
Chapter 4
G-Martingales and Jensen’s Inequality

In this chapter, we introduce the notion of G-martingales and the related Jensen’s
inequality for a new type of G-convex functions. One essential difference from the
classical situation is that here “M is a G-martingale” does not imply that “−M is a
G-martingale”.

4.1 The Notion of G-Martingales

We now give the notion of G-martingales.

Definition 4.1.1 A process (Mt )t≥0 is called a G-supermartingale (respectively,
G-submartingale) if for any t ∈ [0,∞), Mt ∈ L1

G(�t ) and for any s ∈ [0, t], we
have

Ê[Mt |�s] ≤ Ms (respectively, ≥ Ms).

(Mt )t≥0 is called aG-martingale if it is bothG-supermartingale andG-submartingale.
If a G-martingale M satisfies also

Ê[−Mt |�s] = −Ms,

then it is called a symmetric G–martingale.

Example 4.1.2 For any fixed X ∈ L1
G(�), it is clear that (Ê[X |�t ])t≥0 is a G–

martingale.

Example 4.1.3 For any fixed a ∈ R
d , it is easy to check that (Ba

t )t≥0 and (−Ba
t )t≥0

are G–martingales. The process (〈Ba〉t − σ 2
aaT t)t≥0 is a G-martingale since
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Ê[〈Ba〉t − σ 2
aaT t |�s] = Ê[〈Ba〉s − σ 2

aaT t + (〈Ba〉t − 〈Ba〉s)|�s]
= 〈Ba〉s − σ 2

aaT t + Ê[〈Ba〉t − 〈Ba〉s]
= 〈Ba〉s − σ 2

aaT s.

However, the processes (−(〈Ba〉t − σ 2
aaT t))t≥0 and ((Ba

t )
2)t≥0 areG-submartingales,

as seen from the relations

Ê[(Ba
t )

2|�s] = Ê[(Ba
s )

2 + (Ba
t − Ba

s )
2 + 2Ba

s (B
a
t − Ba

s )|�s]
= (Ba

s )
2 + Ê[(Ba

t − Ba
s )

2|�s]
= (Ba

s )
2 + σ 2

aaT (t − s) ≥ (Ba
s )

2.

Similar reasoning shows that ((Ba
t )

2 − σ 2
aaT t)t≥0 and ((Ba

t )
2 − 〈Ba〉t )t≥0 are G-

martingales.

In general, we have the following important property.

Proposition 4.1.4 Let M0 ∈ R, ϕ = (ϕ j )dj=1 ∈ M2
G(0, T ;Rd) and η = (ηi j )di, j=1 ∈

M1
G(0, T ;S(d)) be given and let

Mt = M0 +
∫ t

0
ϕ j
u d B

j
u +

∫ t

0
ηi j
u d 〈B〉i ju −

∫ t

0
2G(ηu)du for t ∈ [0, T ].

Then M is a G-martingale. As before, we follow the Einstein convention: the above
repeated indices i and j meaning the summation.

Proof Since Ê[∫ t
s ϕ

j
u d B

j
u |�s] = Ê[− ∫ t

s ϕ
j
u d B

j
u |�s] = 0, we only need to prove that

M̄t =
∫ t

0
ηi j
u d 〈B〉i ju −

∫ t

0
2G(ηu)du for t ∈ [0, T ]

is a G-martingale. It suffices to consider the case of η ∈ M1,0
G (0, T ;S(d)), i.e.,

ηt =
N−1∑
k=0

ηtk I[tk ,tk+1)(t), 0 = t0 < t1 < · · · < tn = T .

We have, for s ∈ [tN−1, tN ],

Ê[M̄t |�s] = M̄s + Ê[(ηtN−1, 〈B〉t − 〈B〉s) − 2G(ηtN−1)(t − s)|�s]
= M̄s + Ê[(A, 〈B〉t − 〈B〉s)]A=ηtN−1

− 2G(ηtN−1)(t − s)

= M̄s .

