Chapter 4 ®)
G-Martingales and Jensen’s Inequality e

In this chapter, we introduce the notion of G-martingales and the related Jensen’s
inequality for a new type of G-convex functions. One essential difference from the
classical situation is that here “M is a G-martingale” does not imply that “—M is a
G-martingale”.

4.1 The Notion of G-Martingales

We now give the notion of G-martingales.

Definition 4.1.1 A process (M;),>¢ is called a G-supermartingale (respectively,
G-submartingale) if for any ¢ € [0, 00), M; € L};(Q,) and for any s € [0, t], we
have

IAE[M,|SZS] < M, (respectively, > Mj).

(M,)>¢is called a G-martingale if it is both G -supermartingale and G-submartingale.
If a G-martingale M satisfies also

B[—M,|9,] = —M,,

then it is called a symmetric G-martingale.

Example 4.1.2 For any fixed X € LIG(Q), it is clear that (]E[X|Q,]),Zo is a G-
martingale.

Example 4.1.3 For any fixed a € R, it is easy to check that (BY)1>0 and (—B?);>0
are G—martingales. The process ({B?), — azart)tzo is a G-martingale since
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A

E[(B*), — 01191 = E[(B*); — 0t + ((B*), — (B*),)|]
= (B%); — 0gyrt + BI(B*), — (B*),]
= (B, —02:5.
However, the processes (—({B?), — :art))tzo and ((Bla)z),zo are G-submartingales,
as seen from the relations
EL(BM?|2] = EL(BY? + (B — BY)> + 2BX(B! — BY)|Q]
= (BM? + E[(B} — BY)*|]
= (BY? + o0, (t —s) > (B
Similar reasoning shows that ((B;‘)2 - Ufarl‘)rzo and ((Bf‘)2 — (B*))¢>0 are G-
martingales.
In general, we have the following important property.

Proposition 4.1.4 Let My € R, ¢ = (<pf)j.=1 € M0, T:RY) andn = (n'/){ j=1 €
Mé(O, T; S(d)) be given and let

t t t
M, =M0+f gab{de{+/ nd (B)Y —f 2G(n,)du fort € [0, T].
0 0 0

Then M is a G-martingale. As before, we follow the Einstein convention: the above
repeated indices i and j meaning the summation.

Proof Since IAE[fSt ¢idBl|Q,] = E[— f; @i dBj|,] = 0, we only need to prove that
_ t .. .. t
M, =/ nL]d(B);] —f 2G(n,)du fort € [0, T]
0 0

is a G-martingale. It suffices to consider the case of n € Mcl;’o(O, T;S(d)),i.e.,

N—1

ne= Mdigan®), O=to<ti <. <t,=T.
k=0

We have, for s € [ty_1, tn],

+ Bl (B), — (B)y) = 2G (s, ) (t — 9)| Q]

RIM,|9] = M,
M, +E[(A, (B), — (B))lazy, , —2G (1, )t — 5)
M,

We can repeat this procedure backwardly thus proving the result for s €
[0, 2y 1] O
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Corollary 4.1.5 Letn € Mcl; (0, T). Then for any fixed a € R?, we have

T T T
02t E U Imldt} <E [/ Imld<Ba>t} <oisE U |nz|dr] . (410
0 0 0

Proof Proposition 4.1.4 implies that, for any & € Mé 0,T),

“ T T
EU £d(BY), — / 2Ga<sz>dr]=o,
0 0

where G,(a) = 1(o,

2
—aal

" r T
B[ imtaws oz [ niai] =o
0 0
o T T
E[—/ In:\d(B*), +Ufaarf In,|dt] =0.
0 0

Thus the result follows from the sub-additivity of G-expectation. (]

rat —o? La7). Letting & = |n| and & = —|n|, we get

Remark 4.1.6 1f ¢ = 0inProposition4.1.4,then M, = [ 0/ d(B)i/ — [; 2G(1.)du
is a G-martingale. This is a surprising result because M; is a continuous and non-
increasing process.

Remark 4.1.7 1t is worth mentioning that for a G-martingale M, in general, —M
is not a G-martingale. Notice however, in Proposition4.1.4 with n = 0, the process
—M is still a G-martingale.

