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1 Definition of the Topic

Open-channel separation techniques can separate samples without reliance on col-
umn packing, minimizing sample loss due to adsorption onto the packing materials
and reducing damage to samples, in particular, the complexes held together by
non-chemical interactions. Field flow fractionation (FFF) and capillary electropho-
resis (CE) are two representative open-channel separation techniques. In this chapter,
we discuss the use of FFF and CE to separate and characterize various nanomaterials
widely applied in biomedical research.

2 Overview

Nanoparticles (NPs) have facilitated advancements in disease cure and diagnosis, by
enabling drug delivery, tumor imaging, and marker detection as well as other aspects
of biomedical research. Thus, it is imperative to adequately access their biocompat-
ibility and to investigate how the properties of nanomaterials, such as size, shape,
charge, and composition, influence the functionality and behaviors of the nano-
materials in biosystems, which is governed by their interactions with the diverse
biomolecules and biological surfaces. Many techniques have been used to charac-
terize the biological relevant nanomaterials and study the nano-bio interface, includ-
ing the open-channel separation techniques, FFF and CE. Because FFF and CE can
analyze a wide range of nanomaterials composed of different chemical cores,
including metals, metal oxides, semiconductors, polymers, and liposomes and
exhibiting various morphology, sizes, and shapes, an assortment of separation
modes and subtechniques of these two open-channel techniques have been utilized
for the analysis of such materials and their bioconjugates to better assess their
functionality in biosystems. Hence, in this chapter, we discuss the different
approaches used in FFF and CE for such purposes.

3 Introduction

Nanomaterials have garnered appreciable significance over the years as imaging
agents [1, 2], drug delivery tools [3–5], and biosensing resources [6]. Having such
prodigious roles, investigating their behaviors in biological environments is of
upmost importance. This is due to their potential interactions with certain biological
entities such as proteins [7, 8], DNA [9], and cells [10], which greatly impacts the
functionality of nanomaterials as well as raises toxicity concerns. Understanding
molecular interactions and binding behaviors of nanomaterials to biological constit-
uents have great implications in the advancement of developing nanomaterials as
tools for medical research. Therefore, we begin by succinctly introducing the
concepts of NP protein coronas, one example of bioconjugated NPs, and NPs for
drug delivery.
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Proteins and other macromolecules can adhere onto the surfaces of engineered
nanomaterials (ENMs), and the resulting protein adsorption layer is termed protein
corona [11–13]. In biological matrices, proteins compete to nonspecifically bind to
the nanoparticle surface and lead to the formation of a protein corona [7, 14]. This
corona can affect the physiochemical properties, alter the adsorption, distribution,
metabolism, and excretion (ADME) profile and limit the targeting and detection
capacity of NPs. Therefore, it is important to study protein corona formation on
diverse nanomaterials in different biological matrices. However, the adsorption
process can be quite complex in that the size, zeta potential, and surface chemistry
of nanoparticles can affect the composition of the corona; in addition, the protein
types and concentrations in the biological matrix also affect corona formation [7,
8]. Furthermore, there are two coronas that can adsorb onto nanoparticle surfaces: a
soft corona of proteins with low binding affinity towards the nanomaterial and a hard
corona with proteins that have low exchange kinetics and tend to persist longer on
the nanoparticle surface. Studying the binding equilibrium of both coronas can lead
to a better understanding of the toxicological mechanisms of bioconjugated
nanoparticles.

The recent review by Ulbrich et al. on nanoparticles for drug delivery systems
comprehensively covers the various types of NPs used, the types of drugs that have
been loaded onto these particles, as well as their application in clinical trials. In this
work, they address the advantages of using nanomaterials for drug delivery. Essen-
tially, drugs that are sensitive to activation by nonspecific targets or lack water
solubility can be loaded onto nanoparticles to mitigate these limitations. Addition-
ally, nanoparticles can target specific organs or cells that the respective delivered
drug cannot reach alone. For example, nanoparticles can accumulate through the
leaky vasculature of tumors via an enhanced permeability and retention effect (EPR).
Once these drug-loaded particles reach the targeted tumors, the drug can either be
deposited or site-selectively activated and the nanoparticle itself can then be excreted
[15]. The applicability of nanomaterials in medicine is extensive, thus characteriza-
tion of these drug-delivery systems is indispensable.

Multiple techniques can analyze various nanomaterial characteristics. Morphol-
ogy and size can be determined by microscopy techniques, such as transmission
electron microscopy (TEM) and atomic force microscopy (AFM). However, sample
preparation or analysis can be laborious and time-consuming. Dynamic light scat-
tering (DLS) and nanoparticle tracking analysis (NTA) are other common techniques
to evaluate the size distribution. These are nondestructive techniques, which make
them ideal for analyzing nanomaterials; on the contrary, DLS may suffer in resolu-
tion [16], and both DLS and NTA have a bias towards larger particles.

On the other hand, separation techniques can be used to analyze complex
biological samples, preconcentrate sample targets, and resolve sample contents,
which enable them to provide a more comprehensive examination. They are also
appropriate for investigating interactions since any change will be manifested in the
retention time differences or shifts. Chromatography [17, 18] and gel electrophoresis
[19, 20] are commonly used to separate nanomaterials. In chromatography, the
efficiency of separation may be limited by the interactions of nanomaterials with
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the column packing material and the size of the packing material. In gel electropho-
resis, issues of band broadening are apparent. FFF and CE are open-channel
separation techniques that can overcome these complications.

More than half a century ago, J. Calvin Giddings proposed FFF as a separation
tool for large analytes [21]. FFF consists of a family of flow elution techniques,
which all use open channels and applied fields to achieve differential retention of the
solutes. Alteration of the force applied in FFF has resulted in multiple flexible
subtechniques [22], a few of which have been listed in Table 3.1, that can separate
and measure analytes simultaneously. Since its invention, FFF has been used to
separate and characterize a range of samples, including but not limited to, proteins
[23, 24], DNA [25], DNA-protein interactions [26], viruses [27, 28], microRNA
[29], polymers [30], and more recently bioconjugated nanoparticles. FFF is an ideal
tool for fractionation of complex mixtures because of its gentle interface during
separations [31] and its wider analyte size range compared to other separation
techniques [32]. In addition, recent developments in instrumentation and miniatur-
ization that couple FFF with orthogonal separation or analytical techniques, like
inductively coupled plasma mass spectrometry (ICP-MS), nuclear magnetic reso-
nance spectroscopy (NMR), and multi-angle light scattering (MALS), have signif-
icantly improved the resolution of various FFF techniques and their capability in
providing in-depth information of the analytes [33–35].

As pioneers, Stellan Hjertén first introduced electrophoresis in tubes in the 1970s
while James W. Jorgenson and Krynn DeArman Lukacs brought capillary electro-
phoresis to recognition in the 1980s. Now it is a standard technique with numerous
developments over the years. CE has multiple advantages over column chromatog-
raphy, which include high resolution, minimal sample and reagent usage, and fast
analysis; furthermore, these attributes have made CE a widely used technique in
many instances for the analysis of small molecules [36], anti-cancer drugs and their
metabolites [37], proteins [38], DNA [39], and enzymes [40]. In addition to the
analysis of bioconjugates, drug delivery systems have been studied via CE. Various
studies utilized CE to characterize the size and charge of drug delivery nanomaterials
as well as assessing drug entrapment and release efficiencies.

While both open-channel separation techniques play important roles in charac-
terization of nanomaterials employed in biomedical research and applications,
including the materials employed for drug delivery, no review articles or book
chapters can be found to discuss the particular contributions from both. For the
ones that are dedicated to the discussion of either CE or FFF, their particular focus
was on environmental, engineered, or food-related nanomaterials [41–45].

