
 123

Transactions on
Computational
Collective Intelligence XXXIIILN

CS
 1

16
10

Ngoc Thanh Nguyen
Editor-in-Chief

Jo
ur

na
l S

ub
lin

e Fatos Xhafa
Guest Editor

Ryszard Kowalczyk
Co-Editor-in-Chief

Lecture Notes in Computer Science 11610

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board Members

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

More information about this series at http://www.springer.com/series/8851

http://www.springer.com/series/8851

Ngoc Thanh Nguyen • Ryszard Kowalczyk •

Fatos Xhafa (Eds.)

Transactions
on Computational
Collective Intelligence XXXIII

123

Editor-in-Chief
Ngoc Thanh Nguyen
Wroclaw University of Technology
Wroclaw, Poland

Co-Editor-in-Chief
Ryszard Kowalczyk
Swinburne University of Technology
Hawthorn, VIC, Australia

Guest Editor
Fatos Xhafa
Technical University of Catalonia
Barcelona, Spain

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISSN 2190-9288 ISSN 2511-6053 (electronic)
Transactions on Computational Collective Intelligence
ISBN 978-3-662-59539-8 ISBN 978-3-662-59540-4 (eBook)
https://doi.org/10.1007/978-3-662-59540-4

© Springer-Verlag GmbH Germany, part of Springer Nature 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer-Verlag GmbH, DE
part of Springer Nature
The registered company address is: Heidelberger Platz 3, 14197 Berlin, Germany

https://doi.org/10.1007/978-3-662-59540-4

Transactions on Computational Collective
Intelligence TCCI XXXIII

Editorial Preface

Volume XXXIII of LNCS Transactions on Computational Collective Intelligence
(TCCI) covers research topics such as Performance Optimization in IoT, Big Data,
Reliability, Privacy, Security, Service Selection, QoS and Machine Learning, among
others. The volume includes nine interesting and original papers, which have been
selected via the peer-review process. In the papers, the authors present new findings
and innovative methodologies as well as discuss issues and challenges in the field of
collective intelligence from big data and networking paradigms while addressing
security, privacy, reliability, and optimality to achieve QoS to the benefit of final users.

The nine papers of this volume are arranged as follows.
The first paper, “Performance Optimization in IoT-based Next-Generation Wireless

Sensor Networks,” by Behzad et al. proposes a novel framework for performance
optimization in Internet of Things (IoT)-based next-generation wireless sensor net-
works. The aim is to overcome certain bottlenecks appearing in such systems, namely,
drainage of battery and data degradation. The proposed framework comprises mech-
anisms to ensure the efficient and optimized use of resources. The framework is ana-
lyzed both mathematically and by extensive simulation results to sustain the claims of
optimization and efficiency.

Kyriazis, in the second paper “Enabling Custom Security Controls as Plugins in
Service-Oriented Environments,” analyzes the concerns of non-adopters of
service-oriented environments related to privacy and security. The use of security
controls as plugins that can be ingested in service-oriented environments are proposed.
The aim is to allow users to tailor the corresponding security and privacy levels by
utilizing security measures that have been selected and implemented by themselves.
The challenges and an architecture with the corresponding key building blocks that
address these challenges are presented. Trustworthy requirements within the proposed
approach are also discussed.

The third paper, “A Flexible Synchronization Protocol to Learn Hidden Topics in
P2PPS Systems,” by Nakamura et al. considers hidden topics in P2PPS (peer-to-peer
type of topic-based publish/subscribe) models where each peer process can publish and
subscribe event messages with no centralized coordinator. In such settings illegal
information flow to the target peer may occur. The authors propose a flexible syn-
chronization for hidden topics protocols. By experimental evaluation, it is evidenced
that the fewest number of event messages are prohibited from being received in the
proposed protocol when compared with the other protocols.

Bhattacharya and Choudhury, in the fourth paper “QoS Preservation in Web Service
Selection,” discuss the challenge of delivering a QoS solution satisfying the require-
ment of a consumer with minimum possible execution time, whereby many conflicting

QoS objectives increase the complexity of the problem. Therefore the problem may be
formulated as a multi-objective, NP-hard optimization problem. The authors propose a
goodness measure that replaces all QoS metrics by a single one, aiming at dimension
reduction while satisfying all the QoS requirements of a consumer in most of the cases.
The experimental results substantiate the claims of the proposed model.

In the fifth paper, “File Assignment Control for a Web System of Contents Cate-
gorization,” Kohana et al. deal with the effect of the controlling file assignment on the
file transfer time for a Web-based content categorization system. The authors propose
an algorithm that estimates categories of contents based on the terms and the content
categories already added. The longer file transfer time issue is solved by a distributed
Web system that uses multiple calculation machines by controlling the file assignment.
Thereby the large files are assigned to the Web browser process while the smaller files
are assigned to the calculation machines over the network.

The sixth paper, “Byzantine Collision-Fast Consensus Protocols,” by Saramago
et al., analyzes Byzantine failures in atomic broadcast protocols, which are fundamental
building blocks used in the construction of many reliable distributed systems. By
observing that the collision-fast atomic broadcast algorithm, which uses m-consensus
to decide and deliver multiple values in the same instance, is not Byzantine
fault-tolerant, a requirement for many a modified version of the algorithm is presented
to handle Byzantine failures. The authors prove that there are no Byzantine
collision-fast algorithms in an asynchronous model as traditionally extended to solve
consensus. Finally, the authors present a Byzantine collision-fast algorithm that
bypasses the stated impossibility by means of a unique sequential identifier generator
trusted component.

Calzarossa et al. in the seventh paper, entitled “A Methodological Approach for
Time Series Analysis and Forecasting of Web Dynamics,” address the problem of
modelling and predicting Web dynamics in the framework of time series analysis and
forecasting. The authors present a general methodological approach that allows the
identification of the patterns describing the behavior of the time series, the formulation
of suitable models, and the use of these models for predicting the future behavior. Also,
aiming to improve the forecasts, a method for detecting and modelling the spiky
patterns that might be present in a time series is proposed and analyzed through the
temporal patterns of page uploads of the Reuters news agency website over one year. It
is shown that the overall model of the upload process accurately fits the data, including
most of the spikes.

In the eighth paper, “Static and Dynamic Group Migration Algorithms of Virtual
Machines to Reduce Energy Consumption of a Server Cluster,” Duolikun et al.
envision the green society and the need to reduce the consumption of electric energy
for information systems, especially servers in clusters like cloud computing systems.
The authors identify some energy-related issues in a process migration approach to
reducing the total electric energy consumption of clusters by migrating virtual
machines. Both static and dynamic migration algorithms where a group of virtual
machines migrate from a host server to a guest server are discussed. In the evaluation,
the authors show the total electric energy consumption of servers can be reduced more
in the dynamic setting algorithm compared with other algorithms.

vi Transactions on Computational Collective Intelligence TCCI XXXIII

Dawoud et al., in the last paper “Unsupervised Deep Learning for Software Defined
Networks Anomalies Detection,” analyze security and vulnerability threats in software-
defined networks (SDN), where a centralized network controller is a target for the
attackers. Providing security measures is a crucial procedure to leverage the SDN’s
model capabilities. The authors analyze the detection of network anomalies in view of
recent advances in machine learning and of deep learning, in particular. Then, an
intrusion detection framework based on unsupervised deep learning algorithms is
proposed. The experimental results showed a significant improvement in detection
accuracy.

I would like to sincerely thank all the authors for their valuable contributions to this
TCCI volume and the reviewers for their timely and constructive feedback. I would like
to thank the Editor-in-Chief of TCCI, Prof. Ngoc Thanh Nguyen, for the opportunity to
edit this volume. The support by the managerial team of TCCI is highly appreciated.

April 2019 Fatos Xhafa

Transactions on Computational Collective Intelligence TCCI XXXIII vii

Transactions on Computational Collective Intelligence

This Springer journal focuses on research in applications of the computer-based
methods of computational collective intelligence (CCI) and their applications in a wide
range of fields such as the Semantic Web, social networks, and multi-agent systems. It
aims to provide a forum for the presentation of scientific research and technological
achievements accomplished by the international community.

The topics addressed by this journal include all solutions of real-life problems for
which it is necessary to use CCI technologies to achieve effective results. The emphasis
of the papers published is on novel and original research and technological
advancements. Special features on specific topics are welcome.

Editor-in-Chief

Ngoc Thanh Nguyen Wroclaw University of Technology, Poland

Co-editor-in-Chief

Ryszard Kowalczyk Swinburne University of Technology, Australia

Editorial Board

John Breslin National University of Ireland, Galway, Ireland
Longbing Cao University of Technology Sydney, Australia
Shi-Kuo Chang University of Pittsburgh, USA
Oscar Cordon European Centre for Soft Computing, Spain
Tzung-Pei Hong National University of Kaohsiung, Taiwan
Gordan Jezic University of Zagreb, Croatia
Piotr Jędrzejowicz Gdynia Maritime University, Poland
Kang-Huyn Jo University of Ulsan, South Korea
Yiannis Kompatsiaris Centre for Research and Technology Hellas, Greece
Jozef Korbicz University of Zielona Gora, Poland
Hoai An Le Thi Lorraine University, France
Pierre Lévy University of Ottawa, Canada
Tokuro Matsuo Yamagata University, Japan
Kazumi Nakamatsu University of Hyogo, Japan
Toyoaki Nishida Kyoto University, Japan
Manuel Núñez Universidad Complutense de Madrid, Spain
Julian Padget University of Bath, UK
Witold Pedrycz University of Alberta, Canada
Debbie Richards Macquarie University, Australia
Roman Słowiński Poznan University of Technology, Poland

Edward Szczerbicki University of Newcastle, Australia
Tadeusz Szuba AGH University of Science and Technology, Poland
Kristinn R. Thorisson Reykjavik University, Iceland
Gloria Phillips-Wren Loyola University Maryland, USA
Sławomir Zadrożny Institute of Research Systems, PAS, Poland
Bernadetta Maleszka

(Assistant Editor)
Wroclaw University of Technology, Poland

x Transactions on Computational Collective Intelligence

Contents

Performance Optimization in IoT-Based Next-Generation Wireless
Sensor Networks . 1

Muzammil Behzad, Manal Abdullah, Muhammad Talal Hassan, Yao Ge,
and Mahmood Ashraf Khan

Enabling Custom Security Controls as Plugins in Service
Oriented Environments . 32

Dimosthenis Kyriazis

A Flexible Synchronization Protocol to Learn Hidden Topics
in P2PPS Systems . 52

Shigenari Nakamura, Tomoya Enokido, and Makoto Takizawa

QoS Preservation in Web Service Selection . 71
Adrija Bhattacharya and Sankhayan Choudhury

File Assignment Control for a Web System of Contents Categorization 89
Masaki Kohana, Hiroki Sakaji, Akio Kobayashi, and Shusuke Okamoto

Byzantine Collision-Fast Consensus Protocols. 103
Rodrigo Saramago, Eduardo Alchieri, Tuanir Rezende,
and Lasaro Camargos

A Methodological Approach for Time Series Analysis and Forecasting
of Web Dynamics . 128

Maria Carla Calzarossa, Marco L. Della Vedova, Luisa Massari,
Giuseppe Nebbione, and Daniele Tessera

Static and Dynamic Group Migration Algorithms of Virtual Machines
to Reduce Energy Consumption of a Server Cluster 144

Dilawaer Duolikun, Tomoya Enokido, and Makoto Takizawa

Unsupervised Deep Learning for Software Defined Networks
Anomalies Detection . 167

Ahmed Dawoud, Seyed Shahristani, and Chun Raun

Author Index . 179

Performance Optimization in IoT-Based
Next-Generation Wireless

Sensor Networks

Muzammil Behzad1,2(B) , Manal Abdullah3, Muhammad Talal Hassan2,
Yao Ge4 , and Mahmood Ashraf Khan2

1 University of Oulu, 90014 Oulu, Finland
muzammil.behzad@oulu.fi

2 COMSATS University Islamabad, Islamabad 44000, Pakistan
{talal,mahmoodashraf}@comsats.edu.pk

3 King Abdulaziz University, Jeddah 21589, Kingdom of Saudi Arabia
maaabdullah@kau.edu.sa

4 The Chinese University of Hong Kong, Shatin 999077, Hong Kong
yge@ee.cuhk.edu.hk

Abstract. In this paper, we propose a novel framework for performance
optimization in Internet of Things (IoT)-based next-generation wire-
less sensor networks. In particular, a computationally-convenient sys-
tem is presented to combat two major research problems in sensor net-
works. First is the conventionally-tackled resource optimization problem
which triggers the drainage of battery at a faster rate within a network.
Such drainage promotes inefficient resource usage thereby causing sud-
den death of the network. The second main bottleneck for such networks
is the data degradation. This is because the nodes in such networks
communicate via a wireless channel, where the inevitable presence of
noise corrupts the data making it unsuitable for practical applications.
Therefore, we present a layer-adaptive method via 3-tier communication
mechanism to ensure the efficient use of resources. This is supported
with a mathematical coverage model that deals with the formation of
coverage holes. We also present a transform-domain based robust algo-
rithm to effectively remove the unwanted components from the data. Our
proposed framework offers a handy algorithm that enjoys desirable com-
plexity for real-time applications as shown by the extensive simulation
results.

Keywords: Coverage holes · Denoising · Energy efficiency ·
Energy holes · Sparse representations · Wireless sensor networks

1 Introduction

Recent technological-accelerations for surging advancements regarding indus-
trial applications in Internet-of-Things (IoT) based wireless communication have

This research work was funded in part by the Higher Education Commission of Pakistan
under the research grant number 288.67/TG/R&D/HEC/2018/25181.

c© Springer-Verlag GmbH Germany, part of Springer Nature 2019
N. T. Nguyen et al. (Eds.): TCCI XXXIII, LNCS 11610, pp. 1–31, 2019.
https://doi.org/10.1007/978-3-662-59540-4_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-59540-4_1&domain=pdf
http://orcid.org/0000-0003-3693-4596
http://orcid.org/0000-0002-3293-2051
https://doi.org/10.1007/978-3-662-59540-4_1

2 M. Behzad et al.

significantly aided major scientific and research platforms, where the main focus
is to propose exceptionally elegant and convenient systems in terms of com-
putational cost, design and practical execution. With these tremendous efforts
available at hand, the consumer electronics industry have been made confident
to manufacture wireless devices with economical value, tiny structure, and the
capability of effectively utilizing the in-hand battery resources. Toward this end,
sensors-based wireless networks have earned significant attention in the unlim-
ited development of information and communication technologies [1]. However,
since many of these devices are restricted by the resources available to them at
hand, the communication overhead and power consumption are, hence, critical
areas of research for analysis, manufacturing and development of such wireless
networks in order to achieve efficient management in IoT.

Wireless sensor networks (WSNs) are made up of small, portable and energy-
restricted sensor nodes deployed in an observation venue. These nodes carry
the baggage of transmitting vital information using wireless radio links. Such
information can have the form of multi-dimensional signals, and are of critical
importance in many world-wide applications. The development of such networks
demands extensive planning strategy along with superior tactical approaches
for its working capabilities. This effective development motivates the existence
of many real-time application scenarios such as environmental control [2], under-
water networks [3], battlefield surveillance [4], medical and health-care systems
[5,6], and many more [7–11].

1.1 Underlying Structure of WSNs

As a function of the underlying transmission mode, WSNs can be categorized by
two types of communication mechanisms: (1) direct or single-hop, and (2) multi-
hop, as shown in Fig. 1. In the former method, the nodes in a network transmit
their data directly to the base station (BS), also known as the sink. This in turn
drains-up the battery life of the nodes, hence, resulting in an early death of the
network. Therefore, this type of communication is not recommended for efficient
and practical approaches. On the other hand, the later approach suggests a much
more promising deal. In this method, the nodes are not needed to communicate
with the BS directly, and can instead send their data to BS in multiple steps.
This ultimately lessens the burden on each node, and allows the network to
remain stable for a longer period of time.

Similarly, another distribution of WSNs is based on the type of the response
that the nodes usually exhibit. Specifically, WSNs can be designed as either
proactive or reactive. In a proactive mode, the nodes keep their transmitters con-
tinuously active, and periodically transmit the data independent of any param-
eters. Consequently, such power-hunger transmissions result in an inefficient
energy utilization. On the contrary, in the reactive mode, the nodes respond only
to the events that, for example, exceeds a certain threshold or when a specific
event has been triggered. Since the nodes only respond to drastic changes and
keep their transmitters turned-off otherwise, this yield a practically convenient
system with an elongated network lifespan.

Performance Optimization in IoT-Based Next-Generation WSNs 3

1.2 Research Developments in WSNs

The first step in establishing a WSN is the initialization and distribution of
sensor nodes around the observation field. Many researchers have advocated
normal distribution of the statically deployed nodes as the optimal distribution
(e.g., see [12]). The deployment of nodes in the network field area is then followed
by transmission of the required data. Since these nodes are left unattended, with
limited resources at hand, efficient utilization of the available resources becomes
a key operation factor to form a vigorous and standalone network.

To tackle this, many protocols recommended clustering of the network area, a
pioneer contribution by W.B. Heinzelman [13]. Fundamentally, clustering divides
the field into multiple smaller observation versions thereby making resource man-
agement a comparatively convenient task [14–17]. However, this requires free and
fair election of cluster heads (CHs) in each cluster. These CHs are responsible for
data fusion, i.e., they receive data from their respective clusters’ normal nodes,
and transmit them to the BS.

Traditionally proposed protocols for WSNs focus mainly on performance
improvements via effective selection criterion for CHs, the choice of single-hop
or multi-hop communication between nodes, and whether the clustering scheme
should be static or dynamic. Even though an optimal combination of the above
factors yield interesting results, however, impressive results can be achieved by
looking into more exciting parts of the problem. Furthermore, another much
concerned and barely discussed side of the problem is the degradation due to
environment. A common form of such inevitable degradation affecting the data
sent over radio links is that of additive white Gaussian noise (AWGN). Several
designed protocols discard this important issue and just focus on minimizing

Fig. 1. Multi-hop vs. Single-hop communication mechanism

4 M. Behzad et al.

the energy consumption by assuming that the data received by nodes have not
experienced any noise addition due to the environment.

1.3 Notations

In the rest of the paper, we use the following notations. We represent all the
vectors used in our work with small case and bold face letters (e.g., y), while all
the scalars with small case normal font letters (e.g., y). We reserve upper case and
bold face letters (e.g., Y) for matrices, whereas calligraphic notations (e.g., N)
are used for sets. Additionally, we use yi, y(j) and Nk to denote ith column of
matrix Y, jth element of vector y and a subset of N , respectively.

1.4 Recoveries via Sparse Representations

Contrary to the traditional Nyquist-Shannon sampling theorem, where one must
sample at least double the signal bandwidth, compressive sensing (CS) has
emerged out as a new framework for data acquisition and sensor design in an
extremely competent way. The basic idea is that if the data signal is sparse in
a known basis, a perfect recovery of the signal can be achieved leading to a
significant reduction in the number of measurements that need to be stored.

According to CS, the following model can be used to recover an unknown
vector v from an under-determined system:

x = Φv = ΦΨθ = Θθ, (1)

where x ∈ C
M , v = Ψθ ∈ C

N are observed signal and unknown vector, θ ∈ C
N

is unknown sparse signal which, for example, a node will collect, representing
projection coefficients of v on Ψ , Θ = ΦΨ is an M × N reconstruction matrix
(M < N). The measurement matrix Θ is designed such that the dominant
information of θ can be captured into x.

Reconstruction algorithms in CS exploit the fact that many signals are genet-
ically sparse, therefore they proceed to minimize �0, �1 or �2-norm over the solu-
tion space. Among them, �1-norm is the most accepted approach due to its
tendency to successfully recover the sparse estimate θ̂ of θ as follows:

θ̂ = arg min
θ

‖θ‖�1
, subject to x ≈ ΦΨθ. (2)

In this regard, however, the inevitable presence of noise in wireless channels
is always a challenging task to combat. Consequently, the system is modeled as

y = x + n = Θθ + n, (3)

where y ∈ C
M is the noisy version of the clean signal x ∈ C

M which is cor-
rupted by the noise vector n ∈ C

M with i.i.d. zero mean Gaussian entries having
variance σ2

n, i.e., n(.) ∼ N (0, σ2
nI). A depiction of this model is shown in Fig. 2.

Performance Optimization in IoT-Based Next-Generation WSNs 5

Fig. 2. Sparse model

1.5 Contribution

A part of this work has already been published in [18], and this is the extended
version of our previous work. In [18], we introduced a novel framework to tackle
two major concerns in WSNs: (1) performance optimization via efficient energy
utilization, and (2) combating the unavoidable presence of Gaussian noise, added
as a result of multiple communications among the nodes via wireless channel. We
proposed a fast and low-cost sparse representations based collaborative system
enriched with layer-adaptive 3-tier communication mechanism. This is supported
by an effective CHs election method and mathematically convenient coverage
model guaranteeing minimization of energy and coverage holes. A computation-
ally desired implementation of our framework is an added benefit that makes it
a preferable choice for real-world applications.

To tackle AWGN, the data is transmitted in spatial-domain form and its
sparse estimates are later computed at the receiver side. For a much better
denoising, we let the nodes situated at a single-hop to mutually negotiate with
each other for better collaboration. The data denoising is further refined by a
specially designed averaging filter.

In this paper, we extend the concept of image denoising in wireless sensor
networks. Specifically, we propose to use region growing based efficient denois-
ing mechanism where we divide the entire image into various sub-regions based
on their intensities, and apply smoothening filter. Motivated by this, we also
extend our current framework for color images where we are especially inter-
ested in exploiting inter-channel correlation of each color image. This effective
piece of information plays a crucial role in identifying the noisy components, and
thereby helps discarding those components. Our proposed protocol lends itself
the following salient features:

6 M. Behzad et al.

– The implementation of a mathematically efficient coverage model along with
an adaptive CHs election method help avoiding coverage holes to a greater
extent.

– Our proposed layer-adaptive 3-tier communication system greatly reduces
energy holes.

– To compute denoised data signals, we compute support-independent sparse
estimates which relieves us from finding distribution of the sparse represen-
tations first, hence, giving it a support-agnostic nature.

– Prior collaboration enjoyed by the nodes for communication yields an effec-
tively significant energy minimization.

– The use of a fast sparse recovery technique allows a desired computational
complexity of our algorithm.

– The use of inter-channel correlation among red, green and blue channels of
color images not only makes it a suitable choice for denoising of color images,
but also provides a convenient solution for fast and practical image denoising
applications.

Rest of the paper is structured as follows: Sect. 2 presents an overview of the
related work done in this area. We describe our proposed framework and its com-
plexity in Sects. 3 and 4, receptively, while the results from various simulations
are discussed in Sect. 5. Finally, Sect. 6 concludes the paper.

2 Related Work

Presently, researchers are fundamentally concentrating on the technologically-
enriched tools for performance optimization of network structure, as a result
of which the lifetime of WSNs is possible to increase. This possibility provides
a roadway for scientists working in this research domain to propose low-cost,
energy-efficient and optimized algorithms [19].

This includes a trend-setter work by W.B. Heinzelman, et al., proposing a
multi-hop energy efficient communication protocol for WSNs, namely LEACH
[20]. The objective was to reduce energy dissipation by introducing randomly
elected CHs resulting in, however, unbalanced CHs distribution. Nevertheless,
the partition of network area into different regions via clustering yielded a sig-
nificant increase in system lifetime. As a principal competitor, a new reactive
protocol, named as TEEN, was proposed by authors of [21] for event-driven appli-
cations. This protocol, even though constrained to temperature based scenarios
only, proposed threshold aware transmissions thereby outperforming LEACH in
terms of network lifespan.

In comparison with the aforementioned homogeneous WSNs, the authors
of [22] and [23] proposed SEP and DEEC, respectively, introducing heteroge-
neous versions of the WSNs by allowing a specific set of nodes, defined as
advanced nodes, to carry higher initial energy than other normal nodes. SEP
used energy based weighted election to appoint CHs in a two-level heteroge-
neous network ultimately improving network stability. As a stronger contestant

Performance Optimization in IoT-Based Next-Generation WSNs 7

to SEP, DEEC deployed multi-level heterogeneity and improvised CHs election
measure to attain extended lifespan of the network than SEP.

A. Khadivi et al., proposed a fault tolerant power aware protocol with static
clustering (FTPASC) for WSNs in [24]. The network was partitioned into static
clusters, and energy load was distributed evenly over high-power nodes, resulting
in minimization of power consumption, and increased network lifetime. Another
static clustering based sparsity-aware energy efficient clustering (SEEC) protocol
is proposed in [25]. This protocol used sparsity and density search algorithms to
classify sparse and dense regions. A mobile sink is then exploited, specifically in
sparse areas, to enhance network lifetime.

As opposed to static clustering, authors of [26] presented centralized dynamic
clustering (CDC) environment for WSNs. In this protocol, the clusters and num-
ber of nodes associated with each cluster remains fixed, and a new CH is chosen
in each round of communication between clusters and BS. CDC showed bet-
ter results than LEACH in terms of communication overhead and latency. In a
similar fashion, G.S. Tomar, et al., proposed an adaptive dynamic clustering pro-
tocol for WSNs in [27], which creates a dynamic system that can change topology
architecture as per traffic patterns. Mutual negotiation scheme is used between
nodes of different energy levels to form energy efficient clusters. Periodic selection
of CHs is done based on different characteristics of nodes. Another work pro-
posed to use the cooperative and dynamic clustering to achieve energy efficiency
[28]. This framework ensured even distribution of energy, and optimization of
number of nodes used for event reporting thereby showing promising results.

D. Jia et al., tackled the problem of unreasonable CHs selection in clustering
algorithms [29]. The authors considered dynamic CH selection methods as the
best remedy to avoid overlapping coverage regions. Their experimental results
showed increased network lifetime than LEACH and DEEC. Another energy
efficient cluster based routing protocol, termed as density controlled divide-and-
rule (DDR), is proposed in [30]. The authors tried to take care of the coverage
and energy holes problem in clustering scenarios. They presented density con-
trolled uniform distribution of nodes and optimum selection of CHs in each
round to solve this issue. Similarly, a cluster based energy efficient routing pro-
tocol (CBER) is proposed in [31]. This protocol elects the CHs on the basis of
optimal CH distance and nodes’ residual energy. CBER reported to outperform
LEACH in terms of energy consumption of the network, and its lifetime.

3 Proposed Framework Design

In this section, we provide the readers with detailed understanding of our pro-
posed routing protocol. Here, we broadly discuss the widely accepted radio model
for communication among nodes. This is then followed by a comprehensive expla-
nation of our adopted network configuration and its operation details for energy
efficiency and denoising of the data.

8 M. Behzad et al.

3.1 Wireless Communication Model

For transmission and reception of required data among sensor nodes via wire-
less medium, we assume the simple and most commonly used first order radio
communication model as given in Fig. 3. In this figure, we present the energy con-
sumed by a node while transmitting and receiving data. We show that a packet
of data traveling over radio waves has to combat against degrading factors such
as noise, multi-path fading, etc. Thus, we also take into account the d2 losses
that almost all chunks of data has to face. This is mathematically explained in
terms of the following expressions:

ET x(k, d) =

{
k × (Eelec + εf s × d2), d < do

k × (Eelec + εmp × d4), d ≥ do

(4)

ERx(k) = Eelec × k, (5)

where do is a reference distance, k is the number of bits in packet, d is the
transmission distance which varies every time for each node, Eelec is the energy
used for data processing, εf s and εmp are channel dependent loss factors1, ET x

is the energy used by a node for transmission, and ERx is the energy used by
a node for data reception. As shown, the dr losses may change from dr |r=2

to dr |r=4 forcing a higher value of ET x . A similar increase is then observed
in the ERx values to process a highly corrupted data when assuming a noisy
environment, as in our case. The generally used energy dissipation values for a
radio channel are presented in Table 1.

Table 1. Energy dissipation measurements

Dissipation source Amount absorbed

Eelec of Rx and Tx 50 nJ/bit

Aggregation energy 5 nJ/bit/signal

Tx amplifier εf s fordr |r=2 10 pJ/bit/4 m2

Tx amplifier εm p fordr |r=4 0.0013 pJ/bit/m4

3.2 Network Configuration

For the configuration model, we use a network consisting of L number of
nodes deployed randomly. Unlike the traditional models, we adopt a spherically-
oriented field, and propose to use an optimized version of area division via adap-
tive clustering. For a much better understanding, see the network model shown
1 It is worth noting that over larger distances, such loss factors demand a higher

amount of energy yielding sudden death of the network. This is often missed by
traditional protocols assuming lossless channel. Therefore, avoiding these power-
hungry transmissions significantly optimize resources.

Performance Optimization in IoT-Based Next-Generation WSNs 9

Fig. 3. Radio model

in Fig. 4. Here, for the sake of simplicity and understanding, we use the field area
A = π1502 m2, i.e., the diameter D = 300, with a total of L = 100 deployed
nodes. To avoid formation of energy holes, and thus the death of network, we
place the BS in the center of the network at coordinates < i, j >= (0, 0). This
is followed by the clustering of network field into various coronas which are then
further classified into different sensing-based reporting regions. The prior com-
putation of number of coronas, represented by η, is a function of field area A,
which itself is depending on D, and the number of nodes L. As a sound approx-
imate, we propose η = D/L. Hence, in our case we use η = 3 coronas, denoted
accordingly by η1, η2 and η3.

Once the η number of coronas are formed, the next step is to divide each
corona into various sensing regions as shown in the figure. However, for a much
better network performance, the distribution is such that each sensing region in
the upper level corona ηα surrounds two sensing regions in lower level corona
ηα−1. This is shown in Fig. 4(a), where for example region R7 in η3 covers both
R2 and R3 in η2, hence, avoiding coverage holes by satisfying the following
expression for a general network configuration2:

A = π(D/2)2 =
η∑

α=1

Aηα
=

∑
α

ARα
, α ∈ Z

+, (6)

2 Here, we presented calculations for A = π1502 m2 and L = 100 merely for the
ease of understanding. However, for any other small or large scale network con-
figuration, the computations can be done in a similar fashion using the proposed
expressions.

10 M. Behzad et al.

Fig. 4. Network model: (a) Network Configuration, (b) Nodes Deployment

where Aηα
and ARα

represented area of each corona and sensing region, respec-
tively. It is worth noting that we do not divide the corona surrounding BS further,
η1 in our case, to avoid unneeded and poor use of available resources. Thus, we
can safely write:

Aη1 = AR1 = πβ2, where β ∈ R
+. (7)

3.3 Nodes Deployment and Layer-Controlled CHs Nomination

As soon as the network is clustered out into various coronas and sensing regions,
the next step is to distribute the nodes randomly over these regions. To optimize
resources, a sensible decision is to deploy an equal percentage of nodes over
different regions to ensure minimization of coverage holes, and elongation of
network lifetime. Therefore, in this scenario, we propose to deploy 20% of the
nodes in region R1 and the rest 80% of the nodes to be distributed evenly
over R2,3,...,8,9 regions as shown in Fig. 4(b). This nodes’ deployment always
depend upon the network field area and number of nodes. Hence, for any other
network configuration, an adjusted percentage can be calculated to optimize
communication among nodes, and to avoid energy and coverage holes.

Following the deployment of nodes and prior network initialization, the elec-
tion of CHs is carried out in all R2,3,...,8,9 regions. Since the use of CHs in clus-
tering techniques plays an important role to improve network lifespan, effective
criterion for CHs election is equally necessary for further improving performance
of the network. The most commonly used measures for electing CHs are resid-
ual energy and distance from BS. We propose a blend of both to increase the
life of each node. Furthermore, we introduce a layering-based election of CHs.
This means that the election will take place in lower level coronas ηα first, and
will then move to high level coronas ηα+1 for higher level CHs. The reason to

Performance Optimization in IoT-Based Next-Generation WSNs 11

adopt this is the effectiveness noted in CHs election. Thus, in each round, all
the nodes are assessed based on their residual energies and top 5% of the nodes
having highest residual energies in their respective regions are shortlisted. These
shortlisted nodes then contest against each other where the node with smallest
distance to the CHs of both associated regions in lower level corona is elected
as CH. The nodes in η2 are evaluated in a similar fashion based on the residual
energy but having minimum distance with the center of their respective region.

3.4 Layer-Adaptive 3-Tier Communication Mechanism

For transfer of data among various nodes, we propose a layer-adaptive 3-tier
architecture. Our communication mechanism is enriched with distance-optimized
transmissions to avoid wastage of energy. The nodes use a multi-hop scheme
instead of directly transmitting the data of interest to BS. In tier-1 phase, all
the normal nodes gather data, and send it to the nearest CH. This CH may not
necessarily be the same region CH. Here, we allow nodes in ηα to transmit the
data to CHs of even ηα−1. This is the reason why we distributed the sensing
regions in such a way that each region in upper level corona is bordered with
two regions in lower level corona. However, the nodes of a region in ηα cannot
transmit to another region on the same corona, i.e., it must either send data to
its own CH in ηα , or any other nearest CH in the two bordered regions on lower
level corona ηα−1 as explained in Fig. 5.

In the next tier-2 phase of communication, the CHs of ηα aggregate their
data and then send it to the CHs of ηα−1. Note that even though the CH of R3

is receiving data from CHs of both R7 and R8, this is blessing in disguise. This
is because, as shown in the figure, the CHs of both R7 and R8 have not received
data from all the nodes in its region, since some nodes find another nearest
CH, so these CHs are aggregating and then forwarding a comparatively smaller
amount of load thereby not overburdening themselves. Also, the CHs change in
each round based on the election criterion, so it ultimately saves energy. Finally
in tier-3 phase, all the CHs in lower level coronas send their data to the BS,
hence, completing the data transmission process.

3.5 Coverage Model

For reduction in coverage holes, we express the coverage scenario of nodes by
a mathematical model. All the deployed sensor nodes are represented in set
notation as κ = {μ1, μ2, μ3, ..., μL}. The coverage model of one alive node
μα belonging to the set κ can be expressed as a sphere centered at < iα, jα >
with radius hα . We let a random variable ℵα define an event when a data pixel
< a, b > is within the coverage range of any node μα . As a result, the equivalent
of likelihood of the event ℵα to happen, as denoted by P{ℵα}, is represented
as Pcov{a, b, μα}. A decomposed version of the above is given as follows:

P{ℵα} = Pcov{a, b, μα} =

{
1, (a − iα)2 + (b − jα)2 ≤ h2

α

0, otherwise
(8)

12 M. Behzad et al.

Fig. 5. 3-tier communication architecture

where the equation translates that a data pixel < a, b > is surrounded by the
coverage range of any random node μα if the distance between them is smaller
than the threshold radius hα . However, since the event ℵα is stochastically inde-
pendent from others, this means hα and hγ are not related =⇒ α, γ ∈ [1, L]
and α �= γ . This gives us the following conclusive equations:

P{ℵα} = 1 − P{ℵα} = 1 − Pcov{a, b, μα}, (9)

P{ℵα ∪ ℵγ } = 1 − P{ℵα ∩ ℵγ } = 1 − P{ℵα}.P{ℵγ }, (10)

where P{ℵα} denotes the statistical complement of P{ℵα} which means that
μα failed to assist data pixel < a, b >. Importantly, this data pixel is given
coverage if any of the nodes in the set is covering it otherwise a coverage hole

Performance Optimization in IoT-Based Next-Generation WSNs 13

would form. Hence, the following expressions denote the probability such that
data pixels would be within the coverage range of at least one of the nodes in
the set to minimize coverage holes:

Pcov{a, b, κ} = P{
L⋃

α=1

ℵα} = 1 − P{
L⋂

α=1

ℵα},

= 1 −
L∏

α=1

(1 − Pcov{a, b, μα}). (11)

For further facilitation, we present the coverage rate as fraction of area under
coverage, denoted by Q, and the overall area of the observation field as follows:

Pcov{κ} =
L∑

α=1

L∑
γ=1

Pcov{a, b, Q}
A

(12)

3.6 Data Denoising

After taking care of the energy efficiency, second major problem is retrieving the
original data back. This is because the received data is generally degraded by
AWGN so it is of no use unless denoised. For this purpose, we propose denoising
of the data samples via Bayesian analysis based sparse recovery techniques. To
do so, we take into account the data correlation of various adjacent nodes, and
use this as an important piece of information for collaboration among nodes.

