
Chapter 3
G-Brownian Motion and Itô’s Calculus

The aim of this chapter is to introduce the concept of G-Brownian motion, study
its properties and construct Itô’s integral with respect to G-Brownian motion. We
emphasize here that thisG-Brownianmotion Bt , t ≥ 0 is consistent with the classical
one. In fact once its mean uncertainty and variance uncertainty vanish, namely

Ê[B1] = −Ê[−B1] and Ê[B2
1 ] = −Ê[−B2

1 ],

then B becomes a classicalBrownianmotion. ThisG-Brownianmotion also has inde-
pendent and stable increments. G-Brownian motion has a very rich and interesting
new structure which non-trivially generalizes the classical one. Thus we can develop
the related stochastic calculus, especially Itô’s integrals and the related quadratic
variation process. A very interesting feature of the G-Brownian motion is that its
quadratic process also has independent increments which are identically distributed.
The corresponding G-Itô’s formula is also presented.

We emphasize that the above construction of G-Brownian motion and the estab-
lishment of the corresponding stochastic analysis of generalized Itô’s type, from
this chapter to Chap. 5, have been rigorously realized without firstly constructing a
probability space or its generalization, whereas its special situation of linear expec-
tation corresponds in fact to the classical Brownian motion under a Wiener probabil-
ity measure space. This is an important advantage of the expectation-based frame-
work. The corresponding path-wise analysis of G-Brownian motion functional will
be established in Chap. 6, after the introduction of the corresponding G-capacity.
We can see that all results obtained in this chapter to Chap.5 still hold true in G-
capacity surely analysis.

3.1 Brownian Motion on a Sublinear Expectation Space

Definition 3.1.1 Let (�,H, Ê) be a sublinear expectation space. (Xt )t≥0 is called a
d-dimensional stochastic process if for each t ≥ 0, Xt is a d-dimensional random
vector inH .
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We now give the definition of Brownian motion on sublinear expectation space
(�,H, Ê).

Definition 3.1.2 A d-dimensional stochastic process (Bt )t≥0 on a sublinear expec-
tation space (�,H, Ê) is called a G-Brownian motion if the following properties
are satisfied:

(i) B0(ω)= 0;
(ii) For each t, s ≥ 0, Bt+s − Bt and Bs are identically distributed and Bt+s − Bt

is independent from (Bt1 , Bt2 , · · · , Btn ), for each n ∈ N and 0 ≤ t1 ≤ · · · ≤ tn ≤ t .
(iii) limt↓0 Ê[|Bt |3]t−1 = 0.
Moreover, if Ê[Bt ] = Ê[−Bt ] = 0, then (Bt )t≥0 is called a symmetric G-

Brownian motion.

In the sublinear expectation space, symmetric G-Brownianmotion is an important
case of Brownian motion. From now on up to Sect. 3.6, we will study its proper-
ties, which are needed in stochastic analysis of G-Brownian motion. The following
theorem gives a characterization of the symmetric Brownian motion.

Theorem 3.1.3 Let (Bt )t≥0 be a givenRd–valued symmetric G-Brownian motion on
a sublinear expectation (�,H, Ê). Then, for each fixed ϕ ∈ Cb.Lip(R

d), the function

u(t, x) := Ê[ϕ(x + Bt )], (t, x) ∈ [0,∞) × R
d

is the viscosity solution of the following parabolic PDE:

∂t u − G(D2u) = 0, u|t=0 = ϕ. (3.1.1)

where

G(A) = 1

2
Ê[〈AB1, B1〉], A ∈ S(d). (3.1.2)

In particular, B1 is G-normally distributed and Bt
d= √

t B1.

Proof We only need to prove that u is the viscosity solution. We first show that

Ê[〈ABt , Bt 〉] = 2G(A)t, A ∈ S(d).

For each given A ∈ S(d), we set b(t) =Ê[〈ABt , Bt 〉]. Then b(0) = 0 and |b(t)| ≤
|A|(Ê[|Bt |3])2/3 → 0 as t → 0. Note that Ê[Bt ] = Ê[−Bt ] = 0, we have for each
t, s ≥ 0,

b(t + s) = Ê[〈ABt+s, Bt+s〉] = Ê[〈A(Bt+s − Bs + Bs), Bt+s − Bs + Bs〉]
= Ê[〈A(Bt+s − Bs), (Bt+s − Bs)〉 + 〈ABs, Bs〉 + 2〈A(Bt+s − Bs), Bs〉]
= b(t) + b(s),
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thus b(t) = b(1)t =2G(A)t .
Then we show that u is Lipschitz in x and 1

2 -Hölder continuous in t . In fact, for
each fixed t , u(t, ·) ∈Cb.Lip(R

d) since

|u(t, x) − u(t, y)| = |Ê[ϕ(x + Bt )] − Ê[ϕ(y + Bt )]|
≤ Ê[|ϕ(x + Bt ) − ϕ(y + Bt )|]
≤ C |x − y|,

where C is the Lipschitz constant of ϕ.
For each δ ∈ [0, t], since Bt − Bδ is independent from Bδ , we also have

u(t, x) = Ê[ϕ(x + Bδ + (Bt − Bδ)]
= Ê[Ê[ϕ(y + (Bt − Bδ))]y=x+Bδ

],

hence
u(t, x) = Ê[u(t − δ, x + Bδ)]. (3.1.3)

Thus

|u(t, x) − u(t − δ, x)| = |Ê[u(t − δ, x + Bδ) − u(t − δ, x)]|
≤ Ê[|u(t − δ, x + Bδ) − u(t − δ, x)|]
≤ Ê[C |Bδ|] ≤ C

√
2G(I )

√
δ.

To show that u is a viscosity solution of (3.1.1), we fix (t, x) ∈ (0,∞) × R
d and let

v ∈ C2,3
b ([0,∞) × R

d) be such that v ≥ u and v(t, x) = u(t, x). From (3.1.3) we
have

v(t, x) = Ê[u(t − δ, x + Bδ)] ≤ Ê[v(t − δ, x + Bδ)].

Therefore by Taylor’s expansion,

0 ≤ Ê[v(t − δ, x + Bδ) − v(t, x)]
= Ê[v(t − δ, x + Bδ) − v(t, x + Bδ) + (v(t, x + Bδ) − v(t, x))]
= Ê[−∂t v(t, x)δ + 〈Dv(t, x), Bδ〉 + 1

2 〈D2v(t, x)Bδ, Bδ〉 + Iδ]
≤ −∂t v(t, x)δ + 1

2 Ê[〈D2v(t, x)Bδ, Bδ〉] + Ê[Iδ]
= −∂t v(t, x)δ + G(D2v(t, x))δ + Ê[Iδ],

where

Iδ =
∫ 1

0
−[∂t v(t − βδ, x + Bδ) − ∂t v(t, x)]δdβ
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+
∫ 1

0

∫ 1

0
〈(D2v(t, x + αβBδ) − D2v(t, x))Bδ, Bδ〉αdβdα.

In view of condition (iii) in Definition3.1.2, we can check that limδ↓0 δ−1
Ê[|Iδ|] = 0,

from which we get ∂t v(t, x) − G(D2v(t, x)) ≤ 0, hence u is a viscosity subsolution
of (3.1.1). We can analogously prove that u is a viscosity supersolution. Thus u is a
viscosity solution. �

For simplicity, symmetric Brownian motion is also called G-Brownian motion,
associated with the generator G given by (3.1.2).

Remark 3.1.4 We can prove that, for each t0 > 0, (Bt+t0 − Bt0)t≥0 is a G-Brownian
motion. For each λ > 0, (λ− 1

2 Bλt )t≥0 is also a symmetric G-Brownian motion. This
is the scaling property of G-Brownian motion, which is the same as that for the
classical Brownian motion.

In the rest of this book we will use the notation

Ba
t = 〈a, Bt 〉 for each a = (a1, · · · , ad)

T ∈ R
d .

By the above definition we have the following proposition which is important in
stochastic calculus.

Proposition 3.1.5 Let (Bt )t≥0 be a d-dimensional G-Brownian motion on a sub-
linear expectation space (�,H,E). Then (Ba

t )t≥0 is a 1-dimensional Ga-Brownian
motion for each a ∈Rd , where Ga(α) = 1

2 (σ
2
aaT α+ − σ 2

−aaT α−), σ 2
aaT = 2G(aaT ) =

Ê[〈a, B1〉2], σ 2
−aaT = −2G(−aaT ) = −Ê[−〈a, B1〉2].

In particular, for each t, s ≥ 0, Ba
t+s − Ba

t
d= N ({0} × [sσ 2

−aaT , sσ 2
aaT ]).

Proposition 3.1.6 For each convex function ϕ ∈ Cl.Lip(R) , we have

Ê[ϕ(Ba
t+s − Ba

t )] = 1
√
2πsσ 2

aaT

∫ ∞

−∞
ϕ(x) exp(− x2

2sσ 2
aaT

)dx .

For each concave function ϕ ∈ Cl.Lip(R) and σ 2
−aaT > 0, we have

Ê[ϕ(Ba
t+s − Ba

t )] = 1
√
2πsσ 2

−aaT

∫ ∞

−∞
ϕ(x) exp(− x2

2sσ 2
−aaT

)dx .

In particular, the following relations are true:

Ê[(Ba
t − Ba

s )2] = σ 2
aaT (t − s), Ê[(Ba

t − Ba
s )4] = 3σ 4

aaT (t − s)2,

Ê[−(Ba
t − Ba

s )2] = −σ 2
−aaT (t − s), Ê[−(Ba

t − Ba
s )4] = −3σ 4

−aaT (t − s)2.
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3.2 Existence of G-Brownian Motion

In the rest of this book, we use the notation � = Cd
0 (R+) for the space of all Rd–

valued continuous paths (ωt )t∈R+ , with ω0 = 0, equipped with the distance

ρ(ω(1), ω(2)) :=
∞∑

i=1

2−i [(max
t∈[0,i] |ω

(1)
t − ω

(2)
t |) ∧ 1], ω(1), ω(2) ∈ �.

For each fixed T ∈ [0,∞), we set �T := {ω·∧T : ω ∈ �}. We will consider the
canonical process Bt (ω) = ωt , t ∈ [0,∞), for ω ∈ �.

For each fixed T ∈ [0,∞), we set also

Lip(�T ) := {ϕ(Bt1∧T , · · · , Btn∧T ) : n ∈ N, t1, · · · , tn ∈ [0,∞), ϕ ∈ Cl.Lip(Rd×n) }.

It is clear that Lip(�t )⊆Lip(�T ), for t ≤ T . We set

Lip(�) :=
∞⋃

n=1

Lip(�n).

Remark 3.2.1 It is clear that Cl.Lip(R
d×n), Lip(�T ) and Lip(�) are vector lat-

tices. Moreover, note that ϕ,ψ ∈ Cl.Lip(R
d×n) implies ϕ · ψ ∈ Cl.Lip(R

d×n), then
X , Y ∈Lip(�T ) implies X · Y ∈Lip(�T ). In particular, for each t ∈ [0,∞), Bt ∈
Lip(�).

Let G(·) : S(d) → R be a given monotone and sublinear function. By Theo-
rem 1.2.1 in Chap. 1, there exists a bounded, convex and closed subset � ⊂ S+(d)

such that

G(A) = 1

2
sup
B∈�

(A, B) , A ∈ S(d).

By Sect. 2.3 in Chap. 2, we know that the G-normal distribution N ({0} × �) exists.
Let us construct a sublinear expectation on (�, Lip(�)) such that the canonical

process (Bt )t≥0 is a G-Brownian motion. For this, we first construct a sequence of
d-dimensional random vectors (ξi )

∞
i=1 on a sublinear expectation space (�̃, H̃, Ẽ)

such that ξi is G-normally distributed and ξi+1 is independent from (ξ1, · · · , ξi ) for
each i = 1, 2, · · · .

We now construct a sublinear expectation Ê defined on Lip(�) via the following
procedure: for each X ∈ Lip(�) with

X = ϕ(Bt1 − Bt0 , Bt2 − Bt1 , · · · , Btn − Btn−1)

for some ϕ ∈ Cl.Lip(R
d×n) and 0 = t0 < t1 < · · · < tn < ∞, we set

Ê[ϕ(Bt1 − Bt0 , Bt2 − Bt1 , · · · , Btn − Btn−1)] := Ẽ[ϕ(
√

t1 − t0ξ1, · · · ,
√

tn − tn−1ξn)].
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The related conditional expectation of X = ϕ(Bt1 , Bt2 − Bt1 , · · · , Btn − Btn−1) under
�t j is defined by

Ê[X |�t j ] = Ê[ϕ(Bt1 , Bt2 − Bt1 , · · · , Btn − Btn−1)|�t j ] := ψ(Bt1 , · · · , Bt j − Bt j−1),

where

ψ(x1, · · · , x j ) = Ẽ[ϕ(x1, · · · , x j ,
√

t j+1 − t jξ j+1, · · · ,
√

tn − tn−1ξn)].