We can repeat this procedure backwardly thus proving the result for s ∈
[0, tN−1]. �
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Corollary 4.1.5 Let η ∈ M1
G(0, T ). Then for any fixed a ∈ R

d , we have

σ 2
−aaT Ê

[∫ T

0
|ηt |dt

]
≤ Ê

[∫ T

0
|ηt |d〈Ba〉t

]
≤ σ 2

aaT Ê

[∫ T

0
|ηt |dt

]
. (4.1.1)

Proof Proposition 4.1.4 implies that, for any ξ ∈ M1
G(0, T ),

Ê

[∫ T

0
ξt d〈Ba〉t −

∫ T

0
2Ga(ξt )dt

]
= 0,

where Ga(α) = 1
2 (σ

2
aaT α

+ − σ 2
−aaT α

−). Letting ξ = |η| and ξ = −|η|, we get

Ê

[∫ T

0
|ηt |d〈Ba〉t − σ 2

aaT

∫ T

0
|ηt |dt

]
= 0,

Ê

[
−

∫ T

0
|ηt |d〈Ba〉t + σ 2

−aaT

∫ T

0
|ηt |dt

]
= 0.

Thus the result follows from the sub-additivity of G-expectation. �

Remark 4.1.6 Ifϕ ≡ 0 inProposition4.1.4, thenMt = ∫ t
0 η

i j
u d〈B〉i ju − ∫ t

0 2G(ηu)du
is a G-martingale. This is a surprising result because Mt is a continuous and non-
increasing process.

Remark 4.1.7 It is worth mentioning that for a G-martingale M , in general, −M
is not a G-martingale. Notice however, in Proposition4.1.4 with η ≡ 0, the process
−M is still a G-martingale.

4.2 Heuristic Explanation of G-Martingale Representation

Proposition4.1.4 tells us that aG-martingale contains a special additional termwhich
is a decreasing martingale of the form

Kt =
∫ t

0
ηsd〈B〉s −

∫ t

0
G(ηs)ds.

In this section, we provide a formal proof to show that aG-martingale can be decom-
posed into a sum of a symmetric martingale and a decreasing martingale.

Let us consider a generator G : S(d) 	→ R satisfying the uniformly elliptic con-
dition, i.e., there exists β > 0 such that, for each A, Ā ∈ S(d) with A ≥ Ā,

G(A) − G( Ā) ≥ βtr[A − Ā].
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For ξ = (ξ j )dj=1 ∈ M2
G(0, T ;Rd) and η = (ηi j )di, j=1 ∈ M1

G(0, T ;S(d)), we use the
following notations

∫ T

0
〈ξt , dBt 〉 :=

d∑
j=1

∫ T

0
ξ
j
t d B

j
t ;

∫ T

0
(ηt , d〈B〉t ) :=

d∑
i, j=1

∫ T

0
η
i j
t d 〈B〉i jt .

Let us first consider a G-martingale (Mt )t∈[0,T ] with terminal condition MT =
ξ = ϕ(BT − Bt1) for 0 ≤ t1 ≤ T < ∞.

Lemma 4.2.1 Let ξ = ϕ(BT − Bt1), ϕ ∈ Cb.Lip(R
d). Then we have the following

representation:

ξ = Ê[ξ ] +
∫ T

t1

〈βt , dBt 〉 +
∫ T

t1

(ηt , d〈B〉t ) −
∫ T

t1

2G(ηt )dt.

Proof We know that u(t, x) = Ê[ϕ(x + BT − Bt )] is the solution of the following
PDE:

∂t u + G(D2u) = 0, (t, x) ∈ [0, T ] × R
d , u(T, x) = ϕ(x).

For any ε > 0, by the interior regularity of u (see Appendix C), we have

‖u‖C1+α/2,2+α([0,T−ε]×Rd ) < ∞ for some α ∈ (0, 1).

Applying G-Itô’s formula to u(t, Bt − Bt1) on [t1, T − ε], since Du(t, x) is uni-
formly bounded, letting ε → 0, we obtain

ξ = Ê[ξ ] +
∫ T

t1

∂t u(t, Bt − Bt1)dt +
∫ T

t1

〈Du(t, Bt − Bt1), dBt 〉

+ 1
2

∫ T

t1

(D2u(t, Bt − Bt1), d〈B〉t )

= Ê[ξ ] +
∫ T

t1

〈Du(t, Bt − Bt1), dBt 〉 + 1
2

∫ T

t1

(D2u(t, Bt − Bt1), d〈B〉t )

−
∫ T

t1

G(D2u(t, Bt − Bt1))dt.

