
Raffaella Bernardi
Greg Kobele
Sylvain Pogodalla (Eds.)

 123

LN
CS

 1
16

68

24th International Conference, FG 2019
Riga, Latvia, August 11, 2019
Proceedings

Formal Grammar

Lecture Notes in Computer Science 11668

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board Members

David Hutchison, UK
Josef Kittler, UK
Friedemann Mattern, Switzerland
Moni Naor, Israel
Bernhard Steffen, Germany
Doug Tygar, USA

Takeo Kanade, USA
Jon M. Kleinberg, USA
John C. Mitchell, USA
C. Pandu Rangan, India
Demetri Terzopoulos, USA

FoLLI Publications on Logic, Language and Information
Subline of Lectures Notes in Computer Science

Subline Editors-in-Chief

Valentin Goranko, Stockholm University, Sweden

Michael Moortgat, Utrecht University, The Netherlands

Subline Area Editors

Nick Bezhanishvili, University of Amsterdam, The Netherlands
Anuj Dawar, University of Cambridge, UK
Philippe de Groote, Inria Nancy, France
Gerhard Jäger, University of Tübingen, Germany
Fenrong Liu, Tsinghua University, Beijing, China
Eric Pacuit, University of Maryland, USA
Ruy de Queiroz, Universidade Federal de Pernambuco, Brazil
Ram Ramanujam, Institute of Mathematical Sciences, Chennai, India

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Raffaella Bernardi • Greg Kobele •

Sylvain Pogodalla (Eds.)

Formal Grammar
24th International Conference, FG 2019
Riga, Latvia, August 11, 2019
Proceedings

123

Editors
Raffaella Bernardi
University of Trento
Povo, Italy

Greg Kobele
Universität Leipzig
Leipzig, Germany

Sylvain Pogodalla
LORIA, Inria Nancy
Villers-lès-Nancy, France

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-662-59647-0 ISBN 978-3-662-59648-7 (eBook)
https://doi.org/10.1007/978-3-662-59648-7

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer-Verlag GmbH Germany, part of Springer Nature 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer-Verlag GmbH, DE
part of Springer Nature
The registered company address is: Heidelberger Platz 3, 14197 Berlin, Germany

https://doi.org/10.1007/978-3-662-59648-7

Preface

The Formal Grammar conference series (FG) provides a forum for the presentation of
new and original research on formal grammar, mathematical linguistics, and the
application of formal and mathematical methods to the study of natural language.
Themes of interest include, but are not limited to:

• Formal and computational phonology, morphology, syntax, semantics,
and pragmatics

• Model-theoretic and proof-theoretic methods in linguistics
• Logical aspects of linguistic structure
• Constraint-based and resource-sensitive approaches to grammar
• Learnability of formal grammar
• Integration of stochastic and symbolic models of grammar
• Foundational, methodological, and architectural issues in grammar and linguistics
• Mathematical foundations of statistical approaches to linguistic analysis

Previous FG meetings were held in Barcelona (1995), Prague (1996),
Aix-en-Provence (1997), Saarbrücken (1998), Utrecht (1999), Helsinki (2001), Trento
(2002), Vienna (2003), Nancy (2004), Edinburgh (2005), Malaga (2006), Dublin
(2007), Hamburg (2008), Bordeaux (2009), Copenhagen (2010), Ljubljana (2011),
Opole (2012), Düsseldorf (2013), Tübingen (2014), Barcelona (2015), Bolzano-Bozen
(2016), Toulouse (2017), and Sofia (2018).

FG 2019, the 24th conference on Formal Grammar, was held in Riga, Latvia, on
August 11, 2019. The conference comprised an invited talk, by Tal Linzen, and seven
contributed papers selected from 11 submissions. The present volume includes an
abstract of the invited talk and the contributed papers.

We would like to thank the people who made the 24th FG conference possible: the
invited speaker, the members of the Program Committee, and the organizers of ESSLLI
2019, with which the conference was colocated.

August 2019 Raffaella Bernardi
Greg Kobele

Sylvain Pogodalla

Organization

Program Committee

Berthold Crysmann CNRS - LLF (UMR 7110), Paris-Diderot, France
Philippe de Groote Inria Nancy – Grand Est, France
Nissim Francez Technion - IIT, Israel
Thomas Graf Stony Brook University, USA
Laura Kallmeyer Heinrich-Heine-Universität Düsseldorf, Germany
Makoto Kanazawa Hosei University, Japan
Stepan Kuznetsov Steklov Mathematical Institute, Russian Federation
Alessandro Lenci University of Pisa, Italy
Robert Levine Ohio State University, USA
Glyn Morrill Universitat Politècnica de Catalunya, Spain
Reinhard Muskens Tilburg Center for Logic and Philosophy of Science,

The Netherlands
Stefan Müller Freie Universität Berlin, Germany
Mark-Jan Nederhof University of St Andrews, UK
Rainer Osswald Heinrich-Heine-Universität Düsseldorf, Germany
Christian Retoré Université de Montpellier and LIRMM-CNRS, France
Mehrnoosh Sadrzadeh Queen Mary University of London, UK
Manfred Sailer Goethe University Frankfurt, Germany
Edward Stabler UCLA and Nuance Communications, USA
Jesse Tseng CNRS, France
Oriol Valentín Universitat Politècnica de Catalunya, France
Christian Wurm Heinrich-Heine-Universität Düsseldorf, Germany
Ryo Yoshinaka Tohoku University, Japan

Standing Committee

Raffaella Bernardi University of Trento, Italy
Greg Kobele Universität Leipzig, Germany
Sylvain Pogodalla Inria Nancy – Grand Est, France

What Inductive Biases Enable
Human-Like Syntactic Generalization?

(Abstract of Invited Talk)

Tal Linzen

Departments of Cognitive Science and Computer Science,
Johns Hopkins University, Baltimore, Maryland, USA

tal.linzen@jhu.edu
http://tallinzen.net/

Humans generalize their knowledge of language in a systematic way to syntactic
structures that are rare or absent in their linguistic input, an observation traditionally
discussed under the banner of “the poverty of the stimulus”. This generalization
behavior has motivated structural (innate) inductive biases. In this talk, I will
demonstrate how neural networks with and without explicit syntactic structure can be
used to test for the necessity and sufficiency of such structural biases. Focusing on
subject-verb agreement as well as subject-auxiliary inversion in English question for-
mation, I will argue that explicit structural biases are still necessary for human-like
generalization in a learner trained on text only.

Contents

A Purely Surface-Oriented Approach to Handling Arabic Morphology. 1
Yousuf Aboamer and Marcus Kracht

A Topos-Based Approach to Building Language Ontologies. 18
William Babonnaud

Structure Sensitive Tier Projection: Applications and Formal Properties 35
Aniello De Santo and Thomas Graf

Quantificational Subordination as Anaphora to a Function 51
Matthew Gotham

Undecidability of a Newly Proposed Calculus for CatLog3 67
Max Kanovich, Stepan Kuznetsov, and Andre Scedrov

Proof-Theoretic Aspects of Hybrid Type-Logical Grammars 84
Richard Moot and Symon Jory Stevens-Guille

On the Computational Complexity of Head Movement and Affix Hopping. . . 101
Miloš Stanojević

Author Index . 117

A Purely Surface-Oriented Approach
to Handling Arabic Morphology

Yousuf Aboamer(B) and Marcus Kracht

Bielefeld University, Postfach 10 10 31, 33501 Bielefeld, Germany
{yousuf.aboamer,marcus.kracht}@uni-bielefeld.de

Abstract. In this paper, we introduce a completely lexicalist approach
to deal with Arabic morphology. This purely surface-oriented treatment
is part of a comprehensive mathematical approach to integrate Arabic
syntax and semantics using overt morphological features in the string-
to-meaning translation. The basic motivation of our approach is to com-
bine semantic representations with formal descriptions of morphological
units. That is, the lexicon is a collection of signs; each sign δ is a triple
δ = 〈E, C, M〉, such that E is the exponent, C is the combinatorics and
M is the meaning of the sign. Here, we are only concerned with the expo-
nents, i.e. the components of a morphosemantic lexicon (for a fragment
of Arabic). To remain surface-oriented, we allow for discontinuity in the
constituents; constituents are sequences of strings, which can only be
concatenated or duplicated, but no rule can delete, add or modify any
string. Arabic morphology is very well known for its complexity and rich-
ness. The word formation in Arabic poses real challenges because words
are derived from roots, which bear the core meaning of their derivatives,
formed by inserting vowels and maybe other consonants. The units in the
sequences are so-called glued strings rather than only strings. A glued
string is a string that has left and right context conditions. Optimally
morphs are combined in a definite and non-exceptional linear way, as in
many cases in different languages (e.g. plural in English). The process
of Arabic word formation is rather complex; it is not just a sequential
concatenation of morphs by placing them next to each other. But the
constituents are discontinuous. Vowels and more consonants are inserted
between, before and after the root consonants resulting in what we call
“fractured glued string”, i.e. as a sequence of glued strings combined in
diverse ways; forward concatenation, backward concatenation, forward
wrapping, reduction, forward transfixation and, going beyond the multi-
context free grammars (MCFGs), also reduplication.

Keywords: Discontinuity · Arabic morphology · Surface orientation ·
Morphosemantics

1 Introduction

Arabic is currently the most spoken Semitic language in the world with a number
of speakers approaching 415 million, according to the CIA world factbook [1],
c© Springer-Verlag GmbH Germany, part of Springer Nature 2019
R. Bernardi et al. (Eds.): FG 2019, LNCS 11668, pp. 1–17, 2019.
https://doi.org/10.1007/978-3-662-59648-7_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-59648-7_1&domain=pdf
https://doi.org/10.1007/978-3-662-59648-7_1

2 Y. Aboamer and M. Kracht

and is the/an official language of 22 countries in a vast area extending from the
Arabian Peninsula to the Fertile Crescent, in addition to some other countries
in the middle east. It has recently become the focus of an increasing number of
projects in natural language processing and computational linguistics [2]. In this
regard, we investigate a new approach to integrate Arabic morphology, syntax
and semantics. The central claim of this approach is that the argument struc-
ture provides an interface between syntax and semantics. The main function of
the argument structure is to declare how the functor‘s semantic arguments are
realized on the surface. [3]1 In this paper, we are only concerned with morphol-
ogy, i.e. we show how to deal with Arabic morphology in a way that allows us
to go beyond mere word formation and provide a fully compositional treatment
of entire sentences. Sentences are composed from units that are combined in
some way. Each unit is either a string, i.e. a sequence of letters, or a sequence of
strings. Furthermore, to implement adjacency constraints we use so-called glued
strings in place of strings, or sequences thereof. In order to deal with the com-
plexity of Arabic morphology in a completely surface-oriented approach, we have
to deal with a number of problems, especially the discontinuity of morphemes,
matching among morphemes, and morphophonemic alternations resulting from
the interaction among different types of morphs.

This paper consists of four parts in addition to the introduction. In Sect. 2, we
discuss briefly the morphological system of Arabic and the various paradigms
proposed for the study of Arabic word formation showing how the proposed
approach differs from these paradigms. In Sect. 3 we give a description of the
proposed approach and in Sect. 4 we show how we handle the morphology of
Arabic within the proposed framework. Results and future work are indicated
in Sect. 5.

2 Arabic Morphology: Theoretical and Computational
Approaches

Arabic morphology is very well known for its complexity and richness. However,
it exhibits rigorous and elegant logic [4]. It differs from that of English or other
Indo-European languages because it is, to a large extent, based on discontinu-
ous morphemes. Words in Arabic are derived from roots, which bear the core
meaning of their derivatives, by inserting vowels and maybe other consonants.
Roots are relatively invariable, discontinuous bound morphemes, typically con-
taining three consonants in a certain order, and interlocked with vowels and
other consonants to form stems [4]. Let us consider the following example: the
triliteral (3 consonantal) root [‘d r s’] in Buckwalter’s transliteration
model,2 is supposed to bear the meaning of studying and from which words
1 The basic notions of the proposed approach are introduced in [3]. However, we con-

centrate in this paper on the most related ones to the nature of Arabic morphology
and how they are applied to it.

2 In this work, we use Buckwalter’s transliteration model, but we made some modifi-
cations to make our work easier.

A Purely Surface-Oriented Approach to Handling Arabic Morphology 3

like [‘daras’, ‘he studied’] or [‘durisa’, ‘be studied’] and [‘dAris’,
‘student’] are derived. This process has evolved extensively and very produc-
tively in order to cover a vast array of meanings associated with each semantic
field. The vast majority of Arabic words are derived in this way and therefore
can be analyzed as consisting of two different bound morphs: a root and a so-
called pattern, which interlock to form a word and neither of them can occur
alone in the sentence. Moreover, after composing stems from discontinuous roots
and some vowels or other consonants, they may concatenate with affixes or cli-
tics, as clearly stated, for example, in the Arabic masculine sound plural form

[‘muEalolimUna’, ‘teachers’] obtained from the concatenation of the

strings [‘muEalolim’, ‘teacher’] and [‘Una’, a nominal suffix for the
masculine plural and a verbal suffix for masculine plural in indicative mood].
Stems may host suffixes that come after the stem as in this example, prefixes
that come before the stem as in [‘yakotub’, ‘he writes’] obtained from

[‘kotub’] and [‘ya’, third person singular of imperfective form] or
both suffixes and prefixes as in [‘yakotubUna’, ‘they write’] obtained
from [‘kotub’], [‘ya’, third person singular of the imperfective form]
and [‘Una’, a suffix for the nominative masculine plural] [2].

As a result of such degree of richness and the complexity of word formation,
Arabic morphology has been the focus of research in natural language process-
ing for a long time [2,5–9]. Researchers have adopted different approaches in the
treatment of Arabic morphology, both theoretically and computationally [7].
Most of the efforts have been particularly devoted to addressing morphological
analysis, generation and disambiguation. Arabic morphotactics have been suffi-
ciently described and handled using finite state operations [10–13]. Al-Sughaiyer
and Al-Kharashi [5] provide a comprehensive survey for Arabic morphological
analysis techniques. Also, Dichy and Farghaly [7] count several approaches such
as root and pattern, stem-based, machine learning among others. Depending on
one of these approaches, many Arabic morphological analysers and generators
have been developed in the last two decades particularly by the works of Tim
Buckwalter [14,15], Habash and Rambow [16], the Linguistics Data Consortium
[17], Sawalha [18] and Attia [12]. Recent works have attempted either to improve
the accuracy of the analyser [19], to add some other features [20] or to focus on
a specific dialect [21]. We argue that there is a gap between morphology and
semantics in the current approaches to Arabic morphology and the focus has
been placed only on the issues of word formation and decomposition. We cannot
go higher than morphology. Morphologically speaking, the finite state approach
[11] can be seen as relatively close to our approach. However, a finite state
machine does not know units, it is just a sequence of states. Our approach has
both a context free grammar on the one hand and a mechanics to deal with dis-
continuity on the other hand. This allows the computer to understand

〈
k, t, b

〉

and
〈
a, a

〉
as units, not states, because they have meanings. A clearer example

can be seen, for example, in German where the “trennbare Präfix” (separable
prefix), like /auf/ in /aufmachen/, and the verb appear in some cases as two

4 Y. Aboamer and M. Kracht

parts. This can occur, for instance, in the imperative, as in “Mach bitte das
Fenster auf!” (Open the window, please.). However, /mach/ and /auf/ together
form one unit (as they can only be interpreted together) but this unit is dis-
continuous. This also applies to Arabic roots. Our approach is different from
previous and current approaches in (i) it is compositional; morphological units
have meanings and the meaning of complex expressions is determined by the
meaning of these smaller units and their order; (ii) morphology is not distin-
guished from syntax. Rather, it is a lexicalist approach on a par with categorial
grammar; (iii) it is more restrictive; since it purely surface-oriented, it allows
only grammatical constituents. This eliminates the overgeneration.

3 A Purely Surface-Oriented Approach

At the simplest level of description, a natural language is simply a set of strings
over a given alphabet A [22]. A∗ denotes the set of all strings over A. The con-
catenation of two strings x and y is denoted by xˆy or simply xy. Concatenation
is associative, that is, (xˆy)ˆz = xˆ(yˆz), 〈A∗, ˆ, ε〉 constitutes a monoid [22]. In
the sequel, variables for strings are formed using a vector arrow, e.g. −→x .

3.1 Glued Strings

We propose the notion “glued string” rather than just string. A glued string is a
string with two context conditions: one for the left context and one for the right
context. These conditions specify the properties of the string −→x such that −→x can
appear in −→u −→x −→v . A very good and clear example in Arabic is [‘p’], which
is followed only by space (forget now about case markers) and consequently no
other strings can follow it directly. This is a left-hand condition for the suffix
and a right-hand condition for the . Moreover, the is not allowed to be
preceded by a space. So, before we can formally define glued strings we should,
firstly, define the notion of a requirement. A requirement is a pair (s,−→x), where
s is a sign3 and −→x a string. Roughly, the context must contain one of the strings
with sign + as suffix (if on the left) and as prefix (if on the right), while avoiding
all the strings with sign −. We can now define the glued string as follows.

Definition 1 (Glued string). A glued string is a triple j =
〈
L,−→x ,R

〉
, where

L is a set of left requirements, −→x is a string, and R is the set of right require-
ments.

We give three explanatory examples of glued strings in English, Hungarian (taken
from [3]) and in Arabic (/ / denotes the blank):

1. j =
〈{

(+, ch), (+, s), (+, sh), (+, x), (+, z)
}
, es,

{
(+,)

}〉

This example codes the fact that the plural morph /es/ in English is suffixed
only to words ending in ch, s, sh, x or z, while it must strictly be at the end
of the word.

3 There shouldn’t be a confusion with the term sign as used in the abstract. A sign
here is just plus + or minus −.

A Purely Surface-Oriented Approach to Handling Arabic Morphology 5

2. j1 = 〈{(+,b)},bal, ∅〉
This example from Hungarian specifies that the instrumental form /bal/
appears only after b.

3. The previous example with its right and left requirements as a glued
string j2: j2 =

〈{
(−,)

}
, ,

{
(+,)

}〉

3.2 Occurrence

A string occurs in another string if the first is a substring of the second. Let−→x and −→y be two strings. An occurrence of −→x in −→y is a pair o =
〈−→u ,−→v 〉 such

that −→y = −→u −→x −→v . A similar definition of occurrence can be also found in [22].
For example, let −→y = [‘muEalolimUna’, ‘teachers’], −→u = [‘mu’]

and −→v = [‘Una’]. Then −→x = [‘Ealolim’].
If o1 =

〈−→u1,
−→v1〉 is an occurrence of −→x1 in −→y and o2 =

〈−→u2,
−→v2〉 is an occurrence

of −→x2 in −→y then it is said that o1 is to the left of of o2 and (o2 is to the
the right of o1) if −→u1

−→x1 is a prefix of −→u2. If −→u2 = −→u1
−→x1, it is said that o1 is

immediately to the left of (left adjacent to) o2 and o2 is immediately
to the right of (right adjacent to) o1. The two occurrences o1 and o1 are
said to be contiguous if one of them is left or right adjacent to the other.
Otherwise, they overlap.

3.3 Morphological Class

The notion of a glued string has been developed to handle the conditions of com-
bination. However, in many cases this notion doesn‘t suffice to handle all possible
conditions. The feminine suffix in Arabic [‘p’] is used in most cases to dif-

ferentiate between masculine and feminine as in [‘muEalolim’, ‘teacher
(male)’] and [‘muEalolimap’, ‘teacher (female)’] respectively. However,
in some cases this suffix is ignored because the noun or the adjective refers by
nature to a female as in [‘TAliq’, ‘divorced’] and [‘HA‘iD’,
‘menstruant’]. Also, in some other cases the [‘p’] is ignored because the
same word is used to refer to persons of both genders as in [‘jarYH’,
‘injured’] and [‘qatYl’, ‘killed’].

This means that the combination process depends in some cases on informa-
tion that cannot be captured only by phonology. Therefore, we need an addi-
tional mechanism to capture such cases. This is the notion of “morphological
class”. These are properties of individual morphs, not morphemes, that control
the behavior of a morph under combination. When two morphs are to be com-
bined, one of them takes the role of the argument, while the second takes the
role of the functor. When a morph m1 takes a morph m2 as its argument, the
two give a third morph m3. This can be written in a form of a function:

m1(m2) = m3

In the combination process between root morph and pattern morph, for example,
the pattern morph takes the role of the functor, let say as above m1 and the

6 Y. Aboamer and M. Kracht

root morph, m2, takes the role of the argument. Their combination produces a
stem or m3 as in the following example:

m1(m2) = m3

pattern(root) = stem

〈a, a〉(〈k, t,b〉) = /katab/

As we can see from the example, to properly handle the combination between
roots and patterns, we have to first deal with the properties of m1 and m2 before
the combination; i.e. to be combined. Then, we have the properties of m1 and
m2 after combination; i.e. m3. The combination in the previous example results
in a perfective stem in the active form. Compare that, now, with the following
combination:

m1(m2) = m3

pattern(root) = stem

〈u, i〉(〈k, t,b〉) = /kutib/

The result of the combination, in this case, is the perfective stem in the passive
form. This suggests that each morph that takes the role of the functor (m1, or
the pattern morph in these examples) has two classes, an “ingoing class” and
the “outgoing class”. The ingoing class specifies what class the argument (m2,
or the root morph) must have to combine with m1. The outgoing class states
what class the combination of m1 and m2 has. This mechanism has proven suf-
ficient not only in allowing proper combination but also in preventing improper
ones. The number of features that guide the combination can be large and the
morphological classes themselves can be rather complex. Therefore, an attribute
value matrix (AVM) in the following form is suggested:

⎡

⎢
⎢
⎣

ATTRIBUTE1 : valueset1
ATTRIBUTE2 : valueset2

· · · · · ·
ATTRIBUTEn : valuesetn

⎤

⎥
⎥
⎦

If n = 0, the AVM is empty, and if n ≥ 1, the ATTRIBUTEi are names of
features such as case, gender, number etc. and the valueseti are sets of admissible
values for each attribute. Here, given an attribute a, rg(a) denotes the set of
admissible values for a. So, we require valueseti ⊆ rg(ATTRIBUTEi) for every
i ≤ n. For example, in Arabic rg(NUM) = {singular, dual, plural}. Hence, the
following is a legal AVM.

[
NUM : {dual, pl}]

Sets of values encode underspecification. Using logical notation, we may write
instead

[
NUM : dual ∨ pl

]

A Purely Surface-Oriented Approach to Handling Arabic Morphology 7

	 denotes the set of all values. So we have
[
NUM :] ≡ [

NUM : {sing, dual, pl}]

where ≡ denotes logical equivalence. Arabic nouns/adjectives, for instance, are
inflected for case, state, gender and number. These four features have the fol-
lowing ranges:

rg(CASE)= {nom, acc, gen}
rg(STATE)= {def, indef}

rg(GEN)= {masc, fem}
rg(NUM)= {sing, dual, pl}

Conjunction and disjunction may be used to combine AVMs. The following
equivalence is evident from the definition of AVMs.

[
NUM : {sing}
CASE : {nom}

]
≡ [

NUM : {sing}] ∧ [
CASE : {nom}]

When an attribute receives the empty set as value, this means that we have an
empty disjunction, which is defined to be false (⊥):

[
CASE : ∅

] ≡ [
CASE : ⊥]

We can apply the usual laws of logic. Consider, for example, two attributes (say,
CASE and NUM) and use the law of distribution:

[
NUM : sing ∨ pl
CASE : nom

]
≡

[
NUM : sing
CASE : nom

]
∨

[
NUM : pl
CASE : nom

]
≡

[
CASE : nom

] ∧ ([
NUM : sing

] ∨ [
NUM : pl

]) ≡

([
CASE : nom

] ∧ [
NUM : sing

]) ∨ ([
CASE : nom

] ∧ [
NUM : pl

])

Definition 2 (Feature space). A feature space is a triple σ = 〈A, V, rg〉
such that A is a finite set of attributes, V is a finite set of values and
rg : A → ℘ (V) a function such that for all a ∈ A, rg(a) �= ∅. For
Arabic, as given above, we may put A := {CASE,NUM,GEN}, V :=
{nom, acc, gen, sing, dual, pl,masc, fem}.

Abstractly, an AVM is a partial function f from attributes to sets of admis-
sible values. If f is undefined on a, we may extend f by putting f(a) := rg(a).
Thus, f may also be considered a total function. Consider, for example, the AVM
of nouns/adjectives that follow prepositions in Arabic (in the genitive case).

8 Y. Aboamer and M. Kracht

The prepositions behave as a functor that takes nouns/adjectives as argument
regardless the number, gender or state and give nouns/adjectives in genitive
case. Therefore, in this case, the f(NUM), f(GEN) and f(STATE) are equal
to the rg(NUM), rg(GEN) and rg(STATE) as shown in the following AVM:

⎡

⎢⎢
⎣

POS : noun ∨ adj
NUM : 	
GEN : 	

STATE : 	

⎤

⎥⎥
⎦

So, by convention we may extend f to f (STATE) = {def, indef}.

3.4 Discontinuity, Reduplication and Handlers

Discontinuity is used in grammatical analysis to refer to the splitting of a
construction by the insertion of another grammatical unit [23]. The concept
of discontinuity is central for handling Arabic in a completely surface-oriented
compositional approach because morphs are the meaningful units of speech but
clearly are not continuous, contrary to what is the case in most languages. The
plural is formed in English simply by concatenation e.g. of /dog/ and /s/ to
get /dogs/. However, the process of Arabic word formation is rather complex; it
is not just a sequential concatenation of morphs by placing them next to each
other: the constituents can be discontinuous. Vowels and more consonants are
inserted between, before and after the root consonants. The idea is clear when we
consider, again, the triliteral (3 consonant) root [‘k t b’] and some of
its derivatives like [‘kataba’, ‘he wrote’ or ‘kutiba’, ‘was written’],
[‘kAtib’, ‘writer’ or ‘kAtab’, ‘correspond with’] and [‘makotUb’, ‘is
written’]. Both root morphs and pattern morphs are instances of fractured
glued strings.

Definition 3 (Fractured glued string). A fractured glued string is a
sequence of glued strings. If γ0, γ1, · · · , γm−1 are glued strings, then g :=
γ0 ⊗ γ1 ⊗ · · · ⊗ γm−1 denotes the fractured glued string, formed from the γi
in this order. γi is called the ith section of g. m is called the dimension of g,
referred to as dim(g). The unique fractured string with dimension 0 is denoted
by ζ.

We can write the Arabic root as k ⊗ t ⊗ b and the morph of the third person
singular in the active form of the past tense a ⊗ a. The content of a string is
defined as:

Definition 4 (String content). If γ =
〈
L,−→x ,R

〉
is a glued string, then c(γ) =−→x . Furthermore, c(⊗i<nγi) = c(γ0)ˆc(γ1)ˆ...ˆc(γn−1).

Context free grammars are not equipped to describe discontinuity. To deal with
discontinuous constituents or, more particularly, to combine two fractured glued
strings, [3], following [24] suggests using a combinatorial function called handler.
A handler can be defined as follows:

A Purely Surface-Oriented Approach to Handling Arabic Morphology 9

Definition 5 (Handler). A handler is a sequence H of sequences of pairs
(i, b), where i is a natural number and b a boolean. The members of H are called
its sections. A pair (i, b) is said to occur in H, in symbols (i, b) ∈ H, if there
is a section of which (i, b) is some member. The pairs occurring in H are called
its parts. Parts may have several occurrences. The result of applying H to two
fractured strings g and h such that g = γ0 ⊗ γ1 ⊗ · · · ⊗ γm−1 and h = η0 ⊗ η1 ⊗
· · · ⊗ ηn−1 is defined as follows. Put:

(i, b) (g, h) =
{

γi if b = true
ηi else

Now, for the sequence hi = (i0, b0), (i1, b1), · · · , (ip−1, bp−1), we put

hi(g, h) := (i0, b0)(g, h)̂ (i1, b1)(g, h)̂ · · · (̂ip−1, bp−1)(g, h)

Finally, let H = (h0,h1, · · · hq−1) have q sections, then:

H(g, h) := h0(g, h) ⊗ h1(g, h) ⊗ · · · ⊗ hq−1(g, h)

A handler is used if and only if it is proper. A proper handler is defined as:

Definition 6 (Proper Handler). A handler H is proper if for all numbers i, j
and Booleans b, if H contains (i, b) and j < i then H also contains (j, b). The
dimension of a handler H is defined by:

dimH = ({i : (i, true) ∈ H}, {i : (i, false) ∈ H})

If H is proper, dimH is a pair of numbers, such that:

0 is the empty set φ and n + 1 = {0, 1, ..., n}.

A handler H(g, h) is defined if and only if H is proper and dimH =
(dim(g), dim(h)) i.e. if all sections of the two fractured strings are used in H.
This combinatorial function allows a sequence of glued strings to be combined
in diverse ways: forward concatenation, backward concatenation, forward wrap-
ping, reduction, forward transfixation and, beyond the MCFGs [24], reduplica-
tion [25] as shown in the following examples:

– Forward Concatenation:
Put F := 〈〈(0, true) , (0, false)〉〉.
Then F (−→x ,−→y) = −→x −→y

– Backward Concatenation:
Put B := 〈〈(0, false) , (0, true)〉〉.
Then B (−→x ,−→y) = −→y −→x

– Forward Wrapping:
Put W := 〈〈(0, true) , (0, false) , (1, true)〉〉.
Then W (−→x ⊗ −→v ,−→y) = −→x −→y −→v

– Reduction:
Put R := 〈〈(0, true) , (1, true)〉〉.
Then R (−→x0 ⊗ −→x1) = −→x0

−→x1

10 Y. Aboamer and M. Kracht

– Transfixation:
Put T := 〈〈(0, true) , (0, false) , (1, true) , (1, false)〉〉.
Then T (−→x0 ⊗ −→x1,

−→y0 ⊗ −→y1) = −→x0
−→y0−→x1

−→y1
We can see how this works with a sequence of glued strings in Arabic. If we want,
for example, to form the word [‘kAtib’, ‘writer’] from the root k ⊗ t ⊗ b
and the vowels A⊗i we apply the following handler (note that the pattern morph
plays the role of the functor). Put

H := 〈〈(0, false) , (0, true) , (1, false) , (1, true) , (2, false)〉〉
If we apply a function that maps from each part of the handler to its correspond-
ing string in the two fractured strings, we get the following:

– (0, false) /k/
– (0, true) /A/

– (1, false) /t/
– (1, true) /i/

– (2, false) /b/

The result of applying this handler to the two fractured glued strings k⊗t⊗b
and A ⊗ i is /kAtib/ as shown:

H (A ⊗ i, k ⊗ t ⊗ b) := kˆAˆtˆiˆb = kAtib

Reduplication is also an important feature in Arabic word formation. In some
cases, Arabic tends to duplicate a specific letter (string) to get a new word
as in [‘katotab’, ‘made sb write’] from [‘k t b’] or
[‘daroras’, ‘taught or educated’] from [‘d r s’]. In this case, for example,
reduplication results in not only a different form of the verb, but also a different
meaning. Both /katab/ and /katotab/ have the same root /k t b/ and the same
inserted vowels. However, the only difference between the two forms lies in the
reduplication of the second consonant in the case of /katotab/ which changes the
meaning from ‘he wrote’ to ‘he made [sb] write’. This applies also to /daras/ and
/daroras/. In some other cases, reduplication occurs in the root itself when the
second consonant is doubled which means that the second and third consonants
are the same as in [‘$dod’] and [‘mror’]. Reduplication is represented
orthographically with shaddah or tashdid above the duplicated letter (and

) and represented in Buckwalter‘s transliteration model as /∼/ but we use
instead two letters separated by sukoon because the duplicated letter is actually
two letters; the first is followed by sukoon and the second by a vowel. This type is
referred to as doubled or geminate verbs. Moreover, some Arabic four consonant
roots are composed by the reduplication of the first two consonants twice as in

[z l z l] and [z E z E].
Reduplication is not a unique feature of Arabic and it is also not the sole

morphological operation. However, there are languages in which processes like
reduplication is the primary morphological operation [26]. The plural formation
in Malay is obtained, for instance, by doubling the singular form as in /orang/
“man” which becomes /orang-orang/ in the plural. The two parts are separated
by a hyphen in the written language.

A Purely Surface-Oriented Approach to Handling Arabic Morphology 11

In multiple context free grammars [27], no component is allowed to appear
in the value of the function more than once. This is not the case in the above-
mentioned examples in Arabic and Malay. To handle such cases, the following
handler for the plural form in Malay must be used.

D := 〈〈(0, false) , (0, true) , (0, false)〉〉.
Then

D (-, orang) = orangˆ-ˆorang

Arabic is not an exception; we allow the handler to combine the multi occurrence
of any substring but we insert a sukoon between the duplicated letter. Put

D := 〈〈(0, false) , (0, true) , (1, false) , (1, true) , (1, false) , (2, true) (2, false)〉〉

Then

D (a ⊗ o ⊗ a, k ⊗ t ⊗ b) = kˆaˆtˆoˆtˆaˆb = katotab

as well as

D (a ⊗ o ⊗ a,d ⊗ r ⊗ s) = dˆaˆrˆoˆrˆaˆs = daroras

However, in the real implementation, we deal with the reduplication in Arabic
from a different perspective for the sake of simplification. We utilize the mor-
phological class technique to sub-categorize the root into several types and each
category is allowed to merge with specific patterns as discussed in details in the
introduction.

3.5 Morphs and Morphemes

The actual units of expression of language are the morphs. They comprise three
components. The first is the exponent, which is a fractured glued string. The
second is a sequence of selectors, which determine what arguments the morph
takes. And the third is a rank function. This function is only needed for empty
morphs, to prohibit infinite derivations, and will concern us no further. Mor-
phemes, which are the only meaning bearing units, are sets of morphs that share
a common semantics. Thus, the lexical units pair meaning representations with
morphemes, not morphs. This accounts for the fact that morphemes can have
many different surface forms.

Definition 7 (selector). A selector is defined formally as triple σ =
(M,N,H), where M and N are morphological classes and H is a handler. M is
called the in-class of σ and N is its out-class.

12 Y. Aboamer and M. Kracht

The role of the selector is to specify what happens when a morph is applied
to another morph. The application of one morph (the functor) to another (the
argument) is only defined if the in-class of the functor unifies with the out-class
of the argument. Given, for example, a functor σ = (M,N,H) and an argument
σ′ = (M ′, N ′,H ′), the application of σ to σ′ is defined in first instance as follows:

σ · σ′ := (M ′, N,H ◦ H ′)

However, underspecification must be handled properly. The way this is stan-
dardly done is that the out-class is not actually underspecified, but is a function
of its in-class, which is genuinely underspecified. Underspecified values in the
out-class are copies of the actual in-class values. Indeed, the proper way to view
selectors is as pairs (f,H) where f is a function from fully specified morpho-
logical classes to fully specified morphological classes, and H is a handler. This
function is given by the pair of AVSs as follows. For each attribute ATT, the
associated function f is the following.

– ATT is given a value a in M and a value b in N . Then f is defined on all
nonempty values a′ ⊆ a and returns b.

– ATT is given no value in M but value b in N . Then f is defined on all
nonempty values a′ ⊆ rg(ATT) and returns b.

– ATT is given a value a in M but no value in N . Then f is defined on all
nonempty values a′ ⊆ a and returns a′.

– ATT is neither given a value in M nor in N . Then f is defined on all a ⊆
rg(ATT) and returns a.

The product of (M,N) and (M ′, N ′) is specified by computing the values of each
occurring attribute.

Definition 8 (Morpheme). A morpheme is a set of morphs that share the
same semantics but differ in the form.

Arabic broken plural is, from this perspective, highly allomorphic; for a given
singular pattern two different plural forms may be equally frequent, and some-
times, for some singulars as many as three further statistically minor patterns
are also possible [28]. Given morphemes M an N , the combination M 	N is the
set of all m(n) such that m ∈ M and n ∈ N .

4 Arabic Morphology Within the Proposed Framework

In order to deal with the complexity of Arabic in a completely surface-oriented
approach, we have to deal with two basic problems: root and pattern matching
and morphophonemic alternations.

4.1 Root and Pattern Matching

Roots behave differently when they combine with patterns to form stems. Each
root chooses specific vowels from the following six possibilities to form perfective
and imperfective stems:

A Purely Surface-Oriented Approach to Handling Arabic Morphology 13

– (a, a) and (o, u)
– (a, a) and (o, i)

– (a, a) and (o, a)
– (a, i) and (o, a)

– (a, u) and (o, u)
– (a, i) and (o, i)

Arabic traditional grammarians attempted to handle this problem by classi-
fying roots into basic and sub-categories. That is, roots are classified depending
on the number of consonants into triliteral and quadrilateral. This subdivision
is not necessary since handlers need a fixed length. However, it is better to use
this as an explicit feature. Each category is further divided into different terms.
Glued strings are not sufficient because the phonology does not provide us with
enough information to determine which root interlock with which pattern. We
take advantage of the traditional categorization and sub-categorization of mor-
phemes and utilize the notion of morphological classes. Particularly, each root
morph has a morphological class with four attributes:

– Type: This attribute differentiates between the two basic types of roots;
triliteral and quadrilateral. This means that the type attribute in the mor-
phological class of any root has a set of values that has two elements and
consequently has the following range:

rg(TY PE) = {tri, quad}
– Subtype: This attribute divides Arabic roots depending on the nature of

the letters of the root, not on their number, and position of specific letters
within the root. Roots are divided into sound (free of semi-vowels, hamza
and reduplication), geminate (with a duplicated letter), first hamzated (the
first letter is hamza), second hamzated (the second letter is hamza), third
hamzated (the third letter is hamza), assimilated (the first letter is either
wAw or yA), hollow (the second letter is either wAw or yA), defective (the
third letter is either wAw or yA), first weak (the first and third letter are
either wAw or yA) and second weak (the second and third letter are either
wAw or yA). Thus, the Subtype attribute has a range of ten elements.