4.2 Heuristic Explanation of G-Martingale Representation

Proposition4.1.4 tells us that a G-martingale contains a special additional term which
is a decreasing martingale of the form

K, = f nd(B), — / Gn,)ds.
0 0

In this section, we provide a formal proof to show that a G-martingale can be decom-
posed into a sum of a symmetric martingale and a decreasing martingale.

Let us consider a generator G : S(d) — R satisfying the uniformly elliptic con-
dition, i.e., there exists § > 0 such that, for each A, = S(d) with A > A,

G(A) — G(A) > Btr[A — A].
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For & = (Ej)‘;zl € M%(0,T;R?) and n = (nij)f{jzl € M.(0, T; S(d)), we use the
following notations

T d T . . T d T .. ..
/ (¢/,dB;) = § / Etdetj; / (n:, d(B);) := § / ﬁi’d (B>;j .
0 oo 0 0

ij=1

Let us first consider a G-martingale (M;);cjo,71 With terminal condition My =
E=¢Br —B;)for0 <t <T < o0.

Lemma4.2.1 Let § = ¢(Br — B;), ¢ € Cp1ip (RY). Then we have the following
representation:

R T T T
5=E[51+f <fsz,dBf>+/ (n,,d<B>f>—f 2G(ny)dt.

n n

Proof We know that u(t, x) = IAE[(p(x + By — B;)] is the solution of the following
PDE:
du+G(D*u) =0, (t,x)e[0,T]xRY, u(T,x)=px).

For any ¢ > 0, by the interior regularity of u (see Appendix C), we have
lull crvarata o r—exrey < 0O for some a € (0, 1).

Applying G-Itd’s formula to u(t, B, — B;,) on [t;, T — €], since Du(¢, x) is uni-
formly bounded, letting ¢ — 0, we obtain

T

T
s=1f<:[s1+/ dult, B, —B,,>dr+/ (Du(t, B, - B,), dB,)

| |

T
+ %/ (Dzu(t, B; — B:)),d(B):)

n

T T
= ]E[é] +/ (Du(t, B, — Brl), dB;) + %/ (Dzu(t, B, — le), d(B);)
, 31 n
—/ G(D*u(t, B, — By,))dt.

O

This method can be applied to treat a more general martingale (M,)o<;<r With
terminal condition

Mr =§0(le, Bt2 - lea ttt BtN - BtN,l),

(4.2.1)
10 er_Lip(RdXN), O0<ti<thh<---<ty=T < o0.
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Indeed, it suffices to consider the case
R T T T
§=E[§]+ / (Bi,dB;) + / (n:,d(B):) — / 2G(ny)dt.
0 0 0

For & = ¢(B,,, Br — B;,), we set, for each (x, y) € R*,

u(t, x,y) = Elp(x, y + Br — B)L; ¢1(x) = Elp(x, Br — B,)].

For x € R?, we denoteé = ¢(x, Br — B;;). By Lemma4.2.1, we have

T T
E=pi(x)+ f (Dyu(t,x, B, — B,), dB;) + 3 / (Dju(t, x, B, — By,), d(B),)
3] 4]
T
— / G(Dju(t, x, B, — B,))dt.
1
Intuitively, we can replace x by B;,, apply Lemma 4.2.1 to ¢; (B;,) and conclude that
T
%_:(pl(Btl)_’_/ (Dyu(tv BtlaBt_Bh)vdB[)
1

T T
+%/ (Dju(t, B, B, —B,,),d(B),)—/ G(D}u(t, By, B, — By))dt.
131

1

We repeat this procedure and show that the G-martingale (M,)¢j0,7) With terminal
condition M7 given in (4.2.1) has the following representation:

M, = EB[M;]+ / (B, dB,) + K,
0

with K, = [; (n,, d(B),) — [, 2G(n,)ds for0 <t < T.

Remark 4.2.2 Here there is a very interesting and challenging question: can we prove
the above new G-martingale representation theorem for a general LY-martingale?
The answer of this question is provided in Theorem7.1.1 of Chap. 7.

4.3 G-Convexity and Jensen’s Inequality for
G-Expectations

Here the question of interest is whether the well-known Jensen’s inequality still
holds for G-expectations.
First, we give a new notion of convexity.
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Definition 4.3.1 A continuous function 4 : R — R is called G —convex if for any
bounded & € L%; (£2), the following Jensen’s inequality holds:

E[h(£)] = h(E[£]).
In this section, we mainly consider C2-functions.

