
Chapter 8
Some Further Results of Itô’s Calculus

In this chapter, we use the quasi-surely analysis theory to develop Itô’s integrals
without the quasi-continuity condition. This allows us to define Itô’s integral on
stopping time interval. In particular, this new formulation can be applied to obtain
Itô’s formula for a generalC1,2-function, thus extending previously available results.

8.1 A Generalized Itô’s Integral

Recall that Bb(�) is the space of all bounded and Borel measurable real functions
defined on � = Cd

0 (R+). We denote by L p
∗ (�) the completion of Bb(�) under the

natural norm ‖X‖p := Ê[|X |p]1/p. Similarly, we can define L p
∗ (�T ) for any fixed

T ≥ 0. For any fixed a ∈ R
d , we still use the notation Ba

t := 〈a, Bt 〉. Then we intro-
duce the following properties, which are important in our stochastic calculus.

Proposition 8.1.1 For any 0 ≤ t < T , ξ ∈ L2∗(�t ), we have

Ê[ξ(Ba
T − Ba

t )] = 0.

Proof For a fixed P ∈ P, Ba is a martingale on (�,Ft , P). Then we have

EP [ξ(Ba
T − Ba

t )] = 0,

which completes the proof. �

Proposition 8.1.2 For any 0 ≤ t ≤ T and ξ ∈ Bb(�t ), we have

Ê[ξ 2(Ba
T − Ba

t )
2 − σ 2

aaT ξ
2(T − t)] ≤ 0. (8.1.1)
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Proof If ξ ∈ Cb(�t ), then we get that Ê[ξ 2(Ba
T − Ba

t )
2 − ξ 2σ 2

aaT (T − t)] = 0. Thus
(8.1.1) holds for ξ ∈ Cb(�t ). This implies that, for a fixed P ∈ P,

EP [ξ 2(Ba
T − Ba

t )
2 − ξ 2σ 2

aaT (T − t)] ≤ 0. (8.1.2)

If we take ξ ∈ Bb(�t ), we can find a sequence {ξn}∞n=1 in Cb(�t ), such that ξn → ξ

in L p(�,Ft , P), for some p > 2. Thus we conclude that

EP [ξ 2
n (Ba

T − Ba
t )

2 − ξ 2
n σ 2

aaT (T − t)] ≤ 0.

Then letting n → ∞, we obtain (8.1.2) for ξ ∈ Bb(�t ). �

In what follows, we use the notation L p
∗ (�), instead of L p

G(�), to generalize Itô’s
integral on a larger space of stochastic processes M2∗ (0, T ) defined as follows. For
fixed p ≥ 1 and T ∈ R+, we first consider the following simple type of processes:

Mb,0(0, T ) =
{
η : ηt (ω) =

N−1∑
j=0

ξ j (ω)1[t j ,t j+1)(t),

∀N > 0, 0 = t0 < · · · < tN = T, ξ j (ω) ∈ Bb(�t j ), j = 0, · · · , N − 1
}
.

Definition 8.1.3 For an element η ∈ Mb,0(0, T ) with ηt =∑N−1
j=0 ξ j (ω)1[t j ,t j+1)(t),

the related Bochner integral is

∫ T

0
ηt (ω)dt =

N−1∑
j=0

ξ j (ω)(t j+1 − t j ).

For any η ∈ Mb,0(0, T ) we set

ẼT [η] := 1
T Ê

[∫ T

0
ηt dt

]
= 1

T
Ê

⎡
⎣

N−1∑
j=0

ξ j (ω)(t j+1 − t j )

⎤
⎦ .

Then Ẽ : Mb,0(0, T ) �→ R forms a sublinear expectation. We can introduce a natural

norm ‖η‖Mp(0,T ) =
{
Ê

[∫ T
0 |ηt |pdt

]}1/p
.

Definition 8.1.4 For any p ≥ 1, we denote by Mp
∗ (0, T ) the completion of

Mb,0(0, T ) under the norm

||η||Mp(0,T ) =
{
Ê

[∫ T

0
|ηt |pdt

]}1/p
.
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We have Mp
∗ (0, T ) ⊃ Mq

∗ (0, T ), for p ≤ q. The following process

ηt (ω) =
N−1∑
j=0

ξ j (ω)1[t j ,t j+1)(t), ξ j ∈ L p
∗ (�t j ), j = 1, · · · , N

is also in Mp
∗ (0, T ).