Ê[·] consistently defines a sublinear expectation on Lip(�) and (Bt )t≥0 is a G-
Brownian motion. Since Lip(�T )⊆Lip(�), Ê[·] is also a sublinear expectation on
Lip(�T ).

Definition 3.2.2 The sublinear expectation Ê[·]: Lip(�) → R defined through the
above procedure is called a G–expectation. The corresponding canonical process
(Bt )t≥0 on the sublinear expectation space (�, Lip(�), Ê) is called a G–Brownian
motion.

In the rest of the book, when we talk about G–Brownian motion, we mean that
the canonical process (Bt )t≥0 is under G-expectation.

Proposition 3.2.3 We list the properties of Ê[·|�t ] that hold for each X, Y ∈Lip(�):

(i) If X ≥ Y , then Ê[X |�t ] ≥ Ê[Y |�t ].
(ii) Ê[η|�t ] = η, for each t ∈ [0,∞) and η ∈Lip(�t ).

(iii) Ê[X |�t ] − Ê[Y |�t ] ≤ Ê[X − Y |�t ].
(iv) Ê[ηX |�t ] = η+

Ê[X |�t ] + η−
Ê[−X |�t ], for each η ∈ Lip(�t ).

(v) Ê[Ê[X |�t ]|�s] = Ê[X |�t∧s], in particular, Ê[Ê[X |�t ]] = Ê[X ].
For each X ∈ Lip(�t ), Ê[X |�t ] = Ê[X ], where Lip(�t ) is the linear space of
random variables with the form

ϕ(Bt2 − Bt1 , Bt3 − Bt2 , · · · , Btn+1 − Btn ),

n = 1, 2, · · · , ϕ ∈ Cl.Lip(R
d×n), t1, · · · , tn, tn+1 ∈ [t,∞).

Remark 3.2.4 Properties (ii) and (iii) imply

Ê[X + η|�t ] = Ê[X |�t ] + η for η ∈ Lip(�t ).

We now consider the completion of sublinear expectation space (�, Lip(�), Ê).
For p ≥ 1, we denote by

L p
G(�) := { the completion of the space Lip(�) under the norm ‖X‖p := (Ê[|X |p])1/p}.

Similarly, we can define L p
G(�T ), L p

G(�t
T ) and L p

G(�t ). It is clear that for each
0 ≤ t ≤ T < ∞, L p

G(�t ) ⊆ L p
G(�T ) ⊆ L p

G(�).
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According to Sect. 1.4 in Chap. 1, Ê[·] can be continuously extended to a sublinear
expectation on (�, L1

G(�)) and still denoted by Ê[·]. We now consider the extension
of conditional expectations. For each fixed t ≤ T , the conditional G-expectation
Ê[·|�t ] : Lip(�T ) → Lip(�t ) is a continuous mapping under ‖·‖. Indeed, we have

Ê[X |�t ] − Ê[Y |�t ] ≤ Ê[X − Y |�t ] ≤ Ê[|X − Y ||�t ],

then
|Ê[X |�t ] − Ê[Y |�t ]| ≤ Ê[|X − Y ||�t ].

We thus obtain ∥∥∥Ê[X |�t ] − Ê[Y |�t ]
∥∥∥ ≤ ‖X − Y‖ .

It follows that Ê[·|�t ] can also be extended as a continuous mapping

Ê[·|�t ] : L1
G(�T ) → L1

G(�t ).

If the above T is not fixed, then we can obtain Ê[·|�t ] : L1
G(�) → L1

G(�t ).

Remark 3.2.5 Proposition3.2.3 also holds for X, Y ∈ L1
G(�). But in (iv), η ∈

L1
G(�t ) should be bounded, since X, Y ∈ L1

G(�) does not imply that X · Y ∈
L1

G(�).

In particular, we have the following independence property:

Ê[X |�t ] = Ê[X ], ∀X ∈ L1
G(�t ).

We give the following definition similar to the classical one:

Definition 3.2.6 An n-dimensional random vector Y ∈ (L1
G(�))n is said to be inde-

pendent from �t for some given t if for each ϕ ∈ Cb.Lip(R
n) we have

Ê[ϕ(Y )|�t ] = Ê[ϕ(Y )].

Remark 3.2.7 Just as in the classical situation, the increments of G–Brownian
motion (Bt+s − Bt )s≥0 are independent from �t , for each t ≥ 0.

Example 3.2.8 For each fixed a ∈Rd and for each 0 ≤ s ≤ t , we have

Ê[Ba
t − Ba

s |�s] = 0, Ê[−(Ba
t − Ba

s )|�s] = 0,

Ê[(Ba
t − Ba

s )2|�s] = σ 2
aaT (t − s), Ê[−(Ba

t − Ba
s )2|�s] = −σ 2

−aaT (t − s),

Ê[(Ba
t − Ba

s )4|�s] = 3σ 4
aaT (t − s)2, Ê[−(Ba

t − Ba
s )4|�s] = −3σ 4

−aaT (t − s)2,

where σ 2
aaT = 2G(aaT ) and σ 2

−aaT = −2G(−aaT ).
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The following property is very useful.

Proposition 3.2.9 Let X, Y ∈ L1
G(�) be such that Ê[Y |�t ] = −Ê[−Y |�t ], for

some t ∈ [0, T ]. Then we have

Ê[X + Y |�t ] = Ê[X |�t ] + Ê[Y |�t ].

In particular, if Ê[Y |�t ] = Ê[−Y |�t ] = 0, then Ê[X + Y |�t ] = Ê[X |�t ].
Proof This follows from the following two inequalities:

Ê[X + Y |�t ] ≤ Ê[X |�t ] + Ê[Y |�t ],
Ê[X + Y |�t ] ≥ Ê[X |�t ] − Ê[−Y |�t ] = Ê[X |�t ] + Ê[Y |�t ].

�

Example 3.2.10 For each a ∈Rd , 0 ≤ t ≤ T, X ∈ L1
G(�t ) and ϕ ∈ Cl.Lip(R), we

have

Ê[Xϕ(Ba
T − Ba

t )|�t ] = X+
Ê[ϕ(Ba

T − Ba
t )|�t ] + X−

Ê[−ϕ(Ba
T − Ba

t )|�t ]
= X+

Ê[ϕ(Ba
T − Ba

t )] + X−
Ê[−ϕ(Ba

T − Ba
t )].

In particular,

Ê[X (Ba
T − Ba

t )|�t ] = X+
Ê[(Ba

T − Ba
t )] + X−

Ê[−(Ba
T − Ba

t )] = 0.

This, together with Proposition3.2.9, yields

Ê[Y + X (Ba
T − Ba

t )|�t ] = Ê[Y |�t ], Y ∈ L1
G(�).

We also have

Ê[X (Ba
T − Ba

t )2|�t ] = X+
Ê[(Ba

T − Ba
t )2] + X−

Ê[−(Ba
T − Ba

t )2]
= [X+σ 2

aaT − X−σ 2
−aaT ](T − t).

For n ∈ N,

Ê[X (Ba
T − Ba

t )2n−1|�t ] = X+
Ê[(Ba

T − Ba
t )2n−1] + X−

Ê[−(Ba
T − Ba

t )2n−1]
= |X |Ê[(Ba

T −t )
2n−1].

Example 3.2.11 Since

Ê[2Ba
s (Ba

t − Ba
s )|�s] = Ê[−2Ba

s (Ba
t − Ba

s )|�s] = 0,
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we have

Ê[(Ba
t )2 − (Ba

s )2|�s] = Ê[(Ba
t − Ba

s + Ba
s )2 − (Ba

s )2|�s]
= Ê[(Ba

t − Ba
s )2 + 2(Ba

t − Ba
s )Ba

s |�s]
= σ 2

aaT (t − s).

3.3 Itô’s Integral with Respect to G-Brownian Motion

For T ∈ R
+, a partition πT of [0, T ] is a finite ordered subset πT = {t0, t1, · · · , tN }

such that 0 = t0 < t1 < · · · < tN = T . Set

μ(πT ) := max{|ti+1 − ti | : i = 0, 1, · · · , N − 1}.

We use π N
T = {t N

0 , t N
1 , · · · , t N

N } to denote a sequence of partitions of [0, T ] such that
limN→∞ μ(π N

T ) = 0.
Let p ≥ 1 be fixed. We consider the following type of simple processes: for a

given partition πT = {t0, · · · , tN } of [0, T ] we set

ηt (ω) =
N−1∑

k=0

ξk(ω)1[tk ,tk+1)(t),

where ξk ∈ L p
G(�tk ), k = 0, 1, 2, · · · , N − 1 are given. The collection of these pro-

cesses is denoted by M p,0
G (0, T ) .

Definition 3.3.1 For an η ∈ M p,0
G (0, T ) with ηt (ω) = ∑N−1

k=0 ξk(ω)1[tk ,tk+1)(t), the
related Bochner integral is

∫ T

0
ηt (ω)dt :=

N−1∑

k=0

ξk(ω)(tk+1 − tk).

For each η ∈ M p,0
G (0, T ), we set

ẼT [η] := 1

T
Ê

[∫ T

0
ηt dt

]
= 1

T
Ê

[
N−1∑

k=0

ξk(ω)(tk+1 − tk)

]

.

It is easy to check that ẼT : M p,0
G (0, T ) → R forms a sublinear expectation.We then

can introduce a natural norm ‖ · ‖M p
G
, under which, M p,0

G (0, T ) can be extended to
M p

G(0, T ) which is a Banach space.
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Definition 3.3.2 For each p ≥ 1, we denote by M p
G(0, T ) the completion of M p,0

G
(0, T ) under the norm

‖η‖M p
G (0,T ) :=

{
Ê

[∫ T

0
|ηt |pdt

]}1/p

.

It is clear that M p
G(0, T ) ⊃ Mq

G(0, T ) for 1 ≤ p ≤ q.Wealso denote by M p
G(0, T ;

R
d) the space of all d-dimensional stochastic processes ηt = (η1

t , · · · , ηd
t ), t ≥ 0

such that ηi
t ∈ M p

G(0, T ), i = 1, 2, · · · , d.
We now give the definition of Itô’s integral. For simplicity, we first introduce Itô’s

integral with respect to 1-dimensional G–Brownian motion.
Let (Bt )t≥0 be a 1-dimensional G–Brownian motion with G(α) = 1

2 (σ
2α+ −

σ 2α−), where 0 ≤ σ ≤ σ < ∞.

Definition 3.3.3 For each η ∈ M2,0
G (0, T ) of the form

ηt (ω) =
N−1∑

j=0

ξ j 1[t j ,t j+1)(t),

we define

I (η) =
∫ T

0
ηt d Bt :=

N−1∑

j=0

ξ j (Bt j+1 − Bt j ).

Lemma 3.3.4 The mapping I : M2,0
G (0, T ) → L2

G(�T ) is a continuous linear
mapping and thus can be continuously extended to I : M2

G(0, T ) → L2
G(�T ). In

particular, we have

Ê

[∫ T

0
ηt d Bt

]
= 0, (3.3.1)

Ê

[(∫ T

0
ηt d Bt

)2
]

≤ σ 2
Ê

[∫ T

0
η2

t dt

]
. (3.3.2)

Proof From Example3.2.10, for each j ,

Ê[ξ j (Bt j+1 − Bt j )|�t j ] = Ê[−ξ j (Bt j+1 − Bt j )|�t j ] = 0.

We have

Ê

[∫ T

0
ηt d Bt

]
= Ê

[∫ tN−1

0
ηt d Bt + ξN−1(BtN − BtN−1)

]

= Ê

[∫ tN−1

0
ηt d Bt + Ê[ξN−1(BtN − BtN−1)|�tN−1]

]
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= Ê

[∫ tN−1

0
ηt d Bt

]
.