– Form: As mentioned before, Arabic roots, in terms of the numbers of letters,
are divided into triliteral and quadrilateral. However, other consonants can be
added to the two basic types. The triliteral roots can host up to three other
consonants while the quadrilateral roots can have only two more consonants.
In practice, not every lexical root occurs in all different forms but they vary
from one another and dictionaries normally list all the forms in which a
lexical root regularly appears [4]. If the root consists of only the three or four
consonants, it is in the base form called form I, which is also referred to in
Arabic as mujarorad, literally the “stripped” form; otherwise it is in one of
the forms II to X, which are referred to as mazId, literally, “increased” forms,
i.e., more morphologically complex [4]. Therefore, in terms of the form, the
root takes a Roman number extending form I to X in case of triliteral roots
and from I to IV in case of quadrilateral roots. Thus the form attribute in
the morphological class has the following range:

rg(FORM) = {I, II, III, · · · ,X}

14 Y. Aboamer and M. Kracht

– Stem-Eayon: It is traditional to refer to the short vowel which follows the
second root consonant of a verb as the “stem vowel” [4] and we saw in the
beginning of this section that the stem vowel (Eayon) may vary from one
stem to another. We capture these possibilities using an attribute with a
value set that has six values. These values specify the stem vowel in perfective
and imperfective forms and therefore this attribute has the following range:
rg(Stem − Eayon) = {au, ai, aa, ia, uu, ii}.

The morphological class of the root
〈
k, t, b

〉

⎡

⎢⎢
⎣

TYPE : tri
SUBTYPE : sound
FORM : I
STEM-EAYON : au

⎤

⎥⎥
⎦

On the other hand, pattern morphs are provided with an in-class (for the hosted
root morph) and an out-class (for the result of the merge). The merge is defined
only if the out-class of the root matches the in-class of the pattern. Consider,
for example, the in-class of the pattern morph

〈
o, u

〉
.

⎡

⎢⎢
⎣

TYPE : tri
SUBTYPE : {sound, shamzated, shamzated, thamzated}
FORM : I
STEM-EAYON : au

⎤

⎥⎥
⎦

The out-class of the root morph and in-class of the pattern morph match and
can be merged using this handler:

H := 〈〈(0, false) , (0, true) , (1, false) , (1, true) , (2, false)〉〉

H (o ⊗ u, k ⊗ t ⊗ b) := kˆoˆtˆuˆb = kotub

This applies to the pattern morph o⊗i which merges with the root morph d⊗r⊗b
to give the imperfective stem /dorib/. It is now clear that both */dorub/ and
*/kotib/ are not allowed because neither the pattern morph o ⊗ u can merge
with the root morph d ⊗ r ⊗ b nor the pattern morph o ⊗ i is allowed to merge
with the root morph k ⊗ t ⊗ b. This is because the associated classes, in either
cases, do not match.

4.2 Morphophonemic Alternations

The interaction among different type of morphs may result in phonological alter-
nations. Arabic roots are broadly classified into two types depending on the
presence or the absence of the wAw and yA‘: sound and weak. Weak roots, in
particular, may undergo stem changes when inflected. Let‘s consider, for exam-
ple, the following derived forms of the same hollow root b ⊗ y ⊗ E:

A Purely Surface-Oriented Approach to Handling Arabic Morphology 15

– [‘bAEa’, ‘he sold’], masculine third person singular in the perfective
form.

– [‘biEotu’, ‘I sold’], masculine or feminine first person singular in the
perfective form.

– [‘yabYEu’, ‘He sells’], masculine third person singular in the imperfec-
tive form.

Arabic grammarians attribute such morphophonemic changes to the rule of “ori-
gin of Alif” in forms like [‘bAEa’] from b ⊗ y ⊗ E and
[‘qAla’] from q ⊗ w ⊗ l. They argue that the “alif” is returned to its
original “yA‘” or “wAw”, however, this says nothing about the dropping of the
second letter of the root in [‘biEotu’] for instance. Anyway, in our app-
roach, we are not concerned about the rules that justify such changes because in
order to ensure the purely surface-oriented treatment of Arabic word formation,
no rule is allowed to delete or modify any string. That is, we cannot say, for
example, that the alif of the hollow verb is changed to its origin yA‘ or wAw in
specific forms. Therefore, we don‘t add a rule to modify the alif of [‘qAla’]
to its original wAw and another rule to drop it in [‘qulotu’] and this
applies also to many cases in which the interaction among different morphs may
result in some changes. Instead, each root is a morpheme, that is, a set of morphs
that correspond to all possible forms under merge. Thus, for the root morpheme

b ⊗ y ⊗ E we may have up to three morphs:

– b ⊗ Y ⊗ E, from which we can get [‘yabYEu’, ‘he sells’],
[‘bYEUA‘, ‘sell’] etc.

– b⊗E, from which we can get [‘biEotu’, ‘I sold’], [‘yabiEo’,
‘sell’] etc.

– b ⊗ A ⊗ E, from which we can get [‘bAEa’, ‘he sold’],
[‘bAEUA’, ‘they sold’] etc.

This permits not only to get the grammatical forms but also to disallow the
ungrammatical ones like * [‘yabAEu’]. So far we dealt with challenges
that Arabic morphology poses to this approach. We have already developed a
lexicon for a fragment of Arabic. It is true that the lexicon is small and there are
many other cases of morphophonemic changes, however, they can be handled in
the same way.

5 Results and Future Work

In this paper, we presented a mathematical complete surface-oriented approach
to handle Arabic morphology. In this approach, we dealt with the language as
a sequence of strings that are only allowed to be concatenated and reduplicated
but no rule is allowed to add, remove or modify any string. At the very begin-
ning, we reviewed briefly different theoretical and computational approaches to

16 Y. Aboamer and M. Kracht

Arabic. We argue that there is a gap in current approaches between morphol-
ogy and semantics. In order to handle Arabic morphology within this approach,
we dealt with two problems: root and pattern matching and morphophonemic
alternations. We have already developed a lexicon for a fragment of Arabic, and
in the present time we extend our work on Arabic morphology in connection
with the demands set by compositional semantics planning to come up with a
morphosemantic lexicon for a fragment of Arabic.

References

1. CIA: CIA World Fact Book. Central Intelligence Agency, Washington, D.C. (2018)
2. Habash, N.: Introduction to Arabic natural language processing. Morgan and Clay-

pool Publishers (2010)
3. Kracht, M.: Agreement morphology, argument structure and syntax. Revision 8

(2016, unpublished manuscript)
4. Ryding, K.: A Reference Grammar of Modern Standard Arabic. Cambridge Uni-

versity Press, Cambridge (2005)
5. Al-Sughaiyer, I., Al-Kharashi, I.: Arabic morphological analysis techniques: a com-

prehensive survey. J. Assoc. Inf. Sci. Technol. 55(3), 189–213 (2004)
6. Soudi, A., Neumann, G., Van den Bosch, A.: Arabic Computational Morphology:

Knowledge-Based and Empirical Methods. Springer, Cham (2007). https://doi.
org/10.1007/978-1-4020-6046-5

7. Dichy, J., Farghaly, A.: Grammar-lexis relations in the computational morphology
of Arabic. In: Soudi, A., Neumann, G., Van den Bosch, A. (eds.) Arabic Com-
putational Morphology: Knowledge-based and Empirical Methods, pp. 115–140.
Springer, Dordrecht (2007). https://doi.org/10.1007/978-1-4020-6046-5 7

8. Boudchiche, M., et al.: AlKhalil Morpho Sys 2: a robust Arabic morpho-syntactic
analyzer. J. King Saud Univ.-Comput. Inf. Sci. 29(2), 141–146 (2017)

9. Sawalha, M., Atwell, E.: Comparative evaluation of Arabic language morphological
analysers and stemmers. In: Coling 2008: Companion volume: Posters, pp. 107–110
(2008)

10. Kay, M.: Nonconcatenative finite-state morphology. In: Proceedings of the Third
Conference of the European chapter of the Association for Computational Linguis-
tics, pp. 2–10 (1987)

11. Beesley, K.: Finite-state morphological analysis and generation of arabic at xerox
research: status and plans in 2001. In: ACL Workshop on Arabic Language Pro-
cessing: Status and Perspective, pp. 1–8 (2001)

12. Attia, M., et al.: A corpus-based finite-state morphological toolkit for contemporary
Arabic. J. Logic Comput. 24(2), 455–472 (2013)

13. Aboamer, Y., Farghaly, A.: Mariam ComLex: A Bi-Directional Finite State Mor-
phological Transducer for MSA. In: The 29th Annual Symposium on Arabic Lin-
guistics, at the University of Wisconsin-Milwaukee, USA (2015)

14. Buckwalter, T.: Buckwalter Arabic Morphological Analyzer, Version 1.0. Linguistic
Data Consortium, University of Pennsylvania, LDC Catalog No: LDC 2002 L49
(2002). ISBN 1-58563-257-0

15. Buckwalter, T.: Buckwalter Arabic Morphological Analyzer, Version 2.0. Linguistic
Data Consortium, University of Pennsylvania, LDC Catalog No: LDC 2004 L02
(2004). ISBN 1-58563-324-0

https://doi.org/10.1007/978-1-4020-6046-5
https://doi.org/10.1007/978-1-4020-6046-5
https://doi.org/10.1007/978-1-4020-6046-5_7

A Purely Surface-Oriented Approach to Handling Arabic Morphology 17

16. Habash, N., Rambow, O, Roth, R.: MADA + TOKAN: a toolkit for arabic tok-
enization, diacritization, morphological disambiguation, POS tagging, stemming
and lemmatization. In: Proceedings of the 2nd International Conference on Arabic
Language Resources and Tools (MEDAR), Cairo, Egypt (2009)

17. Maamouri, M., et al.: LDC Standard Arabic morphological analyzer SAMA v.
3.1. Linguistic Data Consortium, University of Pennsylvania, LDC Catalog No.
LDC2010L01. ISBN 1-58563-555-3

18. Sawalha, M., Atwell, E., Abushariah, M.: SALMA: standard arabic language mor-
phological analysis. In: 1st International Conference on Communications, Signal
Processing, and their Applications (ICCSPA), pp. 1–6 (2013)

19. Abdelali, A., et al.: Farasa: a fast and furious segmenter for Arabic. In: Proceedings
of the 2016 Conference of the North American Chapter of the Association for
Computational Linguistics: Demonstrations, pp. 11–16 (2016)

20. Taji, D., et al.: An Arabic morphological analyzer and generator with copious
features. In: Proceedings of the Fifteenth Workshop on Computational Research
in Phonetics, Phonology, and Morphology, pp. 140–150 (2018)

21. Habash, N., Eskander, R., Hawwari, A.: A morphological analyzer for Egyptian
Arabic. In: Proceedings of the Twelfth Meeting of the Special Interest Group on
Computational Morphology and Phonology, pp. 1–9 (2012)

22. Partee, B., ter Meulen, A., Wall, R.: Mathematical Methods in Linguistic. Linguis-
tic Society of America (1990)

23. Crystal, D.: A Dictionary of Linguistics and Phonetics, 6th edn. Blackwell Pub-
lishing Ltd. (2008)

24. Seki, H., et al.: On multiple context-free grammars. Theor. Comput. Sci. 88(2),
191–229 (1991)

25. Kracht, M., Aboamer, Y.: Argument structure and referent systems. In: 12th Inter-
national Conference on Computational Semantics IWCS (2017)

26. McCarthy, J.: A prosodic theory of nonconcatenative morphology. Linguist. Inquiry
12(3), 373–418 (1981)

27. Kasami, T., Seki, H., Fujii, M.: Generalized Context-free Grammars, Multiple
Context-free Grammars and Head Grammars. Preprint of WG on Natural Lan-
guage of IPSJ (1987)

28. Soudi, A., Violetta C., Jamari, A.: The Arabic noun system generation. In: Pro-
ceedings of the International Symposium on the Processing of Arabic (2002)

A Topos-Based Approach to Building
Language Ontologies

William Babonnaud(B)

LORIA, Université de Lorraine, CNRS, Inria Nancy Grand Est, Nancy, France
william.babonnaud@loria.fr

Abstract. A common tendency in lexical semantics is to assume the
existence of a hierarchy of types for fine-grained analyses of semantic
phenomena. This paper provides a formal account of the existence of
such a structure. A type system based on the categorical notion of topos
is introduced, and is shown to be possibly adaptable to several exist-
ing formal approaches where such hierarchies are used. A refinement of
the type hierarchy based on Fred Sommers’ ontological theory is also
proposed.

Keywords: Formal semantics · Lexical semantics · Type theory ·
Type ontology · Category theory

1 Introduction

The work presented in this paper originates from a very general question: what
is a semantic type? Although a definitive answer to this complex, almost philo-
sophical question will not be provided here, it is still possible to look for a better
understanding of the role of semantic types in formal and lexical semantics by
browsing the history of their use in computational linguistics. If this field was
to be described as a meeting of computer science and linguistics, unsurprisingly
there would be various contributions to the notion of semantic type from each
discipline; and indeed it will be argued that this notion seems to sum up contri-
butions of different origins which happened to work well together.

The notion of type has been ubiquitous in logics and computer science since
the early works of Russell, which paved the way for the simple type theory
of Church [7]. This theory was then introduced in computational linguistics
by the founding work of Montague [14], who merely used it as a formal tool
to embed the Fregean view of predicates as functions into his grammar. Thus
he provided a formal basis for the principle of compositionality, which states
that the meaning of an expression can be derived from the meanings of its
constituent parts and from the way these parts are syntactically combined. The
type system used in this approach is a very minimalist one, directly inherited
from Church’s theory, with a type e for entities and a type t for propositions.1

1 Which correspond respectively to ι and o in Church’s notation. Although it is worth
studying, the additional s type, denoting intension, will not be discussed in this
paper, for it is assumed to be a necessary feature for the set-theoretic models of
the logic used by Montague. The conception of types as denotations of sets will be
overlooked here as it is too specific.

c© Springer-Verlag GmbH Germany, part of Springer Nature 2019
R. Bernardi et al. (Eds.): FG 2019, LNCS 11668, pp. 18–34, 2019.
https://doi.org/10.1007/978-3-662-59648-7_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-59648-7_2&domain=pdf
https://doi.org/10.1007/978-3-662-59648-7_2

A Topos-Based Approach to Building Language Ontologies 19

Following Montague’s idea, those types can be given a practical interpretation:
t denotes everything that can have a truth value, and e denotes individuals,
which could be understood as the more basic expressions which can be used
as arguments to another expression. This approach has been widely adopted as
the foundation of formal semantics, and even if Montague’s categories have been
separated between syntactic and semantic ones, the use of a type for truth values
and at least another one for predicate arguments, as well as the correspondence
between syntactic categories and semantic types, are well-established.

However, a relatively recent tendency in computational semantics is to postu-
late a whole hierarchy of types of arguments, instead of a single one for entities,
in order to account for specific semantic phenomena in a more fine-grained way.
Such a hierarchy is intended to encode hypernymic relations between nouns,
that is, inclusions between the “sets” (in a non-mathematical acceptance of the
word) of entities satisfying the properties described by those nouns. Constructing
hypernymic relations is exactly what we do when we make generalising state-
ments, for instance:

(1) a. A dog is a mammal.
b. A mammal is an animal.
c. An animal is a living entity.

The type hierarchy thus reflects a part of common (yet a priori language-
dependent) lexical knowledge; and far from being an abstract construction, such
a structure can be acquired on the basis of an extensive empirical analysis as is
done in the case of building hypernymic and hyponymic relations of synsets in
the WordNet database [13].2 This structure is at the core of lexical semantics, as
it is generally assumed whenever type ontologies are needed. The minimal use of
such a hierarchy enables one to formally encode the semantic presuppositions of
a given entity, or the ones corresponding to the argument of another predicate.

Prior to the systematisation of this idea, philosophers, psychologists, and lin-
guists came up with the notion of semantic category, which can arguably be seen
as the conceptual ancestor of the current understanding of the notion of type.
This notion arose notably in the early work of Husserl, with certain influence on
the Polish school through Leśniewski and Ajdukiewicz. Yet to the best of our
knowledge, one of the first proposals for a hierarchical structure of such cate-
gories was sketched by Chomsky [6]. His categories organised expressions in a
tree structure which aimed at allowing for degrees in grammaticality judgements.
Kiefer [10] elaborated on this idea while separating grammatical and semantic
categories, and ordered the latter by means of so-called esse-relations, that is,
categorial inclusions as in (1). It is also worth noticing that a similar notion
of semantic category is used in the field of psycholinguistics, starting with the
early work of Wittgenstein [25] on the process of categorisation, which has led to
relevant theories on language acquisition [4] and the concept of prototype [8,17],
among others.

2 See the website https://wordnet.princeton.edu/. The online application provides the
opportunity to explore the hierarchy by browsing a word, selecting its synset and
accessing the list of hyponyms and hypernyms.

https://wordnet.princeton.edu/

20 W. Babonnaud

Another major contribution comes from the philosophical work of Fred Som-
mers. For a dozen years he has been interested in language ontologies and elab-
orated a complete theory of ontology through a series of articles (see [20–22]
among others for a partial, yet wide-covering compendium). He examined Rus-
sell’s notion of type as well as Ryle’s idea of category mistake to propose a theory
based on the question of predication. The core of this theory lies in the notion
of spanning: a predicate is said to span an entity when it is predicable truly or
falsely to this entity, but not absurdly. For instance, the predicate ‘philosopher’
spans Socrates and Julius Caesar, but not the Eiffel tower, because it is absurd to
wonder whether the Eiffel tower is a philosopher or not, as it cannot be decided.
Thus, Sommers rejected the Quinean approach of considering every absurd sen-
tence as logically false. Instead, he proposed an analysis of the correctness of a
sentence on different levels: on the first level is the question of “grammaticality”,
that is, syntactic well-formedness; on the second level is “category correctness”,
i.e. whether the predicates in the sentence are applied in a non-absurd way,
without category mistakes in the sense of Ryle; and then, the third level is the
question of “consistence”, i.e. whether the sentence avoid contradiction or not.
The fourth level consists eventually in determining the empirical truth of the
sentence w.r.t. the context. Each level of analysis can be treated only under the
condition that the sentence was correct for the previous levels; which means that
we can give a truth value to a propositional sentence only if it has no category
mistake.

Sommers’ idea was then to use the predicates to recover the Russellian notion
of type: considering a predicate P in the language, he defines |P | to be the class of
things that are spanned by P . Such classes are referred to as ontological classes,
or categories. It appears then that different predicates can define the same cat-
egories, as for instance ‘sad’ and ‘angry’; he also defined types of predicates, or
A-types, so that two predicates are of the same A-type if they define the same
category. Ontology being “the science of categories”, Sommers’ definitions create
a language ontology comparable to a skeleton of the language (seen as the col-
lection of its predicates), by quotienting it by the relation of “defining the same
categories.” But at this stage the onlotogy lacks structure. Sommers remedied
this by formulating a structural principle:

“If C1 and C2 are any two categories, then either C1 and C2 have no
members in common or C1 is included in C2 or C2 is included in C1.” [21,
p. 355]

A lot of Sommers’ works, notably in [20], aimed at establishing this law. It has
many important consequences w.r.t. the ontology itself, as well as on some meta-
physical questions. Inclusions of categories can be presented from the predicative
point of view by defining the relation of predicability: P is predicable of Q if any-
thing that is spanned by Q is also spanned by P . Then the isomorphism between
predicability and category inclusion is quite clear. Sommers also noticed that the
vocabulary of any language is finite, and so is the number of categories we can
define in its ontology. Thanks to finiteness and the structural principle, Som-
mers eventually showed that there is a category which includes all categories,

A Topos-Based Approach to Building Language Ontologies 21

and that there are categories which do not include any other. Thus, he gives to
his ontology the shape of a tree, which is similar to the current type hierarchies.
To make sure that this structure is correct, he also provided a way to handle
equivocal predicates, such as ‘hard’ in (2), by splitting their different meanings
in appropriate places on the tree.

(2) a. The chair is hard.
b. The question is hard.

Yet having a tree structure is a stronger assumption than just being a lattice,
and Suzman [23] pointed out the idea that Sommers’ ontology fails to account
for entities that could be seen as being in the intersection of categories which are
not included one in the other. Actually, Sommers discussed this point in [22] and
admitted that imposing a tree structure on his ontology makes some entities lie
outside of it. Amongst those entities are the absurd ones, such as ‘red numbers’,
but there is also another sort which is worth dwelling upon: those entities which
Sommers called heterotypical composites, and which are built upon two or more
elementary categories from the ontology. The word ‘Italy’ in sentence (3a) is
an example of such a composite. Heterotypical composites differ from equivocal
predicates in the fact that contrary to the latter, there is no zeugmatic effect
when combining simultaneously the former with two predicates of different A-
types, as illustrated by comparing sentences in (3) below:

(3) a. Italy is sunny and democratic.
b. #The chair and the question are hard.

Thus Sommers proposed a way for catching any expression in its ontology. The
influence of his work on the current understanding of type hierarchies remains
unclear, but in any case, he proposed a powerful and elegant ontological theory
which is worth shedding light on.

This sketch of history helps to draw an overview of some influences on the
notion of type: on one hand, formal semantics needs a type of truth values and
functional types in order to compose the lexical units properly, and on the other
hand lexical semantics needs a structured ontology of types to get a more refined
analysis of semantic phenomena. The combination of both approaches leads us
to a rather standard approach in computational semantics: a type system à la
Montague where the type e has been replaced by more precise types from an
ontological hierarchy. Recent works using this kind of approach include Luo’s
theory of coercive subtyping (e.g. [12]), Pustejovsky and Asher’s type composi-
tion logic (TCL) [1,2] and also Retoré’s ΛTyn framework [16].

The remainder of this article will sketch the basis of a type system where
a hierarchy of entity types is properly integrated into the usual compositional
framework. This type system is intended to reflect the ontology of language, and
rests upon a specific model from category theory, so that it should naturally
lead to a λ-calculus. Although the complete calculus will not be defined here, a
few lines of what properties can be expected from such a system will be given.
Section 2 introduces necessary categorical tools for understanding topos theory;

22 W. Babonnaud

then the type system and its properties will be described in Sect. 3. Finally, a
short review of related works and concluding remarks will be given in Sect. 4.

2 A Synopsis of Topos Theory

Category theory can be presented as a formalisation of mathematical structures,
and is known to have strong connections with typed λ-calculi (see e.g. [3,19]).
In this regard, a type system can be given a categorical3 semantic model. How
this kind of correspondence works will not be explored here. Rather, this section
aims to give some basic tools to understand the notion of topos, which refers
to categories with specific properties that will be used extensively in the rest
of this paper. Only necessary notions will be introduced here for questions of
space; more details can be found e.g. in Robert Goldblatt’s book [9].

Definition 1. A category C is a class of objects O(C), and for every pair of
objects A,B ∈ O(C) a class of morphisms (or arrows) C(A,B), and a composi-
tion operator on morphisms ◦ such that:

– for all f ∈ C(A,B) and g ∈ C(B,C), there is a morphism g ◦ f ∈ C(A,C);
– the composition is associative, i.e. h ◦ (g ◦ f) = (h ◦ g) ◦ f ;
– for all object A, there is an identity morphism idA ∈ C(A,A) which is neutral

for composition, i.e. g ◦ idA = g and idA ◦ h = h for all relevant g and h.

A well-known example of a category is Set, whose objects are sets and whose
morphisms are functions between sets, equipped with the usual notion of com-
position. The notation f ∈ C(A,B) will be replaced by f : A → B whenever C
in understood. Elaborating from this definition, categories can be “enriched” by
defining objects with specific properties (usually gathered under the term uni-
versal property). The prototypical objects with such properties are initial and
terminal objects, as given in the following definition.

Definition 2. A terminal (resp. initial) object in a category C is an object 1
(resp. 0) such that for all A ∈ O(C), there is exactly one morphism !A : A → 1
(resp. 0A : 0 → A).

It is worth noticing that the objects introduced in this definition (and in
subsequent ones as well) have the property to exist up to isomorphism. Two
objects A and B are isomorphic (noted A ∼= B) when there are morphisms
f : A → B and g : B → A such that g ◦ f = idA and f ◦ g = idB . Objects
satisfying the universal property are generally not unique, but all of them can
be proven to be isomorphic. Yet as this property is known it is common to
refer to the terminal object instead of a, and similarly for other objects. In
Set, any singleton is a terminal object, and the empty set is the initial object.

3 As a convention, I will distinguish between the adjective categorial when talking
about linguistics categories such as Chomsky’s or Sommers’, and the adjective cat-
egorical when talking about things from category theory.

A Topos-Based Approach to Building Language Ontologies 23

Other relevant objects are products and pullbacks, which we define below. The
second definition uses the notion of diagram, which can be understood as a
representation of a small subpart of a category as a graph whose nodes are
objects and edges are morphisms. A diagram is said to be commutative if all
paths of morphism compositions between any two objects are equal.

Definition 3. A product of two objects A and B is an object A × B equipped
with two projections π1 : A × B → A and π2 : A × B → B, such that for all
objects C and morphisms f : C → A and g : C → B there is a unique morphism
〈f, g〉 : C → A × B satisfying π1 ◦ 〈f, g〉 = f and π2 ◦ 〈f, g〉 = g.

Definition 4. A pullback of two morphisms of the same codomain f : A → D
and g : B → D in an object A×DB equipped with two morphisms f ′ : A×DB →
B and g′ : A ×D B → A, such that for all objects C and morphisms h : C → A
and k : C → B satisfying f ◦h = g◦k, there is a unique morphism l : C → A×DB
such that the following diagram commutes:

Another common kind of objects which appears in the definition of topoi are
exponentials, but they will not be used in this paper, so mentioning their exis-
tence is enough. There is still a useful notion left, namely the subobject classifier.
But first the notion of monomorphism should be defined:

Definition 5. A morphism f : A → B is said to be a monomorphism (noted
) if it is left-cancellable, i.e. if for any pair g, g′ : C → A of arrows

of codomain A, f ◦ g = f ◦ g′ implies g = g′.

Monomorphism is actually a generalisation upon of notion of injective function,
so that in Set monomorphisms are exactly those functions. Then, a subobject
of an object A is an object B along with a monomorphism . Without
loss of generality, it will be assumed that whenever B is a subobject of A,
the associated monomorphism is unique. Then we can introduce properly the
subobject classifier:

Definition 6. A subobject classifier is an object Ω along with a monomor-
phism such that, for all objects A and subobjects of A,
there is a unique morphism χ (called the character of B in A) making the
following diagram a pullback (i.e. B is the pullback object of χ and �):

24 W. Babonnaud

The name character given to χ should help understand how the subobject
classifier works: it represents an “object of truth values” and � corresponds
to the value “true”, so that any subobject can be associated with a morphism
that distinguishes it by sending it on “true”. In Set, any two-element set is a
subobject classifier (again this notion is given up to isomorphism), and char-
acters are exactly characteristic functions. Yet the previous definition imposes
characters to be uniquely associated with subobjects, which is actually a very
strong assumption. For any object A of a category C with subobject classifier,
let call Sub(A) the class of subojects of A.4 The definition above imposes then
the following property, which is usually referred to as Ω-axiom:

Proposition 1 (Ω-axiom). For all A ∈ O(C), we have Sub(A) ∼= C(A,Ω).

We have then all tools in hand for introducing the central categorical notion on
which is based this paper:

Definition 7. A topos is a category with initial and terminal objects, all prod-
ucts, all pullbacks, all exponentials, and a subobject classifier.

The category Set is again the prototypical example of a topos, which satisfies
two additional properties: it is bivalent, i.e. it has exactly two distinct mor-
phisms 1 → Ω, and it is classical, i.e. its subobject classifier is isomorphic to the
coproduct 1+1. The category Set2 of pairs of sets is an example of classical but
non-bivalent topos, while the category Set→ whose objects are functions between
sets is neither classical nor bivalent. Also, if M is a monoid which is not a group,
then the category M-Set whose objects are sets together with an action of M on
them is an example of non-classical but bivalent topos.

There are many other equivalent ways for defining a topos, but the one given
above rests exclusively on the notions that will be used in the remainder of this
paper. As a subobject classifier is an object of truth values, there are ways in
a topos for introducing an internal logic: we can define morphisms ⊥ : 1 → Ω,
¬ : Ω → Ω and ∧, ∨, ⇒ as morphisms Ω × Ω → Ω. This internal logic can
serve as semantic model for intuitionistic logic, see [9] for details. Using such
morphisms with the Ω-axiom allows to define new kind of subobjects. If B and
C are subobjects of A of character χB and χC , then B̄, B ∪ C, B ∩ C and
B �⇒ C are subobjects of A of respective characters ¬ ◦ χB , ∨ ◦ 〈χB , χC〉,
∧◦ 〈χB , χC〉 and ⇒ ◦〈χB , χC〉. Those new operators have a particular behaviour
in Sub(A):

Proposition 2. In any topos, 〈Sub(A), 0, A,∩,∪, �⇒〉 is a Heyting algebra for
the subobject ordering.

Also, the exponential object of A and Ω will be noted P(A). It is referred to
as powerobject of A, and corresponds to powersets in Set. It has also interesting
properties; some of them will be introduced in due time in the next section.
4 For linguistically motivated reasons, classes of subobjects of an object and classes of

morphisms between two objects will be considered as sets in the rest of this paper.

A Topos-Based Approach to Building Language Ontologies 25

3 Building a Topos-Based Type System

This work is mainly inspired by the proposition of categorical model for TCL
sketched by Asher in [1]. As explained before, there is a strong relation between
typed λ-calculi and categories: we can use objects of the category for represent-
ing types, and morphisms for λ-terms. This approach is also motivated by the
potential usefulness of categorical models to ensure the consistency of a com-
positional framework. In [1], his high need of pullbacks and powerobjects leads
Asher to propose topoi as type models. Prior to his approach, topoi had been
used for linguistic and cognitive questions, for instance in [11].5 The choice of
topos as the categorical basis of this approach is actually motivated by theoret-
ical and practical concerns: the necessity of truth values in language semantics
and of subtyping in a language ontology naturally suggests the use of a sub-
object classifier, which also requires a terminal object; and in order to enable
the definition of a typed λ-calculus from such a category, it has to be at least
cartesian closed,6 that is, to have products and exponentials. Finally, as the aim
is ultimately to build logical formulae for representing language semantics, we
need an access to the usual quantifiers; and despite the subtleties that rule the
distinction between the internal and external logics of the category, it is easier
for now to add all pullbacks in it. The combination of these various requirements
meets the Definition 7, so that topos is the minimal categorical structure needed
for our purposes.

Building up on this idea, the theory developed here takes a closer look at
how the properties of topoi can lead to a new type system for natural language
semantics. More precisely, a specific instance of a topos will be introduced, and
some properties it has to satisfy in order to define a type ontology for natural
language will be described. It will also be argued that the type system thus cre-
ated shares many properties with Sommers’ propositions, which is an originally
unexpected but welcome result.

3.1 From Montague’s e to a Hierarchy of Types

Let T be a topos. Following the general idea of objects as types, we would like
T to have at least the two Montagovian types e and t. The key to this model
is the way we handle the type of truth values: indeed, by definition T has an
object which corresponds exactly to what this type is supposed to be, namely
the subobject classifier. Let therefore T be the subobject classifier of T , and
let e be a distinguished object of the topos. Following Montague [14], the first-
order monadic properties (including nouns) are to be considered as terms of type
e → t. Put in T those terms correspond to morphisms, so that each first-order
monadic predicate in the language has a counterpart in T (e,t), and conversely.
Recalling the Ω-axiom, we get for each predicate a subobject of e. For instance,

5 I am grateful to an anonymous reviewer for bringing this work to my attention.
6 Actually, a monoidal closed category would suffice if we wanted a linear λ-calculus,

but such a restriction is not justified here.

26 W. Babonnaud

the predicate ‘cat’ defines the morphism cat : e → t, and enforces by axiom the
existence of a subobject cat of e, so that the following diagram is a pullback:

As we assimilate objects of the topos and semantic types, the type cat thus
defined is exactly what we would expect: the type of entities that are actually
cats, that is, those entities that are true of the predicate ‘cat’. In our topos, this
can be established by the equality of morphism compositions in the diagram
above. For any object A of T , define trueA : A → t to be �◦ !A.7 Then, the
pullback above gives us the following equality:

(4) cat ◦ f = truecat

We can even do better if we introduce the notion of global elements. A global
element of an object A in any category is a morphism 1 → A. Thus, the mor-
phisms � and ⊥ in our topos are global elements of t. Note that contrary to
the unique morphism of codomain 1 for any object, there is no reason that
global elements exist in general. However, suppose that there is a global element
x : 1 → cat in our previous example. The properties of the terminal object
ensure that !cat ◦ x = id1. So, by composing x with each side of the equality
in (4), we get the one in (5), which goes closer to the idea we could have of a
predicate calculus based on this system, as it exactly states that applying the
predicate cat to x of type cat raises the value true.

(5) cat ◦ f ◦ x = �

It means that for any predicate in the language we obtain in T both a type (an
object) and a predicate term (a morphism), which are related by the Ω-axiom.
This duality of monadic predicates has been discussed by Retoré [16] and more
recently by Chatzikyriakidis and Luo [5], who point out that such a property
could make type checking undecidable, in general. It is difficult to say whether
the system presented here could bring the basis of a solution for facilitating type
checking, if any; this problem will not be addressed in this paper, but should be
explored in future works. Yet it is worth noticing that the two interpretations of
a predicate are here related by virtue of the Ω-axiom.

At that point, we have only followed the isomorphism T (e,t) ∼= Sub(e) given
by the axiom to introduce new types in our topos, but we have not specified which
structure they have. By general properties of topoi, we know that Sub(e) is a
Heyting algebra. Furthermore, a formal hierarchy can be reconstructed. Indeed,
ontological inclusions can be encoded by saying that a type A is a subtype of
B if and only if A ∩ B ∼= A, which means that any entity which satisifies the
predicate PA associated with A satisfies also the predicate PB associated with

7 This morphism is actually the character of A as a subobject of itself.

A Topos-Based Approach to Building Language Ontologies 27

B. In this case, the properties of intersection objects ensure that there is a
monomorphism from A to B. Conversely, whenever two subobjects A and B
of e are linked by a monomorphism , then PB can be proved to be
true on A. More specifically, if PB is the character of B as suboject of e, we
want to show that PB ◦ g ◦ f = trueA, i.e. that the diagram below commutes:

In this diagram, is the subobject induced by the predicate PB, which
is a monomorphism. Considering the hypothesis that PB ◦ g = trueB , we just
need to compose f on the right of each side of the equality, and verify that
trueA = trueB ◦ f . This last equality comes from the universal property of the
terminal object: !B ◦ f is a morphism A → 1; but such a morphism is actually
unique, so !B ◦ f = !A, and then we get the desired result by composing with �
on the left. Also, the morphism h given by the pullback property is such that
g ◦ f = g ◦ h, which then gives us that f = h because g, as monomorphism, is
left-cancellative. This result can be formalised in the Property 1 below, which
holds for our topos T . It synthesises the structural condition which makes T a
good categorical representation of a type ontology.

Property 1. A is a subtype of B in the type ontology of language if and only if
there is a monomorphism from A and B in T .

Hence we have a correspondence between subtypes as we would intend it in
a type ontology, and monomorphisms in Sub(e). As a result, the predicates from
the language were used to build a hierarchy of types solely upon the type e,
corresponding to the Montagovian general type of entities. Now e is the greatest
type in the hierarchy formed by the algebra Sub(e), and all of them enjoy the Ω-
axiom thanks to the subobject classifier t. The types formed using the operations
on the algebra receive the expected interpretation: A ∪ B is the union type of
A and B, that is the type of entities satisfying PA ∨ PB ; A ∩ B is the type of
entities satisfying PA∧PB, A �⇒B is the one of entities satisfying PA ⇒ PB, and
Ā the one of entities satisfying ¬PA. However, it leads to a system which has
arguably too many types, and we do not want to be bound to use them all. We
will thus examine in the following how the types required for a semantic calculus
could be restricted.

3.2 From Type Hierarchy to an Ontology of Types

We have seen that every first-order monadic predicate in the language defines its
own type in the hierarchy Sub(e), so that the algebra has at least as many types
as such predicates. Yet the vocabulary of a given language is finite, and so are

28 W. Babonnaud

the “base types” directly created from language predicates. However, building
new types on those basic ones by the means of negation, union, intersection, and
implication operators quickly leads to a combinatorial explosion of the number
of types. One possible solution to avoid the troubles of a direct implementation
of our system would be to select only a finite (and possibly small) substructure
of Sub(e) to be used with all the terms of the future λ-calculus. This idea arises
from the fact that the whole type hierarchy cannot be an ontology, as argued
for instance in [24]. Indeed, ontological types can be understood as types which
divide the class of entities at a general level: types arising from predicates like
‘cat’, ‘unicorn’ or ‘fork’ are too specific to divide the world in an important way,
contrary to distinctions like physical or abstract, or animate or not.