Definition 8.1.5 For any η ∈ Mb,0(0, T ) of the form

ηt (ω) =
N−1∑
j=0

ξ j (ω)1[t j ,t j+1)(t),

we define Itô’s integral

I (η) =
∫ T

0
ηsd B

a
s :=

N−1∑
j=0

ξ j (B
a
t j+1

− Ba
t j ).

Lemma 8.1.6 The mapping I : Mb,0(0, T ) �→ L2∗(�T ) is a linear continuous map-
ping and thus can be continuously extended to I : M2∗ (0, T ) �→ L2∗(�T ). Moreover,
we have

Ê

[∫ T

0
ηsd B

a
s

]
= 0, (8.1.3)

Ê

[
(

∫ T

0
ηsd B

a
s )

2

]
≤ σ 2

aaT Ê

[∫ T

0
|ηt |2dt

]
. (8.1.4)

Proof It suffices to prove (8.1.3) and (8.1.4) for any η ∈ Mb,0(0, T ). From
Proposition8.1.1, for any j ,

Ê[ξ j (B
a
t j+1

− Ba
t j )] = Ê[−ξ j (B

a
t j+1

− Ba
t j )] = 0.

Thus we obtain (8.1.3):

Ê

[∫ T

0
ηsd B

a
s

]
= Ê

[∫ tN−1

0
ηsd B

a
s + ξN−1(B

a
tN − Ba

tN−1
)

]

= Ê

[∫ tN−1

0
ηsd B

a
s

]
= · · · = Ê[ξ0(Ba

t1 − Ba
t0)] = 0.

We now prove (8.1.4). By a similar analysis as in Lemma 3.3.4 of Chap. 3, we
derive that
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Ê

[(∫ T

0
ηt d B

a
t

)2]
= Ê

[
N−1∑
i=0

ξ 2
i (Ba

ti+1
− Ba

ti )
2

]
.

Then from Proposition8.1.2, we obtain that

Ê

[
ξ 2
j (B

a
t j+1

− Ba
t j )

2 − σ 2
aaT ξ

2
j (t j+1 − t j )

]
≤ 0.

Thus

Ê

[(∫ T

0
ηt d B

a
t

)2]
= Ê[

N−1∑
i=0

ξ 2
i (Ba

tN − Ba
tN−1

)2]

≤ Ê

[
N−1∑
i=0

ξ 2
i [(Ba

tN − Ba
tN−1

)2 − σ 2
aaT (ti+1 − ti )]

]
+ Ê

[
N−1∑
i=0

σ 2
aaT ξ

2
i (ti+1 − ti )

]

≤ Ê

[
N−1∑
i=0

σ 2
aaT ξ

2
i (ti+1 − ti )

]
= σ 2

aaT Ê

[∫ T

0
|ηt |2dt

]
,

which is the desired result. �

The following proposition can be verified directly by the definition of Itô’s integral
with respect to G-Brownian motion.

Proposition 8.1.7 Let η, θ ∈ M2∗ (0, T ). Then for any 0 ≤ s ≤ r ≤ t ≤ T , we have:

(i)
∫ t
s ηudBa

u = ∫ rs ηudBa
u + ∫ tr ηudBa

u ;
(ii)
∫ t
s (αηu + θu)dBa

u = α
∫ t
s ηudBa

u + ∫ ts θudBa
u , where α ∈ Bb(�s).

Proposition 8.1.8 For any η ∈ M2∗ (0, T ), we have

Ê

[
sup

0≤t≤T

∣∣∣∣
∫ t

0
ηsd B

a
s

∣∣∣∣
2
]

≤ 4σ 2
aaT Ê

[∫ T

0
η2
s ds

]
. (8.1.5)

Proof Since for any α ∈ Bb(�t ), we have

Ê

[
α

∫ T

t
ηsd B

a
s

]
= 0.

Then, for a fixed P ∈ P, the process
∫ ·
0 ηsd Ba

s is a martingale on (�,Ft , P). It
follows from the classical Doob’s maximal inequality (see Appendix B) that
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EP

[
sup

0≤t≤T

∣∣∣∣
∫ t

0
ηsd B

a
s

∣∣∣∣
2
]

≤ 4EP

[∣∣∣∣
∫ T

0
ηsd B

a
s

∣∣∣∣
2
]

≤ 4Ê

[∣∣∣∣
∫ T

0
ηsd B

a
s

∣∣∣∣
2
]

≤ 4σ 2
aaT Ê

[∫ T

0
η2
s ds

]
.

