Chapter 5 ®)
Stochastic Differential Equations oo

In this chapter, we consider the stochastic differential equations and backward
stochastic differential equations driven by G-Brownian motion. The conditions and
proofs of existence and uniqueness of a stochastic differential equation is similar to
the classical situation. However the corresponding problems for backward stochas-
tic differential equations are not that easy, many are still open. We only give partial
results to this direction.

5.1 Stochastic Differential Equations

In this chapter, we denote by M5.(0, T; R"), p > 1, the completion ofMg’O(O, T:R"
under the norm (foT [|n,|P1dt)"/?. 1t is not hard to prove that MEO,T;R")

MGP (0, T'; R™"). We consider all the problems in the space Mg (0, T; R™). The fol-
lowing lemma is useful in our future discussion.

Lemma 5.1.1 Suppose that ¢ € Mé (0, T). Then for a € R, it holds that
t -
N = / @ dB* € M%(0,T).
0
Proof Choosing a sequence of processes ¢" € Mé’O(O, T) such that

T
lim E [/ lgs — <p;'|2ds} =0.
n—oo 0

Then for each integer n, it is easy to check that the process n; = fot @!'d B? belongs
to the space A;Ié 0, 7).

© Springer-Verlag GmbH Germany, part of Springer Nature 2019 101
S. Peng, Nonlinear Expectations and Stochastic Calculus under Uncertainty,

Probability Theory and Stochastic Modelling 95,

https://doi.org/10.1007/978-3-662-59903-7_5


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-59903-7_5&domain=pdf
https://doi.org/10.1007/978-3-662-59903-7_5

102 5 Stochastic Differential Equations

On the other hand, it follows from the property of G-Itd integral that

T T t T
/E[|m—n:‘|2]dr=o§an JEU \ws—wngds]dtsvjaTTE[/ |¢x—¢§|2ds],
0 0 0 0

which implies the desired result. (]

Now we consider the following SDE driven by a d-dimensional G-Brownian
motion:

t t t
X, =x0+/ b(s, Xs)ds+/ hij (s, X5)d (B>§f+/ oj(s, X,)dB/!, t €10, T],
0 0 0

(5.1.1)
where the initial condition X, € R" is a given constant, b, h;;, o; are given functions
satisfying b(-, x), h;;j (-, x), 0;(-, x) € Mé(O, T; R") for each x € R" and the Lips-
chitz condition, i.e., |¢ (¢, x) — ¢ (¢, x")| < K|x — x'|,foreacht € [0, T],x,x" € R",
¢ = b, h;; and o}, respectively. Here the horizon [0, T'] can be arbitrarily large. The
solution is a process (X;)se[0,7] € Mé (0, T; R") satisfying the SDE (5.1.1).

We first introduce the following mapping on a fixed interval [0, T']:

At ME©O, T; R") = MZ(0, T; R")

by setting A,, t € [0, T], with

t t t
A(Y) =X0+/ b(s, Ys)ds+/ hij (s, Ys)d<B>§f‘+/ oj(s, Y,)dB].
0 0 0

From Lemma5.1.1 and Exercise 5.4.2 of this chapter, we see that the mapping A is
well-defined.
We immediately have the following lemma, whose proof is left to the reader.

Lemma 5.1.2 ForanyY,Y' € Mé (0, T; R™), we have the following estimate:
t
E[|A,(Y) = A,(Y)F] = C / E[Y, — Y]P’lds, t € [0, T], (5.1.2)
0

where the constant C depends only on the Lipschitz constant K.

We now prove that the SDE (5.1.1) has a unique solution. We multiply on both
sides of (5.1.2) by e2¢! and integrate them on [0, T], thus deriving

f E[|A(Y) — A (Y)|Ple 2 dt <c/ / (Y, — Y/|*)dsdt

0
—c/ / e 21 drR[|Y, — Y!1ds

- 5/ (e7265 — e 2°TYR[ )Y, — Y/|1ds.
0
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We then have
T R 1 T R
/ E[|A(Y) — A (Y[} le ¢ dr < 3 / E[|Y, — Y/|*le”*“"dt. (5.1.3)
0 0
Note that the following two norms are equivalent in the space Mé 0, T; R™):

T 1/2 T
( / E[|Yf|2]dr> ~ ( / E[|Yt|2]e—”’dr)
0 0

From (5.1.3) we obtain that A(Y) is a contraction mapping. Consequently, we have
the following theorem.

172

Theorem 5.1.3 There exists a unique solution (X;)o<;<r € 1\;1(2;(0, T;R") of the
stochastic differential equation (5.1.1).