This actually matches Sommers’ view on categories: they are defined from
predicates not by truth, but by span. When we said that this entity is a cat,
neither the language nor the ontologist bother with whether this entity is actually
a cat, but only with whether this entity has the required properties to wonder
whether it is a cat or not. Thus ontological types would be the way to encode
the presuppositions that are made whenever we apply a predicate to a given
entity. Then, considering our current type system, is there a way to retrieve
Sommers’ ontological categories? It is actually quite easy when we compare what
we have done so far to the construction proposed by Sommers. As presented in
the introduction, Sommers built his categories from predicates, and then defined
types of predicates which define the same categories; we have similarly built our
types from predicates. The only difference between Sommers’ categories and our
types is that entities in categories are spanned by the defining predicate, whereas
entities in our types are true for the defining predicate.

Moving from truth to span can be done directly by following the definition
of what Sommers named a predicate: as detailled in [21], the class |P | of entities
spanned by a predicate P is exactly the class of entities which are P or un-P ,
that is, which satisfy either P or ¬P . In our topos, we can get such classes by
considering only predicates of the form P ∨ ¬P , and the types we obtain are of
the form C(A) .= A∪Ā. Hence an important property that should be imposed to
our topos if we want to get the same ontology as Sommers is to be non-classical.
Indeed, if our topos is classical, then every subobject algebra, including Sub(e),
becomes a Boolean algebra, which means that for every A ∈ Sub(e) we have
A ∪ Ā ∼= e. It is interesting to notice here that as a result, if we constrain T to
be a classical topos and if we apply the procedure described here, all first-order
monadic predicates define the type e, so that a pure Montagovian system is
retrieved. It is also important to point out that making our topos non-classical
does not necessarily mean that we are adding one or several new truth values in
our system, in the sense of morphisms 1 → t: the topos T may still be bivalent,
even if t does not behave like a two-element set. Rather, we are moving from
classical logic to intuitionistic logic, where the law of excluded middle no longer
applies: the application of a predicate to an entity may not raise a truth value,
and if it happens we are in the situation of a category mistake in the sense of
Ryle. Hence our type system based on a non-classical topos is able to capture
the behaviour of Sommers’ ontological categories. This leads to another property
which holds for our topos T :

A Topos-Based Approach to Building Language Ontologies 29

Property 2. Sommers’ ontological categories are definable in T if and only if T
is non-classical.

As recalled above, Sommers made use of his categories to gather predicates
which define the same categories under the same A-types. In our type system,
this simply corresponds to refining the domain of the predicate morphisms to
their span. For instance, consider the predicates cat and dog and suppose that
their spans are the same, that is, C(cat) ∼= C(dog). To fix the ideas, let the type
of their span (up to isomorphism) be animate.8 Then, we would have to replace
cat and dog by restricted predicates cat′ and dog′ of type animate → t. Such a
transformation is enabled by composing with the corresponding monomorphism:
whenever is a subobject of e, we can send any predicate g : e → t to
g ◦ f : A → t.9 Therefore we can apply such a function to cat and dog because
animate is a subobject of e, and the results are the desired cat′ and dog′.
Henceforth we will only consider predicates with domains refined to their span,
and ontological types—that is, span types in question—for typing entities. Thus
the size of an implementation of a calculus based on this type system can be
reduced since—following Sommers’ arguments—our new ontological system is a
skeleton of the complete hierarchy we had first, with far fewer types needed.

Yet at this point we are unsure about the structure of our ontology. In general
in a topos, whenever two subobjects A and B are linked by a monomorphism
then there is a monomorphism from B̄ to Ā,10 and we can say nothing about the
relationship between C(A) and C(B). In our case however, Sommers brought
a solution by formulating his structural principle. It was intended to reflect
the “ontological behaviour” of the language, and claims that two overlapping
categories are included one in the other. Consider for instance the types dog,
canid and animate, with quite obvious subtyping relations between them. Even
if dog is a strict subtype of canid, it seems reasonable to assume that their
respective spans are actually the same, i.e. C(dog) ∼= C(canid), because a
term that would span one but not the other could hardly be found. However, as

8 Whether or not the common span of ‘cat’ and ‘dog’ is really animate entities could
be debated, in particular with some examples as in (i) where ‘rock’ seems also to
belong to the span of ‘dog’:

(i) This is not a dog but just a rock.

However, the main idea to keep is that the spans of the two predicates are probably
the same, as it does not seem absurd to say that anything that is not a dog could
be a cat or not, and conversely.

9 This transformation corresponds to a function T (e,t) → T (A,t) in Set, which is a
specific case of application of the contravariant hom-functor T (−,t).

10 This is actually a well-known property for Hilbert algebras, but it applies here as a
Heyting algebra is a particular case of Hilbert algebra. The existence of a monomor-
phism between two subobjects A and B corresponds to the natural order of those
algebras: if we note A ≤ B when such a monomorphism exists, then A ≤ B iff
(E ∩ A) ≤ B iff E ≤ (A �⇒B), which is equivalent to E ∼= A �⇒B as expected for a
natural order.

30 W. Babonnaud

previously supposed, the ontological category C(dog) is isomorphic to animate,
which means that there is a monomorphism from C(dog) to C(animate) which
is not an isomorphism: in other words, the category |dog| is strictly included
within the category |animate|. If all predicates obey this principle we retrieve a
hierarchical structure in our ontology, where the passage from general types to
ontological ones has made some parts of the hierarchy “collapse” into the same
span type, while other subtyping relations are preserved.

The construction presented here is admittedly rather abstract and gives no
clue about how to build such an ontology in practice. In [16], Retoré provides
an interesting discussion on what should be the base types of a semantic type
system, and quickly reviews the different set of types that have been proposed
so far. As he states himself, the choice of such a set depends notably “on one’s
philosophical convictions”, and this problem will not be solved here. However,
the type system presented in this paper can accomodate with any proposition,
because it actually generates the greatest number of types possible by default,
and as shown in this section this overgeneration does not preclude to refine the
set of types used in practice as long as it keeps the structure of a sub-hierarchy.
Thus the pure Montagovian system is retrieved when taking the span types
in a classical topos, Chatzikyriakidis and Luo’s proposition of common nouns
as types [5] is captured quite easily from our original type construction, and
intermediate sets as Sommers’ and others’ can also be used in such a framework.

3.3 A Short Account of Dot Objects

One of the main ideas of Asher [1] for his categorical model of TCL was to
propose a type-theoretic account for the so-called dot objects [2,15]. Dot objects
are lexical units which show the property of inherent polysemy: they can appear
in contexts that are generally contradictory in terms of type requirement. A
classical exemple of dot object is ‘book’, which can be treated as a physical
object (6a), or as an informational content (6b), even though physical objects
and informational content have distinct, non-overlapping spans.

(6) a. Mary picked up the book.
b. John didn’t understand the book.

Hence dot objects are entities with several separate aspects, that is, several types.
In Pustejovsky’s and Asher’s works, those objects are given a dot type, that is
a complex type structure where every type aspect is represented. In the case of
‘book’, if we call p the type of physical objects and i the type of informational
contents,11 the entry for ‘book’ would receive the type p • i.

The major concern about dot types is to understand where they should be
placed in the hierarchy. It is commonly admitted that dot types cannot be inter-
section types, as the intersection of two uncompatible types is naturally supposed
to be empty (cf. [1, Chap. 5] for discussion). Another hypothesis is to consider

11 In the remainder of this paper both types will be assumed to be ontological.

A Topos-Based Approach to Building Language Ontologies 31

such types to be pairs of types. As pointed out by Asher, this can be an interest-
ing solution provided that the different aspects of a dot object are kept separate,
instead of having the transformation only on the type side—that is, we do not
want to consider a dot type to be a direct subtype of its components. To sum
up, he introduces in his categorical model dot types as objects with “aspect pro-
jections” to some pullback objects.12 Those pullback are more precisely defined
from the relation between aspects of the dot object, lifted to power objects.
For ‘book’ of type p • i, let ex : i → P(p) and in : p → P(i) be those lifted
relations: then, p • i has projections to the pullback objects of the diagrams
i

ex−→ P(p) id←− P(p) and P(i) id−→ P(i) in←− p.
As explained by Pustejovsky [15], the relation between aspects is part of

the definition of a dot object, which means that for a given pair of types sev-
eral different relations—and consequently several different dot objects—can be
defined. The • operator only says that a relation exists, but does not provide
it explicitly. Pustejovsky proposed to define several dot operators •R1 , . . . , •Rn

,
one for each relation R1, . . . , Rn, for a proper account. In our topos, we can fol-
low this idea by introducing the relations explicitely as subobjects of a product.
Thus, the type of ‘book’ would be defined by an object book equipped with
a monomorphism . Such a definition is actually equivalent to
Asher’s proposition: indeed, the properties of power objects (which always exist
in a topos) state that the the relation object book implies the existence of the
two lifted morphisms bookp : p → P(i) and booki : i → P(p). Then the two
projections proposed by Asher can be retrieved from the following compositions:

where π1 : p × i → p and π2 : p × i → i are the canonical projections
of the product. Note that the morphisms above are not exactly the ones from
Asher, as their codomains are products instead of pullbacks, that is in this case
restricted products w.r.t. the satisfaction of the relation book; but Asher’s can
be obtained easily from those by epi-monic factorisations, which are always
possible in a topos (see [9] for details).

We have therefore a way for representing dot types without using the dot
notation, which thus permits placement of the relation between the different
aspects at the centre of the definition of such a type. Being a dot type in T
is equivalent to being a subobject of a product of types from Sub(e). When
browsing Sommers’ theory, it is difficult not to make the connection between
dot objects and heterotypical entities, because of this common ability to show
multiple types according to the context. Actually, some arguments pointing out
that the former may be a particular case of the latter can be given. Besides this

12 There is actually more subtleties in his construction, but they will not be detailled
here due to lack of space. The whole reasoning can be found in [1].

32 W. Babonnaud

multiple typing property, it is interesting to notice that in general, relations such
as book do not belong to Sub(e), because the product of two subobjects is not
itself a subobject. The projection morphisms from a product to its components
has no reason to be a monomorphism, unless all components but one are terminal
objects. Moreover, in general their compositions with subobjects of the product
do not create monomorphisms either, which is also an expected behaviour: in
the case of ‘book’, there are obviously many copies of the same book as well
as copies compiling several books in one physical object, which means in a set-
theoretic acceptance (for fixing ideas) several pairs with same image through the
projections. Thus if our type ontology is included in Sub(e), then dot objects
cannot be part of it—and this exactly is how heterotypicals behave. A last note
we should make here is that relation types like book, as a consequence of their
definition, are not ontological; and following Sommers’ philosophy the product
type p • i is not ontological either. But that does not mean that we cannot use
those types in practice. Rather, this should incite us to treat such types for what
they really describe: relations between ontological types.

4 Related Works and Future Perspectives

Several works which have been great sources of inspiration for the topos type sys-
tem presented here have been mentioned throughout this paper. It will thus not
be surprising that connections to those works could be made. As shown above,
the natural definition of types from language predicates share many common
points with the proposition of common nouns as types advocated by Luo and
Chatzikyriakidis [5]. Moreover, the organisation of types in a Heyting algebra
of subobjects allows parallels with Luo’s coercive subtyping [12], as categorical
properties make compositions coercive rather than subsumptive: if we have in
our topos T defined above a predicate P : A → t to be applied to an entity x of
type B (that is, a global element x : 1 → B) with B subtype of A, then the only
way to compose both morphisms in T a priori is to use the monomorphism f
between B and A. This leads to the morphism P ◦ f ◦ x, where f is a subtyping
coercion in the sense of Luo. It is also worth noticing that his complete theory
partially originates from Martin-Löf’s intuitionistic type theory: as natural basis
for intuitionistic logic, topoi could be useful for a categorical-based account of
this approach.

The connection between the initial proposition of Asher [1] for TCL and the
present work is also unsurprising, as the latter is mainly a deeper look into the
properties of topoi and their consequenses on type systems, heavily inspired by
the former. However, nothing has been said about the contravariance problem
for subtyping between monadic predicates in this paper. A categorical-based
argument can be given to advocate for the existence of a covariant subtyping of
first-order arrow types, and more developments on this idea could be given in
the future. The work of Retoré and Mery on ΛTyn (see [16]), a framework based
on Girard’s system F, has also been mentioned here, but further investigations
seem to be necessary to determine whether the present work could be extended
to a semantic model of their system.

A Topos-Based Approach to Building Language Ontologies 33

As for the question of type ontologies, it has been argued above that the
topos-based system described in these pages can be adapted to any set of base
types, depending on one’s philosophical convictions on that matter, including the
traditional Montagovian system. It has also been shown that this type system
shares interesting and welcome similarities with the theory of Fred Sommers.
The ontological tree he proposed [20] can be reconstructed as a substructure
of the algebra Sub(e) in a natural way, and the topos even seems to give a
faithful account of the case of heterotypical composites as lying outside the
tree structure. Although Sommers’ theory has been questioned extensively in
the 70s, it seems to have been somewhat forgotten since. However his view
on ontologies could have useful applications in the fields of formal and lexical
semantics. This has been also recently advocated by Saba [18], and the present
work might serve as a logical basis for such approaches. It is also worth noticing
that Sommers, as follower of the theory of meaning-in-use, proposed a concrete
way of building his ontology from language. An actual hierarchy could thus be
obtained by implementing and running his method on corpora.

This paper presented a sketch of what would be a type system based on topoi,
introducing a specific instance of a topos which shows how to construct various
kind of types (“classical”, ontological, heterotypical), and how to organise them
in a hierarchical structure able to produce the type systems usually assumed
in formal and lexical semantics. Moreover, two main properties that have to
be satisfied by the topos have been drawn: monomorphisms should represent
subtyping relations, and the topos should be non-classical. As it has been pointed
out several times in these pages, such a categorical type system should naturally
lead to a typed λ-calculus, using objects of the topos as types and morphisms as
terms. The formal construction and the properties of such a calculus are still to
be explored, and should therefore constitute the general outline of future work on
this subject. More particularly, the question of how this system can be improved
in order to give new tools for a fine-grained account of type shifts, coercion and
copredication phenomena will be investigated at some point.

References

1. Asher, N.: Lexical Meaning in Context: A Web of Words. Cambridge University
Press, Cambridge (2011)

2. Asher, N., Pustejovsky, J.: A type composition logic for generative lexicon. J. Cogn.
Sci. 7(1), 1–38 (2006)

3. Berry, G.: Some syntactic and categorical constructions of lambda-calculus models,
RR-0080. Inria (1981)

4. Brown, R.: A First Language: The Early Stages. Harvard University Press, Cam-
bridge (1973)

5. Chatzikyriakidis, S., Luo, Z.: On the interpretation of common nouns: types versus
predicates. In: Chatzikyriakidis, S., Luo, Z. (eds.) Modern Perspectives in Type-
Theoretical Semantics. SLP, vol. 98, pp. 43–70. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-50422-3 3

6. Chomsky, N.: Some methodological remarks on generative grammar. Word 17(2),
219–239 (1961)

https://doi.org/10.1007/978-3-319-50422-3_3
https://doi.org/10.1007/978-3-319-50422-3_3

34 W. Babonnaud

7. Church, A.: A formulation of the simple theory of types. J. Symb. Logic 5(2),
56–68 (1940)

8. Geeraerts, D.: Prototype theory. Linguistics 27(4), 587–612 (1989)
9. Goldblatt, R.: Topoi: The Categorial Analysis of Logic. Studies in Logic and

the Foundations of Mathematics, vol. 98. North-Holland Publishings, Amsterdam
(1979)

10. Kiefer, F.: Some semantic relations in natural language. In: Josselson, H.H. (ed.)
Proceedings of the Conference on Computer-related Semantic Analysis, pp. VII/1–
23. Wayne State University, Detroit (1966)

11. La Palme Reyes, M., Macnamara, J., Reyes, G.E.: Reference, kinds and predicates.
In: Macnamara, J., Reyes, G.E. (eds.) The Logical Foundations of Cognition, Van-
couver Studies in Cognitive Science, vol. 4, pp. 91–143. Oxford University Press,
Oxford (1994)

12. Luo, Z.: Type-theoretical semantics with coercive subtyping. In: Li, N., Lutz, D.
(eds.) Proceedings of SALT 20, vol. 20, pp. 38–56 (2010)

13. Miller, G.A.: Nouns in WordNet. In: Fellbaum, C. (ed.) WordNet: An Electronic
Lexical Database, pp. 23–46. The MIT Press, Cambridge (1998)

14. Montague, R.: The proper treatment of quantification in ordinary english. In: Sup-
pes, P., Moravcsik, J., Hintikka, J. (eds.) Approaches to Natural Language, pp. 221–
242. Springer, Dordrecht (1973). https://doi.org/10.1007/978-94-010-2506-5 10

15. Pustejovsky, J.: The semantics of lexical underspecification. Folia Linguistica 32(3–
4), 323–348 (1998)

16. Retoré, C.: The montagovian generative lexicon ΛTyn: a type theoretical frame-
work for natural language semantics. In: Matthes, R., Schubert, A. (eds.) Pro-
ceedings of the 19th International Conference on Types for Proofs and Programs.
LIPICS, vol. 26, pp. 202–229 (2014)

17. Rosch, E.H.: Natural categories. Cogn. Psychol. 4, 328–350 (1973)
18. Saba, W.S.: Logical semantics and commonsense knowledge: where did we go

wrong, and how to go forward, again (2018). arXiv preprint
19. Seely, R.A.G.: Categorical semantics for higher order polymorphic lambda calculus.

J. Symb. Logic 52(4), 969–989 (1987)
20. Sommers, F.: The ordinary language tree. Mind 68(2), 160–185 (1959)
21. Sommers, F.: Type and ontology. Philos. Rev. 72(3), 327–363 (1963)
22. Sommers, F.: Structural ontology. Philosophia 1(1–2), 21–42 (1971)
23. Suzman, J.: The ordinary language lattice. Mind 81(3), 434–436 (1972)
24. Westerhoff, J.: The construction of ontological categories. Australas. J. Philos.

82(4), 595–620 (2004)
25. Wittgenstein, L.: Philosophical Investigations. Macmillan, New York (1953)

https://doi.org/10.1007/978-94-010-2506-5_10

Structure Sensitive Tier Projection:
Applications and Formal Properties

Aniello De Santo(B) and Thomas Graf

Department of Linguistics, Stony Brook University, Stony Brook, USA
aniello.desanto@stonybrook.edu, mail@thomasgraf.net

Abstract. The subregular approach has revealed that the phonologi-
cal surface patterns found in natural language are much simpler than
previously assumed. Most patterns belong to the subregular class of tier-
based strictly local languages (TSL), which characterizes them as the
combination of a strictly local dependency with a tier-projection mech-
anism that masks out irrelevant segments. Some non-TSL patterns have
been pointed out in the literature, though. We show that these outliers
can be captured by rendering the tier projection mechanism sensitive
to the surrounding structure. We focus on a specific instance of these
structure-sensitive TSL languages: input-local TSL (ITSL), in which the
tier projection may distinguish between identical segments that occur in
different local contexts in the input string. This generalization of TSL
establishes a tight link between tier-based language classes and ISL trans-
ductions, and is motivated by several natural language phenomena.

Keywords: Subregular hypothesis · TSL · Phonotactics ·
Input strictly local functions · Generative capacity

1 Introduction

The subregular hypothesis ([16] and references therein) posits that every
language’s set of phonologically well-formed surface strings—its phonotactic
patterns—belongs to a proper subclass of the regular languages. The class of
tier-based strictly local languages (TSL) has been of particular interest in this
respect [17]. TSL is inspired by autosegmental phonology [12] and combines
two components: (i) an n-gram based mechanism to enforce local constraints
on adjacent segments, and (ii) a tier projection mechanism that “masks out”
irrelevant parts of the string. Long-distance dependencies are thus reanalyzed as
local dependencies over strings with masked out segments.

While TSL covers a wide range of data, recent literature has reported several
instances of complex phenomena—from Samala sibilant harmony to unbounded
tone plateauing—that cannot be characterized in these terms [14,15,24, a.o.].
We argue that all these counterexamples can be accounted for by extending the
tier projection mechanism. We redefine TSL as a cascade of three string trans-
ductions, one of which is the tier projection mechanism. In standard TSL, the
c© Springer-Verlag GmbH Germany, part of Springer Nature 2019
R. Bernardi et al. (Eds.): FG 2019, LNCS 11668, pp. 35–50, 2019.
https://doi.org/10.1007/978-3-662-59648-7_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-59648-7_3&domain=pdf
https://doi.org/10.1007/978-3-662-59648-7_3

36 A. De Santo and T. Graf

tier projection is an input strictly local function of locality 1 (1-ISL) in the sense
of Chandlee [5, Definition 4]. By allowing for more complex string transductions,
one obtains the much more powerful class of structure sensitive TSL (SS-TSL).
Within this wide range of options, we focus on the natural generalization from 1-
ISL to n-ISL. This means that projection of a segment s does not merely depend
on s alone but may also consider the locally bounded context u1 · · · um v1 · · · vn
in which s occurs. The resulting class of input tier-based strictly local (ITSL) lan-
guages greatly expands the empirical coverage of TSL while retaining essential
formal properties.

The paper is structured as follows. Section 2 introduces mathematical nota-
tion that is essential for studying subregular languages. The fundamental prop-
erties of strictly local (SL) and tier-based strictly local (TSL) languages are
presented in Sect. 3. There, we also introduce the first major innovation of this
paper, the generalization from standard TSL to SS-TSL. We then define ITSL,
the most natural subclass of SS-TSL. Section 4 studies the formal properties of
ITSL, and relates it to the rest of the subregular hierarchy. We then expand
on this with results on the intersection closures of TSL and ITSL, respec-
tively (Sect. 5). Finally, Sect. 6 discusses the implications of these results for
learnability.

2 Preliminaries

This paper discusses TSL and our generalization of its projection function. As we
compare the resulting new languages to several subregular classes besides TSL, a
fair amount of mathematical machinery is required. We assume familiarity with
set notation on the reader’s part.

Given a finite alphabet Σ, Σ∗ is the set of all possible finite strings of sym-
bols drawn from Σ. A language L is a subset of Σ∗. The concatenation of two
languages L1L2 = {uv : u ∈ L1 and v ∈ L2}. For every string w and every non-
empty string u, |w| denotes the length of the string, |w|u denotes the number
of occurrences of u in w, and ε is the unique empty string. Left and right string
boundaries are marked by �, � /∈ Σ respectively.

A string u is a k-factor of a string w iff ∃x, y ∈ Σ∗ such that w = xuy and
|u| = k. The function Fk maps words to the set of k-factors within them:

Fk(w) := {u : u is a k-factor of w if |w| ≥ k, else u = w}
For example, F2(aab) = {aa, ab}. The domain of Fk is generalized to languages
L ⊆ Σ∗ in the usual way: Fk(L) =

⋃
w∈L Fk(w). We also consider the function

which counts k- factors up to some threshold t.

Fk,t(w) := {(u, n) : u is a k-factor of w and n = min(|w|u, t)}
For example F2,5(aaaaab) = {(aa, 4), (ab, 1)}, but F2,3(aaaaab) = {(aa, 3),
(ab, 1)}.

In order to simplify some proofs, we rely on first-order logic characterizations
of certain string languages and string-to-string mappings. We allow standard

Structure Sensitive Tier Projection: Applications and Formal Properties 37

Boolean connectives (∧, ∨, ¬, →), and first-order quantification (∃, ∀) over
individuals. We let x ≺ y denote precedence, x ≈ y denote identity, and x, y
denote variables ranging over positions in a finite string w ∈ Σ∗. Note that ≺ is
a strict total order.

The remaining logical connectives are obtained from the given ones in the
standard fashion, and brackets may be dropped where convenient. For example,
immediate precedence is defined as x � y ⇔ x ≺ y ∧ ¬∃z[x ≺ z ∧ z ≺ y]. We add
a dedicated predicate for each label σ ∈ Σ we wish to use: σ(x) holds iff x is
labelled σ, where x is a position in w.

Classical results on definability of strings represented as finite first-order
structures are then used [26]. If Σ = {σ1, . . . , σn}, then a string w ∈ Σ∗ can be
represented as a structure Mw in the signature(σ1(·), . . . , σn(·),≺). If ϕ is a logi-
cal formula without any free variables, we use L(ϕ) = {w ∈ Σ∗ | Mw satisfies ϕ}
as the stringset extension of ϕ .

3 Structure-Sensitive TSL Languages

There is a rich literature exploring the subclasses that the regular languages
can be divided into [4,9,27,32, a.o.]. Among these subregular classes, tier-based
strictly local languages (TSL; [17]) have received particular attention due to their
ability to provide natural descriptions of phonological well-formedness conditions
(see also [13,19,29]). TSL extends the class of strictly local languages (SL) with
a tier projection mechanism that renders non-local dependencies in a string
local over tiers. The projection mechanism is very limited though, as it only
considers a segment’s label but not its structural context. This is too restrictive
for phonology, which is why we extend TSL to a class of languages sensitive
to structural information: TSL where tier projection can take local information
into account.

3.1 Strictly Local and Tier-Based Strictly Local Languages

SL is the class of languages that can be described in terms of a finite number of
forbidden substrings. Intuitively, SL languages describe patterns which depend
solely on the relation between a bounded number of consecutive symbols in a
string—there are no long-distance dependencies.

Definition 1 (SL). A language L is strictly k-local (SLk) iff there exists a
finite set S ⊆ Fk(�k−1Σ∗

�
k−1) such that

L = {w ∈ Σ∗ : Fk(�k−1w�
k−1) ∩ S = ∅}.

We also call S a strictly k-local grammar, and we also use L(S) to indicate the
language generated by S. A language L is strictly local iff it is SLk for some
k ∈ N.

38 A. De Santo and T. Graf

For example, (ab)n is a strictly 2-local language over alphabet {a, b} because it
is generated by the grammar G := {�b, bb, aa, a�}.1

Even though this paper is concerned with extensions of SL, many of our
proofs make use of a particular characterization of SL in terms of k-local suffix
substitution closure [30].

Definition 2 (Suffix Substitution Closure). For any k ≥ 1, a language L
satisfies k-local suffix substitution closure iff for all strings u1, v1, u2, v2, for any
string x of length k−1 if both u1 ·x ·v1 ∈ L and u2 ·x ·v2 ∈ L, then u1 ·x ·v2 ∈ L.

Theorem 1. A language is SLk iff it satisfies k-local suffix substitution closure.

The language L := a∗ba∗, for example, is not SL because for any k we can pick
two strings ambak ∈ L and akban ∈ L and recombine them into ambakban /∈ L.
However, this language is TSL.

TSL is an extension of SL where k-local constraints only apply to elements of
a tier T ⊆ Σ. An erasing function (also called projection function) is introduced
to delete all symbols that are not in T . Given some σ ∈ Σ, the erasing function
ET : Σ → Σ ∪ {ε} maps σ to itself if σ ∈ T and to mptystring otherwise.

ET (σ) :=

{
σ if σ ∈ T

ε otherwise

We extend ET from symbols to strings in the usual pointwise fashion.

Definition 3 (TSL). A language L is tier-based strictly k-local (TSLk) iff
there exists a tier T ⊆ Σ and a finite set S ⊆ Fk(�k−1T ∗

�
k−1) such that

L = {w ∈ Σ∗ : Fk(�k−1ET (w)�k−1) ∩ S = ∅}

We also call S the set of forbidden k-factors on tier T , and 〈S, T 〉 is a TSLk

grammar.

As can be gleaned from Definition 3, a language L is TSL iff it is strictly k-local
on tier T for some T ⊆ Σ and k ∈ N. This will be important for many proofs.

For a concrete example, consider once more L := a∗ba∗ such that aba, aabaa,
aaaba ∈ L but abaabaa, ababaa /∈ L. This language is generated by the TSL2

grammar 〈{��, bb} , {b}〉 over Σ = {a, b}, which bans every string whose tier is
empty (no b) or contains more than one b.

1 A comment regarding edge markers. For S to be k-local, it needs to contain only
factors of length k. Thus, strings are augmented with enough edge markers to ensure
that this requirement is satisfied. However, it is often convenient to shorten the k-
factors in the definition of strictly k-local grammars and write down only one instance
of each edge marker. with the implicit understanding that it must be augmented to
the correct amount. So � � a is truncated to �a. We adopt this simpler notation
throughout the paper, unless required to make a definition clearer.

Structure Sensitive Tier Projection: Applications and Formal Properties 39

3.2 Insufficiency of TSL

While TSL enjoys wide empirical coverage in phonology, some non-TSL phenom-
ena have been pointed out in the literature [14,15,24]. As a concrete example,
consider the case of sibilant harmony in Samala, where an unbounded depen-
dency can override a local one (see [2] for the original data set and [24] for a
subregular analysis). Samala displays sibilant harmony such that [s] and [S] may
not co-occur anywhere within the same word (cf. Ex. (1a)). There is also a ban
against string-adjacent [st], [sn], [sl], which is resolved by dissimilation of [s] to
[S] (cf. Ex. (2a) and (2b)). However, dissimilation is blocked if the result would
violate sibilant harmony. Thus /sn/ surfaces as [Sn] unless the word contains [s]
somewhere to the right, in which case it is realized as [s] (cf. Ex. (2a) and (3a)).

(1) a. /k-su-Sojin/ → [kSuSojin]

(2) a. /s-niP/ → [SniP]
b. /s-niP/ → ∗[sniP]

(3) a. /s-net-us/ → [snetus]
b. /s-net-us/ → ∗[Snetus]

This pattern is not TSL. Pick some sufficiently large m and consider the
strings [sne(ne)mtus] and [ne(ne)mtus], which are well-formed according to the
generalization above. In stark contrast, the minimally different [sne(ne)mtu] is
ill-formed. In order to regulate this dependency, we need a TSL grammar whose
tier contains at least [s] and [n]. But then the tiers of these three strings are of
the form snnms, nnms, and snnm, respectively. By suffix substitution closure, it
is impossible for an SL grammar to allow the former two while forbidding the
latter. But if the tier language is not SL, the original language is not TSL, either.
Note that projecting additional symbols does not change anything with respect
to suffix substitution closure, so the problem is independent of what subset of
Σ one chooses as the tier alphabet.

The central shortcoming of TSL is that it only provides a choice between
projecting no instance of [n], which is obviously insufficient, and projecting
every instance of [n], which renders the dependency between sibilants non-local
over tiers. But suppose that one could instead modify the projection function
such that an [n] is projected iff it is immediately preceded by a sibilant. Then
[sne(ne)mtus] and [ne(ne)mtus] have the tiers sns and s, whereas [sne(ne)mtu]
has the tier sn. An SL3 grammar can easily distinguish between these, permit-
ting the former two but not the latter. Such a modified version of TSL will also
be able to block [snetu] while allowing for [senetu] as their respective tiers are
sn and s. Apart from this Samala example, reported non-TSL patterns that can
be accounted for by inspecting the local context of a segment before projecting
it include nasal harmony in Yaka [33], unbounded stress of Classical Arabic (see
[3] and references therein), Korean vowel harmony [14], and cases of unbounded
tone plateauing [20, a.o.].

More recently, other patterns have been reported for which it seems to be nec-
essary to extend TSL projections to consider more than just local contexts in the

40 A. De Santo and T. Graf

input string. Mayer and Major [23], based on a suggestion by Graf (p.c.), make
tier-projection sensitive to preceding segments on the tier in order to capture
backness harmony in Uyghur. Graf and Mayer [15] analyze Sanskrit retroflexion
in terms of an even more general class whose projection function considers the
local contexts in both the input string and the already constructed tier.

Crucially, all these extensions allow the erasing function ET to consider addi-
tional structural factors. We call all languages in which the projection function
has been extended along these lines structure-sensitive TSL. This is a very loosely
defined class, but as we explain next the idea can be made more precise by view-
ing TSL-like grammars as a cascade of three string transductions.

3.3 TSL as the Composition of Three Transductions

For every TSL grammar G := 〈S, T 〉, one can construct a sequence of transduc-
tions that generates exactly the same string language:

1. The projection transduction ET rewrites every symbol s ∈ T as s and deletes
every s′ /∈ T .

2. The grammar transduction idS is the identity function over L(S).
3. The filler transduction FT is the inverse of ET .

Their composition ET ◦ idS ◦FT is a partial, non-deterministic finite-state trans-
duction. The image of Σ∗ under this transduction is exactly L(G). All the recent
extensions of TSL keep idS the same, but they change the nature of ET (and
hence FT). Without further limitations on ET , every recursively enumerable
string language can be generated this way. But from a linguistic perspective,
this is immaterial as only very limited kinds of SS-TSL have been proposed.
These classes generalize ET to ISL or OSL functions as originally defined in [5].
We only consider the former here and leave the latter for future work.

3.4 Input-Sensitive TSL

Adding input-sensitivity to TSL only requires a minor change to the definition
of ET . In order to simplify the exposition later on, we take inspiration from [7]
and define ISL projections in terms of local contexts.

Definition 4 (Contexts). A k-context c over alphabet Σ is a triple 〈σ, u, v〉
such that σ ∈ Σ, u, v ∈ Σ∗ and |u| + |v| ≤ k. A k-context set is a finite set of
k-contexts.

Definition 5 (ISL Projection). Let C be a k-context set over Σ (where Σ is
an arbitrary alphabet also containing edge-markers). Then the input strictly k-
local (ISL-k) tier projection πC maps every s ∈ Σ∗ to π′

C(�k−1, s�
k−1), where

π′
C(u, σv) is defined as follows, given σ ∈ Σ ∪ {ε} and u, v ∈ Σ∗:

ε if σav = ε,
σπ′

C(uσ, v) if 〈σ, u, v〉 ∈ C,
π′
C(uσ, v) otherwise.

Structure Sensitive Tier Projection: Applications and Formal Properties 41

Note that an ISL-1 tier projection only determines projection of σ based on σ
itself, just like ET does for TSL. This shows that ISL-k-tier projections are a
natural generalization of ET even though they are no longer defined in terms of
some T ⊆ Σ. The definition of ITSL languages then closely mirrors the one for
TSL.

Definition 6 (ITSL). A language L is m-input local k-TSL (m-ITSLk) iff
there exists an m-context set C and a finite set S ⊆ Σk such that

L = {w ∈ Σ∗ : Fk(�k−1πC(w)�k−1) ∩ S = ∅}.

A language is input-local TSL (ITSL) iff it is m-ITSLk for some k,m ≥ 0. We
call 〈S,C〉 an ITSL grammar.

Let us return to the interaction of local dissimilation and non-local harmony
in Samala. This process can be handled by an 2-ITSL3 grammar 〈S,C〉 with

– S := {sS, Ss, snx} where x ∈ {Σ − s},
– C contains all of the following contexts, and only those:

• 〈s, ε, ε〉
• 〈S, ε, ε〉
• 〈n, s, ε〉

Since this phenomenon could not be handled with TSL, ITSL properly extends
TSL.

Theorem 2. TSL � ITSL

For the sake of rigor, we also provide a formal proof.

Proof. TSL ⊆ ITSL is trivial. Now consider the language L = a{a, b}∗b ∪
b{a, b}∗a over alphabet Σ = {a, b}. It is generated by the 2-ITSL2 grammar
〈S,C〉 with S = {aa, bb, ��} and C := {〈σ, �, ε〉 , 〈σ, ε, �〉 | σ ∈ Σ}. But L is
not TSL. Pick some arbitrary TSLk grammar 〈S, T 〉 and strings s := ambn ∈ L,
t := bnao ∈ L, and u := ambnao /∈ L (m,n, o > k). These three strings witness
that no matter how one chooses T ⊆ Σ, the resulting tier language is not closed
under suffix substitution closure. Thus, L is not k-TSL for any k.

ITSL is clearly more powerful than TSL, but the question is how much addi-
tional power the move to ISL projections grants us. We do not want ITSL to
be too powerful as it should still provide a tight characterization of the limits
of natural language phonology. The next section shows that ITSL is still a very
conservative extension of TSL that is subsumed by the star-free languages and
largely incomparable to any other subregular classes.

42 A. De Santo and T. Graf

4 Formal Analysis

It is known that TSL is a proper subclass of the star-free languages (SF) and
is incomparable to the classes locally testable (LT), locally threshold-testable
(LTT), strictly piecewise (SP), and piecewise testable (PT) [17]. In addition,
TSL is not closed under intersection, union, complement, concatenation, or rela-
beling (this is common knowledge but has not been explicitly pointed out in the
literature before). The same holds for ITSL. This is not too surprising as ITSL
is a fairly minimal extension of TSL, and many of the proofs in this section are
natural modifications of the corresponding proofs for TSL.

4.1 Relations to Other Subregular Classes

First we have to provide basic definitions for subregular classes we wish to com-
pare to ITSL.

Definition 7 (Locally t-Threshold k-Testable). A language L is locally t-
threshold k-testable iff ∃t, k ∈ N such that ∀w, v ∈ Σ∗, if Fk,t(w) = Fk,t(v)
then w ∈ L ⇔ v ∈ L.