Then we can repeat this procedure to obtain (3.3.1).
We now give the proof of (3.3.2). First, from Example3.2.10, we have

Ê

[(∫ T

0
ηt d Bt

)2
]

= Ê

[(∫ tN−1

0
ηt d Bt + ξN−1(BtN − BtN−1)

)2
]

= Ê

[(∫ tN−1

0
ηt d Bt

)2

+ ξ 2
N−1(BtN − BtN−1)

2

+2

(∫ tN−1

0
ηt d Bt

)
ξN−1(BtN − BtN−1)

]

= Ê

[(∫ tN−1

0
ηt d Bt

)2

+ ξ 2
N−1(BtN − BtN−1)

2

]

= · · · = Ê

[
N−1∑

i=0

ξ 2
i (Bti+1 − Bti )

2

]

Then, for each i = 0, 1, · · · , N − 1, the following relations hold:

Ê[ξ 2
i (Bti+1 − Bti )

2 − σ 2ξ 2
i (ti+1 − ti )]

=Ê[Ê[ξ 2
i (Bti+1 − Bti )

2 − σ 2ξ 2
i (ti+1 − t j )|�ti ]]

=Ê[σ 2ξ 2
i (ti+1 − ti ) − σ 2ξ 2

i (ti+1 − ti )] = 0.

Finally, we obtain

Ê

[(∫ T

0
ηt d Bt

)2
]

= Ê

[
N−1∑

i=0

ξ 2
i (Bti+1 − Bti )

2

]

≤Ê

[
N−1∑

i=0

ξ 2
i (Bti+1 − Bti )

2 −
N−1∑

i=0

σ 2ξ 2
i (ti+1 − ti )

]

+ Ê

[
N−1∑

i=0

σ 2ξ 2
i (ti+1 − ti )

]

≤
N−1∑

i=0

Ê[ξ 2
i (Bti+1 − Bti )

2 − σ 2ξ 2
i (ti+1 − ti )] + Ê

[
N−1∑

i=0

σ 2ξ 2
i (ti+1 − ti )

]

=Ê

[
N−1∑

i=0

σ 2ξ 2
i (ti+1 − ti )

]

= σ 2
Ê

[∫ T

0
η2

t dt

]
.

�
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Definition 3.3.5 For a fixed η ∈ M2
G(0, T ), we define the stochastic integral

∫ T

0
ηt d Bt := I (η).

It is clear that (3.3.1) and (3.3.2) still hold for η ∈ M2
G(0, T ).

We list below the main properties of Itô’s integral with respect to G-Brownian
motion. We denote, for some 0 ≤ s ≤ t ≤ T ,

∫ t

s
ηud Bu :=

∫ T

0
1[s,t](u)ηud Bu .

Proposition 3.3.6 Let η, θ ∈ M2
G(0, T ) and let 0 ≤ s ≤ r ≤ t ≤ T . Then we have

(i)
∫ t

s ηud Bu = ∫ r
s ηud Bu + ∫ t

r ηud Bu .

(ii)
∫ t

s (αηu + θu)d Bu = α
∫ t

s ηud Bu + ∫ t
s θud Bu, if α is bounded and in L1

G(�s).

(iii) Ê

[
X + ∫ T

r ηud Bu

∣∣∣�s

]
= Ê[X |�s] for all X ∈ L1

G(�).

We now consider the multi-dimensional case. Let G(·) : S(d) → R be a given
monotone and sublinear function and let (Bt )t≥0 be a d-dimensional G-Brownian
motion. For each fixed a ∈ R

d , we still use Ba
t := 〈a, Bt 〉. Then (Ba

t )t≥0 is a
1-dimensional Ga-Brownian motion with Ga(α) = 1

2 (σ
2
aaT α+ − σ 2

−aaT α−), where
σ 2

aaT = 2G(aaT ) and σ 2
−aaT = −2G(−aaT ). Similarly to the 1-dimensional case,

we can define Itô’s integral by

I (η) :=
∫ T

0
ηt d Ba

t , for η ∈ M2
G(0, T ).

We still have, for each η ∈ M2
G(0, T ),

Ê

[∫ T

0
ηt d Ba

t

]
= 0,

Ê

[(∫ T

0
ηt d Ba

t

)2
]

≤ σ 2
aaT Ê

[∫ T

0
η2

t dt

]
.

Furthermore, Proposition3.3.6 still holds for the integral with respect to Ba
t .

3.4 Quadratic Variation Process of G-Brownian Motion

We first consider the quadratic variation process of 1-dimensional G-Brownian

motion (Bt )t≥0 with B1
d= N ({0} × [σ 2, σ 2]). Let π N

t , N = 1, 2, · · · , be a sequence
of partitions of [0, t]. We start with the obvious relations
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B2
t =

N−1∑

j=0

(B2
t N

j+1
− B2

t N
j
)

=
N−1∑

j=0

2Bt N
j
(Bt N

j+1
− Bt N

j
) +

N−1∑

j=0

(Bt N
j+1

− Bt N
j
)2.

As μ(π N
t ) → 0, the first term of the right side converges to 2

∫ t
0 Bsd Bs in L2

G(�).
The second term must be convergent. We denote its limit by 〈B〉t , i.e.,

〈B〉t := lim
μ(π N

t )→0

N−1∑

j=0

(Bt N
j+1

− Bt N
j
)2 = B2

t − 2
∫ t

0
Bsd Bs . (3.4.1)

By the above construction, (〈B〉t )t≥0 is an increasing process with 〈B〉0 = 0. We call
it the quadratic variation process of the G-Brownian motion B. It characterizes the
part of statistic uncertainty of G-Brownian motion. It is important to keep in mind
that 〈B〉t is not a deterministic process unless σ = σ , i.e., when (Bt )t≥0 is a classical
Brownian motion. In fact, the following lemma is true.

Lemma 3.4.1 For each 0 ≤ s ≤ t < ∞, we have

Ê[〈B〉t − 〈B〉s |�s] = σ 2(t − s), (3.4.2)

Ê[−(〈B〉t − 〈B〉s)|�s] = −σ 2(t − s). (3.4.3)

Proof By the definition of 〈B〉 and Proposition3.3.6 (iii),

Ê[〈B〉t − 〈B〉s |�s] = Ê

[
B2

t − B2
s − 2

∫ t

s
Bud Bu |�s

]

= Ê[B2
t − B2

s |�s] = σ 2(t − s).

The last step follows from Example3.2.11. We then have (3.4.2). The equality
(3.4.3) can be proved analogously in view of the the relation Ê[−(B2

t − B2
s )|�s] =

−σ 2(t − s). �

Here is a very interesting property of the quadratic variation process 〈B〉, just like
for the G–Brownian motion B itself: the increment 〈B〉s+t − 〈B〉s is independent
from �s and identically distributed with 〈B〉t . We formulate this as a lemma.

Lemma 3.4.2 For each fixed s, t ≥ 0, 〈B〉s+t − 〈B〉s is identically distributed with
〈B〉t and is independent from �s , for any s ≥ 0.
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Proof The claims follow directly from

〈B〉s+t − 〈B〉s = B2
s+t − 2

∫ s+t

0
Br d Br −

(
B2

s − 2
∫ s

0
Br d Br

)

= (Bs+t − Bs)
2 − 2

∫ s+t

s
(Br − Bs)d(Br − Bs)

= 〈Bs〉t ,

where 〈Bs〉 is the quadratic variation process of theG-Brownianmotion Bs
t = Bs+t −

Bs , t ≥ 0 . �

We now define the integral of a process η ∈ M1,0
G (0, T ) with respect to 〈B〉. We

start with the mapping:

Q0,T (η) =
∫ T

0
ηt d〈B〉t :=

N−1∑

j=0

ξ j (〈B〉t j+1 − 〈B〉t j ) : M1,0
G (0, T ) → L1

G(�T ).

Lemma 3.4.3 For each η ∈ M1,0
G (0, T ),

Ê[|Q0,T (η)|] ≤ σ 2
Ê

[∫ T

0
|ηt |dt

]
. (3.4.4)

Thus Q0,T : M1,0
G (0, T ) →L1

G(�T ) is a continuous linear mapping. Consequently,
Q0,T can be uniquely extended to M1

G(0, T ). We still denote this mapping by

∫ T

0
ηt d〈B〉t := Q0,T (η) for η ∈ M1

G(0, T ).

As before, the following relation holds:

Ê

[∣∣∣∣

∫ T

0
ηt d〈B〉t

∣∣∣∣

]
≤ σ 2

Ê

[∫ T

0
|ηt |dt

]
for η ∈ M1

G(0, T ). (3.4.5)

Proof First, for each j = 1, · · · , N − 1, we have

Ê[|ξ j |(〈B〉t j+1 − 〈B〉t j ) − σ 2|ξ j |(t j+1 − t j )]
=Ê[Ê[|ξ j |(〈B〉t j+1 − 〈B〉t j )|�t j ] − σ 2|ξ j |(t j+1 − t j )]
=Ê[|ξ j |σ 2(t j+1 − t j ) − σ 2|ξ j |(t j+1 − t j )] = 0.
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Then (3.4.4) can be checked as follows:

Ê

⎡

⎣

∣∣∣∣∣∣

N−1∑

j=0

ξ j (〈B〉t j+1 − 〈B〉t j )

∣∣∣∣∣∣

⎤

⎦ ≤ Ê

⎡

⎣
N−1∑

j=0

|ξ j |(〈B〉t j+1 − 〈B〉t j )

⎤

⎦

≤Ê

⎡

⎣
N−1∑

j=0

|ξ j |[(〈B〉t j+1 − 〈B〉t j ) − σ 2(t j+1 − t j )]
⎤

⎦ + Ê

⎡

⎣σ 2
N−1∑

j=0

|ξ j |(t j+1 − t j )

⎤

⎦

=Ê

⎡

⎣σ 2
N−1∑

j=0

|ξ j |(t j+1 − t j )

⎤

⎦ = σ 2
Ê

[∫ T

0
|ηt |dt

]
.

�

Proposition 3.4.4 Let 0 ≤ s ≤ t , ξ ∈ L2
G(�s), X ∈L1

G(�). Then

Ê[X + ξ(B2
t − B2

s )] = Ê[X + ξ(Bt − Bs)
2]

= Ê[X + ξ(〈B〉t − 〈B〉s)].

Proof By (3.4.1) and Proposition3.3.6 (iii), we have

Ê[X + ξ(B2
t − B2

s )] = Ê

[
X + ξ(〈B〉t − 〈B〉s + 2

∫ t

s
Bud Bu)

]

= Ê[X + ξ(〈B〉t − 〈B〉s)].

We also have

Ê[X + ξ(B2
t − B2

s )] = Ê[X + ξ((Bt − Bs)
2 + 2(Bt − Bs)Bs)]

= Ê[X + ξ(Bt − Bs)
2].

�

We have the following isometry.

Proposition 3.4.5 Let η ∈ M2
G(0, T ). Then

Ê

[(∫ T

0
ηt d Bt

)2
]

= Ê

[∫ T

0
η2

t d〈B〉t

]
. (3.4.6)

Proof For any process η ∈ M2,0
G (0, T ) of the form

ηt (ω) =
N−1∑

j=0

ξ j (ω)1[t j ,t j+1)(t)
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we have
∫ T
0 ηt d Bt = ∑N−1

j=0 ξ j (Bt j+1 − Bt j ). From Proposition3.3.6, we get

Ê[X + 2ξ j (Bt j+1 − Bt j )ξi (Bti+1 − Bti )] = Ê[X ], for all X ∈ L1
G(�), i �= j.

Thus

Ê

[(∫ T

0
ηt d Bt

)2
]

= Ê[(
N−1∑

j=0

ξ j (Bt j+1 − Bt j ))
2] = Ê

⎡

⎣
N−1∑

j=0

ξ 2
j (Bt j+1 − Bt j )

2

⎤

⎦ .

From this and Proposition3.4.4, it follows that

Ê

[(∫ T

0
ηt d Bt

)2
]

= Ê

⎡

⎣
N−1∑

j=0

ξ 2
j (〈B〉t j+1 − 〈B〉t j )

⎤

⎦ = Ê

[∫ T

0
η2

t d〈B〉t

]
.