We now consider a particular but important case of a linear SDE. For simplicity,

assume thatd = 1, n = 1. and let
X = XO +/ (ths +ﬁs)d<B)x +/ (05X +6s)de5 tel0,T].
0 0
(5.14)
Here X, € R is given, b, h , o, are given bounded processes in Mé (0, T;R) and
l;,, fz,, 0 are given processes in M, (2; (0, T'; R). It follows from Theorem 5.1.3 that the
linear SDE (5.1.4) has a unique solution.

t t t

(bs X5 + l;s)ds +/
0

Remark 5.1.4 The solution of the linear SDE (5.1.4) is
t _ t ~ t
X, =T;"(Xo +/ bsT'sds +/ (hs — 050,)'sd(B); +/ osI'sdBy), t € [0, T],
0 0 0

where T; = exp(— [ byds — [, (hy — 2o2)d(B); — [y 0,dBy).
In particular, if b, i, o, are constants and b , i, . are zero, then X is a geometric
G-Brownian motion.

Definition 5.1.5 We say that (X,),>¢ is a geometric G-Brownian motion if
X = exp(at + B(B); + v B,), (5.1.5)

where «, B, y are constants.
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5.2 Backward Stochastic Differential Equations (BSDE)

We consider the following type of BSDE:

T T
Y,=ﬂ3:[é;+ / f(s, Yds + / hij(s, Y)d (B)Y

Qf], te[0,T], (5.2.1)

where £ € Llc(SZT; R"™), f, h;; are given functions such that f(-,y), h;;(-,y) €
M é (0, T'; R") for each y € R" and these functions satisfy the Lipschitz condition,
i.e.,

(. y) —¢(t.y)| < K|y —y'|, foreach 1 €[0,T], y,y' €eR", ¢=f andh;;.

The solution is a process (Y;)o<i<r € Mé (0, T'; R™) satisfying the above BSDE.
We first introduce the following mapping on a fixed interval [0, T']:

A i M5O, T; R — M0, T; R")

by setting A,, t € [0, T'] as follows:

T T

A(Y)=E [S +/ f(s, Yods + / hij(s, Yo)d (B){ Qt] )
t t

which is well-defined by Lemma5.1.1 and Exercises 5.4.2, 5.4.5.

We immediately derive a useful property of A;.

Lemma 5.2.1 ForanyY,Y' € Mé (0, T; R™), we have the following estimate:
A T A
E[[A(Y) — A (Y]] < C/ E[|Ys — Y{[lds, t € [0, T], (5.2.2)
t
where the constant C depends only on the Lipschitz constant K.

Now we are going to prove that the BSDE (5.2.1) has a unique solution. We
multiplying on both sides of (5.2.2) by ¢/, and integrate them on [0, T']. We find

T T T
/ E[|A,(Y) — A, (Y)|1e*C dt < c/ / E[|Y, — Y1’ dsdt
0 0 t
T R K
= cf E[Y, — Y;|]/ *Cldtds
0 0

1 7.
= -/ E[|Y, — Y/[1(e*** — 1)ds
2 Jo

A

1 (7.
5/ E[|Y, — Y/|1e*“ ds. (5.2.3)
0
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We observe that the following two norms in the space M é (0, T; R") are equivalent:

T T
| Eumnar~ [ Buviecar
0 0
From (5.2.3), we can obtain that A(Y) is a contraction mapping. Consequently, we
have proved the following theorem.

Theorem 5.2.2 There exists a unique solution (Y;);e0,1] € Mé(O, T; R") of the
backward stochastic differential equation (5.2.1).

Let Y™,y = 1, 2, be the solutions of the following BSDE:

" _ r NG r Wy O i

YW =1 g<V>+/ (f(s, Y + o5 )ds—{—/ (hij(s. Y3 + " )d (BYY | |
t t

Then the following estimate holds.

Proposition 5.2.3 We have

T
o 1 2 AN T .2
IE[IY,( ) Yz( ) ] < CLT-DReD _ @) +/ |</’s(1) —</’s(2)| 4y am _ %u( )|ds],

t
(5.2.4)
where the constant C depends only on the Lipschitz constant K.

Proof As in the proof of Lemma5.2.1, we have
A T A A
Eny® -yPn<c ( / BOy" — v nds + Elig — £
t

T
+ f 0" = o1+ 1y~ w;””ws]) :
t

By applying the Gronwall inequality (see Exercise 5.4.4), we obtain the statement.