Intuitively locally threshold testable (LTT) languages are those whose strings
contain a restricted number of occurrences of any k-factor in a string. Practically,
LTT languages can count, but only up to some fixed threshold t since there is a
fixed finite bound on the number of positions a given grammar can distinguish.
Properly included in LTT, the locally testable (LT) languages are locally threshold
testable with t = 1.

We show that LT and ITSL are incomparable. Since TSL and LTT are known
to be incomparable [17], the incomparability of LTT is an immediate corollary.

Theorem 3. ITSL is incomparable to LT and LTT.

Proof. That ITSL is no subset of LT or LTT follows from the fact that ITSL
subsumes TSL, which is incomparable to both.

We now show that LT � ITSL. Let L be the largest language over Σ =
{a, b, c} such that a string contains the substring aa only if it also contains the
substring bb. This language is LT but cannot be generated by any m-ITSLk

grammar G, irrespective of the choice of k and m.
Suppose G generates at least strings of the form c∗aac∗bbc∗ ∈ L and c∗bbc∗ ∈

L, but not c∗aac∗ /∈ L. Then G must project both aa and bb, wherefore c∗aac∗

and c∗bbc∗ each license projection of aa and bb, respectively (projection of one
of a or b cannot depend on the other because the number of cs between the two
is unbounded). But then strings of the form (c∗aac∗)+bb(c∗aac∗)+ ∈ L yield a
tier language (aa)+bb(aa)+. By suffix substitution closure, G also accepts any
tier of the form (aa)+. Therefore, L(G) � (c∗aac∗)+ /∈ L.

Next consider the strictly piecewise (SP) and piecewise testable (PT) lan-
guages [10,28,31]. These are already known to be incomparable with SL, TSL,
and LTT. For any given string w, let P≤k(w) be a function that maps w to the
set of subsequences up to length k in w.

Structure Sensitive Tier Projection: Applications and Formal Properties 43

Definition 8 (Piecewise k-Testable). A language L is piecewise k-testable iff
∃k ∈ N such that ∀w, v ∈ Σ∗, if P≤k(w) = P≤k(v) then w ∈ L ⇔ v ∈ L. A
language is piecewise testable if it is piecewise k-testable for some k.

Properly included in PT, SP languages mirror the definition of SL languages
by replacing Fk(w) with Pk(w) in Definition 1. In short, piecewise languages are
sensible to relationships between segments based on precedence (over arbitrary
distances) rather than adjacency (immediate precedence).

Theorem 4 ITSL is incomparable to SP and PT.

Proof ITSL � SP, PT follows from the fact that ITSL includes TSL, which is
incomparable to both. In the other direction, consider the SP language L that
consists of all strings over Σ = {a, b, c, d, e} that do not contain the subsequences
ac or bd. This language is not ITSL. In order to correctly ban both ac and
bd, at least one instance of a, b, c, and d must be projected in each string.
Consequently, for each symbol there must be some fixed context that triggers
its projection. Assume w.l.o.g. that one of these contexts is 〈b, u, v〉. Consider
the strings s := a(emubv)n ∈ L, t := (emubv)nc ∈ L, and u := a(emubv)nc /∈ L,
for sufficiently large m and n. The respective tiers are s′ := abn, t′ := bnc, and
u′ := abnc. By suffix substitution closure, no SL language can contain s′ and t′

to the exclusion of u′, wherefore L is SP (and PT) but not ITSL.

The last subregular class relevant to our discussion is SF. Multiple charac-
terizations are known, but we will use the one in terms of first-order logic as it
greatly simplifies the proof that ITSL is subsumed by SF.

Definition 9 (Star-Free). Star-free (SF) languages are those that can be
described by first order logic with precedence.

Theorem 5. ITSL � SF.

Proof. Subsumption follows from the fact that every ITSL language can be
defined in first-order logic with precedence. Proper subsumption then is a corol-
lary of LT, PT ⊆ SF together with Theorems 3 and 4.

We briefly sketch the first-order definition of ITSL. First, the successor rela-
tion � is defined from precedence in the usual manner. Then, for every context
c := 〈σ, u1 · · · um, um+1 · · · un〉 one defines a predicate C(x) as

∃y1, . . . , ym+n

[
σ(x)∧

∧
1≤i<m

yi � yi+i ∧ ym � x ∧ x � ym+1 ∧
∧

m+1≤i<n

yi � yi+i ∧
∧

1≤i≤n

ui(yi)
]

The context predicates form the basis for the ITSL tier predicate

T (x) ⇔
∨

C is a context predicate

C(x)

which in turns allows us to relativize precedence to symbols on the tier:

44 A. De Santo and T. Graf

x �T y ⇔ T (x) ∧ T (y) ∧ x ≺ y ∧ ¬∃z[T (z) ∧ x ≺ z ∧ z ≺ y]

The set of forbidden k-factors then is just a conjunction of negative literals with
�T as the basic relation.

4.2 Closure Properties

The previous section established that ITSL is a natural generalization of TSL
in the sense that it displays the same (proper) subsumption and incomparabil-
ity relations with respect to other classes. We now show that this parallelism
between TSL and ITSL also carries over to the standard closure properties. Just
like TSL, ITSL is not closed under intersection, union, complement, concatena-
tion, or relabeling.

We start with non-closure under intersection.

Lemma 1. ITSL is not closed under intersection.

Proof. Consider again the SP language L that consists of all strings over
{a, b, c, d, e} that do not contain the subsequences ac or bd. As shown in The-
orem 4, this language is not ITSL. But L is the intersection of two TSL (and
hence ITSL) languages L1 and L2 s.t. T1 = {a, c}, S1 = {ac} and T2 = {b, d},
S2 = {bd}. Thus closure under intersection does not hold.

Lemma 2. ITSL is not closed under concatenation.

Proof. Let L be the union of ab {a, b, c}∗
a and ba {a, b, c}∗

b. This language is
ITSL. The context set is C := {〈σ, �, ε〉 , 〈σ, ε, �〉 , 〈σ, �σ′, ε〉 | σ, σ′ ∈ a, b, c},
and the only allowed k-factors are �aba� and �bab�. Now consider the string
s1 := abckbckb, which is not in the concatenation closure of L. Nor is its iteration
sm1 . But the concatenation closure of L does contain s2 := sm1 absm1 , as this is
an instance of ab {a, b, c}∗

a concatenated with ba {a, b, c}∗
b. Every k-context of

sm1 is also a k-context of s2. Hence every m-factor of sm1 is also an m-factor of
s2. Therefore it is impossible for any k-ITSLm grammar G to contain s2 to the
exclusion of s1. It follows that the concatenation closure of L is not k-ITSL for
any k.

Lemma 3. ITSL is not closed under union.

Proof. Let C := {〈a, ε, ε〉 , 〈b, ε, ε〉} and consider the SL2 languages a+b+ and
b+a+. Let Lab and Lba be the respective images of these languages under π−1

C

given alphabet {a, b, c}. That is to say, Lab := (c∗a)+(c∗b)+c∗ and Lba :=
(c∗b)+(c∗a)+c∗. By definition, Lab and Lba are ITSL languages, but their union
L is not. Note that s1 := (cka)mck /∈ L, whereas s2 := sm1 (ckbk)mck ∈ L and
s3 := (ckbk)msm1 ck ∈ L. Every k-context of s1 also occurs in s2 and s3. This
implies that no matter what k-context set one picks, all the m-factors of the tier
of s1 are also m-factors of the tiers of s2 or s3. As with concatenation closure,
this makes it impossible to ban s1 while allowing for s2 and s3.

Structure Sensitive Tier Projection: Applications and Formal Properties 45

The same string embedding strategy can also be used for relative complement.

Lemma 4. ITSL is not closed under relative complement.

Proof. For simplicity, we only prove non-closure under complement relative to
Σ∗ (this suffices because Σ∗ is ITSL). Let C be as before, and consider the SL2

language a+b. The image under π−1
C is the ITSL language L := (c∗a)+c∗bc∗.

Consider the string s1 := (cka)mckbck ∈ L. The complement L of L does not
contain s1, but it contains its mirror immage s−1 := ckbck(ack)m and the con-
catenation of s1 with itself: s11 := (cka)mckbck(cka)mckbck ∈ L. But as before,
every conceivable k-context of s1 is also a k-context of and s−1 and s11. Any
illicit m-factor in the tier of s1 will also occur in the tier of s−1 or s11. Again
once cannot rule out s1 without also ruling out s−1 or s11, which proves that L
is not ITSL.

For non-closure under relabeling, a much simpler strategy suffices. Simply
consider the SL (and thus ITSL) language Lab = (ab)+. A relabeling that
replaces b by a maps Lab to Laa = (aa)+, which isn’t even star-free.

Theorem 6. ITSL is not closed under intersection, union, relative complement,
concatenation, and relabelings.

While these closure properties may seem unappealing from a mathematical per-
spective, they mirror exactly the closure properties of TSL. This confirms our
original claim that ITSL is a natural generalization of TSL. In addition, the lack
of most of the canonical closure properties is welcome from a linguistic perspec-
tive because natural languages do not seem to display these closure properties
either. That said, closure under intersection is a linguistically important prop-
erty, which is why we explore it in depth in the next section.

5 Intersection Closure of TSL and ITSL

Lack of closure under intersection is problematic as it entails that the com-
plexity of phonological dependencies is no longer constant under factorization.
Depending on whether one treats a constraint as a single phenomenon or the
interaction of multiple phenomena, the upper bound for phonological complex-
ity will shift. Neither TSL nor ITSL are closed under intersection, yet they both
are reasonable formal approximations of phonological dependencies. In order to
understand what (I) TSL claims about individual phenomena imply about the
complexity of phonology as a whole, we need a good formal understanding of
the intersection closure of TSL (Sect. 5.1) and ITSL (Sect. 5.2).

5.1 Intersection Closure of TSL Languages

The intersection of two TSL languages can be regarded as a language that is
produced by a single TSL grammar that projects multiple tiers. For this reason,

46 A. De Santo and T. Graf

Regular SF

LTT LT

SL

PT SP

MITSL

ITSL

MTSL

TSL

FIN

Fig. 1. Proper inclusion relationships of subregular classes. Subsumption goes left-to-
right. We establish MTSL, ITSL, and MITSL.

we refer to the intersection closure of TSL as multi-TSL (MTSL). We write
n-MTSLk to indicate a grammar where n is the number of tiers and k is the
locality of the tier-constraints. Note that we frequently omit k and n to reduce
clutter.

Definition 10. An n-tier strictly k-local (n-MTSLk) language L is the inter-
section of n distinct k-TSL languages (k, n ∈ N).

MTSL is a proper superclass of TSL, which is witnessed by the language
we used to prove non-closure under intersection for ITSL. This also shows that
MTSL is not subsumed by ITSL. The opposite does not hold either.

Lemma 5. ITSL � MTSL.

Proof. Assume Σ = {a, b}, and consider the language LFL = a{a, b}∗b ∪
b{a, b}∗a. This language is ITSL. Suppose LFL were the intersection of n dis-
tinct TSL languages L1, . . . , Ln. Since a{a, b}∗a /∈ L, there would have to be
at least one Li projecting every a on the tier, and banning aa. But then this
language also incorrectly rules out aa+b. Thus, L /∈ n-MTSL for any number of
intersecting TSL languages.

Theorem 7. MTSL and ITSL are incomparable.

Regarding the place of MTSL with respect to the other subregular classes,
we can reuse most of the previous results. That MTSL � LTT, PT is entailed
by TSL � LTT, PT. To see why LTT � MTSL, consider Σ = {a, b, c} and a
sentential logic formula ϕ : aa → bb s.t. L = {w ∈ Σ∗ | w � ϕ}. Following
the same reasoning as in the proof for Theorem3, it is easy to see that this
language is 2-LT (thus, LTT) but not MTSLn. For PT � MTSL, we take the
same example and assume that the predicates in ϕ are based on precedence
instead of immediate precedence. Again following the reasoning in Theorem3,
this language is PT, but not n-MTSL for any n. Finally, MTSL � SF follows
trivially from the fact that every TSL language is SF [17] and that SF languages
are closed under finite intersection.

Theorem 8. MTSL is incomparable to LT and PT, and MTSL � SF.

Structure Sensitive Tier Projection: Applications and Formal Properties 47

5.2 Intersection Closure of ITSL Languages

The definition of MTSL extends in the expected manner to ITSL.

Definition 11 (MITSL). A multiple m-input local TSL ((m,n)-MITSLk) lan-
guage is the intersection of n distinct m-ITSLk languages (k,m, n ∈ N).

Since ITSL is not closed under intersection, we have ITSL � MITSL, which
in turn implies MTSL � MITSL because MTSL and ITSL are incomparable.
Just like TSL, MTSL, and ITSL, MITSL is incomparable to LTT and PT. That
MITSL � LTT, PT follows from their incomparability to TSL, ITSL and MTSL,
which MITSL properly subsumes. For the other direction, we can simply refer
to the counter-examples used in Theorem 7, which are not MITSL irrespective
of the number of tiers projected by the grammar.

Theorem 9. MITSL is incomparable to LTT and PT.

The incomparability to LTT and PT also entails MITSL � SF (MITSL ⊆
SF follows from the FO definability of ITSL and the closure of SF under inter-
section).

Lemma 6. ITSL � MITSL � SF.

This shows that MTSL, ITSL, and MITSL are all natural generalizations of TSL
that preserve the relation to other language classes. This extends even to their
closure properties: TSL and ITSL have exactly the same closure properties with
respect to intersection, union, complement, concatenation, and relabeling, and
the multi-tier variants only gain closure under intersection (the proofs for ITSL
carry over with simple modifications). In addition, TSL is the natural special
case of MITSL with only one tier and ISL1 tier projection.

From a linguistic perspective, this means that even though TSL is inadequate
in multiple respects, the insights it yields are preserved with only minor modifi-
cations. TSL is not sufficiently expressive for all phonotactic dependencies, but
the move from TSL to ITSL is conceptually natural and does not affect common
closure properties. TSL complexity results also do not carry over from individual
processes to the whole system, but the extension of TSL to MTSL via multiple
tiers is linguistically appealing and once again does not affect closure properties
or the relation to other language classes. Quite simply, TSL is but one particular
point in a whole region of TSL-like classes, all of which behave very similar with
respect to closure properties and their relative place in the subregular hierarchy.

6 Learnability Considerations

In this paper we have explored the effects of generalizing the tier projection func-
tion for TSL languages to allow for structure-sensitivity. As long as one limits
structure-sensitivity to locally bounded contexts, the shift is very natural and

48 A. De Santo and T. Graf

mathematically well-behaved. In particular, ITSL allows for additional expres-
sivity while still excluding many unnatural patterns from the classes LT, LTT,
SP, PT, and SF (Fig. 1 on page 12).

But generative capacity is not the only linguistically relevant property of
language classes. Learnability is also crucial and has profound implications for
natural language acquisition [18]. The extensions we have proposed in this paper
do not alter the learnability of TSL in the limit from positive text. While the
whole class of TSL is not learnable in this paradigm because it properly subsumes
the class FIN of all finite languages, TSLk for k ≥ 0 is finite and thus learnable
[11]. This finiteness also holds for our extensions of TSL as long as all parameters
are bounded.

Theorem 10. Given fixed k, m, and n, (n,m)-MITSLk languages are learnable
in the limit from positive text.

This still leaves open, though, whether these languages are efficiently learn-
able. We expect this to be the case given the existence of efficient learners for
ISL and TSL [6,21,22]. Moreover, [25] propose an efficient algorithm for MTSL2

building on the notion of a 2-path exploited by [21]. In a similar fashion, it should
be possible to infer local contexts in the projection of tier-segments.

Conjecture 1. (n,m)-MITSLk languages are efficiently learnable from a polyno-
mial sample size in polynomial time.

The phonotactic phenomena studied so far suggest tight bounds on m, n, k
as relevant to the class of human languages [1,15]. Typological explorations thus
offer important insights into human learning abilities [8,30].

7 Conclusions

TSL languages have been proposed as a good computational hypothesis for the
complexity of phonotactic patterns. However, their tier projection function is too
limited because it is context agnostic. A wide range of empirical phenomena can
be captured if one equips TSL with an input-strictly local projection mechanism
in the sense of Chandlee [5]. The resulting new class of ITSL has the same closure
properties as TSL and extends generative capacity only by a small amount. In
particular, ITSL occupies a similar position to TSL in the subregular hierarchy.

This paper has explored but one point in a whole region of TSL-like language
classes. For instance, we completely omitted OTSL [23] and IOTSL [15]. We also
limited ourselves to comparisons to well-established classes such as LTT, ignoring
more recently defined classes [13,34]. One major reason for this limit in scope
is the lack of fertile characterizations of TSL and ITSL languages. Whereas
suffix substitution closure makes it very easy to show that a string language
is not strictly local, TSL and ITSL introduce the additional parameter of tiers
and contexts that are hard to quantify over in practice. We were able to use
string embeddings to create subsumption relations between the contexts and k-
factors of specific strings, but this technique is not nearly as versatile as suffix

Structure Sensitive Tier Projection: Applications and Formal Properties 49

substitution closure. The lack of an equally elegant characterization of TSL and
its variants is a serious impediment to a full exploration of the TSL region.

Acknowledgments. This material is based upon work supported by the National
Science Foundation under Grant No. BCS-1845344.

References

1. Aksenova, A., Deshmukh, S.: Formal restrictions on multiple tiers. Proc. Soc. Com-
put. Linguist. (SCiL) 20(18), 64–73 (2018)

2. Applegate, R.: Ineseno chumash grammar. Ph.D. thesis, UC Berkeley (1972)
3. Baek, H.: Computational representation of unbounded stress patterns: tiers with

structural features. In: Proceedings of the 53rd Meeting of the Chicago Linguistic
Society (CLS53) (2017)

4. Brzozowski, J.A., Knast, R.: The dot-depth hierarchy of star-free languages is
infinite. J. Comput. Syst. Sci. 16(1), 37–55 (1978)

5. Chandlee, J.: Strictly local phonological processes. Ph.D. thesis, University of
Delaware (2014)

6. Chandlee, J., Eyraud, R., Heinz, J.: Learning strictly local subsequential functions.
Trans. ACL 2, 491–503 (2014)

7. Chandlee, J., Heinz, J.: Strict locality and phonological maps. Linguist. Inq. 49,
23–60 (2018)

8. De Santo, A.: Commentary: developmental constraints on learning artificial gram-
mars with fixed, flexible, and free word order. Front. Psychol. 9, 276 (2018)

9. Eilenberg, S.: Automata, Languages, and Machines. Academic Press, Inc., Cam-
bridge (1974)

10. Fu, J., Heinz, J., Tanner, H.G.: An algebraic characterization of strictly piecewise
languages. In: Ogihara, M., Tarui, J. (eds.) TAMC 2011. LNCS, vol. 6648, pp.
252–263. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20877-
5 26

11. Gold, E.M.: Language identification in the limit. Inf. Control 10(5), 447–474
(1967)

12. Goldsmith, J.: Autosegmental phonology. Ph.D. thesis, MIT, Cambridge (1976)
13. Graf, T.: The power of locality domains in phonology. Phonology 34(2), pp. 385–

405 (2017). https://doi.org/10.1017/S0952675717000197
14. Graf, T.: Locality domains and phonological c-command over strings. In: 2017

Proceedings of NELS (2018). http://ling.auf.net/lingbuzz/004080
15. Graf, T., Mayer, C.: Sanskrit n-retroflexion is input-output tier-based strictly local.

In: 2018 Proceedings of SIGMORPHON (2018)
16. Heinz, J.: The computational nature of phonological generalizations. In: Hyman,

L., Plank, F. (eds.) Phonological Typology, chap. 5, pp. 126–195. Phonetics and
Phonology, Mouton De Gruyter (2018)

17. Heinz, J., Rawal, C., Tanner, H.: Tier-based strictly local constraints for phonology.
In: Proceedings of the ACL 49th: Human Language Technologies: Short Papers -
vol. 2, pp. 58–64 (2011). http://dl.acm.org/citation.cfm?id=2002736.2002750

18. Heinz, J., Riggle, J.: Learnability. In: van Oostendorp, M., Ewen, C., Hume, B.,
Rice, K. (eds.) Blackwell Companion to Phonology. Wiley-Blackwell, Hoboken
(2011)

https://doi.org/10.1007/978-3-642-20877-5_26
https://doi.org/10.1007/978-3-642-20877-5_26
https://doi.org/10.1017/S0952675717000197
http://ling.auf.net/lingbuzz/004080
http://dl.acm.org/citation.cfm?id=2002736.2002750

50 A. De Santo and T. Graf

19. Jäger, G., Rogers, J.: Formal language theory: refining the chomsky hierarchy.
Philos. Trans. R. Soc. B: Biol. Sci. 367(1598), 1956–1970 (2012)

20. Jardine, A.: Computationally, tone is different. Phonology (2016). http://udel.edu/
∼ajardine/files/jardinemscomputationallytoneisdifferent.pdf

21. Jardine, A., Heinz, J.: Learning tier-based strictly 2-local languages. Trans. ACL
4, 87–98 (2016). https://aclweb.org/anthology/Q/Q16/Q16-1007.pdf

22. Jardine, A., McMullin, K.: Efficient learning of tier-based strictly k -local languages.
In: Drewes, F., Mart́ın-Vide, C., Truthe, B. (eds.) LATA 2017. LNCS, vol. 10168,
pp. 64–76. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-53733-7 4

23. Mayer, C., Major, T.: A challenge for tier-based strict locality from Uyghur back-
ness harmony. In: Foret, A., Kobele, G., Pogodalla, S. (eds.) FG 2018. LNCS, vol.
10950, pp. 62–83. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-662-
57784-4 4

24. McMullin, K.: Tier-based locality in long-distance phonotactics?: learnability and
typology. Ph.D. thesis, University of British Columbia, February (2016). https://
doi.org/10.14288/1.0228114

25. McMullin, K., Aksënova, A., De Santo, A. (2019): Learning phonotactic restrictions
on multiple tiers. Proc. SCiL 2(1), pp. 377–378 (2019). https://doi.org/10.7275/
s8ym-bx57

26. McNaughton, R., Papert, S.: Counter-Free Automata. MIT Press, Cambridge
(1971)

27. Pin, J.E.: Varieties of Formal Languages. Plenum Publishing Co., New York (1986)
28. Rogers, J., et al.: On languages piecewise testable in the strict sense. In: Ebert,

C., Jäger, G., Michaelis, J. (eds.) MOL 2007/2009. LNCS (LNAI), vol. 6149, pp.
255–265. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14322-
9 19

29. Rogers, J., Heinz, J., Fero, M., Hurst, J., Lambert, D., Wibel, S.: Cognitive and sub-
regular complexity. In: Morrill, G., Nederhof, M.-J. (eds.) FG 2012-2013. LNCS,
vol. 8036, pp. 90–108. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-39998-5 6

30. Rogers, J., Pullum, G.K.: Aural pattern recognition experiments and the subreg-
ular hierarchy. J. Logic Lang. Inf. 20(3), 329–342 (2011)

31. Simon, I.: Piecewise testable events. In: Brakhage, H. (ed.) GI-Fachtagung 1975.
LNCS, vol. 33, pp. 214–222. Springer, Heidelberg (1975). https://doi.org/10.1007/
3-540-07407-4 23

32. Thomas, W.: Languages, automata, and logic. In: Rozenberg, G., Salomaa, A.
(eds.) Handbook of Formal Languages, pp. 389–455. Springer, Heidelberg (1997).
https://doi.org/10.1007/978-3-642-59126-6 7

33. Walker, R.: Yaka nasal harmony: spreading or segmental correspondence? Annu.
Meet. Berkeley Linguist. Soc. 26(1), 321–332 (2000). https://doi.org/10.3765/bls.
v26i1.1164

34. Yli-Jyrä, A.: Contributions to the theory of finite-state based linguistic grammars.
Ph.D. thesis, University of Helsinki (2005). http://www.ling.helsinki.fi/∼aylijyra/
dissertation/contribu.pdf

http://udel.edu/~ajardine/files/jardinemscomputationallytoneisdifferent.pdf
http://udel.edu/~ajardine/files/jardinemscomputationallytoneisdifferent.pdf
https://aclweb.org/anthology/Q/Q16/Q16-1007.pdf
https://doi.org/10.1007/978-3-319-53733-7_4
https://doi.org/10.1007/978-3-662-57784-4_4
https://doi.org/10.1007/978-3-662-57784-4_4
https://doi.org/10.14288/1.0228114
https://doi.org/10.14288/1.0228114
https://doi.org/10.7275/s8ym-bx57
https://doi.org/10.7275/s8ym-bx57
https://doi.org/10.1007/978-3-642-14322-9_19
https://doi.org/10.1007/978-3-642-14322-9_19
https://doi.org/10.1007/978-3-642-39998-5_6
https://doi.org/10.1007/978-3-642-39998-5_6
https://doi.org/10.1007/3-540-07407-4_23
https://doi.org/10.1007/3-540-07407-4_23
https://doi.org/10.1007/978-3-642-59126-6_7
https://doi.org/10.3765/bls.v26i1.1164
https://doi.org/10.3765/bls.v26i1.1164
http://www.ling.helsinki.fi/~aylijyra/dissertation/contribu.pdf
http://www.ling.helsinki.fi/~aylijyra/dissertation/contribu.pdf

Quantificational Subordination
as Anaphora to a Function

Matthew Gotham(B)

University of Oxford, Oxford, UK
matthew.gotham@ling-phil.ox.ac.uk

Abstract. In [11], a semantics for cross-sentential and donkey anaphora
is presented that is inspired by approaches using dependent types but
couched in simple type theory with parametric polymorphism. In this
paper, the approach is extended to cover quantificational subordination.
It is argued that the approach enjoys advantages over existing accounts
in type-theoretical semantics.

Keywords: Quantificational subordination · Telescoping · Anaphora ·
Polymorphism

1 Introduction

The history of dynamic semantic theories can be seen as a series of generaliza-
tions of what sentence meaning is taken to be, in order to account for the range
of constructions out of which and into which it turns out that a pronoun can
be bound. The pioneering work of [12,14,17] was developed in order to account
for cases like (1). Covariation between donkeys and the interpretation if it can-
not straightforwardly1 be accounted for in a static semantic system according
to which the interpretation of a sentence is its truth conditions, or its set of
verifying assignments, as in classical logic.

(1) Every farmer who owns a donkey beats it. [10]

However, via a generalization to the interpretation of a sentence in terms of
a relation between assignments, this covariation can be accounted for. By way
of example, the interpretation of (1) in the system described by [12], assuming
the translation into logical formalism shown in (2), is shown in (3).

(2) ∀x((farmer(x) ∧ ∃y(donkey(y) ∧ own(x, y))) → beat(x, y))

1 ‘Straightforwardly’, here, means by treating pronouns basically as variables. Static
semantic systems can account for cases like this by treating pronouns as something
else, for example concealed descriptions [7,9].

c© Springer-Verlag GmbH Germany, part of Springer Nature 2019
R. Bernardi et al. (Eds.): FG 2019, LNCS 11668, pp. 51–66, 2019.
https://doi.org/10.1007/978-3-662-59648-7_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-59648-7_4&domain=pdf
http://orcid.org/0000-0002-6549-1248
https://doi.org/10.1007/978-3-662-59648-7_4

52 M. Gotham

In turn, however, the first generation of dynamic semantic theories are chal-
lenged by examples like (4)–(6). This has led to a further generalization of theories
such that now, sentential semantic values are taken to be relations between sets of
assignments [4,5] or something more complex altogether [19].

(4) If you give every child a present, some child will open it. [25]
(5) Every woman bought a book. Most of them read it immediately. [19]
(6) Every player chooses a pawn. He puts it on square one. [12]

What examples like these have in common is that the anaphoric relationships
that we have to capture seem to depend on functional relationships established
in the first clause: between children and presents they are given in (4), between
women and books they bought in (5), and between players and pieces they
chose in (6). So, second-generation dynamic semantic theories look for ways of
preserving those relationships, either by making any output set of assignments
for the first clause such that it guarantees that the relationships are preserved
[4,5], or by allowing the update that the first sentence engenders to be stored so
that it can be reintroduced at the appropriate point in the second sentence [19].

There is an alternative approach, though, which is to see the semantic val-
ues of sentences as producing the very functions themselves, not mediated via
variable assignments. This is the approach taken in type-theoretical semantics
(TTS).

2 Type-Theoretical Semantics

Type-theoretical semantics is a proof-theoretic variety of logical semantics in
which the language of types, rather than terms, is the meaning representation
language. That is to say, instead of the meaning of a sentence (say) being repre-
sented by a term (of a type), which in turn is interpreted in a model, in TTS (in
the simplest case) the meaning of a sentence is a type T , where the inhabitants
of T are the (intuitionistic) proofs of T . Building on previous work by [29] show-
ing the application to sentences like (1), [25] used the intuitionistic type theory
(ITT) of [23] to give a detailed analysis of many natural language phenomena,
which has been followed up in recent years by several authors, summarized in
[6]. Formation, introduction and elimination rules for the crucial ITT type con-
structors Σ and Π are shown in Fig. 1. Σ is a generalization of ×, from pairs to
dependent pairs, and Π is a generalization of →, from functions to dependent
functions.

Quantificational Subordination as Anaphora to a Function 53

ΠΣ

Formation
x : A

[x : A]n....
B : type

(Σx : A)B : type
n

x : A

[x : A]n....
B : type

(Πx : A)B : type
n

Introduction
a : A b : B[a/x]
(a, b) : (Σx : A)B

[x : A]n....
b : B

λx.b : (Πx : A)B
n

Elimination
u : (Σx : A)B

π1(u) : A

u : (Σx : A)B
π2(u) : B[π1(u)/x]

a : A f : (Πx : A)B
f(a) : B[a/x]

Fig. 1. Formation, introduction and elimination rules for Σ and Π types

A possible TTS representation for (1) is shown in (7).2 The sentence is taken
to be true if and only if there is something of the type shown (the type is
inhabited), i.e. a function mapping every tuple 〈a, 〈b, 〈〈c, d〉 , e〉〉〉, where b is a
proof that a is a farmer, d is a proof that c is a donkey, and e is a proof that a
owns c, to a proof that a beats c.

(7)
(
Πu : (Σx : e)(farmer(x) × (Σv : (Σz : e)donkey(z))own(x, π1(v)))

)

beat(π1(u), π1(π1(π2(π2(u)))))

As ([25], Sect. 3.7) points out, the fact that in TTS a universal statement
expresses a function means that the functional dependency in cases like (4) can
easily be expressed, as shown in (8).

(8)

(
Πf :

(
Πu : (Σx : e)child(x)

)

(Σv : (Σy : e)present(y))give((you, π1(v), π1(u))
)

(Σw : (Σz : e)child(z))open(π1(w), π1(π1(f(w))))

Given any function f mapping every pair 〈a, b〉, where b is a proof that a
is a child, to a tuple 〈〈c, d〉 , e〉, where d is a proof that c is a present and e is
a proof that you give c to a, (8) expresses the existence of a function mapping
f to a tuple 〈〈g, h〉 , i〉 where h is a proof that g is a child and i is a proof
that g opens π1(π1(f(g, h)). So TTS automatically has the ability to capture
antecedent-pronoun relationships that first-generation dynamic semantic theo-
ries struggle with. This point has been futher explored in [31,32].

Nevertheless, the direct applicability of this antecedence-to-a-function strat-
egy is limited. In the case of (4), it was actually crucial that an appropriate
2 Following the approach of [2] rather than that of [29] or [25], i.e. treating the inter-

pretation of e.g. donkey not as the type donkey (inhabited by donkeys), but rather
as the dependent type donkey(x) (for any x : e), inhabited by proofs that x is a
donkey.

54 M. Gotham

argument for the function (some child) was present in the second sentence. In
a discussion of (6), ([25], p. 73) acknowledges as much in saying that ‘the only
way to interpret the text [. . .] is by treating the pronoun he as an abbreviation
of every player ’. Obviously, this ‘abbreviation’ strategy is unsatisfactory. Below,
I will show how it can be improved by taking a different tack.

3 The Proposal

In [11], an implementation of the ideas behind TTS is given in simple type theory
with polymorphism, once again treating the language of terms as the meaning
representation language. Taking the perspective outlined in [11], equivalents for
(7) and (8) are shown in (9) and (10), respectively. The reader can verify that
these represent the same meanings as given in (7) and (8) according to the
glosses provided, on the understanding that, following a suggestion by ([25],
Sect. 2.26), in turn picked up by [8], we allow eventualities (type v) to serve as
‘proof objects’.3 N.B. in what follows, in order to save space, application will
be written as fa rather than f(a) and left and right projections will be written
as a0 and a1 rather than π1(a) and π2(a), respectively. In type annotations, ×
binds more tightly than →, and both associate to the right.

(9) ∃fe×e×v→v.∀ue×e×v.farmeru0 ∧ donkey(u1)0 ∧ ownu → beat(u0, (u1)0, fu)

(10)
∃fτ→e×v.∀gτ .

(∀xe.childx → (present(gx)0 ∧ give(you, (gx)0, x, (gx)1))
)

→ (
child(fg)0 ∧ open((fg)0, (g(fg)0)0, (fg)1)

)

where τ := e → e × v

Like TTS, the system described in [11] does not straightforwardly have
the means to account for the examples (5)–(6). In this section an extension
is described that does so, on the basis of the lexicon shown in Fig. 2.

3.1 Syntax and Semantics

The syntactic theory assumed here is a modified version of Combinatory Cate-
gorial Grammar (CCG, [27]) according to which syntactic categories are poten-
tially parameterized by types. Lexical entries are pairs M : C of meaning M
and category C such that the type of M is Ty(C), where Ty is as defined in
(11). The combinatory rules for the fragment are shown in Fig. 3. Note that we
have adopted the G rule from [15] for passing pronominal dependencies (without
adopting the theory of pronouns described in [15]), to which we have added a
rule X of exchange.4

3 I only claim that eventualities (states or Davidsonian events) can be operationalized
in this way, not that this is the only way to make sense of proof objects in a model-
theoretic perspective. Other options worth considering would be situations [21] or
even, as one reviewer suggests, to fill the proof object slot with a dummy object of
the unit type (as I have done for common nouns).

4 In the G and X rules, |could be / or \.

Quantificational Subordination as Anaphora to a Function 55

Fig. 2. The lexicon

56 M. Gotham

Fig. 3. CCG rules used

On the semantic side, lexical entries are also parameterized by type, so we
can see Fig. 2 as in effect giving us schemata over lexical entries. The base
types are e (entities), v (eventualities), 1 (unit) and t (booleans), and the type
(meta)variables range over the closure of this set under the type constructors ×
and →. Furthermore, we are assuming a partial theory of types, as described for
example in [13, Sect. 4]. For each base type τ the undefined object of type τ , �τ ,
is stipulated,5 and then for complex types undefined objects are as specified in
(12).6

(12) For any types α, β:
– �α×β :=

(
�α, �β

)

– �α→β := the unique f ::α → β such that for all a :: α, fa = �β

This notion of definedness then features in the definition of dom, shown in
(13) and used in the analysis of quantificational subordination (dom is mnemonic
for ‘domain’).

(13) For any types α, β and term f ::α → β,domf := λaα.fa �= �β .

Finally, note the general lexical entries for (strong and weak) determiners,
which represents an advance on the ad-hoc entries given in [11]. In these entries,
det is the meaning of the determiner understood as a relation between sets, in
terms of generalized quantifier theory. In those terms, the meanings given are
roughly equivalent to saying that a sentence [[D N] VP], assuming that �D� is a
relation between sets of entities, �N� is a set of entities and �VP� is a relation
between entities and events, expresses the existence of a function f with domain
X, where X is a witness set of �D� (�N�),7 such that f maps every x ∈ X to some
e such that 〈x, e〉 ∈ �VP�, and there is no other set Y such that X � Y ⊆ �N�
and Y ⊆ {y | there is an e such that 〈y, e〉 ∈ �VP�}. So, for example, two boys
jump expresses a function f with domain X, where X is a set of two boys, such
that f maps every x ∈ X to an event of x jumping, and there is no proper
superset Y of X such that Y is a set of boys and, for every y ∈ Y , there is an
event of y jumping.
5 Space precludes proper discussion of various technical questions here; suffice to say

that we do have a third truth value but we do not have a second element of the unit
type.

6 � must not be confused with ∗, which is the unique object of the unit type.
7 That is, a witness set in the sense of ([1], Sect. 4.9), i.e. a set S such that S ⊆ �N�

and 〈�N� , S〉 ∈ �D�.

Quantificational Subordination as Anaphora to a Function 57

3.2 Derivations

We now are in a position to show derivations for some examples. First, the
simple donkey sentence (1), the derivation of which is given in (14). gqα,β,γ,δ is
an abbreviation for sγ,δ/(sα,β\np) and gqα,β∗2 is an abbreviation for gqα,β,α,β .

