G to denote
∧

a∈G Ka(p ∨ ¬p).

Definition 5 (Semantics of GALD). LetMs be a pointed epistemic model. The seman-
tics of GALD is defined as follows (boolean cases are as usual and we omit them):

Ms |= Kaϕ iff ∀t ∈ S : s ∼a t implies Mt |= ϕ
Ms |= DGϕ iff ∀t ∈ S : s ∼G t implies Mt |= ϕ
Ms |= [ψ]ϕ iff Ms |= ψ implies Mψ

s |= ϕ
Ms |= [G]ϕ iff ∀ψG : Ms |= [ψG]ϕ

Definition 6 (Validity and satisfiability). ϕ is valid (|= ϕ) if and only if for any
pointed model Ms it holds that Ms |= ϕ. ϕ is satisfiable if and only if there is some Ms

such that Ms |= ϕ.
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2.4 The Positive Fragment

Positive formulas can be considered as a particularly well behaved fragment of public
announcement logic [9]. In particular, they remain true after an announcement.

Definition 7. A formula ϕ is said to be preserved under submodels if and only if Ms |=
ϕ implies Ns |= ϕ for any pointed models Ms and Ns such that Ns ⊆ Ms.

Proposition 1. Formulas of LGALD+ are preserved under submodels.

Proof. Let M = (SM ,∼M , V M ) and N = (SN ,∼N , V N ) be models such that s ∈
SM , s ∈ SN , and Ns ⊆ Ms. Boolean cases, case Kaϕ+, and case [¬ψ+]ϕ+ are proved
in [9, Proposition 8]. We show the remaining two cases DGϕ+ and [G]ϕ+.

Induction hypothesis. If Ms |= ϕ+, then Ns |= ϕ+.
Case DGϕ+. Let Ms |= DGϕ+. By the definition of semantics, this is equivalent

to the fact that ∀t ∈ SM : s ∼G t implies Mt |= ϕ+. The latter implies that ∀t ∈ SN :
s ∼G t implies Mt |= ϕ+. By the induction hypothesis, we have that ∀t ∈ SN : s ∼G t
implies Nt |= ϕ+, which is equivalent to Ns |= DGϕ+.

Case [G]ϕ+. Assume towards a contradiction that Ms |= [G]ϕ+ and Ns �|= [G]ϕ+.
By the duality of group announcements, this is equivalent to Ns |= 〈G〉¬ϕ+, and by
the definition of semantics, the latter is equivalent to ∃ψG : Ns |= 〈ψG〉¬ϕ+, which
equals to Ns |= ψG and NψG

s �|= ϕ+. Now observe that NψG
s ⊆ Ns ⊆ Ms. From that

and the contraposition of the induction hypothesis, it follows that Ms �|= ϕ+. However,
Ms |= [G]ϕ+ implies that Ms |= [G]ϕ+. Finally, Ms |= [G]ϕ+ is equivalent to
Ms |= ϕ+, which contradicts Ms �|= ϕ+.

3 Ability, Announcements, and Group Knowledge

Distributed knowledge is often described as potential individual (or even common)
knowledge, that the individual members of the group can establish “through communi-
cation” or by “pooling their knowledge together”. However, this intuition is in fact not
correct [4]. For example, a group can have distributed knowledge of a formula of the
form p ∧ ¬Kap (sometimes called a Moore sentence [18]), which can never become
individual knowledge in a group that contains agent a [4]. Nevertheless, that doesn’t
mean that there are no interaction properties between group announcements and group
knowledge. Indeed, the natural intuition is that there is. In this section, we consider
possible interaction axioms relating group announcements and group knowledge.

It is known that the following potential axioms are not valid [1]:

– 〈G〉ϕ → DG〈G〉ϕ
– DG〈G〉ϕ → 〈G〉DGϕ

It is also known that the following are valid:

– 〈G〉DGϕ → DG〈G〉ϕ (implied by Proposition 28 of [1] and the fact that knowledge
de re implies knowledge de dicto)

– DG〈G〉ϕ → 〈G〉ϕ (distributed knowledge is veridical)



102 R. Galimullin et al.

Consider weaker properties which involve ‘everybody knows’ operator EG where
EGϕ :=

∧

a∈G Kaϕ. These properties encapsulate the intuition that distributed knowl-
edge can be made explicit through public communication. It is known that the following
is not valid:

– DGϕ → 〈G〉EGϕ (take ϕ := p ∧ ¬Kap where a ∈ G [4])

The other direction also does not hold:

Fact 1. 〈G〉EGϕ → DGϕ is not valid.

Proof. Consider Fig. 1.

¬p
s

p
t

p
u

ab ¬p
s

p
t

a

Fig. 1. Models M and Mψ{a,b}

Let ϕ := Kbp ∨ Kb¬p and ψ{a,b} := Ka(p → Kbp) ∧ Kb(p ∨ ¬p). We have that

Ms |= 〈ψ{a,b}〉E{a,b}ϕ, which is equivalent to Ms |= ψ{a,b} and M
ψ{a,b}
s |= E{a,b}ϕ.

On the other hand, it is easy to verify that Ms �|= D{a,b}ϕ as the only ∼{a,b}-accessible
state is s itself, and Ms �|= ϕ.

In general, implicit knowledge in a group cannot be made explicit via public com-
munication. However, there is an exception. Positive formulas can be made known on
bisimulation contracted models (this restriction is not surprising given analysis in [17]).

Fact 2. DGϕ+ → 〈G〉EGϕ+ is valid on finite bisimulation contracted models.

Proof. Let Ms |= DGϕ+ for an arbitrary finite bisimulation contracted Ms. Since dis-
tributed knowledge is veridical, the latter implies Ms |= ϕ+. Now let us a consider the
maximally informative announcement by agents from G. Since Ms is finite and bisim-
ulation contracted, each state in the model can be uniquely described by a characteristic
formula. Moreover, disjunctions of these formulas correspond to sets of states. Agents
from G can announce characteristic formulas that describe their equivalence classes
and include s, i.e. [s]a ∩ . . . ∩ [s]b for a, . . . , b ∈ G (see [3,13] for details). In the
resulting model MψG

s , relation ∼G on set of states SψG is universal. Moreover, since
ϕ+ is preserved under submodels, we have that MψG

s |= EGϕ+, and, consequently,
Ms |= 〈G〉EGϕ+.

The restriction to finite bisimulation contracted models is essential in the previous
proposition.

Fact 3. DGϕ+ → 〈G〉EGϕ+ is not valid.

Proof. Consider the model in Fig. 2. It is easy to check that Ms |= D{a,b}p and Ms �|=
〈{a, b}〉E{a,b}p. Indeed, any announcement by a that preserves {s, t} also preserves
{u, v}. The same holds for agent b and sets {s, u} and {t, v}.
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4 Proof System for GALD

In this section, we provide a sound and complete axiomatisation for GALD. Our proofs
follow general strategies of proofs from [1,5,22].

4.1 Axiomatisation of GALD

In order to provide the proof system, we first define necessity forms [14].

Definition 8. Necessity forms are defined by the following grammar:

η(�) ::= � | ϕ → η(�) | Kaη(�) | DGη(�) | [ϕ]η(�)

where ϕ ∈ LGALD, and � has a unique occurrence in η(�). The result of substituting ϕ
for � in η is denoted by η(ϕ).

Definition 9. The axiomatisation of GALD is comprised of axiom systems for EL [11],
PAL [10], GAL [1], and PALD [22].

(A0) Propositional tautologies (A11) [ϕ]p ↔ (ϕ → p)
(A1) Ka(ϕ → ψ) → Kaϕ → Kaψ (A12) [ϕ]¬ψ ↔ (ϕ → ¬[ϕ]ψ)
(A2) Kaϕ → ϕ (A13) [ϕ](ψ ∧ χ) ↔ ([ϕ]ψ ∧ [ϕ]χ)
(A3) Kaϕ → KaKaϕ (A14) [ϕ]Kaψ ↔ (ϕ → Ka[ϕ]ψ)
(A4) ¬Kaϕ → Ka¬Kaϕ (A15) [ϕ]DGψ ↔ (ϕ → DG[ϕ]ψ)
(A5) DG(ϕ → ψ) → DGϕ → DGψ (A16) [ϕ][ψ]χ ↔ [ϕ ∧ [ϕ]ψ]χ
(A6) DGϕ → ϕ (A17) [G]ϕ → [ψG]ϕ
(A7) DGϕ → DGDGϕ (R0) � ϕ → ψ,� ϕ ⇒� ψ
(A8) ¬DGϕ → DG¬DGϕ (R1) � ϕ ⇒� Kaϕ
(A9) Daϕ ↔ Kaϕ (R2) � ϕ ⇒� [G]ϕ
(A10) DGϕ → DHϕ, if G ⊆ H (R3) ∀ψG :� η([ψG]ϕ) ⇒� η([G]ϕ)

We denote by GALD the smallest set that contains all instances of A0–A17 and is
closed under R0–R3. Elements of GALD are called theorems.

Lemma 1. Rule R3 is truth-preserving.
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Proof. The proof is by induction on the construction of η. Let Ms be a pointed epis-
temic model. We show only the case DHη(�), and other cases are similar.

Case DHη(�). Let ∀ψG : Ms |= DHη([ψG]ϕ). By the semantics this means that
∀ψG,∀t : s ∼H t implies Mt |= η([ψG]ϕ). Pick any t such that s ∼H t. By the
induction hypothesis we have Mt |= η([G]ϕ). Since t was arbitrary, ∀t : s ∼H t
implies Mt |= η([G]ϕ), which is equivalent to Ms |= DHη([G]ϕ).

Theorem 1. GALD is sound.

Proof. Soundness of R2 is easy to show. The rest follows from the soundness of PALD
[22], GAL [1], and Lemma 1.

4.2 Completeness

Following the technique from [22,23], we prove the completeness of GALD by making
a detour through pre- and pseudo models, where distributed knowledge operators are
treated as classic knowledge modalities.

Definition 10. An epistemic pre-model is a tuple M = (S,∼, V ), where ∼ maps every
agent a and every subset G ⊆ A to an element of 22

S

. A pre-model is called a pseudo-
model (and is written M) if for all a it holds that ∼{a}=∼a, and for all G,H ⊆ A: if
G ⊆ H , then ∼H⊆∼G.

Next, we define theories that will be used for the construction of the canonical
model.

Definition 11. A set x of formulas of LGALD is called a theory, if it contains all theo-
rems and is closed under R0 and R3. A theory is consistent if for all ϕ, either ϕ �∈ x or
¬ϕ �∈ x. A theory is called maximal if for all ϕ, either ϕ ∈ x or ¬ϕ ∈ x.

Theories are not required to be closed under R1 andR2 since this rules of inference,
unlike R0 and R3, preserve only validity and not truth.

Lemma 2. Let x be a theory, and ϕ,ψ ∈ LGALD. The following are theories: x+ϕ =
{ψ | ϕ → ψ ∈ x}, Kax = {ϕ | Kaϕ ∈ x}, DGx = {ϕ | DGϕ ∈ x}, and
[ϕ]x = {ψ | [ϕ]ψ ∈ x}.
Proof. Cases for x + ϕ, Kax, [ϕ]x are proved in [5, Lemma 4.11]. Here we argue that
DGx is a theory.

We need to show that DGx contains GALD and is closed under R0 and R3. Let
ϕ ∈ GALD. Then we also have that DGϕ ∈ GALD by the necessitation of DG, which
is derivable in PALD [22]. Since x is a theory, and hence GALD ⊆ x, we have that
DGϕ ∈ x, and ϕ ∈ DGx. This establishes that GALD ⊆ DGx.

Assume that ϕ → ψ,ϕ ∈ DGx. By A5 and R0 this implies that DGψ ∈ x, or,
equivalently, ψ ∈ DGx.

Suppose that ∀ψG: η([ψG]ϕ) ∈ DGx. This means that ∀ψG: DGη([ψG]ϕ) ∈ x, and
from the fact that DGη(�) is a necessity form, we conclude by R3 that DGη([G]ϕ) ∈ x.
Finally, by the definition of DGx we yield η([G]ϕ) ∈ DGx.
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Lemma 3. For all consistent theories x, ¬ϕ �∈ x if and only if x + ϕ is consistent.

Lemma 4 (Theorem 2.5.2 of [14]). Every consistent theory can be extended to a max-
imal consistent theory.

Definition 12. The canonical pseudo model is MC = (SC ,∼C , V C), where SC =
{x | x is maximal consistent theory}, x ∼C

a y if and only if Kax ⊆ y, x ∼C
G y if and

only if DHx ⊆ y and H ⊆ G, and V C(p) = {x ∈ SC | p ∈ x}.
For the rest of the section, we employ the following strategy. First, we prove the

truth lemma for the canonical pseudo model. Next, we unravel MC into the tree-like
pre-model MC , which satisfies the same GALD formulas as MC . After that, we fold
MC into the model MC . Folding preserves trans-bisimulation, and hence we will be
able to conclude the completeness of GALD.

Definition 13. The size and []-depth of ϕ ∈ LGALD are defined as follows:
Size(p) = 1 d[](p) = 0
Size(¬ϕ) = Size(Kaϕ) = d[](¬ϕ) = d[](Kaϕ) =
= Size(DGϕ) = Size([G]ϕ) = = d[](DGϕ) = d[](ϕ)
= Size(ϕ) + 1 d[](ϕ ∧ ψ) = max{d[](ϕ), d[](ψ)}

Size(ϕ ∧ ψ) = max{Size(ϕ), Size(ψ)} + 1 d[]([ψ]ϕ) = d[](ψ) + d[](ϕ)
Size([ψ]ϕ) = Size(ψ) + 3 · Size(ϕ) d[]([G]ϕ) = d[](ϕ) + 1

Definition 14 (Size Relation). The binary relation <Size
[] between ϕ,ψ ∈ LGALD is

defined as follows:
ϕ <Size

[] ψ iff d[](ϕ) < d[](ψ), or d[](ϕ) = d[](ψ) and Size(ϕ) < Size(ψ).
The relation is a well-founded strict partial order between formulas. Note that for all
epistemic formulas ψ we have that d[](ψ) = 0.

Lemma 5. Let ϕ, χ ∈ LGALD.

1. ϕ <Size
[] ¬ϕ,

2. ϕ <Size
[] ϕ ∧ ψ,

3. ϕ <Size
[] Kaϕ,

4. ϕ <Size
[] DGϕ,

5. ϕ → p <Size
[] [ϕ]p,

6. ϕ → ¬[ϕ]ψ <Size
[] [ϕ]¬ψ,

7. [ϕ]ψ ∧ [ϕ]χ <Size
[] [ϕ](ψ ∧ χ),

8. [ϕ ∧ [ϕ]χ]ψ <Size
[] [ϕ][χ]ψ,

9. [ψG]ϕ <Size
[] [G]ϕ,

10. [χ][ψG]ϕ <Size
[] [χ][G]ϕ.

Lemma 6. Let x be a theory. If DGϕ �∈ x, then there is a maximal consistent theory y
such that DGx ⊆ y and ϕ �∈ y.

Proof. Assume that DGϕ �∈ x. This means that ϕ �∈ DGx, and hence DGx + ¬ϕ is a
consistent theory by Lemma 3. By Lemma 4, DGx+¬ϕ can be extended to a maximal
consistent theory y. Since ¬ϕ ∈ y, by consistency we have that ϕ �∈ y.

Lemma 7. Let x be a theory. If Kaϕ �∈ x, then there is a maximal consistent theory y
such that Kax ⊆ y and ϕ �∈ y.

Proof. Similar to the proof of Lemma 6.
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Lemma 8. For all formulas ϕ and maximal consistent theories x it holds thatMC
x |= ϕ

if and only if ϕ ∈ x.

Proof. The proof is by induction on the size of ϕ. Boolean cases are straightforward,
and cases with public announcements are dealt with using A11–A16. Here we show
only cases with distributed knowledge and group announcements.

Case DGϕ. (⇒): Let MC
x |= DGϕ. By the semantics we have that for all y ∈ SC :

x ∼G y implies MC
y |= ϕ. By the definition of the canonical pseudo model, Lemma 5,

and the induction hypothesis, the latter is equivalent to the fact that for all y ∈ SC and
all H ⊆ G: DHx ⊆ y implies ϕ ∈ y. In particular, for all y ∈ SC : DGx ⊆ y implies
ϕ ∈ y. By the contraposition of Lemma 6 this implies that DGϕ ∈ x.

(⇐): Assume that DGϕ ∈ x and x ∼C
G y for some maximal consistent theory y. By

A7 andR0 it holds thatDGDGϕ ∈ x. By the definition of the canonical model, we have
that DGϕ ∈ y. Since y is a maximal consistent theory and thus contains DGϕ → ϕ,
it holds that ϕ ∈ y. Next, by the induction hypothesis we have that MC

y |= ϕ. Since y

was arbitrary, we have thatMC
y |= ϕ for all y such that x ∼C

G y. The latter is equivalent
toMC

x |= DGϕ by the semantics.
Case [ϕ]DGψ. MC

x |= [ϕ]DGψ if and only if MC
x |= ϕ → DG[ϕ]ψ by A15. By

Lemma 5 and the induction hypothesis, MC
x |= ϕ → DG[ϕ]ψ if and only if ϕ →

DG[ϕ]ψ ∈ x if and only if [ϕ]DGψ ∈ x by A15.
Case [ϕ][G]ψ. (⇒): LetMC

x |= [ϕ][G]ψ. By the semantics, ∀ψG:MC
x |= [ϕ][ψG]ψ.

By Lemma 5 and the induction hypothesis, [ϕ][ψG]ψ ∈ x for all ψG. Note that [ϕ](�)
is a necessity form, hence, by R3, we have that [ϕ][G]ψ ∈ x.

(⇐): Let [ϕ][G]ψ ∈ x. The distributivity rule for public announcements is derivable
in PAL [10, Proposition 4.46]. Hence, by A17 and R0 it holds that [ϕ][ψG]ψ ∈ x. By
Lemma 5 and the induction hypothesis, ∀ψG: MC

x |= [ϕ][ψG]ψ. By the semantics,
∀ψG: MC

x |= ϕ implies (MC
x )

ϕ |= [ψG]ψ. The latter is equivalent toMC
x |= ϕ implies

(MC
x )

ϕ |= [G]ψ, and thus MC
x |= [ϕ][G]ψ.

Case [G]ϕ. (⇒): Let MC
x |= [G]ϕ. By the semantics, ∀ψG: MC

x |= [ψG]ϕ. By
Lemma 5 and the induction hypothesis, ∀ψG: [ψG]ϕ ∈ x, and by R3, [G]ϕ ∈ x.

(⇐): Let [G]ϕ ∈ x. By A17, [ψG]ϕ ∈ x for all ψG. By Lemma 5 and the induction
hypothesis, ∀ψG:MC

x |= [ψG]ϕ, which is equivalent toMC
x |= [G]ϕ by the semantics.

Due to the lack of space, we briefly sketch the second part of the proof. It follows
closely [22] and details can be found there.

Canonical pseudo model MC can be unravelled into the treelike canonical pre-
model MC . Such an operation preserves bisimulation. After that, the pre-model can be
folded into the canonical model. Folding preserves trans-bisimulation (denoted �T ),
which can be considered as a generalisation of standard bisimulation with a separate
case for groups of agents. In such a way we can relate pre-models and models. The cor-
responding notion of equivalence between pre-models and models is trans-equivalence
(denoted ≡T ).

Before stating the completeness, we need one more result.

Lemma 9. Given Ms, Mt, and Mu, if Ms �T Mt � Mu, then Ms ≡T Mt.
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Proof. The proof is by induction on ϕ. Boolean cases, cases for knowledge and dis-
tributed knowledge, and the case for public announcements are proved in [22, Lemma
26]. We show the case of [G]ψ.

Assume thatMs |= [G]ψ. By the semantics this is equivalent to ∀ψG:Ms |= [ψG]ψ.
By the induction hypothesis we have that ∀ψG: Mt |= [ψG]ψ, which is equivalent to
Mt |= [G]ψ by the semantics.

Finally, we have everything we need to prove the completeness of GALD.

Theorem 2. For all ϕ ∈ LGALD, if ϕ is valid, then ϕ ∈ GALD.

Proof. Suppose towards a contradiction that ϕ is valid and ϕ �∈ GALD. Since GALD
is a consistent theory, by Lemma 3 GALD +¬ϕ is a consistent theory. By Lemma
4, GALD +¬ϕ can be extended to a maximal consistent theory x such that GALD
+¬ϕ ⊆ x, and ¬ϕ ∈ x. By Lemma 8, the latter is equivalent to MC

x �|= ϕ. Next,
the canonical pseudo model MC

x can be unravelled into bisimilar canonical pre-model
MC

y , and the latter can be folded into the trans-bisimilar canonical model MC
z . So, we

have that MC
x � MC

y and MC
y �T MC

z . From MC
x �|= ϕ by bisimilarity we have

MC
y �|= ϕ. Finally, by Lemma 9,MC

x � MC
y and MC

y �T MC
z imply MC

z ≡T MC
y ,

and from MC
y �|= ϕ we can infer that MC

z �|= ϕ, which contradicts ϕ being a validity.

5 Resolved Distributed Knowledge

Resolved distributed knowledge models private publicly observable communication
within a group [4]. Distributed knowledge deals with agents’ knowledge before any
communication has taken place, and resolved distributed knowledge models the situ-
ation after all agents within a group have shared their knowledge. In a way, resolved
distributed knowledge is a kind of a dynamic operator in disguise. In this section, we
consider the relationship between group announcements, distributed, and resolved dis-
tributed knowledge.

Definition 15. Let M = (S,∼, V ) be an epistemic model. A global G-resolved update
of M is the model MG = (SG,∼G, V G), where SG = S, V G = V , and

∼G
a =

{

⋂

b∈G ∼b if a ∈ G,

∼a otherwise.

The semantics for RGϕ is

Ms |= RGϕ iff MG
s |= ϕ

The immediate result is that resolution and distributed knowledge are indeed
different.

Fact 4. DGϕ → RGϕ and RGϕ → DGϕ are not valid.
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Proof. For the first formula, consider a model Ms such that Ms |= D{a,b}(p∧¬Kap)∧
Kbp. Then obviously Ms �|= R{a,b}(p ∧ ¬Kap).

And for the second formula, R{a}p does not necessarily imply D{a}p. For example,
there is an Ms such that Ms |= p ∧ ¬Kap, and hence Ms |= R{a}p (the model remains
the same and RGp ↔ p) and Ms �|= D{a}p (since Daϕ ↔ Kaϕ).

An interesting thing to note is that in our counterexample to RGϕ → DGϕ, the
target ϕ was a positive formula Kap. Thus, RGϕ+ → DGϕ+ is not valid as well.

Since resolved distributed knowledge models private communication, it does not
coincide with group announcements.

Fact 5. 〈G〉ϕ → RGϕ and RGϕ → 〈G〉ϕ are not valid.

Proof. For the first formula, consider a two-state model Ms such that Ms |=
〈{b}〉(Kap ∧ Kbp) ∧ ¬Kap. The b-resolved update of the model, leaves the model
intact. Hence, Ms �|= R{b}Kap.

For the second formula, consider a two-state model Ms such that Ms |=
R{a,c}(Kap ∧ ¬Kbp) ∧ Kcp ∧ ¬Kap ∧ ¬Kbp. In such a model, no announcement
by {a, c} can both inform a that p is true, and leave b unaware of this fact. Hence,
Ms �|= 〈{a, c}〉(Kap ∧ ¬Kbp).

Even if we require the target formula to be positive, neither resolution implies abil-
ity, nor ability implies resolution. In the previous proposition, the counterexample for
〈G〉ϕ → RGϕ used positive formula Kap.

Fact 6. RGϕ+ → 〈G〉ϕ+ is not valid.

Proof. Consider model M from Fig. 2. We have that Ms |= R{a,b}Kap if and only if

M
{a,b}
s |= Kap, and at the same time Ms �|= 〈{a, b}〉Kap. The rest of the argument is

similar to the one in the proof of Fact 3.

The surprising corollary of this proposition is that semi-private communication
between all agents does not imply the possibility of equivalent public communication
between all agents. Formally, RAϕ → 〈A〉ϕ is not valid even for positive ϕ.

The special case when private communication between all agents implies the ability
of equivalent public communication is considered in the next proposition.

Fact 7. RAϕ+ → 〈A〉ϕ+ is valid on finite bisimulation contracted models.

Proof. On a finite bisimulation contracted model Ms, resolution for all agents results
in a model with the universal relation for all agents. This corresponds to the maximal
informative announcement by all agents (see Fact 2).

5.1 First Step Towards the Relative Expressivity of GALR and GALD

In the future, we would like to study the language of GAL extended with resolved
distributed knowledge. Let us denote such a language GALR. In this section we make
a first step towards comparing it to GALD.
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Definition 16. Let L1 and L2 be two languages. We say that L1 is at least as expressive
as L2 (L2 � L1) if and only if for all ϕ ∈ L2 there is an equivalent ψ ∈ L1. If L1 is
not at least as expressive as L2, we write L2 �� L1.

Some results on the expressivity of logics with distributed knowledge and resolu-
tion are presented in [4]. Relative expressivity of GALR and GALD is an open question.
Here we present a partial result which establishes that a fragment GALD without dis-
tributed knowledge operators within public announcements (we call such a fragment
GALD−) is not at least as expressive as GALR.

Proposition 2. GALR �� GALD−.

Proof. Consider a GALR formulaR{b,c}〈{a, b, c}〉(¬p∧ ̂Ka(Kbp∧Kcp)∧ ̂Ka( ̂Kb(¬p∧
Ka¬p)∧( ̂Kc(¬p∧Ka¬p))). Assume towards a contradiction that there is an equivalent
GALD− formula ψ, and |ψ| = n.

Consider models M and N (Figs. 3 and 4), where p holds in white states.

. . .bc a bc a bc

s

. . .

a

a

bc a bc a

2n + 2 states

Fig. 3.Model M

. . .bc a bc

a c

a c

b

b

t

. . .

a

a

bc a bc a

a

Fig. 4. Model N

These models are bisimilar, and hence they agree on formulas of GAL. Structurally,
every model is almost symmetric, and the only difference are bits on the right.

For M it holds that Ms |= R{b,c}〈{a, b, c}〉(¬p ∧ ̂Ka(Kbp ∧ Kcp) ∧ ̂Ka( ̂Kb(¬p ∧
Ka¬p) ∧ ( ̂Kc(¬p ∧ Ka¬p))). Indeed, resolution R{b,c} has no effect on the model,
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and the agents can make¬p∧ ̂Ka(Kbp∧Kcp)∧ ̂Ka( ̂Kb(¬p∧Ka¬p)∧( ̂Kc(¬p∧Ka¬p))
true (note that intersection of agents’ relations is the identity). This formula describes
the configuration depicted in Fig. 5.

bc
s

aa

Fig. 5. An {a, b, c}-definable submodel ofM

On the other hand, we have that Nt �|= R{b,c}〈{a, b, c}〉(¬p ∧ ̂Ka(Kbp ∧ Kcp) ∧
̂Ka( ̂Kb(¬p ∧ Ka¬p)∧ ( ̂Kc(¬p ∧ Ka¬p))). Update of Nt with R{b,c} results in model
N{b,c}, which is fully symmetric and bisimilar in both directions from state t (R{b,c}
removes b and c relations in the upper right part). Thus, whatever the agents announce,
if they preserve the {b, c}-equivalence class (on the right in Fig. 5), then they preserve
the same equivalence class on the left. Hence, the configuration depicted in Fig. 5 is
unattainable.

That no GALD− formula can distinguish Ms and Nt can be shown using a modifi-
cation of formula games for GAL [12]. For brevity, we present an intuitive explanation
here. For all cases, apart from distributed knowledge, evaluation on the models coin-
cide. The models differ only in the upper rightmost parts, and this difference can only
be expressed using a formula with D due to the fact that the models are bisimilar. How-
ever, since ψ has a finite length n, and the models are 2n +1 bisimilar (in fact, they are
isomorphic up to this depth), ψ cannot ‘reach’ the states with different valuations of D.

6 Conclusions and Future Work

In this paper, we have shown that GALD has a complete and sound axiomatisation
that is obtained by putting together the axiomatisations of GAL and ELD. This shows
that surprisingly there are no non-trivial interaction axioms required for the proof sys-
tem. However, in special cases (positive fragment, bisimulation contracted models) the
operators interact more in agreement with the intuition. Same holds for the interactions
between group announcements and resolved distributed knowledge.

GALD is the first step towards enriching the logics of quantified announcements
with group knowledge modalities. In future work, we plan to consider GAL with com-
mon knowledge [21] and relativised common knowledge [6,23]. Another avenue of
further research is to consider coalition announcement logic (CAL) [2] with group
knowledge. In CAL, as opposed to GAL, agents outside of a group make a simulta-
neous announcement as well, and thus they may preclude the group from reaching its
epistemic goals. Finally, we would like to investigate GALR. In particular, we are inter-
ested in its axiomatisation and expressivity relative to GALD.

Acknowledgements. We would like to thank three anonymous reviewers for their helpful
comments.
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3. Ågotnes, T., van Ditmarsch, H.: What will they say? - Public announcement games. Synthese
179(1), 57–85 (2011)
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Abstract. We consider systems of rational agents who act in pursuit
of their individual and collective objectives and we study the reasoning
of an agent or an external observer about the consequences from the
expected choices of action of the other agents based on their objectives,
in order to assess the reasoner’s ability to achieve his own objective.

To formalize such reasoning we introduce new modal operators of
conditional strategic reasoning and use them to extend Coalition Logic in
order to capture variations of conditional strategic reasoning. We provide
formal semantics for the new conditional strategic operators, introduce
the matching notion of bisimulation for each of them and discuss and
compare briefly their expressiveness.

Keywords: Concurrent game models ·
Conditional strategic reasoning · Coalition Logic · Expressiveness

1 Introduction

Consider the following scenario. Alice and Bob are students at DownTown Uni-
versity. Alice is coming to campus today, and has some agenda to complete.
Bob wants to meet Alice somewhere on campus today. She does not know that
(maybe, even does not know Bob) and they have no communication. Bob may,
or may not, know what Alice is going to do on campus, or where and at what
time she will go during the day.

Using his knowledge of what, where, and when Alice intends to do today,
Bob wants to come up with a plan of how (where and when) to meet her.
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Put in a more general perspective, we consider a system of agents acting
independently, and possibly concurrently, in pursuit of their individual and col-
lective goals and we analyse the reasoning of an agent (or, just an observer)
about the possible local actions (at the current state only) of the other agents
and their possible effect for realising the outcome of interest for the observer or,
respectively, for enabling the reasoner to act towards achieving his own goal.

Our Contributions. In this paper we identify several distinct cases of condi-
tional strategic reasoning of an observer or an active agent, depending on his
knowledge about the objectives and possible actions of the other agents. To for-
malize such reasoning we introduce new modal operators of conditional strategic
reasoning and use them to extend Coalition Logic to capture variations of condi-
tional strategic reasoning. We provide formal semantics for the new conditional
strategic operators, introduce the matching notion of bisimulation for each of
them and discuss and compare briefly their expressiveness.

Related Work. The kind of strategic reasoning discussed here is within the
conceptual thrust motivating the research on logic-based strategic reasoning over
the past two decades, starting with Coalition Logic ([10,11]) and its temporal
extension ATL ([4]), and evolving towards increasingly expressive formalisms,
such as Strategy Logic (cf. [9]) (cf. [5] and [3] for overviews of the area). Still, we
are aware of very few works that deal more explicitly with conditional strategic
reasoning in the sense of the present paper, with perhaps the closest being the
recent [8], to which the present work relates both conceptually and technically.
In the literature there has been some work on reasoning about agents’ goals (cf.
[6]).

Structure of the Paper. Section 2 provides an informal discussion on con-
ditional strategic reasoning, motivating the further technical work. Section 3
introduces several modal operators formalising patterns conditional strategic
reasoning and uses them to introduce the new logic ConStR as an extension of
Coalition Logic with these operators. Section 4 introduces the matching notion
of bisimulation for that logic and discuss briefly it expressiveness. We end with
brief concluding remarks in Sect. 5.

2 Conditional Strategic Reasoning: An Informal
Discussion

Suppose that Alice has an objective α to achieve (say, pick a book from a friend).
Suppose also that Alice has several possible choices of an action (or strategy)1

that would possibly, or certainly, guarantee the achievement of her objective.
1 In this paper we focus on local reasoning, about once-off actions, but in this section

the word ‘action’ can be conceived in a wider sense, and may mean either a once-off
action, or a global strategy guiding the long term behaviour of the agent.
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2.1 Conditional Reasoning of an Observer About an Agent’s
Actions

Let us first consider the case where Bob is just an observer who is not acting, but
only reasoning about the consequences from Alice’s possible actions with respect
to the occurrence of another – intended or not – outcome β. More generally, we
also assume that there are other agents, besides Alice, also acting in pursuit
of their own goals, and Bob is reasoning about their individual and collective
choices of action and the consequences from these choices. This leads to a passive
observer’s conditional strategic reasoning about statements of the type:

“Some/every action of Alice that guarantees achievement of α also guaran-
tees/enables occurrence of the (desired or expected) outcome β”.

Depending on Bob’s knowledge about Alice’s objective and of her expected
choices of action there can be several possible cases for Bob’s reasoning about
the expected occurrence of the outcome β.

Bob’s Reasoning, Case 1: Bob Knows Nothing About Alice. Suppose
that Bob does not know Alice’s objective, and therefore has no a priori expecta-
tions about her choice of action. E.g., if Alice is coming to the university and
Bob is standing by the only entrance of the campus, he will know for sure that
he is going to meet Alice, no matter what she will do there.

Then, Bob can only claim for sure that the outcome β will occur if β is
inevitable, regardless of how Alice (and all others) will act. This can be expressed
in Coalition Logic CL (cf. [11]) simply as [∅]β.

Bob’s Reasoning, Case 2: Bob only Know Alice’s Objective. Suppose
now that Bob does know Alice’s objective and knows that Alice can guarantee the
achievement of that objective and will act towards that, but Bob does not know
how exactly Alice might act. E.g., Bob knows that Alice is coming to campus to
pick some book, but does not know where and when.

Then, Bob can only claim that the outcome β will occur for sure if β is
true on every possible course of events (“play”) on which α is true. (E.g., Bob
knows that the book is in the library, and β is the event “Alice enters the library
building”.) This can be expressed as a conditional α → β, in the right context.
Depending on how the conditional is interpreted, there are different cases:

– α → β is a material implication, with unconstrained context.
This can be expressed in CL simply as [∅](α → β).

– α → β is a proper conditional, with a somehow constrained context.
In general, this cannot be expressed in CL anymore, but it can possibly be
expressed in a suitably extended language and in a suitably updated model.
Here we will not pursue this line, but will leave it to a follow-up work.

Bob’s Reasoning, Case 3: Bob Knows Alice’s Objective and Possible
Actions. Suppose now Bob not only knows Alice’s objective, but also knows
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all possible actions/strategies of Alice that can ensure the satisfaction of her
objective α, and knows that Alice will commit to one of them, but does not
know to which one. (E.g., Bob knows that Alice is coming to campus to meet
with her supervisor and she can meet with him either in his office, or in the
lecture room, or in the café.)

Now, for Bob to claim that the outcome β will occur for sure, he must know
that each action of Alice that guarantees α will also guarantee β. (E.g., suppose
that all possible meeting places are in the main building and β is the event “Alice
enters the main building”.) This can no longer be expressed in CL and requires
introducing a new strategic operator.

Bob’s Reasoning, Case 4: Bob Knows Alice’s Action. Lastly, suppose
that Bob knows the specific action which she is taking in order to guarantee the
achievement of her objective. Then, Bob can claim that the outcome β will occur
for sure, as long as that specific action of Alice guarantees the satisfaction of β.
Again, this claim could be interpreted either in the same (original) model, or
in a respectively updated one, obtained by preserving only the plays that are
enabled by that action if Alice’s strategic commitment is assumed. The latter
corresponds to reasoning with strategy contexts which we will not discuss here,
but in a follow-up work.

2.2 Conditional Reasoning of an Agent About Another Agent’s
Actions

Suppose now that Bob is not just an observer, but also an acting agent, who has
the outcome β as his own goal. Suppose also that there may be other agents,
besides Alice and Bob, also acting in pursuit of their own goals, and Bob is
reasoning about their individual and collective choices of action and the conse-
quences from these choices.

Now, Bob is to decide, based on his reasoning about Alice’s (and other agents)
possible choices of actions, on his own action in pursuit of β. This calls for an
agent’s conditional strategic reasoning about statements of the type:

“For some/every action of Alice that guarantees achievement of α, Bob
has/does not have an action of his own to guarantee achievement of his objec-
tive β”.

We call this local conditional strategic reasoning, as it only refers to the
immediate actions of the agents, not about their global strategies. Respectively,
the outcomes from the local action profiles are just successor states, while in the
general case they are (finite or possibly infinite) plays. The global conditional
strategic reasoning will be treated in a follow-up work.

Each of the cases considered in Sect. 2.1 accordingly applies here, too. How-
ever, now in the reasoning case 3 the statement

“Bob knows that whichever way Alice acts towards achieving the objective
α, he can act so as to bring about achievement of his objective β.”

admits two different readings, de dicto and de re, which we discuss here.
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Bob’s Reasoning, Case 3: de dicto Reading. In the de dicto reading, where
Bob only knows that Alice has committed to act so as to achieve α, but, as far as
he knows, Alice has not yet chosen her action, or her choice will remain unknown
to Bob.

In this case Bob must consider all possible courses of events (plays) that
can occur as a result of Alice acting towards achieving α and reason about
whether he can act uniformly for each of them in a way that would bring about
β, without knowing which of them will take place. (E.g., in our running story
from Sect. 2.1, Bob can choose to wait for Alice at the only entrance of the main
building.) Formally speaking, in this case, based on his knowledge Bob considers
the set of states in the model which is the union of all sets of outcome states
enabled by the specific actions of Alice that would guarantee α, and is looking
for an action that will bring about β on each of these outcome states.

Bob’s reasoning, case 3: de re Reading. This is the reading where for
every action of Alice that ensures α, Bob is looking for an action of his, possibly
dependent on Alice’s action that would also ensure the occurrence of β (possibly
in different ways for the different actions). More formally, each of Alice’s actions
that would guarantee α generates a set of possible outcome states, and for each
of them Bob is looking for an action that will bring about β on that set of
outcome states.

For example, suppose Bob knows that Alice has agreed with her friend Charlie
on a meeting on campus today and there are two options: to meet in the campus
café or to meet in the library; both options are ok for Charlie and Alice is yet to
decide on either option. Note, that the sentence “Alice has decided to meet with
Charlie on campus today” is true in either case. However, the sentence “Alice
has decided to meet with Charlie in the café today, or Alice has decided to meet
with Charlie in the library today” should not be regarded as true (yet). After
Alice makes her choice, this sentence becomes true, too. But even then, from
Bob’s perspective, the same distinction applies depending on whether or not he
knows Alice’s choice, so he has to take into account both options when deciding
for himself on what to do.

3 A Logic for Conditional Strategic Reasoning

3.1 Preliminaries

Multi-agent Game Models. We fix a finite set of agents Agt = {a1, ..., an}
and a set of atomic propositions Π. Subsets of Agt will also be called coali-
tions.

Definition 1 (Multi-agent game model). A game model2 for Agt and Π
is a tuple

M = (S, {Σa}a∈Agt, g, V )

2 These game models are essentially equivalent to concurrent game models used in [4].
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where S is a non-empty set of states; each Σa is a non-empty set of possible
actions of agent a; V : Π → P(S) is a valuation of the atomic propositions
from Π in S; and g is a game map that assigns to each s ∈ S a strategic
game form g(s) = (Σs

a1
, ....Σs

an
, os), where each Σs

ai
⊆ Σai

is a non-empty set
of actions available to player ai at s, and

os : Σs
a1

× ... × Σs
an

→ S

is a local outcome function assigning to any action profile σ ∈ Σs
a1

× ... ×
Σs

an
the outcome state os(σ) produced by σ when applied at s ∈ S. The set

Σs
a1

× ... × Σs
an

of action profiles available at s will be denoted by Acts.
Now, the global outcome function in M is the partial mapping

O : S × Σa1 × ... × Σan
��� S

defined by O(s, σ) = os(σ), whenever σ ∈ Acts.
Given a coalition C ⊆ Agt, a joint action for C in the model M is a tuple of

individual actions σC ∈ ∏
a∈C Σa. For any such joint action σC that is available

at s ∈ S, we define the set of outcome states from σC at s:

Out[s, σC] = {u ∈ S | ∃σ ∈ Acts : σ|C = σC & os(σ) = u}
where σ|C is the restriction of σ to C. Note that the empty tuple σ∅ is the only
available joint action for the empty coalition ∅ at any state.

The Basic Logic for Coalitional Strategic Reasoning CL. Coalition Logic
(CL) was introduced in [10], cf. also [11]. CL extends the classical propositional
logic with coalitional strategic modal operators [C], for any coalition of agents C.
Formulae of CL:

ϕ := p | ¬ϕ | ϕ1 ∨ ϕ2 | [C] ϕ

(We will write [i] instead of [{i}].) The intuitive reading of [C]ϕ is:

“The coalition C has a joint action that ensures an outcome (state) satis-
fying ϕ, regardless of how all other agents act.”

Semantics of CL. The formulae of CL are interpreted in game models (GM).
The semantics is defined in terms of truth of a CL-formula ψ at a state s of
a GM M, denoted M, s � ψ, by induction on formulae, via the key clause:

M, s |= [C]φ iff there exists a joint action σC available at s, such that
M, u |= φ for each u ∈ Out[s, σC].

We note that [C]φ formalises a claim of the ability of the agent/coalition C
to choose a suitable (joint) action so as to achieve the goal φ regardless of how
all other agents choose to act, and therefore regardless of whether the agents in
C know the goal(s) of the remaining agents. This subsumes Cases 1 and 2 of
Bob’s reasoning, discussed in Sect. 2.1.
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Alternating Bisimulations. The notion of bisimulation that guarantees truth
invariance of all CL-formulae was first defined in [10] for the abstract game
models defined there, and later (under the name “alternating bisimulations”)
in [1], to which we refer the reader for the definition and proof of bisimulation
invariance of all ATL-formulae (incl. all CL-formulae).

3.2 The Logic of Conditional Strategic Reasoning ConStR

Given coalitions A and B and joint actions σA for A and σB for B, we say that
σB is consistent with σA if σB coincides with σA on A ∩ B.

Operators for Conditional Strategic Reasoning of ConStR
We now introduce new operators for conditional strategic reasoning, for any
coalitions A and B with intuitive semantics as follows.

(Oc) 〈〈A〉〉c(φ; 〈B〉ψ): A has a joint action σA such that, when applied, it
guarantees the truth of φ and enables B to apply a joint action σB that is
consistent with σA and guarantees ψ when additionally applied by B, in sense
that all agents in A act according to σA and those in B \ A act according to σB.

This operator formalises a scenario (not discussed in Sect. 2, but still basic
for conditional strategic reasoning, see further) where A knows the objective of
B and can choose to cooperate with B by selecting a suitable action.

(Odr) [A]dr(φ; 〈B〉ψ): for any joint action σA of A that guarantees the truth
of φ, when applied by A there is an action σB that is consistent with σA and
guarantees ψ when additionally applied by B.

This operator formalises a claim of the ability of the agent/coalition B to
choose a suitable (joint) action so as to achieve the goal ψ assuming that A acts
so as to achieve the goal φ, if B is to choose their (joint) action after B learns
the (joint) action of A. This corresponds to the de re reading of Case 3 of Bob’s
reasoning, discussed in Sect. 2.2. In particular, the case when B is not informed
about the goal of A, but has to choose their action after learning the action of
A is formalised by [A]dr(�; 〈B〉ψ).

(Odd) [A]dd(φ; 〈B〉ψ): B \ A has an action σB\A such that if A applies any
action that guarantees the truth of φ, then B \ A can guarantee the truth of ψ
by applying additionally the action σB\A.

This operator formalises a claim of the ability of the agent/coalition B to
choose a suitable (joint) action so as to achieve the goal ψ assuming that A acts
so as to achieve the goal φ, if B is to choose their (joint) action before A chooses
their (joint) action, or before B learns the action of A. This corresponds to the de
dicto reading of Case 3 of Bob’s reasoning, discussed in Sect. 2.2. In particular,
the case when B is not informed about the goal of A and has to choose a joint
action before A has chosen their action is formalised by [A]dd(�; 〈B〉ψ).

Language of ConStR. We fix a finite nonempty set of agents Agt and a count-
able set of atomic propositions Π.

The formulae of ConStR, where p ∈ Π and A,B ⊆ Agt are defined as follows:

φ ::= p | � | ¬φ | (φ ∧ φ) | 〈〈A〉〉c(φ; 〈B〉φ) | [A]dr(φ; 〈B〉φ) | [A]dd(φ; 〈B〉φ)
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Some Definable Operators and Expressions in ConStR. The following can
be easily seen from the informal semantics above, and can also be easily verified
with the formal semantics introduced further.

– The dual operator ¬〈〈A〉〉c(φ; 〈B〉¬ψ) says that every joint action of A that,
when applied, guarantees the truth of φ, would prevent B from acting addi-
tionally so as to guarantee ψ. This formalises the conditional reasoning sce-
nario where the goals of A and B are conflicting and where Bob can establish
that whichever way A acts towards their goal, that would block B from acting
to guarantee achievement of its goal.

– [A]c(φ|ψ) := [A]dr(φ; 〈∅〉ψ): for any joint strategy of A,
if it guarantees φ to be true then it guarantees ψ to be true, too.
This operator formalises Case 2 of Bob’s reasoning as an observer (rather
than an acting agent), discussed in Sect. 2.1.

– 〈A〉c(φ|ψ) := ¬[A]c(φ|¬ψ): there is a joint strategy of A
that guarantees φ to be true and enables ψ to be true, too.
Note that it is equivalent to a special case of the “socially friendly coalitional
operator” SF, [C](φ;ψ1, . . . , ψk), introduced in [8], viz. 〈A〉c(φ|ψ) ≡ [A](φ;ψ).
Moreover, 〈A〉c(φ|ψ) is also definable as 〈〈A〉〉c(φ; 〈A〉ψ), where A = Agt \A.

– The coalitional strategic operator [A] from CL is a special case of the above:
[A]φ := 〈A〉c(φ|�), meaning “A has a joint action to ensure the truth of φ”3.

– 〈〈A〉〉c(φ; 〈B〉ψ) is definable in terms of the “group protecting coalitional oper-
ator” GIP, introduced in [8]: 〈〈A〉〉c(φ; 〈B〉ψ) ≡ 〈[A 	 φ,A ∪ B 	 ψ]〉.
Nevertheless, it now has a different motivation and intuitive interpretation.

Semantics of ConStR. Given coalitions A,B ⊆ Agt and joint actions σA for A
and σB for B, we define σA � σB to be the joint action for A ∪ B which equals
to σA when restricted to A and equals to σB|B\A when restricted to B \ A. Note
σA � σ∅ = σA for any A ⊆ Agt.

Now, let M = (S, {Σa}a∈Agt, g, V ) be a game model. The semantics of
ConStRo extends the one of CL to the new operators as follows:

M, s � 〈〈A〉〉c(φ; 〈B〉ψ) ⇔ A has a joint action σA, such that
M, u � φ for every u ∈ Out[s, σA] and B has a joint action σB

such that M, u � ψ for every u ∈ Out[s, σA � σB].
M, s � [A]dr(φ; 〈B〉ψ) ⇔ for every joint action σA of A such that M, u � φ for

every u ∈ Out[s, σA], B has a joint action σB (generally, dependent on σA)
such that M, u � ψ for every u ∈ Out[s, σA � σB].

M, s � [A]dd(φ; 〈B〉ψ) ⇔ B has a joint action σB such that
for every joint action σA of A, if M, u � φ for each u ∈ Out[s, σA],
then M, u � ψ for each u ∈ Out[s, σA � σB].

3 NB: We have preserved the box-like notation for [A] from CL, even though it is not
consistent with ours.
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Remark: The semantics of each of the operators above can be re-stated to
consider joint actions for B \ A rather than the whole B. For instance, for the
latter operator, it can be easily verified that M, s � [A]dd(φ; 〈B〉ψ) iff B \ A has
a joint action σB\A such that for every joint action σA of A, if M, u � φ for each
u ∈ Out[s, σA], then M, u � ψ for each u ∈ Out[s, σA � σB\A].

In the Appendix we provide a few simple examples illustrating the semantics
of the strategic operators introduced here.

4 Bisimulations and Expressiveness of ConStR

4.1 Bisimulations for CSR

The definition of ConStR-bisimulation involves, besides atomic equivalence, 3
nested Forth and Back conditions, for each of the respective new operators Oc,
Odr, and Odd

4. We only define ConStR-bisimulation within a game model, which
generalises to ConStR-bisimulation between game models, by treating both as
parts of their disjoint union.

s1 s2

σ1
A σ2

A

Out[s1, σ1
A] Out[s2, σ2

A]
u1 u2

σ1
B σ2

B

Out[s1, σ1
A � σ1

B] Out[s2, σ2
A � σ2

B]
v1 v2

Fig. 1. The A-Forthc half of Oc-bisimulation

Definition 2 (ConStR-bisimulation). Let M = (S, {Σa}a∈Agt, g, V ) be a
game model. A binary relation β ⊆ S2 is a ConStR-bisimulation in M if
it satisfies the following conditions for every pair of states (s1, s2) such that
s1βs2 and for every coalitions A and B:

4 Each of these conditions is a respective variation of the bisimulation conditions for
the basic strategic operators in the logics SFCL and GPCL defined in [8].
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Atom equivalence: For every p ∈ Π: s1 ∈ V (p) iff s2 ∈ V (p).
Oc-bisimulation: (For illustration, see Fig. 1)

A-Forthc: For any joint action σ1
A of A at s1 there is a joint action σ2

A of
A at s2, such that:
A-LocalBackc: For every u2 ∈ Out[s2, σ2

A] there exists u1 ∈ Out[s1, σ1
A]

such that u1βu2.
B-Forthc: For every joint action σ1

B of B at s1 there is a joint action σ2
B

of B at s2, such that:
(A � B)-LocalBackc: For every u2 ∈ Out[s2, σ2

A � σ2
B] there exists

u1 ∈ Out[s1, σ1
A � σ1

B] such that u1βu2.
A-Backc: Like A-Forthc, but with 1 and 2 swapped.

Odr-bisimulation:
A-Forthdr: For any joint action σ1

A of A at s1 there is a joint action σ2
A of

A at s2, such that:
A-LocalBackdr: For every u2 ∈ Out[s2, σ2

A] there exists u1 ∈ Out[s1, σ1
A]

such that u1βu2.
B-Backdr: For every joint action σ2

B of B at s2 there is a joint action σ1
B

of B at s1, such that:
(A � B)-LocalForthdr: For every u1 ∈ Out[s1, σ1

A � σ1
B] there exists

u2 ∈ Out[s2, σ2
A � σ2

B] such that u1βu2.
A-Backdr: Like A-Forth, but with 1 and 2 swapped.

Odd-bisimulation:
B-Forthdd: For any joint action σ1

B of B at s1 there is a joint action σ2
B of

B at s2, such that:
A-Backdd: For every joint action σ2

A of A at s2 there is a joint action
σ1
A of A at s1, such that:

(A)-LocalForthdd: For every u1 ∈ Out[s1, σ1
A] there exists u2 ∈

Out[s2, σ2
A] such that u1βu2.

(A � B)-LocalBackdd: For every u2 ∈ Out[s2, σ2
A � σ2

B] there exists
u1 ∈ Out[s1, σ1

A � σ1
B] such that u1βu2.

B-Backdd: Like B-Forth, but with 1 and 2 swapped.

States s1, s2 ∈ M are ConStR -bisimulation equivalent, or just ConStR -
bisimilar if there is a bisimulation β in M such that s1βs2.

Proposition 1 (ConStR-bisimulation invariance). Let β be a ConStR-
bisimulation in a game model M. Then for every ConStR-formula θ and a pair
s1, s2 ∈ M such that s1βs2: M, s1 |= θ iff M, s2 |= θ.

Proof. Induction on θ. All boolean cases are straightforward. The cases for the
3 strategic operators are similar, but we will nevertheless check each of them, to
ensure that the bisimulation conditions above are correctly defined.

For the strategic operators, we only check here the case of θ = 〈〈A〉〉c(φ; 〈B〉ψ),
assuming that the claim holds for φ and ψ. The cases of [A]dr(φ; 〈B〉ψ) and
[A]dd(φ; 〈B〉ψ) are quite analogous. Their proofs are omitted for lack of space.
(Case Oc) Let θ = 〈〈A〉〉c(φ; 〈B〉ψ), assuming that the claim holds for φ and ψ.
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Suppose, M, s1 |= θ. Then A has a joint action σ1
A at s1 such that, when

applied, it guarantees φ and enables B to adopt a joint action σB that is consis-
tent with σA and guarantees ψ when additionally applied by B. By A-Forthc,
there is a joint action σ2

A of A at s2, such that, by A-LocalBackc, for each
u2 ∈ Out[s2, σ2

A] there exists u1 ∈ Out[s1, σ1
A] such that u1βu2. By the choice of

σ1
A, M, u1 |= φ for each u1 ∈ Out[s1, σ1

A]. It follows, by the inductive hypothesis
applied to φ, that M, u2 |= φ for each u2 ∈ Out[s2, σ2

A]. Moreover, B has a joint
action σ1

B at s1 such that, when applied by B, in addition to A applying σ1
A, it

guarantees ψ, i.e. M, u1 |= ψ for each u1 ∈ Out[s1, σ1
A � σ1

B]. By condition B-
Forthc, there is a joint action σ2

B of B at s2, such that, by (A�B)-LocalBackc,
for every u2 ∈ Out[s2, σ2

A � σ2
B] there exists u1 ∈ Out[s1, σ1

A � σ1
B] such that

u1βu2. Therefore, by the inductive hypothesis applied to ψ, M, u2 |= ψ for each
u2 ∈ Out[s2, σ2

A �σ2
B]. Thus, M, s2 |= θ. The converse is similar, using A-Backc.

Proposition 2 (Hennessy-Milner property). For any finite game model M
there is a ConStR-bisimulation β in M, such that for any pair s1, s2 ∈ M, s1βs2
holds iff s1 and s2 are ConStR-equivalent (satisfy the same ConStR-formulae).

Proof (Sketch). One direction follows from Proposition 1. For the converse, it
suffices to prove that the relation of ConStR-equivalence is itself a ConStR-
bisimulation in M. Since M is finite, there is a mapping χ from M to the
formulae of ConStR that assigns to each state s in M its characteristic formula
χ(s), such that s1, s2 are ConStR-equivalent if and only if s1 satisfies χ(s2) (and
vice versa), iff χ(s1) ≡ χ(s2). Furthermore, χ(s1) ∧ χ(s2) ≡ ⊥ whenever s1
and s2 are not ConStR-equivalent. Now, for any set of states Z in M we define
χ(Z) :=

∨
z∈Z χ(z).

The crucial observation for proving the claim is that every state s ∈ M
satisfies each of the following formulae, enabling the verification of the respective
ConStR-bisimulation conditions:

(1)
∧

A,B⊆Agt

{〈〈A〉〉c(χ(Z); 〈B〉χ(Y )) | ∃σ ∈ Acts : Out[s, σ|A] = Z and
Out[s, σ|(A∪B)] = Y

}

(2)
∧

A,B⊆Agt

{
[A]dr(χ(Z); 〈B〉χ(Y )) | ∀σ ∈ Acts : Out[s, σ|A] ⊆ Z implies

Out[s, σ′|(A∪B)] ⊆ Y for some σ′ ∈ Acts such that σ′|A = σ|A
}

(3)
∧

A,B⊆Agt

{
[A]dd(χ(Z); 〈B〉χ(Y )) | ∃σ ∈ Acts : ∀σ′ ∈ Acts if Out[s, σ′|A] ⊆

Z and σ′|(B\A) = σ|(B\A) then Out[s, σ′|(A∪B)] ⊆ Y
}

4.2 Some Remarks on Expressiveness and Definability

Proposition 3. Let a, b be different agents and p, q be different atomic propo-
sitions. Then the following hold, where ≡ is the logical equivalence in ConStR5.

5 Even though we state the non-definability claims for CL, they apply likewise even to
ATL∗, because all formulae of ATL∗ are invariant under alternating bisimulations.
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1. [a]dr(p; 〈b〉q) �≡ [a]dd(p; 〈b〉q).
2. 〈〈a〉〉c(p; 〈b〉q) is not definable in CL.
3. [a]c(p|q) (and, consequently, [a]dr(p; 〈∅〉q)) is not definable in CL.
4. [b]dd(q; 〈a〉p) is not definable in CL.

Proof. The first 3 claims follow respectively from Examples 3, 4, and 5 in the
Appendix. The proof of the last claim is analogous.

The results above generalise to pairwise coalitions in a straightforward way.

5 Concluding Remarks: The Road Ahead

First, we note that, while the new strategic operators introduced here can be
expressed in a suitable version of Strategy Logic (cf. [9]), we choose – for both
conceptual and computational reasons – to stay within a purely modal framework
where actions and strategies are not explicitly referred and quantified over in the
language, but are only present in the semantics.

We regard this work as a first step towards developing a rich technical frame-
work for logic-based conditional strategic reasoning of rational agents. The major
further steps and directions include:

1. Complete axiomatization and proof of decidability of the logic ConStR (cur-
rently under development).

2. Extending the framework to a full-fledged, long term conditional strategic
reasoning, by extending the language with standard temporal operators, to
produce an ATL-like extension of ConStR.

3. The long term conditional strategic reasoning naturally requires considera-
tions about strategic commitments and model updates (cf. [1,2]) and, more
generally, requires involving strategy contexts in the semantics ([7]).

4. Adding knowledge, explicitly in the language, and implicitly, in the semantics,
by assuming that the agents reason and act under imperfect information.

5. Last, but most important long-term objective of this project is to model and
capture by semantically richer logic-based formalism the mutually conditional
strategic reasoning, where all agents reason about their strategic choices, con-
ditional on the others’ strategic choices, conditional on the reasoners’ choices,
etc., recursively.

Appendix: Some Examples

Example 1. The game model M below has two players, a and b. Each has two
actions at state s0: a1, a2, resp. b1, b2.

s0
{p}

s2
{p,q}

s3
{q}

s1
{p}

s4
{p}

(a1, b2) (a2, b1)(a1, b1) (a2, b2)

M
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It can be verified that M, s0 � 〈〈a〉〉c(p; 〈b〉q), while M, s0 �� [b]q. Thus, an
agent may have only conditional ability to achieve its goal.

Example 2. The game model M below has two players, a and b.

s0
{p}

s3
{p,q}

s4
{p,q}

s2
{p}

s5
{p}

s1
{p}

s6
{}

(a1, b2) (a2, b1)(a1, b1) (a2, b2)

(a3, b1) (a3, b2)

M

It can be verified that M, s0 � [a]dr(p; 〈b〉q). However, M, s0 does not satisfy
the ATL∗ formula [[a]](Xp → 〈〈b〉〉Xq), hence these are not equivalent.

Also, M, s0 �� [a]dd(p; 〈b〉q). However, if the outcomes of (a2, b1) and (a2, b2)
are swapped, then [a]dd(p; 〈b〉q) becomes true at s0 in the resulting model.

Example 3. The game model M below involves two players: a and b. It can be
verified that M, s0 � [a]dr(p; 〈b〉q) but M, s0 �� [a]dd(p; 〈b〉q).

s0
{}

s1
{p,q}

s2
{p}

(a1,b1)
(a2,b2)

(a1,b2)
(a2,b1)

M

Example 4. The game models M1 and M2 below involve three players: a, b, c.
It can be verified that:

(1) The relation β = {(si, ti) | i = 0, 1, 2, 3} is an alternating bisimulation
between M1 and M2 (cf. [1]).

(2) M1, s0 � 〈〈a〉〉c(p; 〈b〉q) but M2, t0 �� 〈〈a〉〉c(p; 〈b〉q).

s0
{}

s1
{p,q}

s2
{p}

s3
{q}

(a1,b1,c1)
(a1,b1,c2)
(a1,b2,c1)
(a2,b1,c1)
(a2,b1,c2)
(a2,b2,c1)
(a3,b1,c1)
(a3,b2,c1)

(a1,b2,c2)
(a3,b1,c2)
(a3,b2,c2)

(a2, b2, c2)

M1

t0
{}

t1
{p,q}

t2
{p}

t3
{q}

(a1,b1,c1)
(a1,b2,c1)
(a2,b1,c1)
(a2,b1,c2)
(a2,b2,c1)

(a1,b1,c2)
(a1,b2,c2)

(a2, b2, c2)

M2
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Example 5. The game models M1 and M2 below involve two players: a and b.
It can be verified that:

(1) The relation β = {(si, ti) | i = 0, 1, 2, 3} is an alternating bisimulation
between M1 and M2 (cf. [1]).

(2) M1, s0 � [a]c(p|q) but M2, t0 �� [a]c(p|q).

s0
{}

s1
{p,q}

s2
{p}

s3
{q}

(a1,b1)
(a1,b2)
(a1,b3)
(a2,b1)

(a2, b2)

(a2, b3)

M1

t0
{}

t1
{p,q}

t2
{p}

t3
{q}

(c1,d1)
(c1,d3)
(c2,d1)
(c2,d2)
(c2,d3)
(c3,d1)

(c1,d2)
(c3,d2)

(c3, d3)

M2
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Abstract. There are currently two approaches to the logic of knowing
how: the planning-based one and the coalition-based one. However, the
first is single-agent, and the second is based on single-step joint actions.
In this paper, to overcome both limitations, we propose a multi-agent
framework for the logic of knowing how, based on multi-step dynamic
epistemic planning studied in the literature. We obtain a sound and com-
plete axiomatization and show that the logic is decidable, although the
corresponding multi-agent epistemic planning problem is undecidable.

1 Introduction

Standard epistemic logic has been mainly focusing on the reasoning patterns
about knowing that. In recent years, the logics of other knowledge expressions
such as knowing whether [5], knowing how [17], knowing why [22], and knowing
what [21] are attracting increasing attention (see [18] for a survey). In particu-
lar, the logics of knowing how is well-situated in the common interest of logic,
philosophy [14] and artificial intelligence [9].

Currently, there are two main approaches of the logics of knowing how. The
planning-based approach initiated by Wang [16,18] is inspired by the philosophi-
cal discussions on the semantics of knowing how [14] and the ideas of automated
planning under uncertainty in AI [6,18]. The semantics of the know-how modal-
ity is rendered formally by using the idea of first-order modal logic. In a nutshell,
knowing how to achieve ϕ means that there exists a plan σ such that the agent
knows that σ can definitely guarantee ϕ eventually (∃σK(σ guarantees ϕ)).
Depending on the notion of the plan and the corresponding planning problem,
various kinds of semantics for the know-how operator were proposed such as
[6,8,18]. The other approach is proposed by Naumov and Tao [12], inspired by
the tradition of coalition logic and alternating-time temporal logic. According to
this approach, a coalition C knows how to achieve ϕ if and only if there is a joint
action a for C such that it is distributed knowledge for C that a can achieve ϕ
no matter what others do. Variants of the basic framework were proposed and
discussed, such as knowing another coalition’s ability [10], knowing how under
the perfect recall assumption [11], knowing how with the degree of uncertainty
[13], and so on.
c© Springer-Verlag GmbH Germany, part of Springer Nature 2019
P. Blackburn et al. (Eds.): LORI 2019, LNCS 11813, pp. 126–139, 2019.
https://doi.org/10.1007/978-3-662-60292-8_10
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However, the drawback of the planning-based approach so far is that it is
based on single-agent automated planning. On the other hand, the disadvantage
of the coalition-based approach to know-how is that it so far only concerns
the simple single-step actions.1 Moreover, both approaches are based on models
where the effects of actions are given as abstract transitions but not actions as in
practical planning problems. In this paper, we make the first attempt to combine
the advantages of the two approaches by a multi-agent framework of knowing
how based on non-trivial multi-step plans of actions. Our framework is based
on multi-agent epistemic planning studied in the literature, where arguably the
most promising approach uses dynamic epistemic logic (DEL) as the background
logic (cf. e.g., [4]). Given a multi-agent pointed epistemic model, a finite set of
action models, and a goal formula ϕ, the epistemic planning problem is to decide
whether there is a finite sequence of available action models such that all the
resulting states after executing this sequence satisfy the goal formula. It is shown
that the single-agent planning problem is decidable but the multi-agent case is
in general undecidable (cf. e.g., [2]). Efforts are made to obtain decidability by
restricting the action models, e.g., [23].

Coming back to the logic of knowing how, as in [6], in this paper we also have
both the knowledge operator Ki and the know-how operator Khi in the language
(now indexed with agent names). By having both modalities, we can express
interesting things such as: i does not know how to achieve ϕ but i knows that j
knows how (¬Khiϕ∧KiKhjϕ); i knows how to let j know ϕ but at the same time
prevent k from knowing the truth value of ϕ (Khi(Kjϕ ∧ ¬Khk(Kkϕ ∨ Kk¬ϕ)).
We formalize the semantics of the know-how operator based on the above idea of
dynamic epistemic planning. In contrast with the transition-system-like models
in [6,12], a model in our setting is a standard epistemic model with a set of
available action models for each agent. Khiϕ holds at a state s iff there is a
finite sequence σ of action models for i such that i knows that ϕ holds after
executing the action sequence on the initial model using the standard product
update in DEL. The main technical result is a complete axiomatization of the
logic of knowing how under this setting. Through the axioms of our logic we
will see clearly the implicit assumptions behind dynamic epistemic planning at
a very abstract level, which can be compared to the axioms of knowing how
based on other planning notions in AI. Note that, as an initial attempt, we will
not consider group notions of know-that and know-how as in [11].

In the rest of the paper, we will first layout the basics about epistemic plan-
ning in Sect. 2. Section 3 first introduces the language of knowing how and the
semantics based on dynamic epistemic planning, and then gives a proof sys-
tem. The main technical contributions of the paper are the completeness of the
axiomatization and its decidability, which are proved in Sect. 5 based on the
alternative ‘static’ semantics introduced in Sect. 4 inspired by the method devel-
oped in [19,20]. Finally, we conclude with further directions in Sect. 6.

1 It is not the case in the closely related epistemic ATL e.g., [7].
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2 Preliminaries

Definition 1 (Epistemic model). Given a set Ag of agents, an epistemic
model N is a tuple 〈W, {∼i| i ∈ Ag}, V 〉 where:

– W is a non-empty set;
– ∼i ⊆ W × W is an equivalence relation over W for each i ∈ Ag;
– V : W → 2P is a valuation funtion.

Given a model N , we may refer to its components as WN , ∼N
i , and V N .

Definition 2 (EL language). Given a set P of proposition letters and a set
Ag of agents, the epistemic language LEL is defined:

ϕ ::= � | p | ¬ϕ | (ϕ ∧ ϕ) | Kiϕ

where p ∈ P and i ∈ Ag.

Definition 3 (EL semantics). Given a formula ϕ ∈ LEL and a pointed epis-
temic model (N , s), the satisfaction relation on ϕ and pointed model (N , s) is
defined:

N , s � � always
N , s � p ⇔ p ∈ V (s)

N , s � ¬ϕ ⇔ N , s � ϕ
N , s � (ϕ ∧ ψ) ⇔ N , s � ϕ and N , s � ψ

N , s � Kiϕ ⇔ s ∼i t implies N , t � ϕ

In DEL, there are also action models which capture actions that have factual
and epistemic effects. Here we take the definition form [3].

Definition 4 (Action model). An action model is

E = 〈E, {∼i| i ∈ Ag}, pre, post〉

where

– E is a non-empty set of event;
– ∼i ⊆ E × E is an equivalence relation over E for each i ∈ Ag;
– pre : E → LEL assigns a precondition to each event;
– post : E → LEL assigns a postcondition to each event. For each e ∈ E, post(e)

is a conjunction of literals over P (including �).

Given an action model E, we may refer to its components as EE , ∼E
i , preE and

postE . We use postE(e)+ to denote the set of proposition letters that are positive
literals of postE(e), and postE(e)− negatives. For each e ∈ E, we require that
postE(e)+ ∩ postE(e)− = ∅.

For each nonempty finite subset S of E, the pair (E , S) is called an epistemic
action (or simply an action), and the events in S are called the designated
events.
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Given an epistemic model N and X ⊆ WN , we use [X]i to denote the set
{s ∈ WN | s ∼i s′ for some s′ ∈ X}. When X is a singleton {s}, we write it
as [s]i. Similarly, we use the notation [Y ]i where Y is a subset of the domain
of an action model E. Given an action a = (E , S), the associated local action of
agent i ∈ Ag, denoted ai, is (E , [S]i). If S = [S]i, we say a is a local action of
agent i. It is possible that one action is local to multiple agents.

As an example, consider an action model E which is depicted as follows:

The domain of E is E = {e1, e2, e3, e4}, the precondition of e1 and e4 is p, and
the precondition of e2 and e3 is ¬p. The action 〈E , {e1, e2}〉 intuitively means an
announcement of the truth value of p, but, if ¬p is the case, for some reason, the
agent i cannot make sure the agent j actually hear the announcement or not.
Thus, when the action 〈E , {e1, e2}〉 happens, what agent i thought has happened
is 〈E , {e1, e2, e3}〉, i.e. the local action of i but not of j.

Definition 5 (Product update). Given an epistemic model N = 〈W, {∼i|
i ∈ Ag}, V 〉 and an action model E = 〈E, {∼i| i ∈ Ag}, pre, post〉, the product
update is

N ⊗ E = 〈W ′, {∼′
i| i ∈ Ag}, V 〉

where

– W ′ = {(w, e) ∈ W × E | (N , w) � pre(e)}
– ∼′

i= {(w, e), (w′, e′) | w ∼i w′, e ∼i e′}
– V (w, e) = (V N (w) \ postE(e)−) ∪ postE(e)+.

In [3], given a (finite) model N with a non-empty set X ⊆ WN , a linear sequence
σ of (finite) actions is a good epistemic plan for an epistemic goal formula ϕ if
σ is applicable on X (recursively defined below) and it reaches only ϕ states
eventually by executing the corresponding product updates.

Definition 6 (Applicability [3]). Given an action a = (E , S) and an epis-
temic model N , we say that a is applicable in X ⊆ W if, for each w ∈ X,
there is an event e ∈ S such that N , w � preE(e). An action sequence
(E1, S1) · · · (En+1, Sn+1) for all n ≥ 0 is applicable on X if (E1, S1) · · · (En, Sn)
is applicable on X and (En+1, Sn+1) is applicable on each state in (X × S1 · · · ×
Sn)|W N⊗E1···⊗En , i.e., the restriction of X × S1 · · · × Sn to WN⊗E1···⊗En .

3 Logic of Knowing How

Definition 7 (ELKh language). Given a set P of proposition letters and a set
Ag of agents, the language LELKh is constructed as follows:

ϕ ::= � | p | ¬ϕ | (ϕ ∧ ϕ) | Kiϕ | Khiϕ

where p ∈ P and i ∈ Ag.



130 Y. Li and Y. Wang

Definition 8 (Dynamic model of ELKh). A dynamic model is a pair M =
〈N , {Ai | i ∈ Ag}〉 where

– N is an epistemic model;
– for each i ∈ Ag, Ai is a set of local actions of i;
– all actions are based on the same action model, that is, if there are 〈E1, S1〉 ∈

Ai and 〈E2, S2〉 ∈ Aj for some i, j ∈ Ag then E1 = E2.

We use A to denote the set
⋃

i∈Ag Ai.

Remark 1. Note that the third condition above is not a real restriction because
we can use the disjoint union as the common set of events if actions differ in
their own sets of events.

As mentioned before, the idea behind the semantics of Khiϕ here is that there
is a plan consisting of available actions in Ai such that agent i knows that it can
guarantee ϕ, i.e., σ is a good epistemic plan according to [3].

Definition 9 (Dynamic semantics of ELKh). Given any dynamic model
M = 〈N , {Ai | i ∈ Ag}〉, the truth conditions for LEL formulas are as usual
based on N , and the dynamic semantics for Kh-formulas is defined as follows:

M, s � Khiϕ ⇔ there is an action sequence (E , S1) · · · (E , Sn) ∈ (Ai)∗ :
(1.) (E , S1) · · · (E , Sn) is applicable on [s]i

(2.) M′, w � ϕ for each w ∈ D

where M′ = 〈N ⊗ En, {Ai | i ∈ Ag}〉 and D = ([s]i × S1 · · · × Sn)|W N⊗En

represent the final model and the final states after executing the action sequence.

Given a dynamic model M = 〈N , {Ai | i ∈ Ag}〉, it is not hard to see that,
according to [3], M, s � Khip iff there is an epistemic plan for the goal p w.r.t.
N with [s]i ⊆ WN , and the action set Ai. For each ϕ ∈ LEL, we have that
M, s � ϕ iff N , s � ϕ.

Definition 10. The proof system SLKH is as follows:
Axioms
TAUT all axioms of propositional logic
DISTK Kip ∧ Ki(p → q) → Kiq
T Kip → p
4 Kip → KiKip
5 ¬Kip → Ki¬Kip
AxKtoKh Kip → Khip
AxKhtoKKh Khip → KiKhip
AxKhbot ¬Khi⊥
AxKhtoKhK Khip → KhiKip

Rules

MP
ϕ, ϕ → ψ

ψ
NECK

ϕ

Kiϕ

MONOKh
ϕ → ψ

Khiϕ → Khiψ
SUB

ϕ(p)

ϕ[ψ/p]

AxKtoKh is valid since we allow empty plan.2 AxKhtoKKh is valid because we
actually start with the set [s]i in the semantics. The validity of AxKhbot is due
2 One may find AxKtoKh counter-intuitive under the global view of know-how (cf.
[18]): knowing that the safe is open does not imply knowing how to open it in all the
possible situations. However, the notion of know-how in this paper is a local one:
knowing how to achieve ϕ under the current circumstance.
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to applicability. To see the validity of AxKhtoKhK the reader can verify that the
set of D in the semantics is i-closed based on the fact that [s]i is an equivalence
class and the product update preserve the i-closeness if Sk are i-closed for all k.

Theorem 1 (Soundness). SLKH is sound, namely, if � ϕ then � ϕ.

On the other hand, KiKhjϕ → Khiϕ and KhiKhjϕ → Khiϕ are not valid due
to the fact that the available actions to each agent may be different, in contrast
with the validity of KiKjϕ → Kiϕ. Note that compared to [6], we do not have
the axiom of KhiKhiϕ → Khiϕ since in contrast to the branching plans in [6],
we only allow linear plans here.

4 An Alternative Semantics

Showing the completeness of our system is a highly non-trivial task due to the
fact that the semantics is based on non-trivial use of DEL actions, which can-
not be expressed directly in our language of know-how, unlike the language of
DEL. Moreover, the dynamics in the semantics is hard to handle, thus in this
section, inspired by the method in [15,19,20], we first give an equivalent alterna-
tive semantics based on extended models with both the epistemic relations and
the transitions between the states, which intuitively can be viewed as temporal
unravelings of the epistemic model w.r.t. available actions. Then in Sect. 5 we
prove the completeness w.r.t. this alternative semantics and finally obtain the
completeness w.r.t. the original semantics.

Definition 11 (Extended model of ELKh). An extended model is a triple
M+ = 〈N , {Ai | i ∈ Ag}, { e−→| e ∈ S for some 〈E , S〉 ∈ A}〉 where 〈N , {Ai |
i ∈ Ag}〉 is a dynamic model and e−→ is a binary relation on WN . For each
w ∈ WN , (M+, w) is a pointed extended model.

Given an extended model M+ and an action a = 〈E , S〉 ∈ A, we define the
binary relation a−→ as

a−→=
⋃

e∈S

e−→

We also write (w, v) ∈ a−→ as w
a−→ v. We use Q(a1 · · · an)(s) to denote the set of

states t such that there exist t1 · · · tn satisfying that s
a1−→ t1 · · · an−−→ tn and t = tn.

If X is a set of states, we then use Q(a1 · · · an)(X) to mean
⋃

s∈X Q(a1 · · · an)(s),
in particular Q(a1 · · · an)([s]) =

⋃
u∼s Q(a1 · · · an)(u). If Q(a1 · · · an)(s) �= ∅, we

say that a1 · · · an is executable on s. We define a notion of strong executability
over extended models inspired by [18].

Definition 12 (Strong executability). Let M+ be an extended model
〈N , {Ai | i ∈ Ag}, { e−→| e ∈ S for some 〈E , S〉 ∈ A}〉, we say an action
a = 〈E , S〉 ∈ A is strongly executable on X ⊆ W if, for each w ∈ X, there
is an event e ∈ S such that N , w � preE(e). An action sequence a1 · · · an+1 ∈ A∗

is strongly executable on X if a1 · · · an is strongly executable on X and an+1 is
strongly executable on each state v such that w

a1···an−−−−→ v for some w ∈ X.
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We can now give the alternative semantics of ELKh over extended models.

Definition 13 (Static semantics of ELKh). Given an extended model M+ =
〈N , {Ai | i ∈ Ag}, { e−→| e ∈ S for some 〈E , S〉 ∈ A}〉, the static semantics (�) is
defined as follows:

M+, s � Khiϕ ⇔ there is an action sequence a1 · · · an ∈ (Ai)∗ :
(1.) a1 · · · an is strongly executable on [s]i

(2.) M+, w � ϕ for each w ∈ Q(a1 · · · an)([s]i).

Please note that, for each ϕ ∈ LEL, we have that M+, s � ϕ iff N , s � ϕ.

Definition 14 (EA-Bisimulation). Let M+
1 and M+

2 be two extended models

such that AM+
1

i = AM+
2

i for each i ∈ Ag. A binary relation Z ⊆ (WM+
1 ×WM+

2 )
is called an EA-bisimulation if whenever (w,w′) ∈ Z the following hold:

– for each p ∈ P, p ∈ V M+
1 (w) iff p ∈ V M+

1 (w′);
– for each i ∈ Ag,

• if w ∼i v in M+
1 for some v, then there is v′ in M+

2 such that w′ ∼i v′

in M+
2 and (v, v′) ∈ Z;

• if w′ ∼i v′ in M+
2 for some v′, then there is v in M+

1 such that w ∼i v
in M+

1 and (v, v′) ∈ Z;
– for each a = 〈E , S〉 ∈ A and e ∈ S,

• if w
e−→ v in M+

1 for some v, then there is v′ in M+
2 such that w′ e−→ v′ in

M+
2 and (v, v′) ∈ Z;

• if w′ e−→ v′ in M+
2 for some v′, then there is v in M+

1 such that w
e−→ v in

M+
1 and (v, v′) ∈ Z.

If it only satisfies the condition for propositional variables and the condition for
∼i, we call Z an E-bisimulation.

Given two pointed model M+
1 , w and M+

2 , v, if there is an EA-bisimulaiton Z
between M+

1 and M+
2 and (w, v) ∈ Z, we will write it as M+

1 , w ↔EA M+
2 , v.

Proposition 1. If M+
1 , w ↔EA M+

2 , w′, then we have that M+
1 , w � ϕ iff

M+
2 , w′ � ϕ for each ϕ ∈ ELKh.

Proof. (Sketch) This can be proved by induction on ϕ. We will only focus on the
case of Khiϕ; the other cases are straightforward by IH. For the case of Khiϕ,
the key of the proof is that, if there is a sequence w

e1−→ · · · en−→ wn in M+
1 , due

to M+
1 , w ↔EA M+

2 , w′, there exists a sequence w′ e1−→ · · · en−→ w′
n in M+

2 such
that M+

1 , wn ↔EA M+
2 , w′

n.

Definition 15. Given a dynamic model M = 〈N , {Ai | i ∈ Ag}〉, the extended
model Mω is 〈⊎i∈N

N ⊗ E i, {Ai | i ∈ Ag}, { e−→| e ∈ S for some 〈E , S〉 ∈ A}〉:
–

⊎
i∈N

N ⊗ E i is the disjoint union of all N ⊗ En, also written as N ω;
– e−→= {(ξ, ξ′) | ξ′ = (ξ, e), and ξ, ξ′ ∈ N ω}
As in [19], some conditions of the extended models are given to equate � and �.
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Definition 16 (Model Class C). The model class C is the set of extended
models that satisfy the following conditions:

Pre for each 〈E , S〉 ∈ A and each e ∈ S, w has an e-successor iff M+, w �
preE(e);

Pos for each 〈E , S〉 ∈ A and each e ∈ S, if w
e−→ v then V (v) = (V (w) \

postE(e)−) ∪ postE(e)+;
Nm (no miracles) for each 〈E , S〉 ∈ A and e1, e2 ∈ S, if w ∼i w′, w

e1−→ v,
w′ e2−→ v′, and e1 ∼E

i e2, we then have that v ∼i v′;
Pr (perfect recall) for each 〈E , S〉 ∈ A and each e1 ∈ S, if w

e1−→ v and v ∼i v′,
we then have that there exist w′ ∈ W and e2 ∈ S such that w ∼i w′, w′ e2−→ v′

and e1 ∼E
i e2.

Proposition 2. Given an extended model M+ = 〈M, { e−→| e ∈ S for some
〈E , S〉 ∈ A}〉 where M = 〈N , {Ai | i ∈ Ag}〉, let Zn be a binary relation on WN

and WN⊗En

for i ∈ N, which is defined as Zn = {(t, se1 · · · en) ∈ WN ×WN⊗En |
there exist s0, · · · , sn ∈ WN such that s0 = s, sn = t and si

ei+1−−−→ si+1 in M+

for 0 ≤ i < n}. If Zn �= ∅ then Zn is an E-bisimulaiton between N and N ⊗ En.

Lemma 1. Given a dynamic model M = 〈N , {Ai | i ∈ Ag}〉 and an extended
model M+ = 〈M, { e−→| e ∈ S for some 〈E , S〉 ∈ A}〉, if M+ ∈ C, we then have
that M+, w ↔EA Mω, w for all w ∈ WN .

Lemma 2. Given a dynamic model M = 〈N , {Ai | i ∈ Ag}〉, for each ϕ ∈
ELKh and each n ∈ N, we have that 〈N ⊗ En, {Ai | i ∈ Ag}〉, (we1 · · · en) � ϕ iff
Mω, (we1 · · · en) � ϕ.

Proofs of Proposition 2 and Lemmas 1 and 2 are omitted due to limited space
(cf. [19] for similar results).

Theorem 2. For each ELKh-formula ϕ, if � ϕ then C � ϕ.

Proof. If C � ϕ, there exists an extended model M+ ∈ C and a state s such
that M+, s � ¬ϕ. By Lemma 1 and Proposition 1, we have that Mω, s � ¬ϕ.
By Lemma 2, we then have that M, s � ¬ϕ. Thus we have that � ϕ.

Actually, it is not hard to show that the other way around also holds though we
do not need it in the later completeness proof.

5 Completeness

We prove the completeness of SLKH over extended models in C w.r.t. � by
constructing a canonical extended model with a canonical action model.

We will construct canonical model on maximal consistent set w.r.t. a closure
cl(Φ) of formulas, which is defined in the following. Let Φ be a subformula-closed
set of ELKh-formulas that is finite. Given a set of formulas Δ, let: Δ|Ki

= {Kiϕ |
Kiϕ ∈ Δ}, Δ|¬Ki

= {¬Kiϕ | ¬Kiϕ ∈ Δ}, Δ|Khi
= {Khiϕ | Khiϕ ∈ Δ},

Δ|¬Khi
= {¬Khiϕ | ¬Khiϕ ∈ Δ}.
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Definition 17. The closure cl(Φ) is Φ ∪ {KiKhiϕ,Kiϕ | Khiϕ ∈ Φ}.

From Definition 17, we have that KiKhiϕ,Kiϕ ∈ cl(Φ) for each Khiϕ ∈ cl(Φ).
Since Φ is finite, so is cl(Φ). Next we define the maximal consistent sets w.r.t.
cl(Φ) and will use them to build canonical models.

Definition 18 (Atom). We enumerate the formulas in cl(Φ) by {ψ0, · · · , ψh}
where h ∈ N. The set of formulas Δ = {Yi | i ≤ h} is an atom of cl(Φ) if

– Yi = ψi or Yi = ¬ψi for each ψi ∈ cl(Φ);
– Δ is consistent in SLKH.

Proposition 3. Let Δ be an atom of cl(Φ), and Kiϕ ∈ cl(Φ). If Kiϕ �∈ Δ then
there exists Δ′ such that Δ′|Ki

= Δ|Ki
and ¬ϕ ∈ Δ′.

Let A(Φ) be the set of all atoms of cl(Φ). For each s ∈ A(Φ), we need two
copies s− and s+. and we will construct canonical models based on the set
{s+, s− | s ∈ A(Φ)}. The only difference between s+ and s− is that the know-
how formula Khiϕ ∈ s will hold on s+ and s− due to different plans, which will
become more clear formally. Also note that besides the propositional variables in
Φ, we also use the set of auxiliary propositional variables PA(Φ) = {qs+ , qs− | s is
an atom of cl(Φ)} where the propositional letter qs+ will be used to characterize
the state s+, and qs− characterizes s−.

Definition 19 (Canonical epistemic model). Given Φ, the canonical epis-
temic model N Φ = 〈WΦ, {∼i| i ∈ Ag}, V Φ〉 is

– WΦ = {s+, s− | s ∈ A(Φ)}
– ∼i= {(s+, t+), (s−, t−) | s|K = t|K}
– V Φ(s±) = {p ∈ P | p ∈ s} ∪ {qs±}
We also use the notation s± which means that we do not exactly know what its
superscript is. The superscript of s± might be + and also might be −. Please
note that the equivalence relation ∼i consists of pairs of states that have the
same superscript.

Next, we will define the canonical action model. The intuition behind the
idea is that each event e is a triple. The first element of e, denoted by fir(e),
and the third element of e, thi(e), are states of the canonical epistemic model,
which means that this event e will link these two states, i.e. fir(e) e−→ thi(e),
in the final canonical extended model. The second element of e, sec(e), is a
know-how formula with superscript, which represents that this event e will be
used to realize the know-how formula.

Definition 20 (Canonical action model). Given Φ, the canonical action
model EΦ = 〈EΦ, {∼i| i ∈ Ag}, pre, post〉 is

– EΦ = ∪{K̂hiϕ+, K̂hiϕ− | Khiϕ ∈ Φ, i ∈ Ag} where

K̂hiϕ+ = {〈s+, Khiϕ
+, t+〉, 〈s+, Khiϕ

+, t−〉 | Khiϕ ∈ s ∈ A(Φ), Kiϕ ∈ t ∈ A(Φ)}
∪{〈s−, Khiϕ

+, t+〉, 〈s−, Khiϕ
+, t−〉 | Khiϕ ∈ s ∈ A(Φ), t ∈ A(Φ)},

K̂hiϕ− = {〈s+, Khiϕ
−, t+〉, 〈s+, Khiϕ

−, t−〉 | Khiϕ ∈ s ∈ A(Φ), t ∈ A(Φ)}
∪{〈s−, Khiϕ

−, t+〉, 〈s−, Khiϕ
−, t−〉 | Khiϕ ∈ s ∈ A(Φ), Kiϕ ∈ t ∈ A(Φ)}.
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– ∼i = {(e, e′) | fir(e) ∼i fir(e′), sec(e) = sec(e′) = Khiϕ
± for some Khiϕ ∈

cl(Φ), thi(e) ∼i thi(e′)}
– pre(e) = qfir(e)
– post(e) = {¬p | p �∈ t} ∪ {p | p ∈ t} where thi(e) = t±.

Definition 21 (Canonical dynamic model). The canonical dynamic model
MΦ = 〈N Φ, {AΦ

i | i ∈ Ag}〉 where

– N Φ is the canonical epistemic model;
– for each i ∈ Ag, AΦ

i = {〈EΦ, K̂hiϕ+〉, 〈EΦ, K̂hiϕ−〉 | Khiϕ ∈ Φ} where EΦ is
the canonical action model.

Proposition 4. For each agent i ∈ Ag, every action 〈EΦ, S〉 ∈ AΦ
i is a local

action of agent i.

Definition 22 (Canonical extended model). The canonical extended model
MΦ+ = 〈MΦ, { e−→| e ∈ S for some 〈EΦ, S〉 ∈ AΦ}〉 where

– MΦ is the canonical dynamic model;
– e−→ = {(fir(e), thi(e))}
Proposition 5. Given an action a ∈ AΦ

i that is executable on s±, if ϕ ∈ t for
each t± ∈ Q(a)(s±), we then have that Khiϕ ∈ s.

Proof. Let a be 〈EΦ, K̂hiψ±〉. There are two cases:

– The superscripts of K̂hiψ± and s± are the same with each other. That is,
either a = 〈EΦ, K̂hiψ+〉 and s± = s+, or a = 〈EΦ, K̂hiψ−〉 and s± = s−.
Next, we will show that if ϕ ∈ t for each t± ∈ Q(〈EΦ, K̂hiψ+〉)(s+), we then
have that Khiϕ ∈ s.
Firstly, since a is executable on s+, we then have that there is some t± such
that s+

a−→ t±. This follows that s+
e−→ t± for some e ∈ K̂hiψ+. This follows

that e = 〈s+,Khiψ
+, t±〉. By Definition 20, we then have that Khiψ ∈ s and

Kiψ ∈ t.
Secondly, we will show that � Kiψ → Kiϕ. If not, this follows that
{Kiψ,¬Kiϕ} is consistent. By Lindenbaum’s lemma, we then have that there
is some v ∈ A(Φ) such that {Kiψ,¬Kiϕ} ⊆ v. This follows that Kiϕ �∈ v. By
Proposition 3, we then have that there is some w ∈ A(Φ) such that ¬ϕ ∈ w and
w|Ki

= v|Ki
. Since Kψ ∈ w, this follows that e′ = 〈s+,Khiψ

+, w+〉 ∈ K̂hiψ+.

By Definition 22, we have that s+
e′
−→ w+, and then s+

a−→ w+. This is con-
tradictory with that ϕ ∈ t for each t± ∈ Q(a)(s+). therefore, we have shown
that � Kiψ → Kiϕ. By Rule MONOKh, we have that � KhiKiψ → KhiKiϕ.
By Axioms AxKhtoKhK and others, we have that � Khiψ → Khiϕ. Since
Khiψ ∈ s, therefore, we have that Khiϕ ∈ s.
From a similar process, it can be shown that, if ϕ ∈ t for each state t± in
Q(〈EΦ, K̂hiψ−〉)(s−), we then have that Khiϕ ∈ s.
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– The superscripts of K̂hiψ± and s± are different from each other. That is,
either a = 〈EΦ, K̂hiψ+〉 and s± = s−, or a = 〈EΦ, K̂hiψ−〉 and s± = s+.
Next, we will show that if ϕ ∈ t for each t± ∈ Q(〈EΦ, K̂hiψ+〉)(s−), we then
have that Khiϕ ∈ s.
Firstly, since a is executable on s−, we can have that Khiψ ∈ s. By Definition
20, we have that 〈s−,Khiψ, t±〉 ∈ K̂hiψ+ for each t ∈ A(Φ). By Definition

22, we have that s− 〈s−,Khiψ,t±〉−−−−−−−−−→ t± for each t ∈ A(Φ). Therefore, t± ∈
Q(〈EΦ, K̂hiψ+〉)(s−) for each t ∈ A(Φ). Thus, we have that ϕ ∈ t for each
t ∈ A(Φ). Thus, we have that � ϕ ↔ �. Therefore, � Khiϕ ↔ Khi� ↔ �.
Thus, we have that Khiϕ ∈ s.
From a similar process, it can be shown that, if ϕ ∈ t for each state t± in
Q(〈EΦ, K̂hiψ−〉)(s+), we then have that Khiϕ ∈ s.

Proposition 6. Given an action sequence a1 · · · an ∈ AΦ
i that is strongly exe-

cutable on s±, if n ≥ 2, we then have that t+, t− ∈ Q(a1 · · · an)(s±) for each
t ∈ A(Φ).

Due to the space limit, the proof of this proposition is omitted. The idea of the
proof is that doing the action a = 〈EΦ, K̂hiϕ+〉 on states with superscript +, or
doing b = 〈EΦ, K̂hiϕ−〉 on states with −, will reach on Kiϕ-states both with +
and with −. However, doing a on states with −, or doing b on states with +,
will reach all states. Thus, if the length of the plan is bigger than or equal to 2,
performing the plan will terminate on all states.

Next we will show the truth lemma.

Lemma 3. For each ϕ ∈ cl(Φ), we have that MΦ+, s± � ϕ iff ϕ ∈ s.

Proof. We prove it by induction on ϕ. We only focus on the case of Khiϕ ∈
cl(Φ); the other cases are straightforward, e.g., Kϕ case can be proved based on
Proposition 3. Note that if Khiϕ ∈ cl(Φ) then Khiϕ ∈ Φ, therefore, by Definition
17, Kiϕ ∈ cl(Φ).

Right to Left: Assuming that Khiϕ ∈ s, we will show MΦ+, s± � Khiϕ.
Firstly, we will show that there is some atom t of cl(Φ) such that Kiϕ ∈ t. Since
Khiϕ ∈ s and s is consistent, this follows that Kiϕ is consistent. If not, we
then have that � Kiϕ → ⊥. By Rule MONOKh and Axiom AxKhtoKKh, we then
have that � Khiϕ → Khi⊥. By Axiom AxKhbot, we then have that � ¬Khiϕ.
Contradiction! Thus, we have that Kiϕ ∈ cl(Φ) is consistent. By Lindenbaum’s
lemma, there is some atom t of cl(Φ) such that Kiϕ ∈ t.

Next, we will show that MΦ+, s+ � Khiϕ. Since t is an atom, this follows
that t± ∈ WΦ. We then have that e = 〈s+,Khiϕ

+, t+〉 ∈ K̂hiϕ+. Let a be
the action 〈EΦ, K̂hiϕ+〉, next we will show that a is strongly executable on
[s+]i and MΦ+, w± � ϕ for each w± ∈ Q(a)([s+]i). By Definition 19, we know
that the superscript of the state that is in [s+]i is +. For each v+ ∈ [s+]i,
by Definition 19, we then have that s|Ki

= v|Ki
. Moreover, since � Khiϕ →

KiKhiϕ, this follows that KiKhiϕ ∈ v because of Khiϕ ∈ s and KiKhiϕ ∈ cl(Φ).
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This follows by Axiom T that Khiϕ ∈ v. By Definition 20, we then have that

e′ = 〈v+,Khiϕ
+, t+〉 ∈ K̂hiϕ+. Further, by Definition 22, we have that v+ e′

−→
t+, and then v+ a−→ t+. Therefore, a is strongly executable on [s+]i. For each
w± ∈ Q(a)([s+]i), there is some u+ ∈ [s+]i such that u+ a−→ w±. This follows

that there is some e′′ ∈ K̂hiϕ+ such that u+ e′′
−→ w±. By Definition 22, we then

know that e′′ = 〈u+,Khiϕ
+, w±〉. By Definition 20, we then have Kiϕ ∈ w. By

Axiom T, we have that ϕ ∈ w. By IH, we then have that MΦ+, w± � ϕ.
We then have shown that MΦ+, s+ � Khiϕ. From a similar process, It can

be shown that MΦ+, s− � Khiϕ.

Left to Right: Assuming that MΦ+, s± � Khiϕ, we will show Khiϕ ∈ s.
It follows by MΦ+, s± � Khiϕ that there is an action sequence σ = a1 · · · an

such that σ is strongly executable on [s±]i and MΦ+, t± � ϕ for each t± ∈
Q(σ)([s±]i). By IH, we have that ϕ ∈ t for each t± ∈ Q(σ)([s±]i). There are
three cases: σ = ε; n = 1; and n ≥ 2.

If σ = ε, this follows that ϕ ∈ t for each t± ∈ [s±]i. This follows that Kiϕ ∈ s.
If not, it will be contradictory with Proposition 3. It follows by Axiom AxKtoKh
that Khiϕ ∈ s.

If n = 1, this follows that a1 is executable on s±. Since ϕ ∈ t for each
t± ∈ Q(a1)([s±]i), by Proposition 5, we then have that Khiϕ ∈ s.

If n ≥ 2, this follows that a1 · · · an is executable on s±. By Proposition 6,
we have that v± ∈ Q(a1 · · · an)(s±) for each v ∈ A(Φ). Since ϕ ∈ t for each
t± ∈ Q(a1)(s±), this follows that ϕ ∈ v for all v ∈ A(Φ). This follows that
� ϕ ↔ �. Thus, we have by Rule MONOKh that � Khiϕ ↔ Khi�. Therefore, we
have that Khiϕ ∈ s.

Proposition 7. MΦ+ ∈ C.

Theorem 3 (Completeness). SLKH is complete w.r.t. dynamic semantics,
namely, if � ϕ then � ϕ.

Proof. It follows by Lemma 3 and Proposition 7 that if C � ϕ then � ϕ. More-
over, by Theorem 2, we have that if � ϕ then � ϕ.

Theorem 4. SLKH is decidable.

Proof. By Lemma 3, we know that if ϕ is satisfiable then it is satisfied on the
canonical extended model MΦ+. Moreover, the canonical extended model MΦ+

is a finite model which is bounded by the length of the formula ϕ. Please note
that MΦ+ consists of the canonical epistemic model N Φ and the canonical action
model EΦ. Let the size of the set cl(Φ) be n, which is bounded by the length
of ϕ. By Definition 19, we know that the size of N Φ is bounded by O(2n). By
Definition 20, we know that the size of EΦ is bounded by O(n22n). Thus, the
size of MΦ+ is bounded by O(n22n).

Given ϕ, we consider the following procedure: (1) we calculate the set Φ,
which consists of all subformulas of ϕ, and the closure cl(Φ); (2) we take a
subset of the power set of cl(Φ) as all the atoms of cl(Φ), and we then construct
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the ‘canonical extended model’ based on these ‘atoms’; (3) we check whether
ϕ is satisfied on this ‘canonical extended model’, and we put ‘yes’ out if ϕ is
satisfied; (4) if ϕ is not satisfied on the ‘canonical extended model’, we then go
to step (3) and continue to try another subset of the power set of cl(Φ). If we
fail to find a model for ϕ after trying all the subsets of the power set of cl(Φ),
we put ‘no’ out.

If ϕ is satisfiable, by Lemma 3, this procedure will put ‘yes’ out. If this
procedure puts ‘yes’ out, we then have a model that satisfies ϕ, and thus ϕ is
satisfiable. This procedure will terminate for an input formula ϕ. The reason is
the following: step (1) will terminate due to the fact that cl(Φ) is bounded by the
length of ϕ; step (2) will terminate because the size of the canonical extended
model is bounded; step (3) will terminate if model checking of ELKh is bounded.
To show model checking of ELKh is decidable, the key is to show model checking
know-how formula Khiϕ over extended model is decidable. It can be shown that
if M+, s � Khiϕ then then there is a good plan whose length is bounded by 2m,
where m is the size of M+. Thus, checking whether a know-how formula Khiϕ
is satisfied on an extended model M+ is decidable.

6 Conclusions

In this paper, we propose a multi-agent framework based on multi-step dynamic
epistemic planning. We obtain a sound and complete logic of knowing how. The
axioms captures the abstract properties of dynamic epistemic planning. Note
that although the multi-agent epistemic planning problem is undecidable, the
abstract logic of know-how based on it is decidable.

This is just the beginning of an interesting story, which opens various further
directions. First of all, inspired by [11], we can add the group knowledge opera-
tors such as distributed knowledge and common knowledge for both know-that
and know-how. Secondly, it is also interesting to consider branching epistemic
plans as in [1] rather than the linear one. Furthermore, we can discuss the cor-
respondence between the axioms and the assumptions underlying the epistemic
planning notion, e.g., when the axiom KhKhϕ → Khϕ becomes valid by restrict-
ing the set of action models. Finally, we implicitly assume the set of actions is
commonly known to all the agents which can be relaxed in the future.

Acknowledgement. Yanjun Li would like to thank the support from NSSF grant
18CZX062. The authors thank the anonymous reviewers for their detailed comments
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Abstract. In this paper we consider a weak Ewald’s intuitionistic tense
logic (wIK.t). We study its sequent system and algebraic semantics. We
prove the soundness and the completeness results. We also show that
the sequent system for wIK.t introduced in the present paper admits cut
elimination. Finally we propose a criterion and prove that all extensions
of wIK.t satisfying this criterion have cut free sequent systems.

1 Introduction

The tense operators were first introduced to classical propositional logic in
Burgess [2], which yielded the basic classical tense logic. Ewald [5] introduced an
intuitionistic tense logic denoted by IK.t which is analogue to the classical tense
logic. In this logic Ewald considered four tense operators G (�), H (�), F (♦)
and P (�) on intuitionistic propositional calculus satisfying some mutual condi-
tions. Sequent system and Hilbert style system were given in the same paper.
Further Ewald defined a Kripke model for IK.t and proved the completeness
and decidability. Although the decidability proof (via finite model property) is
shown to be incorrect in [10], the completeness result with respect to kripke
model use in the define article remains true. By enriching with different modal
axioms, one can obtain intuitionistic counterparts of different classical tense log-
ics. Notice that the S5 extensions of IK.t (IK.t enrich with modal axioms 4, T,
B) is coincided with Pior’s MIPC.

An algebraic axiomatization for IK.t was given by Figallo and Pelaitay in [6].
A tense algebra for IK.t (IK.t-algebras) (A,∧,∨,→, 0, 1,♦,�,�,�) is a struc-
ture such that (A,∧,∨,→, 0, 1) is a Heyting algebra and ♦,�,�,� are unary
operators on A satisfying the following conditions for all a, b ∈ A

(t1) �1 = 1 and �1 = 1
(t2) �(a ∧ b) = �a ∧ �b and �(a ∧ b) = �a ∧ �b
(t3) a ≤ �♦a and a ≤ ��a

The work of both authors were supported by Key program of Chongqing’s Key Research
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(t4) ♦0 = 0 and �0 = 0
(t5) ♦(a ∨ b) = ♦a ∨ ♦b and �(a ∨ b) = �a ∨ �b
(t6) ♦�a ≤ a and ��a ≤ a
(t7) ♦(a → b) ≤ �a → ♦b and �(a → b) ≤ �a → �b.

¬ is defined as follow: ¬a = a → ⊥. It was shown in the same paper that Ewald’s
intuitionistic tense logic is sound and complete with respect to IK.t-algebras.