Table 3.1 Forces applied in respective field flow fractionation (FFF) subtechniques

FFF subtechniques Force

Flow FFF (F4) Cross flow; a second flow perpendicular to the channel flow

Sedimentation FFF (SFFF) Centrifugal, gravitational

Thermal FFF (Th-FFF) Thermal gradient

Electrical FFF (El-FFF) Electrical gradient
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4 Experimental and Instrumental Methodology

Because our chapter involves two separation techniques, FFF and CE, they are
introduced in parallel in the following sections with equal importance, i.e., discus-
sion order is not relevant to the importance of contribution by each technique to the
field.

4.1 Field Flow Fractionation

4.1.1 Flow Field Flow Fractionation
There are several advantages of applying FFF for separation of bioconjugated
nanomaterials and the analysis of nanoparticles used in drug delivery. Firstly, FFF
can separate analytes that range in size, from 1 nm to 100 μm, matching well with the
dimensions of nanomaterials and their bioconjugates employed in biomedical
research. Second, comprehensive analysis can be performed on the analyte using
hyphenated instrumentation (i.e., light scattering detectors and mass spectrometers)
or offline techniques after fractionation. Third, due to a lack of a stationary phase in
FFF, there are no shear forces that are applied directly on the analytes. This results in
a “soft” separation, which is especially ideal for proteins that may be susceptible to
structural changes. Additionally, FFF channels are compatible with a range of both
aqueous and organic solvents, which, in most cases, permits the analyte to retain a
native state.

The most commonly used FFF technique in the analysis of nanomaterials and
their bioconjugates is flow field flow fractionation (F4), because its instrumentation
and implementation are simpler and relatively more mature than other FFF tech-
niques. In addition, it is able to fractionate analytes that come in a wide size range.
Thus, this part of our book chapter will focus on this particular FFF technique.

F4 instrumentation is comprised of fluid pumps, a channel, flow control units, and
a sample introduction system. The basic set-up of F4 is schematically represented in
Fig. 3.1. Typical F4 channel dimensions are 20–50 cm long, 2–3 cm wide, and
0.01–0.05 cm deep [46]. The channel is made by fastening a semipermeable
membrane, which is permeable to the carrier but not the analyte, and a spacer
between blocks that can either contain metal or ceramic semipermeable frits or are
constructed of nonpermeable solid Plexiglass plate. The thickness and shape of the
spacer determine the dimensions of the separation channel [24, 47]. Samples are
introduced into the channel through manual injection or through an autosampler that
is also typically used in high-performance liquid chromatography (HPLC).

F4 uses an axial channel flow and a perpendicular cross flow to separate analytes by
hydrodynamic radii in two steps. In the first step, an external force is applied to the
solute zones in the ribbon-shaped channel forcing the analytes into a narrow band on the
bottom channel wall, known as the accumulation wall. This focusing step overall has no
net flow of fluid along the channel and is essential to achieve good resolution. In the
second step, a laminar flow, delivered by a standard HPLC pump, is applied. Common
flow rates range from 0.5–5 mL/min [46]. A portion of the fluid entering the channel
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passes through the membrane to create a downward crossflow that pushes the analytes
toward the membrane. The analytes then migrate back toward the channel center via
Brownian motion. The remaining channel fluid flows in a laminar fashion from inlet to
outlet, resulting in a parabolic elution profile. Hence, the center of this parabolic flow has
a faster flow velocity whereas the edges of the channel are slower. Themass center of the
analyte within this parabolic flow profile depends on the balance between its diffusion
motion and the strength of the flow force: things diffusingmore towards the center of the
flow would be eluted earlier than those located closer to the accumulation wall.
Therefore, analytes with the smallest sizes or the highest diffusion coefficients will be
eluted earliest [35, 48].

Currently, there are three subtechniques of F4, which include asymmetric flow
field flow fractionation (AF4), symmetric flow field flow fractionation (SF4), and
hollow fiber flow field flow fractionation (HF5) [33]. Of these, AF4 is the most

Fig. 3.1 The AF4 principle in which the eluent is pumped from the inlet to the outlet and the cross
flow is applied perpendicular to the eluent flow. The first step (a) is known as the focusing step. The
second step (b) is the separation process. (Reprinted with permission from Ref. [48]. Copyright
2015 American Chemical Society)
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developed [34]. Typical SF4 channels are symmetrical in shape, with the inlet and
outlet opening in the same direction; but the most common modern instrumentation
of F4 uses a trapezoidal-shaped spacer to maintain a constant axial flow velocity,
and thus, is termed asymmetrical F4 (AF4) [49]. Moreover, in SF4 both of the
external blocks of the channel are constructed with semipermeable porous frits, and
in AF4, the bottom block contains semipermeable frits while the top block is a
nonpermeable Plexiglass plate [46, 50]. HF5 is a cost-effective miniaturized
FFF technique in which a hollow semipermeable polymeric or ceramic membrane
serves as a cylindrical channel. HF5 can be coupled to detectors for analyte
characterization.

Giddings’ group explains the theory of F4 in depth [22, 23]. Briefly, the ratio
between the retention time (tr) and dead time (t0), described by Eq. 3.1, is used to
calculate the analyte retention (R) [22, 23, 50].

R ¼ t0
tr

ffi 6λ (3:1)

The time it takes for a particle to travel through the channel without crossflow
retention is referred to as the dead time and is solved by the following Eq. 3.2, in
which V0 refers to the channel void volume and V represents the flowrate of the
channel [22, 50].

t0 ¼ V 0

V
(3:2)

The retention parameter, λ, which is related to the crossflow rate, Vc, the channel
thickness, w, and the particle diffusion coefficient, D, [23] can be calculated using
the following equation:

λ ¼ DV 0

Vcw2
(3:3)

At high retention levels (i.e., R <0.15), tr can be approximated with Eq. 3.4 [23]:

tr ¼ t0Vcw2

6DV 0
¼ t0

6λ
(3:4)

Furthermore, using the Stokes-Einstein equation, the diffusion coefficient for
spherical nanoparticles in a fluid with viscosity η, at an absolute temperature T, can
be calculated by Eq. 3.5. The diffusion coefficients for proteins and other biomol-
ecules can be acquired from literature values. The hydrodynamic radius is denoted as
rh and kB denotes the Boltzmann’s constant [32].

D ¼ kBT

6πηrh
(3:5)
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In order to calculate the relative recovery (RR) of nanoparticles in various carrier
fluids used in FFF, Eq. 3.6 can be used, where A is the peak area of the nanoparticle
in the studied carrier fluid and A� is the peak area in the reference run.

RR ¼ A

A� � 100% (3:6)

A deterring issue of F4 is sample loss due to analyte-membrane interactions. This
can lead to inaccurate quantitation, and the collection of the fractions can be
challenging. In order to minimize this loss while maximizing size resolution,
extensive optimization is required of the carrier fluid composition and flow rates
[51]. Therefore, for separation and characterization of bioconjugated nanoparticles
with F4, carrier fluid compositions must be optimized for suitability by considering
the separation of the nanoparticles as well as maintaining the integrity and native
structures of the biomolecules.

Schachermeyer et al. studied the membrane adsorption of polystyrene nano-
particles and two proteins (IgG and HSA) when the carrier fluid contained various
types of ionic species at high concentrations and biologically relevant pH values.
Our group found that maintaining high electrostatic repulsion in F4 is essential for
high recovery of NPs in high ionic strength buffers. Additionally, using weakly
dissociated anions or particles conjugated with weak anions as functional groups can
improve the recovery of porous nanoparticles at high ionic strengths. This phenom-
enon is due to the Donnan exclusion effect in which nanoparticles with higher
crosslinking capacity have more occluded liquid-phase inside and are more resistant
to adsorption in the carrier fluid with high ionic strength induced by weakly ionized
anions [52].