(14) Derivation of (1). Let ε := e × 1, σ := e × 1 × ε and τ := e × 1 × e × 1 × v.
Then:

Weak interpretation:

λg1×τ→e.∃fτ→v. dom f ⊆ (λuτ .farmeru0 ∧ donkey((u1)1)0
∧ own(u0, ((u1)1)0, ((u1)1)1))

∧ every(λxe.farmerx ∧ ∃ze.donkey z ∧ ∃ev.own(x, z, e))

(λxe.∃o1×e×1×v.dom f(x, o))

∧ ∀aτ .dom fa → beat(a0, (g(∗, a)), (fa))

58 M. Gotham

Strong interpretation:

λg1×τ→e.∃fτ→v. dom f ⊆ (λuτ .farmeru0 ∧ donkey((u1)1)0
∧ own(u0, ((u1)1)0, ((u1)1)1))

∧ every(λxe.farmerx ∧ ∃ze.donkey z ∧ ∃ev.own(x, z, e))

(λxe.∃o1×e×1×v.dom f(x, o))

∧ (∀aτ .dom fa → beat(a0, (g(∗, a)), (fa)))
∧ ∀xe.∀ze.∀ev.(farmerx ∧ donkey z ∧ own(x, z, e)

∧ ∃ve×v.dom f(x, v)) → dom f(x, z, e)

The open abstraction λg represents anaphoric resolution, and so is resolved
contextually. In this case, the function that gets the right resolution is shown in
(15).

(15) λi1×e×1×e×1×v.(((i1)1)1)0

The strong interpretation differs from the weak in requiring that, if some
farmer x and donkey z that x owns are in the domain of f , then so are x and
y for every donkey y that x owns. With the resolution shown in (15) applied,
the strong interpretation shown above is equivalent to the one shown in (9).
In neither case is the final clause of the definition of a determiner from Fig. 2
shown, because this maximality clause only makes a truth-conditional difference
for non-monotone-increasing determiners.

We will come back to the issue of appropriate anaphoric resolution after
considering our next example, (5), in (16).

(16) Derivation of (5). Let ε := e × 1, σ := ε → ε × v and τ := 1 × σ × ε. Then:

Quantificational Subordination as Anaphora to a Function 59

Weak interpretation:

λgτ→e.λG1×σ→e→t.∃W σ×(e×1→v).dom W0 = (λoe×1.woman o0)

∧ (∀ue×1.dom W0u → (book((W0u)0)0 ∧ read(u0, ((W0u)0)0, (W0u)1)))

∧ dom W1 ⊆ (λve×1.G(∗,W0)v0)
∧ most(λxe.G(∗,W0)x)(λxe.dom W1(x, ∗))

∧ ∀ae×1.dom W1a → read(a0, g(∗,W0, a), (W1a))

In this case there are two open abstractions to resolve, for it and of them
respectively. The appropriate resolutions are shown in (17) and (18) respectively.

(17) λn1×(e×1→(e×1)×v)×e×1.
((

(n1)0 (n1)1
)
0

)
0

(18) λm1×(e×1→(e×1)×v).λxe.∃i1.dom m1(x, i)
≡ λm1×(e×1→(e×1)×v).λxe.dom m1(x, ∗)

With those resolutions in place, the (weak) interpretation of the sentence is:

∃Wσ×(e×1→v).dom W0 = (λoe×1.woman o0)

∧ (∀ue×1.dom W0u → (book((W0u)0)0 ∧ read(u0, ((W0u)0)0, (W0u)1)))
∧ dom W1 ⊆ dom W0 ∧ most(λxe.dom W0(x, ∗))(λxe.dom W1(x, ∗))

∧ ∀ae×1.dom W1a → read(a0, (W0a)0, (W1a))

This expresses the existence of a pair of functions, the first f mapping every
woman to a book she bought and the second mapping most things x in the
domain of f (i.e. most women) to an event of x reading fx.

60 M. Gotham

The anaphoric resolution functions (15), (17) and (18) are all natural reso-
lution functions (NRFs) according to the definition shown in (19).

(19) The set of NRFs is the smallest set such that, for any types α, β and γ and
any terms F :: α → β → γ,G :: β → γ and H :: α → β:
– λaα.a is an NRF
– λAα×β .A0 is an NRF
– λAα×β .A1 is an NRF
– λXα×β→t.λaα.∃bβ .X(a, b) is an NRF
– λXα×β→t.λbα.∃aβ .X(a, b) is an NRF
– λfα→β .dom f is an NRF
– λaα.G(Ha) is an NRF if G and H are NRFs
– λaα.Fa(Ha) is an NRF if F and H are NRFs

Of course, this definition has been formulated post-hoc. Nevertheless, there
is a naturalness to it: a resolution function can select projections, sets of pro-
jections, and the domain of a function, and can apply one thing it selects to
another when the types match.

4 Telescoping

To deal with example (6), however (repeated below), additional machinery is
required.

(6) Every player selects a pawn. He puts it on square one.

The reason that examples like (6), sometimes called ‘telescoping’ [26], pose
a particular challenge is that there is nothing in the second sentence that is
explicitly anaphoric on the function expressed by the first sentence. In contrast,
the seemingly equivalent sentence (20) could be dealt with in basically the same
way as (5), by making they anaphoric to the domain of the function mapping
every player to the pawn he selects, i.e. the set of players.

(20) Every player selects a pawn. They put it on square one.

4.1 Covert Subordination

In order to deal with examples like (6), [26] posits the existence of a covert adver-
bial at the start of the second sentence, meaning something like ‘in every case’.
We will adopt essentially the same strategy. In (21) we postulate a silent subor-
dinating operator that, when applied to the usual sentential conjunction shown
in Fig. 2, gives (22) as an alternative, subordinating, sentential conjunction.

(21) λC(α→(β→γ)→t)→(α×(β→δ)→(β→δ)→t)→α→(β→γ)×(β→δ)→t.
λpα→(β→γ)→t.λqα×β×(β→γ)→δ→t.Cp

(
λoα×(β→γ).λfβ→δ.dom o1 = dom f
∧∀bβ .dom fb → q(o0, b, o1)(fb)

)

Quantificational Subordination as Anaphora to a Function 61

(22)
;sub � λpα→(β→γ)→t.λqα×β×(β→γ)→δ→t.λiα.λo(β→γ)×(β→δ).pio0

∧domo0 = domo1 ∧ ∀bβ .domo1b → q(i, b, o0)(o1b)
: (sα,(β→γ)×(β→δ)/sα×β×(β→γ),δ)\sα,β→γ

We can now give a (summarized) derivation for (6), in (23).

(23) Derivation of (6). Let ε := e × 1, σ := ε × v, τ := ε → σ and ω := 1 × ε × τ .
Then:

Interpretation:

λgω→e.λhω→e.∃F τ×(ε→v).dom F0 = (λoe×1.player o0)
∧ (∀uε.dom F0u → (pawn((F0u)0)0 ∧ select(u0, ((F0u)0)0, (F0u)1)))
∧ dom F0 = dom F1 ∧ ∀aε.dom F1a → put(h(i, a, F0), g(i, a, F0), onsq1, (F1a))

We need to apply this formula to the resolutions for it and he respectively.
The appropriate resolutions are shown in (24) and (25) respectively. They are
both NRFs as defined in (19).

(24) λn1×(e×1)×((e×1)→(e×1)×v).
((

(n1)1 (n1)0
)
0

)
0

(25) λn1×(e×1)×((e×1)→(e×1)×v).((n1)0)0

With those resolutions in place, the sentence is interpreted as shown below.8

∃F τ×(ε→v).dom F0 = (λoe×1.player o0)
∧ (∀uε.dom F0u → (pawn((F0u)0)0 ∧ select(u0, ((F0u)0)0, (F0u)1)))
∧ dom F0 = dom F1 ∧ ∀aε.dom F1a → put(a0, ((F0a)0)0, onsq1, (F1a))

8 As a result of the semantics assumed for every, the part of this formula corresponding
to every player selects a pawn can be seen as a Skolemized version of (26).

(26) ∀ue×1.playeru0 → ∃v(e×1)×v.pawn(v0)0 ∧ select(u0, (v0)0, v1)

But since we have the Skolem function F0, in the next conjunct the pronoun can be
represented by ((F0a)0)0, achieving the desired binding. A reviewer points out that
this gives the analysis presented a certain resemblance to approaches that use epsilon
terms to model indefinites and donkey pronouns (e.g. [18,24,28]), an observation for
which I’m grateful.

62 M. Gotham

This expresses the existence of a pair of functions, the first f of which maps
every player to a pawn he chooses, and the second of which maps every player
x to an event of x putting fx on square one.

The subordinating operator defined in (21), which is hypothesized to apply
covertly in cases like (6), can also apparently be overt, as for example in (27).

(27) Every player chooses a pawn. He always puts it on square one.

And in fact, always in this sense seems to be just a special case of a variety
of possible subordinators, as we can see from (28)–(29).

(28) Every player chooses a pawn. He usually puts it on square one.
(29) Every player chooses a pawn. He rarely puts it on square one.

The subordinating sentential conjunctions that apply in each of these cases
are special instances of (30), where, as we have seen, det can at least be every
(for always), most (for usually) or few (for rarely).

(30)
λpα→(β→γ)→t.λqα×β×(β→γ)→δ→t.λiα.λo(β→γ)×(β→δ).pio0

∧dom o1 ⊆ dom o0 ∧ det(dom o0)(dom o1)
∧∀bβ .dom o1b → q(i, b, o0)(o1b)

4.2 Constraints

Understood as a covert operator, the subordinator defined in (21) will cause vast
overgeneration if allowed to apply too freely. It would, for example, allow the
interpretation of he to covary with players in (31), but this is surely undesirable.

(31) ? Every player chooses a pawn. He has brown hair.

Empirical evidence is presented in [34] to show that a major constraint on
this kind of quantificational subordination is the discourse relation that holds
between the two sentences, where discourse relations are defined as in the frame-
work of segmented discourse representation theory (SDRT, [22]). In that frame-
work, the relation is taken to be Narration in the case of (6), but Background in
the case of (31), for example. We can adopt this insight and take the discourse
relation holding between sentences S1 and S2 as as a constraint on the applica-
bility of a covert subordinator to the sentential conjunction coming between S1

and S2. I leave open the question of precisely the level at which this constraint
should be stated.

5 Comparison with TTS

Existing discussion of quantificational subordination in TTS [31,32] has focused
almost exclusively on examples like (4). Now, the intended interpretations of
(5) and (6) can certainly be represented in TTS, as shown in (32) and (33)
respectively.9

9 See [30,33] for discussion of generalized quantifiers like Most in TTS.

Quantificational Subordination as Anaphora to a Function 63

(32)
(Σf : (Πv : (Σx : e)woman(x)))

(Σu : (Σy : e)book(y))choose(π1(v), π1(π1(u)))
Most(λx.woman(x))(λx.woman(x) × read(x, π1(π1(f(x)))))

(33)
(Σf : (Πv : (Σx : e)player(x)))

(Σu : (Σy : e)pawn(y))select(π1(v), π1(π1(u)))
(Πv : (Σx : e)player(x))put(π1(v), π1(π1(f(v))),onsq1)

But the question is, how easily can those representations be derived com-
positionally? In the variety of TTS that has dealt most fully with the issues
of compositionality and anaphora resolution, Dependent Type Semantics (DTS,
[2,3,20,31,32]), pronouns are represented by @ terms, as defined in (34).

A term @ : A is well-typed in a context, then, iff it is provable that there
is some term of type A in that context. Anaphoric resolution then amounts to
replacing the @ term with some a : A at the point of type checking. In the
version of DTS presented in [2,3], pronouns express @ terms that are functions
from left contexts to entities, much like the system presented in this paper. An
example is given in (35).10

(35) it � λP e→α→type.λcα.P ((@i : α → e)(c))(c) : s/(s\np)

So much for it, what about they or of them? A clue is given as to how this
would work is given in ([31], p. 133), where it is stated that ‘the type annotation
of the @-term associated with they requires a predicate and a proof term of the
cardinality condition’. However, no type annotation is actually given, so it is
difficult to judge this claim. Most requires its first argument to be a predicate,
i.e. (in DTS) something of type e → type. It is reasonable to assume, then, that
the @-term associated with of them should encode a function from left contexts
to predicates. In the case of (5) the relevant @ term would therefore be as shown
in (36).

Without some equivalent of dom as discussed above, there is no way to get
the right predicate, λx.woman(x), out of the left context in (36).

Alternatively, one could eschew the functions-from-a-left-context approach
to pronouns (as in [31,32]) and instead adopt a simpler perspective according
to which of them would (presumably) be translated as @k : e → type. But
then, in order to encode a subordinating conjunction to deal with cases like (6),

10 Each @ term bears a unique index, which in the following examples are (arbitrarily)
chosen as i, j, k.

64 M. Gotham

something like dom is still needed. Standard sentential conjunction in this version
of DTS is shown in (37); (38) shows an attempt to formulate a subordinating
conjunction, but we don’t know what type to put in in place of the question
mark.

(37) λp.λq.(Σu : p)q
(38) λp.λq.(Σu : p)(Πv :?)q

Furthermore, the system presented in this paper benefits from a general def-
inition of determiner meanings, as shown in Fig. 2 and discussed in Sect. 3.1. In
contrast, while there has been some work on constructive generalized quantifiers
appropriate for TTS [30,33], this is still at the ad-hoc, case-by-case stage, and
there has been no discussion of monotone-decreasing determiners, for example.

6 Discussion and Future Work

At face value, many examples of anaphoric dependencies look like they depend
on functional relationships established in discourse. We have shown that quite
some progress in capturing those anaphoric dependencies can be made by taking
that impression seriously, i.e. by having sentences denote functions and allowing
those functions to serve as pronominal antecedents. We hope to have shown that
this is a viable alternative to placeholders like sets of assignment functions, from
which those functions have to be extracted.

One obvious next place to look for applications of this approach is in the treat-
ment of ‘paycheck’ pronouns; for example, the interpretation of (39) according
to which the second sentence is interpreted as equivalent to every fourth grade
boy hates his (own) mother.

(39) Every third grade boy loves his mother. But every fourth grade boy hates
her. [16]

Once again, the interpretation of the second sentence gives the impression of
depending on a functional relationship established in the first, namely between
people and their mothers. And, in fact, many accounts of paycheck pronouns
do in fact take that approach, either by saying that the relevant function is
contextually salient [7] or, in a recent TTS analysis [32], that it is introduced by
the presupposition of the possessive pronoun in the first sentence.

Another obvious avenue for extension is the phenomenon of modal subordi-
nation, as exemplified by (40).

(40) A wolf might come in. It would eat you first. [26]

Of course, this would require an account of modality, which has not been
offered yet.

Acknowledgements. This research is supported by an Early Career Fellowship from
the Leverhulme Trust.

Quantificational Subordination as Anaphora to a Function 65

References

1. Barwise, J., Cooper, R.: Generalized quantifiers and natural language. Linguist.
Philos. 4(2), 159–219 (1981)

2. Bekki, D.: Representing anaphora with dependent types. In: Asher, N., Soloviev,
S. (eds.) LACL 2014. LNCS, vol. 8535, pp. 14–29. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-43742-1 2

3. Bekki, D., Mineshima, K.: Context-passing and underspecification in dependent
type semantics. In: Chatzikyriakidis, S., Luo, Z. (eds.) Modern Perspectives in
Type-Theoretical Semantics. SLP, vol. 98, pp. 11–41. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-50422-3 2

4. van den Berg, M.: Some aspects of the internal structure of discourse. Ph.D. thesis,
University of Amsterdam (1996)

5. Brasoveanu, A.: Structured nominal and modal reference. Ph.D. thesis, Rutgers
University (2007)

6. Chatzikyriakidis, S., Luo, Z. (eds.): Modern Perspectives in Type-Theoretical
Semantics. SLP, vol. 98. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-50422-3

7. Cooper, R.: The interpretation of pronouns. In: Heny, F., Schnelle, H. (eds.) Syntax
and Semantics, vol. 10, pp. 61–92. Academic Press, New York (1979)

8. Cooper, R.: Records and record types in semantic theory. J. Logic. Comput. 15(2),
99–112 (2005)

9. Elbourne, P.: Situations and Individuals. MIT Press, Cambridge (2005)
10. Geach, P.T.: Reference and generality. In: Contemporary Philosophy, Cornell Uni-

versity Press, Ithaca (1962)
11. Gotham, M.: A model-theoretic reconstruction of type-theoretic semantics for

anaphora. In: Foret, A., Muskens, R., Pogodalla, S. (eds.) FG 2017. LNCS, vol.
10686, pp. 37–53. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-662-
56343-4 3

12. Groenendijk, J., Stokhof, M.: Dynamic predicate logic. Linguist. Philos. 14(1),
39–100 (1991)

13. Haug, D.T.T.: Partial dynamic semantics for anaphora. J. Seman. 31, 457–511
(2014)

14. Heim, I.: The semantics of definite and indefinite nouns phrases. Ph.D. thesis,
University of Massachussetts, Amherst (1982)

15. Jacobson, P.: Towards a variable-free semantics. Linguist, Philos. 22(2), 117–184
(1999)

16. Jacobson, P.: Compositional Semantics. Oxford University Press, Oxford (2014)
17. Kamp, H.: A theory of truth and semantic representation. In: Groenendijk, J.,

Janssen, T., Stokhof, M. (eds.) Formal Methods in the Study of Language, pp.
277–322. Mathematisch Centrum, Amsterdam (1981)

18. Kempson, R., Meyer-Viol, W., Gabbay, D.: Dynamic Syntax. Blackwell, Oxford
(2001)

19. Keshet, E.: Dynamic update anaphora logic. J. Seman. 35, 263–303 (2018). https://
doi.org/10.1093/jos/ffx020

20. Kinoshita, E., Mineshima, K., Bekki, D.: Coercion as proof search in dependent
type semantics. Oslo Stud. Lang. 10(2), 143–162 (2018)

21. Kratzer, A.: Situations in natural language semantics. In: Zalta, E.N. (ed.) The
Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford Univer-
sity, Summer 2019 (2019). https://plato.stanford.edu/archives/sum2019/entries/
situations-semantics/

https://doi.org/10.1007/978-3-662-43742-1_2
https://doi.org/10.1007/978-3-319-50422-3_2
https://doi.org/10.1007/978-3-319-50422-3
https://doi.org/10.1007/978-3-319-50422-3
https://doi.org/10.1007/978-3-662-56343-4_3
https://doi.org/10.1007/978-3-662-56343-4_3
https://doi.org/10.1093/jos/ffx020
https://doi.org/10.1093/jos/ffx020
https://plato.stanford.edu/archives/sum2019/entries/situations-semantics/
https://plato.stanford.edu/archives/sum2019/entries/situations-semantics/

66 M. Gotham

22. Lascarides, A., Asher, N.: Segmented discourse representation theory. In: Bunt,
H., Muskens, R. (eds.) Computing Meaning, pp. 87–124. No. 83 in Studies in
Linguistics and Philosophy, Springer, Dordrecht (2008). https://doi.org/10.1007/
978-1-4020-5958-2 5

23. Martin-Löf, P.: An intuitionistic theory of types: predicative part. In: Rose, H.,
Shepherdson, J. (eds.) Logic Colloquium 1973, pp. 73–118. No. 80 in Studies in
Logic and the Foundations of Mathematics, North-Holland, Amsterdam (1975)

24. Peregrin, J., von Heusinger, K.: Dynamic semantics with choice functions. In:
Kamp, H., Partee, B. (eds.) Context-Dependence in the Analysis of Linguistic
Meaning, pp. 255–274. Elsevier, Amsterdam (2004)

25. Ranta, A.: Type-Theoretical Grammar. No. 1 in Indices, Oxford University Press,
Oxford (1994)

26. Roberts, C.: Modal subordination, anaphora and distributivity, Ph.D. thesis, Uni-
versity of Massachusetts at Amherst (1987)

27. Steedman, M.: The Syntactic Process. MIT Press, Cambridge (2000)
28. Steedman, M.: Taking Scope. MIT Press, Cambridge (2012)
29. Sundholm, G.: Proof theory and meaning. In: Gabbay, D., Guenther, F. (eds.)

Handbook of philosophical logic. Synthese Library (Studies in Epistemology, Logic,
Methodology, and Philosophy of Science), vol. 166, pp. 471–506. Springer, Dor-
drecht (1986). https://doi.org/10.1007/978-94-009-5203-4 8

30. Sundholm, G.: Constructive generalized quantifiers. Synthese 79(1), 1–12 (1989)
31. Tanaka, R., Mineshima, K., Bekki, D.: On the interpretation of dependent plural

anaphora in a dependently-typed setting. In: Kurahashi, S., Ohta, Y., Arai, S.,
Satoh, K., Bekki, D. (eds.) JSAI-isAI 2016. LNCS (LNAI), vol. 10247, pp. 123–
137. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61572-1 9

32. Tanaka, R., Mineshima, K., Bekki, D.: Paychecks, presupposition, and dependent
types. EasyChair Preprint no. 215 (2018). 10.29007/qw7n

33. Tanaka, R., Nakano, Y., Bekki, D.: Constructive generalized quantifiers revisited.
In: Nakano, Y., Satoh, K., Bekki, D. (eds.) JSAI-isAI 2013. LNCS (LNAI), vol.
8417, pp. 115–124. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
10061-6 8

34. Wang, L., McCready, E., Asher, N.: Information dependency in quantificational
subordination. In: von Heusinger, K., Turner, K. (eds.) Where Semantics Meets
Pragmatics, pp. 267–306. Elsevier (2003)

https://doi.org/10.1007/978-1-4020-5958-2_5
https://doi.org/10.1007/978-1-4020-5958-2_5
https://doi.org/10.1007/978-94-009-5203-4_8
https://doi.org/10.1007/978-3-319-61572-1_9
https://doi.org/10.1007/978-3-319-10061-6_8
https://doi.org/10.1007/978-3-319-10061-6_8

Undecidability of a Newly Proposed
Calculus for CatLog3

Max Kanovich1,4,5, Stepan Kuznetsov2,4(B), and Andre Scedrov3,4

1 University College London, London, UK
m.kanovich@ucl.ac.uk

2 Steklov Mathematical Institute of the RAS, Moscow, Russia
sk@mi-ras.ru

3 University of Pennsylvania, Philadelphia, USA
scedrov@math.upenn.edu

4 National Research University Higher School of Economics, Moscow, Russia
{mkanovich,slkuznetsov,ascedrov}@hse.ru

5 Institute of Oriental Studies of the RAS, Languages Department, Moscow, Russia

Abstract. In his recent papers “Parsing/theorem-proving for logical
grammar CatLog3” and “A note on movement in logical grammar”, Glyn
Morrill proposes a new substructural calculus to be used as the basis for
the categorial grammar parser CatLog3. In this paper we prove that the
derivability problem for a fragment of this calculus is algorithmically
undecidable.

Keywords: Categorial grammar · Contraction rule · Undecidability

1 Introduction

In his recent papers [31,32], Glyn Morrill proposes a new substructural calculus,
to be used as the basis for the categorial grammar parser CatLog3. As the first
step on the road of investigating algorithmic properties of the new Morrill’s
system, in this paper we shall prove that the derivability problem for a fragment
of this calculus is algorithmically undecidable.

The source of undecidability is the contraction rule. In Morrill’s systems,
however, contraction appears in a very non-standard form. Moreover, the con-
traction rule presented in Morrill’s new papers significantly differs from other
ones, therefore, earlier undecidability proofs [12,14,23] do not work for this new
version of contraction rule. Thus, a new technique should be invented, and we
do that in the present paper.

The idea of categorial grammars goes back to Ajdukiewicz [2] and Bar-
Hillel [3]. The version of categorial grammars used by Morrill is an extension
of Lambek categorial grammars [22]. In a categorial grammar, each word (lex-
eme) of the language is given one or several syntactic categories (types), which
are formulae of a specific logical system, an extension of the Lambek calculus.

c© Springer-Verlag GmbH Germany, part of Springer Nature 2019
R. Bernardi et al. (Eds.): FG 2019, LNCS 11668, pp. 67–83, 2019.
https://doi.org/10.1007/978-3-662-59648-7_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-59648-7_5&domain=pdf
https://doi.org/10.1007/978-3-662-59648-7_5

68 M. Kanovich et al.

Parsing with categorial grammars, that is, checking whether a sentence is con-
sidered correct according to the grammar, reduces to checking derivability in
the logical system involved. Namely, a sequence of words a1 . . . an is accepted by
the grammar if and only if there exist such formulae A1, . . . , An that, for each
i, Ai is one of the syntactic categories for ai, and the sequent A1, . . . , An ⇒ S
is derivable. Here S is a designated syntactic category for grammatically correct
sentences.

The Lambek calculus, which is used as the basis for categorial grammars,
is a substructural logic and is closely related to Girard’s linear logic [1,7]. In
linear logic, formulae are treated as resources, thus, each formula should be used
exactly once. This motivates the absence of the structural rules of contraction
and weakening. Moreover, the Lambek calculus is also non-commutative, i.e.,
does not include the rule of permutation (word order matters).

Sometimes, however, structural rules are allowed to be restored, in a
restricted and controlled way, in order to treat subtle syntactic phenomena.
One of such phenomena is parasitic extraction, which happens in phrases like
“the paper that John signed without reading.” Here the dependent clause has
two gaps, which we denote by []: “John signed [] without reading [],” which
should both be filled by the same “the paper” in order to obtain a complete
sentence. In the logic, this is handled by the contraction rule in its non-local
form:

Γ1, !A,Γ2, !A,Γ3 ⇒ C

Γ1, !A,Γ2, Γ3 ⇒ C

Here ! is the (sub)exponential modality, and the contraction rule is allowed
to be applied to formulae of the form !A, and only to them.

Extension of the Lambek calculus with a subexponential modality which
allows the non-local contraction rule formulated as presented above are unde-
cidable [16]. In Morrill’s systems, however, the contraction rule is presented in a
rather non-standard form. The reason is in the usage of brackets which introduce
controlled non-associativity. Brackets prevent the calculus from overgeneration,
that is, from justifying grammatically incorrect sentences as correct ones. The
contraction rule, as shown below, also essentially interacts with brackets. This
makes standard undecidability proofs unapplicable to Morrill’s systems, so new
undecidability proofs are needed.

In order to make our examples more formal, we assign syntactic type N
to noun phrases, like “John” or “the paper,” and S to grammatically correct
sentences. Our dependent clause “John signed without reading” receives type
S / !N , meaning a syntactic object which lacks a noun phrase in order to become
a complete sentence (“John signed the paper without reading the paper”). The
subexponential modality ! applied to N means that our noun phrase should be
commutative (in order to find its place inside the sentence) and allow contraction
(in order to fill both gaps).

Overgeneration is exhibited by the following example: *“the paper that
John signed and Pete ate a pie” (the asterisk marks the sentence as ungram-
matical). On one hand, this phrase is clearly ungrammatical, because of

Undecidability of a Newly Proposed Calculus for CatLog3 69

the irrelevant fragment “Pete ate a pie” in the dependent clause. On the
other hand, being a sentence with one gap, “John signed [] and Pete ate a pie”
receives the same type S / !N , which makes it equivalent to correct depen-
dent clauses like “John signed [] yesterday.” In order to address this issue, Mor-
rill [26] and Moortgat [25] introduce brackets which embrace so-called islands,
which, within our setting, cannot be penetrated by !N . In particular, and-
coordination of sentences makes the result a bracketed island. Since phrases
like *“the paper that John left the office without reading” are also ungrammat-
ical, a without-clause also forms an island and should be embraced in brackets.
This leads to Morrill’s idea of handling parasitic extraction [27, Sect. 5.5]: in the
dependent clause, there is one principal, or host gap, which should not be inside
an island, and parasitic gaps, which reside in islands. Moreover, a parasitic gap
can also be a host for its own “second-order” parasitic gaps.

Thus, the contraction rule should take one !A from a bracket-embraced island
and remove it, in the presence of another !A outside the island. However, after
that the bracketing should be somehow changed, in order to avoid another usage
of the same island for parasitic gapping. This general idea, however, has different
realisations in a number of works of Morrill and his co-authors [27–29,31,32].
In the next section we show the most recent approach [31,32], which essentially
resembles the original construction from Morrill’s 2011 book [27].

2 The Calculus

Morrill’s calculus for CatLog3 [32] is quite involved, including up to 45 connec-
tives. The metasyntax of sequents in this calculus is also rather non-standard,
involving brackets and meta-operations for discontinuity. In this paper we con-
sider its simpler fragment, involving only the multiplicative Lambek operations:
left and right divisions (\, /), multiplication (•), and the unit (I), brackets and
bracket modalities (〈〉, []−1), and the subexponential modality, and already for
this fragment we show undecidability.

Notice that Morrill’s system also includes Kleene star, axiomatised by means
of an ω-rule. In Morrill’s system, it is called “existential exponential” and
denoted by “?”. In the presence of the Kleene star the Lambek calculus is
known to be at least Π0

1 -hard [5,20] and thus undecidable. Moreover, in the
view of Kozen’s [18] results on complexity of Horn theories of Kleene algebras,
the complexity of the system including both Kleene star and the subexponen-
tial could potentially rise even higher, up to Π1

1 -completeness. Morrill, however,
emphasizes the fact that in formulae used in categorial grammars designed for
real languages the Kleene star never occurs with positive polarity. Thus, the ω-
rule is never used, and the Kleene star does not incur problems with decidability.
Thus, the only possible source of undecidability is the specific contraction rule
for the subexponential. We consider a fragment of Morrill’s system with this
rule, which is sufficient to show undecidability.

Let us define the syntax of our fragment. Formulae will be built from vari-
ables (primitive types) p, q, . . . and the multiplicative unit constant I using

70 M. Kanovich et al.

three binary operations: \ (left division), / (right division), • (product), and
three unary operation: 〈〉 and []−1 (bracket modalities) and ! (subexponential).
Sequents (in Morrill’s terminology, h-sequents) of !sb1/2L

∗b are expressions of the
form Ξ ⇒ A, where A is a formula and Ξ is a complex metasyntactic structure
which we call meta-formula (Morrill calls them zones). Meta-formulae are built
from formulae using comma and brackets; also, formulae which are intended to
be marked by the subexponential !, which allows permutation, are placed into
special commutative areas called stoups (cf. [8,9,17]). Following Morrill [32], we
define the notion of meta-formula along with two auxiliary notions, stoup and
tree term, simultaneously.

– A stoup is a multiset of formulae: ζ = {A1, . . . , An}. A stoup could be empty,
the empty stoup is denoted by ∅.

– A tree term is either a formula or a bracketed expression of the form [Ξ],
where Ξ is a meta-formula.

– A meta-formula is an expression of the form ζ;Γ , where ζ is a stoup and Γ
is a linearly ordered sequence of tree terms. Here Γ could also be empty; the
empty sequence is denoted by Λ.

We use comma both for concatenation of tree term sequences and for multiset
union of stoups (Morrill uses � for the latter). Moreover, for adding one formula
into a stoup we write ζ,A instead of ζ, {A}.

Axioms and rules of !sb1/2L
∗b are as follows.

∅;A ⇒ A
id

ζ1;Γ ⇒ B Ξ(ζ2;Δ1, C, Δ2) ⇒ D

Ξ(ζ1, ζ2;Δ1, C / B, Γ, Δ2) ⇒ D
/L

ζ;Γ, B ⇒ C

ζ;Γ ⇒ C / B
/R

ζ1;Γ ⇒ A Ξ(ζ2;Δ1, C, Δ2) ⇒ D

Ξ(ζ1, ζ2;Δ1, Γ, A \ C, Δ2) ⇒ D
\L

ζ;A, Γ ⇒ C

ζ;Γ ⇒ A \ C
\R

Ξ(ζ;Δ1, A, B, Δ2) ⇒ D

Ξ(ζ;Δ1, A • B, Δ2) ⇒ D
•L

ζ1;Δ ⇒ A ζ2;Γ ⇒ B

ζ1, ζ2;Δ, Γ ⇒ A • B
•R

Ξ(ζ;Δ1, Δ2) ⇒ A

Ξ(ζ;Δ1, I, Δ2) ⇒ A
IL

∅;Λ ⇒ I
IR

Ξ(ζ;Δ1, A, Δ2) ⇒ B

Ξ(ζ;Δ1, [∅; []−1A], Δ2) ⇒ B
[]−1L

∅; [Ξ] ⇒ A

Ξ ⇒ []−1A
[]−1R

Ξ(ζ;Δ1, [∅;A], Δ2) ⇒ B

Ξ(ζ;Δ1, 〈〉A, Δ2) ⇒ B
〈〉L Ξ ⇒ A

∅; [Ξ] ⇒ 〈〉A 〈〉R

Ξ(ζ, A;Γ1, Γ2) ⇒ B

Ξ(ζ;Γ1, !A, Γ2) ⇒ B
!L

∅; !A ⇒ B

∅; !A ⇒ !B
!R

Undecidability of a Newly Proposed Calculus for CatLog3 71

Ξ(ζ;Γ1, A, Γ2) ⇒ B

Ξ(ζ, A;Γ1, Γ2) ⇒ B
!P

Ξ(ζ, A;Γ1, [A;Γ2], Γ3) ⇒ B

Ξ(ζ, A;Γ1, [∅; [∅;Γ2]], Γ3) ⇒ B
!C

Morrill [31,32] does not give any particular name to his calculus. In this
paper, we denote our fragment by !sb1/2L

∗b. Here “b” stands for “bracketed,”
and the decorations of ! mean the following. The superscript “s” means that the
right rule for ! is in the style of soft and light linear logic [10,15,21], allowing, in
particular, only one !A in the left-hand side. The subscript “b1/2” means that
contraction operates brackets, using single bracketing in the premise and double
bracketing in the conclusion.

In his older paper [29], Morrill uses another form of contraction rule, which
in our notation looks like

Ξ(ζ,A;Γ1, [A;Γ2], Γ3) ⇒ B

Ξ(ζ,A;Γ1, Γ2, Γ3) ⇒ B

Thus, this system could be called !sb1/0L
∗b, in our notations. For the system

with this sort of contraction, undecidability was established in [14]. The new
contraction rule of Morrill [31,32], however, significantly differs from the old
contraction rule, and the undecidability proof from [14] does not work for Mor-
rill’s new system. Thus, undecidability becomes a separate issue and we address
it in this paper.

For convenience, we use the following derivable dereliction rule

Ξ(ζ;Γ1, A, Γ2) ⇒ B

Ξ(ζ;Γ1, !A,Γ2) ⇒ B
!D

which is actually consecutive application of !P and !L:

Ξ(ζ;Γ1, A, Γ2) ⇒ B

Ξ(ζ,A;Γ1, Γ2) ⇒ B
!P

Ξ(ζ;Γ1, !A,Γ2) ⇒ B
!L

Notice that in Morrill’s calculus [31,32] there is no cut rule. Thus, the ques-
tion of cut-elimination is transformed into the question of admissibility of cut,
proving which is marked in [32] as an ongoing work by O. Valent́ın. Since the
calculus considered in [31,32] does not include cut, our fragment, which uses only
a restricted set of connectives and consists of the corresponding inference rules,
is a conservative fragment of the complete system [32]. Namely, for sequents in
the restricted language, derivability in the fragment is equivalent to derivability
in the big system. Therefore, undecidability for !sb1/2L

∗b (Theorem 3 below)
yields undecidability for the whole system also.

Using !sb1/2L
∗b, one can analyze our example “the paper that John signed

without reading” in the following way, simplyfing Morrill’s analysis [32]. Assign
the following syntactic types to words:

72 M. Kanovich et al.

the � N / CN likes, signed � (〈〉N \ S) / N

man, paper � CN without � ([]−1((〈〉N \ S) \(〈〉N \ S))) /(〈〉N \ S)

reading � (〈〉N \ S) / N who, that � ([]−1[]−1(CN \ CN)) /(S / !N)

John � 〈〉N

Here N stands for “noun phrase,” CN states for “common noun” (without an
article), and S stands for “sentence”.

In order to parse this sentence in this grammar, one first needs to impose the
bracketing structure on it. This is done in the following way:

the paper [[that [John] signed [[without reading]]]].

Indeed, in Morrill’s CatLog categorial grammar the subject group and the
without-clause form islands, and the that-clause forms a strong island, embraced
by double brackets. Moreover, we also have to double-bracket our without-clause
(make it a “strong island”), since it will be used for parasitic extraction. Each
pair of brackets has its own stoup, which is originally empty. Unfortunately, in
CatLog the bracketed structure is required as an input from the user (while it is
of course not part of the original sentence). Morrill et al. [30], however, provide
an algorithm for automated induction (guessing) of the bracketed structure, for a
small fragment of the CatLog grammar (in particular, without subexponential).

With the bracketing shown above, the corresponding sequent is derived in
!sb1/2L

∗b as shown in Fig. 1.
At the request of one of the referees, we discuss the following exam-

ple, which is used by Morrill [31] to motivate the changes made in the
contraction rule from b1/0 to b1/2 (see above). This example features an
incorrect noun phrase, *“the man who likes,” analysed with two gaps in the
dependent clause: *“the man who [] likes [].” (Asterisks denote ungrammatical-
ity.) The intended semantics (and the correct version of the phrase) here is
“the man who likes himself.” In !sb1/0L

∗b, however, *“the man who [] likes [],”
with brackets imposed as “the man [[who likes]],” is parsed as follows. First one
derives the sequent ∅; (〈〉N \ S) / N ⇒ S / !N , which (ungrammatically) treats
“likes” as a dependent clause with two gaps, a host one for the object and a
parasitic one for the subject:

∅;N ⇒ N

∅;N ⇒ N

[∅;N] ⇒ 〈〉N ∅;S ⇒ S

∅; [∅;N], 〈〉N \ S ⇒ S

∅; [∅;N], (〈〉N \ S) / N, N ⇒ S

∅; [N ;Λ], (〈〉N \ S) / N, N ⇒ S

N ; [N ;Λ], (〈〉N \ S) / N ⇒ S

N ; (〈〉N \ S) / N ⇒ S

∅; (〈〉N \ S) / N, !N ⇒ S

∅; (〈〉N \ S) / N ⇒ S / !N

Undecidability of a Newly Proposed Calculus for CatLog3 73

Fig. 1. Derivation for “the paper that John signed without reading” (cf. [32, Fig. 24])

74 M. Kanovich et al.

Here the whole subject island is introduced by !C (in its b1/0 version, with
Γ2 = Λ) as a parasitic extraction site. Next, one finishes the derivation as it is
done in Fig. 1 and obtains

∅;N / CN,CN, [∅; [∅; ([]−1[]−1(CN \ CN) /(S / !N), (〈〉N \ S) / N]] ⇒ N.

