
Chapter 5
Stochastic Differential Equations

In this chapter, we consider the stochastic differential equations and backward
stochastic differential equations driven by G-Brownian motion. The conditions and
proofs of existence and uniqueness of a stochastic differential equation is similar to
the classical situation. However the corresponding problems for backward stochas-
tic differential equations are not that easy, many are still open. We only give partial
results to this direction.

5.1 Stochastic Differential Equations

In this chapter,wedenote by M̄ p
G(0, T ; R

n), p ≥ 1, the completion ofMp,0
G (0, T ; R

n)

under the norm (
∫ T
0 Ê[|ηt |p]dt)1/p. It is not hard to prove that M̄ p

G(0, T ; R
n) ⊆

Mp
G(0, T ; R

n). We consider all the problems in the space M̄ p
G(0, T ; R

n). The fol-
lowing lemma is useful in our future discussion.

Lemma 5.1.1 Suppose that ϕ ∈ M2
G(0, T ). Then for a ∈ R

d , it holds that

ηt :=
∫ t

0
ϕsd B

a
s ∈ M̄2

G(0, T ).

Proof Choosing a sequence of processes ϕn ∈ M2,0
G (0, T ) such that

lim
n→∞ Ê

[∫ T

0
|ϕs − ϕn

s |2ds
]

= 0.

Then for each integer n, it is easy to check that the process ηn
t = ∫ t

0 ϕn
s dB

a
s belongs

to the space M̄2
G(0, T ).
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On the other hand, it follows from the property of G-Itô integral that

∫ T

0
Ê[|ηt − ηnt |2]dt = σ 2

aaT

∫ T

0
Ê

[∫ t

0
|ϕs − ϕn

s |2ds
]

dt ≤ σ 2
aaT T Ê

[∫ T

0
|ϕs − ϕn

s |2ds
]

,

which implies the desired result. �
Now we consider the following SDE driven by a d-dimensional G-Brownian

motion:

Xt = X0 +
∫ t

0
b(s, Xs)ds +

∫ t

0
hi j (s, Xs)d 〈B〉i js +

∫ t

0
σ j (s, Xs)dB

j
s , t ∈ [0, T ],

(5.1.1)
where the initial condition X0 ∈ R

n is a given constant, b, hi j , σ j are given functions
satisfying b(·, x), hi j (·, x), σ j (·, x) ∈ M2

G(0, T ; R
n) for each x ∈ R

n and the Lips-
chitz condition, i.e., |φ(t, x) − φ(t, x ′)| ≤ K |x − x ′|, for each t ∈ [0, T ], x , x ′ ∈ R

n ,
φ = b, hi j and σ j , respectively. Here the horizon [0, T ] can be arbitrarily large. The
solution is a process (Xt )t∈[0,T ] ∈ M̄2

G(0, T ; R
n) satisfying the SDE (5.1.1).

We first introduce the following mapping on a fixed interval [0, T ]:

�· : M̄2
G(0, T ; R

n) �→ M̄2
G(0, T ; R

n)

by setting �t , t ∈ [0, T ], with

�t (Y ) = X0 +
∫ t

0
b(s,Ys)ds +

∫ t

0
hi j (s,Ys)d 〈B〉i js +

∫ t

0
σ j (s,Ys)dB

j
s .

From Lemma5.1.1 and Exercise5.4.2 of this chapter, we see that the mapping � is
well-defined.

We immediately have the following lemma, whose proof is left to the reader.

Lemma 5.1.2 For any Y,Y ′ ∈ M̄2
G(0, T ; R

n), we have the following estimate:

Ê[|�t (Y ) − �t (Y
′)|2] ≤ C

∫ t

0
Ê[|Ys − Y ′

s |2]ds, t ∈ [0, T ], (5.1.2)

where the constant C depends only on the Lipschitz constant K .