This shows that (3.4.6) holds for η ∈ M2,0
G (0, T ). We can continuously extend the

above equality to the case η ∈ M2
G(0, T ) and get (3.4.6). �

We now consider the multi-dimensional case. Let (Bt )t≥0 be a d-dimensional G-
Brownian motion. For each fixed a ∈Rd , (Ba

t )t≥0 is a 1-dimensional Ga-Brownian
motion. Similar to the 1-dimensional case, we can define

〈Ba〉t := lim
μ(π N

t )→0

N−1∑

j=0

(Ba
t N

j+1
− Ba

t N
j
)2 = (Ba

t )2 − 2
∫ t

0
Ba

s d Ba
s ,

where 〈Ba〉 is called the quadratic variation process of Ba. The above results, see
Lemma 3.4.3 and Proposition 3.4.5, also hold for 〈Ba〉. In particular,

Ê

[∣∣∣∣

∫ T

0
ηt d〈Ba〉t

∣∣∣∣

]
≤ σ 2

aaT Ê

[∫ T

0
|ηt |dt

]
, for all η ∈ M1

G(0, T )

and

Ê

[(∫ T

0
ηt d Ba

t

)2
]

= Ê

[∫ T

0
η2

t d〈Ba〉t

]
for all η ∈ M2

G(0, T ).

Let a = (a1, · · · , ad)
T and ā = (ā1, · · · , ād)

T be two given vectors in R
d . We

then have their quadratic variation processes of 〈Ba〉 and 〈B ā〉. We can define their
mutual variation process by

〈Ba, B ā〉t := 1

4
[〈Ba + B ā〉t − 〈Ba − B ā〉t ]

= 1

4
[〈Ba+ā〉t − 〈Ba−ā〉t ].
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Since 〈Ba−ā〉 = 〈B ā−a〉 = 〈−Ba−ā〉, we see that 〈Ba, B ā〉t = 〈B ā, Ba〉t . In particu-
lar, we have 〈Ba, Ba〉 = 〈Ba〉. Let π N

t , N = 1, 2, · · · , be a sequence of partitions of
[0, t]. We observe that

N−1∑

k=0

(Ba
t N
k+1

− Ba
t N
k
)(B ā

t N
k+1

− B ā
t N
k
) = 1

4

N−1∑

k=0

[(Ba+ā
tk+1

− Ba+ā
tk )2 − (Ba−ā

tk+1
− Ba−ā

tk )2].

As μ(π N
t ) → 0 we obtain

lim
N→∞

N−1∑

k=0

(Ba
t N
k+1

− Ba
t N
k
)(B ā

t N
k+1

− B ā
t N
k
) = 〈Ba, B ā〉t .

We also have

〈Ba, B ā〉t = 1

4
[〈Ba+ā〉t − 〈Ba−ā〉t ]

= 1

4

[
(Ba+ā

t )2 − 2
∫ t

0
Ba+ā

s d Ba+ā
s − (Ba−ā

t )2 + 2
∫ t

0
Ba−ā

s d Ba−ā
s

]

= Ba
t B ā

t −
∫ t

0
Ba

s d B ā
s −

∫ t

0
B ā

s d Ba
s .

Now for each η ∈ M1
G(0, T ), we can consistently define

∫ T

0
ηt d〈Ba, B ā〉t := 1

4

∫ T

0
ηt d〈Ba+ā〉t − 1

4

∫ T

0
ηt d〈Ba−ā〉t .

Lemma 3.4.6 Let ηN ∈ M2,0
G (0, T ), N = 1, 2, · · · , be of the form

ηN
t (ω) =

N−1∑

k=0

ξ N
k (ω)1[t N

k ,t N
k+1)

(t)

with μ(π N
T ) → 0 and ηN → η in M2

G(0, T ), as N → ∞. Then we have the following
convergence in L2

G(�T ):

N−1∑

k=0

ξ N
k (Ba

t N
k+1

− Ba
t N
k
)(B ā

t N
k+1

− B ā
t N
k
) →

∫ T

0
ηt d〈Ba, B ā〉t .
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Proof Since

〈Ba, B ā〉t N
k+1

− 〈Ba, B ā〉t N
k

= (Ba
t N
k+1

− Ba
t N
k
)(B ā

t N
k+1

− B ā
t N
k
)

−
∫ t N

k+1

t N
k

(Ba
s − Ba

t N
k
)d B ā

s −
∫ t N

k+1

t N
k

(B ā
s − B ā

t N
k
)d Ba

s ,

we only need to show the convergence

Ê

⎡

⎣
N−1∑

k=0

(ξ N
k )2

(∫ t N
k+1

t N
k

(Ba
s − Ba

t N
k
)d B ā

s

)2
⎤

⎦ → 0.

For each k = 1, · · · , N − 1, denoting c = σ 2
aaT σ 2

āāT /2, we have,

Ê

⎡

⎣(ξ N
k )2

(∫ t N
k+1

t N
k

(Ba
s − Ba

t N
k
)d B ā

s

)2

− c(ξ N
k )2(t N

k+1 − t N
k )2

⎤

⎦

=Ê

⎡

⎣Ê

⎡

⎣(ξ N
k )2

(∫ t N
k+1

t N
k

(Ba
s − Ba

t N
k
)d B ā

s

)2

|�t N
k

⎤

⎦ − c(ξ N
k )2(t N

k+1 − t N
k )2

⎤

⎦

≤Ê[c(ξ N
k )2(t N

k+1 − t N
k )2 − c(ξ N

k )2(t N
k+1 − t N

k )2] → 0, as N → ∞.

Thus

Ê

⎡

⎣
N−1∑

k=0

(ξ N
k )2

(∫ t N
k+1

t N
k

(Ba
s − Ba

t N
k
)d B ā

s

)2
⎤

⎦

≤Ê

⎡

⎣
N−1∑

k=0

(ξ N
k )2

⎡

⎣
(∫ t N

k+1

t N
k

(Ba
s − Ba

t N
k
)d B ā

s

)2

− c(t N
k+1 − t N

k )2

⎤

⎦

⎤

⎦

+ Ê

[
N−1∑

k=0

c(ξ N
k )2(t N

k+1 − t N
k )2

]

≤Ê

[
N−1∑

k=0

c(ξ N
k )2(t N

k+1 − t N
k )2

]

≤ cμ(π N
T )Ê

[∫ T

0
|ηN

t |2dt

]
→ 0, as N → ∞.

�
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3.5 Distribution of the Quadratic Variation Process 〈B〉

In this section, we first consider the 1-dimensional G-Brownian motion (Bt )t≥0 with

B1
d= N ({0} × [σ 2, σ 2]).
The quadratic variation process 〈B〉 of the G-Brownian motion B is a very inter-

esting process. We have seen that the G-Brownian motion B is a typical process with
variance uncertainty but without mean-uncertainty. In fact, all distributional uncer-
tainty of the G-Brownian motion B is concentrated in 〈B〉. Moreover, 〈B〉 itself is a
typical process with mean-uncertainty. This fact will be applied later to measure the
mean-uncertainty of risk positions.

Lemma 3.5.1 We have the following upper bound:

Ê[〈B〉2t ] ≤ 10σ 4t2. (3.5.1)

Proof Indeed,

Ê[〈B〉2t ] = Ê

[(
Bt

2 − 2
∫ t

0
Bud Bu

)2
]

≤ 2Ê[B4
t ] + 8Ê

[(∫ t

0
Bud Bu

)2
]

≤ 6σ 4t2 + 8σ 2
Ê

[∫ t

0
Bu

2du

]

≤ 6σ 4t2 + 8σ 2
∫ t

0
Ê[Bu

2]du

= 10σ 4t2.

�

Proposition 3.5.2 Let (bt )t≥0 be a d-dimensional Brownian motion on a sublinear
expectation space (�,H, Ê) satisfying:

(i) b0 = 0;
(ii) For each t, s ≥ 0, bt+s − bt is identically distributed with bs and independent

from (bt1 , bt2 , · · · , btn ) for all 0 ≤ t1, · · · , tn ≤ t;
(iii) limt↓0 t−1

Ê[|bt |2] = 0.

Then bt is maximally distributed in the sense that:

Ê[ϕ(bt )] = max
v∈�

ϕ(vt),

where � is the bounded closed and convex subset in R
d satisfying
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max
v∈�

(p, v) = Ê[ 〈p, b1〉], p ∈ R
d .

In particular, if b is 1-dimensional (d = 1), then � = [μ,μ], with μ = Ê[b1] and

μ = −Ê[−b1].
Remark 3.5.3 Observe that for a symmetric G-Brownian motion B defined in Def-
inition 3.1.2, the assumption corresponding to (iii) is: limt↓0 Ê[|Bt |3]t−1 = 0.

Proof We only give a proof for the case d = 1 (see the proof of Theorem3.8.2 for a
more general situation). We first show that

Ê[pbt ] = g(p)t, p ∈ R.

We set ϕ(t) := Ê[bt ]. Then ϕ(0) = 0 and limt↓0 ϕ(t) = 0. For each t, s ≥ 0,

ϕ(t + s) = Ê[bt+s] = Ê[(bt+s − bs) + bs]
= ϕ(t) + ϕ(s).

Hence ϕ(t) is linear and uniformly continuous in t, which means that Ê[bt ] = μt .
Similarly we obtain that −Ê[−bt ] = μt .

We now prove that bt is N ([μt, μt] × {0})-distributed. By Exercise 2.5.3 in
Chap. 2, we just need to show that for each fixed ϕ ∈ Cb.Lip(R), the function

u(t, x) := Ê[ϕ(x + bt )], (t, x) ∈ [0,∞) × R

is a viscosity solution of the following parabolic PDE:

∂t u − g(∂x u) = 0, u|t=0 = ϕ (3.5.2)

with g(a) = μa+ − μa−.
We first notice that u is Lipschitz in x and 1

2 -Hölder continuous in t . Indeed, for
each fixed t , u(t, ·) ∈Cb.Lip(R) since

|Ê[ϕ(x + bt )] − Ê[ϕ(y + bt )]| ≤ Ê[|ϕ(x + bt ) − ϕ(y + bt )|]
≤ C |x − y|.

For each δ ∈ [0, t], since bt − bδ is independent from bδ , we have

u(t, x) = Ê[ϕ(x + bδ + (bt − bδ)]
= Ê[Ê[ϕ(y + (bt − bδ))]y=x+bδ

],

hence
u(t, x) = Ê[u(t − δ, x + bδ)]. (3.5.3)
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Thus

|u(t, x) − u(t − δ, x)| = |Ê[u(t − δ, x + bδ) − u(t − δ, x)]|
≤ Ê[|u(t − δ, x + bδ) − u(t − δ, x)|]
≤ Ê[C |bδ|] ≤ C1

√
δ.

To prove that u is a viscosity solution of the PDE (3.5.2), we fix a point (t, x) ∈
(0,∞) × R and let v ∈ C2,2

b ([0,∞) × R) be such that v ≥ u and v(t, x) = u(t, x).
From (3.5.3), we find that

v(t, x) = Ê[u(t − δ, x + bδ)] ≤ Ê[v(t − δ, x + bδ)].

Therefore, by Taylor’s expansion,

0 ≤ Ê[v(t − δ, x + bδ) − v(t, x)]
= Ê[v(t − δ, x + bδ) − v(t, x + bδ) + (v(t, x + bδ) − v(t, x))]
= Ê[−∂t v(t, x)δ + ∂x v(t, x)bδ + Iδ]
≤ −∂t v(t, x)δ + Ê[∂x v(t, x)bδ] + Ê[Iδ]
= −∂t v(t, x)δ + g(∂x v(t, x))δ + Ê[Iδ],

where

Iδ = δ

∫ 1

0
[−∂t v(t − βδ, x + bδ) + ∂t v(t, x)]dβ

+ bδ

∫ 1

0
[∂x v(t, x + βbδ) − ∂x v(t, x)]dβ.

From the assumption that limt↓0 t−1
Ê[b2

t ] = 0, we can check that

lim
δ↓0 δ−1

Ê[|Iδ|] = 0,

which implies that ∂t v(t, x) − g(∂x v(t, x)) ≤ 0. Hence u is a viscosity subsolution of
(3.5.2). We can analogously prove that u is also a viscosity supersolution. It follows
that bt is N ([μt, μt] × {0})-distributed. �

It is clear that 〈B〉 satisfies all the conditions in Proposition3.5.2, which leads
immediately to another statement.

Theorem 3.5.4 The process 〈B〉t is N ([σ 2t, σ 2t] × {0})-distributed, i.e.,

Ê[ϕ(〈B〉t )] = sup
σ 2≤v≤σ 2

ϕ(vt), for each ϕ ∈ Cl.Lip(R). (3.5.4)
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Corollary 3.5.5 For each 0 ≤ t ≤ T < ∞, we have

σ 2(T − t) ≤ 〈B〉T − 〈B〉t ≤ σ 2(T − t) in L1
G(�).