With the new, b1/2 contraction rule, this derivation of *“the man
[[who likes]]” becomes impossible. However, there still exists a way to derive
*“the man who likes,” if the user imposes the following weird bracketing:
“the man [[who [[]] likes]].” This bracketing explicitly creates an empty strong,
double-bracketed island as the subject of the dependent clause, and the !C rule
transforms it into a single-bracketed one. (In other parts, the derivation is simi-
lar to the one presented above.) In one of the reviews, the referee asks whether
one can consider a system where empty brackets are explicitly disallowed, and
whether our undecidability proof is still valid for this system. This constraint,
however, is tightly connected with the Lambek’s antecedent non-emptiness
restriction. It appears that reconciling this constraint with (sub)exponential
modalities raises certain issues with keeping good proof-theoretic properties of
the system, such as cut elimination and substitution [11,13]. We accurately for-
mulate these questions in the “Future Work” section and leave them as open
problems for future research.

3 The Bracket-Free System and the π Projection

In this section we define !L∗, a system without brackets and with a full-power
exponential modality. This is a more well-known system, and it is simpler from
the logical point of view. We shall need !L∗ inside our undecidability proof in
Sect. 4. In this section we define a projection that maps derivability in !sb1/2L

∗b
to derivability in !L∗. This projection is similar to the bracket-forgetting pro-
jection in [14].

Formulae of !L∗ are defined similary to the ones of !sb1/2L
∗b, but without

bracket modalities (〈〉 and []−1). Sequents of !L∗ have a simpler structure, and
are expressions of the form Γ ⇒ A, where A is a formula and Γ is a linearly
ordered sequence of formulae. Axioms and inference rules of !L∗ are as follows.

A ⇒ A
id

Γ ⇒ B Δ1, C,Δ2 ⇒ D

Δ1, C /B, Γ,Δ2 ⇒ D
/L

Γ,B ⇒ C

Γ ⇒ C \ B
/R

Γ ⇒ A Δ1, C,Δ2 ⇒ D

Δ1, Γ,A \ B,Δ2 ⇒ D
\L

A,Γ ⇒ C

Γ ⇒ A \ C
/R

Δ1, A,B,Δ2 ⇒ D

Δ1, A • B,Δ2 ⇒ D
•L

Δ ⇒ A Γ ⇒ B
Δ,Γ ⇒ A • B

•R

Undecidability of a Newly Proposed Calculus for CatLog3 75

Δ1,Δ2 ⇒ A

Δ1, I,Δ2 ⇒ A
IL

Λ ⇒ I IR

Γ1, A, Γ2 ⇒ B

Γ1, !A,Γ2 ⇒ B
!L

!A1, . . . , !An ⇒ B

!A1, . . . , !An ⇒ !B !R
Γ1, Γ2 ⇒ B

Γ1, !A,Γ2 ⇒ B
!W

Γ1, !A,Γ2, !A,Γ3 ⇒ B

Γ1, !A,Γ2, Γ3 ⇒ B
!C1

Γ1, !A,Γ2, !A,Γ3 ⇒ B

Γ1, Γ2, !A,Γ3 ⇒ B
!C2

Γ ⇒ A Δ1, A,Δ2 ⇒ D

Δ1, Γ,Δ2 ⇒ D
cut

Notice that, unlike !sb1/2L
∗b, here cut is included as an official rule of the

system. However, here the cut rule is eliminable by a standard technique by
using the mix rule.

Proposition 1. Any sequent derivable in !L∗ is derivable without using the cut
rule.

This proof of cut elimination is explained, for example, in [16], where !L∗

acts as a specific case of SMALCΣ , an extension of the multiplicative-additive
Lambek calculus with a family of subexponential modalities.

In our version of !L∗, contraction rules (!C1 and !C2) are non-local (cf. [16]),
and permutation rules of the following form

Γ1, Γ2, !A,Γ3 ⇒ B

Γ1, !A,Γ2, Γ3 ⇒ B
!P1

Γ1, !A,Γ2, Γ3 ⇒ B

Γ1, Γ2, !A,Γ3 ⇒ B
!P2

are derivable using non-local contraction and weakening:

Γ1, Γ2, !A,Γ3 ⇒ B

Γ1, !A,Γ2, !A,Γ3 ⇒ B
!W

Γ1, !A,Γ2, Γ3 ⇒ B
!C1

Γ1, !A,Γ2, Γ3 ⇒ B

Γ1, !A,Γ2, !A,Γ3 ⇒ B
!W

Γ1, Γ2, !A,Γ3 ⇒ B
!C2

Next, we define a translation from !sb1/2L
∗b to !L∗, which is actually a forget-

ting projection, erasing all brackets and bracket modalities, and also translating
stoups into plain sequences of !-formulae. We denote this projection by π and
define it in the following recursive way.

– For a formula A, its projection π(A) is defined as follows:

π(p) = p for any variable p; π(I) = I;
π(A \ B) = π(A) \ π(B); π(B / A) = π(B) / π(A);
π(A • B) = π(A) • π(B); π(!A) = !π(A);

π(〈〉A) = π([]−1A) = π(A).

76 M. Kanovich et al.

– For a stoup ζ = {A1, . . . , An}, its π-projection is the sequence of formulae
!π(A1), . . . , !π(An). Since in !L∗ we have permutation rules for !-formulae,
the order does not matter. The π-projection of an empty stoup is the empty
sequence Λ.

– For a tree term there are two cases. If it is a formula, A, then its π-projection
is π(A). If the tree term is of the form [Ξ], where Ξ is a meta-formula, then
its π-projection is π(Ξ) (as defined below).

– For a meta-formula of the form ζ;Υ1, . . . , Υk, where Υi are tree terms, its
π-projection is π(ζ), π(Υ1), . . . , π(Υk).

Proposition 2. If Ξ ⇒ A is derivable in !sb1/2L
∗b, then π(Ξ) ⇒ π(A) is

derivable in !L∗.

Proof. Proceed by induction on derivation; recall that it is cut-free by definition.
Axioms id and IR and rules / R, • L, and IL of !sb1/2L

∗b, translate exactly to
the corresponding rules of !L∗. The rules for bracket modalities (〈〉L, 〈〉R, []−1L,
[]−1R) become trivial: after applying the π-projection, the conclusion of such a
rule coincides with its premise. For the rules \ R, •R, / L, and \ L are translated
to the corresponding rules in !L∗, together with necessary permutations (!P1,2)
for !-formulae coming from the stoups. Finally, the !-rules of !sb1/2L

∗b translate
to the corresponding rules of !L∗: !L becomes !P2, !R maps to !R, !P becomes
!L together with !P1, and !C maps to !C1.

Notice that the reverse implication does not hold, which can be shown
by analysis of our examples for brackets, like *“the paper that John signed
and Pete ate a pie.”

4 Undecidability Proof

In this section we prove undecidability of the derivability problem in !sb1/2L
∗b.

Theorem 3. The derivability problem in !sb1/2L
∗b is undecidable, more pre-

cisely, Σ0
1 -complete.

The general outline of our proof is rather standard, following the ideas of
Lincoln et al. [23]: encoding of semi-Thue systems in !sb1/2L

∗b. Maintaining
the correct bracket structure, however, makes the encoding more involved and
requires some technical tricks.

A semi-Thue system [34] over an alphabet Σ is a set of pairs of words
over Σ, called rewriting rules and written as x1 . . . xm → y1 . . . yk (k,m ≥ 0,
xi, yi ∈ Σ). A rewriting sequence in a semi-Thue system S is a sequence of
words w1, w2, . . . , wN , in which each word w�, starting from the second one, is
obtained from the previous word w�−1 by applying a rewriting rule as follows:

w�−1 = ux1 . . . xmv → uy1 . . . ykv = w�,

Undecidability of a Newly Proposed Calculus for CatLog3 77

where x1 . . . xm → y1 . . . yk is a rewriting rule of S and u, v are arbitrary words.
If there exists a rewriting sequence w1 → w2 → . . . → wN in S, we say that wN

is derivable from w1 in S.
A famous result by Markov [24] and Post [33] shows that the derivability

problem for semi-Thue systems is undecidable; more precisely, it is Σ0
1 -complete

(that is, the membership problem for any recursively enumerable language can be
reduced to the derivability problem in semi-Thue systems). Moreover, the prob-
lem of derivability of a word w from a one-letter word s, like in Chomsky’s [6]
type-0 grammars, is also undecidable. This can be shown by the following reduc-
tion: for arbitrary words w1 and wN , checking derivability of wN from w in a
semi-Thue system S is equivalent to checking derivability of wN from the one-
letter word s in the semi-Thue system S extended by a new symbol s and a new
rewriting rule s → w1.

Let us proceed with our encoding of semi-Thue systems in !sb1/2L
∗b. Let

AS = {(x1 • . . . • xm) /(y1 • . . . • yk) |
x1 . . . xm → y1 . . . yk is a rewriting rule of S}.

If the word x1 . . . xm is empty, then x1 • . . . • xm is replaced by I; the same for
y1 . . . yk.

Let AS = {A1, . . . , An} (the order does not matter). For each Ai let

Zi = []−1(!Ai •〈〉〈〉I)
and define the following two sets of formulae (further they will be considered as
multisets and used in the stoup):

ZS = {!Z1, . . . , !Zn};
XS = {I / !Z1, . . . , I / !Zn, I /(〈〉〈〉I)}.

Finally, consider the following linearly ordered sequence of formulae:

ΓS = !A1, . . . , !An.

The intuition behind Zi is as follows and is best understood when reading
simultaneously with the formal proof of the 1 ⇒ 2 implication in Theorem 4
below. In the sequent, we keep a special empty tree-term with double bracketing,
[∅; [∅;Λ]], which is used as the “landing zone” for Zi. Double brackets, with
empty stoups, allow the usage of Morrill’s contraction rule, !C. Applying this
rule (we trace the derivation tree from bottom to top) destroys one pair of
brackets and puts !Zi, taken from the stoup, inside. Dereliction removes the !,
and the bracket modality inside Zi destroys the second pair of brackets around
it. Now we have !Ai and 〈〉〈〉I. The former, by !L and !P , is put to an arbitrary
place of the antecedent, allowing application of a rewriting rule of the semi-
Thue system S. The latter restores the landing zone which was destroyed by
contraction, and leaves a configuration which is ready for the next reduction
step. Finally, formulae from XS are used for garbage collection on the top of the
derivation.

78 M. Kanovich et al.

This gives a translation of semi-Thue derivations to !sb1/2L
∗b ones. The

backwards translation, from !sb1/2L
∗b derivations back to S, is performed via

the π-projection. This projection trivialises everything connected to brackets,
and the resulting sequent, derivable in !L∗ by Proposition 2, happens to be !L∗-
equivalent to the standard encoding as in [23]. Thus, the fact that its derivability
yields the corresponding derivability in S is proved by the good old argument.
Notice that in our reasoning we never use the cut rule: semi-Thue derivations
are encoded by cut-free derivations in !sb1/2L

∗b, the π-projection maps them
onto cut-free derivations in !L∗, and they are mapped back onto semi-Thue
derivations.

The idea described above is formalised by the following theorem, which serves
as the principal technical lemma for Theorem 3.

Theorem 4. The following three statements are equivalent:

1. the word a1 . . . an is derivable from s in the semi-Thue system S;
2. the sequent XS ,ZS ; [∅; [∅;Λ]], a1, . . . , an ⇒ s is derivable in !sb1/2L

∗b;
3. the sequent ΓS , a1, . . . , an ⇒ s is derivable in !L∗.

Proof. We establish the equivalence by proving round-robin implications: 1 ⇒
2 ⇒ 3 ⇒ 1.

1 ⇒ 2 This part of the proof formalises the idea we explained just before
formulating Theorem 4. Proceed by induction on the length of the rewrit-
ing sequence. Induction base is n = 1, a1 = s, and the necessary sequent,
XS ,ZS ; [∅; [∅;Λ]], s ⇒ s, is derived as follows:

∅;Λ ⇒ I

∅; [∅;Λ] ⇒ 〈〉I 〈〉R

∅; [∅; [∅;Λ]] ⇒ 〈〉〈〉I 〈〉R

∅; !Z1 ⇒ !Z1 . . . ∅; !Zn ⇒ !Zn

∅; s ⇒ s

∅; I, . . . , I, s ⇒ s
IL (n times)

∅; I / !Z1, !Z1, . . . , I / !Zn, !Zn, s ⇒ s
/L (n times)

I / !Z1, . . . , I / !Zn, !Z1, . . . , !Zn; s ⇒ s
!P (2n times)

I / !Z1, . . . , I / !Zn, !Z1, . . . , !Zn; I, s ⇒ s
IL

I / !Z1, . . . , I / !Zn, !Z1, . . . , !Zn; I /(〈〉〈〉I), [∅; [∅;Λ]], s ⇒ s
/L

I / !Z1, . . . , I / !Zn, I /(〈〉〈〉I), !Z1, . . . , !Zn; [∅; [∅;Λ]], s ⇒ s
!P

For the induction step, we first establish derivability of the following “land-
ing” rule:

XS ,ZS ; [∅; [∅;Λ]], a1, . . . , ai, Aj , ai+1, . . . , an ⇒ s

XS ,ZS ; [∅; [∅;Λ]], a1, . . . , ai, ai+1, . . . , an ⇒ s
land

for any Aj ∈ AS . This rule is derived as follows:

Undecidability of a Newly Proposed Calculus for CatLog3 79

XS , ZS ; [∅; [∅;Λ]], a1, . . . ai, Aj , ai+1, . . . , an ⇒ s

XS , ZS , Aj ; [∅; [∅;Λ]], a1, . . . ai, ai+1, . . . , an ⇒ s
!P

XS , ZS ; !Aj , [∅; [∅;Λ]], a1, . . . ai, ai+1, . . . , an ⇒ s
!L

XS , ZS ; !Aj , [∅; [∅; I]], a1, . . . ai, ai+1, . . . , an ⇒ s
IL

XS , ZS ; !Aj , [∅; 〈〉I], a1, . . . ai, ai+1, . . . , an ⇒ s
〈〉L

XS , ZS ; !Aj , 〈〉〈〉I, a1, . . . ai, ai+1, . . . , an ⇒ s
〈〉L

XS , ZS ; !Aj •〈〉〈〉I, a1, . . . ai, ai+1, . . . , an ⇒ s
• L

XS , ZS ; [∅; []−1(!Aj •〈〉〈〉I)], a1, . . . , ai, ai+1, . . . , an ⇒ s
[]−1L

XS , ZS ; [∅; ![]−1(!Aj •〈〉〈〉I)], a1, . . . , ai, ai+1, . . . , an ⇒ s
!D

XS , ZS ; [![]−1(!Aj •〈〉〈〉I);Λ], a1, . . . , ai, ai+1, . . . , an ⇒ s
!P

XS , ZS ; [∅; [∅;Λ]], a1, . . . , ai, ai+1, . . . , an ⇒ s
!C (![]−1(!Aj •〈〉〈〉I) = !Zi ∈ ZS)

Using the land rule, the last rewriting step, from a1 . . . aix1 . . . xmar . . . an
to a1 . . . aiy1 . . . ykar . . . an is simulated as follows. Since x1 . . . xm → y1 . . . yk is
a rewriting rule of S, the formula Aj = (x1 • . . . • xm) /(y1 • . . . • yk) belongs to
AS . Thus, the land rule is applicable.

∅; y1 ⇒ y1 . . . ∅; yk ⇒ yk

∅; y1, . . . , yk ⇒ y1 • . . . • yk
•R

XS , ZS ; [∅; [∅;Λ]], a1, . . . , ai, x1, . . . , xm, ar, . . . , an ⇒ s

XS , ZS ; [∅; [∅;Λ]], a1, . . . , ai, x1 • . . . • xm, ar, . . . , an ⇒ s
•L

XS , ZS ; [∅; [∅;Λ]], a1, . . . , ai, (x1 • . . . • xm) /(y1 • . . . • yk), y1, . . . , yk, ar, . . . , an ⇒ s
/L

XS , ZS ; [∅; [∅;Λ]], a1, . . . , ai, y1, . . . , yk, ar, . . . , an ⇒ s
land

For the case of empty x1 . . . xm or y1 . . . ym the derivations are a bit different:

∅; y1 ⇒ y1 . . . ∅; yk ⇒ yk

∅; y1, . . . , yk ⇒ y1 • . . . • yk
•R

XS , ZS ; [∅; [∅;Λ]], a1, . . . , ai, ar, . . . , an ⇒ s

XS , ZS ; [∅; [∅;Λ]], a1, . . . , ai, I, ar, . . . , an ⇒ s
IL

XS , ZS ; [∅; [∅;Λ]], a1, . . . , ai, I /(y1 • . . . • yk), y1, . . . , yk, ar, . . . , an ⇒ s
/L

XS , ZS ; [∅; [∅;Λ]], a1, . . . , ai, y1, . . . , yk, ar, . . . , an ⇒ s
land

∅;Λ ⇒ I
IR

XS , ZS ; [∅; [∅;Λ]], a1, . . . , ai, x1, . . . , xm, ar, . . . , an ⇒ s

XS , ZS ; [∅; [∅;Λ]], a1, . . . , ai, x1 • . . . • xm, ar, . . . , an ⇒ s
•L

XS , ZS ; [∅; [∅;Λ]], a1, . . . , ai, (x1 • . . . • xm) / I, ar, . . . , an ⇒ s
/L

XS , ZS ; [∅; [∅;Λ]], a1, . . . , ai, ar, . . . , an ⇒ s
land

2 ⇒ 3 By Proposition 2, since XS ,ZS ; [∅; [∅;Λ]], a1, . . . , an ⇒ s is derivable
in !sb1/2L

∗b, π(XS ,ZS ; [∅; [∅;Λ]], a1, . . . , an) ⇒ s is derivable in !L∗. The π-
projection of Zi is !Ai • I and the π-projection of I /(〈〉〈〉I) is I / I. Thus, by
definition of π,

π(XS ,ZS ; [∅; [∅;Λ]], a1, . . . , an) =
!(I / !(!A1 • I)), . . . , !(I / !(!An • I)), !(I / I), !!(!A1 • I), . . . , !!(!An • I), a1, . . . , an,

80 M. Kanovich et al.

and the sequent

!(I / !(!A1 • I)), . . . , !(I / !(!An • I)), !(I / I), !!(!A1 • I), . . . , !!(!An • I), a1, . . . , an ⇒ s

is derivable in !L∗. Next, Λ ⇒ !(I / !(!Ai • I)), Λ ⇒ !(I / I), and !Ai ⇒ !!(!Ai • I)
are derivable in !L∗:

Λ ⇒ I
!(!Ai • I) ⇒ I

!W

Λ ⇒ I / !(!Ai • I) /R

Λ ⇒ !(I / !(!Ai • I) !R

I ⇒ I
Λ ⇒ I / I

/R

Λ ⇒ !(I / I) !R

!Ai ⇒ !Ai Λ ⇒ I
!Ai ⇒ !Ai • I •R

!Ai ⇒ !(!Ai • I) !R

!Ai ⇒ !!(!Ai • I) !R

Using cut in !L∗, we obtain

!A1, . . . , !An, a1, . . . , an ⇒ s,

which is exactly the necessary ΓS , a1, . . . , an ⇒ s.
Next, we can eliminate applications of cut in the !L∗ derivation by Proposi-

tion 1.
3 ⇒ 1 This part comes directly from the standard undecidability proof for

!L∗, see [16]. Consider the derivation of ΓS , a1, . . . , an ⇒ s in !L∗. Recall that
the cut rule can be eliminated by Proposition 1, so we can suppose that this
derivation is cut-free. All formulae in this derivation are subformulae of the goal
sequent, and the only applicable rules are •L, •R, /L, and rules operating ! in
the antecedent: !L, !C1,2, !W .

Now let us hide all the formulae which include /. Since all formulae with ! in
our sequent included /, this trivialises all !-operating rules. Next, let us replace
all •’s in the antecedents with commas, and remove unnecessary I’s there. This,
in its turn, trivialises •L and IL. All sequents in our derivation are now of the
form b1, . . . , bs ⇒ C, where s ≥ 0 and C = c1 • . . . • cr (r ≥ 1) or C = I. For the
sake of uniformity, we also write C = I as C = c1 • . . . • cr with r = 0. Inference
rules reduce to

bi+1, . . . , bj ⇒ y1 • . . . • yk b1, . . . , bi, x1, . . . , xm, bj+1, . . . , bs ⇒ C

b1, . . . , bi, bi+1, . . . , bj , bj+1, . . . , bs ⇒ C

where x1, . . . , xm → y1, . . . yk is a rewriting rule of S;

b1, . . . , bi ⇒ c1 • . . . • cj bi+1, . . . , bs ⇒ cj+1 • . . . • cr

b1, . . . , bi, bi+1, . . . , bs ⇒ c1 • . . . • cj • cj+1 • . . . • cr

and, finally, we have axioms of the form a ⇒ a and Λ ⇒ I.
Now straightforward induction on derivation establishes the following fact: if

b1, . . . , bs ⇒ c1 • . . . • cr is derivable in the simplified calculus presented above,
then b1 . . . bs is derivable from c1 . . . cr in the semi-Thue system S. This finishes
our proof.

Undecidability of a Newly Proposed Calculus for CatLog3 81

5 Conclusion

In this paper, we have discussed a new version of interaction between brack-
ets and exponential, recently proposed by Glyn Morrill [31,32]. This system is
intended to be the basis for the categorial grammar parser CatLog3. For a frag-
ment of this system, we have proved undecidability of the derivability problem.
Undecidability for the corresponding fragment of a previous version [28] of Mor-
rill’s system was shown in [14]. The new contraction rule introduced by Morrill,
however, significantly differs from the earlier ones, and, unfortunately, existing
undecidability proofs [12,14,23] do not directly extend to the new version. The
necessary new technique for proving undecidability with the new form of the
contraction rule [31,32] was developed in the present paper.

Future Work

One of the referees pointed out the following interesting question. The calcu-
lus !sb1/2L

∗b, considered in this paper, can generate ungrammatical sentences
(see end of Sect. 2), since it allows the user to put brackets on empty substrings
of the sentence being parsed. The question is whether the undecidability proof
presented in this paper is still valid for the variant of !sb1/2L

∗b where such
bracketing is disallowed. Furthermore, for the sake of cut-elimination, this non-
emptiness restriction should possibly be propagated to all bracketed expressions
and generally all meta-formulae inside the derivation. In particular, this condi-
tion would require excluding the product unit, I. The product unit is essentially
used in our undecidability proof, but potentially could be replaced by a unit-
free formula (cf. [19]). We leave this problem open for future research. There
are also issues with reconciling non-emptiness restrictions, cut-elimination, the
substitution property, and the full-power exponential modality [11,13]. Settling
these issues for !sb1/2L

∗b, the calculus with brackets and non-standard rules for
!, requires further investigation.

There are several other problems which are still open. One open problem
is whether syntactic condition could be imposed on the formulae under ! (like
the so-called bracket non-negative condition [14,28]), under which the system
becomes decidable. There is also an issue of extending the bracket-inducing algo-
rithm from [30] to the system with the subexponential discussed in the present
paper. Finally, it is interesting whether our result could be strengthened to the
undecidability of the one-division fragment of !sb1/2L

∗b, as it was done in [12]
using Buszkowski’s technique [4] of encoding semi-Thue derivations in the one-
divison Lambek calculus.

Acknowledgments. The authors are thankful to the anonymous referees for helpful
comments and interesting questions. They would also like to thank Glyn Morrill for
fruitful discussions of linguistic motivations for the calculi Morrill introduced in [27–
29,31,32], which are considered in this paper.

82 M. Kanovich et al.

Financial Support
The work of Max Kanovich and Andre Scedrov was supported by the Russian Science
Foundation under grant 17-11-01294 and performed at National Research University
Higher School of Economics, Moscow, Russia. The work of Stepan Kuznetsov was sup-
ported by the Young Russian Mathematics award, by the grant MK-430.2019.1 of the
President of Russia, and by the Russian Foundation for Basic Research grant 18-01-
00822. Section 3 was contributed by Kanovich and Scedrov. Section 4 was contributed
by Kuznetsov. Sections 1, 2, and 5 were contributed jointly and equally by all co-authors.

References

1. Abrusci, V.M.: A comparison between Lambek syntactic calculus and intuitionistic
linear logic. Zeitschr. Math. Logik Grundl. Math. 36, 11–15 (1990). https://doi.
org/10.1002/malq.19900360103

2. Ajdukiewicz, K.: Die syntaktische Konnexität. Stud. Philos. 1, 1–27 (1935)
3. Bar-Hillel, Y.: A quasi-arithmetical notation for syntactic description. Language

29, 47–58 (1953)
4. Buszkowski, W.: Some decision problems in the theory of syntactic categories.

Zeitschr. Math. Logik Grundl. Math. 28, 539–548 (1982). https://doi.org/10.1002/
malq.19820283308

5. Buszkowski, W., Palka, E.: Infinitary action logic: complexity models and gram-
mars. Stud. Logica. 89(1), 1–18 (2008)

6. Chomsky, N.: Three models for the description of language. IRE Trans. Inf. Theory
I T–2(3), 113–124 (1956)

7. Girard, J.-Y.: Linear logic. Theor. Comput. Sci. 50(1), 1–102 (1987). https://doi.
org/10.1016/0304-3975(87)90045-4

8. Girard, J.-Y.: A new constructive logic: classical logic. Math. Struct. Comput. Sci.
1(3), 255–296 (1991). https://doi.org/10.1017/S0960129500001328

9. Girard, J.-Y.: On the unity of logic. Ann. Pure Appl. Logic 59(3), 201–217 (1993).
https://doi.org/10.1016/0168-0072(93)90093-S

10. Girard, J.-Y.: Light linear logic. Inf. Comput. 143(2), 175–204 (1998). https://doi.
org/10.1006/inco.1998.2700

11. Kanovich, M., Kuznetsov, S., Scedrov, A.: On Lambek’s restriction in the presence
of exponential modalities. In: Artemov, S., Nerode, A. (eds.) LFCS 2016. LNCS,
vol. 9537, pp. 146–158. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
27683-0 11

12. Kanovich, M., Kuznetsov, S., Scedrov, A.: Undecidability of the Lambek calcu-
lus with a relevant modality. In: Foret, A., Morrill, G., Muskens, R., Osswald,
R., Pogodalla, S. (eds.) FG 2015-2016. LNCS, vol. 9804, pp. 240–256. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53042-9 14

13. Kanovich, M., Kuznetsov, S., Scedrov, A.: Reconciling Lambek’s restriction, cut-
elimination, and substitution in the presence of exponential modalities. Annals
Pure Applied Logic, accepted for publication. arXiv:1608.02254 (2016)

14. Kanovich, M., Kuznetsov, S., Scedrov, A.: Undecidability of the Lambek calculus
with subexponential and bracket modalities. In: Klasing, R., Zeitoun, M. (eds.)
FCT 2017. LNCS, vol. 10472, pp. 326–340. Springer, Heidelberg (2017). https://
doi.org/10.1007/978-3-662-55751-8 26

https://doi.org/10.1002/malq.19900360103
https://doi.org/10.1002/malq.19900360103
https://doi.org/10.1002/malq.19820283308
https://doi.org/10.1002/malq.19820283308
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1017/S0960129500001328
https://doi.org/10.1016/0168-0072(93)90093-S
https://doi.org/10.1006/inco.1998.2700
https://doi.org/10.1006/inco.1998.2700
https://doi.org/10.1007/978-3-319-27683-0_11
https://doi.org/10.1007/978-3-319-27683-0_11
https://doi.org/10.1007/978-3-662-53042-9_14
http://arxiv.org/abs/1608.02254
https://doi.org/10.1007/978-3-662-55751-8_26
https://doi.org/10.1007/978-3-662-55751-8_26

Undecidability of a Newly Proposed Calculus for CatLog3 83

15. Kanovich, M., Kuznetsov, S., Scedrov, A.: Lambek calculus enriched with multi-
plexing (abstract). In: International Conference of Mal’tsev Meeting 2018, Col-
lection of Abstracts. Sobolev Institute of Mathematics and Novosibirsk State
University, Novosibirsk (2018). http://www.math.nsc.ru/conference/malmeet/18/
maltsev18.pdf

16. Kanovich, M., Kuznetsov, S., Nigam, V., Scedrov, A.: Subexponentials in non-
commutative linear logic. Math. Struct. Comput. Sci. (2018). https://doi.org/10.
1017/S0960129518000117. Accessed 2 May 2018

17. Kanovich, M., Kuznetsov, S., Nigam, V., Scedrov, A.: A logical framework with
commutative and non-commutative subexponentials. In: Galmiche, D., Schulz, S.,
Sebastiani, R. (eds.) IJCAR 2018. LNCS (LNAI), vol. 10900, pp. 228–245. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-94205-6 16

18. Kozen, D.: On the complexity of reasoning in Kleene algebra. Inf. Comput. 179,
152–162 (2002). https://doi.org/10.1006/inco.2001.2960

19. Kuznetsov, S.L.: On the Lambek calculus with a unit and one division.
Moscow Univ. Math. Bull. 66(4), 173–175 (2011). https://doi.org/10.3103/
S0027132211040085

20. Kuznetsov, S.: The Lambek calculus with iteration: two variants. In: Kennedy,
J., de Queiroz, R.J.G.B. (eds.) WoLLIC 2017. LNCS, vol. 10388, pp. 182–198.
Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-55386-2 13

21. Lafont, Y.: Soft linear logic and polynomial time. Theor. Comput. Sci. 318(12),
163–180 (2004). https://doi.org/10.1016/j.tcs.2003.10.018

22. Lambek, J.: The mathematics of sentence structure. Am. Math. Mon. 65, 154–170
(1958). https://doi.org/10.2307/2310058

23. Lincoln, P., Mitchell, J., Scedrov, A., Shankar, N.: Decision problems for propo-
sitional linear logic. Ann. Pure Appl. Logic 56(1–3), 239–311 (1992). https://doi.
org/10.1016/0168-0072(92)90075-B

24. Markov, A.: On the impossibility of certain algorithms in the theory of associative
systems. Doklady Acad. Sci. USSR (N. S.) 55, 583–586 (1947)

25. Moortgat, M.: Multimodal linguistic inference. J. Logic Lang. Inf. 5(3/4), 349–385
(1996). https://doi.org/10.1007/BF00159344

26. Morrill, G.: Categorial formalisation of relativisation: pied piping, islands,
and extraction sites. Technical report LSI-92-23-R, Universitat Politècnica de
Catalunya (1992)

27. Morrill, G.V.: Categorial Grammar: Logical Syntax, Semantics, and Processing.
Oxford University Press, Oxford (2011)

28. Morrill, G., Valent́ın, O.: Computational coverage of TLG: nonlinearity. In: Pro-
ceedings of NLCS 2015. EPiC Series, vol. 32, pp. 51–63 (2015)

29. Morrill, G.: Grammar logicised: relativisation. Linguist. Philos. 40(2), 119–163
(2017). https://doi.org/10.1007/s10988-016-9197-0

30. Morrill, G., Kuznetsov, S., Kanovich, M., Scedrov, A.: Bracket induction for Lam-
bek calculus with bracket modalities. In: Foret, A., Kobele, G., Pogodalla, S. (eds.)
FG 2018. LNCS, vol. 10950, pp. 84–101. Springer, Heidelberg (2018). https://doi.
org/10.1007/978-3-662-57784-4 5

31. Morrill, G.: A note on movement in logical grammar. J. Lang. Model. 6(2), 353–363
(2018). https://doi.org/10.15398/jlm.v6i2.233

32. Morrill, G.: Parsing/theorem-proving for logical grammar CatLog3. J. Logic Lang.
Inf. (2019). https://doi.org/10.1007/s10849-018-09277-w. Accessed 18 Jan 2019

33. Post, E.L.: Recursive unsolvability of a problem of Thue. J. Symb. Logic 12, 1–11
(1947)

34. Thue, A.: Probleme über Veränderungen von Zeichenreihen nach gegebener Regeln.
Kra. Vidensk. Selsk. Skrifter. 10, 1–34 (1914)

http://www.math.nsc.ru/conference/malmeet/18/maltsev18.pdf
http://www.math.nsc.ru/conference/malmeet/18/maltsev18.pdf
https://doi.org/10.1017/S0960129518000117
https://doi.org/10.1017/S0960129518000117
https://doi.org/10.1007/978-3-319-94205-6_16
https://doi.org/10.1006/inco.2001.2960
https://doi.org/10.3103/S0027132211040085
https://doi.org/10.3103/S0027132211040085
https://doi.org/10.1007/978-3-662-55386-2_13
https://doi.org/10.1016/j.tcs.2003.10.018
https://doi.org/10.2307/2310058
https://doi.org/10.1016/0168-0072(92)90075-B
https://doi.org/10.1016/0168-0072(92)90075-B
https://doi.org/10.1007/BF00159344
https://doi.org/10.1007/s10988-016-9197-0
https://doi.org/10.1007/978-3-662-57784-4_5
https://doi.org/10.1007/978-3-662-57784-4_5
https://doi.org/10.15398/jlm.v6i2.233
https://doi.org/10.1007/s10849-018-09277-w

Proof-Theoretic Aspects of Hybrid
Type-Logical Grammars

Richard Moot1(B) and Symon Jory Stevens-Guille2

1 LIRMM, Université de Montpellier, CNRS, Montpellier, France
Richard.Moot@lirmm.fr

2 Ohio State University, Columbus, USA

Abstract. This paper explores proof-theoretic aspects of hybrid type-
logical grammars, a logic combining Lambek grammars with lambda
grammars. We prove some basic properties of the calculus, such as nor-
malisation and the subformula property and also present a proof net
calculus for hybrid type-logical grammars. In addition to clarifying the
logical foundations of hybrid type-logical grammars, the current study
opens the way to variants and extensions of the original system, includ-
ing but not limited to a non-associative version and a multimodal version
incorporating structural rules and unary modes.

Keywords: Lambek calculus · Lambda grammar ·
Type-logical grammar · Proof theory · Proof nets

1 Introduction

Hybrid type-logical grammars (HTLG), a logic introduced by Kubota and Levine
[7], combines the standard Lambek grammar implications with the lambda gram-
mar operations. As a consequence, the lambda calculus term constructors of
abstraction and application live side-by-side with the Lambek calculus oper-
ation of concatenation and its residuals. The logic is motivated by empirical
limitations of its subsystems. It provides a simple account of many phenomena
on the syntax-semantics interface, for which neither of its subsystems has equally
simple solutions [5–7].

For instance, Lambek calculi struggle to account for medial extraction, as
is required for the wide-scope reading of the universal in (1). Such cases are
straightforwardly accounted for by lambda grammars. For the same reasons—
namely the absence of directionality—lambda grammars cannot easily distin-
guish (2) from (3) [12], whereas the distinction is trivial to implement in Lambek
calculi.

1. Someone delivers every letter to its destination.
2. *Ahmed loves and dislikes dessert the pizza
3. Ahmed loves and Johani dislikes the pizza

c© Springer-Verlag GmbH Germany, part of Springer Nature 2019
R. Bernardi et al. (Eds.): FG 2019, LNCS 11668, pp. 84–100, 2019.
https://doi.org/10.1007/978-3-662-59648-7_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-59648-7_6&domain=pdf
https://doi.org/10.1007/978-3-662-59648-7_6

Proof-Theoretic Aspects of Hybrid Type-Logical Grammars 85

In their paper on determiner gapping in hybrid type-logical grammar, Kubota
and Levine [6, footnote 7] ‘acknowledge that there remains an important theo-
retical issue: the formal properties of our hybrid implicational logic are currently
unknown’. In this paper, we prove basic properties of the natural deduction cal-
culus of Kubota and Levine [7] (normalisation, decidability and the subformula
property) and present a proof net calculus. This puts HTLG on a firm theo-
retical foundation, but also provides a framework for extensions of the logic. In
addition, the proof net calculus provides a proof search method which is both
flexible and transparent.

2 Natural Deduction

HTLG syntactic terms are tuples of which the first element is a linear lambda
term and the second is a type-logical formula drawn from the union of impli-
cational linear logic and Lambek formulas. Given a set of atomic formulas A
(we will assume A contains at least the atomic formula n for noun, np for noun
phrase, s for sentence, and pp for prepositional phrase), the formula language of
HTLG is the following.

– TLogic :: = TLambek | TLogic � TLogic

– TLambek :: = A | TLambek/TLambek | TLambek\TLambek

Prosodic types are simple types with a unique atomic type s (for structure
or, in an associative context, string). Logical formulas are translated to prosodic
types as follows.