With regards to the separation of proteins from nanoparticle surfaces, the protein
conformation needs to be taken into consideration since the proteins ultimately
determine the surface property of the nanoparticles as well as the electrostatic or
hydrophobic interactions with the membrane used in FFF. Ashby et al. determined
that the kinetic properties of nanoparticle-protein interactions can be probed with F4
by taking into consideration the effect of the carrier fluid on dissociation rates of proteins
off of NPs, as illustrated in Fig. 3.2. Briefly, our group used F4 and LC-MS/MS to
screen for proteins that bind to NPs with fast association/dissociation rates, a feature
which is not possible with traditional centrifugation methods. To accomplish this feat,
our group used 10 mM phosphate buffer at pH 7.5 � 0.1 with 0.025% FL-70 for the
carrier fluid and 10 mM phosphate buffer at biological pH (pH 7.4) was used to incubate
the NPs with the proteins before separation with F4 [53].

Ashby et al. used asymmetric flow field flow fractionation to separate miRNA
carriers (i.e., proteins, lipoprotein particles, and exosomes) in serum and RT-qPCR to
screen miRNA distributions in the carriers as a possible method to profile miRNA
biomarkers for cancer diagnosis. The AF4 carrier fluid used in this study was
1� PBS (10 mM phosphate at pH 7.4, 137 mM NaCl, 2.7 mM KCl, and 1.0 mM
MgCl2). Extensive optimization was done on flow profiles in order to efficiently
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separate the carriers. Ramp down of the crossflow from 3.0 mL/min to zero
crossflow was analyzed over the course of 30, 20, and 15 min with the latter having
better resolution and quicker elution of the analytes with little peak tailing. Also, to
further improve the resolution, the crossflow was kept at 3.0 mL/min for 5 min
before the 15-min ramp down, as shown in Fig. 3.3. More detail on the flow profile
can be found in the article [54].

4.2 Capillary Electrophoresis

4.2.1 Capillary Zone Electrophoresis
Capillary electrophoresis (CE) consists of a bare fused silica capillary with an inner
diameter typically ranging from 20 μm to 150 μm. The inlet and outlet are sub-
merged into the background electrolyte to complete the circuit, and injection is via
hydrodynamic or electrokinetic injection on the nanoliter scale. After the application
of a high voltage to this system, the injected sample will be separated based on the
size and charge. Each ion has its own apparent mobility, which can be calculated by
the following equation:

μapp ¼
Ld
�
tm

V
Lt=

(3:7)

Ld is the effective length from the inlet to the detector, Lt is the total length of the
capillary, tm is the migration time, and V is the voltage applied.

Fig. 3.2 Dissociation of proteins from nanoparticles (NPs) in AF4 allows for differentiation
between the slowly and rapidly dissociating NP-protein complexes. The gray circles represent the
NPs and the black circles symbolize proteins. (Reprinted with permission from Ref [53]. Copyright
2013 American Chemical Society)
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The electroosmotic flow (EOF) is another component critical to CE, and it is caused
by the bulk movement of the double diffuse layer, electrostatically attracted to the
negatively charged silanol wall, in the background electrolyte after voltage application.
The following equation explains the calculation of the EOF.

μeof ¼
eζ
4πη

¼
Ld=tmarker

V=Lt
(3:8)

e is the relative permittivity of the buffer, ζ is the zeta potential of the capillary wall, and
η is the viscosity of the buffer electrolyte. EOF can also be calculated using the same
equation for the electrophoretic mobility, except tmarker is used to denote the time of an
internal standard or marker. The internal standard chosen should be a neutral marker or a
molecule that is only affected by the EOF. From the apparent mobility and the
electroosmotic flow, each analyte’s electrophoretic mobility can be obtained.

μem ¼ μapp � μeof (3:9)

Capillary zone electrophoresis (CZE) is the standard mode of CE. The migration
order is according to the charge to size ratio in which the most positive ion with the
smallest hydrodynamic diameter migrates first, and the most negative ion with the
smallest hydrodynamic diameter migrates last. Figure 3.4 shows the general migra-
tion order. However, there are variations in the modes of CE as discussed in the
following sections.

4.2.2 Affinity Capillary Electrophoresis
Affinity CE (ACE) is another mode of CE to study nanoparticles, and it can be
applied to observe the interaction with proteins [55, 56]. Li et al. was able to

50

40

30

20

[mV]

V
ol

ta
ge

10 20

15 min ramp
5 min constant, 15 min ramp

Fig. 3.3 To improve resolution of analytes, a 5-min constant crossflow was used before the AF4
separation which was performed over a 15-min ramp down from 3.0 mL/min to zero crossflow.
(Reprinted with permission from Ref [54]. Copyright 2014 American Chemical Society)
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differentiate between fast and slow dissociation kinetics by using both CZE and
ACE to analyze the interaction between bovine serum albumin (BSA) with Fe3O4

nanoparticles and with Au nanoparticles [57].
Slow dissociation and fast dissociation kinetics can be analyzed using this

system. For slow dissociation reactions, the nanoparticle-protein complex peak can
be seen, and the peak area varies with the concentration of ligand in the background
electrolyte. In this case, CZE is used. On the other hand, fast dissociation reactions
can be monitored by observing the mobility shift of the receptor instead of the
formation of a nanoparticle-protein complex peak. In the case of fast dissociation,
ACE is used. The ratio of bound nanoparticles to total nanoparticles in CZE, θ, or the
ratio of Δμ to Δμmax in ACE (see Eq. 3.9), can be plotted against the ligand
concentration to fit the Hill equation.

θ ¼ NPbound

NPtotal
¼ μ� μfree

� �

μmax � μfree
� � ¼ Δμ

Δμmax
(3:10)

μ, μfree, and μmax are the electrophoretic mobilities when there is a certain concen-
tration of protein, when there is no protein, and when there is a saturated amount of
protein in the background electrolyte, respectively.

Using the Hill equation, dissociation equilibrium constants and the binding
cooperativity of a NP-protein complex can be calculated.

θ ¼ protein½ �n
KD

n þ protein½ �n (3:11)

θ is the protein-bound nanoparticle fraction (bound nanoparticles/total nano-
particles), n is the binding cooperativity, and KD is the dissociation equilibrium
constant. The protein-bound nanoparticle fraction is based on the peak area ratio of
the protein-bound and total nanoparticles. A flow chart to determine the appropriate

Fig. 3.4 Schematic of the separation order in CE.
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CE mode depending on the application is shown in Fig. 3.5 [57]. CZE and ACE can
be used to understand the interactions between nanoparticles and proteins as well as
extracting kinetic information.

4.2.3 Micellar Electrokinetic Chromatography
To separate neutral compounds or study an analyte with low mobility in normal
polarity mode, Micellar Electrokinetic Chromatography (MEKC) is a technique
commonly used for these purposes. In MEKC, surfactants are included in the
background electrolyte above their critical micellar concentration. Micelles act as a
pseudostationary phase, and analytes can partition between this pseudostationary
phase and the aqueous phase.