We now prove that the SDE (5.1.1) has a unique solution. We multiply on both
sides of (5.1.2) by e−2Ct and integrate them on [0, T ], thus deriving

∫ T

0
Ê[|�t (Y ) − �t (Y

′)|2]e−2Ctdt ≤ C
∫ T

0
e−2Ct

∫ t

0
Ê[|Ys − Y ′

s |2]dsdt

= C
∫ T

0

∫ T

s
e−2CtdtÊ[|Ys − Y ′

s |2]ds

= 1

2

∫ T

0
(e−2Cs − e−2CT )Ê[|Ys − Y ′

s |2]ds.
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We then have

∫ T

0
Ê[|�t (Y ) − �t (Y

′)|2]e−2Ctdt ≤ 1

2

∫ T

0
Ê[|Yt − Y ′

t |2]e−2Ctdt. (5.1.3)

Note that the following two norms are equivalent in the space M̄2
G(0, T ; R

n):

(∫ T

0
Ê[|Yt |2]dt

)1/2

∼

(∫ T

0
Ê[|Yt |2]e−2Ctdt

)1/2

.

From (5.1.3) we obtain that �(Y ) is a contraction mapping. Consequently, we have
the following theorem.

Theorem 5.1.3 There exists a unique solution (Xt )0≤t≤T ∈ M̄2
G(0, T ; R

n) of the
stochastic differential equation (5.1.1).

We now consider a particular but important case of a linear SDE. For simplicity,
assume that d = 1, n = 1. and let

Xt = X0 +
∫ t

0
(bs Xs + b̃s)ds +

∫ t

0
(hs Xs + h̃s)d〈B〉s +

∫ t

0
(σs Xs + σ̃s)dBs , t ∈ [0, T ].

(5.1.4)
Here X0 ∈ R is given, b., h., σ. are given bounded processes in M2

G(0, T ; R) and
b̃., h̃., σ̃. are given processes in M2

G(0, T ; R). It follows from Theorem5.1.3 that the
linear SDE (5.1.4) has a unique solution.

Remark 5.1.4 The solution of the linear SDE (5.1.4) is

Xt = �−1
t (X0 +

∫ t

0
b̃s�sds +

∫ t

0
(h̃s − σs σ̃s)�sd〈B〉s +

∫ t

0
σ̃s�sd Bs), t ∈ [0, T ],

where �t = exp(− ∫ t
0 bsds − ∫ t

0 (hs − 1
2σ

2
s )d〈B〉s − ∫ t

0 σsd Bs).
In particular, if b., h., σ. are constants and b̃., h̃., σ̃. are zero, then X is a geometric

G-Brownian motion.

Definition 5.1.5 We say that (Xt )t≥0 is a geometric G-Brownian motion if

Xt = exp(αt + β〈B〉t + γ Bt ), (5.1.5)

where α, β, γ are constants.
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5.2 Backward Stochastic Differential Equations (BSDE)

We consider the following type of BSDE:

Yt = Ê

[

ξ +
∫ T

t
f (s,Ys)ds +

∫ T

t
hi j (s,Ys)d 〈B〉i js

∣
∣
∣�t

]

, t ∈ [0, T ], (5.2.1)

where ξ ∈ L1
G(�T ; R

n), f, hi j are given functions such that f (·, y), hi j (·, y) ∈
M1

G(0, T ; R
n) for each y ∈ R

n and these functions satisfy the Lipschitz condition,
i.e.,

|φ(t, y) − φ(t, y′)| ≤ K |y − y′|, for each t ∈ [0, T ], y, y′ ∈ R
n, φ = f and hi j .

The solution is a process (Yt )0≤t≤T ∈ M̄1
G(0, T ; R

n) satisfying the above BSDE.
We first introduce the following mapping on a fixed interval [0, T ]:

�· : M̄1
G(0, T ; R

n) → M̄1
G(0, T ; R

n)

by setting �t , t ∈ [0, T ] as follows:

�t (Y ) = Ê

[

ξ +
∫ T

t
f (s,Ys)ds +

∫ T

t
hi j (s,Ys)d 〈B〉i js

∣
∣
∣�t

]

,

which is well-defined by Lemma5.1.1 and Exercises5.4.2, 5.4.5.
We immediately derive a useful property of �t .