Thus (8.1.5) holds. �

Proposition 8.1.9 For any η ∈ M2∗ (0, T ) and 0 ≤ t ≤ T , the integral
∫ t
0 ηsd Ba

s is
continuous q.s., i.e.,

∫ t
0 ηsd Ba

s has a modification whose paths are continuous in t .

Proof The claim is true for η ∈ Mb,0(0, T ) since (Ba
t )t≥0 is a continuous process.

In the case of η ∈ M2∗ (0, T ), there exists η(n) ∈ Mb,0(0, T ), such that Ê[∫ T0 (ηs −
η(n)
s )2ds] → 0, as n → ∞. By Proposition8.1.8, we have

Ê

[
sup

0≤t≤T

∣∣∣∣
∫ t

0
(ηs − η

(n)
s )dBa

s

∣∣∣∣
2
]

≤ 4σ 2
aaT Ê

[∫ T

0
(ηs − η

(n)
s )2ds

]
→ 0, as n → ∞.

Then choosing a subsequence if necessary, we can find a set �̂ ⊂ � with ĉ(�̂c) = 0
so that, for any ω ∈ �̂ the sequence of processes

∫ ·
0 η(n)

s d Ba
s (ω) uniformly converges

to
∫ ·
0 ηsd Ba

s (ω) on [0, T ]. Thus for anyω ∈ �̂, we get that
∫ ·
0 ηsd Ba

s (ω) is continuous
in t . For any (ω, t) ∈ [0, T ] × �, we take the process

Jt (ω) =
⎧⎨
⎩

∫ t

0
ηsd B

a
s (ω), ω ∈ �̂;

0, otherwise,

as the desired t-continuous modification. This completes the proof. �

We now define the integral of a process η ∈ M1∗ (0, T ) with respect to 〈Ba〉. We
also define a mapping:

Q0,T (η) =
∫ T

0
ηt d
〈
Ba〉

t
:=

N−1∑
j=0

ξ j (
〈
Ba〉

t j+1
− 〈Ba〉

t j
) : M1,0

b (0, T ) → L1
∗(�T ).

Proposition 8.1.10 Themapping Q0,T : M1,0
b (0, T ) �→ L1∗(�T ) is a continuous lin-

ear mapping and Q0,T can be uniquely extended to M1∗ (0, T ). Moreover, we have

Ê

[∣∣∣∣
∫ T

0
ηt d
〈
Ba〉

t

∣∣∣∣
]

≤ σ 2
aaT Ê

[∫ T

0
|ηt |dt
]

for any η ∈ M1
∗ (0, T ). (8.1.6)
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Proof From the relation

σ 2
−aaT (t − s) ≤ 〈Ba〉

t − 〈Ba〉
s ≤ σ 2

aaT (t − s)

it follows that

Ê

[
|ξ j |(〈Ba〉t j+1 − 〈Ba〉t j ) − σ 2

aaT |ξ j |(t j+1 − t j )
]

≤ 0, for any j = 1, · · · , N − 1.

Therefore, we deduce the following chain of inequalities:

Ê

⎡
⎣
∣∣∣∣∣∣
N−1∑
j=0

ξ j (
〈
Ba〉

t j+1
− 〈Ba〉

t j
)

∣∣∣∣∣∣

⎤
⎦ ≤ Ê

⎡
⎣
N−1∑
j=0

|ξ j |
〈
Ba〉

t j+1
− 〈Ba〉

t j

⎤
⎦

≤Ê

⎡
⎣
N−1∑
j=0

|ξ j |[(〈Ba〉t j+1 − 〈Ba〉t j ) − σ 2
aaT (t j+1 − t j )]

⎤
⎦+ Ê

⎡
⎣σ 2

aaT

N−1∑
j=0

|ξ j |(t j+1 − t j )

⎤
⎦

≤
N−1∑
j=0

Ê[|ξ j |[(〈Ba〉t j+1 − 〈Ba〉t j ) − σ 2
aaT (t j+1 − t j )]] + Ê

⎡
⎣σ 2

aaT

N−1∑
j=0

|ξ j |(t j+1 − t j )

⎤
⎦

≤Ê

⎡
⎣σ 2

aaT

N−1∑
j=0

|ξ j |(t j+1 − t j )

⎤
⎦ = σ 2

aaT Ê

[∫ T

0
|ηt |dt
]

.