We use three stages for CS based sparse recovery technique to denoise the
data. In doing so, received data is converted to sparse domain first (e.g., wavelet
transform for images data). This is followed by computing similar and correlated
data by adjacent nodes, giving them weights based on the similarity extent. Using
equivalent sparse representations of data samples, probability of active taps is
computed giving us the location of undesired corrupted support locations [32].
With the help of correlation information, an averaging based collaborative step
is performed to remove the unwanted noisy components as shown via flowchart
in Fig. 6. Here, we denote the initially denoised image by X̄d .

Finally, we apply a specially developed averaging filter to further smooth
out the data as discussed in the later sections. This filter fundamentally works
on finding similar data samples, and then averaging those samples to provide
a clean estimate of the data. Using a CS based pre-determined dictionary, a
reverse transform is applied to give back the denoised data in spatial-domain
representation as x̂ = Θθ̂.

Similarity via Distance Vs. Correlation: For the similar and correlated
data, we first compute samples from the data, for example, overlapping patches
or blocks in images. Once the overlapping patches are formed, the next step is
to find a certain number of similar patches, for each patch, that would be used

14 M. Behzad et al.

during collaboration. The grouping of patches in such a way using a similar-
ity measure has led to a number significant improvements in a wide range of
application like signal/image/bio-medical processing, computer vision, machine
intelligence, etc. (e.g., see [32–39]).

A number of techniques for similarity based grouping of patches have been
proposed in the literature. Some of those include self-organizing maps [40], vector
quantization [41], fuzzy clustering [42] and a review on these [43]. The recently
developed denoising algorithms use a distance based measure where similarity
between different signals are realized in terms of the inverse of the point-wise
distance between them. Therefore, a smaller distance between the signals would
imply a higher similarity and vice versa. The generally used distance based simi-
larity measure is the Euclidean distance as used by the state-of-the-art denoising
image algorithms like NL-means [44], BM3D [45], etc.

However, despite being an effective way of finding similarity, Euclidean dis-
tance based similar-intensity grouping has a limitation; it limits the search for
number of similar patches. For instance, even though natural images have some
similarity in their structure, the number of similar patches vary. Consequently,
in an image having a smaller number of similar patches, the collaboration is not
that effective thereby disturbing the performance of denoising, especially in case
of high noise. This creates a bottleneck specifically for lower resolution images
where finding similar-intensity patches becomes a difficult task.

To tackle this case and have a similarity measure that can be used globally
even in lower resolution images or images having a smaller number of similar-
intensity patches, novel methods are being proposed to find better ways of collab-
oration by using efficient grouping of similar patches. For example, the authors
in [46] search the similar patches by using not only a patch itself but the noise
too where they propose the concept of noise similarity, while the authors in
[47] propose sequence-to-sequence similarity (SSS) which is an essential way of
preserving the edge information.

In our case, we take care of the aforementioned problem by introducing
intensity-invariant grouping. The idea is to stack all the patches that have a
similar inherent structure without relying on the intensity values as shown in
the Stage 01 of Fig. 6. The correlation coefficient serves as the best tool to be
utilized for the said purpose. For two random signals yα and yγ , the correlation
coefficient is given as,

r(yα, yγ) =
cov(yα, yγ)

σyα
σyγ

, (13)

where −1 ≤ r(yα,yγ) ≤ 1. A value close to 1 or −1 means larger positive
and negative correlation, respectively, while a value close to 0 means smaller
correlation.

Selection of the Measurement Matrix: Since we will be denoising the image
patches by using the sparse estimates from collaborative filtering in the transform
domain, the use of an appropriate measurement matrix or dictionary also serves

Performance Optimization in IoT-Based Next-Generation WSNs 15

as a key step. Generally, the dictionary mainly consist of basis vectors through
which any random patch can be represented as a linear combination of the basis
elements. In our case, we are representing any patch using the obtained sparse
vector and the dictionary as already shown in Fig. 2.

Decorrelation of the Measurement Matrix: Each patch can be written
as linear combination of basis elements from the dictionary. The columns of
this dictionary are derived from wavelet basis and are normalized to have unit
norms. Prior finding support sets of θ̂α via sparse estimation of patches, we will
reduce the correlation between dictionary columns for a robust computational
and performance ability. Consequently, we remove weak supports by rejecting
highly correlated columns as the information they encode could easily be encoded
by other columns which correlate with them. We denote it by the decorrelator
operator as follows

Θ = Γ τ (Θ′) (14)

where Γ τ (.) is the de-correlation operator that removes all the columns of Θ′

with correlation greater than τ .

Gaussianity Property: This should be noted that the Gaussianity property
of the noisy data received and then aggregated at the receiver (e.g., CHs or BS)
should remain intact. This is because, even though our proposed Bayesian anal-
ysis based denoising algorithm is agnostic to support distribution of the sparse
coefficients, it does need the data samples to be corrupted by Gaussian noise
collectively. A concise version of this is provided in the following Lemma 1 to
support the accuracy of our denoising algorithm.

Lemma 1. The aggregated data samples received at either CHs or BS keep the
Gaussianity property intact, hence, we can denoise the cumulative version of the
AWGN corrupted data.

Proof. To show this, we consider two independent Gaussian random data sam-
ples P and Q sent by nodes μα and μγ , both ∈ κ . For data aggregated by CH,
we let Z = ρP + δQ . Without loss of generality, let ρ and δ be positive real
numbers because for ρ < 0, P would be replaced by −P , and then we would
write | ρ | instead of ρ. The commutative probability function can be written
as:

FZ (z) = P{Z ≤ z} = P{ρP + δQ ≤ z}
=

∫ ∫
ρP +δQ≤z

ϕ(p)ϕ(q)dpdq (15)

where ϕ(.) represents the unit Gaussian density function. However, as the inte-
grand (2π)−1 exp(−(p2 + q2)/2) possesses circular symmetry, the numerical

16 M. Behzad et al.

Fig. 6. Flowchart of data denoising

property of this integral is a function of length of the origin from ρp + δq = z .
Consequently using coordinates rotation, we can conclude

FZ (z) =
∫ ζ

p=−∞

∫ q=∞

q=−∞
ϕ(p)ϕ(q)dpdq = Δ(ζ) (16)

where ζ = z√
ρ2+δ2

, and Δ(.) shows standard Gaussian CDF. Hence, the CDF

of Z|L=2 is a zero-mean Gaussian random variable having total variance equal
to ρ2 + δ2 .

3.7 Region Growing Based Smoothening Filter

As a final step for removing out the noisy components from the image, we per-
form region growing method on the output image resulted from the previous
process. For this image, we store the pixels in different number of bins based on
their intensity levels. For instance, we assign group 1 to the pixels that have,
for example, intensity range from 0–3, group 2 to pixel intensities from 4–7, and

Performance Optimization in IoT-Based Next-Generation WSNs 17

Fig. 7. An example of dividing the Cameraman image into 64 different groups/bins
(left to right): first row; group 1–8, second row; group 2–16, third row; group 17–24,
fourth row; group 25–32, fifth row; group 33–40, sixth row; group 41–48, seventh row;
group 49–56, 8th row; group 57–64

so on. We do this for all the pixels and as a result we create different bins with
pixels and their locations stored within those bin groups. We show an exam-
ple of applying such intensity-leveling on the Cameraman image in Fig. 7. In
this figure, we display all the intensity groups/bins as binary images where the
white pixels correspond to the pixels of the Cameraman image belonging to the
relevant group.

For each bin, we apply the region growing algorithm to find the connected
pixels within that bin. This means that the local similar intensity pixels are
identified first. Afterwards, if the number of connected pixels in each bin exceed
a certain threshold, then we replace those connected pixels by their mean.

18 M. Behzad et al.

Similarly, we repeat this process for all the bins which ultimately provides us
with the region growing based processed image that we denote by X̄r . Finally,
we get our final denoised image X̄ using the weighted average of the image X̄d

from denoiser and the region growing processed image X̄r as follows

X̄ = �1X̄d + �2X̄r , (17)

where �1 and �2 are the weights which are a function of the noise variance.

3.8 Effective Collaboration via RGB Channels of Color Images

As opposed to the case of grayscale single channel images, color images having
three R, G and B channels that provide a more advanced way through which
the patches can collaborate. Since finding similar patches using more effective
approaches is the key for such collaboration, the three channels of a color images
supply an important piece of information in the form of the channel correlation
that can be used to identify similar patches.

To understand this, consider the three R, G and B channels of the standard
Mandrill image as shown in Fig. 8 as separate images. Since the additive white
Gaussian noise is independent in all three channels of the image, we denoise the
color image by denoising each channel separately. This results in formation of
rectangular patches for all three channels. To denoise a patch in a specific channel
of the observed color image, once the patches are extracted, similar patches are
grouped together by taking into account information from both reference channel
and the other two channels.

For example in Fig. 8, to denoise the reference patch, denoted by ‘R’, from the
red channel, similar patches are grouped together from the red channel firstly.
This ensures the identification of patches as similar and gives a set containing the
information of similar patch numbers. Using this set from the red channel, the
similar patches from other channels, for this specific patch, are also identified.
Then, the reference patch in the red channel may collaborate with the patches
from all channels. Since the idea is to refine the probabilities of active taps
by using the sparse vectors that may share the same support, finding similar
patches using all three channels can be very effective. These grouped patches for
all channels can then ultimately be used to effectively estimate the sparse vectors
that are in turn used to obtain denoised patches. These steps are performed for
all the patches in all the three channels which ultimately provide us with a
denoised color image.

4 Computational Complexity

The computational complexity of our proposed framework is dominated by that
of the sparse recovery algorithm that we use, which fortunately has a low com-
putational complexity when compared to other similar existing algorithms for
sparse recovery. With the dimensions of our problem at hand, the complexity

Performance Optimization in IoT-Based Next-Generation WSNs 19

Fig. 8. A depiction of collaboration among patches across all three channels

for estimating one θα via the sparse recovery algorithm is of order O(MN2Υ)
where Υ is the expected number of non-zeros that is generally a very small
number.

5 Results and Discussions

In this section, we compare our proposed scheme with the state-of-the-art and
traditional routing protocols such as LEACH [20], TEEN [21], SEP [22], DEEC
[23] and DDR [30]. We use the values given in Table 1, and our experimentation
is divided into two main scenarios: (1) efficient resource utilization, and (2) data
denoising. The comparison is carried out over L = 100, 1000 and 10000 nodes
with following metrics: stability and instability period, network lifetime, energy
consumption, computational complexity, peak signal-to-noise ratio (PSNR) and
structural similarity (SSIM) index.

A comparison of stability period for L = 100 is shown in Fig. 9. This figure
demonstrates the number of alive nodes over 8000 sensing rounds. It is evident
from the figure that our proposed scheme significantly outperforms all the pro-
tocols, and shows promising results. The first node die time of our approach is
around 2900, while that of LEACH, TEEN, SEP, DEEC and DDR is around
800, 1900, 1600, 2000, and 1400, respectively. Similarly, Fig. 10 illustrates the all
node die time (ADT) of these protocols for L = 100. It can be clearly seen that

20 M. Behzad et al.

Fig. 9. Stability period

Fig. 10. Instability period

the ADT of our method is ∼6390, ∼5290, ∼5490, ∼5190 and ∼4290 better than
LEACH, TEEN, SEP, DEEC and DDR, respectively. We show that our scheme
provides the best ADT, and hence, is the most suitable candidate for practical
applications.

We provide a comparison of energy efficient resource utilization in Fig. 11.
Here, we show that all protocols start with same energy levels. However, based
on the optimized communication method, our scheme demonstrates outstanding
results beating all the contestants. In Fig. 12, we compare the network lifetime of
our proposed method with LEACH and DDR for L = 100, 1000 and 10000 .

Performance Optimization in IoT-Based Next-Generation WSNs 21

Fig. 11. Energy utilization comparison

Fig. 12. Network lifetime

It is validated that our protocol is equally competitive on large scale network
scenarios outperforming each of the traditional methods.

The complexity of our approach is dominated by the communication yielding
a convenient implementation of our method as compared with other protocols
as shown in Fig. 13. We compare the computational time consumed by the con-
testant methods using a 2.20 GHz Intel Core i7-3632QM machine for different
number of nodes. This figure proves the robustness of our protocol by show-
ing superior performance, hence, lending itself the most preferable choice for
real-time applications.

22 M. Behzad et al.

Fig. 13. Computational overload comparison

Table 2. Comparison of denoising image data samples in terms of PSNR/SSIM

Noise level σn 10 15 20 50 100

Lena Noisy 28.03/0.76 24.63/0.66 22.16/0.58 20.13/0.50 08.13/0.11

Denoised [18] 32.64/0.90 30.44/0.86 28.77/0.82 23.97/0.62 20.50/0.48

Proposed 35.54/0.96 33.65/0.94 32.65/0.91 26.21/0.76 23.01/0.61

Barbara Noisy 28.18/0.87 24.59/0.77 22.09/0.69 14.10/0.33 08.21/0.13

Denoised [18] 31.88/0.94 29.56/0.91 27.93/0.88 22.75/0.68 20.11/0.50

Proposed 35.36/0.97 32.34/0.93 29.09/0.91 25.67/0.79 23.21/0.61

House Noisy 28.07/0.51 24.57/0.44 22.02/0.38 14.03/0.19 08.09/0.07

Denoised [18] 35.28/0.67 32.63/0.61 31.33/0.58 25.80/0.45 22.14/0.27

Proposed 38.34/0.79 35.74/0.69 33.90/0.64 29.04/0.53 24.03/0.29

Peppers Noisy 28.08/0.81 24.72/0.72 22.13/0.63 14.17/0.33 08.16/0.13

Denoised [18] 32.00/0.92 29.74/0.89 28.11/0.85 23.09/0.68 19.62/0.49

Proposed 35.03/0.94 32.44/0.90 20.95/0.88 27.34/0.73 21.34/0.54

Boat Noisy 28.08/0.75 24.59/0.63 22.05/0.53 14.17/0.24 08.10/0.09

Denoised [18] 31.59/0.86 29.11/0.76 27.48/0.69 23.42/0.45 20.64/0.26

Proposed 33.97/0.89 31.34/0.84 28.98/0.75 26.34/0.59 22.34/0.42

C-man Noisy 28.07/0.53 24.56/0.45 22.09/0.40 14.13/0.21 08.18/0.10

Denoised [18] 33.28/0.75 31.21/0.69 29.23/0.63 24.19/0.45 20.67/0.25

Proposed 35.53/0.86 34.34/0.74 32.34/0.71 26.53/0.55 22.24/0.30

Room Noisy 28.21/0.80 24.62/0.68 22.07/0.58 14.19/0.25 08.10/0.09

Denoised [18] 31.59/0.86 29.11/0.76 27.48/0.69 23.42/0.45 20.64/0.26

Proposed 33.53/0.92 31.64/0.89 29.53/0.85 25.30/0.63 22.11/0.41

Mandrill Noisy 27.99/0.80 24.56/0.66 21.98/0.54 14.16/0.20 08.18/0.06

Denoised [18] 30.88/0.85 28.51/0.75 27.09/0.67 24.17/0.47 21.30/0.28

Proposed 34.87/0.91 31.51/0.76 29.93/0.73 26.54/0.53 23.87/0.30

Performance Optimization in IoT-Based Next-Generation WSNs 23

Finally, the detailed denoising results of various standard images are shown
in Figs. 14, 15, 16, 17, 18, 19 and 20, and summarized in Table 2. We opt glob-
ally adopted PSNR and SSIM as evaluation metrics to prove that the denois-
ing section of our proposed framework produces equally promising outcomes.
The provided table summarizes denoising results3 of a number of images, as
PSNR/SSIM, over a range of noise levels, i.e., σn = [10, 15, 20, 50, 100] . Sim-
ilarly, we also present the extensive denoising results of color images in Fig. 21.
As can be seen by in these figures and table, the recovered images are a very
good approximation of original images thereby verifying the effectivenesses of
our proposed framework.

Fig. 14. Denoising 256 × 256 grayscale Lena standard test data images over noise
σ = [5, 10, 15, 20, 25, 50, 100] when received at a node μα . The graphical results
show PSNR [dB] and SSIM results in the form of graphs.

For experimentation, we transmitted various images among deployed nodes
and showed that the resultant images received at the receiver suffers from Gaus-
sian noise. The PSNR and SSIM values of the corresponding received noisy
images are shown in the table. In comparison with our denoised images, we show
that a significant amount of improvement is achieved in terms of the noise being
removed, and the actual data is recovered to a greater extent. Consequently,
these results confirm that our proposed framework is indeed an effective and
robust model for real-time scenarios in WSNs which outperforms many tradi-
tionally proposed routing protocols.

3 Due to space limitations, a detailed version of these results along with their pictorial
representations [48,49] are available at: https://arxiv.org/abs/1806.09980.

https://arxiv.org/abs/1806.09980

24 M. Behzad et al.

Fig. 15. Denoising 256 × 256 grayscale Barbara standard test data images over noise
σ = [5, 10, 15, 20, 25, 50, 100] when received at a node μα . The graphical results
show PSNR [dB] and SSIM results in the form of graphs.

Fig. 16. Denoising 256 × 256 grayscale House standard test data images over noise
σ = [5, 10, 15, 20, 25, 50, 100] when received at a node μα . The graphical results
show PSNR [dB] and SSIM results in the form of graphs.

Performance Optimization in IoT-Based Next-Generation WSNs 25

Fig. 17. Denoising 256 × 256 grayscale Peppers standard test data images over noise
σ = [5, 10, 15, 20, 25, 50, 100] when received at a node μα . The graphical results
show PSNR [dB] and SSIM results in the form of graphs.

Fig. 18. Denoising 256 × 256 grayscale Cameraman standard test data images over
noise σ = [5, 10, 15, 20, 25, 50, 100] when received at a node μα . The graphical
results show PSNR [dB] and SSIM results in the form of graphs.

26 M. Behzad et al.

Fig. 19. Denoising 256 × 256 grayscale Living Room standard test data images over
noise σ = [5, 10, 15, 20, 25, 50, 100] when received at a node μα . The graphical
results show PSNR [dB] and SSIM results in the form of graphs.

Fig. 20. Denoising 256 × 256 grayscale Mandrill standard test data images over noise
σ = [5, 10, 15, 20, 25, 50, 100] when received at a node μα . The graphical results
show PSNR [dB] and SSIM results in the form of graphs.

Performance Optimization in IoT-Based Next-Generation WSNs 27

F
ig
.
2
1
.

D
en

o
is

in
g

co
lo

r
im

a
g
es

b
y

th
e

p
ro

p
o
se

d
co

lo
r

d
en

o
is

in
g

m
et

h
o
d
.
1
st

co
lu

m
n
:
o
ri

g
in

a
l
im

a
g
es

,
2
n
d

a
n
d

3
rd

co
lu

m
n
s:

n
o
is

y
a
n
d

d
en

o
is

ed
im

a
g
es

a
t
N

(0
,
5
0
),

4
th

a
n
d

5
th

co
lu

m
n
s:

n
o
is

y
a
n
d

d
en

o
is

ed
im

a
g
es

a
t
N

(0
,
4
0
),

6
th

a
n
d

7
th

co
lu

m
n
s:

n
o
is

y
a
n
d

d
en

o
is

ed
im

a
g
es

a
t
N

(0
,
3
0
),

28 M. Behzad et al.

6 Conclusions

In this work, we discussed our proposed framework that ensures energy-efficiency
and data-denoising in a wireless sensor network. Our system is enriched with a
layer-adaptive method that uses a 3-tier communication mechanism for effective
and energy-efficient communication among the nodes ultimately minimizing the
energy holes. Our presented mathematical coverage model effectively dealt with
the formation of coverage holes thereby yielding a robust network. For combating
noise in the data, we proposed a collaborative transform-domain based denoising
algorithm to take care of the unwanted components. As shown with the help of
many simulation results, our framework outperformed traditional algorithms by
a significant margin, and provided a computationally-desirable algorithm for
real-time applications.

As a future direction, the current work can be enhanced using recently-
proposed deep learning models for carrying out the denoising task. Specifically,
since there are still some traces of noise in the data, low level deep features from
Convolutional neural networks (CNNs) can come in handy to effectively repre-
sent patches of the corrupted images. Another interesting direction, as inspired
by the CNNs, is to extract the features from transform domain and feed them
as input to the CNNs instead of the images itself. This would help the model
train well by learning the underlying structures within the images.

References

1. Sheng, Z., Mahapatra, C., Zhu, C., Leung, V.C.M.: Recent advances in indus-
trial wireless sensor networks toward efficient management in IoT. IEEE Access 3,
622–637 (2015)

2. Mois, G., Folea, S., Sanislav, T.: Analysis of three IoT-based wireless sensors for
environmental monitoring. IEEE Trans. Instrum. Meas. 66(8), 2056–2064 (2017)

3. Umar, A., et al.: On enhancing network reliability and throughput for critical-range
based applications in UWSNs. Procedia Comput. Sci. 34, 196–203 (2014)

4. Grumazescu, C., Vluaduţua, V.A., Subaşu, G.: WSN solutions for communication
challenges in military live simulation environments. In: International Conference
on Communications, pp. 319–322 (2016)

5. Salem, O., Liu, Y., Mehaoua, A.: Anomaly detection in medical WSNs using enclos-
ing ellipse and chi-square distance. In: IEEE International Conference on Commu-
nications (ICC), pp. 3658–3663, June 2014

6. Jha, S.S., Nair, S.B.: On a multi-agent distributed asynchronous intelligence-
sharing and learning framework. In: Nguyen, N.T. (ed.) Transactions on Com-
putational Collective Intelligence XVIII. LNCS, vol. 9240, pp. 166–200. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-48145-5 9

7. Behzad, M., et al.: Design and development of a low cost ubiquitous tracking
system. Procedia Comput. Sci. 34, 220–227 (2014)

8. Sandhu, M.M., Akbar, M., Behzad, M., Javaid, N., Khan, Z.A., Qasim, U.: Mobility
model for WBANs. In: 2014 Ninth International Conference on Broadband and
Wireless Computing, Communication and Applications (BWCCA), pp. 155–160.
IEEE (2014)

https://doi.org/10.1007/978-3-662-48145-5_9

Performance Optimization in IoT-Based Next-Generation WSNs 29

9. Sandhu, M.M., Akbar, M., Behzad, M., Javaid, N., Khan, Z.A., Qasim, U.: REEC:
reliable energy efficient critical data routing in wireless body area networks.
In: 2014 Ninth International Conference on Broadband and Wireless Computing,
Communication and Applications (BWCCA), pp. 446–451. IEEE (2014)

10. Behzad, M.: M-BEHZAD: minimum distance based energy efficiency using hemi-
sphere zoning with advanced divide-and-rule scheme for wireless sensor networks.
arXiv preprint arXiv:1804.00898 (2018)

11. Behzad, M., Adnan, N., Merchant, S.A.: Technology-embedded hybrid learning
(2018)

12. Sibeko, N., Mudali, P., Oki, O., Alaba, A.: Performance evaluation of routing
protocols in uniform and normal node distributions using inter-mesh wireless net-
works. In: World Symposium on Computer Networks and Information Security
(WSCNIS), pp. 1–6, September 2015

13. Heinzelman, W.B.: Application-specific protocol architectures for wireless net-
works. Ph.D. thesis, Massachusetts Institute of Technology (2000)

14. Behzad, M., et al.: TSDDR: threshold sensitive density controlled divide and rule
routing protocol for wireless sensor networks. In: Ninth International Conference
on Broadband and Wireless Computing, Communication and Applications, pp.
78–83, November 2014

15. Saleem, F., et al.: IDDR: improved density controlled divide-and-rule scheme for
energy efficient routing in wireless sensor networks. Procedia Comput. Sci. 34,
212–219 (2014)

16. Behzad, M., Ge, Y.: Performance optimization in wireless sensor networks: a novel
collaborative compressed sensing approach. In: IEEE 31st International Confer-
ence on Advanced Information Networking and Applications (AINA), pp. 749–756,
March 2017

17. Behzad, M., Javaid, M.S., Parahca, M.A., Khan, S.: Distributed PCA and con-
sensus based energy efficient routing protocol for WSNs. J. Inf. Sci. Eng. 33(5),
1267–1283 (2017)

18. Behzad, M., Abdullah, M., Hassan, M.T., Ge, Y., Khan, M.A.: Layer-adaptive
communication and collaborative transformed-domain representations to optimize
performance in next-generation WSNs. In: IEEE 32nd International Conference on
Advanced Information Networking and Applications, pp. 101–108 (2018)

19. Jurenoks, A., Novickis, L.: Analysis of wireless sensor network structure and life
time affecting factors. In: Communication and Information Technologies (KIT),
pp. 1–6, October 2017

20. Heinzelman, W.B., Chandrakasan, A., Balakrishnan, H.: Energy-efficient commu-
nication protocol for wireless microsensor networks. In: Proceedings of the 33rd
Annual Hawaii International Conference on System Sciences, January 2000

21. Manjeshwar, A., Agrawal, D.P.: TEEN: a routing protocol for enhanced efficiency
in wireless sensor networks. In: Proceedings 15th International Parallel and Dis-
tributed Processing Symposium (IPDPS), pp. 2009–2015, April 2001

22. Smaragdakis, G., Matta, I., Bestavros, A.: SEP: a stable election protocol for clus-
tered heterogeneous wireless sensor networks. Technical report, Boston University
Computer Science Department (2004)

23. Qing, L., Zhu, Q., Wang, M.: Design of a distributed energy-efficient clustering
algorithm for heterogeneous wireless sensor networks. Comput. Commun. 29(12),
2230–2237 (2006)

http://arxiv.org/abs/1804.00898

30 M. Behzad et al.

24. Khadivi, A., Shiva, M.: FTPASC: a fault tolerant power aware protocol with static
clustering for wireless sensor networks. In: IEEE International Conference on Wire-
less and Mobile Computing, Networking and Communications, pp. 397–401, June
2006)

25. Azam, I., et al.: SEEC: sparsity-aware energy efficient clustering protocol for
underwater wireless sensor networks. In: IEEE 30th International Conference on
Advanced Information Networking and Applications (AINA), pp. 352–361, March
2016

26. Bajaber, F., Awan, I.: Centralized dynamic clustering for wireless sensor network.
In: International Conference on Advanced Information Networking and Applica-
tions (AINA) Workshops, pp. 193–198, 2009

27. Tomar, G.S., Verma, S.: Dynamic multi-level hierarchal clustering approach for
wireless sensor networks. In: 11th International Conference on Computer Modelling
and Simulation, pp. 563–567, March 2009

28. Naeem, M.K., Patwary, M., Abdel-Maguid, M.: Universal and dynamic clustering
scheme for energy constrained cooperative wireless sensor networks. IEEE Access
5, 12318–12337 (2017)

29. Jia, D., Zhu, H., Zou, S., Hu, P.: Dynamic cluster head selection method for wireless
sensor network. IEEE Sens. J. 16(8), 2746–2754 (2016)

30. Ahmad, A., Latif, K., Javaidl, N., Khan, Z.A., Qasim, U.: Density controlled divide-
and-rule scheme for energy efficient routing in wireless sensor networks. In: 26th
IEEE Canadian Conference on Electrical and Computer Engineering (CCECE),
pp. 1–4, May 2013

31. Mammu, A.S.K., Sharma, A., Hernandez-Jayo, U., Sainz, N.: A novel cluster-based
energy efficient routing in wireless sensor networks. In: IEEE 27th International
Conference on Advanced Information Networking and Applications (AINA), pp.
41–47, March 2013

32. Behzad, M., Masood, M., Ballal, T., Shadaydeh, M., Al-Naffouri, T.Y.: Image
denoising via collaborative support-agnostic recovery. In: 2017 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1343–1347,
March 2017

33. Krause, A.F., Harischandra, N., Dürr, V.: Shape recognition through tactile con-
tour tracing. In: Nguyen, N.T., Kowalczyk, R., Duval, B., van den Herik, J.,
Loiseau, S., Filipe, J. (eds.) Transactions on Computational Collective Intelligence
XX. LNCS, vol. 9420, pp. 54–77. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-27543-7 3

34. He, K., Sun, J.: Image completion approaches using the statistics of similar patches.
IEEE Trans. Pattern Anal. Mach. Intell. 36(12), 2423–2435 (2014)

35. Liu, H., Xiong, R., Ma, S., Fan, X., Gao, W.: Gradient based image/video softcast
with grouped-patch collaborative reconstruction. In: IEEE Visual Communications
and Image Processing Conference, pp. 141–144, December 2014

36. Wang, M., Yu, J., Sun, W.: Group-based hyperspectral image denoising using
low rank representation. In: IEEE International Conference on Image Processing
(ICIP), pp. 1623–1627, September 2015

37. Yang, W., Liu, J., Yang, S., Quo, Z.: Image super-resolution via nonlocal similarity
and group structured sparse representation. In: IEEE Visual Communications and
Image Processing, pp. 1–4, December 2015

38. Bahrami, K., Shi, F., Zong, X., Shin, H.W., An, H., Shen, D.: Reconstruction of
7T-like images from 3T MRI. IEEE Trans. Med. Imaging 35(9), 2085–2097 (2016)

39. Behzad, M.: Image denoising via collaborative dual-domain patch filtering. arXiv
preprint arXiv:1805.00472 (2018)

https://doi.org/10.1007/978-3-319-27543-7_3
https://doi.org/10.1007/978-3-319-27543-7_3
http://arxiv.org/abs/1805.00472

Performance Optimization in IoT-Based Next-Generation WSNs 31

40. Van Hulle, M.M.: Self-organizing maps. In: Seel, N.M. (ed.) Encyclopedia of the
Sciences of Learning, pp. 585–622. Springer, Boston (2012). https://doi.org/10.
1007/978-1-4419-1428-6

41. Gersho, A.: On the structure of vector quantizers. IEEE Trans. Inf. Theory 28(2),
157–166 (1982)

42. Höppner, F.: Fuzzy Cluster Analysis: Methods for Classification, Data Analysis
and Image Recognition. Wiley, New York (1999)

43. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Comput.
Surv. (CSUR) 31(3), 264–323 (1999)

44. Buades, A., Coll, B., Morel, J.-M.: A non-local algorithm for image denoising.
In: IEEE Computer Society Conference on Computer Vision and Pattern Recog-
nition, vol. 2, pp. 60–65 (2005)

45. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse
3-D transform-domain collaborative filtering. IEEE Trans. Image Process. 16(8),
2080–2095 (2007)

46. Liu, G., Zhong, H., Jiao, L.: Comparing noisy patches for image denoising: a double
noise similarity model. IEEE Trans. Image Process. 24(3), 862–872 (2015)

47. Panetta, K., Bao, L., Agaian, S.: Sequence-to-sequence similarity-based filter for
image denoising. IEEE Sens. J. 16(11), 4380–4388 (2016)

48. Behzad, M., Abdullah, M., Hassan, M.T., Ge, Y., Khan, M.A.: Layer-adaptive
communication and collaborative transformed-domain representations for perfor-
mance optimization in wsns. arXiv preprint arXiv:1712.04259 (2017)

49. Behzad, M., Abdullah, M., Hassan, M.T., Ge, Y., Khan, M.A.: Toward perfor-
mance optimization in IoT-based next-Gen wireless sensor networks. arXiv preprint
arXiv:1806.09980 (2018)

https://doi.org/10.1007/978-1-4419-1428-6
https://doi.org/10.1007/978-1-4419-1428-6
http://arxiv.org/abs/1712.04259
http://arxiv.org/abs/1806.09980

Enabling Custom Security Controls as Plugins
in Service Oriented Environments

Dimosthenis Kyriazis(&)

University of Piraeus, Karaoli & Dimitriou 80, 18532 Piraeus, Greece
dimos@unipi.gr

Abstract. Service oriented environments such as cloud computing infrastruc-
tures aim at facilitating the requirements of users and enterprises by providing
services following an on-demand orientation. While the advantages of such
environments are clear and lead to wide adoption, the key concern of the non-
adopters refers to privacy and security. Even though providers put in place
several measures to minimize security and privacy vulnerabilities, the users are
still in many cases reluctant to move their data and applications to clouds. In this
paper an approach is presented that proposes the use of security controls as
plugins that can be ingested in service-oriented environments. The latter allows
users to tailor the corresponding security and privacy levels by utilizing security
measures that have been selected and implemented by themselves, thus allevi-
ating their security and privacy concerns. The challenges and an architecture
with the corresponding key building blocks that address these challenges are
presented. Furthermore, results in the context of trustworthy requirements, i.e.
dependability, are presented to evaluate the proposed approach.

Keywords: Cloud computing � Service oriented infrastructures � Security �
Privacy � Dependability

1 Introduction

The ever increasing need for data processing, storage, elastic and unbounded scale of
computing infrastructure has provided great thrust for shifting the data and computing
operations to the cloud. The benefits for both enterprises and single users moving to the
cloud (cloud adoption) are clear: greater agility, data availability, and collaboration.
According to a survey [1], in 15 months, 80% of all IT budgets will be committed to
cloud apps and solutions, while private cloud-only adoption is lowest in services
companies (16%) due to concerns over IT security skills. These representative facts
highlight that even through there are clear benefits in the use of service-based envi-
ronments, these are weighed against potential risks [2], as cloud computing comes with
its own set of data security issues. Since the cloud is perceived as a “black box”, a user
has little or no control over the promises set by cloud’s Service Level Agreements
(SLAs), and as a consequence over the general usage/security of the cloud [3].
Although shifting to cloud technologies exclusively is affordable and fast, doing so
undermines important security policies, processes, and best practices. To this end, the
CSA (Cloud Security Alliance) has identified “The Treacherous Twelve”, the top

© Springer-Verlag GmbH Germany, part of Springer Nature 2019
N. T. Nguyen et al. (Eds.): TCCI XXXIII, LNCS 11610, pp. 32–51, 2019.
https://doi.org/10.1007/978-3-662-59540-4_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-59540-4_2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-59540-4_2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-59540-4_2&domain=pdf
https://doi.org/10.1007/978-3-662-59540-4_2

twelve cloud computing threats for 2017 [4], including: (i) data breaches, (ii) data loss,
(iii) account hijacking, (iv) insecure APIs, (v) denial of service, (vi) malicious insiders,
(vii) abuse and nefarious of cloud services, (viii) insufficient due diligence, (ix) denial
of service, (x) advanced persistent threats, (xi) weak identity, credential and access
management, and (xii) system and application vulnerabilities. Considering that most of
these threats could be characterized as ‘security threats’, a lot of effort has been put
from the research community for finding solutions in the name of ‘cloud security’.