Beyond Ewald’s setting, Chajda [4] introduced another basic intuitionistic
tense algebras by replacing (t7) by a classical view of the modalities: (t8) ♦a =
¬�¬a and �a = ¬�¬a. This follows the tradition of Bull [1], in which Bull
considered an intuitionistic version of modal logic S5 satisfying (t8). Algebraic
semantics was given for this logic and the finite model property was proved
in the same paper. Obviously in Chajda’s tense algebras, (t7) dose not hold,
meanwhile in [6], Figallo and Pelaitay argumented that (t8) is not satisfied in
IK.t-algebras. Hence both classes of algebras are independent. Thus it is natural
to consider classes of algebras included both algebras in [6] and [4]. The definition
of these classes of algebras (called weak IK.t-algebras) can be found in Sect. 2
(Definition 2). There is not even any general agreement on what the intuitionistic
analogue of the basic tense logic, K.t, is. As we will see, in this paper we propose
a new candidate.

In the present paper, we study the logics of weak IK.t-algebras from the proof
theoretical point of view. The study of proof theory on different inuitionistic
modal and tense logics is vast. Genzten style sequent and natural deduction
systems were investigated in the literature, e.g. [5,8]. Labelled, display, deep
inferences and nested sequent systems were introduced and studied in [7,9,11].
Particularly to the best of our knowledge, there is not cut free sequent system
for IK.t. We introduce a sequent system which is sound and complete with
respect to weak IK.t-algebras. We show that this sequent system admits cut
elimination. Further we also discuss the sequent systems of extensions of weak
IK.t logics and introduce a criterion for these cut free sequent systems. The
present work is rooted in the studies of substructural logics. We consider sequent
systems with structure operations for tense operators, and various properties of
tense connectives are presented in the form of structure rules. This follows the
tradition of substructural modal logics. It is worth mentioning that Moorgat’s
works on multi modal Lambek calculus was probably the beginning of this stream
of research. However many other researchers have contributed to this area, and
we refer to [3,12,13].

This paper is organized as follows. In next section, we introduce the weak
IK.t algebras and the sequent system of the corresponding logic. We also show
the soundness and completeness results. In Sect. 3, we provide a cut free proof
for the sequent system introduced in Sect. 2. Section 4 discuss a criterion for cut
free sequent systems of extensions of weak IK.t logics. As a consequence we show
that our results can be extended to weak IK.t logics with any combinations of
axioms D, T, B, 4 and 5.
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2 Algebraic Semantics and Sequent System

In this section we introduce weak IK.t-algebras and develop a sequent system
which is sound and complete with respect to weak IK.t-algebras.

Definition 1. A Heyting algebra (A,∧,∨,→, 0, 1) is a structure such that
(A,∧∨, 0, 1) is a bounded distributive lattice and → is a binary operation on
A satisfying the following conditions for all a, b ∈ A

(Res) a ∧ b ≤ c iff b ≤ a → c

One usually define ¬a ≡ a → 0. Note that 0 and 1 are the least and greatest
elements in A.

Definition 2. A weak IK.t algebra (wIK.tA) (A,∧,∨,→, 0, 1,♦,�,�,�) is a
structure such that (A,∧,∨,→, 0, 1) is a Heyting algebra and ♦,�,�,� are unary
operations on A satisfying the following conditions for all a, b ∈ A

(Adj♦�) ♦a ≤ b iff a ≤ �b

(Adj��) �a ≤ b iff a ≤ �b

(Dual♦�) �¬a ≤ ¬♦a

(Dual��) �¬a ≤ ¬�a

It is known that (Adj♦�) and (Adj��) follow from the monotonicity for
♦,�,�,�, (t3) and (t6). (Dual♦�) and (Dual��) are special cases for conditions
�(a → b) ≤ ♦a → ♦b and �(a → b) ≤ �a → �b if b = ⊥, which are admis-
sible in iK.t algebras. Later we call these conditions WK axioms since they
firstly appeared in Wijesekera’s intuitionistic modal system. Clearly (Dual♦�)
and (Dual��) hold in Chajda’s intuitionistic tense algebras. Hence IK.t-algebras
and Chajda’s intuitionistic tense algebras are both weak IK.t-algebras.

Lemma 1. For any weak IK.t algebra (A,∧,∨,→, 0, 1,♦,�,�,�) and a, b, c ∈
A, the following holds

(1) 1 ≤ �1 and 1 ≤ �1;
(2) ♦0 ≤ 0 and �0 ≤ 0;
(3) �(a ∧ b) = �a ∧ �b and �(a ∧ b) = �a ∧ �b;
(4) ♦(a ∨ b) = ♦a ∨ ♦b and �(a ∨ b) = �a ∨ �b;
(5) ¬♦a ≤ �¬a and ¬�a ≤ �¬a;
(6) �a ≤ ¬♦¬a and �a ≤ ¬�¬a;
(7) ♦�a ≤ a and ��a ≤ a;
(8) a ≤ �♦a and a ≤ ��a;
(9) ♦a ∧ b ≤ 0 iff a ∧ �b ≤ 0.

Proof. We only provide the proof of one direction in (9) and skip the details of all
other proofs. Assume that ♦a∧b ≤ 0. Then by (Res), ♦a ≤ ¬b. By monotonicity
for �, �♦a ≤ �¬b. Since a ≤ �♦a and �¬b ≤ ¬�b, a ≤ ¬�b. Therefore by
(Res), a ∧ �b ≤ 0.
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Now we consider a sequent system for the logic of weak IK.t algebras.

Definition 3. The set of formulas (terms) F is defined inductively as follows:

F 	 α ::= p | 
 | ⊥ | α1 ∧ α2 | α1 ∨ α2 | α1 → α2 | ♦α | �α | �α | �α

where p ∈ Var. We use the abbreviation ¬α := α → ⊥.

Definition 4. Let (, ) ◦ and • be structure operatorions for ∧, ♦ and � respec-
tively. The set of all formula structures FS are defined inductively as follows:

FS 	 Γ ::= α | Γ1, Γ2 | ◦Γ | •Γ
A sequent is an expression of the form Γ ⇒ α where Γ is a formula structure

and α is a formula. A context is a formula structure Γ [−] with a designated
position [−] which can be filled with a formula structure. In particular, a single
position [−] is a context. Let Γ [Δ] be formula structure obtained from Γ [−]
by substituting Δ for [−]. By f(Γ ) we denote the formula obtained from Γ by
replacing all structure operatorions by their corresponding formula connectives.

Definition 5. The Gentzen sequent calculus GwIK.t for the intuitionistic tense
logic wIK.t consists of the following axiom and rules:

(1) Axiom:
(Id) α ⇒ α

(2) Logical rules

Γ [
] ⇒ β
(
)

Γ [Δ] ⇒ β

Δ ⇒ ⊥ (⊥)
Γ [Δ] ⇒ α

Γ [α1, α2] ⇒ β

Γ [α1 ∧ α2] ⇒ β
(∧L)

Γ1 ⇒ α1 Γ2 ⇒ α2

Γ1, Γ2 ⇒ α1 ∧ α2
(∧R)

Γ [α1] ⇒ β Γ [α2] ⇒ β

Γ [α1 ∨ α2] ⇒ β
(∨L)

Γ ⇒ αi

Γ ⇒ α1 ∨ α2
(∨R)(i = 1, 2)

Δ ⇒ α1 Γ [α2] ⇒ β

Γ [Δ,α1 → α2] ⇒ β
(→L)

α1, Γ ⇒ α2

Γ ⇒ α1 → α2
(→R)

(3) Structural rules:

Γ [Δi] ⇒ β

Γ [Δ1,Δ2] ⇒ β
(Wek)(i = 1, 2)

Γ [α, α] ⇒ β

Γ [α] ⇒ β
(Conf)

Γ [◦Δ1, ◦Δ2] ⇒ β

Γ [◦(Δ1,Δ2)] ⇒ β
(Con◦)

Γ [•Δ1, •Δ2] ⇒ β

Γ [•(Δ1,Δ2)] ⇒ β
(Con•)

Γ [Δ1, Δ2] ⇒ β

Γ [Δ2, Δ1] ⇒ β
(Ex)

Γ [Δ1, (Δ2, Δ3)] ⇒ β

Γ [(Δ1, Δ2), Δ3] ⇒ β
(As1)

Γ [(Δ1, Δ2), Δ3] ⇒ β

Γ [Δ1, (Δ2, Δ3)] ⇒ β
(As2)
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(4) Cut rule:
Δ ⇒ α Γ [α] ⇒ β

Γ [Δ] ⇒ β
(Cut)

(5) Modal rules:

Γ [◦α] ⇒ β

Γ [♦α] ⇒ β
(♦L)

Γ ⇒ α

◦Γ ⇒ ♦α
(♦R)

Γ [•α] ⇒ β

Γ [�α] ⇒ β
(�L)

Γ ⇒ α

•Γ ⇒ �α
(�R)

Γ [α] ⇒ β

Γ [◦�α] ⇒ β
(�L),

◦Γ ⇒ α

Γ ⇒ �α
(�R).

Γ [α] ⇒ β

Γ [•�α] ⇒ β
(�L),

•Γ ⇒ α

Γ ⇒ �α
(�R).

◦Δ1,Δ2 ⇒ ⊥
Γ [Δ1, •Δ2] ⇒ β

(Dual◦•).
•Δ1,Δ2 ⇒ ⊥

Γ [Δ1, ◦Δ2] ⇒ β
(Dual•◦).

A sequent Γ ⇒ β is provable in GwIK.t, notation GwIK.t Γ ⇒ β, if there is
a derivation of Γ ⇒ β in GwIK.t. We write GwIK.t α ⇔ β if GwIK.t α ⇒ β and
GwIK.t β ⇒ α. Hereafter we usually skip the applications of rules (Ex), (As1)
and (As2) in the derivations.

Lemma 2. The following holds in GwIK.t

(1) (res): α ∧ β ⇒ γ iff α ⇒ β → γ;
(2) (adj♦�): ♦α ⇒ β iff α ⇒ �β;
(3) (adj��): �α ⇒ β iff α ⇒ �β;
(4) (dual): �¬α ⇔ ¬♦α and �¬α ⇔ ¬�α.

Proof. We provide the proof for the first sequent in (4). Others can be checked
regularly.

α ⇒ α ⊥ ⇒ ⊥ (→ L)
α,¬α ⇒ ⊥

(� L)
α, •�¬α ⇒ ⊥

(Dual•◦)◦α,�¬α ⇒ ⊥
(♦ L)♦α,�¬α ⇒ ⊥
(→ R)�¬α ⇒ ¬♦α

α ⇒ α (♦ R)◦α ⇒ ♦α ⊥ ⇒ ⊥ (→ L)◦α,¬♦α ⇒ ⊥
(Dual◦•)

α, •¬♦α ⇒ ⊥
(→R )•¬♦α ⇒ ¬α (�R )¬♦α ⇒ �¬α

Now we show that the sequent system in Definition 4 is sound and complete
with respect to weak IK.t algebras. For any algebraic structure A with domain
A, an assignment in A is a function σ : Var → A. Every assignment σ in A can
be extended homomorphically. Let σ̂(α) be the element in A denoted by α. An
algebraic model is a pair (A, σ) where A is an algebraic structure and σ is an
assignment in A. A sequent Γ ⇒ β is true in an algebraic model (A, σ) notation
|=A,σ Γ ⇒ β, if σ̂(f(Γ )) ≤ σ̂(β). A sequent Γ ⇒ ψ is true in a class of algebraic
structures K, notation |=K Γ ⇒ β, if |=A,σ Γ ⇒ ψ for any algebraic model (A, σ)
with A ∈ K. A sequent rule with premises Γ1 ⇒ ψ1, . . . , Γn ⇒ ψn and conclusion
Γ0 ⇒ ψ0 preserves truth in K, if |=A,σ Γ0 ⇒ ψ0 whenever |=A,σ Γi ⇒ ψi for
1 ≤ i ≤ n, for any algebraic model (A, σ) with A ∈ K.
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Definition 6. A sequent calculus G is called sound with respect to K, if for any
sequent Γ ⇒ ψ, G Γ ⇒ ψ implies |=K Γ ⇒ ψ. A sequent calculus G is called
complete with respect to K, if for any sequent Γ ⇒ ψ, |=K Γ ⇒ ψ implies
G Γ ⇒ ψ.

Definition 7. Define a formula from a context Γ [−] and a formula β denoted
by dif(Γ [−];β) recursively as follows

– dif(ε;β) = β
– dif(Γ1, Γ2[−];β) = dif(Γ2[−]; f(Γ1) → β)
– dif(Γ1[−], Γ2;β) = dif(Γ1[−]; f(Γ2) → β)
– dif(◦Γ ′[−];β) = dif(Γ ′[−];�β)
– dif(•Γ ′[−];β) = dif(Γ ′[−];�β)

Lemma 3. |=(A,σ) Γ [Δ] ⇒ β iff |=(A,σ) Δ ⇒ dif(Γ [−], β).

Proof. We proceed by induction on the complexity of Γ [−]. If Γ [−] = ε, then
the claim obviously holds. Let Γ [−] = Γ1, Γ2[−]. Then

|=(A,σ) Γ1, Γ2[Δ] ⇒ β iff σ̂(Γ1, Γ2[Δ]) ≤ σ̂(β)
iff σ̂(Γ1) ∧ σ̂(Γ2[Δ]) ≤ σ̂(β)
iff σ̂(Γ2[Δ]) ≤ σ̂(Γ1) → σ̂(β) (by (Res))
iff |=(A,σ) Γ2[Δ] ⇒ f(Γ1) → β (by Def of σ̂)
iff |=(A,σ) Δ ⇒ dif(Γ2[−]; f(Γ1) → β) (by IH)
iff |=(A,σ) Δ ⇒ dif(Γ [−];β)(by Def of dif).

Let Γ [−] = ◦Γ ′[−]. Then

|=(A,σ) ◦Γ ′[Δ] ⇒ β iff σ̂(◦Γ ′[Δ]) ≤ σ̂(β)
iff ♦σ̂(Γ ′[Δ]) ≤ σ̂(β)
iff σ̂(Γ ′[Δ]) ≤ �σ̂(β) (by Adj♦�)
iff |=(A,σ) Γ ′[Δ] ⇒ �β (by Def of σ̂)
iff |=(A,σ) Δ ⇒ dif(Γ ′[−];�β) (by IH)
iff |=(A,σ) Δ ⇒ dif(◦Γ ′[−];β) (by Def of dif).

The argument is similar if Γ [−] = •Γ ′[−].

Theorem 1. GwIK.t is sound with respect to weak IK.t algebras.

Proof. It suffices to show that all axiom and rules are true in weak IK.t algebras.
The proof for the case of axiom is obvious. Let’s consider rule (→ L). Let (A, σ)
where A ∈ wIK.tA be a model of GwIK.t. Assume that |=(A,σ) Δ ⇒ β and
|=(A,σ) Γ [γ] ⇒ α. Then by Lemma 3 |=(A,σ) γ ⇒ dif(Γ [−];α).

So σ̂(γ) ≤ σ̂(dif(Γ [−];α)) and σ̂(f(Δ)) ≤ σ̂(β). Thus σ̂(β) → σ̂(γ) ≤
σ̂(β) → σ̂(dif(Γ [−];α)). So by (Res), σ̂(β) ∧ σ̂(β) → σ̂(γ) ≤ σ̂(dif(Γ [−];α)).
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Therefore σ̂(f(Δ)) ∧ σ̂(β) → σ̂(γ) ≤ σ̂(dif(Γ [−];α)). Hence |=(A,σ) Δ,β →
γ ⇒ dif(Γ [−];α). Consequently |=(A,σ) Γ [Δ,β → γ] ⇒ α. Other rules can be
checked similarly. Notice that (Dual◦•) and (Dual◦•) preserve true in wIK.tA
due to Lemma 1 (9).

Lemma 4. GwIK.t is complete with respect to weak IK.t algebras.

Proof. The completeness can be proved by standard construction. Let |α| =
{β| GwIK.t α ⇔ β}. Let A be the set of all |α|. Defined ∧,∨,→,♦,�,�,� on A
as follows:

|α1| ∧ |α2| = |α1 ∧ α2| |α1| ∨ |α2| = |α1 ∨ α2| |α1| → |α2| = |α1 → α2|

♦|α| = |♦α| �|α| = |�α| �|α| = |�α| �|α| = |�α|
Clearly A = (A,∧,∨,→,♦,�,�,�, |
|, |⊥|) is a Heyting algebra. By Lemma 2 A
is a wIK.tA. The lattice order is defined as |α1| ≤ |α2| = |α1|∧ |α2| = |α1|. Thus
|α1| ≤ |α2| iff GwIK.t α1 ⇒ α2. Define an assignment σ : Var → A such that
σ(p) = |p|. By proceed induction on the complexity of formula, one shows that
σ̂(α) = |α| for any formula α. Hence �GwIK.t Γ ⇒ α implies �|=A,σ σ̂(f(Γ )) ≤
σ̂(β). Consequently �wGIK.t Γ ⇒ β. This complete the proof.

3 Cut Elimination

In this section we show that GwIK.t admits cut elimination. By the proof length
of a derivation, we mean the length of its maximum branch in the derivation
tree.

Lemma 5. If GwIK.t Γ [Δ,Δ] ⇒ β is derivable without any application of
(Cut), then GwIK.t Γ [Δ] ⇒ β is derivable without any application of (Cut).

Proof. We proceed by induction on the complexity of Δ i.e. the total number
of structure operations (, ), ◦ and •. Suppose that there is a cut free derivation
of Γ [Δ,Δ] ⇒ β in GwIK.t. If Δ = α for some formula α, then by the assump-
tion and (Conf), one gets GwIK.t Γ [α] ⇒ β without any application of (Cut).
Otherwise we consider the following cases.

Case 1. Let Δ = (Δ1,Δ2) for some Δ1,Δ2. Then GwIK.t Γ [Δ1,Δ2,
Δ1,Δ2] ⇒ β. Hence one gets GwIK.t Γ [(Δ1,Δ1), (Δ2,Δ2)] ⇒ β. Thus by induc-
tion hypothesis, we obtain GwIK.t Γ [Δ1,Δ2] ⇒ β, that is GwIK.t Γ [Δ] ⇒ β.

Case 2. Let Δ = •Δ′ for some Δ′. Then GwIK.t Γ [•Δ′, •Δ′] ⇒ β. By
(Con•) rule we have Γ [•(Δ′,Δ′)] ⇒ β Then by induction hypothesis we have
Γ [•Δ′] ⇒ β, that is GwIK.t Γ [Δ] ⇒ β. The argument is similar if Δ = ◦Δ′ for
some Δ′.

Theorem 2. If GwIK.t Γ ⇒ β, then GwIK.t Γ ⇒ β without any application of
(Cut).
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Proof. Assume that there is a subderivation of Γ ⇒ β ending with an application
of (Cut) as follows:

 Δ ⇒ α  Σ[α] ⇒ β
(Cut)

Σ[Δ] ⇒ β

It suffices to show that if Δ ⇒ α and Σ[α] ⇒ β are both provable in GwIK.t
without any applications of (Cut), then Σ[Δ] ⇒ β is provable in GwIK.t without
any applications of (Cut). We proceed by induction on (I) the complexity of (Cut)
formula α. In each case we proceed by induction on (II) the proof length of left
premise of (Cut) and (III) the proof length of right premise of (Cut). Assume
that Δ ⇒ α is obtained by (Rl) and Σ[α] ⇒ β is obtained by (Rr). We consider
the following cases.

(1) α is not introduced by (Rl). Assume that (Rl) contained only one premise.
We transform the derivation by first applying (Cut) to a premise of (Rl)
and Σ[α] ⇒ β. After that we apply (Rl) to the resulting sequent. The case
that (Rl) is a two-premise rule is similar. Take (�L) rule as an example to
interpret this. The remaining cases can be treated similarly.

(Rl) is (�L). Then Δ = Δ′[�γ]. The proof

Δ′[•γ] ⇒ α
(�L)

Δ′[�γ] ⇒ α Σ[α] ⇒ β
(Cut)

Σ[Δ′[�γ]] ⇒ β

can be transformed into

Δ′[•γ] ⇒ α Σ[α] ⇒ β
(Cut)

Σ[Δ′[•γ]] ⇒ β
(�L)

Σ[Δ′[�γ]] ⇒ β

Thus the new applications of (Cut) has lower length of its left premise. By
induction hypothesis (II), the claim holds

(2) Let α is introduced by (Rl). Assume that Σ[α] ⇒ β is obtained from
Σ[αn] ⇒ β by (n − 1) times of (Conf) such that Σ[αn] is not obtained
from a (Conf) rule with principle formulas in αn. Suppose that Σ[αn] is
obtained by rule (R). Obviously if n = 1 then Rr = R. Let the derivation
ends with

Δ ⇒ α

· · · (R)
Σ[αn] ⇒ β

(Conf×(n − 1))
Σ[α] ⇒ β

(Cut)
Σ[Δ] ⇒ β

We consider the following subcases according to (R).
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(2.1) α is not introduced by (R) and (R) is a one premise rule. We transform
the derivation by first applying n times of (Cut) to a premise of (R)
and Δ ⇒ α. After that we apply (R1) to the resulting sequent. Then
by Lemma 5, one gets the desired end sequent. For instance let (R) is
(Con◦). Suppose that the derivation ends with

Δ ⇒ α

Σ′[◦(Σ1, α
n1), ◦(Σ2, α

n2)] ⇒ β
(Con◦)

Σ′[◦(Σ1, α
n1 , Σ2, α

n2)] ⇒ β
(Conf×(n − 1))

Σ′[◦(Σ1, Σ2, α)] ⇒ β
(Cut)

Σ′[◦(Σ1, Σ2,Δ)] ⇒ β

such that 0 ≤ n1 + n2 ≤ n. Then the derivation can be transformed into
Δ ⇒ α Σ′[◦(Σ1, α

n1), ◦(Σ2, α
n2)] ⇒ β

((Cut)×n)
Σ′[◦(Σ1,Δ

n1), ◦(Σ2,Δ
n2)] ⇒ β

(Con◦)
Σ′[◦(Σ1,Δ

n1 , Σ2,Δ
n2)] ⇒ β

(Lemma 5)
Σ′[◦(Σ1, Σ2,Δ)] ⇒ β

Clear in the original derivation the proof length of the right premise of
(Cut) is n+1. Thus the new applications of (Cut) have right premises with
proof length lower than n+1. Hence By induction hypothesis (III), there
is a cut free derivation of Σ′[◦(Σ1,Δ

n1 , Σ2,Δ
n2)] ⇒ β. Then by Lemma

5, one gets Σ′[◦(Σ1, Σ2,Δ)] ⇒ β without any applications of (Cut). Thus
the claim holds. The remaining cases can be treated similarly.

(2.2) α is not introduced by (R) and (R) is a two premise rule. We consider
the following three subcases
Case 1. α only appears in the left premise of (R). We transform the
derivation by first applying n times of (Cut) to left premise of (R) and
Δ ⇒ α. After that we apply (R1) to the resulting sequent and the right
premise. Then by Lemma 5, one gets the desired end sequent. For instance
let (R) is (→ L). Suppose that the derivation ends with

Δ ⇒ α

Θ[αn] ⇒ γ Σ′[δ] ⇒ β
(→ L)

Σ′[Θ[αn], γ → δ] ⇒ β
(Conf×(n − 1))

Σ′[Θ[α], γ → δ] ⇒ β
(Cut)

Σ′[Θ[Δ], γ → δ] ⇒ β

The derivation can be transform into
Δ ⇒ α Θ[αn] ⇒ γ

((Cut)×n)
Θ[Δn] ⇒ γ Σ′[δ] ⇒ β

(→ L)
Σ′[Θ[Δn], γ → δ] ⇒ β

(Lemma 5)
Σ′[Θ[Δ], γ → δ] ⇒ β

Thus the new applications of (Cut) have lower length of their right
premises. By induction hypothesis (III), the claim holds.
Case 2. α only appears in the right premise of (R). We transform the
derivation by first applying n times of (Cut) to right premise of (R)
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and Δ ⇒ α. After that we apply (R) to the resulting sequent and the
left premise. Then by Lemma 5, one gets the desired end sequent. For
instance let (R) is (→ L). Suppose that the derivation ends with

Δ ⇒ α

Θ ⇒ γ Σ′[αn][δ] ⇒ β
(→ L)

Σ′[αn][Θ, γ → δ] ⇒ β
(Conf×(n − 1))

Σ′[α][Θ, γ → δ] ⇒ β
(Cut)

Σ′[Δ][Θ, γ → δ] ⇒ β

The derivation can be transform into
Δ ⇒ α Σ′[αn][δ] ⇒ β

((Cut)×n)
Θ[Δn] ⇒ γ Σ′[δ] ⇒ β

(→ L)
Σ′[Θ[Δn], γ → δ] ⇒ β

(Lemma 5)
Σ′[Θ[Δ], γ → δ] ⇒ β

Thus the new applications of (Cut) have lower length of their right
premises. By induction hypothesis (III), the claim holds.
Case 3. α appear n1 times in the left premise of (R) while α appear
n2 times in the right premise of (R). n = n1 + n2. . We transform the
derivation by first applying n1 and n2 times of (Cut) to left and right
premise of (R) and Δ ⇒ α respectively. After that we apply (R) to the
resulting sequents. Then by Lemma 5, one gets the desired end sequent.
For instance let (R) is (→ L). Suppose that the derivation ends with

Δ ⇒ α

Θ,αn1 ⇒ γ Σ′[αn2 , δ] ⇒ β
(→ L)

Σ′[Θ,α(n1+n2), γ → δ] ⇒ β
(Conf×(n − 1))

Σ′[Θ,α, γ → δ] ⇒ β
(Cut)

Σ′[Θ,Δ, γ → δ] ⇒ β

The derivation can be transformed into
Δ ⇒ α Θ, αn1 ⇒ γ

((Cut)s)
Θ, Δn1 ⇒ γ

Δ ⇒ α Σ′[αn2 , δ] ⇒ β
((Cut)s)

Σ′[Δn2 , δ] ⇒ β
(→ L)

Σ′[Θ, Δn1+n2 , γ → δ] ⇒ β
(Lemma 5)

Σ′[Θ, Δ, γ → δ] ⇒ β

Thus the new applications of (Cut) havd lower length of their right
premises. By induction hypothesis (III), the claim holds.

(2.3) α is introduced by (R). We consider the following subcases. Others can
be treated similarly.
Case 1. α = ♦α′. Suppose that the derivation ends with

Δ′ ⇒ α′
(♦R)◦Δ′ ⇒ ♦α′

Σ[(♦α′)n−1, ◦α′] ⇒ β
(♦L)

Σ[(♦α′)n−1,♦α′] ⇒ β
((Conf)×(n − 1))

Σ[♦α′] ⇒ β
(Cut)

Σ[◦Δ] ⇒ β
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The derivation can be transformed into

Δ′ ⇒ α′
◦Δ′ ⇒ ♦α′ Σ[(♦α′)n−1, ◦α′] ⇒ β

(Cut)×(n − 2)
Σ[(◦Δ′)n−1, ◦α′] ⇒ β

(Cut)
Σ[(◦Δ′)n−1, ◦Δ′] ⇒ β

(Lemma 5)
Σ[◦Δ′] ⇒ β

Thus the first n − 2 new applications of (Cut) have lower length of their
right premises while the last application of (Cut) has lower complexity of
(Cut) formula. By induction hypothesis (I) and (III), the claim holds.
Case 2. α = �α′. Clearly n = 1. Σ[α] = Σ′[•(�α′)]. The proof

•Δ ⇒ α′
(�R)

Δ ⇒ �α′
Σ′[α′] ⇒ β

(�L)
Σ′[•�α′] ⇒ β

(Cut)
Σ′[•Δ] ⇒ β

can be transformed into
•Δ ⇒ α′ Σ′[α′] ⇒ β

(Cut)
Σ′[•Δ] ⇒ β

Clearly the new application of (Cut) has lower complexity of (Cut) for-
mula. By induction hypothesis (I), the claim holds.

4 Extensions and Structure Criterion

In this section we consider extensions of wIK.t which have cut free sequent
systems. Given two formula α, β, we define α ∼m β if β can be obtained from
α by changing the positions and numbers of connectives ♦,� in α. For instance
♦(p∧�q) ∼m �(♦♦p∧q). Similarly we define Γ ∼m Δ if Δ can be obtained from
Γ by changing the positions and numbers of structure operations ◦, • in Γ . For
instance ◦(Δ1, •Δ2) ∼m ••Δ1,Δ2. By wIK.t⊕α ⇒ β, we mean the extension of
wIK.t enriching with axiom α ⇒ β. Two sequents α ⇒ β and α′ ⇒ β are called
equivalence over wIK.t if wIK.t⊕α⇒β α′ ⇒ β′ and wIK.t⊕α′⇒β′ α ⇒ β.

Definition 8. A sequent is call primitive sequent if it is of the form α ⇒ β
where both α and β only contains variables, 
, ⊥, ∧,♦ and � and α ∼m β. A
sequent is called modal structure sequent if it is obtained from a primitive sequent
by substituting variables with formulas. We say that a sequent is modal structure
display w.r.t. wIK.t if it has a equivalence modal structure sequent over wIK.t.

A modal structure rule is
Γ [Δ] ⇒ α

Γ [Σ] ⇒ α

where Δ ∼m Σ. Clearly every modal structure sequent can be characterized by
a structure modal rule. Furthermore one can extend the proof of cut elimination
with any new modal structure rule easily. In the proof of cut elimination, suppose
that one of the cut premise is obtained from a modal structure rule. One can
firstly apply (Cut) rule to the premise of modal structure rule and the other cut
premise. Then apply modal structure rule to the conclusion of the new (Cut).
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Hence the new application of (Cut) has lower proof length of right or left premise,
by induction hypothesis, this (Cut) can be eliminated. This is the general idea of
the proof of cut elimination. Here we list some modal axioms which are frequently
considered in the literature. Notice that if one add the following WK axiom to
wIK.t, then the resulting logic is just IK.t.

Table 1. Modal structure axioms

Name Axiom

T �α ⇒ α and�α ⇒ α

4 �α ⇒ ��α and�α ⇒ ��α

5 ♦α ⇒ �♦α and�α ⇒ ��α

B α ⇒ �♦α andα ⇒ ��α

D � ⇒ ♦� and� ⇒ ��
WK �(α → β) ⇒ ♦α → ♦β and�(α → β) ⇒ �α → �β

Lemma 6. The modal axioms in Table 1 is equivalence to the following corre-
sponding modal structure axioms over wIK.t:

T′: α ⇒ ♦α and α ⇒ �α
4′: ♦♦α ⇒ ♦α and ��α ⇒ �α
5′: �♦α ⇒ ♦α and ♦�α ⇒ �α
B′: �α ⇒ ♦α and ♦α ⇒ �α
D′: 
 ⇒ ♦
 and 
 ⇒ �

WK′: α ∧ ♦β ⇒ ♦(�α ∧ β) and α ∧ �β ⇒ �(♦α ∧ β)

Proof. We provide the proof of the first part for WK′. The rest can be proved
easily. First we derive WK′ from WK over wIK.t. Since ♦(�α ∧ β) ⇒ ♦(�α ∧
β), then by (adj♦�) one gets (�α ∧ β) ⇒ �♦(�α ∧ β). By (res), �α ⇒ β →
�♦(�α∧β). By (adj��), α ⇒ �(β → �♦(�α∧β)). By (WK), �(β → �♦(�α∧
β)) ⇒ ♦β → ♦�♦(�α ∧ β). Further ♦�♦(�α ∧ β) ⇒ ♦(�α ∧ β). By (Cut),
α ⇒ ♦β → ♦(�α ∧ β). Then by (res) α ∧ ♦β ⇒ ♦(�α ∧ β). Conversely since
♦(α ∧ α → β) ⇒ ♦β and ♦(α ∧ ��(α → β)) ⇒ ♦(α ∧ α → β), by (Cut)
♦(α ∧ ��(α → β)) ⇒ ♦β. By (WK′), ♦α ∧ �(α → β) ⇒ ♦(α ∧ ��(α → β)).
Thus by (Cut), ♦α ∧ �(α → β) ⇒ ♦β. Hence by (res) �(α → β) ⇒ ♦α → ♦β.

Lemma 7. T′, 4′, 5′, B′, D′ and WK′ can be characterized by the following
corresponding structure rules respectively:

Γ [◦Δ] ⇒ α

Γ [Δ] ⇒ α
(T◦)

Γ [•Δ] ⇒ α

Γ [Δ] ⇒ α
(T•)

Γ [◦Δ] ⇒ α

Γ [◦ ◦ Δ] ⇒ α
(4◦)

Γ [•Δ] ⇒ α

Γ [• • Δ] ⇒ α
(4•)

Γ [◦Δ] ⇒ α

Γ [• ◦ Δ] ⇒ α
(5◦)

Γ [•Δ] ⇒ α

Γ [◦ • Δ] ⇒ α
(5•)

Γ [•Δ] ⇒ α

Γ [◦Δ] ⇒ α
(B◦)

Γ [◦Δ] ⇒ α

Γ [•Δ] ⇒ α
(B•)
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Γ [◦
] ⇒ α

Γ [
] ⇒ α
(D◦)

Γ [•
] ⇒ α

Γ [
] ⇒ α
(D•)

Γ [◦(•Δ1,Δ2)] ⇒ α

Γ [Δ1, ◦Δ2] ⇒ α
(WK◦)

Γ [•(◦Δ1,Δ2)] ⇒ α

Γ [Δ1, •Δ2] ⇒ α
(WK•)

By EXT1(GwIK.t), we denote the class of sequent system for extensions
of GwIK.t with any combination of structure rules corresponding to axioms in
Table 1.

Theorem 3. For any sequent system G where G ∈ EXT1(GwIK.t), G admits
cut elimination.
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Abstract. Weakly Aggregative Modal Logic (WAML) is a collection of
disguised polyadic modal logics with n-ary modalities whose arguments
are all the same. WAML has some interesting applications on epistemic
logic and logic of games, so we study some basic model theoretical aspects
of WAML in this paper. Specifically, we give a van Benthem-Rosen char-
acterization theorem of WAML based on an intuitive notion of bisimula-
tion and show that each basic WAML system Kn lacks Craig Interpola-
tion.
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1 Introduction

You are invited to a dinner party for married couples after a logic conference in
China. The host tells you the following facts:

– at least one person of each couple is a logician and
– at least one person of each couple is Chinese.

Given these two facts, can you infer that at least one person of each couple is a
Chinese logician? The answer is clearly negative, since there might be a couple
consisting of a foreign logician and a Chinese spouse who is not a logician.

Now, suppose that the host adds another fact:

– at least one person of each couple likes spicy food.

What do you know now? Actually, you can infer that for each couple, one of the
two people must be either:

– a Chinese logician, or
– a logician who likes spicy food, or
– a Chinese who likes spicy food.

The main work of the first author was completed during his Ph.D. at Peking University.
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This can be verified by the Pigeonhole Principle: for each couple, there is a
logician, a Chinese, and a fan for spicy food, thus there must be at least one
person of the couple who has two of those three properties. This can clearly be
generalized to n-tuples of things w.r.t. n + 1 properties.

Now, going back to logic, if we express “at least one person of each couple
has property ϕ” by �ϕ then the above reasoning shows that the following is not
valid:

C : �p ∧ �q → �(p ∧ q).

On the other hand, the following should be valid:

K2 : �p ∧ �q ∧ �r → �((p ∧ q) ∨ (p ∧ r) ∨ (q ∧ r)).

In general, if �ϕ expresses “at least one thing of each (relevant) n-tuple of things
has property ϕ” then the following is intuitively valid:

Kn : �p0 ∧ · · · ∧ �pn → �
∨

(0≤i<j≤n)

(pi ∧ pj).

Note that K1 is just C, which is a theorem in the weakest normal modal logic
K. C is sometimes called the Closure of Conjunction [11], or Aggregative Axiom
[20], or Adjunctive Axiom [6]. Clearly, when n ≥ 2, Kn are weaker versions of
C. The resulting logics departing from the basic normal modal logics by using
weaker aggregative axioms Kn instead of C are called Weakly Aggregative Modal
Logics (WAML) [32]. There are various readings of �p under which it is intuitive
to reject C besides the one we mentioned in our motivating party story. For
example, if we read �p as “p is obligatory” as in deontic logic, then C is not that
reasonable since one may easily face two conflicting obligations without having
any single contradictory obligation [32]. As another example, in epistemic logic
of knowing how [16,35], if �p expresses “knowing how to achieve p”, then it is
reasonable to make C invalid: you may know how to open a door and know how
to close the door, but you can never know how to make the door both open and
closed.

Coming back to our setting where Kn are valid, the readings of �ϕ in those
axioms may sound complicated, but they are actually grounded in a more gen-
eral picture of Polyadic Modal Logics (PML) which studies the logics with n-ary
modalities. Polyadic modalities arose naturally in the literature of philosophical
logic, particularly for the binary ones, such as the until modality in temporal
logic [21], instantial operators in games-related neighborhood modal logics [34],
relativized knowledge operators in epistemic logic [9,36], Routley and Meyer’s
ternary accessibility relation semantics in relevance logics [29,30], and the con-
ditional operators in the logics of conditionals [8]. Following the notation in [10],
we use ∇ for the n-ary generalization of the � modality when n > 1.1 The
semantics of ∇(ϕ1, . . . , ϕn) is based on Kripke models with n + 1-ary relations
R [10,20]:
1 This is not to be confused with the non-contingency operator, which is also denoted
as ∇ in non-contingency or knowing whether logics [14].
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∇(ϕ1, . . . , ϕn) holds at s iff for all s1, ..., sn such that Rss1 . . . sn there
exists some i ∈ [1, n] such that ϕi holds at si.

We will call ∇ the normal polyadic modal operator and one should also notice
that, by contrast, in those examples with unary operators we just mentioned
above, the unary operators are not normal.2 However, the reading we mentioned
for �ϕ in our motivating story is simply the semantics for ∇(ϕ1, . . . , ϕn) where
ϕ1 = · · · = ϕn: notice how they share the same ∀∃ quantifier alternation pattern.
Thus, the formulas �ϕ under the new reading can be viewed as special cases
of the modal formulas in polyadic modal languages. Due to the fact that the
arguments are the same in ∇(ϕ, . . . , ϕ), we can also call the � the diagonal n-
modalities.3 In this light, we may call the new semantics for �ϕ the diagonal
n-semantics (given frames with n + 1-ary relations).

Diagonal modalities also arise in other settings in disguise. For example, in
epistemic logic of knowing value [18], the formula Kv(ϕ, c) says that the agent
knows the value of c given ϕ, which semantically amounts to that for all the pairs
of ϕ worlds that the agent cannot distinguish from the actual worlds, c has the
same value. In other words, in every pair of the indistinguishable worlds where c
has different values, there is a ¬ϕ world, which can be expressed by �c¬ϕ with
the diagonal 2-modality (�c) based on intuitive ternary relations (see details
in [18]). As another example in epistemic logic, [13] proposed a local reasoning
operator based on models where each agent on each world may have different
frames of mind (sets of indistinguishable worlds). That one agent believes ϕ then
means that in one of his current frame of mind, ϕ is true everywhere. This belief
modality can also be viewed as the dual of a diagonal 2-modality (noticing the
quantifier alternation ∃∀ in the informal semantics).

Yet another important reason to study diagonal modalities comes from the con-
nection with paraconsistent reasoning established by Schotch and Jennings [32]. In
a nutshell, [32] introduces a notion of n-forcing where a set of formulas Γ n-forces
ϕ (Γ 
n ϕ) if for each n-partition of Γ there is a cell Δ such that ϕ follows from
Δ classically w.r.t. some given logic (Γ 
 ϕ). This leads to a notion of n-coherence
relaxing the notion of consistency: Γ �n ⊥ (Γ is n-coherent) iff there exists an
n-partition of Γ such that all the cells are classically consistent. These notions
led the authors of [32] to the discovery of the diagonal semantics for � based on
frames with n + 1-ary relations, by requiring �(u) = {ϕ | u � �ϕ} to be an
n-theory based on the closure over n-forcing, under some other minor conditions.
Since the derivation relation of basic normal modal logic K can be characterized by
a proof system extending the propositional one with the rule Γ 
 ϕ/�(Γ ) 
 �ϕ
where �(Γ ) = {�ϕ | ϕ ∈ Γ}, it is interesting to ask whether adding Γ 
n ϕ/
�(Γ ) 
n �ϕ characterizes exactly the valid consequences for modal logic under
the diagonal semantics based on frames with n-ary relations. Apostoli and Brown
answered this question positively in [5] 15 years later, and they characterize 
n by
a Gentzen-style sequent calculus based on the compactness of 
n proved by using

2 One can find a model theoretical survey on PML in [22].
3 Name mentioned by Yde Venema via personal communications.



156 J. Liu et al.

a compact result for coloring hypergraphs.4 Moreover, they show that the WAML
proof systems with Kn are also complete w.r.t. the class of all frames with n + 1-
ary relations respectively. The latter proof is then simplified in [26] without using
the graph theoretical compactness result. This completeness result is further gen-
eralized to the extensions of WAML with extra one-degree axioms in [4]. The com-
putational complexity issues of such logics are discussed in [1], and this concludes
our relatively long introduction to WAML, which might not be that well-known to
many modal logicians.

In this paper, we continue the line of work on WAML by looking at the model
theoretical aspects. In particular, we mainly focus on the following two questions:

– How to characterize the expressive power of WAML structurally within first-
order logic over (finite) pointed models?

– Whether WAML has Craig Interpolation?

For the first question, we propose a notion of bisimulation to characterize WAML
within the corresponding first-order logic. The answer for the second question is
negative, and we will provide counterexamples in this paper to show WAML (in
particular, each Kn for n ≥ 2) does not have Craig Interpolation.

In the rest of the paper, we lay out the basics of WAML in Sect. 2, prove
the characterization theorem based on a bisimulation notion in Sect. 3, and give
counterexamples for the interpolation theorem in Sect. 4 before concluding with
future work in Sect. 5.

2 Preliminaries

In this section we review some basic definitions and results in the literature.

2.1 Weakly Aggregative Modal Logic

The language for WAML is the same as the language for basic (monadic) modal
logic.

Definition 1. Given a set of propositional letters Φ and a single unary modality
�, the language of WAML is defined by:

ϕ := p | ¬ϕ | (ϕ ∧ ϕ) | �ϕ

where p ∈ Φ. We define �, ϕ ∨ ψ, ϕ → ψ, and ♦ϕ as usual.

However, given n, WAML can be viewed as a fragment of polyadic modal
logic with a n-ary modality, since �ϕ is essentially ∇(ϕ, . . . , ϕ). Notation: in
the sequel, we use WAMLn, where n > 1, to denote the logical framework with
the semantics based on n-models defined below:
4 Other connections between WAML and graph coloring problems can be found in [24]
where the four-color problem is coded by the validity of some formulas in the WAML
language.
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Definition 2 (n-Semantics). An n-frame is a pair 〈W,R〉 where W is an
nonempty set and R is an n + 1-ary relation over W . An n-model M is a pair
〈F , V 〉 where the valuation function V assigns each w ∈ W a subset of Φ. We
say M is an image-finite model if there are only finitely many n-ary successors
of each point. The semantics for �ϕ (and ♦ϕ) is defined by:

M, w |= �ϕ iff for all v1, . . . vn ∈ W with Rwv1 . . . , vn, M, vi |= ϕ for some i ≤ n.

M, w |= ♦ϕ iff there are v1, . . . vn ∈ W st. Rwv1 . . . , vn and M, vi |= ϕ for all i ≤ n.

According to the above semantics, it is not hard to see that the aggregation
axiom �ϕ∧�ψ → �(ϕ∧ψ) in basic normal modal logic is not valid on n-frames
for any n > 1.

[32] proposed the following proof systems Kn for each n.

Definition 3 (Weakly aggregative modal logic). The logic Kn is a modal
logic including propositional tautologies, the axiom Kn and closed under the rules5

N and RM:

Kn �p0 ∧ · · · ∧ �pn → �
∨

(0≤i<j≤n)(pi ∧ pj)
RM 
 ϕ → ψ =⇒ 
 �ϕ → �ψ
N 
 ϕ =⇒ 
 �ϕ

It is clear that K1 is just the aggregation axiom C and thus K1 is just the normal
monadic modal logic K. It can also be shown easily that for each n > m, Kn is
strictly weaker than Km. In fact, many familiar equivalences in normal modal
logics, like the equivalence between ♦� and �p → ♦p, no longer hold in Kn for
n > 1. Semantically speaking, while �p → ♦p’s validity corresponds to seriality
on 1-frames (usual Kripke frames), its correspondence on 2-frames is not even
elementary (♦� still corresponds to each point having at least a successor tuple).

After being open for more than a decade, the completeness for Kn over n-
models was finally proved in [5] and [4], by reducing to the n-forcing relation
proposed in [32]. In [26], a more direct completeness proof is given using some
non-trivial combinatorial analysis to derive a crucial theorem of Kn.

3 Characterization via Bisimulation

In this section, we introduce a notion of bisimulation for WAML and prove the
van Benthem-Rosen Characteristic Theorem for WAML.6

Definition 4 (wan-bisimulation). Let M = (W,R, V ) and M′ = (W ′, R′, V ′)
be two n-models. A non-empty binary relation Z ⊆ W × W ′ is called a wan-
bisimulation between M and M′ if the following conditions are satisfied:

inv If wZw′, then w and w′ satisfy the same propositional letters (in Φ).
5 This rule can be simplified by the axiom �� since we have RM here.
6 We have another proof for the Characterization theorem over arbitrary n-models,
using tailored notions of saturation and ultrafilter extension for WAMLn, due to the
space limit we only present the proof which also works for finite models.
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forth If wZw′ and Rwv1, . . . , vn then there are v′
1, . . . , v

′
n in W ′ s.t.

R′w′v′
1, . . . , v

′
n and for each v′

j there is a vi such that viZv′
j where 1 ≤

i, j ≤ n.
back If wZw′ and R′w′v′

1, . . . , v
′
n then there are v1, . . . , vn in W s.t.

Rwv1, . . . , vn and for each vi there is a v′
j such that viZv′

j where 1 ≤
i, j ≤ n.

When Z is a bisimulation linking two states w in M and w′ in M′ we say that
w and w′ are Φ-wan-bisimilar (M, w ↔n M′, w′).

Remark 1. Observe the two subtleties in the above definition: i, j in the forth and
back conditions are not necessarily the same, thus we may not have an aligned
correspondence of each vi and v′

i; in the second part of the forth condition, we
require each v′

j to have a corresponding vi, not the other way around. Similar in
the back condition. This reflects the quantifier alternation in the semantics of �
in WAMLn.

Example 1. Consider the following two 2-models where {〈w,w1, w2〉,
〈w,w2, w3〉} is the ternary relation in the left model, and {〈v, v1, v2〉} is the
ternary relation in the right model.

w1 : p v1 : p

w : p

����������

����
����

��� w2 : p v : p

����������
v2 : p

w3

Z = {〈w, v〉, 〈w1, v1〉, 〈w2, v2〉, 〈w2, v1〉} is a wa2-bisimulation. A polyadic modal
formula ¬∇¬(p,¬p), not expressible in WAML2, can distinguish w and v.

It is easy to verify that ↔n is indeed an equivalence relation and we show
WAMLn is invariant under it.

Proposition 1. Let M = (W,R, V ) and M′ = (W ′, R′, V ′) be two n-models.
Then for every w ∈ W and w′ ∈ W ′, w ↔n w′ implies w ≡WAMLn w′. In words,
WAMLn formulas are invariant under wan-bisimulation.

Proof. We consider only the modality case. Suppose that w ↔n w′ and w |= ♦ϕ.
Then there are v1, . . . , vn s.t. Rwv1, . . . , vn, and each vi |= ϕ. By the forth
condition, there are v′

1, . . . , v
′
n in W ′ s.t. Rw′v′

1, . . . , v
′
n and for each v′

j there is a
vi such that viZv′

j . From the I.H. we have each v′
i |= ϕ. As a result, w′ |= ♦ϕ.

For the converse direction just use the back condition.

Theorem 1 (Hennessy-Milner Theorem for WAMLn). Let M = (W,R, V )
and M′ = (W ′, R′, V ′) be two image-finite n-models. Then for every w ∈ W and
w′ ∈ W ′, w ↔n w′ iff w ≡WAMLn w′.
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Proof. As in basic modal logic, the crucial part is to show ≡WAMLn is indeed
a wan-bisimulation and we only verify the forth condition. Suppose towards
contradiction that Rwv1 . . . vn but for each v′

1 . . . v′
n such that R′w′v′

1 . . . v′
n there

is a v′
j such that it is not WAMLn-equivalent to any of vi. In image-finite models

we can list such v′
j as u1 . . . um. Now for each uk and vi we have ϕi

k which holds
on vi but not on uk. Now we consider the formula ψ = ♦(

∨
1≤i≤n

∧
1≤k≤m ϕi

k).
It is not hard to see that ψ holds on w but not w′, hence contradiction.

Like in normal modal logic, we can also define a notion of k-bisimulation of
WAMLn, by restricting the maximal depth we may go to.

Definition 5 (k-wan-bisimulation). Let M = (W,R, V ) and M′ = (W ′, R′,
V ′) be two n-models. w and w′ are 0-wan-bisimilar (w ↔n

0 w′) iff V (v) = V ′(v′).
w ↔n

k+1 w′ iff w ↔n
k w′ and the follow two conditions are satisfied:

forth If v ↔n
k+1 v′ and Rvv1, . . . , vn then there are v′

1, . . . , v
′
n in W ′ s.t.

R′v′v′
1, . . . , v

′
n and for each v′

j there is a vi such that vi ↔n
k v′

j where
1 ≤ i, j ≤ n.

back If v ↔n
k+1 v′ and R′v′v′

1, . . . , v
′
n then there are v1, . . . , vn in W s.t.

Rvv1, . . . , vn and for each vi there is a v′
j such that vi ↔n

k v′
j where

1 ≤ i, j ≤ n.

We can translate each WAMLn formula to an equivalent FOL formula with one
free variable and one n + 1-ary relation symbol, thus WAMLn is also compact.

Definition 6 (Standard translation). ST : WAMLn → FOL:

STx(p) = Px
STx(¬ϕ) = ¬STx(ϕ)
STx(ϕ ∧ ψ) = STx(ϕ) ∧ STx(ψ)
STx(�ϕ) = ∀y1∀y2 . . . ∀yn(Rxy1y2 . . . yn → STy1(ϕ) ∨ · · · ∨ STyn

(ϕ))

By following a similar strategy as in [27], we will show a van Benthem-Rosen
characterization theorem for WAMLn: a FOL formula is equivalent to the trans-
lation of a WAMLn formula (over finite n-models) if and only if it is invariant
under wan-bisimulations (over finite n-models).

First we need to define a notion of unraveling w.r.t. n-ary models similarly
to models with binary relations. We use an example of a graph with ternary
relations to illustrate the intuitive idea behind the general n-ary unraveling,
which is first introduced in [28].

Example 2. Given the 2-model with ternary relations 〈{w, v, u, t}, {〈w, u, t〉,
〈u, t, u〉, 〈t, w, v〉}, V 〉. It is quite intuitive to first unravel it into a tree with
pairs of states as nodes, illustrated below:
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w

��������
����

��

〈u, t〉
�����

���
��

��

〈u, t〉
�� �����

����
��

〈t, u〉 〈t, u〉 〈w, v〉 〈w, v〉

To turn it into a 2-model, we need to define the new ternary relations. For
each triple 〈s0, s1, s2〉 of pairs, 〈s0, s1, s2〉 is in the new ternary relation iff s1 and
s2 are successors of s0 in the above graph and the triple of underlined worlds in
s0, s1, s2 respectively is in the original ternary relation, e.g., 〈u, t〉, 〈w, v〉, 〈w, v〉
is in the new ternary relation since 〈t, w, v〉 is in the original ternary relation.

In general, we can use the n-tuples of the states in the original model together
with a natural number k ∈ [1, n] as the basic building blocks for the unraveling
of an n-model, e.g., 〈w, v, u, 2〉 means the second the state is the underlined one.
To make the definition uniform, we define the root as the sequence 〈w, . . . , w, 1〉.
Like the unraveling for a binary graph, formally we will use sequences of such
building blocks as the nodes in the unraveling of a n-model, e.g., the left-most
node 〈t, u〉 in the above example will become 〈〈w,w, 1〉, 〈u, t, 1〉, 〈t, u, 1〉〉. This
leads to the following definition.

Definition 7. Given an n-model M = 〈W,R, V 〉 and w ∈ W , we first define
the binary unraveling Mb

w of M around w as 〈Ww, Rb, V ′〉 where:

– Ww is the set of sequences 〈〈v0, i0〉, 〈v1, i1〉, . . . , 〈vm, im〉〉 where:
• m ∈ N;
• for each j ∈ [0,m], vj ∈ Wn and ij ∈ [1, n] such that R(vj [ij ])vj+1;
• v0 is the constant n-sequence 〈w, . . . , w〉 and i0 = 1;

– Rbss′ iff s′ extends s with some 〈v, i〉
– V ′(s) = V (r(s)), where r(s) = vm[im] if s = 〈. . . , 〈vm, im〉〉.
The unraveling Mw = 〈Ww, R′, V ′〉 is based on Mb

w by defining R′s0s1 . . . sn
iff Rr(s0)r(s1) . . . r(sn) and Rbs0si for all i ∈ [1, n]. Let the bounded unraveling
Mw|l be the submodel of Mw up to level l.

Remark 2. The unravelling Mw itself is not totally “tree-like”, since there may
be some node w occurs in both an n-tuple successor of x and an n-tuple successor
of y for x �= y. But clearly Mb

w is a tree, and in Mw, if Rs0 . . . sn then s1 . . . sn
are at the next “level” of s0. The latter property is crucial in the later proofs,
but due to space issues, we have to omit the details here.

r defined above reveals the corresponding state of s in the original model M. It
is not hard to show the following.
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Proposition 2. The above r (viewed as a relation) is a wan-bisimulation
between Mw and M. Actually r is a p-morphism (over n-models) from Mw

to M.

Now we have all the ingredients to prove the following characterization the-
orem. Note that the characterization works with or without the finite model
constraints.

Theorem 2. A first-order formula α(x) is invariant under ↔n (over finite mod-
els) iff α(x) is equivalent to a WAMLn formula (over finite models).

Following the general strategy in [27], the only non-trivial part is to show
that the FOL formula α(x) that is invariant under wan-bisimulation has some
locality property w.r.t. its bounded unraveling Mw|l for some l. Due to lack of
space, we only show the following lemma and give a proof sketch here. For other
relatively routine parts of the proof, see [27].

Lemma 1 (locality). An FOL formula α(x) is invariant under ↔ (over finite
models) implies that for some l ∈ N, for any n-model M, w: M, w � α(x)[w] iff
Mw|l � α(x)[(〈w, 1)〉].
Here we explain the most important ideas behind the proof. First of all, like
in [27], we take l = 2q − 1 where q is the quantifier rank of α(x), and build
two bigger models M∗, w∗ and N ∗, v∗ which are wan-bisimilar to M, w and
Mw|l, w respectively using our new unraveling notion. Then we show that in
the q-round EF game between the bigger n-models Duplicator has a winning
strategy. To specify the strategy, which is essentially letting the duplicator to
keep some “safe zones” for extensions of partial isomorphisms, we need to define
the distance of points in n-models. Let the distance between s and s′ (notation
d(s, s′)) be the length of the shortest (undirected) path between s and s′ via a
new relation binary Rc where Rcxy iff Rxy1 . . . yn and y = yi for some i ∈ [1, n].
We set d(s, s′) = ω if s and s′ are not connected by any such path. It is easy to
see that in the unraveling Mw, d(s, s′) is exactly the distance in the usual sense
between s, s′ in the tree Mb

w. Then, the winning strategy looks exactly like the
one in [27] for binary models. The key point to show that the same strategy is a
winning strategy in the new setting is that when building the correct induction
hypothesis, we need to define two “neighborhoods” of a node–a big one and a
small one. In particular, first let (ai, bi) be the pair selected at i round where
each ai ∈ M∗ and bi ∈ N ∗, where by the rule of the game, a0 = w∗ and b0 = v∗.
Then define S(m) = {ai | i ≤ m}, Ni(m) to be the neighborhood of ai within
distance of 2q−m − 1, and N

′
i (m) to be the neighborhood of ai within distance

of 2q−(m+1). Here the N and N
′
are the two “neighborhoods”. Then finally the

induction hypothesis can be correctly formulated as the following.

After m rounds (0 ≤ m ≤ q), the following two hold.
1. The selected points form a partial isomorphism I: M∗ → N ∗.
2. If m < q then there is a sequence (I0, . . . , Im) s.t. for each i ≤ m,

(a) Ii ⊇ I is a partial isomorphism with Dom(Ii) = Ni(m) ∪ S(m);
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(b) ∀h, j ≤ m∀x ∈ N
′
h(m) ∩ N

′
j(m)(Ih(x) = Ij(x)).

In Otto’s original proof in [27], the induction hypothesis is not very clear, and
we think it is necessary to give such an explicit formulation here.

Remark 3. It is not hard to show that under our distance notion, for each x, y, z
in the model, d(x, z) ≥ d(x, y) − d(y, z), i.e., d(x, z) + d(z, y) ≥ d(x, y) which
is a more usual form of the triangle inequality. This justifies the new distance
notion. To see why a similar strategy like the one in [27] for binary models works,
note that our unraveling Mw is essentially based on a tree Mb

w by definition,
and the n-ary relation over such a tree structure has a very special property: if
Rs0 . . . sn then s1 . . . sn are immediate successors of s0 in the binary unraveling
as mentioned in Remark 2. This leads to the following crucial property we will
use repeatedly: if we already established a partial isomorphism I between S and
N (w.r.t. also n-ary relations), and x �∈ S is not directly connected to anything
in S, and y �∈ N is also not directly connected to anything in N then I ∪{(x, y)}
extending I is again a partial isomorphism.

Finally, the bound l = 2q − 1 in the above proof, which we choose uniformly
for every n, is actually not “optimal”, since for a larger n, we can have a lower
bound. Especially, when n > q, even l = 1, the Duplicator could have a winning
strategy, since any bijection will be a partial isomorphism. So the distance we
define here is not a appropriate one for us to find the minimal bound l. Here we
conjecture that the bound should be the least integer l s.t. l ≥ (2q − 1)/n.

4 Interpolation

By a standard strategy in [19], we know that the basic polyadic modal logics
(PML) have the Craig Interpolation theorem. What’s more, in [31], the authors
proved that the minimal monotonic modal logic M has Uniform Interpolation.
Furthermore, we know that the basic modal logic K also has Uniform Interpola-
tion from [3] and [2]. From the following three aspects we may conjecture that
the basic WAML systems Kn should have interpolation too:

1 WAML can be treated as a fragment of PML.
2 Kn is regarded as a general version of K, since K is just K1.
3 Kn can be viewed as a special kind of monotonic modal logics.

But in fact no Kn has the Craig Interpolation Property for n ≥ 2. The first
counterexample for interpolation we found is for K3, which is relatively easy to
understand and can be readily generalized to all Kn for n ≥ 3. Later we found a
counterexample for K2, which is slightly more complicated. Here we first give the
two counterexamples for K2 and K3 and then provide the general construction
for Kn (n ≥ 3). But before we state the counterexamples, let us first clarify what
do we mean by “a counterexample” of the Craig Interpolation Property for Kn.

Lemma 2. Let n be a non-zero natural number. If there are two pointed n-
models M, w and N , v and two formulas ϕ and ψ such that



Weakly Aggregative Modal Logic: Characterization and Interpolation 163

1. M, w |= ϕ and N , v |= ψ;
2. Kn 
 ϕ → ¬ψ;
3. letting Φ′ be the set of all the propositional letters that appear both in ϕ and

ψ, for any formula γ in WAML such that only letters in Φ′ appear, M, w |= γ
iff N , v |= γ;

then Kn lack the Craig Interpolation Property.

Proof. Assume for contradiction that Kn has the Craig Interpolation Property.
Then since Kn 
 ϕ → ¬ψ, there is a interpolant γ such that

– Kn 
 ϕ → γ and Kn 
 γ → ¬ψ;
– only letters in Φ′ appear in γ.

Now since M, w |= ϕ with M being an n-model and Kn 
 ϕ → γ, by soundness,
M, w |= γ. Then N , v |= γ by 3. Then using Kn 
 γ → ¬ψ and soundness
again, N , v |= ¬ψ, contradicting N , v |= ψ.

Given this proposition, a pair of pointed n-models and a pair of formulas sat-
isfying the antecedent constitute a counterexample of the Craig Interpolation
property. Now we proceed to provide them for each Kn with n ≥ 2.

Example 3. Consider the following two 2-models where {〈w,w1, w1〉,
〈w,w2, w3〉} is the ternary relation in the left model M2, and {〈v, v1, v2〉} is
the ternary relation in the right model N2, where the valuations are as in the
diagram.

w
�������

�����
����

����
��� v

����
����

���

〈w1, w1〉 : p,¬q w2 : p, q w3 : ¬p, q v1 : p,¬r v2 : p, r

Then set ϕ2 = �(¬p ∨ ¬q) ∧ ♦q and ψ2 = �(p ∧ r) ∧ �(p ∧ ¬r). It is easy to
see that M2, w |= ϕ2 and N2, v |= ψ2. To see that K2 
 ϕ2 → ¬ψ2, consider
the following derivation, where to make long Boolean combinations readable,
we write negation of propositional letters as overline, omit ∧ between purely
Boolean formulas and replace ∨ with |.
– 
2 �(p̄|q̄) ∧ �rp ∧ �r̄p → �(((p̄|q̄)rp)|((p̄|q̄)r̄p)|rpr̄p) K2
– 
2 �(p̄|q̄) ∧ �rp ∧ �r̄p → �pq̄ PL,RE
– 
2 ϕ2 ∧ ψ2 → �pq̄ ∧ ♦q PL
– 
2 ϕ2 ∧ ψ2 → �q̄ ∧ ¬�q̄ PL, RM
– 
2 ϕ2 → ¬ψ2 PL

Here PL means propositional reasoning. Hence we are done with the first two
points for this pair of models and formulas to be a counterexamples. For the
last point, note that Z = {〈w, v〉, 〈w1, v1〉, 〈w1, v2〉, 〈w2, v1〉, 〈w2, v2〉} is a wa2-
bisimulation when Φ = {p}. Hence by Proposition 1, for any formula γ with
p the only propositional letter, M2, w |= γ iff N2, v |= γ. But p is the only
common propositional letters in ϕ2 and ψ2. Clearly, now M, w, N , v, ϕ2, and
ψ2 form a counterexample to the Craig Interpolation Property for K2.
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Example 4. Consider the following two 3-models where {〈w,w1, w2, w3〉} is the
relation in M3 and {〈v, v1, v2, v3〉} is the relation in N3.

w1 : p,¬q v1 : ¬p, r

M3 : w

										















 w2 : p, q N3 : v

										















 v2 : ¬p,¬r

w3 : ¬p, q v3 : p, r

Then set ϕ3 = �pq̄∧�pq∧♦(p|p̄), ψ3 = �p̄r∧�p̄r̄∧♦(p|p̄). Clearly M3, w |= ϕ3

and N3, v |= ψ3. Further, K2 
 ϕ3 → ¬ψ3 since we have the following derivation.

– 
3 �pq̄ ∧ �pq ∧ �p̄r ∧ �p̄r̄ → �(pq̄pq|pq̄p̄r|pq̄p̄r̄|pqp̄r|pqp̄r̄|p̄rp̄r̄) K3
– 
3 �pq̄ ∧ �pq ∧ �p̄r ∧ �p̄r̄ → �pp̄ PL,
– 
3 ϕ3 ∧ ψ3 → �pp̄ ∧ ♦(p|p̄) PL, RM
– 
3 ϕ3 → ¬ψ3 PL

Finally, note that Z = {〈w, v〉, 〈w1, v3〉, 〈w2, v3〉, 〈w3, v1〉, 〈w3, v2〉} is a wa3-
bisimulation if Φ = {p}.

The above example can be naturally generalized for each Kn with n > 3.
Let m be the least natural number s.t. 2m ≥ n − 1 and pick m many distinct
propositional letters r1, . . . , rm from Φ. Then for each i from 1 to n − 1, we
can associate a distinct conjunction of literals ρi using rj ’s so that ρi ∧ ρi′ are
incompatible for each i �= i′. Then we can state the general counterexample.

Example 5. Consider the following two n-models where {〈w,w1, ..., wn〉} is the
relation in Mn, and {〈v, v1, ..., vn〉} is the relation in Nn.

w1 : p,¬q v1 : p

w2 : p, q v2 : ¬p, ρ1

Mn : w

����������




















���
���

���
���

���


w3 : ¬p Nn : v

�����������





















���
���

���
���

���


v3 : ¬p, ρ2

...
...

wn : ¬p vn : ¬p, ρn−1

Set ϕn = �(p ∧ ¬q) ∧ �(p ∧ q) ∧ ♦� and ψn =
∧n−1

i=1 �(¬p ∧ ρi) ∧ ♦�. Clearly
Mn, w |= ϕn and Nn, v |= ψn. It is also easy to see that by Kn, we can derive
(�(p∧¬q)∧�(p∧q)∧∧n−1

i=1 �(¬p∧ρi)) → �⊥. With this we can then easily derive
ϕn → ¬ψn in Kn. Finally, note that p is the only common propositional letter in
ϕn and ψn and that Z = {〈w, v〉, 〈w1, v1〉, 〈w2, v1〉} ∪ {w3, ..., wn} × {v2, ..., vn}
is a wan-bisimulation when Φ = {p}.

With the examples and Lemma 2, the main theorem of this section follows.
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Theorem 3. For any n ≥ 2, Kn does not have the Craig Interpolation Property.

Remark 4. Note that the Lemma 2 uses only the soundness of the logics. Hence
for any extension of Kn that is sound on Mn and Nn, it still lacks the Craig
Interpolation Property. For example, we may extend Kn with 4 and our examples
still work since 4 is valid on the underlying frames.

5 Conclusion

In this paper, we proved two results about WAML: first, WAML have a van
Benthem-Rosen characterization, and second, WAML do not have Craig Inter-
polation Property (CIP). We conclude with two potentially promising lines of
further investigation.

First, the main part of the completeness proof of Kn over n-models is to
solve some combinatorial puzzle [26]. Due to the semantics of WAML there is a
natural link between combinatorics and WAML as also shown in the use of graph
coloring problem in [5]. As future work, we would like to explore the possibility
of using WAML to express interesting combinatorial properties in graph theory,
like the one in [25].

Second, even though we proved that WAML do not have Craig Interpolation
Property, it doesn’t mean that the same must be the case under further con-
straints (stronger logics). For instance, the counterexample in our paper cannot
show that Kn ⊕ T lacks CIP since the logic is not sound on the frames of the
models we provided. What remains to be done then is to chart the map of CIP
among the logics extending Kn’s and look for more general methods.

Lastly, if we change all the � in Kn into ♦, we get the following formula:

K∗
n : ♦p0 ∧ · · · ∧ ♦pn → ♦

∨

(0≤i<j≤n)

(pi ∧ pj).

In basic normal modal logics, this formula characterizes frames where each world
has at most n accessible worlds and is equivalent (assuming the normality of �) to
what is commonly called the Altn in the literature [33]. It is not too hard to observe
that the strategy we gave in Sect. 4 can be used to show that for each n ≥ 3, nor-
mal modal logic K ⊕ K∗

n lacks CIP. It seems that, more abstractly speaking, the
counterexamples exist because the logic can reason about with the help of extra
propositional letters, but cannot express directly, whether there are many accessi-
bleworlds satisfying a property.Note that counting the number of accessibleworlds
satisfying a property is intuitively important and has been studied in Description
Logics (DL) [7] and Graded Modal Logics (GML) [12,15,17]. There are already
some CIP work in those logics, like [23], and we conjecture that CIP may return
when we add modalities that talk directly about numbers.
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Abstract. Logics for social networks have been studied in recent liter-
ature. This paper presents a framework based on dynamic term-modal
logic (DTML), a quantified variant of dynamic epistemic logic (DEL). In
contrast with DEL where it is commonly known to whom agent names
refer, DTML can represent dynamics with uncertainty about agent iden-
tity. We exemplify dynamics where such uncertainty and de re/de dicto
distinctions are key to social network epistemics. Technically, we show
that DTML semantics can represent a popular class of hybrid logic epis-
temic social network models. We also show that DTML can encode pre-
viously discussed dynamics for which finding a complete logic was left
open. As complete reduction axioms systems exist for DTML, this yields
a complete system for the dynamics in question.

Keywords: Social networks · Term-modal logic ·
Dynamic epistemic logic

1 Introduction

Over recent years, several papers have been dedicated to logical studies of social
networks, their epistemics and dynamics [3,11–15,19–23,25,26]. The purpose of
this literature typically is to define and investigate some social dynamics with
respect to e.g. long-term stabilization or other properties, or to introduce formal
logics that capture some social dynamics, or both.

This paper illustrates how dynamic term-modal logic (DTML, [2]) may be
used for the second purpose. In general, term-modal logics are first-order modal
logics where the index of modal operators are first-order terms. I.e., the operators
double as predicates to the effect that e.g. ∃xKxN(x, a) is a formula—read, in
this paper, as “there there exists an agent that knows of itself that it is a social
network neighbor of a”. The dynamic term-modal logic of [2] extends term-
modal logic with suitably generalized action models that can effectuate both
factual changes (e.g. to the network structure) as well as epistemic changes. For
all the DTML action model encodable dynamics, [2] presents a general sound
c© Springer-Verlag GmbH Germany, part of Springer Nature 2019
P. Blackburn et al. (Eds.): LORI 2019, LNCS 11813, pp. 168–182, 2019.
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and complete reduction axiom-based logic in the style of dynamic epistemic
logic (DEL, [4,5]). Hence, whenever an epistemic social network dynamics is
encodable using DTML, completeness follows. With this in mind, the main goal
of this paper is to introduce and illustrate DTML as a formalism for representing
epistemic social network dynamics, and to show how it may be used to obtain
completeness results.

To this end, the paper progresses as follows. Section 2 sketches some common
themes in the logical literature on social networks before introducing DTML
and its application to epistemic social networks. Section 2 contains the bulk of
the paper, with numerous examples of both static DTML models and action
models. The examples are both meant to showcase the scope of DTML and to
explain the more non-standard technical details involved in calculating updated
models. In Sect. 3, we turn to technical results, where it is shown that DTML
may encode popular static hybrid logical models of epistemic networks, as well
as the dynamics of [13], for which finding a complete logic was left open. Many
details are deferred to an extended version, [1]. Section 4 contains final remarks.

2 Models and Languages for Epistemic Social Networks

To situate DTML in the logical literature on social networks, we cannot but
describe the literature in broad terms. We omit both focus, formal details and
main results of the individual contributions in favor of a broad perspective. That
said, then all relevant literature in one way or other concern social networks. In
general, a social network is a graph (A,N) where A is a set of agents and
N ⊆ A × A is represents a social relation, e.g., being friends on some social
media platform. Depending on interpretation, N may be assumed irreflexive
and symmetric. Social networks may be augmented with assignments of atomic
properties to agents, representing e.g. behaviors, opinions or beliefs. One set of
papers investigates such models and their dynamics using fully propositional
static languages [14,21,25,26].

A second set of papers combines social networks with a semantically repre-
sented epistemic dimension in the style of epistemic logic. In these works, the
fundamental structure of interest is (akin to) a tuple

(A,W, {Nw}w∈W ,∼)

with agents A and worlds W , with each world w associated with a network Nw ⊆
A×A, and ∼: A → P(W ×W ) associating each agent with an indistinguishability
(equivalence) relation ∼a. Call such a tuple an epistemic network structure.

The existing work on epistemic network structures may be organized in terms
of the static languages they work with: propositional modal logic [3,15] or hybrid
logic [10–13,19,20,22,23]. In the former, the social network is described using
designated atomic propositions (e.g., Nab for ‘b is a neighbor of a’). To produce
a model, an epistemic network structure is augmented with a propositional val-
uation V : P → P(W ). Semantically, Nab is then true at w iff (a, b) ∈ Nw.
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Knowledge is expressed using operators {Ka}a∈A as in standard epistemic logic
with Ka the Kripke modality for ∼a.

In the hybrid case, the network is instead described using modal operators.
The hybrid languages typically include a set of agent nominals Nom (agent
names), atoms P and indexical modal operators K and N , read “I know that”
and “all my neighbors”. Some papers additionally include state nominals, hybrid
operators (@x, ↓x) and/or universal modalities U (“for all agents”). A hybrid
network model is an epistemic network structures extended with two assign-
ments: a nominal assignment g : Nom → A that names agents, and a two-
dimensional hybrid valuation V : P → P(W × A), where (w, a) ∈ V (p) repre-
sents that the indexical proposition p holds of agent a at w. The satisfaction
relation is relative to both an epistemic alternative w and an agent a, where
the noteworthy clause are: M,w, a |= p iff (w, a) ∈ V (p); M,w, a |= Kϕ iff
M,v, a |= ϕ for every v ∼a w; and M,w, a |= Nϕ iff M,w, b |= ϕ for every
b such that Nw(a, b). With these semantics, formulas are read indexically. E.g.
KNp reads as “I know that all my neighbors are p”.

In relation to these two language types, the term-modal approach of this
paper lies closer to the former: By including a binary ‘neighbor of’ relation sym-
bol N in the signature of a term-modal language, the social network component
of models is described non-modally. This straightforwardly allows expressing e.g.
that that all agents know all their neighbors (∀x∀y(N(x, y) → Kx(N(x, y))) or
that an agent has de re vs. de dicto knowledge of someone being a neighbor
(∃xKaN(a, x) vs. Ka∃xN(a, x)). Moreover, hybrid languages can be translated
into DTML, in such a way that hybrid formulas such as @ap (“agent a has
property p”) become equivalent to P (a), if a is the name of a.

2.1 Term-Modal Logic and Epistemic Network Structures

In general, term-modal languages may be based on any first-order signature, but
for the purposes of representing social networks and factual properties of agents,
we limit attention to the following:1

Definition 1. A signature is a tuple Σ = (V, C, P, N,
.=) with V a countably

infinite set of variables, C and P countable sets of constants and unary predicates,
N a binary relation symbol and .= for identity. The terms of Σ are T := V ∪ C.
With t1, t2 ∈ T, x ∈ V and P ∈ P, the language L(Σ) is given by

ϕ := P (t1) | N(t1, t2) | (t1
.= t2) | ¬ϕ | ϕ ∧ ϕ | Ktϕ | ∀xϕ

Standard Boolean connectives, �, ∃ and K̂t are defined per usual. With ϕ ∈
L(Σ), t ∈ T, x ∈ V, the result of replacing all occurrences of x in ϕ with t is
denoted ϕ(x �→ t). Formulas from the first three clauses are called atoms; if an
atom contains no variables, it is ground.

1 The defined are special cases of the setting in [2], which allows general signatures
and non-agent terms. [2] also reviews the term-modal literature.
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Throughout, a, b, etc. are used for constants and the relation symbol N
denotes a social network. The reading of N(t1, t2) depends on application. Ktϕ is
a term-indexed epistemic operator which read as “agent t knows that ϕ”. L(Σ)
neither enforces nor requires a fixed-size agent set A, in contrast with standard
epistemic languages, where the set of operators is given by reference to A. Hence
the same language may be used to describe networks of varying size.

To interpret L(Σ), we use constant-domain models (the same number of
agents in each world) with non-rigid constants (names, like predicates and rela-
tions, may change extension between worlds; this allows for uncertainty about
agent identity). See Figs. 1 and 2 for examples of such models.

a

b

c

w :

a

b

c

v :

a

b

c

u :

a, b, c a, b, c

Fig. 1. Example 1, pt. 1 (Server Error). Three agents a,b and c work in a company
with a hierarchical command structure, −→: a is the direct boss of b, who is the direct
boss of c. The server has thrown an error after both b and c tampered with it. Either
(w) the server failed spontaneously, (v) b made a mistake (marked by gray) or (u) c
made a mistake. Lines represent indistinguishability with reflexive and transitive links
omitted. There is no uncertainty about the hierarchy, but nobody knows why the server
failed. In fact, c made a mistake: the actual world has a thick outline.

Definition 2. An L(Σ)-model is a tuple M = (A,W,∼, I) where A is a non-
empty domain of agents, W is a non-empty set of worlds, ∼ : A → P(W ×W )
assigns to each agent a ∈ A an equivalence relation on W denoted ∼a, and I
is an interpretation satisfying, for all w ∈ W , 1. for c ∈ C, I(c, w) ∈ A; 2. for
P ∈ P, I(P,w) ⊆ A; 3. I(N,w) ⊆ A × A . A pointed model is a pair (M,w)
with w ∈ W called the actual world.
A variable valuation of Σ over M is a map g : V → A. The valuation identical
to g except mapping x to a is denoted g[x �→ a]. The extension of the term
t ∈ T at w in M under g is [[t]]I,g

w = g(t) for t ∈ V and [[t]]I,g
w = I(t, w) for t ∈ C.

Given the inclusion of N in the signature Σ, each L(Σ)-model embeds an epis-
temic network structure (A,W, (∼a)a∈A, (I(N,w))w∈W ).

Formulas are evaluated over pointed models using a direct combination of
first-order and modal semantics:
Definition 3. Let Σ, M and g be given. The satisfaction of formulas of L(Σ)
is given recursively by

M,w �g P (t1) iff [[t1]]I,g
w ∈ I(P,w), for P ∈ P.

M,w �g N(t1, t2) iff ([[t1]]I,g
w , [[t2]]I,g

w ) ∈ I(N,w).
M,w �g (t1

.= t2) iff [[t1]]I,g
w = [[t2]]I,g

w .
M,w �g ¬ϕ iff not M,w �g ϕ.
M,w �g ϕ ∧ ψ iff M,w �g ϕ and M,w �g ψ.
M,w |=g ∀xϕ iff M,w |=g[x�→a] ϕ for all a ∈ A.
M,w �g Ktϕ iff M,w′ �g ϕ for all w′ such that w ∼[[t]]I,g

w
w′.
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2.2 Knowing Who and Knowledge De Dicto and De Re

First-order modal languages can represent propositional attitudes de dicto
(about the statement) and de re (about the thing) in principled manners. For
example, Ka∃xP (x) is a de dicto statement: knowledge is expressed about the
proposition that a P -thing exists. In contrast, ∃xKaP (x) is a de re statement:
it is expressed that of some thing x, that x is known to be a P -thing. In general,
de re statements are stronger than de dicto statements. The difference has been
appreciated in epistemic logic since Hintikka’s seminal [17], where he argues
that ∃xKa(x .= b) expresses that a knows who b is (see Fig. 2). Semantically,
the formula ensures that the constant b refers to the same individual in all a’s
epistemic alternatives (i.e., b is locally rigid). Both de dicto and de re statements
may partially be expressed in propositional languages (e.g. de dicto Ka(pb ∨ pc)
vs. de re Kapb ∨ Kapc; see [3] for such a usage), but not in a principled manner:
the required formulas will depend on the specific circumstances.

t b

h i c

w1 : t t, b b, a h

t b

h i c

w2 : t b, b t, a h

t b

h i c

w3 : t t, b b, a i

t b

h i c

w4 : t b, b t, a i

c

cc

c

Fig. 2. Example 2, pt. 1 (Knowing Who). Two thieves, t and b, hide in a building
with hostages h and i. Outside, a cop, c, waits. To communicate safely, the thieves use
code names ‘Tokyo’ and ‘Berlin’ for each other and ‘The Asset’ for the specially valuable
hostage h. Agents t, b, h and i all know whom the code names denote (the names are
rigid for them), but the cop does not. The code names are t for t, b for b and a for h.
Known by all, h and i are in fact called h and i. The thief network (—) is assumed
symmetric and transitive. The case is modeled using four worlds, identical up to code
name denotation, (shown by �→). E.g., in the actual world is w1, t names t, but in w4,
it names b. Hence the cop does not know who Tokyo is: M, w1 �g ¬∃xKc(x

.
= t).

2.3 Dynamics: Action Models and Product Update

To code operations on static models, we use a variant of DEL-style action models,
adapted to term-modal logic (see Fig. 3). They include (adapted versions of) pre-
conditions specifying when an event is executable [4,5], postconditions describing
the factual effects of events [6,8,16] as well as edge-conditions representing how
an agent’s observation of an action depends on the agent’s circumstances [7]—for
example their position in a network, cf. Fig. 3. Edge-conditions are non-standard
and deserve a remark. With E the set of events, edge-conditions are assigned by
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a map Q. For each edge (e, e′) ∈ E × E, Q(e, e′) is a formula with a single free
variable x�. Given a model M , an agent i cannot distinguish e from e′ iff the
edge-condition Q(e, e′) is true in M when the free variable x� is mapped to i.
Intuitively, if the situation described by the edge-condition is true for i, the way
in which i is observing the action does not allow her to tell whether e or e′ is
taking place. See Fig. 4 for an example. See [2] for a comparison of this approach
to that of [7] and the term-modal action models of [18].

¬∃xM(x)
�

1:
M(b)

�
2:

M(c)
�

3: ∃xM(x)
�

4:ϕ ϕ ϕ

ϕ := ∃xN(x, x�)

Fig. 3. Example 1, pt. 2 (Edge-Conditions: Announcement to Subgroup). To
learn what happened to the server, the top boss a requests its log file. The log holds
one of four pieces of information: (1) Nobody made a mistake, (2) b made a mistake
(M), (3) c made a mistake or (4) somebody made a mistake. Each box represents one
of these events: top lines are preconditions, bottom lines postconditions (� means no
factual change). In fact, the log rats on c. N denotes the hierarchy. The log is sent
only to the top boss: the others cannot see its content. This is represented by the edge-
condition ϕ: If you, x�, have a boss, then you cannot tell (1) from (2) nor (2) from (3)
etc. For unillustrated edges, Q(e, e) = (x� .

= x�) and Q(e, e′) = ϕ when e �= e′.

For simplicity, we here only define action models that take pre-, post, and
edge-conditions in the static language L(Σ). However, dynamic conditions are
needed for completeness; we refer to [2] for details.

Definition 4. An action model for L(Σ) is a tuple Δ = (E,Q, pre, post) where

� E is a non-empty, finite set of events.
� Q : (E × E) → L(Σ) where each edge-condition Q(e, e′) has exactly one

free variable x�.
� pre : E → L(Σ) where each precondition pre(e) has no free variables.
� post : E → (GroundAtoms(L(Σ)) → L(Σ)) assigns to each e ∈ E a postcon-

dition for each ground atom (the notation GroundAtoms(L(Σ) denotes the
set of ground atoms of L(Σ)).
To preserve the meaning of equality, let post(e)(t .= t) = � for all e ∈ E.

With no general restrictions on Q, to ensure that all agents’ indistinguishability
relations continue to be equivalence relations after updating, Q must be cho-
sen with care. Throughout, we assume Q(e, e) = (x� .= x�) for all e ∈ E. To
update, product update may be altered to fit the edge-condition term-modal set-
ting as below. Figure 4 illustrates the product update of Fig. 1 with 3. The use
of postconditions is illustrated in Figs. 7 and 8.
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Definition 5. Let M = (A,W,∼, I) and Δ = (E,Q, pre, post) be given. The
product update of M and Δ is the model M ⊗ Δ = (A′,W ′,∼′, I ′) where

1. A′ = A
2. W ′ = {(w, e) ∈ W × E : (M,w) �g pre(e)} for any g,
3. (w, e) ∼′

i (w′, e′) iff w ∼i w′ and M,w �g[x� �→i] Q(e, e′),
4. I ′(c, (w, e)) = I(c, w) for all c ∈ C, and

I ′(X, (w, e)) = (I(X,w) ∪ X+(w)) \ X−(w), for X ∈ {P,N}, P ∈ P, where:

P+(w) :={[[t]]I,v
w : (M,w) �g post(e)(P (t))};

P−(w) :={[[t]]I,v
w : (M,w) ��g post(e)(P (t))};

N+(w) :={([[t1]]I,v
w , [[t2]]I,v

w ) : (M,w) �g post(e)(N(t1, t2))};

N−(w) :={([[t1]]I,v
w , [[t2]]I,v

w ) : (M,w) ��g post(e)(N(t1, t2))}

If (M,w) |= pre(e), then (A, e) is applicable to (M,w), and the product update
of the two is the pointed model (M ⊗ Δ, (w, e)). Else it is undefined.

a

b

c

w1:
a

b

c

v2:

a

b

c

u3:

a

b

c

v4:

a

b

c

u4:

b, c

b, c

b, c

a, b, c

b, c b, c

Fig. 4. Example 1, pt. 3 (Product Update: Edge-Conditions). The product
update of Figs. 1 and 3. After checking the logs, the boss has learned that c made a
mistake, while both b and c are now both uncertain about this, as well as about the
boss’ information. Worlds are named using by the world-event pair they represent: w1 is
the child of w and 1, etc. The pair w2 is not a world: w did not satisfy the precondition
of 1. We have w1 ∼′

b v2 as w ∼b v and M, w �g[x� �→a] Q(1, 2)—as M, w �g ∃xN(x, b).
Likewise, v2 ∼′

b w1 as v ∼b w and M, v �g ∃xN(x, b). That w1 �∼′
a v2 follows as

M, w �g ¬∃xN(x, b), but v4 ∼′
a u4 as M, v �g (a

.
= a). The same reason, reflexive

loops are preserved. The boss now knows that c made a mistake: KaM(c)

2.4 Announcements De Dicto and De Re

With de dicto and de re statements expressible in DTML, they may be used
to define principled announcements, as exemplified in Figs. 5 and 6. The action
models are applicable to any DTML model for a signature that includes the
constant a and the predicate M , irrespective of the size of the set of agents. This
level of general applicability is not mirrored in standard DEL action models.
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Ka∃xM(x)
�

e : a

b

c

v2e :

a

b

c

u3e :

a

b

c

v4e :

a

b

c

u4e :

b, c

a, b, c

b, c b, c

Fig. 5. Example 1, pt. 3 (De Dicto Announcement). The boss breaks the news
from the log to b and c piecemeal. Left: First, a makes a de dicto announcement: a
knows that somebody made a mistake. Right: The effect on Fig. 4. Only w1 does not
survive. In u3e, everybody knows de dicto that somebody messed up: ∀xKx∃yM(y).
The boss also knows de re, i.e., knows who: u3e �g ∃xKaM(x), as u3e �g[x �→c]

KaM(x). The employees do not know that a knows de re: u3e �g ∀x(∃yN(y, x) →
K̂x¬∃zKaM(z))—since v4e �g M(x) iff g(x) = b, but then u4e ��g M(x). I.e., there is
no one object to serve as valuation for x such that v4e and u4e satisfy M(x) simulta-
neously). The employees are held in suspense!

∃xKaM(x)
�

σ :

a

b

c

v2eσ :

a

b

c

u3eσ :

b, c

Fig. 6. Example 1, pt. 4 (De Re Announcement). Following a dramatic pause,
the boss reveals a stronger piece of information: the boss knows who messed up. This
de re announcement is on the left, with Q(e, e) = (x� = x�); its result on Fig. 5 (Right)
on the right. In u3eσ, everybody knows that a has de re knowledge: ∀xKx∃yKaM(y),
but b and c still only have de dicto knowledge: ∀x((x = b ∨ x = c) → Kx∃yM(y) ∧
¬∃zKxM(z)).

�
N(a, b), N(b, c) ⊥, N(a, c) �

† :

a

b

c

v2eσ† :

a

b

c

u3eσ† :
b, c

Fig. 7. Example 1, pt. 5 (Getting Fired). The employees are dying to know who
messed up the server. But the boss just proclaims: ‘b, you are fired! c, you are pro-
moted!’ Left: Action with three instructions for factual change: post(†)(N(a, b)) = ⊥,
post(†)(N(b, c)) = ⊥ and post(†)(N(a, c)) = � (illustrated by �→). Else post = id. As
u3eσ �� ⊥, the first two instructions entail that (a, b), (b, c) ∈ N−(u3eσ), while the lat-
ter implies that (a, c) ∈ N+(u3eσ). Right: The network is updated to I ′(N, u3eσ†) =
(I(N, u3eσ) ∪ N+(u3eσ))\N−(u3eσ) = ({(a, b), (b, c)} ∪ {(a, c)})\{(a, b), (b, c)} =
{(a, b)}. In u3eσ†, neither b nor c know who made the mistake. Unrepresented, a
thinks that only bad superiors let their employees make mistakes.

2.5 Postconditions and Network Change

Action models with postconditions allows DTML to represent changes to the
social network. Such changes may be combined with the general functionality of
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�
N(·, a), N(a, ·) ∃xN(·, x)

e :

t b

h i c

w1e : t t, b b, a h

t b

h i c

w2e : t b, b t, a h

t b

h i c

w3e : t t, b b, a i

t b

h i c

w4e : t b, b t, a i

c

cc

c

Fig. 8. Example 2, pt. 2 (Becoming Criminal) Left: The thieves convince The
Asset to cooperate with them, in exchange for stolen goods. For simplicity, assume that
the action of a joining the thief network is noticed by everyone. We model this with
the action model, with post(e)(N(·, a)) = ∃xN(·, x) and post(e)(N(a, ·)) = ∃xN(x, ·)
for · ∈ {t, b, a, h, i, c}. Informally, these say: “If you are a member of the network, then
a becomes your neighbor”. Right: The effect of event e on Fig. 2: The network has
changed in all worlds, but differently. E.g., in w1, we had ¬N(b, a); in (w1, e), we have
N(b, a) as (b, h) ∈ N+((w1, e)) since w1 �g post(e)(N(b, a))—i.e., ∃xN(b, x). Now all
thieves and hostages know the new network, as they know whom a refers to. E.g.: Tokyo
knows all her neighbors, (w1, e) �g ∀x(N(t, x) → KtN(t, x)). The cop only learns that
some hostage has joined the network, but can’t tell whom: (w1, e) �g Kc∃x(x � .= t∧x � .=
b ∧ N(t, x)) but (w1, e) ��g ∃xKc(x � .= t ∧ x � .= b ∧ N(t, x)).

action models such that some agents may know what changes occur while others
remain in the dark. Figure 7 provides a simple example, including the details
calculating the updated network. Figure 8 presents an example of how de re/de
dicto knowledge affects what is learned by a publicly observed network change.

2.6 Learning Who

Allowing for the possibility of non-rigid names has the consequence that pub-
lic announcements of atomic propositions may differ in informational content
depending on the epistemic state of the listener. This can be exploited by the

a
.= h

�

σ :

t b

h i c

w1eσ : t t, b b, a h

t b

h i c

w2eσ : t b, b t, a h

c

Fig. 9. Example 2, pt. 4 (Revealing the Asset). In the model in Fig. 8 (Right),
even a public announcement of N(t, a) would not inform the cop about who joined the
network. To know who joined the network, the cop must learn who The Asset is. As
the cop knows who h is, learning that h is The Asset suffices. Left: The event model
σ for the public announcement that a

.
= h, revealing the identity of The Asset. Right:

The product update of Fig. 8 (Right) and event σ. The cop now knows the structure
of the network, as a result of the removal of w3e and w4e.
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thieves of Example 2 to enforce a form of privacy—as code names should. The
notion of privacy involved is orthogonal to the notion of privacy modeled in DEL
using private announcements. Though the message is public in the standard sense
of everyone being aware of it and its content, as it involves non-rigid names, its
epistemic effects are not the same for all agents. This is in contrast with standard
public announcements, which yield the same information to everyone.

3 Embedding Dynamic Social Network Logics in DTML

This section examines relations between the hybrid network models and their
languages to DTML. As hybrid languages corresponds to fragments of first-order
logic with equality (FOL=), which term-modal logic extends, it stands to reason
that the hybrid languages and models mentioned in Sect. 2 may be embedded in
term-modal logic. A precise statement and a proof sketch follows below. Turning
to dynamics, things are more complicated. [23] presents a very flexible hybrid
framework expressing network dynamics using General Dynamic Dynamic Logic
(GDDL, [24]). We leave general characterizations of equi-expressive fragments of
GDDL and DTML as open question, but remark that all GDDL action-examples
of [23] may be emulated using DTML action models, and in many cases via fairly
simple ones. More thoroughly, we show that the logic of Knowledge, Diffusion
and Learning (KDL, [13]) has a complete and decidable system, a question left
open in [13]. This is shown by encoding KDL in DTML.

3.1 Embedding Static Languages and Models

The static hybrid languages of [10–13,20,22,23] are all sub-languages of
L(P,Nom), defined and translated into DTML below. [19] also includes state
nominals, which our results do not cover. L(P,Nom) is read indexically, as
described in Sect. 2.

Definition 6. With p ∈ P and x ∈ Nom, the language L(P,Nom) is given by

ϕ := p | ¬ϕ | ϕ ∧ ϕ | @xϕ | Kϕ | Nϕ | Uϕ

Denote the fragments without U and @x by L−U (P,Nom) and L−@(P,Nom).

Hybrid logics may be translated into FOL=; our translation resembles that
of [9]. We identify agent nominals with first-order variables, translate the modal
operator N to the relation symbol N(·, ·), and relativize the interpretation of
the indexical K to the nominal/variable x by using the term-indexed operator
Kx. Formally, the translation is defined as follows.

Definition 7. Let Σn(P,Nom) = (V, C, P, N, =̇) be the signature with V = Nom,
C = {a1, . . . , an} and P = P . Translations Tx, Ty both mapping L(P,Nom) to
L(Σn(P,Nom)) are defined by mutual recursion. It is assumed that two nominals
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x and y are given which do not occur in the formulas to be translated. For p ∈ P
and i ∈ Nom, define Tx by:

Tx(p) = p(x) Tx(@iϕ) = Tx(ϕ)(x �→ i)
Tx(i) = x =̇ i Tx(Nϕ) = ∀y(N(x, y) → Ty(ϕ))

Tx(ϕ ∧ ψ) = Tx(ϕ) ∧ Tx(ψ) Tx(Kϕ) = KxTx(ϕ)
Tx(¬ϕ) = ¬Tx(ϕ) Tx(Uϕ) = ∀xTx(ϕ)

The translation Ty is obtained by exchanging x and y in Tx.

To show the translation truth-preserving, we embed the class of hybrid net-
work models into a class of term-modal models:

Definition 8. Let M = (A,W, (Nw)w∈W ,∼, g, V ) be a hybrid network model
for L(P,Nom). Then the TML image of M is the L(Σn(P,Nom)) TML model
T(M) = (A,W,∼, I) sharing A,W and ∼ with M and with I given by

1. ∀c ∈ C,∀w, v ∈ W,∀a, b ∈ A, (I(c, w) = a and w ∼b v ⇒ I(c, v) = a)
2. I(p,w) = {a : (w, a) ∈ V (p)}
3. I(N,w) = {(a, b) ∈ A × A : (a, b) ∈ Nw}
The model T(M) has the same agents, worlds and epistemic relations as M .
The interpretation 1. encodes weak rigidity : if (w, v) ∈ ⋃

a∈A ∼a, then any
constant denotes the same in w and v, emulating the rigid names of hybrid
network models; 2. ensures predicates are true of the same agents at the same
worlds, and 3. ensures the same agents are networked in the same worlds.

With the translations Tx, Ty and the embedding T, it may be shown that
DTML can fully code the static semantics of L(P,Nom) hybrid network logics:

Proposition 1. Let M = (A,W, (Nw)w∈W ,∼, g, V ) be a hybrid network model.
Then for all ϕ ∈ L(P,Nom), M,w, g(•) |= ϕ iff T(M), w |=g T•(ϕ), • = x, y.

3.2 KDL Dynamic Transformations and Learning Updates in DTML

We show that KDL [13] dynamics may be embedded in DTML, for finite agent
sets (as assumed in [13]). Given Proposition 1, we argue that each KDL model
transformer is representable by a DTML action model and that the dynamic
KDL language is truth-preservingly translatable into a DTML sublanguage. The
logic of the class of KDL models is, up to language translations, the logic of
its corresponding class of DTML models. We show that the logic of this class
of DTML models can be completely axiomatized, and the resulting system is
decidable. Thus, by embedding KDL in DTML, we find a complete system for
the former. Due to space restrictions, technical details and proofs are deferred
to the extended version to this paper [1].

In KDL2, agents are described by feature propositions reading “for feature f,
I have value z”. With F a countable set of features and Zf a finite set of possible
2 Notation here is equivalent but different to fit better with the rest of this paper.
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values of f ∈ F, the set of feature propositions is FP = {(f � z) : f ∈ F, z ∈ Zf}.
The static language of [13] is then L−U (FP, Nom). The dynamic language LKDL

extends L−U (FP, Nom) with dynamic modalities [d] and [�] for dynamic trans-
formations d and learning updates �:

ϕ ::= (f � z) | i | ¬ϕ | ϕ ∧ ϕ | @iϕ | Nϕ | Kϕ | [d]ϕ | [�]ϕ

A dynamic transformation d changes feature values of agents: each is a pair
d = (Φ, post) where Φ ⊆ LKDL is a non-empty finite set of pairwise inconsistent
formulas and post : Φ × F → (Zn ∪ {�}) is a KDL post-condition. Encoded by
post(ϕ, f) = x is the instruction: if (w, a) � ϕ, then after d, set f to value x at
(w, a), if x ∈ Zn; if x = �, f is unchanged. A learning update cuts accessibility
relations: the update with finite � ⊆ LKDL keeps a ∼a link between worlds w and
v iff, for all ϕ ∈ �, (w, b) � ϕ ⇔ (v, b) � ϕ for all neighbors b of a. See [13] or
[1] for formal details. Let D and L be the sets of dynamic transformations and
learning updates. The result of applying † ∈ D∪ L to M is denoted M†, and the
[†] modality has semantics M,w, a |= [†]ϕ iff M†w, a |= ϕ.

For every † ∈ D ∪ L, there is a pointed DTML action model (Δ†, e†) with
identical effects. As KDL operations may involve formulas with [†]-modalities,
we must use DTML action models that allow [Δ, e]-modalities in their condi-
tions, and translate LKDL into the general DTML language that results, denoted
L(Σn(FP, Nom) + [Δ]).3 This language is interpreted over DTML models with
standard action model semantics:

(M,w) �g [Δ, e]ϕ iff M ⊗ Δ, (w, e) � ϕ.

The translation is obtained by adding the following clauses to T•, • = x, y:

T•([d]ϕ) = [Δd, ed]T•(ϕ), T•([�]ϕ) =
∧

e∈E�

(pre�(e) → [Δ�, e]T•(ϕ))

where Δ† is an action model implementation of † ∈ D∪L. Then KDL statics and
dynamics can be shown performable in DTML:

Proposition 2. For any finite agent hybrid network model M with nominal
valuation g and ϕ ∈ LKDL: M,w, g(•) |= ϕ iff T(M), w |=g T•(ϕ), for • = x, y.

Proof (sketch). By induction on ϕ, with formulas [†]ϕ the difficult cases, requir-
ing construction of action models. For † ∈ D, [12] provide reduction axioms
showing †’s instructions statically encodable in LKDL. As † ∈ D changes atomic
truth values under a definable instruction, † may be simulated by an action model
with a matching post-condition (a translated instruction). For † ∈ L, (Δ†, e†)
has events eX , eY for any maximal consistent subsets X,Y of {ϕ(c),¬ϕ(c) : ϕ ∈
�, c ∈ C} with edge-condition Q(eX , eY ) satisfied for agents for whom all neigh-
bors agree on X and Y . Unsatisfied edge-conditions thereby capture the link
cutting mechanism of �. For details, see [1], especially Definitions 6, 9 and
Proposition 3 therein.
3 Defined using double recursion as standard; see [2] for details.



180 A. O. Liberman and R. K. Rendsvig

With Proposition 2 embedding KDL in DTML, it remains to show that there
is a complete and decidable system for the image of KDL. Up to translation, such
a logic is then a logic for the class of KDL models. To state the result, denote
the TML image of the class of n-agent KDL models by T(KDLn).

Definition 9. Let Fn ⊆ L(Σn(FP, Nom)+ [Δ]) be the logic extending the term-
modal S5 logic with static axioms Namedn (there are exactly n agents, all named
by constants); Rign (defining the weak rigidity condition of Definition 8); Neigh
(N is irreflexive and symmetric); and KnowNeigh (all agents know their neigh-
bors); as well as reduction axioms for action models (Δ†, e†), † ∈ D ∪ L.

See [1] for static axioms and [2] for reduction axioms. We then obtain the result:

Theorem 1. For any n ∈ N, the logic Fn is sound, strongly complete and decid-
able w.r.t. T(KDLn).

Proof (sketch). In [1], it is shown that Fn statically characterizes T(KDLn). The
result then follows from three results from [2]: 1. Any extension of the term-
modal logic K with axioms A is strongly complete with respect to the class of
frames characterized by A, and 2. If A characterizes a class with finitely many
agents, then the logic is also decidable, and 3. Any dynamic DTML formula is
provably equivalent to a static DTML formula using reduction axioms.

4 Final Remarks

This paper has showcased DTML as a framework for modeling social networks,
their epistemics and dynamics, including examples in which uncertainty about
name reference and de dicto/de re distinctions are key to modelling information
flow and network change correctly. It was shown that DTML may encode the
popular hybrid logical models of epistemic networks, and that DTML may be
used to obtain completeness for an open-question dynamics through emulation.

We are very interested in learning how DTML relates to GDDL with respect
to the encodable dynamics. We have been able to emulate the updates used
in the examples of [23], but the general question is open. Further, the statics
of frameworks that describe networks using propositional logic [3,15] must be
DTML encodable, and we expect the name about their updates, where reduc-
tion axioms exist. This raises two questions: if we can show this by a general
results instead of piecemeal, and whether principled DTML action models exist
for classes of updates. E.g., the threshold update of [3] gives an agent’s property
P if a given fraction of neighbors are P ; for a fixed agent set, this is DTML encod-
able by using the reduction axioms of [3] to provide pre- and postconditions. For
a principled update, however, seemingly we need a generalized quantifier (e.g.,
a Rescher quantifier). If so, the general update form is not DTML encodable.
Classification results like these would add valuable insights on network logics.
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Abstract. Echo chamber is a widely used term describing a situation
where certain information is reinforced within a closed network. To rea-
son about echo chambers, we introduce a two-sorted hybrid logic of
strong and weak ties based on a logic of positive and negative relations
known from the literature. We show that some classical property defini-
tions can be formalized and that a known claim from social network anal-
ysis is a validity. We also prove that the logic is axiomatizable, sound and
strongly complete. We combine our results with research on homophily
and social group formation to represent relations between similar agents.
Lastly, we add a knowledge modality and dynamic operators to analyze
change in these networks.