�

This method can be applied to treat a more general martingale (Mt )0≤t≤T with
terminal condition

MT =ϕ(Bt1 , Bt2 − Bt1 , · · · , BtN − BtN−1),

ϕ ∈Cb.Lip(R
d×N ), 0 ≤ t1 < t2 < · · · < tN = T < ∞.

(4.2.1)
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Indeed, it suffices to consider the case

ξ = Ê[ξ ] +
∫ T

0
〈βt , dBt 〉 +

∫ T

0
(ηt , d〈B〉t ) −

∫ T

0
2G(ηt )dt.

For ξ = ϕ(Bt1 , BT − Bt1), we set, for each (x, y) ∈ R
2d ,

u(t, x, y) = Ê[ϕ(x, y + BT − Bt )]; ϕ1(x) = Ê[ϕ(x, BT − Bt1)].

For x ∈ R
d , we denote ξ̄ = ϕ(x, BT − Bt1). By Lemma4.2.1, we have

ξ̄ = ϕ1(x) +
∫ T

t1

〈Dyu(t, x, Bt − Bt1), dBt 〉 + 1
2

∫ T

t1

(D2
yu(t, x, Bt − Bt1), d〈B〉t )

−
∫ T

t1

G(D2
yu(t, x, Bt − Bt1))dt.

Intuitively, we can replace x by Bt1 , apply Lemma 4.2.1 to ϕ1(Bt1) and conclude that

ξ = ϕ1(Bt1) +
∫ T

t1

〈Dyu(t, Bt1 , Bt − Bt1), dBt 〉

+ 1
2

∫ T

t1

(D2
yu(t, Bt1 , Bt − Bt1), d〈B〉t ) −

∫ T

t1

G(D2
yu(t, Bt1 , Bt − Bt1))dt.

We repeat this procedure and show that the G-martingale (Mt )t∈[0,T ] with terminal
condition MT given in (4.2.1) has the following representation:

Mt = Ê[MT ] +
∫ t

0
〈βs, dBs〉 + Kt

with Kt = ∫ t
0 (ηs, d〈B〉s) − ∫ t

0 2G(ηs)ds for 0 ≤ t ≤ T .

Remark 4.2.2 Here there is a very interesting and challenging question: canwe prove
the above new G-martingale representation theorem for a general L p

G-martingale?
The answer of this question is provided in Theorem7.1.1 of Chap. 7.

4.3 G-Convexity and Jensen’s Inequality for
G-Expectations

Here the question of interest is whether the well–known Jensen’s inequality still
holds for G-expectations.

First, we give a new notion of convexity.
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Definition 4.3.1 A continuous function h : R 	→ R is called G –convex if for any
bounded ξ ∈ L1

G(�), the following Jensen’s inequality holds:

Ê[h(ξ)] ≥ h(Ê[ξ ]).

In this section, we mainly consider C2-functions.

Proposition 4.3.2 Let h ∈ C2(R). Then the following statements are equivalent:
(i) The function h is G –convex.
(ii) For each bounded ξ ∈ L1

G(�), the following Jensen’s inequality holds:

Ê[h(ξ)|�t ] ≥ h(Ê[ξ |�t ]) for t ≥ 0.

(iii) For each ϕ ∈ C2
b (R

d), the following Jensen’s inequality holds:

Ê[h(ϕ(Bt ))] ≥ h(Ê[ϕ(Bt )]) for t ≥ 0.

(iv) The following condition holds for each (y, z, A) ∈ R × R
d × S(d):

G(h′(y)A + h′′(y)zzT ) − h′(y)G(A) ≥ 0. (4.3.1)

To prove Proposition 4.3.2, we need the following lemmas.

Lemma 4.3.3 Let� : Rd 	→ S(d)bea continuous functionwith polynomial growth.
Then

lim
δ↓0 Ê

[∫ t+δ

t
(�(Bs), d〈B〉s)

]
δ−1 = 2Ê[G(�(Bt ))]. (4.3.2)

Proof If � is a Lipschitz function, it is easy to show that

Ê

[∣∣∣∣
∫ t+δ

t
(�(Bs) − �(Bt ), d〈B〉s)

∣∣∣∣
]

≤ C1δ
3/2,

where C1 is a constant independent of δ. Thus

lim
δ↓0 δ−1

Ê

[∫ t+δ

t
(�(Bs), d〈B〉s)

]
= lim

δ↓0 δ−1
Ê[(�(Bt), 〈B〉t+δ − 〈B〉s)]

= 2Ê[G(�(Bt ))].