Cloud computing consists of several components, such as data centers, servers,
network, or Virtual Machines (VMs). Various researches have been implemented
focusing on the physical domain (data centers, servers, network, etc.), in order to
neutralize the threats that are met day-by-day. What is more, there are plenty
approaches that address the topic of security in the field of cloud management. A rel-
evant and interesting approach is presented in [6], aiming at modelling different risks
and threats, and according to these models provide the corresponding cloud services.
However, due to the fact that virtual domains is one of the core components of a cloud,
this poses major security risks. Some examples of these risks are how to ensure that
different instances running on the same VM are isolated from each other, or how to
control the administrator on host and guest operating systems. Another important asset
refers to data and the value of the data. The latter has led technology companies (e.g.
IBM, Cisco, SAP, EMC) to create the so called “Open Cloud Manifesto” raising the
need for more consistent security and monitoring of cloud services [7]. Thus, cloud
users rely on their providers for proper security, posing a set of quality of protection
parameters as a prerequisite to exploit cloud computing environments. Towards
meeting these requirements, providers are now offering Trusted Virtual Data centers
(TVDc) that build on the concept of Trusted Virtual Domains [8]. Amazon already
offers such a “product”, the virtual private cloud [9] that provides dedicated resources
and virtual private networks with guaranteed isolation. As a concept, it is not new,
since Multics design (in 1965) has been proposed aiming to allow users to build
protected subsystems [10, 11]. However, such environments refer to an offering by the
providers as yet another choice for users regarding security levels. It mainly targets
infrastructure-related security concerns but in many cases, security problems are not
isolated: different issues and threats may combine and lead to different security brea-
ches. Furthermore, virtual private clouds do not allow users to enforce their own
security controls and this is of major importance since bronze, silver, gold and even
platinum “security contracts” may not be adequate for some users and organizations.
Thus, when it comes to critical or personal information, users tend to exploit “in house”
infrastructures they have under control in order to overcome security concerns:
managing data behind firewalls and putting in place “trusted” security mechanisms is
their current choice, reducing the potential for innovative uses of data in value chains,
reducing flexibility and increasing cost of multi-stakeholder business processes.

In general, as the users take advantage of the operational and economic benefits of
virtualization and the cloud, it is critical to secure the virtualized data centers, cloud
deployments, and hybrid environments effectively, as if users and enterprises neglect
any aspect of security, these will open the doors to web threats and serious data
breaches [5]. Security is a central concern for enterprises of any scale, including Small
Medium Enterprises (SMEs), which are increasingly relying on ICT infrastructures to

Enabling Custom Security Controls as Plugins 33

support their business models and deliver their services. SMEs face very much the
same security issues as large corporations, without however possessing the knowledge,
expertise, staff and equity capital required to successfully prevent, mitigate and con-
front these challenges. It is no accident that in 2015, over 74% of the SMEs faced at
least one cyber-security breach. The rise of managed security solutions (including
cloud-based security-as-a-service solutions) provides opportunities for alleviating
SMEs limitations in terms of deploying and adopting effective cyber security solutions.
Managed Security Solutions alleviate SMEs from the burden of hosting and under-
standing the details of cyber-security infrastructures. Likewise, Security-as-a-Service
models enable SMEs to benefit from security assets provided online as services (e.g.,
data protection, network protection, intrusion detection, authentication, anti-virus,
security incidents detection, vulnerability analysis & management).

This paper introduces an approach that aims at addressing security and privacy
concerns, in line with security-as-a-service and managed security solutions. The
approach proposes an architecture and reference solution that enables the users and
enterprises to manage the levels of security and privacy through their own ingested
tools and mechanisms. Given that these tools and mechanisms will be ingested, acti-
vated and managed in service oriented environments (e.g. clouds), they can be con-
sidered as plugins that follow a management lifecycle as agents do [12]. The remainder
of the paper is structured as follows: Sect. 2 discusses related work and the challenges
to be addressed in different areas of the targeted domain, while Sect. 3 presents the
proposed architecture and the key building blocks of it. Section 4 cites relevant
experimentation outcomes to validate the introduced architecture. Section 5 concludes
with a discussion on future research and potentials for the current study.

2 Challenges to Be Addressed

Approaches and technologies are required to address security aspects across the
complete data and service lifecycle by allowing organizations and users to ingest along
with their data and application services, their own security tools and mechanisms as
plugins. These mechanisms target several aspects such as authentication, identity
management, compliance, and access. The proposed approach allows organizations to
bring their own security controls beyond what is available in a public cloud environ-
ment. Users will be able to seamlessly align enterprise security policies with cloud
service policies, and deploy technical countermeasures they think are not appropriate
enough to mitigate threats in public cloud environments and multi-stakeholder value
chains.

In a published analysis [13], “Reinventing SaaS” Security as a Service is expected
to see significant growth in the next years. The presented approach aims at realizing
this vision since it allows users to exploit Security as a Service either by selecting
security services or by ingesting their own security services – as plugins, in cloud
infrastructures. The proposed solution enables security controls (i.e. plugins) for
detection capabilities, incident responses, and operational capabilities (e.g. patch
management) to be ingested, raising trust and security to the corresponding desired
levels (as depicted in the next Fig. 1).

34 D. Kyriazis

One of the key challenges refers to mechanisms for developing plugins or
exploiting pre-existing/pre-supplied ones through a repository, as well as tools for
describing plugins based on semantic-rich structures are required. These descriptions
form the basis for plugins management mechanisms, which enable plugins to be loa-
ded, managed according to their dynamically changing triggering conditions (through
the activation framework), and monitored during their execution. However, while cloud
customers have better knowledge about their application security requirements, it
should be noted that cloud providers potentially have better knowledge about the
relevant cloud security issues due to their higher concentration of security expertise. In
this context, what is required refers to hybrid solutions combining security controls
offered by cloud providers (also in the form of selectable plugins) and plugins ingested
by users. The presented approach proposes tools to allow the implementation of such
hybrid solutions through enhanced deployment patterns that take into account effec-
tiveness of plugins and combination possibilities. These innovative technologies foster
the creation of vertical clouds delivered with regulations and compliance geared
towards a particular sector (e.g. finance, automotive, aerospace, media).

Moreover, one needs to consider that there are various security threats in cloud
environments, including virtualization/hypervisors security vulnerabilities, sniffing/
spoofing in virtual networks, denial of service, etc. Traditional security mechanisms
such as digital signatures, encryption (aiming also at privacy as described by the authors
in [14]), identity, authentication, and authorization are no longer sufficient for clouds in
their current form [15]. Users may be able to control the software executed in their
virtual machines but the underlying infrastructure (compute, network, and storage
resources) is managed by cloud providers [16]. Thus, various challenges arise regarding
multi-tenancy and sharing in cloud environments, which can be exploited to enable a
Virtual Machine (VM) - acting as an “attacker node” to target another VM through

Fig. 1. Key pillars and enabling technologies

Enabling Custom Security Controls as Plugins 35

covert and side channels allowing these VMs to communicate bypassing the rules
defined in the corresponding security models [17–19]. Currently, the practice is to
employ security policies in order to ensure that data and services are kept separate
between different tenants [20]. Nevertheless, in the case of collaborative entities (e.g. in
value chain scenarios) such “generic” approaches either limit the required functionality
or lead to security vulnerabilities during information and service exchange and usage.
Techniques are proposed to evaluate the common ground for the collaborative entities
and manage conflicts arising from the usage of different plugins. The information can be
provided to all involved entities through a dashboard providing insights to potential
threats, deployed plugins as well as providers’ security information in order to increase
auditability and transparency.

Of course, such non-generic solutions do not come without cost, which may be
monetary and/or performance. Allowing users to customize the environment of a
provider through the corresponding loadable plugins is something that needs to be
negotiated with the corresponding trade-offs [21] analyzed before and during the
negotiation process given the dynamic customer security requirements. Moreover,
these requirements need to be clarified and captured in contracts and Service Level
Agreements (SLAs), which are expected to enforce better risk management [22] and
provide the means for enhanced security in cloud environments [23, 24]. Besides
negotiation before the use, the presented approach also proposes runtime re-negotiation
in an automated way in order to provide quality of security guarantees. Runtime
decisions are based on the monitoring data collected and evaluated against the security
objectives of users and the enforcement of mitigation plans (triggering the corre-
sponding plugins) through an envisioned control plane.

A key aspect enabling the enforcement and deployment of security measures/
plugins refers to the detection of potential anomalies. Anomaly-based solutions try to
overcome the inherent limitation of signature-based methods by adopting a more
general solution that is not based on a priori knowledge about attacks (e.g. their
signature). Anomaly detection aims to find patterns in data that deviates from an
expected or normal behavior (i.e. anomalies/outliers). Approaches to anomaly detection
can be supervised, semi-supervised or unsupervised. Supervised methods assumed the
access to data labelled as normal and abnormal examples. Semi-supervised only
assumes one type of label on the training dataset. Unsupervised methods assume no
access to labelled data. One can also consider methods that act (learn) online or offline.
The majority of methods work offline but some can evolve as data is obtained like in
data streams. Supervised methods are based on a classifier like SVM [25]. Unsuper-
vised methods use clustering algorithms like the ones described in [26]. Cluster based
method are very popular in practice since it is typically quite common to be very hard
to obtain labelled data as deviation and normal behavior. There are several types of
studied anomalies: (i) random, when a data object is abnormal in relation to the
complete dataset, (ii) contextual anomaly if the data object is abnormal in relation to a
context but not against the dataset e.g. a geographical context, and (iii) collective
anomalies when a set of data objects with a strong relationship is abnormal in relation
to the remain dataset. Anomaly-based solutions look at all the traffic and try to
determine deviations between current and reference traffic behavior. A representative
example has been followed and applied to identity management and encryption

36 D. Kyriazis

schemes to enhance the latter [27]. In this way, they are also able to overcome the issue
that a malicious packet may seem legitimate if analyzed in isolation. Plenty of
anomaly-based solutions have been proposed to provide detection or mitigation of
multiple types of attacks relying on complex analysis of the traffic features [28], or on
partial execution of the content of a packet in an emulated environment for detecting
code-injections [29].

An additional security-related challenge emerges from the multi-tenancy support
offered by cloud providers. The latter highlights the need for approaches that tackle the
conflicting objectives and requirements of the tenants, which range from security
mechanisms that are put in place for example for data sharing [30], to allocation of
resources to different tenants [31]. To this end, multi-objective optimization techniques
are required in order to optimize the corresponding objective functions at the same
time. There is no unique solution to multi-objective optimization problems, but instead,
a set of good trade-off solutions (Pareto optimal set) [32]. As a primary goal of multi-
objective optimization is to model a decision-maker’s preferences (ordering or relative
importance of objectives and goals), one valid categorization of the methods should be
related to the way the decision-maker articulates these preferences. So, a priori artic-
ulation of preferences implies that the user indicates the relative importance of the
objective functions before running the optimization algorithm. A posteriori articulation
of preferences implies the selection of a single solution from a set of mathematically
equivalent solutions, while in interactive articulation of preferences the decision-maker
is continually providing input throughout the execution of the algorithm [33]. Great
progress has been achieved in the field of meta-heuristics especially with the evolu-
tionary algorithms that are inspired by evolutionary mechanisms found in biological
species. The evolutionary algorithms along with the simulated annealing and Tabu
search techniques can be further classified in three main categories: Scalar approaches,
Pareto Approaches and non-Pareto and non-scalar approaches. Scalar approaches entail
the transformation of the multi-objective optimization problems (MOPs) into a single
objective problem. This class of approaches includes algorithms based on aggregation,
which combine the various cost functions in only one objective function, generally in a
linear way. Scalar approaches are also based on constraint methods and goal pro-
gramming. Non-Pareto/non-scalar approaches based on the populations of solutions,
use operators to treat the various objectives separately. Only two methods have been
studied regarding this approach: parallel selection and lexicographic selection.

Pareto-based approaches use the concept of dominance in the selection process. In
this class, ranking, elitism and diversity maintaining methods are included. They can be
historically studied as covering two generations. The first generation is characterized by
the use of fitness sharing and niching combined with Pareto ranking [34].

Multi-objective optimization using meta-heuristics is an active research field where
new techniques are continuously emerging to cope with real settings (such as uncer-
tainty and noise, many-objective optimization, and convergence speed). In this context,
software frameworks that include state-of-the-art algorithms, commonly accepted
benchmark multi-objective optimization problems and quality indicators for perfor-
mance assessment are valuable tools for everybody involved in multi-objective opti-
mization problems and need assistance in carrying out research studies. For this reason,
several frameworks were developed. A well-known framework is PISA [35], a C-based

Enabling Custom Security Controls as Plugins 37

framework for multi-objective optimization, which is based on separating the algorithm
specific part of an optimizer from the application-specific part. This is carried out using
a shared-file mechanism that enables the communication between the module executing
the application and the module running the meta-heuristic. A drawback of PISA is that
the internal design hinders to reuse code. EvA2 (an Evolutionary Algorithms frame-
work, revised version 2) is a comprehensive meta-heuristic optimization framework
with emphasis on Evolutionary Algorithms (EA) implemented in Java. EvA2 integrates
several derivative-free optimization methods, preferably population-based, such as
Evolution Strategies, Genetic Algorithms, Differential Evolution, Particle Swarm
Optimization and classical techniques such as Simulated Annealing [36]. Other Java-
based meta-heuristic optimization frameworks are Opt4J, jMetal and ECJ. Opt4J is an
open source Java-based framework for evolutionary computation. It contains a set of
(multi-objective) optimization algorithms such as evolutionary algorithms, differential
evolution, particle swarm optimization, and simulated annealing [37]. jMetal aims at
the development, experimentation and study of meta-heuristics for solving multi-
objective optimization problems. jMetal includes a number of classic and modern state-
of-the-art optimizers, a wide set of benchmark problems, and a set of well-known
quality indicators to assess the performance of the algorithms [38]. ECJ is a general-
purpose evolutionary computation framework, which attempts to permit as many valid
combinations as possible of individual representation and breeding method, fitness and
selection procedure, evolutionary algorithm, and parallelism [39].

3 Proposed Architecture

The presented approach aims at overcoming the current security limitations in cloud
environments and providing approaches for increasing their adoption. However,
allowing users to bring their own security controls highlights various challenges and
research topics that need to be tackled in order to realize this overall vision. A high
level conceptual view is presented in the next figure, targeting at the compilation and
provisioning of a secure public cloud environment through which users can manage
their services and their data (Fig. 2).

Through this architecture, users are able to exploit the plugins development
framework to develop security plugins, ingest existing ones or select/trade from the
proposed central repository. Plugins along with their descriptions are managed by the
enablement mechanisms, while the activation framework provides triggering decisions,
linked data, execution rules, temporal information, etc. During the ingestion process,
users are able to obtain information through the dashboard, with respect to potential
conflicts (from plugins selected in the current deployment) the progress of the ingestion
process, the current threat levels (based on the threat detection and evaluation frame-
work), and decision support based on the outcomes of the trade-off analysis. Following
the plugins ingestion process, a set of mechanisms is proposed in order to provide
quality of security guarantees during runtime according to the security objectives set by
the users. Runtime security monitoring information is collected and evaluated against
the defined objectives and re-negotiation is triggered in an automated way. The
information is also propagated to threat detection and trade-off tools in order to perform

38 D. Kyriazis

the corresponding analysis and inform the user. This information flow is further
detailed in the next paragraphs in terms of key concepts and mechanisms being utilized
in the proposed architecture.

3.1 Plugins Semantics

A plugin extension that needs to be executed in the Cloud should contain a detailed
description, sufficiently detailed so that execution environment can execute it in
autonomously, enabling it to communicate with other components if needed and
enforcing the cloud to comply with the security plugin. A plugin description can be
provided by means of special metadata, custom configuration, parameters, etc. The
presented architecture proposes a hierarchical generalized “template” to be used in
order to describe the plugin executable, its dependencies, execution environment,
external/internal communication pattern, output, data filtering, parameters and more.
The aforementioned hierarchical template serves as a generalized template that can be

Manage plugins lifecycle

Current state &
Decision support

Plugins Development
Framework

Enablement
Mechanisms

Ingest existing
plugins

Users

Plugins Activation
Framework

Dashboard & Control
Plane

Threat Detection
& Evaluation

Trade-off
AnalysisPlugins &

semantic
descriptions

Conflict Assessment
& Resolution

Runtime
renegotiation

Secure public cloud
environment and services

Plugins
Repository

Develop
security
plugins

Data Data

Activation
“logic”

Set
security

objectives

Runtime security monitoring

Threats &
opportunities

Decision
supportSelect pre-

supplied plugins

Fig. 2. Conceptual architecture and information flows

Enabling Custom Security Controls as Plugins 39

“inherited” and extended as required for different cases: per plugin, per application or
per cloud provider site. The approach includes a set of APIs to enable the proper plugin
description.

3.2 Workload and Anomalies Analysis for Threats Assessment

To analyze threats and as a result protect workloads, data need to be collected,
aggregated and analyzed/evaluated. To this end, approaches are required moving away
from the traditional black box approach used to conceptualize infrastructures (e.g.
clouds), towards cooperative mechanisms between the cloud provider and the cloud
users enabling data security sharing. Many security systems rely on rule-base
approaches that are known to be limited to new attacks patterns. While some systems
are starting using anomaly detection techniques, still these are typically limited both in
of ability to handle large volumes of data and their analytic capabilities. It is proposed
to leverage open source big data analytical platforms such as Apache Spark and
develop advanced statistical and machine learning anomaly detection analytics on
top. The proposed mechanism develops real-time characterizations using online data
mining techniques to characterize in real-time data streams according to different
dimensions (e.g. source, average traffic, average size, etc.). This characterization also
uses a data clustering technique. What is more and since current techniques such as k-
means are quadric in cost and not amenable for online and incremental processing, it is
proposed to exploit online and incremental techniques for amendable data clustering,
which is amenable for doing inexpensive and accurate characterization of massive data.
Given that one of the disadvantages of anomaly detection techniques is a high rate of
false-positive alerts, it is proposed to introduce techniques for adaptive control of false-
positive alerts to manageable levels.

3.3 Multi-tenancy and Multi-stakeholder Security Support

The presented solution addresses security aspects related to multi-tenancy and multi-
stakeholder data value chains, by providing technologies enabling users to set their
policies and rules with respect to management (and in the case of multi-tenancy sep-
aration) of storage, memory, processing and routing. Moreover, a classification
framework allows classifying and prioritizing rules that may be conflicting and thus
create privacy and security threats. The classification framework takes into account
potential conflicts and specific requests posed by tenants in multi-tenancy and value-
chain scenarios. Another aspect refers to storage, access and processing of data that are
owned and managed by different stakeholders – with potentially different security
constraints and profiles. The current solution proposes tools enabling the ingestion of
fine-grained dynamic security mechanisms addressing the complete data value chain,
thus being active during the “exchange” of information between tenants. Through the
current solution, different stakeholders will preserve security and privacy in their own
environment (using the corresponding plugins), while posing specific requirements for
the “common ground/environment”. The latter will be used for storing and processing
data emerging from different environments. Given the potential conflicting require-
ments, the presented approach proposes the use of multi-objective optimization

40 D. Kyriazis

techniques targeting to the selection process and the decision support provided to users
and providers with respect to: (i) different tenants in the shared infrastructure that aim at
loading plugins with different (conflicting) characteristics, (ii) plugins that are com-
bined towards specific security levels (i.e. hybrid cases). The multi-objective opti-
mization techniques consider these cases along with additional information for the
selection of the appropriate plugins according to the users’ security objectives. This
information refers to the associated cost and performance metrics, as well as the threat
model estimations.

Furthermore, a trade-off analysis framework is proposed in order to support
selection of security plugins based on the identified security level objectives. The
selection of plugins will consider how decisions affect different stakeholders: (i) the
user in terms of system security and cost, and (ii) the cloud provider in terms of
additional resource management constraints and information disclosure requirements.
The analysis framework takes into consideration potential issues that arise from the
injection of security plugins provided by the data owner in combination or in contrast
with the ones available by the cloud provider. Trade-off analysis is based on assessment
of residual threats and opportunities resulting from the aforementioned combinations,
whilst also considering the related cost/pricing aspects for cloud provider and
consumer.

3.4 Plugins Enablement and Activation Framework

The presented architecture also includes a sub-system, the so-called enablement
mechanisms, for the ingestion and execution of the plugins in the cloud infrastructure.
These mechanisms aim at managing the plugins lifecycle by addressing also cases of
multiple plugins or multiple users, and enforcing the required measures to the target
cloud environment since plugins execution may require adaptation of cloud software
components. Furthermore, the enablement mechanisms ensure isolation of different
plugins by linking them with specific users and data, as well as adherence to policies
and regulations according to users’ security objectives. The enablement mechanisms
are realized through extensions to software-based middleware (e.g. OpenStack Swift)
enabling the execution of plugins with a complex flow as well as their operation under
dynamically changing rules, policies and conditions.

The proposed solution also proposes an activation framework that provides the
“logic” for plugins activation, by utilizing the plugins description semantics to drive
decisions regarding: (i) data on which plugins will be executed, (ii) deployment poli-
cies – for example in the case of hybrid security, (iii) triggering conditions with respect
to spatiotemporal properties, (iv) execution rules such as the duration of execution and
non-deterministic execution, and (v) affected software components across different
cloud layers.

3.5 Context-Aware Plugins Selection and Deployment

The aforementioned trade-off analysis framework facilitates context-aware selection
and deployment. Through the latter the provision of security as a service is extended to
fully automated protection “on demand”, customized to meet the needs of the users and

Enabling Custom Security Controls as Plugins 41

the applications. In particular, a white box approach is proposed, in which the appli-
cation provider (e.g. cloud provider) utilizes all security related information in order to
deploy and enforce the identified security controls. The latter may involve protection
against attacks from external sources, limiting the impact of compromised edge
devices, encryption of the data streams travelling between end-points or even ensuring
user-friendly management of the end-users’ passwords. The proposed sub-system
provides the means for collecting and assembling different modules (plugins) available
in the repository, through compiling and executing their code on the cloud, ultimately
resulting in a deployment of solutions for the end-users. This sub-system also allows
the composition of different plugins and their orchestration. The composition will be
enabled based on the fact that all security solutions comply with the same guidelines
and support the same information and application models (e.g., APIs, metadata),
despite the fact that they could be coded in different high-level programming languages
(such as Java, JS, Python, Ruby, Go, etc.).

The orchestration and deployment of the security modules into integrated solutions
is performed following their selection through the trade-off analysis and the context-
aware selection services of the proposed architecture. As already outlined, the selection
is driven by the security requirements expressed by end-users and/or collected through
probes.

4 Evaluation Results

In this section, a set of experiments is presented that aims at showcasing the added
value of brining into a service-oriented environment a specific security solution. The
experiments have been conducted for a property of trustworthiness, namely depend-
ability since it is key for users and enterprises. Dependability includes multiple sub-
dimensions, such as integrity (i.e. absence of improper system alterations as for
example proposed in [40]), availability (i.e. readiness for correct service), reliability
(i.e. continuity of correct service), maintainability (i.e. ability to undergo modifications
and repairs), safety (i.e. absence of catastrophic consequences on the user(s) and the
environment), and performance (i.e. stability over time). While there are several
approaches for monitoring and acting accordingly, the experiments have been con-
ducted with a mechanism, namely “Monitoring time interval adaptor”, which has been
implemented as a plugin being activated in cloud environments as a service: the
mechanism is a service that adapts the monitoring time intervals in order to ensure that
dependability information is collected on time. Prometheus has been chosen as a
monitoring framework. Prometheus gathers monitoring parameters at specified inter-
vals, shows the results, and triggers alerts based on rule expressions. The architecture of
the experiment is presented in the following Fig. 3.

The monitoring time interval adaptor follows, adapts and applies a well-established
paradigm from the network domain regarding the time at which actions are required:
TCP fast recovery in the case of network congestion. In fast recovery, the value of a
parameter (congestion window – cwnd) is increased for duplicate ACKs received for
the missing segment that caused TCP to enter the fast-recovery state. Eventually, when
an ACK arrives for the missing segment, TCP enters the congestion-avoidance state.

42 D. Kyriazis

Two approaches have been proposed for this reason: TCP Reno, in which the con-
gestion window grows linearly and TCP Tahoe, in which the congestion window grows
exponentially until it reaches a value after which it grows linearly. In the case of triple
ACKs or timeouts Reno halves the rate and continues linearly, while Tahoe starts from
the minimum value and grows exponentially. The implemented approach follows the
same patterns (evaluating both and switching between them in a hybrid mode) in order
to monitor at correct time intervals the VMs/containers of the user. Thus, it adapts the
intervals in the case of a failure (similar to congestion cases in the network).

Two scenarios have been studied. The first scenario follows a specific sequence of
available/non-available states, while the second one is random. In the first case, the
experimentation has been performed for the case of a container as follows: “A-NA-NA-
A-NA-NA-A-A-NA-A-NA-NA”, where A denotes Available and NA denotes Non-
Available. The following tables present the experimentation outcomes and how
monitoring time intervals are adapted according to decisions taken for both a Reno- and
a Tahoe-based approach (Tables 1 and 2):

Cloud environment

Push gateway

scrape
interval

Monitoring time
interval adaptor

Prometheus server

Monitoring data

pull metrics

Application
service

Exporter

Application
service

Exporter

...

Container1 Containern

Fig. 3. Experimentation architecture

Table 1. Scenario 1 – Sequence of available and non-available states of a container: Adaptable
monitoring time intervals set by applying a Reno-based approach.

Iteration Interval (sec) Actions

0 30
1 60
2 90
3 120
4 150
5 180
6 210
7 240

(continued)

Enabling Custom Security Controls as Plugins 43

Table 2. Scenario 1 – Sequence of available and non-available states of a container: Adaptable
monitoring time intervals set by applying a Tahoe-based approach.

Iteration Interval (sec) Actions

0 30
1 60
2 90
3 120
4 150
5 180
6 210
7 240
8 270
9 300
10 330
11 360
12 390 ACK1
13 420 ACK2
14 450
15 480
16 510
17 540 ACK3-Threshold = 270
18 1
19 30 ACK1
20 60 ACK2
21 90 ACK3
22 120 ACK4

(continued)

Table 1. (continued)

Iteration Interval (sec) Actions

8 270
9 300
10 330
11 360
12 390 ACK1
13 420 ACK2
14 450
15 480
16 510
17 540 ACK3
18 270 Interval/2-ACK4
19 300 ACK1
20 330
21 360

44 D. Kyriazis

The corresponding results are also depicted in the following figures in order to
showcase how the custom proposed mechanism allows adaptation of monitoring time
intervals and provides the required view to the user (Fig. 4).

Fig. 4. Reno- and Tahoe-based approaches followed for adapting monitoring time intervals in
the case of a container found available/non-available in a specific sequence

Table 2. (continued)

Iteration Interval (sec) Actions

23 1 Threshold = 60
24 30
25 60
26 90
27 101 90 + 1000/90 = 101
28 111 101 + 1000/101 = 111
29 120 111 + 1000/111 = 120
30 128 120 + 1000/120 = 128
31 136 128 + 1000/128 = 136

Enabling Custom Security Controls as Plugins 45

The second scenario doesn’t follow a specific sequence of available/non-available
states, but the order is random to validate the effectiveness of the plugin in this case.
The experimentation has been performed for the case of a container as follows: “A-NA-
A-A-A-NA-A-NA-A-A-A-NA”, where A denotes Available and NA denotes Non-
Available. The following tables present the experimentation outcomes and how
monitoring time intervals are adapted according to decisions taken for both a Reno- and
a Tahoe-based approach (Tables 3 and 4):

Table 3. Scenario 2 – Random available and non-available states of a container: Adaptable
monitoring time intervals set by applying a Reno-based approach.

Iteration Interval (sec) Actions

0 30
1 60
2 90
3 120
4 150
5 180
6 210
7 240
8 270
9 300
10 330 ACK1
11 360 ACK2
12 390 ACK3
13 180 ACK4
14 210 ACK1
15 240 ACK2
16 270 ACK3
17 300 ACK4
18 150
19 180
20 210
21 240
22 270
23 300
24 330
25 360
26 390
27 420
28 450 ACK1
29 480 ACK2

46 D. Kyriazis

Table 4. Scenario 2 – Random available and non-available states of a container: Adaptable
monitoring time intervals set by applying a Tahoe-based approach.

Iteration Interval (sec) Actions

0 30
1 60
2 90
3 120
4 150
5 180
6 210
7 240
8 270
9 300
10 330 ACK1
11 360 ACK2
12 390 ACK3
13 1 ACK4-Threshold = Interval/2
14 30 ACK1
15 60 ACK2
16 90 ACK3
17 1 ACK4-Threshold = Interval/2
18 30 ACK1
19 60 ACK2
20 90 ACK3
21 101 90 + 1000/90 = 101 -ACK4
22 1
23 30 ACK1
24 60 ACK2
25 90 ACK3
26 101 90 + 1000/90 = 101
27 1
28 30
29 60
30 101 90 + 1000/90 = 101
31 111 101 + 1000/101 = 111
32 120 111 + 1000/111 = 120
33 128 120 + 1000/120 = 128
34 136 128 + 1000/128 = 136
35 143 136 + 1000/136 = 143
36 150 143 + 1000/143 = 150
37 156 150 + 1000/150 = 156
38 162 156 + 1000/156 = 162

(continued)

Enabling Custom Security Controls as Plugins 47

The corresponding results are also depicted in the following figures in order to
showcase how the custom proposed mechanism allows adaptation of monitoring time
intervals and provides the required view to the user (Fig. 5).

Table 4. (continued)

Iteration Interval (sec) Actions

39 168 162 + 1000/162 = 168
40 174 168 + 1000/168 = 174
41 180
42 186
43 192

Fig. 5. Reno- and Tahoe-based approaches followed for adapting monitoring time intervals in
the case of a container found available/non-available in a random order

48 D. Kyriazis

5 Conclusions

Cloud security is still a central concern for users and enterprises, which are increasingly
relying on ICT infrastructures to support their business models and deliver their ser-
vices. Moreover, SMEs face very much the same cybersecurity issues as large cor-
porations, without however possessing the knowledge, expertise, staff and equity
capital required to successfully prevent, mitigate and confront these challenges. The
rise of managed security solutions (including cloud-based security-as-a-service solu-
tions) provides opportunities for alleviating users’ limitations in terms of deploying and
adopting effective security solutions. The latter also facilitates the emerging need for
application portability across different cloud providers [41], given that applications are
not coupled with specific security solutions of providers but the application owners can
ingest their security plugins to different providers’ infrastructures. In this context, an
innovative architecture is presented, enabling users to bring their own security mech-
anisms in cloud environments. The latter obviates the need for on-site security-oriented
resources (e.g. hardware, software, personnel), given that these security mechanisms
will be offered, managed, selected, activated, deployed and monitored as plugins.

References

1. Cloud Security Alliance: State of Cloud Adoption (2016)
2. Zardari, S., Bahsoon, R.: Cloud adoption: a goal-oriented requirements engineering

approach. In: Proceedings of the 2nd International Workshop on Software Engineering for
Cloud Computing, pp. 29–35. ACM (2011)

3. Cloud adoption a goal oriented requirements engineering approach.pdf
4. Cloud Security Alliance: The Treacherous Twelve (2017)
5. Hewlett Packard Enterprise: 5ways cloud security is like data center security and 5ways it’s not.

https://www.hpe.com/us/en/insights/articles/5-ways-cloud-security-is-just-like-data-center-
security-and-5-ways-its-different-1701.html

6. Kuada, E.: Trust modelling for opportunistic cloud services. Int. J. Grid Util. Comput. 9(4),
289–306 (2018)

7. Open Cloud Manifesto: https://gevaperry.typepad.com/Open%20Cloud%20Manifesto%
20v1.0.9.pdf. Accessed 23 July 2018

8. Berger, S., et al.: TVDc: managing security in the trusted virtual datacenter. ACM Oper.
Syst. Rev. 42, 40–47 (2008)

9. Amazon Virtual Private Cloud: http://aws.amazon.com/vpc/. Accessed 23 July 2018
10. Corbató, F.J., Vyssotsky, V.A.: Introduction and overview of the multics system. IEEE Ann.

Hist. Comput. 2, 12–13 (1992)
11. Saltzer, J.H.: Protection and the control of information sharing in multics. ACM Commun.