Various surfactants can be used in the separation of analytes via MEKC. All
surfactants have their own sizes and charges that affect their own electrophoretic
mobility and their inclusion in the background electrolyte can affect the EOF. Thus,
the charge and the size of the surfactant should be considered when designing
MEKC methods. The most commonly used surfactant is sodium dodecyl sulfate
(SDS), which was also notably used in the first development of MEKC [58]. SDS
carries a negative charge to create a delay in the migration time of the analyte. Other
common surfactants include positive ones, such as cetrimonium bromide (CTAB)
and tetradecyltrimethylammonium bromide (TTAB), as well as nonionic ones, such
as Brij-35 and Tween 20. Depending on the purpose, the most suitable surfactant can
be chosen for separation in CE. For application to nanomaterial separations, SDS has
been the prevalent option.

Pre-defined condition:
NP, receptor R;

Protein, monovalent ligand L,
[protein] >> [NP]

Equilibrium:

CZE

Yes

Can CZE separate the complex
from the protein and NP?

Slow
Dissociation

No

Δ μ
Δ μmax

Affinity CE: protein is added
                   to the running buffer
                   [protein]n

Fast
Dissociation

[NP]bound [protein]n

KD
n+ [protein]n

KD
n+ [protein]n

[NP]total
=

=

[R] + n [L] [R-n·L]
K

Fig. 3.5 Flowchart of CE methods for studying NP-protein interactions. (Reprinted with permis-
sion from Ref. [57]. Copyright 2010 American Chemical Society)
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The use of SDS can improve the separation of metal nanoparticles. Liu et al.
found that 5.3 and 19 nm AuNPs could not be separated with good resolution when
the background electrolyte did not include SDS. SDS can adhere to the surface of
AuNPs, affecting their surface chemistry, and act as their stabilizers as well. Due to
the adsorption of SDS molecules, the concentration of the surfactant can affect the
electrophoretic mobility of AuNPs; furthermore, the trend of change in electropho-
retic mobility depended on the size of the nanoparticles. At lower surfactant con-
centrations, the charge-to-size ratio of small nanoparticles is larger. On the contrary,
the charge-to-size ratio of larger nanoparticles is larger at higher surfactant concen-
trations. This is due to the charge of the nanoparticle not being limited by the number
of SDS molecules allowed to attach to the surface at higher concentrations of SDS,
and larger nanoparticles have more surface area to link to SDS molecules [59].

Ciriello et al. used a stabilizer, poly(sodium4-styrenesulfonate) (PSS), for the
separation of AuNPs with sizes ranging from 5 to 20 nm. Similar to the behavior of
SDS, PSS can adhere to the surface of AuNPs and induce an electrophoretic mobility
difference and a modification of the EOF. This polyelectrolyte contains a hydropho-
bic and negatively charged hydrophilic portion, providing an electrostatic and steric
stabilization and prevention of aggregation when adsorbed onto AuNPs. They found
a saturation percentage of 1% PSS in which AuNPs are fully covered by the PSS
molecules. They validated their technique by comparing with the sizes of nano-
particles found in transmission emission microscopy. In addition, the addition of PSS
creates an electrophoretic drag that can improve separation of AuNPs [60]. In
general, several parameters, such as buffer concentration, buffer pH, buffer type,
voltage, and injection type (hydrodynamic vs. electrokinetic), need to be considered
for CE analysis as these can affect separation.

4.2.4 Separation Efficiency
Assessment of CE performance and separation efficiency is important, and the
sharpness and distance between peaks need to be optimized. They can be evaluated
based on the resolution of peaks and the theoretical plate number. Plate height
number is used in the evaluation of other chromatographic techniques as well, and
it is defined by the relationship where L = length of the column and N = theoretical
plate number.

H ¼ L=N (3:12)

The number of theoretical plates is defined as the following:

N ¼ Ld2

2Dtm
¼ μem þ μeof

� �
VLd

2DLt
(3:13)

where Ld is the effective length from the inlet to the detection window, D is the
diffusion coefficient of the solute, tm is the migration time, μem is the electrophoretic
mobility, μeof is the electroosmotic flow, V is the voltage applied, and Lt is the total
length of the capillary.
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Peak resolution is defined by the ratio of the difference in migration times and the
average of the width of the two peaks.

R ¼ tA � tB
Wb,avg

(3:14)

tA = migration time of peak A, tB = migration time of peak B, and wb,avg is the
average peak width of the two peaks at baseline. By calculating these variables, the
separation performance in CE can be evaluated and validated.

5 Key Research Findings

Apart from the electrical, optical, and magnetic properties that nanomaterials indi-
vidually possess, which allot their use as effective biomedical tools, conjugation
with proteins, oligonucleotides, drugs, and other biomolecules is a critical step that
facilitate their applications in biomolecular assays, in vivo imaging, and cancer
targeting therapeutics [61, 62]. In the following sections, we will review analytical
studies on the separation and characterization of bioconjugated as well as drug-
loaded nanomaterials via FFF and CE.

5.1 Field Flow Fractionation for Characterization
of Nanomaterials and Their Bioconjugates for Drug Delivery
Applications

Many of the applications of SF4 or AF4 have been centered on characterizing
nanomaterials prepared for biomedical purposes, such as drug delivering nano-
particles and nano-sized materials for target imaging. These nanoparticles are mainly
metal oxide, metal, quantum dots, liposomes, and the bioconjugated entities. The
works reviewed below will prove the utility of this technique in analysis of nano-
materials and their bioconjugates including medicinal molecules.

5.1.1 Metallic Nanoparticles
Metallic nanoparticles are becoming more frequent in medical applications and in
sensors because of their reactive surfaces and unique optical properties. For exam-
ple, gold nanoparticles (AuNPs) have been used optimized as nanozymes for
aptasensor applications [63] and silver nanoparticles (AgNPs) have been complexed
as highly selective fluorescent nanosensors for dopamine [64]. Herein we present
articles that have applied FFF for the characterization of metal-based nanomaterials
conjugated with biomolecules.

Safenkova et al. conjugated eight distinct antibodies from immunoglobulin G
(IgG) to AuNPs, which were separated with AF4 and characterized by MALS,
UV-Vis, and DLS. These bioconjugated AuNPs were prepared in three different
ways: with a single conjugate, in a mixture of all eight antibodies, and in a
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concentrated solution of all eight antibodies. They found that the mixtures of the
eight conjugates had equal average radii compared to the single conjugated sample
and that the concentration of the conjugate did not influence the size. In addition,
they found that the AuNPs alone had a different distribution compared to the
bioconjugated materials. Essentially, the AuNPs alone were monomodally distrib-
uted and the bioconjugated AuNPs were bimodally distributed with the second
population of the latter being a structural influence from the conjugate during
synthesis [65].

Although AgNPs have been separated by AF4 extensively [66, 67], their separa-
tion with hollow fiber F4 (HF5) has only recently been studied. HF5 was coupled to
MALS for the characterization of AgNPs coated with either polyvinylpyrrolidone
(PVP) or PVP with SiO2. PVP is a water-soluble polymer used as a binder in the
production of medical drugs. Regardless of coating, the fractograms displayed no
void peak and showed that these types of coatings did not influence the elution time
of the AgNP peak. Surprisingly, dilution of the coated AgNPs changed the overall
shape of the particle from rod- and chain-like to spherical morphologies due to
agglomeration events which were measured through the release of Ag+ ions
[68]. The authors have also separated solid AgNPs from dissolved Ag+ ions with
HF5 [69].

AF4, hyphenated to UV-Vis and ICP-MS, has also been used to determine the
protein corona formed on AgNPs after incubation with plasma proteins.
Wimuktiwan et al. found that within 5 min of incubation, a stable protein corona
was formed, shown in Fig. 3.6. Additionally, after 24 h, they were able to identify the
protein-corona stabilized AgNPs with AF4. However, the group did not assess the
corona formation after incubation with protein-rich plasma itself [70].