Lemma 5.2.1 For any Y,Y ′ ∈ M̄1
G(0, T ; R

n), we have the following estimate:

Ê[|�t (Y ) − �t (Y
′)|] ≤ C

∫ T

t
Ê[|Ys − Y ′

s |]ds, t ∈ [0, T ], (5.2.2)

where the constant C depends only on the Lipschitz constant K .

Now we are going to prove that the BSDE (5.2.1) has a unique solution. We
multiplying on both sides of (5.2.2) by e2Ct , and integrate them on [0, T ]. We find

∫ T

0
Ê[|�t (Y ) − �t (Y

′)|]e2Ctdt ≤ C
∫ T

0

∫ T

t
Ê[|Ys − Y ′

s |]e2Ctdsdt

= C
∫ T

0
Ê[|Ys − Y ′

s |]
∫ s

0
e2Ctdtds

= 1

2

∫ T

0
Ê[|Ys − Y ′

s |](e2Cs − 1)ds

≤ 1

2

∫ T

0
Ê[|Ys − Y ′

s |]e2Csds. (5.2.3)
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We observe that the following two norms in the space M̄1
G(0, T ; R

n) are equivalent:

∫ T

0
Ê[|Yt |]dt ∼

∫ T

0
Ê[|Yt |]e2Ctdt.

From (5.2.3), we can obtain that �(Y ) is a contraction mapping. Consequently, we
have proved the following theorem.

Theorem 5.2.2 There exists a unique solution (Yt )t∈[0,T ] ∈ M̄1
G(0, T ; R

n) of the
backward stochastic differential equation (5.2.1).

Let Y (v), v = 1, 2, be the solutions of the following BSDE:

Y (v)
t = Ê

[

ξ(v) +
∫ T

t
( f (s,Y (v)

s ) + ϕ
(v)
s )ds +

∫ T

t
(hi j (s,Y

(v)
s ) + ψ

i j,(v)
s )d 〈B〉i js

∣
∣
∣�t

]

.

Then the following estimate holds.

Proposition 5.2.3 We have

Ê

[
|Y (1)

t − Y (2)
t |

]
≤ CeC(T−t)

Ê[|ξ (1) − ξ (2)| +
∫ T

t
|ϕ(1)

s − ϕ(2)
s | + |ψ i j,(1)

s − ψ
i j,(2)
s |ds],

(5.2.4)
where the constant C depends only on the Lipschitz constant K .

Proof As in the proof of Lemma5.2.1, we have

Ê[|Y (1)
t − Y (2)

t |] ≤ C

(∫ T

t
Ê[|Y (1)

s − Y (2)
s |]ds + Ê[|ξ (1) − ξ (2)|

+
∫ T

t
|ϕ(1)

s − ϕ(2)
s | + |ψ i j,(1)

s − ψ i j,(2)
s |ds]

)

.

By applying the Gronwall inequality (see Exercise5.4.4), we obtain the statement.

Remark 5.2.4 In particular, if ξ (2) = 0,ϕ(2)
s = − f (s, 0),ψ i j,(2)

s = −hi j (s, 0), ξ (1) =
ξ , ϕ(1)

s = 0, ψ i j,(1)
s = 0, we obtain the estimate of the solution of the BSDE. Let Y

be the solution of the BSDE (5.2.1). Then

Ê[|Yt |] ≤ CeC(T−t)
Ê

[

|ξ | +
∫ T

t
| f (s, 0)| + |hi j (s, 0)|ds

]

, (5.2.5)

where the constant C depends only on the Lipschitz constant K .
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5.3 Nonlinear Feynman-Kac Formula

Consider the following SDE:

{
dXt,ξ

s = b(Xt,ξ
s )ds + hi j (X

t,ξ
s )d 〈B〉i js + σ j (X

t,ξ
s )dB j

s , s ∈ [t, T ],
Xt,ξ
t = ξ,

(5.3.1)

where ξ ∈ L2
G(�t ; R

n) and b, hi j , σ j : R
n �→ R

n are given Lipschitz functions, i.e.,
|φ(x) − φ(x ′)| ≤ K |x − x ′|, for all x , x ′ ∈ R

n , φ = b, hi j and σ j .
We then consider the associated BSDE:

Y t,ξ
s = Ê

[

�(Xt,ξ
T ) +

∫ T

s
f (Xt,ξ

r ,Y t,ξ
r )dr +

∫ T

s
gi j (X

t,ξ
r ,Y t,ξ

r )d
〈
Bi , B j

〉
r

∣
∣
∣�s

]

,

(5.3.2)
where� : R

n → R is a given Lipschitz function and f , gi j : R
n × R �→ R are given

Lipschitz functions, i.e., |φ(x, y) − φ(x ′, y′)| ≤ K (|x − x ′| + |y − y′|), for each x ,
x ′ ∈ R

n , y, y′ ∈ R, φ = f and gi j .
We have the following estimates:

Proposition 5.3.1 For each ξ , ξ ′ ∈ L2
G(�t ; R

n), we have, for each s ∈ [t, T ],

Ê[|Xt,ξ
s − Xt,ξ ′

s |2|�t ] ≤ C |ξ − ξ ′|2 (5.3.3)

and
Ê[|Xt,ξ

s |2|�t ] ≤ C(1 + |ξ |2), (5.3.4)

where the constant C depends only on the Lipschitz constant K .

Proof It is easy to see that

Ê[|Xt,ξ
s − Xt,ξ ′

s |2∣∣�t ] ≤ C1(|ξ − ξ ′|2 +
∫ s

t
Ê[|Xt,ξ

r − Xt,ξ ′
r |2|�t ]dr).

By the Gronwall inequality, we obtain (5.3.3), namely

Ê[|Xt,ξ
s − Xt,ξ ′

s |2|�t ] ≤ C1e
C1T |ξ − ξ ′|2.

Similarly, we derive (5.3.4). �

Corollary 5.3.2 For any ξ ∈ L2
G(�t ; R

n), we have

Ê[|Xt,ξ
t+δ − ξ |2|�t ] ≤ C(1 + |ξ |2)δ for δ ∈ [0, T − t], (5.3.5)

where the constant C depends only on the Lipschitz constant K .
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Proof It is easy to see that

Ê[|Xt,ξ
t+δ − ξ |2∣∣�t ] ≤ C1

∫ t+δ

t

(
1 + Ê[|Xt,ξ

s |2∣∣�t ]
)
ds.

Then the result follows from Proposition5.3.1. �

Proposition 5.3.3 For each ξ , ξ ′ ∈ L2
G(�t ; R

n), we have

|Y t,ξ
t − Y t,ξ ′

t | ≤ C |ξ − ξ ′| (5.3.6)

and
|Y t,ξ

t | ≤ C(1 + |ξ |), (5.3.7)

where the constant C depends only on the Lipschitz constant K .

Proof For each s ∈ [0, T ], it is easy to check that

|Y t,ξ
s − Y t,ξ ′

s | ≤ C1Ê

[

|Xt,ξ
T − Xt,ξ ′

T | +
∫ T

s
(|Xt,ξ

r − Xt,ξ ′
r | + |Y t,ξ

r − Y t,ξ ′
r |)dr |�s

]

.

Since

Ê[|Xt,ξ
s − Xt,ξ ′

s ||�t ] ≤
(
Ê[|Xt,ξ

s − Xt,ξ ′
s |2|�t ]

)1/2
,

we have

Ê[|Y t,ξ
s − Y t,ξ ′

s ||�t ] ≤ C2(|ξ − ξ ′| +
∫ T

s
Ê[|Y t,ξ

r − Y t,ξ ′
r ||�t ]dr).

By the Gronwall inequality, we obtain (5.3.6). Similarly we derive (5.3.7). �

We are more interested in the case when ξ = x ∈ R
n . Define

u(t, x) := Y t,x
t , (t, x) ∈ [0, T ] × R

n. (5.3.8)

By Proposition 5.3.3, we immediately have the following estimates:

|u(t, x) − u(t, x ′)| ≤ C |x − x ′|, (5.3.9)

|u(t, x)| ≤ C(1 + |x |), (5.3.10)

where the constant C depends only on the Lipschitz constant K .