Proposition 4.3.2 Let h € C*(R). Then the following statements are equivalent:
(i) The function h is G —convex.
(ii) For each bounded & € LE(Q), the following Jensen’s inequality holds:

Bl = h(EIE|Q)) fort = 0.
(iii) For each ¢ € le (RY), the following Jensen’s inequality holds:
Elh(p(B)] = h(Elp(B))) fort = 0.
(iv) The following condition holds for each (y, z, A) € R x R x S(d):
G (A +h"(y)zz") — W(y)G(A) > 0. 4.3.1)

To prove Proposition 4.3.2, we need the following lemmas.

Lemma 4.3.3 Let® : R? — S(d) be a continuous function with polynomial growth.
Then

t+48
18%11@ [ / (®(By), d<B>s)] 571 = 2B[G(®(B)))]. (4.3.2)

Proof If @ is a Lipschitz function, it is easy to show that

gl

where C is a constant independent of §. Thus

t+6
/ (®(B,) — D(B,), d(B)s)

} <82,

t+8
. - T —115 _
lim 8 EU <<I><Bs>,d<B>x)]—1£gs EL(®(B)), (B)i1s — (B),)]
= 2R[G (P (B))].

Otherwise, we can choose a sequence of Lipschitz functions @y : R4 — S(d) such
that

Dy (x) — ()] < %(1 ),

where C; and k are positive constants independent of N. It is see to show that
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. C
E <=4

N

A C
E[IG(®(B)) — G(@n(B)I = .

t+68
/ (®(B,) — Dy(B,), d(B),)

and

where C is a universal constant. Thus

146
'I@: [ f ((By), d<B>s)} s — ZIE[G(@(B»)]‘

=

R t+6 R 3C
B [/ (@n(B,), d<B>s>} 5 2 [G(%(B:))]‘ +o

Then we have

R t+§ R 3
lim sup | [/ (®(By), d(B>.v)] 871 = 2E[G(®(B)]| < —.
810 ! N
Since N can be arbitrarily large, this completes the proof. (]

Lemma 4.3.4 Let V be a C*-function on R? with D*W satisfying a polynomial
growth condition. Then we have

gig)l s N R[W(Bs)] — W(0)) = G(D*W(0)). (4.3.3)

Proof Applying G-It&’s formula to W (B;), we get

) 8
W (Bs) = ‘11(0)+/ (D‘P(Bs),stH—%/ (D*W(By), d(B),).
0 0

Therefore 5
E[W(B;)] — ¥(0) = IE [/ (D*W(By), d<B>s)] :
0
By Lemma4.3.3, we obtain the result. O

Lemma 4.3.5 Leth € C*(R) and satisfy (4.3.1). For any ¢ € Ch.Lip (RY), let u(t, x)
be the solution of the G-heat equation:

oiu — G(Dzu) =0 (t,x) €[0,00) x RY, u(0, x) = @(x). “4.3.4)

Then u(t, x) := h(u(t, x)) is a viscosity subsolution of the G-heat Eq.(4.3.4) with
initial condition u(0, x) = h(ep(x)).
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Proof For each ¢ > 0, we denote by u, the solution of the following PDE:
dhitte — Ge(D?ue) =0 (1,x) €[0,00) x RY, u. (0, x) = p(x),

where G.(A) := G(A) + etr[A]. Since G, satisfies the uniformly elliptic condition,
by Appendix C, we have u, € C"2((0, oo) x R?). By simple calculation, we have

dh(ue) = h'(ue)due = h' (u:)Ge(Du,)

and
dh(ue) — Ge(D*h(up)) = fo(t, x), h(u:(0, x)) = h(p(x)),

where
fo(t, x) = W' (u.)G(D*u.) — G(D*h(u;)) — eh” (ug)| Dug)*.