Selenium nanoparticles (SeNPs), which can catalyze the generation of superoxide
anions, have been applied in nanomedicine as drug carriers [71] and potential
chemotherapeutic agents [72]. Their use as delivery agents has been supported due
to the fact that these materials do not induce toxicity at low doses. Although most
characterization of SeNPs occurs during synthesis, this method does not account for
the alteration stabilizers, biomolecules, or biological matrices have on the sizes of
SeNPs.

Pornwilard et al. studied the effect of gastrointestinal conditions (shifting the pH
of the solutions to pH 2 for gastric and to pH 7 for intestinal conditions) on SeNPs
through characterization with AF4-ICP-MS. They used biomolecules (pectin, algi-
nate/pectin, ovalbumin, and β-lactoglobulin) to coat SeNPs before incubation in the
two solutions that mimic gastrointestinal fluids. They found that there were shifts in
the fractograms of SeNPs after incubation in the GI conditions, due to the chemistry
of the conjugates. At pH 2, all four coating molecules were negatively charged,
while at pH 7 only the two proteins were negatively charged. They found that the GI
conditions, as well as the bioconjugates, stabilized the SeNPs. Additionally, they
looked at the effects of adding enzymes into the two GI-conditioned SeNPs. For the
polysaccharide coated particles at pH 2, there was a decrease in size after the
introduction of pepsin (an enzyme to mimic the GI conditions of the stomach) to
the pectin coated particles but no size change in the alginate/pectin conjugated
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particles. For the protein coated materials, incubation with pepsin resulted in a size
increase for ovalbumin coated particles and the loss of the second peak seen in
β-lactoglobulin coated SeNPs. At pH 7, they used pancreatin-bile extract as the
enzyme to mimic the GI conditions of the intestine. They observed a decrease in size
for all materials regardless of coating due to an increase in electrostatic repulsions.
Regardless of the shifts they observed, more than 90% of SeNPs were present after
the GI digestion and fractionation with AF4 [73].

5.1.2 Metal Oxide Nanoparticles
Metal oxide nanoparticles are extensively used in industry, agricultural products,
medicine, and cosmetics [74]. For example, superparamagnetic iron oxide

Fig. 3.6 Fractograms of 2.6 nm tannic stabilized AgNPs with UV-Vis (a, c, e, g) and ICP-MS
detection (b, d, f, h). The AgNPs were incubated with BSA (c and d, red), globulin (e and f, red),
and fibrinogen (g and h, red) for 5 min (green), 120 min (blue), and 24 h (brown). (Reproduced from
Ref. [70]. Copyright 2015 The Royal Society of Chemistry)
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nanoparticles (SPION) have been modified for chemotherapeutical applications
[75]. Zinc oxide (ZnO) and titanium dioxide (TiO2), which can be dispersed in a
variety of materials, from personal care products to sensors, possess antimicrobial
and disinfecting properties. Therefore, these materials have been increasingly used
in nanomedicine as drug carriers with antibacterial capacities [76, 77]. The following
articles used FFF for the separation of bioconjugated metal oxide nanoparticles.

Our group studied the formation of the protein corona on SPIONs after incubation
in depleted human serum with AF4 by screening SPION-protein interactions based
on dissociation rates [53], and we isolated the SPIONs with the intact hard corona
[78]. The size of the SPIONs clearly increased after incubation with the serum, as
inspected by AF4. The proteins in the hard corona were digested and analyzed with
2-dimensional nano-LC-MS/MS to determine the protein composition of both the
soft and hard coronas, which is schematically represented in Fig. 3.7. We found that
increasing the NP core size as well as using hydrophobic surface ligands attracted
more proteins to form a more dynamic corona. These studies demonstrate the utility
of an open-channel separation technique like AF4 in elucidating the formation of the
protein corona, which can be useful in guiding the design of biocompatible nano-
materials for medical applications.

5.1.3 Polymeric Nanoparticles
Polystyrene nanoparticles are versatile materials due to their stability in simple
dispersants and complex matrices as well as their low toxicity and ability to be
effortlessly functionalized. Here we introduce studies that have applied FFF for
characterization of bioconjugated nanomaterials as well as drug-loaded particles for
drug delivery.

Weber et al. used AF4 to separate free plasma proteins, without disturbing the
weak interactions of low affinity proteins, from the surfaces of polystyrene nano-
particles. After incubation in serum, this group used centrifugation to separate the
hard corona proteins and used AF4 for the soft corona which contains the low
affinity proteins. This conclusion contradicts with what we have found in our work
[53, 78] probably due to differences in the flow conditions, channel thickness, and
membrane pore size used in these two studies. The authors confirmed the corona
compositions with SDS-PAGE and LC-MS and found that the principal component
that adsorbed onto the particles was the low-binding affinity protein, human serum
albumin [79].

An evolving category of nanoparticles are metal organic framework (MOF)
materials which exhibit very large surface areas. These particles are 3D porous
inorganic polymer clusters or crystals composed of metal ions and are assembled
together with organic ligands. Due to their ability to be modified readily, MOFs can
be used in multiple applications ranging from sensors to drug delivery [80].

Recently, Roda et al. loaded MOFs with nucleoside reverse transcriptase inhib-
itors (NRTIs) for drug delivery in HIV therapy. The direct administration of NRTIs is
complicated; poor stability of these types of drugs in biological media limits cellular
uptake while the inefficiency of intracellular kinases to metabolize the drugs into the
correct derivatives reduces the drugs ability to act as a therapeutic. Not only do
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MOFs overcome these two issues, due to their ability to stabilize the drugs and their
derivatives, but also their nontoxic nature makes them optimal drug delivering
nanoparticles [81]. Roda et al. examined empty MOFs and correlated the size
changes after loading the MOFs with azidothymidine (AZT, a commonly used
NRTI drug) azidothymidine monophosphate (AZT-MP) and azidothymidine triphos-
phate (AZT-TP) with the AF4-MALS results. They measured the particle size
distribution (PSD), obtained with the AF4-MALS root mean square (rms) radius
values. Both the empty MOF and the MOF-AZT samples had identical PSD values
at approximately 81 nm while the MOF-AZT-MP and MOF-AZT-TP had radii of
90 and 97 nm, respectively. These size increases for the phosphorylated drug

Fig. 3.7 (a) The scheme for
determination of the hard and
soft corona formed around
SPIONs. (b) Fractograms of
SPIONs functionalized with
the surface ligand 10-PAA
(red) and 10-PAA incubated
with depleted serum (black).
(c) The pie charts quantify the
percentage of proteins
identified in the hard (dark
gray) and soft (light gray)
corona. S stands for slow
exchange and F for fast
exchange. The number in
parentheses, following the
name of the nanomaterial,
represents the total number of
proteins identified in the
corona. (Reprinted with
permission from Ref.
[78]. Copyright 2014 ACS
Applied Materials &
Interfaces)
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MOF-delivering samples were attributed to the binding and bridging effects of the
drug to the MOFs. Interestingly, this group found that, although the theory of FFF
suggests that smaller particles elute first, the smaller unloaded MOFs eluted slower
than the larger drug-loaded MOFs. They found that the zeta potential of their
samples played a critical role in this elution order due to the two phosphorylated
drug-loaded MOFs having negative zeta potentials; therefore, these particles would
be repelled away readily from the negatively charged polyethersulfone membrane
channel compared to the empty MOF which is smaller in size but has a positive zeta
potential. Additionally, this group studied the morphological stability of the loaded
MOFs after 24 h. Ultimately, each of the loaded MOFs as well as the empty MOF
were stable over time. The tri-phosphorylated drug was more stable in the MOF,
compared to the monophosphorylated drug, and this could be due to the binding
constant of the drug to the MOF being higher for the tri-phosphorylated drug [81].