This completes the proof. �

From the above Proposition8.1.9, we obtain that 〈Ba〉t is continuous in t q.s.. Then
for anyη ∈ M1∗ (0, T ) and0 ≤ t ≤ T , the integral

∫ t
0 ηsd〈Ba〉s also has a t-continuous

modification. In the sequel, we always consider the t-continuousmodification of Itô’s
integral. Moreover, Itô’s integral with respect to 〈Bi , B j 〉 = 〈B〉i j can be similarly
defined. This is left as an exercise for the readers.

Lemma 8.1.11 Let η ∈ M2
b (0, T ). Then η is Itô-integrable for every P ∈ P. More-

over, ∫ T

0
ηsd B

a
s =
∫ T

0
ηsdP B

a
s , P-a.s.,

where the right hand side is the usual Itô integral.

We leave the proof of this lemma to readers as an exercise.

Lemma 8.1.12 (Generalized Burkholder-Davis-Gundy (BDG) inequality) For any
η ∈ M2∗ (0, T ) and p > 0, there exist constants cp and Cp with 0 < cp < Cp < ∞,
depending only on p, such that

σ
p
−aaT cpÊ

[(∫ T

0
|ηs |2ds

)p/2]
≤ Ê

[
sup

t∈[0,T ]

∣∣∣∣
∫ t

0
ηsd B

a
s

∣∣∣∣
p
]

≤ σ
p

aaT CpÊ

[(∫ T

0
|ηs |2ds

)p/2]
.
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Proof Observe that, under any P ∈ P, Ba is a P-martingale with

σ 2
−aaT dt ≤ d〈Ba〉t ≤ σ 2

aaT dt.

The proof is then a simple application of the classical BDG inequality. �

8.2 Itô’s Integral for Locally Integrable Processes

So farwehave considered Itô’s integral
∫ T
0 ηt d Ba

t whereη inM2∗ (0, T ). In this section
we continue our study of Itô’s integrals for a type of locally integrable processes.

We first give some properties of Mp
∗ (0, T ).

Lemma 8.2.1 For any p ≥ 1 and X ∈ Mp
∗ (0, T ), the following relation holds:

lim
n→∞ Ê

[∫ T

0
|Xt |p1{|Xt |>n}dt

]
= 0. (8.2.1)

Proof The proof is similar to that of Proposition6.1.22 in Chap. 6. �

Corollary 8.2.2 For any η ∈ M2∗ (0, T ), let η(n)
s = (−n) ∨ (ηs ∧ n), then, as n →

∞, we have
∫ t
0 η(n)

s d Ba
s → ∫ t0 ηsd Ba

s in L2∗(0, T ) for any t ≤ T .

Proposition 8.2.3 Let X ∈ Mp
∗ (0, T ). Then for any ε > 0, there exists a constant

δ > 0 such that for all η ∈ Mp
∗ (0, T ) satisfying Ê

[∫ T
0 |ηt |dt

]
≤ δ and |ηt (ω)| ≤ 1,

we have Ê
[∫ T

0 |Xt |p|ηt |dt
]

≤ ε.

Proof For any ε > 0, according to Lemma8.2.1, there exists a number N > 0 such

that Ê
[∫ T

0 |X |p1{|X |>N }
]

≤ ε/2. Take δ = ε/2N p. Then we derive that

Ê

[∫ T

0
|Xt |p|ηt |dt

]
≤ Ê

[∫ T

0
|Xt |p|ηt |1{|Xt |>N }dt

]
+ Ê

[∫ T

0
|Xt |p|ηt |1{|Xt |≤N }dt

]

≤ Ê

[∫ T

0
|Xt |p1{|Xt |>N }dt

]
+ N p

Ê

[∫ T

0
|ηt |dt
]

≤ ε,

which is the desired result. �

Lemma 8.2.4 If p ≥ 1 and X, η ∈ Mp
∗ (0, T ) are such that η is bounded, then the

product Xη ∈ Mp
∗ (0, T ).

Proof We can find X (n), η(n) ∈ Mb,0(0, T ) for n = 1, 2, . . ., such that η(n) is uni-
formly bounded and

‖X − X (n)‖Mp(0,T ) → 0, ‖η − η(n)‖Mp(0,T ) → 0, as n → ∞.
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Then we obtain that

Ê

[∫ T

0
|Xtηt − X (n)

t η
(n)
t |pdt

]
≤ 2p−1

(
Ê

[∫ T

0
|Xt |p |ηt − η

(n)
t |pdt

]
+ Ê

[∫ T

0
|Xt − X (n)

t |p |η(n)
t |pdt

])
.