Keywords: Strong and weak ties · Echo chamber · Friendship logic ·
Hybrid logic · Logic for social epistemic networks · Homophily

1 Introduction

In its various forms, social media – as a communication tool between peers,
a form of direct access to the personal opinions of powerful people or a news
outlet – is indisputably a vital source of information in our current world. Most
social media platforms give users or platform operators the ability to filter out
annoying and/or incompatible voices. The downside is that this can promote the
emergence of echo chambers where a shortage of new and opposing information
can lead to fragmentation in society [14].

Echo chamber is not a formal terminology with an explicit definition, but
is widely and vaguely referred to in several contexts. The phrase is often used
as a derogatory term pointing to a situation where certain information within
a group is contained and repeated inwards and where challenging opinions are
rejected. As an echo reflects sound, an echo chamber reflects similar opinions in
a setting closed off from the outside world to a certain degree.

In this paper, we aim to develop a logical framework to analyze echo cham-
bers. To do this, we build upon and combine two known concepts from social
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network analysis: triadic closure and homophily. Triadic closure is meant to for-
malize the phenomenon where one is likely to know the friends of one’s friends.
The formalization was made popular by Mark Granovetter in the 1970s as part
of his theory of the strength of weak ties [13]. In this theory, relations in a graph-
like social network structure are divided into strong and weak ties between nodes
that represents agents. Strong ties are meant to represent friends, and weak ties
model acquaintances such that one tie cannot be both strong and weak.

The strength of weak ties theory by Granovetter suggests that social networks
have a high density of triadic closure. This property is formally represented in
this theory as Strong Triadic Closure. Strong Triadic Closure is a property of
individual agents in the network and holds if and only if its strong ties are
subsequently tied together by a weak or a strong tie. As a result of Strong Triadic
Closure, a network of strong and weak ties are likely to be made up of clusters
of strong ties which are individually tied by weak ties. The argument goes that
weak ties have an important role channeling information between clusters of
strong ties.

Homophily is known as the tendency of being similar to ones friends [11].
By combining the strength of weak ties theory with the likelihood of homophily,
Granovetter’s clusters of strong ties are not only comprised of friends, but of
agents that are alike. We therefore propose that these clusters are essentially
echo chamber-like structures where information to a great degree is preserved
within the strong ties.

The angle from which we approach this topic is to represent social networks
as two-sorted hybrid frames of a logic we name tied logic. Tied logic is inspired
by the logic of positive and negative relations [19,20] substituting positive and
negative with strong and weak. Tied logic also has hybrid operators in the lan-
guage, which the logic of positive and negative relations in its original form has
not. We analyze echo chambers in this framework by describing social network
properties like Strong Triadic Closure as logical formulas and researching their
constraints on the network structure.

To further formalize echo chambers, we also explicitly implement tied logic
with homophily. Perhaps among many, there are two particularly prominent
reasons behind homophily. One is social influence; the habit of becoming like
the people we surround ourselves with. Another is social selection; that we form
friendships with others that are alike us. We illustrate the latter phenomenon by
defining a subclass of tied logic models similar to the threshold models of [17,18].
Where traditional threshold models operate with one threshold, we include two
linearly ordered thresholds for weak and strong ties.

Not only are we defining tied logic to analyze echo chambers, but also for the
sake of investigating the expressive power of the logic itself. Tied logic is a con-
tribution to the emerging field of social network logic, where friendships between
agents in a network are presented as relations on a frame. Like other hybrid logics
of social networks (e.g. [8]) we include dynamic operators to investigate change
in the networks. We are also intrigued by the logical study of knowledge in social
networks, and therefore adopt a knowledge modality inspired by epistemic social
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network logics like [15,16]. The idea of threshold models in a sociopsychological
context has been studied in for instance [4], however here in a different setting.

The structure of the paper will be as follows. We begin in the next section by
presenting tied logic (TL). We define syntax and semantics, and show that Gra-
novetter’s most notable claim is a validity in our logic. We also offer a full axiom-
atization of TL and show that it is sound and strongly complete with respect to
the class of what we call tied frames. In the end of this section we combine our
results with research on social group formation and introduce homophily into the
models. The final part of the paper is devoted to knowledge and dynamics. Here
we examine the addition of a knowledge operator and dynamic modalities to tied
logic, extending it to tied epistemic logic (TEL). To reason about the interac-
tion between knowledge and change in echo chambers, we discuss some possible
epistemic constraints to assign the agents. Then we present some validities of
TEL and an example of a tied epistemic threshold model where we discuss what
formulas might hold at specific agents depending on what axioms we adopt to
restrict the model. We end with conclusion and a brief reflection of future work.

2 Tied Logic

2.1 Language and Semantics

As in other hybrid logics1, the language of TL includes operators @i and ↓ x.
Intuitively, @i lets us shift the evaluation to the agent where name i is true.
↓ x names the current agent ‘x’. These operators are closely related, but serve
different purposes. By including both, we allow formulas where naming agents
lets us later return the evaluation to the same agent. The language of TL includes
the two diamond modalities 〈S〉 and 〈W 〉. They are read intuitively as 〈S〉φ when
the current agent has a strong tie where φ holds. A strong tie is replaced by a
weak tie for 〈W 〉φ. We define the syntax, frames and models of TL formally as
follows.

Definition 1 (Syntax of TL). Let At be a set of propositional atoms and Nom
be a set of nominals. Further, let Var be a set of agent variables. Let At,Nom
and Var be countable and pairwise disjoint. We define the well-formed formulas
of the language LTL to be generated by the following grammar:

φ :: “ p | s | �φ | (φ ^ φ) | 〈S〉φ | 〈W 〉φ | @sφ |↓ x.φ

where p P At, s P NomYVar and x P Var. We define propositional connectives like
_, Ñ and the formulas �,⊥ as usual. Further, we define the duals as standard
[S] :“ �〈S〉� and [W ] :“ �〈W 〉�.

We will denote members of At “ {p, q, r, . . . }, Nom “ {i, j, k, . . . } and Var “
{x, y, z, . . . }.

1 For further details on hybrid logics beyond the scope of this paper, we recommend
turning to [1].
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Definition 2 (Tied Model and Frame). Let A be a non-empty set of agents
and RS and RW be two symmetric and non-overlapping binary relations on
A where RS is reflexive and RW is irreflexive. A tied model is a tuple M “
〈A,RS , RW , V 〉 where V : A Ñ P(At Y Nom) is a valuation function such that
@i P Nom: Da P A such that i P V (a), and @b, c, P A : if i P V (b) and i P V (c),
then b “ c.

We define a tied frame F “ 〈A,RS , RW 〉 as a tied model without valuation.

Our two relations RS and RW define strong and weak ties, respectively. We
assume reflexivity of RS , irreflexivity of RW and symmetry of both relations.
Moreover, we undertake the property of non-overlapping : no two agents can be
related by both a strong and a weak tie. For a, b P A we will denote members
of RS as (a, b)S , members of RW as (a, b)W . As tied models describe social
networks, we will sometimes refer to tied models as networks or social networks.
Moreover, we view all formulas as propositions about agents. For instance we
read p P V (a) as proposition p or feature p holds of agent a. Thus we view V (a)
as the set of all basic properties that holds of a.

To define truth in a tied model, we need to include an assignment function
g : Var Ñ A that assigns agents to variables. Further, define the x-variant of g to
be gx

a(x) “ a and gx
a(y) “ g(y) for all y ‰ x. Also define [s]M,g for s P NomYVar.

For i P Nom, [i]M,g is the state a P A called ‘i’, i.e. the unique a such that
i P V (a) For x P Var, [x]M,g “ g(x). We can now present satisfaction in a tied
model.

Definition 3 (Semantics of TL). Let M “ 〈A,RS , RW , V 〉 be a tied model,
a an agent in A and g : Var Ñ A an assignment function. We inductively define
the truth conditions as follows:

M, g, a , p iff p P V (a) for p P At

M, g, a , s iff a “ [s]M,g for x P Nom Y Var

M, g, a , �φ iff M, g, a �, φ

M, g, a , φ ^ ψ iff M, g, a , φ and M, g, a , ψ

M, g, a , 〈S〉φ iff Db P A such that aRSb and M, g, b , φ

M, g, a , 〈W 〉φ iff Db P A such that aRW b and M, g, b , φ

M, g, a , @sφ iff M, g, [s]M,g , φ for s P Nom Y Var

M, g, a ,↓ x.φ iff M, gx
a , a , φ

2.2 Strong Triadic Closure and Local Bridges

As mentioned earlier, the formation of echo chambers is tightly connected to the
property of Strong Triadic Closure. A formal definition follows.

Definition 4 (Strong Triadic Closure [11,13]). Let M “ 〈A,RS , RW , V 〉 be
a tied model. An agent a P A has the strong triadic closure property iff @b, c P A:
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– if aRSb and aRSc, then bRSc or bRW c.

Strong Triadic Closure is closely related to Euclidicity in the standard Kripke
semantics 2. It is important to note that where Euclidicity is a frame property,
Strong Triadic Closure is defined as a property of agents in the network. However,
the property of all agents being strongly triadic closed is indeed a frame property
which we prove in the following lemma.

Lemma 1. For any tied frame F, F , 〈S〉p Ñ [S](〈S〉p _ 〈W 〉p) iff all agents
in F have the Strong Triadic Closure property.

Proof. (ñ) Proof by contraposition. Let F “ 〈A,RS , RW 〉 be a tied frame such
that there exists an agent a P A that does not have the Strong Triadic Closure
property. Then Db, c P A such that aRSb and aRSc, but �(bRSc) and �(bRW c).
Consider now a valuation such that p P V (b), and @x P A such that x ‰ b: p �P
V (x). Since �(bRSc) and �(bRW c), it follows that (F, V ), c , �〈S〉p ^ �〈W 〉p.
Thus, as aRSc, we know that (F, V ), a , 〈S〉(�〈S〉p ^ �〈W 〉p). As aRSb, we
have that (F, V ), a , 〈S〉p. Hence (F, V ), a �, 〈S〉p Ñ [S](〈S〉p _ 〈W 〉p) and we
conclude that F �, 〈S〉p Ñ [S](〈S〉p _ 〈W 〉p).

(ð) Let F “ 〈A,RS , RW 〉 be a tied frame where all agents in A have the
Strong Triadic Closure property. Fix an arbitrary a P A and let V be a valuation
on F such that (F, V ), a , 〈S〉p. Then Db P A such that aRSb and (F, V ), b , p.
Let c P A be an arbitrary agent such that aRSc. By the Strong Triadic Closure
property of a, it follows that bRSc or bRW c. Thus (F, V ), c , 〈S〉p _ 〈W 〉p.
Hence, as c was chosen arbitrarily (F, V ), a , 〈S〉 Ñ [S](〈S〉p _ 〈W 〉p). As we
fixed a P A and V arbitrarily too, we have that F , 〈S〉 Ñ [S](〈S〉p _ 〈W 〉p)
which concludes the proof.

Granovetter’s theory that networks with a high occurrence of Strong Triadic
Closure have a tendency to form weakly tied clusters of strong ties, is demon-
strated in a known claim. Before we present this claim, we introduce the concept
of a local bridge.

Definition 5 (Local Bridge [11]). Let M “ 〈A,RS , RW , V 〉 be a tied model.
Let a, b P A. An edge (a, b)◦ for ◦ P {S,W} is a local bridge iff @c P A such that
c ‰ a, c ‰ b: �(aRSc) and �(aRW c), or �(bRSc) and �(bRW c).

A local bridge is tie between two agents such that these two agents have no
other friends or acquaintances in common. Agents in a social network that are
related by a local bridge are in an important position when it comes to distribu-
tion of information. In a clustered network local bridges are essential carriers of
outside information. As we argue, clusters create echo chamber-like situations.
Local bridges carrying new information are crucial in dissolving dangerous situ-
ations as for instance radicalization.

The claim is stated informally as follows.

2 See [7] for details.
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Claim ([11,13]). If an agent in a network satisfies the Strong Triadic Closure
property and is connected to other agents by at least two strong ties, then any
local bridge it is related to another agent with, must be a weak tie.3

To formalize this claim as a validity in TL, we introduce formulas corre-
sponding to the relevant properties. For simplicity, we first define the following
abbreviation 〈S Y W 〉φ :“ 〈S〉φ _ 〈W 〉φ. We read 〈S Y W 〉φ as true at an agent
a if and only if a is connected to an agent by a strong or a weak tie where φ
holds. We now present the following formulas and corresponding lemma.

STC :“↓ x.[S] ↓ y.@x[S](�y Ñ 〈S Y W 〉y)

S2 :“↓ x.〈S〉 ↓ y.(�x ^ @x〈S〉(�x ^ �y))

LB :“↓ x.〈S Y W 〉 ↓ y.(�x ^ �〈S Y W 〉(�x ^ �y ^ 〈S Y W 〉x))

LBW :“↓ x.[S] ↓ y.((〈S Y W 〉(�x ^ �y ^ (〈W 〉x _ 〈S〉x))

Lemma 2. For any tied model M “ 〈A,RS , RW , V 〉, agent a P A and assign-
ment function g : Var Ñ A:

1. M, g, a , STC iff a has the Strong Triadic Closure property;
2. M, g, a , S2 iff a is strongly tied to at least two other unique agents;
3. M, g, a , LB iff a is related to another agent by a local bridge;
4. M, g, a , LBW iff any local bridge a is related to another agent with is a

weak tie.

We can thus present the following corollary; that Granovetter’s claim is a
validity of TL.

Corollary 1. (STC ^ S2) Ñ LBW is a validity of TL.

Proof. Follows by the original work by Granovetter [13].

2.3 Axiomatization

To account for strong and weak ties in a social network, we assume strong
reflexivity and weak irreflexivity, as previously noted. These frame properties
are defined by the following two axioms TS and IrrTW , respectively.

i Ñ 〈S〉i (TS)

i Ñ �〈W 〉i (IrrTW )

Symmetry of both relations is preserved in the following axiom BSW .

3 For proof of the claim see Granovetter’s original paper [13].
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i Ñ ([S]〈S〉i ^ [W ]〈W 〉i) (BSW )

Non-overlapping can also be defined with the hybrid axiom NonO, stated
directly below. Note that non-overlapping, like weak irreflexivity is modally
undefinable in the standard Kripke semantics considering two-sorted Kripke
frames.

i Ñ [W ](〈S〉i Ñ i) (NonO)

The final axiomatization of TL is the axiomatization of the standard normal
hybrid logic KH(@,↓) [1] together with our recently presented axioms; see Table 1.

Table 1. Axiomatization of TL, where � P {〈S〉, 〈W 〉} and � P {[S], [W ]}.

(CT ) All classical tautologies

(K�) $ �(φ Ñ ψ) Ñ �φ Ñ �ψ

(K@) $ @i(φ Ñ ψ) Ñ @iφ Ñ @iψ

(Selfdual) $ @iφ ↔ �@i�φ

(Ref@) $ @ii

(Agree) $ @i@jφ ↔ @jφ

(Intro) $ i Ñ (φ ↔ @iφ)

(Back) $ �@iφ Ñ @iφ

(DA) $ @i(↓ x.φ ↔ φ[x/i])

(T S) $ i Ñ 〈S〉i
(IrrT W ) $ i Ñ �〈W 〉i
(BSW ) $ i Ñ ([S]〈S〉i ^ [W ]〈W 〉i)
(NonO) i Ñ [W ](〈S〉i Ñ i)

(MP) If $ φ and $ φ Ñ ψ then $ ψ

(Subst) If $ φ then $ φσ, for σ a substitution

(Gen@) If $ φ then $ @iφ

(Gen�) If $ φ then $ �φ

(Name) If $ @iφ and i does not occur in φ, then $ φ

(BG) If $ @i�j Ñ @jφ, j ‰ i and j does not occur in φ, then $ @i�φ

2.4 Soundness and Completeness

We will now prove that TL is sound and strongly complete with respect to the
class of tied frames.
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Theorem 1. TL is sound and strongly complete with respect to the class of tied
frames.

Proof (Soundness). Let F be the class of tied frames. Since KH(@,↓) is sound
with respect to the class of all hybrid frames, we know that F , KH(@,↓). Thus
it suffices to show the validity of the axioms TS , IrrTW , BSW and NonO. We
leave the details of the proof to the reader.

(Completeness). Note again that TL is KH(@,↓)`{TS , IrrTW , BSW , NonO}.
The Sahlqvist-like theorem proved in [6] states that if Σ is a set of pure H(@, ↓)-
formulas, then KH(@,↓) ` Σ is strongly complete for the class of frames defined
by Σ. It follows directly that if we can show that {TS , IrrTW , BSW , NonO} is
a set of pure H(@, ↓)-formulas, then TL is strongly complete with respect to
the class of tied frames. The result follows straightforwardly from the fact that
none of the axioms contain any propositional variables and that they can all be
formulated in the language H(@, ↓).

Corollary 2. TL ` 〈S〉i Ñ [S](〈S〉i _ 〈W 〉i) is sound and strongly complete
with respect to the class of tied frames where all agents have the Strong Triadic
Closure property.

Proof of Corollary 2 follows from Lemma 1 and Theorem 1. Whereas this is
perhaps not a surprising result, completeness of this class of frames is worth
taking note of. Recall that according to Granovetter’s theory, Strong Triadic
Closure is a property we often observe across social networks. We now have the
ability to reason and conduct a logical analysis directly within networks with
this property; where the following corollary is a favorable example.

Corollary 3. S2 Ñ LBW is a validity of TL ` 〈S〉i Ñ [S](〈S〉i _ 〈W 〉i).

2.5 Homophily

We now explicitly implement the social selection aspect of homophily into our
logical framework. By building upon research on network formation in [17,18],
we will define a new class of tied models where relations are restricted according
to homophily concepts. In these papers, relations between agents are formed
based on the amount of propositional atoms they have in common, with respect
to a certain threshold θ. We will follow the same approach, although whereas
the original threshold models use a single threshold we need two linearly ordered
thresholds for strong and weak ties.

We first introduce the notions mismatch and distance.

Definition 6 (MSMTCH and DIST). Let M “ 〈A,RS , RW , V 〉 be a tied
model. We define the set of features distinguishing agents a, b P A in M as:

MSMTCHM(a, b) :“ At \ {p P At : p P V (a) iff p P V (b)}.

Further, we define the distance between a and b in M to be:

DISTM(a, b) :“ |MSMTCHM(a, b)|.
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Intuitively, the mismatch of agents a and b in tied model M is the set of all
features or properties that the agents do not share. This also includes properties
that none of them have. The distance of a and b with respect to the same tied
model is the cardinality of the mismatch, i.e. the number of properties a and b
do not share. We read that agents with a small distance are more similar and
have a higher degree of homophily than agents with a larger distance. We now
define the class of tied threshold models.

Definition 7 (Tied Threshold Model). Let θS , θW P N be two thresh-
olds such that θS ă θW ĺ |At|. We define a tied threshold model Mθ “
〈A,RθS , RθW , V 〉 where:

– A is a non-empty set of agents;
– RθS is a symmetric and reflexive binary relation on A such that RθS :“

{(a, b) P A ˆ A : DISTM(a, b) ĺ θS};
– RθW is a symmetric, irreflexive and RθS-non-overlapping binary relation on

A such that RθW :“ {(a, b) P A ˆ A : θS ă DISTM(a, b) ĺ θW };
– V : A Ñ P(At Y Nom) is a valuation function.

We read aRθSb as agent a and b have enough in common to be connected by
a strong tie. Similarly, we read aRθW b as a and b have enough in common to be
connected by a weak tie, but not enough in common to be connected by a strong
tie. To familiarize the reader with the newly defined tied threshold models, we
make the following observations.

– @i〈S〉j Ñ (@ip ↔ @jp) is valid on tied threshold frames where θS “ 0;
– @i�〈S Y W 〉j Ñ (@ip Ñ @j�p) is valid on tied threshold frames where

θW “ |At| − 1.

The first formula expresses that when θS “ 0, if two agents i and j are
strongly tied, then the property p holds at i if and only if p holds at j. When
θW “ |At|−1, two agents that are neither tied strongly nor weakly do not share
any properties. The latter formula asserts that if this is the case for two agents
i and j, if the property p holds at i, then it does not hold at j.

3 Adding Knowledge and Dynamics

In this section we add a knowledge modality and dynamic operators to TL
and in consequence extend it to tied epistemic logic (TEL). TEL is inspired
by other epistemic logics for social networks e.g. [15,16]. Yet, TEL differs from
these on some notable accounts. Firstly, our valuation function where the range
includes nominals depends on epistemic states. This is as we do not want the
underlying assumption that every agent in the network knows the name of all
other agents. Secondly, the language of TEL includes dynamic local adding
modalities. These modalities are influenced by local deleting modalities known
from sabotage modal logic [2,10], but are modified as related to relation addition,
not deletion as is custom. On that note we now introduce syntax and semantics
of TEL.
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3.1 Language and Semantics

Definition 8 (Syntax of TEL). Let At be a set of propositional atoms and
Nom be a set of nominals. Further, let Var be a set of agent variables. Let At,Nom
and Var be countable and pairwise disjoint. We define the well-formed formulas
of the language LTEL to be generated by the following grammar:

φ :: “ p | s | �φ | (φ ^ φ) | 〈S〉φ | 〈W 〉φ | [A]φ | Kφ | @sφ |↓ x.φ | [�S]Lφ | [�W ]Lφ

where p P At, s P Nom Y Var and x P Var. We define propositional connectives
like _, Ñ and the formulas �,⊥ as usual. Further, we again define the duals as
standard [S] :“ �〈S〉� and [W ] :“ �〈W 〉�.

Before we define tied epistemic frames and models, we note that
MSMTCHM and DISTM are defined as before, but now for each possible world
w P W .

Definition 9 (Tied Epistemic Threshold Model and Frame). Let θS ,
θW P N be two thresholds such that θS ă θW ĺ |At|. A tied epistemic threshold
model is a tuple M “ 〈W,A, „, RθS , RθW , V 〉 where:

– W is a set of epistemic alternatives,
– A is a non-empty set of agents,
– „ is a family of equivalence relations „a on W for every a P A,
– RθS is a family of symmetric and reflexive relations RθS

w on A for each w P W
such that RθS

w :“ {(a, b) P A ˆ A : @u „a w,DISTM
u (a, b) ĺ θS},

– RθW is a family of RθS-non-overlapping, irreflexive and symmetric relations
RθW

w on A for each w P W such that RθW
w :“ {(a, b) P A ˆ A : @u „a w, θS ă

DISTM
u (a, b) ĺ θW },

– V : W ˆ A Ñ P(At Y Nom) is a valuation function, assigning each agent
to a unique name and a set of properties in an epistemic state. I.e, for each
i P Nom and for all w P W and all a, b P A: if i P V (w, a) and i P V (w, b),
then a “ b. Additionally, all names correspond to an agent and an epistemic
state. That is @i P Nom: Da P A and Dw P W such that i P V (w, a).

We define a frame F “ 〈W,A, „, RθS , RθW 〉 in the usual way.

Again, let g : Var Ñ A be an assignment function assigning agents to variables.
Furthermore, define the x-variant of g to be gx

a(x) “ a and gx
a(y) “ g(y) for all

y ‰ x. We now define the semantics of TEL.

Definition 10 (Semantics of TEL). LetM be a model, a an agent in A, w P W
an epistemic state and g : Var Ñ A an assignment function. We inductively define
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the truth conditions as follows:

M, g, w, a , p iff p P V (w, a) for p P At

M, g, w, a , i iff i P V (w, a) for i P Nom

M, g, w, a , x iff a “ g(x) for x P Var

M, g, w, a , �φ iff M, g, w, a �, φ

M, g, w, a , φ ^ ψ iff M, g, w, a , φ and M, g, w, a , ψ

M, g, w, a , 〈S〉φ iff Db P A such that aRθS
w b and M, g, w, b , φ

M, g, w, a , 〈W 〉φ iff Db P A such that aRθW
w b and M, g, w, b , φ

M, g, w, a , [A]φ iff @b P A : M, g, w, b , φ

M, g, w, a , Kφ iff @v P W such that w „a v : M, g, v, a , φ

M, g, w, a , @sφ iff @b P A : M, g, w, b , s Ñ φ for s P Nom Y Var

M, g, w, a ,↓ x.φ iff M, gx
a , w, a , φ

M, g, w, a , [�S]Lφ iff Db P A such that a�RθS
w b, a�RθW

w b and

〈W,A, „, RθS
w Y {(a, b), (b, a)}, RθW

w , V 〉, g, w, a , φ

M, g, w, a , [�W ]Lφ iff Db P A such that a�RθS
w b, a�RθW

w b and

〈W,A, „, RθS
w , RθW

w Y {(a, b), (b, a)}, V 〉, g, w, a , φ

We observe that there are four new operators in the language. The intuitive
reading of them are as follows. We read [A]φ to hold at the current agent if
and only if φ is universally true at all agents in the network. Kφ is intuitively
read as the current agent knows that φ. The two dynamic modalities [�S]L
and [�W ]L are model changing operators, whose semantics, similar as done in
Dynamic Epistemic Logic [5,9], is evaluated by taking into account an updated
model in which only the relations RθS or RθW are changed. Intuitively, modality
[�S]Lφ holds at agent a if and only if after adding a strong tie that a previously
did not have, φ is true at a. [�W ]Lφ is read similarly, although by replacing a
strong tie with a weak tie.

3.2 Possible Axioms

We might want to add some axioms to narrow down our class of tied epistemic
frames. In this section we consider candidates corresponding to some properties
we believe put natural constraints on agents in an epistemic context.

The first property we propose is that an agent knows it when it is strongly
tied to another agent.

↓ x.[S] ↓ y.@xK〈S〉y (1)

Perhaps a bit less likely is the property that an agent knows it when it is weakly
tied to another agent. This property depends on what we assign to the term
‘acquaintance’ and the meaning we expect of the knowledge modality.

↓ x.[W ] ↓ y.@xK〈W 〉y (2)



194 M. Y. Pedersen et al.

Another reasonable attribute to assume is that an agent knows it when they
have a property p or a name i, defined by the following two axioms.

p Ñ Kp (3)

i Ñ Ki (4)

It is also likely to assume that if an agent is strongly tied to another agent whose
name is i, they know the other agent’s name.

↓ x.[S] ↓ y.(i Ñ @xK@yi) (5)

A further axiom up for discussion is the one defining the property that an agent
knows if its strong tie has the property p. This is a strong assumption that might
only be relevant in certain contexts.

↓ x.[S] ↓ y.(p Ñ @xK@yp) (6)

Similarly, but perhaps a weaker assumption is that agents know the strong ties
of their strong ties. This seems likely when defining strong ties as agents’ closest
friends.

↓ x.[S] ↓ y.[S] ↓ z.@xK@y〈S〉z (7)

The last axiom we will consider defines the likely property of agents knowing
when they are acquainted by a new agent by a weak tie. Note that this would
be implied by Axiom (2) and that the strong tie version of this axiom is implied
by Axiom (1).

↓ x.[�W ]L[W ] ↓ y.@xK〈W 〉y (8)

3.3 Validities

We look at some validities of TEL depending on axioms we choose to embrace
to get a better understanding of our logic in relation to echo chambers and
related social phenomena. Firstly, if we would adopt Axiom (6) for all p P At,
the following would be a validity.

STC Ñ KSTC

This validity is a result of the homophily-motivated definitions of RθS and RθW

and represents that the current agent knows whether they are strongly triadic
closed. Strong Triadic Closure is closely related to echo chamber formation. If
the agent knows whether they are strongly triadic closed, then principally they
would know whether they could be in an echo chamber-like situation.

↓ x.((〈S〉 ↓ y.@x〈S〉 ↓ z.@xK@z�〈S Y W 〉y) Ñ K�STC)

This is a formula valid on tied threshold models where we adopt Axiom (1)
and says that “If I am tied to any two successors y and z by strong ties and
I know that y and z do not know each other, then I know I am not strongly
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triadic closed.” This also shows the relationship between knowledge and echo
chambers. If an agent knows that they do not have the Strong Triadic Closure
property, they can derive that it is less likely that they are participating in an
echo chamber.

↓ x.(K�〈S Y W 〉 ↓ y.(i ^ [A](〈S Y W 〉y Ñ �〈S Y W 〉x))) Ñ K[�W ]L(〈W 〉i Ñ LB)

This validity states that “If I know that there is another agent y in the network
in which we do not have any friends in common, then I know that if we become
acquainted by a weak tie, then I am related to another agent by a weak local
bridge.” Imagine agents find themselves in a place where they suspect an echo
chamber has been or were about to be formed. They might have an incentive
to get acquainted by a local bridge to receive some new information and hear
opposing opinions. Note that the above formula is also valid in the case of strong
instead of a weak tie.

3.4 Example

In the concluding section we present an example of a tied epistemic threshold
model and discuss what formulas might hold at specific agents depending on
what axioms we adopt to restrict the model.

Consider the tied epistemic threshold model MθSW “ 〈W,A, „, RθS , RθW , V 〉
in Fig. 1. In particular, we observe that A “ {a, b, c, d, e, f} and W “ {w, v}.
For simplicity the reflexive arrows are omitted for „x for all x P A as well as for
RθS

w and RθS
v .

c b

a

ef

d

S

SS

S

SS

W

a, b, c, d , e , f
w v

c b

a

ef

d

S

SS SS

W

Fig. 1. A tied epistemic threshold model MθSW .

We first regard the model MθSW where (w „x v) P „x for all x P A.
Let a, b, c, d, e, f P Nom such that the corresponding ‘name’ is true for each
agent in A in each epistemic state in W . For instance MθSW , g, w, c , c and
MθSW , g, v, e , e etc. We make, among many, the following observations.

– MθSW , g, w, a , KSTCL

Agent a knows in w that it has the Strong Triadic Closure property.
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– MθSW , g, w, d , STCL ^ �KSTCL

Agent d has the Strong Triadic Closure property in state w, but does not
know it.

– MθSW , g, v, a , LB
Agent a is related by a local bridge in state v. We see that this also holds in
both w and v for agents a and d.

– MθSW , g, w, f , 〈S〉e ^ �K〈S〉e
Agent f is strongly tied to agent e in state w, but does not know it.

– MθSW , g, v, e , [�S]L(〈S〉f Ñ @dKSTCL) ^ [�W ]L(〈W 〉f Ñ @dKSTCL)
If agent e in state v is strongly or weakly tied to f after adding a strong
or weak tie respectively, then agent d will know that it then has the Strong
Triadic Closure property.

We now notice the following regarding the axioms in the previous section.

– Axiom (1) does not hold in MθSW in both states at e and f in particular.
Adjusting „ such that �(w „e v) and �(w „f v) is one way to let Axiom
(1) hold at all agents in both epistemic states. The reasoning is as follows.
Axiom (1) lets agents e and f know that they are related in state w, and
not in state v; MθSW , g, w, e , K〈S〉f and MθSW , g, v, e , K�〈S〉f . Thus if
both agents can distinguish between states w and v, the axiom holds.

– Neither Axiom (6) nor Axiom (7) is forced at agent d in either epistemic
state. Letting �(w „d v) would make either axiom true. Axiom (7) restricts
the model such that every agent knows the strong ties of their strong ties. If
this is the case then MθSW , g, w, d , KSTC while MθSW , g, v, d , K�STC.
Letting agent d distinguish between w and v would solve this problem. Axiom
(6) make agents know if their strong ties has a property p. As MθSW is a tied
epistemic threshold model, agent d would know by the properties of its strong
ties e and f that eRS

wf whereas �(eRS
v f). Thus agent d would again know

whether it has the Strong Triadic Closure property. A contradiction is also
avoided here when we let agent d be able to distinguish between states w
and v.

4 Conclusion and Future Work

In this paper, we combined two known concepts from social network theory
and proposed a logical analysis of echo chambers. We developed tied logic (TL)
as well as its epistemic variant tied epistemic logic (TEL). We have shown
that TL is axiomatizable, sound and strongly complete. With homophily and
social selection as a motivation, we defined tied threshold models and justified
their binary relations by logical theories of network formation. We also discussed
possible restrictions to tied epistemic frames and presented essential validities of
TEL before concluding with an example.

A natural place to continue this work is to explore further technical results of
our logics, and in particular assess the potential completeness proof of fragments
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of TEL. It remains to see if the results are directly connected to the open
problem of axiomatization of sabotage modal logic [2].

Important to remark is that our presentation of echo chambers as strongly
tied clusters is not the only way in which one can formalize the concept. Other
formalizations (e.g. [12]) include a filtering mechanism, representing the habit of
filtering out extraneous information within echo chambers. Such a mechanism
could be engaging to implement into our framework and can possibly be done by
taking into account the ‘selective learning principle’ that is formally explored in
[3]. Similarly, we also note that the homophily inspired notions we have included
are simply one of many ways of approaching the topic. In future work, one option
is to formalize the social influence factor of homophily.

Lastly, this paper motivates a further investigation of change in these social
networks. This could be done by exploring other validities, but also by the
inclusion of additional dynamic operators. Likely candidates are tie-changing
or -deleting modalities. Another possible approach is to extend our multi-agent
dynamic framework with features of communication such as public announce-
ments and group knowledge such as common knowledge [5,9].
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Abstract. We present a doxastic logic for multi-agent systems with
public group announcements. Beliefs are represented using belief bases
and a dynamic of trust is introduced in order to handle belief change
under contradictory announcements. We provide a complete axiomati-
zation for this logic and illustrate its expressive power with a simple
example.

Keywords: Syntactic beliefs · Group announcements · Belief change ·
Trust

1 Introduction

Receiving contradictory pieces of information from different sources is a common
occurrence of daily life. However, deciding what to believe and who to trust as a
result of those announcements is a task that is usually not that straightforward.
Neither is representing these interactions between announcements, trust and
beliefs.

We here propose a simple logic which can express these interactions following
group announcements. All of the individual elements we have mentioned have
been studied rather extensively, and often with various different approaches. We
will now give an overview of this literature and what we are taking from it. As
our focus is to allow for interaction of these elements in a single, manageable
logic, we will often be choosing the less expressive, but easier to work with,
options.

The first thing to consider is representation of beliefs, which may be false, and
of their evolution. Two standard approaches exist for this: Dynamic Epistemic
Logic (DEL, [10]), in which beliefs are represented using Kripke models with
possible worlds, and the AGM approach [3], which uses sets of formulas, or belief
bases, for that purpose, and from which follows Dynamic Doxastic Logic (DDL),
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P. Blackburn et al. (Eds.): LORI 2019, LNCS 11813, pp. 199–213, 2019.
https://doi.org/10.1007/978-3-662-60292-8_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-60292-8_15&domain=pdf
https://doi.org/10.1007/978-3-662-60292-8_15


200 E. Perrotin et al.

as introduced in [21]. Public announcements and the resulting reorganization of
beliefs, with or without trust, are built into DEL. However, these announcements,
while they may be of false beliefs or even lies [9], are given one formula at a time
and therefore do not allow for contradiction within that formula. While group
announcement logics based on DEL exist [1], they handle announcements of what
agents know rather than believe, and therefore these announcements are also
necessarily consistent. When dealing with beliefs, plausibility models [4] can be
used and the worlds reorganized after announcements, but those reorganizations
depend on the order in which announcements are received, and it is not clear
how they should function in the case of several simultaneous announcements,
especially contradictory.

We will here work with belief bases, as we wish to focus first on what agents
should believe after an announcement, rather than delving into all of the expres-
sive ramifications allowed by DEL. The AGM approach is ideal for this, though,
as pointed out in [5], it usually does not give much thought to where new infor-
mation comes from, focusing instead on how to integrate it into existing beliefs.
The dynamics expressed by DDL could, however, be interpreted as the results
of announcements. AGM and DDL usually deal with only one agent, but multi-
agent systems using belief bases, such as in [18], have also been proposed.

Handling contradicting statements in AGM is one of the topics of paracon-
sistent logic [20], which deals with identifying and isolating contradictions and
extracting useful information from a belief base or an announcement. Closely
related to this is belief merging [15], the aim of which is to merge several belief
bases into one while preserving consistency. While weighted belief merging, as
presented in [7], offers a mechanism allowing for different levels of reliability of
sources, which can be interpreted as trust, it does not handle the associated evo-
lution of this trust that we wish to represent. We will here avoid many difficulties
brought up in paraconsistent logic and belief merging by using simplified belief
bases, in which precise sources of contradiction are clearly identifiable.

Representing trust is the subject of yet another rather extensive body of work.
The word ‘trust’ can have many meanings, and many corresponding models (see,
e.g., [8,12–14,16,17]). We here focus on trust as belief that what the other says is
true, that is, trust in the reliability of another agent. For the sake of simplicity,
we restrict ourselves to this definition of trust only, and assume in particular
that agents only announce what they actually believe. The closest account of
trust is the one given in [17], in which the focus is on whether information given
by a source should be believed or not by an agent following the trust of the
agent in that source, and in which contradicting announcements lead to loss
of trust. Another interesting study of the evolution of trust is given in [14], in
which trust is seen to be gained and lost as a result of so-called trust-positive
and trust-negative experiences.

We present here a very basic notion of trust, which is binary: an agent either
fully trusts or fully distrusts another agent, with no variation depending on
topic (as opposed to [17]) and no gradual trust (as opposed to [14]). We also
work with a memory-less trust, once again to present the most basic version
of our framework. As such, trust-negative experiences are quite easy to identify
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(viz. contradictions in announcements), but trust-positive experiences are more
tricky to define. For this reason we will here present a framework in which trust
can only be lost. While quite basic, we argue that the notion of trust that we
use can still be relevant in practice.

In the rest of the paper, we first present our logic, which we call Syntactic
Dynamic Doxastic Logic with Trust (SDDLT) and the notion of trust that we
use, and show that we can express coalition announcements. We then give an
axiomatization and show that it is complete. We finish by giving a simple appli-
cation example in order to justify our choice of trust dynamics and illustrate
what can be expressed within our framework, and further discussing some of the
choices we have made.

2 Syntax

Let Agt be a finite set of agents, and P a countable set of propositional variables.
Consider p ∈ P, a, b ∈ Agt and G ⊆ Agt. The language LSDDLT of SDDLT is
described by the following grammar:

LB � ε ::= � | p | ¬p | Baε

LSDDLT � ϕ ::= Ta,b | ε | ¬ϕ | ϕ ∧ ϕ | [A]ϕ

Baε reads “agent a believes ε”, Ta,b reads “agent a trusts agent b”, and [A]ϕ
reads “after announcement A (defined below), ϕ holds”.

We also introduce some useful notations for the rest of the paper. The letter l
will be used to denote literals (i.e. a variable or its negation). Given a1, . . . , an ∈
Agt and p ∈ P, if ε1 = Ba1 . . . Ban

p and ε2 = Ba1 . . . Ban
¬p, then we denote

ε1 = ε2 and ε2 = ε1. Moreover, we denote the subformula relation by �.
Announcements in our setting are group announcements, that is, they are

public announcements consisting of statements given simultaneously by a group
of agents. Given a group of agents G ⊆ Agt, an announcement by group G is a
collection of pairs (a,Aa) where a is in G and Aa is a subset of LB consisting of
the formulas announced by agent a. Only one such set of formulas is allowed for
each agent of G, and conversely, there is a set of announced formulas for each
agent of G, though this set may be empty. We identify an announcement A with
the corresponding function, that is, if A is an announcement by a group G and
a is in G, we call A(a) the set of formulas such that (a,A(a)) is in A.

We add a requirement on announcements: if A is an announcement by a group
G, and if a is an agent of G, we require that for any formula εa of A(a), no agent b
of G simultaneously announces Baεa. That is, for all b in G, Baεa �∈ A(b). These
kinds of announcements could be dealt with so that trust in the announcer is
lost, but would lead to a much more complex axiomatization. For the sake of
clarity down the line it is simpler to consider that these situations do not happen.
This and other choices concerning announcements and trust dynamics will be
further discussed in Sect. 7.1.

For any group G, we call AnnG the set of all possible announcements by
agents of G, that is, the subset of (2LB )G following the above requirement. We
call Ann the set of all possible announcements.
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3 Semantics

3.1 Belief States and Trust Models

A belief state is a tuple s = ({BBs
a}a∈Agt, {T s

a}a∈Agt), where BBs
a and T s

a

respectively denote the belief base and trust set of agent a at s. Belief bases
are subsets of LB and trust sets are subsets of Agt.

We require for all agents to trust at least themselves, and for all belief bases
to contain at least �. Belief bases must also be consistent, that is, they should
not contain both ε and ε for any formula ε of LB . Furthermore, let ���s

a be
defined in the following manner:

ε1 ���s
a ε2 iff ∃b ∈ T s

a , ε1 = Bbε2.

We denote by →s
a the reflexive and transitive closure of ���s

a. That is, if ε1
and ε2 are in LB , then ε1 →s

a ε2 if and only if there exist agents a1, . . . , ak in
T s

a (for some k ≥ 0) such that ε1 = Ba1 . . . Bak
ε2. We require BBs

a to be closed
under →s

a for any agent a at any belief state s: if ε1 = Ba1 . . . Bak
ε2, a believes

ε1, and a trusts a1, then by that trust a should believe Ba2 . . . Bak
ε2, but then

if a trusts a2, a should also believe Ba3 . . . Bak
ε2, and so on. More generally, we

denote by Clsa(B) the closure of a set B under →s
a.

A trust model is a pair (S, V ) where S is the set of all belief states and V ⊆ P
is a valuation representing the actual state of the world.

We will work with pointed models (M, s) where s ∈ S.

3.2 Contradictions

When announcements are made, integrating the announced formulas to the belief
bases of agents as is may render those belief bases inconsistent. Our restricted
language, however, allows us to identify contradictions within announcements as
well as between announcements and agents’ beliefs rather easily.

If a is an agent, we say that two formulas ε1 and ε2 are contradictory according
to a at s if Clsa({ε1, ε2}) is inconsistent. We say that a formula ε contradicts a’s
beliefs at s if there is a formula ε′ in the belief base of a at s such that ε and ε′

are contradictory according to a at s. Moreover, ε is supported by a’s beliefs at
s if ε contradicts those beliefs, and ε is neutral w.r.t. a’s beliefs at s if it neither
contradicts nor is supported by them.

We introduce the following notation: given ε ∈ LB , mins
a(ε) is the shortest

suffix ε′ of ε such that ε →s
a ε′, that is, the shortest formula that a can deduce from

ε at s. For example, if a trusts b and not c at s, we have that mins
a(BbBcp) = Bcp.

Lemma 1. Let ε and ε′ be two formulas of LB, a an agent, and s a belief state.

1. ε and ε′ are contradictory according to a at s iff mins
a(ε) = mins

a(ε′).
2. ε contradicts a’s beliefs at s iff mins

a(ε) ∈ BBs
a, and ε is supported by a’s

beliefs at s iff mins
a(ε) ∈ BBs

a.
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Proof. For the first statement, the interesting proof is that of the left-to-right
direction. Suppose that Clsa({ε, ε′}) is inconsistent. This means that there exists
a formula ε0 such that ε0 ∈ Clsa({ε, ε′}) and ε0 ∈ Clsa({ε, ε′}). By definition of
Clsa, and because ε0 and ε0 have different literals, we have either ε →s

a ε0 and
ε′ →s

a ε0, or ε′ →s
a ε0 and ε →s

a ε0. The second case is reducible to the first
by replacing ε0 by ε0, so consider that ε →s

a ε0 and ε′ →s
a ε0. By definition of

mins
a(ε′), the latter implies that ε0 →s

a mins
a(ε′), that is, ε0 →s

a mins
a(ε′). By

transitivity of →s
a, we get that ε →s

a mins
a(ε′), and once again by minimality of

mins
a(ε′), we have that mins

a(ε) = mins
a(ε′).

For the second statement, suppose that ε contradicts a’s beliefs at s. Then
there is a formula ε′ in BBs

a such that ε and ε′ are contradictory according to a
at s. By the first statement, this means that mins

a(ε)′ = mins
a(ε), and by closure

of BBs
a under →s

a, mins
a(ε′) is in BBs

a.

3.3 Update of Trust

Given an announcement A made by a group G at a state s, we wish to define
the updated state s · [A]G. For this we must define BB

s·[A]G
a and T

s·[A]G
a for any

a. We begin with updates of trust.
When an announcement is made, agents first update their trust in other

agents. In our framework, trust can only be lost. An agent a will stop trusting
other agents when contradictory information is given in the announcement.

Let s be a state, a an agent, A an announcement by a group G, b and c two
agents of G, and let εb and εc be two formulas such that εb ∈ A(b) and εc ∈ A(c).
What a is learning is that Bbεb and Bcεc, and a problem occurs when these two
formulas are contradictory according to a at this state.

In order to choose which of the contradicting agents is no longer to be trusted,
a will look at the statements as well as their own beliefs. If Bbεb contradicts a’s
beliefs at s (which is equivalent to Bcεc being supported by a’s beliefs at s), then
b is no longer trusted. Otherwise, if none of the statements are supported by a’s
beliefs, then a has no means of discrimination between the statements and both
b and c are no longer trusted.

Finally, the new trust set is defined by:

T s·[A]G
a = T s

a \ {b ∈ G |∃c ∈ G, εb ∈ A(b), εc ∈ A(c),

mins
a(Bbεb) = mins

a(Bcεc) and mins
a(Bbεb) /∈ BBw

a }

3.4 Update of Belief Bases

Once the trust sets are updated, we can update the belief bases. As agents believe
in the sincerity of all announcements, all formulas Bbεb where εb ∈ A(b) will be
added to all belief bases. The update of trust ensures that there are no longer
any conflicts between these formulas.

In case of conflict not with other statements in the announcement, but with
previous beliefs of an agent, priority is given to the new information. We therefore
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remove formulas in the belief base which still contradict the announcement after
updating trust. More formally, we obtain:

BBs·[A]G
a = Cls·[A]G

a ((BBs
a \ {ε ∈ BBs

a | ∃b ∈ G,∃εb ∈ A(b),

mins·[A]G
a (ε) = mins·[A]G

a (Bbεb)})
∪ {Bbεb | b ∈ G and εb ∈ A(b)})

By removing all conflicts, we have ensured that this new belief base is indeed
consistent.

3.5 Examples

To illustrate these dynamics, we study the effects of announcements on an agent
a such that T s

a = {a, b, c, d} and BBs
a = {p}, where Agt = {a, b, c, d, e}.

– If b announces Bdp and c announces ¬p (A1 = ((b,Bdp), (c,¬p))), then b’s
statement is supported by a’s beliefs, and therefore a loses trust in c: T s·A1

a =
{a, b, d} and BBs·A1

a = {p,BbBdp,Bdp,Bc¬p}.
– If b announces q and c announces ¬q (A2 = ((b, q), (c,¬q))), a has no way of

discriminating between the two announcements and therefore a loses trust in
both b and c: T s·A2

a = {a, d} and BBs·A2
a = {p,Bbq,Bc¬q}.

– If c announces ¬p and e announces p (A3 = ((c,¬p), (e, p))), there is no
conflict according to a, because a does not trust e and therefore cannot
deduce p from Bep. In this case, because c is trusted by a, c’s announce-
ment takes precedence over a’s previous beliefs: T s·A3

a = {a, b, c, d} and
BBs·A3

a = {¬p,Bc¬p,Bep}.

3.6 Semantics

Finally, we can define the semantics of SDDLT. Let (M, s) be a pointed trust
model, p ∈ P a variable, a ∈ Agt an agent, and ϕ,ψ ∈ LSDDLT. Let A be
an announcement by a group G ⊆ Agt. We introduce the shorthand BGA :=∧

g∈G

∧
εg∈A(g) Bgεg. Then,

(M, s) |= p iff p ∈ V

(M, s) |= ¬ϕ iff (M, s) � ϕ

(M, s) |= ϕ ∧ ψ iff (M, s) |= ϕ and (M, s) |= ψ

(M, s) |= Baε iff ε ∈ BBs
a

(M, s) |= Ta,b iff b ∈ T s
a

(M, s) |= [A]Gϕ iff ((M, s) |= BGA ⇒ (M, s · [A]G) |= ϕ)

4 Announcements by Groups and Coalitions

Announcements considered in the paper are made by groups of agents. Quantifi-
cation over such announcements in a setting of epistemic logic has been studied
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in [1,2]. The resulting formalisms – group announcement logic and coalition
announcement logic – expand Public Announcement Logic [19] with operators
〈G〉ϕ and 〈[G]〉ϕ correspondingly. The former is read as ‘there is a joint public
announcement by agents from group G such that ϕ holds in the resulting model,’
and the latter means that ‘there is a joint public announcement by agents from
coalition G such that whatever agents from A \ G announce at the same time,
ϕ holds in the resulting model.’

Group and coalition announcements have been so far studied only from the
epistemic perspective, i.e. agents in groups and coalitions announce what they
know. Treatment of these operators in the doxastic setting is an open research
problem.

Due to agents’ limited reasoning in our framework, it is possible to define
group and coalition announcements in SDDLT provided we restrict the maximal
depth of nestings of belief operators in any announcement. This means that if
the depth of nesting is restricted to some number, say 3, then the agents can
make announcements of the form BaBbBap, but they are not allowed make
announcements of the form BaBbBaBbp. Such a restriction is commonly made
when formalising resource-bounded reasoning (see, e.g., [11]). We refer to the
restricted logic where the depth of announced formulas cannot be higher than
m as SDDLTm.

We denote by Lit(φ) the literals (positive and negative variables) appearing
in a formula φ, and by lit(ε) the single literal appearing in a formula ε. The
restriction on the maximal depth of formulas means we can now consider finite
numbers of possible announcements. We denote the set of possible announce-
ments by a group G relevant to ϕ by PA(G,ϕ) = {A ∈ AnnG | ∀b ∈ G,∀ε ∈
A(b),depth(ε) � m and lit(ε) ∈ Lit(ϕ)}, where for any formula ε, depth(ε) is
the depth of ε defined as the length of the sequence of belief operators in ε.

We now define the group and coalition announcement operators for SDDLTm:

〈G〉ϕ ↔
∨

A∈PA(G,ϕ)

(
∧

g∈G
εg∈A(g)

Bgεg ∧ [A]ϕ)

〈[G]〉ϕ ↔
∨

AG∈PA(G,ϕ)

∧

AG∈PA(G,ϕ)

(
∧

g∈G
εg∈AG(g)

Bgεg ∧ (
∧

g∈G
εg∈AG

Bgεg → [AG]Agtϕ)),

where G = Agt \ G and AAgt = AG ∪ AG = {(a,AG(a) ∪ AG(a)) | a ∈ Agt}.

5 Axiomatization

Now that SDDLT is completely defined, the next step is to give a sound and com-
plete axiomatization for it. As group and coalition announcements are definable
from the other operators, we do not consider these types of announcements in the
axiomatization. Completeness will be proved for the fragment of the logic with
no announcements, and we will give axioms reducing SDDLT to that fragment.
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5.1 The First Set of Axioms

We give in Table 1 the first nine axioms and the two inference rules of our
system, where A represents an announcement by a group G. We will state two
more axioms later as they require additional definitions.

Table 1. The first set of axioms of SDDLT

Propositional tautologies (A0)

Ba� (A1)

ε → ¬ε (A2)

Ta,b → (BaBbε → Baε) (A3)

Ta,a (A4)

[A]¬ϕ ↔ (BGA → ¬[A]ϕ) (A5)

[A](ϕ ∧ ψ) ↔ [A]ϕ ∧ [A]Gψ (A6)

[A]Gp ↔ (BGAG → p) (A7)

[A]Ta,b ↔ Ta,b for b �∈ G (A8)

� ϕ, ϕ → ψ ⇒� ψ (I0)

� ϕ ⇒� [A]ϕ (I1)

The proofs of soundness of these axioms are rather straightforward. In order
to have completeness, we need two more reduction axioms. The cases left to deal
with are those of [A]Ta,b when b ∈ G and [A]Baε.

5.2 Trust and Announcement

We first introduce a few notations. Given ε, ε′ ∈ LB , we call max(ε, ε′) the
longest common suffix of ε and ε′, that is, the longest formula μ such that μ � ε
and μ � ε′. This may be the empty formula. If ε = Ba1 . . . Ban

l, then for all
1 ≤ k ≤ n, we denote Agt(ε \ Bak

. . . Ban
l) = {a1, . . . , ak−1}. If k = 1, then

Agt(ε \ ε) = ∅. Moreover, Agt(ε \ l) = {a1, . . . , an}.
Recall the definition of the updated trust set for agent a after an announce-

ment A by a group G at s:

T s·[A]
a = T s

a \ {b ∈ G |∃c ∈ G, εb ∈ A(b), εc ∈ A(c),

mins
a(Bbεb) = mins

a(Bcεc) and mins
a(Bbεb) /∈ BBw

a }

We need to express mins
a(εb) = mins

a(εc) (“εb and εc are contradictory from
the point of view of a”) and mins

a(εb) /∈ BBw
a (“a has no previous beliefs backing

up b’s claim”).
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We have the following result:

Lemma 2. Let ε1 and ε2 be formulas of LB, a be an agent, and s a state. Define
ε0 as ε0 = max(ε1, ε2). We have that mins

a(ε1) = mins
a(ε2) iff lit(ε1) = lit(ε2),

ε1 →s
a ε0 and ε2 →s

a ε0.

Using lemma 2, we get the following formula expressing contradiction of ε1
and ε2 from the point of view of a:

CO(a, ε1, ε2) = ⊥
if lit(ε1) �= lit(ε2), and

CO(a, ε1, ε2) = (
∧

α∈Agt(ε1\max(ε1,ε2))

Ta,α) ∧ (
∧

β∈Agt(ε2\max(ε2,ε1))

Ta,β)

otherwise.
Now to express that mins

a(εb) /∈ BBs
a, we use the following result:

Lemma 3. If ε is a formula of LB, a is an agent, and s is a state, we have
that:

mins
a(ε) /∈ BBs

a ⇔ (∀μ � ε, ε →s
a μ ⇒ μ �∈ BBs

a)

Using this we express the condition about previous beliefs:

PB(a, ε) =
∧

μ�ε

((
∧

α∈Agt(ε\μ)

Ta,α) → ¬Baμ)

Finally, we give the reduction axiom (A9):

[A]Ta,b ↔ Ta,b ∧ ¬
∨

εb∈A(b)

∨

c∈G
εc∈A(c)

(CO(a,Bbεb, Bcεc) ∧ PB(a, εb)) (A9)

if b ∈ G.

5.3 Belief and Announcement

The last reduction axiom we need is for [A]Baε where A is an announcement
given by a group G, a is an agent, and ε is a formula of LB . Looking at the
semantics, we have:

BBs·[A]
a = Cls·[A]

a ((BBs
a \ {ε ∈ BBs

a | ∃b ∈ G,∃εb ∈ A(b),

mins·[A]
a (ε) = mins·[A]

a (Bbεb)})
∪ {Bbεb | b ∈ G and εb ∈ A(b)})

Hence ε is in BB
s·[A]
a if:

– There exists a formula εb announced by an agent b such that Bbεb →s·[A]
a ε

(we say that ε is successfully announced to a)
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– or ε was believed by a and not contradicted by the announcement from
a’s point of view after updating trust. Formally, this means that ε is in
BBs

a and for any formula εb announced by an agent b, we have that
mins·[A]

a (ε) �= mins·[A]
a (Bbεb), or equivalently, mins·[A]

a (ε) �= mins·[A]
a (Bbεb).

That is, mins·[A]
a (ε) is not successfully announced to a.

We express the fact that ε is successfully announced to a through announce-
ment A by the following formula:

Ann(A, ε, a) =
∨

b∈G
εb∈A(b):ε�Bbεb

∧

α∈Agt(Bbεb\ε)

[A]Ta,α

Using this, we can also express the fact that ε was not contradicted in A from
a’s point of view. This is equivalent to no formula μ � ε such that ε →s·[A]

a μ
being successfully announced:

NC(A, ε, a) =
∧

μ�ε

((
∧

α∈Agt(ε\μ)

[A]Ta,α) → ¬Ann(A,μ, a))

Finally, the axiom (A10) is defined as:

[A]Baε ↔ Ann(A, ε, a) ∨ (Baε ∧ NC(A, ε, a)) (A10)

5.4 Completeness

The reduction axioms follow the semantics quite closely, and therefore we will
not dwell on the proofs of soundness of each axiom and instead move on to
completeness of our axiom system. As we have reduction axioms allowing us to
translate formulas of the full language to that of the static language L∗

SDDLT,
it suffices to show completeness of the axiom system constituted by the axioms
(A0)–(A4) and the inference rule (I0) for the corresponding static logic SDDLT∗,
that is, the logic without announcements.

The proof of completeness of SDDLT∗ is a standard canonical model proof
using maximal consistent sets, as given in [6]. Because of space constraints, we
do not detail this proof but only give a few indications of the details specific to
this logic. First, the canonical model used is the following:

Definition 1. Let Γ be a consistent set of formulas of L∗
SDDLT that is maximal

for inclusion. The canonical model for Γ is defined as MΓ = (S, V Γ ) where
V Γ = P ∩ Γ .

We consider the state sΓ such that BBsΓ
a = {ϕ | Baϕ ∈ Γ} and T sΓ

a = {b ∈
Agt | Ta,b ∈ Γ} for all a in Agt, verifying that it is indeed a belief state. A truth
lemma stating that the formulas true at (MΓ , sΓ ) are exactly the formulas of Γ
is then shown by induction. This, conjointly with the Lindenbaum lemma, gives
us the completeness of SDDLT∗.
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Theorem 1. For every ϕ ∈ L∗
SDDLT, if |= ϕ, then �SDDLT∗ ϕ.

Corollary 1 (Completeness of SDDLT). For every ϕ ∈ LSDDLT, if |= ϕ, then
�SDDLT ϕ.

Completeness of SDDLTm (the logic with the belief depth of announcements
bound to a fixed m) is a straightforward corollary, which gives us an axiomati-
sation of a logic with coalition announcements.

Corollary 2 (Completeness of SDDLTm). Given ϕ ∈ Lm
SDDLT, we have

|= ϕ ⇒�SDDLT ϕ

6 A Simple Example: Of Bad Influences and the
Importance of Speaking Out

We here give a concrete example to argue that our choice of trust dynamics is rel-
evant, even though the agents’ reasoning is quite basic. When considering real-life
situations, group announcements do not consist of simultaneous announcements,
but can be seen as statements proclaimed over a short period of time.

We see many news and articles about the importance of speaking up against
bullying or harassment, or about how media is a bad influence to children. Every-
one has their own story of something nobody talked to them about when they
were a child, which led them to believe ridiculous –in hindsight– ideas they got
from the television or magazines. The importance of speaking out against these
wrong opinions to prevent the spread of their influence can be illustrated using
our framework.

Say we have a group of agents Agt. In this group, there is a bad influence
b, a group of gullible agents Gul, and a group of watchers Wat. The gullible
agents trust everybody, the watchers only trust other watchers, and the bad
influence trusts only themselves. For example, the bad influence could be the
television, the gullible demographic the younger audience, and the watchers the
parents of this audience. The bad influence could also be someone being uncivil,
the gullible group could be foreigners still learning about the local culture, while
the watchers would be local bystanders. Another example would be a bully, or
a group of bullies acting as one, other students, and teachers at a school.

While all other agents in the group think ¬p (for example, the incivility
going on is not normal), the bad influence believes that p. We equate b carrying
out the uncivil act to their announcing that p (there is nothing wrong with
that action). While there is no risk of the bystanders starting to believe p, the
foreigners could be led to believe that this is how things are done in this country.
If nobody speaks out against b’s actions, this is what the situation will lead to.
However, as soon as one person speaks up, they will confirm others’ belief that
there is a problem, make the gullible agents lose trust in the troublemaker, and
ensure that the incivility does not spread.
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Formally this situation is described in the following model. Let Agt = Gul ∪
Wat ∪ b and M = (S, V ) for some V (the actual state of the world is not
important here). Consider s in S such that:

– ∀a ∈ Gul ∪ Wat,BBs
a = {¬p}

– BBs
b = {p}

– ∀a ∈ Wat, T s
a = Wat

– ∀a ∈ Gul, T s
a = Agt

– T s
b = {b}

Then we have that

(M, s) |= [{(b, {p})}]
∧

g∈Gul

Bgp

and

(M, s) |=
∨

a∈Wat

[{(b, {p}), (a, {¬p})}]
∧

g∈Gul

(Bg¬p ∧ ¬Tg,b)

That is, if b announces p and nothing else is said, then gullible agents will
start believing that p. However, if any one watcher a states that ¬p as b claims
the opposite, then the gullible agents will both retain the belief that ¬p and
learn that b is not to be trusted.

7 Discussion

7.1 On the Choice of Dynamics

Throughout this paper we have made choices in order to attempt to find a
balance between non-trivial trust dynamics and clarity of the formalization.
More complex dynamics could, of course, be envisioned: for example, in our
framework, if an agent a receives a false announcement about their own beliefs
from a trusted agent b (say, b announces Bap but a actually believes ¬p), they
will blindly trust b and change these beliefs, so that a will start to believe p.
This kind of blind trust may easily be considered too strong, and we may wish
in this situation for a to stop trusting b instead, thus eliminating instances of
contradictions with b’s announcements. This can be expressed in the update of
the trust set, which would become, after announcement A by a group G: if we
call C(a, s,A) the set {b ∈ G | ∃ε �∈ BBs

a, Baε ∈ A(b)}, we have

T s·[A]
a = T s

a \ (C(a, s, A) ∪ {b ∈ G | ∃c ∈ G \ C(a, s, A), εb ∈ A(b), εc ∈ A(c),

mins
a(Bbεb) = mins

a(Bcεc) and mins
a(Bbεb) /∈ BBw

a })
We have shown in Sect. 5 how to express as formulas all of the properties neces-
sary to amend the reduction axioms to follow these new dynamics. The constraint
on announcements given in Sect. 2 could also be lifted in a similar manner. How-
ever, this would lead to longer and less legible reduction axioms. For this reason
we have presented dynamics which are more naive, but which suffice to make
our point and are adaptable enough to work with more complex dynamics.
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7.2 Sequential and Simultaneous Announcements

Say an agent a announces p, and afterwards an agent b announces ¬p, and say
agent c trust both a and b. This situation can be modeled either as a group
announcement ((a, {p}), (b, {¬p})), which will lead c to lose trust in at least one
of the two other agents, or as two announcements (a, {p}) and (b, {¬p}) happen-
ing one after the other, leading c to believe first p, then ¬p, without losing trust in
either a or b. In general, while simultaneous announcements are understandable
as is in the context of, say, a search query, it is less clear what they represent
when dealing with social interactions. Our understanding of group announce-
ments in this context is that of announcements given over a short amount of
time. This notion of short may depend on the agents and the situation, and
while there is no clear-cut time stamp we can put on this, we can imagine that
if enough time has gone by after a’s announcement, c will no longer associate p
with a, or they will accept that the situation may have changed since that first
announcement, and accept b’s announcement without feeling that there is too
much of a conflict.

8 Conclusions and Future Work

We have defined a framework for reasoning about the evolution of trust and
beliefs as triggered by group announcements, in which contradictions within
the group can lead agents to lose trust in the speakers involved, and in which
agents’ beliefs can help them pick a side in case of conflict. We have given an
axiomatization for our logic SDDLT, and shown that it is sound and complete.
We have also shown that two operators for coalition announcements are definable
in SDDLT.

Our work could be furthered in several directions. First, it would be inter-
esting to expand on announcements. Though we have only considered public
announcements here, we believe it would be quite simple to generalize these
semantics to private announcements. It would also be interesting to no longer
assume sincerity of the agents.

The notion of trust could also be expanded upon, following the existing liter-
ature, in particular the trust functions in [14]. For example, we could have several
‘degrees’ of trust, rather than simply binary trust. It would also be interesting
to add a mechanism for gaining trust, the inner workings of which are less clear
than those for loss of trust. The latter could also be refined: for instance, in case
of conflict where no previous beliefs help the agent choose whom to trust, trust
in both agents could be lost “until confirmation” of one of the two theses.

Finally, agents in our setting have very limited reasoning capabilities. Allow-
ing more complex reasoning, and more complex formulas in belief bases, would
make identifying contradictions stemming from announcements less straight-
forward. However, belief merging techniques could perhaps be applied to our
framework to allow for these expansions.
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Abstract. Bipolar Argumentation Frameworks (BAF) are a natural
extension of Dung’s Argumentation Frameworks (AF) where a relation
of support between arguments is added to the standard attack relation.
Despite their interest, BAF present several difficulties and their seman-
tics are quite complex. This paper provides a definition of semantic con-
cepts for BAF in terms of fixpoints of the functions of neutrality and
defense, thus preserving most of the fundamental properties of Dung’s
AF. From this angle it becomes easy to show that propositional dynamic
logic provides an adequate language to talk about BAF. Finally, we illus-
trate how this framework allows to encode the structure of the referential
discourse involved in semantic paradoxes such as the Liar. It turns out
that such paradoxes can be seen as BAF without a stable extension.

1 Introduction

Bipolar Argumentation Frameworks (BAF) were introduced by [5] and [6] to
enrich Dung’s Argumentation Frameworks (AF) [9] with an explicit relation of
support.1 In many respects, the semantics of BAF are more difficult to categorize
than those of standard AF. There are two main (related) reasons for this. First
of all, at least two different interpretations of support are available:

– deductive support : a supports b means “the acceptance of a implies the accep-
tance of b” [3].

1 Indeed, the only support available in standard AF is the “defense” relation: argument
a supports argument b by attacking one of its attackers. This is too restrictive in
most real-life debates, where arguments providing direct support are commonly used.
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– necessary support : a supports b means “a is a necessary condition for the
acceptance of b” or, equivalently, “acceptance of b implies the acceptance of
a” [18,19].2

A further notion is that of evidential support [20] that we will not deal with
here.3

The following scenario provides an example of deductive support (given the
background information) from a to b.

Example 1. Suppose that, on the day before the last matchday of Premier
League, Liverpool is at the top, one point ahead Manchester. Consider the fol-
lowing arguments:

a. Liverpool wins last match.
b. Liverpool wins Premier League.

c. Manchester wins Premier League.

This other gives an example of a necessary support from b′ to c′.

Example 2. The dark room. Consider one room with no windows that can only
be illuminated by an electric light (with no other external sources available).
Consider the following arguments:

a’. The switch was turned off last night.
b’. The switch is on.

c’. The room is illuminated.

The second main problem, as the examples suggest, is that the interaction
of support and attack induces several forms of complex attack, such as those
from a to c (a supports b which attacks c) and from a′ to c′ (a′ attacks b′

which supports c′). However, while a complex attack as that of Example 1 is
intuitively effective for deductive support, it is not for necessary support. The
converse holds for complex attacks as that of Example 2. The presence of com-
plex attacks complicates the criterion of coherence for a set of arguments, which
for standard AF is encoded by conflict-freeness. The literature on BAF provides
several characterizations of coherence which, by consequence, multiply the crite-
ria of admissibility for sets of arguments. This, in turn, generates a caleidoscope
of additional criteria for acceptable (complete, preferred, grounded and stable)
extensions.

We define extensions (or semantics) for BAF in line with [9] by only using
conflict-freeness (and self-defense) w.r.t. to (complex) attacks. Despite this min-
imal coherence criterion, extensions thus defined turn out to be coherent in the
2 We limit ourselves to binary necessary support. Indeed this notion of support is often

introduced as a more general relation between a set of arguments and an argument
[18,19].

3 Evidential support can be seen as a special kind of necessary support where an
argument cannot be accepted unless it is ultimately supported by “evidence”, the
latter being a special type argument (also called a prima facie argument) that can
be neither attacked nor supported by other arguments.
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strongest possible sense, and their properties are in line with those of standard
AF. To define our extensions, we fix a primitive notion of complex attack for each
reading of the support relation,4 then we use it for defining the defense function
(characteristic function in Dung’s original work) and the neutrality function. The
extensions are then characterised in terms of (post)fixpoints of these functions.5
As a further relevant point, we show that these semantics have a modal repre-
sentation in the framework of propositional dynamic logic [16], which therefore
provides an adequate language to talk about BAF.

Directed graphs offer a natural representation of the referential structure of
a discourse [8,10–12,23]. In this context, the semantics of Dung’s AF provide an
interesting tool to understand the nature of paradoxes as “pathological” graphs.
This specific link has been established by [10,11], the central result being Fact
9 below, which associates paradoxality with lack of a stable extension. BAF,
as a natural expansion of AF, allow to express referential structures in a more
compact way, although being equally expressive as standard AF in this respect
[1]. Our result in Theorem 3 subsumes Fact 9 as a special case and provides a
first bridge from the semantics of BAF to the analysis of paradoxes.

The paper proceeds as follows. Section 2 recalls the basic concepts of AF,
introducing BAF with necessary and deductive support and defining their exten-
sion concepts. We show that extensions thus defined preserve the fundamen-
tal properties of their corresponding AF extensions, and then prove additional
results (Theorems 1 and 2). Section 3 introduces a language of propositional
dynamic logic to talk about BAF (plus a complete axiom system), providing a
modal definition of the extension concepts introduced in Sect. 2. Section 4 focuses
on the analysis of semantic paradoxes, showing first how to encode the structure
of the referential discourse within BAF with necessary support. Based on this
we prove our main correspondence result in Theorem 3. Section 5 summarizes
the results and mentions open problems for future work.

2 Argumentation Frameworks

A basic AF A = (A,→) is a relational structure, with A �= ∅ the set of arguments
and → ⊆ A × A a binary relation, where a → b is read as “a attacks b”. We use
the shortenings X → a for ∃x ∈ X : x → a, a → X for ∃x ∈ X : a → x,
and X → Y for ∃x ∈ X,∃y ∈ Y : x → y. Additionally, for X a set and R a
relation, the set 〈R〉X := {x | ∃y ∈ X and xRy} contains the arguments that
can R-access some element in X, while [R]X := {x | ∀y if xRy then y ∈ X}
contains the arguments that can R-access only elements in X.

The fundamental concept in abstract argumentation is that of an extension
or solution. Intuitively, a set of arguments X is a solution for A only if it satisfies
4 A similar strategy was proposed by [7], which already provides some of our results.

However, this was done without the use of algebraic and fixpoint notions.
5 Fixpoint-theoretic notions were of high impact in Dung’s original work; since then,

they have been scarcely exploited for the study of BAF and for abstract argumen-
tation in general.
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certain properties which make it an “acceptable” opinion in the argumentation
represented by A. Most solution concepts for AF share two basic properties:
conflict-freeness and defense of their own arguments. There are many equiva-
lent ways to define such properties; here we characterize them in terms of the
neutrality and defense functions (as in [13]).

Definition 3 (Neutrality and defense function). Let A = (A,→) be an
AF. The neutrality function nA : P(A) −→ P(A) is:

nA(X) = {x ∈ A : NOT X → x}

The defense function dA : P(A) −→ P(A) is:

dA(X) = {x ∈ A : ∀y ∈ A : IF y → x THEN X → y}

In other words, nA(X) is the set of arguments that are not attacked by X (i.e.
to which X is neutral) and dA(X) is the set of arguments that are defended by
X. The advantage of this characterization is that it provides an insightful and
compact definition of solution concepts as (post)fixpoints of nA and dA. This
will prove useful in the study of BAF.

Definition 4 (Solution concepts). Given a framework A:

– A set X is conflict-free (CfrA(X)) iff X ⊆ nA(X) (i.e. X is a postfixpoint of
nA).

– A set X is self-defended (SdfA(X)) iff X ⊆ dA(X) (i.e. X is a postfixpoint
of dA).

– A set X is an admissible extension (AdmA(X)) iff X is conflict-free and self-
defended.

– A set X is a complete extension (CmpA(X)) iff X = dA(X) and X ⊆ nA(X)
(i.e. X is admissible and is a fixpoint of dA).

– A set X is a (the) grounded extension (GrnA(X)) iff X is the smallest fixpoint
of dA.

– A set X is a preferred extension (PrfA(X)) iff X is maximal (for set inclu-
sion) among the admissible (or complete) extensions of A.

– A set X is a stable extension (StbA(X)) iff X = nA(X) (i.e., X is a fixpoint
of nA).

Fact 5 below recapitulates known facts about solution concepts, with AdmA
denoting the set of admissible extensions of A and likewise for other solution
concepts.

Fact 5 ([9]). Let A be an argumentation framework.

1. 〈AdmA,⊆〉 is a poset.
2. Any upward directed non-empty family in AdmA is closed under union.
3. ∅ ∈ SdfA
4. PrfA �= ∅
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5. The defense function is monotonic and therefore the grounded set always
exists.

6. A stable extension is not guaranteed to exist.
7. If → is well-founded6 then A has exactly one complete extension, which is

grounded, preferred and stable.

The following is worth noticing: 1 and 2 together imply that the set of admis-
sible solutions forms a complete partial order; 3–6 establish the existence, in
any argumentation framework, of admissible, complete, grounded and preferred
extensions, but that is not the case for stable extensions; 7 entails that all exten-
sions are one and the same when the attack relation is well-founded.

2.1 Bipolar Argumentation Frameworks

A BAF A = (A,→,⇒) is a birelational directed graph, with A and → as before,
and a ⇒ b indicating “a supports b”. BAF like those in Fig. 1 allow to represent
Examples 1 and 2. As mentioned in Sect. 1, two complex attacks are represented
here: from a to c and from a′ to c′. However, their interpretation depends on the
specific reading of the support relation. If ⇒ is read as deductive support, then
the attack from a to c is effective, while the one from a′ to c′ is not; the opposite
holds for necessary support. Hence, the semantics of necessary and deductive
support should be treated separately.

c b a c b a

Fig. 1. Examples 1 and 2 represented with bipolar argumentation frameworks.

Necessary Support. Two main types of complex attacks are generated by BAF
with necessary supports, namely secondary attacks, as in Fig. 2(a), and extended
attacks, in Fig. 2(b) (see [7,18,19]). A secondary attack from a to b holds if there
is a path a → b0 ⇒ · · · ⇒ bn with b = bn for n ≥ 0; more succinctly, a attacks
b iff a → · ⇒∗ b, with · the operation of composition and ⇒∗ the reflexive
and transitive closure of ⇒ (we shall also write a →⇒∗ b for conciseness). An
extended attack holds if a(⇒−1)∗ → b, with ⇒−1 the converse of ⇒. As stressed
by [7] (Proposition 6), both types of attacks are special cases of n+-attacks
(Fig. 2(c)), which hold whenever a(⇒−1)∗ →⇒∗ b.7

6 We recall that a binary relation is well-founded whenever it does not contain any
infinitely descending chain, i.e., in our case, there exists no infinite chain a0 ← a1 ←
· · · ← an ← . . . of attacked arguments.

7 This is because both relations →⇒∗ and (⇒−1)∗ → are contained in relation (⇒−1

)∗ →⇒∗.
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b a

(a) Secondary attack

b

a

(b) Extended attack

b

a

(c) n -attack

Fig. 2. Complex attacks for necessary support

Here we assume “secondary attack” to be our primitive notion of attack for
BAF with necessary support. Given a BAF A = (A,→,⇒), this enables to
define the neutrality function nns

A : P(A) −→ P(A) as:

nns
A (X) = {x ∈ A : NOT X →⇒∗ x}

and the defense function dns
A : P(A) −→ P(A) as:

dns
A (X) = {x ∈ A : ∀y ∈ A : IF y →⇒∗ x THEN X →⇒∗ y}

This approach has the advantage of anchoring the definitions of the solution
concepts to those provided by [9].8 For example, define

Cmpns
A (X) iff X = dns

A (X) and X ⊆ nns
A (X)

It is an immediate consequence of these definitions that all the fundamental
results listed in Fact 5(1–7) hold for the new solution concepts. For example,
every BAF A where →⇒∗ is well-founded has exactly one complete extension,
which is grounded, preferred and stable, by Fact 5(7). The proofs are completely
analogous to those provided by [9].

The following theorem establishes key properties of the new solution con-
cepts.

Theorem 1. Let A = (A,→,⇒) be a BAF.

1. Any X ⊆ A s.t. Admns
A (X) does not contain any n+-attack.

2. Any X ⊆ A s.t. Cmpns
A (X) is closed for ⇒−1.

3. If X is closed for ⇒−1 and X ⊆ nA(X) then X ⊆ nns
A (X).

4. If ⇒ is well-founded then Stbns
A (X) iff X = nA(X) ∩ [⇒−1](X).

Proof. See Appendix.

Theorem 1(1) shows that any admissible set is conflict-free w.r.t. any type of com-
plex attack. Therefore, all the defined solution concepts are strongly coherent
even though Cfrns

A takes only secondary attacks into account. Part (2) demon-
strates that all solution concepts stronger than complete (preferred, grounded
and stable) are closed under the “being supported” relation. Furthermore, by

8 In an analogous way we could assume extended or n+-attacks as our primitive notion
and define the neutrality and defense function accordingly.
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Theorem 1(3), closure under the “being supported” relation together with Dung’s
conflict-freeness entails conflict-freeness in the extended sense. Finally, Theorem
1(4) provides a sufficient condition for ns-stability of X,9 and is a generalization
of [17], Proposition 1 to the case of infinite BAF.

Deductive Support. BAF with deductive support present two main patterns
of complex attacks, namely supported attacks, Fig. 3(a), and mediated attacks,
Fig. 3(b) (see [7]). A supported attack from a to b holds only if there is a path
a ⇒ b0 ⇒ · · · ⇒ bn−1 → bn with b = bn for n ≥ 0; more compactly, a attacks b
iff a ⇒∗ · → b. A mediated attack instead holds if a → (⇒−1)∗b. Here again it is
not difficult to find a more general pattern of incompatibility, as for n+-attacks,
by generalizing the two kinds of attack, i.e. a ⇒∗→ (⇒−1)∗b. We shall call this
a d+-attack.

ba

(a) Supported attack

a

. . .b

(b) Mediated attack

. . .b

. . .a

(c) d -attack

Fig. 3. Complex attacks for deductive support

Deductive support is naturally interpreted as the converse of necessary sup-
port, i.e. ⇒−1 [7]. According to this reading, mediated attacks under deductive
support are nothing more than secondary attacks under necessary support. It
therefore makes sense to assume the notion of “mediated attack” as primitive, i.e.
a attacks b iff a → (⇒−1)∗b, defining the neutrality function nds

A : P(A) −→ P(A)
as:

nds
A (X) = {x ∈ A : NOT X → (⇒−1)∗x}

and the defense function dds
A : P(A) −→ P(A) as:

dds
A (X) = {x ∈ A : ∀y ∈ A : IF y → (⇒−1)∗x THEN X → (⇒−1)∗y}

Here again solution concepts are defined over the new defense and neutrality
function and all results resumed in Fact 5 hold. In particular, any BAF A with
deductive support where → (⇒−1)∗ is well-founded has exactly one complete
extension, which is also grounded, preferred and stable.

Two important properties of the solution concepts for BAF with deductive
support are the following.
Theorem 2. Let A = (A,→,⇒) be a BAF.
1. Any X ⊆ A s.t. Admds

A (X) does not contain any d+-attack.
2. Any X ⊆ A s.t. Cmpds

A (X) is closed for ⇒.

Proof. See Appendix.
9 We may rephrase this condition as: for any x ∈ X, all of x’s attackers are outside X

and all x’s supporters are inside.
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3 Modal Logics for Bipolar Argumentation

Propositional modal logic with a universal modality is expressive enough to
talk about standard AF [13,14]. A modal language to express the fundamental
concepts of BAF requires instead the more complex resources of propositional
dynamic logic (PDL) with the global universal modality [U ]. Our language LU It
is built over a set of atoms P and a set of four basic actions Π = {α, β, α−1, β−1}
by the following BNF:

φ ::= p | ⊥ | ¬φ | φ ∧ φ | 〈π〉φ | 〈U〉φ for p ∈ P
π ::= α | β | α−1 | β−1 | π;π | π∗

Define other Boolean connectives (disjunction ∨, implication ⊃ and bi-
implication ≡) as usual; take [π]φ := ¬〈π〉¬φ and [U ]φ := ¬〈U〉¬φ. The oper-
ator 〈α〉 (resp. 〈β〉) is the “being attacked” (resp. “being supported”) modality;
e.g., 〈α〉φ indicates that the argument is attacked by some argument labelled
φ. Action α−1 (resp. β−1) is the converse of α (resp. β), so 〈α−1〉 (resp. 〈β−1〉)
express the “attacks” (resp. “supports”) modality.

Definition 6 (Bipolar models). Let P be a set of atoms. A bipolar model is a
tuple M = 〈A,V〉, with A = 〈A,→,⇒〉 a BAF and V : P −→ P(A) a valuation
function.

M denotes the set of models. The formal semantics of LU is expressed via the
notion of satisfaction of a formula in a model.
Definition 7 (Satisfaction). The satisfaction of φ by a point a in a bipolar
model M = 〈A,V〉 is defined, for atoms and Boolean operators, in the standard
way. For the rest,

M, a |= 〈π〉φ IFF ∃b ∈ A :aRπb AND M, b |= φ, M, a |= 〈U〉φ IFF ∃b ∈ A : M, b |= φ

with Rα and Rβ defined as the respective converses of → and ⇒, and the
remaining Rπ defined in the standard way.10 The truth-set of φ in M is
[[φ]]M = {a ∈ A | M, a |= φ};11 the set of valid formulae (those true in every
point of every model) is called (logic) KU .

As it has been proved, the axiom system of Table 1 is sound and complete
for KU .12 The first three groups of axioms together with rules ([π]-Nec) and
(LI) provide a standard axiomatization for the PDL modalities [16]. Axioms
([π]-Conv1) through ([π]-Conv4) characterise the fact that →−1 and ⇒−1 are
the converse of → and ⇒ [2,16]. The fifth group consists of S5 axioms for the
universal modality and Incl, the latter determining the inclusion of any relation
π in the universal accessibility relation.
10 That is, Rα−1 = (Rα)

−1, Rβ−1 = (Rβ)
−1, Rπ;π′ = {(a, b) ∈ A × A | ∃c ∈ A :

(Rπac & Rπ′cb)} and Rπ∗ =
⋃

n≥0 Rπn (with Rπ0 = {(a, a) | a ∈ A} and Rπn+1 =
Rπn;π, for the latter).

11 Thus, (i) M, a |= 〈α〉φ if and only if ∃b ∈ A with b → a and b ∈ [[φ]]M, (ii)
M, a |= 〈β〉φ if and only if ∃b ∈ A with b ⇒ a and b ∈ [[φ]]M, and (iii) M, a |= [U ]φ
if and only if [[φ]]M = A.

12 See [2,16] for the PDL, converse and [U ] fragments. (See [21,22] for PDL+[U ]).
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Table 1. Axiom system for KU

Interestingly, LU can define the class of AF in which a given action π is
well-founded. Indeed, [U ]([π]p ⊃ p) ⊃ p holds in a AF if and only if Rπ is well-
founded [2, chap. 7.1]. Thus, it is possible to isolate the classes of AF and the
classes of BAF with necessary (resp. deductive) support where extensions are
unique (Fact 5(7)).13

Several solution concepts for BAF are expressible within LU , as those for
standard AF are by standard modal logic [13]. In the case of necessary support,
the property of not being attacked via a secondary attack (see Fig. 2(a)) by the
set [[p]] is expressed by the concatenation ¬〈β∗;α〉p which therefore can be taken
to be the modal rendering of the neutrality function. Analogously the property of
being defended by the set [[p]] is expressed by the concatenation [β∗;α]〈β∗;α〉p,
i.e. the defense function. This provides the following list of characterizations.

Proposition 1 (Solution concepts for necessary supports). For any
(A,V), a,

V(p) ∈ Cfrns
A IFF (A,V), a |= [U ](p ⊃ ¬〈β∗;α〉p)

V(p) ∈ Sdfns
A IFF (A,V), a |= [U ](p ⊃ [β∗;α]〈β∗;α〉p)

V(p) ∈ Admns
A IFF (A,V), a |= [U ](p ⊃ ¬〈β∗;α〉p) ∧ [U ](p ⊃ [β∗;α]〈β∗;α〉p)

V(p) ∈ Cmpns
A IFF (A,V), a |= [U ](p ⊃ ¬〈β∗;α〉p) ∧ [U ](p ≡ [β∗;α]〈β∗;α〉p)

V(p) ∈ Stbns
A IFF (A,V), a |= [U ](p ≡ ¬〈β∗;α〉p)

Furthermore, [β∗;α]〈β∗;α〉 is equivalent to ¬〈β∗;α〉¬〈β∗;α〉p, so the defense
function is the double iteration of the neutrality function (see [13]). Thus, the

13 Thus, the formulas [U ]([α]p ⊃ p) ⊃ p, [U ]([β∗;α]p ⊃ p) ⊃ p and [U ]([β−1∗;α]p ⊃
p) ⊃ p characterise, respectively, the well-foundedness of →, →⇒∗ and → (⇒−1)∗.
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fact that Stbns
A (X) entails X = nA(X)∩ [⇒−1](X) (Theorem 1(4), right to left)

can be restated in modal terms:

Fact 8. For any bipolar model M = 〈A,V〉 and any a ∈ A,

StbA([[p]]M) entails M, a |= [U ](p ≡ (¬〈α〉p ∧ [β]p)).

For deductive support, the property of not being attacked via a mediated attack
(see Fig. 3(b)) by the set [[p]] is expressed by ¬〈β−1∗;α〉p. Therefore, by the same
mechanism we can provide the following modal definitions for solution concepts
of BAF with deductive support.

Proposition 2 (Solution concepts for deductive supports). For any
(A,V), a,

V(p) ∈ Cfrds
A IFF (A,V), a |= [U ](p ⊃ ¬〈β−1∗;α〉p)

V(p) ∈ Sdfds
A IFF (A,V), a |= [U ](p ⊃ [β−1∗;α]〈β−1∗;α〉p)

V(p) ∈ Admds
A IFF (A,V), a |= [U ](p ⊃ ¬〈β−1∗;α〉p) ∧ [U ](p ⊃ [β∗;α]〈β−1∗;α〉p)

V(p) ∈ Cmpds
A IFF (A,V), a |= [U ](p ⊃ ¬〈β−1∗;α〉p) ∧ [U ](p ≡ [β−1∗;α]〈β−1∗;α〉p)

V(p) ∈ Stbds
A IFF (A,V), a |= [U ](p ≡ ¬〈β−1∗;α〉p)

Here too the concatenation [β−1∗;α]〈β−1∗;α〉 is equivalent to ¬〈β−1∗;α〉¬〈β−1∗;
α〉p; thus, the defense function is the double iteration of the neutrality function.

4 Bipolarity and Semantic Paradoxes

The Liar Paradox consists of any statement of the following kind

a := The statement a is false

to which no true or false value can be assigned. Early diagnoses of the prob-
lem pointed to the self-reference of statement a as the culprit. In many cases,
however, self-reference is not direct, as the following paradox shows [24]:

a := The statement b is true and the statement c is false.
b := Either the statement a is false or the statement c is true
c := Both statements a and b are true.

Moreover, Yablo’s paradox [25] provides an example with no referential circuits
of the above kind. Therefore, although the problem lies clearly in the referential
structure of the discourse, it is more complex than what an intuitive understand-
ing of “self-referentiality” and “circularity” may suggest.

An important clue for clarifying this structural problem comes from two
relatively new approaches to semantic paradoxes. One of them is the equational
approach by [24] and the other is a graph-theoretic one [8,10–12,23]. In its bare
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bones, the equational approach interprets referential discourses of the above kind
as systems of boolean equations, or equivalently as sets of biconditionals where
referential statements figure as a set of propositional variables A. The Liar is
then translated as the biconditional a ≡ ¬a, while the second example consists
of the three biconditionals a ≡ b ∧ ¬c, b ≡ ¬a ∨ c and c ≡ a ∧ b.

Both examples determine a propositional theory T that is paradoxical insofar
as MOD(T ) = ∅, where MOD(T ) denotes the set of propositional assignments
v : A −→ {1, 0} that satisfy the theory. It has been shown [1,11] that any system
of boolean equations T can be transformed into and equivalent T ′ in digraph
normal form, i.e. a theory consisting of a set S = {s0, . . . , sn} of n sentences of
the form

si := xi ≡
∧

x∈Xi

¬x

for 0 ≤ i ≤ n, where by convention
∧ ∅ = 1. Any such T ′ can be represented by

a corresponding AF A(T ′) = (A,→) defined as follows [10,11]:

A =
⋃

i≤n

({xi} ∪ Xi ∪ {x | x ∈ Xi ∧ ∀i ≤ n : x �= xi})

→ = (
⋃

i≤n

{(x, xi) | x ∈ Xi}) ∪ {(x, x), (x, x) | x ∈ A}

Note that a cannot be true (accepted) if b is true (accepted); hence, an attack
b → a encodes “a := b is false”. Moreover, there are mutual attacks between
newly added x and those x which would otherwise be unattacked (thus forced to
be true). The intuitive meaning of the attack relation is captured by a complete
labelling [4], defined for any AF A = (A,→) as a (partial) function l : A −→
{1, 0} such that, for every a ∈ A,

1. l(a) = 1 iff ∀b, b → a entails l(b) = 0
2. l(a) = 0 iff ∃b, b → a and l(b) = 1

For a given A(T ), any such labelling l can be regarded as a propositional assign-
ment to the set V (T ) of variables occurring in T . In general, given l, we denote
by l ↑V (T ) the restriction of l to such set and by l∗ the valuation of propositional
formulas induced by l. By l1 we denote the set {a ∈ A | l(a) = 1}. Then the
following correspondence holds:

Fact 9 ([10]). For any theory T in digraph normal form and any labelling l of
A(T ):

l ↑V (T )∈ MOD(T ) iff l1 is a stable extension of A(T )

An important consequence of this fact is that any paradoxical theory T corre-
sponds to a graph with no stable extension (the Liar corresponds to a single
node with a self-loop) and this provides an interesting structural criterion for
understanding paradoxicality.
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What is important here is that, a fortiori, any propositional theory can also
be translated in what one may call a bipolar digraph normal form (see [23]), i.e.
as a set of sentences of the following form:

xi ≡
∧

x∈Xi

¬x ∧
∧

x∈Yi

y

Any such theory gives rise to a corresponding BAF A(T ) = (A,→,⇒) where A
and → are as before and

⇒ =
⋃

i≤n

{(y, xi) | y ∈ Yi}

Here b ⇒ a encodes “a := b is true”, since the truth of every conjunct b is a
necessary condition for the truth of a. Therefore the bipolar digraph normal form
and its corresponding BAF are a natural and more compact way to represent
referential discourses with both predicates “true” and “false”.

Let us define a labelling l for bipolar graphs as follows:

1. l(a) = 1 iff (∀b, b → a entails l(b) = 0 and ∀c, c ⇒ a entails l(c) = 1)
2. l(a) = 0 iff otherwise

Then it is possible to establish the following correspondence

Theorem 3. Let T be a theory in bipolar digraph normal form such that A(T )
is well-founded for ⇒. Then the following holds for any labelling l:

l ↑V (T )∈ MOD(T ) iff Stbns
A(T )(l

1)

Proof. See Appendix.

Stability provides a general clue for understanding several patterns of para-
dox. For example, consider Yablo’s paradox, which consists of a numerable
set of biconditionals with infinite conjunctions on the right side, of the form
xn ≡ ∧

k>n ¬xk, with n ∈ N. It is indeed a propositional theory whose corre-
sponding graph, represented in Fig. 4, lacks a stable extension.

a b c d

Fig. 4. Yablo’s paradox

Interestingly, from the point of view of modal logic a labelling can be seen as
a valuation Vl : {0,1} −→ P(A) over the set of propositional letters 0 and 1,
which satisfies the conditions 1 and 2 above. By our remark in Sect. 3, any A(T )
with a well-founded ⇒ is a structure such that A(T ) |= [U ]([β]p ⊃ p) ⊃ p.
Within this class, the paradoxal structures are those where there is no labelling
l such that (A(T ),Vl) |= [U ](1 ≡ ¬〈β−1∗;α〉1).
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5 Conclusions

This work provides a new approach to the study of BAF where the fundamental
solution concepts are introduced by means of the neutrality and the defense
function in a systematic way. We also show how PDL provides an adequate modal
language to talk about BAF. Finally, BAF with necessary support are employed
to encode the referential discourse contained in semantic paradoxes as the Liar.
It is shown that the paradoxality of a referential discourse T corresponds to
the absence of a stable solution for the generated BAF A(T ) whenever A(T )
is well-founded for the support relation. A problem however arises when the
support relation is not well-founded. This is the case of a propositional theory
as the following: a ≡ ¬a ∧ b and b ≡ a. Here the labelling l(a) = 0; l(b) = 0
provides a model. However, it is easy to ascertain that l1 = ∅ is not a ns-stable
extension for the corresponding graph. This leaves open the problem of finding
an adequate full correspondence. We leave this for future work.

Appendix

Proof of Theorem 1:

1. It suffices to show that no n+-attack is possible. Suppose Admns
A (X) and that

X contains a and b such that a(⇒−1)∗ →⇒∗ b. Then there is a c such that
a(⇒−1)∗c and c →⇒∗ b (as in Fig. 2(c)). Therefore c carries a secondary
attack towards b. But since X is admissible it defends b against c, i.e. there
is d ∈ X such that d →⇒∗ c. But then d →⇒∗ a, i.e. d ∈ X attacks a ∈ X,
against the assumption that Cfrns

A (X).
2. Suppose a ∈ X and b ⇒ a. As Cmpns

A (X) implies X = dns
A (X), it is enough

to show that b ∈ dns
A (X). Indeed, if b �∈ dns

A (X) then ∃c →⇒∗ b and not
X →⇒∗ c. But then c →⇒∗ a and X does not defend a, from which we get
a contradiction by the completeness of X. Therefore b ∈ dns

A (X).
3. Suppose a ∈ X and ∃b ∈ X such that b →⇒∗ a. Then there is a c such that

b → c and c ⇒∗ a. Since a ∈ X we get, by ⇒−1-closure, that c ∈ X, which
entails that X �⊆ nA(X). Contradiction.

4. The proof exploits the equivalence Stbns
A (X) iff X = nns

A (X) (Definition 4).
It is not difficult to prove that X = nns

A (X) implies X = nA(X) ∩ [⇒−1](X)
even without restriction to well-foundedness of ⇒. We skip this part here.

For the other direction we need to prove that nns
A (X) = X. The only difficult

part is nns
A (X) ⊆ X, the converse inclusion being almost immediate. For this

it suffices to show that a �∈ X implies a �∈ nA(X). Suppose a �∈ X. Therefore,
by X = nA(X) ∩ [⇒−1](X), either (a) ∃c0 ∈ X such that c0 → a, in which
case a �∈ nns

A (X) and we are done, or else (b) ∃b0 �∈ X such that b0 ⇒ a. The
same reasoning applies to b0: either (a) ∃c1 ∈ X such that c1 → b, in which case
a �∈ nns

A (X) (since c1 →⇒∗ a), or else (b) ∃b1 �∈ X such that b1 ⇒ b0. Alternative
(b) can only apply a finite number of times, otherwise it would determine an
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infinite descending chain of supports, which is excluded by the well-foundedness
of ⇒. Therefore a �∈ nns

A (X) and the inclusion is proved.

Proof of Theorem 2:

1. Suppose that Admds
A (X) and X contains both a and b with a ⇒∗→ (⇒−1)∗b.

Then there is a c such that a ⇒∗ c and c → (⇒−1)∗b. Therefore c carries a
mediated attack towards b. Since X is admissible it defends b against c, i.e.
there is d ∈ X such that d → (⇒−1)∗c. But then d → (⇒−1)∗a, against the
conflict-freeness of X.

2. Suppose a ∈ X and a ⇒ b. As Cmpds
A (X) implies X = dA(X), it is enough

to show that b ∈ dA(X). Suppose b �∈ dA(X); then ∃c → (⇒−1)∗b and not
X → (⇒−1)∗c. But then clearly c → (⇒−1)∗a and X does not defend a, a
contradiction. Therefore b ∈ dA(X).

Proof of Theorem 3:

1. From right to left. Assume that Stbns
A(T )(l

1) . Consider any biconditional
φ := xi ≡ ∧

x∈Xi
¬x ∧ ∧

x∈Yi
y in the theory. There are two cases: (a)

l(xi) = 1, i.e. xi ∈ l1. An immediate consequence of this, by Theorem
1(4, left-to-right) is that for all attacker x of xi: x �∈ l1, i.e. x ∈ l0 by the
given definition of labelling, and for all supporter y of xi: x ∈ l1 (closure
of stable sets under support Theorem 1(2)). This suffices to guarantee that
l∗(

∧
x∈Xi

¬x ∧ ∧
x∈Yi

y) = 1 and then l∗(φ) = 1.
(b) l(xi) = 0. Since l0 is the complement of l1, by Theorem 1(4, left-to-right)
either some attacker x of xi: x ∈ l1, or some supporter y of xi: y ∈ l0. By con-
struction of A(T ) all supporters and attackers figure on the right handside
of φ. As a consequence l∗(

∧
x∈Xi

¬x ∧ ∧
x∈Yi

y) = 0 and then l∗(φ) = 1.
2. From left to right. Assume that l is such that l∗(φ) = 1 for all φ ∈ T . In

order to show that Stbns
A(T )(l

1) we need to prove that l1 = nns
A (l1). We first

prove that
(a) l1 ⊆ nns

A (l1). Let x ∈ l1. We have three cases. (a.1) x is of the form y. Then
by construction x has no supporters and is only attacked by y. Then y ∈ l0

by condition 1 on labellings. Since, by construction, y is the only (direct
or indirect) attacker of x, it follows that x ∈ nns

A (l1). (a.2) x appears only
on the right hand side of a biconditional. Again, by construction, x has no
supporters and is only attacked directly by x, which however is labelled
0. Ergo x ∈ nns

A (l1). Otherwise suppose that (a.3) x ∈ l1 appears on the
left hand side of some biconditional. If x �∈ nns

A (l1) then there is a chain
y0 → y1 ⇒ · · · ⇒ yn ⇒ x such that y0 ∈ l1, y1, . . . , yn ∈ V (T ), and at
least y2, . . . , yn appear on the right hand side of some biconditional. This
forces y1, . . . , yn ∈ l1. But then l1 → y1 against condition 1 on labelling.
Therefore x ∈ nns

A (l1).
(b) nns

A (l1) ⊆ l1. For this is sufficient to show that for every x �∈ l1 there is an
y ∈ l1: y →⇒∗ x. It is straightforward to prove this for the cases where



228 C. Proietti et al.

(b.1) x is of the form y or (b.2) x appears only on the right hand side of a
biconditional.We consider (b.3) x = xi �∈ l1 appears on the left hand side
of some biconditional φ := xi ≡ ∧

x∈Xi
¬x ∧ ∧

x∈Yi
y. Since xi ∈ l0 (the

complement of l1) and l∗(φ) = 1 by assumption, then either one of the
conjuncts z ∈ Xi is in l1, in which case xi �∈ nns

A (l1) and we are done, or
else one of the conjuncts y ∈ Yi is in l0. If y is as in (b.1) or (b.2) then it is
attacked by l1 and therefore xi �∈ nns

A (l1). Otherwise y is either attacked
by l1 or supported by some y′ in l0. However the chain of supports cannot
go on forever because the support relation is well-founded by assumption.
Therefore we should finally find some attacker in l1 and xi �∈ nns

A (l1).
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Abstract. Opinion aggregators—such as ‘like’ or ‘retweet’ counters—
are ubiquitous on social media platforms and often treated as implicit
quality evaluations of the entry liked or retweeted, with higher counts
indicating higher quality. Many such aggregators are poor quality eval-
uators as they allow disruptions of the conditions for positive wisdom-
of-the-crowds effects. This paper proposes a design of theoretically jus-
tified aggregators that improve judgment reliability. Interpreting states
of diffusion processes on social networks as implicit voting scenarios, we
specify procedures for isolating sets of independent voters in order to
use jury theorems to quantify the reliability of network states as quality
evaluators. As real-world networks tend to grow very large and indepen-
dence tests are computationally expensive, a primary goal is to limit the
number of such tests. We consider five procedures, each trading a degree
of reliability for efficiency, the most efficient requiring a low-degree poly-
nomial number of tests.

1 Introduction

Web2.0 introduced the possibility for internet consumers to also become content
creators [1]. This change led to an unprecedented amount of information being
shared online, but also to a deterioration in the quality control of the informa-
tion that is being shared. In some areas, such as medicine, the quality of the
information online has been a now long-standing concern (e.g., [2,3]), leading to
the development of a code of conduct and certification standards [4]. Recently,
we are witnessing the problem of low quality or even damaging content spread-
ing in many areas, with the problem of so-called “fake news” being particularly
worrisome [5,6].

With the content quality problem being an all-topic concerning issue, the
challenge is to find a way to automatically separate the reliable content from bad
quality, unreliable, offensive and even illegal content. As a possible improvement
of the current situation, here we propose that a good use of the consumers’
behavior can help ascertain the quality of a post.

A ubiquitous feature of social media platforms is the ability of users to
directly express their impressions and opinions about media content making
c© Springer-Verlag GmbH Germany, part of Springer Nature 2019
P. Blackburn et al. (Eds.): LORI 2019, LNCS 11813, pp. 230–243, 2019.
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its rounds on the platform. Beyond the option of reporting content for violations
of law or community standards, there are three main, widely available channels
for such expressions. One is by reaction buttons such as Twitter and Instagram’s
♥ buttons, Reddit or YouTube’s up- and downvotes, or Facebook’s six choices
of emoticons. The second is by textual reply, such as Twitter’s reply option or
Facebook’s comments. The third, and the focus of this paper, is by sharing the
content with one’s social network, as e.g. by Twitter’s retweet option.

In this paper, we assume that the aforementioned “judgment” expressions—
and especially the decision on whether to further propagate content through
sharing—may be seen as quality signifiers, while remaining aware that this is not
necessarily always the case in social media, where an upvote may be a herding
reaction [7] and sharing (or not) may be influenced more by emotional response
than by sound quality judgment [8].