17, 388–402 (1978)
12. Lettmann, T., Baumann, M., Eberling, M., Kemmerich, T.: Modeling agents and agent

systems. In: Nguyen, N.T. (ed.) Transactions on Computational Collective Intelligence V.
LNCS, vol. 6910, pp. 157–181. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-24016-4_9

13. Sentronex Infographic: http://www.sentronex.com/wp-content/uploads/2014/03/Data-Secruity-
Risk-Prevention-for-Financial-Services-in-20141.pdf. Accessed 23 July 2018

Enabling Custom Security Controls as Plugins 49

https://www.hpe.com/us/en/insights/articles/5-ways-cloud-security-is-just-like-data-center-security-and-5-ways-its-different-1701.html
https://www.hpe.com/us/en/insights/articles/5-ways-cloud-security-is-just-like-data-center-security-and-5-ways-its-different-1701.html
https://gevaperry.typepad.com/Open%20Cloud%20Manifesto%20v1.0.9.pdf
https://gevaperry.typepad.com/Open%20Cloud%20Manifesto%20v1.0.9.pdf
http://aws.amazon.com/vpc/
http://dx.doi.org/10.1007/978-3-642-24016-4_9
http://dx.doi.org/10.1007/978-3-642-24016-4_9
http://www.sentronex.com/wp-content/uploads/2014/03/Data-Secruity-Risk-Prevention-for-Financial-Services-in-20141.pdf
http://www.sentronex.com/wp-content/uploads/2014/03/Data-Secruity-Risk-Prevention-for-Financial-Services-in-20141.pdf

14. Wang, X.A., Xhafa, F., Cai, W., Ma, J., Wei, F.: Efficient privacy preserving predicate
encryption with fine-grained searchable capability for Cloud storage. Comput. Electr. Eng.
56, 871–883 (2016)

15. Li, W., Ping, L.: Trust model to enhance security and interoperability of cloud environment.
In: Jaatun, M.G., Zhao, G., Rong, C. (eds.) CloudCom 2009. LNCS, vol. 5931, pp. 69–79.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10665-1_7

16. Jaeger, T., Schiffman, J.: Outlook: cloudy with a chance of security challenges and
improvements. IEEE Secur. Priv. 8(1), 77–80 (2010)

17. Ristenpart, T., Tromer, E., Shacham, H., Savage, S.: Hey, you, get off of my cloud:
exploring information leakage in third-party compute clouds. In: 16th ACM Conference on
Computer and Communications Security (2009)

18. Song, D.X., Wagner, D., Tian, X.: Timing analysis of keystrokes and timing attacks on SSH.
In: 10th Conference on USENIX Security Symposium (2001)

19. Ranjith, P., Chandran, P., Kaleeswaran, S.: On covert channels between virtual machines.
J. Comput. Virol. 8, 85–97 (2012)

20. Bezemer, C-P., Zaidman, A.: Multi-tenant SaaS applications: maintenance dream or
nightmare?. In: Joint ERCIM Workshop on Software Evolution (EVOL) and International
Workshop on Principles of Software Evolution (IWPSE), Antwerp, Belgium. ACM, New
York, USA (2010)

21. Jansen, W.: Cloud hooks: security and privacy issues in cloud computing. In: 44th
International Conference on System Sciences, Koloa, Kauai, HI. IEEE Computer Society,
Washington, DC, USA, pp. 1–10 (2010)

22. European Network and Information Security Agency: Cloud Computing Benefits, risks and
recommendations for information security (2012)

23. Kandukuri, B., Paturi, V., Rakshit, A.: Cloud security issues. In: IEEE International
Conference on Services Computing (2009)

24. Casola, V., De Benedictis, A., Modic, J., Rak, M., Villano, U.: Per-service security SLAs for
cloud security management: model and implementation. Int. J. Grid Util. Comput. 9(2),
128–138 (2018)

25. Roth, D., Small, K.: The role of semantic information in learning question classifiers.
In: Proceedings of the Conference First International Joint Conference on Natural Language
Processing (2004)

26. Varun, C., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Comput. Surv. 41,
15 (2009)

27. Wang, X.A., Ma, J., Yang, X., Wei, Y.: Security analysis of two identity based proxy re-
encryption schemes in multi-user networks. In: Nguyen, N.T., Kowalczyk, R., Xhafa, F.
(eds.) Transactions on Computational Collective Intelligence XIX. LNCS, vol. 9380,
pp. 69–88. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-49017-4_5

28. Paredes-Oliva, I., Dimitropoulos, X., Molina, M., Barlet-Ros, P., Brauckhoff, D.:
Automating root-cause analysis of network anomalies using frequent itemset mining.
In: ACM SIGCOMM 2010 Conference, New Delhi, India (2010)

29. Egele, M., Szydlowski, M., Kirda, E., Kruegel, C.: Using static program analysis to aid
intrusion detection. In: Büschkes, R., Laskov, P. (eds.) DIMVA 2006. LNCS, vol. 4064.
Springer, Heidelberg (2006). https://doi.org/10.1007/11790754_2

30. Wang, X.A., Xhafa, F., Ma, J., Barolli, L., Ge, Y.: PRE+: dual of proxy re-encryption for
secure cloud data sharing service. Int. J. Web Grid Serv. 14(1), 44–69 (2018)

31. Ficco, M., Di Martino, B., Pietrantuono, R., Russo, S.: Optimized task allocation on private
cloud for hybrid simulation of large-scale critical systems. Futur. Gener. Comput. Syst. 74,
104–118 (2017)

50 D. Kyriazis

http://dx.doi.org/10.1007/978-3-642-10665-1_7
http://dx.doi.org/10.1007/978-3-662-49017-4_5
http://dx.doi.org/10.1007/11790754_2

32. Coello, C.: Recent trends in evolutionarymultiobjective optimization. In: Abraham, A., Jain, L.,
Goldberg, R. (eds.) Evolutionary Multiobjective Optimization. Advanced Information and
Knowledge Processing, pp. 7–32. Springer, London (2005). https://doi.org/10.1007/1-84628-
137-7_2

33. Marler, T., Jasbir, A.: Survey of multi-objective optimization methods for engineering.
Struct. Multidiscip. Optim. 26, 369–395 (2004)

34. Talbi, A., Matthieu, B., Nebro, E.: Metaheuristics for Multiobjective Combinatorial
Optimization Problems: Review and recent issues (2006)

35. Bleuler, S., Laumanns, M., Thiele, L., Zitzler, E.: PISA—a platform and programming
language independent interface for search algorithms. In: Fonseca, Carlos M., Fleming,
Peter J., Zitzler, E., Thiele, L., Deb, K. (eds.) EMO 2003. LNCS, vol. 2632, pp. 494–508.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36970-8_35

36. Kronfeld, M., Planatscher, H., Zell, A.: The EvA2 optimization framework. In: Blum, C.,
Battiti, R. (eds.) LION 2010. LNCS, vol. 6073, pp. 247–250. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-13800-3_27

37. Lukasiewycz, M.: Opt4J: a modular framework for meta-heuristic optimization. In: Proceed-
ings of the 13th Annual Conference on Genetic and Evolutionary Computation (2011)

38. Durillo, J., Nebro, A., Alba, E.: The jMetal framework for multi-objective optimization:
design and architecture. In: IEEE Congress on Evolutionary Computation (2010)

39. A Java-based Evolutionary Computation Research System: http://cs.gmu.edu/*eclab/
projects/ecj. Accessed 23 July 2018

40. Xue, T., Ying, S., Wu, Q., Jia, X., Hu, X., Zhai, X., Zhang, T.: Verifying integrity of
exception handling in service-oriented software. Int. J. Grid Util. Comput. 8(1), 7–21 (2017)

41. Di Martino, B.: Applications portability and services interoperability among multiple clouds.
IEEE Cloud Comput. 1(1), 74–77 (2014)

Enabling Custom Security Controls as Plugins 51

http://dx.doi.org/10.1007/1-84628-137-7_2
http://dx.doi.org/10.1007/1-84628-137-7_2
http://dx.doi.org/10.1007/3-540-36970-8_35
http://dx.doi.org/10.1007/978-3-642-13800-3_27
http://cs.gmu.edu/%7eeclab/projects/ecj
http://cs.gmu.edu/%7eeclab/projects/ecj

A Flexible Synchronization Protocol
to Learn Hidden Topics in P2PPS

Systems

Shigenari Nakamura1(B), Tomoya Enokido2, and Makoto Takizawa3

1 Graduate School of Science and Engineering, Hosei University, Tokyo, Japan
nakamura.shigenari@gmail.com

2 Faculty of Business Administration, Rissho University, Tokyo, Japan
eno@ris.ac.jp

3 Faculty of Science and Engineering, Hosei University, Tokyo, Japan
makoto.takizawa@computer.org

Abstract. We consider the P2PPS (peer-to-peer type of topic-based
publish/subscribe) model where each peer process (peer) can publish and
subscribe event messages with no centralized coordinator. Here, hidden
topics are topics which a source peer is allowed to subscribe but a target
peer is not allowed to subscribe. After receipt of an event message e1 with
hidden topics, if a peer publishes another event message e2, the event
message e2 may be related with the hidden topics of the event message e1.
Hence, if an event message with hidden topics is received by another
target peer which does not subscribe the hidden topics, the target peer
can get information on the hidden topics. This means, illegal information
flow to the target peer occurs. However, some hidden topics may be
related with a subscription topic of a target peer and the target peer just
may not know about the hidden topics. In this paper, we newly introduce
a learning mechanism where each peer newly obtains hidden topics if
the hidden topics are related with subscription topics. In this paper,
we newly propose an FS-H (flexible synchronization for hidden topics)
protocol. In the evaluation, we show the fewest number of event messages
are prohibited from being received in the FS-H protocol compared with
the other protocols.

Keywords: Information flow control · P2P (peer-to-peer) model ·
PS (publish/subscribe) systems ·
TBAC (topic-based access control) model ·
FS-H (flexible synchronization for hidden topics) protocol

1 Introduction

A distributed system is composed of peer processes (peers) which are cooperating
with one another by manipulating objects and exchanging messages in networks.
Through the cooperation among peers, data in objects flows to other objects.
c© Springer-Verlag GmbH Germany, part of Springer Nature 2019
N. T. Nguyen et al. (Eds.): TCCI XXXIII, LNCS 11610, pp. 52–70, 2019.
https://doi.org/10.1007/978-3-662-59540-4_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-59540-4_3&domain=pdf
https://doi.org/10.1007/978-3-662-59540-4_3

A Flexible Synchronization Protocol to Learn Hidden Topics 53

Even if a peer is not allowed to read data of an object, the peer can obtain the
data by reading another object [5]. Here, information in the object is referred to
as illegally flow to the peer. Thus, illegal information flow occurs among peers and
objects. In secure information systems, it must be guaranteed that only the users
allowed to access the data can access the data. In order to secure information
systems, various types of methods are proposed, such as user authentication [15],
access control [9,10], and so on. Types of synchronization protocols [16–19,21,
22] are proposed based on the role-based access control (RBAC) model [10] to
prevent illegal information flow among objects. On the other hand, content-based
systems where each peer can get information in which the peer is really interested
[2,13] are getting more important. The PS (publish/subscribe) system [4,8,11,
31] which is one of the content-based systems is used in various applications like
Google alert [11]. In this paper, we consider a P2PPS (peer-to-peer [33] type of
topic-based PS [30]) system [25,26] where each peer can play both publisher and
subscriber roles with no centralized coordinator. The TBAC (topic-based access
control) model is proposed as an access control model in topic-based PS systems
[24]. Here, only a peer granted an access right to publish and subscribe a topic
t is allowed to publish and subscribe the topic t, respectively. The publication
pi.P and subscription pi.S of a peer pi are sets of topics which the peer pi is
allowed to publish and subscribe, respectively. An event message e published by
a peer pi is received by a target peer pj if the subscription pj .S of the target
peer pj includes at least one common topic with the publication e.P of the
event message e. Topics which are carried by an event message e published by
a peer pi but are not in the subscription pj .S of a target peer pj are referred
to as hidden topics of the source peer pi for the target peer pj [24]. Here, the
target peer pj can get information on the hidden topics which the peer pj is not
allowed to subscribe. On the other hand, topics in the publication e.P but not
in the subscription pj .S are referred to as forgotten topics of a target peer pj .
In our previous studies, the SBS (subscription-based synchronization) [24] and
TBS (topic-based synchronization) [20] protocols are proposed to prevent illegal
information flow based on the TBAC model. Here, an event message which may
cause illegal information flow of the hidden topics is prohibited at each target
peer pi, i.e. event messages are not received by the target peer pi.

It is difficult, maybe impossible for each peer to know about every topic,
especially in a scalable P2PPS system. This means, each peer subscribes only
topics which the peer knows by itself. However, an event message e may carry
topics which the peer pi does not know yet but are related with some subscribed
topic in pi.S. Hence, we need a learning mechanism for a peer to obtain new top-
ics through communicating with other peers. The FS (flexible synchronization)
protocol is proposed with the learning mechanism [23]. In the FS protocol, all
the topics are assumed to be classified into classes and the relevance among the
topics assumed to be defined. Each peer pi first subscribes a main topic pi.mt and
then adds topics which the peer knows and are related with the main topic pi.mt
in the subscription topics. On receipt of an event message e including forgotten
topics, a peer pi accepts the event message e with the higher probability if the
forgotten topics are more related with the subscribed topics with respect to the
topic relevance. In addition, the forgotten topics are added to the subscription

54 S. Nakamura et al.

pi.S with some probability. Thus, each peer obtains new topics, which the peer
does not know but are related with subscribed topics, through exchanging event
messages with other peers. In the FS protocol, illegal information flow of only
forgotten topics are prevented.

In this paper, we newly propose an FS-H (flexible synchronization for hid-
den topics) protocol to prevent illegal information flow of hidden topics and to
reduce the number of prohibited event messages by introducing the learning
mechanism to obtain hidden topics. Similarly to the FS protocol, on receipt of
an event message e, a peer pi adds hidden topics related with subscription topics
in the subscription pi.S. If the event message e includes hidden topics which are
not related with the subscription topics, the peer pi prohibits the event mes-
sage e from being received. In the evaluation, we show the fewest number of
event messages are prohibited in the FS-H protocol compared with the other
synchronization protocols.

In Sect. 3, we discuss the information flow relation among peers in the TBAC
model. In Sect. 4, we propose the FS-H protocol with the learning mechanism of
hidden topics using the relevance concept of topics. In Sect. 5, we evaluate the
FS-H protocol.

2 Related Studies

An information system is composed of two types of entities, subjects and objects
[5]. Each object is an encapsulation of data and operations for manipulating
the data. A subject s manipulates an object o by using operations supported
by the object o. Let S, O, and OP be sets of subjects, objects, and operations
on the objects in a system, respectively. In this paper, we assume each object o
supports a pair of basic operations, read (rd) and write (wr), i.e. OP = {rd,
wr}. An access rule 〈s, o, op〉 (∈ S × O × OP) means that a subject s is allowed
to manipulate an object o in an operation op in the BAC (basic access control)
model [9]. An access right is specified in a pair 〈o, op〉. A subject s is allowed
to manipulate an object o in an operation op only if the subject s is granted
the access right 〈o, op〉. A system is secure if and only if (iff) every object o
is manipulated by a subject s in an operation op according to an access rule
〈s, o, op〉.

In the RBAC (role-based access control) model [10,27,29], a role r (⊆ O ×
OP) is a set of access rights. An authorizer grants a role r to a subject while a
subject is granted an access right in the BAC model. Each person plays a role r
in a society, e.g. a professor role in a university. Each role r shows what can be
done by a subject who is granted the role r in a society. Let R be a collection
of roles in a system, R ⊆ 2O×OP . A subject s is granted a collection s.R (⊆ R)
of roles in the role set R. Then, the subject s issues a transaction to manipulate
objects. A transaction is a sequence of operations on objects. A subject s grants
a subset T.P (⊆ s.R) of the roles s.R to a transaction T . Here, T.P is referred
to as purpose [6,7] of the transaction T . A transaction T is allowed to issue an
operation op on an object o only if an access right 〈o, op〉 is in the purpose T.P .

A Flexible Synchronization Protocol to Learn Hidden Topics 55

Illegal information flow to occur in the access control models are discussed as
confinement problem [5]. Suppose a subject si is granted a pair of a read access
right 〈f, rd〉 on a file object f and a write access right 〈g, wr〉 on another file
object g. Suppose another subject sj is granted an access right 〈g, rd〉. Here,
suppose the subject si reads data d in the file f and then writes the data d to
the file g. The subject sj can obtain the data d in the file f by reading the data
d stored in the file g although the subject sj is not allowed to read data in the
file f . That is, information in the file f illegally flows into the subject sj via the
subject si and the file g.

In order to prevent illegal information flow, the LBAC (lattice-based access
control) model [28] is proposed. Here, every entity e, i.e. subject or object, belongs
to a security class sc. The relation sc1 → sc2 on a pair of security classes sc1 and
sc2 shows that information in an entity of the class sc1 can flow to an entity of
the class sc2. For example, a subject of a class sc1 can read and write data in an
object of a class sc2 if sc2 → sc1 and sc1 → sc2, respectively.

A transaction illegally reads data in an object iff the transaction reads data
in the object which includes the data in another object which is not allowed
to be read by the transaction [19]. The illegal information flow relation (ri �→
rj) from a role ri to a role rj is defined [7,19]. Let In(ri) and Out(ri) be sets
{o | 〈o, rd〉 ∈ ri} and {o | 〈o, wr〉 ∈ ri} of objects whose data are allowed to be
read and written by a subject granted a role ri, respectively. A role ri illegally
flows to a role rj (ri �→ rj) iff Out(ri) ∩ In(rj) 	= φ but In(ri) 	⊆ In(rj). Suppose
a pair of transactions T1 and T2 are granted roles r1 and r2, respectively, and r1
�→ r2. If the transaction T2 is performed after the transaction T1, the transaction
T2 may illegally read data in an object.

Allowable information flow relation from an object o1 to an object o2 is also
a priori defined by an administrator. A transaction suspiciously reads data in
an object iff the transaction reads data in the object whose data is not allowed
to be brought to other objects [17]. A transaction illegally writes data to an
object iff the transaction writes data to the object after illegally reading data
in another object [17]. A transaction impossibly writes data to an object iff the
transaction writes the data to the object after suspiciously reading the data in
another object [17].

The WA (write-abortion) [17], RWA (read-write-abortion) [18], and FRWA
(flexible read-write-abortion) [16] protocols are proposed to prevent illegal infor-
mation flow. In the WA protocol, a transaction aborts once issuing an illegal or
impossible write operation. Even if a transaction illegally reads data in an object,
the transaction can commit if the transaction does not issue a write operation.
In the RWA protocol, a transaction aborts once issuing an illegal read operation
or impossible write operation. In the FRWA protocol, a transaction aborts if the
transaction issues an illegal or impossible write operation as well as the WA pro-
tocol. Furthermore, the transaction aborts with some probability ap once issuing
an illegal read operation.

The concepts of sensitivity of an object and safety of a role in the FRWA-O
[21] and FRWA-RS [22] protocols are discussed. In the FRWA-O protocol, the
abortion probability ap of a transaction Tt issuing an illegal read operation to an
object oi depends on the sensitivity of the object oi. Here, the sensitivity of an

56 S. Nakamura et al.

object oi just monotonically increases each time a transaction aborts by issuing
an illegal read operation to the object even if the transaction commits. Whereas,
in the FRWA-RS protocol, the role safety of a role ri increases and decreases
each time a transaction Tt holding the role ri commits and aborts, respectively,
in order to reduce the number of transactions to abort.

A P2P (peer-to-peer) system [3,33] is a distributed system which is composed
of peer processes (peers) which are cooperating with one another by exchanging
messages in overlay networks. A peer is an autonomous process which makes a
decision by itself through communicating with other peers and autonomously
leaves and joins the system. There is no centralized coordinator. For a collabo-
rative work among peers, the voting mechanism is needed [14]. For data sharing
methods of P2P systems [32], consistency maintenance strategies are discussed
[35]. In the large-scale P2P systems where there are a large number of peers,
various types of scalability problems occur [12].

In topic-based PS (publish/subscribe) systems [8], a subscriber process speci-
fies a subscription in terms of topics in which the subscriber process is interested.
A publisher process publishes an event message with a publication which is also
specified in terms of topics. If a publication of an event message and a sub-
scription of the subscriber process include a common topic, the event message is
received by the subscriber process. In this paper, we discuss a P2PPS (P2P type
of topic-based PS) model [25,26,34]. Here, every peer can publish and receive
event messages and there is no centralized coordinator.

The SBS (subscription-based synchronization) [24] and TBS (topic-based
synchronization) [20] protocols are proposed to prevent illegal information flow
of hidden topics in the P2PPS systems. In the SBS protocol, an event message
which may cause an illegal information flow is prohibited. It is checked whether
or not an event message causes illegal information flow in terms of access rights
granted to each peer. Here, each peer gives all the topics which the peer is
allowed to subscribe to an event message even if the peer does not subscribe
the topic in reality. Hence, even some legal event messages are unnecessarily
prohibited. On the other hand, in the TBS protocol, it is checked whether or
not an event message causes illegal information flow in terms of topics which
are really manipulated by each peer. Hence, fewer number of event messages are
prohibited than the SBS protocol because only and every illegal event messages
are prohibited differently from the SBS protocol.

In paper [1], an access control model in the PS system is discussed based
on the RBAC model. However, information flow to occur by publishing and
subscribing topics in the PS system is not discussed. In this paper, we consider
the TBAC (topic-based access control) model of a topic-based PS system based
on access rights to publish and subscribe topics. We discuss illegal information
flow to occur among peers in terms of publication and subscription rights of the
TBAC model in the P2PPS system.

A Flexible Synchronization Protocol to Learn Hidden Topics 57

3 Information Flow in TBAC Model

3.1 TBAC Model

In this paper, we consider a P2PPS (P2P (peer-to-peer) type [3,33] of topic-
based PS (publish/subscribe) [4,8,11,31]) model [25,26]. Let P be a set of peer
processes (peers) p1, . . ., ppn (pn ≥ 1). Here, each peer pi can play both publisher
and subscriber roles and a pair of event messages published by different peers are
independently delivered to every common target peer. In this paper, we consider
a topic-based PS system [30]. Let T be a set {t1, . . ., ttn} (tn ≥ 1) of all topics
in a system. A peer pi publishes an event message e with publication e.P (⊆ T).
A peer pi specifies the subscription pi.S (⊆ T), which shows topics in which the
peer pi is interested. An event message e is received by a peer pi if the publication
e.P and the subscription pi.S include at least one common topic, i.e. e.P ∩ pi.S
	= φ. Here, the peer pi is a target peer of the event message e.

In the TBAC (topic-based access control) model [24], an access right is spec-
ified in a pair 〈t, op〉 of a topic t (∈ T) and an operation op which is a publish
(pb) or subscribe (sb), i.e. op ∈ {pb, sb}. A peer pi is allowed to publish an event
message e with publication e.P (⊆ T) only if the peer pi is granted a publication
right 〈t, pb〉 for every topic t in the publication e.P . The subscription pi.S (⊆ T)
of a peer pi is a subset of topics which the peer pi is allowed to subscribe. If a
peer pi is a target peer of an event message e, topics which are in the publication
e.P but not in the subscription pi.S are referred to as forgotten topics e.F (⊆
e.P) of the event message e. Here, a target peer pi recognizes an event message
e to be related with respect to topics (⊆ e.P ∩ pi.S) in the intersection of e.P
and pi.S but forgets about the forgotten topics (⊆ e.P − pi.S).

3.2 Information Flow Relations

First, the information flow relation (pi → pj) from a peer pi to a peer pj is
defined as follows [20,24]:

Definition 1. A peer pi precedes a peer pj with respect to information flow (pi

→ pj) iff pi.P ∩ pj .S 	= φ.

The information flow relation pi → pj means an event message published by
a peer pi is allowed to be received by a peer pj . A peer pi is independent of a
peer pj (pi | pj) iff pi 	→ pj . The relation pi | pj means the peer pj does not
receive event messages published by the peer pi.

The legal and illegal precedent relations among peers are defined as follows
[20,24]:

Definition 2

1. A peer pi legally precedes a peer pj with respect to information flow (pi ⇒ pj)
iff one of the following conditions holds:
(a) pi.S 	= φ, pi → pj, and pi.S ⊆ pj .S.
(b) For some peer pk, pi ⇒ pk and pk ⇒ pj.

58 S. Nakamura et al.

2. A pair of peers pi and pj are legally equivalent with each other (pi ⇔ pj) iff
pi ⇒ pj and pj ⇒ pi.

3. A peer pi illegally precedes a peer pj with respect to information flow (pi �→
pj) iff pi.S 	= φ, pi → pj, but pi.S 	⊆ pj .S.

The legal information flow relation ⇒ is transitive but not symmetric. If a
peer pi precedes a peer pj (pi → pj), i.e. pi.P ∩ pj .S 	= φ, an event message
published by the peer pi can be received by the peer pj . Otherwise, i.e. pi | pj ,
no information from the peer pi flows into the peer pj . The condition “pi.S ⊆
pj .S” means that an event message e from the peer pi to the peer pj is related
with no hidden topic for the peer pj , i.e. e.H = φ.

Suppose a peer pi publishes an event message e2 with publication e2.P (⊆
pi.P) after receiving another event message e1. Here, the event message e2 might
carry some information in the event message e1. The event message is charac-
terized by topics in the topic set pi.S.

Definition 3. Some topics in the subscription pi.S but not in the subscription
pj .S of a target peer pj are hidden topics which the event message e carries to
the target peer.

A target peer of the event message e does not know about the hidden topics.
Let e.H be a set of hidden topics of an event message e published by a peer pi

with respect to the target peer pj [20,24]. Hidden topics of an event message e
published by a peer pi might be related with the topics which the peer pi so far
subscribes but are not included in the subscription pj .S, i.e. {t | t ∈ pi.S ∧ t
	∈ pj .S}. Here, even if a target peer pj receives an event message e, the peer pj

does not recognize that the event message e might be related with the hidden
topics.

Forgotten topics of an event message are defined as follows [20,24]:

Definition 4. Topics in the publication e.P but not in the subscription pj .S,
i.e. {t | t ∈ e.P ∧ t 	∈ pj .S}, are forgotten topics e.F (= e.P − pj .S) of the
event message e with respect to the target peer pj.

A target peer pj recognizes an event message e to be only related with topics
in e.P ∩ pj .S but forgets that the event message e is related with the forgotten
topics in e.F .

If an event message e is received by a target peer pi, the event message e
is related with topics in the subscription pi.S. Furthermore, the event message
e may be related with not only forgotten topics e.F in the publication e.P but
also hidden topics e.H. Implicit topics of a peer pi are hidden or forgotten topics
of event messages which the peer pi receives.

Let a variable pi.I indicate a set of implicit topics of a peer pi [20,24]. The
variable pi.I is manipulated by a peer pi as follows:

A Flexible Synchronization Protocol to Learn Hidden Topics 59

[Behavior of a peer pi]

1. Initially, pi.I = φ;
2. [Receipt] Each time a peer pi receives an event message e from a peer pj ,

e.F = e.P − pi.S; e.H = pi.S − pj .S; pi.I = pi.I ∪ e.H ∪ e.F ;
3. [Publication] Let e.P be a set of publication topics of an event message e;

Then, the peer pi publishes an event message e;

Thus, implicit topics are accumulated in the peer pi each time the peer pi

receives an event message.

Example 1. Suppose there are three topics t1, t2, and t3 (T = {t1, t2, t3})
in a system. We also suppose a peer pi is granted four access rights 〈t2, pb〉,
〈t3, pb〉, 〈t1, sb〉, and 〈t2, sb〉, another peer pj is granted three access rights 〈t1, pb〉,
〈t1, sb〉, and 〈t2, sb〉, and the other peer pk is granted three access rights 〈t3, pb〉,
〈t1, sb〉, and 〈t3, sb〉, i.e. pi.P (= {t2, t3}), pi.S (= {t1, t2}), pj .P (= {t1}), pj .S
(= {t1, t2}), pk.P (= {t3}), and pk.S (= {t1, t3}). First, the peer pi publishes
an event message ei with publication ei.P = {t2} (⊆ pi.P). Here, the peer pi

precedes the peer pj (pi → pj) since pi.P (= {t2, t3}) ∩ pj .S (= {t1, t2}) 	= φ.
pi ⇒ pj since pi.S 	= φ, pi → pj , and pi.S ⊆ pj .S. Hence, the event message ei

is received by the peer pj .
Next, suppose a peer pj publishes an event message ej with publication ej .P

= {t1} (⊆ pj .P). Here, the peer pj precedes the peer pk (pj → pk) since pj .P
(= {t1}) ∩ pj .S (= {t1, t3}) 	= φ. However, the peer pj illegally precedes the peer
pk (pj �→ pk) since pj .S (= {t1, t2}) 	⊆ pk.S (= {t1, t3}). This means, an event
message on the topic t2 which the peer pk is not allowed to subscribe can be
received by the peer pk because the peer pj may already get information on the
topic t2 before publishing the event message ej and may include the information
in the event message ej . In this case, a topic t2 is a hidden topic of the event
message ej since t2 ∈ pj .S but t2 	∈ pk.S. Here, event information illegally flows
to the peer pk from the peer pj .

Suppose a peer pi receives an event message e1 with publication e1.P and
then publishes an event message e2. The event message e2 may bring information,
i.e. topics carried by the event message e1. We introduce the concept of cone. A
cone pi.C of a peer pi is defined to be a subset of topics, i.e. pi.C ⊆ T which the
peer pi obtains from topics of event messages received. The cone pi.C is initially
empty.

[Cone pi.C]. A topic t is added to the cone pi.C of a peer pi each time the peer
pi receives an event message e which satisfies one of the following conditions:

1. A peer ph whose cone ph.C includes the topic t publishes the event message
e and the peer ph precedes the peer pi (ph → pi).

2. A peer ph whose cone ph.C is empty publishes the event message e such that
the topic t is in intersection of the publication e.P of the event message e and
the subscription pi.S of the peer pi, i.e. t ∈ e.P ∩ pi.S.

Based on the cone, we define legal and illegal event messages for a target peer.

60 S. Nakamura et al.

Definition 5. Suppose a peer ph publishes an event message e and a target peer
pi receives the event message e.

1. The event message e is legal at the peer pi (ph
e⇒ pi) iff ph.C ⊆ pi.S.

2. The event message e is illegal at the peer pi (ph
e�→ pi) iff the event message

e is not legal at the peer pi.

Suppose an event message e published by a peer ph is received by a peer pi.
If the event message e is illegal at the peer pi (ph

e�→ pi), the peer ph illegally
precedes the peer pi (ph �→ pi). However, even if ph.S 	⊆ pi.S, the cone ph.C may
be included in the subscription pi.S (ph.C ⊆ pi.S). Thus, even if ph �→ pi, the
event message e may be legal at the peer pi (ph

e⇒ pi) depending on the cone
ph.C.

4 Synchronization Protocols

4.1 Protocols for Hidden Topics

In our previous studies, the SBS (subscription-based synchronization) [24] and
TBS (topic-based synchronization) [20] protocols are proposed to check whether
or not an event message is illegal at each target peer. Topics which a peer pi is
allowed to publish and subscribe are in a pair of sets pi.P and pi.S, respectively.

In the SBS protocol, a topic set pi.T of each peer pi is considered, which
is composed of topics carried into the peer pi. If a peer pi receives an event
message e1 which carries event information on a topic t, the topic t is stored in
the topic set pi.T . Here, “a topic t is in the topic set pi.T” means the peer pi

already obtains the information on the topic t. An event message e2 published
by the peer pi after the peer pi receives the event message e1 may include the
information on the topic t in the topic set pi.T . Hence, legality feature of each
information flow from a source peer pi to a target peer pj is decided based on
the pair of topic sets pi.T and pj .S. A topic t such that {t | t ∈ pi.T and t 	∈
pj .S} is hidden topic. In the SBS protocol, on receipt of an event message e
published by a peer pi, every topic in the subscription pi.S is added to the topic
set pj .T of each target peer pj , i.e. it is checked whether or not an event message
is illegal in terms of subscription rights of each peer. If an event message may
cause illegal information flow, the event message is prohibited.

[SBS protocol]. A peer pi publishes an event message e and the peer pi precedes
the peer pj (pi → pj):

The source peer pi behaves as follows:

1. e.T = pi.T ;
e.S = pi.S;
e.P = publication topics of the event message e (⊆ pi.P);

2. pi publishes the event message e;

A Flexible Synchronization Protocol to Learn Hidden Topics 61

The target peer pj behaves as follows:

1. If e.T ⊆ pj .S, the event message e is received by the peer pj and pj .T = pj .T
∪ e.S;

2. Otherwise, the event message e is prohibited at the peer pj ;

In the SBS protocol, each time an event message e published by a peer pi is
received by a peer pj , the topics in the subscription pi.S are added to the topic
set pj .T of the peer pj . Here, pi.C ⊆ pi.S. This means, even if some event mes-
sage e is legal, the event message may be unnecessarily prohibited at a peer pj .

On the other hand, in the TBS protocol, it is checked whether or not an
event message is illegal in terms of only topics which are really manipulated by
each peer. This means, a cone pi.C of topics of each peer pi is stored in the topic
set pi.T . Each time an event message e is received by the peer pj , the topics in
the topic set pi.T of a source peer pi are added to the topic set pj .T .

[TBS protocol]. A peer pi publishes an event message e and the peer pi precedes
the peer pj (pi → pj):

The source peer pi behaves to publish the event message e as follows:

1. e.T = pi.T ;
e.P = publication topics of the event message e;

2. pi publishes the event message e;

The target peer pj behaves to receive the event message e as follows:

1. If e.T ⊆ pj .S, the event message e is received by the peer pj and
(a) If e.T 	= φ, pj .T = pj .T ∪ e.T ;
(b) Otherwise, pj .T = pj .T ∪ (e.P ∩ pj .S);

2. Otherwise, the event message e is prohibited at the peer pj ;

In the SBS protocol, some event information on topics in the subscription
of the source peer are considered to flow to the target peer even if the source
peer does not have some event information on the topics. Hence, event messages
more highly cause illegal information flow than the TBS protocol.

4.2 FS-H (Flexible Synchronization for Hidden Topics) Protocol

In the SBS [24] and TBS [20] protocols, the number of event messages prohibited
increases as the number of event messages published increases. In the FS protocol
[23], an event message whose forgotten topics may cause illegal information flow
is prohibited. In this paper, we propose an FS-H (flexible synchronization for
hidden topics) protocol to more reduce the number of event messages prohibited
due to hidden topics. Since a P2PPS system is open and scalable, each peer pi

may not know about every topic in the system. This means, there might be topics
which a peer pi does not know but may interest the peer pi. These topics might
be brought to a target peer by an event message as hidden topics of the event
message. In this paper, we discuss how to include hidden topics of interest to

62 S. Nakamura et al.

the subscription pi.S of the peer pi. In our previous studies, a relevance concept
of topics is proposed, which shows how much a pair of topics are related [23].
Here, topics are totally ordered as t1, . . ., ttn as follows:

– For three topics ti, tj , and tk, if |i − j| < |i − k|, the topic tj is more related
with the topic ti than the topic tk.

Then, we define the relevance RbTkl (0 ≤ RbTkl ≤ 1) between a kth topic tk and
an lth topic tl as follows:

RbTkl = e−{(l−k)2/(2×σ2)}. (1)

Here, each peer decides on the membership of topics in its publication and sub-
scription based on the relevance concept. The publication pi.P and subscription
pi.S of each peer pi are composed of topics which are related with one another.
The publication e.P of each event message e published by a peer pi is also com-
posed of topics related to the topics in the publication pi.P . On receipt of an
event message e, a peer pi accepts the event message e only if some of hidden
topics of the event message e are strongly related with topics in which the peer
pi is interested. The number of topics which each peer is allowed to subscribe
increases as the number of event messages which each peer receives increases.
That is, each peer pi learns other topics which the peer pi should subscribe from
event messages and subscribes the topics which the peer cannot subscribe ini-
tially. We assume there is a main topic pi.mt in the subscription of each peer
pi. The main topic tk (= pi.mt) of a peer pi means that the peer pi subscribes
topics related with the topic tk. That is, every topic in the subscription of a peer
pi is related with the main topic pi.mt.

[FS-H Protocol]. A peer pi publishes an event message e and the peer pi

precedes a peer pj (pi → pj) whose main topic pj .mt is tk:

The source peer pi behaves to send the event message e as follows:

1. e.T = pi.T ;
e.P = publication topics of the event message e;

2. pi publishes the event message e;

The target peer pj behaves to receive the event message e as follows:

1. If e.T ⊆ pj .S, the event message e is received by the peer pj and
(a) If e.T 	= φ, pj .T = pj .T ∪ e.T ;
(b) Otherwise, pj .T = pj .T ∪ (e.P ∩ pj .S);

2. Else if PWT (e, pj) ≤ AWT (e, pj), the event message e is received by a peer
pj ;
(a) If e.T 	= φ, pj .T = pj .T ∪ e.T ;
(b) Otherwise, pj .T = pj .T ∪ (e.P ∩ pj .S);
Each topic tl ({tl | tl ∈ e.T − pj .S}) is added to pj .S with probability RbTkl;

3. Otherwise, the event message e is prohibited at the peer pj ;

A Flexible Synchronization Protocol to Learn Hidden Topics 63

Let AWT (e, pj) be summation of weights of topics in the topic set pi.T
of a peer pi and subscription pj .S of a peer pj ({tm | tm ∈ pi.T ∩ pj .S}) for
acceptance. If tk is a main topic pj .mt of the peer pj , the summation AWT (e,
pj) of weights is given as follows:

AWT (e, pj) =
∑

tm∈e.T∩pj .S

RbTkm. (2)

Let PWT (e, pj) be summation of weights of topics ({tl | tl ∈ e.T − pj .S})
for prohibition of event messages. If tk is the main topic pj .mt of the peer pj ,
the summation PWT (e, pj) of weights is given as follows:

PWT (e, pj) =
∑

tl∈e.T−pj .S

(1 − RbTkl). (3)

Fig. 1. FS-H protocol.