By Proposition8.2.3, the first term on the right-hand side tends to 0 as n → ∞. Since
η(n) is uniformly bounded, the second term also tends to 0. �

Now we are going to study Itô’s integrals on an interval [0, τ ], where τ is a
stopping time relative to the G-Brownian pathes.

Definition 8.2.5 A stopping time τ relative to the filtration (Ft ) is a map on � with
values in [0, T ] such that {τ ≤ t} ∈ Ft , for every t ∈ [0, T ].
Lemma 8.2.6 For any stopping time τ and any X ∈ Mp

∗ (0, T ),we have 1[0,τ ](·)X ∈
Mp

∗ (0, T ).

Proof Related to the given stopping time τ , we consider the following sequence:

τn =
2n−1∑
k=0

(k + 1)T

2n
1[ kT2n ≤τ< (k+1)T

2n ) + T 1[τ≥T ].

It is clear that 2−n ≥ τn − τ ≥ 0. It follows from Lemma8.2.4 that any element of
the sequence {1[0,τn ]X}∞n=1 is in Mp

∗ (0, T ). Note that, for m ≥ n, we have

Ê

[∫ T

0
|1[0,τn ](t) − 1[0,τm ](t)|dt

]
≤ Ê

[∫ T

0
|1[0,τn ](t) − 1[0,τ ](t)|dt

]

= Ê[τn − τ ] ≤ 2−nT .

Then applying Proposition8.2.3, we derive that 1[0,τ ]X ∈ Mp
∗ (0, T ) and the proof is

complete. �

Lemma 8.2.7 For any stopping time τ and any η ∈ M2∗ (0, T ), we have

∫ t∧τ

0
ηsd B

a
s (ω) =

∫ t

0
1[0,τ ](s)ηsd Ba

s (ω), for all t ∈ [0, T ] q.s. (8.2.2)

Proof For any n ∈ N, let

τn :=
[t ·2n ]∑
k=1

k

2n
1[ (k−1)t

2n ≤τ< kt
2n ) + t1[τ≥t] =

2n∑
k=1

1Ak
n
t kn .

Here t kn = k2−nt , Ak
n = [t k−1

n < t ∧ τ ≤ t kn ], for k < 2n , and A2n
n = [τ ≥ t]. We see

that {τn}∞n=1 is a decreasing sequence of stopping times which converges to t ∧ τ .
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We first show that

∫ t

τn

ηsd B
a
s =
∫ t

0
1[τn ,t](s)ηsd B

a
s , q.s. (8.2.3)

By Proposition8.1.7 we have

∫ t

τn

ηsd B
a
s =
∫ t

∑2n
k=1 1Akn

tkn

ηsd B
a
s =

2n∑
k=1

1Ak
n

∫ t

t kn

ηsd B
a
s

=
2n∑
k=1

∫ t

t kn

1Ak
n
ηsd B

a
s =
∫ t

0

2n∑
k=1

1[t kn ,t](s)1Ak
n
ηsd B

a
s ,

from which (8.2.3) follows. Hence we obtain that

∫ τn

0
ηsd B

a
s =
∫ t

0
1[0,τn ](s)ηsd B

a
s , q.s.

Observe now that 0 ≤ τn − τm ≤ τn − t ∧ τ ≤ 2−nt , for n ≤ m. Then
Proposition8.2.3 yields that 1[0,τn ]η converges in M2∗ (0, T ) to 1[0,τ∧t]η as n → ∞,
which implies that 1[0,τ∧t]η ∈ M2∗ (0, T ). Consequently,

lim
n→∞

∫ τn

0
ηsd B

a
s =
∫ t

0
1[0,τ ](s)ηsd Ba

s , q.s.

Note that
∫ t
0 ηsd Ba

s is continuous in t , hence (8.2.2) is proved. �

The space of processes Mp
∗ (0, T ) can be further enlarged as follows.

Definition 8.2.8 For fixed p ≥ 1, a stochastic process η is said to be in Mp
w (0, T ),

if it is associated with a sequence of increasing stopping times {σm}m∈N, such that:

(i) For any m ∈ N, the process
(
ηt1[0,σm ](t)

)
t∈[0,T ] ∈ Mp

∗ (0, T );

(ii) If�(m) := {ω ∈ � : σm(ω) ∧ T = T } and �̂ := limm→∞ �(m), then ĉ(�̂c) = 0.