Interpreting decisions to share or not as quality signifiers, we aim to design
procedures which aggregate such judgment expressions into a reliable collective
quality judgment through majority rule. Yet, a collection of judgment expres-
sions is not sufficient to provide a good and reliable collective judgment. Some
users may not be competent at ascertaining content quality, if for no other reason
than by not being human [9]. Even when judgment expressions are from compe-
tent users, the majority verdict cannot simply be taken as a theoretically sound
quality assessment: due to herding effects or the mimicking of salient users, influ-
enced signals may stop carrying information about a competent quality judgment
but opaquely repeat already accounted for signals. Such dependencies between
judgments invalidate the premises of the Condorcet Jury Theorem [10] and its
many generalizations (e.g., [11–14]) and thus disrupt the theoretical foundations
of positive wisdom-of-the-crowds effects. When dependent signals are present,
majority polling can no longer be trusted to reach the correct evaluation with
high probability. To reestablish the positive wisdom-of-the-crowds effects of jury
theorems, a main focus of the paper is on the identification of sets of independent
users, whose majority vote may be trusted to be correct with high probability.

Our main contribution is the new approach to providing a quality evaluation
of a post, given the current state of a diffusion process of the post in a social
network. We suggest to obtain quality evaluations by considering a subset (the
jury) of agents that have been exposed to the post through its diffusion in the
network. The majority vote in the jury together with its correctness probability
then constitutes the quality evaluation of the post (Sect. 3). How to select a jury
among all agents exposed to the post is the main consideration of the paper.
For simple jury theorems to apply (Sect. 3), the jury must be independent.
Independence may be established statistically (Sect. 4), given a presumed set of
diffusion processes serving as background data (Sect. 2). Yet, independence tests
are computationally expensive: as real-world networks tend to grow large, the
number of tests required to find a satisfactory jury should ideally be minimized
for efficiency. In Sect. 5, we consider five jury selection procedures, each trading
a degree of reliability for efficiency, and analyze the number of required tests of
each of them, ranging from being exponential in the size of the set of exposed
agents to being low-degree polynomial.
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In designing the procedures, we need to make several choices regarding our
priorities. Ideally, we desire a quality evaluation procedure that (i) is theoreti-
cally justifiable, (ii) is computationally efficient, (iii) uses only data endogenous
to the social network on which it is implemented, and (iv) is conservative in its
estimates, so that in choosing between two evils, we rather want a measure overly
cautious with respect to estimating an entry as high quality than vice versa. The
last point entails that we rather ignore the voice of a juror that might be ben-
eficial than include the vote of a juror that may be misleading. Finally, in this
paper, we prioritize (i) over (ii), retaining the use of expensive independence
tests. We hope future work on such problems will improve efficiency.

2 Social Networks and Diffusion

A social network is specified by a set of links N ⊆ A2 connecting finitely many
agents A. We interpret (a, b) ∈ N to mean that a sees the content shared by b.
Let N(a) = {b ∈ A : (a, b) ∈ N}. We assume no properties of N .

In the following, each network N is associated with a topic, identified with
a set of entries E = {e1, e2, ...}. We think of N as used by the agents to discuss
the topic E with the desire to evaluate the quality of each entry. We assume that
entries bear an objective quality, or truth value, given by an exogenous quality
valuation V : E → {⊥,�}, unknown to the agents. We interpret agents as
casting votes on the quality of each entry. Given an entry, �a is the event that
agent a votes for the entry being of high quality, and ⊥a that a votes for it
being of low quality. As it is common in jury theorems, under the assumption
of independence, each agent a ∈ A is assumed to have the same individual
correctness probability c ∈ [0, 1] in their assessment, formally expressed in
terms of the following conditional probabilities: ∀a ∈ A,

p(�a | �) = p(⊥a | ⊥) = c = 1 − p(�a | ⊥) = 1 − p(⊥a | �).

Remark 1. The homogeneous correctness probability is a fundamental assump-
tion for the jury theorem applied throughout, and deserves comment. First, we
use homogeneous correctness probabilities for simplicity: jury theorems hetero-
geneous correctness probabilities also exist—see e.g. [11]. The procedures intro-
duced below assume knowledge of the correctness probability of the individuals,
and that this correctness probability is homogeneous for all users. In this respect,
we remark that knowledge of the correctness probability c may be obtained
through lab experiments where single individuals are tested in isolation and sep-
arately from the network interaction, just as individual utility functions in eco-
nomics are elicited through lab tests, separately from interactive game-theoretic
scenarios (see e.g. [15]). This would provide the aforementioned assumptions
with testable behavioral foundations. The details of this process are outside of
the scope of this work.
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To describe the information flow through the network, define a state s of N as
a pair (e, Li) with e an entry and Li : A → {S, R, U} a labeling map. Throughout,
let Si := L−1

i (S), Ri := L−1
i (R) and Ui := L−1

i (U). Agents in Si have chosen to
share e, those in Ri have been reached by e (e.g., by having a neighbor in Si),
and agents in Ui are unreached by e. An initial state s0 = (e, L0) satisfies
S0 = ∅. A state si = (e, Li) can then transition to state sj = (e′, Lj) if and
only if

1. e′ = e
2. Si ⊆ Sj and Sj\Si ⊆ Ri

3. Rj = (Ri\Sj) ∪ {a ∈ Ui : ∃b ∈ Sj and b ∈ N(a)}
4. Uj = Ui\Rj

I.e.: 1. the entry stays fixed, 2. agents never un-share and only reached agents
can start sharing, 3. sharing agents stop being reached, but agents with a sharing
neighbor become reached, and 4. else agents remain unreached.

A diffusion process is a sequence of states d = s0, s1, ... such that (i) s0 is
initial, (ii) all other states are transitions from the previous state, and (iii) if
sk = sk+1, then sk = sk+n for all n ∈ N. These transition rules ensure that any
diffusion process reaches a fixpoint sk with sk = sk+n for all n ∈ N, called the
terminal state of d.

Proposition 2. For any network N , for any initial state s0, any diffusion pro-
cess d = s0, s1, ... reaches a fixpoint.

Proof. For any two states sk = (e, Lk), sk+1 = (e, Lk+1) for which sk can tran-
sition to sk+1, points 2. and 4. of ensure that Sk ⊆ Sk+1 and Uk+1 ⊆ Uk. Hence
the proposition follows as N is finite.

We interpret a state in a diffusion process as an implicit, possibly partial,
cast of votes. For a state sn = (e, Ln), n ≥ 1, we take the set of agents that have
voted on the quality of e to be the jury Jn = Rn−1 ∪ Sn at time n. The jury Jn

does not include newly reached agents Rn\(Rn−1 ∪Sn) as they have not yet had
the opportunity to choose whether to share or not. The jury Jn gives rise to a
voting profile (va)a∈Jn

with va = ⊥a if a ∈ Rn and va = �a if a ∈ Sn. Hence,
the agents that have been reached in previous states but have not shared vote
for the low quality of e, while those that have shared vote for the high quality.
Agents in Un are excluded from the jury: unexposed to e, they have not had
the chance to share. We use lower-case j’s to refer to jury cardinality, such that
j = |J |, jn = |Jn|, etc., for J, Jn given by context. We assume diffusion processes
are observed, so we know the progress of each entry.

The model makes at least the following idealized assumptions: All agents
(i) pay attention to all entries that reach them, and (ii) to the best of their
ability decide to share or not to with the only aim of proliferating high quality
content. For (i), moving agents from U to R could be done based on logged
screen activity, as social media users may not always pay attention to all content
shared by neighbors. The approach suggested here is not apt to extract reliable
information if one does not assume (ii).
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3 Voting and a Jury Theorem

Jury theorems provide a mathematical argument for larger groups being ben-
eficial in collective decision making. Under some assumptions on correctness
probability (c > 1/2) and on independence of the voters, the majority vote in
larger groups is probabilistically more accurate than in smaller groups (see e.g.
[11,16,17]). Accepting social network diffusions as implicit voting scenarios and
aiming to extract information on the quality of the entries, jury theorems thus
constitute a natural basis for the selection of informative juries.

Given a quality evaluation V (e) and a voting profile (va)a∈J , for conciseness
we write va = 1 if agent a’s vote is correct about e (i.e., if V (e) = � and va = �a,
or V (e) = ⊥ and va = ⊥a), and va = 0 otherwise. For a state s with jury J , the
majority vote is whichever of ⊥ and � that gets more votes (or, in case of a tie,
either ⊥ or � is chosen by a fair coin toss). The majority vote of voting profile
(va)a∈J on entry e is correct if it coincides with the quality valuation V (e).

At a state s, if all j jurors in J vote independently, the probability that the
majority vote is correct is given by M(j) below, where the first term captures
the tie-breaking rule, and the second is the probability of correctness of a strict
majority.

M(j) =
�

2

(
j
j
2

)
c

j
2 (1 − c)

j
2 +

j∑
k=mj

(
j

k

)
ck(1 − c)j−k

with � = 0 and mj = (j+1)/2 for j odd, and � = 1 and mj = j/2+1 for j even.
The simplest jury theorems, to which we stick here, concern the probability

that a group makes the correct decision under majority rule. One statement
of the classic Condorcet Jury Theorem is: if c > 1/2 and all jurors vote
independently, then

1. the probability of a correct majority vote goes to one as the jury size goes to
infinity: limj→∞ M(j) = 1.

2. the probability of a correct majority vote increases under the addition of two
jurors: for j + j′ with j′ = (0 mod 2), M(j) < M(j + j′).

Points 1 and 2 are sometimes referred to as the asymptotic and the non-
asymptotic part of the theorem, respectively, with the former possibly taken
to show that huge groups are infallible, while the latter shows that larger groups
are better truth-trackers than small ones [18]. Note that the addition of two
jurors is essential in the non-asymptotic part: moving from an odd to an even
jury by adding a single juror may cause a drop in the probability of correctness
due to the tie-breaking rule. As customary, in the following we simplify matters
by limiting attention to juries of odd size.

Similar jury theorems also exist for juries which exhibit patterns of depen-
dence and correlation among the voters (see [13,14,19]). Using independent juries
for quality assessments may thus cause an information loss: an independent set
of jurors can possibly be extended by the addition of dependent jurors while
improving the majority vote precision. An alternative to our approach of seeking
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independent juries is thus to look for juries that exhibit patterns of correlation
which do not negatively affect the majority correctness probability. However,
the approaches of [13] and [19] requires to calculate the majority correctness
probability by an expression exponential in jury size (The results of [14] are not
applicable, being for the asymptotic case.) For this reason, we here make use
of the simpler jury theorem requiring independent juries and suggest to use the
majority vote of an independent jury as quality evaluation, presented together
with its correctness probability.

4 Assessing Independence

Given a set of voters, whether their votes are independent and therefore war-
rant an application of the Condorcet Jury Theorem is an unobservable empirical
matter. On this matter, we cannot supply a theoretical guarantee, but only
hypothesize from other observables. One could hypothesize from network struc-
ture: If no voters in the set are connected, then conclude the set independent. Or
one could hypothesize from personal or demographic traits: if all voters in the
set are ‘different enough’, then conclude the set independent. These approaches
cannot ensure independence: agents may be influenced by another through long
chains in the network, and trait differences may lead to negative correlation in
voting.

A third is a history-based, statistical approach: if the set of voters have
not previously shown stochastically dependent behavior, then conclude the set
independent. This approach proceeds via an independence test, e.g. the χ2 test,
to check if the voters’ previously observed votes were stochastically independent.1
We follow this approach.

The χ2 test assesses how compatible some observed frequencies are with a
theoretical probability distribution. In our case, the theoretical distribution is
the distribution of votes obtained under the assumption of independent jurors.
Having a network N with correctness probability c, and a set D of diffusion
processes with terminal states T = (t1, ..., tm) over the topic E = {e1, ..., em}
valuated by V , we can then use the χ2 test to compare the theoretical distribution
with the observed distribution of votes in T to assess the stochastic independence
of any subset of voters J ⊆ A. Again, this does not guarantee independence: not
rejecting the null hypothesis that the agents are independent does not prove that
they are independent, but at least tells us that they cannot be shown dependent
beyond any reasonable doubt (the P -value). The details follow.

Theoretical Distribution. In a terminal state t where U = ∅, the probability
distribution p of vote profiles v = (v1, ..., vn) ∈ {0, 1}|A|, given independent
voters with correctness probability c and quality valuation V , is

p(v1, ..., vn) =
∏
i∈A

xi with xi =

{
c if vi = 1
1 − c if vi = 0.

1 We use the classic χ2 test just to exemplify our procedure, but other alternatives
are also possible, e.g. the G-test.
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This distribution does not apply when U = ∅, since agents in U are just
unreached by the entry and have not had the chance to vote. For such cases, we
have to find the appropriate theoretical distribution by taking the marginal of p
on the set of exposed agents St ∪ Rt. For a subset of voters J ⊆ A, let TJ ⊆ T
be the set of terminal states such that J ⊆ St ∪ Rt for all t ∈ TJ . Then the
marginal on J of p is

pJ(vJ ) =
∑

v−J∈{0,1}|A\J|

p(vJ , v−J)

with vJ = (vi)i∈J and v−J = (vi)i∈A\J . The distribution pJ hence gives the
probability that one should expect, under the assumption of independent voters,
on the votes by the agents in J who are jointly exposed to the entries in TJ .

The χ2 Test for Independence. Given the theoretical distribution p, for each
subset J ⊆ A, we can then test for independence between its members. Running
a χ2 test amounts to the following: 1. Select a significance (e.g., .1, .05, .01) for
rejecting the null hypothesis that the tested variables (votes) are dependent. 2.
For each outcome i, 0 ≤ i ≤ n, find the number Ei of occurrences estimated by
the theoretical distribution given the bounds set by the data. 3. Compare Ei to
the number Oi of observed occurrences of i by finding the χ2 statistic:

χ2 :=
∑|J|+1

i=0
(Oi−Ei)

2

Ei

4.Compareχ2 to the upper-tail critical values of theχ2 distribution for the selected
significance level and the appropriate number of degrees of freedom, and reject the
null hypothesis if the P -value is less than the chosen significance level.

[20] shows that there exists an algorithm for testing the independence of j
random variables with time complexity

O

((∏j
i=1[i]

)1/2

+
∑j

i=1[i]
)

where [i] denotes the number of possible values that random variable i can take.
The exponential complexity arises as a direct consequence of the exponential
growth of the number outcomes, as going through the whole outcome space
is necessary to assess the independence of a given set of random variables. In
our social network scenario, the (votes of the) agents in jury J are the random
variables whose mutual independence we are interested in, and the number of
possible outcomes of the voting process among the agents in J is the number
of possible voting profiles, 2|J|. Therefore, given the result in [20], the time
complexity in our case is O

(
2|J|/2 + 2|J |).

With independence tests being computationally expensive, we cannot readily
design a procedure that both checks independence and is effective: any procedure
based on the current state-of-the-art will be exponential in the size of the jury.
We then look for procedures that limit the required number of tests.
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Remark: Family-Wise Error and Bonferroni Correction. Seeking pro-
cedures that limit the required number of tests highlights the expectation that
it will often be necessary to run multiple tests before settling on a jury. This
implies that we cannot fix a general significance level to be used in all tests, for
the risk of committing type I errors. E.g. setting a significance level of 0.1 while
running 1000 tests makes the family-wise error rate 1, theoretically guaranteeing
one false positive—one jury deemed independent when it is not.

To control the family-wise error rate, we throughout assume the significance
level of the individual tests is adjusted using Bonferroni correction: with
an overall desired significance of α, Bonferroni correction tests the individual
hypotheses at α/m, with m the total number of hypotheses to be tested. As
each of the procedures discussed below specifies such an m and as the significance
level does not affect the complexity of a χ2-test, Bonferroni correction does not
affect the overall test complexity.

Compared to alternative methods, Bonferroni correction fits present purposes
well: First, it is conservative in its estimates, fitting well with the conservatism of
point (iv) from the introduction. Second, it is computationally trivial, compared
e.g. to the stronger Holm-Bonferroni method which requires finding all m P -
values prior to running any tests.

5 Jury Finding Problems

Given a network state sn with jury Jn, we seek to present the users with a con-
servative estimate of the quality of the current entry e in sn. Due to possible
dependencies between jurors, the majority decision of Jn need not be as trust-
worthy as stochastic independence would imply. Therefore, we look for subsets
J∗ ⊆ Jn that retain independence. However, we also seek to constantly improve
correctness of the assessment that we can extract from the agents as the infor-
mation flows through the network. To this end, we look for a jury J∗ in relation
to a jury J ′ ⊆ Jn−1 assumed found independent in the previous round n−1. For
the sake of brevity, we refer to Jn, J ′ and J∗ with the above properties implicit
throughout this section.

5.1 Optimal Juries

The optimal choice of J∗ is any largest set of independent agents that we can
find among those in Jn, as this maximizes collective correctness probability. An
optimal jury may be found by solving the following problem for increasing values
of correctness probability, C:

Problem 3. C-precise Jury is the decision problem
Instance: A social network (A, N), its network state sn with jury Jn, a jury J ′

for state sn−1 and a number C ∈ [c, 1].
Question: Is there an independent subset J∗ ⊆ Jn such that M(J∗) ≥ C?

Finding an optimal choice of J∗ corresponds to finding a solution to the opti-
mization version of C-precise Jury. Using binary search, we need only solve the
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decision problem for O(log(jn − j′)) different values of C, as j′ is a lower bound
on the jury size of interest and the number of possible values of C is limited to
{M(k) : 1 ≤ k ≤ jn}.

The C-precise jury problem is NP-hard, as may be shown by reduction to
the Independent Set problem, cf. e.g. [21]. Given a graph G = (V,E), call a set
A ⊆ V independent∗ if no v, v′ ∈ A are connected by an edge in E. Then:

Problem 4. Independent Set is the decision problem
Instance: A graph G = (V,E), and an integer k ≤ |V |.
Question: Does G contain an independent∗ set of size at least k?

Proposition 5. C-precise Jury is NP-complete.

Proof. We show hardness by reduction to Independent Set which is NP-hard cf.
e.g. [21]. Identify the graph (V,E) with a network (A, N) given by A = V and
N = E. Assume a non-initial diffusion state sn of (A, N) such that Jn = A.
We make no special use of J ′, so let J ′ = {a} for some a ∈ J . Checking that
an independent∗ set of G of size k exists is a special case of checking whether
a jury J∗ with M(j∗) ≥ C exists. Let C = M(k). It is always possible to
find a probability distribution p on voting profiles (vi)i∈A such that two agents
i,j are not independent under p if and only if they are connected by an edge
in N , and where p additionally satisfies that for all A ⊆ A, if all elements
of A are pairwise independent, then A′ is mutually independent. For such p,
independence∗ in (A, N) implies mutual independence in (A, N). As A can
only be mutually independent if it is pairwise independent, mutual independence
also implies independence∗. Hence an independent jury J∗ ⊆ Jn satisfying
M(j∗) ≥ C is also an independent∗ set of size at least k. Inclusion: A simple
guess and check algorithm can be constructed: if we guess a subset J∗ ⊆ Jn, we
can check in polynomial time whether M(J∗) ≥ C.

Finding an optimal jury at state sn requires finding the maximal C for which
the C-precise Jury is solved in the positive. A naive brute force algorithm exam-
ining every candidate subset J ⊆ Jn, j > j′, in the worst case requires running
2jn−1 independence tests. By the result of [20], finding a optimal jury is in
O

(
2jn−1 · (

2jn/2 + 2jn
))

. The naive aspect of this complexity may be dimin-
ished be the algorithm of [22] which finds a maximum independent∗ set in
O(1.1996jn) using polynomial space.

5.2 Error-Diminishing Juries

Due to the exorbitant number of independence tests required, the optimality
of the outcome jury has to be foregone in the interest of computational effi-
ciency. A first alternative is to look for improvements in the collective correctness
probability, without aiming to identify the best possible jury. In the next three
subsections we follow this path.

One option in this direction is to seek a jury that diminishes the error of the
current jury by a given percentage:
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Definition 6. A jury J∗ ⊆ Jn is error-diminishing by h% with respect to
J ′ ⊆ Jn−1 if its probability of an incorrect majority vote is h% lower than that
of J ′. I.e., if 1 − M(j∗) ≤ h

100 (1 − M(j′)).

In finding an error-diminishing jury J∗, the required size depends on the size of
J ′, as well as on the correctness probability c and the increment h. The number
of necessary tests, however, has not been reduced much by this approach:

Proposition 7. Whether a jury J∗ error-diminishing by h% exists can be deter-
mined by testing at most

( j
j+1
2

)
subsets for independence. Worst case, none of

these tests are redundant.

Proof. With a fixed error-diminishing degree h%, there is some j∗ ∈ N given as
a function of the size of J ′ such that only juries of size at least j∗ will be precise
enough. It then suffices to seek through the

(
j
j∗

)
-many size j∗ subsets of J for

an independent jury: no smaller sets will do, and every larger set will be non-
independent if all size j∗ are. With h∗ := 1− h

100 (1−M(j′)), this is the smallest j∗

such that h∗ ≤ M(j∗). This j∗ may be approached from j′ using binary search,
but checking higher values is more expensive: the inequality needed checked for
a value m has a fixed left-hand side, but a right-hand side increasing linearly in
m. Finding j∗ is thus in O(j). Second, we seek for a suitable J∗ ⊆ J . Worst case,
j∗ is argmax

(
j
x

)
= { j−1

2 , j+1
2 }, providing an upper bound of

( j
j+1
2

)
tests before

concluding. The lower bound is established by the worst case where each of the( j
j+1
2

)
subsets may be non-independent due to just one agent. In this case, none

of the tests are redundant.

For reference, we remark that f(x) =
(

x
x+1
2

)
is not a slow-growing function.

In fact, it grows as fast ax, a > 1.

5.3 Incrementally Improved Juries

Since the required number of tests has not appreciably decreased by looking for
error-diminishing juries, we turn to the alternative of improving the collective
correctness probability by a fixed percentage. For a 5% increment, for instance,
the number of required additional jurors is illustrated in Table 1.

Table 1. The number of agents of correctness probability c (in the rows) needed
to reach a certain collective correctness probability (in the columns). Even when the
individual correctness c is relatively low, e.g. c = .6, only 65 independent jurors are
needed to reach a collective correctness probability of 0.95.

.60 .65 .70 .75 .80 .85 .90 .95
c = .6 1 3 7 11 17 27 41 65
c = .75 1 1 1 1 3 5 5 9
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Definition 8. A jury J∗ ⊆ Jn is incremental by h% with respect to J ′ ⊆ Jn−1

if the probability of a correct majority vote is h% higher than that of J ′. I.e., if
(1 + h

100 )M(j′) ≤ M(j∗).

Note that while the error-diminishing requirement above may fail to be satisfied
for some jury J ′ just because there is no sufficiently large independent subset of
the currently exposed agents, finding a jury of improved correctness probability
by a fixed increment may be impossible also because the current jury’s correct-
ness probability cannot be raised by h% without exceeding 1. One may therefore
expect that this could reduce the search for improved juries as compared to the
previous case. However, the required number of tests does not change:

Proposition 9. Whether a jury J∗ incremental by h% exists can be determined
by testing at most

( j
j+1
2

)
subsets for independence. Worst case, none of these tests

are redundant.

Proof. With a fixed desired increment, there is some j∗ ∈ N given as a function
of the size of J ′ such that only juries of size at least j∗ will be precise enough. As
in the proof of Proposition 7, finding j∗ is in O(j) using binary search, but here
we find the smallest j∗ satisfying h∗ ≤ M(j∗) for h∗ := (1 + h

100 )M(c, j′) fixed.
Again as in the proof of Proposition 7, it suffices to seek through the

(
j
j∗

)
-many

size j∗ subsets the same non-redundancy argument applies.

5.4 Monotonic Juries

Looking thus for even simpler approaches, the next possible simplification is
to merely seek any improvement in the correctness probability of the jury. A
corresponding formal requirement is then the following:

Definition 10. A jury J∗ ⊆ Jn is monotonic with respect to J ′ ⊆ Jn−1 if the
probability of a correct majority vote is strictly higher than that of J ′. I.e., if
M(j′) < M(j∗).

Proposition 11. Whether a jury J∗ monotonic with respect to a fixed jury J ′

exists can be determined by testing at most
(

j
j′+2

)
subsets for independence. When

J ′ may grow with J , it can be determined by testing at most
( j

j+1
2

)
subsets for

independence. Worst case, none of these tests are redundant.

Proof. For a fixed size J ′, searching through juries of size j∗ = j′+2 is sufficient:
if an independent jury J∗ of size j∗ is found, it will satisfy M(c, j′) < M(c, j∗);
if no independent size j∗ jury exists, then every larger set will also be non-
independent. Testing each of the

(
j

j′+2

)
size j′+2 subsets may also be necessary,

as each of the subsets may be non-independent due to just 1 agent. When J ′

may grow with J , the upper bound is established by the worst case number of
tests, argmax

(
j
x

)
= { j−1

2 , j+1
2 }. The lower bound is established by the argument

used for Proposition 9.
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5.5 Inflationary Juries

A common cause for the large search space—and hence the many required inde-
pendence tests—across the hitherto considered procedures is that they make
little use of the jury J ′ assumed found in the previous step: only its size mat-
ters, used as a lower bound of the size of an improved jury J∗. The simplification
we now propose is instead based on the idea of looking only for additions to the
current jury J ′, rather than throwing it away and starting the search anew.
In other words, rather than focusing on a general improvement in the correct-
ness probability as we have done in subsections 5.1–5.4, one may instead focus
exclusively on extensions of the current jury J ′.

On the one hand, this approach may be considered the farthest from
Sect. 5.1’s search for an optimal jury, in that an unfortunate start might lead
to a maximal independent set of agents much smaller than an de facto optimal
jury. On the other hand, however, its convenience arises precisely from favoring
simplicity over optimality. As we have seen in Table 1 above, small independent
juries already suffice to achieve a high collective correctness probability, even
when the individual correctness c is low. Given nowadays dimensions of social
networks, a set of a few tens or hundreds of agents is but a minimal fraction
of the total number of users. Hence, even when holding the actual independent
jury J ′ fixed, one may reasonably hope to be able to find another pair of agents
independent of J ′ among the many available users.

The corresponding requirement that the next jury J∗ should satisfy is then
the following:

Definition 12. A jury J∗ ⊆ Jn is inflationary with respect to J ′ ⊆ Jn−1 if it
extends J ′ and the probability of a correct majority vote is strictly higher than
that of J ′. I.e., if J ′ ⊆ J∗ and M(j′) < M(j∗).

By the Condorcet Jury Theorem, to find an inflationary jury, it is sufficient
to find a pair of agents a, a′ ∈ J\J ′ such that J ′ ∪ {a, a′} = J∗ is a jury of
mutually independent agents. We are thus able to greatly reduce the required
number of tests, as stated by the following:

Proposition 13. Whether an inflationary jury J∗ exists can be determined by
testing at most

(
j−j′

2

)
subsets for independence. Worst case, none of these tests

are redundant.

Proof. Given J ′, by the Condorcet Jury Theorem, it suffices to find J∗ with
j∗ = j′ + 2 and J ′ ⊆ J∗. There are

(
j−j′

2

)
candidates of pairs to add to J ′.

Testing each is sufficient; testing each may also be necessary, as each may be
non-independent due to just 1 agent.

As
(
n
2

)
=

∑n−1
k=1 k = (n2−n)

2 , the number of tests required to find an infla-
tionary jury is bounded above by a degree-2 polynomial. The inflationary jury
procedure thus considerably reduces the number of required tests.
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6 Conclusion

We have considered how states of diffusion processes in social networks may be
used as quality evaluations of shared content. We have noted that establishing
independence of juries is essential to rely on wisdom-of-the-crowds results from
jury theorems and to ensure a theoretically sound evaluation, but that indepen-
dence testing is computationally expensive. For this reason, we have sought jury
selection procedures that reduce the number of necessary independence tests.

Of the five selection procedures introduced here, only the inflationary jury
procedure requires a number of tests bounded by a polynomial (of degree 2).
While, given the current algorithms, the time complexity of testing for inde-
pendence remains exponential in the size of the inflationary jury, we have also
shown that there is hope for tractably using the inflationary jury procedure in
practice, as the number of independent jurors needed to achieve a high collective
correctness probability is, even for low individual correctness probability, rather
small, cf. Table 1.

Several fundamental questions remain unexplored, and core elements may
be chosen differently. One question pertains to the amount of data required to
conduct the χ2 tests. Highly competent voters will often vote alike, wherefore a
large set of previous diffusion processes will be required to determine whether
their voting pattern significantly differs deform from the theoretical distribution
under independence. We do not know how this required data grows with com-
petence, and it may thus introduce computational hindrances. Related is the
use of the χ2 test itself. Possibly, alternative statistical approaches may lead to
stronger conclusions about independence. That field should be surveyed, with
complexity issues in mind.

The results presented do not tell us much about the practical difficulty of the
proposed approach. It could be informative to develop a a randomized algorithm,
or applying reduction to SAT to use one the excellent SAT solving algorithms
developed in recent years. Currently, we do not know if the problems posed in
this paper are highly approximate, or exactly solvable for all practical problems.

Finally, it would be instructive to perform empirical evaluations of several
aspects of the proposed approach, to gauge both its efficiency (cf. the above)
and its necessity. As real-life social networks tend to grow large, the continuous
and global observation assumed here may be unfeasible. Due to the large size of
networks, it could also be the case that random sampling of users or other selec-
tion methods de facto provide a way to obtain a correct aggregated judgment
with sufficiently high frequency. Empirical studies could thus be instructive in
determining how to best improve judgment reliability in social networks via jury
theorems.
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Abstract. Term-modal logics, developed by Fitting et al., enable us to
index a modal operator by a term of the first-order logic and even to quan-
tify variables in the index of the modal operator. In this paper, we expand
term-modal logics by allowing a modal operator to be indexed by a finite
sequence of terms as well as a single term. The expanded logics are gener-
alizations of both term-modal logics and quantified modal logics. We pro-
vide sound Hilbert-style axiomatizations (without Barcan-like axioms) for
the logics and establish the strong completeness results for some of the log-
ics. We also propose sequent calculi for the logics and show cut elimination
theorems and Craig interpolation theorems for some of the calculi.

Keywords: Term-sequence-modal logic · Term-modal logic ·
Quantified modal logic · Hilbert system · Sequent calculus

1 Introduction

This paper proposes term-sequence-modal logics (TSMLs), i.e., expansions of
term-modal logics by allowing the term-modal operator in [21] and [4] to be
indexed with a sequence of terms. Our TSMLs overcome a limitation that a
term-modality can only be relativized to one term, and also subsume quantified
modal logics and term-modal logics.

Term-modal logics, developed by Thalmann [21] and Fitting et al. [4], enable
us to index each modal operator by a term and even to quantify variables in the
index of themodal operator.1 Theyhave a number of advantages over propositional

1 We can find the very idea of term-modal logic even in Hintikka’s Knowledge and
Belief, where for a sentence like “a knows that P” he says “a is a name of a person
or [...] a definite description referring to a human being.” [6, p. 3] He also considers
substitution of such names by equality axioms. [6, ch. 6] For some works related to
term-modal logic after [4,21], see [18, ch. 1] and [22].
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multi-modal epistemic logics (MELs)whenwe reason about agents and groups. For
instance, term-modal logics can express a particular agent’s knowledge about her-
self by a formula [a]Pa (“a knows thata isP”) and even all agents’ knowledge about
themselves by a formula ∀x[x]Px (“all agents know that they are P”), but either
of them is difficult to express in MELs.2 Since it is possible even to read the term-
modal operator [·] in term-modal logics as a deontic operator, term-modal logics
provide us a very natural way to formalize sentences in natural languages which
indicate deontic modalities relativized to a term. We can also find some develop-
ments on term-modal logics in [9,16,17,19].

Nevertheless, term-modal logics still have a limitation on relativization of a
modality: a term-modality can only be relativized to one term. This limitation
should be overcome for philosophical investigations, since some modalities seem
to be relativized to two or more terms. One straightforward example is a deontic
modality in “Ada has been obligated by Ben to shoot Charles”. Let us interpret
the term-modal operator [·] as deontic modality. Then a possible formalization
of this sentence in term-modal logics might be like [a]Sac, but it fails to capture
the relation of Ada’s owing the very obligation to Ben. What we need here is at
least a modality relativized to a pair of agents.

Our TSMLs enable us to use such a deontic operator of the form [t, t′], whose
first item stands for an agent who owes the obligation and second item agent
to whom the first agent’s obligation is owed. Then we can naturally formalize
the sentence above by a formula [a, b]Sac. Similar ideas are in fact found in the
literature on modal logic (cf. [10,23]). For example, Yamada [23] has developed a
refined multi-agent monadic deontic logic MDL+II, in which the deontic operator
O(i,j) relativized to a pair of agents i, j is adopted to represent the obligation
generated by j′s command given to i.

Moreover, our TSMLs can subsume quantified modal logics and term-modal
logics in a straightforward way by interpreting a term-sequence-modal operator
[·] as � when having the empty term-sequence ε and as [t] when having a term-
sequence t of length 1, respectively. Note that an assignment of variables we
introduce below plays an essential role which a set of “parameters” plays in
[4,21]. In addition, cut elimination theorems for the sequent calculi (without
labels) for some TSMLs are proved in a proof-theoretic way. Our proofs are
worthwhile since [4] gives only semantic proofs of cut elimination theorems for
the sequent calculi provided in [4] and [16] gives proof-theoretic proofs of cut
elimination theorems for the labeled sequent calculi provided in [16].

The paper proceeds as follows. We first introduce the language of TSMLs
in Sect. 2 and then provide Kripke semantics and Hilbert systems for TSMLs
in Sects. 3 and 4. In Sect. 5 we show the strong completeness results for some
important class of the Hilbert systems for TSMLs, which includes an S5 version
of term-modal logic (Theorems 1 and 2). In Sect. 6 we provide the sequent calculi
which are equipollent to all the Hilbert systems in Sect. 5. We give therein proof-

2 Strictly speaking, a’s knowledge that a is P is not the self knowledge that she would
express by saying “I am P” as a might not know that she is a. For early discussions on
this and related issues, see [6, ch. 6] and [3].
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theoretic proofs for cut elimination theorems and Craig interpolation theorems
for some of the calculi (Theorems 3 and 4).

2 Syntax of Term-Sequence-Modal Logics

The language L of term-sequence-modal logics (TSMLs) consists of a countably
infinite set Var = {x, y, . . . } of variables, finite or countably infinite sets Con =
{ c, d, . . . } of constants and Fn = { f, g, · · · } of function symbols each of which
has a fixed finite arity more than zero, a countably infinite set Pred = {P,Q, . . . }
of predicate symbols each of which has a fixed finite arity, and logical symbols,
¬,⊃,∀ and [·]. We do not include equality symbol. The set Term of terms is
defined as usual and the set Form of formulas of L is defined recursively by

Form � A ::= Pt1 . . . tn | ⊥ | ¬A | (A ⊃ A) | ∀xA | [t1, . . . , tn]A,

where P is a predicate symbol with arity n and t1, . . . , tn are terms. Boolean con-
nectives ∧,∨ are defined as usual and 〈t1, . . . , tn〉A is defined by ¬[t1, . . . , tn]¬A.
We often write �sn or �s instead of s1, . . . , sn for short. We define �A := [ε]A and
♦A as its dual, where ε is an empty sequence.

Definition 1. We define Ln as the sublanguage of L such that the set of all
the term-sequences in term-sequence-modal operators is Termn, i.e., the set of
all term-sequences of length n.

So, L0 can be regarded as the language of the ordinary quantified modal logic
(cf. [7]) and L1 is the language of the term-modal logic developed by [4,21].

We define the sets FV(t),FV(A),FV(Γ ) of free variables in a term t, a formula
A and a set Γ of formulas as usual, except that FV([t1, . . . , tn]A) = FV(t1) ∪
· · · ∪FV(tn)∪FV(A). We also define substitutions s(t/x) and A(t/x) of a term t
for a variable x in a term s and a formula A, respectively, as usual, except that
([s1, . . . , sn]A)(t/x) ≡ [s1(t/x), . . . , sn(t/x)]A(t/x), where a notation A ≡ B
means that A is identical with B as a string of symbols.

3 Kripke Semantics for Term-Sequence-Modal Logics

In this section we introduce Kripke semantics for our syntax and establish the
definability results for TSMLs. With respect to interpretations of constants and
function symbols, we follow Thalmann [21] and Fitting et al. [4] just for making
easy the comparison between our TSMLs and original term-modal logics. An
assignment we introduce below plays a role which a set of “parameters” plays in
[4,21].

Let D be a nonempty set which is called the domain and whose elements
are assumed to be agents in this paper. A frame over D is a tuple 〈W,D,R〉,
where W is a nonempty set whose elements are called states; D is a W -indexed
family (Dw)w∈W of a non-empty subset of D;3 R is a subset of W × D<ω × W

3 A frame over D for L must satisfy that
⋂

w∈W Dw �= ∅ if Con �= ∅ in L.
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where D<ω is the set of all finite sequences of D and R satisfies the monotonicity
condition or the inclusion requirement : if (w, �d, v) ∈ R then Dw ⊆ Dv for all
w, v ∈ W and all �d ∈ D<ω. We often write (w, �d, v) ∈ R as wR�dv. A model
over D is a tuple (F, V, I), where F is a frame, V is a valuation that maps each
state w and each predicate symbol P of arity n to a subset Vw(P ) ⊆ Dn

w, and I
is an interpretation that maps each constant c to an element I(c) ∈ ⋂

w∈W Dw

and each function symbol f of arity n to an n-place function I(f) : Dn → D
such that I(f)(d1, . . . , dn) ∈ Dw for all (d1, . . . , dn) ∈ Dn

w. An assignment α is
a function from Var to D and its domain can be extended to Term by defining
α(c) := I(c) and α(f(t1, . . . , tn)) := I(f)(α(t1), . . . , α(tn)). We denote α(x|d) as
the same assignment as α except for assigning d to x.

Given a model M = (W,D,R, V, I) over D, w ∈ W , a formula A, and an
assignment α such that α(x) ∈ Dw for all x ∈ FV(A), the satisfaction relation
M,w,α |= A is defined as follows.

1. M,w, α |= Pt1 . . . tn iff (α(t1), . . . , α(tn)) ∈ Vw(P )
2. M,w, α �|= ⊥
3. M,w, α |= ¬B iff M,w,α �|= B

4. M,w, α |= B ⊃ C iff M,w,α |= B implies M,w,α |= C

5. M,w, α |= ∀xB iff M,w,α(x|d) |= B for any d ∈ Dw

6. M,w, α |= [t1, . . . , tn]B iff M,v, α |= B for any v ∈ W such that
wR(α(t1),...,α(tn))v.

Below we often write α(t1, . . . , tn) instead of (α(t1), . . . , α(tn)) for short.

Definition 2 (Validity). Let M be a model over D, w a state in W , and A be
a formula. We say that A is valid at w in M (written: M,w |= A) if M,w,α |= A
for all assignments α such that α(x) ∈ Dw for all x ∈ FV(A). We also say that
A is valid in M (written: M |= A) if M,w |= A for all w ∈ W , that A is valid
in a frame F (written: F |= A) if M |= A for all models M based on F , and
that A is valid in a class F of frames if F |= A for all F ∈ F. Finally, we write
M,w,α |= Γ if M,w,α |= B for all B ∈ Γ and say that A is a consequence from
a set Γ of formulas in F (written: Γ |=F A) if M,w,α |= Γ implies M,w,α |= A
for all models M based on any F ∈ F, all states w, all assignments α such that
α(x) ∈ Dw for all x ∈ FV(Γ,A).

Definition 3 (Frame Properties). Let n ∈ N and F = 〈W,D,R〉 be a frame
over D.

1. F is n-serial if for all w ∈ W , �d ∈ Dn
w, there is a v ∈ W , wR�dv.

2. F is n-reflexive if for all w ∈ W and �d ∈ Dn
w, wR�dw.

3. F is n-symmetric if for all w, v ∈ W and �d ∈ Dn
w, if wR�dv then vR�dw.

4. F is n-transitive if for all w, v, u ∈ W and �d ∈ Dn
w, if wR�dv and vR�du then

wR�du.
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If n = 0 and so D0 = { ε }, each frame is serial, reflexive, symmetric and transitive
in the ordinary sense by identifying Rε with a binary relation R.

Definition 4. A set Γ of formulas defines a class F of frames when the equiv-
alence F |= Γ iff F ∈ F holds for each frame F . If Γ = {A }, we say that A
defines F. We denote by FΓ the class of all frames defined by Γ .

Proposition 5. If Γ1 and Γ2 define F1 and F2 respectively, then Γ1∪Γ2 defines
F1 ∩ F2.

Proposition 6. Each formula in Table 1 defines the class of frames satisfying
the corresponding property.

Example 1. When n = 0 and we restrict our attention to L0, we can
obtain from Proposition 6 the frame definability results for the ordinary quan-
tified modal logic. For example, D0 means �P ⊃ ♦P and it defines serial-
ity of R in the ordinary sense. When n = 1 and we focus on the sublan-
guage L1 (the syntax for term-modal logic), Propositions 6 and 5 tell us that
{ [x]P ⊃ P, [x]P ⊃ [x][x]P, P ⊃ [x]〈x〉P } defines the class of Kripke frames F =
(W,R,D) for term-modal logics (cf. [4,21]) where F is 1-reflexive, 1-transitive
and 1-symmetric.

Table 1. Frame definability of all properties in Definition 3 (n ∈ N)

Dn [xn]P n P Tn [xn]P ⊃ P Bn P ⊃ [xn] n P 4n [xn]P ⊃ [ n][ n]P

n-seriality n-reflexivity n-symmetry n-transitivity

4 Hilbert Systems for Term-Sequence-Modal Logics

The Hilbert system H(tK) for the minimal term-sequence-modal logic tK is
given in Table 2. Axiom schemata A1 to A5 and inference rules MP and Gen
are just from first-order logic. Only the axiom tK and the inference rule Nec
are additional parts for TSMLs. The Hilbert systems with additional axiom
schemata are defined as follows.

Definition 7. Given a set Σ ⊆ ⋃
n∈N

{Dn,Tn,Bn, 4n }, Hilbert system H(tKΣ)
for tKΣ consists of all axioms and inference rules of H(tK) as well as all sub-
stitution instances of a formula in Σ with respect to variables �xn and 0-arity
predicate symbol P in the formula. The Hilbert system H(tKΣ � Ln) is the
restriction of H(tKΣ) to the sublanguage Ln of L.

When Σ is a familiar combination of axioms, say Σ = {Tn, 4n } or {Tn, 4n,Bn },
we simply write, say, H(tS4n) or H(tS5n), as naturally expected. The notion of
proof in a Hilbert system is defined as usual.
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Table 2. Hilbert system H(tK) for the minimal term-sequence-modal logic

Axiom Schemata

A1 A ⊃ (B ⊃ A) A4 ⊥ ⊃ A

A2 (A ⊃ (B ⊃ C)) ⊃ ((A ⊃ B) ⊃ (A ⊃ C)) A5 ∀xA ⊃ A(t/x)

A3 (¬B ⊃ ¬A) ⊃ (A ⊃ B) tK [t](A ⊃ B) ⊃ ([t]A ⊃ [t]B)

Inference Rules

A ⊃ B A
MP

B

A ⊃ B(y/x)
Gen†

A ⊃ ∀xB

A
Nec

[t]A
†: y FV(A, ∀xB).

Example 2. A combination Σ of axiom schemata on term-sequence-modal
operators [�t] of different length is possible. For example, let us consider
Σ = {D0,T1 } and suppose that [t] is read as an epistemic modality and �
as a deontic modality. Then the resulting Hilbert system H(tKD0T1) has axiom
schemata of �A ⊃ ♦A and [t]A ⊃ A. Moreover, we can establish that [c]�P ⊃
♦P (“if c knows that it is obligatory that P , then it is permissible that P”) is
provable in H(tKD0T1) but it is neither provable in H(tKD0) nor H(tKT1).
When we consider the sublanguage L0, H(tKD0� L0) is the Hilbert system of
the smallest normal quantified modal logic (without Barcan axioms: ∀x�A ⊃
�∀xA) which contains the axiom schema D (the Hilbert system LPC + KD in
[7, p. 282]). When we focus on the sublanguage L1 and Σ ⊆ {T1,D1, 41 }, then
we can provide the previously unknown Hilbert systems H(tKΣ�L1) for all the
corresponding term-modal logics studied in [4]. When Σ = {T1, 41,B1 }, the
system H(tKT141B1�L1) (or H(tS51�L1) simply) is the Hilbert system of the
term-modal logic expansion of S5, which was not studied at all in [4].

Proposition 8. Let Σ ⊆ ⋃
n∈N

{Dn,Tn,Bn, 4n } such that Bk ∈ Σ. Then,

∀x[t1, . . . , tk]A ⊃ [t1, . . . , tk]∀xA

is provable in H(tKΣ) provided x �∈ FV(t1) ∪ · · · ∪ FV(tk).

The condition x �∈ FV(t1) ∪ · · · ∪ FV(tk) is crucial in Proposition 8 as Kooi
pointed out in [9] for term-modal logic. By Proposition 8, whenever Bk ∈ Σ,
every model for tKΣ has a “local” constant domain in the sense that wR �dk

v
implies Dw = Dv.

The soundness results for TSMLs are easy to establish by Proposition 6.

Proposition 9 (Soundness). Let Σ ⊆ ⋃
n∈N

{Dn,Tn,Bn, 4n }. Then if a for-
mula A is provable in H(tKΣ) then A is valid in the class FΣ of frames defined
by Σ.
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5 Strong Completeness of Term-Sequence-Modal Logics

Given Σ ⊆ ⋃
n∈N

{Dn,Tn,Bn, 4n }, we say that H(tKΣ) is strongly complete
with respect to a class F of frames just in case if Γ |=F A then Γ �H(tKΣ) A for
any set Γ ∪ {A } of formulas. In this section we show the strong completeness
results of Hilbert systems for TSMLs without any Bn axiom schema and the
Hilbert system for a TSML which can be seen as an S5 version of term-modal
logic. More precisely: for any Σ ⊆ ⋃

n∈N
{Dn,Tn, 4n }, we show the strong com-

pleteness results of H(tKΣ) and H(tS51� L1). The strong completeness result
of H(tS51 � L1) is important, because the strong completeness result of an S5
version of term-modal logic corresponding to our H(tS51�L1) is not provided in
[4,21].4

We stipulate necessary notations and terminology. Let Σ ⊆ ⋃
n∈N

{Dn,Tn,
Bn, 4n}. A set Γ of formulas is tKΣ-inconsistent if Γ �H(tKΣ) ⊥, and Γ is
tKΣ-consistent if Γ is not tKΣ-inconsistent. The set Γ is a tKΣ-maximally
consistent set (tKΣ-MCS for short) if Γ is tKΣ-consistent and A ∈ Γ or ¬A ∈ Γ
for any formula A ∈ Form(Γ ), where Form(Γ ) = { A |FV(A) ⊆ FV(Γ ) }. The set
Γ has ∀-property if for any formula of the form ∀xA in Form(Γ ), there is a
variable y ∈ FV(Γ ) such that A(y/x) ⊃ ∀xA ∈ Γ . We define L+ := L ∪ Var+

and L+
1 := L1 ∪Var+, where Var+ is a countably infinite set of variables disjoint

from those in L. We also say that Γ is modest if Var+\FV(Γ ) is infinite and that
Γ is full if FV(Γ ) = Var+. The former notion plays a role to prove the strong
completeness results of H(tKΣ) where Σ ⊆ ⋃

n∈N
{Dn,Tn, 4n } and the latter

notion plays a role to prove the strong completeness result of H(tS51�L1).

5.1 Strong Completeness of Hilbert Systems for TSMLs Without
Any Bn axiom schema

Let Σ ⊆ ⋃
n∈N

{Dn,Tn, 4n } and Λ := tKΣ throughout this subsection.

Lemma 1 (Lindenbaum Lemma). Let Γ be a modest Λ-consistent set in
L+. There is a modest Λ-MCS Γ+ with ∀-property in L+ such that Γ ⊆ Γ+.

Lemma 2. Let Γ be a modest Λ-MCS with ∀-property in L+. Then, for any
formula of the form [�t]A in Form(Γ ), if [�t]A �∈ Γ then there is a modest Λ-MCS
Δ with ∀-property in L+ such that

{
B | [�t]B ∈ Γ

} ∪ {¬A } ⊆ Δ.

Definition 10 (Canonical Λ-Model). Let D be the set of terms in L+. The
canonical Λ-model MΛ = (WΛ,DΛ, RΛ, V Λ, IΛ) over D is defined by

– WΛ := { Γ |Γ is a modest Λ -MCS with ∀ -property in L+ };
4 The strong completeness results of H(tKΣ) for all Σ ⊆ ⋃

n∈N
{Dn,Tn, 4n,Bn } such

that Bk ∈ Σ for some k ∈ N are not presented in this paper. For example, the
Hilbert system H(tKB1) is not yet proved to be strongly complete, as the ordinal
canonical model construction is not so straightforward for tKB1. The step-by-step
method introduced in [2, p. 223] might be applicable for the strong completeness
results of the Hilbert systems for such logics, but we have not done yet.
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– DΛ
Γ := Term(Γ );

– ΓRΛ
�tn

Δ iff �tn ∈ (DΛ
Γ )n and

(
[�tn]A ∈ Γ implies A ∈ Δ

)
for all formulas A in

L+;
– (t1, . . . , tn) ∈ V Λ

Γ (P ) iff Pt1 . . . tn ∈ Γ ;
– IΛ(c) = c;
– IΛ(f)(t1, . . . , tn) = f(t1, . . . , tn);

where Term(Γ ) is the set of terms whose variables are restricted to FV(Γ ).

Proposition 11. The canonical Λ-model MΛ is a model.

Lemma 3 (Truth Lemma). Let MΛ be the canonical Λ-model and ι be the
canonical assignment defined by ι(x) = x. For any formula A in L+ and any
Γ ∈ WΛ such that A ∈ Form(Γ ), A ∈ Γ iff MΛ, Γ, ι |= A.

Theorem 1 (Strong Completeness of H(tKΣ)). Let Σ ⊆ ⋃
n∈N

{Dn,
Tn, 4n}. The Hilbert system H(tKΣ) is strongly complete with respect to the
class FΣ of frames defined by Σ.

Proof (Sketch). Recall Λ = tKΣ and suppose Γ ��H(Λ) A. By Lemma 1 we con-
struct a modest Λ-MCS Γ+ with ∀-property in L+ such that Γ ∪ {¬A } ⊆ Γ+.
Construct the canonical Λ-model MΛ and the canonical assignment ι. By
Lemma 3 we then get MΛ, Γ+, ι |= Γ ∪ {¬A }. This establishes Γ �|=FΣ

A,
since the frame of MΛ has the frame properties defined by Σ. ��
Corollary 12. Given Σ ⊆ {D1,T1, 41 }, H(tKΣ� L1) are sound and strongly
complete with respect to the class of frames defined by Σ.

5.2 Strong Completeness of H(tS51�L1)

We let Λ := tS51�L1 throughout this subsection.

Lemma 4. Let Γ be a full Λ-MCS with ∀-property in L+
1 . Then, for any formula

of the form [t]A in Form(Γ ), if [t]A �∈ Γ then there is a full Λ-MCS Δ with ∀-
property in L+

1 such that { B | [t]B ∈ Γ } ∪ {¬A } ⊆ Δ.

Proof (Sketch). We basically follows the strategy developed in [7]. Fix any
formula of the form [t]A in Form(Γ ) such that [t]A �∈ Γ and let [t]−1Γ =
{ B | [t]B ∈ Γ } ∪ {¬A }. Enumerate Var+ and all formulas of the form ∀xC in
Form(Γ ). We first define a chain (Δn)n∈N of sets of formulas by Δ0 := [t]−1Γ and
Δn+1 := Δn ∪ { (C(ym/x) ⊃ ∀xCn) }, where m is the first number in the enu-
meration on Var+ such that Δn+1 is Λ-consistent. Then, the following argument
guarantees that there is always a variable y such that Δn∪{ (C(ym/x) ⊃ ∀xCn) }
is Λ-consistent. Suppose for contradiction that such a y does not exist. Following
the strategy developed in [7], we can claim
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(1) Γ � [t](D ⊃ ¬(C(y/x) ⊃ ∀xCn)) for each variable y
(2) Γ � [t](D ⊃ ¬(C(y/x) ⊃ ∀xCn)) ⊃ ∀z[t](D ⊃ ¬(C(z/x) ⊃ ∀xCn)) for some

variable y,

where D ≡ ¬A ∧ D1 ∧ · · · ∧ Dm for some D1, . . . , Dm ∈ Δn and a variable z
does not occur in t, D nor ∀xCn. Then, we can show [t]¬D ∈ Γ by (1), (2)
and Proposition 8; hence Δn ∪ { (C(ym/x) ⊃ ∀xCn) } is Λ-inconsistent and so a
contradiction occurs. Thus the construction above is possible. From

⋃
n∈N

Δn

we can construct a full Λ-MCS Δ with ∀-property in L+
1 such that [t]−1Γ ⊆⋃

n∈N
Δn ⊆ Δ. ��

Definition 13 (Canonical Λ-model). Let D be the set Term+ of terms in
L+
1 . The canonical Λ-model M = (W,D,R, V, I) over D is defined by

– W :=
{

Γ |Γ is a full Λ-MCS with ∀-property in L+
1

}
;

– DΓ := Term+;
– ΓRtΔ iff

(
[t]A ∈ Γ implies A ∈ Δ

)
for all formulas A in L+

1 ;
– (t1, . . . , tn) ∈ VΓ (P ) iff Pt1 . . . tn ∈ Γ ;
– I(c) = c;
– I(f)(t1, . . . , tn) = f(t1, . . . , tn).

Proposition 14. The canonical Λ-model M is a model.

Lemma 5 (Truth Lemma). Let M be the canonical Λ-model and ι be the
canonical assignment defined by ι(x) = x. For any formula A in L+

1 and any
Γ ∈ W , A ∈ Γ iff M,Γ, ι |= A.

Theorem 2 (Strong Completeness of H(tS51 � L1)). The Hilbert system
H(tS51� L1) is strongly complete with respect to the class of frames defined by
{T1,B1, 41 }.
Proof (Sketch). Recall Λ = tS51 � L1 and define Σ := {T1,B1, 41 }. Suppose
Γ ��H(Λ) A. As in the proof of Theorem1, construct a full Λ-MCS Γ+ with ∀-
property in L+ such that Γ ∪{¬A } ⊆ Γ+ and the canonical Λ-model M and the
canonical assignment ι. By Lemma 5 we then get M,Γ+, ι |= Γ ∪ {¬A }. This
establishes Γ �|=FΣ

A, since the frame of MΛ has the frame properties defined
by Σ. ��

6 Sequent Calculi for Term-Sequence-Modal Logics

In this section, we provide sequent calculi for all Hilbert systems in Sects. 5.1 and
5.2. Let Σ ⊆ ⋃

n∈N
{Dn,Tn, 4n } and Γ,Δ be finite multisets of formulas. We

also define [�t]Γ :=
{

[�t]A |A ∈ Γ
}
, Σn := { Xn |Xn ∈ Σ } and call an expression

Γ ⇒ Δ a sequent. A sequent calculus G for first-order logic consists of initial
sequents, structural rules and logical rules displayed in Table 3. The sequent
calculus G(tKΣ) and G(tS51�L1) are defined as follows.
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Definition 15. Given Σ ⊆ ⋃
n∈N

{Dn,Tn, 4n }, the sequent calculus G(tKΣ) is
obtained from G by adding all additional rules for Σn for each n ∈ N displayed in
Table 3. The sequent calculus G(tS51�L1) for the sublanguage L1 of L is obtained
from the restriction of G to L1 by adding all additional rules for {T1,B1, 41 }
displayed in Table 3. We call G−(tKΣ) to be the calculus obtained by removing
Cut from G(tKΣ).

The notion on a derivation in a sequent calculus is defined as usual.

Example 3.

1. Recall a formula [c]�P ⊃ ♦P in Example 2. Let us consider Σ = {D0,T1 }.
Then, a derivation of the formula in G(tKD0T1) is given as follows:

P ⇒ P ¬ ⇒
P,¬P ⇒ �D0�P,�¬P ⇒ ⇒ ¬�P ⇒ ¬�¬P �T1

[c]�P ⇒ ¬�¬P ⇒⊃⇒ [c]�P ⊃ ¬�¬P

2. We give another example. Let us consider Σ = {T1,B1, 41 }. Then, P ⊃
[t]〈t〉P is derivable in G(tS51�L1) as follows:

P ⇒ P ¬ ⇒¬P, P ⇒ �T1
[t]¬P, P ⇒ ⇒ ¬
P ⇒ ¬[t]¬P

[t]¬P ⇒ [t]¬P ⇒ ¬⇒ ¬[t]¬P, [t]¬P
�tS51⇒ [t]¬[t]¬P, [t]¬P ¬ ⇒¬[t]¬P ⇒ [t]¬[t]¬P
Cut

P ⇒ [t]¬[t]¬P ⇒⊃⇒ P ⊃ [t]¬[t]¬P

Note that an application of Cut is necessary in any derivation of P ⊃ [t]〈t〉P
in G(tS51�L1), as pointed out in [13, p. 124] and [14, p. 222].5

Proposition 16 (Equipollence). Let Σ ⊆ ⋃
n∈N

{Dn,Tn, 4n }. It holds that
�H(tKΣ) A iff �G(tKΣ) ⇒ A. It also holds that �H(tS51�L1) A iff �G(tS51�L1) ⇒ A.

Theorem 3 (Cut Elimination). Let Σ ⊆ ⋃
n∈N

{Dn,Tn, 4n }. If �G(tKΣ)

Γ ⇒ Δ then �G−(tKΣ) Γ ⇒ Δ.

Proof (Sketch). We can prove cut elimination theorem for G(tKΣ) by the
method of the extended rule Cut∗ of Cut introduced in [8,15]:

5 Thalmann and Fitting’s method for proving the strong completeness results of term-
modal logics only works for cut-free systems, which seems to be the reason why they
do not provide the strong completeness result of an S5 version of term-modal logic
in [4,21].
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Table 3. Sequent calculi G and additional rules

Initial Sequents of G

A ⇒ A ⊥ ⇒
Structural Rules of G

Γ ⇒ Δ ⇒ w
Γ ⇒ Δ, A

Γ ⇒ Δ w ⇒
A, Γ ⇒ Δ

Γ ⇒ Δ, A, A ⇒ c
Γ ⇒ Δ, A

A, A, Γ ⇒ Δ
c ⇒

A, Γ ⇒ Δ

Γ ⇒ Δ, A A, Θ ⇒ Σ
Cut

Γ, Θ ⇒ Δ, Σ

Logical Rules of G

A, Γ ⇒ Δ ⇒ ¬
Γ ⇒ Δ, ¬A

Γ ⇒ Δ, A ¬ ⇒¬A, Γ ⇒ Δ

A, Γ ⇒ Δ, B ⇒ ⊃
Γ ⇒ Δ, A ⊃ B

Γ ⇒ Δ, A B, Θ ⇒ Σ ⊃ ⇒
A ⊃ B, Γ, Θ ⇒ Δ, Σ

Γ ⇒ Δ, A(y/x)
⇒ ∀†

Γ ⇒ Δ, ∀xA

A(t/x), Γ ⇒ Δ ∀ ⇒∀xA, Γ ⇒ Δ

†: y does not occur in Γ, Δ, ∀xA.

Σn Additional rules

∅
Γ ⇒ A tKn
Γ ⇒ A

{Dn } Γ ⇒ A

Γ ⇒ A

tKn⇒ A

Γ ⇒ Dn
[tn]Γ[tn] [tn]

[tn][tn]

Γ

⇒ A[tn] [tn]Γ

⇒

{Tn } tKn
A, Γ ⇒ Δ

Tn
[tn]A, Γ ⇒ Δ

{ 4n } Γ, [tn]Γ ⇒ A
4n

[tn]Γ ⇒ [tn]A

{Dn, 4n } Γ, [tn]Γ ⇒
Dn

[tn]Γ ⇒
Γ, [tn]Γ ⇒ A

4n
[tn]Γ ⇒ [tn]A

{Tn, 4n } A, Γ ⇒ Δ
Tn

[tn]A, Γ ⇒ Δ

[tn]Γ ⇒ A
4n

[tn]Γ ⇒ [tn]A

{T1,B1, 41 } A, Γ ⇒ Δ
T1[t]A, Γ ⇒ Δ

[t]Γ ⇒ [t]Δ, A
tS51[t]Γ ⇒ [t]Δ, [t]A
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Γ ⇒ Δ,Am An, Θ ⇒ Σ
Cut∗,

Γ,Θ ⇒ Δ,Σ

where m,n can be zero; each A is called cut formula; Γ ⇒ Δ,Am and An, Θ ⇒ Σ
are called the left premise and right premise of Cut∗, respectively. The outline
of proof is as follows: let G∗(tKΣ) be G(tKΣ) in which Cut is replaced by Cut∗.
As Cut is an instance of Cut∗, it suffices to show that if �G∗(tKΣ) Γ ⇒ Δ then
�G−(tKΣ) Γ ⇒ Δ. We say that a derivation D in G∗(tKΣ) is of the Cut∗-bottom
form if the last applied rule in D is Cut∗ and there are no other applications of
Cut∗ in D. We also let the weight of a derivation of Cut∗-bottom form be the
number of sequents occurring in D except for its root. Then, given a derivation
of Cut∗-bottom form of a sequent Γ ′ ⇒ Δ′ in G∗(tKΣ), by double induction
on complexity of the cut formula and weight of the derivation we can construct
a derivation of Γ ′ ⇒ Δ′ with no applications of Cut∗ in G−(tKΣ). This proves
that if �G∗(tKΣ) Γ ⇒ Δ then �G−(tKΣ) Γ ⇒ Δ. ��
From Theorem 3, we can prove the consistency of G(tKΣ) in a purely proof-
theoretic way.

Corollary 17. Let Σ ⊆ ⋃
n∈N

{Dn,Tn, 4n }. Then ��G(tKΣ)⇒ ⊥.

Proof. Suppose for contradiction that �G(tKΣ)⇒ ⊥. It follow from �G(tKΣ) ⊥ ⇒
that �G(tKΣ)⇒ by Cut. We deduce from Theorem 3 that �G−(tKΣ)⇒ in the cut-
free system, which cannot be the case from all the rules of the cut-free system
G−(tKΣ). ��

We can also prove Craig interpolation theorem for G(tKΣ) whose language
L is restricted so that Con = Fn = ∅. We prove this by the Maehara method
introduced in [11,12]. The outline of proof is as follows. Given a sequent Γ ⇒ Δ,
we call an expression ((Γ1;Γ2), (Δ1;Δ2)) a partition of Γ ⇒ Δ, where Γ ≡ Γ1, Γ2

and Δ ≡ Δ1,Δ2. By Pred(Γ ) we denote the set of predicate symbols in a set Γ
of formulas. We can show the following:

Lemma 6. Let Σ ⊆ ⋃
n∈N

{Dn,Tn, 4n } and restrict L so that Con = Fn = ∅.
If �G−(tKΣ) Γ ⇒ Δ, then for any partition ((Γ1;Γ2), (Δ1;Δ2)) of Γ ⇒ Δ, there
is a formula F such that

1. �G−(tKΣ) Γ1 ⇒ Δ1, F and �G−(tKΣ) F, Γ2 ⇒ Δ2;
2. Pred(F ) ⊆ Pred(Γ1,Δ1) ∩ Pred(Γ2,Δ2);
3. FV(F ) ⊆ FV(Γ1,Δ1) ∩ FV(Γ2,Δ2).

We say that F is an interpolant of ((Γ1;Γ2), (Δ1;Δ2)).

Proof (Sketch). Suppose �G−(tKΣ) Γ ⇒ Δ. By induction on height of the
derivation Γ ⇒ Δ, we show that there is an interpolant for any partition
π = ((Γ1;Γ2), (Δ1;Δ2)) of Γ ⇒ Δ. Since if either Γ1 ∪ Δ1 = ∅ or Γ2 ∪ Δ2 = ∅

then ⊥ ⊃ ⊥ or ⊥ is an interpolant of π respectively, we may assume that
Γ1 ∪ Δ1 �= ∅ and Γ2 ∪ Δ2 �= ∅ for any partition π in what follows. Among
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the inductive cases, the only cases on term-sequence-modal operators are cru-
cial. For example, consider the case that Γ ⇒ Δ is obtained by �tK. In this
case, we have the derivation of [�t]Γ ′ ⇒ [�t]A whose premise is Γ ′ ⇒ A, where
Γ ≡ [�t]Γ ′ and Δ ≡ [�t]A. Fix any partition π of [�t]Γ ′ ⇒ [�t]A. Then, either
π = (([�t]Γ ′

1; [�t]Γ
′
2), ([�t]A; ∅)) or π = (([�t]Γ ′

1; [�t]Γ
′
2), (∅; [�t]A)). Since similar argu-

ments are available in either case, we consider only the former case. By induc-
tive hypothesis we get an interpolant C of ((Γ ′

1;Γ
′
2), (A; ∅)), so we can show

� [�t]Γ ′
1 ⇒ [�t]A,¬[�t]¬C and � ¬[�t]¬C, [�t]Γ ′

2 ⇒. Then, since our assumption guar-
antees Γ ′

2 �= ∅ (by Δ′
2 = ∅ and Γ ′

2 ∪ Δ′
2 �= ∅ in our partition π), we have

FV(¬[�t]¬C) ⊆ FV([�t]Γ ′
1, [�t]A)∩FV([�t]Γ ′

2). So similarly for the condition on pred-
icate symbols. Thus ¬[�t]¬C is an interpolant of π. ��
By cut elimination theorem and Lemma 6, Craig interpolation theorem
follows.

Theorem 4 (Craig Interpolation). Let Σ ⊆ ⋃
n∈N

{Dn,Tn, 4n } and restrict
L so that Con = Fn = ∅. If �G(tKΣ) A ⇒ B, then there is a formula C such
that

1. �G(tKΣ) A ⇒ C and �G(tKΣ) C ⇒ B;
2. Pred(C) ⊆ Pred(A) ∩ Pred(B);
3. FV(C) ⊆ FV(A) ∩ FV(B).

7 Conclusion

We list some directions for further research. One of our next tasks may be to
pursue a possibility of dropping the monotonicity assumption inherited from [4].
Common sense modal predicate logic, presented by van Benthem in [1, pp. 120–
121] and further developed by Seligman in [20], seems to be of much interest
in this regard. It allows the domain of each world to be different from those of
others in any way as long as it remains non-empty, and only requires individual
quantifiers to range over the local domain of objects existing in the current
world.6 On this treatment, some of the instances of Barcan schema are not, but
all of the instances of its converse are, valid. Thus, it seems of much interest to
incorporate this treatment of individual quantifiers into TSMLs.

In addition, it would be worth developing TSMLs with equality, since there
are cases in which we would like to distinguish x and y in a formula [x, y]Pxy.
Fitting et al. [4] does not consider any term-modal logics with equality. In [19]
Rendsvig develops an epistemic term-modal logic with equality, but he adopts
the constant domain semantics (whose domain always has at least n agents) and
interprets constant symbols as rigid designators unlike Fitting et al. [4] and our
settings. Neither of [4,19], however considers the sequent calculi for term modal
logics with the equality symbol. Thus, the task to develop TSMLs with equality
from proof-theoretic perspective remains interesting.
6 This treatment is also found in the definition of the semantics of modal predicate
logic given by Gamut in [5, pp. 59–60].



Term-Sequence-Modal Logics 257

Another immediate task may be the dynamification of TSMLs. While in [9]
Kooi develops a dynamic epistemic predicate logic by introducing the notion
of the product update into term-modal logic, we are interested in developing a
dynamic deontic TSML that characterizes the effects of various speech acts. As
the language of the dynamic deontic logic of acts of commanding and promising
developed in [24] has a set of deontic operators of the form O(i,j.k), where i, j and
k stand for the agent who owes the obligation, the agent to whom i’s obligation
is owed, and the agent who creates the obligation respectively, it is natural to
recast and extend this logic in a deontic TSML having a term-sequence-modal
operator O(x,y,z) := [x, y, z]. Then, for example, a formula O(x,y,x)Pxy is read
as “it is obligatory for x with respect to y by the name x to see to it that Pxy”.
Thus, by defining in the deontic TSML a model updating operation for act of,
say, promising [Prom(x, y,A)] which is read as “x promises y to see to it that
A”, it becomes possible for us to state the truth conditions for formulas such as
∀x∀y[Prom(x, y, Pxy)]O(x,y,x)Pxy (“for any agents x, y, whenever x promises y
to see to it that Pxy, it is obligatory for x with respect to y by the name of
x to see to it that Pxy”). In addition to this, we may extend this dynamified
deontic TSML further by adding epistemic modalities to it. This will enable us
to recast and extend the dynamified epistemic deontic logic developed in [25],
which deals with the effects of acts of requesting and asserting along with acts
of commanding and promising.
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Abstract. The paper focuses on a recent challenge brought forward
against the interventionist approach to the meaning of counterfactual
conditionals. According to this objection, interventionism cannot in gen-
eral account for the interpretation of right-nested counterfactuals, the
problem being its strict interventionism. We will report on the results
of an empirical study supporting the objection, and we will extend the
well-known logic of actual causality with a new operator expressing an
alternative notion of intervention that does not suffer from the problem
(and thus can account for some critical examples). The core idea of the
alternative approach is a new notion of intervention, which operates on
the evaluation of the variables in a causal model, and not on their func-
tional dependencies. Our result provides new insights into the logical
analysis of causal reasoning.

1 Introduction

The meaning of counterfactual conditionals, sentences of the form “If A were/had
been the case, then B would be/have been the case”, bears an intrinsic relation
to a number of central scientific problems, like the nature of reasoning, the pos-
sibility of knowledge, and the status of laws of nature. Therefore, this topic has
fascinated many thinkers from various disciplines: philosophy, logic, psychology
and others. But despite a lot of effort, no consensus has been reached yet about
how the meaning of these sentences needs to be approached.

Following the similarity approach of Stalnaker and Lewis [1,2], which still is
the dominant approach in the philosophical literature, counterfactuals are evalu-
ated as follows. Given the antecedent A and the context of evaluation, we select
certain (hypothetical) situations in which the antecedent is true, then checking
whether they make the consequent B true as well. The question is how to define
the relevant selection function correctly. According to Lewis and Stalnaker, the
selection is based on similarity: we select those hypothetical situations that are
most similar to the actual world. But this proposal is known to be problematic:
among other things, it appears to be too flexible.
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In recent years the interventionist approach to counterfactuals became very
popular ([3–7] and others). This approach describes the truth conditions of coun-
terfactuals with respect to a representation of the relevant causal dependencies,
building on Causal Models as introduced in [8,9]. The approach got its name
from the way it describes the selection function. The antecedent is made true
by intervention on the given causal dependencies: it is cut off its causal parents
and stipulated to be true by law.1

Recently, this approach has been criticized by Fisher [12]. He claims that
interventionism makes incorrect predictions for right-nested counterfactuals.
According to Fisher, the problem is a particular property of the intervention-
ist approach, strict interventionism, which he argues needs to be dropped in a
proper account. We will argue, using the results of an empirical study, that Fisher
is right in his critique. But this does not mean that the interventionist approach
needs to be given up. We will propose a variation of the approach that drops
strict interventionism and can account for Fisher’s core-observations. We will
also make precise how this new proposal relates to the classical interventionist
approach as spelled out in [6]. We will do so by providing an axiomatization of the
new operator for counterfactual reasoning that we introduce. As it will turn out,
this new operator can be already defined in terms of the classical intervention
operator. Furthermore: to a large extend, they both make the same counterfac-
tuals true. So, our proposal, though formalizing a slightly different take on what
intervention means, is in terms of logical properties a very conservative change
of the original interventionist approach.

2 The Interventionist Approach to Counterfactuals

Our presentation of the interventionist approach to counterfactuals is based on
the one proposed by Briggs in [13]; still, we will only introduce the parts that are
relevant for the discussion at hand. The two central ingredients of the approach
are (i) the causal model, which contains information about the relevant causal
dependencies, and (ii) the operation of intervention involved in the definition of
the selection function, which maps a given causal model onto a class of models
that make the antecedent of a given counterfactual true.

Causal models represent the causal dependencies between a given finite set
of variables. For each variable V we fix its range R(V ), the set of possible
values the variable can take. The variables are sorted into the set U of exogenous
variables (those whose value is independent from the value of other variables in
the system), and the set V of endogenous variables (those whose value causally
depends on the value of other variables in the system). Given a set of variables
U ∪ V, a causal model over U ∪ V is a tuple 〈S,A〉. The first component, S, fixes
the causal dependencies between the variables by assigning to each V ∈ V a
function FV that maps the values of a set of variables PAV ⊆ U ∪V (the parents
of V ) to a value of the variable V . The second component, A, is a valuation
1 It turns out that for recursive causal models the interventionist selection function

can be understood as just one particular way to make similarity precise [10,11].
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function, assigning a value A(V ) ∈ R(V ) to every V ∈ U ∪ V in a way that
complies with the causal dependencies in S: for all variables V , if V ∈ V, then
A(V ) = FV (A(PAV )). Thus, if the values of the exogenous variables (those in
U) are given, the values of the variables in V can be calculated from these values
and S.2 Finally, for talking about causal models, we use a simple propositional
language extended with an operator for counterfactual conditionals.3

Definition 2.1 (Language L�). Formulas φ of the language L� over U ∪ V
are given by

φ ::= V = v | ¬φ | φ ∧ φ | (−→V = −→v )� φ for V ∈ V, v ∈ R(V ),
−→
V = (V1, . . . , Vn) ∈ Vn,

n ∈ N, Vi �= Vj for i �= j, −→v = (v1, . . . , vn) with
vi ∈ R(Vi)

Sentences of the form (
−→
V = −→v )� φ should be read as “if the variables in

−→
V

were to be set to −→v , then φ would hold”.

The second important ingredient of the interventionist approach is the notion
of intervention involved in the interpretation rule for counterfactual sentences
(
−→
V = −→v )� α. Given a causal model M = 〈S,A〉 and an antecedent

−→
V = −→v ,

we need to define a model that makes the antecedent true;4 in order to evaluate
the consequent there. In the interventionist approach, this model is built by
cutting the variables

−→
V off their causal parents PA−→

V
, forcing their value to be

the one given by the antecedent
−→
V = −→v , as Definition 2.2 below details.5

Definition 2.2 (Intervention). Let 〈S,A〉 be a causal model. The semantic
interpretation of the Boolean operators in L�-formula is as usual; for the rest,

〈S,A〉 |= V = v iffdef A(V ) = v

〈S,A〉 |= (
−→
V = −→v )� φ iffdef 〈S−→

V =−→v ,AS−→
V =−→v 〉 |= φ

with 〈S−→
V =−→v ,AS−→

V =−→v 〉 the causal model where

2 This is true for recursive causal models, the only ones that this paper will discuss.
For their definition: from S, define a relation � on the set of variables U ∪ V by
writing X � Y if and only if X is among the parents of Y (the structure 〈U∪V,�〉 is
called S’s induced causal graph). Let �+ be the transitive closure of � (so X �+ Y
indicates that Y is causally dependent on X). A causal model is said to be recursive
when �+ is a strict partial order (there are no circular dependencies between the
variables).

3 This language L� extends the basic causal language (e.g., [6]) by allowing right-
nested counterfactuals. Still, it is only a fragment of the language used in [13], as
it does not allow Boolean combinations of atoms in the antecedent (which are not
relevant to the discussion here).

4 In [13]’s general setting, the selection function returns a set of models. However,
for the possible antecedents of counterfactuals considered in our fragment of her
language, the selected model is uniquely defined.

5 Our language is a fragment of that in [13]. Thus, here we only recall the tools from
[13] that are needed for our formulas’ semantic interpretation.
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(i) S−→
V =−→v is as S except that, for each variable Vi ∈ −→

V , the function FVi
is

replaced by a constant function F ′
Vi

assigning the value vi (i.e., F ′
Vi

:= vi).
(ii) AS−→

V =−→v is the assignment to causal variables that is identical to A with
respect to exogenous variables, and it complies with the causal dependencies
in S−→

V =−→v for the endogenous ones.

Thus, the proposal is that the selection function f discussed in the introduction
should be defined as

f
(〈S,A〉,−→V = −→v )

:= 〈S−→
V =−→v ,AS−→

V =−→v 〉.

It is worthwhile to emphasise that, in the model 〈S−→
V =−→v ,AS−→

V =−→v 〉, the valua-
tion AS−→

V =−→v complies with the model’s causal dependencies, S−→
V =−→v : for every

V ∈ V we have AS−→
V =−→v (V ) = F ′

V (AS−→
V =−→v (PA′

V )). So, intervention happens at
the level of S−→

V =−→v , and this change affects the valuation AS−→
V =−→v . In Sect. 5 we

will introduce a notion of intervention that changes A directly and leaves S
unaffected.

3 Fisher’s Criticism

Fisher [12] criticizes the approach described above. More concretely, he claims
that it makes incorrect predictions for right-nested counterfactuals. Concretely,
he discusses the examples (1) and (2) below.6

• Match. I hold up a match and strike it, but it does not light. I say

(1) If the match had lit, then (even) if it had not been struck, it would
have lit.

• Headlamp. I hold up a headlamp in good working condition. I say

(2) If the headlamp were emitting light, then if it had had no batteries,
the headlamp would be emitting light.

Both examples involve a model of the form shown in Fig. 1, where A1 stands
for the variable the first antecedent talks about and A2 for the variable of the
second antecedent.7

6 Fisher also considers another example, involving the counterfactual “If the match
were struck and it lit, then if it hadn’t been struck, it would have lit”. This is not a
good example to make his point, as it contains a conjunction of cause (striking the
match) and effect (the match lights) in the antecedent. For the counterexample to
work, Fisher needs this conjunction to be interpreted as two independent interven-
tions. However, it could be that “and” is interpreted causally in this case: “If the
match were struck and because of that it lit, ...”. But then the fact that the match
lights would be introduced as a causal consequent of the striking of the match and
not as an independent intervention.

7 We ignore other possible variables, as they will not affect the relevant predictions
made.
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A2 A1 A2 A1

Fig. 1. A causal model for Match and Headlamp, before and after interpreting the
counterfactuals.

Following the interventionist approach the evaluation of the first antecedent
produces a causal model where A1 is forced to a particular value, and where the
causal connection between A2 and A1 has been erased. Evaluating the second
antecedent forces A2 to a particular value too, but this will no longer affect A1.
Hence, the counterfactuals (1) and (2) are predicted to be true, but intuitively,
according to Fisher, they should be false. Fisher traces the problem back to the
property of strict interventionism (SI).

(SI) “When a variable V is intervened on so that it is made to take a value
v, V remains set to v unless it is intervened upon again per an iterated
application of the interventionist recipe.” ([12]:4939).

Interventionist approaches have this property because their selection function
maps a given causal model M and an antecedent A to a new causal model in
which a causal variable V occurring in the antecedent A has lost all connections
to its causal parents. Any later intervention that might affect V ’s (former) causal
parents will no longer affect V itself. So, as long as ψ does not assign a new value
to V , the counterfactual (V = v)�(ψ� V = v) will always come out as true.

To solve this problem Fisher proposes that we have to give up strict inter-
ventionism. More concretely, he proposes the following adequacy condition for
approaches to the meaning of counterfactuals: “A causal model semantics for
counterfactuals should admit cases in which the variables implicated in the
antecedent of a counterfactual remain causally sensitive to their parents through-
out the evaluation procedure.” ([12]:4942). However, he does not propose an
alternative approach that has this property.8 In the rest of the paper we want
to do two things. First of all, we need to confirm Fishers judgments concern-
ing the target examples (1) and (2) with an actual survey. After that, we will
develop an alternative interventionist approach to the meaning of counterfactual
conditionals that is not strictly interventionist.

4 An Empirical Study on Fisher’s Counterexamples

A possible objection against Fisher’s observations and the conclusions he derives
from them is that he confuses judging a sentence false with rejecting it as not
well-formed. Maybe we are inclined to say “No” to the counterfactuals in (1) and
(2), because they are very strange counterfactual sentences. To exclude this we

8 Fisher discusses in [12] an alternative definition of intervention, dubbed “side-
constrained intervention”, but admits that this variation is not really targeting the
root of the problem.
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conducted a small empirical study in which we did not only ask the participants
to judge the counterfactuals (1) and (2), but also their counterparts (3-a) and
(3-b). If participants judge the sentences (1) and (2) false because they consider
the sentences defective, they should judge (3-a) and (3-b) to be false as well.

(3) a. If the match had lit, then if it had not been struck, it would not have
lit.

b. If the headlamp were emitting light, then if it had had no batteries,
the headlamp would not have been emitting light.

4.1 Method and Participants

We used the scenarios Match and Headlamp in Sect. 3 and a third scenario
containing a counterfactual ϕ� (ψ � ξ) with ξ talking about a causal effect
of ϕ. For each scenario we asked the participants to judge 3 counterfactuals:
the target right-nested counterfactual, the counterfactual with the opposite final
consequent and a filler item to check whether the participants where paying
attention and understood the presented scenario correctly. This resulted in 9
questions that the participants had to answer. The order of question was ran-
domized. The participants had to judge the truth value of the counterfactual
using a slider bar with 5 values from 0 to 4. They were told that 0 means the
sentence is false, 4 it is true and 2 that the truth value is unclear. The values 1
and 2 allowed them to indicate that they find a sentence weakly false or true.

The study was implemented in Qualtrics, a web-based survey tool. Par-
ticipants were recruited via Prolific.ac, an online platform aimed at connect-
ing researchers and participants willing to fill in surveys and questionnaires in
exchange for compensation for their time [14]. We recruited native English speak-
ers (British and American English). Fifty-two participants completed the task.
Eight participants were excluded. Two participants did not answer the filler
question for the match scenario correctly, seven participants did not answer the
filler question for the headlamp scenario correctly, one also failed the match sce-
nario. Thus, forty-four responses were included in the analyses reported below.
Thirteen participants failed the control question for the third scenario we used.
Because of the high number we concluded that there was a problem with the
material used and excluded this scenario from the evaluations.

4.2 Results and Discussion

The table in Fig. 2 states the results of the study. We counted both values 3 and
4 on the scale as judging the sentence true and 0 an 1 as judging the sentence
false. The graph in Fig. 2 plots the percentages of the different answers first for
both scenario’s separately and then combined. The results show that first of all
a majority of the participants agree with the intuitions reported by Fisher [12].
Furthermore, the results for the opposite counterfactuals (3-a) and (3-b) support
the conclusion that the judgements are for the most part judgements about truth
values and not well-formedness of the counterfactuals under consideration.

http://Prolific.ac
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Sentence True False Unclear

(1) 4% 80% 16%

(3-a) 64% 13% 23%

(2) 7% 84% 9%

(3-b) 77% 9% 14%

(1)+(2) 6% 82% 12%

(3-a)+(3-b) 71% 11% 18%

Fig. 2. Results of the 1st study.

Hence, we conclude with Fisher that these nested counterfactuals present
a problem for the interventionist approach to their meaning. Fisher discussed
the possibility to defend the approach by arguing that the conditionals under
discussion are interpreted according to a different (epistemic) reading of counter-
factuals and eventually dismisses it. We agree with Fisher and only want to add
that such a move does not make sense as long as there is no explanation for why
the interventionist reading isn’t available for the counterfactuals in question.

But does that mean that we need to give up the interventionist approach
to counterfactuals? We don’t think so. We can give up the property of strict
interventionism responsible for the problematic predictions, but still keep the
general idea and all the strong predictions of the interventionist approach. The
big conceptual step that needs to be taken is to apply intervention to the valu-
ation A instead of the representation of the causal dependencies S. In the next
section we develop this idea in detail.

5 The Non-strict-intervention

The goal is, then, to find a notion of intervention that coincides with [8]’s account
for non-nested cases (so it ‘inherits’ the good behaviour of the strict intervention-
ism approach in those situations), but also satisfies Fisher’s adequacy condition
(thus agreeing with the results from our study). The definition below meets all
these requirements. Its crucial idea is, again, that counterfactual assumptions
might modify the value of causal variables, but preserve causal relationships.

Definition 5.1. Let M = 〈S,A〉 be a recursive causal model, and
−→
V = −→v

an intervention; let
−→
Vd be the variables in

−→
V whose current value (as given by

A) is different from their intended new value (as indicated by
−→
V = −→v ). The

selection function f is defined as f(〈S,A〉,−→V = −→v ) := 〈S,A−→
V =−→v 〉, with the

new assignment A−→
V =−→v calculated in the following way.
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1. The value of variables in
−→
V becomes −→v (as indicated by the intervention).

2. For each variable Y not in
−→
V ,

(a) if Y is not causally affected9 by any variable in
−→
Vd, keep its value as in A.

(b) if Y is causally affected by some variables in
−→
Vd, its value is calculated

according to the causal laws in S.10

The just defined model, 〈S,A−→
V =−→v 〉, and the one that results from a strict inter-

vention, 〈S−→
V =−→v ,AS−→

V =−→v 〉 (Definition 2.2), differ in their causal laws. The latter
(Briggs) changes the functions for the intervened variables (producing S−→

V =−→v );
the former (ours) preserves the original causal information (the ‘old’ S).11

There is a second difference, concerning the way the new assignment is
defined. In the strict interventionist case, the values of all non-intervened vari-
ables are recalculated according to the (recall: new) causal rules. In our case,
the only non-intervened variables for which the recalculation takes place (recall:
with respect to the original causal laws) are those that are causally affected by
variables whose value is directly affected by the intervention.12

Note that 〈S,A−→
V =−→v 〉 can be equivalently defined as follows:

Proposition 5.1. Let 〈S,A〉 be a causal model and
−→
V = −→v an intervention.

Let

• −→
Vd be as before: the causal variables in

−→
V whose value (as given by A) differs

from their intended new value (as indicated by
−→
V = −→v );

• −→
Z be the endogenous variables not causally affected by variables in

−→
Vd, with−→z their values according to A.

Then, the assignment A−→
V =−→v (Definition 5.1) can be equivalently defined as the

(unique) assignment that is identical with A with respect to exogenous vari-
ables, and complies with the causal dependencies in S

(
−→
V =−→v ,

−→
Z=−→z )

(see Defini-
tion 2.2)13.

9 “Y is causally affected by Z” intuitively means changing the value of Z may change
the value of Y under some setting of variables. Formally, it means there exists some

variables
−→
V , −→v ∈ R(−→v ), and some distinct value y, y′ ∈ R(Y ), such that the value

of Z forced by setting
−→
V , Y to −→v , y is different from its value forced by setting

−→
V ,

−→
Y

to −→v , y′.
10 Recall: the model is recursive. Hence, S’s induced causal graph induces, in turn, a

chain of sets of variables S0 ⊆ · · · ⊆ Sn such that S0 = U ∪ −→
V , Sn = U ∪ V and,

for any Si and Si+1, the value of variables in Si+1 \ Si can be calculated from the
causal dependencies and the value of variables in Si.

11 Note: A
−→
V =−→v may not comply with the causal dependencies in S.

12 When the original assignment A complies with the causal dependencies in S, both
strategies produce the same result. This is the only case relevant for Briggs’ purposes.

13 Proofs were omitted due to space limitations, but are available online https://www.
dropbox.com/s/0i0xy416rs5dmor/Lori Proofs.pdf?dl=0.

https://www.dropbox.com/s/0i0xy416rs5dmor/Lori_Proofs.pdf?dl=0
https://www.dropbox.com/s/0i0xy416rs5dmor/Lori_Proofs.pdf?dl=0
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We will redefine the logic of counterfactuals, using this new notion of intervention
for the semantic interpretation of �. However, the strict intervention operator
will still be useful, in particular, for axiomatizing the non-strict intervention.
Thus, it will appear in the language as well, albeit under a different symbol ([ ]).

Definition 5.2. Formulas φ of the language L�,[ ] over U ∪ V are given by

φ ::= V = v | ¬φ | φ ∧ φ | (
−→
V = −→v )� φ | [

−→
V = −→v ]φ

for V ∈ V, v ∈ R(V ),
−→
V = (V1, . . . , Vn) ∈ Vn, n ∈ N, Vi 	= Vj for i 	= j,−→v = (v1, . . . , vn) with vi ∈ R(Vi).

For L�,[ ]’s semantics, atoms and Boolean operators are evaluated as before.
The cases for the intervention operators [ ] and � are as follows.

Definition 5.3. (Intervention). Let 〈S,A〉 be a causal model. Then,

〈S,A〉 |= [
−→
V = −→v ]φ iffdef 〈S−→

V =−→v ,AS−→
V =−→v 〉 |= φ (see Definition 2.2)

〈S,A〉 |= (
−→
V = −→v )� φ iffdef 〈S,A−→

X=−→x 〉 |= φ (see Definition 5.1)

If 〈S,A〉 is a model without causal violations (i.e., A complies with S), then the
assignment created by our intervention (A−→

V =−→v ) coincides with the one created
by a strict intervention (AS−→

V =−→v ). Thus, our proposal does extend the original
causal modelling semantics [8], providing a non-strict-interventionist approach
for nested counterfactuals.

5.1 Fisher’s Counter-Examples Revisited

The semantics for counterfactuals proposed here can deal with the examples
Match and Headlamp discussed in Sects. 3 and 4. For reasons of space we will
only discuss Match (Headlamp works analogously).

• Match. I hold up a match and strike it, but it does not light. I say

(4) If the match had lit, then (even) if it had not been struck, it would
have lit.

First, we need to define the causal model M1 = 〈S,A〉 with respect to which
the counterfactual (4) is interpreted. We define V = {S,L} and U = {U},
with S indicating whether the match has been struck (1: yes, 0: no), L indi-
cating whether the match has lit (1: yes, 0: no). The exogenous variable U
represents external factors causally responsible for S.14 Furthermore, we define
S = (S := U,L := S) and A = (U = 1, S = 1, L = 1) (model M1

in Fig. 3). We need to account for the observation that the counterfactual
(L = 1)�((S = 0)�L = 1) is intuitively false with respect to this model,
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S:S := U,L := S
A: U=1, S=1, L=1

SU L

M2

S:S := U,L := S
A: U=1, S=1, L=1

SU L

M1

S:S := U,L := S
A: U=1, S=0, L=0

SU L

M3

f(M1, L=1) f(M2, S=0)

Fig. 3. The evaluation of the Match example with the selection function f

a prediction that a strict interventionist approach, as discussed in Sect. 3, is
unable to make.

The sentence contains nested counterfactuals, so we need to intervene twice:
first, with L = 1 (the antecedent of the main counterfactual), and then, with S =
0 (the antecedent of the embedded counterfactual). On the resulting model, we
should check whether L = 1 (the consequent of the embedded counterfactual) is
true. The first intervention, L = 1, produces model M2 in Fig. 3 (Definition 5.1),
affecting the original assignment but preserving the original causal dependencies.
For evaluating the embedded counterfactual (S = 0)�L = 1, we apply the
second intervention, S = 0, to M2. This results in the model M3 in Fig. 3, with
S = 0 as the intervention requires, and L = 0, as L’s value is still causally
sensitive to S. In this final model, the innermost consequent L = 1 fails; thus,

M1 	|= (L = 1)�((S = 0)�L = 1).

We correctly predict that the counterfactual (4) is false in the given context.

5.2 The Axiomatization for the Logic

The modified notion of intervention can be axiomatized (Table 1) with the help
of the axioms for the strict intervention operator [ ] (see [15]) plus additional
axioms for �. Axioms A1 through A9 characterise the behaviour of the strict
intervention operator [ ].15. From axioms A10–A11, every variable has exactly
one value,16 and axiom A12 states that our modified version of intervention is
still deterministic. Axioms A13 and A14 are the crucial ones, as they describe
the relationship between the two forms of intervention. Axiom A13 relies on
Proposition 5.1 to describe the assignment after a non-strict intervention � in
terms of the assignment after a (different) strict intervention [ ]. It states that,
14 If the model allows interventions on exogenous variables, the example can be mod-

elled with only two variables: the exogenous one S and the endogenous one L. We
use the additional U , as in the literature it is common to allow interventions only
on endogenous variables.

15 More precisely, A1–A8 are the axioms for non-nested intervention from [15], and
A9 deals with nested strict-intervention [13,16].

16 In [15] there are no causal violations; thus, V = v is equivalent to [ ](V = v), and
axioms A1 and A2 suffice. This is not the case in our setting, as causal violations
might occur; hence the need of A10–A11.
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Table 1. Axiom system for L�,[ ] w.r.t. causal models.

if
−→
Vd contains exactly the variables in

−→
V whose value would change (conjuncts

1 and 2 in the antecedent), and
−→
Z contains exactly the variables that are not

causally affected by those in
−→
Vd (conjuncts 3 and 4 in the antecedent), then a

non-strict-intervention with
−→
V = −→v coincides with a strict intervention with−→

V = −→v ,
−→
Z = −→z . Axiom A14 then uses strict intervention to state that causal

relationships are invariant under non-strict interventions. Finally, axioms A15–
A16 are the rules for Boolean operators.

Theorem 5.1. This axiom system is sound and strongly complete with respect
to recursive causal models (see Footnote 13).

6 Discussion and Conclusions

In this paper we proposed a new approach to the semantics of counterfactual
conditionals. Our proposal builds on the well-known interventionist approach,
but uses a different approach to intervention. There are two separate steps that
we took in defining our proposal. First, we made a substantial conceptual shift
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in what we understand to be the object of intervention. We propose that inter-
vention does not take place at the level of structural dependencies, but at the
level of the (incidental) valuations of the variables. Conceptually, this means that
we see intervention not as a hypothetical modification of the underlying laws of
nature, but as the hypothetical assumption of exceptions to the laws (see [4,17]
for a similar move). As a consequence, no information on causal dependencies in
the actual world is lost. The second part of the proposal lies in how exactly we
define the valuation resulting from intervention. We propose that the value of
all variables not causally affected by those variables that we intervene on remain
unchanged and that then the value of the remaining variables is calculated from
this information (as the model is assumed to be recursive) and the unchanged
causal dependencies (see Definition 5.1). This approach allows us to satisfy our
objectives: (i) the predictions made for the truth conditions of counterfactuals
that are not right-nested are the same as made in [13] and (ii) the approach
correctly deals with the counterexamples brought forward in [12].

But does that mean that this way all problems with the interventionist app-
roach to counterfactuals are solved? Certainly not. First of all, notice that we
target here only the issue of right-nested counterfactuals. But even if we only
focus on right-nested counterfactuals, there are still open questions. This app-
roach was specifically designed to deal with the examples and intuitions reported
on in [12] and confirmed in Sect. 4. Fisher suggest that the observations he makes
generalize to arbitrary right-nested counterfactuals where variables in the first
antecedent causally depend on variables in the second antecedent. But whether
this is true has to be investigated first. We performed a second study to test
whether Fishers expectations are confirmed when using slightly larger models
containing a third variable C (see the two scenarios in Fig. 4). While we could
confirm, using the same method as before, that still the majority of the partici-
pants consider counterfactual of the form (i) B�(¬A�B) false (left diagram
in Fig. 4), this effect becomes weaker when the consequent is substituted with
the third variable C (the counterfactual becomes (iii) B�(¬A�C)) and basi-
cally disappears in combination with scenario 2 (right diagram in Fig. 4). In a
third study focusing in particular on this scenario and counterfactuals of the
form (iii) we could not find any difference between the number of participants
that consider this sentence true and those that considered its counterpart (iv)
true.

Based on the work of Fisher [12] and the empirical results presented here
it seems clear that the first part of our proposal is on the right track: some-
times we need to be able to recall causal dependencies after an intervention has
violated them. This means that the structural information about these depen-
dencies should not be the locus of the intervention. So, what we certainly want
to defend here is the proposed step from intervention on the causal dependen-
cies to intervention on the valuation of the variables. Whether the exact form
we then gave to intervention on the valuation is correct needs to be studied in
future work. In some cases, like the examples discussed in [12], it seems to be
exactly what is needed, in other cases it is still unclear what we should predict.
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Fig. 4. Overview of the results of the second study; the sentences (i)–(iv) are those
that we asked participants to judge in the two scenarios.
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1 Institute of Computer Science, The Czech Academy of Sciences,
Prague, Czech Republic

{sedlar,puncochar,tedder}@cs.cas.cz
2 Institute of Philosophy, The Czech Academy of Sciences, Prague, Czech Republic

Abstract. We extend the epistemic logic with De Morgan negation by
Fagin et al. (Artif. Intell. 79, 203–240, 1995) by adding operators for
universal and common knowledge in a group of agents, and with a for-
malization of information update using a generalized version of the left
division connective of the non-associative Lambek calculus. We provide
sound and complete axiomatizations of the basic logic with the group
operators and the basic logic with group operators and updates. Both
logics are shown to be decidable.
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1 Introduction

Belnap’s epistemic interpretation of First Degree Entailment [3,4] shows that
FDE is useful for reasoning about incomplete and potentially inconsistent infor-
mation. FDE is not, however, an epistemic logic in the standard sense since its
language does not contain operators expressing epistemic attitudes of agents.
Such an extension of FDE was provided by Levesque [22] and brought closer
to classical epistemic logic by Fagin et al. [17]. These frameworks were origi-
nally put forward as an attempt to avoid the logical omniscience problem of
classical epistemic logic, and so, to keep unnecessary complications out of the
picture, they do not contain any additional operators utilized in the successful
applications of classical epistemic logic, such as group epistemic operators [16]
or operators expressing various kinds of information update [6,13].

In this paper we extend the framework of Fagin et al. [17] with operators
expressing universal and common knowledge in a group of agents (Sect. 2) and
with a conditional operator, coming from the Non-associative Lambek Calculus,
expressing information update (Sect. 3). These two basic logics are axiomatized
and shown to be decidable; extensions are briefly mentioned, but are mostly left
for future work (which is discussed in Sect. 4.)
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Related Work. Non-classical modal logic with epistemic and information-
dynamic operators is underdeveloped. Girard and Tanaka [18] study a para-
consistent logic containing explicit revision operators. (This paper follows up
on [28] and [23], but these do not discuss Hintikka-style epistemic logics with
revision operators; rather, they consider paraconsistent versions of AGM-style
belief revision.) Rivieccio [30] studies an FDE-based version of Public Announce-
ment Logic. Both of these papers contain only single-agent epistemic operators.
An FDE-based group epistemic logic with universal and common knowledge is
a fragment of paraconsistent Propositional Dynamic Logic studied in [31,32].
B́ılková et al. [10] outline an extension of their substructural epistemic frame-
work with common knowledge, but completeness is left for future research. The
relation between substructural logic and classical information dynamics is stud-
ied in [5,7] and [1], for example; [15,27] discuss an information-dynamic inter-
pretation of the Routley–Meyer semantics for some substructural logics. Restall
[27] considers a ternary relation between sets of situations, but the framework
considered in Sect. 3 is original to this paper.

2 FDE with Group Epistemic Operators

In this section, we add to the framework of FDE with material implication, based
on [17], modal operators representing universal knowledge in groups of agents
(“everyone knows that ...”) and common knowledge. Firstly, we provide the
basic definitions (Subsect. 2.1), then we discuss the informal interpretation of the
framework (Subsect. 2.2) and our technical results, namely, a weakly complete
axiomatization and a decidability result for the basic logic of the framework
(Subsect. 2.3). The proof is given in the technical appendix.

2.1 Group Language and Group Frames

Fix a finite non-empty set Ag (“agents”) and a countable set Prop of proposi-
tional variables. The language LGr of FDE with material implication and group
modalities contains

– unary connective ∼ (De Morgan negation)
– binary connectives ∧,∨ and ⊃ (lattice conjunction and disjunction, material

implication)
– unary operators KG, K∗

G for each non-empty G ⊆ Ag (group epistemic modal-
ities)

Fix any p ∈ Prop and define � := p ⊃ p, ⊥ := ∼� and ¬ϕ := ϕ ⊃ ⊥. Formulas
∼ϕ are read “ϕ is false” and ¬ϕ as “ϕ is not true”; in our setting, these will
not be equivalent. Sets G ⊆ Ag represent groups of agents; KGϕ is read “Every
agent in G knows that ϕ” and K∗

Gϕ as “It is common knowledge in G that ϕ”.
We define Kaϕ := K{a}ϕ and read this as “Agent a knows that ϕ”.
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Group frames are 〈S, {Ra}a∈Ag, �〉 where each Ra is a reflexive binary relation
on S and � is a unary function of period two (that is, �(�(x)) = x for all x ∈ S).
We usually write x� instead of �(x). Moreover, we define

RG :=
⋃

a∈G

Ra R∗
G :=

(
RG

)∗

Group models add to group frames a valuation function v : Prop → P(S). For
each model with v, we define the satisfaction relation �v as usual when it comes
to propositional variables and Boolean connectives; moreover, we require that

x �v ∼ϕ iff x� �v ϕ

x �v KGϕ iff ∀y(RGxy =⇒ y �v ϕ)
x �v K∗

Gϕ iff ∀y(R∗
Gxy =⇒ y �v ϕ)

We sometimes use the notation v(ϕ) = {x | x �v ϕ}. Formula ϕ is valid in a
model with S and v iff v(ϕ) = S; it is valid in a frame iff it is valid in all models
based on the frame and it is valid in a class of frames iff it is valid in all frames
in the class. This notion of validity will be used throughout the paper. For any
language L, the L-theory of a class of frames is the set of all L-formulas valid in
the class of frames.

It is easily seen that v(�) = S and so v(¬ϕ) = S \ v(ϕ). Hence, even
though Boolean negation is not a primitive connective of our language, it can
be expressed using material implication and De Morgan negation.

2.2 Informal Interpretation

In group frames, elements of S are called situations and can be seen as situations
in the sense of Barwise and Perry [2], either concrete ones (parts of the world)
of abstract ones (representations of parts of the world, either accurate or inaccu-
rate). Mares [24] discusses situations in the presence of De Morgan negation and
we follow his interpretation, according to which situations may be incomplete
(some ϕ is neither true nor false, i.e. neither ϕ nor ∼ϕ is satisfied in the situa-
tion) and inconsistent (some ϕ is both true and false); we note that Barwise and
Perry also allow “incoherent” situations [2, 96]. Levesque [22] uses the concept
of a situation in a similar way; we note that this interpretation of the elements
of S is consistent with Belnap’s interpretation in terms of “simple databases”
[3,4]. Existence of incomplete and inconsistent situations follows from our truth
condition for ∼ϕ in terms of “the Routley star” �, which is thought of as an
operation assigning to each situation its dual ; intuitively, the dual situation of
x makes true everything that is not made false in x and vice versa. In general,
we read x �v ϕ as “ϕ is true in situation x (on v)”, or “The information that ϕ
is supported by x (on v)”.