Otherwise, we can choose a sequence of Lipschitz functions �N : Rd → S(d) such
that

|�N (x) − �(x)| ≤ C2

N
(1 + |x |k),

where C2 and k are positive constants independent of N . It is see to show that
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Ê

[∣∣∣∣
∫ t+δ

t
(�(Bs) − �N (Bs), d〈B〉s)

∣∣∣∣
]

≤ C

N
δ

and

Ê[|G(�(Bt )) − G(�N (Bt ))|] ≤ C

N
,

where C is a universal constant. Thus

∣∣∣∣Ê
[∫ t+δ

t
(�(Bs), d〈B〉s)

]
δ−1 − 2Ê [G(�(Bt ))]

∣∣∣∣
≤

∣∣∣∣Ê
[∫ t+δ

t
(�N (Bs), d〈B〉s)

]
δ−1 − 2Ê [G(�N (Bt ))]

∣∣∣∣ + 3C

N
.

Then we have

lim sup
δ↓0

∣∣∣∣Ê
[∫ t+δ

t
(�(Bs), d〈B〉s)

]
δ−1 − 2Ê[G(�(Bt ))]

∣∣∣∣ ≤ 3C

N
.

Since N can be arbitrarily large, this completes the proof. �

Lemma 4.3.4 Let 
 be a C2-function on R
d with D2
 satisfying a polynomial

growth condition. Then we have

lim
δ↓0 δ−1(Ê[
(Bδ)] − 
(0)) = G(D2
(0)). (4.3.3)

Proof Applying G-Itô’s formula to 
(Bδ), we get


(Bδ) = 
(0) +
∫ δ

0
〈D
(Bs), dBs〉 + 1

2

∫ δ

0
(D2
(Bs), d〈B〉s).

Therefore

Ê[
(Bδ)] − 
(0) = 1
2 Ê

[∫ δ

0
(D2
(Bs), d〈B〉s)

]
.

By Lemma4.3.3, we obtain the result. �

Lemma 4.3.5 Let h ∈ C2(R) and satisfy (4.3.1). For any ϕ ∈ Cb.Lip(R
d), let u(t, x)

be the solution of the G-heat equation:

∂t u − G(D2u) = 0 (t, x) ∈ [0,∞) × R
d , u(0, x) = ϕ(x). (4.3.4)

Then ũ(t, x) := h(u(t, x)) is a viscosity subsolution of the G-heat Eq. (4.3.4) with
initial condition ũ(0, x) = h(ϕ(x)).
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Proof For each ε > 0, we denote by uε the solution of the following PDE:

∂t uε − Gε(D
2uε) = 0 (t, x) ∈ [0,∞) × R

d , uε(0, x) = ϕ(x),

where Gε(A) := G(A) + εtr[A]. Since Gε satisfies the uniformly elliptic condition,
by Appendix C, we have uε ∈ C1,2((0,∞) × R

d). By simple calculation, we have

∂t h(uε) = h′(uε)∂t uε = h′(uε)Gε(D
2uε)

and
∂t h(uε) − Gε(D

2h(uε)) = fε(t, x), h(uε(0, x)) = h(ϕ(x)),

where
fε(t, x) = h′(uε)G(D2uε) − G(D2h(uε)) − εh′′(uε)|Duε|2.

Since h satisfies (4.3.1), it follows that fε ≤ −εh′′(uε)|Duε|2. We can also deduce
that |Duε| is uniformly bounded by the Lipschitz constant of ϕ. It is easy to show
that uε uniformly converges to u as ε → 0. Thus h(uε) uniformly converges to h(u)

and h′′(uε) is uniformly bounded. Then we get

∂t h(uε) − Gε(D
2h(uε)) ≤ Cε, h(uε(0, x)) = h(ϕ(x)),

where C is a constant independent of ε. By Appendix C, we conclude that h(u) is a
viscosity subsolution. �

Proof of Proposition4.3.2 Obviously (ii) =⇒(i)=⇒(iii) . We now show (iii)=⇒(ii).
For ξ ∈ L1

G(�) of the form

ξ = ϕ(Bt1 , Bt2 − Bt1 , · · · , Btn − Btn−1),

where ϕ ∈ C2
b (R

d×n), 0 ≤ t1 ≤ · · · ≤ tn < ∞, by the definitions of Ê[·] and Ê[·|�t ],
we have

Ê[h(ξ)|�t ] ≥ h(Ê[ξ |�t ]), t ≥ 0.