Remark 8.2.9 Suppose there is another sequence of stopping times {τm}∞m=1 that
satisfies the second condition in Definition8.2.8. Then the sequence {τm ∧ σm}m∈N
also satisfies this condition. Moreover, by Lemma8.2.6, we know that for any m ∈
N, η1[0,τm∧σm ] ∈ Mp

∗ (0, T ). This property allows to associate the same sequence of
stopping times with several different processes in Mp

w (0, T ).

For given η ∈ M2
w(0, T ) associated with {σm}m∈N, we consider, for any m ∈ N,

the t-continuous modification of the process
(∫ t

0 ηs1[0,σm ](s)dBa
s

)
0≤t≤T

. For any m,

n ∈ N with n > m, by Lemma8.2.7 we can find a polar set Âm,n , such that for all
ω ∈ ( Âm,n)

c, the following equalities hold:
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∫ t∧σm

0
ηs1[0,σm ](s)dBa

s (ω) =
∫ t

0
ηs1[0,σm ](s)dBa

s (ω)

=
∫ t

0
ηs1[0,σm ](s)1[0,σn ](s)dB

a
s (ω) (8.2.4)

=
∫ t∧σm

0
ηs1[0,σn ](s)dB

a
s (ω), 0 ≤ t ≤ T .

Define the polar set

Â :=
∞⋃

m=1

∞⋃
n=m+1

Âm,n .

For any m ∈ N and any (ω, t) ∈ � × [0, T ], we set

X (m)
t (ω) :=

⎧⎨
⎩

∫ t

0
ηs1[0,σm ](s)dBa

s (ω), ω ∈ Âc ∩ �̂;
0, otherwise.

From (8.2.4), for any m, n ∈ N with n > m, X (n)(ω) ≡ X (m)(ω) on [0, σm(ω) ∧ T ]
for any ω ∈ Âc ∩ �̂ and X (n)(ω) ≡ X (m)(ω) on [0, T ] for all other ω. Note that
for ω ∈ Âc ∩ �̂, we can find m ∈ N, such that σm(ω) ∧ T = T . Consequently, for
any ω ∈ �, limm→∞ X (m)

t (ω) exists for any t . From Lemma 8.2.7, it is not difficult
to verify that choosing a different sequence of stopping times will only alter this
limitation on the polar set. The details are left to the reader. Thus, the following
definition is well posed.

Definition 8.2.10 Giving η ∈ M2
w([0, T ]), for any (ω, t) ∈ � × [0, T ], we define

∫ t

0
ηsd B

a
s (ω) := lim

m→∞ X (m)
t (ω). (8.2.5)

For any ω ∈ � and t ∈ [0, σm], ∫ t0 ηsd Ba
s (ω) = X (m)

t (ω), 0 ≤ t ≤ T . Since each

of the processes {X (m)
t }0≤t≤T has t-continuous paths, we conclude that the paths of(∫ t

0 ηsd Ba
s

)
0≤t≤T

are also t-continuous. The following theorem is an direct conse-

quence of the above discussion.

Theorem 8.2.11 Assume thatη ∈ M2
w([0, T ]). Then the stochastic process ∫ ·

0 ηsd Ba
s

is a well-defined continuous process on [0, T ].
For any η ∈ M1

w(0, T ), the integrals
∫ t
0 ηsd〈Ba〉s and

∫ t
0 ηsd〈B〉i js are both well-

defined continuous stochastic processes on [0, T ] by a similar analysis.
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8.3 Itô’s Formula for General C2 Functions

The objective of this section is to give a very general form of Itô’s formula with
respect to G-Brownian motion, which is comparable with that from the classical
Itô’s calculus.

Consider the following G-Itô diffusion process:

X ν
t = X ν

0 +
∫ t

0
αν
s ds +

∫ t

0
ηνi j
s d 〈B〉i js +

∫ t

0
βν j
s d B j

s .

Lemma 8.3.1 Suppose that � ∈ C2(Rn) and that all first and second order deriva-
tives of � are in Cb,Lip(R

n). Let αν , βν j and ηνi j , ν = 1, · · · , n, i, j = 1, · · · , d, be
bounded processes in M2∗ (0, T ). Then for any t ≥ 0, we have in L2∗(�t ),

�(Xt ) − �(X0) =
∫ t

0
∂xν �(Xu)β

ν j
u d B j

u +
∫ t

0
∂xν �(Xu)α

ν
udu (8.3.1)

+
∫ t

0
[∂xν �(Xu)η

νi j
u + 1

2
∂2
xμxν �(Xu)β

μi
u βν j

u ]d 〈B〉i ju .