We consider three peers pi, pj , and pk which are granted publication and
subscription rights as shown in Fig. 1. Suppose the value of σ of the relevance
RbTkl shown in the formula (1) is 1. Here, the topic sets pi.T , pj .T , and pk.T
are initially empty. First, the peer pi publishes an event message ei whose pub-
lication ei.P = {t1}. The peer pj receives the event message ei since ei.P ∩ pj .S
(= {t1}) 	= φ and ei.T (= φ) ⊆ pj .S (= {t1, t2, t3}). The topic t1 is added to the
topic set pj .T because pj .T = pj .T ∪ (ei.P ∩ pj .S) = {t1}. Next, the peer pk

publishes an event message ek whose publication ek.P = {t2, t3}. The peer pj

receives the event message ek since ek.P ∩ pj .S (= {t2, t3}) 	= φ and ek.T (= φ)
⊆ pj .S (= {t1, t2, t3}). A pair of the topics t2 and t3 are added to the topic set

64 S. Nakamura et al.

pj .T because pj .T = pj .T ∪ (ek.P ∩ pj .S) = {t1, t2, t3}. Then, the peer pj pub-
lishes an event message ej whose publication ej .P is {t1, t2, t3}. ej .P ∩ pk.S (=
{t2, t3}) 	= φ but ej .T (= {t1, t2, t3}) 	⊆ pk.S (= {t2, t3}). Here, the summation
of acceptance weights AWT (ej , pk) is about 1.61 (= RbT22 + RbT23 = 1.00 +
0.61). The summation of prohibition weights PWT (ej , pk) is about 0.39 (= 1 −
RbT21). Since PWT (ej , pk) < AWT (ej , pk), the peer pj accepts the event mes-
sage ej . The topic t1 is added to the subscription pk.S with probability RbT21 (=
0.61). On the other hand, ej .P ∩ pi.S (= {t1}) 	= φ but ej .T (= {t1, t2, t3}) 	⊆
pi.S (= {t1}). Here, the summation of acceptance weights AWT (ej , pi) is about
1.00 (= RbT11 = 1.00). The summation of prohibition weights PWT (ej , pi)
is about 1.25 (= (1 − RbT12) + (1 − RbT13) = 0.39 + 0.86). Since PWT (ej , pi)
> AWT (ej , pi), the event message ej is prohibited at the peer pi.

5 Evaluation

We evaluate the FS-H protocol on a topic set T = {t1, . . ., ttn} (tn ≥ 1) and a
peer set P = {p1, . . ., ppn} (pn ≥ 1) in terms of the number of event messages
prohibited and the number of topics subscribed by each peer compared with
the SBS and TBS protocols. In the FS-H protocol, the subscription pi.S of the
target peer pi is updated each time an event message is received by the peer pi.
We assume an event message can be reliably broadcast to every target peer.

A pair of publish (pb) and subscribe (sb) operations are supported on each
topic. Each peer pi is granted topics in a publication pi.P and a subscription
pi.S, which are related with one another. In the evaluation, each subscription
pi.S is generated based on the relevance concept of topics as follows:

1. The relevancebetweenakth topic andan lth topic is obtainedby the formula (1).
2. First, a topic tk is randomly selected and included in the subscription pi.S as

a topic which the peer pi mainly subscribes.
3. Then, each tn of the other topics ({tn | tn ∈ T − {tk}}) are included in the

subscription pi.S with the probability RbTkn.

On the other hand, each publication pi.P is generated so that the publication
pi.P includes the main topic tk of the peer pi, i.e. pi.mt = tk and the publication
pi.P is a subset of the subscription pi.S, i.e. {tk} ∈ pi.P and pi.P ⊆ pi.S.

In the evaluation, we consider one hundred peers (pn = 100) and one hundred
topics (tn = 100). A collection P of pn peers p1, . . ., ppn are randomly generated
on tn topics t1, . . ., ttn, i.e. P = {p1, . . ., p100} and T = {t1, . . ., t100}. The
number n of publication events occur in the simulation. We randomly create
a peer set P on the topic set T five hundred times for each number n. First,
one peer pi is randomly selected in the peer set P . Then, the peer pi publishes
an event message e with the publication e.P which is composed of some topics
randomly selected in the publication pi.P to every target peer pj . In the FS-H
protocol, if the peer pj can subscribe all the topics in e.T , the event message e is
received by the peer pj and all the topics in e.T are added to pj .T . In addition,
even if the peer pj is not allowed to subscribe all the topics in e.T , i.e. e.H 	= φ,

A Flexible Synchronization Protocol to Learn Hidden Topics 65

2,000

4,000

6,000

8,000

10,000

200 400 600 800 1,000

N
um

be
r

of
 e

ve
nt

 m
es

sa
ge

s

Number n of publication events

all
prohibited in the SBS
prohibited in the TBS

prohibited in the FS-H

Fig. 2. Number of event messages (σ = 2).

and all the hidden topics in e.H are strongly related with a main topic pj .mt of
the peer pj , the event message e is also received by the peer pj , some topics in
e.H are added to the subscription pj .S, and all the topics in e.T are added to
pj .T . Otherwise, the event message e is prohibited. These steps are iterated n
times. For a given peer set P , n publication events occur five hundred times in
the FS-H protocol.

Figure 2 shows the number of event messages for the number n of publication
events where the parameter σ of the formula (1) is 2. The total number of event
messages published is shown by the dotted line with cross symbols (×). The
number of event messages prohibited in the FS-H protocol is not as many as
that of the SBS protocol is. On the other hand, the number of event messages
prohibited in the FS-H protocol is almost same as that of the TBS protocol.

Figure 3 shows the number of event messages for the number n of publication
events where the parameter σ of the formula (1) is 10. The fewest number of
event messages are prohibited in the FS-H protocol compared with the other
protocols.

Figure 4 shows the number of event messages for the parameter σ of the
formula (1) where two hundred events occur (n = 200). For σ ≤ 4, the number
of event messages prohibited of the FS-H protocol is not as many as that of
the SBS protocol is and almost same as that of the TBS protocol. On the other
hand, for σ > 4, the fewest number of event messages are prohibited in the FS-H
protocol compared with the other protocols.

Figure 5 shows the number of topics subscribed by each peer for the parame-
ter σ of the formula (1) where two hundred events occur (n = 200). In the FS-H

66 S. Nakamura et al.

10,000

20,000

30,000

40,000

50,000

60,000

200 400 600 800 1,000

N
um

be
r

of
 e

ve
nt

 m
es

sa
ge

s

Number n of publication events

all
prohibited in the SBS
prohibited in the TBS

prohibited in the FS-H

Fig. 3. Number of event messages (σ = 10).

2,000

4,000

6,000

8,000

10,000

12,000

 1 2 3 4 5 6 7 8 9 10

N
um

be
r

of
 e

ve
nt

 m
es

sa
ge

s

σ

all
prohibited in the SBS
prohibited in the TBS

prohibited in the FS-H

Fig. 4. Number of event messages (n = 200).

A Flexible Synchronization Protocol to Learn Hidden Topics 67

 0

 5

 10

 15

 20

 25

 30

 1 2 3 4 5 6 7 8 9 10

N
um

be
r

of
 to

pi
cs

 s
ub

sc
ri

be
d

by
 e

ac
h

pe
er

σ

with learning mechanism
without learning mechanism

Fig. 5. Number of topics subscribed by each peer (n = 200).

protocol, on receipt of an event message with hidden topics, each peer adds the
hidden topics to its subscription, i.e. the learning mechanism of topics is sup-
ported. The number of topics subscribed by each peer is shown by the solid line
with plus symbols (+). On the other hand, the learning mechanism is not sup-
ported in the SBS and TBS protocols. The number of topics subscribed by each
peer is shown by the dotted line with cross symbols (×). For σ ≤ 4, the number
of topics subscribed by each peer in the FS-H protocol is almost same as those in
the SBS and TBS protocols. On the other hand, for σ > 4, the number of topics
subscribed in the FS-H protocol is larger than the SBS and TBS protocols. This
means, the condition e.T ⊆ pi.S is likely to be satisfied in the FS-H protocol
compared with the SBS and TBS protocols for σ > 4. Hence, the fewest number
of event messages are prohibited in the FS-H protocol compared with the other
protocols for σ > 4 as shown in Fig. 4.

6 Concluding Remarks

In this paper, we newly proposed the FS-H (flexible synchronization for hidden
topics) protocol to prevent illegal information flow of hidden topics and to reduce
the number of event messages prohibited. In the SBS [24] and TBS [20] protocols,
an illegal event message is prohibited at each target peer and some legal event
messages are prohibited. In this paper, the FS-H protocol is proposed to more
reduce the number of legal event messages prohibited. Here, only if an event

68 S. Nakamura et al.

message carries hidden topics which are strongly related with some topic in
which a target peer is interested, the peer accepts the event message. Then, the
peer obtains the hidden topics in the subscription. Thus, even if a peer does not
know about all the topics in a system, the peer can obtain new topics which
interest the peer through receipt of event messages. The more number of event
messages are published, the more number of topics each peer can subscribe. In
the evaluation, we showed the number of event messages prohibited in the FS-H
protocol is fewest in all the protocols.

In the FS-H protocol, every topic carried into each peer pi is kept in the
peer pi. Here, the number of topics kept by every peer monotonically increases.
However, every topic stored in a peer is not necessarily permanently meaningful
such as the topics with time limit. In the new method which we are considering,
such meaningless topics are deleted from every peer to more reduce the number
of event messages prohibited.

In this paper, we assume every event message is reliably and causally deliv-
ered to every peer. We are now discussing how to causally deliver event messages
to target peers in the P2PPS system.

Acknowledgement. This work was supported by Japan Society for the Promotion
of Science (JSPS) KAKENHI Grant Numbers JP15H0295, JP17J00106.

References

1. Bacon, J., Eyers, D.M., Singh, J., Pietzuch, P.R.: Access control in pub-
lish/subscribe systems. In: Proceedings of the 2nd International Conference on
Distributed Event-based Systems, pp. 23–34 (2008)

2. Balakrishnan, S.M., Sangaiah, A.K.: Integrated quality of user experience and qual-
ity of service approach to service selection in internet of services. Int. J. Grid Util.
Comput. 8(4), 282–298 (2017)

3. Barolli, L., Xhafa, F.: A P2P platform for distributed, collaborative and ubiquitous
computing. IEEE Trans. Industr. Electron. 58(6), 2063–2172 (2011)

4. Blanco, R., Alencar, P.: Event models in distributed event based systems. In: Prin-
ciples and Applications of Distributed Event-Based Systems, pp. 19–42 (2010)

5. Denning, D.E.R.: Cryptography and Data Security. Addison Wesley, Boston (1982)
6. Enokido, T., Takizawa, M.: A purpose-based synchronization protocol for secure

information flow control. Int. J. Comput. Syst. Sci. Eng. 25(2), 25–32 (2010)
7. Enokido, T., Takizawa, M.: Purpose-based information flow control for cyber engi-

neering. IEEE Trans. Industr. Electron. 58(6), 2216–2225 (2011)
8. Eugster, P.T., Felber, P.A., Guerraoui, R., Kermarrec, A.M.: The many faces of

publish/subscribe. ACM Comput. Surv. 35(2), 114–131 (2003)
9. Fernandez, E.B., Summers, R.C., Wood, C.: Database Security and Integrity. Addi-

son Wesley, Boston (1980)
10. Ferraiolo, D.F., Kuhn, D.R., Chandramouli, R.: Role-Based Access Control, 2nd

edn. Artech, Norwood (2007)
11. Google alert: http://www.google.com/alerts. Accessed 1 Aug 2018
12. Gueye, B., Flauzac, O., Rabat, C., Niang, I.: A self-adaptive structuring for large-

scale P2P grid environment: design and simulation analysis. Int. J. Grid Util.
Comput. 8(3), 254–267 (2017)

http://www.google.com/alerts

A Flexible Synchronization Protocol to Learn Hidden Topics 69

13. John, P.M., Arockiasamy, S., Thangiah, P.R.J.: A personalised user preference and
feature based semantic information retrieval system in semantic web search. Int.
J. Grid Util. Comput. 9(3), 256–267 (2018)

14. Liu, Y., Ozera, K., Matsuo, K., Barolli, L.: An intelligent approach for qualified
voting in P2P mobile collaborative team: a comparison study for two fuzzy-based
systems. Int. J. Space-Based Situated Comput. 7(4), 207–216 (2017)

15. Liu, Z., Luo, J., Xu, L.: A fine-grained attribute-based authentication for sensitive
data stored in cloud computing. Int. J. Grid Util. Comput. 7(4), 237–244 (2016)

16. Nakamura, S., Duolikun, D., Enokido, T., Takizawa, M.: A flexible read-write abor-
tion protocol to prevent illegal information flow among objects. J. Mob. Multimed.
11(3&4), 263–280 (2015)

17. Nakamura, S., Duolikun, D., Enokido, T., Takizawa, M.: A write abortion-based
protocol in role-based access control systems. Int. J. Adapt. Innov. Syst. 2(2),
142–160 (2015)

18. Nakamura, S., Duolikun, D., Enokido, T., Takizawa, M.: A read-write abortion
(RWA) protocol to prevent illegal information flow in role-based access control
systems. Int. J. Space-Based Situated Comput. 6(1), 43–53 (2016)

19. Nakamura, S., Duolikun, D., Takizawa, M.: Read-abortion (RA) based synchro-
nization protocols to prevent illegal information flow. J. Comput. Syst. Sci. 81(8),
1441–1451 (2015)

20. Nakamura, S., Enokido, T., Takizawa, M.: A topic-based synchronisation protocol
in peer-to-peer publish/subscribe systems, accepted for publication at International
Journal of Communication Networks and Distributed Systems

21. Nakamura, S., Enokido, T., Takizawa, M.: Sensitivity-based synchronisation pro-
tocol to prevent illegal information flow among objects. Int. J. Web Grid Serv.
13(3), 315–333 (2017)

22. Nakamura, S., Enokido, T., Takizawa, M.: A flexible read-write abortion protocol
with role safety concept to prevent illegal information flow. J. Ambient. Intell.
Hum. Comput. 9(5), 1415–1425 (2018)

23. Nakamura, S., Ogiela, L., Enokido, T., Takizawa, M.: Flexible synchronization pro-
tocol to prevent illegal information flow in peer-to-peer publish/subscribe systems.
In: Barolli, L., Terzo, O. (eds.) CISIS 2017. AISC, vol. 611, pp. 82–93. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-61566-0 8

24. Nakamura, S., Ogiela, L., Enokido, T., Takizawa, M.: An information flow control
model in a topic-based publish/subscribe system. J. High Speed Netw. 24(3), 243–
257 (2018)

25. Nakayama, H., Duolikun, D., Enokido, T., Takizawa, M.: Selective delivery of event
messages in peer-to-peer topic-based publish/subscribe systems. In: Proceedings
of the 18th International Conference on Network-Based Information Systems, pp.
379–386 (2015)

26. Nakayama, H., Duolikun, D., Enokido, T., Takizawa, M.: Reduction of unnecessar-
ily ordered event messages in peer-to-peer model of topic-based publish/subscribe
systems. In: Proceedings of IEEE the 30th International Conference on Advanced
Information Networking and Applications, pp. 1160–1167 (2016)

27. Osborn, S., Sandhu, R.S., Munawer, Q.: Configuring role-based access control to
enforce mandatory and discretionary access control policies. ACM Trans. Inf. Syst.
Secur. 3(2), 85–106 (2000)

28. Sandhu, R.S.: Lattice-based access control models. IEEE Comput. 26(11), 9–19
(1993)

29. Sandhu, R.S., Coyne, E.J., Feinstein, H.L., Youman, C.E.: Role-based access con-
trol models. IEEE Comput. 29(2), 38–47 (1996)

https://doi.org/10.1007/978-3-319-61566-0_8

70 S. Nakamura et al.

30. Setty, V., Steen, M.V., Vitenberg, R., Voulgaris, S.: Poldercast: fast, robust,
and scalable architecture for P2P topic-based pub/sub. In: Proceedings of
ACM/IFIP/USENIX 13th International Conference on Middleware, pp. 271–291
(2012)

31. Tarkoma, S.: Publish/Subscribe System: Design and Principles, 1st edn. Wiley,
Hoboken (2012)

32. Tomimori, M., Sugawara, S.: Content sharing method using expected acquisition
rate in hybrid peer-to-peer networks with cloud storages. Int. J. Space-Based Sit-
uated Comput. 7(4), 187–196 (2017)

33. Waluyo, A.B., Taniar, D., Rahayu, W., Aikebaier, A., Takizawa, M., Srinivasan, B.:
Trustworthy-based efficient data broadcast model for P2P interaction in resource-
constrained wireless environments. J. Comput. Syst. Sci. 78(6), 1716–1736 (2012)

34. Yamamoto, Y., Hayashibara, N.: Merging topic groups of a publish/subscribe
system in causal order. In: Proceedings of the 31st International Conference
on Advanced Information Networking and Applications Workshops, pp. 172–177
(2017)

35. Yoichi, R., Sugawara, S.: Consistency preservation of replicas based on access fre-
quency for content sharing in hybrid peer-to-peer networks. Int. J. Space-Based
Situated Comput. 7(4), 197–206 (2017)

QoS Preservation in Web Service
Selection

Adrija Bhattacharya1(B) and Sankhayan Choudhury2

1 Department of Computer Science and Engineering,
Heritage Institute of Technology, Kolkata, India

adrija.bhattacharya@acm.org
2 Department of Computer Science and Engineering,

University of Calcutta, Kolkata, India
sccomp@caluniv.ac.in

Abstract. In cloud computing domain, often service providers offer ser-
vices with same functionalities, but with varying quality metrics. A suit-
able service selection method finds the most appropriate solution among
the alternatives. The challenge is to deliver a solution satisfying the
requirement (quality and other) of a consumer with minimum possible
execution time. Many conflicting QoS objectives increase the complexity
of the problem. In fact, the problem may be formulated as a multi-
objective, NP-hard optimization problem. Most of the existing solutions
either satisfies the QoS demands of consumer or only reduces execution
time by considering a sub-set of required QoS metrics. Consumer’s feed-
back on the choice of required QoS metrics not only shall help increasing
user satisfaction, but also may reduce the complexity effectively. How-
ever, this depends on the domain knowledge of a consumer. In this work,
we have proposed a goodness measure that replaces all QoS metrics by
a single one. The new technique using dimension reduction is proposed
to offer significant improvement compared to the existing works in terms
of execution time. Moreover, the solution satisfies all the QoS require-
ments of a consumer in most of the cases. The proposed data driven
selection approach has been implemented and the experimental results
substantiate the claims as mentioned.

Keywords: QoS · Goodness · Service selection · Factor analysis

1 Introduction

Service Selection from numerous alternative similar services satisfying Quality
of Service parameters (QoS) is a well known challenge in service provisioning
domain. Service matching based on functional and QoS parameters simultane-
ously can satisfy the requirement of a consumer in a true sense. Service offerings
(both QoS and functionalities) are advertised by the providers through Service
Level Agreements (SLA). Consumers have specific requirements with functionali-
ties and in terms of typical QoS parameters. Popular service selection approaches
c© Springer-Verlag GmbH Germany, part of Springer Nature 2019
N. T. Nguyen et al. (Eds.): TCCI XXXIII, LNCS 11610, pp. 71–88, 2019.
https://doi.org/10.1007/978-3-662-59540-4_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-59540-4_4&domain=pdf
https://doi.org/10.1007/978-3-662-59540-4_4

72 A. Bhattacharya and S. Choudhury

consider less number of QoSs (two or three at most) [5,7,10] instead of all QoS
requirements. It may result dissatisfaction among consumers. Thus an effective
service selection process has to be equipped with the ability to choose services
with requested level of all QoS metrics without compromising in time complexity.

Service selection problem has a multidimensional solution space and the
dimension depends on the number of QoS parameters specified by a consumer.
Moreover, some of these QoS parameters are conflicting and makes the prob-
lem more critical. For example, minimizing Response Time will increase the cost
of other metrics (such as operational cost). Thus there are multiple objectives.
Each of the objectives pertains to a single QoS parameter. Optimization of such a
complex multi objective function subject to multiple constraints is the intended
solution. QoS offering at various levels by multiple (huge) number of providers
makes the solution space larger. As a result the selection problem is of NP-hard
[10] type and consequently it demands attention of researchers.

Search space reduction is a popular approach for optimization problems [2].
Heuristics can be applied to reduce the search space effectively [13]. Most of the
methods target to reduce the execution time of the selection. Often a selected
service may satisfy a particular QoS requirement while failing to satisfy another.
A negotiation with respect to unsatisfactory QoSs may be the possible solution
for seamless provisioning. Feedback from the consumers are helpful for satisfy-
ing the quality requirement [18]. Usually preferences about the choices on QoS
parameters are collected from consumers to make the selection process simpler
but the success highly depends on the domain knowledge of the consumers. These
works perform poor in terms of execution time though the quality satisfaction
is higher. In contrast solution targeting optimized execution may result a poor
performance in terms of QoS satisfaction [18]. A well balance between these two
aspects may be the most desirable solution.

In this paper we have addressed the following issues that comes out of the
above discussion.

1. Is it possible to make an choice of services without taking preferences from
consumers but assuring a satisfactory solution considering all requested QoS
metrics?

2. Is it possible to deliver a solution that ensures optimal choices in terms of all
QoS (as requested by consumer) without compromising execution time?

We have presented an initial idea in [3] to address the above issues. The idea was
to replace all QoS parameters by a single measure, called goodness. The purpose
of the approach was to find out a single measure that can be used for satisfying
all QoSs. It reduces the multidimensional problem to a single objective one. The
problem of service selection is formally defined in Sect. 2. Brief discussion on
related works are presented in Sect. 3. The theoretical motivation and outline of
the presented work is described in Sect. 4. Section 5 explains the working solution
for the problems discussed. Section 6 shows the experimental results pertaining
to the methods explained in Sect. 5. The final conclusion is presented in Sect. 7.

QoS Preservation in Web Service Selection 73

2 Problem Formulation

In this section we are stating the problem of service selection in a formal manner.
This is primarily a problem of optimization. There is an objective function (O)
comprising many QoS metrics (as in Eq. 1).

Minimize
O =

∑

p

wpQoSq
p (1)

where wp is the weight for pth QoS metric (QoSp) according to requirement.
q takes value +1 if the QoS QoSp has to be minimized and −1 if QoSp has to
be maximized. Clearly the objective function may contain many QoS objectives
to be optimized at a time while service selection. These QoS metrics often may
hold complex relationship which are tough to satisfy simultaneously. Moreover,
there are multiple constraint criteria (as described in Eq. 2). These criteria are
to be maintained along with achieving the individual QoS objectives. For all
j (positive integer)

∑

i

AiQoSi

⎧
⎪⎨

⎪⎩

≤
=
≥

Cj (2)

Cj is the constraint value where Ai is the weight signifying importance of ith QoS
parameter. QoSi denotes ith QoS metric. For any positive value of j the above
equations represent the problem of service selection as a multi objective multi
constraint optimization problem. If each QoS metric is considered as a dimension,
the above mathematical problem appears multidimensional. Some of these QoS
metrics maintain clear relations among themselves. This is the key criteria to
reduce the overall dimension of the problem by process of reduction. Dimension
reduction [8] will help in efficient optimization of the complex problem with less
overhead involved. In this proposed work a dimension reduction technique along
with data driven selection approach is explored for efficient service selection.

3 Related Works

The efficiency of a service selection approach can be measured through two
metrics. One is the execution time and the other is how closely it satisfies all
required QoSs. The existing works, in general, attempted to optimize the objec-
tive function that involves required QoS parameters. The existing works vary
in number of QoS parameter considered. In most of the cases the considerable
QoS parameters are Response time, Cost and Availability [9,11,14,17,21]. Some
other notable works considered other parameters like Latency and Reputation
[6], Trust and Maintainability [15]. In one of the approaches [12] a suggestion
on considering the non network and network QoS of services separately is fol-
lowed. A QoS equation is formulated to calculate the network QoS, latency,
and transfer rate in [12]. Most of the existing works discussed so far perform
selection based on a few QoSs instead of considering all available QoS metrics.

74 A. Bhattacharya and S. Choudhury

There exist approaches that tried to solve the multi-objective optimization prob-
lem of this service domain by several alternatives. In a popular case, previous
performance is used to narrow down the solution space [5]. User feedback [10]
and recommender based selection [4,22] are also well-known approaches. Cloud
Computing Service Composition problem is addressed in [20] and [19]. These are
solved by preference-aware QoS evaluation approach based on artificial neural
networks. This approach has a QoS value aggregation algorithm for composition.
A neural network method is proposed without relying on user’s expertise while
aggregating the QoS criteria.

The approaches mentioned earlier in this section either satisfy consumer’s
quality requirement well or gives an efficient selection (execution time for service
selection algorithm) time. It is clear from the discussed popular works that the
approaches that performs better with respect to execution time have taken fewer
number of QoSs. On the other hand the later approaches satisfies large QoS
criteria and have longer execution (selection) time. In the proposed work the
attempt is to replace all QoS parameters of a service by a single goodness measure
and executes the selection based on the new metric. It certainly helps to reduce
the execution time significantly as the multi-dimension problem converts to a
single dimension. Eventually the other objective is to ensure the performance
of the solution in terms of requested QoS parameter satisfaction. It suggests
that the solution should not be dependent on the user’s feedback. Moreover the

Domain wise
Z score

calculation for
all QoS

parameters

Studying
Correlation
among the

QoS
parameters

Identifying
unknown

underlying
factor for all

QoS
Parameters

Fitting a
multiple

regression
equation for the
identified factor

and QoS
parameters

Final measure
of goodness
calculation

Service
Performance

data

Goodness
Value

Fig. 1. Outline of solution proposal in [3]

QoS Preservation in Web Service Selection 75

selection process should not be biased to a specific QoS rather to ensure a solution
considering all requested QoS of the consumer. Scope of this paper includes a
proposal of a data driven approach to find out a single measure (goodness) of all
QoSs of a service and execute the selection algorithm based on the new measure.
Experiments and subsequent findings are also included within the scope to ensure
the effectiveness of the proposed service selection approach.

4 Proposal in Brief

The idea behind the solution proposal is presented in one previous work [3].
Figure 1 depicts the steps used in the said approach. A large number of QoS
parameters are associated to each service as per the dataset under experiment.
The attempt was to find out the hidden common factors having influence on ser-
vice performance. The underlying factors are certainly less in number compared
to the associated QoSs. The existence of common factors is also substantiated by
the correlation measurement among QoSs. The objective is to make the problem
simpler for getting feasible solution with less execution time. An attempt had
been made to express the QoS metrics through fewer unobserved factors and to
offer a combined measure, called goodness, in terms of the said factors.

A complex system may have a number of potentially influential factors (x)
that have effect on the predicted variable (Y). The relative importance of each
factor is considered and the well known method of Multiple linear regression is
used to address this. The general form of the multiple linear regression is:

y = a + b1x1 + b2x2 + . . . + bkxk (3)

There may exist partial regression also. So, (bi′s) i.e. the coefficient for each x
term is affected by the presence of the partial regression coefficients for each of
the other x variables. The final goodness measure of a service was calculated
by combining the identified uncorrelated factor scores. Let the individual factor
scores are denoted by Fi as ith factor. Thus the overall goodness measure of a
service (for n identified factors) is denoted by,

G =

n∑
i=1

Fi

n
(4)

Goodness measure for replacing all associated QoS parameters was primar-
ily introduced in [3]. It reduces the complexity of the multi objective multi
constraint optimization problem. In this said data driven approach the correla-
tions among QoSs were measured. But the correlation coefficients alone cannot
determine the true level of association and dependencies among QoSs. The said
situation raises the following research questions:

– R1: How to increase the accuracy in determining the association among QoSs?

76 A. Bhattacharya and S. Choudhury

In [3] Exploratory Factor Analysis (EFA) was used to describe factors by
QoSs. EFA deliberately includes all QoSs into factor determination. As a con-
sequence the actual effect of a particular QoS on a typical factor was disrupted
by the mixed effect of other QoSs. The corresponding gap leads to the issue as
mentioned in R2.

– R2: How to effectively enhance the factor determination by readjusting the
involved QoSs using their mutual association?

In the final steps Multiple Regression was used to predict the factors in terms
of underlying QoSs. The motivation behind choosing the method is missing in
the scope of [3]. Moreover the proper validation of the used methodology is not
fully addressed in [3]. So the research questions arise here are

– R3: What are the alternate regression procedures that could be used to
improve the precision of the goodness measure?

– R4: How the alternate regression based solutions can be validate by exhaustive
data driven experimental results?

Thus the previously proposed sketchy approach of goodness measure need
improvements in context of the above said issues. Moreover the rigorous experi-
ments and analyses are also required for validation of the proposed methodology.
In Sect. 5 the improvements with respect to above issues are discussed in detail.

5 Solution Proposal and Experimental Findings

The objective in this proposed work is to enhance the process of finding Good-
ness measure by improving underlying statistical tools and techniques. More-
over proper validation of the techniques is also another issue in the purview.
The enhancement certainly increases the efficiency of the selection algorithm in
terms of QoS satisfaction and execution time both.

At first the most appropriate option for finding association among the QoSs
is decided. Causal Relationships among QoSs along with the data driven cor-
relation analysis is used for this purpose. The next improvement strategy is to
select proper methodology for hidden factor identification. The causal effects
of QoSs are also considered while selecting QoSs for constructing certain fac-
tor. A conceptual comparison has to be done on the feasibility of using several
available regression techniques. Experimental findings drive the decision while
validating several techniques suitable in the situation. Tasks for achieving the
above objectives are as follows.

– To select the appropriate option for enhancing the accuracy within association
finding among QoSs

– To select the ideal hidden factor identification process
– To select the appropriate regression technique
– To execute rigorous experiment for substantiating the above selections that

in turn ensures the effectiveness of overall selection process.

QoS Preservation in Web Service Selection 77

5.1 Correlation Among QoSs

Cumulative effects of a group of QoSs are not always reflected by correlation.
These effects are essentially causal. Ignoring such causal effect the solution may
exhibit biased result. This approach typically works simultaneously in data
driven and causal manner. We have the data set of 2500 services as given in
[1]. There is nine QoS parameters associated to each service in the said dataset.
Association (both causal and data driven) found in the data is noted after remov-
ing some outliers and domain wise mapping and the further factor analysis is
designed based on the results of identified association.

5.1.1 Analyses of Results Related to QoS Correlations
There are bivariate correlations between pair of QoSs from the given data set
shown in Table 1.

Table 1. Correlation coefficients among considered QoSs

P
a
ra

m
et

er

A
va

il
a
b
il
it
y

T
h
ro

u
g
h
p
u
t

S
u
cc

es
sa

b
il
it
y

R
el

ia
b
il
it
y

C
o
m

p
li
a
n
ce

B
es

t
P

ra
ct

ic
es

L
a
te

n
cy

D
o
cu

m
en

ta
ti

o
n

Response Time −.66 −.253 −.77 .47 −.83 .33 .391 −.40

Availability .201 .989 .129 .244 .57 −.99 −.6

Throughput .201 .256 .060 .168 −.145 −.031

Successability .121 .261 .055 −.011 .004

Reliability −.030 .689 −.024 .061

Compliance .34 −.77 −.180

Best Practices −.008 −.037

Latency −.40

Some inferences about the possible causal relationships identified. It clearly
shows that the Response time, Throughput and Availability have higher asso-
ciation among them. These parameters also have highly positive correlations
with Successability, Reliability and Best Practices. These could be a possible
group of QoSs constructing one Factor. Another set of parameters for second
factor could be Response time, Availability, Latency, Compliance and Docu-
mentation. It is also visible that Latency, Compliance and Documentation posses
poor association with that of Successability, Reliability and Best Practices. Thus
the said two sets of parameters may be kept in different factors to make them
un-correlated. Some causal information enhances the understanding of associa-
tion more accurately. Such as Response Time and Availability are two factors

78 A. Bhattacharya and S. Choudhury

that have inversely proportional relationship. Secondly Latency and Reliability
are the two factors that are strongly causally connected with Response Time.

5.2 Factor Identification and Factor Analysis

In this solution phase, some hidden unidentified factors are revealed through
necessary analysis. In [3] EFA identified factors that are based only on the
dependency on the correlated QoS metrics. EFA involves all QoSs into account
even if the impact of the QoS with the factor happened to be least. This may
result in poor goodness of fit in the regression fitting that in turn could be the
cause of reduced precision of the solution. Here a confirmatory factor analysis is
used. The affections among the QoS are measured in terms of correlations and
causality as mentioned in Sect. 5.1. The factors are determined based on these
associations and the existing knowledge about the causal relationships. Highly
correlated QoS parameters are put together into one factor; so that the factors
remain uncorrelated or negligibly correlated. In this work, the confirmatory fac-
tor analysis is used first with two factors and again it is restructured using three
factors.

5.2.1 Factor Analysis Results
The decision regarding number of factor and possible determinant QoSs of each
factor is determined mainly from the inferences drawn in earlier Subsect. 5.1.
Moreover, some causal information that is often overlooked by the exploratory
factor analysis is revisited and included within this proposed work using Confir-
matory Factor Analysis (CFA). Response time and Availability are main deter-
minants here as both of them possess higher and significant correlations with
other QoSs. Throughput alone has biased relation with a smaller set of QoSs.
We have agreed with the decision through causal analysis that availability and
response time both have impact on each other. So, these two can be included in a
single factor. After revisiting so many such issues a 2 factor and a 3 factor anal-
ysis are being done. Component QoSs for each of these analyses are described
in Table 2.

Table 2. Factor and component identification

Factors 2 factor CFA 3 factor CFA

F1 Response Time, Throughput,
Availability, Successability,
Reliability, Best practice

Response Time, Throughput,
Availability, Successability,
Reliability, Best practice

F2 Response Time, Availability,
Latency, Compliance,
Documentation

Response Time, Compliance,
Latency, Documentation

F3 Compliance, Best Practice
Documentation

QoS Preservation in Web Service Selection 79

5.3 Regression Approaches Considered

There are several options in statistical methods that can be used to find out the
factors using multiple QoSs at a time. Principal Component analysis is one of
the possible tools. It has the required multivariate support as in this case each
factor corresponds to several numbers of QoSs. There exist correlations among
the participating QoSs within a factor. Partial least Square is a similar option
that can be used. Logistic regression, another popular choice, works on categor-
ical data and not suitable for quantitative data set (QWS) as considered. Cox
Proportional and Canonical regression techniques also work on categorical data
and as a result not to be considered as suitable. Multiple linear Regression and
the Polynomial regression could be the approaches that support the features of
this data set. Discrete regression procedure is also not acceptable as it needs the
regressors to be independent of each other. In this data driven analysis method,
factors have highly correlated QoS components and thus the discrete regres-
sion is also discarded. The above discussion has been summarized in Table 3.
It is inferred from the table that there are four possible alternate regression
approaches suitable for the considered data set. These are Principal Compo-
nent Analysis, Partial least Square, Multiple and Polynomial. The comparative
results of the suitable regression techniques are discussed in Sect. 5.3.1.