Pros(TLambek) = s

Pros(TLogic � TLogic) = Pros(TLogic) → Pros(TLogic)

The lambda terms of HTLG, called prosodic terms, are constructed as follows.

– Atoms: +s→s→s, εs, a countably infinite number of variables x0, x1, . . . for
each type α; by convention we use p, q, . . . for variables of type s.

– Construction rules:
• if Mα→β and Nα, then (MN)β

• if xα and Mβ , then (λx.M)α→β

In what follows, we restrict the prosodic terms to linear lambda terms, requiring
each λ binder to bind exactly one occurrence of its variable x. This restriction
is standard in HTLG.

The natural deduction rules for HTLG are given by Fig. 1. The lexicon assigns
to the word p a formula A and a linear lambda term M of type Pros(A). Since
this term is linear, it contains exactly one free occurrence of p. When no confusion
is possible (for example when a word appears several times in a sentence), we
use the word itself instead of the unique variable p (the formula w has a purely
technical role and cannot appear on the right hand side of the lexicon or axiom
rule). An example would be λP.(P everyone) : (np � s) � s. The elimination

86 R. Moot and S. J. Stevens-Guille

Fig. 1. Gentzen-Style ND inference rules for HTLG

rules have the standard condition that no free variables are shared between
Γ and Δ, which ensures Γ,Δ is a valid context. The introduction rules have
the standard side-condition that Γ contains at least one formula (ensuring that
provable statements cannot have empty antecedents). The β rule performs on-
the-fly beta reduction on the lambda terms.

Before showing normalization, we first prove a standard substitution lemma.

Lemma 1. Let δ1 be a proof of Γ � N : A and δ2 a proof of Δ,x : A � M [x] : C
such that N and M share no free variables, then there is a proof of Γ,Δ � M [N] :
C.

Proof. We can combine the two proofs as follows, replacing the hypothesis x : A
of δ2 by the proof δ1. δ1

Γ � N : A.... δ2[x := N]
Γ,Δ � M [N] : C

Given that, by construction, M and N share no free variables, replacing x by
N cannot make a rule application in δ2 invalid. ��

Given that the w atomic formula appearing on the left-hand side of the Lex
rule is by construction forbidden to appear on the right-hand side of a sequent,
this means that the substitution lemma can never apply to a lexical hypothesis
(since there are no proofs of the form Γ � N : w).

3 Normalisation

We show that HTLG is normalizing. A normal form for an HTLG proof is defined
as follows.

Proof-Theoretic Aspects of Hybrid Type-Logical Grammars 87

Definition 1. A derivation D for HTLG is normal iff each major premiss of
an elimination rule is either:

1. an assumption
2. a conclusion of an application of an E-rule.

In general, we call a logic normalizing just in case there is an effective pro-
cedure for extracting normal proofs from arbitrary proofs. Based on this defini-
tion, any path in a normal proof starts with an axiom/lexicon rule, then passes
through a (possibly empty) sequence of elimination rules as the major premiss,
followed by a (possibly empty) sequence of introduction rules, ending either in
the minor premiss of an elimination rule or in the conclusion of the proof.

To demonstrate HTLG is normalizing, we define a set of conversion rules—
functions from derivations D to derivations D′—such that repeated application
of the rules terminates in a normal derivation.

Figure 2 shows the conversion rules1. Note that, given the condition on the
elimination rules, N and M cannot share free variables and that Lemma 1 there-
fore guarantees the reductions transform proofs into proofs. In what follows, we
assume that β reduction applies on an as-needed basis, ignoring its application
for simplicity of presentation.

Fig. 2. Conversion rules

Theorem 1. HTLG is strongly normalizing.

Proof. To show strong normalization, we need to show that there are no infinite
reduction sequences. However, since each reduction reduces the size of the proof,
this is trivial. ��
Theorem 2. Normalization for HTLG proofs is confluent.

1 The rule for the / directly parallels that for \, modulo directionality.

88 R. Moot and S. J. Stevens-Guille

Proof. It is easy to show weak confluence: whenever a proof can be reduced by
two different reductions R1 and R2, then reducing either redex will preserve the
other redex , and R1 followed by R2 will produce the same proof as R2 followed
by R1. By Theorem 1 we therefore have strong confluence. ��
Corollary 1. HTLG proofs have a unique normal form.

Proof. Immediate by Theorems 1 and 2. Note that uniqueness is up to beta
equivalence or, alternatively, each HTLG proof has a unique normal form proof
with a beta normal term2. ��
Corollary 2. HTLG satisfies the subformula property.

Proof. This is a direct consequence of normalization (Theorem 1). In a normal
form proof, every formula is either a subformula of one of the hypotheses or a
subformula of the conclusion. ��

Given that we only consider linear lambda terms, HTLG proofs have a num-
ber of beta reductions bounded from above by the total number of abstractions
in the proof (those in the leaves plus those in the introduction rules). Therefore,
decidability follows from the subformula property. However, we will give a more
detailed complexity analysis in Sect. 6.

4 Proof Nets

In proof theory, we generally have multiple proof systems for a single logic. Even
though deductions in these systems are intertranslatable, shifting to a different
proof system may make some properties of the logic easier to prove.

Proof nets are a graph theoretic representation of proofs introduced for linear
logic by Girard [3]. Proof nets remove the possibility of ‘boring’ rule permutations
as they occur in the sequent calculus or natural deduction3, solving the so-called
problem of ‘spurious ambiguity’ in type-logical grammars.

We generally define proof nets as part of a larger class called proof structures.
Proof nets are those proof structures which correspond to sequent (or natural
deduction) proofs. We can distinguish proof nets from other proof structures by
means of a correctness condition. As a guiding intuition, we have the following
correspondence between sequent calculus/natural deduction proofs and proof
nets.

logical rule = link + correctness condition
proof (proof net) = proof structure + correctness condition

A more procedural interpretation of this is that a proof structures represent
the search space for proofs.
2 As is usual in the lambda calculus, we do not distinguish alpha-equivalent lambda
terms.

3 For natural deduction, rule permutations are a problem only for the •E and the �E
rules.

Proof-Theoretic Aspects of Hybrid Type-Logical Grammars 89

4.1 Proof Structures

Definition 2. A link is tuple consisting of a type (tensor or par), an index
(from a fixed alphabet I, indicating the family of connectives it belongs to), a list
of premisses, a list of conclusions, and an optional main node (either one of the
conclusions or one of the premisses).

A link is essentially a labelled hyperedge connecting a number of vertices in
a hypergraph. The premisses of a link are drawn left-to-right above the central
node, whereas the conclusions are drawn left-to-right below the central node.
A par link displays the central node as a filled circle, whereas a tensor uses an
open circle. For hybrid type-logical grammars, the set of indices is {ε,+,@, λ}.
The constructor ε represents the empty string (it doesn’t correspond to a logical
connective, although we can add one if desired). The (non-associative) Lambek
calculus implications (\, /) use the term constructor ‘+’ for their links (in a
multimodal context we can have multiple instances of ‘+’, for example, ‘+1’,
‘+2’, but this doesn’t change much), whereas the lambda grammar implication
(�) uses links labeled with @ (representing application, for its tensor link) and
λ (representing abstraction, for its par link).

Table 1. Links for HTLG proof structures

[/E]

C

C / B B

+

[/I]

C / B

+

B

C

[\E]

C

A \ CA

+

[\I]

A \ C

+

A

C

[�E]

C

B � C B

@

[�I]

B � C

λ

B

C

From Table 1, it is clear that par links have one premiss and two conclusions,
whereas tensor links have two premisses and one conclusion (we will see a ten-
sor link with one premiss and two conclusions later). Par links have an arrow
pointing to the main formula of the link, the main formulas of tensor links are
not distinguished visually (but can be determined from the formula labels).

Definition 3. A proof structure is a tuple 〈F,L〉, where F is a set of formula
occurrences (vertices labeled with formulas) and L is a set of links such that each
local neighbourhood is an instance of one of the links of Table 1, and such that:

– each formula is at most once the premiss of a link,
– each formula is at most once the conclusion of a link.

90 R. Moot and S. J. Stevens-Guille

The formulas which are not a conclusion of any link in a proof structure are
its hypotheses. We distinguish between lexical hypotheses and logical hypotheses;
lexical hypotheses are formulas from the lexicon, all other hypotheses are logical.
The formulas which are not a premiss of any link in a proof structure are its
conclusions. Formulas which are both a premiss and a conclusion of a link are
internal nodes of the proof structure.

We say a proof structure with hypotheses Γ and conclusions Δ is a proof
structure of Γ � Δ, overloading the � symbol.

Definition 4. Given a proof structure P , a formula occurrence A of P is a cut
formula if it is the main formula of two links. A is an axiomatic formula in case
it is not the main formula of any link.

Example 1. As a very simple example, consider the lexicon containing only the
words ‘everyone’ of type (np � s) � s with prosodic term λP.(P everyone) and
‘sleeps’ of type np � s with prosodic term λz.(z + sleeps). Unfolding the lexical
entries produces the proof structure shown in Fig. 3. We use the convention of
replacing lexical hypotheses with the corresponding word, so ‘everyone’ repre-
sents the formula (np � s) � s and ‘sleeps’ the formula np � s. There are no
cut formulas in the figure, and all atomic formulas are axiomatic.

s

np � severyone

@

np

λ

s

s

npsleeps

@

Fig. 3. Proof structure of ‘everyone sleeps’.

Definition 5. Given a proof structure P and two distinct formula occurrences
x, y of P , both labeled with the same formula A, with x a logical hypothesis of P
and y a conclusion of P . Then P ′, the vertex contraction of x and y in P , is the
proof net obtained by deleting x and y, adding a new node z with label A such
that z is the premiss of the link x was a premiss of (if any) and the conclusion
of the link that y was the conclusion of (if any).

The vertex contraction operation is a standard graph theoretic operation. In
the current context, it operates like the cut or axiom rule in the sense that if
P1 is a proof net of Γ,A � Δ and P2 a proof net of Γ ′ � A,Δ′ with x and y
the two occurrences of A, then the vertex contraction of x and y is a proof net
of Γ, Γ ′ � Δ,Δ′. Given that, in an intuitionistic context like the current one,
all proof nets have a single conclusion we even have that if P1 is a proof net of
Γ,A � C and P2 a proof net of Γ ′ � A, then the vertex contraction gives a proof

Proof-Theoretic Aspects of Hybrid Type-Logical Grammars 91

net of Γ, Γ ′ � C. Note that vertex contraction applies only to logical hypotheses
and not to lexical ones.

Just like a logical link is a generalisation of a logical rule which is locally
correct but need not be correct globally, a vertex contraction is a generalisation
of the cut rule which is locally correct but need not be correct globally.

Example 2. Connecting the atomic formulas of the proof structure shown in
Fig. 3 produces the proof structure shown on the left of Fig. 4. It has (the formulas
corresponding to) ‘everyone’ and ‘sleeps’ as hypotheses (both lexical) and the
formula s as its conclusion.

s

np � severyone

@

λ

s

npsleeps

@

→
A

s

��

@

λ

�

��

@

λ

�

+

� �sleeps

λ

�

��

@

everyone

Fig. 4. Proof structure of ‘everyone sleeps’ after identification of the atomic formulas
(left) and corresponding abstract proof structure (right).

Definition 6. A tensor graph is a connected proof structure with a unique con-
clusion (root) node containing only tensor links. The trivial tensor graph is a
single node.

Given a proof structure P , the components of P are the maximal substruc-
tures of P which are tensor graphs. A tensor tree is an acyclic tensor graph.

For standard multimodal proof nets, we define correctness using tensor trees
instead of the more general notion used here. Our results may be (graph theoret-
ical representations of) lambda terms, and the λ link represents the λ binder for
linear lambda terms. As is usual for lambda terms, we need to be careful about
‘accidental capture’ of variables. That is, we want avoid incorrect reductions
such as (λxλy(f x))(g y) (not a linear lambda term) to λy(f (g y)).

92 R. Moot and S. J. Stevens-Guille

Table 2. Links for HTLG abstract proof structures

[λ]

�
λ

�

�

[ε]

�

ε

[+]

�

��

+

[@]

�

��

@

[/I]

�
+

�

�

[\I]

�
+

�

�

[�I]

�
λ

�

�

4.2 Abstract Proof Structures

As is usual for proof nets, correctness is defined on graph theoretic representa-
tions obtained from proof structures by forgetting some of the formula labels.
We call these representations abstract proof structures. A more procedural way
of seeing abstract proof structures is as ways of computing the structure of the
antecedent. For hybrid type-logical grammars, this means abstract proof struc-
tures must contain some way of representing lambda terms in addition to the
Lambek calculus structures.

Definition 7. An abstract proof structure A is a tuple 〈V,L, l, h, c〉 where V is
a set of vertices, L is a set of the links shown in Table 2 connecting the vertices
of V , l is a function from the lexical hypothesis vertices of A to the corresponding
variables, h is a function from logical hypothesis vertices to formulas, and c is a
function from the conclusion vertices of A to formulas (a hypothesis vertex is a
vertex which is not the conclusion of any link in L, and a conclusion vertex is a
vertex which is not the premiss of any link in L).

The links for abstract proof structures are shown in Table 2. The tensor links
are shown in the topmost row, the par links in the bottom row, with the par
links for the Lambek connectives on the left and in the middle, and the par link
for the linear implication on the bottom right.

The λ tensor link is the only non-standard link. Even though it has the
same shape as the link for the Grishin connectives of Moortgat and Moot [9],
it is used in a rather different way. The λ tensor link does not correspond to a
logical connective but rather to lambda abstraction over terms (or rather their
graph theoretical representation). To keep the logic simple and the number of
connectives as small as possible, we have chosen to make the ε link, corresponding
to the empty string, a non-logical link as well. As a consequence, ε can appear
only in lexical terms. However, if needed, it would be easy to adapt the logic by
adding a logical connective 1 corresponding to ε.

Definition 8. Given a proof structure P , we obtain the corresponding abstract
proof structure A(P) = A as follows.

Proof-Theoretic Aspects of Hybrid Type-Logical Grammars 93

1. we keep the set of vertices V and the set of links L of P (but we forget the
formula labels of the internal nodes),

2. logical hypotheses are kept as simple vertices, but we replace each lexical
hypothesis M : A of the proof structure by a graph g corresponding to its
lambda term M , the conclusion of g is the vertex which was the lexical hypoth-
esis of P , making the word subterm w of M a lexical hypothesis of the new
structure,

3. we define l to assign the corresponding word for each lexical hypothesis of
the resulting graph, h to assign a formula for all logical hypotheses, and c to
assign a formula to all conclusions.

Example 3. Converting the proof structure on the left of Fig. 4 to an abstract
proof structure produces the abstract proof structure shown on the right. We
have replaced ‘everyone’ by the structure corresponding to its lexical lambda
term and similarly for ‘sleeps’.

Definition 9. A lambda graph is an abstract proof structure such that:

1. it has a single conclusion,
2. it contains only tensor links,
3. each right conclusion of a lambda link is an ancestor of its premiss,
4. removing the connection between all lambda links and their rightmost conclu-

sion produces an acyclic and connected structure.

Condition 3 avoids vacuous abstraction and accidental variable capture in
the corresponding lambda term. Condition 4 is the standard acyclicity and con-
nectedness condition for abstract proof structures, but allowing for the fact that
lambda abstraction (but no other tensor links) can produce cycles.

Lambda graphs correspond to linear lambda terms in the obvious way, with
the rightmost conclusion of the lambda link representing the variable abstracted
over. This is a standard way of representing lambda terms in a way which avoids
the necessity of variable renaming (alpha conversion).

Proposition 1. A lambda term with free variables x1, . . . , xn corresponds to a
lambda graph with hypotheses x1, . . . , xn, with the @ tensor link corresponding to
application, the λ tensor link to abstraction, and the + link and the ε link to the
term constants of type s → s → s and s respectively. To keep the terms simple,
we will write (X + Y) instead of ((+X)Y).

4.3 Structural Rules and Contractions

To decide whether or not a given proof structure is a proof net (that is, cor-
responds to a natural deduction proof), we will introduce a system of graph
rewriting. The structural rules for the non-associative version of hybrid type-
logical grammars are shown on the left-hand column of Table 3. We can obtain
the standard associative version simply by adding the associativity rules for ‘+’;
more generally, we can add any structural conversion for multimodal grammars,

94 R. Moot and S. J. Stevens-Guille

rewriting a tensor tree into another tensor tree with the same leaves (though not
necessarily in the same order) provided they do not overlap with the beta redex.
The ε structural rules simply stipulate that ‘ε’ functions as the identity element
for ‘+’ (both as a left identity and as a right identity).

The key rewrite is the beta conversion rule. It is the graph theoretical equiv-
alent of performing a beta reduction on the corresponding term. For the beta
rewrite, we replace the two links (and the internal node) and perform two vertex
contractions: h1 with c1 and h2 with c2. We update the functions h, l and c
accordingly (if one of the hi was in the domain of h and l then so is the resulting
vertex, and similarly for the ci and the c function of the abstract proof structure).

Table 3. Structural rules (left) and logical contractions (right) for HTLG proof nets.

h1�
c1

h2�
c2

→
[β]

Structural rules

h1�

@

�

�
c2

λ

h2�

�
c1

�

h
� �

+

�
c

+

h
�
c

[/I]
→

Logical contractions

�
c

h
��

+

ε

h
�
c

→
[εL]

�

h
��

+

�
c

+

h
�
c

[\I]
→

�
c

h
� �

+

ε

h
�
c

→
[εR]

→
[�I]

�
c1

λ
�
c2

h
�

�
c1

λ
�
c2

h
�

To make the operation of the beta reduction clearer, a ‘sugared’ version of the
contraction is shown in Table 4. Term labels have been added to the vertices of
the graph to make the correspondence with beta-reduction explicit. This second
picture is slightly misleading in that it suggests that A1, A2 and A3 are disjoint
substructures. This need not be the case: for example, A3 can contain a lambda
link whose right conclusion is a premiss of either A1 or A2. Similarly, in a logic
with the Lambek calculus product, the link for [•E] may connect premisses of
both A1 and A2. A side condition on the �I conversion combined with the

Proof-Theoretic Aspects of Hybrid Type-Logical Grammars 95

restriction of lexical entries to linear lambda terms will guarantee that x (c1) in
the beta reduction is always a descendant of N(h2).

Table 4. Beta conversion as a structural rule with term labels added.

A2

A1

A3

M

N [x := M]

→
[β]

M

@

λx.N

(λx.N)M

λ

N

A2

A1

A3

x

Definition 10. We say a lambda graph is normal or beta-normal when it doesn’t
contain any redexes for the beta conversion.

In addition to the structural rules, there are contractions for each of the log-
ical connectives. Table 3 shows, on the right-hand column, the contractions for
HTLG. For the Lambek implications, these are just the standard contractions.
They combine a concatenation mode ‘+’ with one of its residuals4. The contrac-
tions for the Lambek calculus implications are the standard contractions from
Moot and Puite [11].

The contraction for �I has the side condition that the rightmost conclusion
of the λ par link is a descendant of its premiss, passing only through tensor links.
This is essentially the same condition as the one used by Danos [1], only without
performing the actual contractions. This is because we want our abstract proof
structures to represent the prosodic structure of a proof, which may contain
lambda terms, just like the standard goal of abstract proof structures is always
to compute the structure which would make the derivation valid.

Our rewrite calculus can be situated in the larger context of adding rewrite
rules to the lambda calculus [2,4]. Even though the contractions for [/I] and
[\I] are not left-linear, since they correspond to terms (M + x)/x and x\(x +
M) respectively, this is not a problem because the occurrences of x are bound
occurrences [4]. In general, confluence can not be maintained in the presence of
structural rules (or of the unary connectives) since the structural rules themselves
4 To ensure confluence of ‘/’ and ‘\’ in the presence of ε we can add the side condition
to the [/I] and [\I] contractions that the component to which the par link is attached
has at least one hypothesis other than the auxiliary conclusion of the par link. This
forbids empty antecedent derivations and restores confluence.

96 R. Moot and S. J. Stevens-Guille

need not be confluent. Confluence of beta reduction is guaranteed by not allowing
any structural rewrite to overlap with the beta redex [4].

5 Correctness of the Proof Net Calculus

Definition 11. A proof structure is a proof net whenever its abstract proof
structure converts to a lambda graph.

The reader can easily verify that the abstract proof structure shown on the
right hand side of Fig. 4 back on page 8 converts to the lambda graph everyone+
sleeps—after one application of the [�I] conversion and three applications of
the β conversion—and is therefore a proof net.

We show that a proof net with premisses A1, . . . Ak and conclusion C converts
to a lambda graph M whenever N1 : A1, . . . , Nk : Ak � M : C (where Ni is the
lexical lambda term or variable corresponding to Ai) is derivable, and vice versa.

Lemma 2. If δ is a natural deduction proof of N1 : A1, . . . , Nk : Ak � M : C,
then we can construct a proof net with premisses A1, . . . , An and conclusion C
contracting to M .

Proof. Induction on the length l of δ. If l = 0, then we have either an axiom
x : A or a lexicon rule M : A (with M a linear lambda term with a single free
variable w). In either case, the abstract proof structure will convert in zero steps
to the required graph M .

If l > 0, we look at the last rule of the proof and proceed by case analysis.
If the last rule of the proof is the /I rule, we are in the follow case.

.... δ

Γ, x : B � N + x : A

Γ � N : A/B
/I

Removing the last rule gives us the shorter proof δ, and induction hypothesis
gives us a proof net of Γ, x : B � N +x : A. In other words, induction hypothesis
gives us a proof net of Γ,B � A such that the underlying abstract proof structure
converts, using a reduction sequence ρ, to N + x, with x corresponding to B, as
shown schematically in Fig. 5.

We need to produce a proof net of Γ � N : A/B. But this is done simply
by adding the /I link to the proof net of the induction hypothesis and adding a
final /I reduction as shown in Fig. 6.

The cases for \I and � are similar, adding the corresponding link and con-
version to the proof net obtained by induction hypothesis.

The cases for the elimination rules /E, \E and �E simply combine the two
proof nets obtained by induction hypothesis with the corresponding link.

If the final rule is the β rule or a structural rule, we simply add, respectively,
the β reduction and the corresponding structural conversion. ��

Proof-Theoretic Aspects of Hybrid Type-Logical Grammars 97

Π

A

B

A

� B

+

A1

Γ

ρ
�

Γ

Fig. 5. Conversion sequence of Fig. 6 with the final [/I] contraction removed.

Π

A

B

A/B

+

�

� �

+

A/B

+

A

Γ

Γ

A

A/B
ρ
�

[/I]
→

Γ

Fig. 6. Conversion sequence of a proof net ending with a [/I] contraction

Lemma 3. Given a proof net Π with premisses A1, . . . An and conclusion C
converting to a lambda graph M , there is a natural deduction proof N1 :
A1, . . . , Nk : An � M : C.

We proceed by induction on the number of conversions c.
If c = 0 there are no conversions. As a consequence, there are no par links

in the proof net. We proceed by induction on the number of tensor links t in the
proof net.

If t = 0, the proof net consists of a single formula A and the abstract proof
structure is either a single vertex x (in the case of a hypothesis), corresponding
to a proof x : A or a term M corresponding to a lexical entry, corresponding to
a proof M : A.

If t > 0, one of the hypotheses of the proof structure must be the main for-
mula of its link. Removing this link will produce two proof nets and we can apply
the induction hypothesis to obtain natural deduction proofs for each, combining
them with the appropriate elimination rule.

If c > 0, we look at the last conversion and proceed by cases analysis.
If the last conversion is a β conversion or a structural rule, then induction

hypothesis gives us a proof δ of Γ � M ′ : C, which we can extend using the β
rule (or structural rule) on M ′ to produce M and a proof of Γ � M : C.

If the last conversion is a �I contraction, we are in the case shown in Fig. 7.
The final lambda graph corresponds to the linear lambda term M [λx.N].

Removing the final [�I] conversion produces two proof nets Π1 and Π2

with strictly shorter conversion sequences (again because we removed the final

98 R. Moot and S. J. Stevens-Guille

Π1

Π2

A

B

B � A

λ

C

Γ

Δ

�

�

�
λ

A1

A2

C

Γ

Δ

�

�

�
λ

A1

A2

C

[�I]
→

ρ
�

Γ

Δ

Fig. 7. Conversion sequence of a proof net ending with a [�I] contraction

conversion and divided the other conversions) shown in Fig. 8. Therefore, induc-
tion hypothesis gives us a proof δ1 of Γ, x : B � N : A and a proof δ2 of
Δ, z : B � A � M [z] : C and we need to combine these into a proof of
Γ,Δ � M [λx.N] : C. This is done as follows.

Π1

Π2

A

BΓ

Δ B � A

C

A

BΓ

B � AΔ

A1

A2

C

ρ1

�

ρ2

�

Fig. 8. Conversion sequence of Fig. 7 with the final [�I] conversion removed

Δ

Γ x : B.... δ1
N : A

λx.N : B � A
�I

.... δ2, z := λx.N

M [λx.N] : C

The substitution of λx.N for z presupposes that the formula B � A is not
a lexical hypothesis, but given that it is the conclusion of a link in the full
structure, it cannot be a hypothesis of the full structure and therefore we can
apply the substitution. This is the reason we distinguish between a par link for
λ (which corresponds to the introduction rule of the logical connective �) and

Proof-Theoretic Aspects of Hybrid Type-Logical Grammars 99

a tensor link (which corresponds to abstraction at the term level and need not
correspond to a logical rule since it can come from a complex lexical entry as
well).

The cases for /I and \I are similar, and simply follow Moot and Puite [11].
��

6 Complexity

Given the proof net calculus described in the previous sections, complexity ana-
lysis of hybrid type-logical grammars and several of its variants becomes simple.

Theorem 3. HTLG parsing is NP complete.

Proof. Since HTLG contains lexicalized ACG as a fragment, NP-hardness follows
from Proposition 5 of Yoshinaka and Kanazawa [13], so all that remains to be
shown is that HTLG is in NP.

In order to shown that HTLG parsing is NP-complete we only need to
show that, given a non-deterministic proof search procedure we can verify
whether a proof candidate is an actual proof in polynomial time. Given a sen-
tence, we non-deterministically select a lexical formula for each word, then non-
deterministically enumerate all proof structures for these lexical formulas. ��

The proof of Theorem 3 is very general and can easily be adapted to variants
and extensions of HTLG. For example, we can add the connectives for ‘•’, ‘�’
and ‘�’ and mode information (as in the multimodal versions of the Lambek
calculus [8]) while maintaining NP-completeness.

When adding structural rules, complexity analysis becomes more delicate.
Adding associativity, as in the original formulation of hybrid type-logical gram-
mars, doesn’t change the complexity, since we can simply use the strategy of
Moot and Puite [11, Sect. 7] to ensure polynomial contraction of proof struc-
tures. So we can actually strengthen Theorem 3 to the following.

Theorem 4. HTLG/i,•i,\i,�i,�i
parsing, with associativity for some modes i, is

NP complete.

In general, NP completeness will be preserved whenever we provide the set of
structural rules with a polynomial time contraction algorithm. When we do not
have a polynomial contraction algorithm, we can still show information about the
complexity class: when we add structural rules but use the standard restriction
that the tree rewrites allowed by the structural rules are linear (no copying or
deletion of leaves) and do not increase the size of the tree, then the resulting
logic is PSPACE complete, following the argument of Moot [10, Sect. 9.2].

Theorem 5. HTLG/i,•i,\i,�i,�i
parsing with any finite set of non-expanding

structural rules is PSPACE complete.

This gives an NP lower bound and a PSPACE upper bound for any HTLG
augmented with the multimodal connectives and a fixed set of structural rules,
and NP completeness can be shown by providing a polynomial contraction algo-
rithm.

100 R. Moot and S. J. Stevens-Guille

7 Conclusion

We have investigated the formal properties of hybrid type-logical grammars and
proved several standard results for them. This solves the question of the theo-
retical foundations of the system, left open by Kubota and Levine [6].

References

1. Danos, V.: La Logique Linéaire Appliquée à l’étude de Divers Processus de Nor-
malisation (Principalement du λ-Calcul). University of Paris VII (1990)

2. Di Cosmo, R., Kesner, D.: Combining algebraic rewriting, extensional lambda cal-
culi, and fixpoints. Theor. Comput. Sci. 169(2), 201–220 (1996)

3. Girard, J.-Y.: Linear logic. Theor. Comput. Sci. 50(1), 1–102 (1987)
4. Klop, J., van Oostrom, V., van Raamsdonk, F.: Combinatory reduction systems:

introduction and survey. Theor. Comput. Sci. 121(1–2), 279–308 (1993)
5. Kubota, Y., Levine, R.: Coordination in hybrid type-logical grammar. In: Ohio

State University Working Papers in Linguistics, Columbus, Ohio (2013)
6. Kubota, Y., Levine, R.: Determiner gapping as higher-order discontinuous con-

stituency. In: Morrill, G., Nederhof, M.-J. (eds.) FG 2012-2013. LNCS, vol.
8036, pp. 225–241. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-39998-5 14

7. Kubota, Y., Levine, R.: Gapping as like-category coordination. In: Béchet, D.,
Dikovsky, A. (eds.) LACL 2012. LNCS, vol. 7351, pp. 135–150. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-31262-5 9

8. Moortgat, M.: Categorial type logics. In: van Benthem, J., ter Meulen, A. (eds.)
Handbook of Logic and Language, pp. 93–177. Elsevier/MIT Press, Amster-
dam/Cambridge (1997)

9. Moortgat, M., Moot, R.: Proof nets for the Lambek-Grishin calculus. In: Grefen-
stette, E., Heunen, C., Sadrzadeh, M. (eds.) Quantum Physics and Linguistics:
A Compositional, Diagrammatic Discourse, pp. 283–320. Oxford University Press,
Oxford (2013)

10. Moot, R.: Proof nets for linguistic analysis. Utrecht Institute of Linguistics OTS,
Utrecht University (2002)

11. Moot, R., Puite, Q.: Proof nets for the multimodal Lambek calculus. Stud. Logica
71(3), 415–442 (2002)

12. Worth, C.: The phenogrammar of coordination. In: Proceedings of the EACL 2014
Workshop on Type Theory and Natural Language Semantics (TTNLS), pp. 28–36
(2014)

13. Yoshinaka, R., Kanazawa, M.: The complexity and generative capacity of lexical-
ized abstract categorial grammars. In: Blache, P., Stabler, E., Busquets, J., Moot,
R. (eds.) LACL 2005. LNCS (LNAI), vol. 3492, pp. 330–346. Springer, Heidelberg
(2005). https://doi.org/10.1007/11422532 22

https://doi.org/10.1007/978-3-642-39998-5_14
https://doi.org/10.1007/978-3-642-39998-5_14
https://doi.org/10.1007/978-3-642-31262-5_9
https://doi.org/10.1007/11422532_22

On the Computational Complexity
of Head Movement and Affix Hopping

Miloš Stanojević(B)

School of Informatics, University of Edinburgh,
11 Crichton Street, Edinburgh, UK

m.stanojevic@ed.ac.uk

Abstract. Head movement is a syntactic operation used in most gener-
ative syntactic analyses. However, its computational properties have not
been extensively studied. [27] formalises head movement in the frame-
work of Minimalist Grammars by extending the item representation to
allow for easy extraction of the head. This work shows that Stabler’s
representation is in fact suboptimal because it causes higher polynomial
parsing complexity. A new algorithm is derived for parsing head move-
ment and affix hopping by changing the kinds of representations that
the parser deals with. This algorithm has much better asymptotic worst-
case runtime of O(n2k+5). This result makes parsing head movement
and affix hopping computationally as efficient as parsing a single phrase
movement.

Keywords: Minimalist Grammars · Parsing · Head movement ·
Affix hopping

1 Introduction

Minimalist Grammars (MG) [26] are a formalisation of Chomsky’s Minimalist
Program [4]. MGs rely on only two basic operations merge and move. merge is
a binary function that combines two constituents into a single constituent, while
move is a unary operation that takes one sub-constituent and reattaches it to
the specifier position at the root of the partially constructed tree. An example
MG derivation with merge and move is shown in Fig. 1a for the declarative
sentence “[d] she will meet him” where [d] is a null declarative complementiser.
Figure 1b shows the X-bar structure that is a byproduct of the MG derivation
and can be computed deterministically. Here merge combines constituents that
are not necessarily adjacent to each other, while move raises the subject DP
from spec-VP to spec-TP so that it can check the nominative case feature.

merge is a single function but it is often easier to view it as different sub-
functions over non-overlapping domains. For instance, merge1 is applied in the
case of complement attachment, while merge2 attaches a specifier. The same
holds for move: move1 moves a phrase to its final landing site, while move2
moves a constituent that is going to move again later. The type of movement
c© Springer-Verlag GmbH Germany, part of Springer Nature 2019
R. Bernardi et al. (Eds.): FG 2019, LNCS 11668, pp. 101–116, 2019.
https://doi.org/10.1007/978-3-662-59648-7_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-59648-7_7&domain=pdf
https://doi.org/10.1007/978-3-662-59648-7_7

102 M. Stanojević

done by move1 and move2 is often called phrase movement because it is applied
to a maximal projection (XP). However, phrasal movement is not the only type
of movement used in Minimalist syntax. In addition to phrasal movement, all
minimalist textbooks [1,2,22,25] also discuss head movement. Head movement
can be triggered when a selecting lexical head merges with its complement. This
operation extracts the head of the complement and adjoins it to the selecting
head. It can adjoin the complement’s head to the left or right of the selecting
head depending on the type of feature that triggers the head movement.

The most typical example of head movement in English is Subject-Auxiliary
inversion in yes-no questions. Figure 2 shows the previous example sentence
turned into a question by using a different null complementiser [q] for form-
ing yes-no questions. What is different between [d] and [q] is the type of the
feature that each uses to select the tense phrase: [d] uses a simple selector =t
while [q] uses =>t which, in addition to selecting the tense phrase, also extracts
the tense head “will” and adjoins it to the left of the complementiser head.

(a) derivation tree

CP

C’

C
[d]

TP

T’

T
will

VP

DP

D’

D
she

V’

V
see

DP

D’

D
him

(b) X-bar tree

Fig. 1. Example without head movement

The original version of MG published in [26] had both phrase and head
movement. There have since been many variations on MG proposed, some of
which are reviewed in [29] including a simpler version that does not include head
movement. This simple version of MG is very convenient for formal analysis and
parsing. We will call this version succinct MG or MGS , and the original version
of MG with head movement MGH .

Many phenomena that appear to require head movement can in fact be
expressed with other means like remnant or rightward movement [18,28]. Also,

On the Computational Complexity of Head Movement and Affix Hopping 103

(a) derivation tree

CP

C’

C

C
[q]

TP

T’

T
will

VP

DP

D’

D
she

V’

V
see

DP

D’

D
him

(b) X-bar tree

Fig. 2. Example with head movement

MG with and MG without head movement are weakly equivalent [21,27]. Still,
if we are interested in the structures that explain the derived word order using
head movement we will need a parser specifically tailored to parsing with head
movement. The practical need for that kind of parser is even more evident with
the recent construction of MGbank [34] and the first wide-coverage MG parser
[36], which both use head movement in almost all of their derivations.

The published work on Minimalist Parsing can be divided into two cat-
egories. The first is transition based parsing which is usually of higher rele-
vance to psycho-linguists as a more likely model of human sentence processing
[8,9,12,13,17,30–33]. However, these models use no dynamic programming and
therefore have exponential runtime complexity. This makes them impractical
for actual parsing and inappropriate for studying the theoretical computational
complexity properties of MGs.

The second type of MG parsers are those that use dynamic programming
and are usually expressed as deductive systems. These parsers run in polynomial
time and are guaranteed to find a parse if it exists. The first work of that sort
is Harkema’s CKY parser [10,11] for MG without head movement. Stabler [27]
showed a simple extension of Harkema’s parser that enabled it to account for
head movement. Harkema’s parser for MGS had computational time complexity
of O(n4k+4) where k is a number of distinct phrase movement types. Stabler’s
extension for head movement raises complexity to O(n4k+12) because of the
additional spans that are required to keep the head of a constituent available for
extraction by head movement. If we interpret O(n4) as the price of a single phrase

104 M. Stanojević

mover, this would mean that the price of having head movement is equivalent
to having two phrase movement types.

A more modern parser for MGS is presented in [7] which lowers the time com-
plexity from Harkema’s O(n4k+4) to O(n2k+3). This result is in fact the same
algorithm as Harkema’s (done through conversion to IRTG) but with more accu-
rate computational analysis. If we apply this revised analysis to Stabler’s head
movement algorithm we get worst-case parsing complexity of O(n2k+9). Here,
the price of each phrase movement is quadratic meaning that head movement
now costs the same as having three distinct phrase mover types.

An interesting special type of MGH is MGH
0 which is an MG that has only

head movement without any phrase movement. This MG is more expressive
than CFG but less expressive than TAG [21]. Parsing this MG using Stabler’s
algorithm with new analysis would take O(n9) in the worst case. Intuitively,
there should be a better algorithm than this because the worst case complexity
of TAG, which is more expressive, is just O(n6).