5.1.4 Liposomes
Liposomes are biocompatible drug delivering carriers due to their hydrophobic
interactions with cellular receptors. The subsequent articles focus on the analysis
of bioconjugated NPs and drug delivery NPs through the application of FFF.

Hinna et al. used AF4 to measure the exchange between small-drug-loaded
liposomes with large acceptor liposomes that mimic the interactions between the
carrier liposomes and “biological sinks.” The drug they used was p-THPP
(5,10,15,20-tetrakis(4-hydroxyphenyl)21H,23H-porphine). After preparing the lipo-
somes, they used AF4 to determine the size distribution of both donor and acceptor
liposomes and they were able to reproducibly separate these two species, depicted in
Fig. 3.8. They then coupled AF4 with UV-Vis and off-line HPLC to quantify the
model drug content in the donor and acceptor fraction; they simultaneously quanti-
fied drug transfer and release to an aqueous phase and determined the transfer
kinetics of p-THPP to be first order with a half-life of 300 min [82].

Targeted alpha (α)-particle therapy (TAT) is a form of radioimmunotherapy in
which nuclides decay into radioactive daughters emitting α-particles that kill tumor
cells, via short 70–100 μm energy paths, while evading surrounding normal cells
[83]. TAT is considered to be both highly potent and specific in the therapeutic
application for ovarian, breast, colon, and prostate cancers. Nanomaterials have
recently been considered as vectors capable of transporting α-emitting particles to
cancer cells. However, a limitation in using these vectors is keeping the daughter
isotope bound to the nanomaterial after the parent nucleoside decays and emits the
α-particle.

Huclier-Markai et al. monitored the stability of lead-212 (parent nuclide)/bis-
muth-212(daughter isotope) radionuclide pair encapsulated by liposomes in vitro
using AF4 coupled to MALS and a gamma (γ) ray detector. This group began their
analysis by preparing liposomes with an average diameter of 109 nm and a polydis-
persity index of 0.119, optimal for use in TAT. They then labeled the liposomes in
two different manners. One set of the liposomes were labeled with indium and the
other set was labeled with indium and also encapsulated 212Pb. Using AF4 with a
cellulose membrane, coupled to MALS and a UV-VIS detector, they found that there
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was no significant size increase between the unlabeled liposomes, the indium-
labeled liposomes, and the 212Pb encapsulating liposomes and the three different
liposome samples eluted at approximately 11 min. Additionally, through the use of
the γ-ray detector, the group observed a signal at the 11 min retention time for the
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Fig. 3.8 (a and b) Fractograms of (black) donor liposomes were overlaid with those of (red)
acceptor liposomes. The dashed blue lines represent the applied crossflow gradients. (a) Donor and
acceptor liposomes were prepared by slow extrusion through polycarbonate membranes and were
fractionated using a method where zero crossflow was attained around 41–42 min. (b) Donor and
acceptor liposomes were prepared by extrusion, freeze-thaw, centrifugation, and fractionated over
non-zero crossflow. (c) Fractograms of overlaid (black) donor liposomes with transfer experiment
aliquots at (red) 0 min and (green) at equilibrium. (d) Overlaid fractograms of liposomes incubated
within channel under low focus flow for (black) 10, (red) 30, and (green) 60 min. (Reprinted with
permission from Ref. [82] Copyright 2016 Journal of Pharmaceutical and Biomedical Analysis)
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212Pb encapsulating liposomes and calculated 86% efficiency in radiolabeling the
liposomes. They measured the stability of 212Pb in liposomes after these species
were incubated in human serum for 20 h and found that more than 85% of the
liposomes encapsulating 212Pb were stable in the matrix and did not release the
daughter isotope. These results are notable due to the fact that the liposomes have a
biological period of 14 h in mice and therefore there is both sufficient time for the
212Pb encapsulating liposomes to reach cancerous cells, decay (the half-life of 212Pb
is 10.6 h), and release α-particles that can kill cancer cells [84].

5.1.5 Quantum Dots
Quantum dots (QDs) are luminescent semiconductor nanoparticles. Due to their
optical properties, QDs are used in multiple applications including sensors and drug
delivery. In biological applications, QDs are conjugated with a specific antibody or
aptamer for therapeutic and in-vivo applications in complex matrices. The studies
mentioned below use FFF for the separation and analysis of bioconjugated QDs.

Moquin et al. investigated the effects of cell culture media on the stability of QDs
as well as the time-dependent effects on the hydrodynamic diameters using AF4
coupled to MALS, DLS, and UV-Vis detectors. They coated the CdSe (CdZnS)
nanomaterials with three negatively charged ligands and then incubated the QDs in
cell culture media. They found that after 24 h, the sizes of the QDs incubated in cell
culture media were larger than those of QDs dispersed in water when the QDs were
capped with mercaptopropionic acid (MPA) or dihydrolipoic acid (DHLA). The
latter had the most dramatic size increase indicating hefty agglomeration, illustrated
in Fig. 3.9. This was slightly observed in QDs coated with α-carboxyl-ω-mercapto
poly(ethylene glycol) (PEG-COOH) denoting that this ligand was influential in the
QDs stability in cell culture media [85].

Bouzas-Ramos et al. coupled AF4 to an ICP-MS to investigate the purification of
one-pot synthesized QDs. These materials were separated with AF4 after being
capped with ligands that can functionalize to antibodies [86]. This technique can
be used to assess the integrity of these materials before their applications in
biomedicine.

Menéndez-Miranda et al. used AF4 with on-line ICP-MS to measure conju-
gation effectiveness between monoclonal IgG antibody and CdSe/ZnS core shell
QDs. In order to calculate the bioconjugation efficiency, they used four different
molar ratios for analysis with AF4. They found that increasing the QD: antibody
ratio would result in an increase in bioconjugation with a 75% efficiency using a
3:1 ratio [87].

5.2 Capillary Electrophoresis for Characterization
of Nanomaterials and Their Bioconjugates for Drug Delivery
Applications

CE is also quite comprehensive in its analysis of nanomaterials, and separation can
be enhanced by selecting the optimal CE mode as described in the experimental
section. CE can be applied to the separation of metallic nanoparticles, metal oxide
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nanoparticles, polymeric nanoparticles, and quantum dots for the use as imaging
tools, delivery agents, and biosensor components. In the following section, we will
discuss the most recent revelations for various nanomaterial types.

5.2.1 Metallic Nanoparticles
Many recent key findings for metallic nanoparticles have focused on protein binding.
When administering drug delivery nanomaterials into biological systems, it is
imperative to understand nanoparticle-protein interactions and how they affect the
process of targeting to specific sites. Matczuk et al. studied AuNPs and their
interaction with proteins using CE coupled to ICP-MS. The authors first optimized
the conditions for CE in order to analyze their samples. They found the best buffer to
be 40 mM HEPES at a pH of 7.4 to ensure physiological conditions as well as
optimal separation. 15 kV separation voltage and a sample loading pressure of
20 mbar for 5 s were chosen to reduce peak broadening and analysis time as well
as prevent protein adsorption to the wall from sample overloading, which shows that
optimization of the conditions is highly imperative to CE separation. The method
was validated and found to be reproducible by comparing the migration time of
AuNPs to that of AuNP-albumin conjugates and comparing the peak areas for
intraday and interday analysis. After they calculated capillary recovery values,
they found that there was a decrease in the capillary recovery with their largest
AuNP at 50 nm due to adsorption of larger proteinaceous conjugates to the capillary
wall [88], which can be avoided by a dynamic or permanent coating of the wall [89].