The informal interpretation of “epistemic accessibility relations” Ra differs
only slightly from the standard reading of Kripke models for classical epistemic
logic. Our basic idea is that, for each situation x and each agent a, there is a
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part of x that is available to a in the sense that a knows that it is a part of x.
For instance, of the situation comprising the building in which my department
is situated, only the part comprising my office is available to me at the moment,
but upon receiving information from a colleague about something happening on
a different floor, a bigger part of the situation becomes available to me. The
fact that Raxy is taken to mean, informally, that the part of x available to a is
included in y. Hence, our truth condition for Kaϕ means that Kaϕ is supported
(true) in x iff each situation that contains the part of x available to a supports
ϕ—we may say that Kaϕ is supported in x iff the information available to a in
x supports ϕ.

A note of caution is in order here, however. The elements of our models
correspond to prime situations in the sense that x supports a disjunction iff it
supports one of its disjuncts. “Parts” of situations, as we use the term, may not
be prime in this sense. For instance, each prime situation containing the fact
that Ann has one sibling contains the fact that Ann has one brother or the fact
that Ann has one sister, but only the information that Ann has one sibling may
be available to me, without me knowing if the sibling is male or female. A dis-
junction may be supported by a part of a situation without either disjunct being
supported by that part. “Parts” of situations in this sense are not necessarily
elements of the model, but they may be represented by sets of elements of the
model; intuitively, the set representing a particular “partial” situation comprises
all prime situations in the model that contain all the information in the partial
situation. For instance, the partial situation supporting only the information
that Ann has one sibling can be represented by the set comprising two prime
situations differing in the gender of the sibling. See [3,4] for details. Hence, we
may speak of Ra(x) := {y | Raxy} as representing the part of x available to
a—it follows from reflexivity of Ra that each ϕ supported by all situations in
Ra(x) is supported by x.

Let us turn now to the relations used in the satisfaction clauses for group
operators. The fact that RGxy means that y contains the part of x available to
some a ∈ G. Hence, KGϕ is supported in x iff all agents in G have information
that supports ϕ. The fact that R∗

Gxy means that (x, y) is in the reflexive transi-
tive closure of RG. (In fact, speaking of transitive closure is sufficient as all the
relations are reflexive; we speak of reflexive transitive closure out of custom). In
other words, there is a finite path z0 = x, z1, . . . , zn−1, zn = y such that, for all
k ∈ {0, . . . , n − 1}, (zk, zk+1) ∈ Ra for some a ∈ G. Note that (x, z) ∈ Ra and
(z, y) ∈ Rb means that z contains the a-part of x and y contains the b-part of
y. This means that KaKbϕ is supported in x iff the a-part of x “says” that the
b-part of x supports ϕ. In other words, a knows that b knows that ϕ. Hence,
K∗

Gϕ is supported in x iff, in a standard manner, each agent in G knows that all
the agents know that ... all the agents know that ϕ.

Belnap [3,4] motivated FDE as a logic useful for reasoning about sim-
ple databases containing potentially inconsistent information; this reasoning
involved only information formulated using ∼,∧ and ∨. The epistemic exten-
sion of FDE by Fagin et al. [17] can be seen as a logic for reasoning about
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potentially inconsistent databases where the relevant information may involve
Ka, that is, where information about information available to individual agents
is involved. Here inconsistency may be encountered at least on two levels. Firstly,
a database may contain inconsistent information about the information of agent
a, that is, it may contain Kaϕ and ∼Kaϕ for some ϕ. In contrast to epistemic
logic based on classical logic, the framework of [17] allows to reason with such
databases without “explosion”, i.e. without inferring any ψ whatsoever. Sec-
ondly, a database may contain information that the information of agent a is
inconsistent, that is, it may contain Kaϕ and Ka∼ϕ for some ϕ. In contrast
to classical epistemic logic, the framework of [17] does not force the conclusion
that, in this case, Kaψ holds for any ψ whatsoever. The upshot of our group
FDE is that these features are lifted to group epistemic notions—we have here
a logic useful for reasoning about potentially inconsistent information, including
information about information available to groups of agents that may turn out
to be inconsistent on the two levels mentioned above in connection to individual
knowledge operators.

2.3 Completeness and Decidability

The axiom system GrFDE contains the following axiom schemata and rules
(X ∈ {K,K∗}):

(A0) Any fixed axiomatization of
the {∧,∨,⊃}-fragment of classical
propositional logic
(A1) ϕ ⊃ ∼∼ϕ
(A2) ∼∼ϕ ⊃ ϕ
(A3) (∼ϕ ∧ ∼ψ) ⊃ ∼(ϕ ∨ ψ)
(A4) ∼(ϕ ∧ ψ) ⊃ (∼ϕ ∨ ∼ψ)
(A5) XGϕ ∧ XGψ ⊃ XG(ϕ ∧ ψ)
(A6) XGϕ ⊃ ϕ

(A7) KGϕ ⊃⊂ ∧
a∈G Kaϕ

(A8) K∗
Gϕ ⊃ KG(ϕ ∧ K∗

Gϕ)
(R0) Modus Ponens

(R1)
ϕ ⊃ ψ

∼ψ ⊃ ∼ϕ

(R2)
ϕ

XGϕ

(R3)
ϕ ⊃ KG(ψ ∧ ϕ)

ϕ ⊃ K∗
Gψ

Theorem 1. GrFDE is a sound and weakly complete axiomatization of the
LGr-theory of all group frames. The theory is decidable.

Since Boolean negation is expressible in our language, Theorem 1 can be estab-
lished using the standard technique ([16, Ch. 3.1]). In the technical appendix, we
give an alternative “modular” proof, based on [26], that does not invoke Boolean
negation and, as such, can be used in a setting where Boolean negation is not
expressible (e.g. when specific weaker negations are used instead of De Morgan
negation; see Sect. 4).

3 Almost Arbitrary Information Updates

In this section, we extend our framework with a formalization of information
update. Instead of focusing on one specific notion of update, such as public



278 I. Sedlár et al.

announcements, belief revision or the various notions of belief upgrade, we pro-
vide a somewhat more general account. Taking inspiration from van Benthem
[8], we add to our semantics an abstract representation of updates and we study
the general framework arising from this addition. (See also [19] for a nicely gen-
eralizable framework, based on abstract update relations, for the fragment of
Public Announcement Logic closed under substitution; both frameworks bear
some similarity to the general semantics for conditional logics [12].) An inter-
esting endeavour is to relate the abstract semantics to known notions of update
via special cases of the general framework, but we leave such investigations for
future work.

Similarly to the framework of [8], information updates are represented as
binary relations between elements of the model indexed by subsets of the model.
Instead of pointed models in van Benthem’s “update universe”, elements of our
models are prime situations. This feature of the model derives from the goal of
formulating a general representation of information update on an inconsistency-
tolerant background. The indexing set of situations, “the proposition triggering
the update” [8, 32], corresponds to the information content of the update. We
do not assume the content of an update to correspond to a prime situation;
typically the “incoming” information corresponds to a part of a prime situation.
(Recall that parts of prime situations are represented in our framework by sets
of prime situations.)

Hence, an update relation on a set of situations S is a function from the
power set of S (all possible “triggering propositions”) to binary relations on S
(“situation transitions”). Equivalently, we may represent an update relation by
R ⊆ (S×P(S)×S) (RxY z iff (x, y) is in the transition determined by the trigger-
ing proposition Y ). In what follows, group update frames are 〈S, {Ra}a∈Ag, R, �〉
where R is such an update relation.

In modal logics of information update we typically have formulas specifying
the results of information update depending on the nature of the “triggering
proposition”; in general, the interesting feature is whether updates of a certain
kind are guaranteed to lead to outputs satisfying specific formulas. Here we
will distinguish updates with based on information supported by the “triggering
proposition”.

The language LGrUp extends LGr with a binary connective \; formulas ϕ\ψ
are read “After updating with any information supporting ϕ, ψ will hold”. Group
update models add a valuation function v to group update frames and the sat-
isfaction relation �v is defined as usual; for X ⊆ S, X �v ϕ means that x �v ϕ
for all x ∈ X. The new clause in the definition of �v is the following:

x �v ϕ\ψ iff (∀Y )(∀z)
(
(RxY z & Y �v ϕ) ⇒ z �v ψ

)

Validity is defined as before. Note that \ is a generalized version of the left
division operator of the Non-Associative Lambek Calculus [14,20,29]. There the
truth condition uses individual situations y, not sets of situations.

We read RxY z as “Updating x with the partial situation Y may result in
z”. Hence, ϕ\ψ is true in x iff ψ holds in every possible result of updating x by
a partial situation that supports ϕ.
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The proof system GrUpFDE extends GrFDE with

(A9) (χ\ϕ ∧ χ\ψ) ⊃ χ\(ϕ ∧ ψ)

(R4)
ϕ1 ⊃ ψ1 ϕ2 ⊃ ψ2

ψ1\ϕ2 ⊃ ϕ1\ψ2

(R5)
ϕ

ψ\ϕ

Theorem 2. GrUpFDE is a sound and weakly complete axiomatization of the
LGrUp-theory of all group update frames. The theory is decidable.

Using Boolean negation, we may define a “diamond version” of the update
operator \ as ϕ ◦ ψ := ¬(ϕ\¬ψ). It is clear that

x �v ϕ ◦ ψ iff (∃Y )(∃z)
(
RxY z & Y �v ϕ & z �v ψ

)

Note that the connective ◦ is not what is usually called fusion in the literature
on substructural logic; the update operator \ is not a residual of ◦. An axioma-
tization of the theory of all group update frames in languages where ◦ is present
as a primitive operator and Boolean negation is not expressible is an open prob-
lem. (This is the case even for the language {∧,∨, \, ◦} and the 〈S,R〉-reducts
of group update frames.)

4 Conclusion

In this paper we outlined two FDE-based epistemic logics, the basic logic with
universal and common knowledge, and its extension with a generalized left divi-
sion operator of the Non-associative Lambek Calculus, formalizing an abstract
notion of information update. We established axiomatization and decidability
results for these logics.

Among topics that we leave out of the present paper is a study of axiomatic
extensions of GrFDE and GrUpFDE. It is especially natural to consider exten-
sions of GrFDE by various introspection axioms, such as positive introspec-
tion Kaϕ ⊃ KaKaϕ, Boolean negative introspection ¬Kaϕ ⊃ Ka¬Kaϕ and
De Morgan negative introspection ∼Kaϕ ⊃ Ka∼Kaϕ. Regarding extensions of
GrUpFDE, it is interesting to take a look at how our framework accommodates
some typical properties of special cases of information update (e.g. monotonicity
ϕ\χ ⊃ ϕ\(ψ\χ) or “success” ϕ\ψ ⊃ ϕ\(ϕ ∧ ψ); the latter seems to require an
extension of our frames with a partial order on the set of situations in the style
of the Routley–Meyer semantics for substructural logics [29].)

Another topic for future research are specific language extensions of our log-
ics. A particular instance is related to the iterated update operator \∗, where
ϕ\∗ψ is read as “ψ holds after any finite number of updates by ϕ”. A natural
semantics for this operator is obtained by defining

R1xY z := RxY z Rn+1xY z := ∃Uv(RxUv & RnvY z)
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and
R∗ := {〈x, Y, z〉 | (∃n ∈ N)(RnxY z)}

and requiring that

x �v ϕ\∗ψ iff ∀Y z((R∗xY z & Y �v ϕ) =⇒ z �v ψ)

We conjecture that a complete axiomatization of the theory of all group update
frames with R∗ is obtained by adding to GrUpFDE the following:

(A10) (χ\∗ϕ ∧ χ\∗ψ) ⊃ χ\∗(ϕ ∧ ψ)
(A11) ϕ\∗ψ ⊃ (ϕ\ψ ∧ ϕ\(ϕ\∗ψ))
(A12) (ϕ\(ϕ\∗ψ)) ⊃ (ϕ\∗ψ)

(R6)
ϕ1 ⊃ ψ1 ϕ2 ⊃ ψ2

ψ1\∗ϕ2 ⊃ ϕ1\∗ψ2

(R7)
ϕ ⊃ ψ\ϕ

ϕ ⊃ ψ\∗ϕ

(On some assumptions concerning the update relation R, ϕ\∗ψ can be
expressed in a language containing fusion and the Kleene star operator; see
[11]. Our setting intends to be more general. Also, in the presence of Boolean
negation, some of these assumptions concerning R lead to undecidability; see
[21]. It was shown in [25] that the classical Public Announcement Logic with
an operator for iterated announcements is undecidable. Hence, the question is,
which notions of update admit a decidable logic with iterated updates? Our gen-
eral setting is especially suitable for such investigations, but they need to be left
for future research.)

Another interesting topic are generalizations of the framework using weaker
notions of negation than De Morgan negation used here. In general, negation
can be seen as a negative modal operator with the satisfaction clause

x �v ∼ϕ iff ∀y(R∼xy =⇒ y �v ϕ)

using an arbitrary binary relation R∼. If this relation is not serial, then Boolean
negation cannot be expressed and some of the standard techniques used in com-
pleteness proofs for logics with common knowledge (and other fixpoint) operators
cannot be used.

Acknowledgements. This work was supported by the Czech Science Foundation
grant GJ18-19162Y for the project Non-classical logical models of information dynam-
ics. The authors are grateful to three anonymous referees for their feedback.

A Proofs

Let L be any set of formulas containing all substitution instances of proposi-
tional tautologies in {∧,∨,⊃} that is closed under Modus Ponens and Uniform
substitution. We say that a set of formulas Δ is L-derivable from a set of for-
mulas Γ , notation Γ �L Δ, iff there is γ =

∧
Γ ′ ⊆ Γ and δ =

∨
Δ′ ⊆ Δ such

that γ ⊃ δ is in L. We note that
∧ ∅ := �, so if Δ contains an element of L,

then Γ �L Δ for all Γ . We say that 〈Γ,Δ〉 is an independent L-pair iff Γ �L Δ.
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A prime L-theory is any set of formulas Γ that (i) contains L, (ii) is closed
under ϕ ⊃ ψ ∈ L (that is, if ϕ ⊃ ψ ∈ L and ϕ ∈ Γ , then ψ ∈ Γ ) and (iii)
contains ϕ ∨ ψ only if it contains ϕ or ψ. A prime L-theory is called non-trivial
iff it is not the set of all formulas.

Theorem 3 (Pair Extension). If 〈Γ,Δ〉 is an independent L-pair, then there
is a non-trivial prime L-theory Σ extending Γ that is also disjoint from Δ.

Proof. Essentially [29, 92–95]. We note that
∨ ∅ := ⊥, so Σ cannot contain any

χ such that χ ⊃ ⊥ is in L; hence Σ has to be non-trivial.

We note that in order for the Pair Extension Theorem to hold it is crucial to
define L-derivability in a “finitary” way; see [9].
Theorem 1. GrFDE is a sound and weakly complete axiomatization of the
LGr-theory of all group frames. The theory is decidable.

Proof. Soundness is left to the reader as an exercise. Completeness is established
using a variant of the standard finite canonical model construction (see e.g. [16,
Ch. 3.1]). The argument used here is based on [26].

Assume that ϕ0 is not provable in GrFDE. Let the closure of ϕ0, Cl(ϕ0),
be the smallest set of formulas that is closed under subformulas such that (1) it
contains ϕ0; (2) it contains �; (3) if K∗

Gψ ∈ Cl(ϕ0), then KG(ψ∧K∗
Gψ) ∈ Cl(ϕ0);

and (4) if KGψ ∈ Cl(ϕ0), then Kaψ ∈ Cl(ϕ0) for all a ∈ G. Formula ψ is a
negated formula iff ψ is of the form ∼χ for some formula χ. We define ψ̃ := ∼ψ
in case ψ is not a negated formula and ∼̃χ := χ. Let Cl∼(ϕ0) = Cl(ϕ0) ∪ {ψ̃ |
ψ ∈ Cl(ϕ0)}. It can be shown easily that Cl∼(ϕ0) is finite. We denote Cl(ϕ0)
as Φ and Cl∼(ϕ0) as Φ′ in the rest of the proof.

We define a finite canonical model as follows. The set of situations S is the
set of all independent GrFDE-pairs x = 〈xin, xout〉 such that xin ∪ xout = Φ′.
It can be shown that each independent GrFDE-pair 〈Γ,Δ〉 can be extended to
an independent GrFDE-pair 〈Γ ′,Δ′〉 such that Φ′ ⊆ (Γ ′ ∪ Δ′). Note that, for
all x, xin contains always at least �. Otherwise � ∈ xout and xin = ∅, but then∧

xin ⊃ ∨
xout is provable and so x is not an independent pair.

The rest of the model is defined as follows. The Routley star is defined by
x� := 〈x�

in = {ψ ∈ Φ′ | ψ̃ ∈ xout}, (Φ′ \ x�
in)〉. It is easily seen that x� is

an independent GrFDE-pair and thus an element of S in the finite canonical
model. Let us show that the canonical Routley star is of period two. It is clear
that ˜̃

ψ = ψ for all ψ. Therefore, x��
in = {ψ ∈ Φ′ | ψ̃ ∈ x�

out} = {ψ ∈ Φ′ | ˜̃
ψ /∈ x�

out}
= xin.

Next, we define Raxy iff {ψ | Kaψ ∈ xin} ⊆ yin. Ra is reflexive thanks to
(A6). The group relations RG and R∗

G are defined as in ordinary group models.
The canonical valuation is v : p �→ {x | p ∈ xin} for p ∈ Φ and v : p �→ ∅
otherwise.

It remains to be shown that, for all ψ ∈ Φ, ψ ∈ xin iff x �v ψ (the Truth
Lemma). For propositional variables, this holds by definition. It is easily seen
that ϕ ∧ ψ ∈ xin iff both ϕ,ψ ∈ xin and ϕ ∨ ψ ∈ xin iff at least one of ϕ,ψ
is in xin, from which the claims for conjunctions and disjunctions follow. The
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claim for ⊃ is similarly easy (it follows from from the fact that FDE proves all
positive classical tautologies—including � ⊃ (ϕ ∨ (ϕ ⊃ ψ))—and the fact that
� ∈ xin for all x ∈ S).

The claims for the modal operators are established as follows. If Kaϕ ∈ Φ,
then Kaϕ ∈ xin implies x �v Kaϕ by definition of Ra. To establish the converse
implication, it is sufficient to observe that, if Kaϕ /∈ xin, then 〈{ψ | Kaψ ∈
xin}, {ϕ}〉 is an independent pair. Hence, it can be extended to a pair 〈Γ,Δ〉
such that Φ′ ⊆ (Γ ∪ Δ). Take yin = Γ ∩ Φ′ and yout = Δ ∩ Φ′. It is clear that
y = 〈yin, yout〉 is an element of the canonical model such that Raxy and that
y �v ϕ (by the induction hypothesis).

The case of KGϕ ∈ Φ where G is not a singleton follows from (A7), the
definition of RG and the induction hypothesis (for Kaϕ, a ∈ G; note that we
may use the hypothesis as KGϕ ∈ Φ implies Kaϕ ∈ Φ for all a ∈ G).

Finally, take K∗
Gϕ ∈ Φ. If K∗

Gϕ ∈ xin, then x �v K∗
Gϕ by the fact that

KG(ϕ∧K∗
Gϕ) ∈ Φ and the induction hypothesis for KG. The converse entailment

is established as follows. For each non-empty Z ⊆ S and y ∈ S of the finite
canonical model, define

ϕy :=
∧

yin ϕZ :=
∨

y∈Z

ϕy

We sometimes write y instead of ϕy and Z instead of ϕZ . Take Z := {y | R∗
Gxy}

and assume that ϕ ∈ yin for all y ∈ Z. We have to prove that K∗
Gϕ ∈ xin.

Lemma 1. GrFDE proves Z ⊃ KG(ϕ ∧ Z).

Before proving the lemma, we show how it is applied. Using the Induction Rule
(R3) and the fact that x ∈ Z, we obtain � x ⊃ K∗

Gϕ. Hence, K∗
Gϕ must be in

xin, otherwise x would not be an independent pair.
Proof of Lemma 1. We write XGY if, for all x ∈ X, if RGxy, then y ∈ Y . We
prove the following claim.

Lemma 2. If XGY , then GrFDE proves X ⊃ KGY .

Proof of Lemma 2. We prove that if XGY , then GrFDE proves X ⊃ KaY for all
a ∈ G; the desired result then follows by applying axiom (A7). The proof is by
reductio ad absurdum. Assume that GrFDE does not prove X ⊃ KaY . Then
there is w ∈ X such that GrFDE does not prove w ⊃ KaY . This means that
〈{ψ | Kaψ ∈ win}, {ϕz | z ∈ Y }〉 is an independent pair extendible to 〈Γ,Δ〉
such that Γ ∪ Δ contains Φ′. Take y = 〈Γ ∩ Φ′,Δ ∩ Φ′〉. It is clear that Rawy
and so, by our assumption, y ∈ Y . However, this means that GrFDE proves
ϕy ⊃ ϕY and so y cannot be an independent pair. This is a contradiction. Hence,
Lemma 2 is established.

We continue the proof of Lemma 1. Note that ZGZ, so GrFDE proves Z ⊃
KGZ by Lemma 2. Moreover, our assumption that ϕ ∈ yin for all y ∈ Z implies
that GrFDE proves Z ⊃ ϕ. Using monotonicity and regularity of KG, we infer
that GrFDE proves KGZ ⊃ KG(ϕ∧Z). Hence, GrFDE proves Z ⊃ KG(ϕ∧Z)
as desired. This concludes the proof of Lemma 1 and completeness is established.
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Our proof shows that the LGr-theory of group frames is recursively axiom-
atizable and the axiomatization is complete with respect to a recursively enu-
merable set of models (models based in finite group frames). Hence, the theory
is decidable.
Theorem 2. GrUpFDE is a sound and weakly complete axiomatization of the
LGrUp-theory of all group update frames. The theory is decidable.

Proof. Assume that ϕ0 is not provable in GrUpFDE. Define the finite canonical
model based on the closure of ϕ0, Φ, and the ∼-closure of Φ, which we denote Φ′,
as in the proof of Theorem 1. Moreover, let RxY z iff there are prime GrUpFDE-
theories Γ,Σ and Δi for i ∈ I such that

(a) for all ϕ\ψ, if ϕ\ψ ∈ Γ and ϕ ∈ ⋂
i∈I Δi, then ψ ∈ Σ; and

(b) xin ⊆ Γ , (Σ∩Φ′) ⊆ zin and, for all Δi there is yj ∈ Y such that (yj)in ⊆ Δi.

(A similar definition appears in [10].) We have to show only that the Truth
Lemma holds for ϕ\ψ ∈ Φ. If ϕ\ψ ∈ xin, RxY z and ϕ ∈ ⋃{yin | y ∈ Y }, then
ψ ∈ zin by the definition of the canonical R. Conversely, we reason similarly
as in [29, 256]. First, assume that ϕ\ψ ∈ xout. Extend x to a prime theory Γ .
Second, extend the independent pair 〈{χ | ϕ\χ ∈ Γ}, {ψ}〉 to a prime theory
Σ. (The proof that it is an independent pair uses (A9) and (R4); the case {χ |
ϕ\χ ∈ Γ} = ∅ uses (R5).) Third, take the set Λ = {α | ∃β(β /∈ Σ & α\β ∈ Γ}.
For each αi ∈ Λ, ϕ ⊃ αi is not provable. (If some ϕ ⊃ αi were provable, then
βi ∈ Σ by (R4).) Hence, extend each pair 〈{ϕ}, {αi}〉 to a prime theory Δi. It
follows from the construction of Σ and Δi that (a) holds for Γ, {Δi}i∈I , Σ. (If
Λ = ∅, then {Δi}i∈I = ∅ and so each α ∈ ⋂

i∈I Δi; but in this case also α\β ∈ Γ
implies β ∈ Σ.) Moreover, ϕ ∈ ⋂

i∈I Δi by the construction of Δi. Finally, take
(yi)in = Δi ∩Φ′ and (yi)out its complement relative to Φ′ and similarly for z and
Σ. It is clear that ϕ ∈ (yi)in for all i ∈ I and ψ /∈ zin. This concludes the proof
of the Truth Lemma.

Our proof establishes that the LGrUp-theory of group update frames is recur-
sively axiomatizable and the axiomatization is complete with respect to a recur-
sively enumerable set of models (models based on finite group update frames).
Hence, the theory is decidable.
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9. B́ılková, M., Cintula, P., Lávička, T.: Lindenbaum and pair extension lemma in
infinitary logics. In: Moss, L.S., de Queiroz, R., Martinez, M. (eds.) WoLLIC 2018.
LNCS, vol. 10944, pp. 130–144. Springer, Heidelberg (2018). https://doi.org/10.
1007/978-3-662-57669-4 7
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Abstract. We formalise justification in the topological argumentation
model and define knowledge and belief based on justification. In addition
to revealing that the notions of knowledge and belief based on justifica-
tion satisfy Stalnaker’s BK system except for the closure principle, the
main contribution of this paper is a counter-intuitive result about the
notion of knowledge based on justification, which is related to the no
false lemmas.

Keywords: Stalnaker’s BK system · Topological evidence model ·
Abstract argumentation theory · No false lemmas

1 Introduction

In epistemology, justification and knowledge are so closely related that almost
no theory of knowledge can avoid justification. However, there is no consensus
on what kind of justification is adequate for knowledge. After Gettier’s paper
[7], so many attempts have been made to explicate what the adequacy of jus-
tification for knowledge requires. Among these attempts, logicians also make
their contribution. To the best of the author’s knowledge, there are mainly two
approaches to the logic of justification, justification logic [1] and evidence logic
[3]. Based on justification logic, there are works directly dedicated to the issue
on the adequacy of justification for knowledge, for example, [6]. There are also
works generalising evidence logic in which justification is semantically modelled,
for example, [2].

In [2], a notion of knowledge requiring a correct justification is proposed and
it is shown how this notion of knowledge can be connected to other theories
of knowledge, for example, the no false lemmas theory of knowledge [4], the
defeasibility theory of knowledge [12,13] and Stalnaker’s theory of knowledge
and belief [17].

This paper is a follow-up of a series of papers [14–16] on combining the
topological evidence model in [2] and abstract argumentation theory in [5]. The
integrated setting, called “topological argumentation model”, naturally extends
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the topological evidence model and leads to a more fine-grained formalisation of
justification and belief. A remaining question is whether the notion of knowledge
defined in [2] has its more fine-grained counterpart in the topological argumenta-
tion model. In this paper, we show that such a counterpart exits in the topological
argumentation model.

Roughly speaking, in the topological argumentation model, P is known if
and only if there is a correct justification for P . This is exactly the way knowl-
edge is defined in the topological evidence model. However, in the topological
argumentation model, we have a more fine-grained notion of justification, which
we will call “ground”. Thus the notion of knowledge in the topological argumen-
tation model has a more fine-grained structure to be analysed. We will do such
an analysis, which is related to the no false lemmas theory of knowledge. It leads
us to a counter-intuitive result about knowledge. The key to explaining away the
counter-intuitiveness lies in the distinction between argument, justification and
ground, which can be made precise in the topological argumentation model.

We will also explore the relationship between knowledge and belief defined in
the topological argumentation model. With the help of the logic of argument, belief
and knowledge (LABK), which was firstly studied in [16], we will show that almost
all the epistemic-doxastic axioms proposed by [17] are satisfied except the principle
of closure under implication for knowledge. For example, believing P is the epis-
temic possibility of knowing P and believing P implies believing that you know P .

The paper is structured as follows. We first introduce the topological argu-
mentation model and how ground is formalised in it in Sect. 2. Then in Sect. 3 we
introduce the logic of argument, belief and knowledge and logically analyse the
relationship between knowledge and belief. We show how the more fine-grained
representation of ground enables us to conduct a further semantical analysis of
knowledge in Sect. 4. The analysis resulted in a counter-intuitive theorem about
knowledge. After a brief discussion and summary, we point out some possible
future work in Sect. 5.

2 Grounds in Topological Argumentation Model

In this section, we first introduce the topological argumentation model and how
justification can be formalised in it, which were first proposed in [15].

The topological argumentation model is an extension of the topological evi-
dence model introduced in [2]. Let At be a set of atomic propositions.

Definition 1 (Topological argumentation model [15]). A topological argu-
mentation (TA) model (W, E0, τE0 ,�, V ) is a tuple where W is a set of possible
states, E0 ⊆ ℘(W ) is a set of non-empty subsets of W which includes W itself,
τE0

1 is the topology generated by E0,2 and V : At �→ ℘(W ) is a evaluation function
mapping each atomic proposition to a subset of W .
1 When no confusion arises, τE0 will be denoted simply by τ .
2 A topology over a non-empty domain X is a family τ ⊆ 2X containing both X and

∅, and closed under both finite intersections and arbitrary unions. The elements of
a topology are called open sets. The topology generated by a given Y ⊆ 2X is the
smallest topology τY over X such that Y ⊆ τY .
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The attack relation on τ , � ⊆ (τ × τ) with T1 � T2 read as “T2 attacks
T1”, is required to satisfy the following conditions:

1. for every T1, T2 ∈ τ : T1 ∩ T2 = ∅ if and only if T1 � T2 or T2 � T1;
2. for every T, T1, T

′
1 ∈ τ : if T1 � T and T ′

1 ⊆ T1, then T ′
1 � T ;

3. for every T ∈ τ \ {∅}: ∅ � T and T �� ∅.

Note that (W, E0, τ, V ) constitutes a topological evidence model, in which E0 is
interpreted as the agent’s set of basic evidence and τE0 is the topology where
non-empty open sets are taken as arguments in the sense of being generated by
taking finite intersection and arbitrary union of pieces of basic evidence. The
relation � is thus the attack relation between arguments.

As arguments are not ensured to be coherent (it is possible that for some
T, T ′ ∈ τ , T ∩ T ′ = ∅), having one argument T ∈ τ supporting a proposition
P ⊆ W (T ⊆ P ) is not reasonable enough for the agent to believe P , especially
when the argument is attacked but not defended at all. Then which arguments
are qualified to justify the agent’s belief? In order to answer this question, we
appeal to the abstract argumentation theory [5].

Definition 2 (Defence function). Let M = (W, E0, τ,�, V ) be a TA model.
A subset σ ⊆ τ is said to defend T ∈ τ if and only if any open T ′ ∈ τ attacking
T (i.e., for all T ′ ∈ τ such that T � T ′) is itself attacked by some open in σ
(i.e., there is T ′′ ∈ σ such that T ′ � T ′′). The defence function of M , denoted
by dτ , receives a set of opens σ ⊆ τ and returns the set of opens that σ defends:

dτ (σ) := {T ∈ τ | T is defended by σ}

The defence function dτ is monotonic [5, Lemma 19]; hence, its least fixed point
LFPτ (the smallest subset FP ⊆ τ satisfying FP = dτ (FP), i.e., exclusively self-
defensive) always exists [11,18]. We call elements in the least fixed point of dτ

“grounds”.
The least fixed point can be built up from the bottom. Let

σ0 = ∅, σα+1 = d(σα), σβ =
⋃

α<β

σαwhenever β is a limit ordinal.

There must be an ordinal α such that LFPτ = σα. This process of building up
the least fixed point captures the process of selecting the arguments which are
qualified enough as grounds for the agent’s beliefs. First, σ1 = d(σ0) picks out
those arguments which are not attacked at all. Then d(σ1) adds the arguments
defended by σ1. The whole process adds up at each step the arguments defended
by those arguments added up in the previous steps. The process stops growing
after hitting the ceiling LFPτ .

Here are some facts about the least fixed point, which will be useful for the
later discussion.
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Proposition 1. Given a TA model,

1. For any F, F ′ ∈ τ such that F ⊆ F ′, if F ∈ LFP then F ′ ∈ LFP;
2. For any F, F ′ ∈ LFP, F ∩ F ′ �= ∅.

In order to study several notions based on grounds, in the next section, we
will present a logical system, which was first proposed in Chapter 2 of [14] and
[16]. In [14] and [16], the main focus of the logic is on belief. In this paper we
will go further and see how this logic helps us with issues on knowledge.

3 Logic of Argument, Belief and Knowledge

3.1 Syntax and Semantics

We first present the syntax and semantics of the logic (abbreviated as LABK).

Definition 3 (Language L�,U,K). The language L�,U,K is generated by:

ϕ :: = p | ¬ϕ | ϕ ∧ ϕ | U ϕ | �ϕ | Kϕ

with p ∈ At.

U is a universal modality, which is included for technical reasons and can be
interpreted as infallible knowledge. Formulas of the form �ϕ read “there is
a factive argument supporting ϕ”. K is the modality for (fallible) knowledge.
Other Boolean operaleftrighttors (∨, →, ↔) as well as the modal duals of U, �
and K are defined as usual (for the latter: Û ϕ := ¬U ¬ϕ, ♦ϕ := ¬� ¬ϕ, and
K̂ϕ := ¬K ¬ϕ).

Formulas in L�,U,K are semantically evaluated in pointed TA models, pairs
(M,w) with M = (W, E0, τ,�, V ) a TA model and w ∈ W a world in it. The
semantic interpretation of atoms and Boolean operators is as usual. For the
modal operators,

Table 1. Axiom system L�,U,K, for L�,U,K w.r.t. TA models.
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M,w |= U ϕ iff def W ⊆ �ϕ�
M,w |= � ϕ iff def there exists T ∈ τE0 \ {∅} such that w ∈ T and T ⊆ �ϕ�
M,w |= K ϕ iff def there exists F ∈ LFPτ such that w ∈ F and F ⊆ �ϕ�

with �ϕ� = {w ∈ W | M,w |= ϕ}. A formula is valid (notation: |= ϕ) when
M,w |= ϕ holds for every world w of every TA model M .

The sound and complete axiom system L�,U,K is presented in Table 1 [14,16].

3.2 Knowledge and Belief Based on Ground

In the remaining part of this section, we will show that the logical relationship
between belief and knowledge as advocated in [17] makes sense in the logic
presented above. Our contribution is fitting the notion of ground seamlessly into
the whole picture.

We start with zooming in on the semantical meaning of knowledge in LABK.
It says that the agent knows ϕ if and only if there is a true ground for ϕ. Note
that this definition of knowledge does not involve any notion of belief directly.
Instead, it is based on truth and ground.

If we follow what is suggested in [17] and define belief as Bϕ := K̂ Kϕ, then
we can prove the following proposition on the semantial meaning of belief in an
TA model.

Proposition 2. Given a pointed TA model (M,w), M,w |= B ϕ if and only if
there exists F ∈ LFPτ such that F ⊆ �ϕ�.

Proof. First observe that (M,w), M,w |= ÛK ϕ if and only if there exists F ∈
LFPτ such that F ⊆ �ϕ�.

Then we prove that � K̂ Kϕ ↔ Û K ϕ in L�,U,K. The direction from left to
right follows from � K̂ ϕ → Û ϕ. The direction from right to left goes as follows
(we sketch the deduction):

(1) � ̂UKϕ → ̂UKKϕ axiom 4 for K; necessitation rule for ̂U

(2) � ̂UKKϕ → ¬ ̂UK¬Kϕ axiom D for ̂UK

(3) � ¬ ̂UK¬Kϕ → U ̂KKϕ the definitions of ̂U and ̂K

(4) � ̂UKϕ → U ̂KKϕ (1)(2)(3) and modus ponens

(5) � ̂UKϕ → ̂KKϕ (4), axiom T for U and modus ponens

By the soundness of the axiom system (Table 1), we can reach the conclusion
that M,w |= Bϕ if and only if there exists F ∈ LFPτ such that F ⊆ �ϕ�.

Belief is thus also based on ground. The only difference between belief and
knowledge in LABK is the truth of their grounds.

The fact that we can define belief in terms of knowledge in LABK does not
imply the conceptual priority of knowledge over belief as it is defended in [19].
In fact, we can also define knowledge using belief and argument in LABK.
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Table 2. Axiom system BK

Proposition 3.
|= Kϕ ↔ (B ϕ ∧ � ϕ)

Proof. We prove that � K ϕ ↔ (B ϕ ∧ �ϕ) and then use the soundness of the
axiom system.

The direction from left to right is easy. So we just sketch the deduction of
the other direction which mainly use the axiom � Kϕ → U(� ϕ → K ϕ) and
axioms 5 and T for U.

(1) � ̂UKϕ → ̂UU(� ϕ → Kϕ)

(2) � ̂UU(� ϕ → Kϕ) → U(� ϕ → Kϕ)
(3) � U(� ϕ → Kϕ) → (� ϕ → Kϕ)

(4) � ̂UKϕ → (� ϕ → Kϕ)

(5) � (̂UKϕ ∧ � ϕ) → Kϕ

Defining knowledge as belief with true ground distinguishes knowledge from
justified true belief (Bϕ ∧ ϕ) in LABK.

The following validity shows that the notion of belief defined in LABK is full
belief as [17] calls it.

Proposition 4.
|= Bϕ → B K ϕ

Proof. The deduction of � B ϕ → B K ϕ involves the use of axiom 4 for K.

Actually, it can be verified that all axioms and rules in the system BK about
knowledge and belief in [17] are valid in LABK except the closure under impli-
cation for both knowledge and belief, namely K(ϕ → ψ) → (K ϕ → Kψ) and
B(ϕ → ψ) → (B ϕ → B ψ).

To see why the closure principle fails, the following counterexample is helpful.

Example 1. Let At = {p, t, b} be a set of atomic propositions. We build the
following TA model.

({1, 2, 3}, E0 = {{1}, {2}, {3}, {1, 2}, {2, 3}}, τ = 2{1,2,3},�, V ) (1)

with V = {(p, {1, 2}), (t, {2, 3}), (b, {3, 4})} and � given by the union of (i)
singletons attacking one another, (ii) every open attacking the empty set, and
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{1, 3}

{1, 2}

{2, 3}
2

1 3

Fig. 1. Grounded beliefs are not closed under conjunction.

(iii) {{3} � {1, 2}, {1} � {2, 3}, {2} � {1, 3}, {1, 3} � {2}}, as shown in
Fig. 1.3 Following its definition, LFPτ = {{1, 2}, {2, 3}, {1, 2, 3}} (a set that is
not closed under intersection).

Assume that 2 is the actual world. Then 2 |= K p and 2 |= K t, but 2 �|=
K(p ∧ t). The same also applies to B.

The example in fact shows that the failure of closure under implication is
due to the failure of closure under conjunction introduction.

For knowledge, the failure of closure under conjunction introduction is not
a problem at all. It is even advantageous in the sense of playing the key role
in solving the scepticism puzzle. We refer readers who are interested to [10].
For belief, a discussion about the implication of the failure of closure under
conjunction introduction can be found in Section 5 of [15].

More information on LABK and the TA models can be found in [14–16]. In
the next section, we will do a deeper semantical analysis of knowledge in the TA
models.

4 A Fine-Grained Analysis of No False Lemmas

In [7], two counterexamples are presented against the definition of knowledge
as justified true belief (JTB theory of knowledge). These two counterexamples
share the same structure: the agent has belief of a proposition, for example,
P ∨ Q, where P is false but Q is true; but the agent has justification for P and
infers P ∨ Q from P ; so the agent has justified true belief but intuitively not
knowledge.

The problem in the counterexamples is obviously the false justification which
supports a true proposition. This situation can be represented in a TA model by
taking a ground F in LFPτ where w /∈ F and expanding F to a certain extent
so that w is included in the expansion.

There are a lot of attempts to remedy the JTB theory of knowledge, for
example, [4,8,13]. The proposal in [4] – if the false ground causes the problem,
then require the truth of the ground – is similar to our definition of knowledge
3 Attack edges involving the empty set are not drawn.
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in LABK as belief plus true ground. However, [4] goes further, requiring that
the true ground also has a true ground and the true ground for the true ground
also has a true ground and so on. Moreover, the relationship between each level
of ground can be non-deductive. Rather than specifying what the non-deductive
relationship is, [4] gives an example.

We are not going to analyse what the non-deductive relationship reflected in
[4]’s example can be. Our focus is on the further requirement of a chain of true
grounds, which is usually called “no false lemmas”. The requirement of a chain
of true grounds seems to indicate that the notion of knowledge in LABK which
is equivalent to belief plus a true ground is not strong enough.

Recall the building process of the least fixed point LFPτ , which is the set of
grounds. It seems possible that a true ground F which is included in a certain
step of the process, for example, dn+1(σn), would not have been in it, if we took
out some false grounds in σn. In other words, the membership of F in LFPτ seems
to be dependent on the membership of some false grounds. The requirement of
no false lemmas excludes such cases. So seemingly we can improve our definition
of knowledge as follows.

Let tτ : ℘(W ) �→ ℘(W ) be a function such that tτ (T ) = {T ∈ dτ (T ) | w ∈ T}.
Then let σw

0 = ∅, σw
α+1 = tτ (σw

α ), and σw
β =

⋃
α<β σw

α whenever β is a limit
ordinal. Since the function tτ is monotonic, so its least fixed point must exist
and there must be an ordinal α such that σw

α is its least fixed point. We use TGw

to denote this least fixed point for tτ . During the process of building the least
fixed point TGw, we essentially excludes in every step those false grounds. Note
that TGw ⊆ {T ∈ LFPτ | w ∈ T}.

Definition 4 (Well-grounded knowledge). Given a pointed TA model
(M,w), M,w |= Kg ϕ if and only if there exists F ∈ TGw such that F ⊆ �ϕ�.

Because well-grounded knowledge requires a chain of true grounds, intu-
itively, we get a stronger notion of knowledge, namely |= Kg ϕ → K ϕ. However,
it turns out that in TA models, we also have |= Kϕ → Kg ϕ.

Theorem 1.
|= Kg ϕ ↔ Kϕ

Proof. We prove the direction |= Kϕ → Kg ϕ, for which we just need to prove
that {T ∈ LFPτ | w ∈ T} ⊆ TGw.

We first prove that for any ordinal β, {T ∈ d(σβ) | w ∈ T} ⊆ tτ (σw
β ).

Obviously when α = 0, tτ (σw
0 ) = {T ∈ d(σw

0 ) | w ∈ T} = {T ∈ d(σ0) | w ∈
T} because σw

0 = σ0 = ∅.
First assume that β is not a limit ordinal, that is β = α + 1. We prove that

{T ∈ d(σα+1) | w ∈ T} ⊆ tτ (σw
α+1), assuming that {T ∈ d(σα) | w ∈ T} ⊆

tτ (σw
α ).
Take an argument F ∈ dτ (σα+1) such that w ∈ F . If there is T ∈ τ such

that F � T , then there must be F ′ ∈ σα+1 = dτ (σα) such that T � F ′ and
F ′ �� T . (Otherwise, we can prove by induction on the ordinal α of the building
process, that F /∈ dτ (σα+1).)
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Now take the union of F and F ′, i.e. F ′′ = F ∪ F ′. By condition 2 of �
and F ′′ �� T , which follows from the fact that F ′ �� T and the first fact in
Proposition 1, it follows that T � F ′′.

Because F ′ ⊆ F ′′ and F ′ ∈ dτ (σα), it follows that F ′′ ∈ dτ (σα). By the
hypothesis {T ∈ d(σα) | w ∈ T} ⊆ tτ (σw

α ), it follows that F ′′ ∈ tτ (σw
α ). Because

τ(σw
α ) ⊆ τ(σw

α+1), we get that F ′′ ∈ τ(σw
α+1).

Second, assume that β is a limit ordinal. It is not hard to see that {T ∈
d(σβ | w ∈ T} ⊆ tτ (σw

β ), assuming that {T ∈ d(σα) | w ∈ T} ⊆ tτ (σw
α ) for any

α < β.
Therefore, we have proved that {T ∈ d(σβ) | w ∈ T} ⊆ tτ (σw

β ) for any
ordinal β.

Because there must be an ordinal α such that LFPτ = σα. Then {T ∈ LFPτ |
w ∈ T} ⊆ tτ (σw

α ) for some ordinal α. Since σw
α ⊆ TGw where TGw is the least

fixed point of tτ , we have proved that {T ∈ LFPτ | w ∈ T} ⊆ TGw.
Now assume that K ϕ holds in a given possible world w of a given TA model

M . Then there is F ∈ {T ∈ LFPτ | w ∈ T} such that F ⊆ �ϕ�. It follows by
{T ∈ LFPτ | w ∈ T} ⊆ TGw that F ∈ TGw. So we have M,w |= Kg ϕ

This implies that M,w |= Kϕ.

While this result seems counter-intuitive (and paradoxical in the sense of
following from a series of seemingly intuitive and reasonable formalisations, for
example, the topological structure of arguments, the three conditions on the
attack relation and so on), it can be explained away. One possible reason for us
to feel counter-intuitive could be that we confuse arguments with grounds and
applied our intuition about arguments wrongly to grounds. The membership
of factive arguments in a certain set of arguments can be dependent on false
arguments, but the set cannot be the least fixed point and thus the arguments
are not grounds for the agent, as the following example illustrates.

Example 2. Let M = (W = {1, 2, 3, 4}, E0 = {W, {1, 2}, {2, 3}, {4}}, τE0 ,�, V )
be a TA model. The topology τ consists of W , ∅ and elements in Fig. 2. The
attack relation is illustrated partially (leaving out attack towards the empty
open) in Fig. 2.

Assume that 1 ∈ W is the actual world. Starting with a false argument {2, 3}
and applying the defence function d to it, we can build up a set of arguments
d({2, 3}) = {{2, 3}, {1, 2}, {2}, {1, 2, 3},W}. We can see that the true arguments
{1, 2} is only defended by {2, 3}. So within the set d({2, 3}), true arguments can

1,2 2,3

42 1,2,3

Fig. 2. The attack relation in Example 2
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be dependent on false arguments. But d({2, 3}) is not the least fixed point of
the model, which is {W}. Arguments {1, 2} and {2, 3} are not grounds.

5 Discussion and Future Work

In this paper, we proposed a notion of knowledge based on true grounds in topo-
logical argumentation models. We have showed that its relationship with belief in
LABK satisfy almost all of Stalnaker’s epistemic-doxastic axioms in [17] except
the closure principle for knowledge. Furthermore, we have revealed that each
true ground is well-grounded, i.e. defended by a chain of true grounds.

We mentioned that the notion of knowledge K in LABK is different from U
in the sense of being fallible. That is, when given more information, the agent
might lose her knowledge, as the famous barn-facades example [9] shows. In
the example, Henry happens to see a real barn among a lot of barn-facades.
Although from Henry’s perspective he cannot distinguish the real barn from
barn-facades, he has a true ground by his perception and thus has knowledge
according to our definition. However, if Henry is told that all other “barns” he
saw are barn-facades, a new argument may be available to him, supporting that
the object he saw is not real barn either. This new argument may attack his
original argument so that the original argument is not qualified as a ground any
more. So his knowledge is lost.

We notice that in the example, although the new information given to Henry
is true, it is misleading in the sense of creating new false argument (All the other
objects are barn-facades; if all the other objects are barn-facades, then the one
seen is also a barn-facade; so the one seen is a barn-facade).

In [2], it is shown that their notion of (fallible) knowledge defined in the
topological evidence model is infallible if all information received by the agent
is non-misleading. The notion of “non-misleading” can be precisely modelled in
the topological evidence model. By using conditional belief, it can also model
the property of being infallible.

Is our notion of knowledge also infallible in the same sense? We can define
“non-misleading” argument in the TA model. But it is more involved to define
conditional belief in the TA model, because we need to configure not only new
arguments conditional on new information but also a new attack relation condi-
tional on new information. How can the notion of conditional belief be defined
in the TA model? We leave it as our future work.
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LNCS, vol. 9803, pp. 83–103. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-52921-8 6

3. van Benthem, J., Fernández-Duque, D., Pacuit, E.: Evidence logic: a new look
at neighborhood structures. In: Bolander, T., Braüner, T., Ghilardi, S., Moss, L.
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Abstract. Theory of Mind, the cognitive capacity to attribute internal
mental states to oneself and others, is a crucial component of social skills.
Its formal study has become important, witness recent research on reason-
ing and information update by intelligent agents, and some proposals for
its formal modelling have put forward settings based on Epistemic Logic
(EL). Still, due to intrinsic idealisations, it is questionable whether EL can
be used to model the high-order cognition of ‘real’ agents. This manuscript
proposes a mental attribution modelling logical framework that is more in-
line with findings in cognitive science. We introduce the setting and some
of its technical features, and argue why it does justice to empirical obser-
vations, using it for modelling well-known False-Belief Tasks.

Keywords: Theory of Mind · Mental state attribution ·
False belief tasks · Temporal model · Dynamic epistemic logic

1 Introduction

An important feature of how people function in social scenarios is that of Theory
of Mind (ToM), the cognitive capacity to attribute internal mental states, such
as knowledge and beliefs, to oneself and others [1].1 Theory of Mind is a crucial
component of social skills: someone who understands that others might have men-
tal states different from hers, and can reason about those states, is much better
suited to understand their behaviour, and thus act and react appropriately.

Theory of Mind is slowly developed in the course of our lives [3,4] (and
at different speed for different types of persons [5,6]), starting with the ability
to make first-order attributions (e.g., someone knowing/believing that “Mary
believes that the ball is in the bag”) and progressing through attributions of

1 There has been a debate on how this understanding of others’ mental states is achieved
(see, e.g., [2]). Some argue that it is by acquiring a theory of commonsense psychology
(theory theory); some others argue that it comes from a direct simulation of others’
mental states (simulation theory). We will use the term ToM without endorsing any
of these views, as such discussion falls outside the scope of this proposal.

c© Springer-Verlag GmbH Germany, part of Springer Nature 2019
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second-order mental states (e.g., someone knowing/believing that “Mary believes
that John believes that the ball is in the closet”). When testing one’s ToM, an
extensively used experiment is the Sally-Anne False-Belief Task.

Example 1. (The Sally-Anne (SA) task). The following is adapted from [3].

Sally and Anne are in a room in which there are a basket and a box. Sally is
holding a marble. Then, after putting the marble into the basket, Sally leaves
the room. While Sally is away, Anne transfers the marble to the box. Then
Sally comes back.

To pass the test, the subject should answer correctly the question “where does
Sally believe the marble to be?”. This requires for the subject to distinguish
between her own true belief (“the marble is in the box”) and Sally’s false belief
(“the marble is in the basket”). Experiments have shown that, while children
older than 4 years old tend to answer correctly, younger children (or children on
the autism spectrum) tend to fail the test, reporting their own belief [3]. (But
see [7].) �

In the enterprise of studying and understanding ToM, there has been a grow-
ing interest on the use of formal frameworks. A seemingly natural choice is
Epistemic Logic (EL) [8,9], as it provides tools for representing not only the
knowledge/beliefs agents have about ontic facts, but also the knowledge/beliefs
they have about their own and others’ knowledge/beliefs. However, using EL
has some drawbacks. First, within EL’s standard relational ‘Kripke’ semantics,
knowledge/beliefs are closed under logical consequence (the logical omniscience
problem; [10]). Moreover, the extra relational requirements for ‘faithful’ repre-
sentations of knowledge and beliefs turn them into S5 and KD45 modal logics,
respectively, thus yielding fully (positive and negative) introspective agents.

There is an even more fundamental reason why EL might not be well-suited
for representing realistic high-order attributions. Semantically, both knowledge
and beliefs correspond to a universal quantification (φ is known/believed iff it
is the case in all the alternatives the agent considers possible); still, for real
agents, these notions involve more elaborate considerations (e.g., observation,
communication, reasoning). This ‘simple’ universal quantification works because
EL uses a loaded model, which contains not only the (maximally consistent)
alternatives the agent considers possible, but also every other alternative every
other agent considers possible.2 In a few words, the semantic interpretation of
(high-order) knowledge/beliefs formulas is simple because the model is complex.
Real agents might not be able to have such a loaded structure ‘in their mind’,
and thus it is questionable whether the use of traditional EL can provide a proper
picture of the way real agents deal with mental attribution scenarios.

2 Frameworks for representing acts of private communication [11] make this clear.
Their additional structures, action models, have one ‘event’ for each different per-
spective the agents might have about the communication, and the model after the
communication contains roughly one copy of the original model for each one of these
perspectives.
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In light of these issues, one could even wonder whether it makes sense to
use logical tools for dealing with results of empirical research. Indeed, it has
been argued that psychological experiments and logic are essentially different3,
understanding the former as the study of empirical findings on the behaviour
of real ‘fallible’ agents, and the latter as a normative discipline studying what
‘rational’ agents should do. However, other authors (e.g., [14,15]) have justified
why bridging these two views is a worthwhile endeavour that also has promis-
ing applications (especially on reasoning and information update by intelligent
agents). Indeed, empirical research benefits from using formal tools to explain
their discoveries and understand their consequences, and logical frameworks
become richer and more ‘useful’ when they capture human limitations and pre-
scribe behaviour attainable by real agents.

This work seeks a ToM’s logical setting that is more in-line with the findings
in cognitive science, with non-trivial and competent agents whose underlying
reasoning is reflected in the syntax and semantics.4 To that end, we aim at the
converse direction to that of EL. Our structures are simple, encoding only basic
facts, and thus resembling the ‘frugal’ way real agents keep information stored.
However, interpretations of mental state attributions show that agents engage
in the, oftentimes strenuous, process of recalling these facts and deriving further
information on their basis.

Outline. The text is organised as follows. Section 2 introduces the temporal vis-
ibility framework, presenting its model and formal language, and also discussing
some of its technical aspects. Then, Sect. 3 relates the features of the setting
with findings in the cognitive science literature, using it to model well-known
mental attribution tasks in detail, and comparing it with other related formal
settings. Section 4 closes, recapitulating the highlights, discussing ways in which
the framework can be extended, and suggesting lines for further research.

2 Visibility in a Temporal Setting

In most mental attribution tasks, beliefs5 are, at their lower (ontic) order, about
the location of certain objects (e.g., the marble’s location in the Sally-Anne
Task). We do take objects as the main entities about which agents have mental
attitudes; still, for simplicity, we will work with these objects’ colours. Let A �= ∅

be the set of agents (a, b, . . .), and O �= ∅ be the set of objects (o, p, q, . . .).
For each o ∈ O, the set Ro contains the colours the object might have; define
RO :=

⋃
o∈O Ro. The model is a temporal structure, with each stage (state)

fully described by both the colour of each object and the objects and agents
each agent sees.
3 Anti-Psychologism (e.g., [12]) has long been against attempts to reconcile the two

[13].
4 In particular, one goal is to find a system that provides a plausible answer on why

people find mental attribution tasks increasingly difficult as their order increases.
5 Following the common parlance in the literature describing the tasks we later model,

the term belief will be used for referring to an agent’s mental state.
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Definition 2.1 (Temporal visibility model). A temporal visibility
(TV) model is a tuple 〈n, S, τ, κ, ν〉 with (i) n ∈ N the index of the ‘most recent’
(current) stage; (ii) S a finite set of states with |S| = n; (iii) τ : S → {1..n} the
temporal index (bijective) function, indicating the temporal index τ(s) ∈ {1..n}
of each state s ∈ S; (iv) κ : S → (O → RO) the colouring function,
with κ(s, o) (abbreviated as κs(o)) the colour object o has at state s;6 (v)
ν : S → (A → ℘(A ∪ O)) the visibility function, with ν(s, a) (abbreviated
as νs(a)) the entities (agents and objects) agent a sees at state s.7 Given a TV
model, let slast ∈ S be its (unique) state satisfying τ(slast) = n. �

Example 2. Take the Sally-Anne Task, with Sally (Sa), Anne (An) and the mar-
ble (mar). Consider a two-state model M with (i) s1 the initial state, where
both agents see all agents and objects (νs1(Sa) = νs1(An) = {Sa,An,mar}) and
the object is black (κs1(mar) = black , read as ‘the marble is in Sally’s hands’),
and (ii) s2 the ‘next’ state, where both agents still see everything, but now the
object is white (κs2(mar) = white, read as ‘the marble is in the basket’). The
model is depicted as

s1

ν(Sa) = ν(An) = {Sa,An,mar}
mar

�
Sa

�
An

s2

ν(Sa) = ν(An) = {Sa,An,mar}
mar

�
Sa

�
An

�

Representing Actions. A TV model contains not only a state representing the
current situation (the state τ−1(n)) but also states indicating how the situation
was in the past (up to the initial τ−1(1)). One can provide operations that extend
the current model with a state depicting the outcome of a certain activity (the
way the situation will be). In the Sally-Anne Task, some acts modify the colour
of objects (Sally puts the marble into the basket) and some others modify the
agents’ visibility (Sally leaves the room). Here are operations for them.

Definition 2.2 (Colour change). Let M = 〈n, S, τ, κ, ν〉 be a TV model,
with snew �∈ S; take a set of objects {p1, . . . , pk} ⊆ O, with ci ∈ Rpi

a proper
colour for each pi. The colour assignment [p1:=c1, . . . , pk:=ck] produces the TV
model

M[p1:=c1,...,pk:=ck] = 〈n + 1, S ∪ {snew}, τ ′, κ′, ν′〉
in which (i) τ ′ preserves the temporal position of states in S, making snew the
most recent (so τ ′(s) := τ(s) for s ∈ S, and τ ′(snew ) := n+1); (ii) κ′ is exactly
as κ for states in S, with the new snew taking the colouring of slast for objects
not mentioned by the assignment, and following the assignment for the colour of
the objects it mentions (so, for any o ∈ O, define κ′

s(o) := κs(o) for s ∈ S, with
κ′

snew
(o) := κslast

(o) when o /∈ {p1, . . . , pk}, and κ′
snew

(pj) := cj when o = pj);

6 Each object has a proper colour: κs(o) ∈ Ro holds for all s ∈ S and o ∈ O.
7 Every agent can see herself in every state: a ∈ νs(a) holds for all s ∈ S and all a ∈ A.
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(iii) ν′ preserves the visibility assignment for states in S, with visibility in snew

exactly as in slast (so, for any a ∈ A, define ν′
s(a) := νs(a) for s ∈ S, and

ν′
snew

(a) := νslast
(a)). �

Definition 2.3 (Visibility change). Let M = 〈n, S, τ, κ, ν〉 be a TV
model, with snew �∈ S; take a set of agents {b1, . . . , bk} ⊆ A, and let Xi ⊆ A ∪ O
be a set of agents and objects for every bi, satisfying bi ∈ Xi. The visibility
assignment [b1←X1, . . . , bk←Xk] produces the TV model

M[b1←X1,...,bk←Xk] = 〈n + 1, S ∪ {snew}, τ ′, κ′, ν′〉
in which (i) τ ′ preserves the temporal position of states in S, making snew

the most recent (so τ ′(s) := τ(s) for s ∈ S, and τ ′(snew ) := n + 1); (ii) κ′

preserves the colouring assignment for states in S, with the colouring in snew

exactly as in slast (so, for any o ∈ O, define κ′
s(o) := κs(o) for s ∈ S, and

κ′
snew

(o) := κslast
(o)); (iii) ν′ is exactly as ν for states in S, with the new snew

taking the visibility of slast for agents not mentioned by the assignment, and
following the assignment for those agents it mentions (so, for any a ∈ A, define
ν′

s(a) := νs(a) for s ∈ S, with ν′
snew

(a) := νslast
(a) when a /∈ {b1, . . . , bk}, and

ν′
snew

(bj) := Xj when a = bj). �

The operations describe a change in the current situation; in this sense, they
are analogous to model operations in Dynamic Epistemic Logic (DEL; [16,17]).
Still, there is an important difference. Typically, DEL models describe only the
current situation, so model operations return a structure representing also a sin-
gle situation (the ‘next’ one). In contrast, while a TV model describes how the
situation is at the current stage (the state τ−1(n)), it might also describe how
the situation was in the past (the other states). Thus, while the operations add a
state describing the situation the action produces, they also retain the states of
the original model, hence keeping track of the past. In this sense, the TV setting
can be understood as a ‘dynamic temporal’: an underlying temporal structure
that can be extended by dynamic ‘model change’ operations. Other proposals
using similar ideas include [18] (cf. [19,20]), which redefines the operation rep-
resenting acts of (public and) private communication [11] to preserve previous
stages, and [21], whose models ‘remember’ the initial epistemic situation.

A Formal Language. The language L, for describing TV models, contains
basic formulas expressing the (high-order) beliefs agents have about the colour
of an object, and it is closed under both the standard Boolean operators as well
as modalities for describing what will be the case after an action takes place.

Definition 2.4 (Language L). Given A, O and {Ro}o∈O, formulas φ of the
language L are given by

φ ::= Ba1 · · · Bak
(o�c) | ¬φ | φ ∧ φ | [α]φ for k � 1, {a1, . . . , ak} ⊆ A, o ∈ O, c ∈ Ro

α ::= p1:=c1, . . . , pi:=ci | b1←X1, . . . , bj←Xj for i � 1, {p1, . . . , pi} ⊆ O, ci ∈ Rpi
,

j � 1, {b1, . . . , bj} ⊆ A, Xi ⊆ A ∪ P with bi ∈ Xi
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Formulas of the form Ba1 · · · Bak
(o�c), called mental attribution formulas, are

read as “agent a1 believes that . . . that agent ak believes that o has colour c”.
Other Boolean connectives (∨,→,↔) are defined in the standard way. �

Formulas in L are evaluated in a TV model with respect its last state slast ,
the fullest representation of the scenario available up that point. Nevertheless, as
the definition shows, the truth-value of formulas is influenced by earlier states.

Definition 2.5 (Semantic interpretation). Let M = 〈n, S, τ, κ, ν〉 be a
temporal visibility model. The following definitions will be useful.

• Take χ := Ba1 · · · Bak
(o�c). Its visibility condition on s ∈ S, denoted by

visχ(s), and listing the requirements for χ to be evaluated at s (agent a1 can
see agent a2, . . . , agent ak−1 can see agent ak, agent ak can see object o), is
given by

visχ(s) iff def a2 ∈ νs(a1) & . . . & ak ∈ νs(ak−1) & o ∈ νs(ak).

• Take s ∈ S and t � τ(s). The t-predecessor of s, denoted by [s]−t, is
the (unique) state appearing exactly t stages before s,8 and it is formally
defined as

[s]−t := τ−1(τ(s) − t)

For evaluating χ := Ba1 · · · Bak
(o�c), the process starts from slast , going ‘back

in time’ one step at the time, looking for a state satisfying χ’s visibility condition.
If such s′ is reached, χ’s truth-value depends only on whether o has colour c at
s′; otherwise, χ is false. Formally, and by using “

&
” for a natural-language dis-

junction (just as “&” stands for a natural-language conjunction), the satisfaction
relation � between a TV model and a mental attribution formula is given by

M � Ba1 · · · Bak
(o�c) iff def

τ(slast )−1&
i=0

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

no−latter−vis︷ ︸︸ ︷
i

&
j=1

not visBa1 ··· Bak
(o�c)([slast ]−(j−1))

&

visBa1 ··· Bak
(o�c)([slast ]−i))

︸ ︷︷ ︸
vis

& κ[slast ]−i
(o) = c

︸ ︷︷ ︸
col

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Thus, Ba1 · · · Bak
(o�c) holds at M when there is a state (the quantification

indicated by the main disjunction) in which the visibility condition is satisfied
(the vis part), the object has the indicated colour (the col part), and there is no
‘more recent’ state satisfying the visibility condition (the no−latter−vis part).

Boolean operators are interpreted as usual. For ‘action’ modalities,

M � [α]φ iff def M[α] � φ �

8 In particular, [s]−0 = s. Note also how [s]−t is undefined for t > τ(s).
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Before an example of the framework at work, there are four points worthwhile
to emphasise. (i) The semantic interpretation of χ := Ba1 · · · Bak

(o�c) captures
the discussed intuitive idea. On the one hand, if the visibility condition fails at
every state, the formula is false (every disjunct fails in its vis part). On the other
hand, if some states satisfy the visibility condition, let s′ be the time-wise latest
(i.e., s′ := τ−1(max{τ(s) | visχ(s)})); then, M � χ iff κs′(o) = c. (ii) For the
sake of simplicity, we assume that, when an agent a sees an agent b, and b sees an
object o, then a in fact sees b seeing o, as it should be intuitively the case in order
for a formula like Ba Bb(o�c) to be evaluated.9 (iii) The term ‘belief’ here does
not have the strong EL reading; it is rather understood as “truth according to the
agent’s current information about what has happened so far” (a form of default
reasoning [24,25]: the agent assumes that things remain the way she saw them
last). (iv) Attributions to oneself boil down to the col part of the interpretation,
given the properties of ν, thus giving any agent full positive introspection.

Example 3. Recall the Sally-Anne Task, with its first two stages represented by
the model M in Example 2. The story continues with Sally leaving the room,
after which she can see neither Anne nor the marble anymore, and Anne can only
see the marble. This is represented by an operation extending the model with a
new state (s3) in which both Sa’s and An’s visibility have changed, yielding the
model M[Sa←{Sa},An←{An,mar}] = M ′ below.

• Does Anne believe that the marble is white? Intuitively, the answer should be
“yes”, and the system agrees: M ′ � BAn(mar�white) holds, as at slast Anne
sees the marble (mar ∈ νs3(An)), and the marble is indeed white (κs3(mar) =
white).

• Does Sally believe that the marble is white? The answer is “yes”, but for a
different reason: M ′ � BSa(mar�white) holds because (i) although Sa cannot
see mar now (at s3), (ii) the last time she saw it (s2), mar was white.

• Does Anne believe that Sally believes that the marble is white? The relevant
state is the last time Anne saw Sally looking at the marble, i.e., s2. Since mar
is white at s2, indeed M ′ � BAn BSa(mar�white).

• Finally, does Sally believe that Anne believes that the marble is white? As
before, we can verify that M ′ � BSa BAn(mar�white). �

TV Models from a Modal Perspective. Readers familiar with modal logic
[26] will have noticed that a TV model is just a domain with a predecessor
9 Notice that visibility of each agent is not ‘common knowledge’: knowledge relies on

visibility, and an agent can see without being seen (Subsect. 3.1). Additionally, our
simplifying assumption might be a problem for attributions under (semi-)private
actions. Work of [22,23] can be especially relevant in that respect.
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relation (more precisely, a finite linear temporal structure); thus, it can also
be described by more standard modal languages. This will be made precise
now, in order to make explicit what the semantic evaluation of mental attri-
bution formulas boils down to. For simplicity, the focus will be L′: the frag-
ment of L that does not include the dynamic modalities [p1:=c1, . . . , pi:=ci] and
[b1←X1, . . . , bj←Xj ].

A modal language for describing a TV model requires special atoms for
agents’ visibility and objects’ colour. For the modalities, evaluating mental attri-
bution formulas might require visiting previous states, so temporal operators are
needed. A suitable one for expressing what mental attribution formulas encode
is the since operator S(φ, ψ) [27] (more precisely, its strict version, found also
in, e.g., [28]), read as “since φ was true, ψ has been the case”.10 Given a linear
structure M = 〈W,≺, V 〉 and w ∈ W , the formula is interpreted as follows.11

(M, w) � S(φ, ψ) iff def there is u ∈ W with (i) u ≺ w, (ii) (M, u) � φ, and (iii)
(M, v) � ψ for every v ∈ W such that u ≺ v ≺ w.

Thus, let LS be the modal language whose formulas are given by

φ ::=�a b | �a o | o�c | ¬φ | φ ∧ φ | S(φ, φ)

for a, b ∈ A, o ∈ O and c ∈ Ro. The semantic interpretation of the atoms
�a b, �a o and o�c over a TV ‘pointed’ model (M, s) is the natural one (look
at s’s contents, given by νs and κs); the semantic interpretation of S(φ, ψ) is
as above, with ≺ taken to be the “strictly earlier than” relation over states
in S, defined as s ≺ s′ iff def τ(s) < τ(s′). Then, by using the abbreviation
visa1···ano := �a1 a2 ∧ · · · ∧ �ak−1 ak ∧ �ak

o (so visa1···ano ∈ LS expresses the
visibility condition of the formula Ba1 · · · Bak

(o�c)), the translation tr : L′ → LS

is defined as

tr(Ba1 · · · Bak
(o�c)) := (visa1···ano ∧ o�c) ∨ (¬ visa1···ano ∧ S(visa1···ano ∧ o�c, ¬ visa1···ano)),

tr(¬φ) := ¬tr(φ), tr(φ ∧ ψ) := tr(φ) ∧ tr(ψ).

Then, M � φ iff (M, slast) � tr(φ) holds for any TV model M and any
φ ∈ L′. The crucial case, for mental attribution formulas, is apparent:

10 Note: a single ‘predecessor’ modality is insufficient, as the number of back steps the
recursive exploration requires is a priori unknown. A modality for its reflexive and
transitive closure is still not enough: it takes care of the recursive search for a state
satisfying the visibility condition, but on its own cannot indicate that every state
up to that point should not satisfy it. More on the adequacy of since can be found
in [27].

11 Within propositional dynamic logic [29], and in the presence of the converse �,
the since modality can be defined as S(φ, ψ) := 〈(�; (?φ ∪ ?(¬φ ∧ ψ)))+〉 φ, with
“?” indicating relational test, “;” indicating sequential composition, “∪” indicating
non-deterministic choice, and “+” indicating one or more iterations.
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tr(Ba1 · · · Bak
(o�c)) holds at slast in M if and only if either the visibility condi-

tion holds and the object has the indicated colour (visa1···ano ∧ o�c), or else the
visibility condition fails (¬ visa1···ano) and there is a state in the past where
both visibility and colour were satisfied, and since then visibility has failed
(S(visa1···ano ∧ o�c,¬ visa1···ano)). This is exactly what the semantic interpre-
tation of Ba1 · · · Bak

(o�c) in M requires.

Bisimulation. The translation tr provides an insight on the semantic clause for
mental attribution formulas. Equally illuminating is a bisimulation for L′.

Definition 2.6 (TV -bisimulation). Two TV models M = 〈n, S, τ, κ, ν〉
and M ′ = 〈m,S′, τ ′, κ′, ν′〉 (with slast and s′

last their respective ‘last’ states)
are said to be TV -bisimilar (notation: M ↔— M ′) if and only if, for any mental
attribution formula χ := Ba1 · · · Bak

(o�c), (I) Forth: if there is t ∈ S such that
(i) visχ(t) holds, (ii) visχ(r) fails for every r ∈ S with τ(t) < τ(r) � τ(slast),
and (iii) κt(o) = c, then there is t′ ∈ S′ such that (i) visχ(t′) holds, (ii) visχ(r′)
fails for every r′ ∈ S with τ ′(t′) < τ ′(r′) � τ ′(s′

last), and (iii) κt′(o) = c. (II)
Back: vice versa.

�

It can be proved that, whenever M and M ′ are TV -bisimilar, both models
satisfy the same L′-formulas.12 The colour of an object is relevant only if some
agent can see it (so, no ‘atom’ clause is needed). Note also how two TV models
satisfying the same L′-formulas might differ in their cardinality, and also make
the same formula true in different ways (e.g., ¬Ba(o�c) holds in M because, at
slast , agent a sees o having a colour other than c, but it holds in M ′ because, as
far as M ′ is concerned, agent a has never seen o). Finally, notice how, although
TV -bisimulation implies L′-equivalence, it does not imply L-equivalence. Take
A = {a} and O = {o}, with s1 a state in which a sees o being white, and s2 one
in which a does not see o. Take M to be the model with only s1, and M ′ to be the
model with both s1 and s2. The models are TV -bisimilar, hence L′-equivalent.
Yet, they can be distinguished by the formula [o:=black ]Ba(o�black) (true in
M , false in M ′): the different reasons why L′-formulas are made true in bisimilar
models become salient when actions enter the picture. For a bisimulation for LS,
it is enough to consider the mutual satisfaction of atoms in bisimilar points, and
suitable Since conditions, as the ones discussed in [30, p. 413].

3 On Modelling Mental Attribution Scenarios

The TV framework aims to model belief attributions in a more cognitively plau-
sible way (compared with EL), revealing features thought of as crucial ingredients
of social cognition. Let’s justify these claims.

12 Since L′-formulas are evaluated with respect to a TV model’s last state, it is enough
for a bisimulation to establish a connection between those states, as the definition
does.
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Informational Economy. On the one hand, a state in a TV model contains
a bare informational ‘minimum’: only basic facts regarding objects and agents’
visibility. The operations on the model also induce ‘minimal’ changes, in accor-
dance to the criterion of informational economy in belief revision [31]. On the
other hand, the non-standard semantic clause for belief is complex, as the state
representing the current situation might not have all information necessary to
evaluate a complex belief attribution, and thus the information at other (previ-
ous) stages might be needed. A ‘backtracking’ process might be difficult and
time-consuming, depending on how many different states an agent needs to
‘remember’, and our clause is sensitive to this observation, unlike the usual
modal interpretations. The level of complexity that one finds on the TV frame-
work for both representing a situation (low) and evaluating mental attributions
(high) can be contrasted with what EL does, as discussed in Sect. 1.

Perspective Shifting. Another important feature, identified in analyses of ToM
and formalisations of False-Belief Tasks (FBT s), is perspective shifting [32]. Suc-
cessful performance in the tasks (i.e., making correct attributions) requires a
perspective shift: stepping into the shoes of another agent.13 Asking for the vis-
ibility condition ensures precisely that agents change perspectives, even if that
means having to recall earlier stages. Making multiple shifts, e.g. in complex
high-order attributions, may be difficult compared to plainly attributing one’s
own belief to others, capturing why agents might fail in the tasks.

Principle of Inertia. A further crucial notion is the principle of inertia [6,33,
34]: an agent’s beliefs are preserved unless there is reason to the contrary. In our
case, reason to the contrary amounts to the satisfaction of visibility; if this is not
satisfied in the state of evaluation, then, essentially, the agent maintains beliefs
formed in earlier stages, where necessary information was available.

Dual Process Theories of Reasoning. Besides ToM, the TV setting is in
agreement with the literature supporting the dual process theories of reasoning
[35–37]. According to them, there are two systems underlying human reasoning.
System 1 (the fast mode) is quick, unconscious and automatic, often governed by
habit, biases and heuristics developed in the course of evolution. System 2 (the
slow mode) is gradual, deliberate and rule-based, and requires cognitive effort.
System 1 is at play most of the time, constructing our idea of the world with
elementary cues and avoiding cognitive overload. When rule-based calculations
become necessary, e.g. in face of a demanding task, System 2 takes over, building
on inputs of System 1 to slowly produce an output in a step-wise fashion.

We argue that agents’ higher order reasoning roughly follows this pattern.
System 1 keeps track only of a bare-minimum of information (basic facts), with-
out overloading memory with information that can be later inferred. Whenever
a task requires more than what is stored (as higher-order attributions), System
2 takes over, using the inputs of System 1. This is precisely the pattern of our
13 In fact, unsuccessful performance, e.g. of autistic children, is often connected with

a failure in perspective shifting, resulting in the subject reporting her own beliefs
[6,33].
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semantics, with our models and updates encoding only basic facts. Whenever
a demanding task appears, such as the evaluation of a mental attribution, our
agents follow the cognitively hard calculations of our semantic clause.14 On the
basis of elementary facts regarding whom/what they observed, they test certain
conditions and trace back earlier states. It is only after this slow and effortful
process that they can determine whether a higher-order attribution holds.

3.1 Detailed Examples

False-Belief Tasks use stories to test the ability to attribute mental states to
others. In what follows, we provide formal representations of some of these sto-
rylines, to the level of abstraction allowed by our framework’s constructions.

Example 4 (First-order FBT : the Sally-Anne (SA) task). The full story-
line (Example 1) can be represented within the TV framework, modulo minor
changes, as already hinted at. (1) Sally and Anne are in a room, with Sally
holding the marble (the model with only state s1 in Example 2). (2) Sally puts
the marble into the basket (the full model in Example 2). (3) Sally leaves the
room (the model in Example 3). (4) Anne transfers the marble to the box (the
model in Fig. 1). The task’s last step, Sally coming back to the room, prepares
the audience for the crucial question: “where does Sally believe the marble is?”.
The action changes Sally’s visibility (she can see Anne now), but it does not
change the crucial fact that she cannot see the marble. Thus, it is not relevant
for our purposes.

So, which are Anne’s and Sally’s final high-order beliefs? According to
the framework, with M the model in Fig. 1 (top): M � BSa(mar�white) ∧
BAn(mar�green), and M � BSa BAn(mar�white) ∧ BAn BSa(mar�white). �

Example 5 (Second-order FBT : the chocolate (C ) task). Adapted from [39],
the task is as follows. (1) Mary and John are in a room, with a chocolate bar in
the room’s table. (2) John puts the chocolate into the drawer, then (3) leaving
the room. (4) Mary transfers the chocolate to the box. (5) John peeks into the
room, without Mary noticing, and sees the chocolate in the box.

The TV modelling works stepwise, with the initial situation represented
by s1 (black indicates the chocolate is on the table), and each subsequent
action adding a state. By putting the chocolate into the drawer (white),
John produces s2, and by leaving the room he produces s3. Mary creates
s4 when she moves the chocolate to the box (green), and finally s5 emerges
when John peeks into the room. In the final model, displayed in Fig. 1 (bot-
tom), we have the following: (i) M � BMa(cho�green) ∧ BJo(cho�green),

14 Although it is always possible to evaluate attributions of any length (like in possible-
worlds semantics), our semantic clause offers a mechanism to account for human
reasoning limitations, indicated by empirical research, e.g. on working memory [38].
It allows us to trace how many states need to be held in working memory, and
therefore explain why attribution-making might fail from some point on.
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Fig. 1. TV representations of Sally-Anne Task (top) and Chocolate Task (bottom).
(Color figure online)

(ii) M � BMa BJo(cho�white) ∧ BJo BMa(cho�green), and (iii) M �
BMa BJo BMa(cho�white) ∧ BJo BMa BJo(cho�white). �

Other FBT s (the Ice Cream Task [40], the Puppy Task [41] and the Bake-
sale task [42]) can be also represented in the TV framework, their crucial ToM
features still preserved. Still, some sources of change in zero- or higher- order
information in such dynamic scenarios might not be captured by our operations.
While conceptually similar examples can fit into our setting, up to some level of
abstraction, different operations might be required for other scenarios (Sect. 4).

3.2 Comparison with Other Proposals for Mental Attributions

Through a relational ‘preference’ framework for modelling different degrees of
belief, [43] studies three kinds of agents (including agents on the autism spec-
trum), each endowed with specific “properties” as higher-order reasoners. Our
attempt does not focus on agents with specific strategies when evaluating belief
attributions, working instead on any agent’s reasoning behind such process.

In [6], the authors provide a non-monotonic, closed-world reasoning formal-
ization of first-order FBT s, implemented within logical programming. They use
event calculus, with belief treated as a predicate, and rely on the principle of
inertia. While we design a different formalism, we still account for these features
without restricting ourselves to specific types of agents or orders of beliefs.

Another interesting logical formalization of FBT s is given in [32–34]. These
papers use a proof-theoretic Hybrid Logic system for identifying perspective
shifts, while using inertia. The straightforward difference is that our approach is
rather semantic, with models keeping track of the actions involved, and in which
the evaluation of mental attributions reflects their cognitive difficulty.
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The framework of [44] uses EL-beliefs plus special atoms indicating the loca-
tion of objects and the agents’ visibility, then representing changes in the situa-
tion as action-model-based acts of (private) communication that rely on agents’
visibility.15 The differences between our proposal and [44] have been discussed:
the contrast between complex models that simplify answering mental attribu-
tion questions (EL) and simple states that require a complex process for deciding
high-order belief issues (here). The representation of actions also differs: while
[44] uses (a variation of) the heavy action models machinery (for private com-
munication), the actions of visibility and colour change presented here simply
modify atomic information. Finally, [44] also proposes two criteria of success in
formalizing FBT s: (i) robustness (being able to deal with as many FBT s as pos-
sible, with no strict limit on the order of belief attribution), and (ii) faithfulness
(each action of the story should correspond to an action in the formalism in a
natural way). The TV framework fulfils these requirements: it is robust enough
to deal with different FBT s (see Subsect. 3.1 and the discussion therein), and
the actions in the stories have a straightforward representation.

4 Summary and Ongoing/Future Work

This paper has introduced a temporal framework suitable for capturing ‘real’
agents’ mental state attributions. Its most important feature is the contrast
between a ‘simple’ semantic model (encoding only objects’ colours and agents’
visibility) and a ‘complex’ clause for interpreting mental state attributions
(essentially a temporal “since” operator). We have argued for its adequacy
towards representing important features of social cognition, as informational
economy, perspective shifting, inertia, and connections with dual process theo-
ries, with these points exemplified through the modelling of common FBT s.

This project presents several lines for further research. On the technical side,
there are still aspects of the logical setting to be investigated (e.g., axiomati-
sation). Equally interesting is the exploration of extensions for modelling more
empirical findings. The main points made above on the adequacy of the frame-
work make for a suitable basis for such extensions. Here are two possibilities.

A Perspective Function. The setting can be fine-tuned to capture special
types of high-order reasoning (see case-studies of [16]). For example, autistic
children tend to fail the FBT s because they attribute their own beliefs to others
[5]. This and other similar situations can be accommodated through the intro-
duction of a perspective function π : A → (A → A) (with πa(b) = c understood
as “agent a considers agent b to have the perspective of agent c”), which then
can be used to define an appropriate variation of the visibility condition. In this
way, an autistic agent a would be one for which πa(x) = a for any x ∈ A, essen-
tially relying only on her own information, and thus attributing her own belief
to others.
15 For example, the act through which, in the absence of Sally, Anne moves the marble

from the basket to the box, is understood as a private announcement through which
only Anne is informed about the marble’s new location.
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Different States for Different Agents at the Same Stage. Another exten-
sion is towards capturing scenarios involving communicative actions, including
lying and spread of misinformation (e.g., the Puppy Task, the Bake Sale Task)
and other manifestations of social cognition (e.g., negotiations, games). With
them, it makes sense to include different states for different agents at the same
stage, each one of them representing the (potentially different) information dif-
ferent agents might have about the situation at the same stage.
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Abstract. With the idea of representing knowledge and awareness by
binary relations, we establish a two-layer partition epistemic structure,
a syntax-free model, to formalize a non-trivial notion of awareness. We
provide two axiomatic systems with awareness modality on our structure
and prove soundness and completeness for them. Moreover, we show that
our structure and the syntactic awareness structure are equivalent under
certain conditions, which helps us understand the connections between
knowledge and awareness.
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1 Introduction

The standard models of epistemic logic suffer from the well-known logical omni-
science problem that agents know all tautologies and all the logical consequences
of their knowledge [13]. Indeed, logic omniscience is unrealistic to the extent that
agents are assumed to be resource-bounded and of limited reasoning abilities.
Consequently, standard models with logical omniscience problem are not appro-
priate to formalize knowledge in such cases. To avoid this problem, a lot of effort
has been devoted in the last few decades. One of the valuable approaches is to
introduce a formal notion of awareness by which an agent’s knowledge repre-
sentation and reasoning ability are restricted within the scope of his awareness.
This convention dates back to Levesque [14], where knowledge is first classified
into explicit knowledge and implicit knowledge.

There are mainly two methods, the syntactic approach and the set-theoretical
approach, for formalizing awareness in the literature. The former adds the aware-
ness correspondence function to the standard models, so as to associate with
each agent in each state a set of formulas representing what the agent is aware
of [6]. Thus, an agent explicitly knowing a formula is supposed to satisfy two
conditions: (a) the formula is true in every accessible state, regarded as implicit
knowledge; (b) the formula is included in the awareness set of the current state.
As such it proposes a model that is not syntax-free. Halpern [7] gives an axiom-
atization without the implicit knowledge modal operator by interpreting the
explicit knowledge directly into semantics. On the other hand, the main idea
c© Springer-Verlag GmbH Germany, part of Springer Nature 2019
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of the set-theoretical approach is that awareness can be defined by knowledge.
More specifically, we say that an agent is aware of something if and only if he
knows it or he knows that he doesn’t know it [15]. Yet it has been shown that a
set-theoretical awareness operator satisfying some basic axioms must be trivial
in a standard state-space model [2]. To remove this defect, Modica and Rusti-
chini [16] propose a partitional information structure that associates with each
state a sub-language generated by a subset of the primitive propositions. Subse-
quently, Heifetz et al. [11,12] extend it to a multi-agent setting. It has however
been shown that the model given by Modica and Rustichini can be viewed as
a special case of Fagin and Halpern’s model [7], and an analogous equivalence
result has also been proved in the multi-agent setting [8]. Recently, researchers
try to combine two approaches for enlarging the expressivity of epistemic logic
involving awareness [3–5,9,10].

One common ground of the approaches is that they all treat awareness as a
distinctive notion to the traditional relational semantics. In this paper, we for-
malize knowledge and awareness merely by means of states with full vocabulary
and binary relations, and construct a two-layer partition structure consisting of
knowledge partitions and awareness partitions. As a consequence, our structure
reveals some connections between knowledge and awareness and is set-theoretical
as Aumann’s seminal theory [1].

The remainder of this paper is organized as follows. In Sect. 2 we present
the basic idea of the paper, and provide some basic definitions and a semantics
for the language formalizing awareness. Section 3 proves an equivalence result
to establish a connection between our framework and the syntactic approach.
Section 4 offers two axiomatic systems for knowledge, and provides a sound and
complete axiomatization for each one. Section 5 concludes the paper.

2 Basic Idea and Semantics

Before presenting our basic idea, let us first consider the following example.
Suppose that my 5-year-old nephew and I find a mushroom in a forest. Both of
us do not know whether it is poisonous or not; accordingly we lack knowledge
about its toxicity. Nevertheless, I know that the mushroom could be poisonous.
By contrast, my nephew is so young that he might not have a conception about
poisonousness in his mind at present. In other words, he is unaware of that a
mushroom could be poisonous or nontoxic. The two different epistemic structures
for capturing our knowledge and awareness can be essentially depicted as Fig. 1.

The left of Fig. 1 shows my nephew’s epistemic status. The two states are both
included in a single knowledge partition and awareness partition. The structure
underlines that my nephew does not know whether the mushroom is poisonous
or not and is not aware of such states. Similarly, the knowledge partition in the
right of Fig. 1, my epistemic structure, includes the two states, showing that
we share our knowledge. It is important to note, however, that there are two
awareness partitions in my epistemic structure. As such, it indicates that, in
contrast with my nephew, I can be aware of the two states. Although I cannot
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Fig. 1. The solid dot denotes the state at which p is true, where p stands for “the
mushroom is poisonous”. And the barred dot indicates the state at which ¬p is true,
where ¬p stands for “it is not the case that the mushroom is poisonous”. The solid
ovals indicate our knowledge partitions, while the dotted ovals inside represent our
awareness partitions.

discriminate between the two states, I know that p and ¬p fall into different
awareness partitions.

The above example inspires us to construct an epistemic structure involving
two partitions.

Throughout the contribution, given are a nonempty set Ag = {1, ..., n} of
agents and a nonempty set Φ of primitive propositions.

Definition 1. A two-layer partition awareness frame is a tuple

F = (S, (Ri)i∈Ag, (Ti)i∈Ag), where

– S is a nonempty set of states;
– For each agent i ∈ Ag,Ri ⊆ S × S is an equivalence relation representing the

accessibility relation of agent i . We say “agent i considers the state t possible
at state s according to his knowledge”, if (s, t) ∈ Ri ;

– For each agent i ∈ Ag,Ti ⊆ S × S is an equivalence relation representing the
accessibility relation of agent i according to his awareness, and Ti ⊆ Ri .

In our awareness frame, each agent i’s knowledge and awareness can be rep-
resented by the equivalence relations Ri and Ti respectively. Further, we can
obtain partitions of the set S under these equivalence relations, called knowl-
edge partitions and awareness partitions, respectively. The requirement Ti ⊆ Ri

ensures the partitions formed by Ti are finer than or equal to those formed by
Ri , and any equivalence class generated by Ti is included in an equivalence class
generated by Ri .

With such a frame, we can define a model, called a two-layer partition aware-
ness model, as a pair M = (F ,V), where F is a two-layer partition awareness
frame and V is the valuation function: S × Φ → {true, false} assigning to each
state and primitive proposition a truth value.

Definition 2. Formula ϕ ∈ LKLAΦ is defined as follows, where p ∈ Φ and
i ∈ Ag,

ϕ ::=� | p | ¬ϕ |ϕ ∧ ψ |Kiϕ |Liϕ |Aiϕ
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The formulas Kiϕ and Liϕ in the above language are read as “agent i explic-
itly knows ϕ” and “agent i implicitly knows ϕ”, respectively, and the formula
Aiϕ stands for “agent i is aware of ϕ”. We can define other connectives such as
disjunction, implication, and biimplication as usual in terms of conjunction and
negation. And the unawareness modality can be defined as Uiϕ := ¬Aiϕ.

We write Pr(ϕ) to indicate the set of primitive propositions appearing in ϕ.
It then can be defined inductively as follows.

– Pr(�) := ∅;
– Pr(p) := p, for all p ∈ Φ;
– Pr(¬ϕ) := Pr(ϕ);
– Pr(ϕ ∧ ψ) := Pr(ϕ) ∪ Pr(ψ);
– Pr(Kiϕ) := Pr(ϕ);
– Pr(Liϕ) := Pr(ϕ);
– Pr(Aiϕ) := Pr(ϕ).

Definition 3. Given a two-layer partition awareness model M = (F ,V), a for-
mula φ being true in M at state s is defined inductively as follows (the subscript
“TP” means two-layer partition models).

– (M, s) |=TP � for all s ∈ S;
– (M, s) |=TP p iff V(s, p) = true for p ∈ Φ;
– (M, s) |=TP ϕ ∧ ψ iff (M, s) |=TP ϕ and (M, s) |=TP ψ;
– (M, s) |=TP ¬ϕ iff (M, s) 	|=TP ϕ;
– (M, s) |=TP Aiϕ iff for all p ∈ Pr(ϕ), and all t and u with (s, t) ∈ Ri and

(t , u) ∈ Ti , we have (M, t) |=TP p iff (M, u) |=TP p;
– (M, s) |=TP Liϕ iff (M, t) |=TP ϕ for all t with (s, t) ∈ Ri ;
– (M, s) |=TP Kiϕ iff (M, s) |=TP Aiϕ and (M, t) |=TP ϕ, for all t with (s, t) ∈

Ri .

Aiϕ being true is interpreted in our model as that all primitive propositions
occurring in ϕ having the uniform value in any awareness partition of agent i
overlapping the possibility set of agent i . As is shown in Fig. 1, the finer awareness
partitions are, the more conceptions an agent is possibly aware of.

3 A Comparison

This section provides a comparison between our model and the one proposed by
Fagin and Halpern [6].

Definition 4. Let M = (S,Ri ,Ti ,V) be a two-layer partition awareness model.
Given a state s, a formula ϕ is awareness independent to ψ at the state s in the
model M for agent i (ϕ is i-s awareness independent to ψ for short) if there
is a primitive proposition p ∈ Pr(ϕ) and a model M′ = (S,Ri ,T

′
i ,V) such that

(M′, s) |=TP ¬Aip ∧ Aiψ.
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Given the possibility set of an agent at state s, a distinctive feature of our
structure is that awareness of a formula may result in awareness of another
formula, even if there is no common primitive proposition constituting the two
formulas. Awareness independence in Definition 4 means that awareness of a
formula do not cause awareness of another formula necessarily. The following
three lemmas are apparent results from Definition 4.

Lemma 1. Let M = (S,Ri ,Ti ,V) be a two-layer partition awareness model.
Given a state s, ϕ is not i-s awareness independent to ψ if for any T′

i in the
model M′ = (S,Ri ,T

′
i ,V) and any p ∈ Pr(ϕ), (M′, s) |=TP Aiψ → Aip.

Proof. It is immediate from Definition 4.

Lemma 2. Let M = (S,Ri ,Ti ,V) be a two-layer partition awareness model. If
Pr(ϕ) ⊆ Pr(ψ), then ϕ is not i-s awareness independent to ψ.

Proof. It is straightforward by Definition 4.

Lemma 3. Let M = (S,Ri ,Ti ,V) be a two-layer partition awareness model.
Given agent i at state s, if a primitive proposition p has uniform value in every
i-accessible state, then the formulas constituted only by p are not i-s awareness
independent to any propositions.

Proof. Since p has the same value in every i-accessible state, it is impossible
that p and ¬p are both included in any awareness partition. Consequently, Aiϕ
is always true if ϕ is constituted only by p. According to Definition 4, ϕ is not
i -s awareness independent to any proposition.

Lemma 3 establishes that agent i has to be aware of p if he implicitly knows p.

Definition 5. A model M = (S,Ri ,Ti ,V) is i-s awareness free if for any for-
mulas ϕ and ψ with Pr(ϕ) 	⊆ Pr(ψ), ϕ is i-s awareness independent to ψ.

Definition 5 provides a description of the situation when awareness of any for-
mula does not necessarily result in awareness of another formula. The following
two lemmas are properties related to Definition 5.

Lemma 4. If a model M = (S,Ri ,Ti ,V) is i-s awareness free, then there is no
primitive proposition that has the same value in every i-accessible state.

Proof. It is an immediate consequence of Lemma 3.

Lemma 5. A model M = (S,Ri ,Ti ,V) is i-s awareness free iff for any primi-
tive proposition p, p is i-s awareness independent to ϕ (p 	∈ Pr(ϕ)).

Proof. The direction from left to right is immediate. To prove the other direction,
assume that for any primitive proposition p, p is i -s awareness independent to
ϕ, p 	∈ Pr(ϕ). Suppose again that ψ and η satisfy Pr(ψ) 	⊆ Pr(η) and ψ is not i -s
awareness independent to η. Since Pr(ψ) 	⊆ Pr(η), there is a primitive proposition
q satisfying q ∈ Pr(η) and q 	∈ Pr(ψ). By the assumption and Definition 4, there
is a model M′ = (S,Ri ,T

′
i ,V) in which we have (M′, s) |=TP ¬Aiq ∧ Aiη. By

q ∈ Pr(ψ) and (M′, s) |=TP ¬Aiq, we get (M′, s) |=TP ¬Aiψ ∧Aiη. It contradicts
the assumption that ψ is not i -s awareness independent to η.
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Lemma 5 states that when judging whether a model is i -s awareness free, we
only need to check the i -s awareness independence of primitive propositions.

Lemma 6. Given a two-layer partition awareness model M = (S,Ri ,Ti ,V) and
agent i at state s, given a primitive proposition p and a formula ϕ (p 	∈ Pr(ϕ)),
the following hold. (a) if p ↔ ϕ is true in each i-accessible state, then p is not
i-s awareness independent to ϕ; (b) if p is not i-s awareness independent to ϕ,
then there is a formula ψ such that Pr(ψ) ⊆ Pr(ϕ) and p ↔ ψ is true in each
i-accessible state.

Proof. Part (a). Consider the case that p has a uniform value in each i -accessible
state. If the uniform value is true, then (M, t) |=TP p ↔ � for all t satisfying
(s, t) ∈ Ri . For any model M′ = (S,Ri ,T

′
i ,V), we have (M′, s) |=TP Ai� and

(M′, s) |=TP Aip, so (M′, s) |=TP Ai� → Aip. We can similarly prove it if the
uniform value is false. Regard the other case that p does not have a uniform value
in all i -accessible state. For any model M′ = (S,Ri ,T

′
i ,V), if (M′, s) |=TP Aiϕ,

then in any awareness partition inside the current knowledge partition in M′

and any q ∈ Pr(ϕ), q has uniform value. Thus ϕ has a uniform value in each
awareness partition. Since p ↔ ϕ is true in each i -accessible state, p also has a
uniform value in each awareness partition. So we have (M′, s) |=TP Aiϕ → Aip.

Part (b). Case 1. If p has a uniform value in each i -accessible state, then it
is easy to establish a tautology or a contradiction, being equivalent to p in every
i -accessible state, constituted only by propositions from Pr(ϕ).

Case 2. Consider that p does not have a uniform value in all i -accessible state.
Assume that Pr(ϕ) = {q1, ..., qn}, and there is no ψ such that Pr(ψ) ⊆ Pr(ϕ) and
p ↔ ψ is true in each i -accessible state. We establish the awareness partitions of
M′ = (S,Ri ,T

′
i ,V) with equivalence relations T′

i in the following steps. Firstly,
we construct at most two partitions to just classify the truth value of q1. Then
by the assumption p is not equivalent to q1 or ¬q1. As a consequence, the states
s and s′ appear in the same partition, where (M′, s) |=TP p and (M′, s ′) |=TP ¬p.
Secondly, we establish at most four partitions based on the previous step to just
classify the truth value of q2. Since p is not equivalent to formulas constructed
by q1 and q2, the states s and s′ must appear in the same partition, where
(M′, s) |=TP p and (M′, s ′) |=TP ¬p. Repeat the procedure until we make at
most 2n partitions to just distinguish qk from ¬qk (k ∈ {1, ..., n}). According to
the assumption, the states of p being ture at M′ and states of ¬p being ture at
the model have to appear in the same partition, which contradicts that p is not
i -s awareness independent to ϕ.

The principal significance of Lemma 6 is that it builds a bridge connecting
awareness independence and knowledge of equivalence formulas. In view of this,
it provides a technical foundation for the rest of this paper.

Lemma 7. A model M = (S,Ri ,Ti ,V) is i-s awareness free iff there is no
p ↔ ϕ being true in each i-accessible state, where p 	∈ Pr(ϕ).
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Proof. The direction from right to left is a consequence of the part (b) of
Lemma 6. We now prove the other direction. By Lemma 5 and the part (a)
of Lemma 6, for any proposition p and ϕ satisfying p 	∈ Pr(ϕ), it is not the case
that p ↔ ϕ is true in each i -accessible state.

In terms of knowledge of equivalence formulas, Lemma 7 gives the equivalent
condition of the model being i -s awareness free.

Next we shall explore the relationship between our model and the model
proposed by Fagin and Halpern. To this end, let us recall some basic concepts
in their model.

Definition 6. A Fagin and Halpern’s awareness model (FHAM for short) is a
tuple M = (S, (Ri)i∈Ag, (Ai)i∈Ag,V), where

– S is a nonempty set of states;
– For each i ∈ Ag,Ri ⊆ S × S is a binary relation on S representing the acces-

sibility relation of agent i ;
– For each i ∈ Ag, Ai is a function associating a set of formulas with each state

s ∈ S;
– V is the valuation function: S × Φ → {true, false} which assigns to each state

and primitive proposition a truth value.

As presented in previous sections, the binary relations Ri and Ti are equiva-
lence relations. In view of this, we shall study the relationship between our model
and FHAM in the case that the accessibility relations are equivalence relations.
Before doing this, we define a property in the FHAM.

Definition 7. Awareness captured in an FHAM is called restricted awareness
if it satisfies the following conditions.

(i) Awareness is generated by primitive propositions iff for all i ∈ Ag and s ∈ S,
ϕ ∈ Ai(s) iff Pr(ϕ) ⊆ Ai(s);

(ii) Agents know what they are aware of iff for all i ∈ Ag and s, s ′ ∈ S, (s, s ′) ∈
Ri implies Ai(s′) = Ai(s);

(iii) Awareness relies on knowledge of equivalences iff for all i ∈ Ag and s ∈ S,
p ↔ ϕ is true in all s′ with (s, s ′) ∈ Ri implies Aiϕ → Aip is true in s.

The first two restrictions on the awareness functions are jointly called propo-
sitionally determined awareness, under which the FH awareness model is equiv-
alent to the set-theoretical model proposed by Heifetz et al. [11,12]. We call an
FHAM satisfying the above three restrictions as a restricted FHAM (RFHA for
abbreviation), and establish an equivalence result as follows.

Theorem 1. The following statements hold.

(a) Given a two-layer partition awareness model M = (S,Ri ,Ti ,V), there is a
RFHA, M′ = (S,Ri ,Ai ,V), such that for all formulas ϕ ∈ LKLAΦ, we have

(M, s) |=TP ϕ iff (M′, s) |=RFHA ϕ.
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(b) Given a RFHA, M = (S,Ri ,Ai ,V), there is a two-layer partition awareness
model M′ = (S,Ri ,Ti ,V) such that for all formulas ϕ ∈ LKLAΦ, we have

(M, s) |=RFHA ϕ iff (M′, s) |=TP ϕ.

Proof. We first prove part (a). Given a two-layer partition awareness structure
M = (S,Ri ,Ti ,V), for each state s ∈ S, we define Ai(s) = LKLA({p | for all
t and u with (s, t) ∈ Ri and (t , u) ∈ Ti , (M, t) |=TP p iff (M, u) |=TP p}).
Let M′ = (S,Ri ,Ai ,V). It is clear that M′ is a propositionally determined
awareness partitional structure. By Lemma 6, M′ satisfies the third condition
in Definition 7. Thus, M′ is an RFHA.

We prove the part by induction on the structure of formulas. If ϕ is a primitive
proposition p, then it is immediate from the definitions. Suppose now that it
holds for ϕ1 and ϕ2.
Case 1. ϕ is a form ϕ1 ∧ ϕ2 or ¬ϕ1. It follows immediately from the induction
hypothesis and the truth conditions.
Case 2. ϕ is a form Aiϕ1. By the truth conditions, we have (M, s) |=TP Aiϕ1

iff for all p ∈ Pr(ϕ1), all t and u with (s, t) ∈ Ri and (t , u) ∈ Ti , (M, t) |=TP p
iff (M, u) |=TP p. By the definition of M′, (M′, s) |=RFHA Aiϕ1 iff for all p ∈
Pr(ϕ1), p ∈ Ai(s). Since awareness in M′ is propositionally determined, we get
(M, s) |=TP Aiϕ1 iff (M′, s) |=RFHA Aiϕ1.
Case 3. ϕ is a form Liϕ1. Part (a) is straightforward by the definition of M′.
Case 4. ϕ is a form Kiϕ1. Since Kiϕ1 is equivalent to Liϕ1 ∧ Aiϕ1, we have
(M, s) |=TP Kiϕ1 iff (M′, s) |=RFHA Kiϕ1 by Case 2 and Case 3.