Table 3. Regression techniques

Method Properties Comment

Principal Component Analysis Supported Can be used

Partial least Square Supported Can be used

Logistic Suitable for categorical data Cannot be used

Multiple Supported Can be used

Cox proportional Suitable for categorical data Cannot be used

Discrete No correlation in regressor Cannot be used

Polynomial Supported Can be used

Canonical Suitable for categorical data Cannot be used

Table 4. Regression techniques efficiencies

Method Exploratory 2 factor CFA 3 factor CFA

Principal Component Analysis 0.26134 0.36420 0.54143

Partial least Square 0.44436 0.75197 0.78496

Multiple 1.00 0.95998 0.93002

Polynomial 0.35117 0.221086 0.19134

80 A. Bhattacharya and S. Choudhury

5.3.1 Regression Comparison Results
We have used four regression techniques identified in Table 3. The corresponding
R2 values are compared. We have used each of the four regression techniques on
EFA, 2 factor CFA and 3 factor CFA. Table 4 summarizes the results.

It is shown that the Multiple regression model is the most accepted one
for all of the three factor analyses. Moreover Partial least square works well
for confirmatory factor analysis. One possible reason behind it could be that
exploratory factor analysis even includes smallest association (even up to three
or four decimal places) of QoS. So the variation of those QoSs is less compared
to other more significant QoSs. Polynomial Regression has also been included. It
has shown only exponent of two for one QoS (Response Time) have significant
regression coefficient. The result shows that the Exponents of other QoSs have
negligible coefficients. Finally, we have applied the multiple regression method
and found the factor equation for three distinct analyses.

Exploratory Factor Analysis. The equations extracted in Exploratory factor
analysis are

ZFACT1 = 0.521 ∗ ZResponseT ime − 0.229 ∗ ZThroughput

−0.064 ∗ ZAvailability − 0.073 ∗ ZSuccessability + 0.178 ∗ ZReliability

−0.109 ∗ ZCompliance + 0.188 ∗ ZBestPractices

+0.469 ∗ ZLatency − 0.004 ∗ ZDocumentation

(5)

ZFACT2 = −0.01173 ∗ ZResponseT ime + 0.23392
∗ZThroughput + 0.17726 ∗ ZAvailability

+0.17478 ∗ ZSuccessability + 0.44229 ∗ ZReliability

+0.03414 ∗ ZCompliance + 0.42207 ∗ ZBestPractices

−0.038118 ∗ ZLatency − 0.00556 ∗ ZDocumentation

(6)

Confirmatory Factor Analyses with Two Factors. Equations identified with two
factor CFA are as follows.

ZFACT1 = −0.020043 ∗ ZResponseT ime + 0.20393 ∗ ZThroughput

+ZAvailability + 0.90001 ∗ ZSuccessability + 0.12475 ∗ ZReliability

+0.05421 ∗ ZBestPractices

(7)

ZFACT2 = 0.68775 ∗ ZResponseT ime + +0.025139 ∗ ZAvailability

+0.56221 ∗ ZLatency − 0.12693ZComplince − 0.06854 ∗ ZDocumentation
(8)

Confirmatory Factor Analyses with Three Factors. Equations identified in three-
factor CFA are given by:

ZFACT1 = −0.016174 ∗ ZResponseT ime + ZAvailability+
0.20119ZThroughput + 0.98993 ∗ ZSuccessability

+0.12965 ∗ ZReliability + 0.05217 ∗ ZBestPractices

(9)

QoS Preservation in Web Service Selection 81

ZFACT2 = 0.62913 ∗ ZResponseT ime − 0.12493 ∗ ZCompliance

+0.61259 ∗ ZLatency − 0.06673 ∗ ZDocumentation
(10)

ZFACT3 = 0.24223 ∗ ZCompliance − 0.36665 ∗ ZDocumentation

+0.09123 ∗ ZBestpreactices
(11)

In EFA all extracted equations (Eqs. 3 and 4) involve all the QoS parameters,
though some of them have negligible coefficients. In case of confirmatory factor
analysis, the choice of QoSs (regressors in the regression equation) is based on
the association exhibited (in Table 2). Highly correlated QoS parameters are
tend to have similar impact on the particular factor. Two factors are identified
based on the causal as well as derived (correlation) QoS associations. The regres-
sion equations as estimated for two factor CFA determine that Best Practice and
Documentation are two factors having least significant coefficients. The dissat-
isfaction of QoSs after fitting two factors (for small number of cases) are mainly
contributed by these two quality parameters. It is also evident from literatures
that these two are less significant and less occurring quality factors in most of the
consumer requirements. Further a third factor has been introduced to balance
the overall scenario. The performance evaluation of these factor analysis results
on the basis of QoS satisfaction is empirically studied in Sect. 6.

6 Performance Evaluation

It is evident from the previous discussion that the process of service selection
mechanism must perform well with respect to execution time and the satisfaction
of quality requirements. A set of hypotheses has been formed and tested for
exhibiting consumer’s QoS satisfaction. Moreover the claims are substantiated
by evaluating goodness value based on selected types of factor analyses and
subsequent comparisons have been done.

6.1 Quality Satisfaction

Following three hypotheses are tested for detailed observation on the quality
satisfaction of consumers.

H01: Service qualities are preserved even if the selection is based on the
goodness alone

H02: Services are satisfactory for all the involved QoS parameters
H03: Even if all QoS not matched, failure in more than one QoS match is

negligible. We have done executed 20 queries for each of the selected five domains
(Account, Analysis, bank, Map and Scan). Total of 100 random queries were run
with varying choices of QoSs. A few experiments were conducted for checking
the three hypotheses mentioned.

Experiment 1: In this experiment it is shown that for each of the queries
when Goodness based selection mechanism is used how the QoS requirements
are satisfied. Two example domains (Account and analysis) are shown in Fig. 2.

82 A. Bhattacharya and S. Choudhury

Goodness based selection selects services denoted by blue color for services sat-
isfying goodness and all QoSs. Red signifies services which satisfied goodness
value but not all QoSs. It is clear from the figure that for both the domains the
service qualities are satisfactory (errors are less than 5%). H01 is accepted.

0
10
20
30
40
50
60

1 3 5 7 9 11 13 15 17 19

N
o

of
 se

rv
ic

es

No of Queries

(a) Account Domain

0
5

10
15
20
25
30
35
40

1 3 5 7 9 11 13 15 17 19

N
o

of
 se

rv
ic

es
No of queries

(b) Analysis Domain

Fig. 2. Match and mismatches for two domains

Experiment 2: This experiment is to figure out the mismatches occurred in
all queries (varying QoSs for all 100 query we obtained total 500 queries of
several functionality and QoS combinations) mostly due to which QoSs. In Fig. 3,
the failure occurred for services across the domains are shown. It signifies that
Compliance, Best Practices and Documentations are the mostly dissatisfying
QoSs.

0
5

10
15
20
25
30
35
40

M
is

m
at

ch
es

 in
 se

rv
ic

es
 fo

r 1
00

 q
ue

rie
s

No of mismatches

Fig. 3. Failures in QoSs across all domains

QoS Preservation in Web Service Selection 83

Experiment 3: In this experiment domain wise classification of failures is done.
Here it is to figure out which domain is more susceptible to which QoS metics.
We can summarize the following facts from Fig. 4.

– Account domain is mostly sensitive to Documentation parameter and latency
and reliability are the best offered QoSs for Account domain.

– Response Time, throughput and reliability is the best offered QoSs by Anal-
ysis domain and it has the poorest Availability performance.

– Compliance is the worst performance metric for banking domain and
Throughput, Latency and Documentation works well for Bank Domain.

– Most of the service failures occurred in Map domain is due to unreliability.
The Significant portion of the all 100 query related failure for Reliability is
contributed by the Domain Map.

– Response Time performs well for the Map services.
– Latency is the best QoS parameters for all domains which is reflected by Fig. 4

also.

0
1
2
3
4
5
6

No of mismatches

(a) Account Domain

0
1
2
3
4
5
6

No of mismatches

(b) Analysis Domain

0
2
4
6
8

No of mismatches

(c) Bank Domain

0
2
4
6
8

10

No of mismatches

(d) Map Domain

Fig. 4. Mismatches in QoS for different domains

84 A. Bhattacharya and S. Choudhury

In experiment 3, the second hypothesis (H02) is rejected with reason that the
all service parameters are not satisfactory for all queries. But the fact that Com-
pliance, Best practices and Documentation are less important is also reflected
by the coefficient of estimation in the regression analysis as well as from many
sources such as [1].

Experiment 4: Here we are interested to see whether the mismatches occurred
are acceptable or not with a little negotiation. Alternately it is to show whether
the mismatches occurred due to differ in more number of QoSs or fewer. The
selection results for all 100 queries are checked thoroughly and the failures along
with total matched QoSs in 100 queries are summarized in the Fig. 5 across all the
domains. It shows that the numbers of mismatched services compared to total
matches are very few. It again accepts H01. Moreover the service mismatched in
more than one QoS parameters is even fewer than that of total mismatched. It is
considered to be Negligible if number of services with more than one parameter
mismatched is compared with respect to that of total matched. Thus H03 is
accepted.

Experiment 5: Here goodness values and goodness based selection for all possi-
ble alternate methods of factor analyses are compared. It is to find out the most
efficient one out of different factor analyses (EFA, 2 factor CFA, and 3 factor
CFA)based goodness calculation. All three methods of factor Analysis for mea-
suring goodness based on actual expected outcome of selection are compared.
Here the actual outcomes are measure beforehand using brute force technique.

0

20

40

60

80

100

120

140

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97 101

N
o

of
 S

er
vi

ce
s

No of Queries

Total matched total missed More than one parameters

Fig. 5. Misses and matches across all domains

QoS Preservation in Web Service Selection 85

In this regard we have constructed the domain wise chart for selection of num-
ber of services and tried to find out which of these three methods results closest
to the actual outcome. From Fig. 6, it is evident that the EFA overestimates
(red bar) the selection results. i.e. often by exploratory method of goodness
tend to include erroneous results that may not be satisfying the services quality
requirements. On the other hand three-factor CFA (Green bar) underestimates
the selection results. It excludes some of the relevant services. The closest is the
two-factor CFA (Blue bar) to the actual matches (purple bar).

Experiment 6: The service quality satisfaction can be measured in terms of
number of quality satisfying services. Further the efficiency of the selection mech-
anism can be measured one step ahead. It will find out how many exact matches
(for all quality parameters) actually existed and how many of those have been
correctly identified by the selection procedure based on goodness. A comparison
among all the three applied analyses method is also done along with all the above
tests. In the Fig. 7 goodness values calculated with EFA, two factor CFA and

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

N
o

of
 S

er
vi

ce
s

No of Queries

Total matched _2 Factor Total matched_expl total matched Actual match

(a) Account Domain

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

N
o

of
 S

er
vi

ce
s

No of Queries

Total matched _2 Factor Total matched_expl total matched Actual match

(b) Analysis Domain

Fig. 6. Precision comparison among all factor analyses methods (Color figure online)

86 A. Bhattacharya and S. Choudhury

0

50

100

150

200

250

300

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51

Go
od

ne
ss

 v
al

ue
s r

eq
ui

re
d

by
 q

ue
rie

s

No of Queries

Goodness good_cfa good_3fact

Fig. 7. Goodness for all three factor analyses

three factor CFA are compared. It is clearly shown that all three are estimating
the goodness values in the same pattern over all queries. There is an expectation
from the correlation measures among the QoS that confirmatory factor analysis
would perform better than the exploratory factor analysis which is supported
by the curves in Fig. 7. The differences in magnitudes of the curve of EFA and
2-factor CFA may include more services that are excluded when measured using
exploratory method. So more accurate selection results are achieved for CFA.

6.2 Complexity Analysis

The service selection algorithm used in this approach is compared with respect
execution time with existing selection approaches. The worst case time complex-
ity found for any of the selection approaches in O(n3) and best case is O(nlogn)
for all the considered references [7,11,14–16,21]. Among all these [7] is the best
service selection approach that has a best case complexity as O(nlogn). The
average as well as worst case complexity in the proposed algorithm is O(nlogn).
The proposed measure performs better as it offers equivalent complexity in all
cases (even in average and worst) and also considers more QoS metrics at a time
(out of which 6 QoSs all satisfied and 9 partially satisfied).

7 Conclusion

Measure of goodness involving all quality parameters associated to a service is the
novelty of the proposed work. Use of factor analysis for dimension reduction and

QoS Preservation in Web Service Selection 87

getting subsequent successful results are encouraging. Service selection algorithm
based on goodness is also implemented and results are used to measure the
efficiency of the proposed method. Rigorous inspections have been done and
some important hypotheses are proved through the empirical analysis. Efficiency
of the selection algorithm is also measured in terms of time complexity. Moreover
the QoS requirements are over all satisfactory that is also experimentally proved.
Thus the proposed approach works well for an efficient service selection ensuring
QoS preservation and reduced execution time as well.

Acknowledgements. This publication is an outcome of the R&D work undertaken
in the ITRA project of Media Lab Asia entitled Remote Health: A Framework for
Healthcare Services using Mobile and Sensor-Cloud Technologies.

References

1. Al-Masri, E., Mahmoud, Q.H.: QoS-based discovery and ranking of web services.
In: Proceedings of 16th International Conference on Computer Communications
and Networks. ICCCN 2007, pp. 529–534. IEEE (2007)

2. Barkat Ullah, A.S., Sarker, R., Cornforth, D.: Search space reduction technique
for constrained optimization with tiny feasible space. In: Proceedings of the 10th
Annual Conference on Genetic and Evolutionary Computation, pp. 881–888. ACM
(2008)

3. Bhattacharya, A., Choudhury, S.: An efficient service selection approach through
a goodness measure of the participating QoS. In: Proceedings of the International
Conference on Informatics and Analytics, ICIA 2016, pp. 94:1–94:6, New York, NY,
USA. ACM (2016). https://doi.org/10.1145/2980258.2980451. http://doi.acm.org/
10.1145/2980258.2980451

4. Chen, L., Wu, J., Jian, H., Deng, H., Wu, Z.: Instant recommendation for web
services composition. IEEE Trans. Serv. Comput. 7(4), 586–598 (2014)

5. Dastjerdi, A.V., Garg, S.K., Rana, O.F., Buyya, R.: CloudPick: a framework for
QoS-aware and ontology-based service deployment across clouds. Softw. Pract.
Exp. 45(2), 197–231 (2015)

6. Dou, W., Zhang, X., Liu, J., Chen, J.: Hiresome-II: towards privacy-aware cross-
cloud service composition for big data applications. IEEE Trans. Parallel Distrib.
Syst. 26(2), 455–466 (2015)

7. Elshater, Y., Elgazzar, K., Martin, P.: goDiscovery: web service discovery made
efficient. In: 2015 IEEE International Conference on Web Services (ICWS), pp.
711–716. IEEE (2015)

8. Fodor, I.K.: A survey of dimension reduction techniques. Technical report,
Lawrence Livermore National Laboratory, CA (US) (2002)

9. Jatoth, C., Gangadharan, G., Fiore, U., Buyya, R.: QoS-aware big service composi-
tion using mapreduce based evolutionary algorithm with guided mutation. Future
Gener. Comput. Syst. 86, 1008–1018 (2018)

10. Jurca, R., Faltings, B., Binder, W.: Reliable QoS monitoring based on client feed-
back. In: Proceedings of the 16th International Conference on World Wide Web,
pp. 1003–1012. ACM (2007)

11. Karim, R., Ding, C., Miri, A.: An end-to-end QoS mapping approach for cloud
service selection. In: 2013 IEEE Ninth World Congress on Services, pp. 341–348.
IEEE (2013)

https://doi.org/10.1145/2980258.2980451
http://doi.acm.org/10.1145/2980258.2980451
http://doi.acm.org/10.1145/2980258.2980451

88 A. Bhattacharya and S. Choudhury

12. Klein, A., Ishikawa, F., Honiden, S.: Towards network-aware service composition
in the cloud. In: Proceedings of the 21st International Conference on World Wide
Web, pp. 959–968. ACM (2012)

13. Lee, K.S., Geem, Z.W.: A new meta-heuristic algorithm for continuous engineering
optimization: harmony search theory and practice. Comput. Methods Appl. Mech.
Eng. 194(36), 3902–3933 (2005)

14. Ludwig, S.A.: Clonal selection based genetic algorithm for workflow service selec-
tion. In: 2012 IEEE Congress on Evolutionary Computation, pp. 1–7. IEEE (2012)

15. Tao, F., LaiLi, Y., Xu, L., Zhang, L.: FC-PACO-RM: a parallel method for service
composition optimal-selection in cloud manufacturing system. IEEE Trans. Ind.
Inform. 9(4), 2023–2033 (2013)

16. Tao, F., Zhao, D., Hu, Y., Zhou, Z.: Resource service composition and its optimal-
selection based on particle swarm optimization in manufacturing grid system. IEEE
Trans. Ind. Inform. 4(4), 315–327 (2008)

17. Ye, Z., Zhou, X., Bouguettaya, A.: Genetic algorithm based QoS-aware service com-
positions in cloud computing. In: Yu, J.X., Kim, M.H., Unland, R. (eds.) DASFAA
2011. LNCS, vol. 6588, pp. 321–334. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-20152-3 24

18. Yu, Q., Bouguettaya, A.: Computing service skyline from uncertain QoWS. IEEE
Trans. Serv. Comput. 3(1), 16–29 (2010)

19. Zhang, J., Liu, X.: Evaluation and optimization of QoS-aware network management
framework based on process synergy and resource allocation. J. Ambient Intell.
Hum. Comput., 1–9 (2018)

20. Zhang, X., Dou, W.: Preference-aware QoS evaluation for cloud web service com-
position based on artificial neural networks. In: Wang, F.L., Gong, Z., Luo, X., Lei,
J. (eds.) WISM 2010. LNCS, vol. 6318, pp. 410–417. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-16515-3 51

21. Zhao, X., Wen, Z., Li, X.: QoS-aware web service selection with negative selection
algorithm. Knowl. Inf. Syst. 40(2), 349–373 (2014)

22. Zheng, Z., Ma, H., Lyu, M.R., King, I.: QoS-aware web service recommendation
by collaborative filtering. IEEE Trans. Serv. Comput. 4(2), 140–152 (2011)

https://doi.org/10.1007/978-3-642-20152-3_24
https://doi.org/10.1007/978-3-642-20152-3_24
https://doi.org/10.1007/978-3-642-16515-3_51

File Assignment Control for a Web
System of Contents Categorization

Masaki Kohana1(B), Hiroki Sakaji2, Akio Kobayashi3, and Shusuke Okamoto4

1 Faculty of Engineering, Ibaraki University, Hitachi, Ibaraki, Japan
masaki.kohana.gopher@vc.ibaraki.ac.jp

2 The University of Tokyo, Bunkyo, Tokyo, Japan
sakaji@sys.t.u-tokyo.ac.jp

3 RIKEN Center for Advanced Intelligence Project, Chuo, Tokyo, Japan
akio.kobayashi@riken.jp

4 Seikei University, Musashino, Tokyo, Japan
okam@seikei.ac.jp

Abstract. This paper shows the effect of the controlling file assignment
on the file transfer time for a Web-based content categorization system.
Our proposed algorithm estimates categories of contents based on the
terms and the content categories already added. However, our algorithm
uses a large table that consists of the scores that represent the rela-
tionship between a term and a category. To address the large table size
and longer calculation time, we proposed a distributed Web system that
uses multiple calculation machines. This Web system runs preprocessors
on a Web browser and calculation machines. In this Web system, the
file transfer time becomes a problem when a user sends larger files. In
this paper, we propose a way to resolve the issue of longer file transfer
time by controlling the file assignment. We assign the large files to the
Web browser process, and we assign the smaller files to the calculation
machines over the network.

Keywords: Content categorization · Parallel computing ·
Distributed computing · Web application · Web browser computing

1 Introduction

There is a large amount of content on the Internet, such as text, images, videos,
and music. Blogs, for example, have much text content. Furthermore, social
networking services contain many images and videos that have been uploaded
by the users. However, it is difficult to find target content because the amount
of content increases day by day. A content owner categorizes content in several
ways. In most cases, the owner categorizes content using keywords and tags. For
instance, some messages on Twitter have hashtags, which are a kind of tag. An
article on a blog has keywords, and a video on YouTube also has categories.
However, in some cases, the tags and the keywords are insufficient. One reasons

c© Springer-Verlag GmbH Germany, part of Springer Nature 2019
N. T. Nguyen et al. (Eds.): TCCI XXXIII, LNCS 11610, pp. 89–102, 2019.
https://doi.org/10.1007/978-3-662-59540-4_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-59540-4_5&domain=pdf
https://doi.org/10.1007/978-3-662-59540-4_5

90 M. Kohana et al.

is limitations on the number of tags and keywords. Another reasons is that users
select the tags and the keywords. In this case, the tags and the keywords depend
on the consideration of the users.

To resolve this problem, we proposed an algorithm to find tags that the
contents do not have [14]. Our algorithm uses co-occurrence between a tag and a
comment and finds some missing tags. We use tags already added and comments
on content as training data. This algorithm estimates a new tag using a score that
indicates a relationship between a tag and a term. We determine a co-occurrence
frequency as a relationship. To evaluate this algorithm, we used the Nico Nico
Dataset [3]. This dataset contains video information on Nico Nico Douga, a
popular video sharing service in Japan. A user uploads a video to Nico Nico
Douga [4]. Viewers can see the video and can add comments. Furthermore, the
owner and the viewers can add tags to the video. The Nico Nico Dataset includes
over 13,370,000 videos and 5,023,000,000 comments. The video metadata include
the tags and the comments on the video. Dowango Co., Ltd. [2] and Brazil Ltd.
[1] provide this dataset, and the National Institute of Informatics publishes it as
the Nico Nico Dataset. We handled a video as an item of content, a comment as
a term, and a tag as a category.

Furthermore, we also proposed a distributed calculation scheme for our cat-
egorization algorithm [10]. Our algorithm takes too much time to train and to
calculate a score because the Nico Nico Dataset has many data. Another reason
is the memory usage. Our algorithm creates a table of the scores. The size of the
table depends on the number of categories and terms. If the dataset has many
content items, the table size will become large. As a result, the table size will
exceed the memory size, which leads to memory swapping. The memory swap
process is a reason for the longer calculation time. To resolve this problem, we
divide the data into slots and distribute the slots to multiple machines. The
machines calculate the scores for the assigned data and create a table of scores.
Therefore, each machine has a part of the table.

In our previous study, we used the computing resource of a Web browser to
divide the data into slots [11]. In this scheme, a browser processes one part of
the data, while the server processes the other part. We could use the computing
resource of a browser and could parallelize a part of our scheme. However, our
dataset has many files. Some files are large, and other files are small. Therefore,
if our method allocates a large file to the server machine, the file transfer time
increases. In the dividing step, our algorithm removes the duplicate data. There-
fore, after the dividing step, the quantity of data will become small. Our scheme
should allocate large files to the browser process. In this paper, we propose pre-
processing of the score calculation on a Web browser. Our process controls the
file allocation to a browser process or a server process. As mentioned above, the
browser should process the large files. Therefore, we allocate the large files to
the browser, and we allocate the small files to the server.

This paper consists of the following sections. Section 2 introduces some stud-
ies related to our study. Section 3 describes the category estimation algorithm.
Section 4 gives an overview of our distributed calculation scheme. Section 5 intro-
duces a way to determine whether a file is large or small. Section 6 shows our
experimental results. Section 7 concludes the paper.

File Assignment Control for a Web System of Contents Categorization 91

2 Literature Survey

This section introduces several studies that relate to our study.
Machova focused on automatic opinion analysis of a discussion on the Web

[12]. This paper introduced a way to extract the text of the discussions from a
Web forum and a way to filter out irrelevant and nonsensical information.

Balkir et al. proposed a distributed lookup architecture [5]. This paper shows
an algorithm for text analysis. They implemented this algorithm using Bloom
filters, in-memory caches, and an HBase cluster. This method resolves the prob-
lems of latency and storage space.

Wang et al. mentioned a problem with semi-supervised clustering [16]. To
resolve this problem, they introduced a soft-constrained optimization problem.
They used the remarkable degree to help the search for an optimal solution.

Okamoto and Kohana proposed a parallel calculation using JavaScript Web
Workers for Web-based online games [13]. A video game needs several compu-
tations, such as for collisions. Generally, the game server is responsible for com-
puting. In this study, they used Web Workers. The worker calculates collisions
and other such computations.

Urakawa et al. proposed a way to broadcast video clips with other content
such as from Wikipedia [15]. In this study, the Resource Description Framework
(RDF) was used to describe various pieces of information about video clips. This
method uses natural language processing and a dictionary to construct the RDF
store and to combine video clips with other Web services.

Bouramoul improved the search process for the information retrieval and
evaluated the tools [6]. The experimental results show that document noise and
silence can be reduced by taking context into account the context in the infor-
mation retrieval.

Bouanaka et al. proposed a bio-inspired approach to classify Web services [7].
Using an ant-based clustering algorithm, this method classifies the Web services
that share many interaction relations.

John et al. proposed an ontology-based Semantic Supported Information
Retrieval System (SIRS) [9]. This system receives a query from a user. The
query is determined by the Hypertext Markup Language (HTML) Parser, and
then the Probabilistic Latent Semantic Indexing (PLSI) algorithm is utilized.
This system concentrates on resolving the Web search issue and on resolving the
personalized Web searches.

3 Categorization Algorithm

In this section, we introduce our categorization algorithm. Firstly, we explain the
scoring method, and then, we describe the estimation process. Our algorithm
uses the co-occurrence between a category and a term. First, the algorithm
calculates a score that represents the relationship between a category and a
term, which is the co-occurrence. After that, our algorithm estimates the missing
category using the score. In this description, we use a tag as a category and use
a comment as a term.

92 M. Kohana et al.

3.1 Scoring Method

Our categorization algorithm calculates a score S(t, c) that represents a relation-
ship between a comment (c) and a tag (t). The following formula (1) calculates
the score S(t, c).

S(t, c) = PMI(t, c) × ITF (c)

× (0.5 + 0.5 × tdf(t)
maxttdf(t)

) (1)

Formula (2) calculates PMI(t, c), which is the pointwise mutual information
(PMI) of a pair comprising a t and a c [8]. It commonly indicates a metric for
measuring the correlation between two events [8]. In this study, PMI indicates
the correlation between a tag t and a comment c.

PMI(t, c) = log2
p(t, c)
p(t)p(c)

(2)

The expression p(t, c) is the probability of t and c occurring on the same
video. The expression p(t) indicates the probability of tag t occurring in a set of
videos, and p(c) is the probability of comment c occurring in a set of videos.

In addition to PMI, we use ITF (c), which is given by Formula (3), where
tf(c) is the number of tags occurring with a comment c. The value of ITF (c) is
high when the comment c occurs with a small number of tags.

ITF (c) = log2
maxctf(c)

tf(c)
(3)

Finally, we use a tdf(t)/maxttdf(t) to prevent getting inappropriate tags.
The PMI of a general comment is high because general comments exist in most
documents. In this result, the score for pairs comprising this comment with
inappropriate tags will also be high. To avoid this problem, we normalize tdf(t)
by dividing it by maxttdf(t).

3.2 Estimation Process

Figure 1 shows the estimation process of our categorization. We have a set of
videos that includes a set of comments and a set of tags. We also have two
datasets, Dc and Dt. We use Dc for searching tags with high scores S(t, c) when
they appear with a comment. On the other hand, we use Dt for searching tags
that frequently occur with the entered tag.

In Fig. 1, Tsc is an associative array. The key is a tag name and the
value is a score. As the first step, we calculate a score for each comment
with all the co-occurrence tags and store the scores in Tsc. Then, we calcu-
late Co-occurrence(t, t′) for each tag. This function calculates the number of
co-occurrences of tags t and t′ in a single video that appears in a set of videos.
Finally, we use the function ExtractTags(Tsc), which retrieves tags that have
the high scores.

File Assignment Control for a Web System of Contents Categorization 93

Estimation Process

Input: A video V = (C, T)
C: Comment Set (c0, c1, . . . , cn)
T : Tag Set (t0, t1, . . . , tm)

Output: New Tag Set T
1: T ← ∅
2: Tsc ← ∅
3: for each c ∈ C do
4: for each t ∈ Dc(c) do
5: Tsc[t] ← Score(t, c) + Tsc[t]
6: end for
7: end for
8: for each t ∈ T do
9: for each t ∈ Dt(t) do
10: if t ∈ Tsc then
11: Tsc[t] ← Tsc[t] × co − occurrence(t, t)
12: end if
13: end for
14: end for
15: T ← ExtractTags(Tsc)
16: return T

Fig. 1. Pseudocode

4 Distributed Calculation

This section describes our distributed calculation system. Our categorization
algorithm creates a table that contains scores. The number of elements in the
table is the number of comments times the number of categories. Therefore, if
the number of categories and comments increases, the table size will become
large. If the table size exceeds the memory size of the calculation machine, it
leads to memory swapping. As a result, the calculation time will become long.

We have the data as a set of files. Our distributed calculation divides the set
of files into some small sets and allocates the sets to the calculation nodes. Each
node calculates the scores for the allocated data and creates a table of the scores.
Therefore, our system has two steps, the dividing step, and the calculation step.

4.1 Dividing Step

Figure 2 shows an overview of our dividing step. There is one master node. The
calculation nodes at the bottom are same as those in the upper part. Therefore,
there are four calculation nodes. The master node contains the data as many files.
The master node distributes the files to the calculation nodes. Each calculation
node divides the data into small slots.

Figure 3 shows the reason. The calculation node receives the data as a file.
Therefore, each node has different files. However, each file includes several terms.

94 M. Kohana et al.

Fig. 2. Distributed calculation

A term may exist in the several files. As a result, a term exists in several tables
in some calculation nodes. In this figure, term 1 and term 7 exist in both nodes
1 and 2. At the estimation step, our algorithm estimates a missing tag based on
the term included in a document. When we estimate tags related to term 1 and
term 2, we need to access node 1 and node 2. Therefore, we expect the score
information for a term exists in the one node.

To divide the file into slots, we use the Fowler–Noll–Vo (FNV) hash function.
The FNV is a non-cryptographic hash function. We determine the slot by the
hash value modulo the number of nodes. Figure 4 shows an example of the divi-
sion. There are six terms. First, we calculate the FNV hash values of the terms.
After that, we would like to divide the terms into four slots. Therefore, we calcu-
late the value modulo the number of slots. Then, the node distributes the slots
to the other calculation nodes. In this figure, “system” has slot number 0. The
terms “computing,” “web,” and “mining” have slot number 1. The “distributed”

File Assignment Control for a Web System of Contents Categorization 95

Fig. 3. Duplication problem

and “text” have slot number 2. Thus, we have divided the six terms into three
slots. As a result, the score information for a term exists in one calculation node.

After dividing the data into slots, each calculation node distributes the slot
to the appropriate node. At this time, the information for one term is in only
one calculation node. When the calculation nodes receive files, the master node
also sends the tag information for the file. Therefore, all the calculation nodes
have the information about the tags. A calculation node can calculate the score
of a term using the term information and the tag information. Each calculation
node calculates the score for each term and creates a table of scores. Since we
have divided the terms into slots and distributed the slots, the term information
exists in only one calculation node. As a result, the score information for a term
now exists in only one table.

In the estimation step, the master node collects the scores for the terms
included in the file. At this time, the master node needs to collect scores from
the calculation nodes. The master node also calculates the FNV hash value of
each term to find out which node has the score for that term. Then, the master
node retrieves the score from the appropriate node.

5 File Size Control

This section describes the parallelization on a Web browser and file size control.
Most of the calculation time is used in calculating the score. However, the divid-
ing step also takes some calculation time. As we would like to provide this cat-
egory estimation process as a Web system, we focus on the computing resource
of the Web browser. A user uploads the data file to the master node. Then,
the master node and the calculation nodes create the tables with the scores.
However, if we can preprocess the dividing step on the user’s Web browser, we
can use the computing resource of the browser and reduce the quantity of data
because the dividing step removes the duplicate terms.

96 M. Kohana et al.

Fig. 4. Fowler–Noll–Vo (FNV) hash example

To achieve the parallelization on a Web browser, we use Web Workers. Web
Workers is a way to run JavaScript code in background threads. W3C defines
the API specification. A worker thread cannot handle a user interface. However,
the thread runs independently of the user interface. In addition, the thread can
handle an AJAX (Asynchronous JavaScript + XML) connection. Furthermore,
we can use the JavaScript File API. This API can read/write local files using
JavaScript.

Our system provides a Web page to upload data. Therefore, the JavaScript
code on the page can retrieve the data included in the local files. We assume
that a user uploads multiple files. Therefore, our system needs to handle multiple
files. Our JavaScript code reads the files. The code sends some of the files to the
master node, while the code preprocesses the other files on the Web browser.

Figure 5 shows an overview of our parallelization on a Web browser. The Web
page receives the multiple files from the user. The browser calculates scores for
some of the files using the Web Workers threads. These threads run the dividing
step, which means that the browser reads the contents of the file and divides the
set of terms into several slots. On the other hand, the browser sends the other
files to the master node. For this, our system uses XMLHttpRequest, which
is an AJAX technology. This technology allows the JavaScript code to perform
asynchronous communication with the Web server. As AJAX is an asynchronous
communication, the communication can run in parallel. The browser can send
multiple files to the master node simultaneously.

We understood that we could use the computing resource of a Web browser
for the dividing step. However, we also understood that the time needed for file
transfer can become a significant problem. Figure 6 shows the average calculation
time for the dividing step according to the number of worker threads. This result
shows that the calculation time does not decrease despite increasing the number

File Assignment Control for a Web System of Contents Categorization 97

Fig. 5. Web browser parallelization

 0

 10000

 20000

 30000

 40000

 50000

 60000

4 8 12 16 20 24 28

A
ve

ra
ge

 C
al

cu
la

tio
n

T
im

e
(m

se
c)

Number of Workers

Fig. 6. Calculation time for dividing step

98 M. Kohana et al.

Usage of File API

<body>

<form>

<input type="file" id="file">

</form>

<script>

document.getElementById("file")

.addEventListener("change", function (e) {

files = e.target.files;

console.log(files);

});

</script>

</body>

Fig. 7. Usage of file API

Content of File Object

File

lastModified: 1535730620000

name: "sample.txt"

size: 13082

type: "text/plain"

Fig. 8. File object

of worker threads. Furthermore, the calculation time is the longest when the
number of threads is 12. We consider that one of the reasons for this is the file
transfer time. We have many files, and the sizes of the files are inconsistent. If
our system sends a large file to the master node, the file transfer time becomes
longer. On the other hand, if the browser performs the preprocessing for the
large file, the file size decreases because the preprocessing removes the duplicate
terms. Therefore, we introduce a way to send small files to the server and perform
the preprocessing of the large files on the Web browser.