Proof It is a direct consequence of the relations

Ê[(〈B〉T − 〈B〉t − σ 2(T − t))+] = sup
σ 2≤v≤σ 2

(v − σ 2)+(T − t) = 0

and
Ê[( 〈B〉T − 〈B〉t − σ 2(T − t))−] = sup

σ 2≤v≤σ 2

(v − σ 2)−(T − t) = 0.

�

Corollary 3.5.6 We have, for each t, s ≥ 0, n ∈ N,

Ê[( 〈B〉t+s − 〈B〉s)
n|�s] = Ê[〈B〉n

t ] = σ 2ntn (3.5.5)

and
Ê[−( 〈B〉t+s − 〈B〉s)

n|�s] = Ê[− 〈B〉n
t ] = −σ 2ntn. (3.5.6)

We now consider the multi-dimensional case. For notational simplicity, we write
by Bi := Bei for the i-th coordinate of the G-Brownian motion B, under a given
orthonormal basis (e1, · · · , ed) in the space Rd . We denote

〈B〉i j
t := 〈Bi , B j 〉t , 〈B〉t := (〈B〉i j

t )d
i, j=1.

Then 〈B〉t , t ≥ 0, is an S(d)-valued process. Since

Ê[〈ABt , Bt 〉] = 2G(A) · t for A ∈ S(d),

we have

Ê[(〈B〉t , A)] = Ê

⎡

⎣
d∑

i, j=1

ai j 〈B〉i j
t

⎤

⎦

= Ê

⎡

⎣
d∑

i, j=1

ai j (Bi
t B j

t −
∫ t

0
Bi

sd B j
s −

∫ t

0
B j

s d Bi
s)

⎤

⎦

= Ê

⎡

⎣
d∑

i, j=1

ai j Bi
t B j

t

⎤

⎦ = 2G(A) · t for all A ∈ S(d),

where A = (ai j )
d
i, j=1.
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Now we set, for each ϕ ∈ Cl.Lip(S(d)),

v(t, x) := Ê[ϕ(x + 〈B〉t )], (t, x) ∈ [0,∞) × S(d).

Let � ⊂ S+(d) be the bounded, convex and closed subset such that

G(A) = 1

2
sup
B∈�

(A, B) , A ∈ S(d).

Proposition 3.5.7 The function v solves the following first order PDE:

∂t v − 2G(Dv) = 0, v|t=0 = ϕ,

where Dv = (∂xi j v)
d
i, j=1. We also have

v(t, x) = sup
γ∈�

ϕ(x + tγ ).

Sketch of the Proof. We start with the relation

v(t + δ, x) = Ê[ϕ(x + 〈B〉δ + 〈B〉t+δ − 〈B〉δ)]
= Ê[v(t, x + 〈B〉δ)].

The rest of the proof is similar to that in the 1-dimensional case. �
Corollary 3.5.8 The following inclusion is true.

〈B〉t ∈ t� := {t × γ : γ ∈ �}.

This is equivalent to dt�(〈B〉t ) = 0, where dU (x) = inf{√(x − y, x − y) : y ∈ U }.
Proof Since

Ê[dt�(〈B〉t )] = sup
γ∈�

dt�(tγ ) = 0,

it follows that dt�(〈B〉t ) = 0. �

3.6 Itô’s Formula

In Theorem3.6.5 of this section, we provide Itô’s formula for a “G-Itô process” X .
Let us begin with considering a sufficiently regular function �.

Lemma 3.6.1 Let � ∈ C2(Rn) with ∂xν �, ∂2
xμxν � ∈ Cb.Lip(R

n) for μ, ν = 1, · · · ,

n. Let s ∈ [0, T ] be fixed and let X = (X1, · · · , Xn)T be an n–dimensional process
on [s, T ] of the form
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X ν
t = X ν

s + αν(t − s) + ηνi j (〈B〉i j
t − 〈B〉i j

s ) + βν j (B j
t − B j

s ).

Here, for ν = 1, · · · , n, i, j = 1, · · · , d, αν , ηνi j and βν j are bounded elements in
L2

G(�s) and Xs = (X1
s , · · · , Xn

s )T is a given random vector in L2
G(�s). Then we

have, in L2
G(�t ),

�(Xt ) − �(Xs) =
∫ t

s
∂xν �(Xu)β

ν j d B j
u +

∫ t

s
∂xν �(Xu)α

νdu (3.6.1)

+
∫ t

s
[∂xν �(Xu)η

νi j + 1
2∂

2
xμxν �(Xu)β

μiβν j ]d 〈B〉i j
u .

Here we adopt the Einstein convention, i.e., the above repeated indices μ, ν, i and j
mean the summation.

Proof For any positive integer N , we set δ = (t − s)/N and take the partition

π N
[s,t] = {t N

0 , t N
1 , · · · , t N

N } = {s, s + δ, · · · , s + Nδ = t}.

We have

�(Xt ) − �(Xs) =
N−1∑

k=0

[�(Xt N
k+1

) − �(Xt N
k
)] (3.6.2)

=
N−1∑

k=0

{∂xν �(Xt N
k
)(X ν

t N
k+1

− X ν

t N
k
)

+ 1

2
[∂2

xμxν �(Xt N
k
)(Xμ

t N
k+1

− Xμ

t N
k
)(X ν

t N
k+1

− X ν

t N
k
) + ρN

k ]},

where

ρN
k = [∂2

xμxν �(Xt N
k

+ θk(Xt N
k+1

− Xt N
k
)) − ∂2

xμxν �(Xt N
k
)](Xμ

t N
k+1

− Xμ

t N
k
)(X ν

t N
k+1

− X ν

t N
k
)

with θk ∈ [0, 1]. The next is to derive that

Ê[|ρN
k |2] = Ê[|[∂2

xμxν �(Xt N
k

+ θk(Xt N
k+1

− Xt N
k
)) − ∂2

xμxν �(Xt N
k
)]

× (Xμ

t N
k+1

− Xμ

t N
k
)(X ν

t N
k+1

− X ν

t N
k
)|2]

≤ cÊ[|Xt N
k+1

− Xt N
k
|6] ≤ C[δ6 + δ3],

where c is the Lipschitz constant of {∂2
xμxν �}n

μ,ν=1 and C is a constant independent
of k. Thus
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Ê

⎡

⎣

∣∣∣∣∣

N−1∑

k=0

ρN
k

∣∣∣∣∣

2
⎤

⎦ ≤ N
N−1∑

k=0

Ê

[∣∣ρN
k

∣∣2
]

→ 0, as N → ∞.

The remaining terms in the summation in the right hand side of (3.6.2) are ξ N
t + ζ N

t
with

ξ N
t =

N−1∑

k=0

{∂xν �(Xt N
k
)[αν(t N

k+1 − t N
k ) + ηνi j (〈B〉i j

t N
k+1

− 〈B〉i j
t N
k
)

+ βν j (B j
t N
k+1

− B j
t N
k
)] + 1

2
∂2

xμxν �(Xt N
k
)βμiβν j (Bi

t N
k+1

− Bi
t N
k
)(B j

t N
k+1

− B j
t N
k
)}

and

ζ N
t = 1

2

N−1∑

k=0

∂2
xμxν �(Xt N

k
){[αμ(t N

k+1 − t N
k ) + ημi j (〈B〉i j

t N
k+1

− 〈B〉i j
t N
k
)]

× [αν(t N
k+1 − t N

k ) + ηνlm(〈B〉lm
t N
k+1

− 〈B〉lm
t N
k
)]

+ 2[αμ(t N
k+1 − t N

k ) + ημi j (〈B〉i j
t N
k+1

− 〈B〉i j
t N
k
)]βνl(Bl

t N
k+1

− Bl
t N
k
)}.

We observe that, for each u ∈ [t N
k , t N

k+1),

Ê[|∂xν �(Xu) −
N−1∑

k=0

∂xν �(Xt N
k
)1[t N

k ,t N
k+1)

(u)|2]

= Ê[|∂xν �(Xu) − ∂xν �(Xt N
k
)|2]

≤ c2Ê[|Xu − Xt N
k
|2] ≤ C[δ + δ2],

where c is the Lipschitz constant of {∂xν �}n
ν=1 and C is a constant independent of k.

Hence
∑N−1

k=0 ∂xν �(Xt N
k
)1[t N

k ,t N
k+1)

(·) converges to ∂xν �(X ·) in M2
G(0, T ). Similarly,

as N → ∞,

N−1∑

k=0

∂2
xμxν �(Xt N

k
)1[t N

k ,t N
k+1)

(·) → ∂2
xμxν �(X ·) in M2

G(0, T ).

From Lemma3.4.6 and by the definitions of integration with respect to dt , d Bt

and d 〈B〉t , the limit of ξ N
t in L2

G(�t ) is just the right hand side of (3.6.1). The next
remark also leads to ζ N

t → 0 in L2
G(�t ). This completes the proof. �

Remark 3.6.2 To show that ζ N
t → 0 in L2

G(�t ), we use the following estimates: for
each ψ N· = ∑N−1

k=0 ξ N
tk 1[t N

k ,t N
k+1)

(·) ∈ M2,0
G (0, T ) with π N

T = {t N
0 , · · · , t N

N } such that
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lim
N→∞ μ(π N

T ) = 0 and Ê

[
N−1∑

k=0

|ξ N
tk |2(t N

k+1 − t N
k )

]

≤ C,

for all N = 1, 2, · · · , we have

Ê

⎡

⎣

∣∣∣∣∣

N−1∑

k=0

ξ N
k (t N

k+1 − t N
k )2

∣∣∣∣∣

2
⎤

⎦ → 0, as N → ∞.

Moreover, for any fixed a,ā ∈Rd ,

Ê

⎡

⎣

∣∣∣∣∣

N−1∑

k=0

ξ N
k (

〈
Ba〉

t N
k+1

− 〈
Ba〉

t N
k
)2

∣∣∣∣∣

2
⎤

⎦ ≤ CÊ

[
N−1∑

k=0

|ξ N
k |2(〈Ba〉

t N
k+1

− 〈
Ba〉

t N
k
)3

]

≤ CÊ

[
N−1∑

k=0

|ξ N
k |2σ 6

aaT (t N
k+1 − t N

k )3

]

→ 0,

Ê

⎡

⎣

∣∣∣∣∣

N−1∑

k=0

ξ N
k (

〈
Ba〉

t N
k+1

− 〈
Ba〉

t N
k
)(t N

k+1 − t N
k )

∣∣∣∣∣

2
⎤

⎦

≤CÊ

[
N−1∑

k=0

|ξ N
k |2(t N

k+1 − t N
k )(

〈
Ba〉

t N
k+1

− 〈
Ba〉

t N
k
)2

]

≤CÊ

[
N−1∑

k=0

|ξ N
k |2σ 4

aaT (t N
k+1 − t N

k )3

]

→ 0,

as well as

Ê

⎡

⎣

∣∣∣∣∣

N−1∑

k=0

ξ N
k (t N

k+1 − t N
k )(Ba

t N
k+1

− Ba
t N
k
)

∣∣∣∣∣

2
⎤

⎦

≤CÊ

[
N−1∑

k=0

|ξ N
k |2(t N

k+1 − t N
k )|Ba

t N
k+1

− Ba
t N
k
|2
]

≤CÊ

[
N−1∑

k=0

|ξ N
k |2σ 2

aaT (t N
k+1 − t N

k )2

]

→ 0
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and

Ê

⎡

⎣

∣∣∣∣∣

N−1∑

k=0

ξ N
k (

〈
Ba〉

t N
k+1

− 〈
Ba〉

t N
k
)(B ā

t N
k+1

− B ā
t N
k
)

∣∣∣∣∣

2
⎤

⎦

≤CÊ

[
N−1∑

k=0

|ξ N
k |2(〈Ba〉

t N
k+1

− 〈
Ba〉

t N
k
)|B ā

t N
k+1

− B ā
t N
k
|2
]

≤CÊ

[
N−1∑

k=0

|ξ N
k |2σ 2

aaT σ 2
āāT (t N

k+1 − t N
k )2

]

→ 0.

�

We are going now to derive a general form of Itô’s formula. We start with

Xν
t = Xν

0 +
∫ t

0
αν

s ds +
∫ t

0
η
νi j
s d 〈B〉i j

s +
∫ t

0
β

ν j
s d B j

s , ν = 1, · · · , n, i, j = 1, · · · , d.