We shall now prove part (b). Given an RFHA, M = (S,Ri ,Ai ,V), we
prove that there is a model M′ = (S,Ri ,Ti ,V) such that (M′, s) |=TP Aiϕ
iff (M, s) |=RFHA Aiϕ. If not, then there is a primitive proposition p 	∈ Ai(s) that
is not i-s awareness independent to ϕ, where ϕ is given by Pr(ϕ) = Pr(Ai(s)).
By part (b) of Lemma 6, there is a formula ψ formed by a subset of Pr(ϕ)
such that (M′, t) |=TP p ↔ ψ for all t satisfying (s, t) ∈ Ri . However, by
Definition 7, for any primitive proposition p 	∈ Ai(s), if for all t satisfying
(s, t) ∈ Ri , (M, t) |=RFHA (p ↔ ψ), then we have ψ 	⊆ Ai(s). Contradiction.

Similar with the proof of part (a), we can establish part (b) in other cases.

The above theorem shows that the equivalence result holds when the FHAM
is an RFHA. Nevertheless, our model differs mainly from the FHAM in the
following respects. Our model is a syntax-free model, in contrast to the FHAM.
In addition, the third condition in Definition 7 is essentially a provable property
in our model, whereas it is an external condition for the awareness function in the
FHAM. As such, our model provides a natural connection between knowledge
and awareness, and thus it provides some insight on how an agent’s knowledge
can influence his awareness.

4 Axiomatization

In this section we present complete axiomatizations LE and LL for the logic of
explicit knowledge (LE) and the logic of implicit knowledge (LL), respectively.
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They are interpreted on the two-layer partition awareness models. As Kiϕ ↔
Liϕ ∧ Aiϕ, we omit the explicit knowledge modality in LL.

Axiom System LE

Prop. All substitution instances of tautologies of propositional logic, including
the formula �.
AT. Ai�
KA. Kiϕ → Aiϕ (Knowledge implies Awareness)
AS. Aiϕ ↔ Ai¬ϕ (Awareness Symmetry)
AC. Ai(ϕ ∧ ψ) ↔ Aiϕ ∧ Aiψ (Awareness Conjunction)
AKR. Aiϕ ↔ AiKjϕ (Awareness Knowledge Reflection)
AR. Aiϕ ↔ AiAjϕ (Awareness Reflection)
AIE . Aiϕ → KiAiϕ (Awareness Explicit Introspection)
KE . (Kiϕ ∧ Ki(ϕ → ψ)) → Kiψ (Explicit Distribution Axiom)
TE . Kiϕ → ϕ (Explicit Knowledge Truth Axiom)
4E . Kiϕ → KiKiϕ (Positive Introspection Axiom)
5A. ¬Kiϕ ∧ Aiϕ → Ki¬Kiϕ (Weak Negative Introspection Axiom)
MP. From ϕ and ϕ → ψ infer ψ (Modus Ponens)
GenA. From ϕ infer Aiϕ → Kiϕ (Modified Knowledge Generalization)
Irr. If no primitive propositions in ϕ appear in ψ, then from ¬Aiϕ → ψ infer ψ.

Axiom System LL

Prop. All substitution instances of tautologies of propositional logic, including
the formula �.
AT. Ai�
AS. Aiϕ ↔ Ai¬ϕ (Awareness Symmetry)
AC. Ai(ϕ ∧ ψ) ↔ Aiϕ ∧ Aiψ (Awareness Conjunction)
ALR. Aiϕ ↔ AiLjϕ (Awareness Implicit Knowledge Reflection)
AR. Aiϕ ↔ AiAjϕ (Awareness Reflection)
AIL. Aiϕ → LiAiϕ (Awareness Implicit Introspection)
UIL. ¬Aiϕ → Li¬Aiϕ (Unawareness Introspection)
ARKE. Li(ϕ ↔ p) → (Aiϕ → Aip) (Awareness Relies on Knowledge of Equiv-
alence)
KL. (Liϕ ∧ Li(ϕ → ψ)) → Liψ (Implicit Distribution Axiom)
TL. Liϕ → ϕ (Implicit Knowledge Truth Axiom)
4L. Liϕ → LiLiϕ (Implicit Positive Introspection Axiom)
5. ¬Liϕ → Li¬Liϕ (Implicit Negative Introspection Axiom)
MP. From ϕ and ϕ → ψ infer ψ (Modus Ponens)
Gen. From ϕ infer Liϕ (Implicit Knowledge Generalization)

Definition 8. The canonical model for LE is a tuple Mc = (Sc, (Rc
i ), (T

c
i ),V

c),
where

– Sc consists of all maximal consistent sets of formulas in LE;
– (s, t) ∈ Rc

i iff {ϕ |Kiϕ ∈ s} ∪ {Aip |Aip ∈ s, p ∈ Φ}∪ {¬Aip | ¬Aip ∈ s, p ∈
Φ} ⊆ t;
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– (s, t) ∈ Tc
i iff if Aip ∈ s(p ∈ Φ), then p ∈ t iff p ∈ s, and Aip ∈ t; if

¬Aip ∈ s, then ¬Aip ∈ t;
– Vc(p) = {s ∈ Sc | p ∈ s} for each p ∈ Φ.

Lemma 8. In the canonical model for LE, for every i ∈ Ag, Rc
i and Tc

i are
reflexive, transitive and Euclidean, and Tc

i ⊆ Rc
i .

Proof. By the definition of Tc
i , it is easy to see that (s, s) ∈ Tc

i . So, Tc
i is reflexive.

Suppose (s, t) ∈ Tc
i , (t, u) ∈ Tc

i , and Aip ∈ s (p ∈ Φ), then we have Aip ∈ t ,
and p ∈ t iff p ∈ s, and then Aip ∈ u, and p ∈ u iff p ∈ t. If ¬Aip ∈ s, then
¬Aip ∈ t , and then ¬Aip ∈ u. So (s, u) ∈ Tc

i . Hence Tc
i is transitive. Similarly,

we can obtain that Tc
i is Euclidean.

Suppose (s, s) 	∈ Rc
i . By the definition of Rc

i , there exists a proposition ϕ
satisfying Kiϕ ∈ s and ϕ 	∈ s, which contradicts the axiom T. Suppose (s, t) ∈
Rc
i , (t, u) ∈ Rc

i and (s, u) 	∈ Rc
i . By the definition of Rc

i , we have Aip ∈ s iff
Aip ∈ u (p ∈ Φ), and there exists a proposition ϕ such that Kiϕ ∈ s and
ϕ 	∈ u. Following the axiom 4E and the properties of maximally consistent set,
we obtain KiKiϕ ∈ s. Again, since (s, t) ∈ Rc

i and (t, u) ∈ Rc
i , we have Kiϕ ∈ t

and ϕ ∈ u, which contradicts ϕ 	∈ u.
Suppose (s, t) ∈ Rc

i , (s, u) ∈ Rc
i and (t, u) 	∈ Rc

i . By the definition of Rc
i , we

have Aip ∈ t iff Aip ∈ u (p ∈ Φ), and there exists a proposition ϕ satisfying
Kiϕ ∈ t and ϕ 	∈ u. Therefore, we have Kiϕ 	∈ s, Aiϕ ∈ s, Aiϕ ∈ t and Aiϕ ∈ u.
By the properties of maximally consistent set, we obtain that ¬Kiϕ ∈ s. Again,
it follows from the axiom 5A that Ki¬Kiϕ ∈ s. Since (s, t) ∈ Rc

i , we have
¬Kiϕ ∈ t , which contradicts Kiϕ ∈ t .

If (s, t) ∈ Tc
i , and (s, t) 	∈ Rc

i , then we have Aip ∈ s iff Aip ∈ t (p ∈ Φ), and
there exists a proposition ϕ such that Kiϕ ∈ s and ϕ 	∈ t . By the axiom KA
and T, it follows that Aiϕ ∈ s and ϕ ∈ s. Since (s, t) ∈ Tc

i , we have that p ∈ s
iff p ∈ t for all p ∈ Pr(ϕ). So ϕ ∈ t , which contradicts ϕ 	∈ t .

Lemma 9. For all formulas ϕ ∈ LKAΦ and all maximal consistent sets s ∈ Sc,
ϕ ∈ s iff (Mc, s) |=TP ϕ.

Proof. If ϕ is a primitive proposition, it is immediate from Definitions 4 and 8.
Suppose that it holds for ϕ1 and ϕ2.

Case 1. ϕ is a form ϕ1 ∧ ϕ2 or ¬ϕ1. It follows easily from the properties of
maximal consistent sets.

Case 2. ϕ is a form Aiϕ1. Suppose that Aiϕ1 ∈ s and p ∈ Pr(ϕ1). Then we
have Aip ∈ s, since LE � Aiϕ1 → Aip. If (s, t) ∈ Tc

i , then by the definition
of the canonical model we have p ∈ t iff p ∈ s. Since p ∈ s iff (Mc, s) |=TP p,
p ∈ t iff (Mc, t) |=TP p, we have (Mc, s) |=TP p iff (Mc, t) |=TP p. Further, by
the definition of Rc

i and Aiϕ1 ∈ s, we have Aiϕ1 ∈ t for all t with (s, t) ∈ Rc
i .

Hence, (Mc, u) |=TP p iff (Mc, t) |=TP p for all u with (t , u) ∈ Tc
i . By the truth

condition of Aiϕ1, we have (Mc, s) |=TP Aiϕ1.
Now prove the other direction for this case. Suppose that (Mc, s) |=TP Aiϕ1

and Aiϕ1 	∈ s. By the properties of maximally consistent set, we have ¬Aiϕ1 ∈ s.
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It is clear that
LE �

∧

p∈Pr(ϕ1)

Aip → Aiϕ1.

Hence,
LE � ¬Aiϕ1 → ¬

∧

p∈Pr(ϕ1)

Aip.

Moreover, ¬ ∧
p∈Pr(ϕ1)

Aip iff there is p′ ∈ Pr(ϕ1) and ¬Aip
′. Hence, we have

¬Aip
′ ∈ s. As such, there is t with (s, t) ∈ Tc

i according to the definition of Tc
i ,

which implies p′ ∈ s and p′ 	∈ t , or p′ 	∈ s and p′ ∈ t . On the other hand, as
(s, s) ∈ Rc

i , by the truth condition of Aiϕ1, for all p ∈ Pr(ϕ1) and all t with
(s, t) ∈ Tc

i , we have (Mc, t) |=TP p iff (Mc, s) |=TP p. Moreover, by Case 1, p ∈ s
iff (Mc, s) |=TP p, and p ∈ t iff (Mc, t) |=TP p, which imply p ∈ t iff p ∈ s.
Contraction! So we have Aiϕ1 ∈ s.

Case 3. ϕ is a form Kiϕ1. Then similar with the proof in [7] we can prove
the result.

Definition 9. The canonical model for LL is a tuple Mcl = (Scl, (Rcl
i ), (Tcl

i ),
Vcl), where

– Scl consists of all maximal consistent sets of formulas in LL;
– (s, t) ∈ Rcl

i iff {ϕ |Liϕ ∈ s} ∪ {Aip |Aip ∈ s, p ∈ Φ}∪ {¬Aip | ¬Aip ∈ s, p ∈
Φ} ⊆ t;

– (s, t) ∈ Tcl
i iff if Aip ∈ s, p ∈ Φ, then p ∈ t iff p ∈ s, and Aip ∈ t; if ¬Aip ∈ s,

then ¬Aip ∈ t; and (s, t) ∈ Rcl
i ;

– Vcl(p) = {s ∈ Sc | p ∈ s} for each p ∈ Φ.

Lemma 10. Given a canonical model for LL, for every i ∈ Ag, Rcl
i and Tcl

i are
reflexive, transitive and Euclidean, and Tcl

i ⊆ Rcl
i .

Proof. The proof of Tcl
i being reflexive, transitive and Euclidean stays the same

with that in the canonical model for LE. And the proof of Rcl
i being reflexive,

transitive and Euclidean is the same as the proof in the standard S5 system.
Finally, Tcl

i ⊆ Rcl
i has been defined in the canonical model.

Lemma 11. For all formulas ϕ ∈ LLAΦ and all maximal consistent sets s ∈ Scl,
ϕ ∈ s iff (Mcl, s) |=TP ϕ.

Proof. It is similar with the proof for the analogous lemma for Mc.

Theorem 2. Axiom system LE is sound and complete for LKAΦ with respect
to two-layer partition awareness models.

Proof. Soundness of LE can be proved by showing that the axioms are valid in
all two-layer partition awareness models and the inference rules preserve validity.
And we can prove completeness by Lemma 9.
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Theorem 3. Axiom system LL is sound and complete for LLAΦ with respect to
two-layer partition awareness models.

Proof. Soundness of LL can be proved by showing that the axioms are valid in
all two-layer partition awareness models and the inference rules preserve validity.
Also we can prove completeness by Lemma 11.

5 Conclusion

An appropriate model for formalizing awareness should have some provable
properties that explore the connections between knowledge and awareness. To
establish such model, we have proposed a two-layer partition structure being a
syntax-free model in this paper. We have also provided two sound and complete
axiomatic systems for reasoning about awareness.
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Abstract. Intuitionistic epistemic logic (IEL), introduced by Artemov
and Protopopescu (2016), accepts the co-reflection axiom: “A ⊃ KA”
in terms of Brouwer-Heyting-Kolmogorov interpretation. There are two
variants for IEL, one of which has the axiom “KA ⊃ ¬¬A”, while the
other does not have it. The aim of this paper is to study the first-order
expansions of these two IELs. Hilbert systems and sequent calculi of
the first-order expansion of these two intuitionistic epistemic logic are
provided to be proved sound and complete for the intended semantics.
We also prove the cut-elimination theorems for both systems. Further-
more, the Craig interpolation theorems of both systems are established
by Maehara’s method as consequences of cut-elimination theorems.

Keywords: Intuitionistic logic · Epistemic logic · Sequent calculus ·
Craig interpolation · Cut elimination · BHK interpretation

1 Introduction

In his famous Knowledge and Belief, Hintikka [4] introduced the epistemic logic
based on the classical logic, which is widely studied nowadays. In the following
decades, several studies have been made on the topic of intuitionistic epistemic
logic. Williamson [15] studied a system in which the intuitionistic conception of
truth of a formula A is equivalent to the possibility of knowledge of A, that is, A
is equivalent to ♦KA. Proietti [11] distinguished the implicit and explicit knowl-
edge in Kripke semantics for his intuitionistic epistemic logic. Ma et al. [9] studied
an intuitionistic public announcement logic, i.e., an expansion of intuitionistic
modal logic with public announcement operators. Jäger and Marti studied the
common and distributed knowledge operators over intuitionistic logics [5,6].

As is well-known, the Brouwer-Heyting-Kolmogorov interpretation is the con-
ceptual ground for the intuitionistic logic. The interpretation states that how a
complex proof can be constructively built from simpler proofs. Then, it becomes
reasonable to ask what is a proper BHK reading of the knowledge operator in
the intuitionistic epistemic logic. Recently, Artemov and Protopopescu [1] gave
a system named as intuitionistic epistemic logic (IEL), where they proposed the
following BHK interpretation for KA: a proof of a formula KA (it is known that
c© Springer-Verlag GmbH Germany, part of Springer Nature 2019
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A) is the conclusive verification of the existence of a proof of A. Let us recall that
a proof of A ⊃ B is a construction such that given a proof of A the construction
gives us a proof of B. Then a proof of A itself can be regarded as the verification
of the existence of the proof of A. In this sense, we always have such a proof of
A ⊃ KA, i.e., A ⊃ KA is valid. But T -axiom: KA ⊃ A (usually called factivity
or reflection) is not valid, since the verification does not always give a proof.

In addition to the intuitionistic propositional tautologies and the K-axiom:
K(A ⊃ B) ⊃ (KA ⊃ KB), the system of IEL− have the coreflection axiom:
A ⊃ KA. The system of IEL is obtained from IEL− by adding the intuitionistic
reflection: KA ⊃ ¬¬A, which is shown to be equivalent to ¬K⊥ in [1].

The study of intuitionistic epistemic logic by [1] also trivialized the knowa-
bility paradox, also known as Fitch’s paradox [2]. In this paradox, we can clas-
sically derive the omniscience principle A ⊃ KA from the knowability principle
A ⊃ ♦KA (cf. [13]). While A ⊃ KA is classically read as every truth is known,
however, as we have shown, A ⊃ KA can be intuitionistically accepted according
to the BHK interpretation in [1]. As a result, if we can accept the intuitionistic
epistemic logic proposed by Artemov and Protopopescu, the paradox is not a
problem at all.

Proof-theoretical studies of IEL have been investigated. In Krupski and
Yatmanov [8], the sequent calculi of IEL− and IEL have been given, though
an inference rule corresponding to KA ⊃ ¬¬A in their system for IEL does
not satisfy a desired syntactic property, i.e., the subformula property. In Pro-
topopescu [12], a Gödel-McKinsey-Tarski translation from the intuitionistic epis-
temic propositional logic to the bimodal expansion of the classical modal logic
S4 has been studied.

In this paper, we study the first-order expansions QIEL and QIEL− of
intuitionistic epistemic logic of IEL and IEL−. Artemov and Protopopescu men-
tioned that the notion of the intuitionistic knowledge captures both mathemat-
ical knowledge and empirical knowledge. When we consider the mathematical
knowledge, quantifiers become inevitable. Moreover when we are concerned with
the empirical knowledge, we recall that Hintikka had given arguments for first-
order epistemic logic [4]. He mentioned that if we want to deal with the locutions
like “knows who,” “knows when,” “knows where,” we can translate these expres-
sions into a language with quantifiers. For example, about “who” we can have
variables ranging over the human being, about “where” over the location in
space. In this sense, our first-order expansions can provide a fundamental basis
when we concern the intuitionistic mathematical and empirical knowledge.

We also propose the sequent calculi for QIEL and QIEL−. The sequent
calculi for IEL− and IEL has been given by Krupski and Yatmanov [8]. As we
have seen above, the subformula property does not always hold in their systems.
Unlike their system for IEL, we emphasize that our sequent system for QIEL
satisfies the subformula property.

The outline of this paper is as follows. In Sect. 2, we provide the seman-
tics and Hilbert systems for QIEL and QIEL−. In Sect. 3, we give sequent
calculi of QIEL and QIEL−, which are shown to be equivalent to the corre-
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sponding Hilbert systems. Moreover, we establish the cut-elimination theorems,
from which we demonstrate the disjunction property, the existence property and
Craig interpolation theorem of each of QIEL and QIEL−. In Sect. 4, we prove
the completeness theorems for both sequent calculi and Hilbert systems of QIEL
and QIEL−.

2 Kripke Semantics and Hilbert Systems of First-Order
Intuitionistic Epistemic Logics

We fix a countably infinite set of variables as V = {vn|n ∈ N}, a countably
infinite set of constant symbols as C = {cn|n ∈ N}. A term, denoted by t etc., is a
variable or a constant symbol. Then we fix a countably infinite set Σ = {Pm}m∈N

of predicate symbols, each of which has a fixed finite arity. The set of formulas
of the language L(C ∪ V) is defined inductively as:

A := P (−→u ) |⊥ |A ∧ A |A ∨ A |A ⊃ A |∀xA |∃xA |KA,

where P ∈ Σ, P (−→u ) denotes P (u1, u2, . . . , un) and ui is a term for 1 ≤ i ≤ n. We
define ¬A ≡ A ⊃ ⊥. We define bound variables and free variables as usual. If a
formula does not contain any free variables, the formula is called closed formula.
In the rest of this paper, we assume that free variables and bound variables are
always distinguished. We use A(t/x) to mean the result of substitution (avoiding
variable clash) of all occurrences of free variable x in A by term t, and let
Γ (t/x) := {A(t/x)|A ∈ Γ}.

Definition 1. A model is a tuple M = (W,≤, R,D, I) where

– (W,≤) is a preorder,
– R is a binary relation on W such that:

1. R ⊆≤, i.e., for any w, v ∈ W , if wRv then w ≤ v, and
2. ≤;R ⊆ R, i.e., for any w, v, u ∈ W , if w ≤ v and vRu then wRu,

– D is a function which assigns a nonempty domain D(w) to w ∈ W such that,
for any w, v ∈ W , if w ≤ v then D(w) ⊆ D(v),

– I is an interpretation such that I(c) ∈ D(w) for all w ∈ W for any constant
symbol c and I(P,w) ⊆ D(w)n for every w ∈ W and every n-arity predicate
P such that if u ≤ v then I(P, u) ⊆ I(P, v) for all u, v ∈ W .

The class of all models is denoted as Mall. Furthermore, Mser is the class of all
models in which R is serial, that is for any w ∈ W there is a v ∈ W such that
wRv.

Let d be the syntactic name of d ∈ D(w). Given a w ∈ W , let L(C ∪D(w),V)
be the language L(C,V) expanded with the constant symbols {d|d ∈ D(w)} for
D(w). Given a model M = (W,≤, R,D, I), a state w ∈ W and a closed formula
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A in L(C ∪ D(w),V), we inductively define the satisfaction relation M,w |= A
as follows:
M,w |= P (d1, ..., dm) ⇐⇒ (d1, ..., dm) ∈ I(P,w)
M,w � ⊥
M,w |= A ∧ B ⇐⇒ M,w |= A and M,w |= B
M,w |= A ∨ B ⇐⇒ M.w |= A or M,w |= B
M,w |= A ⊃ B ⇐⇒ for all v ∈ W,w ≤ v and M, v |= A imply M, v |= B
M,w |= KA ⇐⇒ for all v ∈ W,wRv implies M, v |= A
M,w |= ∀xA ⇐⇒ for all v ∈ W,w ≤ v implies: M, v |= A(d/x) for all d ∈ D(v)
M,w |= ∃xA ⇐⇒ there are some d ∈ D(w) such that M,w |= A(d/x).

Proposition 2 (Persistency). Let M be a model. For any w, v ∈ W , for any
closed formulas A in L(C∪D(w),V) if w ≤ v and M,w |= A then M,v |= A.

Proof. By induction on the complexity A. Suppose M,w |= KA and w ≤ v, we
show M,v |= KA. Fix an arbitrary s ∈ W , suppose vRs, then from ≤;R ⊆ R,
we have wRs. By M,w |= KA, we have M, s |= A. ��
Definition 3. For a formula A and a class M of models, we say A is valid in
M (denoted by M |= A), if for any M ∈ M, for any w ∈ W of M , M,w |=
A(d1/a1) · · · (dn/an), where (d1, . . . , dn) ∈ D(w)n, where {a1, . . . , an} be the set
of all free variables in the formula A.

Let us introduce Hilbert systems H(QIEL−) and H(QIEL) as in the follow-
ing table and define the notion of derivation in these systems as usual.

Theorem 1 (Soundness).

1. For any formula A, if H(QIEL−) � A then Mall |= A;
2. For any formula A, if H(QIEL) � A then Mser |= A.

Let us recall from Troelstra and van Dalen [14, p.10] the BHK-interpretations
for quantifiers as follows:

– a proof of ∀xA(x) is a construction which transforms a proof of d ∈ D
(D the intended range of the variable x) into a proof of A(d).

– a proof of ∃xA(x) is given by providing d ∈ D, and a proof of A(d).

Artemov and Protopopescu [1] explained a counterexample against the validity
of T -axiom (KA ⊃ A):

“Somebody stole your wallet in the subway. You have all evidence for this:
the wallet is gone, your backpack has a cut in the corresponding pocket,
but you have no idea who did it. You definitely know that ‘there is a
person who stole my wallet’ (in logical form, ∃xS(x), where S(x) stands
for ‘x stole my wallet’) so you have a justification p of K(∃xS(x)). If
K(∃xS(x)) → ∃xS(x) held intuitionistically, you would have a construc-
tive proof q of ∃xS(x). However a constructive proof of the existential
sentence ∃xS(x) requires a witness a for x and a proof b that S(a) holds.
You are nowhere near meeting this requirement. K(∃xS(x)) → ∃xS(x)
does not hold intuitionistically.” [1, p.273] (Here, the right arrow denotes
the implication.)
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Hilbert system H(QIEL−)

(∧-Ax) A1 ∧ A2 ⊃ Ai(i = 1 or 2)

A ⊃ (B ⊃ (A ∧ B))

(∨-Ax) Ai ⊃ A1 ∨ A2(i = 1 or 2)

(A ⊃ C) ⊃ ((B ⊃ C) ⊃ (A ∨ B ⊃ C))

(⊃-Ax) A ⊃ (B ⊃ A)

(A ⊃ (B ⊃ C)) ⊃ ((A ⊃ B) ⊃ (A ⊃ C))

(⊥-Ax) ⊥ ⊃ A

(∀-Ax) ∀xA ⊃ A(t/x)

(∃-Ax) A(t/x) ⊃ ∃xA
(K) K(A ⊃ B) ⊃ (KA ⊃ KB)

(CR) A ⊃ KA

(∀-Rule) From A ⊃ B(u/x), infer A ⊃ ∀xB†
(∃-Rule) From B(u/x) ⊃ A, infer ∃xB ⊃ A†
(MP) From A and A ⊃ B, infer B

† u is fresh in the conclusion.

Hilbert system H(QIEL)

All the axioms and rules of H(QIEL−) plus:

(IR) KA ⊃ ¬¬A

A proof of K(∃xAx) ⊃ ∃xAx states that when a conclusive verification of
the existence of proof of the provision of d ∈ D and a proof of A(d), then we can
provide a d ∈ D and give a proof of A(d). As a result, this formula is not valid.
Our Kripke semantics captures the BHK-interpretation of the quantifier in the
first-order extension of IEL.

Proposition 4. The formula K(∃xq(x)) ⊃ ∃xq(x) is not derivable in
H(QIEL).

Proof. Define M = (W,≤, R,D, I) where W = {1, 2, 3}, ≤ =
{(1, 3), (1, 2), (2, 3)} ∪ { (x, x) |x ∈ W }, R = {(1, 1), (1, 3), (2, 3), (3, 3)}, D(1) =
{s}, D(2) = {s, d} and D(3) = {s, d}. I(p, 1) = {s}. I(p, 2) = {s}. I(p, 3) =
{s, d}. I(q, 3) = {s}. In the following picture, solid lines stand for R and dotted
lines stand for ≤.

1 : {s} 2 : {s, d} 3 : {s, d}
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It is easy to see that M is a model and it also belongs to Mser. Since M, 2 �

K(∃xq(x)) ⊃ ∃xq(x), we have Mser � K(∃xq(x)) ⊃ ∃xq(x). By Theorem 1, we
have H(QIEL) � K(∃xq(x)) ⊃ ∃xq(x). ��

We show that Barcan formula is not derivable as follows.

Proposition 5. The formula ∀xKp(x) ⊃ K∀xp(x) is not derivable in
H(QIEL).

Proof. By the same counterexample as in the proof of Proposition 4, we have
M, 1 � ∀xKp(x) ⊃ K∀xp(x). ��

Table 1. Sequent Calculi G(QIEL−), G(QIEL).

Sequent Calculus G(QIEL−): Δ contains at most one formula below.
Initial Sequents A ⇒ A ⊥ ⇒
Structural Rules

Γ ⇒ Δ (LW )
A, Γ ⇒ Δ

Γ ⇒ (RW )
Γ ⇒ C

A, A, Γ ⇒ Δ
(LC)

A, Γ ⇒ Δ
Γ ⇒ A A, Γ ⇒ Δ

(Cut)
Γ, Γ ⇒ Δ

Logical Rules
Γ ⇒ A1 Γ ⇒ A2 (R∧)

Γ ⇒ A1 ∧ A2

Ai, Γ ⇒ Δ
(L∧)

A1 ∧ A2, Γ ⇒ Δ
Γ ⇒ Ai (R∨)

Γ ⇒ A1 ∨ A2

A1, Γ ⇒ Δ A2, Γ ⇒ Δ
(L∨)

A1 ∨ A2, Γ ⇒ Δ
A, Γ ⇒ B

(R ⊃)
Γ ⇒ A ⊃ B

Γ ⇒ A B, Γ ⇒ Δ
(L ⊃)

A ⊃ B, Γ, Γ ⇒ Δ
Γ ⇒ A(u/x)

(R∀)†
Γ ⇒ ∀xA

A(t/x), Γ ⇒ Δ
(L∀)∀xA, Γ ⇒ Δ

Γ ⇒ A(t/x)
(R∃)

Γ ⇒ ∃xA

A(u/x), Γ ⇒ Δ
(L∃)†∃xA, Γ ⇒ Δ

Modal Rule
Γ1, Γ2 ⇒ A

(KIEL− )
Γ1, KΓ2 ⇒ KA

†: u does not occur in the lower sequent.

Sequent Calculus G(QIEL): Δ contains at most one formula below.
Replace (KIEL−) of G(QIEL−) with the following rule:

Modal Rules
Γ1, Γ2 ⇒ Δ

(KIEL)
Γ1, KΓ2 ⇒ KΔ

3 Sequent Calculi for First-Order Intuitionistic Epistemic
Logics

3.1 The Systems of G(QIEL−) and G(QIEL)

A sequent, denoted by Γ ⇒ Δ, Γ and Δ are a pair of finite multisets such that
Δ contains at most one formula. The multiset Γ is the antecedent of Γ ⇒ Δ,



332 Y. Su and K. Sano

while Δ is the succedent of the sequent Γ ⇒ Δ. We define KΓ = {KA|A ∈ Γ},
if Γ is empty then KΓ is also empty.

In Krupski and Yatmanov [8], the sequent calculus of IEL is obtained from
Gentzen’s sequent calculus LJ (with structural rules of weakening and contrac-
tion) for the intuitionistic logic plus the following two inference rules on the
knowledge operator:

Γ1, Γ2 ⇒ A
(KI)

Γ1,KΓ2 ⇒ KA
Γ ⇒ K⊥

(U)
Γ ⇒ A.

It is remarked, however, that this system does not enjoy the subformula prop-
erty. That is, in the rule of (U), we have a formula K⊥ which might not be a
subformula of a formula in the lower sequent of the rule (U). Compared to their
work, we let the succedent of (KIEL) be a possibly empty multiset of formulas,
then our modal rule in the sequent calculi of QIEL have subformula property.

Definition 6. Let Λ ∈ {QIEL,QIEL−}. Let G(Λ) be one of systems of Table 1,
G−(Λ) be the systems without the (Cut) rule. A derivation D in G(Λ) (or G−(Λ))
is a finite tree generated by rules of G(Λ) (or G−(Λ), respectively) from initial
sequents.

Definition 7 (Context and Principal Formula). The Γ and Δ in an infer-
ence rule of G(Λ) except (KIEL) and (KIEL−), are called the context. In the
conclusion of each rule of G(Λ) except (KIEL) and(KIEL−), the formula(s) not
in the context is called the principal formula(s). For the rule of (KIEL) and
(KIEL−), all formulas in the conclusion except in Γ1 of these rules are called the
principal formulas.

Definition 8. Given a sequent Γ ⇒ Δ, Γ∗ denotes the conjunction of all for-
mulas in Γ (Γ∗ ≡ � if Γ is empty) and Δ∗ denotes the unique formula in Δ if
Δ is non-empty; it denotes ⊥ otherwise. We say that a sequent Γ ⇒ Δ is valid
in a class M of models (denoted by M |= Γ ⇒ Δ), if M |= Γ∗ ⊃ Δ∗.

By induction on derivation, we obtain the following.

Theorem 2. Let Γ ⇒ Δ be any sequent.

1. If G(QIEL−) � Γ ⇒ Δ then Mall |= Γ ⇒ Δ.
2. If G(QIEL) � Γ ⇒ Δ then Mser |= Γ ⇒ Δ.

Proposition 9. For any sequent Γ ⇒ Δ,

1. if G(QIEL−) � Γ ⇒ Δ then H(QIEL−) � Γ∗ ⊃ Δ∗.
2. if G(QIEL) � Γ ⇒ Δ then H(QIEL) � Γ∗ ⊃ Δ∗.

Theorem 3 (Equipollence). Let Λ ∈ {QIEL−,QIEL}. For any formula A,
�H(Λ) A iff �G(Λ)⇒ A.
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Proof. The direction from the right to the left for both cases can be proved
by applying Proposition 9, in which we let the antecedent Γ be empty. The
direction from the left to the right for both cases can be proved by induction on
the derivation of A. We only show the case that the axiom (IR) is derivable in
G(QIEL).

A ⇒ A ⊥ ⇒
(L ⊃)

A,¬A ⇒
(KIEL)

KA,¬A ⇒
(RW )

KA,¬A ⇒ ⊥
(R ⊃)

KA ⇒ ¬¬A
(R ⊃)⇒ KA ⊃ ¬¬A

��

3.2 The Cut Elimination Theorems

We show that the cut elimination theorems hold for G(QIEL−) and G(QIEL),
and we employ our proof-theoretic arguments from [7,10].

Proposition 10. Let Λ ∈ {QIEL−,QIEL}. If Γ ⇒ Δ is derivable in G(Λ) by
D, then Γ (t/x) ⇒ Δ(t/x) is also derivable in G(Λ) with the same height as the
derivation D.

Theorem 4 (Cut Elimination Theorem). Let Λ ∈ {QIEL−,QIEL}.
If G(Λ) � Γ ⇒ Δ, then G−(Λ) � Γ ⇒ Δ.

Proof. Let Λ = QIEL. For the sake of the contraction rules, we show the elimi-
nation of the extended form of (Cut) as (Ecut) where (Ecut) has the following
form:

... D1
rule(D1)

Γ ⇒ A

... D2
rule(D2)

An, Γ ′ ⇒ Δ
(Ecut)

Γ, Γ ′ ⇒ Δ,

where An (n � 0) means n-times repetition of the formula A and the formula
A is called an Cut formula simply. It is noted that the ordinary (Cut) becomes
a particular instance of (Ecut). We show that, if an (Ecut) only appear in the
end of a derivation D, then there is a derivation in which no (Ecut) appears and
ended with the same conclusion as D. This can be proved by double induction
on the complexity (the number of logical connectives of the cut formulas) and
the weight, i.e., the number of all the sequents in the derivation. We only show
the case where both rules above the last application of (Ecut) are rules of KIEL,
i.e.,

D1

Γ1, Γ2 ⇒ A
(KIEL)

Γ1,KΓ2 ⇒ KA

D2

(A)m, (KA)n, Γ3, Γ4 ⇒ Δ
(KIEL)

(KA)m, (KA)n, Γ3,KΓ4 ⇒ KΔ
(Ecut)

Γ1,KΓ2, Γ3,KΓ4 ⇒ KΔ
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Then it suffices for us to transform this derivation into the following.

D1

Γ1, Γ2 ⇒ A

D1

Γ1,KΓ2 ⇒ KA

D2

(A)m, (KA)n, Γ3, Γ4 ⇒ Δ
(Ecut)

(A)m, Γ1,KΓ2, Γ3, Γ4 ⇒ Δ
(Ecut)

Γ1, Γ2, Γ1,KΓ2, Γ3, Γ4 ⇒ Δ
(KIEL)

Γ1,KΓ2, Γ1,KΓ2, Γ3,KΓ4 ⇒ KΔ
(LC∗)

Γ1,KΓ2, Γ3,KΓ4 ⇒ KΔ.

where (LC∗) means finitely many applications of the rule (LC). ��
Then we obtain the following proof-theoretic results.

Corollary 1 (Disjunction Property). Let Λ ∈ {QIEL−,QIEL}. For any
formulas A and B, if ⇒ A ∨ B is derivable in G(Λ) then either ⇒ A or ⇒ B is
derivable in G(Λ).

Corollary 2 (Existence Property). Let Λ ∈ {QIEL−,QIEL}. For any for-
mula of the form ∃xA, if ⇒ ∃xA is derivable in G(Λ) then there exists a term t
such that ⇒ A(t/x) is derivable in G(Λ).

Next we prove Craig interpolation theorems by Maehara’s mathod. In what
follows, Fv(Γ ) (Pr(Γ ) or C(Γ )) denotes the set of all free variables (predicate sym-
bols or constant symbols, respectively) in a formula in Γ . We say that 〈Γ1;Γ2〉
is a partition of Γ if Γ is Γ1, Γ2.

Lemma 1. Let Λ ∈ {QIEL−,QIEL}. If Γ ⇒ Δ is derivable in G(Λ), then
for any partition 〈Γ1;Γ2〉 of Γ there exists a formula C (interpolant formula)
such that both Γ1 ⇒ C and C,Γ2 ⇒ Δ are also derivable in G(Λ), Fv(C) ⊆
Fv(Γ1) ∩ Fv(Γ2,Δ), Pr(C) ⊆ Pr(Γ1) ∩ Pr(Γ2,Δ) and C(C) ⊆ C(Γ1) ∩ C(Γ2,Δ).

Proof. Let Λ ∈ {QIEL−,QIEL}. If �G(Λ) Γ ⇒ Δ, then �G−(Λ) Γ ⇒ Δ by
Theorem 4. We prove by induction on a cut-free derivation of Γ ⇒ Δ. We show
the case where the last rule in the derivation is (KIEL):

Γ, Γ ′ ⇒ Δ
(KIEL)

Γ,KΓ ′ ⇒ KΔ

Let us consider the partition 〈Γ1,KΓ ′
1;Γ2,KΓ ′

2〉 of Γ,KΓ ′. From the induction
hypothesis, there exists a formula C such that Γ1, Γ

′
1 ⇒ C and C,Γ2, Γ

′
2 ⇒ Δ are

derivable and C satisfies the required conditions. By the following derivations:

Γ1, Γ
′
1 ⇒ C

(KIEL)
Γ1,KΓ ′

1 ⇒ KC

C,Γ2, Γ
′
2 ⇒ Δ

(KIEL)
KC,Γ2,KΓ ′

2 ⇒ KΔ

we can have an interpolant formula as KC where the conditions of free variables,
predicate symbols and constant symbols hold trivially. ��
Theorem 5 (Craig Interpolation Theorem). Let Λ ∈ {QIEL−,QIEL}.
If ⇒ A ⊃ B is derivable in G(Λ), then there exists a formula C such that
⇒ A ⊃ C and ⇒ C ⊃ B are derivable in G(Λ) and that Fr(C) ⊆ Fr(A) ∩ Fr(B),
Pr(C) ⊆ Pr(A) ∩ Pr(B) and C(C) ⊆ C(A) ∩ C(B).
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4 Completeness Theorems of First-Order Intuitionistic
Epistemic Logics

In this section, even if Θ is a (possibly infinite) set of formulas, we regard
Θ ⇒ Δ as a sequent, in order to prove the completeness of cut-free sequent
systems G−(Λ) for Λ ∈ {QIEL−,QIEL} with the help of a method from
Hermant [3]. Derivability of a possibly infinite sequent is reduced to that of
an ordinary sequent as follows.

Definition 11. Let Λ ∈ {QIEL−,QIEL}, let Θ ∪ Δ be a set of formulas, and
Δ contains at most one formula. We say Θ ⇒ Δ is derivable in G(Λ) if the there
is a finite subset Ω ⊆ Θ such that Ω ⇒ Δ is derivable in G(Λ).

Definition 12 ( Δ-saturated). Let Λ ∈ {QIEL−,QIEL}, let Θ ∪ Δ be a set
of formulas in L(C,V), and Δ contains at most one formula. We say that

– Θ is Δ-consistent in G−(Λ) if G−(Λ) � Θ ⇒ Δ;
– Θ is Δ -complete in G−(Λ) if for any formulas B in L(C,V), either G−(Λ) �

Θ ∪ {B} ⇒ Δ or B ∈ Θ;
– Θ is said to admit Δ-Henkin witness in G−(Λ) for any formula of the form

∃xB in L(C,V) if whenever we have G−(Λ) � Θ ∪ {∃xB} ⇒ Δ, there exists
a variable y such that B(y/x) ∈ Θ.

If Θ is Δ-consistent, Δ-complete and admitting Δ-Henkin witness in G−(Λ), we
say Θ is Δ-saturated in G−(Λ).

By the same argument as in Hermant [3, p.225], we obtain the following.

Lemma 2. Let Λ ∈ {QIEL−,QIEL}, let Γ ∪ Δ be a set of formula in L(C,V)
and Δ contains at most one formula. If G−(Λ) � Γ ⇒ Δ, then there exists a set
Θ of formulas in an expanded language L(C,V ∪ V ′) with a countable set V ′ of
fresh variables such that Γ ⊆ Θ and Θ is Δ-saturated in G−(Λ).

Definition 13. Given any set Θ of formulas, K−(Θ) := { A |KA ∈ Θ }.
Lemma 3. Let Λ ∈ {QIEL−,QIEL}, let Θ ∪ Δ be a set of formula in L(C,V)
and Δ contains at most one formula, and Θ be Δ-saturated in G−(Λ). Then the
following hold:

1. if B ∧ C ∈ Θ then B ∈ Θ and C ∈ Θ.
2. if B ∨ C ∈ Θ then B ∈ Θ or C ∈ Θ.
3. if B ⊃ C ∈ Θ then either C ∈ Θ either G−(Λ) � Θ ⇒ B.
4. if ∀xB ∈ Θ then B(t/x) ∈ Θ for any term t in C ∪ V.
5. if ∃xB ∈ Θ then B(t/x) ∈ Θ for some term t in C ∪ V.
6. if G−(Λ) � Θ ⇒ B ∧ C then G−(Λ) � Θ ⇒ B or G−(Λ) � Θ ⇒ C.
7. if G−(Λ) � Θ ⇒ B ∨ C then G−(Λ) � Θ ⇒ B and G−(Λ) � Θ ⇒ C.
8. if G−(Λ) � Θ ⇒ B ⊃ C then G−(Λ) � Θ,B ⇒ C.
9. if G−(Λ) � Θ ⇒ ∃xB then for any v in C ∪ V, G−(Λ) � Θ ⇒ B(v/x).
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10. if G−(Λ) � Θ ⇒ KB then G−(Λ) � Θ ∪ K−(Θ) ⇒ B where recall that
K−(Θ) = { A |KA ∈ Θ }.

Proof. We prove item 10 alone. Suppose G−(Λ) � Θ ⇒ KB. Our goal is to
show that G−(Λ) � Θ ∪ K−(Θ) ⇒ B. Suppose for contradiction that G−(Λ) �
Θ ∪ K−(Θ) ⇒ B. Then we have the follwoing derivation:

Θ,K−(Θ) ⇒ B
(KIEL− )

Θ,KK−(Θ) ⇒ KB
(LC)∗

Θ ⇒ KB

where we have a contradiction with G−(Λ) � Θ ⇒ KB. ��
Definition 14. Given a language L(C,V) and a mutually disjoint denumer-
able family {Vn}n∈N of a denumerable sets of fresh variables such that V0 =
V. We define (Ln)n∈N inductively as follows: let L0 = L(C,V), and Ln =
L(C,

⋃
0≤i≤n Vi).

Definition 15. Let Λ ∈ {QIEL−,QIEL}. The canonical model MΛ = (W,≤,
R,D, I) is defined as follows:

– W := {Θ : Θ is Δ-saturated in G−(Λ) for some set Δ of formulas such that
Θ ∪ Δ is in some Li and Δ contains at most one formula};

– Θ ≤ Ω iff Θ ⊆ Ω.
– ΘR Ω iff K−(Θ) ∪ Θ ⊆ Ω where recall that K−(Θ) = {B|KB ∈ Θ}.
– D(Θ) is the set of all terms in Θ.
– I(c) is the constant c in Θ.
– I(P,Θ) is defined as: (u1, ..., um) ∈ I(P,Θ) iff P (u1, ..., um) ∈ Θ.

Lemma 4. Let Λ ∈ {QIEL−,QIEL}. The canonical model MΛ = (W,≤,
R,D, I) is a model and MQIEL = (W,≤, R,D, I) satisfies the seriality for R.

Proof. We show the latter statement alone, i.e., for any w ∈ W , there is a
v ∈ W such that wRv. Fix any w as Θ such that Θ is Δ-saturated for some
Δ containing at most one formula, then we have G−(QIEL) � Θ ⇒ Δ in Li.
Then G−(QIEL) � Θ ∪ K−(Θ) ⇒. Then we can construct an ∅-saturated Ω in
G−(QIEL) and Li+1 which obtained from Li by adding an countably infinite
set Vi+1 of fresh variables. Let us take this Ω for v. Therefore Θ ∪ K−(Θ) ⊆ Ω
hence ΘR Ω. ��
Lemma 5. Let Λ ∈ {QIEL−,QIEL} and let Δ be a set of formula, containing
at most one formula. Suppose that Θ be Δ-saturated in Li = L ∪ Vi. For every
formula A in Li,

1. if A ∈ Θ then MΛ, Θ |= A;
2. if G−(Λ) � Θ ⇒ A then MΛ, Θ � A.

Proof. We proceed by induction on the complexity of A. Here we deal with the
cases where A is of the form KC and ∀xB alone.
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– Suppose that A is of the form KC. For item 1, suppose KC ∈ Θ. We show
that MΛ, Θ |= KC. Fix any Ω such that ΘRΩ. Now our goal is to show
MΛ, Ω |= C. From ΘRΩ we have K−(Θ) ⊆ Ω. Since C ∈ K−(Θ), we have
C ∈ Ω. So we conclude that MΛ, Ω |= C by induction hypothesis.
For item 2, let us suppose G−(Λ) � Θ ⇒ KC. We show MΛ, Θ � KC. By item
10 of Lemma 3, we have G−(Λ) � Θ ∪ K−(Θ) ⇒ C. Since Θ ∪ K−(Θ) ∪ {C}
is in Li, Lemma 2 enables us to find a {C}-saturated set Ω in Li+1 such
that Θ ∪ K−(Θ) ⊆ Ω and G−(Λ) � Ω ⇒ C. From Θ ∪ K−(Θ) ⊆ Ω we
have ΘRΩ. It follows from induction hypothesis that MΛ, Ω � C. Therefore
MΛ, Θ � KC. holds.

– Suppose that A is of the form ∀xB. For item 1, suppose ∀xB ∈ Θ and fix
any Ω such that Θ ⊆ Ω. It is clear that ∀xB ∈ Ω holds. It follows from
Proposition 3 that B(t/x) ∈ Ω for any term t. By induction hypothesis,
G−(Λ), Θ |= B(t/x) holds. Thus we have MΛ, Θ |= ∀xB, as desired.
For item 2, we assume G−(Λ) � Θ ⇒ ∀xB. Let Li be the underlying language
of Θ ∪ {∀xB}. Take an infinite set Vi+1 of fresh variables to consider a fresh
v ∈ Li+1. Then it is easy to prove that G−(Λ) � Θ ⇒ B(v/x) since v is fresh.
Then take another infinite set Vi+2 of fresh variables to apply Lemma 2 to
construct a {B(v/x)}-saturated Ω in Li+2 such that Θ ⊆ Ω. It follows from
induction hypothesis that MΛ, Ω � B(v/x) hence MΛ, Θ � ∀xB holds.

��
Theorem 6 (Completeness of Cut-free Systems). Let Γ ⇒ Δ be a
sequent.

1. If Mall |= Γ ⇒ Δ then G−(QIEL−) � Γ ⇒ Δ.
2. If Mser |= Γ ⇒ Δ then G−(QIEL) � Γ ⇒ Δ.

Proof. We only show the second item and so let Λ = G−(QIEL). Suppose
G−(QIEL) � Γ ⇒ Δ. By Lemma 2, we can have a Δ-saturated Θ in a new
language such that Γ ⊆ Θ and G−(QIEL) � Θ ⇒ Δ. Therefore, Θ is a state in
MΛ ∈ Mser. It follows from Lemma 5 that MΛ, Θ |= Γ ⇒ Δ. ��
Corollary 3. Let Λ ∈ {QIEL,QIEL−}. The following are all equivalent.

1. MΛ |= A, 2. G−(Λ) �⇒ A, 3. G(Λ) �⇒ A, 4. H(Λ) � A,

where MIEL− := Mall and MIEL := Mser.

Proof. The direction from item 1 to item 2 can be obtained from Theorem 6.
The direction from item 2 to item 3 is trivial. The direction from item 3 to item
4 can be obtained from the equivalence of the Hilbert systems and the sequent
calculi (Theorem 3). Finally, the direction from item 4 to item 1 can be obtained
from the soundness of the Hilbert systems for the semantics (Theorem 1). ��
In particular, we can also prove the cut elimination theorems semantically by
Theorem 2 (the soundness result of the sequent calculi, i.e., the direction from
item 3 to item 1) and Theorem 6.
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5 Conclusion and Further Direction

There are the following two directions for further research on the first-order
intuitionistic epistemic logics. Firstly, the double negation translation (such as
Kuroda translation, Kolmogorov translation, and Gödel and Gentzen transla-
tion) provides a method to embedding the first-order classical logic into the
first-order intuitionistic logic. Then we can ask: what first-order classical epis-
temic logic can be embedded into QIEL− and QIEL? Secondly, Hintikka [4]
has shown that the equality symbol is useful in the first-order epistemic logic.
Furthermore, it is very natural to have the equality symbol in the study of knowl-
edge of mathematics. Therefore, adding the equality symbol into QIEL− and
QIEL can be an important direction.
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Abstract. In this work we answer a long standing request for temporal
embeddings of deontic STIT logics by introducing the multi-agent STIT
logic TDS. The logic is based upon atemporal utilitarian STIT logic. Yet,
the logic presented here will be neutral: instead of committing ourselves
to utilitarian theories, we prove the logic TDS sound and complete with
respect to relational frames not employing any utilitarian function. We
demonstrate how these neutral frames can be transformed into utilitarian
temporal frames, while preserving validity. Last, we discuss problems
that arise from employing binary utility functions in a temporal setting.

Keywords: Deontic logic · Logics of agency · Modal logic ·
Multi-agent STIT logic · Temporal logic · Utilitarianism

1 Introduction

With the increasing integration of automated machines in our everyday lives, the
development of formal decision-making tools, which take into account moral and
legal considerations, is of critical importance [2,9,10]. Unfortunately, one of the
fundamental hazards of incorporating ethics into decision-making processes, is
the apparent incomparability of quantitative and qualitative information—that
is, moral problems most often resist quantification [16].

In contrast, utility functions are useful quantitative tools for the formal anal-
ysis of decision-making. Initially formulated in [5], the influential theory of util-
itarianism has promoted utility calculation as a ground for ethical deliberation:
in short, those actions generating highest utility, are the morally right actions.
For this reason, utilitarianism has proven itself to be a fruitful approach in the
field of formal deontic reasoning and multi-agent systems (e.g. [1,12,15]).

In particular, in the field of STIT logic—agency logics developed primarily
for the formal analysis of multi-agent choice-making—the utilitarian approach
has received increased attention (e.g. [1,15]). Unfortunately, each available utility
function comes with its own (dis)advantages, giving rise to several puzzles (some
of them addressed in [12,13]). To avoid such problems, we provide an alternative
approach: instead of settling these philosophical issues, we develop a neutral
formalism that can be appropriated to different utilitarian value assignments.

Work funded by the projects WWTF MA16-028, FWF I2982 and FWF W1255-N23.

c© Springer-Verlag GmbH Germany, part of Springer Nature 2019
P. Blackburn et al. (Eds.): LORI 2019, LNCS 11813, pp. 340–354, 2019.
https://doi.org/10.1007/978-3-662-60292-8_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-60292-8_25&domain=pdf
https://doi.org/10.1007/978-3-662-60292-8_25


A Neutral Temporal Deontic STIT Logic 341

The paper’s contributions can be summed up as follows: First, we provide a
temporal deontic STIT logic called TDS (Sect. 2). With this logic, we answer a
long standing request for temporal embeddings of deontic STIT [4,12,15]. Sec-
ond, although TDS is based upon the atemporal utilitarian STIT logic from [15],
the semantics of TDS will be neutral: instead of committing to utilitarianism,
we prove soundness and completeness of TDS with respect to relational frames
not employing any utilitarian function (Sect. 3). This approach also extends the
results in [3,11,14] by showing that TDS can be characterized without using the
traditional branching-time (BT+AC) structures (cf. [4]). Third, we show how
neutral TDS frames can be transformed into utilitarian frames, while preserving
validity (Sect. 4). Last, we discuss the philosophical ramifications of employing
available utility functions in the extended, temporal setting. In particular, we
will argue that binary utility assignments can turn out to be problematic.

2 A Neutral Temporal Deontic STIT Logic

In this section, we introduce the language, semantics, and axiomatization of the
temporal deontic STIT logic TDS. In particular, we provide neutral relational
frames characterizing the logic, which omit mention of specific utility functions.
The logic will bring together atemporal deontic STIT logic, presented in [15],
and the temporal STIT logic from [14].

Definition 1 (The Language LTDS). Let Ag = {1, 2, . . . , n} be a finite set
of agent labels and let V ar = {p1, p2, p3 . . .} be a countable set of propositional
variables. The language LTDS is given by the following BNF grammar:

φ ::= p | ¬φ | φ ∧ φ | �φ | [i]φ | [Ag]φ | Gφ | Hφ | ⊗i φ

where i ∈ Ag and p ∈ V ar.

The logical connectives disjunction ∨, implication →, and bi-conditional ↔ are
defined in the usual way. Let ⊥ be defined as p∧¬p and define 	 to be p∨¬p. The
language consists of single agent STIT operators [i], which are choice-operators
describing that ‘agent i sees to it that’, and the grand coalition operator [Ag],
expressing ‘the grand coalition of agents sees to it that’. Furthermore, it contains
a settledness operator �, which holds true of a formula that is settled true at a
moment, and thus, holds true regardless of the choices made by any of the agents
at that moment. The operators G and H have, respectively, the usual temporal
interpretation ‘always going to be’ and ‘always has been’. Last, the operator ⊗i

expresses ‘agent i ought to see to it that’. We define 〈Ag〉 and �i as the
duals of �, [i], [Ag] and ⊗i, respectively (i.e. iff ¬�¬φ, etc.). Furthermore,
let Fφ iff ¬G¬φ and Pφ iff ¬H¬φ, expressing ‘φ holds somewhere in the future’
and ‘φ holds somewhere in the past’, respectively. Finally, deliberative STIT
and deliberative ought are obtained accordingly: [i]dφ iff [i]φ ∧ ♦¬φ and ⊗d

i φ iff
. For a discussion of these operators we refer to [12,14].

In line with [3,6,11,14], we provide relational frames for TDS instead of
introducing the traditionally employed, BT+AC frames (cf. [4]). Explanations
of the individual frame properties of Definition 2 can be found below.
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Definition 2 (Relational TDS Frames and Models). A TDS-frame is
defined as a tuple F = (W,R�, {R[i] | i ∈ Ag},R[Ag],RG,RH, {R⊗i

| i ∈ Ag}).
Let R[α](w) := {v ∈ W |(w, v) ∈ R[α]} for [α] ∈ Boxes where Boxes :=
{�,G,H, [Ag]} ∪ {[i] | i ∈ Ag} ∪ {⊗i | i ∈ Ag}. Let W be a non-empty set
of worlds w, v, u . . . and:
� For all i ∈ Ag, R�,R[i],R[Ag] ⊆ W×W are equivalence relations such that:

(C1) R[i] ⊆ R�.
(C2) For all u1, ..., un ∈ W , if R�uiuj for all 1 ≤ i, j ≤ n, then⋂

i R[i](ui) �= ∅.
(C3) For all w ∈ W , R[Ag](w) ⊆ ⋂

i∈Ag R[i](w).
� RG ⊆ W × W is a transitive and serial binary relation and RH is the

converse of RG, such that:
(T4) For all w, u, v ∈ W , if RGwu and RGwv, then RGuv, u = v, or

RGvu.
(T5) For all w, u, v ∈ W , if RHwu and RHwv, then RHuv, u = v, or

RHvu.
(T6) RG ◦ R� ⊆ R[Ag] ◦ RG (relation composition ◦ is defined as usual).
(T7) For all w, u ∈ W , if u ∈ R�(w), then u �∈ RG(w).

� For all i ∈ Ag, R⊗i
⊆ W×W are binary relations such that:

(D8) R⊗i
⊆ R�.

(D9) For all w ∈ W there exists a v ∈ W such that R�wv and for all
u ∈ W , if R[i]vu then R⊗i

wu.
(D10) For all w, v, u, z ∈ W , if R�wv,R�wu and R⊗i

uz, then R⊗i
vz.

(D11) For all w, v ∈ W , if R⊗i
wv then there exists u ∈ W s.t. R�wu,

R[i]uv, and for all z ∈ W , if R[i]uz then R⊗i
wz.

A TDS-model is a tuple M = (F, V ) where F is a TDS-frame and V is a valuation
mapping propositional variables to subsets of W , that is, V : V ar → P(W ).

We label the properties of Definition 2 referring to choice (Ci), those relat-
ing to temporal aspects (Ti), and those capturing deontic properties (Di).
Observe that, since R� is an equivalence relation, we obtain equivalence classes
R�(w) = {v | (w, v) ∈ R�}. Furthermore, by condition (C1) we know that R[i]

is an equivalence relation partitioning the equivalence classes of R�. We call
R�(w) a moment and for each v in a moment R�(w), we refer to R[i](v) as a
choice-cell for agent i at moment R�(w). In the following, we shall frequently
refer to moments and choices in the above sense. Condition (C2) captures the
pivotal independence of agents principle for STIT logics, ensuring that at every
moment, any combination of different agents’ choices is consistent: i.e., simul-
taneous choices are independent (see [4, 7C.4] ). (C3) ensures that all agents
acting together is a necessary condition for the grand coalition of agents acting.1

1 In future work, we aim to study condition (C3) strengthened to equality, as in [14].
In such a setting, completeness is obtained by proving that each TDS-frame can be
transformed into a frame (satisfying the same formulae) with strengthened (C3);
hence, showing that the logic does not distinguish between the two frame classes.
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The conditions on RG and RH establish that the frames we consider are
irreflexive, temporal orderings of moments. Properties (T4) and (T5) guar-
antee that histories—i.e., maximally ordered paths of worlds passing through
moments—are linear. Condition (T6) ensures the STIT principle of no choice
between undivided histories: if two time-lines remain undivided at the next
moment, no agent has a choice that realizes one time-line and excludes the other
(see [4, 7C.3]). Consequently, this principle also ensures that the ordering of
moments is linearly closed with respect to the past and allows for branching with
respect to the future: in other words, TDS-frames are treelike.2 Last, (T7) ensures
the temporal irreflexivity of moments; i.e., the future excludes the present. For an
elaborate discussion of the temporal frame conditions we refer to [14].

Last, the criteria (D8)-(D11) guarantee an essentially agentive character-
ization of the obligation operator ⊗i (cf. the impartial ‘ought to be’ operator
in [12]). Condition (D8) ensures that ideal worlds are confined to moments:
i.e., the ideal worlds accessible at a moment neither lie in the future nor in
the past. (D9) ensures that, for each agent there is at every moment a choice
available that is an ideal choice (cf. the corresponding ‘ought implies can’ axiom
A14). Furthermore, (D10) expresses that, for each agent, if a world is ideal
from the perspective of a particular world at a moment, that world is ideal from
the perspective of any world at that moment: i.e., ideal worlds are settled upon
moments. Condition (D11) captures the idea that every ideal world extends to
a complete ideal choice: i.e., no choice contains both ideal and non-ideal worlds.
Last, note that conditions (C2) and (D9) together ensure that every combina-
tion of distinct agents’ ideal choices is consistent, i.e., non-empty.

Definition 3 (Semantics for LTDS). Let M be a TDS-model and let w ∈ W
of M . The satisfaction of a formula φ ∈ LTDS in M at w is defined accordingly:

1. M, w|= p iff w ∈ V (p)
2. M, w|= ¬φ iff M, w �|= φ
3. M, w|=φ∧ψ iff M, w|=φ and M, w|=ψ
4. M, w|= �φ iff ∀u∈ R�(w), M, u|= φ
5. M, w|= [i]φ iff ∀u∈ R[i](w), M, u|= φ

6. M, w|= ⊗iφ iff ∀u∈ R⊗i(w), M, u|= φ

7. M, w|=[Ag]φ iff ∀u∈R[Ag](w), M, u|=φ

8. M, w|= Gφ iff ∀u∈ RG(w), M, u|= φ

9. M, w|= Hφ iff ∀u∈ RH(w), M, u|= φ

Global truth, validity, and semantic entailment are defined as usual (see [7]).

The axiomatization of TDS is a composition of [15], together with [14]. (Note
that in the language LTDS each agent label represents a distinct agent.)

Definition 4 (Axiomatization of TDS). For each i ∈ Ag we have,

A0 All propositional tautologies.
A1 �(φ → ψ) → (�φ → �ψ),
A2 �φ → φ
A3 �φ → � �φ
A4 [i](φ → ψ) → ([i]φ → [i]ψ)

A5 [i]φ → φ
A6 〈i〉φ → [i]〈i〉φ
A7 [Ag](φ → ψ) → ([Ag]φ → [Ag]ψ)
A8 [Ag]φ → φ
A9 〈Ag〉φ → [Ag]〈Ag〉φ

2 The main reason why the grand coalition operator [Ag] is added to our language,
is because it will allow us to axiomatize the no choice between undivided histories
principle (see A25 of Definition 4). For a discussion of [Ag] we refer to [14].
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A10
∧

0≤i≤n �[i]φk → �
∧

0≤i≤n[i]φk

A11
∧

1≤i≤n[i]φi → [Ag]
∧

1≤i≤n φi

A12 ⊗i(φ → ψ) → (⊗iφ → ⊗iψ)
A13 �φ → ([i]φ ∧ ⊗iφ)
A14 ⊗iφ → �[i]φ
A15 � ⊗i φ → � ⊗i φ
A16 �([i]φ → [i]ψ) → (⊗iφ → ⊗iψ)
A17 G(φ → ψ) → (Gφ → Gψ)

A18 Gφ → GGφ
A19 Gφ → Fφ

A20 H(φ → ψ) → (Hφ → Hψ)
A21 φ → GPφ
A22 φ → HFφ
A23 FPφ → Pφ ∨ φ ∨ Fφ
A24 PFφ → Pφ ∨ φ ∨ Fφ
A25 F♦φ → 〈Ag〉Fφ
R0 �TDS(ψ→φ) and �TDSψ implies �TDS φ
R1 �TDSφ implies �TDS[α]φ, [α]∈{�,G,H}
R2 �TDS (�¬p ∧ �(Gp ∧ Hp)) → φ implies

�TDS φ, given p 
∈ φ

A derivation of φ in TDS from a set Γ , written Γ �TDS φ, is defined in the usual
way (See [7, Def. 4.4]). When Γ=∅, we say φ is a theorem, and write �TDS φ.

The axioms, A1−A3, A4−A6 and A7−9 express the S5 behavior of �, [i]
(for each i∈Ag) and [Ag], respectively. A10 is the independence of agents axiom.
A11 captures that ‘all agents acting together implies the grand coalition of agents
acting’. A13 is a bridge axiom linking ⊗i to � and [i] to � (cf. (C1) and (D8)
of Definition 2). A14 corresponds to the ‘ought implies can’ principle (cf. (D9)
of Definition 2). A15 ensures that, when possible, obligatory choices are settled
upon moments (cf. (D10) of Definition 2). A16 can be understood as a conditional
monotonicity principle for ideal choices (cf. (D11) of Definition 2). Axioms A12
and A13, together with the necessitation rule R1, ensure that ⊗i is a normal
modal operator.

With respect to the temporal axioms, A17−A19 capture the KD4 behavior
of G, whereas, axioms A21 and A22 ensure that H is the converse of G. A23
and A24 capture connectedness of histories through moments and A25 charac-
terizes no choice between undivided histories. Last, R2 is a variation of Gabbay’s
irreflexivity rule (the proofs of Theorem 1 and 2 give an indication of the rule’s
functions).

3 Soundness and Completeness of TDS

In this section, we prove that TDS is sound and complete relative to the class of
TDS-frames. In the next section, we show how such frames are transformable into
frames employing utility assignments. This allows one to model and reason about
utilitarian scenarios in a more fine-grained manner, while obtaining completeness
of the logic without commitment to particular utility functions.

Unless stated otherwise, all proofs in this section can be found in the online
appended version (available at http://arxiv.org/abs/1907.03265).

Theorem 1. (soundness of TDS) ∀φ ∈ LTDS, �TDS φ implies |= φ.

We prove completeness by constructing maximal consistent sets belonging to
a special class and build a canonical TDS model adopting methods from [8,14].

Definition 5. A set of formulae Γ ⊆ LTDS is a maximally consistent set (MCS)
iff (i) Γ ��TDS ⊥, and (ii) for any set Γ ′ ⊆ LTDS, if Γ ⊂ Γ ′, then Γ ′ �TDS ⊥.

http://arxiv.org/abs/1907.03265


A Neutral Temporal Deontic STIT Logic 345

Definition 6 (canonical model for TDS). Let [α] ∈ Boxes and let 〈α〉 be
the operator dual to [α]. We define the canonical model to be the tuple Mdt :=
(W dt,Rdt

� , {Rdt
[i] | i ∈ Ag},Rdt

[Ag], Rdt
G ,Rdt

H , {Rdt
⊗i

| i ∈ Ag}, V dt) such that:

– W dt := {Γ ⊂ LTDS | Γ is an MCS};
– for all Γ,Δ ∈ W dt, (Γ,Δ) ∈ Rdt

[α] iff for all φ ∈ LTDS, if [α]φ ∈ Γ , then
φ ∈ Δ (for each [α] ∈ Boxes);

– V dt is a valuation function s.t. ∀p ∈ Atom, V dt(p) := {Δ ∈ W dt | p ∈ Δ}.
Definition 7 (diamond saturated set [14]). Let X be a set of MCSs and let
〈α〉 be dual to [α] ∈ Boxes. We say that X is a diamond saturated set iff for all
Γ∈X, for each 〈α〉φ ∈ Γ there exists a Δ ∈ X such that R[α]ΓΔ and φ∈Δ.

In order to ensure that our canonical model will be irreflexive, we introduce
a mechanism that allows us to encode MCSs with information that impedes
reflexive points in the model. We call these encoded sets IRR-theories and restrict
our canonical model to consist of these sets only. Last, we use the notation M |X
to indicate a model M whose domain is restricted to the set X (see [8, Ch.6]).

Lemma 1. Let X be a diamond saturated set with Γ ∈ X, φ ∈ LTDS, and let
Mdt|X be the canonical model restricted to X. Then, Mdt|X , Γ |= φ iff φ ∈ Γ .

Proof. Proven in the usual manner by induction on φ (see [7, Lem. 4.70]).

Following [14], we let IRR-theories be those sets of TDS formulae that (i)
are maximally consistent, (ii) contain a label name(p) := �¬p ∧ �(Gp ∧ Hp),
uniquely labeling a moment and (iii) for any world that is reachable through any
‘zig-zagging’ sequence of diamond operators, that is, every zig-zagging formula
φ of the form,

〈α1〉(φ1 ∧ 〈α2〉(φ2 ∧ . . . ∧ 〈αn〉φn)) . . .)

where 〈αi〉 is dual to [αi] ∈ Boxes with 1 ≤ i ≤ n, there exists a corresponding
zig-zagging formula φ(q) (where q is a propositional variable) of the form,

〈α1〉(φ1 ∧ 〈α2〉(φ2 ∧ . . . ∧ 〈αn〉(φn ∧ �¬q ∧ �(Gq ∧ Hq))) . . .)

labeling reachable worlds. Let us make the above formally precise:

Definition 8 (irr-theory) [14]. Let Zig be the set of all zig-zagging formulae
in LTDS and let name(p):= �¬p∧�(Gp∧Hp) where p is a propositional variable.
A set of formulae Γ is called an IRR-theory iff the following hold:

– Γ is a MCS and name(p) ∈ Γ , for some propositional variable p;
– if φ ∈ Γ ∩ Zig, then φ(q) ∈ Γ , for some propositional variable q.

Henceforth, we refer to IRR as the set of all IRR-theories in LTDS.

We now present lemmata relevant to the use of IRR-theories in canonical models.

Lemma 2. Let φ ∈ LTDS be a consistent formula. Then, there exists an IRR-
theory Γ such that φ ∈ Γ .
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Lemma 3 (existence lemma). Let Γ be an IRR-theory and let 〈α〉 be dual to
[α] ∈ Boxes. For each 〈α〉φ ∈ Γ there exists an IRR-theory Δ such that R[α]ΓΔ.

Subsequently, it must be shown that the canonical model restricted to the
set IRR of IRR-theories (i.e., Mdt|IRR) is in fact a TDS model (henceforth, we
use W dt and IRR interchangeably). First, we provide lemmata ensuring that the
model satisfies the desired temporal and deontic properties of Definition 2. The
first two follow from [14] and the latter four results are proven in the online
appended version (available at http://arxiv.org/abs/1907.03265).

Lemma 4 ([14])(property (C2)). Let Γ1, . . . , Γn ∈ IRR such that Rdt
� ΓiΓj for

all 1 ≤ i, j ≤ n. Then, there exists a Δ ∈ IRR such that Rdt
1 Γ1Δ, . . . ,Rdt

n ΓnΔ.

Lemma 5 ([14])(property (T6)). Let Γ,Σ,Π ∈ IRR such that Rdt
G ΓΣ and

Rdt
� ΣΠ. Then, there exists a Δ ∈ IRR such that Rdt

[Ag]ΓΔ and Rdt
G ΔΠ.

Lemma 6 (property (D9)). Let Γ ∈ IRR. Then, there exists a Δ ∈ IRR such
that Rdt

� ΓΔ and for every Σ ∈ IRR, if Rdt
[i]ΔΣ, then Rdt

⊗i
ΓΣ.

Lemma 7 (property (D11)). Let Γ,Δ ∈ IRR such that Rdt
⊗i

ΓΔ. Then, there
exists a Σ ∈ IRR such that Rdt

� ΓΣ, Rdt
[i]ΣΔ, and for all Π ∈ IRR, if Rdt

[i]ΣΠ,
then Rdt

⊗i
ΓΠ.

Lemma 8. The canonical model Mdt|IRR belongs to the class of TDS models.

Theorem 2 (completeness). If φ ∈ LTDS is a consistent formula, then φ is
satisfiable on a TDS-model.

4 Transformations to Utilitarian Models

In this section, we investigate a truth preserving transformation from TDS mod-
els to utilitarian STIT models, embedded in a temporal language. In particu-
lar, we are concerned with the semantic characterization of the dominant ought
[12, Ch.4]. We start with defining the semantic machinery needed to treat these
oughts. In particular, we will introduce a utility function util that maps natural
numbers (i.e. utilities) to worlds in our domain. In contrast to [12,15], we do
not restrict the assignment of utilities to complete histories where all worlds on
a maximal linear path have identical utility. The reason will be addressed at the
end of the section, where we discuss a problem related to utility assignments
over histories, arising in temporal extensions of STIT.

The pivotal notion involved in the dominant ought is that of a state: Agent
i cannot influence the choices of all other agents and, for this reason, one can
regard the joint interaction of all agents excluding i, as a state (of nature) for i.
To be more precise, we define a state Rs

[i](v) for i at v accordingly,

Rs
[i](v) =

⋂

k∈Ag\{i}
Rk(v)

http://arxiv.org/abs/1907.03265
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Consequently, all possible combinations of choices available to the agents Ag\{i},
are the different states available at that moment to agent i.

Subsequently, we define a preference order ≤ over choices (and subsets
thereof). Let R[i](v),R[i](z) ⊆ R�(w), then weak preference is defined accord-
ingly,

R[i](v) ≤ R[i](z) ⇐⇒ ∀v∗ ∈ R[i](v),∀z∗ ∈ R[i](z), util(v∗) ≤ util(z∗)

That is, for an agent a choice is weakly preferred over another, when all values
of the possible outcomes of the former are at least as high as those of the latter
(where util(v) is the number assigned to v, etc. ). Strict preference is defined as,

R[i](v) < R[i](z) ⇐⇒ R[i](v) ≤ R[i](z) ∧ R[i](z) �≤ R[i](v)

Next, a dominance order � over choices R[i](v),R[i](z)⊆R�(w) is defined as,

R[i](v) � R[i](z) ⇐⇒ ∀Rs
[i](x) ⊆ R�(w),R[i](v) ∩ Rs

[i](x) ≤ R[i](z) ∩ Rs
[i](x)

We say an agent’s choice weakly dominates another, if the values of the outcomes
of the former are weakly preferred to those of the latter choice, given any possible
state available to that agent. For a discussion of dominance orderings see [12,
Ch. 4]. Again, in the usual way we obtain strict dominance,

R[i](v) ≺ R[i](z) ⇐⇒ R[i](v) � R[i](z) ∧ R[i](z) �� R[i](v)

On the basis of the above, we now formally introduce temporal utilitarian
STIT frames and models, defined over relational Kripke frames.

Definition 9 (Relational TUS Frames and Models). Let R[α](w) := {v ∈
W |(w, v) ∈ Rα} for [α] ∈ {�, [Ag],G,H} ∪ {[i]|i ∈ Ag}. A relational Temporal
Utilitarian STIT frame (TUS-frame) is defined as a tuple F = (W,R�, {R[i]|i ∈
Ag},R[Ag],RG,RH, util) where W is a non-empty set of worlds w, v, u . . . and:

– For all i ∈ Ag, R�, R[i], R[Ag] ⊆ W × W are equivalence relations for which
conditions (C1)-(C3) of Definition 2 hold.

– RG ⊆ W × W is a transitive and serial binary relation, whereas RH is the
converse of RG, and the conditions (T4)-(T7) of Definition 2 hold.

– util : W �→ N is a utility function assigning each world in W to a natural.

A TUS-model is a tuple M = (F, V ) where F is a TUS-frame and V is a valuation
function assigning propositional variables to subsets of W : i.e., V : V ar �→ P(W ).

Notice that the above TUS frames only differ from TDS frames through replac-
ing the relations R⊗i

and corresponding conditions (D8)-(D11) (for each i ∈ Ag)
with the utility function util. We observe that the assignment of utilities to worlds
is agent-independent. Nevertheless, since the choices of an agent depend on which
worlds are inside the choice-cells available to the agent, the resulting obligations
are in fact agent-dependent. Let us define the new semantics:
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Definition 10 (Semantics of TUS models). Let M be a TUS-model, w ∈ W
of M and ||φ||M = {w | M,w |= φ}. We define satisfaction of a formula φ ∈ LTDS

as follows:

– Clause (1)-(10) are the same as those from Definition 3, with the exception
of clause (7), which we replace by the following clause (7∗):

M, w |= ⊗iφ iff ∀R[i](v) ⊆ R�(w) if R[i](v) �⊆ ||φ|| then ∃R[i](z) ⊆ R�(w) s.t.
(i) R[i](v) ≺ R[i](z), (ii) R[i](z) ⊆ ||φ|| and
(iii) ∀R[i](x) ⊆ R�(w), R[i](z) 
 R[i](x) implies R[i](x) ⊆ ||φ||

Clause (7∗) is interpreted accordingly: Agent i ought to see to it that φ
iff for every choice R[i](v) available to i that does not guarantee φ there (i)
exists a strictly dominating choice R[i](z) that (ii) does guarantee φ and (iii)
every weakly dominating choice R[i](x) over R[i](z) also guarantees φ. In other
words, all choices not guaranteeing φ are strictly dominated only by choices
guaranteeing φ. (We note that clause (7∗) is obtained through an adaption of
the definition provided in [12] to relational frames.) We show that the logic TDS
is also sound and complete with respect to the class of TUS-frames.

Theorem 3 (soundness). ∀φ ∈ LTDS, if �TDS φ, then Cu
f |= φ.

Proof. We prove by induction on the given derivation of φ in TDS. The argument
for axioms A0-A6 and A12 is the same as in Theorem 1. The validity of the axioms
A7-A11 can be easily checked by applying semantic clause (7∗) of Definition 9.

We now prove that the class Cu
f of TUS-frames characterizes the same set of

formulae as the class Cd
f of TDS frames. We prove both directions separately:

Theorem 4. ∀φ ∈ LTDS we have Cu
f |= φ implies Cd

f |= φ.

Proof. We prove by contraposition assuming Cd
f �|= φ. Hence, there is a TDS-

model, Md = (W,R�, {Ri|i ∈ Ag},RH,RG,RAg, {R⊗i
|i ∈ Ag},V) such that

Md, w |= ¬φ for some w ∈ W. We use Md to construct a model M in Cu
f , such

that:
M = (W,R�, {Ri|i ∈ Ag},RG,RH,RAg, util,V)

We show that M, w′ |= ¬φ for some w′ ∈ W. To define M let W := W, R� :=
R�, Ri := Ri, RH := RH, RG := RG, RAg := RAg, V(p) := V(p) and let
util be a function assigning each w ∈ W to a natural number, satisfying the
following criteria:

1. ∀i ∈ Ag,∀w, v, z ∈ W, if v, z ∈ R�(w), v ∈ Rs
i (w) \ R⊗i

(w), and z ∈
Rs

i (w) ∩ R⊗i
(w), then util(v) ≤ util(z);

2. ∀w, v, z ∈ W, if v ∈ R�(w)\R⊗Ag
(w) and z ∈ R⊗Ag

(w), then util(v)<util(z);
3. ∀w, u, z ∈ W , if v, z ∈ Rs

i (w) ∩ R⊗i
(w), then util(v) = util(z);

Let R⊗Ag
:=

⋂
i∈Ag R⊗i

, we call R[i](v) ⊆ R⊗i
(w) an optimal choice for agent i.

(It can be easily checked that the function util can be constructed.)
We state the following useful lemma (the proof of which is found in the online

appended version: http://arxiv.org/abs/1907.03265):

http://arxiv.org/abs/1907.03265
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Lemma 9. The following holds for any TDS frame:
(1) ∀v ∈ R�(w),R�(w) = R�(v); (2) ∀v ∈ Ri(w),Ri(w) = Ri(v);
(3) ∀v ∈ Rs

i (w),Rs
i (w) = Rs

i (v); (4) ∀v ∈ R�(w) we get R⊗i
(v) = R⊗i

(w);
(5) ∀R[i](z) ⊆ R�(w), either R[i](z) ⊆ R⊗i

(w) or R[i](z) ∩ R⊗i
(w) = ∅.

We observe that conditions (C1)–(C3) and (T4)–(T7) will be satisfied in
M since all of the relations of Md, with the exception of R⊗i

, are identical to
those in M. Moreover, util complies with Definition 9 and so M is in fact a TUS
model. The desired claim will follow if we additionally show that ∀ψ ∈ LTDS and
∀w ∈ W:

Md, w |= ψ ⇐⇒ M, w |= ψ

We prove the claim by induction on the complexity of ψ.
Base Case. Let ψ be a propositional variable p. By the definition of V in M

it follows directly that Md, w |= p iff w ∈ V iff w ∈ V iff M, w |= p.

Inductive Step. The cases for the propositional connectives and the modalities
[α] ∈ {�,H,G, [Ag]} ∪ {[i]|i ∈ Ag} are straightforward. We consider the non-
trivial case when ψ is of the form ⊗iφ. Let us first prove the left to right direction.

(=⇒) Assume Md, w |= ⊗iφ. We show that M, w |= ⊗iφ. By the semantics for
⊗i (Definition 9) it suffices to prove that: ∀Ri(v) ⊆ R�(w) if Ri(v) �⊆ ||φ||M, then
∃Ri(u) ⊆ R�(w) such that the following three clauses hold: (i) Ri(v) ≺ Ri(u); (ii)
Ri(u) ⊆ ||φ||M; and (iii) ∀Ri(x) ⊆ R�(w), Ri(u) � Ri(x) implies Ri(x) ⊆ ||φ||M.

Let Ri(v) ⊆ R�(w) be arbitrary and assume that Ri(v) �⊆ ||φ||M. We prove
that there is a Ri(u) ⊆ R�(w) for which conditions (i)-(iii) hold. First, we prove
the existence of such a Ri(u) ⊆ R�(w): By (C1) and (D9) of Definition 2, we
know,

∃u ∈ W such that Ri(u) ⊆ R�(w) and Ri(u) ⊆ R⊗i
(w). (1)

We also know by (D9) that ∀j ∈ Ag\{i},∃uj ∈ R�(w) such that Rj(uj) ⊆
R⊗j

(w). By (IOA) we know that
⋂

j∈Ag\{i} Rj(uj)∩Ri(u) �= ∅, i.e., there exists a
u∗ ∈ ⋂

j∈Ag\{i} Rj(uj)∩Ri(u). Consequently, we obtain the following statement,

u∗ ∈
⋂

j∈Ag\{i}
R⊗j

(w) ∩ R⊗i
(w) = R⊗Ag

(w). (2)

Last, by construction of M we know Ri(u) = Ri(u). We show that (i)-(iii) hold:
(i) We show Ri(v)≺Ri(u), that is, (a) Ri(v) � Ri(u) and (b) Ri(u) �≺ Ri(v):
(a) Recall, Ri(v)�⊆ ||φ||M, we know ∃v∗∈ Ri(v) s.t. M, v∗ �|= φ. By definition of

M, v∗∈ Ri(v) and by (IH) we get Md, v∗ �|= φ. Consequently, by the assumption
that Md, w |= ⊗iφ, and the fact that Md, v∗ �|= φ, it follows that v∗ �∈ R⊗i

(w).
Hence, we know that Ri(v)�⊆ R⊗i

(w), which implies R⊗i
(w) ∩ Ri(v) = ∅

by Lemma 9-(5). Therefore, by this fact along with statement (1) above, we
know that,

For all x, u�, v� ∈ W, if v� ∈ Rs
i (x) ∩ Ri(v) and u� ∈ Rs

i (x) ∩ Ri(u), then
v� ∈ Rs

i (x)\R⊗i
(w) and u� ∈ Rs

i (x) ∩ R⊗i
(w).
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Let x, u�, v� ∈ Wd be arbitrary and assume that v� ∈ Rs
i (x) ∩ Ri(v) and

u� ∈ Rs
i (x)∩Ri(u). By the statement above, it follows that v� ∈ Rs

i (x)\R⊗i
(w)

and u� ∈ Rs
i (x)∩R⊗i

(w), which in conjunction with criterion 1 on the function
util implies that util(v�) ≤ util(u�). Therefore, the following holds,

For all x, u�, v� ∈ W, if v� ∈ Rs
i (x)∩Ri(v) and u� ∈ Rs

i (x)∩Ri(u�), then
util(v�) ≤ util(u).

It follows that ∀Rs
i (x) ⊆ R�(w), Rs

i (x)∩Ri(v) ≤ Rs
i (x)∩Ri(u). Hence, by the

definition of � and the definition of M, we obtain Ri(v) � Ri(u).
(b) We need to show Ri(u) �� Ri(v). By definition of �, it suffices to show

that ∃x,∃u�,∃v�∈ W s.t. Ri(x)⊆ R�(w), u�∈ Ri(u) ∩Rs
i (x), v�∈ Ri(v) ∩Rs

i (x)
and util(v�)<util(u�). Consider

⋂
j∈Ag\i Rj(uj)∩Ri(u) �= ∅ from statement (2).

Let Rs
i (x) :=

⋂
j∈Ag\i Rj(uj). Clearly, Rs

i (x) ⊆ R�(w). By (IOA) we know that
Rs

i (x)∩Ri(v) �= ∅ (where Rs
i (x) =

⋂
j∈Ag\i Rj(uj)), and so, Rs

i (x)∩Ri(v) �= ∅ by
the definition of M. Therefore, ∃v� ∈ Rs

i (x)∩Ri(v). Since u∗ ∈ ⋂
j∈Ag\i Rj(uj)∩

Ri(u) (see paragraph above statement (2)), we know that u∗ ∈ ⋂
j∈Ag\i Rj(uj)∩

Ri(u), implying that u∗ ∈ Rs
i (x) ∩ Ri(u). Since also Ri(v) ∩ R⊗Ag

(w) = ∅, as
derived in part (i), we obtain v� ∈ R�(w) \ R⊗Ag

(w). By criterion 2 of util, and
the facts v� ∈ R�(w) \ R⊗Ag

(w) and u∗ ∈ R⊗Ag
(w), by statement (2), we have

that util(v�) < util(u∗). Therefore, Ri(u) �� Ri(v).
(ii) By assumption R⊗i

(w)⊆||φ||Md and statement (1) we get Ri(u) ⊆
R⊗i

(w). By IH we have ||φ||Md=||φ||M and since Ri(u)=Ri(u) we know Ri(u) ⊆
||φ||M.

(iii) We prove the case by contraposition and show that ∀Ri(x) ⊆ R�(w),
if Ri(x) �⊆ ||φ||, then Ri(u) �� Ri(x). Let Ri(x) by an arbitrary choice-cell in
R�(w) and assume that Ri(x) �⊆ ||φ||M. We aim to prove that Ri(u) �� Ri(x).
By definition of � it suffices to show that ∃Rs

i (y) ⊆ R�(w) such that ∃u� ∈
Ri(u) ∩ Rs

i (y), ∃x� ∈ Ri(x) ∩ Rs
i (y), and util(x�) < util(u�).

By the assumption that Ri(x) �⊆ ||φ||M, we know ∃x� ∈ Ri(x) such that
M, x� �|= φ. Clearly, x� ∈ Ri(x), and by (IH) we know that Md, x� �|= φ.
Since Md, w |= ⊗iφ, we obtain (w, x�) �∈ R⊗i

, and by Lemma 9-(5) we obtain
Ri(x) �⊆ R⊗i

(w).
By statement (2) we had u∗ ∈ R⊗Ag

(w) and u∗ ∈ R⊗i
(w). Also,

we know u∗ ∈ Ri(u) by paragraph preceding statement (2). Since, u∗ ∈⋂
j∈Ag\{i} Rj(uj) ∩ Ri(u), we also have u∗ ∈ ⋂

j∈Ag\{i} Rj(uj). Let Rs
i (u

∗) :=
⋂

j∈Ag\{i} Rj(uj). By (IOA) we obtain Ri(x) ∩ Rs
i (u

∗) �= ∅, implying that
there exists some x� ∈ Ri(x) ∩ Rs

i (u
∗). It follows from (D9) and the fact

Ri(x) �⊆ R⊗i
(w) that x� �∈ R⊗Ag

(w), which with the fact u∗ ∈ R⊗Ag
(w), implies

by definition of util (criterion 2) that util(x�) < util(u∗). By the definition of M,
we have x� ∈ Ri(x) ∩ Rs

i (u
∗), u∗ ∈ Ri(u) ∩ Rs

i (u
∗) and util(x�) < util(u∗), which

implies the desired claim.
(⇐=) We now prove the right to left direction: Assume M, w |= ⊗iφ. We

reason towards a contradiction by assuming Md, w �|= ⊗iφ. Hence, there exists a
world v ∈ R⊗i

(w) such that Md, v �|= φ. By (D11) we obtain R[i](v) ⊆ R⊗i
(w)

and hence R[i](v) �⊆ ||φ||Md . By (IH) and the definition of M, we obtain Ri(v) �⊆
||φ||M. This fact, in conjunction with the assumption M, w |= ⊗iφ, implies that
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there exists some Ri(z) ⊆ R�(w) such that the following holds: (i) Ri(v) ≺ Ri(z);
(ii) Ri(z) ⊆ ||φ||M; and (iii) ∀Ri(x) ⊆ R�(w), Ri(z) � Ri(x) implies Ri(x) ⊆ ||φ||M.

By Lemma 9-(5) and the fact that Ri(z) = Ri(z), we know that either (a)
Ri(z) ⊆ R⊗i

(w) holds or (b) Ri(z) ∩ R⊗i
(w) = ∅ holds.

Assume (a). We know Ri(v) ≺ Ri(z) and therefore, Ri(z) �� Ri(v). Hence,
∃Rs

i (x) ⊆ R�(w),∃z∗ ∈ Ri(z) ∩ Rs
i (x),∃v∗ ∈ Ri(v) ∩ Rs

i (x) such that util(v∗) <
util(z∗). We also know Ri(v) ⊆ R⊗i

(w) and Ri(z) ⊆ R⊗i
(w) and thus we obtain

z∗, v∗ ∈ R⊗i
∩Rs

i (x). Consequently, by the definition of util (criterion 3), we get
util(v∗) = util(z∗). Contradiction.

Assume (b). We know Ri(v) ≺ Ri(z) and therefore, Ri(z) �� Ri(v). Hence,
∃Rs

i (x) ⊆ R�(w),∃z∗ ∈ Ri(z) ∩ Rs
i (x),∃v∗ ∈ Ri(v) ∩ Rs

i (x) such that util(z∗) �≤
util(v∗). Then, by definition of util (criterion 1), either (I) z∗ �∈ Rs

i (x)\R⊗i
(w) or

(II) v∗ �∈ Rs
i (x)∩R⊗i

(w). Suppose (I), since z∗ ∈ Rs
i (x) we infer z∗ ∈ Rs

i (x) and
thus conclude z∗ ∈ R⊗i

(w). However, by earlier assumption Ri(z)∩R⊗i
(w) = ∅

we obtain z∗ �∈ R⊗i
(w). Contradiction. Suppose (II), then since v∗ ∈ Rs

i (x) we
infer v∗ �∈ R⊗i

(w). However, R[i](v) ⊆ R⊗i
(w). Contradiction.

Corollary 1 (completeness). ∀φ ∈ LTDS, if Cu
f |= φ, then �TDS φ.

Proof. Follows from Theorem 4 above, together with Theorem 2.

Theorem 5. ∀φ ∈ LTDS, we get Cd
f |= φ implies Cu

f |= φ.

Proof. Follows from Theorem 2 together with Theorem 3.

The Problem with Two-Valued Utility Functions. A well studied can-
didate function for assigning utilities to histories, is the two-valued approach
where the range of utilities is {0, 1} (e.g. [12,15]). As a concluding remark of the
present section, we briefly discuss the philosophical ramifications of using binary
utility functions in a temporal setting.

Observe that, at a moment where all worlds have a utility of 1 (or all 0),
every obligation becomes vacuously satisfied by definition—in such a scenario we
would have ⊗iφ iff �φ—and every choice for each agent will ensure all optimal
outcomes (see clause (7∗) of Definition 10).3 If in such a scenario, following
[12,15], utilities are assigned to complete histories and thus remain constant
through time, all obligations will also be vacuously satisfied at every future
moment from thereon (namely, as one moves into the future, the set of histories
passing through a moment can only decrease or stay the same). That at such
moments all obligations are vacuously satisfied means that no obligation can
be violated. Unfortunately, this also implies that at such moments contrary-to-
duty (CTD) reasoning—i.e., reasoning about obligations that come into being
when a previous obligation has been violated—becomes impossible because CTD
obligations require the possibility to violate one’s obligations in the first place
(e.g. see [17]).

3 This also holds when all intersections of choices of agents contain both a 1 and a 0.
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Fig. 1. The only three scenarios where ⊗iφ∧ ⊗j φ∧¬�φ holds true at R�(w) (for
Ag = {i, j} with 2 choices). Choices of i are vertically presented, those of j horizontally.
The symbol ∀n means every history is assigned value n, and ∃n means that some history
is assigned n, for n ∈ {0, 1}. Optimal choices are shaded and darker shaded when
overlapping. At all ∀k outcomes (with k ∈ {0, 1}), CTD reasoning becomes impossible.

In order to reason with CTD obligations in temporal utilitarian STIT logics,
we need to ensure that obligations can be violated, that is, we must consider
deliberative obligations: ⊗d

i φ := ⊗iφ ∧ ¬�φ. This means that, for an obligation
⊗d

i φ to hold, there exists a choice that does not guarantee φ and, by definition,
the latter choice must be strictly dominated by (only) φ choices. In the binary
setting this means that for all optimal choices, there is at least one outcome with
a strictly higher utility (which must be 1). Unfortunately, this has a drawback
since at such moments at least one of the following holds: (1) Worlds in the
intersection of all agents acting in accordance with their duty all have value 1.
(2) Worlds in the intersection of all agents violating their duty all have value 0.

Relative to the aforementioned, Fig. 1 illustrates the (only) three scenarios
possible in a two-agents, two-choices setting: Sub-figure (i) implies the impossi-
bility of future CTD reasoning in all cases in which at least one agent satisfies its
obligation. Sub-figure (ii) implies that there is no future CTD possible in every
case witnessing at least one agent violating its obligation. Last, sub-figure (iii)
indicates that future CTD obligations can only occur if one of the agents satis-
fies her obligation if and only if the other violates his. (With the impossibility of
future CTD reasoning we mean that from that moment onward, all obligations
will be vacuously satisfied.) All three cases are undesirable since they do not
allow for future recuperation in those situations in which they clearly should.

The above exhibits that, although ⊗i does not depend on any temporal aspect
(e.g. [15]), we can identify utility functions that are less suitable for temporal
extensions of STIT. Binary functions relative to moments only, do not cause
these problems, although they have their own issues [12]. In the case where the
function ranges over the set of reals, it is possible to assign utilities in such a way
that there is always CTD reasoning possible. In future work, we aim to specify
such utility functions, making particular use of temporal aspects of TDS-frames.
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5 Conclusion and Future Work

In this paper, we extended deontic STIT logic [15] to the temporal setting,
incorporating the logic from [14]. In doing so, we answered a long standing
open question for temporal embeddings of deontic STIT (e.g. see [4,12,15]).
We showed that the resulting logic TDS is sound and complete with respect to
its class of frames. We dubbed these frames neutral since they allowed us to
obtain adequacy of the calculus, while allowing us to refrain from committing to
specific utility functions. Subsequently, we showed how these neutral frames can
be transformed into particular utilitarian models, while preserving truth. We also
briefly argued that in a temporal setting, binary value assignments to histories
can generate undesirable behavior with respect to contrary-to-duty obligations.

For future work, we leave open the problem of whether temporal STIT (from
[14]) and its deontic extension TDS are decidable. Furthermore, we aim to inves-
tigate alternative utility assignments that explicitly exploit the temporal aspects
of TDS; e.g., it might be interesting to consider a dynamic approach taking into
account that natural agents have limited foresight relative to (future) utilities.
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Abstract. We formalize networks of authored arguments. These net-
works are then mapped to ASPIC+ theories that subsequently instan-
tiate Extended Argumentation Frameworks. Evaluation of arguments in
the latter determines the status of the arguments in the source networks.
The methodology is illustrated through a collaboration between scholars
of South Asian philosophy, logicians and formal argumentation theorists,
analyzing excerpts of Sanskrit texts concerning a controversial normative
debate within the philosophical school of Mı̄mām. sā.
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1 Introduction

Dung’s seminal theory of argumentation [7] provides foundations for dynamic
and distributed nonmonotonic reasoning [3]. Given a set of logical formulae, one
defines arguments (sets of logical formulae and their inferred conclusions) and a
binary (attack) relation amongst them, encoding that one argument is a counter-
argument to another. The status of arguments in the resulting argumentation
framework (AF ) is then evaluated, and the claims of the winning arguments
identify the non-monotonic inferences from the ‘instantiating’ set of logical for-
mulae. However, whereas the above procedure is often static, argumentation in
practice is typically dynamic and dialectic, where arguments are authored incre-
mentally rather than being defined by a given, fixed set of formulae. Moreover,
in practice not only attacks, but also collective attacks [15], support relations
[1,16], attacks on attacks [10] etc. are specified as holding between arguments,
thus defining networks of authored arguments (see [11] for more details).
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In this paper, we formalise a methodology that was informally proposed in
[11], and that accounts for the above described dynamic authoring of argument
networks. Here, structured arguments—i.e., arguments whose internal logical
structure is specified—are first related by attacks and supports, and can express
preferences over arguments. These arguments are then mapped to their con-
stituent formulae and rules so as to define an ASPIC+ theory [14] (a promising
formal approach to structured-argumentation [9]). The ASPIC+ theory, sub-
sequently, instantiates an Extended Argumentation Framework (EAF ) [10] (an
extension of Dung’s AF that accommodates arguments expressing preferences
over other arguments through attacking attack relations). Finally, the evalua-
tion of these arguments in the resulting EAF then determines the status of
arguments in the source network, and consequently the inferences defined by the
constituent formulae and rules in the original authored arguments. As argued
in [11], this methodology is proposed as a more rigorous approach to evaluating
arguments—and the defined inferences—in authored networks, as compared with
directly evaluating the arguments in the source network (as typically done by
scholars defining networks relating arguments by relations other than attacks).

The usefulness of the proposed formalization, corresponding to the aforemen-
tioned methodology, will be exemplified through a case study which resulted from
a collaboration between scholars in South Asian philosophy, argumentation the-
orists and logicians. It involves a formal analysis of some excerpts of (Sanskrit)
commentaries by philosophers of the school of Mı̄mām. sā, and their application
to South Asian jurisprudence. This school originated in ancient India more than
two millennia ago and was devoted to the analysis of normative statements in
the Vedas, the sacred texts of the so-called Hinduism. The dialectic nature of
Mı̄mām. sā argumentation, its structured analyses and its use of abstract logi-
cal principles, makes it particularly suitable for exhibiting the formal extensions
introduced in this paper. In particular, we analyzed a portion of the debate on
the immolation of widows on their husbands’ funeral pyre, i.e., the so-called
sat̄ı ritual. This debate has had deep socio-political implications in South Asia
since the 9th c. until today (e.g., see [4,18]) and has been broadly dealt with by
South Asian jurists and philosophers, primarily of the Mı̄mām. sā school.

Plan of the Paper: We assume familiarity with abstract argumentation and
briefly recap EAF s and ASPIC+ instantiations of EAF s in Sect. 2 (for a review
see [2,17]). In Sect. 3, we define ASPIC+ argument networks which represent
dynamically authored arguments and their relations, as specified by domain
experts using some putative authoring—i.e. argument diagramming—tool. We
also define the mapping of these networks to ASPIC+ theories. We use the
Mı̄mām. sā debate on sat̄ı as a case study to exemplify the formalised methodology
in Sect. 4.

2 Background: EAF s and ASPIC+

Extended Argumentation Frameworks. Along with the usual binary attack
relation (C) over arguments, Extended Argumentation Frameworks (EAF s) [10]
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extend Argumentation Frameworks (AF s) [7] to also include a pref-attack rela-
tion D: i.e. an argument expresses that Y is preferred to X attacks the binary
attack from X to Y , so that the latter attack does not succeed as a defeat.

Definition 1. An EAF is a tuple (A, C, D), A is a set of arguments, C ⊆ A×A,
D ⊆ A × C, and if (Z, (X,Y )), (Z ′, (Y,X)) ∈ D then (Z,Z ′), (Z ′, Z) ∈ C.

Notice that the constraint on the relation D ensures that if arguments Z and Z ′

respectively pref-attack (X,Y ) and (Y,X), then Z and Z ′ express contradictory
preferences—i.e., Y is preferred to X, respectively X is preferred to Y —and
so themselves symmetrically (i.e. mutually) attack each other. Henceforth, we
focus on bounded hierarchical EAF s, stratified so that attacks at a level i are
only pref-attacked by arguments at the next level (preserving rationality [13]).

Definition 2. Δ= (A, C,D) is a bounded hierarchical EAF (bh-EAF) iff
there exists a partition ΔH = (((A1, C1),D1), . . . , ((An, Cn),Dn)) s.t. Dn = ∅,
and:

– A =
⋃n

i=1 Ai, C =
⋃n

i=1 Ci, D =
⋃n

i=1 Di, and for 1≤ i≤ n, (Ai, Ci) is an AF

– (C, (A,B)) ∈ Di implies (A,B) ∈ Ci, C ∈ Ai+1

The notion of a successful attack (i.e. defeat) is then parameterised with
respect to the preferences specified by some given set S of arguments: i.e., Y
defeatsS X (denoted Y →S X) iff (Y,X) ∈ C and ¬∃Z ∈ S s.t. (Z, (Y,X)) ∈ D.

Then, a set S is EAF conflict free when it does not admit arguments that
symmetrically attack, but S can contain some Y and X such that Y asymmet-
rically attacks X, given a Z ∈ S that pref-attacks the attack from Y to X.

Furthermore, since attacks can themselves be attacked, these attacks need to
be reinstated (defended) by attacking arguments that pref-attack. That is, the
acceptability of an argument X w.r.t. a set S requires that there is a reinstate-
ment set for any reinstating defeat:

Definition 3. Let S ⊆ A in (A, C,D). Let RS = {X1 →S Y1, . . . , Xn →S Yn}
s.t. for 1≤ i≤ n, Xi ∈ S. We call RS a reinstatement set for A →S B, iff
A →S B ∈ RS, and ∀X →S Y ∈ RS, ∀Y ′ s.t. (Y ′, (X,Y )) ∈ D, ∃X ′ →S Y ′

∈ RS.
Furthermore, X is acceptable w.r.t. S ⊆ A iff for all Y ∈ A s.t. Y →S X,

there is a Z ∈ S s.t. Z →S Y , and there is a reinstatement set for Z →S Y .

For bh-EAF s, the semantic extensions are defined as for AF s. That is, let S be a
conflict free set: S is an admissible extension iff all arguments in S are acceptable
w.r.t. S; S is complete iff it is admissible and all arguments acceptable w.r.t. S
are in S; S is preferred iff it is a set inclusion maximal complete extension; S
is the (unique) grounded extension iff it is the set inclusion minimal complete
extension; S is stable iff ∀Y /∈ S, ∃X ∈ S s.t. X →S Y . Lastly, for e ∈ {complete,
preferred, grounded, stable}, X ∈ A is credulously (sceptically) justified under
the e semantics, if X belongs to at least one (all) e extension(s).
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ASPIC+ Instantiations of EAFs. ASPIC+ [14] is a general framework in
which one is free to choose a logical language L. One is also free to specify
defeasible and strict inference rules, as well as ‘axiom’ and ‘ordinary’ premises
for construction of arguments. Furthermore, it facilitates preference relations
over arguments, used to determine when attacks succeed as defeats. Defeasible
rules are typically domain specific, while strict rules may either encode domain
specific infallible inferences or inference rules of some deductive logic. In this
system, only the fallible ordinary premises and fallible consequents of defeasible
rules can be attacked. Axiom premises are infallible and conclusions of strict
rules cannot be attacked. A partial function assigns names (wff in L) to defeasible
rules, so that applications of defeasible rules can be invalidated by arguments
that claim the negation of the rule name. Finally, ASPIC+ allows one to specify
a contrary function specifying when formulae in L are said to be in conflict. In
this paper, we assume that such conflicts are symmetric.

ASPIC+ poses constraints on the above choices to ensure that the outcomes
of evaluating the Dung frameworks instantiated by ASPIC+ arguments and
defeats, are rational [5]. In this work, the following review of ASPIC+ [14]
suffices:

Definition 4. An argumentation theory is a tuple AT = (L, −,R, n,K) where
L is a logical language, and:

– R = Rs ∪ Rd is a set of strict (Rs) and defeasible (Rd) inference rules,
respectively of the form ϕ1, . . . , ϕn → ϕ and ϕ1, . . . , ϕn ⇒ ϕ (where ϕi and
ϕ are metavariables ranging over wff in L);

– n : Rd �→ L is a partial naming function;
– K = Kn ∪ Kp where K ⊆ L, Kn is a set of axiom premises, Kp is a set of

ordinary premises, and Kn ∩ Kp = ∅.
– for all wff φ in L, if ϕ ∈ ψ then ψ ∈ ϕ. (In this case, we say that ψ and ϕ

are contradictories, which is denoted by ϕ = −ψ.)