Remark 5.3.4 It is important to note that u(t, x) is a deterministic function of (t, x),
because Xt,x

s and Y t,x
s are independent from �t .
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Theorem 5.3.5 For any ξ ∈ L2
G(�t ; R

n), we have

u(t, ξ) = Y t,ξ
t . (5.3.11)

Proof Without loss of generality, suppose that n = 1.
First, we assume that ξ ∈ Lip(�T ) is bounded by some constant ρ. Thus for each

integer N > 0, we can choose a simple function

ηN =
N∑

i=−N

xi IAi (ξ)

with xi = iρ
N , Ai = [ iρN ,

(i+1)ρ
N ) for i = −N , . . . , N − 1 and xN = ρ, AN = {ρ}.

From the definition of u, we conclude that

|Y t,ξ
t − u(t, ηN )| = |Y t,ξ

t −
N∑

i=−N

u(t, xi )IAi (ξ)| = |Y t,ξ
t −

N∑

i=−N

Y t,xi
t IAi (ξ)|

=
N∑

i=−N

|Y t,ξ
t − Y t,xi

t |IAi (ξ).

Then it follows from Proposition5.3.3 that

|Y t,ξ
t − u(t, ηN )| ≤ C

N∑

i=−N

|ξ − xi |IAi (ξ) ≤ C
ρ

N
.

Noting that

|u(t, ξ) − u(t, ηN )| ≤ C |ξ − ηN | ≤ C
ρ

N
,

we get Ê[|Y t,ξ
t − u(t, ξ)|] ≤ 2C ρ

N . Since N can be arbitrarily large, we obtain Y t,ξ
t =

u(t, ξ).
In the general case, by Exercise3.10.4 in Chap.3, we can find a sequence of

bounded random variables ξk ∈ Lip(�T ) such that

lim
k→∞ Ê[|ξ − ξk |2] = 0.

Consequently, applying Proposition5.3.3 again yields that

lim
k→∞ Ê[|Y t,ξ

t − Y t,ξk
t |2] ≤ C lim

k→∞ Ê[|ξ − ξk |2] = 0,

which together with Y t,ξk
t = u(t, ξk) imply the desired result. �
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Proposition 5.3.6 We have, for δ ∈ [0, T − t],

u(t, x) = Ê

[

u(t + δ, Xt,x
t+δ) +

∫ t+δ

t
f (Xt,x

r , Y t,x
r )dr +

∫ t+δ

t
gi j (X

t,x
r , Y t,x

r )d 〈B〉i jr
]

.

(5.3.12)

Proof Since Xt,x
s = X

t+δ,Xt,x
t+δ

s for s ∈ [t + δ, T ], we get Y t,x
t+δ = Y

t+δ,Xt,x
t+δ

t+δ . By Theo-
rem5.3.5, we have Y t,x

t+δ = u(t + δ, Xt,x
t+δ), which implies the result. �

For any A ∈ S(n), p ∈ R
n , r ∈ R, we set

F(A, p, r, x) := G(B(A, p, r, x)) + 〈p, b(x)〉 + f (x, r),

where B(A, p, r, x) is a d × d symmetric matrix with

Bi j (A, p, r, x) := 〈Aσi (x), σ j (x)〉 + 〈p, hi j (x) + h ji (x)〉 + gi j (x, r) + g ji (x, r).

Theorem 5.3.7 The function u(t, x) is the unique viscosity solution of the following
PDE: {

∂t u + F(D2u, Du, u, x) = 0,
u(T, x) = �(x).

(5.3.13)

Proof We first show that u is a continuous function. By (5.3.9) we know that u is a
Lipschitz function in x . It follows from (5.2.5) and (5.3.4) that

Ê[|Y t,x
s |] ≤ C(1 + |x |), for s ∈ [t, T ].