Proposition 3.6.3 Let � ∈ C2(Rn) with ∂xν �, ∂2
xμxν � ∈ Cb.Lip(R

n) for μ, ν =
1, · · · , n. Let αν , βν j and ηνi j , ν = 1, · · · , n, i, j = 1, · · · , d be bounded processes
in M2

G(0, T ). Then for each t ≥ 0 we have, in L2
G(�t ), that

�(Xt ) − �(Xs) =
∫ t

s
∂xν �(Xu)β

ν j
u d B j

u +
∫ t

s
∂xν �(Xu)α

ν
u du (3.6.3)

+
∫ t

s
[∂xν �(Xu)η

νi j
u + 1

2∂
2
xμxν �(Xu)β

μi
u βν j

u ]d 〈B〉i j
u .

Proof We first consider the case of α, η and β being step processes of the form

ηt (ω) =
N−1∑

k=0

ξk(ω)1[tk ,tk+1)(t).

From Lemma 3.6.1, it is clear that (3.6.3) holds true. Now let

X ν,N
t = X ν

0 +
∫ t

0
αν,N

s ds +
∫ t

0
ηνi j,N

s d 〈B〉i j
s +

∫ t

0
βν j,N

s d B j
s ,

where αN , ηN and βN are uniformly bounded step processes that converge to α, η
and β in M2

G(0, T ) as N → ∞, respectively. From Lemma3.6.1,
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�(X N
t ) − �(X N

s ) =
∫ t

s
∂xν �(X N

u )βν j,N
u d B j

u +
∫ t

s
∂xν �(X N

u )αν,N
u du (3.6.4)

+
∫ t

s
[∂xν �(X N

u )ηνi j,N
u + 1

2∂
2
xμxν �(X N

u )βμi,N
u βν j,N

u ]d 〈B〉i j
u .

Since

Ê[|X ν,N
t − X ν

t |2]

≤CÊ

[∫ T

0
[(αν,N

s − αν
s )2 + |ην,N

s − ην
s |2 + |βν,N

s − βν
s |2]ds

]
,

where C is a constant independent of N . It follows that, in the space M2
G(0, T ),

∂xν �(X N
· )ηνi j,N

· → ∂xν �(X ·)ηνi j
· ,

∂2
xμxν �(X N

· )βμi,N
· βν j,N

· → ∂2
xμxν �(X ·)βμi

· βν j
· ,

∂xν �(X N
· )αν,N

· → ∂xν �(X ·)αν
· ,

∂xν �(X N
· )βν j,N

· → ∂xν �(X ·)βν j
· .

Therefore, passing to the limit as N → ∞ in both sides of (3.6.4), we get (3.6.3). �

In order to derive Itô’s formula for a general function �, we first establish a
useful inequality. For the G-expectation Ê, we have the following representation
(see Chap. 6):

Ê[X ] = sup
P∈P

EP [X ] for X ∈ L1
G(�), (3.6.5)

where P is a weakly compact family of probability measures on (�,B(�)).

Proposition 3.6.4 Let β ∈ M p
G(0, T ) with p ≥ 2 and let a ∈ R

d be fixed. Then we

have
∫ T
0 βt d Ba

t ∈ L p
G(�T ) and

Ê

[∣∣∣∣

∫ T

0
βt d Ba

t

∣∣∣∣

p
]

≤ C pÊ

[∣∣∣∣

∫ T

0
β2

t d〈Ba〉t

∣∣∣∣

p/2
]

. (3.6.6)

Proof It suffices to consider the case where β is a step process of the form

βt (ω) =
N−1∑

k=0

ξk(ω)1[tk ,tk+1)(t).

For each ξ ∈ Lip(�t ) with t ∈ [0, T ], we have

Ê

[
ξ

∫ T

t
βsd Ba

s

]
= 0.
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From this we can easily get EP [ξ ∫ T
t βsd Ba

s ] = 0 for each P ∈ P, which implies
that (

∫ t
0 βsd Ba

s )t∈0,T ] is a P-martingale. Similarly we can prove that

Mt :=
(∫ t

0
βsd Ba

s

)2

−
∫ t

0
β2

s d〈Ba〉s, t ∈ [0, T ],

is a P-martingale for each P ∈ P. By the Burkholder-Davis-Gundy inequalities, we
have

EP

[∣∣∣∣

∫ T

0
βt d Ba

t

∣∣∣∣

p
]

≤ C p EP

[∣∣∣∣

∫ T

0
β2

t d〈Ba〉t

∣∣∣∣

p/2
]

≤ C pÊ

[∣∣∣∣

∫ T

0
β2

t d〈Ba〉t

∣∣∣∣

p/2
]

,

where C p is a universal constant independent of P . Thus we get (3.6.6). �

We now give the general G-Itô’s formula.

Theorem 3.6.5 Let � be a C2-function on R
n such that ∂2

xμxν � satisfies polynomial
growth condition for μ, ν = 1, · · · , n. Let αν , βν j and ηνi j , ν = 1, · · · , n, i, j =
1, · · · , d be bounded processes in M2

G(0, T ) . Then for each t ≥ 0we have in L2
G(�t )

�(Xt ) − �(Xs) =
∫ t

s
∂xν �(Xu)β

ν j
u d B j

u +
∫ t

s
∂xν �(Xu)α

ν
u du (3.6.7)

+
∫ t

s

[
∂xν �(Xu)η

νi j
u + 1

2∂
2
xμxν �(Xu)β

μi
u βν j

u

]
d 〈B〉i j

u .

Proof By the assumptions on �, we can choose a sequence of functions �N ∈
C2
0 (R

n) such that

|�N (x) − �(x)| + |∂xν �N (x) − ∂xν �(x)| + |∂2xμxν �N (x) − ∂2xμxν �(x)| ≤ C1

N
(1 + |x |k),

where C1 and k are positive constants independent of N . Obviously, �N satisfies the
conditions in Proposition3.6.3, therefore,

�N (Xt ) − �N (Xs) =
∫ t

s
∂xν �N (Xu)β

ν j
u d B j

u +
∫ t

s
∂xv �N (Xu)α

ν
u du (3.6.8)

+
∫ t

s

[
∂xν �N (Xu)η

νi j
u + 1

2∂
2
xμxν �N (Xu)β

μi
u βν j

u

]
d 〈B〉i j

u .

For each fixed T > 0, by Proposition3.6.4, there exists a constant C2 such that

Ê[|Xt |2k] ≤ C2 for t ∈ [0, T ].

Thus we can show that �N (Xt ) → �(Xt ) as N → ∞ in L2
G(�t ) and, in M2

G(0, T ),
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∂xν �N (X ·)ηνi j
· → ∂xν �(X ·)ηνi j

· ,

∂2
xμxν �N (X ·)βμi

· βν j
· → ∂2

xμxν �(X ·)βμi
· βν j

· ,

∂xν �N (X ·)αν
· → ∂xν �(X ·)αν

· ,

∂xν �N (X ·)βν j
· → ∂xν �(X ·)βν j

· .

We then can pass to limit as N → ∞ in both sides of (3.6.8) to get (3.6.7). �

Corollary 3.6.6 Let � be a polynomial and a, aν∈Rd be fixed for ν = 1, · · · , n.
Then we have

�(Xt ) − �(Xs) =
∫ t

s
∂xν �(Xu)d Baν

u + 1
2

∫ t

s
∂2

xμxν �(Xu)d
〈
Baμ

, Baν 〉
u ,

where Xt = (Ba1

t , · · · , Ban

t )T . In particular, we have, for k = 2, 3, · · · ,

(Ba
t )k = k

∫ t

0
(Ba

s )k−1d Ba
s + k(k − 1)

2

∫ t

0
(Ba

s )k−2d〈Ba〉s .

If the sublinear expectation Ê becomes a linear expectation, then the aboveG-Itô’s
formula is the classical one.

3.7 Brownian Motion Without Symmetric Condition

In this section, we consider the Brownian motion B without the symmetric condi-
tion Ê[Bt ] = −Ê[−Bt ] on a sublinear expectation space (�,H, Ê). The following
theorem gives a characterization of the Brownian motion without the symmetric
condition.

Theorem 3.7.1 Let (Bt )t≥0 be a given R
d–valued Brownian motion on a sublin-

ear expectation space (�,H, Ê). Then, for each fixed ϕ ∈ Cb.Lip(R
d), the function

defined by,
u(t, x) := Ê[ϕ(x + Bt )], (t, x) ∈ [0,∞) × R

d

is the unique viscosity solution of the following parabolic PDE:

∂t u − G(Du, D2u) = 0, u|t=0 = ϕ, (3.7.1)

where

G(p, A) = lim
δ↓0 Ê[〈p, Bδ〉 + 1

2 〈ABδ, Bδ〉]δ−1 for (p, A) ∈ R
d × S(d). (3.7.2)
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Proof We first prove that limδ↓0 Ê[〈p, Bδ〉 + 1
2 〈ABδ, Bδ〉]δ−1 exists. For each fixed

(p, A) ∈ R
d × S(d), we set

f (t) := Ê[〈p, Bt 〉 + 1
2 〈ABt , Bt 〉].

Since

| f (t + h) − f (t)| ≤ Ê[(|p| + 2|A||Bt |)|Bt+h − Bt | + |A||Bt+h − Bt |2] → 0, as h → 0,

we get that f (t) is a continuous function. Observe that

Ê[〈q, Bt 〉] = Ê[〈q, B1〉]t, for q ∈ R
d .

Thus for each t, s > 0,

| f (t + s) − f (t) − f (s)| ≤ CÊ[|Bt |]s,

where C = |A|Ê[|B1|]. By (iii), there exists a constant δ0 > 0 such that Ê[|Bt |3] ≤ t
for t ≤ δ0. Thus for each fixed t > 0 and N ∈ N such that Nt ≤ δ0, we have

| f (Nt) − N f (t)| ≤ 3

4
C(Nt)4/3.

From this and the continuity of f , it is easy to show that limt↓0 f (t)t−1 exists. Thus
we can get G(p, A) for each (p, A) ∈ R

d × S(d). It is also easy to check that G is
a continuous sublinear function monotone in A ∈ S(d).

Then we prove that u is Lipschitz in x and 1
2 -Hölder continuous in t . In fact, for

each fixed t , u(t, ·) ∈Cb.Lip(R
d) since

|Ê[ϕ(x + Bt )] − Ê[ϕ(y + Bt )]| ≤ Ê[|ϕ(x + Bt ) − ϕ(y + Bt )|]
≤ C |x − y|.

For each δ ∈ [0, t], since Bt − Bδ is independent from Bδ ,

u(t, x) = Ê[ϕ(x + Bδ + (Bt − Bδ)]
= Ê[Ê[ϕ(y + (Bt − Bδ))]y=x+Bδ

].

Hence
u(t, x) = Ê[u(t − δ, x + Bδ)]. (3.7.3)
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Thus

|u(t, x) − u(t − δ, x)| = |Ê[u(t − δ, x + Bδ) − u(t − δ, x)]|
≤ Ê[|u(t − δ, x + Bδ) − u(t − δ, x)|]
≤ Ê[C |Bδ|] ≤ C

√
G(0, I ) + 1

√
δ.

To prove that u is a viscosity solution of (3.7.1), we fix a pair (t, x) ∈ (0,∞) × R
d

and let v ∈ C2,3
b ([0,∞) × R

d) be such that v ≥ u and v(t, x) = u(t, x). From (3.7.3),
we have

v(t, x) = Ê[u(t − δ, x + Bδ)] ≤ Ê[v(t − δ, x + Bδ)].

Therefore, by Taylor’s expansion,

0 ≤ Ê[v(t − δ, x + Bδ) − v(t, x)]
= Ê[v(t − δ, x + Bδ) − v(t, x + Bδ) + (v(t, x + Bδ) − v(t, x))]
= Ê[−∂t v(t, x)δ + 〈Dv(t, x), Bδ〉 + 1

2 〈D2v(t, x)Bδ, Bδ〉 + Iδ]
≤ −∂t v(t, x)δ + Ê[〈Dv(t, x), Bδ〉 + 1

2 〈D2v(t, x)Bδ, Bδ〉] + Ê[Iδ],

where

Iδ =
∫ 1

0
−[∂t v(t − βδ, x + Bδ) − ∂t v(t, x)]δdβ

+
∫ 1

0

∫ 1

0
〈(D2v(t, x + αβBδ) − D2v(t, x))Bδ, Bδ〉αdβdα.