Remark 5.2.4 Inparticular, if ® = 0,p® = — f(s,0), ¥ = —h;;(s,0),£D =
£, M =0, y"" =0, we obtain the estimate of the solution of the BSDE. Let ¥
be the solution of the BSDE (5.2.1). Then

T
E[Y,|] < CeCT IR [|s|+ f | £(s,0)] +|h,-j<s,o>|ds] (5.2.5)

where the constant C depends only on the Lipschitz constant K .
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5.3 Nonlinear Feynman-Kac Formula

Consider the following SDE:

{ dX'5 = b(X"5)ds + hi;(X5)d (B)Y +o;(X5)dB], s € [t, T, 53.0)

X =¢,

where &€ € LzG(Q,; R") and b, h;;, o; : R" > R" are given Lipschitz functions, i.e.,
lp(x) —p(x)] < K|x —x'|,forall x,x" € R", ¢ = b, h;; and 5.
We then consider the associated BSDE:

T T
y;’sz[mx;m / FXPE v dr + / gu(Xif,Y:f>d(B",B">r\9s]’

(5.3.2)
where @ : R” — Risa given Lipschitz functionand f, g;; : R" x R > R are given
Lipschitz functions, i.e., |¢(x, y) — ¢ (x', )| < K(]x — x'| + |y — y’|), for each x,
xX'eR",y,y eR,¢ = fandg;.

We have the following estimates:

Proposition 5.3.1 Foreaché&, &' € L%; (2; R™), we have, for each s € [t, T],
ElIX¢ — X0 PIQu] < Clg — €' (53.3)

and R
EOX 212,01 < €1+ €1, (5.3.4)

where the constant C depends only on the Lipschitz constant K.

Proof 1t is easy to see that

B[ X5 — X2 Q0 < € — &P + / E[IX05 — X0¥1Q01dr).

t

By the Gronwall inequality, we obtain (5.3.3), namely
BlIX;* - XpEPI0] < Cre®T e — €'
Similarly, we derive (5.3.4). O
Corollary 5.3.2 Forany £ € L2G (2:; R™), we have
]E[|X;f(S —EP1Q] < CA+ &S fors €0, T —1], (5.3.5)

where the constant C depends only on the Lipschitz constant K.
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Proof 1t is easy to see that
R . t+6 R
E[Xp5s — &1 < cl/ (1 +E[|X§’5|2|Q,]) ds.
t

Then the result follows from Proposition5.3.1. (]
Proposition 5.3.3 For each &, &' € L%(Q,; R"), we have
¥ — ¥ = Clg - ¢ (5.3.6)

and

1Y) < (1 + &), (5.3.7)

where the constant C depends only on the Lipschitz constant K.

Proof For each s € [0, T], it is easy to check that
¢ T
/ = t, 1§ 4 4
Y5 — Y < K |:|XT — X5 +/ (X585 — XU 4 78—y |)dr|§25:| :
s

Since "
BOXE - xe9 IR < (BOX:S - X9 R,)

we have

T
BOIYHE — v 19, < Ca(lE — &' + / BOYSE — v1€ |19, 1dr).

By the Gronwall inequality, we obtain (5.3.6). Similarly we derive (5.3.7). U
We are more interested in the case when & = x € R". Define
u(t,x) =Y, (t,x) €[0,T] x R". (5.3.8)
By Proposition 5.3.3, we immediately have the following estimates:
lu(t, x) —u(t,x)] < Clx — x'|, (5.3.9)
lu(t, x)] < C(1 + |x]), (5.3.10)
where the constant C depends only on the Lipschitz constant K .

Remark 5.3.4 Tt is important to note that u (¢, x) is a deterministic function of (¢, x),
because X:* and Y} are independent from €2,.
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Theorem 5.3.5 Forany & € L%(; R"), we have
u(t, &) =Y~ (5.3.11)

Proof Without loss of generality, suppose that n = 1.
First, we assume that £ € Lip(S27) is bounded by some constant p. Thus for each
integer N > 0, we can choose a simple function

N
=) x1a (&)

i=—N

with x; = 2, A; = [, 5D2) for i = —N,...,N — 1 and xy = p, Ay = {p}.

From the definition of u, we conclude that

N

N
Y5 —u g™ =175 = 3w )Ly, @) = 1Y = Y ¥, @)

i=— i=—N

N
DAY =YL, ®).

i=—N

Then it follows from Proposition 5.3.3 that
Y o
YIS —u( ™ = C Y 1& —xilla, (€) < C
i=—N
Noting that

u(r, &) — ut.n™)| < Clg — ™| < cﬁ,

we get B[|Y* —u(r,£)|] < 2C £.Since N can be arbitrarily large, we obtain v =
u(t,§).