In viewof (5.3.5) and (5.3.12),we get |u(t, x) − u(t + δ, x)| ≤ C(1 + |x |)(δ1/2 + δ)

for δ ∈ [0, T − t]. Thus u is 1
2 -Hölder continuous in t , which implies that u is a

continuous function. We can also show (see Exercise5.4.8), that for each p ≥ 2,

Ê[|Xt,x
t+δ − x |p] ≤ C(1 + |x |p)δ p/2. (5.3.14)

Now for fixed (t, x) ∈ (0, T ) × R
n , let ψ ∈ C2,3

l,Lip([0, T ] × R
n) be such that ψ ≥ u

and ψ(t, x) = u(t, x). By (5.3.12), (5.3.14) and Taylor’s expansion, it follows that,
for δ ∈ (0, T − t),

0 ≤ Ê

[

ψ(t + δ, Xt,x
t+δ) − ψ(t, x) +

∫ t+δ

t
f (Xt,x

r ,Y t,x
r )dr

+
∫ t+δ

t
gi j (X

t,x
r ,Y t,x

r )d
〈
Bi , B j

〉
r

]

≤ 1

2
Ê[(B(D2ψ(t, x), Dψ(t, x), ψ(t, x), x), 〈B〉t+δ − 〈B〉t )]

+ (∂tψ(t, x) + 〈Dψ(t, x), b(x)〉 + f (x, ψ(t, x)))δ + C(1 + |x |m)δ3/2
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≤ (∂tψ(t, x) + F(D2ψ(t, x), Dψ(t, x), ψ(t, x), x))δ + C(1 + |x |m)δ3/2,

where m is some constant depending on the function ψ . Consequently, it is easy to
check that

∂tψ(t, x) + F(D2ψ(t, x), Dψ(t, x), ψ(t, x), x) ≥ 0.

This implies that u is a viscosity subsolution of (5.3.13). Similarly we can show that
u is also a viscosity supersolution of (5.3.13). The uniqueness is from TheoremC.2.9
(in Appendix C). �

Example 5.3.8 Let B = (B1, B2) be a 2-dimensional G-Brownian motion with

G(A) = G1(a11) + G2(a22),

where

Gi (a) = 1

2
(σ 2

i a
+ − σ 2

i a
−), i = 1, 2.

In this case, we consider the following 1-dimensional SDE:

dXt,x
s = μXt,x

s ds + νXt,x
s d

〈
B1

〉
s + σ Xt,x

s dB2
s , Xt,x

t = x,

where μ, ν and σ are constants.
The corresponding function u is defined by

u(t, x) := Ê[ϕ(Xt,x
T )].

Then
u(t, x) = Ê[u(t + δ, Xt,x

t+δ)]

and u is the viscosity solution of the following PDE:

∂t u + μx∂xu + 2G1(νx∂xu) + σ 2x2G2(∂
2
xxu) = 0, u(T, x) = ϕ(x).

5.4 Exercises

Exercise 5.4.1 Prove that M̄ p
G(0, T ; R

n) ⊆ Mp
G(0, T ; R

n).

Exercise 5.4.2 Show that b(s,Ys) ∈ Mp
G(0, T ; R

n) for each Y ∈ Mp
G(0, T ; R

n),
where b is given by Eq. (5.1.1).

Exercise 5.4.3 Complete the proof of Lemma5.1.2.

Exercise 5.4.4 (TheGronwall inequality) Letu(t)be aLebesgue integrable function
in [0, T ] such that
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u(t) ≤ C + A
∫ t

0
u(s)ds for 0 ≤ t ≤ T,

where C > 0 and A > 0 are constants. Prove that u(t) ≤ CeAt for 0 ≤ t ≤ T .

Exercise 5.4.5 For any ξ ∈ L1
G(�T ; R

n), show that the process (Ê[ξ |�t ])t∈[0,T ]
belongs to M̄1

G(0, T ; R
n).

Exercise 5.4.6 Complete the proof of Lemma5.2.1.

Exercise 5.4.7 Suppose that ξ , f and hi j are all deterministic functions. Solve the
BSDE (5.2.1).