As mentioned above, we can use the File API. The File API allows JavaScript
code to read/write a local file. The API also checks the metadata of the file.
Figure 7 shows an example of the File API. This example shows the contents of
a FileList object. The FileList object contains a list of the files that were selected
in the input element of the HTML code. Figure 8 shows the contents of a file
object. The FileList object contains the file information as file objects. The file
object contains the file name, the modification time, the file size, the file type,
and similar information.

File Assignment Control for a Web System of Contents Categorization 99

The user uploads the files using the Web page. At this time, the user chooses
the files using the input form. Our JavaScript code retrieves the file information
as a FileList object. Therefore, we can check the file information by the file
object. To control the file assignment, we sort the list of the files by the file size.

We would like to assign the large files to the Web browser and to assign the
small files to the master node. Figure 9 shows an overview of the file assignment
process. We use the Web Workers to run worker threads on a Web browser and
use the XMLHttpRequest (XHR), which is an AJAX communication, to send
data to the master node. In this figure, there are four worker threads and three
XHR connections. There are also ten files. The larger files are on the left, and the
smaller files are on the right. The worker threads choose the files from the left
side. The XHR connections choose the files from the right side. When a thread
or connection has completed a task, it chooses the next file. Worker 1 picks up
file E when the worker has completed the task for file A. On the other hand,
XHR 1 picks up file G when it has completed the task for the file J. As a result,
the worker threads process the larger files, and the XHR connections process
the smaller files. Therefore, the file transfer is needed only for the smaller files,
which means that we can reduce the file transfer time.

6 Experimental Results

This section shows our experimental results. To evaluate our file assignment, we
measured the calculation time for the dividing step.

We used a part of the Nico Nico Dataset. The dataset includes 1625 files,
which have 2,547,980 comments. The minimum file size is 361 bytes and the
maximum file size is 24,741,502 bytes. The average file size is 214,358 bytes.
Table 1 shows the runtime environment of the client machine, and Table 2 shows
the runtime environment of the server machine. The Web browser on the client
machine used four worker threads.

Fig. 9. File trace

100 M. Kohana et al.

Table 1. Client runtime environment

OS macOS High Sierra 10.13.1

CPU Intel Core i5 3.2 GHz

RAM 32 GB 1867 MHz DDR3

Web Browser Safari 11.1.2

Figure 10 shows the average calculation time for the dividing step. We used
three patterns of file assignment and ran each pattern ten times. All the patterns
already sorted the list of the files. The x-axis indicates the assignment pattern.
The y-axis indicates the average calculation time in milliseconds. The random
pattern assigns the file randomly. In this pattern, both the worker threads and
the XHR connections choose a file from the left side of the list, which means
that the system processes the small files, and then, it processes the large files.
In the lbss pattern, the worker threads choose a file from the large files located

Table 2. Server runtime environment

OS Fedora Server 25

CPU Intel Core i5 2.7 GHz

RAM 8 GB 2400 MHz DDR4

Compiler Go 1.11

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

random lb-ss sb-ls

A
ve

ra
ge

 C
al

cu
la

tio
n

T
im

e
(m

se
c)

Assignment Pattern

Fig. 10. Average calculation time

File Assignment Control for a Web System of Contents Categorization 101

 0

 20000

 40000

 60000

 80000

 100000

random lbss sbls

A
ve

ra
ge

 C
al

cu
la

tio
n

T
im

e
(m

se
c)

Assignment Pattern

Fig. 11. Dispersion of calculation times

at the left side of the file list, while the XHR connections choose a file from the
small files located at the right side of the list. In the sbls pattern, the worker
chooses the smaller files, while the XHR connections choose the larger files.
Therefore, in this pattern, the master node processes the larger files, and the
Web browser processes the smaller files. In the result, the lbss pattern has the
shortest calculation time, whereas the sbls pattern has the longest time. This
result shows that the file transfer time becomes a significant problem if the Web
browser sends the large files to the master node. Therefore, our system should
process the large files on the Web browser.

Figure 11 shows the dispersion of the calculation time for each pattern. We
used the same patterns as for the average calculation time. In this figure, the
random pattern has the most variation. On the other hand, the lbss pattern
does not have any variation; the calculation time for lbss is constant. The sbls
pattern has a little variation.

7 Conclusion

This paper shows a way to avoid longer file transfer times in a Web applica-
tion for content categorization. We proposed a system to estimate missing tags
of a document using the contents of the document and the categories already
added. However, our algorithm uses many memory sizes, which leads to memory
swapping. Memory swapping leads to the longer calculation times. Therefore,
we proposed a distributed Web system to divide the data into small tables. In
this case, the file transfer time becomes a problem. We can reduce the file size
using preprocessing on the Web browser. In this study, we controlled the file’s

102 M. Kohana et al.

assignment to the master node or the Web browser based on the size of the
files. According to the experimental results, we should assign the larger files to
the Web browser while assigning the smaller files to the master node. By the
controlling the file assignment, we can reduce the file transfer time.

References

1. Brazil Ltd. http://razil.jp
2. Dowango Co., Ltd. http://dwango.co.jp/english/index.html
3. Nico Nico Dataset. http://www.nii.ac.jp/dsc/idr/nico/nico.html
4. Nico Nico Douga. http://www.nicovideo.jp
5. Balkir, A.S., Foster, I., Rzhetsky, A.: A distributed look-up architecture for text

mining applications using MapReduce. In: The 20th International Symposium on
High Performance Distributed Computing (HPDC 2011), pp. 279–280, November
2011

6. Bouanaka, M.A., Benmerzoug, D., Zarour, N.: Bio-inspired-based approach for web
services classification. Int. J. Space Based Situated Comput. 6(3), 173–182 (2016)

7. Bouramoul, A.: Contextualisation of information retrieval process and document
ranking task in web search tools. Int. J. Space Based Situated Comput. 6(2), 74–89
(2016)

8. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley-Interscience,
New York (1991)

9. John, P.M., Arockiasamy, S., Thangiah, P.R.J.: A personalised user preference and
feature based semantic information retrieval system in semantic web search. Int.
J. Grid Util. Comput. 9(3), 256–267 (2018)

10. Kohana, M., Sakaji, H., Kobayashi, A., Okamoto, S.: A distributed calculation
scheme for contents categorization. In: 2017 IEEE 31st International Conference
on Advanced Information Networking and Applications (AINA 2017), pp. 614–620,
March 2017

11. Kohana, M., Sakaji, H., Kobayashi, A., Okamoto, S.: A parallel calculation method
on web browser for contents categorization. In: 2018 IEEE 32nd International
Conference on Advanced Information Networking and Applications Workshops
(WAINA 2017), pp. 40–44, May 2018

12. Machová, K.: Opinion analysis of texts extracted from the social web contributions.
In: Nguyen, N.T. (ed.) Transactions on Computational Collective Intelligence XII.
LNCS, vol. 8240, pp. 42–68. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-53878-0 3

13. Okamoto, S., Kohana, M.: Load distribution by using web workers for a real-time
web application. Int. J. Web Inf. Syst. 4(7), 381–395 (2011)

14. Sakaji, H., Kohana, M., Kobayashi, A., Sakai, H.: Estimation of tags via comments
on Nico Nico Douga. In: The 5th International Workshop on Web Services and
Social Media (WSSM 2016), pp. 550–553, September 2016

15. Urakawa, M., Miyazaki, M., Yamada, I., Fujisawa, H., Nakagawa, T.: A study about
integrating video contents with web services based on the RDF. Int. J. Space Based
Situated Comput. 6(2), 65–73 (2016)

16. Wang, J., Wu, S., Vu, H.Q., Li, G.: Text document clustering with metric learning.
In: The 33rd International ACM SIGIR Conference on Research and Development
in Information Retrieval, pp. 783–784 (2010)

http://razil.jp
http://dwango.co.jp/english/index.html
http://www.nii.ac.jp/dsc/idr/nico/nico.html
http://www.nicovideo.jp
https://doi.org/10.1007/978-3-642-53878-0_3
https://doi.org/10.1007/978-3-642-53878-0_3

Byzantine Collision-Fast Consensus
Protocols

Rodrigo Saramago1, Eduardo Alchieri2, Tuanir Rezende3,
and Lasaro Camargos4(B)

1 MonteLabs, Braśılia, Brazil
2 Departamento de Ciência da Computação, Universidade de Braśılia, Braśılia, Brazil

3 Telecom SudParis, Évry, France
4 Faculdade de Computação, Universidade Federal de Uberlândia,

Santa Mônica, Brazil
lasaro@ufu.br

Abstract. Atomic broadcast protocols are fundamental building blocks
used in the construction of many reliable distributed systems. Atomic
broadcast and consensus are equivalent problems, but the inefficiency
of consensus-based atomic broadcast protocols in the presence of colli-
sions (concurrent proposals) harms their adoption in the implementa-
tion of reliable systems, as the ones based on state machine replication.
In the traditional consensus protocols, proposals that are not decided
in some instance of consensus (commands not delivered) must be re-
proposed in a new instance, delaying their execution. Moreover, whether
different values (commands) are proposed in the same instance (leading
to a collision), some of its phases must be restarted, also delaying the
execution of these commands involved in the collision. The CFABCast
(Collision-Fast Atomic Broadcast) algorithm uses m-consensus to decide
and deliver multiple values in the same instance. However, CFABCast is
not byzantine fault-tolerant, a requirement for many systems. Our first
contribution is a modified version of CFABCast to handle byzantine fail-
ures. Unfortunately, the resulting protocol is not collision-fast due to the
possibility of malicious failures. In fact, our second contribution is to
prove that there are no byzantine collision-fast algorithms in an asyn-
chronous model as traditionally extended to solve consensus. Finally, our
third contribution is a byzantine collision-fast algorithm that bypasses
the stated impossibility by means of a USIG (Unique Sequential Identi-
fier Generator) trusted component.

1 Introduction

Atomic Broadcast (ABCast) is a fundamental building block used in the con-
struction of many modern fault-tolerant distributed systems since it ensures that

This study was financed in part by the Coordenaição de Aperfeiçoamento de Pessoal
de Nı́vel Superior - Brasil (CAPES) - Finance Code 001, PVE CAPES 88881.062190/
2014-01.

c© Springer-Verlag GmbH Germany, part of Springer Nature 2019
N. T. Nguyen et al. (Eds.): TCCI XXXIII, LNCS 11610, pp. 103–127, 2019.
https://doi.org/10.1007/978-3-662-59540-4_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-59540-4_6&domain=pdf
https://doi.org/10.1007/978-3-662-59540-4_6

104 R. Saramago et al.

messages broadcast to a set of processes are delivered at these process in the same
total order. For example, State Machine Replication (SMR) is a known technique
to implement fault-tolerant services [29,35] and can be “easily” implemented by
using some ABCast protocol to reliably and totally ordered deliver events to all
non-faulty processes in a distributed system, allowing them to execute the same
sequence of transitions in their deterministic state machines.

ABCast is equivalent to the consensus problem [14,18,34], which allows a
set of process to decide the same value out of a set of proposed values, reaching
agreement that is a fundamental property of consensus protocols. ABCast can
be reduced to consensus in the following way: let there be a totally ordered set
of infinitely many consensus instances; to broadcast a message, propose it in the
first instance, w.r.t. such total order, for which a decision is not yet known; the
decision of the i th instance is the i th message in the deliver sequence.

Traditional consensus protocols demand three communications steps to
decide some value in a system prone to only crash failures [30]. Considering a sys-
tem subject to byzantine failures, four communication steps are necessary [12].
Trying to improve these protocols allowing the decision to be taken in few com-
munication steps, fast consensus protocols for crash [32] and byzantine [40] fail-
ure models are able to decide in two communication steps, matching the lower
bounds for asynchronous distributed consensus [33]. However, these protocols
only maintain optimality in executions without collisions, i.e., when there are
not different values being proposed in the consensus instance. Consequently, the
previously described reduction of ABCast to consensus is problematic in that
only one message proposed in a consensus instance is decided. The remaining
ones must be proposed again, in new instances, until successfully delivered, cre-
ating a backlog of messages and increasing their delivery latency. Moreover, if
different messages are proposed in the same instance, phases of these protocols
must be restarted and, consequently, they demand more than two communica-
tion steps to finish.

Trying to circumvent this limitation, collision-fast protocols [51] allow con-
currently different proposed messages (collision) to be delivered within the opti-
mum latency of two communication steps (fast), without the need for retrying
in new consensus instances. However, the known algorithms in this class have
drawbacks such as limiting the size of the process set [33], becoming non-fast
after a failure and until a restart happens [39], or requiring synchronized clocks
in order to be fast [21]. Another important limitation of the previously men-
tioned collision-fast algorithms is their inability to handle byzantine failures, a
limitation studied in a prior version of this work [49]. The difficulty in being
fast and byzantine fault-tolerant (BFT) stems from having to trust a process
because there is no time to verify whether the information it sent is correct or
not. Another important observation regarding these protocols is that they were
devised to partially synchronous systems, the minimum level of synchronism
need to solve distributed consensus [22].

Contributions. This paper extends these previous results, notably [49], by try-
ing to answer the following question: “How byzantine collision-fast consensus

Byzantine Collision-Fast Consensus Protocols 105

can be solved in a partially synchronous distributed system?”. In answering this
question, this paper presents the following contributions:

– It proposes and details a byzantine variation of a collision-fast ABCast pro-
tocol [51] that tolerates f < n/5 failures, out of n processes. We call this
protocol as byzantine m-consensus since it is able to handle collisions but it
is not fast (and neither collision-fast) demanding three communication steps
to finish.

– It presents the full proof that no protocol can be byzantine and collision-fast
in an asynchronous model extended with partial synchronism as traditionally
done (e.g., with unreliable failure detectors [14]).

– It proposes and details a collision-fast atomic broadcast protocol that tol-
erates up to f < n/2 byzantine failures. We bypass the previously com-
mented impossibility by extending the system model with a trusted Unique
Sequential Identifier Generator [54] to constraint malicious actions. The
resulting protocol, called USIG based byzantine Collision-Fast protocol or
USIG-BCFABCast, is an extension of the crash-stop Collision-Fast Atomic
Broadcast protocol [51].

Impact of the Proposed Protocols. The importance of consensus protocols is
well-known in the distributed system community and it is expressed both in the
theoretical and practical fields. Regarding the theory, a very impressive amount
of papers proposed consensus protocols ([1,4,5,12,19,28,43,47,49], just to cite
a few recent work). Concerning practical aspects, consensus protocols (or repli-
cated services built over a state machine replication that uses an underlying
consensus protocol for atomic requests delivery) has been successfully used in
many commercial systems such as Google Spanner [16], Apache Zookeeper [27],
Windows Azure Storage [10], MySQL Group Replication [42] and Galera Clus-
ter [25]. Moreover, consensus protocols could be used in many new different
contexts such as peer-to-peer systems [2,37,38,44,52,53,56], cloud comput-
ing [6,7,20,36,41,45,46,57] and Blockchain [3,9,23,26,48,55].

Paper Organization. The remainder of this work is organized as follows. Section 2
presents some preliminary background, while Sect. 3 discusses the related works.
Section 4 presents a byzantine variation of the CFABCast protocol. Section 5
proves that it is impossible to solve byzantine CFABCast in a non-synchronous
system. Section 6 presents a collision-fast atomic broadcast protocol that uses
USIG to constraints malicious actions. Conclusions are presented in Sect. 7.

2 Background

2.1 System Model

In this paper, as in [30], agreement problems are specified in terms of the roles
played by the protocol agents. For example, in consensus there are the following
three main roles, which are a constant in multiple agreement problems:

106 R. Saramago et al.

– proposers (P), propose values;
– acceptors (A), choose a value as the decision; and,
– learners (L), learn the chosen value.

The system is asynchronous, i.e., there are no bounds to communication
delay and to the time it takes agents to perform computation. Messages can be
indefinitely delayed or duplicated, but the communication channels are fair, in
the sense that if sender and receiver are correct (non-failed) and the message is
repeatedly sent, then it is eventually delivered.

An agent fails by performing arbitrary and unspecified actions (byzantine
failures). While any number of proposers or learners are allowed to fail, only
up to f acceptors can do so. The value of f varies in our protocols depending on
assumptions about the system.

Finally, it is assumed that each agent is assigned a pair of public and pri-
vate keys used to sign and verify messages and, therefore, messages cannot be
undetectably corrupted, forged or repudiated. A message m signed by an agent
x is noted 〈m〉x . Messages that fail the verification are used as proof of misbe-
havior to remove an agent from the system; this handling is omitted from the
protocols to simplify their presentation. In due time we will further extend the
model to overcome the impossibility of an atomic broadcast algorithm to be both
collision-fast and byzantine fault tolerant.

2.2 Atomic Broadcast

Algorithms for atomic broadcast ensure that messages broadcast by proposers
are eventually delivered by all learners alive, in the same order. As in [31] we
phrase the problem as the agreement on an ever-growing sequence of broadcast
messages, of which learners learn increasing prefixes. Hence, atomic broadcast
can be defined by the following properties, where delivered [l] is the sequence of
messages delivered by learner l ∈ L, initially empty, and � represents the prefix
operator between sequences.

– Non-triviality: ∀l ∈ L, delivered [l] contains only broadcast messages and no
duplicates.

– Stability: ∀l ∈ L, if delivered [l] = s at some time, then s � delivered [l] at all
later times.

– Consistency: ∀l1, l2 ∈ L, either delivered [l1] � delivered [l2] or delivered [l2] �
delivered [l1].

2.3 Fast and Collision-Fast Delivery

Many consensus algorithms take three communication steps from proposal to
decision of values. One such protocol, Paxos, was later optimized to reach a
decision in two steps in a variant labeled Fast-Paxos. Following this nomencla-
ture, consensus protocols have been called classic and fast if they take three or
two steps from proposal to decision, respectively [33].

Byzantine Collision-Fast Consensus Protocols 107

In (classic) Paxos, proposals are sent to a coordinator agent, from which
it takes two communication steps to decision. Hence, from such coordinator’s
viewpoint, the protocol is fast. In Fast Paxos, proposers bypass the coordinator
to reduce the time to decision and, hence, the protocol is fast for all proposers.
Such an approach, however, may lead to multiple proposals being issued con-
currently and, for not having the coordinator to serialize, to a protocol halt. At
this point, recovery measures taking multiple communication steps are required
to resume progress. Such concurrent proposals event is called a collision. A pro-
tocol is collision-fast if it is fast even in the presence of collisions [33]. As atomic
broadcast is reducible to consensus [13], with one consensus decision leading to
one message deliver, labels fast and collision-fast have also been applied to the
time it takes an atomic broadcast protocol to deliver a message.

2.4 M-Consensus

M-Consensus is a variant of consensus in which multiple values get decided within
a single instance [51]. Schmidt et al. [51] presented a collision-fast M-Consensus
algorithm and showed how to reduce atomic broadcast to M-Consensus, explor-
ing the fact that multiple values are decided within a single instance, achieving
a collision-fast atomic broadcast [51], that is, one in which multiple messages get
delivered within two communication steps, even when proposed concurrently.

The M-Consensus problem is defined in terms of a set CF ⊆ P of pro-
posers for which we want collision-fast delivery, value-mappings structures
(v-map) mutable functions from a subset of CF ⊆ P , to the set of proposable
values Cmd plus Nil . Let a v-map whose domain equals the set CF be called
complete and one whose image equals {Nil} be called trivial. Let an append to
a v-map be the inclusion of some process p ∈ CF to the v-map’s domain. Let s
be a prefix of r (and r be an extension of s), denoted by s � r , iff r can be gen-
erated from s by a series of append operations. Finally, we say that two v-maps
are compatible if they can be extended to a common v-map (they are prefixes
to a larger v-map). Then, M-Consensus is defined by the following properties,
being learned [l] the v-map currently learned by learner l :

– Nontriviality: ∀l ∈ L, learned [l] is always a nontrivial proposed value-
mapping.

– Stability: ∀l ∈ L, if learned [l] = s at some time, then s � learned [l] at all
later times.

– Consistency: The set of learned value-mappings is always compatible and
nontrivial.

– Liveness: For any proposer p ∈ P and learner l ∈ L, if p, l and a quorum of
acceptors are non-faulty and p proposes a value, then eventually learned [x]
is complete.

At the beginning of the instance, acceptors agree on an empty v-map ⊥,
which is a valid prefix for any other v-map. As they receive proposals map-
ping a single p ∈ CF to a value, they append such proposals to their accepted

108 R. Saramago et al.

v-maps and notify the learners, which, in turn, learn about agreed extensions
and incorporate them into their learned v-map. Consistency ensures that all
currently learned values can be extended to a common v-map that satisfies the
nontriviality property, even if they differ during the execution of the protocol.
Eventually, all correct learners learn the same complete v-map.

It is possible to reduce ABCast to M-Consensus [51], obtaining a protocol
in which all messages broadcast by processes in CF are delivered within two
communication steps in runs with no failures. Hence, processes in CF are labeled
collision-fast proposers and, the protocol, collision-fast atomic broadcast. While
CF could equal P , we advise that only a subset of trustworthy proposers should
be in CF , as proposers in CF will be expected to take part in the protocol and
their inability to do so could prevent others from fast delivering.

3 Related Works

In this section we review algorithms that form the basis for our work.

3.1 Paxos

Paxos [30] is a consensus protocol widely used in the industry (e.g., Chubby Lock
Service [8]). In Paxos, proposals are sent by clients (or proposers) to an elected
proposer, the coordinator. This agent forwards the proposal to acceptors, who
accept or refuse them, according to the protocol, and notify the learners. Hence,
if a regular proposer is proposing, it takes three communication steps to reach a
decision; if the coordinator itself is proposing, then it takes two, which is called
fast. Paxos tolerates f < n/2 acceptor crash failures.

Fast Paxos [32] lets any proposer be a “fast” proposer and propose directly
to the acceptors, at the price of decreasing f such that f < n/3. If multiple fast
proposers do so in parallel, the protocol may get stuck and need recover, not
delivering any message due to such collision. collision-fast algorithms decide in
two steps even under collision [33]. However, in these protocols a single proposal
is decided and in the classical reduction from atomic broadcast to consensus,
colliding proposals need to be re-proposed, increasing their latency and possibly
creating an ever increasing message backlog.

The protocol proposed by [51] (Sect. 3.2) uses M-Consensus instead of con-
sensus in the reduction, allowing multiple proposals to be decided and delivered
within a single instance, resulting in collision-fast atomic broadcast that tolerates
f < n/2 crash failures.

None of these protocols is byzantine fault-tolerant (BFT), but there are vari-
ants able to deal with malicious replicas (e.g., BFT Paxos [12] and BFT Fast
Paxos [40]). Usually, these protocols need more replicas than their non-byzantine
counterparts. The protocol presented in Sect. 6 is the only one we are aware of
that tolerates byzantine failures and is collision-fast. Table 1 summarizes several
characteristics of the protocols discussed so far.

Byzantine Collision-Fast Consensus Protocols 109

Table 1. Considering up to f failures, the lines represent: number of communication
steps to reach agreement; number of replicas playing the role of acceptors; quorum size;
type of failure tolerated; need for secure component; and the indication whether the
protocol is fast and/or allows collisions.

Paxos Fast

Paxos

CFPaxos BFT Paxos BFT Fast

Paxos

Byz.

M-Consensus

(Sect. 4)

USIG-

BCFPaxos

(Sect. 6)

#steps 3 2 2 4 2 3 2

#acceptors 2f + 1 3f + 1 2f + 1 3f + 1 5f + 1 5f + 1 2f + 1

Quorum size f + 1 2f + 1 f + 1 2f + 1 4f + 1 4f + 1 f + 1

Failure Crash Crash Crash Byzantine Byzantine Byzantine Byzantine

Component – – – – – – USIG

Is it fast? No Yes Yes No Yes No Yes

Allows collisions? No No Yes No No Yes Yes

Algorithm 1. Collision-fast Atomic Broadcast (CFABCast) [51]
I : the set of all Collision-fast Paxos instances used

CFP(i)!A: the action or variable A of Collision-fast Paxos instance i

1: Propose(p,V)
Δ
=

2: ∀i ∈ I ,CFP(i)!Propose(p,V)

3: NewPhase1a(i, c, r)
Δ
=

4: pre-conditions:

5: c = C (r)

6: crnd[c] < r

7: c believes itself to be the leader
8: c heard of a round r > j > crnd[c] for some instance or CF(crnd[c]) /∈ active[c]

9: actions:
10: CFP(i)!Phase1a(c, r)

11: Phase1a(c, r)
Δ
=

12: ∀i ∈ I ,CFP(i)!NewPhase1a(i, c, r)

13: Phase1b(a, r)
Δ
=

14: ∀i ∈ I ,CFP(i)!Phase1b(a, r)

15: Phase2Start(c, r)
Δ
=

16: ∀i ∈ I ,CFP(i)!Phase2Start(c, r)

17: Phase2Prepare(p, r)
Δ
=

18: ∀i ∈ I ,CFP(i)!Phase2Prepare(p, r)

19: Phase2a(p, r ,V)
Δ
=

20: pre-condition:
21: p has not yet proposed V
22: action:
23: let i = Min([j : CFP(j)!pval[p] = none])

24: CFP(i)!Phase2a(p, r ,V)

25: Phase2b(i, a, r)
Δ
=

26: CFP(i)!Phase2b(a, r)

27: Learn(i, l)
Δ
=

28: CFP(i)!Learn(l)

110 R. Saramago et al.

3.2 Collision-Fast Atomic Broadcast

The Collision-fast Atomic Broadcast (CFABCast) protocol [51] is reproduced in
Algorithm 1. Similarly to the reduction from atomic broadcast to consensus [13],
CFABCast solves infinitely many M-Consensus instances using Collision-fast
Paxos [51] (CFPaxos). Each CFPaxos instance has a unique identifier i and its
actions are prefixed by CFP(i).

Actions in CFABCast mirror those in the underlying CFPaxos instances;
action Propose(p,V), for example, is executed by process p to broadcast message
V and corresponds to executing action Propose(p,V) in all the M-Consensus
instances. We note that this specification does not imply in infinitely many calls
to Propose, because all instances share the variables operated by Propose, and
therefore the action is combined. In essence, the algorithm ultimately choses the
M-Consensus instance with smallest identifier that has not yet proposed and
proposes V in it, which can be seen in action Phase2a.

While further details on the workings of this protocol are found in [50] and
[51], here we stress that it solves ABCast in a collision-fast way because it
relies on CFPaxos, which is collision-fast. In fact, Algorithm 1 is oblivious to the
underlying M-Consensus protocol and we explore this fact to devise a Byzantine
fault tolerant, in the following section.

4 Byzantine M-Consensus

In this section we introduce a CFPaxos extension to deal with byzantine failures.
Such protocol demands three communications steps to reach a decision and,
therefore, is not collision-fast. Nonetheless, it serves as basis for the collision-
fast variant of CFPaxos, described in Sect. 6.

4.1 Overview

As in other Paxos variants, each instance of byzantine m-consensus runs in
rounds coordinated by some process chosen via leader election. We do not spec-
ify a leader election protocol, but alternatives include, for example, rotating the
leader as in PBFT [11]. Figure 1 presents an overview of the protocol normal
case execution, showing the communication steps needed to achieve a complete
v-mapping at the learners. In the presented example, the system is composed by
two collision-fast proposers (CFP0 and CFP1), five acceptors (ACC0 to ACC4)
and one learner (L0).

Whenever a collision-fast proposer wants to propose some value, it must send
a message to the acceptors (to ensure agreement) and to the other collision-fast
proposers that also should make a proposal to ensure termination. In Fig. 1,
CFP0 proposed a value V and CFP1 proposed Nil, since it did not have any
value to propose, through 2a messages in the algorithms below. Acceptors for-
ward these proposals to the learners through messages 2b. Once a quorum of
such messages is received, for each collision-fast proposer, L0 achieves a complete
v-mapping, learning these values. Notice that learning V happens after two com-
munication steps from CFP0 proposing it (CFP0 → ACCx and ACCx → L1), but

Byzantine Collision-Fast Consensus Protocols 111

Fig. 1. Byzantine m-consensus normal case execution.

three communication steps are needed to learn Nil from CFP1 (CFP0 → CFP1,
CFP1 → ACCx , and ACCx → L1). Consequently, the protocol demands three
communication steps, even in the absence of processes misbehaving.

4.2 Protocol

The byzantine m-consensus protocol, split into Algorithms 2, 3 and 4, extend
CFPaxos [51] to prevent malicious behavior of agents. The state kept by pro-
cesses running byzantine m-consensus is described in Algorithm 2. Rounds are

Algorithm 2. Byzantine M-Consensus Variables
Pr , A, L: proposers, acceptors and learners sets;
CF(i): round i’s collision-fast proposers set;

C (i): round i’s coordinator.

prnd[p], crnd[c], rnd[a]: current rounds of proposer p, coordinator c, and acceptor a, respectively,

initially 0.
pval[p]: value p has fast-proposed at prnd[p] or none if p has not fast-proposed at prnd[p], initially

none.
cval[c]: initial v-mapping for crnd[c], if c has queried an acceptor quorum or none otherwise;

initially ⊥ for coordinator of round 0 and none for others.
vrnd[a]: round at which a has accepted its latest value.

vval[a]: v-mapping a has accepted at vrnd[a] or none if no value has been accepted at vrnd[a];

initially none.
learned[l]: v-mapping currently learned by learner l; initially ⊥.

m ⇐ s: received message m from source s

m ⇒ d: send message m to destination d

112 R. Saramago et al.

Algorithm 3. Byzantine M-Consensus Protocol
1: Propose(p,V)

Δ
=

2: pre-condition:
3: p ∈ Pr
4: action:
5: 〈“propose”,V 〉p ⇒ cf ∈ CF(prnd[p])

6: Phase1a(c, r)
Δ
=

7: pre-conditions:

8: c = C (r)

9: crnd[c] < r

10: actions:
11: crnd[c] ← r

12: cval[c] ← none

13: 〈“1a”, r〉c ⇒ A

14: Phase1b(a, r)
Δ
=

15: pre-conditions:
16: a ∈ A
17: rnd[a] < r

18: 〈“1a”, r〉c ⇐ C (r)

19: actions:
20: rnd[a] ← r

21: 〈“1b”, r , vrnd[a], vval[a]〉a ⇒ C (r)

22: Phase2Start(c, r)
Δ
=

23: pre-conditions:

24: c = C (r)

25: crnd[c] = r

26: cval[c] = none

27: ∃Q ⊆ A:
28: Q is a quorum

29: ∀a ∈ Q, 〈“1b”, r , vrnd, vval〉a ⇐ a

30: actions:
31: let 1bs = [m = 〈“1b”, , , 〉a : m ⇐ a ∈ Q]

32: let k = Max([vrnd : 〈“1b”, , vrnd, 〉a ∈ 1bs])

33: let A〈p,v〉 = [a : 〈“1b”, r , k , vval〉a ∈ 1bs ∧ vval[p] = v]

34: let S =
[〈p, v〉 :

∣
∣A〈p,v〉

∣
∣ ≥ 2f + 1

]

35: if S = ∅ then
36: cval[c] ← ⊥
37: 〈“2S”, r , cval[c],msgs〉c ⇒ CF(r)
38: else
39: cval[c] ← �S • [〈p,Nil〉 : p ∈ CF(r)]

40: 〈“2S”, r , cval[c],msgs〉c ⇒ CF(r) ∪ A

divided into two phases: in phase 1 of round r , the coordinator executes action
Phase1a to query the acceptors for previously accepted values; acceptors reply
in action Phase1b and, in action Phase2Start , line 22 of Algorithm3, the coor-
dinator determines if any v-map has possibly been decided in any round r ′ < r ,
using such replies. If no map v has possibly been decided, the coordinator let the
fact be known by the collision-fast proposers of the round, cfproposers (CF(r),
lines 35–37 of Algorithm 3), so they can propose to the acceptors by executing
action Phase2Prepare. Otherwise, if some v has possibly been decided, the coor-
dinator sends v to both collision-fast proposers and acceptors (lines 38–40 of

Byzantine Collision-Fast Consensus Protocols 113

Algorithm 3), so the first will not propose in r and the latter will accept v and
inform the learners.

Algorithm 4. Byzantine M-Consensus Protocol (Continuation)
1: Phase2Prepare(p, r)

Δ
=

2: pre-conditions:

3: p ∈ CF(r)

4: prnd[p] < r

5: 〈“2S”, r , v , proofs〉C(r) ⇐ C (r)

6: goodRoundValue(r,v,proofs)

7: actions:
8: prnd[p] ← r

9: proof [p] ← proofs

10: if v = ⊥ then pval[p] ← none

11: else pval[p] ← v(p)

12: Phase2a(p, r ,V)
Δ
=

13: pre-conditions:

14: p ∈ CF(r)

15: prnd[p] = r

16: pval[p] = none

17: either (V �= Nil ∧ 〈“propose”,V 〉p ⇐ p ∈ Pr)

18: or (V = Nil∧ 〈“2a”, r , 〈q,W 〉, proof 〉σq ⇐ q ∈ CF(r) ∧ W �= Nil)

19: actions:
20: pval[p] ← V

21: if V �= Nil then

22: 〈“2a”, r , 〈p,V 〉, proof [p]〉p ⇒ A ∪ CF(r)
23: else
24: 〈“2a”, r , 〈p,V 〉, proof [p]〉p ⇒ A

25: Phase2b(a, r)
Δ
=

26: let Cond1 =
27: vval[a] = none ∨
28: (〈“2S”, r , v , proofs〉c ⇐ C (r)∧ goodRoundValue(r, v, proofs) ∧v �= ⊥ ∧ vrnd[a] < r)

29: let Cond2 =
30: 〈“2a”, r , 〈p,V 〉, proofs〉p ⇐ p ∈ CF(r) ∧ V �= Nil ∧ goodRoundValue(r, V, proofs)

31: pre-conditions:
32: a ∈ A
33: rnd[a] ≤ r

34: Cond1 ∨ Cond2
35: actions:
36: if Cond1
37: then vval[a] ← v
38: else
39: if Cond2 ∧ (vrnd[a] < r ∨ vval[a] = none)

40: then vval[a] ← ⊥ • 〈p,V 〉• [〈p,Nil〉 : p ∈ Pr \ CF(r)]

41: else vval[a] ← vval[a] • 〈p,V 〉
42: rnd[a] ← vrnd[a] ← r

43: 〈“2b”, r , vval[a]〉a ⇒ L

44: Learn(l)
Δ
=

45: pre-conditions:
46: l ∈ learners
47: ∃Q ⊆ A:
48: Q is a quorum

49: ∀a ∈ Q, 〈“2b”, r , 〉a ⇐ a

50: actions:
51: Q2bVals = {v : 〈“2b”, r , v〉a ⇐ a ∈ Q}
52: w = �Q2bVals

53: learned[l] = learned[l] � w

114 R. Saramago et al.

To prove that it has calculated v correctly and neither ignored nor forged
responses from acceptors, the coordinator includes the responses it got from
acceptors as proof in the messages it sends out. Receivers use such proofs to verify
the computation in function goodRoundValue (lines 6, 28 and 30 of Algorithm 4).