After optimization, Matczuk et al. explored the interactions between individual
proteins and AuNPs. First, they found that the interaction between albumin and
AuNPs is fast for 10-, 20-, and 50 nm sized particles in that binding was complete
after 5 min. However, with 5 nm particles, the interaction is fast in the first 5 min but
decelerates afterwards. They explained this mechanism as the change in albumin’s
structure after binding to nanoparticles over time [88].

Matczuk et al. then observed the interaction of AuNPs with two forms of
transferrin: holo-transferrin and apo-transferrin. Again, the kinetics were fast in
that equilibrium was attained after 5 min; however, there were more unbound
nanoparticles at equilibrium. The authors then proceeded to study the interaction
between different proteins in human serum to mimic a real biological system. As
seen in Fig. 3.10, they found that albumin was the only protein participating in
corona formation, and it eventually displaced the two forms of transferrin due to the
contents in the serum matrix [88]. The paper emphasizes the interesting phenomenon
of protein-NP interaction, which can depend on parameters such as protein type.

In another study, Matczuk et al. quantified the binding stoichiometry between
AuNPs and albumin using CE-ICP-MS. Based on the initial concentrations of
albumin and AuNPs and the peak area ratio of the total AuNPs to conjugated
AuNPs, they calculated the binding stoichiometries for various-sized
nanoparticles [90].

Legat et al. did an extension of the previous study byMatczuk et al. and compared
the binding behaviors of spherical and rod-shaped AuNPs, denoted as sAuNPs and
rAuNPs, respectively. Furthermore, they found the surface functionalization of
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AuNPs affects the binding efficiencies to serum proteins. This work highlights the
importance in the effect of AuNPs’ characteristics on their functionality. Finally,
they introduced sAuNPs and rAuNPs to a mixture of albumin, apo-transferrin, and
holo-transferrin. sAuNPs completely changed to the conjugated form with only
albumin; on the other hand, rAuNPs underwent slow association with both forms
of transferrin proteins of which the apo-transferrin conjugate formed first as seen in
Fig. 3.11 [91].

Boulos et al. conducted steady-state fluorescence quenching titration and ACE to
extract kinetic information from the interaction between BSA and AuNPs with
various surface charges. Polyacrylic acid (PAA), polyallylamine hydrochloride
(PAH), and methoxy-polyethylene glycol (PEG) were the anionic, cationic, and

Fig. 3.10 Protein binding
after incubation of 19 mg/L
of 20 nm AuNPs in diluted
human serum. Lines: 1 –
holo-transferrin conjugate;
2 – apo-transferrin
conjugate; 3 – albumin
conjugate; 4 – indication
of the migration time for
AuNPs. (Reprinted with
permission from Ref.
[88]. Copyright 2015
Metallomics)
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neutral polymer surface coatings on the AuNPs, respectively. They included BSA,
which has been used as an inner wall coating in CE [92], in the background
electrolyte; in effect, this reduced the EOF. By using dimethylformamide as a neutral
marker, they normalized the electrophoretic mobility by EOF subtraction. Plotting
the ratio of bound nanoparticle to total nanoparticle against the concentration of BSA
allowed for derivation of association equilibrium constants from the Hill equation as
shown in Fig. 3.12. Overall, they found that BSA adheres to PEG-functionalized
AuNPs with similar affinity to charged AuNPs. Compared to the other modified
AuNPs, PAH-modified AuNPs had higher affinity to BSA [93].

Nanoparticle modifications, such as those based on thiol derivatives, can improve
the stability and reduce aggregation of nanoparticles [94]. López-Lorente et al.
studied the effect of two thiol derivative buffer additives on the electrophoretic
mobility and separation of Au and AgNPs. In their study, derivatization was
performed in capillary via incorporation of thioctic acid (TA) and thiomalic acid
(TMA) in the electrophoretic buffer, which consisted of 40 mM SDS and 10 mM

Fig. 3.11 197Au
electropherograms of
carboxy-rAuNPs with
transferrin and albumin
proteins at various
incubation times. Peaks:
1 – free nanoparticles,
2 – apotransferrin conjugate,
3 – holo-transferrin conjugate.
(Reprinted with permission
from Ref. [91]. Copyright
2017 Chromatographia)
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3-(cyclohexylamino)-1-propanesulfonic acid (CAPS). The structures of the two thiol-
based buffer additives are shown in Fig. 3.13. With TA in the buffer solution, the
migration time of AuNPs increased; whereas, the migration time of both Au and AgNPs
increased with TMA in the buffer solution as shown in the contour graph in Fig. 3.14.
Furthermore, AgNPs had a higher increase in their migration time [95]. The overall
structure and other functional groups of the acids seem to alter the strength of the metal-
sulfur bond, especially since gold has a higher proclivity than silver to interact with H2S
[96]. The study on thiol derivative buffer additives exemplifies the applicability of CE
on the characterization of nanoparticles with SAMs. Furthermore, the characterization of
surface-modified nanoparticles can lead to the understanding of the potential effects of
these modifications on protein adsorption.

5.2.2 Metal Oxide Nanoparticles
Metal oxide nanoparticles have been directly incorporated into drug delivery systems,
and this has been studied by the use of CE to determine the delivery and encapsulation
efficiencies. Doxorubicin (DOX) is a drug used in the treatment of various cancer types
and the efficiency of this drug is improved by delivery in a carrier system. Gautier et al.
loaded DOX-Fe2+ onto the surface of PEGylated superparamagnetic iron oxide nano-
particles (SPION). After analyzing the interaction and distribution of doxorubicin-
loaded PEGylated SPION (DLPS) via fluorescence confocal spectral imaging (FCSI),
the authors optimized the CE conditions for separation of DOX derivative molecules to
overcome the challenge of differentiating chemical structure similarities. They found
that modification of the capillary wall with the CEofix kit™ from Analis improved the
peak shape and use of MEKC enhanced resolution. The group treated MCF-7 breast
cancer cells with DOX or DLPS and obtained subcellular fractions via liquid-liquid
extraction. These fractions were then analyzed by capillary electrophoresis-laser induced
fluorescence (CE-LIF) to differentiate DOX and its metabolites. Along with the FCSI
results, the lack of DOXmetabolites detected in CE indicated that DLPS delivered DOX
into the cell [97].
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Fig. 3.12 Plot of the ratio of
bound nanoparticles to total
nanoparticles against the
concentration of BSA. The
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calculated via the Hill
equation, which was fitted to
the curve plotted from pooled
data. The data was obtained
for PAA–GNRs with
increasing concentration of
BSA in 5 mM MOPS buffer.
(Reprinted with permission
from Ref. [93]. Copyright
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Blazkova et al. also studied the use of DOX carriers for cancer treatment. They
encapsulated DOX into apoferritin cages and conjugated this structure to magnetic
nanoparticles. As shown in Fig. 3.15a, they found one peak corresponding to encapsu-
lated DOX and the other corresponding to free DOX, which the authors attributed to the
lack of success in eliminating free DOX during dialysis. The group explained that DOX
molecules adhered to the surface of the apoferritin cage and were separated during
electrophoresis. The correlation between the peak height and the concentration of DOX
was found to be linear in Fig. 3.15b. In Fig. 3.15c, d, the amount of desorbed DOX
increased while the amount of encapsulated DOX increased almost two times as much
with a larger application of DOX amount. Through CE, they monitored the magnetic
particle-mediated APODOX transport involving the following steps: separating the free
DOX and encapsulated DOX using magnetic pull down and pH-mediated release of
DOX from APODOX and APODOX-conjugated magnetic nanoparticles [98].
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5.2.3 Polymeric Nanoparticles
As exampled by the previous reports on the involvement of metal oxide nano-
particles in drug carrier systems, other literature sources assessed the usage of
polymeric nanoparticles in drug delivery in addition to the study of polymeric
nanoparticles and their biomolecular interactions. Oukacine et al. studied the hydro-
phobic properties of PEG-b-PGlu, which are the diblock copolymers that make up
(1,2-diamino-cyclohexane)platinum(II) ((DACH)Pt)-loaded micelles, by using
MEKC with SDS molecules in the buffer electrolyte. The electrophoretic mobility
of the diblock copolymer decreases with high levels of negatively charged SDS
molecules that adhere to PEG. Figure 3.16a shows the degradation of (DACH)Pt-
loaded polymeric micelles, affected by a highly concentrated NaCl solution and
25 �C temperature conditions, over time. The authors observed the formation and
increase of a second peak, which they suspected to be the smaller aggregates from
the polymeric micelles. The peak area ratio of the degradation product to the original
polymeric micelles was plotted in Fig. 3.16b [99].