Exercise 5.4.8 For each ξ ∈ L p
G(�t ; R

n) with p ≥ 2, show that SDE (5.3.1) has a
unique solution in M̄ p

G(t, T ; R
n). Further, show that the following estimates hold:

Êt [|Xt,ξ
t+δ − Xt,ξ ′

t+δ|p] ≤ C |ξ − ξ ′|p,

Êt [|Xt,ξ
t+δ|p] ≤ C(1 + |ξ |p),

Êt [ sup
s∈[t,t+δ]

|Xt,ξ
s − ξ |p] ≤ C(1 + |ξ |p)δ p/2,

where the constant C depends on L , G, p, n and T .

Exercise 5.4.9 Let Ẽ be a nonlinear expectation dominated byG-expectation,where
G̃ : S(d) �→ R is dominated byG and G̃(0) = 0. Then we replace theG-expectation
Ê by Ẽ in BSDEs (5.2.1) and (5.3.2). Show that

(i) the BSDE (5.2.1) admits a unique solution Y ∈ M̄1
G(0, T ).

(ii) u is the unique viscosity solution of the PDE (5.3.13) corresponding to G̃.

Notes and Comments

The material in this chapter is mainly from Peng [140].
There are many excellent books on Itô’s stochastic calculus and stochastic dif-

ferential equations based by Itô’s original paper [92]. The ideas of that notes were
further developed to build the nonlinear martingale theory. For the corresponding
classical Brownian motion framework under a probability measure space, readers
are referred to Chung and Williams [34], Dellacherie and Meyer [43], He, Wang
and Yan [74], Itô and McKean [93], Ikeda and Watanabe [90], Kallenberg [100],
Karatzas and Shreve [101], Øksendal [122], Protter [150], Revuz and Yor [151] and
Yong and Zhou [177].

Linear backward stochastic differential equations (BSDEs) were first introduced
byBismut in [17, 19]. Bensoussan developed this approach in [12, 13]. The existence
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and uniqueness theorem of a general nonlinear BSDE, was obtained in 1990 in
Pardoux and Peng [124]. Here we present a version of a proof based on El Karoui,
Peng and Quenez [58], which is an excellent survey paper on BSDE theory and its
applications, especially in finance. Comparison theorem of BSDEs was obtained in
Peng [128] for the case when g is aC1-function and then in [58] when g is Lipschitz.
Nonlinear Feynman-Kac formula for BSDEwas introduced by Peng [127, 129]. Here
we obtain the corresponding Feynman-Kac formula for a fully nonlinear PDE, within
the framework of G-expectation. We also refer to Yong and Zhou [177], as well as
Peng [131] (in 1997, in Chinese) and [133] and more resent monographs of Crepey
[40], Pardoux and Rascanu [125] and Zhang [179] for systematic presentations of
BSDE theory and its applications.

In the framework of fully nonlinear expectation, typically G-expectation, a chal-
lenging problem is to prove the well-posedness of a BSDE which is general enough
to contain the above ‘classical’ BSDE as a special case. By applying and devel-
oping methods of quasi-surely analysis and aggregations, Soner et al. [156–158],
introduced a weak formulation and then proved the existence and uniqueness of
weak solution 2nd order BSDE (2BSDE). We also refer to Zhang [179] a systematic
presentation. Then, by using a totally different approach of G-martingale represen-
tation and a type of Galerkin approximation, Hu et al. [79] proved the existence and
uniqueness of solution of BSDE driven by G-Brownian motions (G-BSDE). As in
the classical situation, G-BSDE is a natural generalization of representation of G-
martingale. The assumption for the well-posedness of 2BSDEs is weaker than that
of G-BSDE, whereas the solution (Y, Z , K ) obtained by GBSDE is quasi-surely
continuous which is in general smoother than that of 2BSDE. A very interesting
problem is how to combine the advantages of both methods.

Then Hu andWang [84] considered ergodic G-BSDEs, see also [77]. In [75], Hu,
Lin and Soumana Hima studied G-BSDEs under quadratic assumptions on coeffi-
cients. In [111], Li, Peng and Soumana Hima investigated the existence and unique-
ness theorem for reflected G-BSDEs. Furthermore, Cao and Tang [25] dealed with
reflected Quadratic BSDEs driven by G-Brownian Motions.
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