In the general case, by Exercise3.10.4 in Chap.3, we can find a sequence of
bounded random variables & € Lip(S2r) such that
lim E[§ - &*] =0.
k—o00
Consequently, applying Proposition 5.3.3 again yields that

lim B[|Y/* — ¥"%?] < C lim K[|& — &|*] =0,
k— o0 k— o0

which together with Y, f’s" = u(t, &) imply the desired result. ]
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Proposition 5.3.6 We have, for § € [0, T —t],

t+4 t+48 L.
u(t,x) =1 |:u(t +68, X5 + / FXE* Y dr + / g (X", Yd (B
t t

(5.3.12)
Proof Since X'* = X;M’X’# fors € [t 48, T], we get ¥,y = Y;:;’X’i”. By Theo-
rem5.3.5, we have Y/ = u(t + 8, X,'s), which implies the result. O

Forany A € S(n), p € R", r € R, we set
F(A, p,r,x) = G(B(A, p,r,x)) + (p, b)) + f(x, 1),
where B(A, p,r, x) is ad x d symmetric matrix with
Bij(A, p,r,x) := (A0;(x), 0;(x)) + (p, hij(x) + hji(x)) + gij(x, r) + gji(x, 7).

Theorem 5.3.7 The function u(t, x) is the unique viscosity solution of the following
PDE:

(5.3.13)

du + F(D*u, Du,u, x) =0,
u(T,x) = d(x).

Proof We first show that u is a continuous function. By (5.3.9) we know that u is a
Lipschitz function in x. It follows from (5.2.5) and (5.3.4) that
ROY! 1< C(1 + |x]), fors e[z, T].
Inview of (5.3.5)and (5.3.12), we get |u(t, x) — u(t + 8, x)| < C(1 + |x])(8'/% 4 8)
for 6 € [0, T —t]. Thus u is %-Hélder continuous in ¢, which implies that u is a
continuous function. We can also show (see Exercise 5.4.8), that for each p > 2,
BXES — x|P] < C(1+ |x|P)872, (5.3.14)
Now for fixed (¢, x) € (0, T) x R", let ¢ € C'};,(10, T] x R") be such that r > u

and ¥ (¢, x) = u(t, x). By (5.3.12), (5.3.14) and Taylor’s expansion, it follows that,
foréd € (0, T —1),

t+6
0= xi v [ oy
t
144 ) )
e[ o xaten )
t

1A
S EE[(B(DZ'(//(I,X), Dw(t’-x)7 W(t, x)v-x)’ <B)l+5 - <B>t)]
+ @ ¥ (1, x) + (DY (t, x), b(X)) + f(x, ¥ (t, X)) + C(1 + |x|™)5/>



110 5 Stochastic Differential Equations
< @Y, x) + F(D*Y (1, %), DY (t, x), ¥ (2, %), )8 + C(1 + |x[")82,

where m is some constant depending on the function . Consequently, it is easy to
check that

3 (t, x) + F(D*Y(t,x), DY (t, x), ¥(t, x), x) > 0.

This implies that u is a viscosity subsolution of (5.3.13). Similarly we can show that
u is also a viscosity supersolution of (5.3.13). The uniqueness is from Theorem C.2.9
(in Appendix C). (]

Example 5.3.8 Let B = (B!, B?) be a 2-dimensional G-Brownian motion with
G(A) = Gi(an) + Ga(axn),
where |
Gi(a) = E(E?w —olan), i=1,2.
In this case, we consider the following 1-dimensional SDE:
dX* = puXi*ds +vX*d(B') +oXdB;, X/ =x,

where i, v and o are constants.
The corresponding function u is defined by

u(t, x) := Elp(X59).

Then .
u(t, x) =Eu@ +38, X;;5)]

and u is the viscosity solution of the following PDE:

du + uxdu +2G (vxdu) + 02 x* Gy (32 u) = 0, u(T, x) = p(x).

5.4 Exercises

Exercise 5.4.1 Prove that M2 (0, T; R") € M5(0, T; R™).

Exercise 5.4.2 Show that b(s, Y;) € Mg(O, T;R™") for each Y € Mg(O, T;R™"),
where b is given by Eq. (5.1.1).

Exercise 5.4.3 Complete the proof of Lemma5.1.2.