By condition (iii) in Definition3.1.2, we can check that limδ↓0 Ê[|Iδ|]δ−1 = 0 , which
implies that ∂t v(t, x) − G(Dv(t, x), D2v(t, x)) ≤ 0. Hence u is a viscosity subso-
lution of (3.7.1). We can analogously show that u is also a viscosity supersolution.
Thus u is a viscosity solution. �

In many situations we are interested in a 2d-dimensional Brownian motion
(Bt , bt )t≥0 such that Ê[Bt ] = −Ê[−Bt ] = 0 and Ê[|bt |2]/t → 0, as t ↓ 0. In this
case B is in fact a symmetricBrownianmotion.Moreover, the process (bt )t≥0 satisfies
the properties in the Proposition3.5.2. We define u(t, x, y) = Ê[ϕ(x + Bt , y + bt )].
By Theorem 3.7.1 it follows that u is the solution of the PDE

∂t u = G(Dyu, D2
xx u), u|t=0 = ϕ ∈ Cb.Lip(R

2d),

where G is a sublinear function of (p, A) ∈ R
d × S(d), defined by

G(p, A) := Ê[〈p, b1〉 + 〈AB1, B1〉].
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3.8 G-Brownian Motion Under (Not Necessarily Sublinear)
Nonlinear Expectation

Let Ẽ be a nonlinear expectation and Ê be a sublinear expectation defined on (�,H)

such that Ẽ is dominated by Ê, namely

Ẽ[X ] − Ẽ[Y ] ≤ Ê[X − Y ], X, Y ∈ H .

We can also define a Brownianmotion on the nonlinear expectation space (�,H, Ẽ).
We emphasize that here the nonlinear expectation Ẽ is not necessarily sublinear.

Definition 3.8.1 A d-dimensional process (Bt )t≥0 on nonlinear expectation space
(�,H, Ẽ) is called a Brownian motion if the following properties are satisfied:

(i) B0(ω) = 0;
(ii) For each t, s ≥ 0, the increment Bt+s − Bt is identically distributedwith Bs and

is independent from (Bt1 , Bt2 , · · · , Btn ), for each n ∈ N and 0 ≤ t1 ≤ · · · ≤ tn ≤ t ;
(iii) limt↓0 t−1

Ê[|Bt |3] = 0.

The following theorem gives a characterization of the nonlinear Brownianmotion,
and provides us with a new generator G̃ associated with this more general nonlinear
Brownian motion.

Theorem 3.8.2 Let (Bt , bt )t≥0 be a given R
2d–valued Brownian motion, both on

(�,H, Ẽ) and (�,H, Ê) such that Ê[Bt ] = Ê[−Bt ] = 0 and limt→0 Ê[|bt |2]/t =
0. Assume that Ẽ is dominated by Ê. Then, for each fixed ϕ ∈ Cb.Lip(R

2d), the function

ũ(t, x, y) := Ẽ[ϕ(x + Bt , y + bt )], (t, x, y) ∈ [0,∞) × R
2d

is a viscosity solution of the following parabolic PDE:

∂t ũ − G̃(Dyũ, D2
x ũ) = 0, ũ|t=0 = ϕ. (3.8.1)

where

G̃(p, A) = Ẽ[〈p, b1〉 + 1
2 〈AB1, B1〉], (p, A) ∈ R

d × S(d). (3.8.2)

Remark 3.8.3 Let

G(p, A) := Ê[〈p, b1〉 + 1
2 〈AB1, B1〉], (p, A) ∈ R

d × S(d). (3.8.3)

Then the function G̃ is dominated by the sublinear function G in the following sense:

G̃(p, A) − G̃(p′, A′) ≤ G(p − p′, A − A′), (p, A), (p′, A′) ∈ R
d × S(d).

(3.8.4)
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Conversely, oncewe have two functionsG and G̃ defined on (Rd ,S(d)) such thatG is
a sublinear function andmonotone in A ∈ S(d), and that G̃ is dominated byG, we can
construct a Brownian motion (Bt , bt )t≥0 on a sublinear expectation space (�,H, Ê)

such that a nonlinear expectation Ẽ is well-defined on (�,H) and is dominated by
Ê. Moreover, under Ẽ, (Bt , bt )t≥0 is also aR2d -valued Brownian motion in the sense
of Definition3.8.1 and relations (3.8.2) and (3.8.3) are satisfied.

Proof of Theorem3.8.2 We set

f (t) = f A,t (t) := Ẽ[〈p, bt 〉 + 1
2 〈ABt , Bt 〉], t ≥ 0.

Since

| f (t + h) − f (t)| ≤Ê[|p||bt+h − bt | + (|p| + 2|A||Bt |)|Bt+h − Bt |
+ |A||Bt+h − Bt |2] → 0, as h → 0,

weget that f (t) is a continuous function. Since Ê[Bt ] = Ê[−Bt ] = 0, it follows from
Proposition 3.8 that Ẽ[X + 〈p, Bt 〉] = Ẽ[X ] for each X ∈ H and p ∈ R

d . Thus

f (t + h) = Ẽ[〈p, bt+h − bt 〉 + 〈p, bt 〉
+ 1

2 〈ABt+h − Bt , Bt+h − Bt 〉 + 1
2 〈ABt , Bt 〉]

= Ẽ[〈p, bh〉 + 1
2 〈ABh, Bh〉] + Ẽ[〈p, bt 〉 + 1

2 〈ABt , Bt 〉]
= f (t) + f (h).

It then follows that f (t) = f (1)t = G̃(A, p)t. We now prove that the function
ũ is Lipschitz in x and uniformly continuous in t . Indeed, for each fixed t ,
ũ(t, ·) ∈Cb.Lip(R

d) since

|Ẽ[ϕ(x + Bt , y + bt )] − Ẽ[ϕ(x ′ + Bt , y′ + bt )]|
≤ Ê[|ϕ(x + Bt , y + bt ) − ϕ(x ′ + Bt , y′ + bt )|] ≤ C(|x − x ′| + |y − y′|).

For each δ ∈ [0, t], since (Bt − Bδ, bt − bδ) is independent from (Bδ, bδ),

ũ(t, x, y) = Ẽ[ϕ(x + Bδ + (Bt − Bδ), y + bδ + (bt − bδ)]
= Ẽ[Ẽ[ϕ(x̄ + (Bt − Bδ), ȳ + (bt − bδ))]x̄=x+Bδ ,ȳ=y+bδ

].

Hence
ũ(t, x, y) = Ẽ[ũ(t − δ, x + Bδ, y + bδ)]. (3.8.5)
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Thus

|ũ(t, x, y) − ũ(t − δ, x, y)| = |Ẽ[ũ(t − δ, x + Bδ, y + bδ) − ũ(t − δ, x, y)]|
≤ Ê[|ũ(t − δ, x + Bδ, y + bδ) − ũ(t − δ, x, y)|]
≤ CÊ[|Bδ| + |bδ|].

It follows from condition (iii) in Definition3.8.1 that ũ(t, x, y) is continuous in t
uniformly in (t, x, y) ∈ [0,∞) × R

2d .
To prove that ũ is a viscosity solution of (3.8.1), we fix (t, x, y) ∈ (0,∞) × R

2d

and let v ∈ C2,3
b ([0,∞) × R

2d) be such that v ≥ u and v(t, x, y) = ũ(t, x, y). From
(3.8.5), we have

v(t, x, y) = Ẽ[ũ(t − δ, x + Bδ, y + bδ)] ≤ Ẽ[v(t − δ, x + Bδ, y + bδ)].
Therefore, by Taylor’s expansion,

0 ≤ Ẽ[v(t − δ, x + Bδ, y + bδ) − v(t, x, y)]
= Ẽ[v(t − δ, x + Bδ, y + bδ) − v(t, x + Bδ, y + bδ) + v(t, x + Bδ, y + bδ) − v(t, x, y)]
= Ẽ[−∂t v(t, x, y)δ + 〈Dyv(t, x, y), bδ〉 + 〈∂x v(t, x, y), Bδ〉 + 1

2 〈D2
xx v(t, x, y)Bδ, Bδ〉 + Iδ]

≤ −∂t v(t, x, y)δ + Ẽ[〈Dyv(t, x, y), bδ〉 + 1
2 〈D2

xx v(t, x, y)Bδ, Bδ〉] + Ê[Iδ].

Here

Iδ =
∫ 1

0
−[∂t v(t − δγ, x + Bδ, y + bδ) − ∂t v(t, x, y)]δdγ

+
∫ 1

0
〈∂yv(t, x + γ Bδ, y + γ bδ) − ∂yv(t, x, y), bδ〉dγ

+
∫ 1

0
〈∂x v(t, x, y + γ bδ) − ∂x v(t, x, y), Bδ〉dγ

+
∫ 1

0

∫ 1

0
〈(D2

xx v(t, x + αγ Bδ, y + γ bδ) − D2
xx v(t, x, y))Bδ, Bδ〉γ dγ dα.

We use assumption (iii) to check that limδ↓0 Ê[|Iδ|]δ−1 = 0. This implies that
∂t v(t, x) − G̃(Dv(t, x), D2v(t, x)) ≤ 0, hence u is a viscosity subsolution of (3.8.1).
We can analogously prove that ũ is a viscosity supersolution. Thus ũ is a viscosity
solution. �
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3.9 Construction of Brownian Motions on a Nonlinear
Expectation Space

Let G : Rd × S(d) → R be a given continuous sublinear function monotone in A ∈
S(d). By Theorem 1.2.1 in Chap. 1, there exists a bounded, convex and closed subset
� ⊂ R

d × S+(d) such that

G(p, A) = sup
(q,B)∈�

[ 12 tr[AB] + 〈p, q〉] for (p, A) ∈ R
d × S(d).

By the results in Chap. 2, we know that there exists a pair of d-dimensional random
vectors (X, Y ) which is G-distributed.

Let G̃(·) : Rd × S(d) → R be a given function dominated by G in the sense of
(3.8.4). The construction of a R2d -dimensional Brownian motion (Bt , bt )t≥0 under
a nonlinear expectation Ẽ, dominated by a sublinear expectation Ê is based on a
similar approach introduced in Sect. 3.2. In fact, we will see that by our construction
(Bt , bt )t≥0 is also a Brownian motion under the sublinear expectation Ê.

We denote by � = C2d
0 (R+) the space of all R

2d–valued continuous paths
(ωt )t∈R+ . For each fixed T ∈ [0,∞), we set �T := {ω·∧T : ω ∈ �}. We will con-
sider the canonical process (Bt , bt )(ω) = ωt , t ∈ [0,∞), for ω ∈ �. We also follow
Sect. 3.2 to introduce the spaces of random variables Lip(�T ) and Lip(�) so that
to define the expectations Ê and Ẽ on (�, Lip(�)).

For this purpose we first construct a sequence of 2d-dimensional random vec-
tors (Xi , ηi )

∞
i=1 on a sublinear expectation space (�,H,E) such that (Xi , ηi ) is

G-distributed and (Xi+1, η i+1) is independent from ((X1, η1), · · · , (Xi , ηi )) for
each i = 1, 2, · · · . By the definition of G-distribution, the function

u(t, x, y) := E[ϕ(x + √
t X1, y + tη1)], t ≥ 0, x, y ∈ R

d

is the viscosity solution of the following parabolic PDE, which is the same as
Eq. (2.2.6) in Chap. 2:

∂t u − G(Dyu, D2
xx u) = 0, u|t=0 = ϕ ∈ Cl.Lip(R

2d).

We also consider another PDE (see Theorem C.3.5 of Appendix C for the existence
and uniqueness):

∂t ũ − G̃(Dyũ, D2
xx ũ) = 0, ũ|t=0 = ϕ ∈ Cl.Lip(R

2d),

anddenote P̃t [ϕ](x, y) = ũ(t, x, y). Then it follows fromTheoremC.3.5 inAppendix
C, that, for each ϕ,ψ ∈ Cl.Lip(R

2d),

P̃t [ϕ](x, y) − P̃t [ψ](x, y) ≤ E[(ϕ − ψ)(x + √
t X1, y + tη1)].
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We now introduce a sublinear expectation Ê and a nonlinear expectation Ẽ both
defined on Lip(�) via the following procedure: for each X ∈ Lip(�) with

X = ϕ(Bt1 − Bt0 , bt1 − bt0 , · · · , Btn − Btn−1, btn − btn−1)

for ϕ ∈ Cl.Lip(R
2d×n) and 0 = t0 < t1 < · · · < tn < ∞, we define

Ê[ϕ(Bt1 − Bt0 , bt1 − bt0 , · · · , Btn − Btn−1 , btn − btn−1)]

:= E[ϕ(
√

t1 − t0X1, (t1 − t0)η1, · · · ,
√

tn − tn−1Xn, (tn − tn−1)ηn)].