The proof is parellel to that of Proposition 6.3, in Chap. 3. The details are left as an
exercise for the readers.

Lemma 8.3.2 Suppose that � ∈ C2(Rn) and all first and second order derivatives
of � are in Cb,Lip(R

n). Let αν , βν j be in M1∗ (0, T ) and ηνi j belong to M2∗ (0, T ) for
ν = 1, · · · , n, i, j = 1, · · · , d. Then for any t ≥ 0, relation (8.3.1) holds in L1∗(�t ).

Proof For simplicity, we only deal with the case n = d = 1. Let α(k), β(k) and η(k)

be bounded processes such that, as k → ∞,

α(k) → α, η(k) → η in M1
∗ (0, T ) and β(k) → β in M2

∗ (0, T )

and let

X (k)
t = X0 +

∫ t

0
α(k)
s ds +

∫ t

0
η(k)
s d〈B〉s +

∫ t

0
β(k)
s d Bs .

Then applying Hölder’s inequality and BDG inequality yields that

lim
k→∞ Ê[ sup

0≤t≤T
|X (k)

t − Xt |] = 0 and lim
k→∞ Ê[ sup

0≤t≤T
|�(X (k)

t ) − �(Xt )|] = 0.
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Note that

Ê

[∫ T

0
|∂x�(X (k)

t )β
(k)
t − ∂x�(Xt )βt |2dt

]

≤ 2Ê

[∫ T

0
|∂x�(X (k)

t )β
(k)
t − ∂x�(X (k)

t )βt |2dt
]

+ 2Ê

[∫ T

0
|∂x�(X (k)

t )βt − ∂x�(Xt )βt |2dt
]

≤ 2C2
Ê

[∫ T

0
|β(k)

t − βt |2dt
]

+ 2Ê

[∫ T

0
|βt |2|∂x�(X (k)

t ) − ∂x�(Xt )|2dt
]

,

whereC is the upper bound of ∂x�. Since sup0≤t≤T |∂x�(X (k)
t ) − ∂x�(Xt )|2 ≤ 4C2,

we conclude that

Ê

[∫ T

0
|∂x�(X (k)

t ) − ∂x�(Xt )|2dt
]

→ 0, as k → ∞.

Thus we can apply Proposition8.2.3 to prove that, in M2∗ (0, T ), as k → ∞,

∂x�(X (k))β(k) → ∂x�(X)β, ∂x�(X (k))α(k) → ∂x�(X)α,

∂x�(X (k))η(k) → ∂x�(X)η, ∂2
xx�(X (k))(β(k))2 → ∂2

xx�(X)β2.

However, from the above lemma we have

�(X (k)
t ) − �(X (k)

0 ) =
∫ t

0
∂x�(X (k)

u )β(k)
u dBu +

∫ t

0
∂x�(X (k)

u )α(k)
u du

+
∫ t

0
[∂x�(X (k)

u )η(k)
u + 1

2∂
2
xx�(X (k)

u )(β(k)
u )2]d〈B〉u .

Therefore passing to the limit on both sides of this equality, we obtain the desired
result. �

Lemma 8.3.3 Let X be given as in Lemma 8.3.2 and let � ∈ C1,2([0, T ] × R
n)

be such that �, ∂t�, ∂x� and ∂2
xx� are bounded and uniformly continuous on

[0, T ] × R
n. Then we have the following relation in L1∗(�t ):

�(t, Xt ) − �(0, X0) =
∫ t

0
∂xν �(u, Xu)β

ν j
u dB j

u +
∫ t

0
[∂t�(u, Xu) + ∂xν �(u, Xu)αν

u ]du

+
∫ t

0
[∂xν �(u, Xu)η

νi j
u + 1

2∂2xμxν �(u, Xu)β
μi
u β

ν j
u ]d 〈B〉i ju .

Proof Choose a sequence of functions {�k}∞k=1 such that, �k and all its first order
and second order derivatives are in Cb,Lip([0, T ] × R

n). Moreover, as n → ∞, �n ,
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∂t�n , ∂x�n and ∂2
xx�n converge respectively to �, ∂t�, ∂x� and ∂2

xx� uniformly on
[0, T ] × R. Then we use the above Itô’s formula to�k(X0

t , Xt ), with Yt = (X0
t , Xt ),

where X0
t ≡ t :

�k(t, Xt ) − �k(0, X0) =
∫ t

0
∂xν �k(u, Xu)β

ν j
u d B j

u +
∫ t

0
[∂t�k(u, Xu) + ∂xν �k(u, Xu)α

ν
u ]du

+
∫ t

0
[∂xν �k(u, Xu)η

νi j
u + 1

2 ∂2xμxν �k(u, Xu)β
μi
u β

ν j
u ]d 〈B〉i ju .