Since 4 satisfies (4.3.1), it follows that f. < —sh”(u,)|Du.|>. We can also deduce
that | Du.| is uniformly bounded by the Lipschitz constant of ¢. It is easy to show
that u, uniformly converges to u as ¢ — 0. Thus & (u.) uniformly converges to & (u)
and h” (u,) is uniformly bounded. Then we get

dh(ue) — Ge(D*h(u,)) < Ce, h(u.(0, x)) = h(p(x)),

where C is a constant independent of €. By Appendix C, we conclude that /(u) is a
viscosity subsolution. O

Proof of Proposition 4.3.2 Obviously (ii) = (i)==(iii) . We now show (iii)=(ii).
For ¢ € LE(Q) of the form

&= (P(Btlv Bzz - Btlv e, Br,, - Bt,,,l),

where ¢ € C2(RY*"),0 < t; < --- <1, < 00, by the definitions of £[-] and K[|, ],
we have . )
E[7(&)12/] > h(E[&|€2]), t > 0.

This Jensen’s inequality can be extended to hold under the norm || - || = IFE[| -1, to
each & € L{;(Q) satisfying h(§) € L ().

Let us show (iii)==(iv): for each ¢ € C}(RY), we have E[h(e(B,))] >
h(]E[(p(B,)]) for ¢t > 0. By Lemma4.3.4, we know that

laiigl(ﬁ[w(Ba)] — @08~ = G(D*¢(0))

and
lsifg(ﬁ[h(@(B‘S))] — h(p(0))8~" = G(D*h(9)(0)).
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Thus we obtain
G(D*h(9)(0)) > ' (9(0))G(D*p(0)).

For each (y, z, A) € R x R? x S(d), we can choose ¢ € C?(R?) such that

(¢(0), Dp(0), D*¢(0)) = (v, z, A).

Thus we obtain (iv).

Finally, (iv)==(iii): foreach ¢ € C 5 R, u(t, x) = I@I[(p(x + B,)] (respectively,
u(t,x) = IAE[h(ga(x + B;))]) solves the G-heat Eq.(4.3.4). By Lemma4.3.5, h(u)
is a viscosity subsolution of the G-heat Eq.(4.3.4). It follows from the maximum
principle that 2 (u(t, x)) < u(¢, x). In particular, (iii) holds. O

Remark 4.3.6 In fact, (i)<=(ii) <= (iii) still hold without assuming that & €
C*(R).

Proposition 4.3.7 Let h be a G-convex functionand X € L E(Q) be bounded. Then
the process Y; = h(E[X|2,]), t > 0, is a G-submartingale.

Proof Foreachs <t,

BLY, |91 = BlARIX]2,1)|92,] > h(B[X|Q2,]) = Y. 0

4.4 Exercises

Exercise 4.4.1 (a) Let (M;);>0 be a G-supermartingale. Show that the process
(=M,)s>0 is a G-submartingale.

(b) Find a G-submartingale (M;),>o such that (—M;),>p is not a G-
supermartingale.

Exercise 4.4.2 (a) Assume that (M,);>o and (N;),>0 be two G -supermartingales.
Prove that their sum (M; + N;);>¢ is a G -supermartingale.

(b) Assume that (M,);>0 and (—M,),;>o are two G-martingales. For each G-
submartingale (N,),>o, prove that (M, + N;),;>¢ is a G-submartingale.

Exercise 4.4.3 Suppose that G satisfies the uniformly elliptic condition and & €
C?*(R). Show that & is G-convex if and only if / is convex.

Notes and Comments

The material in this chapter is mainly from Peng [140].
Peng [130] introduced a filtration consistent (or time consistent, or dynamic)
nonlinear expectation, called g-expectation, via BSDE, developed further in (1999)
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[132] for some basic properties of the g-martingale such as nonlinear Doob-Meyer
decomposition theorem. See also Briand et al. [20] , Chen et al. [29], Chen and Peng
[30, 31], Coquet, Hu, Mémin and Peng [35, 36], Peng [132, 135], Peng and Xu [148],
Rosazza [152]. These works lead to a conjecture that all properties obtained for g-
martingales must have their counterparts for G-martingale. However this conjecture
is still far from being complete.

The problem of G-martingale representation has been proposed by Peng [140].
In Sect.4.2, we only state a result with very regular random variables. Some very
interesting developments to this important problem will be provided in Chap. 7.

Under the framework of g-expectation, Chen, Kulperger and Jiang [29], Hu [86],
Jiang and Chen [97] investigate the Jensen’s inequality for g-expectation. Jia and
Peng [95] introduced the notion of g-convex function and obtained many interesting
properties. Certainly, a G-convex function concerns fully nonlinear situations.
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