Then we define

Ẽ[ϕ(Bt1 − Bt0 , bt1 − bt0 , · · · , Btn − Btn−1 , btn − btn−1)] = ϕn,

where ϕn is obtained iteratively as follows:

ϕ1(x1, y1, · · · , xn−1, yn−1) = P̃tn−tn−1[ϕ(x1, y1, · · · , xn−1, yn−1, ·)](0, 0),
...

ϕn−1(x1, y1) = P̃t2−t1 [ϕn−2(x1, y1, ·)](0, 0),
ϕn = P̃t1 [ϕn−1(·)](0, 0).

The related conditional expectation of X =ϕ(Bt1 − Bt0 , bt1 − bt0 , · · · , Btn − Btn−1 ,

btn − btn−1) under �t j is defined by

Ê[X |�t j ] = Ê[ϕ(Bt1 − Bt0 , bt1 − bt0 , · · · , Btn − Btn−1 , btn − btn−1) |�t j ] (3.9.1)

:= ψ(Bt1 − Bt0 , bt1 − bt0 , · · · , Bt j − Bt j−1 , bt j − bt j−1),

where

ψ(x1, · · · , x j ) = E[ϕ(x1, · · · , x j ,
√

t j+1 − t j X j+1, (t1 − t0)η j+1, · · · ,
√

tn − tn−1Xn, (t1 − t0)ηn)].

Similarly,

Ẽ[X |�t j ] = ϕn− j (Bt1 − Bt0 , bt1 − bt0 , · · · , Bt j − Bt j−1 , bt j − bt j−1).

It is easy to check that Ê[·] (resp., Ẽ) consistently defines a sublinear (resp. nonlinear)
expectation on (�, Lip(�)). Moreover (Bt , bt )t≥0 is a Brownian motion under both
Ê and Ẽ.
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Proposition 3.9.1 Let us list the properties of Ẽ[·|�t ] that hold for each X, Y ∈
Lip(�):

(i) If X ≥ Y , then Ẽ[X |�t ] ≥ Ẽ[Y |�t ].
(ii) Ẽ[X + η|�t ] =Ẽ[X |�t ] + η, for each t ≥ 0 and η ∈Lip(�t ).

(iii) Ẽ[X |�t ] − Ẽ[Y |�t ] ≤ Ê[X − Y |�t ].
(iv) Ẽ[Ẽ[X |�t ]|�s] = Ẽ[X |�t∧s], in particular, Ẽ[Ẽ[X |�t ]] = Ẽ[X ].
(v) For each X ∈ Lip(�t ), Ẽ[X |�t ] = Ẽ[X ], where Lip(�t ) is the linear space

of random variables of the form

ϕ(Bt2 − Bt1 , bt2 − bt1 , · · · , Btn+1 − Btn , btn+1 − btn ),

n = 1, 2, · · · , ϕ ∈ Cl.Lip(R
d×n), t1, · · · , tn, tn+1 ∈ [t,∞).

Since Ê can be considered as a special nonlinear expectation of Ẽ which is dom-
inated by itself, it follows that Ê[·|�t ] also satisfies the above properties (i)–(v).
Proposition 3.9.2 The conditional sublinear expectation Ê [·|�t ] satisfies (i)–(v).
Moreover Ê[·|�t ] itself is sublinear, i.e.,

(vi) Ê[X |�t ] − Ê[Y |�t ] ≤ Ê[X − Y |�t ], .

(vii) Ê[ηX |�t ] = η+
Ê[X |�t ] + η−

Ê[−X |�t ] for each η ∈ Lip(�t ).

We now consider the completion of sublinear expectation space (�, Lip(�), Ê).

Denote by L p
G(�), p ≥ 1, the completion of Lip(�) under the norm ‖X‖p :=

(Ê[|X |p])1/p. Similarly, we can define L p
G(�T ), L p

G(�t
T ) and L p

G(�t ). It is clear
that for each 0 ≤ t ≤ T < ∞, L p

G(�t ) ⊆ L p
G(�T ) ⊆ L p

G(�).
According to Sect. 1.4 in Chap. 1, the expectation Ê[·] can be continuously

extended to (�, L1
G(�)). Moreover, since the nonlinear expectation Ẽ is dominated

by Ê, it can also be continuously extended to (�, L1
G(�)). (�, L1

G(�), Ê) is a sub-
linear expectation space while (�, L1

G(�), Ẽ) is a nonlinear expectation space. We
refer to Definition 1.4.4 in Chap. 1.

The next is to look for the extension of conditional expectation. For each fixed
t ≤ T , the conditional expectation Ẽ[·|�t ] : Lip(�T ) → Lip(�t ) is a continuous
mapping under ‖·‖. Indeed, we have

Ẽ[X |�t ] − Ẽ[Y |�t ] ≤ Ê[X − Y |�t ] ≤ Ê[|X − Y ||�t ],

then
|Ẽ[X |�t ] − Ẽ[Y |�t ]| ≤ Ê[|X − Y ||�t ].

We thus obtain ∥∥Ẽ[X |�t ] − Ẽ[Y |�t ]
∥∥ ≤ ‖X − Y‖ .

It follows that Ẽ[·|�t ] can also be extended as a continuous mapping

Ẽ[·|�t ] : L1
G(�T ) → L1

G(�t ).
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If the parameter T is not fixed, then we can obtain Ẽ[·|�t ] : L1
G(�) → L1

G(�t ).

Remark 3.9.3 Propositions3.9.1 and 3.9.2 also hold for X, Y ∈ L1
G(�). However,

in (iv), η ∈ L1
G(�t ) should be bounded, since X, Y ∈ L1

G(�) does not imply that
X · Y ∈ L1

G(�).

In particular, we have the following independence:

Ẽ[X |�t ] = Ẽ[X ], ∀X ∈ L1
G(�t ).

We give the following definition similar to the classical one:

Definition 3.9.4 An n-dimensional random vector Y ∈ (L1
G(�))n is said to be inde-

pendent from �t for some given t if for each ϕ ∈ Cb.Lip(R
n) we have

Ẽ[ϕ(Y )|�t ] = Ẽ[ϕ(Y )].

3.10 Exercises

Exercise 3.10.1 Let (Bt )t≥0 be a 1-dimensional G-Brownian motion, such that its

value at t = 1 is B1
d= N ({0} × [σ 2, σ 2]). Prove that for each m ∈ N,

Ê[|Bt |m] =
{
2(m − 1)!!σ mt

m
2 /

√
2π, if m is odd,

(m − 1)!!σ mt
m
2 , if m is even.

Exercise 3.10.2 Show that if X ∈ Lip(�T ) and Ê[X ] = −Ê[−X ], then Ê[X ] =
EP [X ], where P is a Wiener measure on �.

Exercise 3.10.3 For each s, t ≥ 0, we set Bs
t := Bt+s − Bs . Let η = (ηi j )

d
i, j=1 ∈

L1
G(�s;S(d)). Prove that

Ê[〈ηBs
t , Bs

t 〉|�s] = 2G(η)t.

Exercise 3.10.4 Suppose that X ∈ L p
G(�T ) for p ≥ 1. Prove that there exists a

sequence of bounded random variables Xn ∈ Lip(�T ), n = 1, · · · , such that

lim
n→∞ Ê[|X − Xn|p] = 0.

Exercise 3.10.5 Prove that for each X ∈ Lip(�T ), sup
0≤t≤T

Êt [X ] ∈ L1
G(�T ).

Exercise 3.10.6 Prove that ϕ(Bt ) ∈ L1
G(�t ) for each ϕ ∈ C(Rd)with a polynomial

growth.
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Exercise 3.10.7 Prove that, for a fixed η ∈ M2
G(0, T ),

σ 2
Ê

[∫ T

0
η2

t dt

]
≤ Ê

[
(

∫ T

0
ηt d Bt )

2

]
≤ σ 2

Ê

[∫ T

0
η2

t dt

]
,

where σ 2 = Ê[B2
1 ] and σ 2 = −Ê[−B2

1 ].
Exercise 3.10.8 Let (Bt )t≥0 be a 1-dimensional G-Brownian motion and ϕ a
bounded and Lipschitz function on R. Show that

lim
N→∞ Ê

[∣∣∣∣∣

N−1∑

k=0

ϕ(Bt N
k
)[(Bt N

k+1
− Bt N

k
)2 − (〈B〉t N

k+1
− 〈B〉t N

k
)]
∣∣∣∣∣

]

= 0,

where t N
k = kT/N , k = 0, . . . , N − 1.

Exercise 3.10.9 Prove that, for a fixed η ∈ M1
G(0, T ),

σ 2
Ê

[∫ T

0
|ηt |dt

]
≤ Ê

[∫ T

0
|ηt |d〈B〉t

]
≤ σ 2

Ê

[∫ T

0
|ηt |dt

]
,

where σ 2 = Ê[B2
1 ] and σ 2 = −Ê[−B2

1 ].
Exercise 3.10.10 Complete the proof of Proposition3.5.7.

Exercise 3.10.11 Let B be a 1-dimensional G-Brownian motion and Ẽ a nonlinear
expectation dominated by a G-expectation. Show that for any η ∈ M2

G(0, T ):

(i) Ẽ

[∫ T
0 ηsd Bs

]
= 0;

(ii) Ẽ

[(∫ T
0 ηsd Bs

)2] = Ẽ

[∫ T
0 |ηs |2d〈B〉s

]
.

Notes and Comments

Bachelier [7] proposed to use the Brownian motion as a model of the fluctuations
of stock markets. Independently, Einstein [56] used the Brownian motion to give
experimental confirmation of the atomic theory, and Wiener [173] gave a mathemat-
ically rigorous construction of the Brownian motion. Here we follow Kolmogorov’s
idea [103] to construct G-Brownian motions by introducing finite dimensional cylin-
der function space and the corresponding family of infinite dimensional sublinear
distributions, instead of (linear) probability distributions used in [103].

The notions of G-Brownian motions and the related stochastic calculus of Itô’s
type were firstly introduced by Peng [138] for the 1-dimensional case and then in
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(2008) [141] for the multi-dimensional situation. It is very interesting that Denis
and Martini [48] studied super-pricing of contingent claims under model uncer-
tainty of volatility. They have introduced a norm in the space of continuous paths
� = C([0, T ]) which corresponds to the L2

G-norm and developed a stochastic inte-
gral. In that paper there are no notions such as nonlinear expectation and the related
nonlinear distribution, G-expectation, conditional G-expectation, the related G-
normal distribution and independence. On the other hand, by using powerful tools
from capacity theory these authors obtained pathwise results for random variables
and stochastic processes through the language of “quasi-surely” (see e.g. Dellacherie
[42], Dellacherie and Meyer [43], Feyel and de La Pradelle [65]) in place of “almost
surely” in classical probability theory.

One of the main motivations to introduce the notion of G-Brownian motions
was the necessity to deal with pricing and risk measures under volatility uncertainty
in financial markets (see Avellaneda, Lévy and Paras [6] and Lyons [114]). It was
well-known that under volatility uncertainty the corresponding uncertain probability
measures are singular with respect to each other. This causes a serious problem in
the related path analysis to treat, e.g., when dealing with path-dependent derivatives,
under a classical probability space. The notion of G-Brownian motions provides a
powerful tool to study such a type of problems. Indeed, Biagini, Mancin and Meyer
Brandis studied mean-variance hedging under the G-expectation framework in [18].
Fouque, Pun and Wong investigated the asset allocation problem among a risk-free
asset and two risky assets with an ambiguous correlation through the theory of G-
Brownian motions in [67]. We also remark that Beissner and Riedel [15] studied
equilibria under Knightian price uncertainty through sublinear expectation theory,
see also [14, 16].

The new Itô’s calculus with respect to G-Brownian motion was inspired by Itô’s
groundbreaking work of [92] on stochastic integration, stochastic differential equa-
tions followed by a huge progress in stochastic calculus.We refer to interesting books
cited in Chap. 4. Itô’s formula given by Theorem 3.6.5 is from [138, 141]. Gao [72]
proved a more general Itô’s formula for G-Brownian motion. On this occasion an
interesting problem appeared: can we establish an Itô’s formula under conditions
which correspond to the classical one? This problem will be solved in Chap. 8 with
quasi surely analysis approach.

Using nonlinear Markovian semigroups known as Nisio’s semigroups (see Nisio
[119]), Peng [136] studied the processes with Markovian properties under a non-
linear expectation. Denk, Kupper and Nendel studied the relation between Lévy
processes under nonlinear expectations, nonlinear semigroups and fully nonlinear
PDEs, see [50].
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