This paper presents a new and more efficient algorithm for parsing the full for-
mulation of MG that contains head movement. This greater efficiency is accom-
plished with a more compact representation of the parse items and inference
rules adapted for that compact representation. The parser’s worst-case compu-
tational complexity is O(n2k+5). In computational terms, this makes parsing
head movement as easy as parsing a single phrase movement. In the special case
of MGH

0 we get a O(n5) parser which is lower than TAG parsing complexity,
exactly as we would expect.

2 MG Without Head Movement

A Succinct Minimalist Grammar MGS [29] is formally defined with a tuple
G = 〈Σ, B, Lex, c, {merge,move}〉, where Σ is the vocabulary, B is a set of
basic features, Lex is a finite lexicon (as defined just below), c ∈ B is the
start category, and merge and move are the generating functions. The basic
features of the set B are concatenated with prefix operators to specify their roles,
as follows:

categories, selectees = B
selectors = {=f | f ∈ B}
licensees = {-f | f ∈ B}
licensors = {+f | f ∈ B}

Let F be the set of role-marked features, that is, the union of the cat-
egories, selectors, licensors and licensees. Let T = {::, :} be two types, indi-
cating “lexical” and “derived” structures, respectively. Let C = Σ∗ × T × F ∗

be the set of chains. Let E = C+ be the set of expressions; intuitively, an
expression is a chain together with its “moving” sub-chains, if any. All expres-
sions have to respect Shortest Movement Constraint (SMC) which states that
no two chains in an expression can have the same initial feature. The functions
merge and move are defined in Fig. 3. The lexicon Lex ⊂ Σ∗ × {::} × F ∗ is
a finite set. The set of all structures that can be derived from the lexicon is

On the Computational Complexity of Head Movement and Affix Hopping 105

S(G) = closure(Lex, {merge,move}). The set of sentences L(G) = {s | s · c ∈
S(G) for some type · ∈ {:, ::}}, where c is the “start” category.

The functions merge1, merge2 merge3 are special cases of merge corre-
sponding respectively to complement merge, specifier merge and merge of an
element that is going to move in the future and therefore needs to be kept as
a separate chain. Functions move1 and move2 are special cases of move cor-
responding respectively to the movement of an element that is landing and to
the movement of an element that will move again in the future. All functions in
Fig. 3 have pairwise disjoint domains.

s :: = fγ t · f, α1, . . . , αk

st : γ, α1, . . . , αk

merge1

s : = fγ, ι1, . . . , ιl t · f, α1, . . . , αk

ts : γ, ι1, . . . , ιl, α1, . . . , αk

merge2

s · = fγ, ι1, . . . , ιl t · fδ, α1, . . . , αk

s : γ, ι1, . . . , ιl, t : δ, α1, . . . , αk

merge3

s : +fγ, ι1, . . . , ιl, t : −f, α1, . . . , αk

ts : γ, ι1, . . . , ιl, α1, . . . , αk

move1

s : +fγ, ι1, . . . , ιl, t : −fγ, α1, . . . , αk

s : γ, ι1, . . . , ιl, t : γ, α1, . . . , αk

move2

Fig. 3. Succinct MG. All rules are subject to SMC.

2.1 Parsing with Succinct MG

Most MG parsers are based on the parsing as deduction paradigm [24]. In parsing
as deduction the parser maintains two data structures: a chart and an agenda.
These data structures contain items that represent a set of derivation trees
that share their topmost expression. The chart contains items that are already
proved by the parser. The agenda contains items that could in the future combine
with items from the chart to prove new items. Parsing starts with the agenda
containing all the axioms (items that are true without the need for a proof) and
an empty chart. When an item is popped out of the agenda, the parser tries to
combine it with all the elements in the chart in an attempt to prove new items.
For each new item, the parser first checks if it is present in the chart. If it is in
the chart, the parser just discards it1 because that item is already proved. If it is
not present in the chart, the parser adds it both to the chart and to the agenda.
Parsing stops when either the newly created item is the goal item, in which case

1 Or adds one more backpointer if we want all possible derivation trees instead of a
single tree.

106 M. Stanojević

parsing is successful, or when the agenda becomes empty, in which case parsing
has failed because the sentence is not part of the language.

This description is enough to use this method for recognition. To turn it into
a parser, it is sufficient to modify the chart data structure in such a way that
each item in it contains a list of backpointers to the items that were used to
derive it. When the goal item is constructed, it is enough to follow backpointers
to find the full derivation tree.

The first parser for the succinct version of MG was presented by Harkema
[10,11]. The items of this parser are equivalent to the MGS expressions except
that instead of strings they contain spans of the strings in the sentence that is
being parsed. The axioms of the parser are lexical entries for each word in the
sentence with the string replaced by its span in the sentence. Inference rules are
exactly the same as in the definition of merge and move from Fig. 3.

Harkema’s analysis of that algorithm is as follows. The maximal number of
items in the chart (its space complexity) is n2k+2 because each item contains
maximally k+1 spans (due to SMC) and each span has 2 indices in range [0, n]. In
the worst case we will need to pop out n2k+2 items from the agenda. The parser
needs to check for each of those popped items whether there is a proved item in
the chart that could combine with it. In the worst case the number of items in
the chart is n2k+2. Therefore the worst-case complexity is O(n2k+2 · n2k+2) =
O(n4k+4).

As shown by Fowlie and Koller [7], this analysis was too pessimistic. Through
conversion of MGS to Interpreted Regular Tree Grammars (IRTG) they demon-
strated that MGS can be parsed in O(n2k+3). The same result can be obtained
by converting MGS to MCFG using Michaelis’ algorithm [20] and then parsing
with some well optimised MCFG parser.

However, conversion to any of these formalisms is not necessary to get efficient
MG parsing. It is enough just to implement an efficient lookup in the chart.
Optimising for feature lookup is not enough because it will improve only the
constants that depend on the grammar. To get asymptotic improvement the
lookup needs to be optimised on the item indices instead. For instance, if we
have an item that as its main span has (2, 3) and as its initial feature a selector,
we know that merge1 inference rule can combine it only with items whose main
span start with 3. If we organise the items in the chart in a way that we can
efficiently lookup all items that have particular properties, for instance “all items
whose main span starts with 3”, then the parsing complexity will be lower. If
the popped item has m movers then we know that the item that combines with
it certainly does not have more than k−m movers due to SMC constraint. In
the case of merge1 and merge2 we also know one of the indices of the main
span, a fact that reduces the number of possible items that could merge even
further. We can calculate complexity by summing over the computations for
each possible value of m as follows O(

∑k
m=0 n2m+2 · n2(k−m)+1) = O(n2k+3).

This is a result for merge1 and merge2, which turn out to be more expensive
than merge3, that does not need to apply concatenation of strings and for that
reason can be done in O(n2k+2). Move rules do not need to consult the chart

On the Computational Complexity of Head Movement and Affix Hopping 107

since they are unary rules, but we could still calculate the total number of times
they would be applied as O(n2k+1) for merge1 and O(n2k+2) for merge2.

Parsing as deduction systems are essentially logic programs which are eval-
uated bottom-up (forward chaining) with tabling [6,15]. For those kinds of pro-
grams there is a much simpler way of calculating complexity that is based only
on counting unique indices in the antecedents of the most complex inference
rule [5,19]. Clearly in total there cannot be more than k phrasal movers on the
antecedent side because the consequent needs to respect SMC. Furthermore, for
concatenation rules, i.e. merge1 and merge2, we know that the main spans share
at least one index, which leaves us with 3 unique indices for main spans and
makes the complexity of those rules O(n2k+3). These rules are also the most
complex inference rules and therefore the worst-case complexity of the whole
algorithm is O(n2k+3). We will use this method of complexity analysis for pars-
ing algorithms in the rest of the paper.

3 MG with Head Movement

The first description of how to parse MG with head movement was presented by
Stabler [27]. It is based on modifying the MG expressions/items in such a way
as to split the main string into three sub-parts: the head string sh, the specifier
string ss and the complement string sc. The reason for this splitting is to make
the head string available for extraction by head movement. MG rules also needed
modification to work with this representation. Modifications for merge2, move1
and move2 are trivial because they cannot trigger head movement. Rules for
merge1 and merge3 got two additional versions that can trigger head movement
and adjoin the complement’s head to the selecting head to the left, in case of
feature =>f, or to the right, in case of feature <=f.

Stabler’s inference rules for MG with head movement2 are shown in Fig. 4
together with a new complexity analysis for each of the rules calculated by the
method of counting indices for each rule. The most complex rule is merge2 which
makes the whole algorithm run in O(n2k+9).

4 Improved Parsing of MG with Head Movement

Stabler’s formulation is very compact, but it misses some generalisations that
would make the number of indices smaller. For instance, if we take rule merge2
we can see that spans ts and th always share one index because they are con-
catenated. The same holds for th and tc. This means that the selector needs to
visit n2 constituents in the chart that would produce absolutely the same result

2 Stabler’s inference rules had a small mistake for merge3left and merge3right for
allowing the possibility of a head constituent being non-lexical. The correct version
of inference rules is presented in this paper but it can also be found in [21]. The
correction is crucial for the more efficient parsing algorithm.

108 M. Stanojević

ε, s, ε :: = fγ ts, th, tc · f, α1, . . . , αk

ε, s, tsthtc : γ, α1, . . . , αk

merge1 O(n2k+6)

ε, s, ε :: <= fγ ts, th, tc · f, α1, . . . , αk

ε, sth, tstc : γ, α1, . . . , αk

merge1right O(n2k+6)

ε, s, ε :: => fγ ts, th, tc · f, α1, . . . , αk

ε, ths, tstc : γ, α1, . . . , αk

merge1left O(n2k+6)

ss, sh, sc : = fγ, ι1, . . . , ιl ts, th, tc · f, α1, . . . , αk

tsthtcss, sh, sc : γ, ι1, . . . , ιl, α1, . . . , αk

merge2 O(n2k+9)

ss, sh, sc · = fγ, ι1, . . . , ιl ts, th, tc · fδ, α1, . . . , αk

ss, sh, sc : γ, ι1, . . . , ιl, tsthtc : δ, α1, . . . , αk

merge3 O(n2k+8)

ε, s, ε :: <= fγ ts, th, tc · fδ, α1, . . . , αk

ε, sth, ε : γ, tstc : δ, α1, . . . , αk

merge3right O(n2k+4)

ε, s, ε :: => fγ ts, th, tc · fδ, α1, . . . , αk

ε, ths, ε : γ, tstc : δ, α1, . . . , αk

merge3left O(n2k+4)

ss, sh, sc : +fγ, t : −f, α1, . . . , αk

tss, sh, sc : γ, α1, . . . , αk

move1 O(n2k+5)

ss, sh, sc : +fγ, ι1, . . . , ιl, t : −fγ, α1, . . . , αk

ss, sh, sc : γ, ι1, . . . , ιl, t : γ, α1, . . . , αk

move2 O(n2k+6)

Fig. 4. Stabler’s inference rules for MG with head movement together with their com-
putational complexity.

because the two indices that are shared between the components ts, th and tc
are disappearing in the consequent. One could try to reduce this problem by
having a unary inference rule that packs all the main components of t before
they are combined with merge2 akin to the fold transformation of logic programs
[6,14,23]. If we push this operation to its limits we would get O(n2k+7).

To obtain an even lower complexity we need to change the representation
of items. Do we need all the three components ts, th and tc from Stabler’s
formulation? If we look at the rules in Fig. 4 we can see that when an item is
selected by a merge operation, its components are concatenated either as tsthtc
if the head is not extracted or as th and tstc if the head is extracted. This
highlights a simple, tautological, fact: every head will either be extracted with
head movement or it won’t. In case it does not participate in head movement,
like in the succinct version of MG, there is no need to keep 3 spans to represent
projections of that head. It can all be done with a single span and by that reduce
the number of indices.

If, on the other hand, the head does participate in head movement then
we need only two spans: one for the head sh and one for the concatenation of
specifier and complement ssc because we know with certainty that they will be
concatenated after the head is extracted.

If we knew whether the head will move or not the parsing algorithm could be
improved significantly, but how can we know if the head will move? The good
aspect of chart based parsers is that we do not need to know that ahead of time.
We can just encode both variations of the items as axioms and let the parser
combine them accordingly. Let us refer to the items whose head must not be

On the Computational Complexity of Head Movement and Affix Hopping 109

s
A
:: = fγ t

A· f, α1, . . . , αk

st
A
: γ, α1, . . . , αk

merge1A O(n2k+3)

s, ε
B
:: = fγ t

A· f, α1, . . . , αk

s, t
B
: γ, α1, . . . , αk

merge1B O(n2k+4)

s
A
:: <= fγ th, tsc

B· f, α1, . . . , αk

sthtsc
A
: γ, α1, . . . , αk

merge1rightA O(n2k+4)

s, ε
B
:: <= fγ th, tsc

B· f, α1, . . . , αk

sth, tsc
B
: γ, α1, . . . , αk

merge1rightB O(n2k+5)

s
A
:: => fγ th, tsc

B· f, α1, . . . , αk

thstsc
A
: γ, α1, . . . , αk

merge1leftA O(n2k+4)

s, ε
B
:: => fγ th, tsc

B· f, α1, . . . , αk

ths, tsc
B
: γ, α1, . . . , αk

merge1leftB O(n2k+5)

s
A
: = fγ, ι1, . . . , ιl t

A· f, α1, . . . , αk

ts
A
: γ, ι1, . . . , ιl, α1, . . . , αk

merge2A O(n2k+3)

sh, ssc
B
: = fγ, ι1, . . . , ιl t

A· f, α1, . . . , αk

sh, tssc
B
: γ, ι1, . . . , ιl, α1, . . . , αk

merge2B O(n2k+5)

s
A· = fγ, ι1, . . . , ιl t

A· fδ, α1, . . . , αk

s
A
: γ, ι1, . . . , ιl, t : δ, α1, . . . , αk

merge3A O(n2k+2)

sh, ssc
B· = fγ, ι1, . . . , ιl t

A· fδ, α1, . . . , αk

sh, ssc
B
: γ, ι1, . . . , ιl, t : δ, α1, . . . , αk

merge3B O(n2k+4)

s
A
:: <= fγ th, tsc

B· fδ, α1, . . . , αk

sth
A
: γ, tsc : δ, α1, . . . , αk

merge3rightA O(n2k+3)

s, ε
B
:: <= fγ th, tsc

B· fδ, α1, . . . , αk

sth, ε
B
: γ, tsc : δ, α1, . . . , αk

merge3rightB O(n2k+3)

s
A
:: => fγ th, tsc

B· fδ, α1, . . . , αk

ths
A
: γ, tsc : δ, α1, . . . , αk

merge3leftA O(n2k+3)

s, ε
B
:: => fγ th, tsc

B· fδ, α1, . . . , αk

ths, ε
B
: γ, tsc : δ, α1, . . . , αk

merge3leftB O(n2k+3)

s
A
: +fγ, ι1, . . . , ιl, t : −f, α1, . . . , αk

ts
A
: γ, ι1, . . . , ιl, α1, . . . , αk

move1A O(n2k+1)

sh, ssc
B
: +fγ, ι1, . . . , ιl, t : −f, α1, . . . , αk

sh, tssc
B
: γ, ι1, . . . , ιl, α1, . . . , αk

move1B O(n2k+3)

s
A
: +fγ, ι1, . . . , ιl, t : −fγ, α1, . . . , αk

s
A
: γ, ι1, . . . , ιl, t : γ, α1, . . . , αk

move2A O(n2k+2)

sh, ssc
B
: +fγ, ι1, . . . , ιl, t : −fγ, α1, . . . , αk

sh, ssc
B
: γ, ι1, . . . , ιl, t : γ, α1, . . . , αk

move2B O(n2k+4)

Fig. 5. New inference rules for MG with head movement

110 M. Stanojević

extracted as items of type A, and items whose head must be extracted as items of
type B. Type A items will have a single span, just like in succinct MG, while type
B items will have two spans: sh for the head and ssc for specifier-complement.
This reduces the space complexity from Stabler’s O(n2k+6) to O(n2k+4).

The axioms of the new parser will for each word wi contain an entry of type
A: wi

A
:: γ and of type B: wi, ε

B
:: γ. These two cover both possible cases of wi

eventually being extracted and not being extracted by the head movement. All
MG rules need to be modified accordingly, but the modification is very simple.
We have exactly two rules for each rule of Stabler’s parser. This is because every
rule can have items of type A or type B as its main antecedent item (the item
that has selector or licensor as initial feature).

The type of the non-main (selected) item depends on the MG operation: in
case we use the head movement we know that the selected item is of type B,
otherwise it is of type A. The type of the consequent item is determined by the
main antecedent item: the head of the main antecedent item and the head of the
consequent is the same and therefore the same constraint on the head movement
(whether the head must or must not be extracted) has to stay unchanged.

This gives us the rules of inference shown in Fig. 5. The maximal complex-
ity comes from merge1rightB, merge1leftB and merge2B which make the whole
parsing in the worst-case O(n2k+5). This makes the computational price of pars-
ing head movement O(n2) which is the same as phrase movement. The number
of rules is double the rules of Stabler, but they all have disjoint domains and
can still be treated as a two operations merge and move. Derivation trees that
result from this parsing approach are isomorphic to the derivation trees of Sta-
bler’s parser with the only difference in labels of operations containing additional
letter A or B.

In case the grammar does not have features for the head movement, we can
exclude axioms of type B. This automatically makes parsing MG without head
movement O(n2k+3) without doing any transformation to IRTG or MCFG.

5 ATB Head Movement

One interesting variation of head movement is Across-the-Board (ATB) head
movement. This variation is not part of Stabler’s original formalisation, but is
of both theoretical and practical importance. If we accept that in interrogative
sentences tense undergoes head movement to adjoin to the complementiser head,
then in the case of the coordination of two tense phrases the same tense head has
to be simultaneously extracted from both. An example sentence is “Who [does]T
John like and Mary hate” (which also features ATB phrase movement of
who).

A formalisation of ATB head movement, as it is used in MGbank, is given
in [35]. The inference rules for ATB head movement are similar to ATB Phrase
Movement rules from [16]. The formalism of MGbank has special features for
coordination that are located on coordinating conjunction and are marked with
ˆ=f. There are two inference rules of relevance here. The first one combines

On the Computational Complexity of Head Movement and Affix Hopping 111

coordinating conjunction with the right conjunct. In the new representation of
items the coordinating conjunction will be of type A since its head is not going
to undergo head movement, but both the left and the right conjunct will be
of type B. The first inference rule has the following form in the more compact
representation:

s
A
:: ˆ=f ˆ=f γ th, tsc

B· f, α1, . . . , αk

th, stsc
B
:̄ ˆ=f γ, α1, . . . , αk

The second inference rule combines the result of the first rule with the left
conjunct. Because this is ATB head movement we know that heads and all the
moving chains have to unify between two antecedents. That gives us the following
inference rule.

th, ssc
B
: f, α1, . . . , αk th, tsc

B
:̄ ˆ=f γ, α1, . . . , αk

th, ssctsc
B
: γ, α1, . . . , αk

Even though the last rule uses two items of type B, the complexity is still
low O(n2k+5) because the two antecedents share the same head.

6 Affix Hopping

Affix hopping [3] is a morphosyntactic operation similar to head movement and
in some sense its opposite. Affix hopping can be interpreted as a downward head
movement where the head of the selector is moving to adjoin to the complement’s
head. The main motivation for this rule, as is apparent from its name, is to move
the tense affix to the verb in languages like English where V-to-T head movement
cannot occur. For instance, in “John really like [−s]T Mary” the tense affix
“−s” is often assumed to have undergone the affix hopping to adjoin to the main
verb stem “like”.

ε, s, ε :: ≈> fγ ts, th, tc · f, α1, . . . , αk

ε, ε, tsthstc : γ, α1, . . . , αk

merge1HopRight O(n2k+5)

ε, s, ε :: <≈ fγ ts, th, tc · f, α1, . . . , αk

ε, ε, tssthtc : γ, α1, . . . , αk

merge1HopLeft O(n2k+5)

ε, s, ε :: ≈> fγ ts, th, tc · fδ, α1, . . . , αk

ε, ε, ε : γ, tsthstc : δ, α1, . . . , αk

merge3HopRight O(n2k+3)

ε, s, ε :: <≈ fγ ts, th, tc · fδ, α1, . . . , αk

ε, ε, ε : γ, tssthtc : δ, α1, . . . , αk

merge3HopLeft O(n2k+3)

Fig. 6. Stabler’s inference rules for MG with affix hopping.

Affix hopping was formalised in Stabler’s paper on head movement [27] with
the inference rules shown in Fig. 6 where a special selector feature ≈> f or
<≈ f is used to trigger affix hopping. Owing to our adoption of a different item

112 M. Stanojević

representation to get a faster head movement parser, these affix hopping rules
cannot be directly supported. For head movement we have exploited the fact
that the main strings of every item are concatenated either as th, tsc or tshc.
However, affix hopping has additional string combinations like thc and tsh.

To account for those additional options we create two more types of items.
Items of type C are items that must adjoin some head via affix hopping to the
right of the head and that is why they have two main strings: a specifier-head
string tsh and a complement string tc. Items of type D are similar except that
they account for affix hopping to the right of the head. Items of type C and D
do not trigger affix hopping but only accept (host) affix that has hopped. The
new inference rules for affix hopping are shown in Fig. 7.

s
A
:: ≈> fγ tsh, tc

C· f, α1, . . . , αk

tshstc
A
: γ, α1, . . . , αk

merge1HopRight O(n2k+4)

s
A
:: <≈ fγ ts, thc

D· f, α1, . . . , αk

tssthc
A
: γ, α1, . . . , αk

merge1HopLeft O(n2k+4)

s
A
:: ≈> fγ tsh, tc

C· fδ, α1, . . . , αk

ε
A
: γ, tshstc : δ, α1, . . . , αk

merge3HopRight O(n2k+2)

s
A
:: <≈ fγ ts, thc

D· fδ, α1, . . . , αk

ε
A
: γ, tssthc : δ, α1, . . . , αk

merge3HopLeft O(n2k+2)

Fig. 7. Improved inference rules for MG with affix hopping.

We allow the selector constituent to be only of type A because its head will
not be able to undergo head movement later. This is a stricter definition than
Stabler’s because the latter allows the empty string (which is not a head of the
new constituent but only a replacement for the real head) to participate in head
movement. This modification does influence the set of the derivations that could
be built by the parser but in a good way: it does not make sense for an affix
to undergo affix hopping downwards and then head movement upwards (or fake
head movement of an empty string).

Similarly, we do not allow the selecting item to be of type C or D because
after the affix has hopped, its slot will be empty, so it does not make sense for
another affix to hop to its original place. Affixes move to attach to some overt
word and there is none at this slot.

The rules in Fig. 7 show how items of type C and D are used for affix hopping.
But it still remains to show how items of type C and D are built. To build items
of type C and D, we need to add them to the agenda as axioms for all lexical
items (just as was done for items of type B) and to use additional inference rules
that are variations of rules for items of type A and B from Fig. 5. The additional
rules for items of type C are shown in Fig. 8. Similar rules are trivial to make
for items of type D.

On the Computational Complexity of Head Movement and Affix Hopping 113

s, ε
C
:: = fγ t

A· f, α1, . . . , αk

s, t
C
: γ, α1, . . . , αk

merge1C O(n2k+4)

s, ε
C
:: <= fγ th, tsc

B· f, α1, . . . , αk

sth, tsc
C
: γ, α1, . . . , αk

merge1rightC O(n2k+5)

s, ε
C
:: => fγ th, tsc

B· f, α1, . . . , αk

ths, tsc
C
: γ, α1, . . . , αk

merge1leftC O(n2k+5)

ssh, sc
C
: = fγ, ι1, . . . , ιl t

A· f, α1, . . . , αk

tssh, sc
C
: γ, ι1, . . . , ιl, α1, . . . , αk

merge2C O(n2k+5)

ssh, sc
C· = fγ, ι1, . . . , ιl t

A· fδ, α1, . . . , αk

ssh, sc
C
: γ, ι1, . . . , ιl, t : δ, α1, . . . , αk

merge3C O(n2k+4)

s, ε
C
:: <= fγ th, tsc

B· fδ, α1, . . . , αk

sth, ε
C
: γ, tsc : δ, α1, . . . , αk

merge3rightC O(n2k+3)

s, ε
C
:: => fγ th, tsc

B· fδ, α1, . . . , αk

ths, ε
C
: γ, tsc : δ, α1, . . . , αk

merge3leftC O(n2k+3)

ssh, sc
C
: +fγ, ι1, . . . , ιl, t : −f, α1, . . . , αk

tssh, sc
C
: γ, ι1, . . . , ιl, α1, . . . , αk

move1C O(n2k+3)

ssh, sc
C
: +fγ, ι1, . . . , ιl, t : −fγ, α1, . . . , αk

ssh, sc
C
: γ, ι1, . . . , ιl, t : γ, α1, . . . , αk

move2C O(n2k+4)

Fig. 8. Additional inference rules for building items of type C that must host affix
hopping in the later part of the derivation.

The rules merge1leftC and merge3leftC may at first appear somewhat sur-
prising. They move the head of the complement to the left of the specifier-head
string making a complex head-specifier-head. This may appear to break the rules
of head movement which state that the head adjoins to another head and there
cannot be any phrase in between them. However, this is not a problem in this
case. Since we know that head movement can be triggered only by a lexical item
we can be certain that there is no specifier in its specifier-head string, so the
final result of the concatenation is a head-head complex.

7 Conclusion

The main motivation for this parser is lowering the worst-case complexity of
parsing MG that contains head movement, ATB head movement and affix hop-
ping. Given the recent appearance of the new dataset with MG derivation trees
[34] which contains head movement in every derivation, this algorithm is likely
to be not only of theoretical but also of practical significance.

114 M. Stanojević

MGbank has lead to the first wide coverage Minimalist parser [36]. This is a
neural network based parser that uses A* search with Harkema’s inference rules
and Stabler’s approach to head movement. A* improves the best and average-
case scenario but the worst-case stays the same O(n4k+12) which is O(n28) for the
MGbank grammar. With the algorithm proposed in this paper the overall worst-
case complexity will be reduced to O(n13). More importantly, it will potentially
also improve average-case complexity because of the more optimal lookup.

The complexity of the parser presented here is O(n2k+5) which is just O(n)
bigger than its space complexity. Further asymptotic improvements would proba-
bly require either finding some more compact item representation or abandoning
the parsing as deduction approach and using some alternative approach akin to
Valiant style parsing.

Acknowledgement. I am grateful to John Torr and the three anonymous reviewers
for comments that have greatly improved this paper. This work was supported by ERC
H2020 Advanced Fellowship GA 742137 SEMANTAX grant.

References

1. Adger, D.: Core Syntax: A Minimalist Approach, vol. 33. Oxford University Press,
Oxford (2003)

2. Carnie, A.: Syntax: A Generative Introduction, 3rd edn. Wiley, Hoboken (2013)
3. Chomsky, N.: Syntactic Structures. Mouton, The Hague (1957)
4. Chomsky, N.: The Minimalist Program. MIT Press, Cambridge (1995)
5. Dowling, W.F., Gallier, J.H.: Linear-time algorithms for testing the satisfiability

of propositional horn formulae. J. Logic Program. 1(3), 267–284 (1984)
6. Eisner, J., Blatz, J.: Program transformations for optimization of parsing algo-

rithms and other weighted logic programs. In: Wintner, S. (ed.) Proceedings of the
11th Conference on Formal Grammar 2006, pp. 45–85. CSLI Publications, Stanford
(2007)

7. Fowlie, M., Koller, A.: Parsing minimalist languages with interpreted regular tree
grammars. In: Proceedings of the 13th International Workshop on Tree Adjoining
Grammars and Related Formalisms, pp. 11–20 (2017)

8. Gerth, S.: Memory Limitations in Sentence Comprehension: A Structural-based
Complexity Metric of Processing Difficulty, vol. 6. Universitätsverlag Potsdam,
Potsdam (2015)

9. Graf, T., Monette, J., Zhang, C.: Relative clauses as a benchmark for minimalist
parsing. J. Lang. Model. 5(1), 57–106 (2017)

10. Harkema, H.: A recognizer for minimalist grammars. In: Proceedings of the
Sixth International Workshop on Parsing Technologies (IWPT 2000), pp. 111–122.
Springer, Berlin (2000)

11. Harkema, H.: A recognizer for minimalist languages. In: Bunt, H., Carroll, J., Satta,
G. (eds.) New Developments in Parsing Technology. Text, Speech and Language
Technology, vol. 23, pp. 251–268. Springer, Dordrecht (2005). https://doi.org/10.
1007/1-4020-2295-6 12

12. Hunter, T.: Left-corner parsing of minimalist grammars. Technical report, UCLA
(2017). forthcoming

https://doi.org/10.1007/1-4020-2295-6_12
https://doi.org/10.1007/1-4020-2295-6_12

On the Computational Complexity of Head Movement and Affix Hopping 115

13. Hunter, T., Stanojević, M., Stabler, E.: The active-filler strategy in a move-eager
left-corner minimalist grammar parser. In: Proceedings of the 9th Workshop on
Cognitive Modeling and Computational Linguistics (CMCL 2019). Association for
Computational Linguistics (2019)

14. Johnson, M.: Transforming projective bilexical dependency grammars into
efficiently-parsable CFGs with unfold-fold. In: Proceedings of the 45th Annual
Meeting of the Association of Computational Linguistics, pp. 168–175. Associa-
tion for Computational Linguistics (2007)

15. Kanazawa, M.: Parsing and generation as datalog queries. In: Proceedings of the
45th Annual Meeting of the Association of Computational Linguistics, pp. 176–183.
Association for Computational Linguistics, Prague, June 2007

16. Kobele, G.M.: Across-the-board extraction in minimalist grammars. In: Proceed-
ings of the Ninth International Workshop on Tree Adjoining Grammar and Related
Frameworks (TAG+ 9), pp. 113–120. Association for Computational Linguistics
(2008)

17. Kobele, G.M., Gerth, S., Hale, J.: Memory resource allocation in top-down min-
imalist parsing. In: Morrill, G., Nederhof, M.J. (eds.) FG 2012-2013. LNCS, vol.
8036, pp. 32–51. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
39998-5 3

18. Koopman, H., Szabolcsi, A.: Verbal Complexes. MIT Press, Cambridge (2000)
19. McAllester, D.: On the complexity analysis of static analyses. J. ACM 49(4), 512–

537 (2002)
20. Michaelis, J.: Derivational minimalism is mildly context–sensitive. In: Moortgat,

M. (ed.) LACL 1998. LNCS (LNAI), vol. 2014, pp. 179–198. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-45738-0 11

21. Michaelis, J.: Notes on the complexity of complex heads in a minimalist grammar.
In: Proceedings of the Sixth International Workshop on Tree Adjoining Grammar
and Related Frameworks (TAG+ 6), pp. 57–65 (2002)

22. Radford, A.: Minimalist Syntax: Exploring the Structure of English. Cambridge
University Press, Cambridge (2004)

23. Shepherdson, J.C.: Unfold/fold transformations of logic programs. Math. Struct.
Comput. Sci. 2(2), 143–157 (1992)

24. Shieber, S.M., Schabes, Y., Pereira, F.C.: Principles and implementation of deduc-
tive parsing. J. Logic Program. 24(1–2), 3–36 (1995)

25. Sportiche, D., Koopman, H., Stabler, E.: An Introduction to Syntactic Analysis
and Theory. Wiley, Hoboken (2013)

26. Stabler, E.: Derivational minimalism. In: Retoré, C. (ed.) LACL 1996. LNCS, vol.
1328, pp. 68–95. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052152

27. Stabler, E.P.: Recognizing head movement. In: de Groote, P., Morrill, G., Retoré,
C. (eds.) LACL 2001. LNCS (LNAI), vol. 2099, pp. 245–260. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-48199-0 15

28. Stabler, E.: Comparing 3 perspectives on head movement. In: From Head Move-
ment and Syntactic Theory, UCLA/Potsdam Working Papers in Linguistics, pp.
178–198 (2003)

29. Stabler, E.: Computational perspectives on minimalism. In: Boeckx, C. (ed.)
Oxford Handbook of Linguistic Minimalism, pp. 617–641. Oxford University Press,
Oxford (2011)

30. Stabler, E.: Top-down recognizers for MCFGs and MGs. In: Proceedings of the
2nd Workshop on Cognitive Modeling and Computational Linguistics, pp. 39–48.
Association for Computational Linguistics, Portland, Oregon, June 2011

https://doi.org/10.1007/978-3-642-39998-5_3
https://doi.org/10.1007/978-3-642-39998-5_3
https://doi.org/10.1007/3-540-45738-0_11
https://doi.org/10.1007/BFb0052152
https://doi.org/10.1007/3-540-48199-0_15

116 M. Stanojević

31. Stabler, E.: Two models of minimalist, incremental syntactic analysis. Top. Cogn.
Sci. 5(3), 611–633 (2013)

32. Stanojević, M., Stabler, E.: A sound and complete left-corner parsing for mini-
malist grammars. In: Proceedings of the Eight Workshop on Cognitive Aspects
of Computational Language Learning and Processing, pp. 65–74. Association for
Computational Linguistics (2018)

33. Stanojević, M.: Minimalist grammar transition-based parsing. In: Amblard, M., de
Groote, P., Pogodalla, S., Retoré, C. (eds.) LACL 2016. LNCS, vol. 10054, pp. 273–
290. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53826-5 17

34. Torr, J.: Constraining MGbank: agreement, l-selection and supertagging in mini-
malist grammars. In: Proceedings of the 56th Annual Meeting on Association for
Computational Linguistics. Association for Computational Linguistics, Melbourne
(2018)

35. Torr, J., Stabler, E.: Coordination in minimalist grammars. In: Proceedings of
the 12th Annual Workshop on Tree-Adjoining Grammars and Related Formalisms
(TAG+ 12) (2016)

36. Torr, J., Stanojević, M., Steedman, M., Cohen, S.: Wide-coverage neural A* pars-
ing for minimalist grammars. In: Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Vol. 1: Long Papers). Association for
Computational Linguistics, Florence (2019)

https://doi.org/10.1007/978-3-662-53826-5_17

Author Index

Aboamer, Yousuf 1

Babonnaud, William 18

De Santo, Aniello 35

Gotham, Matthew 51
Graf, Thomas 35

Kanovich, Max 67
Kracht, Marcus 1
Kuznetsov, Stepan 67

Moot, Richard 84

Scedrov, Andre 67
Stanojević, Miloš 101
Stevens-Guille, Symon Jory 84

	Preface
	Organization
	What Inductive Biases Enable Human-Like Syntactic Generalization? (Abstract of Invited Talk)
	Contents
	A Purely Surface-Oriented Approach to Handling Arabic Morphology
	1 Introduction
	2 Arabic Morphology: Theoretical and Computational Approaches
	3 A Purely Surface-Oriented Approach
	3.1 Glued Strings
	3.2 Occurrence
	3.3 Morphological Class
	3.4 Discontinuity, Reduplication and Handlers
	3.5 Morphs and Morphemes

	4 Arabic Morphology Within the Proposed Framework
	4.1 Root and Pattern Matching
	4.2 Morphophonemic Alternations

	5 Results and Future Work
	References

	A Topos-Based Approach to Building Language Ontologies*-12pt
	1 Introduction
	2 A Synopsis of Topos Theory
	3 Building a Topos-Based Type System
	3.1 From Montague's e to a Hierarchy of Types
	3.2 From Type Hierarchy to an Ontology of Types
	3.3 A Short Account of Dot Objects

	4 Related Works and Future Perspectives
	References

	Structure Sensitive Tier Projection: Applications and Formal Properties
	1 Introduction
	2 Preliminaries
	3 Structure-Sensitive TSL Languages
	3.1 Strictly Local and Tier-Based Strictly Local Languages
	3.2 Insufficiency of TSL
	3.3 TSL as the Composition of Three Transductions
	3.4 Input-Sensitive TSL

	4 Formal Analysis
	4.1 Relations to Other Subregular Classes
	4.2 Closure Properties

	5 Intersection Closure of TSL and ITSL
	5.1 Intersection Closure of TSL Languages
	5.2 Intersection Closure of ITSL Languages

	6 Learnability Considerations
	7 Conclusions
	References

	Quantificational Subordination as Anaphora to a Function
	1 Introduction
	2 Type-Theoretical Semantics
	3 The Proposal
	3.1 Syntax and Semantics
	3.2 Derivations

	4 Telescoping
	4.1 Covert Subordination
	4.2 Constraints

	5 Comparison with TTS
	6 Discussion and Future Work
	References

	Undecidability of a Newly Proposed Calculus for CatLog3
	1 Introduction
	2 The Calculus
	3 The Bracket-Free System and the Projection
	4 Undecidability Proof
	5 Conclusion
	References

	Proof-Theoretic Aspects of Hybrid Type-Logical Grammars
	1 Introduction
	2 Natural Deduction
	3 Normalisation
	4 Proof Nets
	4.1 Proof Structures
	4.2 Abstract Proof Structures
	4.3 Structural Rules and Contractions

	5 Correctness of the Proof Net Calculus
	6 Complexity
	7 Conclusion
	References

	On the Computational Complexity of Head Movement and Affix Hopping
	1 Introduction
	2 MG Without Head Movement
	2.1 Parsing with Succinct MG

	3 MG with Head Movement
	4 Improved Parsing of MG with Head Movement
	5 ATB Head Movement
	6 Affix Hopping
	7 Conclusion
	References

	Author Index