Henceforth, for convenience we write ‘δ : ϕ1, . . . , ϕn ⇒ ϕ’ instead of explicitly
declaring that n assigns the wff δ to the defeasible rule ϕ1, . . . , ϕn ⇒ ϕ.

Definition 5. An ASPIC+ argument A on the basis of an AT (L, −,R, n,K)
is:

1. ϕ if ϕ ∈ K with: Prem(A) = {ϕ}; Conc(A) = ϕ; Sub(A) = {ϕ}; Rules(A) =
∅; DefRules(A) = ∅; TopRule(A) = undefined.

2. A1, . . . An →/⇒ ψ if A1, . . . , An are arguments such that there exists a
strict/defeasible rule Conc(A1), . . . , Conc(An) →/⇒ ψ in Rs/Rd, with:
Prem(A) = Prem(A1) ∪ . . . ∪ Prem(An); Conc(A) = ψ;
Sub(A) = Sub(A1) ∪ . . . ∪ Sub(An) ∪ {A};
Rules(A) =

⋃n
i=1 Rules(Ai) ∪ {Conc(A1), . . . , Conc(An) → / ⇒ ψ};

TopRule(A) = Conc(A1), . . . Conc(An) →/⇒ ψ;
DefRules(A)=

⋃n
i=1 DefRules(Ai) ∪ {A1, . . .An ⇒ ψ} if

TopRule(A) = A1, . . . An ⇒ ψ and
⋃n

i=1 DefRules(Ai) otherwise.



Evaluating Networks of Arguments in Mı̄mām. sā Dialectics 359

The notation in Definition 5 is generalised to sets of arguments in the usual
way: e.g., letting E = {A1, . . . , An}, then DefRules(E) =

⋃n
i=1 DefRules(Ai).

Definition 6. Let A,B and B′ be ASPIC+ arguments.

– A undercuts argument B (on B′) iff Conc(A) ∈ n(r) for some B′ ∈ Sub(B)
such that TopRule(B′) = r.

– A rebuts argument B on (B′) iff Conc(A) = −ϕ for some B′ ∈ Sub(B) of
the form B′′

1 , . . . , B′′
n ⇒ ϕ.

– A undermines B (on B′ = ϕ) iff Conc(A) = −ϕ for some ϕ ∈ Prem(B) \ Kn.

When ASPIC+ arguments instantiate an AF , a preference relation over
the arguments is used to decide whether rebut or undermine attacks succeed as
defeats; i.e., an attack from A to B succeeds only if A ⊀ B′. Undercuts succeed as
defeats independently of preferences. Following [13], we will instantiate bh-EAF s
in such a way that ASPIC+ arguments may themselves conclude preferences
over arguments (rather than assuming a given strict ordering ≺ over arguments).
Pref-attacks originating from these arguments may then target binary attacks,
denying the success of the latter as defeats. As in [12], we assume a function P
that maps the conclusion of an individual argument to strict preferences over
other arguments; e.g., given A and B with respective defeasible rules {r1} and
{r2, r3}, if argument C concludes (r1 < r2) ∧ (r1 < r3), then P(Conc(C)) =
A ≺ B (under the Elitist set ordering of [14]):
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Fig. 1. Figure (i) depicts the bh−EAF instantiated by the ASPIC+ theory of Exam-
ple 1. Figure (ii) represents an ASPIC+ EANS mapped to the ASPIC+ theory of
Example 1. Solid and dashed lines denote the application of strict and defeasible rules
(resp.). We illustrate (X,Y )∈ C with X−�Y , and (Z, (X,Y ))∈ D with Z�(X−�Y ).

Definition 7. Let A be a set of ASPIC+ arguments, A,B ∈ A and C ⊆ A×A,
s.t. (A,B) ∈ C iff A rebuts, undermines or undercuts B. Let P : L �→≺, where
≺⊆ A×A is a strict partial ordering over A. Then an ASPIC+ instantiated
EAF is a tuple (A, C,D) defined as in Definition 1, where (C, (A,B)) ∈ D iff A
rebuts or undermines B on B′, and A ≺ B′ ∈ P(Conc(C)).
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Example 1. To illustrate the above, suppose the argumentation theory AT =
(L, −,R, n,K), with propositional language L, a strict priority relation < and:

– Kn = {text c, text e, text w}; Kp = {f, g, q}; Rs = {c → a};
Rd = {d1: text c ⇒ c; d2: a, q ⇒ b; d3: text e ⇒ e; d4: e ⇒ ¬c; d5: f ⇒ (d1 <
d3) ∧ (d1 < d4); d6: g ⇒ ¬d3; d7: text w ⇒ w; d8: w ⇒ e}.

– ϕ = −ψ just in case ϕ = ¬ψ or ψ = ¬ϕ

We obtain the instantiated bh-EAF (see Fig. 1-i), consisting of the following:

A =

⎧
⎪⎪⎨

⎪⎪⎩

A1 = [text c], A2 = [A1 ⇒ c], A3 = [A2 → a], A4 = [q], A = [A3, A4 ⇒ b]
B1 = [text e], B2 = [B1 ⇒ e], B = [B2 ⇒ ¬c],
C1 = [f ], C = [C1 ⇒ (d1 < d3) ∧ (d1 < d4)], G1 = [g], G = [g ⇒ ¬d3],
B5 = [text w], B4 = [B5 ⇒ w], B3 = [B4 ⇒ e], B′′ = [B3 ⇒ ¬c]

⎫
⎪⎪⎬

⎪⎪⎭

C =
{
(B,A)∗, (B,A2), (A2, B), (G,B), (G,B2), (B′′, A)†, (B′′, A2), (A2, B′′)

}

D = {(C, (A2, B))} (NB. (∗) B attacks A on A2 and (†) B′′ attacks A on A2.)

The single grounded extension of this EAF is the set E = {G1, G,C1, C,B1, A1,
A4, B5, B4, B3}. The two preferred/stable extensions are E ∪ {B′′} and E ∪
{A,A2, A3}.

3 Towards Formalizing Networks of Authored Arguments

Many extensions of Dung AF s are motivated by natural language examples
in which arguments and their relations are dynamically specified, rather than
being instantiated by a given static set of formulae. Following this observation,
[11] argues that networks of arguments related by attacks, supports, collective
attacks, recursive attacks on attacks etc., are thus more properly motivated
in argument authoring contexts in which (human) domain experts specify and
relate arguments incrementally, and hence, dynamically. A principled way to
then evaluate these networks is to map their contents to an ASPIC+ theory
that, subsequently, instantiates an AF or EAF .

This section formally realises the above informal proposal in [11]. We define
networks of ASPIC+ arguments authored by domain experts who specify the
contents of these arguments—that is, axiom and ordinary premises, strict and
defeasible inference rules—as well as support, attack and pref-attack relations.
An argument Y is used to support X only if Y supplies the rationale (argument)
for an ordinary (i.e. fallible) premise in X; axiom premises, which typically
encode empirically validated information and so cannot be challenged, need not
be supported. Hence, when authoring arguments one must distinguish between
ordinary and axiom premises (with the respective superscripts p and n). We
first define networks related by attacks and supports (Definition 8), and then
hierarchies of such networks that include pref-attacks (Definition 10):

Definition 8. An ASPIC+ ANS (Argument Network with Support) is a tuple
〈A, C,S〉, where:
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– A are ASPIC+ arguments such that for all X ∈ A, and for all α ∈ prem(X),
α is labelled by p or n;

– (X,Y ) ∈ C implies (X,Y ) is an ASPIC+ attack as defined in Definition 6,
and;

– (X,Y ) ∈ S implies ∃αp ∈ Prem(Y ) such that Conc(X) = α, in which case we
say that X supports Y on α. We may write X � Y to denote (X,Y ) ∈ S.

Since we assume authoring of ANSs by humans, we account for the possi-
bility that not all valid attacks may be explicity authored. Thus, Definition 8
accommodates that although for some X,Y ∈ A, X attacks Y according to
Definition 6, this attack might not be diagrammed as such, and so (X,Y ) /∈ C.

Next we define a chain of supporting arguments, and the ‘collapsing’ of a
chain into a single argument, with each supported premise replaced by its sup-
porting argument.

Definition 9. Let Δ = 〈A, C,S〉 be an ASPIC+ ANS. Then Schain is a set of
ordered sets defined as follows:

Schain(Δ) = {{A1, . . . , An}|⋃n
i=1 Ai ⊆ A,¬∃X,¬∃Y ∈ A s.t.

(A1,X), (Y,An) ∈ S, and for i = 1 . . . n − 1, (Ai+1, Ai) ∈ S}

The function coll takes as input a chain of supporting arguments Γ , and returns
a single argument if |Γ | = 2, else it returns a chain of supporting arguments Γ ′

in the case that |Γ | > 2:

– coll({A1, A2}) = A, where A2 supports A1 on α, and A is the argument A1

with A2 replacing premise α in A1;
– coll({A1, . . . , An}) = coll({A1, . . . , coll(An−1, An)}) if n > 2.

We now define bounded hierarchies of networks of attacking and supporting
arguments, in which pref -attacks are directed at attacks in the next level down
the hierarchy. Since arguments may be ‘backward extended’ by supporting argu-
ments, so as to define chains, we propose a definition of pref-attacks originating
from arguments whose conclusion is specified as mapping (via a function Pset)
to a preference over chains of supporting arguments; i.e., a preference ordering
over sets rather than single arguments (cf. Definition 7).

Definition 10. An ASPIC+ EANS (Extended Argument Network with Sup-
port) is a tuple Δ = 〈A, C,S,D〉 iff there exists a partition ΔH =
〈((A1, C1,S1),D1), . . ., ((An, Cn,Sn),Dn)〉 such that Dn = ∅, and:

– A =
⋃n

i=1Ai, C =
⋃n

i=1Ci, S =
⋃n

i=1Si, D =
⋃n

i=1Di, and for i = 1 . . . n,
〈Ai, Ci,Si〉 is an ASPIC+ ANS.

– (C, (A,B)) ∈ Di iff C ∈ Ai+1, (A,B) ∈ Ci, where A undermine or rebut
attacks B on B′, and ∃{B′, . . . , Bm},∃{A, . . . , An} ∈ Schain((Ai, Ci,Si)) s.t.
({A, . . . , An} ≺ {B′, . . . , Bm}) ∈ Pset(conc(C)), where Pset : L �→≺s, and
≺s⊆ 2A × 2A is a strict partial ordering over sets of arguments.
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Finally, we define a mapping from an ASPIC+ EANS to an ASPIC+ theory
and the corresponding instantiation of a bh-EAF, which allows us to calculate
the theory’s extensions. Notice that, if an argument X (not of the form [α]) is
available to support a premise αp, then α is not included as a premise in the
ASPIC+ theory (given that a rationale has been provided for why α holds).
Also observe that, in line with our remark on attacks following Definition 8, X
may not have been explicitly moved to support α.

Definition 11. Let Δ = 〈A, C, S, D〉 be an ASPIC+ EANS, Pset a user spec-
ified function s.t. Pset : L �→≺s, with strict partial ordering ≺s⊆ 2A×2A, and
L and − a given language and contrary function, respectively. Then ATΔ =
〈L, −,R, n,K = Kn ∪ Kp〉 is defined as follows:

1. R = Rules(A);
2. Kn = {α| αn ∈ prem(A)};
3. Kp = {α| αp ∈ prem(A),¬∃X ∈ A s.t. conc(X) = α and X is not of the form

[α]};
4. ∀r ∈ DefRules(A), n(r) = α, where α does not appear in Kn ∪ Kp, and α

does not appear in the antecedent or consequent of a rule in R.

Let A′ be a set of ASPIC+ arguments defined by ATΔ. Then:

– ∀X,A,B ∈ A′, P(conc(X)) = A ≺ B iff ∃Y ∈ A s.t. conc(X) = conc(Y ),
and Pset(conc(Y )) = ΓA ≺ ΓB, A = coll(ΓA) and B = coll(ΓB).

Let C′ be the attack relation defined over A′, such that ∀(A,B) ∈ C, (A,B) ∈
C iff A rebuts, undermines or undercuts B. Then (A, C, D) is defined as in
Definition 1, where (C, (A,B)) ∈ D iff A rebut or undermines B on B′ and
A ≺ B′ ∈ P(Conc(C)).

Example 2. Consider the network of arguments in Fig. 1-ii (mapped to the
ASPIC+ theory of Example 1) as authored by one or more users in the consecu-
tive order A′, A3, B′, B2, C, G,B3, B4. Note that B2 supplies the rationale (i.e.
argument) for the premise ep in B′, and so supports B′. Hence e is not included
as an ordinary premise in the ASPIC+ theory of Example 1. In Fig. 1-i the
bh−EAF instantiated by the theory is presented and we obtain the credulously
justified arguments A,A2, A3 and B′′ (under preferred and stable semantics),
and so the conclusions c, a, b and ¬c are credulously supported.

4 Case Study: The sat̄ı Ritual

We now apply the methodology formalized in Sect. 3, and analyze (part of)
the controversy surrounding widows immolating themselves on their husbands’
funeral pyre (the sat̄ı ritual). Despite the numerous arguments available, for
space reasons, we limit our analysis to a single Mı̄mām. sā author, namely,
Medhātithi (9th–10th c. Kashmir). The analysis captures the arguments (in the
form of an ASPIC+ EANS) as they are successively elucidated (and augmented
with contextual information in the form of basic reasoning principles). As will
be seen, Medhātithi argues that sat̄ı should not be performed.
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Basic Mı̄mām. sā Principles. Over the last two millennia, philosophers of the
Mı̄mām. sā school have thoroughly analyzed prescriptive statements in the Vedas.
They distinguish between three classes of normative statements (see, e.g., [8]):
obligations, recommendations, and prohibitions. Prohibitions lead to no result if
respected but to a sanction if not observed; recommendations, which are driven
by a desire, lead to a result if fulfilled and to no sanction otherwise; obligations
lead to a result if fulfilled and to a sanction if disregarded. Hence, for instance,
if something is obligatory, it is not recommended. For our formalization of the
sat̄ı debate, we can rely on some basic reasoning principles, which are either
explicitly formulated or implicitly endorsed by all Mı̄mām. sā authors, and are
strict or defeasible. The list of principles is presented in Definition 12 below.

Last, when dealing with Mı̄mām. sā we distinguish between two levels of nor-
mative statements: the ones that can be directly found in the Vedas or in
smr.ti texts based on the Vedas, and those obtained from applying metarules
identified by Mı̄mām. sā authors. We will refer to the former as prima facie norms
and to the latter as derived normative statements.

Definition 12. The following list of principles are Mı̄mām. sā metarules:

1. strict contextual principles:

D1 Prima facie prohibitions and prima facie obligations are mutually
exclusive.††

D2 Prima facie recommendations and prima facie obligations are mutually
exclusive.†

D3 Prohibitions and obligations are mutually exclusive.††

2. default (defeasible) contextual principles:

D4 An obligation/prohibition/recommendation on the prima facie level, is also
an obligation/prohibition/recommendation on the derived level.

D5 If an obligatory/prohibited action necessarily presupposes some (other)
action, then that action is also obligatory/prohibited.†

D6 An argument supported by a rationale (i.e. a justification) is the preferred
argument in case of a conflict between equipollent claims.

D7 If the Vedas/smr.tis prescribe an obligation/prohibition/recommendation,
then we take the obligation/prohibition/recommendation to hold prima
facie.††

D8 a) If two actions cause identical effects and have equal normative status,
they are analogous. b) Conclusions drawn for one case apply to analogue
cases. ††

D9 If the Vedas/smr.tis explicitly mention a reward for a prescribed action, then
a) the action brings about that result and b) it is prima facie recommended.†

D10 If an action causes some effect, which subsequently implies another effect,
then the action causes the second effect as well.††

The symbol † indicates that the principle is explicitly stated by Mı̄mām. sā authors,
those with †† are not stated as rules, yet explicitly applied in Mı̄mām. sā reasoning.
The remaining rules are implicit assumptions that other metarules presuppose.
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(A) [opening] The performance of sat̄ı causes a widow to take her life. The latter is,
as an act of violence, prohibited for women as it is for men.

(B) [objection] Performance of sat̄ı is obligatory, because this prescription is derived
from an explicit occurrence in a smr.ti text.

(C) [first reply] The referred smr.ti text prescribing sat̄ı mentions a result, namely
heaven, and therefore sat̄ı is recommended, not obligatory.

(D) [second reply] The ritual of sat̄ı is similar to the śyena sacrifice; that is, (i) both
are performed due to the desire for their respective results and (ii) the performance
of each transgresses a prohibition, namely, that of committing violence. By analogy,
since śyena is prohibited due to a prohibition being violated, sat̄ı is prohibited too.

(E) [additional argument] The claim that the mentioned smr.ti prescribes the per-
formance of sat̄ı, expressed in (B), is based on a misinterpretation of the text.
Hence, it does not follow from the smr.ti that sat̄ı is obligatory.

Fig. 2. Summary of Medhātithi’s Argument Against sat̄ı

The Argument Against sat̄ı. A synopsis of Medhātithi’s argument against
sat̄ı, as found in the Sanskrit source is presented in Fig. 2. The arguments pre-
sented here are translated and interpreted by Sanskritists.1 We will elaborate on
the separate steps of the argument, identifying the involved rules and premises,
as well as the individual arguments and their relations. We process the above
as it consecutively appears in the source, thus capturing the pivotal dialectic
aspect of Mı̄mām. sā argumentation in an ASPIC+ network.

The formal language used in our case study consists of unary predicates
O(X) to express ‘X is obligatory’, and similarly predicates F and R express-
ing prohibitions and recommendations, respectively. We reserve ∗ as a super-
script for prima facie norms (e.g., O∗(sati)), whereas the absence of ∗ indi-
cates a derived norm. Furthermore, we interpret cs(X,Y ) as ‘X causes Y ’;
eff(X,Y ) as ‘X has Y as an effect’; and we read txtO∗(X) as ‘the authorita-
tive texts state that X is obligatory’. Also, sim(X,Y ) expresses that ‘X and Y
are similar’, and mis(X) express that ‘X has been misinterpreted’. We chrono-
logically label arguments with A,B,C, ... etc. The usage of the other terms
will be clear from the context: e.g., we use sati for sat̄ı and hvn for ‘heaven’.
Note also that predicate names for defeasible inference rules, will take as argu-
ments the variables and constants that appear in the rule named. Last, the
contrary function is defined so that φ = −ψ iff φ = ¬ψ or ψ = ¬φ, and
F (X) = −O(X), F ∗(X)= −O∗(X), R∗(X)= −O∗(X) (the latter three corre-
spond to D1−D3 of Definition 12). Recall that − determines contraries (Defini-
tion 4). Hence, for example F (X)=−O(X) denotes that obligations and prohi-
bitions are mutually exclusive: i.e., ‘if X is obligatory, then X is not forbidden

1 Different interpretations of these arguments might be implemented in ASPIC+, and
compared and evaluated on their logical consequences.
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and vice versa’ (observe that − is not to be confused with logical negation ¬).
Let us proceed to the first sub-argument, put forward by Medhātithi.

Argument (A) (shown in Fig. 3) claims that sat̄ı is prohibited because sat̄ı is
a form of taking one’s life, which equates with self-violence: cs(sati, s vio). Fur-
thermore, self-violence is an instance of violence in general: eff(s vio, vio). Any
performance of violence, however, is prima facie prohibited: F ∗(vio). Hence, it is
concluded, sat̄ı must be prohibited too: F (sati). In the above, concrete instances
of the following generic rules were applied:

Rd(A) =
{

d10(Act,Eff1,Eff2) : cs(Act,Eff1), eff(Eff1,Eff2) ⇒ cs(Act,Eff2);
d5(Act,Eff) : cs(Act,Eff), F ∗(Eff) ⇒ F (Act);

}

In the corresponding formal argument A, the variables Act,Eff1 and Eff2

are respectively substituted by sati, s vio and vio. Note that the labelling of
the rules in Rd(A) corresponds to the list of Mı̄mām. sā principles presented in
Definition 12.

Subsequently, in argument (B), an opponent objects to (A) by asserting that
sat̄ı is instead obligatory—O(sati)—since the obligation is prima facie: O∗(sati).
Claim O∗(sati) is itself supported by argument (B’) referencing the passage with
the prescription ‘the widow should die after her husband’: txtO∗(sati). The above
reasoning uses instantiated applications of the following rules:

Rd(B) = {d4−O(X) : O∗(X) ⇒ O(X); d7(X) : txtO∗(X) ⇒ O∗(X).}
In reply to (B), argument (C) asserts that sat̄ı is instead a prima facie rec-

ommendation: R∗(sati). The claim is substantiated by the observation that, (i)
the smr.ti passage mentioning sat̄ı explicitly relates the performance of sat̄ı to
a specific reward, namely the reward of heaven: txt Act Rew∗(sati, hvn). (ii)
Explicit mention of a reward identifies a norm as a prima facie recommendation:

Rd(C) =
{

da
9(Act,Rew) : txt Act Rew∗(Act,Rew) ⇒ act(Act) � rew(Rew)∗;

db
9(Act,Rew) : act(Act) � rew(Rew)∗ ⇒ R∗(Act).

}

cs(sati,s_vio) eff(s_vio,vio)

d10

cs(sati,vio)

d5
F*(vio)

F(sati)

O*(sati)

O(sati)

4-Od

txtO*(sati)

O*(sati)

txt_Act_Rew*(sati,hvn)

act(sati)      rew(hvn) *
d9

R*(sati)

n
n

p

pp

d7 (sati)

C
B'

A B

a

d9
b

Fig. 3.Arguments A,B,B′, C. Rules di are shown without instantiated variables.

The contrary function − implies a symmetric attack between arguments C
and B′. Figure 3 shows argument A,B,B′ and C, where B supports B′ and
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A and B symmetrically attack each other on the basis of the defined contrary
function.

Argument (D) is a reply to (B), claiming that sat̄ı is in fact prohibited:
F (sati). This claim follows from the assertions that (i) sat̄ı is similar to the
śyena sacrifice—i.e., sim(sye, sati)—and (ii) the performance of śyena is pro-
hibited: F (sye). Note, the śyena sacrifice is a controversial Vedic ritual which
results in the death of one’s enemy; e.g. see [6].) By analogy, since a performance
of sat̄ı violates the prohibition of violence too, we conclude that sat̄ı must also
be prohibited. Clearly, B and D symmetrically attack each other.

A successive argument (D’) then supports the premise sim(sye, sati) of (D):
Both śyena and sat̄ı are recommendations due to fact that they depend on a
desired result: R(sye) and R(sati). In particular, R(sati) is justified given the
earlier argument (C), whose claim R∗(sati) is again included as a premise
(i.e., lemma) in (D’), and is used to infer R(sati) via the principle (D4)
(i.e., rule d4−R). Subsequently, the performance of śyena implies violence—i.e.,
cs(sye, vio)—as does the performance of sat̄ı. Note that sat̄ı causing violence was
justified earlier in (A); hence, in (D’) this fact is included as a premise rather
than repeated as an argument (cf. the use of lemmas). Therefore, śyena and
sat̄ı are similar.

In support of the premise F (sye) of (D) the argument (D”) is
added, explaining that the śyena sacrifice is prohibited because performing
śyena implies violence – cs(sye, vio) – and violence is prima facie forbidden:
F ∗(vio). The rules applied in the corresponding formal arguments D,D′ and D′′

are as follows:

Rd(D) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

d5(Act,Eff) : cs(Act,Eff), F ∗(Eff) ⇒ F (Act);
db
8(Act1,Act2) : sim(Act1,Act2), F (Act1) ⇒ F (Act2);

da
8(Act1,Act2,Eff) : cs(Act1,Eff), cs(Act2,Eff), R(Act1), R(Act2)

⇒ sim(Act1,Act2);
d4−R(X) : R∗(X) ⇒ R(X).

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

Lastly, Medhātithi argues in (E) that the interpretation of the smr.ti pre-
scribing sat̄ı, as purported in (B’), is based on a misinterpretation of the word
‘after’: mis(after). The correct interpretation of the smr.ti prescription is not
‘dying immediately after’, but rather ‘dying sometime after’; the latter interpre-
tation is in harmony with the Vedic prescription ‘one should not depart before
one’s natural lifespan’. Hence, the smr.ti does not prescribe sat̄ı. Therefore, E
attacks B′ via an undercut on the instance of the d7-rule; that is, the interpre-
tative inference step encoded in d7(sat̄ı) is invalidated.

Additionally, the Mı̄mām. sā principle (D6) gives rise to an additional argu-
ment (F): namely, (C) uses a rule that encodes a rationale justifying why sat̄ı is
a prima facie recommendation, in contrast to (B’)’s rule which merely claims
that sat̄ı is prima facie obligatory. Hence, prioritising the former rule over the
latter licenses Pset(conc(F)) = {B′} ≺ {C}. The rules applied in the formal
correspondents E and F are, respectively:

Rd(E) =
{

dE(after, sati) : mis(after) ⇒ ¬d7(sati).
}

Rd(F ) =
{

dF (sati, hvn) : True ⇒ d7(sati) < db
9.

}
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Fig. 4. (i) Authored ASPIC+ network generated from Medhātithi’s analysis of sat̄ı (ii)
Some of the arguments and attacks in EAF constructed from mapping of (i) to an
ASPIC+ theory.

The resulting formal theory of Medhātithi’s argument is defined accordingly:

Definition 13. The following presents the ASPIC+ Argumentation Theory of
Medhātithi’s argument against sat̄ı:
1. Rs = ∅
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2. Rd =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d10(Act,Eff1,Eff2) : cs(Act,Eff1), eff(Eff1,Eff2) ⇒ cs(Act,Eff2);
d5(Act,Eff) : cs(Act,Eff), F ∗(Eff) ⇒ F (Act);

d4−O(X) : O∗(X) ⇒ O(X);
d4−R(X) : R∗(X) ⇒ R(X);
d4−F (X) : F ∗(X) ⇒ F (X);

d7(X) : txtO∗(X) ⇒ O∗(X);
da
9(Act,Rew) : txt Act Rew∗(Act,Rew) ⇒ act(Act) � rew(Rew)∗;

db
9(Act,Rew) : act(Act) � rew(Rew)∗ ⇒ R∗(Act);

dE(after, sati) : mis(after) ⇒ ¬d7(sati);
dF (sati, hvn) : True ⇒ d7(sati) < db

10;
db
8(Act1,Act2) : sim(Act1,Act2), F (Act1) ⇒ F (Act2);

da
8(Act1,Act2,Eff) : cs(Act1,Eff), cs(Act2,Eff), R(Act1), R(Act2)

⇒ sim(Act1,Act2).

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

3. Kp =
{

cs(sati, s vio); cs(sye, vio); eff(s vio, vio); F ∗(vio);R(sye); mis(after)
}

4. Kn =
{

txtO∗(sati); txt Act Rew∗(sati, hvn); True
}

5. F (X) = −O(X), F ∗(X) = −O∗(X), R∗(X) = −O∗(X)
6. P(conc(F )) = B′ ≺ C

The final argument network is presented in Fig. 4-i and is mapped to the
argumentation theory of Definition 13, subsequently instantiating a bh−EAF in
Fig. 4-ii (some of whose arguments are shown). In the network, both R∗(sat̄ı) and
cs(sye, vio), are effectively incorporated in D′ as lemmas, since arguments justi-
fying these claims are included elsewhere in the network. Consequently, in the
bh−EAF in Fig. 4-ii, the argument C concluding R∗(sat̄ı) is also shown as a sub-
argument of D, and B also attacks D on C, where this attack is itself pref-attacked
by F . Evaluating the bh−EAF , we obtain a single grounded, preferred and stable
extension containing A, D, E, C, F , [txtO∗(sati)], and their sub-arguments. In line
with Medhātithi’s conclusion, we thus obtain justified arguments in favour of pro-
hibiting sat̄ı, while also keeping it as a recommendation.

Concluding Remark. The above case study highlights the advantages of pro-
viding formal argumentative support for scholars: helping to reveal and clarify
the structure of the dialectical commentaries being studied, as well as disclos-
ing implicitly used assumptions and rendering these explicit for further analysis
(including assumptions as to why some arguments are preferred to others). It
also testifies to the utility, and hence promising future developments, of compu-
tational tools enabling the authoring of networks, their mapping to ASPIC+

theories, and evaluation of instantiated EAF s. While in this work the author-
ing, mapping and evaluation was done by hand, our future aim is to provide
automated support for each step.
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Abstract. We define balance games, which describe the formation of
friendships and enmity in social networks. We show that if the agents give
high priority to future profits over short term gains, all Pareto optimal
strategies will eventually result in a balanced network. If, on the other
hand, agents prioritize short term gains over the long term, every Nash
equilibrium eventually results in a network that is stable but that might
not be balanced.
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1 Introduction

A social network consists of a number of agents and positive or negative relations
between them. The agents could be countries, individuals or groups. A positive
relation represents a friendship or alliance, while a negative relation represents
an enmity or rivalry. Structural balance theory describes such networks, and was
introduced by Heider [15,16] and later generalized by Cartwright and Harary [3,
11,12]. It argues that certain patterns are likely to occur while other patterns are
unlikely; the likely patterns are referred to as balanced while the unlikely ones
are unbalanced. There is also empirical support for the assertion that networks
tend towards balance, see for example [25,27], though a fully balanced network
is not always (nor easily) reached [18].

Usually, balance theory describes a network as a whole; it is claimed (quite
convincingly) that networks usually become more balanced over time, but rela-
tively little attention is paid to the actions and motivations of individual agents
on the way towards balance. Here, we take a different, game-theoretical approach:
we explicitly treat the tendency towards balance as evidence for a preference by
agents for balanced states over unbalanced ones. This allows us to take a detailed
look at how this tendency follows the result of rational choices by the individual
agents.
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We introduce a class of balance games, which are multi-stage games where in
each stage one agent updates their relationship with someone else, and all agents
prefer being involved in balanced relations over unbalanced ones. We show that
if the agents are sufficiently patient (i.e., if the discount factor δ is high enough),
any Pareto optimal strategy profile will, with probability 1, eventually result in
a balanced network. If the agents are less patient, the end result may not be a
balanced network. In fact, we show that for sufficiently impatient agents (i.e.,
if the discount factor δ is low enough), any subgame perfect Nash equilibrium
strategy profile will, with probability 1, result in a network that need not be
balanced but that is stable. Stability was defined by Van der Hoek et al. [17] and
is related to but strictly weaker than balance.

The structure of the paper is as follows. We first give definitions for balance,
stability and the balance game in Sect. 2, where we also present a few useful
lemmas, give an example, and discuss related work. Then, in Sect. 3 we consider
the case of patient agents, and show that for them every Pareto optimal strategy
profile results in balance. In Sects. 4 we study the cases of impatient agents. In
Sect. 5 we discuss some generalizations as well as some limitations of our results.
We conclude in Sect. 6.

2 Definitions and Preliminaries

In this section we first provide definitions of social balance theory, including
structural balance and stability. Most of these are from the literature (mainly
[3] and [17]). We give examples and introduce some results which will be used
in later proofs. We then move on to define a class of balance games and some
relevant notions. We use an example to explain the idea of balance games. We
then discuss related approaches.

2.1 Structural Balance and Stability

A (social) network is an irreflexive, complete, signed and undirected graph, i.e.,
a pair (A,E) such that A is a finite set of agents (represented by vertices of a
graph), and E : {{i, j} ⊆ A | i �= j} → {+,−} is an edge function that assigns
to each unordered pair of different agents a positive (+) or a negative (−) edge.
For simplicity, for pairs of agents we write ij, ik, etc, and for triads we write
ijk, ijl, etc. We only consider graphs with at least three agents.

Balance. Given a network N = (A,E), a triad ijk of N is called balanced, if the
labels of its edges are of one of the types +++ or +−− up to isomorphism. So
in a balanced triad there is an even number of negative edges. The unbalanced
triads therefore have either of the other two types: ++− or −−−. A network is
balanced, if all of its triads are balanced, and unbalanced otherwise.

In a triad of the type −−−, all three agents are enemies of one another. In
that situation, it is likely that two of them will set aside their differences and
unite against their common foe. Doing so would turn the triad into +−−, which
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is balanced. In a triad ++−, there is one agent i that is friends with both j and
k, while j and k are enemies. It is then likely that one of two things will happen:
either the mutual friendship with i will form a basis for reconciliation between
j and k, resulting in the balanced triad +++, or the tension between j and
k will force i to end its friendship with one of them, resulting in the balanced
triad +−−. So both types of unbalanced triad have a tendency to evolve into a
balanced triad.

Stability. In addition to balance, we will also use the weaker notion of stability,
which is defined in terms of mutual and anti-mutual ties. For a pair ij of a
network N = (A,E), a mutual tie of ij is an agent k of N such that k is a
mutual friend or mutual enemy of i and j, i.e., either E(ik) = E(jk) = + or
E(ik) = E(jk) = −.

An anti-mutual tie of ij is an agent k of N such that k is either a friend of i
and an enemy of j, or an enemy of i and a friend of j, i.e., if one of the following
is true:

– E(ik) = + and E(jk) = −
– E(ik) = − and E(jk) = +.

We say an pair ij is stable, if it is one of the following cases:

– E(ij) = + and ij has at least as many mutual ties as anti-mutual ties;
– E(ij) = − and ij has at least as many anti-mutual ties as mutual ties.

Finally, a network is stable, if all of its pairs are stable.
A mutual tie is a reason to stay or become friends, while an anti-mutual tie

is a reason to stay or become enemies. A network is therefore stable if every pair
of friends has at least as many reasons to remain friends as to become enemies,
and every pair of enemies has at least as many reasons to remain hostile as to
become friends.

Balance vs. Stability. If ijk is a balanced triad and E(ij) = +, then k is a
mutual tie for ij. Specifically, if ijk is of type +++ then k is a mutual friend,
and if ijk is of type +−− then k is a mutual foe. Likewise, if ijk is balanced and
E(ij) = −, then k is an anti-mutual tie for ij. A balanced network is therefore
a stable network with the additional property that for all pairs ij, if E(ij) = +
then ij has only mutual ties and if E(ij) = − then ij has only anti-mutual ties.

Not all stable networks are balanced, however. Two typical examples of stable
networks that are not balanced are illustrated in Fig. 1.

In Fig. 1a, one can verify that every pair has an equal number of mutual and
anti-mutual ties. For instance, pair {1, 3} has two mutual ties (i.e., agents 4 and
5) and two anti-mutual ties (i.e., agents 2 and 6). It is therefore stable, and so is
the entire network. Yet the network is not balanced, for, e.g., the triad {1, 2, 3}
is not balanced. Similarly, the network of Fig. 1b is also stable but not balanced.

The benefit of the latter network is that it can be generalized to a class of
stable and unbalanced networks illustrated in Fig. 1c. For each natural number
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2 3

1 4

6 5

(a)

2 3

1 4

6 5

(b) N(2)

k1 · · · km

i j

l1 · · · lm

(c) N(m)

Fig. 1. Stable networks that are unbalanced, where a solid line stands for a positive
edge and the lack of a line for a negative edge.

m ≥ 2, the network N(m) can be divided into three cliques: the {k1, . . . , km}-
party (k-party for short), the {l1, . . . , lm}-party (l-party for short) which are of
equal size, and a small, third party {i, j}. Agents are friendly towards members
of their own clique and hostile towards members of other cliques. The network
shown in Fig. 1b is N(2).

One can verify that for any pair {kx, ky}, {lx, ly} or {i, j} in the same party,
there are 2m mutual ties (i.e., all others are their mutual ties), and is therefore
stable. Any pair {kx, lx} across the two major parties are stable, as there are
2 mutual ties (i.e., i and j) and (2m − 2) anti-mutual ties. Any pair {i, kx},
{i, lx}, {j, kx} or {j, lx} across the third party and a major party has an equal
number (i.e., m) of mutual and anti-mutual ties, and is thus stable as well. For
every m ≥ 2, the network N(m) is therefore stable. It is not balanced, however,
because it contains triads of the type −−−.

Let us consider a few technical lemmas that will be useful later on. The first
lemma is well known in balance theory, and follows immediately from the fact
that a triad is balanced if and only if it contains an even number of negative
edges.

Lemma 1. If a triad ijk is balanced, then flipping (the sign of) any single edge
of the triad will make it unbalanced. Likewise, if ijk is unbalanced then flipping
any single edge of the triad will make it balanced.

A pair ij is stable if and only if it is part of at least as many balanced triads as
unbalanced triads. The following lemma therefore follows from Lemma 1.

Lemma 2. If a pair ij is stable, then flipping E(ij) does not increase the number
of balanced triads containing i, nor does it decrease the number of unbalanced
triads containing i.

If a pair ij is unstable, then flipping E(ij) will strictly increase the number
of balanced triads in the network.

Finally, we need a lemma that is new in this paper.

Lemma 3. For any network, if there is an unbalanced triad, then all agents
occur in an unbalanced triad.
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Proof. If ijk contains an odd number of negative edges, then for every agent
l �∈ {i, j, k} at least one of lij, ljk or lik also has an odd number of negative
edges.

2.2 Balance Games

We study structural balance from the viewpoint of game theory, by introducing
a balance game which is a type of multi-stage game of infinitely many stages.
All the agents in a network are players of a balance game. Each agent is better
off if it is involved in more balanced triads.

Valuation. Given a network N , the valuation for an agent i in that network
is the number of balanced triads i is part of minus the number of unbalanced
triads it is part of. This valuation is denoted vali(N).

Actions. At every stage of the game, a single agent (chosen uniformly at ran-
dom) will be given an opportunity to change one of its relations. This agent can
choose to change its relation to one other agent, or it can choose to pass and
leave all relations unchanged. Note that an agent can only change those relations
that it is involved in. Agent i can decide to become enemies with j, but i cannot
choose to create an enmity between j and k—although i might be able to create
a situation where j and k have an incentive to become enemies.

In a balanced network all triads are balanced, so balance is a global optimum
of vali for every i. In a stable network no single change to any relation ij would
result in an increase in the number of balanced triads for either i or j (see
Lemma 2). So stability is a local optimum of vali for every i.

Cost of Change. If an agent decides to change a relation, it will incur a cost of
change. This cost represents the effort and social cost associated with changing
one’s relation to another agent. For example, deciding to end an enmity might
require an apology and a good bottle of wine, whereas ending a friendship may
reduce one’s social capital.

The exact value that this cost of change should have can be debated. We
believe that it should lie in the open interval (0, 2). In order to keep all calcula-
tions as simple as possible we prefer to have an integer cost of change, so we set
it to be 1. See Sect. 5 for a discussion of why we believe that the cost of change
should be between 0 and 2, and an overview of how any cost of change in the
interval [0,∞) would influence our results.

Discount Factor. At every stage of the game, the agents immediately receive
utility equal to their valuation of the current network. This rewards them for
having more balanced relations and punishes them for unbalanced ones. Addi-
tionally, they receive utility from future game stages. A reward today is worth
more than the same reward tomorrow, however, so the agents multiply their
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future utility by a discount factor δ ∈ (0, 1). The value of δ indicates the kind
of agents that are being modeled; patient agents place (relatively) high value
on the future and therefore have a high value for δ, impatient agents prioritize
short term gain and therefore have a low value for δ. The utility for agent i in
a network N therefore equals vali(N) plus δ times the expected utility in the
successor network (minus the cost of change, if applicable).

We consider only memoryless pure strategies, so a strategy for an agent i can
be represented by a function that maps every network to either a single change
in a relation for i or to no change. Below we introduce the formal definitions.
We assume a fixed set of agents A = {1, . . . , n} with n ≥ 3, and use N to denote
the set of all social networks over A.

k1 · · · km

i j

l1 · · · lm

(a) A balanced outcome
of N(m) where i and j
take the same side.

k1 · · · km

i j

l1 · · · lm

(b) A balanced outcome
of N(m) where i and j
take different sides.

k1 · · · km

i j

l1 · · · lm

(c) A successor of N(m)
where i and k1 become
friends.

Fig. 2. Possible evolutions of the network N(m) from Fig. 1c.

Definition 1. The balance game over a network N = (A,E) is a pair (N, s)
given by

– (Players) A is the set of players.
– (Strategies) s = (s1, . . . , sn) is a strategy profile, such that for every player i,

si : N→{(+, i, j), (−, i, j) | j ∈ A\{i}} is a strategy for i.
– (Outcomes) The outcome of (N, s) is one of {(Nsi , s) | i ∈ A}, chosen uni-

formly at random, where Nsi = (A,Esi) is given by

Esi(kl) =

⎧
⎨

⎩

+, if si(N) = (+, i, j) and kl = ij,
−, if si(N) = (−, i, j) and kl = ij,
E(kl), otherwise.

– (Utility) The utility function u = (u1, . . . , un), where ui is the utility of player
i, is given recursively by

ui(N, s) = vali(N) + δ · 1
n

· (
∑

j∈A ui(Nsj , s) − cj),

where cj = 1 if i = j and N �= Nsj , and cj = 0 otherwise.

The recursive definition of utility does not immediately provide a practical
way to compute ui(N, s). It is therefore useful to also have a direct character-
ization of ui(N, s). For this purpose, we use the concept of timelines. Given a
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strategy profile s, an s-timeline is an infinite sequence l = 〈N0, N1, . . .〉 such that
for every t ∈ N, Nt+1 ∈ {Nsi

t | i ∈ A}. The utility of agent i in such a timeline is
given by ui(l) =

∑∞
t=0 δt(vali(Nt) − c), where c = 1 if i brought about a change

from Nt−1 to Nt and c = 0 otherwise. The utility ui(N, s) is then simply the
expected value of {ui(l) | l = 〈N,N1, . . .〉 is an s-timeline}.

For a given s-timeline l = 〈N0, N1, . . .〉, if there is a natural number T such
that Nt1 = Nt2 for all t1, t2 ≥ T , then we say l finalizes in NT , or NT is the
final of l.

We write N �i N ′ if there is a strategy si for agent i such that N ′ = Nsi ,
and we write N � N ′ if there is at least one i such that N �i N ′.

As usual, we say a strategy profile is Pareto optimal (or simply, optimal) if
there is no other strategy profile with which all players receive no less utility and
at least one player gets a higher utility. A strategy profile is called a subgame
perfect Nash equilibrium (or simply, an equilibrium), if no player could obtain a
higher utility in any network by unilaterally changing its strategy.

2.3 Example

Consider the network N(m) for a given m ≥ 2 as depicted in Fig. 1c. In this
network, most triads are balanced, but some remain unbalanced: the triads ikl
and jkl are unbalanced for every k ∈ {k1, . . . , km} and every l ∈ {l1, . . . , lm},
since those triads are of the form −−−.

The agents could choose to pass, leaving the network in the state N(m)
forever. Alternatively, the agents could take actions that change the network.
Taking such an action would incur a cost of change, however, so a rational agent
will only do so in the expectation of a sufficiently high reward later. The main
reward which all agents would like to obtain (although they may or may not be
willing to pay the price for doing so) would be a balanced network.

There are many ways in which N(m) can be changed to a balanced network.
For example, all agents could decide to become friends with one another. That
change would be very costly, however. Rational agents would instead aim for
a balanced state that is easier to reach. A more feasible way to reach balance
would be for the agents i and j to join the k-party or l-party, as shown in Figs. 2a
and b.

Suppose that i joins the k-party. So eventually i will become friends with
every agent kx. Then at first, a friendship between i and some agent kx must
form. Without loss of generality, we can assume that this first friendship is with
k1, as shown in Fig. 2. Consider the effect this has on the valuation of the different
agents. Triads ik1ky and ik1j used to be of the form +−− but are now ++−. So
they have turned from balanced to unbalanced. Triads ik1ly, on the other hand,
used to be −−− and have become +−−, so they have turned from unbalanced
to balanced. All other triads are unaffected. In total, there are m−1 triads ik1ky,
1 triad ik1ky and m triads ik1ly. So the number of triads that become balanced
and the number of triads that become unbalanced are both m.

The agents i and k1 are part of all triads that change, so their valuation is
unchanged. One of them does have to pay the cost of change, but they suffer
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no harm from the change in the network. Agents ly are part of one triad that
changes, and it turns balanced. So their valuation increases, without them having
to take any action. They quite like this change. The agents j and ky are less
happy, however: they too are part of one triad that changes, but theirs turns
unbalanced. So they lose out due to this new friendship.

Once this first friendship has been established, all other members of the k-
clique have an incentive to follow k1 and become friends with i as well: currently,
k1kyi if of the type ++−, but by becoming friends with i they can turn this into
the balanced type +++. So the first friendship ik1 is likely to be followed by
a flood of new friendships between i and the members of the k-party. Every
such new friendship will be welcomed by the l-party, by i and by all ky that are
already friends with i, since it makes their relations more balanced. For those ky
that are not yet friends with i, the situation turns even worse, however. Every
time an agent kx becomes friends with i, the triad ikykx becomes unbalanced,
depriving ky of another 2 points of valuation. In particular, if km is the last agent
to become friends with i then just before they do so their valuation is 2(m − 1)
lower than it was in N(m). Eventually, however, the network reaches one of the
balanced states depicted in Fig. 2, at which point all temporary losses are wiped
away and replaced by the benefits of being part of a balanced network.

For highly impatient agents, paying the initial cost of change is not worth
it, so remaining in N(m) is the only rational option. If agents are more patient,
however, aiming for balance may be the only rational choice. How patient agents
have to be in order for remaining in N(m) not to be an option depends on
whether we are considering optimal strategy profiles or equilibria. The fact that
the agents who are late to become friends with i (or j) suffer until balance is
achieved means that remaining in N(m) remains optimal until δ becomes very
high. But the agents that experience a loss in valuation are not the ones that
take action, it’s the ones that have not yet taken action. So if the agents are
even a little bit patient (δ = 0.5 suffices, for example), the agents who decide to
initiate the friendships will benefit by doing so, thereby making the strategy of
remaining in N(m) not an equilibrium.

2.4 Related Work

Our definition of balance is called 3-balance in the classical literature (e.g.,
[3]), where the number 3 refers to the length of the cycles to be examined –
3-cycles for triangles. In general, k-balance of a network requires that all cycles
of length up to k contain an even number of negative edges. There is also pres-
sure of balance from longer cycles, but it is considered of less effect. This leads
to a difference between viewing balance of networks as a property or a process.
Taking the former view, as in the classical literature, all cycles of all lengths are
examined before we can determine the balance of the whole network. The lesser
effect of longer cycles is modeled by assigning a weight or strength to each length
[3,23]. In the latter view as proposed in [17] and adopted in this paper, however,
the balance of a network lies in the balance of its local parts. The balance of
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longer cycles is achieved gradually over time by the constraints of balance among
shortest cycles (triads in the case of undirected graphs).

The structure theorem [3,13] states that a balanced network can be parti-
tioned into two mutually antagonistic and self-solidary components. The struc-
ture theorem was later generalized in [5] to consider a weaker version of balance
which corresponds to more than two partitions. This gives a different way of
studying the tendency of balance: it can be viewed as a process of partitioning
a network. This approach has been developed in [7,8,24].

In recent years the study of link formation has drawn much attention in var-
ious fields including social network analysis, economics, information and com-
puter science. Some of these are empirical studies that investigate into, say,
the formation of social networks or how technology is adopted in a network
[4,28], and some are theoretical studies that focus on, say, the prediction, formal
model, statistical and computational results of network formation [6,21,29,30].
This paper falls into theoretical side, and we focus on the formal model of a type
of link formation from the viewpoint of game theory.

The study of structural balance theory has not been limited to a single field
since the very beginning. It was initiated in Heider’s work [15,16] in social psy-
chology and reinvented by Harary et al. [3,11–13] using graph theory. Empirical
studies on the impact of structural balance theory was carried out in the area
of social network analysis (see, e.g., [25,26]). The trend to study and adopt the
theory from new perspectives and in new fields has not come to an end. For
example, the impact of structural balance on opinion formation has been eval-
uated in the framework of evolutionary games [20]. In our paper we also have
structural balance and games in the same framework, but we focus more on the
theoretical aspects of the structural balance of social networks.

Another area of related work is that of games on networks, a sub-discipline
of game theory concerned with networks. See for example [9,19,22]. Balance
games can be considered part of this field, but they differ significantly from the
games that have been studied before. Other disciplines of game theory, such as
coalition formation and evolutionary games (see, e.g., [31]), are also related to
balance games but very different from a technical point of view.

3 Patient Players

We show that for sufficiently patient players, a Pareto optimal strategy profile
finalizes in a balanced network with probability 1.

Lemma 4. Let s be a strategy profile, N0 a network and L the set of s-timeline
starting in N0 that do not finalize in balance. If L occurs in the game (N0, s) with
probability greater than 0, then there is a δhigh < 1 such that for all δ > δhigh , s
is not Pareto optimal.

Proof. Every agent is part of b := (n−1)·(n−2)
2 different triads. In a balanced

network, all triads are balanced so every agent has a valuation of b. In every
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non-balanced network, every agent has a valuation of at most b − 2, since by
Lemma 3 every agent is part of at least one unbalanced triad.

Let s be any strategy profile that finalizes in a balanced network with prob-
ability 1, and s′ any strategy profile that does not. Then after some number
of time steps, the expected valuation under s will be higher than under s′. For
sufficiently patient agents, s therefore Pareto dominates s′.

Theorem 1. For a given number of players, there exists a discount factor δhigh
such that for every δ > δhigh and every Pareto optimal strategy profile s the
following hold:

1. every s-timeline that contains a balanced network finalizes in that network;
2. for every N , the game (N, s) reaches a balanced network with probability 1.

Note that the bound δhigh depends on the number of agents. In fact, it can
be seen that limn→∞ δhigh = 1, so the required amount of patience approached
1 as the number of agents increases.

This can, for example, be seen from the network N(m) depicted in Fig. 1c.
In order for N(m) to become balanced, the central two agents i and j need to
join either the clique k1, . . . , km or the clique l1, . . . , lm. While i is in the process
of joining a clique, those members of the clique that are not yet friends with
i experience a loss in valuation equal to twice the number of agents that are
already friends with i. This loss is temporary, but both its magnitude and its
duration increase with the number of agents. The amount of patience needed for
any “go to balance” strategy to beat the “everyone passes in N(m)” strategy
for every agent therefore increase with m.

4 Impatient Players

Here we show that if the discount factor δ is sufficiently close to 0, then every
subgame perfect Nash equilibrium finalizes in a stable state with probability 1.

Unlike the case for patient agents, where the bound depends on the number
of agents, our bound δlow for impatient agents is constant. More concretely,
δlow = 1

10 suffices.
In order to prove this bound, we first need a few lemmas. For most of these

lemmas the existence of a bound is relatively easy to see, but finding a precise
number for the bound requires a lot of tedious calculations. We therefore do not
prove the precise bound, and only give a qualitative argument for the existence
of a bound.

Lemma 5. Let N0 be a network, and let m be the maximum increase of valua-
tion brought about by any action of agent i, i.e., m = max{vali(N1)− vali(N0) |
N0 �i N1}. Then for any strategy profile s, any s-timeline 〈N0, N1, N2, . . . 〉 and
any t ∈ N we have val(Nt) ≤ val(N0) + (m + 2t)t.
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Proof. Consider the same action carried out in N0 and Nk. This action will make
some triads balanced, while making others unbalanced. Since N0 and Nk differ
in at most k edges, the number of triads made balanced when performing the
action in Nk is at most k higher than in N0, and the number of triads made
unbalanced is at most k lower.

Turning a triad balanced increases valuation by 2, turning it unbalanced
decreases it by 2. So in Nk the action yields at most 2k + 2k more valuation
than in N0, where it yields at most m. So the increase in valuation from Nk

to Nk+1 is at most 4k. It follows that val(Nt) ≤ val(N0) +
∑t−1

k=0(m + 4k) ≤
val(N0) + m · t + 4t

2 · t = val(N0) + (m + 2t)t.

It follows that for sufficiently small δ, agents will not take any action that
would cause a loss of valuation to them.

Lemma 6. Let δ < 1
10 and s a Nash equilibrium. Then at every game (N, s),

none of the agents take any action that changes the network unless that action
increases their valuation.

Proof. Taking an action that changes the network will incur the cost of change.
An action that changes the network but does not increase the agent’s valuation
therefore causes a short term loss in utility for that agent. A sufficiently impatient
agent will never take such an action.

Lemma 5 gives an upper bound on the long term benefit of taking a short
term loss. Since this bound does not depend on n, the bound δlow below which
agents are sufficiently impatient does not depend on n either.

Finally, if some agent has a valuation increasing move available, then such a
move will be taken by at least one agent.

Lemma 7. Let δ < 1
10 and s a Nash equilibrium. Then in every subgame (N, s),

if any agent has an available action that will increase its valuation, then at least
one agent takes an action that increases its valuation.

Proof. Any action that increases valuation increases it by at least two, so the
increase in valuation outweighs the cost of change, resulting in a short term
increase in utility.

Theorem 2. Let δlow = 1
10 . Then for any discount factor δ < δlow and any

subgame perfect Nash equilibrium s, the following holds:

1. every s-timeline that contains a stable network finalizes in that stable network;
2. for every N , the subgame (N, s) reaches a stable network with probability 1.

Proof. The first part of the theorem follows from Lemma 6. The second part
follows from Lemmas 6 and 7.
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5 Discussion

Accuracy. Balance theory predicts that social networks broadly tend towards
balance, but that a fully balanced network is not always reached. This is also
confirmed by empirical studies. The same general behavior is observed in bal-
ance games: rational agents will generally increase the amount of balance in the
network, but under most circumstances a fully balanced outcome is not guaran-
teed.

Whether balance games accurately predict agents’ behaviour on a more
detailed level is not currently known, and remains an interesting question for
further research.

Pareto Optimality for Low δ and Subgame Perfect Nash Equilibria
for High δ. Our results are “asymmetric”, in the sense that δhigh is related to
optimality while δlow is related to equilibria. We conjecture that this asymmetry
is fundamental: we think that for arbitrarily high δ < 1 there remain equilibria
that do not finalize in balanced networks and that for arbitrarily low δ > 0 there
remain Pareto optimal strategy profiles that do not finalize in stable networks.
Unfortunately, the strategy space for balance games is very large and hard to
describe. So while we have reasons to believe that there are no lower bound for
optimality and upper bound for equilibria, we have not yet managed to find the
counterexamples that prove this to be the case.

Cost of Change. Changing a relation takes some amount of effort, so it should
be associated with some cost c > 0. Furthermore, agents seem willing to incur
this cost in order to make their relations more balanced. This suggests that the
increase in valuation caused by the increase in balance is higher than the cost
of change, so c < 2. We therefore consider values of c outside the interval (0, 2)
to be implausible. Still, for the sake of completeness we explain how out results
change for any c ∈ [0,∞).

The bound δhigh is not qualitatively affected by the cost of change: for every
c ∈ [0,∞), there is still a bound δhigh above which every optimal solution finalizes
in balance with probability 1 and δhigh approaches 1 as n approaches infinity.

For any c ∈ (0, 2), the bound δlow is also qualitatively unaffected. The exact
value of the bound may change, but a bound δlow still exists and lim

n→∞ δlow > 0.
The first statement of Theorem 2 still applies: every equilibrium timeline

that contains a stable network finalizes in that network. But the second part of
Theorem 2 does not hold for c ∈ (2,∞). If c > 2 and δ is sufficiently low then
some timelines finalize before reaching a stable network.

This leaves the two cases c = 0 and c = 2. If c = 0, then no bound δlow
exists: for every δ ∈ (0, 1) there are equilibria where agents move out of a locally
optimal stable state and eventually reach a globally optimal balanced state.
Finally, for c = 2, there is a bound δlow , but in that case we do not know
whether lim

n→∞ δlow = 0.
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Complete Graphs. We assumed all edges to be either positive or negative,
unlike some works on social balance we do not consider neutral relations. This is
because for networks with neutral edges we do not consider there to be sufficient
data to accurately determine the agents’ preferences.

6 Conclusion

In this paper we viewed structural balance of a social network as a result of
its agents playing a balance game. When the agents are patient, their Pareto
optimal strategies result in a balanced network as the game proceeds. When, on
the other hand, the agents are impatient, their subgame perfect Nash equilibrium
strategies result in a stable network. By a framework accommodating both the
concepts of balance and stability, our work bridged the classical literature on
social balance [3] and its recent development using a logical approach [17].

There is still work that remains to be done. In particular, while we have
shown that bounds δhigh and δlow exist, we have not yet found tight bounds.
Furthermore, as mentioned in Sect. 5, we conjecture that an equilibrium for
patient agents may not finalize in balance and that an optimal profile for impa-
tient agents may not finalize in balance. A proof (or, for that matter, a disproof)
of these conjectures would be interesting. It would also be good to know more
about the behaviour of agents that are neither as patient as to guarantee balance
nor so impatient to guarantee stability.

Additionally, there are a number of further questions related to generaliza-
tions of the balance game. The balance game could, for example, be general-
ized to different kinds of networks. These include incomplete networks (were
agents i and j may be neither friends nor foes), weighted networks (where some
friendships/enmities are stronger than others) and directed networks (where i’s
relation towards j may be different from j’s relation towards i).

It should also be interesting to allow different kinds of agents. Some agents
might be more patient than others, or have a higher tolerance for unbalance.
The framework of Boolean games [10,14] seems to be appropriate for modelling
the diversity of agents in their goals.

Another way to increase diversity is in the strategies of agents. By going fur-
ther to formalizing the dynamics of balance games in the framework of temporal
logic, in particular, alternating-time temporal logic [1,2], we can get a better
characterization of the time evolution and the flexibility of modeling agent’s
strategies in a formal and unified manner. We leave, however, all these for future
work.
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Abstract. In this paper, we introduce partial dependency modality D
into epistemic logic so as to reason about partial dependency relation-
ship in Kripke models. The resulted dependence epistemic logic possesses
decent expressivity and beautiful properties. Several interesting exam-
ples are provided, which highlight this logic’s practical usage. The logic’s
bisimulation is then discussed, and we give a sound and strongly com-
plete axiomatization for a sub-language of the logic.
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1 Introduction

Following some previous fundamental work on “knowing value” [2,4,10,15,16],
recent years have seen an abundance of interest in this novel kind of non-standard
epistemic logic. There has been epistemic logic with functional dependency oper-
ator [3], which can help us reason about knowing that the value of certain variable
is functionally decided by some other variables. For instance, the agent knows
that y = x2, so he knows that y functionally depends on x even if without
knowing the exact values of x or y.

Nevertheless, the real world is never so ideal as a simple parabola. As a
matter of fact, in a lot of practical cases, the value of a dependent variable y
is usually influenced by thousands of independent factors as x1, x2, . . . in a
quite complicated way, such that it is virtually impossible to obtain a detailed
function to precisely determine the value of y. Therefore, in both scientific and
social study, the method of control variable gets widely used. We often set the
values of all the other variables rigid, only change the value of an independent
variable x and observe the change of the dependent variable y. If the value of
y varies with the value of x, then we conclude that y partially depends on x.
In this paper, we introduce modality D in order to express this kind of partial
dependency relationship.

There have also been dependence and independence logics dealing with
dependency relationship between variables [6,8,9,13], and we will discuss our
logic’s connection to them in Remark 2. A similar definition for dependency
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relationship also appears in Halpern’s recent book, pp. 14–19. [11] However, the
start point of our work is epistemic logic as well as the Kripke model, and we
would like to incorporate partial dependency relationship between variables into
the agent’s knowledge so that we shall obtain an epistemic logic of “knowing
dependency”, which is hence named as dependence epistemic logic. This depen-
dence epistemic logic proves to possess further affluent expressivity as well as
rather straightforward properties.

In the Kripke model for our dependence epistemic logic, besides a usual ∼i

S5 equivalence relation representing the agent’s knowledge, i.e., all the possible
worlds that the agent cannot distinguish, there also exists another ≈ S5 equiv-
alence relation representing the physical probability, i.e., all the possible worlds
that share the same set of physical laws with the current world. Generally speak-
ing, these two equivalence relations do not have to have any correlation, and thus
in the language, the former is characterized by an S5 modality K, while the latter
is characterized by another independent S5 modality A. This kind of framework
is first introduced by another recent work [14], and so readers who get confused
with the conception of two independent equivalence relations in the model are
strongly recommended to refer to that paper.

Then the partial dependency relationship is valuated in the ≈ equivalence
class, since dependency relationship between variables is in fact related to some
universal physical law and thus concerns not only the current exact world but
also all the other worlds that are physically potentially possible. Actually, we
introduce two different modalities Dg and Dl to characterize partial dependency
relationship. Their respective semantics is both based on the discussion in the
beginning about what modality D should be like, except for that, the former Dg

is valuated globally in a whole ≈ equivalence class, while the latter Dl fixes one
reference point as the current exact world and so is valuated locally. Readers
will soon become clear about what Dg and Dl mean respectively through the
following Sect. 2 on preliminaries including the language, model and semantics,
and the correlation between these two modalities also gets discussed in Remark 1.
Examples in Sect. 3 illustrate that Dg is helpful in analyzing universal physical
laws while Dl is useful in expressing counterfactual assumptions, in surprising
accordance with our very intuition as well as commonsense, so the practicality
of Dg and Dl counts to why we introduce both modalities.

The rest of the paper is organized as follows. We lay out the basics of the
language and the semantics in Sect. 2. Several interesting examples are illus-
trated in Sect. 3. A bisimulation notion for this dependence epistemic logic then
gets thoroughly discussed in Sect. 4, followed by a sound and strongly complete
axiomatization for a sub-language in Sect. 5. We finally conclude this paper and
propose future research directions in Sect. 6.

2 Preliminaries

Definition 1 (Language EDL). For a fixed countable set of propositions P,
and a fixed countable set of variables V, the language EDL of dependence
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epistemic logic is defined recursively as:

ϕ ::= � | p | ¬ϕ | (ϕ ∧ ϕ) | Kϕ | Aϕ | Dg(X,Y ) | Dl(X,Y )

where p ∈ P, and X as well as Y are finite subsets of V. Dg(X,Y ) reads as
Y depends on X globally, while Dl(X,Y ) reads as Y depends on X locally. We
define ⊥, ∨ and → as usual.

Important Notation. In the following parts of this paper, when some property
applies to both Dg and Dl, we will simply omit the subscript and write down
only one theorem, lemma, axiom, etc. concerning D for convenience, and the
omitting is also similar for other notations derived from D.

If X = {x}, we will also denote D({x}, Y ) as D(x, Y ) for simplicity, and
likely for Y if Y = {y}.

Definition 2 (Model). A dependence epistemic model M is 〈S, T, V, U,∼i,≈〉:
– S is a set of possible worlds.
– T : S × P → {0, 1}.
– V ⊇ V is a countable set of variable objects.
– U : S × V → N.
– ∼i is an equivalence relation over S.
– ≈ is an equivalence relation over S.

As the convention in first-order logic, while V in the language are names
for variables, V in the model interpret each name with a concrete object and
also may consist of other variable objects whose names are not included in the
language. Since the language EDL excludes the equal sign =, every name in
V can be managed to be interpreted differently in V , so we simply let V ⊇ V

and do not make explicit distinctions between names and objects in the following
without causing any confusion. Then U is the function that assigns each variable
on each possible world with a (countably possible) value, which is supposed to be
uniformly numbered by N for convenience.

Sometimes we apply another extra stipulation on the model in order to satisfy
our practical needs: for any proposition p ∈ P, it may have its corresponding
variable p ∈ V. If so, we then stipulate that ∀s ∈ S, U(s, p) = T (s, p). The
following Subsects. 3.1 and 3.3 present examples of this kind.

Definition 3 (Semantics). We define that ∀s, t ∈ S, ∀ subset X ⊆ V , Xs =
Xt iff ∀x ∈ X,U(s, x) = U(t, x), while of course, Xs �= Xt iff ∃x ∈ X,U(s, x) �=
U(t, x). A pointed model M, s is a dependence epistemic model M with a possible
world s ∈ S.
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M, s � � ⇐⇒ always
M, s � p ⇐⇒ T(s,p)=1
M, s � ¬ϕ ⇐⇒ not M, s � ϕ
M, s � (ϕ ∧ ψ) ⇐⇒ M, s � ϕ and M, s � ψ
M, s � Kϕ ⇐⇒ ∀t ∈ S, t ∼i s, M, t � ϕ
M, s � Aϕ ⇐⇒ ∀t ∈ S, t ≈ s, M, t � ϕ
M, s � Dg(X,Y ) ⇐⇒ ∃u, v ∈ S, u ≈ v ≈ s,

(V \(X ∪ Y ))u=(V \(X ∪ Y ))v, Xu �= Xv, Yu �= Yv

M, s � Dl(X,Y ) ⇐⇒ ∃t ∈ S, t ≈ s,
(V \(X ∪ Y ))t=(V \(X ∪ Y ))s, Xt �= Xs, Yt �= Ys

When it is not that M, s � ϕ, we denote it as M, s � ϕ.

Remark 1 (Expressivity of Dg and Dl). We are able to perceive through
Definition 3 that Dg is actually definable using ¬, A and Dl, demonstrated as
the following:

Dg(X,Y ) ↔ ¬A¬Dl(X,Y )

In fact, Dl is strictly more expressive than Dg, which will become clear to
readers through our discussion for bisimulation in Sect. 4. Nevertheless, due to
Dg’s simplicity and usefulness, we will take the language with Dg but without
Dl as a sub-language of EDL.

Definition 4 (Language EDG). For a fixed countable set of propositions P, and
a fixed countable set of variables V, the language EDG is defined recursively as:

ϕ ::= � | p | ¬ϕ | (ϕ ∧ ϕ) | Kϕ | Aϕ | Dg(X,Y )

where p ∈ P, and X as well as Y are finite subsets of V.

The model and semantics are the same.

Remark 2 (Connection to Independence Logic). If the total set of variables V
is finite and explicitly known, then modality Dg can be expressed in inclusion
logic, a sub-language of independence logic [5], as the following:1

Dg(X,Y ) ⇐⇒ ∃−→w1
−→x1

−→y1∃−→w2
−→x2

−→y2(−→w1
−→x1

−→y1 ⊆ (V \(X ∪ Y ))XY ∧
−→w2

−→x2
−→y2 ⊆ (V \(X ∪ Y ))XY ∧ −→w1 = −→w2 ∧ ¬−→x1 = −→x2 ∧ ¬−→y1 = −→y2)

However, this form puts too many restrictions and becomes too lengthy,
while we actually want the total set V to be clear from our language so that
we can reason with simple and compact logic. In fact, the team model on which
independence logic is based is quite different from the Kripke possible world
model [12], both in technique and in philosophical explanation, and hence they
are very unlike logics. While independence logic, inherited from first order logic,
always reasons globally, epistemic logic, rooted from modal logic, usually reasons
locally, which is demonstrated by this obvious fact that local modality Dl can
surely not be defined in independence logic.
1 As for the notation, we prefer to use X and Y instead of −→x or −→y . Anyway, their
respective meanings in this specific context should be clear to readers.
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3 Examples

3.1 An Open Door

Let p denote that the door of the room is open now, q denote that the agent
possesses the key of the door, and r denote that the agent is able to enter the
room. Let us suppose that the agent has perfect knowledge, so ∼i relation is
only reflexive. Then we have:2

s : p, q, r
p = 1
q = 1
r = 1

≈
p,¬q, r
p = 1
q = 0
r = 1

≈
¬p, q, r
p = 0
q = 1
r = 1

≈
¬p,¬q,¬r

p = 0
q = 0
r = 0

It is not difficult to observe that M, s � KDg(p, r) and M, s � K¬Dl(p, r).
The former says that the agent knows whether he is able to enter the room is
somewhat related to whether the door is open now – if he did not possess the
key. And the latter says that under the present situation, since the agent does
possess the key, he surely knows that if this precondition is kept unchanged,
then he was still able to open the door to enter the room even if the door was
now closed. Namely, whether he is able to enter the room does not depend on
whether the door is open now, which provides us with a fancy way to express
counterfactual assumptions.

3.2 Error-Included Experiment

Suppose we are carrying out an experiment, and we know from theory that there
are two independent variables x and y which may influence the value of the
dependent variable z, where the value of x is well under control but y represents
some random experimental error, and so of course, we cannot control or even
measure the value of y. The only thing we know about y is that it will be either
1 or 2 during every experiment.

Now we have done this experiment twice. When x = 1, z = 1. When x = 2,
z = 2. By combining all kinds of possibilities, we can have the model as:

x = 1
y = 1
z = 1

i

≈

x = 1
y = 1
z = 1

i

≈

x = 1
y = 2
z = 1

i

≈

x = 1
y = 2
z = 1

≈

x = 2
y = 1
z = 2

i
x = 2
y = 2
z = 2

i
x = 2
y = 1
z = 2

i
x = 2
y = 2
z = 2

Can we be confident that z depends on x? Certainly not, because the change
of z may be brought about by the change of y. As a matter of fact, on every
possible world s there is M, s � KDg(x, z).
2 When drawing all these figures in this paper, for brevity we will omit some relation
lines which can be deduced from S5 equivalence class requirements.
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However, if we have further done the third experiment, and when x = 3,
z = 3. Now can we be confident that z depends on x? Indeed we can. This fact can
be easily observed through the following huge model, where M, s � KDg(x, z)
on every possible world s:

x = 1
y = 1
z = 1

≈

i
x = 1
y = 1
z = 1

≈

i
x = 1
y = 1
z = 1

≈

i
x = 1
y = 1
z = 1

≈

i
x = 1
y = 2
z = 1

≈

i
x = 1
y = 2
z = 1

≈

i
x = 1
y = 2
z = 1

≈

i
x = 1
y = 2
z = 1

≈

x = 2
y = 1
z = 2

≈

i
x = 2
y = 1
z = 2

≈

i
x = 2
y = 2
z = 2

≈

i
x = 2
y = 2
z = 2

≈

i
x = 2
y = 1
z = 2

≈

i
x = 2
y = 1
z = 2

≈

i
x = 2
y = 2
z = 2

≈

i
x = 2
y = 2
z = 2

≈

x = 3
y = 1
z = 3

i
x = 3
y = 2
z = 3

i
x = 3
y = 1
z = 3

i
x = 3
y = 2
z = 3

i
x = 3
y = 1
z = 3

i
x = 3
y = 2
z = 3

i
x = 3
y = 1
z = 3

i
x = 3
y = 2
z = 3

Whatever values y may be in the three experiments, there must be at least
two experiments in which y is the same, so we can only explain the difference
between z in these two experiments as caused by the difference between the value
of x. This scenario clearly explains why in all the natural science experiments,
despite the universal existence of errors, we can still manage to obtain useful
conclusions concerning our interested variables, by multiple experiments with
relatively large data range.

3.3 Judging a Case

We have seen that global modality Dg can help us analyze complicated exper-
imental results, while local modality Dl is very helpful in expressing counter-
factual assumptions. And there are still trickier things worth examining. Until
now, we have only proposed examples including modality D affecting solely on
singletons. It may seem by intuitive guess that D({a, b}, c) tells very similar
thing as D(a, c)∨D(b, c). Nevertheless, these two expressions are not exactly the
same, and in fact, they may result in quite opposite epistemic consequences, as
demonstrated by the following scenario.

Unfortunately, Charles got killed in a tragedy (c), which was related to Alan
having done something (a) and/or Bob having done something (b). Firstly, let
us suppose that either a or b could happen so as to cause c, and only one of them
could have happened to be c’s indeed cause. However, on the current world s we
are yet not sure whether a or b actually happened to be the exact cause of c.
This can be modeled as the following:

s : a,¬b, c
a = 1
b = 0
c = 1

i,≈
¬a, b, c
a = 0
b = 1
c = 1

≈
¬a,¬b,¬c

a = 0
b = 0
c = 0
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It is not difficult to observe that M, s � KDl({a, b}, c)∧K(Dl(a, c)∨Dl(b, c)).
This is to say, it is within our knowledge that not only the whole group event
{a, b} is related to c, but also either a or b itself is alone related to c, namely,
their influences on c can be separated in concept. Hence, unless we obtain further
evidence to pin down our knowledge in order to determine whether Alan or
Bob was the real criminal, by presumption of innocence neither of them can be
sentenced guilty for Charles’ death.

Now let us turn to a second phenomenon, where b’s happening was a direct
consequence of a’s happening. For instance, let b denote that Bob killed Charles,
and a denote that Alan compelled Bob to kill Charles, either by threatening
that he would have killed Bob otherwise or by Alan’s mind control over Bob
through magic or science fiction. In other words, we restrict ourselves to only
consider possible worlds on which a → b holds in our Kripke model. Under this
circumstance, we can model our knowledge as the following:

s : a, b, c
a = 1
b = 1
c = 1

≈
¬a, b, c
a = 0
b = 1
c = 1

≈
¬a,¬b,¬c

a = 0
b = 0
c = 0

At present, even physically speaking b should be the only direct cause of
c, which is demonstrated by A(b ↔ c) holding throughout the model, to our
little surprise KDl(b, c) does not hold on the current world s. As a matter of
fact, we have M, s � KDl({a, b}, c) ∧ K(¬Dl(a, c) ∧ ¬Dl(b, c)), a direct contrast
against the former scene. This time we not only know that c locally depends
on {a, b} as a whole, but also know that this dependency relationship should
be viewed as an entirety instead of conceptually separable, and therefore, both
Alan and Bob should be responsible for Charles’ death. Further considering that
KA(a → b) holds on s, a legal and rational sentence ought to be that Alan is the
principal criminal while Bob is the coerced criminal, which precisely captures
the meanings of all the formulae mentioned above.

4 Bisimulation

Definition 5 (Δ(u, v)). For any two possible worlds u, v ∈ S, we define:

Δ(u, v) =
{{x | x ∈ V, U(u, x) �= U(v, x)}, if (V \V)u = (V \V)v

∅, otherwise

Definition 6 (Evidence). For any three sets W , X and Y , W is called an
evidence of 〈X,Y 〉, iff W ∩ X �= ∅, W ∩ Y �= ∅, and W ⊆ X ∪ Y .

Compared with the original semantics defined in Definition 3, we manage to
rewrite part of it in an equivalent form as the following:
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Lemma 1 (Evidence Lemma I).

M, s � Dg(X,Y ) ⇐⇒ ∃u,v ∈ S, u ≈ v ≈ s, Δ(u, v) is an evidence of 〈X,Y 〉
M, s � Dl(X,Y ) ⇐⇒ ∃t ∈ S, t ≈ s, Δ(t, s) is an evidence of 〈X,Y 〉

Proof. Directly from the semantics defined in Definition 3. �

Definition 7 (P(s)). For any possible world s ∈ S, we define:

Pg(s) = {nonempty finite set Δ(u, v) | u, v ∈ S, u ≈ v ≈ s}
Pl(s) = {nonempty finite set Δ(t, s) | t ∈ S, t ≈ s}

It is obvious that ∀s ∈ S, Pl(s) ⊆ Pg(s) ⊆ {nonempty finite set W | W ⊆ V}.
We again manage to rewrite part of the semantics in another equivalent form as
the following, making use of the newly defined P(s):

Lemma 2 (Evidence Lemma II).

M, s � Dg(X,Y ) ⇐⇒ ∃W ∈ Pg(s),W is an evidence of 〈X,Y 〉
M, s � Dl(X,Y ) ⇐⇒ ∃W ∈ Pl(s),W is an evidence of 〈X,Y 〉

Proof. By Lemma 1. �

Definition 8 (Generative). ∀s ∈ S, any nonempty finite set W ⊆ V is called
generative from P(s), iff for any two finite sets X,Y ⊆ V, such that W is an
evidence of 〈X,Y 〉, there exists W ′ ∈ P(s), such that W ′ is also an evidence of
〈X,Y 〉.
Theorem 1 (Equivalence Theorem I). For any two pointed models M, s
and M′, s′, they satisfy exactly the same D(X,Y ) formulae for any two finite
sets X,Y ⊆ V iff:

– Zig: ∀W ∈ P(s),W is generative from P(s′).
– Zag: ∀W ∈ P(s′),W is generative from P(s).

Proof. For the direction from left to right, we first concentrate on the Zig
condition. If there exists W ∈ P(s), such that W is not generative from P(s′),
then by definition, there exist two finite sets X,Y ⊆ V, such that W is an
evidence of 〈X,Y 〉, but there does not exist W ′ ∈ P(s′), such that W ′ is an
evidence of 〈X,Y 〉. By Lemma 2, this is equivalent to that M, s � D(X,Y ) but
M′, s′

� D(X,Y ), a contradiction. The Zag condition follows by symmetry.
The other direction can also be verified similarly and easily. �

Definition 9 (G(s)). For any possible world s ∈ S, we define:

G(s) = {W | W is generative from P(s)}
It is obvious that ∀s ∈ S, Gl(s) ⊆ Gg(s) ⊆ {nonempty finite set W | W ⊆ V}.
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Theorem 2 (Equivalence Theorem II). For any two pointed models M, s
and M′, s′, they satisfy exactly the same D(X,Y ) formulae for any two finite
sets X,Y ⊆ V iff G(s) = G(s′).

Proof. Similar to the proof of Theorem1. �
Actually, the set G(s) is the existent and the only greatest generative set

from the original P(s) while keeping satisfying the same formulae for modality
D. Therefore, it is worthwhile investigating what characteristics G(s) possesses,
since it precisely determines the modal property of the pointed model M, s.
In the following theorem, we manage to express the generative condition for a
nonempty finite set W from P(s) in several different equivalent forms.

Theorem 3 (Generative Theorem). ∀s ∈ S, for any nonempty finite set
W ⊆ V, we define Σ(s,W ) = {W ′ | W ′ ∈ P(s),W ′ ⊆ W}, then:

W is generative from P(s)
⇐⇒ ⋃

Σ(s,W ) = W , ∀Z ⊂ W such that Z �= ∅,
∃W ′ ∈ Σ(s,W ) such that W ′ ∩ Z �= ∅ ∧ W ′ ∩ (W\Z) �= ∅

⇐⇒ ⋃
Σ(s,W ) = W , ∀Γ ⊂ Σ(s,W ) such that Γ �= ∅,

(
⋃

Γ ) ∩ (
⋃

(Σ(s,W )\Γ )) �= ∅
⇐⇒ ⋃

Σ(s,W ) = W , ∀W ′
1,W

′
2 ∈ Σ(s,W ), define RW ′

1W
′
2 iff W ′

1 ∩ W ′
2 �= ∅,

then ∀W ′
1,W

′
2 ∈ Σ(s,W ), W ′

1 connects to W ′
2 by a chain of R relations

Proof. Let us concentrate on the following crucial lemma, from which the proof
of this theorem follows not difficultly. �

Lemma 3 (Generative Lemma). ∀s ∈ S, for any nonempty finite set W ⊆
V, W is generative from P(s) iff:

– if |W | = 1, then W ∈ P(s).
– if |W | � 2, then ∀Z ⊂ W such that Z �= ∅, ∃W ′ ∈ P(s) such that W ′ is an

evidence of 〈Z,W\Z〉.
Proof. The direction from left to right is immediate. For the direction from right
to left, we only have to make use of one simple fact about evidence:

– If W is an evidence of 〈X,Y 〉 and X ⊆ X ′, then W is an evidence of 〈X ′, Y 〉.
which, as a matter of fact, can be correspondingly written into a sound axiom

regarding modality D:

D(X,Y ) → D(X ′, Y ), given X ⊆ X ′ (Weakening Rule)

Full axiomatization will later be discussed in the following Sect. 5. �
The last equivalent condition in Theorem3 is to say, we can construct an

undirected graph over P(s) by its elements’ intersection relation, and all the
generative sets are exactly union of some connected nonempty finite subgraph.
This provides us with a clear picture and an intuitive understanding about where
every generative set comes from and what G(s) looks like. Hence given P(s),
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there is an explicit algorithm to calculate all the generative nonempty finite sets
W ⊆ V so as to obtain G(s).

Finally, taking into account all the modalities including K, A, Dg and Dl, we
are able to define the full bisimulation relation between two models M and M′:

Definition 10 (Bisimulation). A nonempty binary relation B ⊆ S × S′ is
called a bisimulation between two models M and M′ iff:

– If sBs′, then ∀p ∈ P, T (s, p) = T (s′, p).
– If sBs′, then Gg(s) = Gg(s′).
– If sBs′, then Gl(s) = Gl(s′).
– Zig for K: if sBs′ and s ∼i t, then ∃t′ ∈ S′ such that tBt′ and s′ ∼i t′.
– Zig for A: if sBs′ and s ≈ t, then ∃t′ ∈ S′ such that tBt′ and s′ ≈ t′.
– Zag for K: if sBs′ and s′ ∼i t′, then ∃t ∈ S such that tBt′ and s ∼i t.
– Zag for A: if sBs′ and s′ ≈ t′, then ∃t ∈ S such that tBt′ and s ≈ t.

When B is a bisimulation between two models M and M′, we write B :
M ↔ M′. Furthermore if sBs′, we write B : M, s ↔ M′, s′. If there is a
bisimulation B such that B : M, s ↔ M′, s′, we write M, s ↔ M′, s′.

We write M, s � M′, s′, when for any EDL-formula ϕ, M, s � ϕ iff
M′, s′ � ϕ.

Theorem 4 (Hennessy-Milner Theorem). For any two m-saturated models
M and M′, ∀s ∈ S, ∀s′ ∈ S′, M, s ↔ M′, s′ iff M, s � M′, s′.

Proof. See [1]. The definition of m-saturated models also appears as Definition
2.53 in that book. It is only the cases for modalities Dg and Dl that are added,
which just follow from Theorem2. �

5 Axiomatization

We only provide a sound and strongly complete axiomatization for language
EDG. Nevertheless, the same as the assumed routine in this paper, axioms
without subscripts attached to D are sound with respect to both Dg and Dl.

To start with, we may notice some obviously sound axioms to characterize
the properties of modality D:

1. D(∅,X) ↔ ⊥ (Empty Set Rule)
2. D(X,Y ) ↔ D(Y,X) (Symmetry Rule)
3. D(X,Y ) → D(X ′, Y ), given X ⊆ X ′ (Weakening Rule)
4. D(X,Y ) ↔ D(X\Y, Y ) ∨ D(X ∩ Y, Y ) (Separation Rule)

Although these näıve axioms indeed look very similar to those in indepen-
dence logic [7], pitifully in our dependence epistemic logic, they alone are away
from being complete. The good news is that, we can instead find some conciser
axioms, which entirely grasp the full properties of modality D itself, and from
which all the above sound axioms can surely be deduced.

For brevity, let us first define an auxiliary notation:
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Definition 11 (Q(W )). For any nonempty finite set W ⊆ V, we define:

Q(W ) ::=

{ D(W,W ), |W | = 1∧
Z⊂W,Z �=∅

D(Z,W\Z), |W | � 2

Recall Lemma 3, readers should be aware that this Q(W ) precisely depicts the
minimum necessary D(X,Y ) formulae, such that W is an evidence of 〈X,Y 〉.
Taking advantage of this notation, we can write down rather concise sound
axioms about modality D so as to obtain a complete axiomatization, as the
following Q and E Axioms for D in Theorem 5:

Theorem 5 (Axiomatization). The following proof system is sound and
strongly complete with respect to language EDG.

TAUT all instances of tautologies
MP from ϕ and ϕ → ψ infer ψ

NEC for K from ϕ infer Kϕ
DIST for K K(ϕ → ψ) → (Kϕ → Kψ)

T for K Kϕ → ϕ
4 for K Kϕ → KKϕ
5 for K ¬Kϕ → K¬Kϕ

NEC for A from ϕ infer Aϕ
DIST for A A(ϕ → ψ) → (Aϕ → Aψ)

T for A Aϕ → ϕ
4 for A Aϕ → AAϕ
5 for A ¬Aϕ → A¬Aϕ
Q for D D(X,Y )↔ ∨

X′⊆X,Y ′⊆Y,X′,Y ′ �=∅
Q(X ′ ∪ Y ′), given X,Y �= ∅

E for D D(∅,X) ↔ D(X, ∅) ↔ ⊥
4 for Dg Dg(X,Y ) → ADg(X,Y )

Proof. We only show completeness. The proof is almost routine, so we concen-
trate on how the canonical model is built and on the Truth Lemma for modality
Dg. Notice that the Axiom of Choice has to be made use of in the proof. �

Definition 12 (Canonical Model). For a fixed language with a set of propo-
sitions P and a set of variables V, we first expand this language to P

C and V
C ,

such that P
C = P, V

C ⊇ V, and that V
C is countably infinite. Obviously, if an

MCS is satisfied in the canonical model of the expanded language, its restriction
down to the original language will also be satisfied in the same model.

The canonical dependence epistemic model MC is 〈SC , TC , V C , UC ,∼C
i ,≈C〉:

– SC is the set of all MCSs.
– TC : SC × P

C → {0, 1}. ∀s ∈ SC , ∀p ∈ P
C , TC(s, p) = 1 iff p ∈ s.

– V C = V
C .

– ∼C
i is an equivalence relation over SC . ∀s, t ∈ SC , s ∼C

i t iff {Kϕ | Kϕ ∈
s} = {Kϕ | Kϕ ∈ t}.
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– ≈C is an equivalence relation over SC . ∀s, t ∈ SC , s ≈C t iff {Aϕ | Aϕ ∈
s} = {Aϕ | Aϕ ∈ t}.

– UC : SC ×V C → N. For each fixed ≈C equivalence class S≈ ⊆ SC , we assign
V C ’s values on every possible world s ∈ S≈ as the following procedure:

By the 4 Axiom for Dg in Theorem 5, it is easy to see that if s ≈C t, then
{Dg(X,Y ) | Dg(X,Y ) ∈ s} = {Dg(X,Y ) | Dg(X,Y ) ∈ t}. So suppose arbitrary
s ∈ S≈, W≈ = {nonempty finite set W | W ⊂ V

C ,Qg(W ) ∈ s} is a well defined
set, regardless of which possible world s we choose from S≈.

Claim. W≈ is countable. Therefore, we can suppose a well order <W
∼= ω on it.

We define a constant function f0 : V C → N, ∀x ∈ V C , f0(x) = 0.

Lemma 4 (Canonical Assignment). For every W ∈ W≈, we can simultane-
ously find two corresponding functions fW

1 : V C → N and fW
2 : V C → N such

that:

– {fW
1 (x) �= fW

2 (x) | x ∈ V C} = W ;
– if W1,W2 ∈ W≈, W1 �= W2, then {fW1

i (x) �= fW2
j (x) | x ∈ V C} is countably

infinite, i, j ∈ {1, 2};
– {fW

i (x) �= f0(x) | x ∈ V C} is countably infinite, i ∈ {1, 2}.
Proof. Noticing that there are countably infinite variables in V C which can be
assigned to countably infinite values, while W≈ is also countable and all the sets
W ∈ W≈ are finite, we are sure that these requirements can be satisfied. For
example, we manage to designate fW

1 and fW
2 for every W ∈ W≈ one by one,

along the well order <W . Since every W is finite, to satisfy the first requirement,
the ranges of fW

1 and fW
2 can be controlled to be both finite. For the second

requirement, if W1 <W W2, we let the ranges of fW2
i and fW1

j not intersect. For
the third requirement, we let 0 not be in fW

i ’s range. �
We collect all these functions as F≈ = {fW

i | W ∈ W≈, i ∈ {1, 2}} ∪ {f0}.

Claim. F≈ is countable. Therefore, we can suppose a well order <F on it.

Then by the Well-ordering Theorem, we can also suppose a well order <S

on S≈. By correlating these two well orders <F and <S , we can use function
f ∈ F≈ to assign V C ’s values on possible world s ∈ S≈, such that ∀x ∈ V C ,
UC(s, x) = f(x). As any two well orders can be compared, during this correlating
procedure, one and only one of the following three conditions will occur:

– If <F
∼=<S , done.

– If we first run out of functions from F≈, then we use f0 to assign V C ’s values
for all the other left possible worlds in S≈.

– If we first run out of possible worlds from S≈, then we arbitrarily choose
one possible world s ∈ S≈, and copy it many times so as to match all the
other left functions in F≈. All these copies of s, along with the original one,
of course share the same TC , and are in the same ∼C

i and ≈C equivalence
classes. Obviously, this copy will not cause any unpleasant consequences.
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Lemma 5 (Truth Lemma for Modality Dg). ∀s ∈ SC , ∀ finite subsets
X,Y ⊂ V

C , Dg(X,Y ) ∈ s ⇐⇒ MC , s � Dg(X,Y ).

Proof. The cases when X = ∅ or Y = ∅ follow immediately from the E Axiom
for D in Theorem 5, so we concentrate on the situations when X �= ∅ and Y �= ∅.
By Lemma 1, MC , s � Dg(X,Y ) ⇐⇒ ∃u, v ∈ SC , u ≈C v ≈C s, such that
Δ(u, v) is an evidence of 〈X,Y 〉.

For the direction from right to left, from the above assignment procedure
of UC in the canonical model, we have Qg(Δ(u, v)) ∈ s. Since Δ(u, v) is an
evidence of 〈X,Y 〉, by making use of the Weakening Rule it is not difficult to
reason that Dg(X,Y ) ∈ s.

For the direction from left to right, considering the Q Axiom for D in
Theorem 5, at least one of the Qg(X ′∪Y ′) in the big disjunction is in s, and thus
from the above assignment procedure of UC in the canonical model, ∃u, v ∈ SC ,
u ≈C v ≈C s, such that Δ(u, v) = X ′ ∪ Y ′. Since X ′ ⊆ X,Y ′ ⊆ Y,X ′, Y ′ �= ∅,
obviously X ′ ∪Y ′ is just an evidence of 〈X,Y 〉 and hence MC , s � Dg(X,Y ). �

6 Conclusions and Future Work

In this paper, we come up with dependence epistemic logic in order to rea-
son about partial dependency relationship between variables under an epistemic
scenario. Several interesting examples are proposed, which demonstrate our lan-
guage’s affluent expressivity and practical usage. Besides that, the essential prop-
erties of the logic are straightforward to understand, and hence we further discuss
its bisimulation relation and manage to provide a sound and strongly complete
axiomatization system for the simpler sub-language EDG.

Nevertheless, there still remains much work to be done in the future. The
axiomatization of the full language EDL is yet unknown. It will also be helpful
to elaborate on other computational properties of this logic, such as decidability.
Besides, as we only deal with the presence of a single agent in this paper, extend-
ing this dependence epistemic logic to cases with multiple agents may result in
more interesting results. Moreover, it seems to be an exciting idea to add other
modalities into this framework so that we will be able to reason about know-
ing dependency, knowing value, knowing how as well as many other epistemic
assertions all together.
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Abstract. In this paper, we propose a logical framework extending the
standard epistemic logic with a new knowledge operator Gi which cap-
tures the knowledge about (physically) necessary facts, e.g., scientific
knowledge. Semantically, the truth of Giϕ depends on not only the epis-
temically indistinguishable worlds from the current real world but also
the relevant (physically) possible worlds which are clearly distinguish-
able. Essentially, Gi is a bundle of the standard epistemic modality and a
necessity-like modality. We axiomatize the corresponding epistemic logic
completely in single- and multi-agent cases with interesting interaction
axioms between the two epistemic operators.

Keywords: Knowledge-now · Knowledge-all · Epistemic logic ·
Axiomatization

1 Introduction

The semantics of standard epistemic logic is based on the idea that knowing
that ϕ iff you can rule out the epistemic alternatives (of the current state of
the world) on which ϕ is false [5]. In the Kripke semantics for epistemic logic,
knowing that ϕ amounts to that ϕ holds on all the epistemic alternatives which
you cannot distinguish from the current state. This semantics works well with
knowledge about the current state, to which we shall refer as knowledge-now in
this paper.1

Nevertheless, both in everyday life and in scientific studies, we are interested
in not only knowledge-now but also knowledge-all, the law-like propositions which
are true on all the relevant possible states even though they are not epistemic
alternatives of the current one. For example, as a piece of common sense (phys-
ical) knowledge, we know that if it rains then the ground exposed to the rain
gets wet (ϕ). This knowledge is about not only the states which you cannot
distinguish from the real one, but also those physically possible states which are
clearly distinguishable from the real one for you. In fact, as ϕ is not a material
1 Although the term knowledge-now seems to have a temporal flavor, the emphasis is
not about the temporal issues, as it will become more clear later on.
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implication, just knowing that the ground is wet right now does not necessarily
entail that you know this common sense physical law.

Knowledge-all also plays an important role when we move to knowledge
expressions beyond knowing that [9]. For example, knowing how to cook a
Japanese dish is about not only the current state but also whether you can do
it on all the possible states where the relevant ingredients and equipments are
available [8]. Knowing why thunder often follows lightning is not merely about
the current state, either [10]. As another example, to know whether variable X
depends on Y , it is clearly not enough just to check the current values of X and
Y [1,2].

In this paper, we propose a simple framework to treat both knowledge-now
and knowledge-all by including two epistemic modalities Ki and Gi for these
two kinds of knowledge, respectively. We hope this framework can serve as a
playground for further studies of more concrete knowledge-all in various settings.

According to the above-mentioned intuition, that ϕ is a piece of knowledge-
all means that knowing that ϕ holds on all relevant possible states, which can
be viewed as that knowing that ϕ is necessary over the relevant state space
(Ki�ϕ). This brings us to the scattered discussions in the literature about the
logic of knowledge and necessity (e.g., [4]). A well-known issue in this setting is
the knowability paradox by Fitch [3]: if we assume that all truths are knowable
(ϕ → ♦Kiϕ), then based on some innocent assumptions about ♦ and Ki we can
derive ϕ → Kiϕ by using the Moore sentences. See [6] for further discussions
about logic of knowledge, necessity and a priori knowledge. In this paper, we take
a more pragmatic view on necessity beyond the typical philosophical reading,
and use the symbol A instead of � (A for all), which can be about all physically
possible states or only a few possible states specified by a context. We then define
knowledge-all formula Giϕ as KiAϕ.

The modality Gi may look simple at the first glance, as it might simply share
most (if not all) properties of Ki. However, it turns out that Gi is not exactly as
Ki, and the interaction between the two operators is highly non-trivial, especially
in the multi-agent setting. For now, note that the introspection axioms for Gi are
not valid intuitively, e.g., if ϕ is known by i as a general law (Giϕ), it does not
follow that knowing this general law is itself a known general law too (GiGiϕ). We
will also see the crucial role played by the interaction axiom Kiϕ → Gi¬Gj¬ϕ
as well as its variant in the completeness proof. These features can be best
observed in axioms when we only have Ki and Gi as primitive modalities in
the language without A. Our main results are complete axiomatizations of the
logic of both knowledge-now and knowledge-all in single- and multi-agent cases,
demonstrating the striking difference between the two cases which does not show
up in standard epistemic logic.

The rest of the paper is structured as follows: we lay out the basics of the
language and the semantics in Sect. 2, propose axiomatizations for both the
single-agent and the multi-agent cases and prove their completeness in Sect. 3,
and conclude with future directions in Sect. 4.
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2 Preliminaries

We first introduce a background language with both Ki and A.

Definition 1 (Language ELA). Given a countable non-empty set P of basic
proposition letters and a countable non-empty set I of agents, the formulae of
the epistemic language with A operator are constructed as follows:

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | Kiϕ | Aϕ

where i ∈ I, p ∈ P. We define ∨ and → as usual, and define Giϕ as the abbrevi-
ation of KiAϕ. ̂Ki, ̂A, ̂Gi are the abbreviations of ¬Ki¬,¬A¬,¬Gi¬, respectively.

When I is a singleton, without loss of generality we always denote I = {i},
and we further omit this i in the subscripts of Ki and Gi so as to simply write
K and G when no confusion occurs.

Most philosophers would agree that the necessity operator is an S5 modality, and
therefore, an equivalence relation is a good candidate to interpret A in the model.
Moreover, note that the equivalence relation induces a partition over the space
of all the potential states. For each state w, its relevant state space is simply
the equivalence class of w. If we interpret A as physically necessary then it is
also intuitive to see that any single state should not be in two state spaces, since
each state should already contain all the general physical laws for all the possible
states in the same “physical universe”. Finally, A should not be interpreted as
a usual universal modality either, for the agent may have uncertainty about the
state space in terms of the general (physical) laws.

Hence the language is interpreted in the following model:

Definition 2 (Model). An epistemic model for ELA is 〈S, {∼i| i ∈ I}, V,≈〉
where:

– S is a non-empty set of epistemically possible worlds.
– For every i ∈ I, ∼i is an equivalence relation over S.
– V : S → P(P) is a valuation function.
– ≈ is an equivalence relation over S representing the (physical) possibilities.

Let [s]i and [s]A be the equivalence classes generated by s with respect to ∼i and
≈, respectively. Let [s]iA be

⋃

t∈[s]i

[t]A. Intuitively [s]iA is the set of worlds which

are reachable by the sequential composition of ∼i and ≈ (≈ ◦ ∼i). Note that
≈ ◦ ∼i is not necessarily an equivalence relation, although both ∼i and ≈ are.

Important Notation. When M is an epistemic model, we use M in italics to
represent the underlying set of possible worlds S of M.

Definition 3 (Semantics). A pointed model M, s is a model M with a possible
world s ∈ M .
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M, s � p ⇐⇒ p ∈ V (s)
M, s � ¬ϕ ⇐⇒ M, s � ϕ
M, s � ϕ ∧ ψ ⇐⇒ M, s � ϕ and M, s � ψ
M, s � Kiϕ ⇐⇒ M, t � ϕ for all t ∈ [s]i
M, s � Aϕ ⇐⇒ M, t � ϕ for all t ∈ [s]A

Given the semantics, it is not hard to see that

M, s � Giϕ ⇐⇒ M, t � ϕ for all t ∈ [s]iA

Example 1. Consider the following model M on the left (reflexive arrows omit-
ted) where g means that God exists, and the pointed model M, s represents
a situation where God does not exist but i is unsure about it. Depending on
whether God exists or not, some physical laws p, q may hold or not. It is easy
to verify that M, s � A(¬g ∧ p) ∧ ¬Ki¬g ∧ Gi(p ∨ q) ∧ ̂Gi(g ∧ p ∧ q). �

M : s : ¬g, p,¬q i g,¬p, q

≈

¬g, p, q

≈

g, p, qi

N : t : p i ¬p

p

≈

¬p

≈

Remark 1. Note that Aϕ → Kiϕ is not valid as the above example shows. In
fact, in this work we do not assume any properties between ∼i and ≈. Actually
neither KA2AK: KiAϕ → AKiϕ nor AK2KA: AKiϕ → KiAϕ is intuitively valid in
general. For example, consider the above model N on the right (reflexive arrows
omitted) and it is easy to verify that N , t � AKi

̂Kip ∧ ¬KiA ̂Kip.

Since both A and Ki are just normal S5 modalities and we do not assume
any interactions between them, it is obvious that the following proof system is
sound and strongly complete:

Definition 4 (System SELA).
Axioms

TAUT all axioms of propositional logic
DISTK Kiϕ ∧ Ki(ϕ → ψ) → Kiψ DISTA Aϕ ∧ A(ϕ → ψ) → Aψ
T Kiϕ → ϕ TA Aϕ → ϕ
4 Kiϕ → KiKiϕ 4A Aϕ → AAϕ
5 ¬Kiϕ → Ki¬Kiϕ 5A ¬Aϕ → A¬Aϕ

Rules

MP
ϕ,ϕ → ψ

ψ

NECK
ϕ

Kiϕ
NECA

ϕ

Aϕ

We define the proofs in this system as usual. As an example, we show how
to derive the following valid formula, which will play an important role later.
Intuitively, if i knows that ϕ, then i knows that on all the states that i can think
of, everyone at least considers ϕ possible on some state. It also helps to verify
it semantically based on the properties of ∼i and ≈ to see its merit.
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Proposition 1. Kiϕ → Gi
̂Gjϕ is provable in SELA and thus it is valid.

Proof. By TA we have ϕ → ̂Aϕ. By 5A we have ̂Aϕ → A ̂Aϕ, so ϕ → A ̂Aϕ. By
T we have ̂Aϕ → ̂Kj

̂Aϕ, so by NECA and DISTA we have A ̂Aϕ → A ̂Kj
̂Aϕ, hence

follows ϕ → A ̂Kj
̂Aϕ. Then by NECK and DISTK we have Kiϕ → KiA ̂Kj

̂Aϕ,
namely Kiϕ → Gi

̂Gjϕ. �
However, this simple proof system does not reveal the interaction between

knowledge-now Kiϕ and knowledge-all Giϕ explicitly. Therefore, in the rest of
the paper, we will consider the following language taking Gi as the primitive
modalities without using A.

Definition 5 (Language ELG). Given a countable non-empty set P of basic
proposition letters and a countable non-empty set I of agents, the formulae of
the epistemic language with Gi operator are constructed as follows:

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | Kiϕ | Giϕ

where i ∈ I, p ∈ P.

The models and semantics are as before. Intuitively, in ELG we only allow a
particular combination of Ki and A. We can actually show that ELG is strictly
less expressive than ELA by using a suitable bisimulation notion, but due to
the limit of space we leave the detailed discussion to a future occasion.

In the next section, we will see that the logic of ELG brings us some inter-
esting new axioms, which make the logic technically non-trivial to axiomatize.

3 Axiomatization

In this section we axiomatize the logics of knowledge-now and knowledge-all in
the single-agent and the multi-agent cases. It is interesting to discover that the
logic of the multi-agent case is more complex than that of the single-agent case:
more agents bring about highly non-trivial interaction between Ki and Gi.

3.1 Single-Agent Case

We first consider the single-agent case when both K and G are not indexed.

Definition 6 (System SKNKA).
Axioms

TAUT all axioms of propositional logic
DISTK Kϕ ∧ K(ϕ → ψ) → Kψ DISTG Gϕ ∧ G(ϕ → ψ) → Gψ
T Kϕ → ϕ GK Gϕ → Kϕ
4 Kϕ → KKϕ 4G Gϕ → KGϕ
5 ¬Kϕ → K¬Kϕ 5G ¬Gϕ → K¬Gϕ

BG Kϕ → G ̂Gϕ
Rules

MP
ϕ,ϕ → ψ

ψ

NECK
ϕ

Kϕ
NECG

ϕ

Gϕ
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Remark 2. Note that for the intuitive reading, we also include some axioms not
independent from the others. For example, 4 is derivable from T and 5, while 5G
is derivable from T, 5 and 4G. Also note that the following G-counterparts for
Axioms 4, 5 and B in standard modal logic are not valid:

Gϕ → GGϕ,¬Gϕ → G¬Gϕ,ϕ → G ̂Gϕ.