Molecularly imprinted polymer nanoparticles (MIP NPs) are included in the
repertoire of drug delivery tools. Although they have not been extensively studied
for drug delivery purposes using CE, they have been studied for their interaction
with biomolecules. Musile et al. studied the interaction of molecularly imprinted
polymer nanoparticles (MIP NPs) with CE. After confirmation of the lack of MIP
NPs’ adsorption to the capillary wall, the group compared the interactions of MIP
NPs and nonimprinted polymer nanoparticles. MIP NPs were incubated with
increased concentrations of template in order for the group to obtain the binding
isotherm for the complex and a dissociation equilibrium constant of 66 � 1 μM.
Selectivity was tested using angiotensin, a nonspecific ligand peptide, and it was
found that there was no significant binding between MIP NPs and angiotensin [100].

Properties, such as hydrodynamic diameter and even polydispersity index, can be
obtained using the theory of “Taylor dispersion,” which is a result of nonuniform

Fig. 3.16 Monitoring the decomposition of polymeric micelles in NaCl solution at 25 �C via CZE.
Separation conditions: 30 mM phosphate buffer, pH 7.2, + 15 kV. Peaks: 1 – (DACH)Pt-loaded
polymeric micelles; 2 – (DACH)Pt-loaded aggregates; PA phthalic acid. (Reprinted with permission
from Ref. [99]. Copyright 2014 Journal of Controlled Release)
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fluid velocity and molecular diffusion [101]. Ibrahim et al. used CE with Taylor
Dispersion Analysis (TDA) to assess the hydrodynamic diameter and effective
charge of polyglutamate backbone grafted with hydrophobic vitamin E (pGVE)
hydrogels and polyglutamate (pGlu) hydrogels, which do not include vitamin E.
They found a decrease in the effective charge number per nonmodified glutamate
with inclusion of vitamin E in the hydrogel due to the influence of hydrophobic
groups on the dissociation of glutamate molecules [102].

5.2.4 Liposomes
Liposomes can also be considered nanoparticles, and they have been a dominant
option as a drug delivery tool. CE has been often used for the characterization of
liposome properties, such as size, charge, and permeability, in drug delivery systems
[103]. Nguyen et al. investigated PEGylated liposomes with CE-ICP-MS for the use
of cisplatin anti-cancer drug delivery. They were able to separate liposome-
encapsulated cisplatin from free cisplatin and hydrolysis products of cisplatin in
human plasma. Coupling CE to ICP-MS allowed for simultaneous monitoring of
phosphorus from phospholipids and platinum from cisplatin. Increasing the plasma
amount caused a decrease in the signal of cisplatin; in addition, cisplatin and
hydrolysis products co-migrated as one peak when the matrix was 50% plasma.
They found that reducing the plasma amount to 20% was necessary to improve
resolution and sensitivity during separation. The group speculated that the addition
of SDS to the background electrolyte improved separation efficiency possibly due to
the surfactant reducing adsorption to the capillary wall [104].

Nguyen et al. also studied the release of cisplatin from liposomes, which was
induced by sonication. Based on reduction of peaks for free cisplatin and hydrolysis
products, the amount of release cisplatin was calculated [105]. Otarola et al. ana-
lyzed the entrapment efficiency of their prepared nanostructured lipid carrier (NLC)
with incorporated piroxicam, a nonsteroidal anti-inflammatory drug (NSAID) using
CE. They obtained the entrapment efficiency by calculating the difference between
the amount of piroxicam used for NLC suspensions and the amount of piroxicam not
entrapped in the NLCs [106].

5.2.5 Quantum Dots
In general, quantum dots have been important tools for drug delivery, bioimaging,
and sensors. In CE, they have been conjugated with biomolecules in interaction and
detection studies. Janu et al. capped CdTe-QDs with heptapeptides (HWRGWVC) to
conjugate to human immunoglobulin. They observed that HWR peptide has affinity
towards IgG but not IgY. The IgG complex was separated from the IgY complex as
well as the HWR peptide-capped QDs. HWR-QD conjugation was confirmed by
magnetic particles coated with IgG and IgY in differential pulse voltammograms.
The same binding phenomenon occurred in gel electrophoresis and ELISA results as
well [107].

Zhou et al. also used quantum dots in a capillary electrophoresis-chemiluminescence
(CE-CL) detection system, but their goal was to detect the presence of
carcinoembryonic antigen (CEA) with their method. Their HRP-DNAA-B-QD probe
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was designed to enable chemiluminescence resonance energy transfer (CRET) when
bound to the target antigen. With CEA in the mixture, the CEA/HRP-DNAA-B-QD
complex was present and could be separated from the free probe in CE, as shown in
Fig. 3.17. When compared to the calibration values for quantification of CEA in human
serum by the standard LIAISON chemiluminescence immunoassay system, the
authors’ results from using their probe combined with the CE-CL detection system
were similar [108].

6 Conclusions and Future Perspective

Open channel separation including FFF and CE are unique approaches for the study
of nanomaterials and their bioconjugates as well as their application to drug delivery
systems. They provide fast separation and sufficient resolution between the non-
conjugated and conjugated nanomaterials for rapid characterization of the nano-
material itself and biological layer formation. The different separation modes in each
technique also provide superior tools for analysis of different physiochemical prop-
erties of the nanomaterials, including size, shape, and surface potential. Still, there is
a deficiency in applications on the newer generation of nanomaterials, the 1D and 2D
materials, like fibers and sheets. Lack of theory to guide separation optimization of
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such materials is the main challenge behind this gap. In addition, hyphenation with
more detectors or other separation techniques are desired to improve the amounts of
information obtained upon separation. Sample throughput and collection recovery
are to be improved for FFF, which is more prominent in recovering samples for
down-stream analysis than CE. However, with the advancement in the instrumenta-
tion of CE-MS, more applications in this area are to be expected. Moreover, the
previous efforts are all focused on protein conjugates. Future applications on ana-
lyzing adsorption of other biomolecules, like nucleic acids and lipids, are expected to
explore contribution of other adsorbed or conjugated biomolecules on nanomaterials
that could alter their biological behaviors. In addition, more analysis on drug
delivery systems using open channel separation is a possibility, and potential
avenues include studies with other nanomaterial types aside from polymeric and
lipid-based ones, which have been dominant in FFF and CE research. Overall, while
open channel separation techniques have shown strong power in the study of
nanomaterials, more instrumentation developments and wider application scopes
are expected in the coming years to improve their capability in characterization of
diverse new nanomaterials and their bioconjugates and to meet the accompanying
challenges in the fast development of nanotechnology.
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