Exercise 5.4.4 (The Gronwall inequality) Let u(¢) be a Lebesgue integrable function
in [0, T'] such that
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t
u(t) < C—i—A/ u(s)ds for0<r<T,
0

where C > 0 and A > 0 are constants. Prove that u(t) < Ce® for0 <t < T.

Exercise 5.4.5 For any § € LE(QT; R™), show that the process (IAE[§|SZ,]),€[O,T]
belongs to Mé O, T; R™).

Exercise 5.4.6 Complete the proof of Lemma5.2.1.

Exercise 5.4.7 Suppose that &, f and h;; are all deterministic functions. Solve the
BSDE (5.2.1).

Exercise 5.4.8 Foreach & € L? (€2 R") with p > 2, show that SDE (5.3.1) has a
unique solution in M P, T: R") Further, show that the following estimates hold:

B.OX05 — XU5IP1 < Clg — €17,
B 0Xx55171 < e+ [£]7),

B[ sup |X'5 —gP] < C(1+|g|")8"?,
se(t,t+5]

where the constant C depends on L, G, p,n and T.

Exercise 5.4.9 Let EE be a nonlinear expectation dominated by G-expectation, where
G S(d) + Ris dominated by G and G(0) = 0. Then we replace the G-expectation
1) by E in BSDEs (5.2.1) and (5.3.2). Show that

(1) the BSDE (5.2.1) admits a unique solution Y € M O, 7).
(i1) u is the unique viscosity solution of the PDE (5.3. 13) corresponding to G.

Notes and Comments

The material in this chapter is mainly from Peng [140].

There are many excellent books on Itd’s stochastic calculus and stochastic dif-
ferential equations based by Itd’s original paper [92]. The ideas of that notes were
further developed to build the nonlinear martingale theory. For the corresponding
classical Brownian motion framework under a probability measure space, readers
are referred to Chung and Williams [34], Dellacherie and Meyer [43], He, Wang
and Yan [74], It and McKean [93], Ikeda and Watanabe [90], Kallenberg [100],
Karatzas and Shreve [101], @ksendal [122], Protter [150], Revuz and Yor [151] and
Yong and Zhou [177].

Linear backward stochastic differential equations (BSDEs) were first introduced
by Bismutin [17, 19]. Bensoussan developed this approach in [12, 13]. The existence
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and uniqueness theorem of a general nonlinear BSDE, was obtained in 1990 in
Pardoux and Peng [124]. Here we present a version of a proof based on El Karoui,
Peng and Quenez [58], which is an excellent survey paper on BSDE theory and its
applications, especially in finance. Comparison theorem of BSDEs was obtained in
Peng [128] for the case when g isa C !_function and then in [58] when g is Lipschitz.
Nonlinear Feynman-Kac formula for BSDE was introduced by Peng [127, 129]. Here
we obtain the corresponding Feynman-Kac formula for a fully nonlinear PDE, within
the framework of G-expectation. We also refer to Yong and Zhou [177], as well as
Peng [131] (in 1997, in Chinese) and [133] and more resent monographs of Crepey
[40], Pardoux and Rascanu [125] and Zhang [179] for systematic presentations of
BSDE theory and its applications.

In the framework of fully nonlinear expectation, typically G-expectation, a chal-
lenging problem is to prove the well-posedness of a BSDE which is general enough
to contain the above ‘classical’ BSDE as a special case. By applying and devel-
oping methods of quasi-surely analysis and aggregations, Soner et al. [156—158],
introduced a weak formulation and then proved the existence and uniqueness of
weak solution 2nd order BSDE (2BSDE). We also refer to Zhang [179] a systematic
presentation. Then, by using a totally different approach of G-martingale represen-
tation and a type of Galerkin approximation, Hu et al. [79] proved the existence and
uniqueness of solution of BSDE driven by G-Brownian motions (G-BSDE). As in
the classical situation, G-BSDE is a natural generalization of representation of G-
martingale. The assumption for the well-posedness of 2BSDEs is weaker than that
of G-BSDE, whereas the solution (Y, Z, K) obtained by GBSDE is quasi-surely
continuous which is in general smoother than that of 2BSDE. A very interesting
problem is how to combine the advantages of both methods.

Then Hu and Wang [84] considered ergodic G-BSDEs, see also [77]. In [75], Hu,
Lin and Soumana Hima studied G-BSDEs under quadratic assumptions on coeffi-
cients. In [111], Li, Peng and Soumana Hima investigated the existence and unique-
ness theorem for reflected G-BSDEs. Furthermore, Cao and Tang [25] dealed with
reflected Quadratic BSDEs driven by G-Brownian Motions.
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