Theorem 1. SKNKA is sound.

Proof. The nontrivial part is BG, whose validity follows from Proposition 1. �

As an example, we show how to derive the following valid formula, whose
variant will play an important role in axiomatization for the multi-agent case.

Proposition 2. The following formula is provable in SKNKA:

K(
∨

1�a�n

ϕa ∨
∨

1�b�m

Gψb) → G(
∨

1�a�n

̂Gϕa ∨
∨

1�b�m

ψb),

m, n ∈ ω,m > 0 or n > 0

Proof. The degenerated cases when n = 0 or m = 0 are relatively simple to show
based on the normality of K and G, and BG. Here we prove the case when m > 0
and n > 0. On the one hand, for each 1 � b � m, by 5G we have ̂KGψb → Gψb,
hence follows ̂KGψb → G(

∨

1�a�n

̂Gϕa∨ ∨

1�b�m

ψb) (i) by weakening the consequent.

On the other hand, by BG we have K(
∨

1�a�n

ϕa) → G ̂G(
∨

1�a�n

ϕa), which, by the

normality of G, is equivalent to K(
∨

1�a�n

ϕa) → G(
∨

1�a�n

̂Gϕa), hence follows

K(
∨

1�a�n

ϕa) → G(
∨

1�a�n

̂Gϕa ∨ ∨

1�b�m

ψb) (ii) by weakening the consequent.

Therefore, by (i) and (ii), in SKNKA we can prove K(
∨

1�a�n

ϕa) ∨
∨

1�b�m

̂KGψb → G(
∨

1�a�n

̂Gϕa ∨ ∨

1�b�m

ψb). Also note that the following formula

K(
∨

1�a�n

ϕa ∨ ∨

1�b�m

Gψb) → K(
∨

1�a�n

ϕa) ∨ ∨

1�b�m

̂KGψb can be proved by using

the normality of K. By combining the above two formulae we finally obtain
K(

∨

1�a�n

ϕa ∨ ∨

1�b�m

Gψb) → G(
∨

1�a�n

̂Gϕa ∨ ∨

1�b�m

ψb). �

To show the completeness of SKNKA is quite non-trivial. First note that to
build a canonical model, it is insufficient just to use the set of maximal consistent
sets as the set of all the possible worlds: for there are cases where in order to
satisfy a set of consistent formulae, in the model we must need different worlds
satisfying exactly the same ELG-formulae, which suggests that we must need
copies of possible worlds in the canonical model, on which the same maximal
consistent set is attached. The following example demonstrates such a case.
Recall that we use M in italics to represent the underlying set of possible worlds
S of a model M (similarly for other letters).
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Example 2. Let Γ = {ϕ → Kϕ | ϕ ∈ ELG} ∪ {̂GGp, ̂G¬p}. Γ is consistent, as
it has a model M below (reflexive arrows are omitted) for which we can ravel
the ≈ ◦ ∼i relation on the right to evaluate ELG-formulae more conveniently
(reflexive arrows of ≈ ◦ ∼i are also omitted). Recall that i is the single agent.

M s : p i t : p

p

≈

¬p

≈

s : p �� i,≈◦i ��

≈◦i
��

��
��

��

���
��

��
��

��

t : p

≈◦i
��
��
��
��

����
��
��
��
�

p
��

≈◦i

��

¬p
��

≈◦i

��

By a simple induction, it can be shown that s and t satisfy exactly the same
ELG-formulae and therefore it is not hard to show that M, s � Γ . However, the
apparent duplicate t is necessary here to make Γ true. In fact, we can show that
if Γ is satisfiable at some N , u then we need a different world which satisfies
exactly the same ELG formulae as u. Suppose N , u � Γ then for all v ∼i u, v
satisfies exactly the same formulae as u as {ϕ → Kϕ | ϕ ∈ ELG} ⊆ Γ . Suppose
there is no such v except u itself then it is not hard to show that {̂GGp, ̂G¬p}
cannot be satisfied at u due to the fact that ≈ is transitive and ∼i is reflexive.

�
Fixing any single maximal consistent set (MCS) σ, and starting from a single

possible world s, we build the canonical model M(s) for σ in a step-by-step
method. There is a function Θ(t) that maps each possible world t ∈ M(s) to an
MCS, and Θ(s) = σ. For clarity we always use lowercase English letters such as
r, s, t, u and v to represent possible worlds, and lowercase Greek letters such
as σ, μ and ν to represent MCSs. The core idea of our construction can be
illustrated as the following graph:

G(v1)

K(v1)

v1

G(s)

u1

≈

u1copy

K(s) s u2

copy
u2

≈

v2

K(v2)

G(v2)

We start from a single possible world s with the
MCS σ, and find all the ∼i-connected MCSs (the set
K(s)) and all the ≈◦∼i-connected MCSs (the set
G+(s)) via the usual canonical relation for K and
G respectively. Note that σ ∈ K(s) by T, and that
K(s) ⊆ G+(s) by GK. Let G(s) = G+(s)\K(s). Then
we will recover the ≈ relation, by connecting via ≈
relation the corresponding possible world v of each
ν ∈ G(s) to a copy u′ of some possible world u corre-
sponding to an MCS μ ∈ K(s) (we will show this is
always possible). Therefore each possible world in the
model can only be connected to at most one another
via ≈ relation. We call the resulting model N (s),
and let M0 = N (s). Then we repeat this construc-
tion for every possible world v corresponding to an
MCS ν ∈ G(s) to form many N (v), and union all
these N (v) as well as M0 to form M1, and so on.
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Formally, the construction works as follows. As for the function Θ(t), in our
step-by-step method, we always add fresh possible worlds into the model without
modifying existing ones, so we should only pay attention to designate the value
of Θ(t) whenever we add a fresh possible world t into the model, and then in any
model M the total function Θ(t) comes out by union naturally. Also, without
saying explicitly in the following, during the construction in any model M, ∼i

and ≈ relations are always reflexive, and all the propositions are canonically
evaluated in M, i.e., ∀t ∈ M , V (t) = P ∩ Θ(t).

Starting from a single possible world s such that Θ(s) = σ, the initial model
O(s) consists of only one possible world, namely s. Let

K(s) = {μ | μ is an MCS, ∀Kϕ ∈ Θ(s), ϕ ∈ μ}

By T of course Θ(s) ∈ K(s). The model Q(s) extending O(s) by adding the
∼i-neighbors: for every μ ∈ K(s) and μ �= Θ(s), add one possible world u into
O(s) such that Θ(u) = μ, and finally connect all these possible worlds (including
s) by ∼i relation. In the following, we will build the ≈ relation. Firstly, let

G(s) = {ν | ν is an MCS, ν /∈ K(s),∀Gϕ ∈ Θ(s), ϕ ∈ ν}

Proposition 3. K(s) ∪ G(s) = {χ | χ is an MCS, ∀Gϕ ∈ Θ(s), ϕ ∈ χ}.

Proof. ∀μ ∈ K(s), ∀Gϕ ∈ Θ(s), by GK we have Kϕ ∈ Θ(s), so ϕ ∈ μ. �

For the construction to go on we first prove a Lemma.

Lemma 1 (Backward Lemma). ∀ν ∈ G(s), ∃μ ∈ K(s), such that ∀Gψ ∈ ν,
ψ ∈ μ.

Proof. We can construct μ by showing that {ϕ | Kϕ ∈ Θ(s)} ∪ {ψ | Gψ ∈ ν} is
consistent for all ν ∈ G(s). Towards a contradiction suppose it is not consistent
for some ν ∈ G(s) then there are two finite sets Φ ⊆ {ϕ | Kϕ ∈ Θ(s)} and
Ψ ⊆ {ψ | Gψ ∈ ν} such that Φ ∪ Ψ is inconsistent. Let ζ =

∧

ϕ∈Φ

ϕ and η =
∧

ψ∈Ψ

ψ,

it is easy to reason that ζ ∈ {ϕ | Kϕ ∈ Θ(s)} and η ∈ {ψ | Gψ ∈ ν}, and
that {ζ, η} is inconsistent, hence � ζ → ¬η. By NECK and DISTK, � Kζ → K¬η,
and since Kζ ∈ Θ(s), K¬η ∈ Θ(s), and thus by BG, G ̂G¬η ∈ Θ(s), namely,
G¬Gη ∈ Θ(s). Therefore, ¬Gη ∈ ν, which contradicts with Gη ∈ ν. �

The model N (s) extending Q(s) is built as such: for every ν ∈ G(s), add
one possible world v into Q(s) such that Θ(v) = ν, and since Θ[Q(s)] = K(s),
by the above Backward Lemma, we can find a possible world u ∈ Q(s) such
that ∀Gϕ ∈ ν, ϕ ∈ Θ(u), and then we add a fresh possible world u′ into Q(s)
such that Θ(u′) = Θ(u), also add this u′ into the ∼i equivalence class of s by
connecting all the necessary ∼i relations, and finally we connect this v and u′

by ≈ relation, and make ≈ reflexive.
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The canonical model M(s) is built by induction. Let M0 = N (s) and H0 =
{t | t ∈ N(s), Θ(t) ∈ G(s)} ⊆ M0. Suppose we have already built a partial
canonical model Ml and a set of possible worlds Hl ⊆ Ml, where l ∈ ω, we move
on to build Ml+1 extending Ml and Hl+1 ⊆ Ml+1, as follows. For every v ∈ Hl,
we view v itself as a starting point like s and construct its corresponding K(v),
Q(v), G(v) and N (v). Except for v itself, which already exists in Ml, all the
other possible worlds in N (v) are introduced fresh in order to avoid interference.
Then Ml+1 = Ml ∪ ⋃

v∈Hl

N (v) and Hl+1 =
⋃

v∈Hl

{t | t ∈ N(v), Θ(t) ∈ G(v)}.

Note that this construction is monotonic. Finally let M(s) =
⋃

l∈ω

Ml.

Proposition 4. The canonical model M(s) is indeed an epistemic model.

Proof. (Sketch) Our construction of N (v) guarantees that ∼i is an equivalence
relation for the freshly added worlds v ∈ Hl at each step l. Also note that those
fresh worlds are not connected by ∼i to the existing worlds.

To show that ≈ is an equivalence relation over M(s), note that our con-
struction makes sure that ≈ is always reflexive and symmetric and moreover
every world is ≈-connected to at most two worlds, including itself.2 Therefore
the transitivity also holds trivially. Again, it is crucial that the freshly added
worlds do not interfere with the old ones. �

To show strong completeness in this canonical model M(s), the only non-
trivial part concerns the Truth Lemma for modality G.

Lemma 2 (Truth Lemma). For any t ∈ M(s), any ϕ ∈ ELG: M(s), t �
ϕ ⇐⇒ ϕ ∈ Θ(t).

Proof. We only show M(s), t � Gϕ ⇐⇒ Gϕ ∈ Θ(t) based on the induction
hypothesis. Other cases are routine as in standard modal logic.

According to our construction, any possible world t ∈ M(s) falls into exactly
one of the following three cases.

First, t is s. Then Θ[[t]iA] = K(t)∪G(t), and by Proposition 3, Θ[[t]iA] = {χ |
χ is an MCS, ∀Gϕ ∈ Θ(t), ϕ ∈ χ}.

Second, t ∈ Hl, where l ∈ ω. Then there exists w ∈ M(s) such that t ∈
N(w) − Q(w), and Θ[[t]iA] = K(t) ∪ G(t) ∪ {Θ(u′)}, where u′ ∈ N(w) − Q(w),
u′ �= t, and t is connected with u′ by ≈ relation. By Proposition 3, K(t)∪G(t) =
{χ | χ is an MCS, ∀Gϕ ∈ Θ(t), ϕ ∈ χ}, and by our construction, ∀Gϕ ∈ Θ(t),
ϕ ∈ Θ(u′), so Θ(u′) ∈ K(t) ∪ G(t) and Θ[[t]iA] = {χ | χ is an MCS, ∀Gϕ ∈
Θ(t), ϕ ∈ χ}.

Third, otherwise. Then by our construction, there exists v ∈ M(s) such that
t and v are connected by ∼i relation and that v is s or v ∈ Hl, where l ∈ ω. By 4G
we have ∀Gϕ ∈ ELG, Gϕ ∈ Θ(v) ⇐⇒ Gϕ ∈ Θ(t), so Θ[[t]iA] = Θ[[v]iA] = {χ |
χ is an MCS, ∀Gϕ ∈ Θ(v), ϕ ∈ χ} = {χ | χ is an MCS, ∀Gϕ ∈ Θ(t), ϕ ∈ χ}.

In sum, we have ∀t ∈ M(s), Θ[[t]iA] = {χ | χ is an MCS, ∀Gϕ ∈ Θ(t), ϕ ∈ χ}.
As G is a normal modality, the Truth Lemma follows by routine arguments. �
2 Such a simple construction works essentially because Ai can only occur in the bundle

Gi = KiAi in ELG. We cannot express the ≈ possibilities directly.
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Based on the above Truth Lemma, strong completeness follows immediately.

Theorem 2. SKNKA is strongly complete over single-agent epistemic models.

3.2 Multi-agent Case

As shown in Proposition 1, when there present multiple agents, the following
stronger version of BG is still valid:

Kiϕ → Gi
̂Gjϕ

which enables us to go from one agent’s knowledge-now to its own knowledge-all
about another agent’s knowledge-all. We also have another valid formula KG to
go from one agent’s knowledge-now about another agent’s knowledge-all to its
own knowledge-all, shown by the following:

KiGjϕ → Giϕ

However, just adding the above two valid formulae into SKNKA is not enough.
Indeed we need a further stronger axiom KGP:

Ki(
∨

1�a�n

ϕa ∨
∨

1�b�m

Gjbψb) → Gi(
∨

1�a�n

̂Gka
ϕa ∨

∨

1�b�m

ψb),

m, n ∈ ω,m > 0 or n > 0, i, jb, ka ∈ I

Theorem 3. KGP is valid.

Proof. Fix a pointed model M, s and suppose that the antecedent is true. Then
∀t ∈ [s]i, at least one of the branches in the disjunction

∨

1�a�n

ϕa ∨ ∨

1�b�m

Gjbψb

is true on M, t.
Suppose ϕa is true on M, t. Then ∀r ∈ [t]A, for arbitrary (fixed) agent ka ∈ I,

̂Gka
ϕa is true on M, r.
Suppose Gjbψb is true on M, t, where jb ∈ I is an arbitrary (fixed) agent.

Then ∀r ∈ [t]A, ψb is true on M, r.
Therefore, ∀t ∈ [s]i and ∀r ∈ [t]A,

∨

1�a�n

̂Gka
ϕa ∨ ∨

1�b�m

ψb is true on M, r.

Since [s]iA =
⋃

t∈[s]i

[t]A, this is to say that ∀r ∈ [s]iA,
∨

1�a�n

̂Gka
ϕa ∨ ∨

1�b�m

ψb is

true on M, r, so the consequent is true on M, s. �
Note that if Ki were distributive over ∨ then we could easily prove KGP from

stronger BG and KG. However, as Ki is a normal modality, this is not the case.
Although the single-agent version of KGP is provable in SKNKA as Proposition 2

shows, the similar proof method for the multi-agent case does not work, e.g., the
axiom 5G in the multi-agent setting cannot play the same role as before in the proof
of Proposition 2. We conjecture that KGP is not provable from the stronger BG and
KG based on SKNKA. Therefore, we replace the weaker axiom BG by KGP, resulting
in the following sound proof system MSKNKA for the multi-agent case:
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Definition 7 (System MSKNKA).
Axioms

TAUT all axioms of propositional logic
DISTK Kiϕ ∧ Ki(ϕ → ψ) → Kiψ DISTG Giϕ ∧ Gi(ϕ → ψ) → Giψ
T Kiϕ → ϕ GK Giϕ → Kiϕ
4 Kiϕ → KiKiϕ 4G Giϕ → KiGiϕ
5 ¬Kiϕ → Ki¬Kiϕ 5G ¬Giϕ → Ki¬Giϕ

KGP Ki(
∨

1�a�n

ϕa ∨ ∨

1�b�m

Gjbψb) → Gi(
∨

1�a�n

̂Gka
ϕa ∨ ∨

1�b�m

ψb),

m, n ∈ ω,m > 0 or n > 0, i, jb, ka ∈ I
Rules

MP
ϕ,ϕ → ψ

ψ

NECK
ϕ

Kiϕ
NECG

ϕ

Giϕ

We then prove the strong completeness. As in the single-agent case, fixing
any single maximal consistent set (MCS) σ, and starting from a single possible
world s, we build the canonical model D(s) for σ and a corresponding function
Θ(t) for every t ∈ D(s), such that Θ(s) = σ. The construction of the canonical
model D(s) in the multi-agent case is based on the construction of M(s) in the
single-agent case, the core idea being illustrated as the following graph:

Mi(r1)

t1 Mj(t1) r1

Mi(s)

t2 Mj(t2) r2

s Mi(r2)

Mj(s)

r0 Mi(r0)

For example, suppose there are only
two agents i and j. We start from a single
possible world s with some MCS σ, and
go through nearly the same process (only
replacing the Backward Lemma with a
stronger version proved below) as in the
single-agent case to construct the single-
agent canonical model Mi(s) with respect
to agent i, while making sure ∼j relation
is only reflexive. Let D1 = Mi(s). Then in
the second step, for every possible world
t ∈ D1, we construct their single-agent
canonical model Mj(t) with respect to

agent j by introducing fresh possible worlds except t, and union all these Mj(t)
as well as D1 to form D2. In the third step, we repeat this construction for every
possible world t ∈ D2 \ D1 again with respect to agent i, and in the fourth step
with respect to j, and so on.

Formally, the construction works as follows. To begin with, we prove a
stronger version of the Backward Lemma.

Lemma 3 (Stronger Backward Lemma). Fix an agent i ∈ I and a possible
world s with the value of Θ(s) having been designated. Similarly to the single-
agent case, we define Ki(s) = {μ | μ is an MCS, ∀Kiϕ ∈ Θ(s), ϕ ∈ μ} and
Gi(s) = {ν | ν is an MCS, ν /∈ Ki(s),∀Giϕ ∈ Θ(s), ϕ ∈ ν}. Then ∀ν ∈ Gi(s),
∃μ ∈ Ki(s), such that ∀k ∈ I, ∀Gkϕ ∈ ν, ϕ ∈ μ, and that ∀j ∈ I, ∀Gjψ ∈ μ,
ψ ∈ ν.



410 X. Wang and Y. Wang

Proof. First note that ∀j ∈ I, ∀Gjψ ∈ μ, ψ ∈ ν ⇐⇒ ∀j ∈ I, ∀ψ ∈ ν, ̂Gjψ ∈ μ.
Given ν ∈ Gi(s), we can construct μ by showing that {ϕ | Gkϕ ∈ ν, k ∈ I}∪{̂Gjψ |
ψ ∈ ν, j ∈ I} ∪ {ξ | Kiξ ∈ Θ(s)} is consistent. Suppose not, then there exist two
finite sets of agents {ka | ka ∈ I, 1 � a � n} and {jb | jb ∈ I, 1 � b � m}, where
m,n ∈ ω, and for every agent its corresponding finite set Φa ⊆ {ϕ | Gka

ϕ ∈ ν}
or Ψb ⊆ {̂Gjbψ | ψ ∈ ν}, and yet another finite set Ξ ⊆ {ξ | Kiξ ∈ Θ(s)},
such that Ξ ∪ ⋃

1�a�n

Φa ∪ ⋃

1�b�m

Ψb is inconsistent. Let ζ =
∧

ξ∈Ξ

ξ, and it is

easy to see that ζ ∈ {ξ | Kiξ ∈ Θ(s)} and that {ζ} ∪ ⋃

1�a�n

Φa ∪ ⋃

1�b�m

Ψb

is inconsistent, hence � ζ → ¬(
∧

ϕ∈Φa,1�a�n

ϕ ∧ ∧

̂Gjb
ψ∈Ψb,1�b�m

̂Gjbψ), namely, �

ζ → (
∨

ϕ∈Φa,1�a�n

¬ϕ∨ ∨

̂Gjb
ψ∈Ψb,1�b�m

Gjb¬ψ). Thus by NECK and DISTK, � Kiζ →

Ki(
∨

ϕ∈Φa,1�a�n

¬ϕ ∨ ∨

̂Gjb
ψ∈Ψb,1�b�m

Gjb¬ψ), and by KGP,

� Kiζ → Gi(
∨

ϕ∈Φa,1�a�n

̂Gka
¬ϕ ∨

∨

̂Gjb
ψ∈Ψb,1�b�m

¬ψ),

namely, � Kiζ → Gi(
∨

ϕ∈Φa,1�a�n

¬Gka
ϕ ∨ ∨

̂Gjb
ψ∈Ψb,1�b�m

¬ψ). As Kiζ ∈ Θ(s), we

have

Gi(
∨

ϕ∈Φa,1�a�n

¬Gka
ϕ ∨

∨

̂Gjb
ψ∈Ψb,1�b�m

¬ψ) ∈ Θ(s),

so (
∨

ϕ∈Φa,1�a�n

¬Gka
ϕ ∨ ∨

̂Gjb
ψ∈Ψb,1�b�m

¬ψ) ∈ ν. However, by definition of Φa

and Ψb none of these branches in the conjunction can be in ν, a contradiction.
�

Now suppose that we have fixed an agent i ∈ I and a possible world v such
that Θ(v) is defined. Then starting from v, just in form, we can follow exactly the
same procedure as in the single-agent case to construct a single-agent canonical
model M(v) with respect to agent i, by changing every appearance of K and
G into Ki and Gi, and also changing the use of the original Backward Lemma
when constructing N (t) for any possible world t into the stronger version above.
For clarification we denote this single-agent canonical model as Mi(v), with a
subscript showing that it is built with respect to agent i. In Mi(v) of course,
for any j ∈ I and j �= i, the ∼j relation is only reflexive. After the construction
of Mi(v), we say that an operation with respect to agent i has been done on all
the possible worlds t ∈ Mi(v); by default no operation with respect to any agent
has been done on a possible world, of course.

Having finished the preparation above, we then construct a (fixed) countably
infinite sequence of agents as i0, i1, . . ., il, . . ., in the order of which we build
the canonical model D(s).
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Since I is countable, we can have a countable sequence of agents such that
each agent appears countably infinite times.

Proposition 5. A countably infinite sequence i0, i1, . . ., il, . . . can be con-
structed, which is isomorphic to ω in order, such that ∀l ∈ ω, il ∈ I, and that
∀j ∈ I, |{l | l ∈ ω, il = j}| = ℵ0.

The canonical model D(s) is built by induction. Let D0 = O(s) and no
operation with respect to any agent has been done on s. Suppose we have already
built a partial canonical model Dl, where l ∈ ω, we move on to build Dl+1

extending Dl, as the follows. Let Fl = {v | v ∈ Dl, no operation with respect
to agent il has been done on v} ⊆ Dl. For every v ∈ Fl, we view v itself as a
starting point like O(v) and construct its single-agent canonical model Mil(v)
with respect to agent il. Except for v itself, which already exists in Dl, all
the other possible worlds in Mil(v) are freshly introduced in order to avoid
interference. Then Dl+1 = Dl ∪ ⋃

v∈Fl

Mil(v). Finally let D(s) =
⋃

l∈ω

Dl.

Proposition 6. The canonical model D(s) is indeed an epistemic model.

Proof. (Sketch) To show that ∀i ∈ I, ∼i is an equivalence relation over D(s),
we claim that ∀i ∈ I, ∀t ∈ D(s), an operation with respect to agent i has been
done on t once and only once. This statement is ensured by our construction of
the sequence il and the canonical model D(s), because ∀i ∈ I, i appears in the
sequence il for countably infinite times.

To show that ≈ is an equivalence relation over D(s), we claim a stronger
statement, that in every ≈ equivalence class there are at most two possible
worlds. This statement holds just as the single-agent case. �

To show strong completeness in this canonical model D(s), the only non-
trivial part concerns the Truth Lemma for modality Gi. By symmetry among
the agents we fix an arbitrary i ∈ I.

Lemma 4 (Truth Lemma). For any t ∈ D(s), any ϕ ∈ ELG: D(s), t �
ϕ ⇐⇒ ϕ ∈ Θ(t).

Proof. Similarly to the single-agent case, we only show D(s), t � Giϕ ⇐⇒ Giϕ ∈
Θ(t). As before, by using the conditions in the Stronger Backward Lemma, we
have ∀t ∈ D(s), Θ[[t]iA] = {χ | χ is an MCS,∀Giϕ ∈ Θ(t), ϕ ∈ χ}. As Gi is a
normal modality, the Truth Lemma follows by routine arguments. �

Based on the above Truth Lemma strong completeness follows immediately.

Theorem 4. MSKNKA is strongly complete over multi-agent epistemic models.

4 Conclusions and Future Work

In this paper, we have proposed a framework to deal with both knowledge-
now and knowledge-all together. The logic, being conceptually simple and clear,
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actually possesses quite complicated properties. We obtain sound and strongly
complete axiomatizations for both the single-agent and the multi-agent cases,
where the latter case is significantly more complex. Note that the decidability
of the satisfiability problem of our logic follows immediately from the fact that
ELG is essentially a fragment of ELA whose logic a version of multi-modal S5.

Under this framework, there is an abundance of work worth investigating in
the future. On the one hand, we can further examine different properties of this
logic with respect to various frame classes, such as belief-all (KD45) frames and
confluent frames. On the other hand, as mentioned in the introduction, adding
all sorts of knowledge operators beyond “knowing that” into this framework may
result in novel logics with more affluent expressivity as well as more interesting
characteristics. A first attempt to handle knowing-value and partial dependency
in our setting is carried out in [7]. Finally, the dynamics of knowledge in this
setting can be non-trivial, e.g., how to update the model with both ∼i and ≈
w.r.t. a public announcement [ϕ]? The simple-minded solution of deleting all the
¬ϕ worlds would ruin the other physically possible worlds. We also leave this to
a future occasion.

Acknowledgement. The first author thanks Shengyang Zhong for the help in mak-
ing the canonical model construction more precise. The authors are grateful to the
anonymous reviewers for their insightful comments.
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Abstract. The paper expands upon the work by Wang [16], who pro-
poses a single-agent modal logic framework for reasoning about “knowing
how”. This paper proposes a more flexible semantics to the knowing-how
operator. According to this semantics, an agent knows how to achieve
ϕ given ψ if there exists a finite linear plan such that it will end up
with some ϕ-state from any ψ-state by executing the plan, either fully
or skipping some non-executable steps. We give a sound and complete
axiomatization of this logic. Finally we introduce a suitable notion of
bisimulation for this logic.

Keywords: Knowing how · Epistemic logic · Skippable plans

1 Introduction

A large body of automated planning concerns the realization of strategies or
action sequences for autonomous agents to achieve some goals, i.e., to obtain
goal-directed knowledge-how. Several formalizations of knowing how were sug-
gested before under different ways (see [2,5]). The attempt to develop logics of
knowing how begins from [9–11]. The situation calculus as one of the corner-
stone formalisms of AI suggests possible interpretations of what it means for a
computer program to be able to achieve a state of affairs [14]. Coalition Logic
(CL) [13] formalises the ability of groups of agents to achieve certain goals in
strategic games. The framework of Alternating-time Temporal Logic (ATL) [1]
is concerned with reasoning about the abilities of agents in game-like systems.
In the above-mentioned works, knowledge-how is usually expressed in powerful
quantified logical language involving quantifiers or various complicated modali-
ties. Recently logicians attempted to formalize some knowledge expressions (such
as knowing what, knowing how and so on) as a single modality, similar to the
way of epistemic logic dealing with knowing-that (see [3,6–8,15–17]).

In particular, Wang [16] proposes a single-agent modal logic framework for
reasoning about goal-directed knowing how, which includes formula Kh(ψ,ϕ)
expressing that the agent knows how to achieve ϕ given the precondition ψ.
This conditionalization reconciles our intuitive acquaintance about knowing how.
More specifically, when you claim that you know how to go to Hong Kong,
what you actually claim is that you can get to Hong Kong under some implicit
c© Springer-Verlag GmbH Germany, part of Springer Nature 2019
P. Blackburn et al. (Eds.): LORI 2019, LNCS 11813, pp. 413–424, 2019.
https://doi.org/10.1007/978-3-662-60292-8_30
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preconditions, such as there are flights from Beijing to Hong Kong and you can
afford a flight ticket. In [16], the models are labelled transition systems which
represent the agent’s abilities. Kh(ψ,ϕ) holds globally in a labelled transition
system if there is a strongly executable plan such that from each ψ-state the
plan can always be successfully executed to reach some ϕ-state. For example,
Kh(p, q) holds in the model depicted by Fig. 11, since ru is the plan which can
always work to reach a q-state from any p-state.

s6 s7 : q s8 : q, o

s1
r

s2 : p r

u

s3 : p r

u

s4
r

u

s5 : t
l

Fig. 1. An example

However, the demands that a strongly executable plan asks may be too
strong, in the sense that the plan can always be fully executed. In this model,
Kh(p, t) does not hold since there does not exist a plan which can be successfully
executed to reach s5 from s2 and s3, but we usually think that “we know how to
reach a t-state from p-states” because we can get there by moving right at most
three times. Li [6] proposes a weaker semantics to the knowing-how operator,
where an agent knows how to achieve ϕ given ψ if it has a weak conformant
plan by which it can always end up with a ϕ-state when the execution of the
plan terminates, either successfully or not. According to Li’s semantics, Kh(p, t)
holds since the plan rrr can guarantee the agent ending up with s5 when the
execution of the plan starting from s2 or s3 terminates. But Li’s weaker inter-
pretation of knowing-how results in a weaker logic where the composition axiom
(Kh(p, r) ∧ Kh(r, q) → Kh(p, q)) in Wang’s paper no longer holds. For example,
Kh(t, o) also holds in the above model under Li’s interpretation because of the
plan lu, but Kh(p, o) does not hold for the execution of the plan rrrlu starting
from s3 will terminate at s5 but not s8. However it is counterintuitive that you
know how to achieve r given p and achieve q given r, but do not know how to
achieve q given p.

Intuitively, we think a reasonable agent should also know how to get to some
o-state if it knows it is at some p-state but does not know exactly where it is,
since it can keep moving r until it cannot move r any more and then move l
and u. However, Kh(p, o) does not hold under the before two kinds of semantics,
since the execution of the plan rrrlu starting from s3 will fail to continue at
s5. Usually, it is appropriate to say “we know how to achieve ϕ given ψ” only
if we will always end up with a ϕ-state by executing the plan, either fully or
skipping some non-executable steps in the plan. Let us go back to the example
of Kh(p, o). The plan rrrlu is neither a strongly executable plan nor a weak

1 It is a variant of the example in [16].
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conformant plan. But this plan will still guarantee us reaching the o-state s8 in
the sense that we can end up with s8 from s2 by fully executing the plan, and
can also end up with s8 from s3 by executing the plan but skipping the third
r-moving which is not executable.

In this paper, the execution of a plan means executing the executable steps
and skipping the non-executable steps. We interpret Kh(ψ,ϕ) as that there is
such a plan achieving ϕ given ψ. Intuitively, such a plan is enough for us to know
how to achieve ϕ given ψ. Our interpretation is weaker than the interpretation
in [16] but the composition axiom is still valid under our weaker semantics.
Compared to the interpretation in [6,16], our interpretation is more realistic.

The rest of the paper is organized as follows. We introduce the language,
the semantics, and a sound and complete proof system in Sect. 2. In Sect. 3, we
introduce a notion of bisimulation for our logic. In the last section, we point out
some future directions.

2 The Logic

Definition 1 (Language). Given a set of propositional letters P, the language
LKhs is defined by the following BNF where p ∈ P:

ϕ ::= � | p | ¬ϕ | (ϕ ∧ ϕ) | Khs(ϕ,ϕ).

Khs(ψ,ϕ) expresses that the agent knows how to achieve ϕ given ψ. We use the
standard abbreviations ⊥, ϕ ∨ ψ and ϕ → ψ, and define Uϕ as the abbreviation
of Khs(¬ϕ,⊥). U is intended to be a universal modality, and it will become
clearer after we define the semantics.

Definition 2 (Models). A model is essentially a labelled transition system
(S, Σ,R,V) where:

– S is a non-empty set of states,
– Σ is a non-empty set of actions,
– R : Σ → 2S×S is a collection of transitions labelled by actions in Σ,
– V : S → 2P is a valuation function.

We write s
a−→ t and say t is an a-successor of s, if (s, t) ∈ R(a).

Note that the actions in Σ can be non-deterministic.

Definition 3 (Arrival States). Given a model (S, Σ,R,V), a state w ∈ S
and an action a ∈ Σ, ArrSta(w, a) is the set of states at which executing a on
w might arrive. Formally, it is defined as:

ArrSta(w, a) =

{
{w}, if w has no a-successor
{t ∈ S | w

a−→ t}, otherwise
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We write w
a−→st if t ∈ ArrSta(w, a). More generally, given a state w ∈ S and an

action sequence σ = a1 · · · an ∈ Σ∗, ArrSta(w, σ) is the set of states at which
executing σ on w might arrive. Formally, it is defined as:

ArrSta(w, σ) = {t | ∃t1 · · · tn−1 : w
a1−→st1

a2−→s · · · tn−1
an−−→st}.

We write w
σ−→st if t ∈ ArrSta(w, σ). In particular, σ can be the empty sequence

ε (when n = 0), and we set ArrSta(w, ε) = {w} for any w ∈ S, i.e., w
ε−→sw.

Note that ArrSta(w, a) 	= ∅, and it follows that ArrSta(w, σ) 	= ∅.

Definition 4 (Semantic). Suppose s is a state in a model M = (S, Σ,R,V).
The satisfaction relation � is defined as follows:

M, s � � always
M, s � p ⇐⇒ p ∈ V(s)
M, s � ¬ϕ ⇐⇒ M, s � ϕ
M, s � ϕ ∧ ψ ⇐⇒ M, s � ϕ and M, s � ψ
M, s � Khs(ψ,ϕ) ⇐⇒ there is σ ∈ Σ∗ such that for each w ∈ [[ψ]]M and

each t ∈ ArrSta(w, σ) we have M, t |= ϕ

where [[ψ]]M = {s ∈ S | M, s � ψ}.
Note that the semantics of Khs-formulas ignores the current state s. It is not
hard to see that a formula of the form Khs(ψ,ϕ) is globally true or false. Now we
can check that the operator U defined by Khs is actually a universal modality:

M, s � Uϕ ⇐⇒ M, s � Khs(¬ϕ,⊥)
⇐⇒ there is σ ∈ Σ∗ such that for each w ∈ [[¬ϕ]]M and each

t ∈ ArrSta(w, σ): M, t |= ⊥
⇐⇒ there is σ ∈ Σ∗ such that for each w ∈ [[¬ϕ]]M: there is no t

such that t ∈ ArrSta(w, σ)
⇐⇒ there is σ ∈ Σ∗ such that there is no w such that w ∈ [[¬ϕ]]M

⇐⇒ M, w � ϕ for all w ∈ S

Definition 5 (System SKHS). The proof system SKHS
2 is defined as follows:

Axioms Rules

TAUT all axioms of propositional logic MP
ϕ, ϕ→ψ

ψ

DISTU Up ∧ U(p → q) → Uq NECU
ϕ

Uϕ

COMPKh Khs(p, r) ∧ Khs(r, q) → Khs(p, q) SUB
ϕ(p)

ϕ[(ψ/p)]
EMP U(p → q) → Khs(p, q)
TU Up → p
4KU Khs(p, q) → UKhs(p, q)
5KU ¬Khs(p, q) → U¬Khs(p, q)

2
SKHS is exactly the same proof system as in [16].
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We can derive the following in SKHS. In the rest of the paper we often use it.

Proposition 1.  Uψ ∧ Uϕ → U(ψ ∧ φ) 3

Theorem 1. SKHS is sound w.r.t. the class of all models.

Proof. The only non-trivial case is COMPKh. Note that if there is an action
sequence σ leading you from any p-state to some r-state, and there is a sequence
η from any r-state to some q-state, then ση will make sure that you end up with
q-states from any p-state.

But ση is not necessarily a weak conformant plan for achieving q-states from
any p-state, since the execution of σ may interrupt and then the execution of ση
would terminate at r-states but not necessarily q-states. This is the reason why
COMPKh does not hold in [6].

Here are some notions before we prove the completeness. Given a set of LKhs

formulas Δ, let Δ|Khs and Δ|¬Khs be the collections of its positive and negative
Khs formulas:

Δ|Khs = {θ | θ = Khs(ψ,ϕ) ∈ Δ},

Δ|¬Khs = {θ | θ = ¬Khs(ψ,ϕ) ∈ Δ}.

Next we built a separate canonical model for each maximal consistent set Γ ,
for it is not possible to satisfy all Khs formulas simultaneously in a single model
since Khs formulas are globally true or false.

Definition 6 (Canonical Models). Given a maximal consistent set Γ w.r.t.
SKHS, the canonical model for Γ is Mc

Γ = 〈Sc
Γ , ΣΓ , Rc, Vc〉 where:

– Sc
Γ = {Δ | Δ is a maximal consistent set w.r.t. SKHS and Γ |Khs = Δ|Khs},

– ΣΓ = {〈ψ,ϕ〉 | Khs(ψ,ϕ) ∈ Γ},
– Δ

〈ψ,ϕ〉−−−→cΘ iff 1. Khs(ψ,ϕ) ∈ Γ , ψ ∈ Δ, ϕ ∈ Θ, or
2. Khs(ψ,ϕ) ∈ Γ , ¬ψ ∈ Δ, Δ = Θ, or
3. Khs(ψ,ϕ) ∈ Γ , ¬ψ ∈ Δ, ψ ∈ Θ,

– p ∈ Vc(Δ) iff p ∈ Δ.

We say that Δ ∈ Sc
Γ is a ϕ-state if ϕ ∈ Δ.

Let us compare our canonical models to Wang’s [16], where Δ
〈ψ,ϕ〉−−−→cΘ iff

Kh(ψ,ϕ) ∈ Γ , ψ ∈ Δ and ϕ ∈ Θ. Each state has a successor for each action in

our canonical models,4 but not in [16]. For example, Δ
〈⊥,⊥〉−−−−→cΔ in our canonical

models since Khs(⊥,⊥) ∈ Γ and � ∈ Δ, but Δ has no 〈⊥,⊥〉-successor in [16]
since ⊥ /∈ Δ.

Every state in Sc
Γ has the same collection of Γ ’s Khs formulas. It follows

immediately that:

3 Please refer to the proof of Proposition 2 in [16].
4 It is exactly the Proposition 5.
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Proposition 2. For any Δ,Δ
′
in Sc

Γ , Δ|Khs = Δ
′ |Khs.

Now we give an important proposition to be used later.

Proposition 3. If ϕ ∈ Δ for all Δ ∈ Sc
Γ , then Uϕ ∈ Δ for all Δ ∈ Sc

Γ .5

Now we prove the following two key propositions for the truth lemma. The
first one reflects our intuition that if we know how to achieve ϕ from ψ and we are
at a ψ-state, then there must be a ϕ-state where we could arrive. Moreover, the
second one reflects the intuition that the states where we arrive after executing
the plan for achieving ϕ must be ϕ-states.

Proposition 4. For any Khs(ψ,ϕ) ∈ Γ , any Δ ∈ Sc
Γ , if ψ ∈ Δ then there

exists Δ
′ ∈ Sc

Γ such that ϕ ∈ Δ
′
.

Proof. For suppose not. Then for all Δ
′ ∈ Sc

Γ , we have that ¬ϕ ∈ Δ
′
, i.e.,

ϕ → ⊥ ∈ Δ
′
. By Proposition 3, U(ϕ → ⊥) ∈ Δ. It follows by EMP that

Khs(ϕ,⊥) ∈ Δ. By COMPKh, Khs(ψ,⊥) ∈ Δ, i.e., U¬ψ ∈ Δ. By TU, ¬ψ ∈ Δ,
contradicting that ψ ∈ Δ. Therefore, there exists Δ

′ ∈ Sc
Γ such that ϕ ∈ Δ

′
.

Proposition 5. For any 〈ψ,ϕ〉 ∈ ΣΓ and any Δ ∈ Sc
Γ , Δ has a 〈ψ,ϕ〉-

successor. Moreover, if ψ ∈ Δ then ArrSta(Δ, 〈ψ,ϕ〉) = {Π ∈ Sc
Γ | ϕ ∈ Π} 	= ∅.

Proof. There are two cases:

Case 1. ψ /∈ Δ. It follows by the construction of Rc that Δ
〈ψ,ϕ〉−−−→c Δ. Thus,

Δ has a 〈ψ,ϕ〉-successor.
Case 2. ψ ∈ Δ. Then by Proposition 4, there exists Δ

′ ∈ Sc
Γ such that ϕ ∈ Δ

′
.

It follows by the construction of Rc that Δ
〈ψ,ϕ〉−−−→c Δ

′
. Thus Δ has a 〈ψ,ϕ〉-

successor. Moreover, ArrSta(Δ, 〈ψ,ϕ〉) = {Π ∈ Sc
Γ | Δ

〈ψ,ϕ〉−−−→c Π} = {Π ∈ Sc
Γ |

ϕ ∈ Π}. Since ϕ ∈ Δ
′
, {Π ∈ Sc

Γ | ϕ ∈ Π} 	= ∅.

Now we prove that if there exists a plan for achieving ϕ from ψ, then there
exists a one-step plan for achieving ϕ from ψ.

Proposition 6. If there is σ = 〈ψ1, ϕ1〉 · · · 〈ψn, ϕn〉 ∈ Σ∗
Γ (n ≥ 0) such that for

each ψ-state Δ ∈ Sc
Γ and each state Θ ∈ ArrSta(Δ,σ) we have ϕ ∈ Θ, then

there is 〈ψ′
, ϕ

′〉 ∈ ΣΓ such that for each ψ-state Δ ∈ Sc
Γ and each state Θ ∈

ArrSta(Δ, 〈ψ′
, ϕ

′〉) we have ϕ ∈ Θ.

Proof. Suppose that there is σ = 〈ψ1, ϕ1〉 · · · 〈ψn, ϕn〉 ∈ Σ∗
Γ such that for each

ψ-state Δ ∈ Sc
Γ and each state Θ ∈ ArrSta(Δ,σ) we have ϕ ∈ Θ. We have

that � is in every state in Sc
Γ . By Proposition 3, U(�) ∈ Γ , i.e., Khs(⊥,⊥) ∈ Γ .

Thus 〈⊥,⊥〉 ∈ ΣΓ . If there does not exist a ψ-state in Sc
Γ , then 〈ψ′

, ϕ
′〉 = 〈⊥,⊥〉

satisfies the conditions. In the following we suppose that there exists some ψ-
state in Sc

Γ . Next we prove the proposition by induction on the length n of σ.
Assume that Δ ∈ Sc

Γ is a ψ-state.

5 Please refer to the proof of Proposition 6 in [16].
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n = 0. Since ArrSta(Δ, ε) = ArrSta(Δ, 〈⊥,⊥〉) = {Δ}, 〈ψ′
, ϕ

′〉 = 〈⊥,⊥〉
satisfies the conditions.

n = 1. 〈ψ′
, ϕ

′〉 = 〈ψ1, ϕ1〉 satisfies the conditions.
n ≥ 2. There are two cases:
Case 1. There exists a ψ-state Δ

′ ∈ Sc
Γ such that ¬ψ1 ∈ Δ

′
. Either ψ1 ∈ Δ or

¬ψ1 ∈ Δ, then by the construction of Rc, either Δ
′ 〈ψ1,ϕ1〉−−−−−→c Δ or Δ

〈ψ1,ϕ1〉−−−−−→c Δ.
It follows that ArrSta(Δ, 〈ψ2, ϕ2〉 · · · 〈ψn, ϕn〉) ⊆ ArrSta(Δ

′
, σ), or ArrSta(Δ,

〈ψ2, ϕ2〉 · · · 〈ψn, ϕn〉) ⊆ ArrSta(Δ,σ). Let τ1 = 〈ψ2, ϕ2〉 · · · 〈ψn, ϕn〉. Then τ1 is
an action sequence of length n − 1 such that for each ψ-state Δ ∈ Sc

Γ and each
state Θ ∈ ArrSta(Δ, τ1) we have ϕ ∈ Θ.

Case 2. Every ψ-state in Sc
Γ is a ψ1-state. Then ψ-state Δ is also a ψ1-state.

There are two cases:
Case 2.1. There is a ϕ1-state Θ

′ ∈ Sc
Γ such that ¬ψ2 ∈ Θ

′
. By Proposition 5,

ArrSta(Δ, 〈ψ1, ϕ1〉) = {Π | ϕ1 ∈ Π}. Analogous to Case 1, 〈ψ3, ϕ3〉 · · · 〈ψn, ϕn〉
is an action sequence such that for each ϕ1-state Υ and each state Θ ∈ ArrSta(Υ,
〈ψ3, ϕ3〉 · · · 〈ψn, ϕn〉) we have ϕ ∈ Θ. Let τ21 = 〈ψ1, ϕ1〉〈ψ3, ϕ3〉 · · · 〈ψn, ϕn〉.
Thus τ21 is an action sequence of length n−1 such that for each ψ-state Δ ∈ Sc

Γ

and each state Θ ∈ ArrSta(Δ, τ21) we have ϕ ∈ Θ.
Case 2.2. Every ϕ1-state in Sc

Γ is a ψ2-state, i.e., ¬ϕ1 or ψ2 is in each state
in Sc

Γ . Each state in Sc
Γ is a maximal consistent set, so ϕ1 → ψ2 is in each

state in Sc
Γ . By Proposition 3, U(ϕ1 → ψ2) ∈ Γ . By EMP, Khs(ϕ1, ψ2) ∈ Γ .

We have that Khs(ψ1, ϕ1) ∈ Γ and Khs(ψ2, ϕ2) ∈ Γ . By using COMPKh twice,
Khs(ψ1, ϕ2) ∈ Γ , i.e., 〈ψ1, ϕ2〉 ∈ ΣΓ .

Now we show that ArrSta(Δ, 〈ψ1, ϕ1〉〈ψ2, ϕ2〉) = ArrSta(Δ, 〈ψ1, ϕ2〉). By
Proposition 5, ArrSta(Δ, 〈ψ1, ϕ1〉) = {Π | ϕ1 ∈ Π} and ArrSta(Δ, 〈ψ1, ϕ2〉) =
{Π | ϕ2 ∈ Π}. For any Λ ∈ ArrSta(Δ, 〈ψ1, ϕ1〉), ϕ1 ∈ Λ, then
ψ2 ∈ Λ since every ϕ1-state is a ψ2-state. Then for any Λ ∈
ArrSta(Δ, 〈ψ1, ϕ1〉), ArrSta(Λ, 〈ψ2, ϕ2〉) = {Π | ϕ2 ∈ Π}. It follows that
ArrSta(Δ, 〈ψ1, ϕ1〉〈ψ2, ϕ2〉) = {Π | ϕ2 ∈ Π}. So ArrSta(Δ, 〈ψ1, ϕ1〉〈ψ2, ϕ2〉) =
ArrSta(Δ, 〈ψ1, ϕ2〉).

Then, ArrSta(Δ, 〈ψ1, ϕ1〉 · · · 〈ψn, ϕn〉) = ArrSta(Δ, 〈ψ1, ϕ2〉〈ψ3, ϕ3〉 · · · 〈ψn,
ϕn〉). Let τ22 = 〈ψ1, ϕ2〉〈ψ3, ϕ3〉 · · · 〈ψn, ϕn〉. Then τ22 is an action sequence of
length n− 1 such that for each ψ-state Δ ∈ Sc

Γ and each state Θ ∈ ArrSta(Δ, τ22)
we have ϕ ∈ Θ.

In all cases, there exists τ ∈ Σ∗
Γ of length n−1 such that for each ψ-state Δ ∈

Sc
Γ and each state Θ ∈ ArrSta(Δ,σ) we have ϕ ∈ Θ. The induction hypothesis

is that if there is σ ∈ Σ∗ of length n − 1 such that for each ψ-state Δ ∈ Sc
Γ and

each state Θ ∈ ArrSta(Δ,σ) we have ϕ ∈ Θ, then there exists 〈ψ′
, ϕ

′〉 ∈ ΣΓ

such that for each ψ-state Δ ∈ Sc
Γ and each state Θ ∈ ArrSta(Δ, 〈ψ′

, ϕ
′〉) we

have ϕ ∈ Θ. It follows by IH that there exists 〈ψ′
, ϕ

′〉 ∈ ΣΓ such that for each
ψ-state Δ ∈ Sc

Γ and each state Θ ∈ ArrSta(Δ, 〈ψ′
, ϕ

′〉) we have ϕ ∈ Θ. The
induction is complete.

Now we are ready to prove the truth lemma.
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Lemma 1 (Truth Lemma). For any formula ϕ ∈ LKhs, Mc
Γ ,Δ |= ϕ iff ϕ ∈ Δ.

Proof. Boolean cases are trivial. We only focus on the case of Khs(ψ,ϕ).
For the left to right direction, suppose that Mc

Γ ,Δ � Khs(ψ,ϕ). Then there
exists σ ∈ Σ∗

Γ such that for each Mc
Γ ,Δ

′ � ψ: if Δ
′ σ−→s Δ

′′
then Mc

Γ ,Δ
′′ � ϕ.

By IH, there exists σ ∈ Σ∗
Γ such that for each ψ-state Δ

′
: if Δ

′ σ−→s Δ
′′

then
ϕ ∈ Δ

′′
. By Proposition 6, there exists 〈ψ′

, ϕ
′〉 ∈ ΣΓ such that for each ψ-state

Δ
′
: if Δ

′ 〈ψ′
,ϕ

′ 〉−−−−−→s Δ
′′

then ϕ ∈ Δ
′′
. (�)

If there is no ψ-state, then by Proposition 3, U¬ψ ∈ Δ, i.e., Khs(ψ,⊥) ∈ Δ.
Since ⊥ → ϕ is a tautology, U(⊥ → ϕ) ∈ Δ by NECU. Then by EMP and
COMPKh, Khs(ψ,ϕ) ∈ Δ. In the following we suppose that there exists some
ψ-state. Then there are two cases:

Case 1. There exists a ψ-state Λ such that ¬ψ
′ ∈ Λ. For each ψ-state Δ

′
,

either ψ
′ ∈ Δ

′
or ¬ψ

′ ∈ Δ
′
, it follows that either Λ

〈ψ′
,ϕ

′ 〉−−−−−→c Δ
′

or Δ
′ 〈ψ′

,ϕ
′ 〉−−−−−→c

Δ
′
. So each ψ-state is reached via 〈ψ′

, ϕ
′〉 from some ψ-state. By (�), every

ψ-state is a ϕ-state. Similarly to the case 2.2 in the proof of Proposition 6,
Khs(ψ,ϕ) ∈ Γ . Thus Khs(ψ,ϕ) ∈ Δ.

Case 2. Every ψ-state is a ψ
′
-state. Similarly, we have that Khs(ψ,ψ

′
) ∈ Δ.

By Proposition 5, each ϕ
′
-state is reached via 〈ψ′

, ϕ
′〉 from some ψ-state. It

follows by (�) that each ϕ
′
-state is a ϕ-state. Similarly, Khs(ϕ

′
, ϕ) ∈ Δ. And

we have that Khs(ψ
′
, ϕ

′
) ∈ Δ. Then by using COMPKh twice, Khs(ψ,ϕ) ∈ Δ.

In both cases, we have that Khs(ψ,ϕ) ∈ Δ. Thus the left to right direction
holds.

For the other direction, suppose that Khs(ψ,ϕ) ∈ Δ, i.e., Khs(ψ,ϕ) ∈ Γ .
Then 〈ψ,ϕ〉 ∈ ΣΓ . Next we show that Mc

Γ ,Δ � Khs(ψ,ϕ). Suppose Mc
Γ ,Δ � ψ.

By IH, ψ ∈ Δ. By Proposition 5, Δ
〈ψ,ϕ〉−−−→s Θ iff ϕ ∈ Θ. By IH, ϕ ∈ Θ iff

Mc
Γ , Θ |= ϕ. Thus, Mc

Γ ,Δ |= Khs(ψ,ϕ). The right to left direction also holds.

The completeness of SKHS follows immediately.

Theorem 2. SKHS is strongly complete w.r.t. the class of all models.

Moreover, SKHS is decidable.

Theorem 3. If ϕ is satisfiable then it is satisfiable on a finite model. Indeed,
it is satisfiable on a finite model containing at most 2k states, where k is the
number of subformulas of ϕ. It follows that SKHS is decidable.6

6 We can prove it via the filtration method. Consider the filtrations of canonical models
through the subformula closed set generated by ϕ. The filtration model is indeed a
bounded small model for ϕ. Here we do not show the details of the proof, since the
proposition is a corollary of Proposition 8 in [16], for SKHS is same as the proof
system in [16] and both systems are sound and complete.
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3 Bisimulation

Now we introduce a suitable notion of bisimulation for our logic, and study the
model theoretical aspects of our logic.7

Here are some notions before we introduce the bisimulation. We write U
σ−→s

V whenever V =
⋃

ui∈U

ArrSta(ui, σ). We write U →s V whenever there is a σ

such that U
σ−→s V .

Definition 7 (LKhs-equivalence). Let M, w and M′
, w

′
be two pointed mod-

els. We say M, w and M′
, w

′
are LKhs-equivalent and write M, w ≡LKhs

M′
, w

′
, if and only if for all ϕ ∈ LKhs, M, w � ϕ iff M′

, w
′ � ϕ.

Definition 8 (Definability). Let M = 〈S, Σ,R,V〉 be a model. A set U ⊆ S
is LKhs-definable in M iff there exists ϕ ∈ LKhs such that U = [[ϕ]]M.

Here we have a notion of bisimulation for LKhs.

Definition 9 (Bisimulation). Let M = 〈S, Σ,R,V〉 and M′
= 〈S ′

, Σ
′
,

R′
,V ′〉 be two models. A non-empty relation Z ⊆ S × S ′

is called an LKhs-
bisimulation between M and M′

iff wZw
′
implies:

Atom: V (w) = V (w
′
).

Khs-Zig: for any LKhs-definable U ⊆ S, if U →s V for some V ⊆ S, then there
is V

′ ⊆ S ′
such that (i) Z[U ] →s V

′
and (ii) for each v

′ ∈ V
′

there is v ∈ V
such that vZv

′
.

Khs-Zag: for any LKhs-definable U
′ ⊆ S ′

, if U
′ →s V

′
for some V

′ ⊆ S ′
, then

there is V ⊆ S such that (i) Z−1[U
′
] →s V and (ii) for each v ∈ V there is

v
′ ∈ V

′
such that vZv

′
.

A-Zig: for all v in S there is v
′
in S ′

such that vZv
′
.

A-Zag: for all v
′
in S ′

there is v in S such that vZv
′
.

where Z[U ] = {w
′ | wZw

′
for some w ∈ U} and Z−1[U

′
] = {w | wZw

′

for some w
′ ∈ U

′}. We write M, w ↔LKhs M′
, w

′
when there is an LKhs-

bisimulation Z between M and M′
such that wZw

′
.

Now we show that LKhs-bisimularity implies LKhs-equivalence.

Theorem 4. Let M = 〈S, Σ,R,V〉 and M′
= 〈S ′

, Σ
′
, R′

,V ′〉 be two models,
w ∈ S and w

′ ∈ S ′
. If M, w ↔LKhs M′

, w
′
, then M, w ≡LKhs M′

, w
′
.

Proof. Suppose that M, w ↔LKhs M′
, w

′
, i.e., there is an LKhs-bisimulation

Z ⊆ (S × S ′
) such that wZw

′
. The proof is by structural induction on LKhs-

formulas. Boolean cases are trivial. We only prove the case for Khs(ψ,ϕ).
Suppose that M, w � Khs(ψ,ϕ). Then there exists σ ∈ Σ∗ such that

[[ψ]]M σ−→s V and V ⊆ [[ϕ]]M. We first claim that Z[[[ψ]]M] = [[ψ]]M
′
.

(⊆) Let v
′ ∈ Z[[[ψ]]M]. Then there exists v ∈ [[ψ]]M such that vZv

′
. By IH,

v
′ ∈ [[ψ]]M

′
.

7 This section borrows ideas from [4].
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(⊇) Let v
′ ∈ [[ψ]]M

′
. By A-Zag there is v ∈ S such that vZv

′
. By IH, v ∈ [[ψ]]M.

Then, v
′ ∈ Z[[[ψ]]M].

Now we show that M′
, w

′ � Khs(ψ,ϕ). From Khs-Zig and the fact that
[[ψ]]M →s V , there is V

′ ⊆ S ′
such that (i) Z[[[ψ]]M] →s V

′
(i.e., [[ψ]]M

′ →s V
′
),

and (ii) for every v
′ ∈ V

′
there is v ∈ V such that vZv

′
. From (ii) and the fact

that V ⊆ [[ϕ]]M, for every v
′ ∈ V

′
there is v ∈ [[ϕ]]M such that vZv

′
. By IH,

v
′ ∈ [[ϕ]]M

′
. Thus, [[ψ]]M

′ →s V
′
and V

′ ⊆ [[ϕ]]M
′
. Hence, M′

, w
′ � Khs(ψ,ϕ).

For the other direction use Khs-Zag and A-Zig.

Now we prove the other direction. Here we focus on finite models rather than
image-finite models. This is because the global modality is definable in LKhs, and
thus a finite domain is required in order to ensure the image-finiteness property.

Theorem 5. Let M = 〈S, Σ,R,V〉 and M′
= 〈S ′

, Σ
′
, R′

,V ′〉 be two finite
models, w ∈ S and w

′ ∈ S ′
. If M, w ≡LKhs M′

, w
′
, then M, w ↔LKhs M′

, w
′
.

Proof. Let Z = {(v, v
′
) ∈ (S × S ′

) | M, v ≡LKhs M′
, v

′}. Next we show that Z
is an LKhs-bisimulation. Let (w,w

′
) be an element in Z.

(Atom): It is trivial.
(A-Zig): Let v be an element in S. Towards a contradiction, suppose that there is
no v

′ ∈ V
′
such that vZv

′
. Let S ′

= {v
′
1, · · · , v

′
n}, n ∈ N. Then, for each v

′
i ∈ S ′

there is a formula θi such that M, v � θi but M, v
′
i � θi. Let θ = θ1 ∧ · · · ∧ θn.

Then M, v � θ but M, v
′
i � θ for each v

′
i ∈ S ′

. It follows that M, w � ¬U¬θ but
M, w � ¬U¬θ, contradicting wZw

′
.

(A-Zag): Analogous to the A-Zig case.
(Khs-Zig): Suppose that ψ ∈ LKhs and [[ψ]]M →s V for some V ⊆ S. It suffices
to find a V

′ ⊆ S ′
such that Z[[[ψ]]M] →s V

′
and for each v

′ ∈ V
′
there is v ∈ V

such that vZv
′
. We first prove that Z[[[ψ]]M] = [[ψ]]M

′
.

(⊆) Let v
′ ∈ Z[[[ψ]]M]. Then there exists v ∈ [[ψ]]M such that vZv

′
. By Z’s

definition, v
′ ∈ [[ψ]]M

′
.

(⊇) Let v
′ ∈ [[ψ]]M

′
. By A-Zag there exists v ∈ S such that vZv

′
. By Z’s

definition, v ∈ [[ψ]]M. Then, v
′ ∈ Z[[[ψ]]M].

Then we just need to find an appropriate V
′

for [[ψ]]M
′
. Note that if [[ψ]]M

is empty, then [[ψ]]M
′

= Z[[[ψ]]M] is empty too and we can just let V
′

= ∅.
In the following we assume that [[ψ]]M 	= ∅. Then [[ψ]]M

′
= Z[[[ψ]]M] 	= ∅ by

A-Zig. Thus V 	= ∅ and V
′ 	= ∅ by the definition of arrival states. Towards a

contradiction, suppose that for each V
′ ⊆ S ′

such that [[ψ]]M
′ →s V

′
, there is

v
′

V ′ ∈ V
′
such that there is no v ∈ V such that vZv

′

V ′ . Then for each v ∈ V we
have a formula ϕv

V ′ such that M, v � ϕv
V ′ but M′

, v
′

V ′ � ϕv
V ′ . Since the models

are finite, we can define θV ′ =
∨

v∈V ϕv
V ′ and θ =

∧
{V ′ |[[ψ]]M

′ →sV ′ } θV ′ . Then

M, v � θ for all v ∈ V , but there is v
′

V ′ ∈ V
′
such that M′

, v
′

V ′ � θ for each V
′

such that [[ψ]]M
′ →s V

′
. Since Khs-formulas are global, M, w � Khs(ψ, θ) but
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M′
, w

′
� Khs(ψ, θ). Contradiction.

(Khs-Zag): Analogous to the Khs-Zig case.

4 Conclusion

In this paper, we interpret the knowing how formula Khs(ψ,ϕ) as that the agent
has a plan for achieving ϕ given ψ. The plan for achieving ϕ given ψ is a finite
linear action sequence such that the execution of the action sequence at each
ψ-state will end up with some ϕ-state. We do not demand that every action is
executable. Instead, if one action is not executable at the current state, then
skip it and continue to the next action. We give a sound and complete axiomatic
system SKHS which is same as the system in [16]. Borrowing the idea from
the completeness proof in [16], we revise the transitions of the canonical model,
which makes that there is a one-step plan if you know how to achieve ϕ given
ψ. Actually every action is executable at every state in our canonical models,
therefore our canonical models also apply to the completeness proof in [16], but
not vice versa. Moreover, SKHS is decidable. We also study the model theoretical
aspects of our logic by introducing a suitable notion of bisimulation for the logic.
We prove that bisimularity implies modal equivalence, and over finite models,
modal equivalence implies bisimulation.

As we point out, SKHS is same as the proof system in [16]. Different inter-
pretations of knowing-how lead to the same logic, which shows that this axioma-
tization of knowing-how just illustrate our daily understanding of knowing how.
For future research, we can explore other semantics of the knowing-how operator
which result in the same logic as ours.

An important next step is to consider the multi-agent version of knowing how.
Distributed knowing-how based on single-step plans has been studied (see [12]).
We can consider distributed knowledge-how based on multistep plans, where a
group of agents may achieve a lot more together. For example, if you know how
to get from A to B and I know how to get from B to C, then we together could
know how to get from A to C.

Acknowledgments. The author thanks Yanjing Wang for giving the author the ideas
of the skippable plan and the bisimulation, and his helpful comments to make the paper
more readable. The author thanks the three anonymous reviewers for their insightful
comments on the early version of the paper.
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Abstract. This paper formalises the followership in networks that
agents following or unfollowing each other dynamically. The semantics is
based on the basic hybrid logic and we extend the logic with a proposi-
tional action modality [a ↑ θ] for the changes of followership. The main
contribution of this paper is the completeness result. Moreover, we have
proved that all pure axiomatic extensions have completeness and dis-
cussed some possible future works and extensions, in particular, some
features of the extended action modality [a ↑ ϕ], like repetition regrets
are discussed.

1 Introduction

Logics in social networks get more and more attentions in recent years [5,11–
13,18]. In [18,19], they characterised the action of messaging in networks by
followership in standard modal logic. This paper focuses on actions of changing
followership by propositions. In other words, we assume that agents could choose
to follow a particular group of agents. In social networks, this can be understood
as agents looking for some particular agents, i.e., searching on Twitter, Weibo,
Facebook etc.1 Like most dynamic logics [7,14,17], we use the notation [a ↑ θ]
standing for “agent a is following all the θ-agents”. For “θ-agents”, we mean that
agents have the property of θ. The logic extends the basic hybrid logic with an
action operator [a ↑ θ] for changing followership, the completeness of the logic
and pure axiomatic extensions have been contributed.

The logic can be categorized as a modal logic for binary relation changes. A
feature of dynamic operators in the logic is keeping states stable but changing a
particular group of relations. There are some literature contributed to that areas.
In relation-changing modal logic [1], it introduced several different modalities
that are able to delete, add or swap an edge between a pair of states. That logic
is able to interpret some relation-changing games called sabotage games [3,15].
A difference with relation-changing modal logic is that we only have one kind
of modality for the interpretation of adding, deleting, and swapping relations.
Also, based on hybrid logic and the semantic of “states as agents”, relations of
agents are syntactically presented in a simple way.

1 Our action here is a little bit in difference, agents will follow and only all the agents
satisfied by the claimed property. Action itself does not preserving the old relations.
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In [2], they introduced some data structure modifiers for the relation chang-
ing, it can be used for reasoning about changes in graph. They have discussed two
different actions for changing relations, [a + (ϕ,ψ)] and [a − (ϕ,ψ)]. [a + (ϕ,ψ)]
means adding an accessible arrow from ϕ-states to ψ-states for agent a, and
[a − (ϕ,ψ)] for removing. Semantically, our logic are different, we simply add
arrows from agent a to all ψ-agents, and remove arrows from agent a to all ¬ψ-
agents by action [a ↑ ψ]. It is easier and simpler for the interpretation of relation
changes, if we only want to focus on the structural dynamics among a group of
agents.

Moreover, extensions on the logic of relation changes have been studied in
literature like logics of public assignments (see, e.g., [6,10]), of public announce-
ments (see, e.g., [8]), and of preference modification [16]. In particular, arrow
update logic (see, e.g., [9,10]) focuses on the study of epistemic access elimi-
nation, and can be used for the reasoning of multi-agent belief changes. The
logic allows a statement eliminating the access to all epistemic possibilities in
which the statement does not satisfied. Technically, it’s similar as the logic we
introduced in this paper, but arrow update logic is an extension of the basic
epistemic logic and our logic is an extension of hybrid modal logic. The main
difference between arrow updates and the action of followership is that arrow
updates remove edges according to a pre and a post-condition, and action of
followership can remove arbitrary arrows in named models (with hybrid modal
logic semantics).

Finally, not like the logics we mentioned above, our logic is based on hybrid
modal logic with a simple extension of modality. Dynamic modalities in our logic
are not reducible, and there is no reduction axioms for dynamic operators.

As this is a preliminary logic for the action of followership. We give our
actions of following a number of idealising assumptions:

Universality Executing an action is universally no difference.
Privacy The outcome of an action only influents the actor.
Invariance Actions does not changing any propositional sentences.
Sincerity After an action, the actor will follow and only follow

those agents satisfied by the claimed propositions.

These assumptions allows us to focus on the core concept of network structure
dynamics, and will be taken as axiom schemata in Subsect. 3.1.

The structure of the paper goes as follows. We will give the language and
semantics of the logic of followership in the coming section, and discuss some
properties of our semantics. Then we offer the axiomatisation and discuss related
issues, the completeness proof will be offered in Sect. 3. Finally, we conclude in
Sect. 4 and elaborate on some property of extensions, like repetition regrets.

2 Language and Semantics

Fix Agt to be a non-empty names set of agents, called set of nominals, and
Let Prop be a non-empty set of propositional letters. The language of Dynamic
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Hybrid Logic for Followership (DHLF) is defined as follows.

θ ::= a | p | ¬θ | (θ ∧ θ)

ϕ ::= θ | ¬ϕ | (ϕ ∧ ϕ) | �ϕ | @aϕ | [a ↑ θ]ϕ

where a ∈Agt, p ∈Prop.
For brevity, PROP stands for the propositional language of generated by θ.2 θ

will stand for propositional formulas in the paper by default.
We define a Network Model as follows.

Definition 1 (Network Model). A network model M = (W,R,G, V ) is a
tuple where

– W is a non-empty set of agents;
– R ⊆ W × W is a following relation;
– G : Agt → W assigns each nominal (name) an element of W , called a name

assignment;
– V : Prop → ℘(W ) assigns each propositional letter a subset of W , called a

valuation.

The pair F = (W,R) is called a Kripke frame, the network model M is said to
be based on the Kripke frame F .

For brevity, we will say model and frame instead of network model and network
frame respectively when no confusion may occur, and similar for models and
frames. We will say nominal(s) instead of agent’s name(s), and agent if we do
not need to mention its name.

Since this is a logic about followership, it is allowed that agent can simply
follow everyone in a network. This is to say that [a ↑ θ] means ‘a chooses to only
follow all the agents satisfying by θ’. For formal details, we refer to the following
definition.

Definition 2 (Interpretation). Let M = (W,R,G, V ) be a network model.
For any ϕ ∈DHLF, the relation M,w |= ϕ is defined by induction, where w ∈ W .

M,w |= a iff G(a) = w
M,w |= p iff w ∈ V (p)
M,w |= ¬ϕ iff M,w �|= ϕ
M,w |= (ψ1 ∧ ψ2) iff M,w |= ψ1 and M,w |= ψ2

M,w |= �ψ iff there exists u ∈ W , wRu and M,u |= ψ
M,w |= @aψ iff M,G(a) |= ψ
M,w |= [a ↑ θ]ψ iff [[a↑θ]]M,w |= ψ

where [[a↑θ]]M = (W,R[aθ ], G, V ) is a network model with R[aθ ] defined as follows.

2 In the later section, when we talk about the extended languages, the set of Agt will
then be substituted by the extended set as well.
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– For any w, u ∈ W , wR[aθ ]u iff
{

wRu if G(a) �= w
M,u |= θ otherwise

The dual operators � := ¬�¬ and common boolean operators ∨,→,↔ are
interpreted as usual. Also, 
 is indicating a tautology and ⊥ := ¬
 is for a
contradiction. Moreover, we have the usual inductive definition over |= by con-
vention.

Observing Definition 2, we have a general inductive definition for a sequence
of action modalities. Before we present the details, here we introduce some short-
enings.

Definition 3 (Sequences). Let ai ∈Agt and θi ∈PROP for any i ∈ N. −→a be
a finite sequence of a1θ1, a2θ2, . . . , anθn. We write the converse of −→a as ←−a :
anθn, . . . , a2θ2, a1θ1. A finite sequence of actions modalities [−→a ] 3 is defined by
[a1 ↑ θ1][a2 ↑ θ2] . . . [an ↑ θn]. [[−→a ]] := [a1,...,an

θ1,...,θn
] and [[←−a ]] := [an,...,a1

θn,··· ,θ1
] indicate a

sequence of action updates.

Now, we will just say “sequence(s)” instead of “finite sequence(s)”, and −→a stands
for arbitrary well defined sequence in general. The following is the generalisation
of model updating by any sequences.

Proposition 1. Let M = (W,R,G, V ) be a network model and w ∈ W be a
state. We have a general semantics for any finite sequence of action modalities.

M,w |= [−→a ]ψ iff [[←−a ]]M,w |= ψ

where network model [[←−a ]]M = (W,R[[←−a ]], G, V ), and R[[←−a ]] is defined as fol-
lows.

– For any w, u ∈ W and the sequence ←−a = anθn,
←−
a′ ,

wR[[←−a ]]u iff

{
wR[[

←−
a′ ]]u if G(an) �= w

M,u |= θn otherwise

Proof. Induction on the length of −→a , and using Definition 2.

Before we move to the next section, we elaborate on some features of our
action operator here. Actions are not partial: �|= [a ↑ θ]�ϕ → [a ↑ θ]�ϕ. Let
θ = p ∨ (b ∧ ¬p) and ϕ = p, we can define a model such that M,w |= [a ↑ θ]�ϕ
but M,w �|= [a ↑ θ]�ϕ. That means the operator can interpret exceptions of
followership. Even our action operator is memoryless,4 we can use disjunct-forms
to preserve historical actions.

Moreover, we can define some agents’ abilities in social networks. For exam-
ple, pure formula like [i ↑ k]@i��j reflects “the updated distance of followership
between i and j is at most in 2”; (@j¬�k ∧ @k�j) → [k ↑ ¬j]@k¬�j means
“the reason of why unfollowing, as they are unfollowers”, etc. We will return for
more discussion in Sect. 4.
3 The converse of [−→a ] is [←−a ] which is defined by [an ↑ θn] . . . [a2 ↑ θ2][a1 ↑ θ1].
4 It means that agents are dropping p-property, if they update with q-property.
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3 Axiomatisation

The axiomatisation is a conservative extension on the hybrid logic as in [4,
Section 7.3]. We will first offer an axiomatisation of our logic and then discuss
the issues of names in Subsect. 3.1. By offering a named model in Subsect. 3.2,
the completeness results are proved in Subsect. 3.3.

Let ϕ ∈ Lan be a formula and L be an axiomatisation. ϕ is provable in
L, notated L ϕ, if there exists a finite sequence ψ0, . . . , ψn ∈ Lan, such that
ψ0 ∧ . . . ∧ ψn and (ψ0 ∧ . . . ∧ ψn) → ϕ are provable in L. Let Γ ⊆ Lan. Γ is
consistent in L if Γ �L ⊥: for any finite sequence, χ0, . . . , χn ∈ Γ , we have no
L (χ0 ∧ . . . ∧ χn) → ⊥, written �L (χ0 ∧ . . . ∧ χn) → ⊥; Γ is inconsistent in L if
Γ is not consistent in L.

For brevity, when the axiomatisation L is fixed, we will just write  ϕ instead
of L ϕ. Furthermore, we say that ϕ is provable instead of saying that ϕ is
provable in L. The set of axiom schemata for hybrid logic in DHLF is defined as
in Fig. 1, and the set of inference rules is given in Definition 4.

PROP all propositional tautology instances K (ϕ → ψ) → ( ϕ → ψ)
K@ @a(ϕ → ψ) → (@aϕ → @aψ) sdual @aϕ ↔ ¬@a¬ϕ

intro (a ∧ ϕ) → @aϕ nom (@ab ∧ @bϕ) → @aϕ

refx @aa symc @ab ↔ @ba

agree @a@bϕ ↔ @bϕ back @aϕ → @aϕ

Fig. 1. Axiom schemata for hybrid logic, where a, b ∈Agt, ϕ, ψ ∈DHLF.

[]K [a↑θ](ψ → ϕ) → ([a↑θ]ψ → [a↑θ]ϕ) []dual [a↑θ]ψ ↔ ¬[a↑θ]¬ψ

[]dia (¬a ∧ [a↑θ] ψ) ↔ (¬a ∧ [a↑θ]ψ) []ignr [a↑θ]χ ↔ χ

[]@ [a↑θ]@bϕ ↔ @b[a↑θ]ϕ []sinc @bθ ↔ @a[a↑θ] b

Fig. 2. Axioms schemata for actions, where a, b ∈Agt, θ, χ ∈PROP, ϕ, ψ ∈DHLF.

Definition 4 (Inference rules). For any ϕ ∈DHLF, θ ∈PROP, and a, b ∈Agt,
we have

– MP: if ϕ and ϕ → ψ are both provable, then so is ψ.
– Nec: if ϕ is provable, then so is �ϕ.
– Nec@: if ϕ is provable, then so is @aϕ.
– Nec[]: if ϕ is provable, then so is [a ↑ θ]ϕ.
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3.1 States Without Names

In this subsection, we offer the interpretation and soundness proofs of axioma-
tisation, and discuss the problems of “canonical model” in our logic like the
“unique nominal property” and the “sufficiency of maximal consistent sets”.

Definition 5 (DHLF). The logic DHLF is the smallest set containing all
axiom schemata in Figs. 1 and 2, and inference rules in Definition 4. Let
Γ ⊆ DHLF and Γ is maximal consistent in DHLF, written mcs Γ , which means:

– Γ is consistent in DHLF: Γ � ⊥;
– Γ is maximal: for any Γ ′ ⊆ DHLF, if Γ ⊂ Γ ′ then Γ ′  ⊥.

Observing that Γ is maximal can also be interpreted as ‘for any well-formed
formula ϕ, either ϕ ∈ Γ or ¬ϕ ∈ Γ ’.

Proposition 2. The following are some derivable formulas.
[]or [a ↑ p](q ∨ r) ↔ ([a ↑ p]q ∨ [a ↑ p]r) []falsum [a ↑ p]⊥ ↔ ⊥
[]and [a ↑ p](q ∧ r) ↔ ([a ↑ p]q ∧ [a ↑ p]r) bridge (�a ∧ @ap) → �p

Proof. The proof of theorems with action operators can be showed simply from
the semantics, we show bridge here only. We show the form  (�a∧�ψ) → @aψ
only using Fig. 1. By PROP,  (�a ∧ �ψ) → �(a ∧ ψ). Apply PROP on intro,
 �(a ∧ ψ) → �@aψ, we then have  �(a ∧ ψ) → @aψ with back and PROP.
With  (�a ∧ �ψ) → �(a ∧ ψ), we have  (�a ∧ �ψ) → @aψ, the derivation of
bridge then is followed.

Proposition 3 (Soundness). All axiom schemata are valid, and rules preserve
validity in DHLF.

Proof. We show the soundness of []dia and []sinc the rest are omitted. Let
M,w be an arbitrary pointed model. For []dia: M,w |= ¬a ∧ [a ↑ θ]�ψ; iff
G(a) �= w and [[a↑θ]]M,w |= �ψ; iff G(a) �= w and for some v ∈ W , wR[aθ ]v and
[[a↑θ]]M,v |= ψ; iff G(a) �= w and for some v ∈ W , wRv and M,v |= [a ↑ θ]ψ;
iff M,w |= ¬a ∧ �[a ↑ θ]ψ.

For []sinc: We prove it by two directions: (⇒) Let M,w |= @bθ. (1) There
is a v ∈ W such that G(b) = v and M,v |= θ. Also M,w |= @a@bθ by agree,
and M,u |= @bθ for some G(a) = u by semantics. Then we have uR[aθ ]v, and
[[a↑θ]]M,u |= �b from (1). That’s M,u |= [a ↑ θ]�b and M,w |= @a[a ↑ θ]�b
since G(a) = u. (⇐) Let M,w |= @a[a ↑ θ]�b, then M,u |= [a ↑ θ]�b for
some G(a) = u, and [[a ↑ θ]]M,u |= �b. There exists v ∈ W , such that uR[aθ ]v
and [[a ↑ θ]]M,v |= b. We then have uR[aθ ]v and G(b) = v by semantics. Since
G(a) = u, then by semantics, we have M,v |= θ from uR[aθ ]v. That’s M,v |= b∧θ
since G(b) = v. Then by intro, M,v |= @bθ, and M,w |= @bθ by semantics.

Recall axiom schemata in Fig. 2 and idealising assumptions of the introduc-
tion, we find that assumptions are turned into axiom schemata. Like []sinc
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stands for Sincerity,5 []@ stands for Universality, []dia stands for Privacy,
[]ignr stands for Invariance. We will continue the discussion of semantics in
Sect. 4.

Now we are moving for elaborating on the properties of maximal consistent
sets in our logic. For brevity, the following definition introduced some necessary
terminology.

Definition 6. Let Φ be a set of formulas, a ∈Agt, θ ∈PROP and ϕ ∈DHLF. We
define that [a ↑ θ]Φ = {ψ | [a ↑ θ]ψ ∈ Φ}, called [a ↑ θ]Φ is upgraded by [a ↑ θ].
Similar, we defined Φi = {ψ | @iψ ∈ Φ}, it’s yielded by Φ. Generally, for ←−e , let←−c = (cnθn,←−e ), [←−c ]Φ is upgraded by [cn ↑ θn].

According to Definition 6, we have the following lemma for upgraded mcss.

Lemma 1 (mcs upgrading). Let Δ be an mcs and ←−a be any sequence, [←−a ]Δ
is an mcs.

Proof. Proof by induction on length(←−a ). When length(←−a ) = 0, it is trivial. We
show the case that length(←−a ) = 1. Let ϕ ∈DHLF, and Δ is an mcs. We prove
that [a ↑ θ]Δ is an mcs.

– Assume that [a ↑ θ]Δ is not maximal, then there is a Δ′ such that [a ↑ θ]Δ ⊂ Δ′

and Δ′ � ⊥. Then there exists a χ ∈ Δ′ but χ �∈ [a ↑ θ]Δ. By Definition 6, we
have [a ↑ θ]χ �∈ Δ. For the property of mcs, we have ¬[a ↑ θ]χ ∈ Δ, by []dual,
[a ↑ θ]¬χ ∈ Δ. By Definition 6, ¬χ ∈ [a ↑ θ]Δ, that’s ¬χ ∈ Δ′, then Δ′  ⊥,
a contradiction.

– Assume that [a ↑ θ]Δ is not consistent. There exists ψ1, . . . , ψm ∈ [a ↑ θ]Δ
such that  (ψ1 ∧ · · · ∧ ψm) → ⊥, that’s  ¬(ψ1 ∧ · · · ∧ ψm). By Nec[],  [a ↑
θ]¬(ψ1 ∧ · · · ∧ ψm), and we have [a ↑ θ]¬(ψ1 ∧ · · · ∧ ψm) ∈ Δ by mcs property,
thus ¬[a ↑ θ](ψ1 ∧ · · · ∧ ψm) ∈ Δ by []dual, [a ↑ θ](ψ1 ∧ · · · ∧ ψm) �∈ Δ by
consistency. Also, we have [a ↑ θ]ψ1, . . . , [a ↑ θ]ψm ∈ Δ from Definition 6 and
ψ1, . . . , ψm ∈ [a ↑ θ]Δ. Then [a ↑ θ]ψ1 ∧ . . . ∧ [a ↑ θ]ψm ∈ Δ by mcs property,
thus [a ↑ θ](ψ1 ∧ . . . ∧ ψm) ∈ Δ by []and, a contradiction to the consistency
of Δ.

As θ, ϕ are arbitrary, then we have proved that for length([←−a ]) = 1. As [←−a ]Δ is
an mcs, then the cases for length([←−a ]) > 1 can easily be proved by induction.

For any mcs Δ, if there is a nominal j ∈ Δ, then we call Δ a named mcs.
Recall Definition 6, we know that if Δ is an mcs and Δi is yielded by Δ, then
i ∈ Δi from @ii ∈ Δ (by refx). Δi is named (by i), and have the following
lemma.

Lemma 2. For any named mcs Δi, we have [←−a ]Δi is a named mcs and i ∈
[←−a ]Δi.

5 @bθ → @a[a ↑ θ]�b indicates that if b satisfies θ, then b will be followed by a after
the executing [a ↑ θ]. @a[a ↑ θ]�b → @bθ says that since agent a is following b after
executing [a ↑ θ], then agent b satisfies θ.
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Proof. Let Δi be a named mcs, by Lemma 1, we have [←−a ]Δi as an mcs. We then
show that [←−a ]Δi is named by i. Induction on length([←−a ]), we have  [←−a ]i ↔ i
from []ignr. Therefore i ∈ [←−a ]Δi from i ∈ Δi and Definition 6.

The named mcs Δi and upgraded mcs [i ↑ θ]Δi are not necessarily to be
equal, i.e., we can have ¬�j ∈ Δi, but �j ∈ [i ↑ j]Δi. Therefore, the set of all
mcss (including named mcss and upgraded mcss) can not be the “agents set” for
our network models, because the unique property of nominals is lost.

Therefore, to get a “proper model”, we need a “proper set of mcss”. We will
use the “yield-idea” in Definition 6 for the solution. As we know that a named
model (agents are all named) has nice properties for pure formulas (formulas
contains no propositional variables, only nominals), we want to build a named
model for our completeness proof.

Then the other problem is that we can not guarantee that all mcss are named.
If we are able to make our “proper model” named (all mcss in the model are
named), we then can prove the completeness of pure axiomatic extensions (with
pure formulas as axioms or rules) by using a similar lemma as in [4, Lemma
7.22].

3.2 Axiomatisation for Named Model

We will introduce two important rules, Name and Paste, for defining named
models. To get the proof, firstly, we extend our nominals set Agt with Agt′, and
then update DHLF to DHLF′. When we refer to the lemmas or propositions before,
we insist that using npemcs instead of mcs if it was talking about mcs.

Definition 7 (Name and Paste). Let a �= b be two nominals, and both not
occurring in ϕ or ψ, we have the following rules:
Name if a → ϕ is provable, then so is ϕ.
Paste (@a�b ∧ @bϕ) → ψ is provable, then so is @a�ϕ → ψ.

The soundness of the above rules are trivial from the basic hybrid logic. Name
rule helps us to name each mcss, and Paste rule helps us to prove the Existence
lemma. Now let DHLF + Name + Paste be the logic obtained by adding Name
and Paste rules to DHLF.

We say that a DHLF+ Name+ Paste-mcs Δ is pasted, iff @i�ϕ ∈ Δ implies
that for some nominal j, @i�j ∧ @jϕ ∈ Δ. Then we will show the extended
Lindenbaum’s lemma and define named models.

Lemma 3 (Extended Lindenbaum lemma). Let Agt′ be a countably infi-
nite collection of nominals disjoint from Agt, and DHLF′ is the language generated
by adding Agt′ to DHLF. Then every DHLF+Name+Paste-consistent set of for-
mulas in DHLF can be extended to a named and pasted DHLF+Name+Paste-mcs.

Proof. The proof is similar as the proof in [4, Lemma 7.25]. Name rule has been
used for giving a fresh name from Agt′ to a consistent set. Paste rule has con-
tributed for the set’s paste-property (guaranteeing that we have sufficient named
sets), we can then use nominals as Henkin constants.
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Now we can move to the definition of “named models”. For brevity and
clarity, from now on, we use emcs stands for “DHLF+ Name+ Paste-mcs”, and
npemcs for “named and pasted emcs”.

Lemma 4 (Nominals). Let Γ be an npemcs. For every nominal i, we define
Δi = {ϕ | @iϕ ∈ Γ}. Then we have:

1. For each nominal i, Δi is an npemcs that contains i.
2. For all nominals i and j, if i ∈ Δj, then Δi = Δj.
3. For all nominals i and j, @iϕ ∈ Δj iff @iϕ ∈ Γ .
4. If d is a name for Γ , then Γ = Δd.

Proof. We refer the proof to [4, Lemma 7.24].

Corollary 1 (Upgraded nominals). Let Γ be an npemcs, and −→a be a
sequence, we define [←−a ]Γ = {ϕ | [←−a ]ϕ ∈ Γ}. Then we have:

1. [←−a ]Δi = {ϕ | @iϕ ∈ [←−a ]Γ}, for Δi = {ϕ | @iϕ ∈ Γ}.
2. For each nominal i, [←−a ]Δi is an npemcs that contains i.
3. For all nominals i and j, if i ∈ [←−a ]Δj, then [←−a ]Δi = [←−a ]Δj.
4. For all nominals i and j, @iψ ∈ [←−a ]Δj iff @iψ ∈ [←−a ]Γ .
5. If d is a name for Γ , then [←−a ]Γ = [←−a ]Δd.

Proof. (2), (3), and (5) are easy by using Lemmas 1, 2 and 4. We just show (1)
and (4). For (1), by induction on the sequence of −→a with []@, we can see that
(i) [←−a ]@iϕ ↔ @i[←−a ]ϕ is a theorem. By Definition 6, we know that [←−a ]Δi = {ϕ |
[←−a ]ϕ ∈ Δi}. As Δi = {ϕ | @iϕ ∈ Γ}, then [←−a ]Δi = {ϕ | @i[←−a ]ϕ ∈ Γ}. Apply
(i), [←−a ]Δi = {ϕ | [←−a ]@iϕ ∈ Γ}, then by Definition 6, [←−a ]Δi = {ϕ | @iϕ ∈
[←−a ]Γ}, we know that [←−a ]Δi is yielded by [←−a ]Γ .

For (4), @iψ ∈ [a ↑ θ]Δj ; iff [a ↑ θ]@iψ ∈ Δj by Definition 6; iff @i[a ↑
θ]ψ ∈ Δj by []@; iff @i[a ↑ θ]ψ ∈ Γ by Lemma 4; iff [a ↑ θ]@iψ ∈ Γ by []@; iff
@iψ ∈ [a ↑ θ]Γ by Definition 6.

3.3 Completeness for DHLF

Definition 8 (Named model). Let Γ be an npemcs. The named model MΓ

yielded by Γ is defined as follows. For any Δ,Δ′ ∈ WΓ , a ∈Agt′ and p ∈Prop:
– WΓ is the set of all named set yielded by Γ ;
– ΔRΓ Δ′ iff ϕ ∈ Δ′ implies �ϕ ∈ Δ;
– GΓ (a) = Δ iff a ∈ Δ;
– VΓ (p) = {Δ | p ∈ Δ}.
Meanwhile, the named model MΓ updated by sequence −→a is [[←−a ]]MΓ . We define
M[←−a ]Γ to be the named model yielded by [←−a ]Γ . In particular, [[←−a ]]MΓ =
M[←−a ]Γ = MΓ if length(←−a ) = 0.

Now we show the Existence lemma as follows.
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Lemma 5 (Existence lemma). Let Γ be an npemcs. MΓ = (WΓ ,RΓ ,GΓ ,
VΓ ) be the named model yielded by Γ . If Δ ∈ WΓ and �ϕ ∈ Δ, then there exists
Δ′ ∈ WΓ such that ΔRΓ Δ′ and ϕ ∈ Δ′.

Proof. Let Δ ∈ WΓ and �ϕ ∈ Δ, then there exists a nominal i such that
Δ = Δi. From �ϕ ∈ Δi, we have @i�ϕ ∈ Γ . Since Γ is pasted, we have
@i�j ∧ @jϕ for some j. So we have �j ∈ Δi and ϕ ∈ Δj . If we can show that
ΔiRΓ Δj , Δj will be a suitable choice of Δ′. Let ψ ∈ Δj , then we have @jψ ∈ Γ .
Then by (3) of Lemma 4, we have @jψ ∈ Δi. Also we have �j ∈ Δi, by theorem
(�j ∧@jψ) → �ψ (bridge), therefore, �ψ ∈ Δi. ΔiRΓ Δj is proved, and we let
Δ′ = Δj .

Corollary 2. Let Γ be an npemcs. MΓ = (WΓ ,RΓ ,GΓ ,VΓ ) be the named
model yielded by Γ . For any Δi,Δj ∈ WΓ , we have that ΔiRΓ Δj iff �j ∈ Δi.

Proof. The left-to-right direction is trivial, since j ∈ Δj . For the other direction.
Assume that �j ∈ Δi but not ΔiRΓ Δj . Then there exists ϕ ∈ Δj but �ϕ �∈ Δi.
That’s ¬�ϕ ∈ Δi, �¬ϕ ∈ Δi. Therefore, �j ∧ �¬ϕ ∈ Δi, by PROP, �(j ∧ ¬ϕ) ∈
Δi. By theorem of bridge (contraposed case), @j¬ϕ ∈ Δi, that’s @j¬ϕ ∈ Δj

and ¬ϕ ∈ Δj , a contradiction. Then we must have ΔiRΓ Δj .

As we have action operators for changing models, we show that [[←−a ]]MΓ

and M[←−a ]Γ are modal equivalent in our logic. To achieve this goal, we show
the following proposition first. The Truth lemma result of propositional cases
(propositional language PROP generated from Agt′∪Prop) will be used: (Atom)6

for any θ ∈PROP, MΓ ,Δi |= θ iff θ ∈ Δi.

Proposition 4. Let Γ be an npemcs and [a ↑ θ]Γ is upgraded by [a ↑ θ]. MΓ

and M[a↑θ]Γ be two named models yielded by Γ and [a ↑ θ]Γ respectively. We
have for any Δi,Δj ∈ WΓ : [a ↑ θ]ΔiR[a↑θ]Γ [a ↑ θ]Δj iff ΔiRΓ [aθ ]Δj.

Proof. We prove by discussion on GΓ (a):

– GΓ (a) = Δi, we show that [a ↑ θ]ΔiR[a↑θ]Γ [a ↑ θ]Δj iff ΔiRΓ [aθ ]Δj as follows.
[a ↑ θ]ΔiR[a↑θ]Γ [a ↑ θ]Δj iff j ∈ [a ↑ θ]Δj and �j ∈ [a ↑ θ]Δi by Corollary 2

iff [a ↑ θ]j ∈ Δj and [a ↑ θ]�j ∈ Δi

iff [a ↑ θ]j ∈ Δj and @a[a ↑ θ]�j ∈ Δi by a ∈ Δi

iff j ∈ Δj and @jθ ∈ Δi by []ignr and []sinc

iff @jθ ∈ Δj by Lemma 4
iff MΓ , Δj |= θ by (Atom), since θ ∈PROP

– GΓ (a) �= Δi, we show that [a ↑ θ]ΔiR[a↑θ]Γ [a ↑ θ]Δj iff ΔiRΓ Δj as follows.
[a ↑ θ]ΔiR[a↑θ]Γ [a ↑ θ]Δj iff j ∈ [a ↑ θ]Δj and �j ∈ [a ↑ θ]Δi by Corollary 2

iff [a ↑ θ]j ∈ Δj and [a ↑ θ]�j ∈ Δi

iff [a ↑ θ]j ∈ Δj and �[a ↑ θ]j ∈ Δi

by []dia, and ¬a ∈ Δi, as GΓ (a) �= Δi

iff j ∈ Δj and �j ∈ Δi by []ignr

iff ΔiRΓ Δj by Corollary 2

6 As the propositional case is trivial, and it’s also a technical reason why we need to
restrict our actions into propositional formulas.
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From Proposition 4, by induction on the length(−→a ), we can easily prove the
following corollary.

Corollary 3. Let −→c , aθ be a sequence, and Γ be an npemcs. MΓ and
M[a↑θ][←−c ]Γ be two named models yielded by Γ and [a ↑ θ][←−c ]Γ respectively.
For any Δi,Δj ∈ WΓ :

[a ↑ θ][←−c ]ΔiR[a↑θ][←−c ]Γ [a ↑ θ][←−c ]Δj iff ΔiRΓ [[−→c ,aθ]]
Δj.

Now we can show the correspondence theorem for [[←−a ]]MΓ and M[←−a ]Γ as
follows.

Theorem 1. Let Γ be an npemcs, and −→a be a sequence. MΓ and M[←−a ]Γ are
named models yielded by Γ and [←−a ]Γ respectively. We have for any ϕ and Δi ∈
WΓ : [[←−a ]]MΓ ,Δi |= ϕ iff M[←−a ]Γ , [←−a ]Δi |= ϕ.

Proof. As we just showed in (1) of Corollary 1 that for any Δi yielded by Γ ,
[←−a ]Δi is yielded by [←−a ]Γ as well. Then we know that for any nominal i,

(i) Δi ∈ VΓ (p) iff [←−a ]Δi ∈ V [←−a ]Γ (p), and
(ii) GΓ (i) = Δi iff G[←−a ]Γ (i) = [←−a ]Δi

by Definition 8 and theorems [←−a ]p ↔ p, [←−a ]i ↔ i from []ignr. We prove by
induction on the complexity of ϕ.

– ϕ = p. The following are equivalent:

[[←−a ]]MΓ ,Δ |= p
MΓ ,Δ |= [←−a ]p Definition 2
MΓ ,Δ |= p theorem of []ignr
Δ ∈ VΓ (p) Definition 2
[←−a ]Δ ∈ V [←−a ]Γ (p) (i)
M[←−a ]Γ , [←−a ]Δ |= p Definition 2

– ϕ = i. Similar as above.
– ϕ = ¬ψ. Omitted.
– ϕ = (ψ ∧ ψ′). Omitted.
– ϕ = �ψ. The following are equivalent:

[[←−a ]]MΓ ,Δ |= �ψ

[[←−a ]]MΓ ,Δ′ |= ψ and ΔRΓ [[−→a ]]
Δ′ for some Δ′ Definition 2

[[←−a ]]MΓ ,Δ′ |= ψ and [←−a ]ΔR[←−a ]Γ [←−a ]Δ′ Corollary 3.
M[←−a ]Γ , [←−a ]Δ′ |= ψ and [←−a ]ΔR[←−a ]Γ [←−a ]Δ′ I.H.
M[←−a ]Γ , [←−a ]Δ |= �ψ Definition 2

– ϕ = @bψ. The following are equivalent:

[[←−a ]]MΓ ,Δ |= @bψ
[[←−a ]]MΓ ,Δ′ |= ψ where GΓ (b) = Δ′

M[←−a ]Γ , [←−a ]Δ′ |= ψ I.H.
M[←−a ]Γ , [←−a ]Δ |= @bψ Definition 2, as G[←−a ]Γ (b) = [←−a ]Δ′
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– ϕ = [b ↑ χ]ψ. The following are equivalent:

[[←−a ]]MΓ ,Δ |= [b ↑ χ]ψ
[[b↑χ]][[←−a ]]MΓ ,Δ |= ψ Definition 2
M[b↑χ][←−a ]Γ , [b ↑ χ][←−a ]Δ |= ψ I.H. for sequence −→a , bχ

[[b↑χ]]M[←−a ]Γ , [←−a ]Δ |= ψ I.H. for sequence bχ

M[←−a ]Γ , [←−a ]Δ |= [b ↑ χ]ψ Definition 2

Lemma 6 (Truth lemma). Let Γ be an npemcs, and MΓ = (WΓ ,RΓ ,GΓ ,
VΓ ) be the named model yielded by Γ . We have for any Δ ∈ WΓ and ψ ∈DHLF,

MΓ ,Δ |= ψ iff ψ ∈ Δ.

Proof. Induction on the complexity of ψ. Cases for ψ = p, i,¬ϕ, (ϕ∧ϕ′) are easy,
we just show the rest here.

– ψ = �ϕ. The following are equivalent:

MΓ ,Δ |= �ϕ
MΓ ,Δ′ |= χ and ΔRΓ Δ′ by Definition 2
χ ∈ Δ′ and ΔRΓ Δ′ by I.H.
�ϕ ∈ Δ by Definition 8

– ψ = @aϕ. The following are equivalent:

MΓ ,Δ |= @aϕ
MΓ ,Δ′ |= χ and GΓ (a) = Δ′ by Definition 2
ϕ ∈ Δ′ and GΓ (a) = Δ′ by I.H.
@aϕ ∈ Δ′ by intro
@aϕ ∈ Δ by (3) of Lemma 4

– ψ = [a ↑ θ]ϕ. The following are equivalent:

MΓ ,Δ |= [a ↑ θ]ϕ
[[a↑θ]]MΓ ,Δ |= ϕ by Definition 2
M[a↑θ]Γ , [a ↑ θ]Δ |= ϕ by Theorem 1
ϕ ∈ [a ↑ θ]Δ by I.H., Definition 8
[a ↑ θ]ϕ ∈ Δ by Definition 6

Theorem 2 (Completeness). (1) Every named and pasted consistent set of
formulas in DHLF is satisfiable in a countable named model. (2) Moreover, if Π
is a set of pure formulas in DHLF, and Ex is adding all the formulas in Π as
extra axioms to DHLF+Name+Paste, then every Ex-consistent set of formulas
is satisfiable in a countable named model based on a frame which validates every
formula in Π.
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Proof. For (1): Proof by contraposition. Assume that Δ is not a consistent set of
formulas in DHLF: Δ � ϕ. Then Δ ∪ {¬ϕ} is consistent. We know that Δ ∪ {¬ϕ}
is a set of formulas generated from DHLF, then there exists an npemcs, called
Γ , from Lemma 3 such that Δ ∪ {¬ϕ} ⊆ Γ . By Definition 8, we generate the
named model yielded by Γ , MΓ (The model is countable, since every the state
is named by some nominals in Agt∪ Agt′, and Agt∪ Agt′ is countable). Then
MΓ , Γ |= ¬ϕ by Lemma 6, that’s MΓ , Γ �|= ϕ, and �|= ϕ. The proof of (1) is
completed.

For (2): Given an Ex-consistent set of formulas Ω, using Lemma 3, we can
extend it to a named and pasted Ex-mcs Ω+. Clearly we have MΩ+

, Ω+ |= Ω.
Since for pure formulas ϕ and it’s pure instance ϕ′ (ϕ′ is obtained from ϕ by
uniformly substituting nominals for nominals), we have for any M = (F,G, V ):

M |= ϕ iff F |= ϕ′.

Also we know that MΩ+
, Ω+ |= Π from the property that every formulas in Π

belongs to every Ex-mcs. Therefore, the frame underlying MΩ+
validates Π.

4 Conclusion

We have offered an axiomatisation of DHLF and proved its completeness. More-
over, the completeness of pure axiomatic extensions is offered. With pure for-
mulas, we can define many properties not definable in the basic modal logic, like
irreflexivity: i → ¬�i, asymmetry: i → ¬�i, intransitivity: ��i → ¬�i, etc.

In [16], they introduced a similar method of changing relation for prefer-
ence, called upgrading preference, but our semantics are different, our actions
are marked by agents, and then it’s possible to talk about multi-agents’ choices.
Also our semantics are based on hybrid logic, we automatically have the hybrid
logic property.

Moreover, if we release the action operators from the restriction of proposi-
tional formulas, and allow agents to following by arbitrary ϕ-property as in public
announcement logic [17], we will have more interesting features of actions. Like
[a ↑ @bθ] will add or delete all “arrows” from a to all the other agents, by the
property of @-formulas. If b has the θ-property, then adding; deleting, otherwise.

With this extension, repeating same actions could be different. Under the
same semantics, action [a ↑ ¬�b] means that agent a chooses to follow all the
agents that not a follower of b, and let’s consider Fig. 3.7 We call it repetition
regrets, since agent will regret with some “arrows” till the structure is stable
under that action-repetition.

The completeness of this extension so far is not clear, as the proof of Propo-
sition 4 has required the propositional Truth lemma property. It will be our next
job to solve the problem and offer the axiomatisation of this extension.
7 Due to the property of �, it is not possible to interpret the action that “agent a

chooses to follow all agents that are followed by b”, actions like [a ↑ (i ∧ @b�i)] only
means that “agent a chooses to follow agent i and b is following i”.
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M

G(a) |= ¬ a

a b

a↑¬ b M

G(a) |= a

a b

a↑¬ b 2M

G(a) |= ¬ a

a b

a↑¬ b 2+nM

G(a) |= ¬ a

a b

Fig. 3. a, b are nominals, numbers indicating times for executing [a ↑ ¬�b].

Another extension is extending the language with knowledge and messaging
operators like [a : θ] as in [18,19] to interpret the information flow on a particular
networks. For instance, [a ↑ b][b : θ]Kaχ means that “If agent a chooses to follow
b, then a will know χ if b messages θ”. Semantically, we need introduce epistemic
relations in our models to talk about knowledge, one strategy is to consider the
epistemic indistinguishability of network models. Saying that “agent c does not
know that “b is following a” in a model” means that the epistemic relation of
c is connecting to models where b is not always following a, action models in
dynamic epistemic logic (see, e.g., [17, Chapter 6]) would be a good tool to look
at. We leave all the mentioned works to the future.
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