This Jensen’s inequality can be extended to hold under the norm || · || = Ê[| · |], to
each ξ ∈ L1

G(�) satisfying h(ξ) ∈ L1
G(�).

Let us show (iii)=⇒(iv): for each ϕ ∈ C2
b (R

d), we have Ê[h(ϕ(Bt ))] ≥
h(Ê[ϕ(Bt )]) for t ≥ 0. By Lemma4.3.4, we know that

lim
δ↓0 (Ê[ϕ(Bδ)] − ϕ(0))δ−1 = G(D2ϕ(0))

and
lim
δ↓0 (Ê[h(ϕ(Bδ))] − h(ϕ(0)))δ−1 = G(D2h(ϕ)(0)).
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Thus we obtain
G(D2h(ϕ)(0)) ≥ h′(ϕ(0))G(D2ϕ(0)).

For each (y, z, A) ∈ R × R
d × S(d), we can choose ϕ ∈ C2

b (R
d) such that

(ϕ(0), Dϕ(0), D2ϕ(0)) = (y, z, A).

Thus we obtain (iv).
Finally, (iv)=⇒(iii): for each ϕ ∈ C2

b (R
d), u(t, x) = Ê[ϕ(x + Bt )] (respectively,

ū(t, x) = Ê[h(ϕ(x + Bt ))]) solves the G-heat Eq. (4.3.4). By Lemma4.3.5, h(u)

is a viscosity subsolution of the G-heat Eq. (4.3.4). It follows from the maximum
principle that h(u(t, x)) ≤ ū(t, x). In particular, (iii) holds. �

Remark 4.3.6 In fact, (i)⇐⇒(ii) ⇐⇒(iii) still hold without assuming that h ∈
C2(R).

Proposition 4.3.7 Let h be a G-convex function and X ∈ L1
G(�) be bounded. Then

the process Yt = h(Ê[X |�t ]), t ≥ 0, is a G-submartingale.

Proof For each s ≤ t ,

Ê[Yt |�s] = Ê[h(Ê[X |�t ])|�s] ≥ h(Ê[X |�s]) = Ys . �

4.4 Exercises

Exercise 4.4.1 (a) Let (Mt )t≥0 be a G-supermartingale. Show that the process
(−Mt )t≥0 is a G-submartingale.

(b) Find a G-submartingale (Mt )t≥0 such that (−Mt )t≥0 is not a G-
supermartingale.

Exercise 4.4.2 (a) Assume that (Mt )t≥0 and (Nt )t≥0 be two G -supermartingales.
Prove that their sum (Mt + Nt )t≥0 is a G -supermartingale.

(b) Assume that (Mt )t≥0 and (−Mt )t≥0 are two G-martingales. For each G-
submartingale (Nt )t≥0, prove that (Mt + Nt )t≥0 is a G-submartingale.

Exercise 4.4.3 Suppose that G satisfies the uniformly elliptic condition and h ∈
C2(R). Show that h is G-convex if and only if h is convex.

Notes and Comments

The material in this chapter is mainly from Peng [140].
Peng [130] introduced a filtration consistent (or time consistent, or dynamic)

nonlinear expectation, called g-expectation, via BSDE, developed further in (1999)
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[132] for some basic properties of the g-martingale such as nonlinear Doob-Meyer
decomposition theorem. See also Briand et al. [20] , Chen et al. [29], Chen and Peng
[30, 31], Coquet, Hu,Mémin and Peng [35, 36], Peng [132, 135], Peng andXu [148],
Rosazza [152]. These works lead to a conjecture that all properties obtained for g-
martingales must have their counterparts for G-martingale. However this conjecture
is still far from being complete.

The problem of G-martingale representation has been proposed by Peng [140].
In Sect. 4.2, we only state a result with very regular random variables. Some very
interesting developments to this important problem will be provided in Chap. 7.

Under the framework of g-expectation, Chen, Kulperger and Jiang [29], Hu [86],
Jiang and Chen [97] investigate the Jensen’s inequality for g-expectation. Jia and
Peng [95] introduced the notion of g-convex function and obtained many interesting
properties. Certainly, a G-convex function concerns fully nonlinear situations.
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