It follows that, as k → ∞, the following uniform convergences:

|∂xν
�k(u, Xu) − ∂xν

�(u, Xu)| → 0, |∂2
xμxν

�k(u, Xu) − ∂2
xμxν

�k(u, Xu)| → 0,

|∂t�k(u, Xu) − ∂t�(u, Xu)| → 0.

Sending k → ∞, we arrive at the desired result. �
Theorem 8.3.4 Suppose � ∈ C1,2([0, T ] × R

n). Let αν, ηνi j be in M1
w(0, T ) and

βν j be in M2
w(0, T ) associated with a common stopping time sequence {σm}∞m=1.

Then for any t ≥ 0, we have q.s.

�(t, Xt ) − �(0, X0) =
∫ t

0
∂xν �(u, Xu)β

ν j
u dB j

u +
∫ t

0
[∂t�(u, Xu) + ∂xν �(u, Xu)αν

u ]du

+
∫ t

0
[∂xν �(u, Xu)η

νi j
u + 1

2∂2xμxν �(u, Xu)β
μi
u β

ν j
u ]d 〈B〉i ju .

Proof For simplicity, we only deal with the case n = d = 1. We set, for k =
1, 2, · · · ,

τk := inf{t ≥ 0| |Xt − X0| > k} ∧ σk .

Let �k be a C1,2-function on [0, T ] × R
n such that �k , ∂t�k , ∂xi �k and ∂2

xi x j
�k are

uniformly bounded continuous functions satisfying�k = �, for |x | ≤ 2k, t ∈ [0, T ].
It is clear that the process 1[0,τk ]β is in M2

w(0, T ), while 1[0,τk ]α and 1[0,τk ]η are in
M1

w(0, T ) and they are all associated to the same sequence of stopping times {τk}∞k=1.
We also have

Xt∧τk = X0 +
∫ t

0
αs1[0,τk ]ds +

∫ t

0
ηs1[0,τk ]d〈B〉s +

∫ t

0
βs1[0,τk ]dBs

Then we can apply Lemma 8.3.3 to �k(s, Xs∧τk ), s ∈ [0, t], to obtain

�(t, Xt∧τk ) − �(0, X0)

=
∫ t

0
∂x�(u, Xu)βu1[0,τk ]dBu +

∫ t

0
[∂t�(u, Xu) + ∂x�(u, Xu)αu]1[0,τk ]du

+
∫ t

0
[∂x�(u, Xu)ηu1[0,τk ] + 1

2∂
2
xx�(u, Xu)|βu |21[0,τk ]]d〈B〉u .
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Letting k → ∞ and noticing that Xt is continuous in t , we get the desired result.
�

Example 8.3.5 For given ϕ ∈ C2(R), we have

�(Bt ) − �(B0) =
∫ t

0
�x (Bs)dBs + 1

2

∫ t

0
�xx (Bs)d 〈B〉s .

This generalizes the previous results to more general situations.

Notes and Comments

The results in this chapter were mainly obtained by Li and Peng [110, 2011]. Li
and Lin [109, 2013] found a point of incompleteness and proposed to use a more
essential condition (namely, Condition (ii) in Definition8.2.8) to replace the original
one which was

∫ T
0 |ηt |pdt < ∞, q.s.

A difficulty hidden behind is that the G-expectation theory is mainly based on the
space of random variables X = X (ω)which are quasi-continuous with respect to the
G-capacity ĉ. It is not yet clear that the martingale properties still hold for random
variables without quasi-continuity condition.

There are still several interesting and fundamentally important issues on
G-expectation theory and its applications. It is known that stopping times play a
fundamental role in classical stochastic analysis. However, it is often nontrivial to
directly apply stopping time techniques in a G-expectation space. The reason is that
the stopped process may not belong to the class of processes which are meaning-
ful in the G-framework. Song [160] considered the properties of hitting times for
G- martingale and, moreover the stopped processes. He proved that the stopped
processes for G-martingales are still G-martingales and that the hitting times for
symmetric G-martingales with strictly increasing quadratic variation processes are
quasi-continuous. Hu and Peng [82] introduced a suitable definition of stopping times
and obtained the optional stopping theorem.
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