Authorized by the coordinator, a cfproposer will forward proposals, from
regular proposers or itself, in action Phase2a. To prove it is allowed to pro-
pose, the cfproposer forwards to acceptors the authorization received from the
coordinator.

Upon receiving and validating a proposal in action Phase2b, acceptors extend
the v-maps they have previously accepted with the proposal. The proposed value
is associated with the cfproposer in the map and, therefore, only one such value is
allowed in the map. The newly accepted v-map is then forwarded to the learners
which, in turn, combine all the accepted v-maps so that any map that has been
accepted by a quorum of n − f acceptors is learned, in action Learn.

4.3 Fault Tolerance

A fundamental difference between this protocol and CFPaxos is that it needs
more acceptors to tolerate the same number f of failures. This is an intrinsic
cost of dealing with malicious agents. Malicious acceptors could impair the sys-
tem properties, mainly agreement, by forwarding different proposals to different
learners or sending incorrect information during a coordinator change, inducing
the new coordination to make a proposal inconsistent from values previously
learned, breaking agreement. In these cases, it is necessary that the intersections
between quorums contain enough non-faulty acceptors to dwarf the influence of
malicious ones.

4.4 Latency

In CFPaxos, if all cfproposers that have values to propose do so at the same time,
then at the end of two communication steps all such values become part of the a
decision. If p and q are cfproposer and p is the first to propose in a given round
and q does not have a proposal to make, then when q hears about p’s proposal, it
sends a Nil directly to the learners, informing them that it will not propose any
real value. In doing so, it ensures the termination in two communication steps
from p’s viewpoint. This action is safe because in case of any failures, recovery
will ensure that q is mapped to Nil .

If q were byzantine, it could send Nil to the learners at the same time it
proposes some other value w through the acceptors. This way, a learner that
receives the Nil proposal and another who receives w in acceptors’ messages
would decide differently, breaking the Consistency property. To avoid such sce-
narios, byzantine m-consensus (Algorithms 2, 3 and 4) does not allow proposals
of Nil directly to learners. Hence, unless all cfproposers have a proposal and put
them forward at the same time, decision will take three communication steps.

Byzantine Collision-Fast Consensus Protocols 115

4.5 Correctness

The correctness of byzantine m-consensus stems directly from that of CFPaxos
since the modifications introduced here are of two kinds. First, messages carry
extra information, but the original fields are calculated in the same way, and the
extra information is used by receivers to verify the computation that resulted in
said messages; in case of invalid messages, no change to the state shared with
CFPaxos is performed. Second, there is the removal of the Nil proposal path,
disabling the actions that would be performed based on such messages, possi-
bly preventing progress but not violating any correctness properties. Hence, the
changes only restrict the behavior of agents to a smaller set of possible execu-
tions, and a refinement mapping from our algorithm to CFPaxos is straightfor-
ward. We refer the interested reader to the painstaking detailed proof of CFPaxos
[50] for more details.

4.6 Progress

Even though proposers can be Byzantine, they are forced to either propose values
following the protocol specification, to stay silent and be eventually flagged as
uncooperative, or to attempt denial of services attacks, which we do not consider
here since the literature already covers this problem well. As for acceptors, since
they cannot forge messages, they are forced to follow the protocol or stay silent
in order to slow down decision. In either case, the system can still progress since
the number of faulty acceptors is limited. Under such circumstances, non-faulty
learners cannot be prevented from progressing.

5 On the Impossibility of Byzantine Collision-Fast
Atomic Broadcast

It is well known as the FLP result that consensus and atomic broadcast cannot
be deterministically solved in purely asynchronous systems [24]. To circumvent
the impossibility, the model must be extended with some minimum synchronism,
equivalent to the Ω leader election oracle [13]. In this section we argue that any
atomic broadcast algorithm that tolerates byzantine failures of proposers and
concurrent proposals will not be able to decide within two communication steps
even when the asynchronous model has been extended with Ω or equivalent
mechanisms that would make it possible to ensure the eventual termination
in the absence of byzantine failures. This impossibility stems from the need to
validate every proposals at the acceptors, before forwarding them to the learners
and from the assumption that proposers should be provoked before proposing
any value. This is captured by the following theorem.

Theorem 1. Consider an asynchronous system extended with partial synchro-
nism enough to circumvent FLP (e.g., with Ω, Unreliable Failure Detectors or

116 R. Saramago et al.

Globally Stabilizing Time). In this system, it is impossible to solve Atomic Broad-
cast in a quiescent manner and within two communication steps, under the pos-
sibility of collisions and of potentially byzantine proposers, even when they do
not act as such.

Proof. Assume, for the sake of contradiction, that there exists a BCFABCast
(Byzantine Collision-Fast Atomic Broadcast) protocol A that delivers broadcast
messages within two communication steps in the extended asynchronous system
model considered. Because multiple messages may be broadcast in parallel, A
must handle collision while remaining fast. We will show that A admits an
execution e that violates Agreement.

Let A have a set of collision-fast proposers, CFP, of minimal size in the
execution e, i.e., two; this is without loss of generality since it is enough that
A decides only the concurrent proposals made by the agents in CFP to satisfy
collision-fast termination. Since the system is quiescent, there is a time tq after
which no messages will be transmitted in the network unless some proposal is
made by agents in CFP.

Now, let process i ∈ CFP propose at time t > tq . Since i could be byzantine,
proposals cannot be send directly to learners and taken at face value, since differ-
ent values could be sent to different learners, impairing the agreement property
of consensus. Instead, the proposal must be sent to acceptors for certification at
time t + 1 and then forwarded to learners, which receive it at time t + 2, hence
requiring two communication steps for i ’s proposal to be learned. However, at
t+2, learners cannot yet deliver anything since the other process j ∈ CFP could
have issued a concurrent proposal and A is collision-fast. Hence learners must
wait for a proposal from j , i.e., all values are delivered only when they learn one
value from each collision-fast proposer.

Since the system is asynchronous, it is not possible do define a common time
to be used by i and j to issue their proposals. Consequently, j does not know
that i had sent its proposal at time t . Moreover, since the system is quiescent
and considering that j did not issued its proposal yet in the execution e and
that it does not have anything to propose, j will only send a message (with
its abstention from proposing anything) when provoked. Consequently, i must
provoke j by sending it some message upon proposing at time t . The provocation
can be heard, the earliest, at t +1, so j will send its message at such an instant.
Since A is collision-fast, j must send its proposal directly to the learners, that
receive it at t + 2 and must take it as the decision value for j in order to be
able to finish the consensus instance at t + 2, i.e., to complete their v-mapping
at t + 2. Considering that j could be byzantine in the execution e, we have two
cases:

– Case 1 - Learners accept and learn any value proposed directly by j: clearly, in
this case j could send different proposals for different learners, violating the
Agreement property of consensus. Hence, learners cannot learn the proposed
values directly.

– Case 2 - Learners accept and learn only abstentions (Nil) proposed directly by
j: trying to avoid to fall in the previous case 1, learners could consider only

Byzantine Collision-Fast Consensus Protocols 117

abstentions received directly from j . In this case, j could send Nil directly to
some learner l1 but a value v
= Nil to the acceptors that forward it to other
learners. Considering that v is received at l1 after the Nil proposal, l1 decides
by Nil for j while the remaining learners decide by v , violating Agreement
property of consensus. Hence, learners cannot learn Nil proposals directly.

In both cases we reached a contradiction that A solves BCFABCast: learners
cannot trust in the proposals received directly from the collision-fast proposals,
but this is necessary to finish in two communication steps. Consequently, we
conclude that A does not exists. ��

The previous argument can be visualized in Fig. 2, which shows the message
flow of CFPaxos (Fig. 2(a)) and the supposed correct algorithm A (Fig. 2(b)).
While a consistent collision-fast decision is reached on Fig. 2(a) over the proposal
of CFP0 and the abstention of CFP1 that proposed Nil (both L0 and L1 learn the
v-mapping containing V from CFP0 and Nil from CFP1), on Fig. 2(b) A would
allow a malicious collision-fast proposer CFP1 to impair the agreement property
if the learners consider a Nil proposal received directly from the collision-fast
proposers (as argued in Theorem 1, this is necessary to be fast and deliver the
broadcast messages in two communication steps).

(a) CFPaxos - Crash (b) BCFPaxos - Byzantine

Fig. 2. Communication steps needed to achieve a complete v-mapping.

The Agreement property is impaired in the example of Fig. 2(b) in the follow-
ing way. When CFP0 proposed some value V , CFP1 proposes Nil to the learner
L0 and Y through the acceptors, that forward this proposal to the learners but it

118 R. Saramago et al.

arrives at L0 after the Nil proposal received directly from CFP1. Consequently,
L0 learns a v-mapping containing V for CFP0 and Nil for CFP1, while L1 learns
a v-mapping containing V for CFP0 and Y for CFP1, violating the Agreement
property. Notice that L0 also received the proposal Y , but it already decided by
Nil for CFP1. To prevent this from happening, L0 can not consider the Nil pro-
posal coming directly from CFP1, only the proposals sent through the acceptors.
Consequently, one more communication steps is needed and A can not reach a
fast decision and deliver the messages within two communication steps.

6 USIG Based Byzantine Collision-Fast Atomic
Broadcast

In this section we extend the system model with a trusted component to solve
collision-fast atomic broadcast in spite of malicious agents (BCFABCast). First,
we present the USIG component and then the USIG based byzantine collision-
fast Paxos protocol (USIG-BCFPaxos). By using this algorithm instead of
CFPaxos as underlining M-Consensus in Algorithm1, we have a protocol that
demands only two communication steps and, consequently, solves BCFABCast.

6.1 Extending the System Model Using a Trusted Component

The byzantine m-consensus algorithms presented at Sect. 4 may be extended
using a trusted component to circumvent the impossibility described in Sect. 5.
This mechanism ensures a delivery latency of two communication steps instead
of the original three in the presence of a byzantine cfproposer, and also reduces
the number of replicas needed to solves BCFABCast from 5f + 1 to 2f + 1. In
fact, 2f + 1 is the same number of replicas needed to solve the non-byzantine
version of the protocol (CFABCast) [51].

The trusted components normally used to develop byzantine fault-tolerant
protocols have considerable differences in terms of implementation and per-
formance. They can be, mainly, (i) implemented in a distributed fashion, like
Trusted Timely Computing Base (TTCB) [17], (ii) use locally available tamper-
proof components, like Attested Append-Only Memory (A2M) [15]; or (iii) use
local counter-based algorithms that ensures the uniqueness and authenticity of
exchanged messages, like the Unique Sequential Identifier Generator (USIG) [54].

Such mechanisms are implemented in a manner that an attacker cannot com-
promise even if he can compromise the servers hosting them. Thus, it is possible
to build protocols that restrict the actions that a malicious process can execute
without being discovered. In this work, we chose the USIG trusted component
for its simplicity as well as easy of implementation and use in the system [54].

6.2 Unique Sequential Identifier Generator – USIG

The USIG component is a local service present in every agent (process) of the
protocol (proposers, acceptors and learners). Its function is to assign a unique

Byzantine Collision-Fast Consensus Protocols 119

identifier to each message and then sign the message. Identifiers are unique,
monotonic and sequential, for each agent, and these three properties need to be
guaranteed even if the agent is compromised, so this service must be implemented
in a tamper-proof module.

The service interface has two functions [54]:

– createUI(m): returns a USIG certificate that contains an unique identifier UI
and certifies that this identifier was created by this component for message m.
The UI is essentially a reading of the monotonic counter, which is incremented
whenever this function is called. The certification step involves encryption and
can be based on cryptographic hashes or public-key cryptography.

– verifyUI(PK,UI,m): verifies if the unique identifier UI is valid for message m.

When using this component, each process stores the identifiers of the last
messages it received from each other processes. This way it knows the next
expected identifier and constraints the actions of a malicious processes. A mali-
cious process is not able to send different versions of some message at the same
step since their identifiers would be different. Hence, either it sends the same
message to all processes or it does not send anything at all.

There are two ways to implement this component [54], either using hashes
or relying on digital signatures. We adopted the solution with digital signatures
because in this approach the verification could be done outside the trusted com-
ponent by using the associated public key. Moreover, different isolation levels
could be used to deploy this service, as the software-based virtual machines and
the hardware-based TPM (Trusted Platform Module).

6.3 USIG-BCFABCast Protocol

Algorithms 5 and 6 solves the byzantine collision-fast atomic broadcast problem
by using the USIG component to constraint malicious actions and should be used
by Algorithm 1 to solve USIG-BCFABCast (USIG based Byzantine Collision-fast
Atomic Broadcast). The resulting solution needs 2f +1 acceptors to tolerate up to
f malicious failures and only two communication steps to achieve a complete
v-map in runs without failures.

Overview. The main idea is that by appending a unique identifier to the mes-
sages, the collision-fast proposers does not need to send their messages through
the acceptors in case they are going to propose Nil (do not have a value to
propose). Learners trust in a Nil propose received directly from a collision-fast
proposer since it is not able to do a different proposal with the same identi-
fier. Proposals with non Nil values are sent through the acceptors to ensure this
information is used to configure a new round in case a coordinator change occurs.

Figure 3 presents an overview of the protocol normal case execution, showing
the communication steps needed to achieve a complete v-mapping at the learners.
In the presented example, the system is composed by two collision-fast proposers
(CFP0 and CFP1), three acceptors (ACC0, ACC1 and ACC2) and one learner
(L0). In this protocol, the proposals from the collision-fast proposers are sent

120 R. Saramago et al.

Fig. 3. USIG-BCFABCast normal case execution.

to all other processes, through messages 2a, allowing all of them to update
their counters. Consequently, these processes are able to know the expected
next proposal counter for each collision-fast proposer. As commented, the main
difference from the previous protocol is related to the Nil proposals. In this
case, CFP1 send it directly to L1 (although it must send to the other process
too). L1 must receive a quorum of 2b messages from the acceptors to learn the
value V proposed by CFP0 and the Nil proposal from CFP1 to complete the
v-mapping. Notice this happens after two communication steps for both CFP0

(CFP0 → ACCx and ACCx → L1) and CFP1 (CFP0 → CFP1 and CFP1 → L1).

Protocol. In the proposed protocol presented at Algorithms 5 and 6, the phases
to configure a new round are similar to the crash variant in [51]. Our algorithm,
however, needs extra steps to prevent malicious behavior. For example, malicious
coordinators cannot send different values for any given round in 1a messages,
since they cannot produce proof to reconfigure the system by messages 2S for
both values. It is so because messages 2S carry a unique identifier generated by
the USIG service of the coordinator. Consequently, the coordinator is not able
to send different 2S messages to different agents and all of them will receive the
same initial configuration for round r .

Each collision-fast proposer also appends a unique identifier to its proposals
(messages 2a). As already commented, this constraint the malicious actions of a
process that is not allowed to do different proposals. Although these messages are
addressed to all agents (A∪CF (r) ∪L), only the learners execute the proposals
with Nil . This is necessary to allow acceptors and other collision-fast proposers
to increment their counters for the next expected proposal. On the other hand,
learners increment their counters for proposals different of Nil when they receive

Byzantine Collision-Fast Consensus Protocols 121

Algorithm 5. USIG based Byzantine Collision-fast Paxos (USIG-BCFPaxos)
All variables and sets from Algorithm 3
USIGC [c], cnt[c]: USIG used by coordinator c and expected counter value for msgs received from
c, initially 0.
USIGA[a], cnt[a]: USIG used by acceptor a and expected counter value for msgs received from a,
initially 0.
USIGP [p], cnt[p]: USIG used by CF proposer p and expected counter value for msgs received from
p, initially 0.

1: Propose(p,V)
Δ
= lines 2-5 of Algorithm 3

2: Phase1a(c, r)
Δ
= lines 7-13 of Algorithm 3

3: Phase1b(a, r)
Δ
= lines 15-21 of Algorithm 3

4: Phase2Start(c, r)
Δ
=

5: pre-conditions:

6: c = C (r)

7: crnd[c] = r

8: cval[c] = none

9: ∃Q ⊆ A:
10: Q is a quorum

11: ∀a ∈ Q, 〈“1b”, r , vrnd, vval〉a ⇐ a

12: actions:
13: let msgs = [m =〈“1b”, r , vrnd, vval〉a : m ⇐ a ∈ Q]

14: let k = Max([vrnd : 〈“1b”, r , vrnd, vval〉a ∈ msgs])

15: let S = [vval : 〈“1b”, r , k , vval〉a ∈ msgs, vval �= none]

16: if S = ∅ then
17: cval[c] ← ⊥
18: else
19: cval[c] ← �S • [〈p,Nil,Nil〉 : p ∈ CF(r)]

20: UIc ← USIGC [c].createUI(〈“2S”, r , cval[c],msgs〉)
21: 〈“2S”, r , cval[c],msgs,UIc〉 ⇒ CF(r) ∪ A

22: Phase2Prepare(p, r)
Δ
=

23: pre-conditions:

24: p ∈ CF(r)

25: prnd[p] < r

26: 〈“2S”, r , v , proof ,UIC(r)〉 ⇐ C (r)

27: goodRoundValue(r,v,proofs)

28: verifyUI(PKC(r),UIC(r),〈“2S”, r , v , proofs〉)
29: verifyCnt(UIC(r),cnt[C (r)])

30: actions:
31: prnd[p] ← r

32: if v = ⊥ then pval[p] ← none

33: else pval[p] ← v(p)

34: Phase2a(p, r ,V)
Δ
=

35: pre-conditions:

36: p ∈ CF(r)

37: prnd[p] = r

38: pval[p] = none

39: either (V �= Nil ∧ 〈“propose”,V 〉σp ⇐ p ∈ Pr)

40: or (V = Nil ∧ 〈“2a”, r , 〈q,W 〉,UIq〉 ⇐ q ∈ CF(r) ∧
41: verifyUI(PKq ,UIq ,〈q,W 〉) ∧ verifyCnt(UIq ,cnt[q]) ∧W �= Nil)

42: actions:
43: pval[p] ← V

44: UIp ← USIGP [p].createUI(〈p,V 〉)
45: 〈“2a”, r , 〈p,V 〉,UIp〉 ⇒ A ∪ CF(r) ∪ L

122 R. Saramago et al.

Algorithm 6. USIG based Byzantine Collision-fast Paxos (USIG-BCFPaxos)
(Continuation)
1: Phase2b(a, r)

Δ
=

2: let Cond1 =
3: vval[a] = none ∨ (〈“2S”, r , v , proofs,UIC(r)〉 ⇐ C (r)∧
4: verifyUI(PKC(r),UIC(r),〈“2S”, r , v , proofs〉) ∧
5: verifyCnt(UIC(r),cnt[C (r)]) ∧ goodRoundValue(r,v,proofs) ∧
6: v �= ⊥ ∧ vrnd[a] < r)

7: let Cond2 =
8: 〈“2a”, r , 〈p,V 〉,UIp〉 ⇐ p ∈ CF(r) ∧ V �= Nil∧
9: verifyUI(PKp ,UIp ,〈p,V 〉) ∧ verifyCnt(UIp ,cnt[p])

10: pre-conditions:
11: a ∈ A
12: rnd[a] ≤ r

13: Cond1 ∨ Cond2
14: actions:
15: if Cond1
16: then vval[a] ← v
17: else
18: if Cond2 ∧ (vrnd[a] < r ∨ vval[a] = none)

19: then vval[a]← ⊥•〈p,V ,UIp〉 • [〈p,Nil,Nil〉 : p ∈ Pr \ CF(r)]

20: else vval[a]← vval[a] • 〈p,V ,UIp〉
21: rnd[a] ← vrnd[a] ← r

22: UIa ← USIGA[a].createUI(〈“2b”, r , vval[a]〉)
23: 〈“2b”, r , vval[a],UIa〉 ⇒ L

24: Learn(l)
Δ
=

25: pre-conditions:
26: l ∈ learners
27: ∃Q ⊆ A:
28: Q is a quorum

29: ∀a ∈ Q, 〈“2b”, r , ,UIa〉 ⇐ a∧
30: verifyUI(PKa ,UIa ,〈“2b”, r , 〉) ∧
31: verifyCnt(UIa ,cnt[a])

32: actions:
33: let P ⊂ CF(r) : ∀p ∈ P , 〈“2a”, r , 〈p,Nil〉,UIp〉 ⇐ p∧

verifyUI(PKp ,UIp ,〈p,Nil〉) ∧ verifyCnt(UIp ,cnt[p])

34: Q2bVals = [v : 〈“2b”, r , v ,UIa〉 ⇐ a ∈ Q ∧
35: ∀ 〈q,W ,UIq〉 ∈ v : verifyUI(PKq ,UIq ,〈p,W 〉) ∧
36: verifyCnt(UIq ,cnt[q]]

37: w = �Q2bVals • [〈u,Nil,UIu〉 : u ∈ P]

38: learned[l] = learned[l] � w

39: verifyCnt(UIx , cnt[x])
Δ
=

40: if (UIx .cnt = cnt[x]) then

41: cnt[x] ⇐ cnt[x] + 1
42: return true;
43: else
44: return false

them from the acceptors. Notice that identifiers are stored together with their
proposals and every time a new round must be started, this information is sent
to the new coordinator that will send it to the acceptors (messages 2S). The
acceptors forward this information to learners through messages 2b.

Finally, it is worth noticing that acceptors also add unique identifiers to 2b
messages sent to the learners. Consequently, a malicious acceptor is not able to

Byzantine Collision-Fast Consensus Protocols 123

send different messages to different learners without being discovered. In fact,
learners only process a message with the next expected identifier (see the pre-
conditions for Learn).

Correctness. By using the unique sequential identifiers, the proposed protocol
constraints the actions of a malicious agent (coordinator, collision-fast proposer
or acceptor) since it is not allowed to send different versions of some message.
Consequently, the behavior of the agents in the protocol is similar their operation
in the crash model [51], i.e., either a agent sends the same message to all other
processes or does not send anything.

In this way, each collision-fast proposer is allowed to do a single proposal for
some round r . If the proposal is Nil , it is sent directly to the learners; otherwise, it
is sent to the acceptors that store it since a new round may be needed to finish
such consensus instance. Thus, the algorithm needs only two communication
steps to decide, being collision-fast despite malicious agents.

Finally, only 2f +1 acceptors are necessary since they are not able to modify
a proposal coming from a collision-fast proposer or send different version of a
message to different learners. Notice the proposal unique identifier always is sent
together with the proposal.

7 Conclusion

In this work we studied the problem of providing atomic broadcast primitives
in a setup subject to byzantine failures and concurrent proposals (collisions),
while delivering messages in only two communications steps (fast). In summary,
our contributions are threefold: (i) the proposal of an extension to the Collision-
Fast Atomic Broadcast protocol that tolerates byzantine failures, but needs three
communication steps to decide; (ii) the proof that it is not possible to solve
byzantine collision-fast atomic broadcast problem in an asynchronous system,
even when extended in ways that ensure that a decision is achievable in a system
subject to crash failures; and, (iii) the proposal of a protocol that circumvent
this impossibility by enhancing the system model with a trusted USIG service.
As future work we intend to evaluate the performance of the proposed solutions.

Finally, it is important to observe that in these protocols all collision-fast
proposers must issue a proposal and the decision is the combination of such
proposals (the v-mapping). Each of these proposals is forwarded by the accep-
tors to the learners, leading to more messages than in the traditional consensus
algorithms, like Paxos, where only the leader is allowed to propose. Fortunately,
messages for different proposals from different collision-fast proposers could be
sent in parallel and it is necessary fewer communications steps to reach a deci-
sion than in a traditional consensus protocol. Moreover, learners decide by a set
of values (the v-mapping) and not just one, i.e., they deliver a set of broadcast
messages per consensus instance (similar to a batch of messages).

124 R. Saramago et al.

References

1. Abd-El-Malek, M., Ganger, G., Goodson, G., Reiter, M., Wylie, J.: Fault-scalable
Byzantine fault-tolerant services. In: Proceedings of the ACM Symposium on Oper-
ating Systems Principles (2005)

2. Abe, K., Ueda, T., Shikano, M., Ishibashi, H., Matsuura, T.: Toward fault-tolerant
P2P systems: constructing a stable virtual peer from multiple unstable peers. In:
2009 First International Conference on Advances in P2P Systems, pp. 104–110
(2009)

3. Abraham, I., Malkhi, D., Nayak, K., Ren, L., Spiegelman, A.: Solida: a blockchain
protocol based on reconfigurable byzantine consensus. In: Proceedings of the 21st
International Conference on Principles of Distributed Systems (2017)

4. Alchieri, E.A.P., Bessani, A.N., da Silva Fraga, J., Greve, F.: Byzantine consensus
with unknown participants. In: Baker, T.P., Bui, A., Tixeuil, S. (eds.) OPODIS
2008. LNCS, vol. 5401, pp. 22–40. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-92221-6 4

5. Alchieri, E.A.P., Bessani, A., Greve, F., da Silva Fraga, J.: Knowledge connec-
tivity requirements for solving byzantine consensus with unknown participants.
IEEE Trans. Dependable Secur. Comput. 15(2), 246–259 (2018). https://doi.org/
10.1109/TDSC.2016.2548460

6. Benedictis, A.D., Rak, M., Villano, U.: Slas for cloud applications: agreement pro-
tocol and rest-based implementation. Int. J. Grid Util. Comput. 8(2), 120–132
(2017). https://doi.org/10.1504/IJGUC.2017.085910

7. Birman, K., Chockler, G., van Renesse, R.: Toward a cloud computing research
agenda. SIGACT News 40(2), 68–80 (2009). https://doi.org/10.1145/1556154.
1556172

8. Burrows, M.: The chubby lock service for loosely-coupled distributed systems
(2006)

9. Cachin, C., Vukolic, M.: Blockchain consensus protocols in the wild. CoRR
abs/1707.01873 (2017), http://arxiv.org/abs/1707.01873

10. Calder, B., et al.: Windows azure storage: a highly available cloud storage service
with strong consistency. In: Proceedings of the ACM Symposium on Operating
Systems Principles (2011)

11. Castro, M., Liskov, B.: Practical byzantine fault tolerance. In: Proceedings of the
3rd Symposium on Operating Systems Design and Implementation, OSDI 1999,
pp. 173–186. USENIX Association (1999)

12. Castro, M., Liskov, B.: Practical Byzantine fault-tolerance and proactive recovery.
ACM Trans. Comput. Syst. 20(4), 398–461 (2002)

13. Chandra, T.D., Hadzilacos, V., Toueg, S.: The weakest failure detector for solving
consensus. J. ACM 43(4), 685–722 (1996). https://doi.org/10.1145/234533.234549

14. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed sys-
tems. J. ACM 43, 225–267 (1995)

15. Chun, B.G., Maniatis, P., Shenker, S., Kubiatowicz, J.: Attested append-only mem-
ory: making adversaries stick to their word. In: Proceedings of Twenty-First ACM
SIGOPS Symposium on Operating Systems Principles, SOSP 2007, pp. 189–204.
ACM, New York (2007). https://doi.org/10.1145/1294261.1294280

16. Corbett, J., et al.: Spanner: Google’s globally-distributed database. In: Proceedings
of the USENIX Symposium on Operating Systems Design and Implementation
(2012)

https://doi.org/10.1007/978-3-540-92221-6_4
https://doi.org/10.1007/978-3-540-92221-6_4
https://doi.org/10.1109/TDSC.2016.2548460
https://doi.org/10.1109/TDSC.2016.2548460
https://doi.org/10.1504/IJGUC.2017.085910
https://doi.org/10.1145/1556154.1556172
https://doi.org/10.1145/1556154.1556172
http://arxiv.org/abs/1707.01873
https://doi.org/10.1145/234533.234549
https://doi.org/10.1145/1294261.1294280

Byzantine Collision-Fast Consensus Protocols 125

17. Correia, M., Neves, N.F., Verissimo, P.: How to tolerate half less one byzantine
nodes in practical distributed systems. In: Proceedings of the 23rd IEEE Inter-
national Symposium on Reliable Distributed Systems, SRDS 2004, pp. 174–183.
IEEE Computer Society, Washington, DC (2004)

18. Correia, M., Neves, N.F., Veŕıssimo, P.: From consensus to atomic broadcast: time-
free Byzantine-resistant protocols without signatures. Comput. J. 49(1), 82–96
(2006)

19. Cowling, J., Myers, D., Liskov, B., Rodrigues, R., Shrira, L.: HQ-replication:
a hybrid quorum protocol for Byzantine fault tolerance. In: Proceedings of the
USENIX Symposium on Operating Systems Design and Implementation, Novem-
ber 2006

20. DeCandia, G., et al.: Dynamo: Amazon’s highly available key-value store. In: Pro-
ceedings of Twenty-First ACM SIGOPS Symposium on Operating Systems Prin-
ciples - SOSP 2007. ACM Press (2007). https://doi.org/10.1145/1294261.1294281

21. Du, J., Sciascia, D., Elnikety, S., Zwaenepoel, W., Pedone, F.: Clock-RSM: low-
latency inter-datacenter state machine replication using loosely synchronized phys-
ical clocks. In: 44th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, DSN 2014, Atlanta, GA, USA, 23–26 June 2014, pp. 343–
354 (2014). https://doi.org/10.1109/DSN.2014.42

22. Dwork, C., Lynch, N., Stockmeyer, L.: Consensus in the presence of partial syn-
chrony. J. ACM 35(2), 288–323 (1988). http://doi.acm.org/10.1145/42282.42283

23. Eyal, I., Gencer, A.E., Sirer, E.G., Renesse, R.V.: Bitcoin-NG: a scalable blockchain
protocol. In: 13th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 2016), pp. 45–59. USENIX Association, Santa Clara (2016).
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/eyal

24. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus
with one faulty process (1985)

25. Galera Cluster: Minimizing downtime and maximizing elasticity with Galera Clus-
ter for MySQL (2018). http://galeracluster.com/products/#white-papers-case-
studies

26. Gilad, Y., Hemo, R., Micali, S., Vlachos, G., Zeldovich, N.: Algorand: scaling byzan-
tine agreements for cryptocurrencies. In: Proceedings of the 26th Symposium on
Operating Systems Principles, SOSP 2017, pp. 51–68. ACM, New York (2017)

27. Hunt, P., Konar, M., Junqueira, F., Reed, B.: Zookeeper: wait-free coordination
for Internet-scale services. In: Proceedings of the USENIX Annual Technical Con-
ference (2010)

28. Kotla, R., Alvisi, L., Dahlin, M., Clement, A., Wong, E.: Zyzzyva: speculative
Byzantine fault tolerance. ACM Trans. Comput. Syst. 27(4), 7:1–7:39 (2009)

29. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Commun. ACM 21(7), 558–565 (1978). https://doi.org/10.1145/359545.359563

30. Lamport, L.: The part-time parliament. ACM Trans. Comput. Syst. 16(2), 133–169
(1998)

31. Lamport, L.: Generalized consensus and Paxos (2005)
32. Lamport, L.: Fast Paxos. Distrib. Comput. 19(2), 79–103 (2006). https://doi.org/

10.1007/s00446-006-0005-x
33. Lamport, L.: Lower bounds for asynchronous consensus. Distrib. Comput. 19(2),

104–125 (2006). https://doi.org/10.1007/s00446-006-0155-x
34. Lamport, L., Shostak, R., Pease, M.: The byzantine generals problem. ACM

Trans. Program. Lang. Syst. 4(3), 382–401 (1982). https://doi.org/10.1145/
357172.357176

https://doi.org/10.1145/1294261.1294281
https://doi.org/10.1109/DSN.2014.42
http://doi.acm.org/10.1145/42282.42283
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/eyal
http://galeracluster.com/products/#white-papers-case-studies
http://galeracluster.com/products/#white-papers-case-studies
https://doi.org/10.1145/359545.359563
https://doi.org/10.1007/s00446-006-0005-x
https://doi.org/10.1007/s00446-006-0005-x
https://doi.org/10.1007/s00446-006-0155-x
https://doi.org/10.1145/357172.357176
https://doi.org/10.1145/357172.357176

126 R. Saramago et al.

35. Lampson, B.W.: How to build a highly available system using consensus. In:
Babaoğlu, Ö., Marzullo, K. (eds.) WDAG 1996. LNCS, vol. 1151, pp. 1–17.
Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61769-8 1

36. Li, B., He, Y., Xu, K.: Distributed metadata management scheme in cloud com-
puting. In: 2011 6th International Conference on Pervasive Computing and Appli-
cations, pp. 32–38, October 2011. https://doi.org/10.1109/ICPCA.2011.6106475

37. Lin, S.-D., Lian, Q., Chen, M., Zhang, Z.: A practical distributed mutual exclusion
protocol in dynamic peer-to-peer systems. In: Voelker, G.M., Shenker, S. (eds.)
IPTPS 2004. LNCS, vol. 3279, pp. 11–21. Springer, Heidelberg (2005). https://
doi.org/10.1007/978-3-540-30183-7 2

38. Liu, Y., Ozera, K., Matsuo, K., Barolli, L.: An intelligent approach for qualified
voting in P2P mobile collaborative team: a comparison study for two fuzzy-based
systems. Int. J. Space Based Situated Comput. 7(4), 207–216 (2017). https://doi.
org/10.1504/IJSSC.2017.089882

39. Mao, Y., Junqueira, F.P., Marzullo, K.: Mencius: building efficient replicated state
machines for WANs. In: Proceedings of the 8th USENIX Conference on Operating
Systems Design and Implementation, OSDI 2008pp. 369–384. USENIX Associa-
tion, Berkeley (2008)

40. Martin, J.P., Alvisi, L.: Fast byzantine consensus. IEEE Trans. Dependable Secur.
Comput. 3(3), 202–215 (2006). https://doi.org/10.1109/TDSC.2006.35

41. Messina, F., Pappalardo, G., Santoro, C., Rosaci, D., Sarné, G.M.L.: A multi-agent
protocol for service level agreement negotiation in cloud federations. Int. J. Grid
Util. Comput. 7(2), 101–112 (2016). https://doi.org/10.1504/IJGUC.2016.077488

42. MySql Group Replication: Chap. 17 group replication (2018). https://dev.mysql.
com/doc/refman/5.7/en/group-replication.html

43. Nakagawa, T., Hayashibara, N.: Resource management for raft consensus protocol.
Int. J. Space Based Situated Comput. 8(2), 80–87 (2018). https://doi.org/10.1504/
IJSSC.2018.094467

44. Nakamura, S., Duolikun, D., Enokido, T., Takizawa, M.: A read-write abortion
protocol to prevent illegal information flow in role-based access control systems.
Int. J. Space Based Situated Comput. 6(1), 43–53 (2016). https://doi.org/10.1504/
IJSSC.2016.076564

45. Netto, H.V., Lung, L.C., Correia, M., Luiz, A.F., de Souza, L.M.S.: State machine
replication in containers managed by kubernetes. J. Syst. Archit. 73, 53–59 (2017).
https://doi.org/10.1016/j.sysarc.2016.12.007. Special Issue on Reliable Software
Technologies for Dependable Distributed Systems

46. Noor, T.H., Sheng, Q.Z.: Trust as a service: a framework for trust management
in cloud environments. In: Bouguettaya, A., Hauswirth, M., Liu, L. (eds.) WISE
2011. LNCS, vol. 6997, pp. 314–321. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-24434-6 27

47. Ongaro, D., Ousterhout, J.: In search of an understandable consensus algorithm.
In: USENIX Annual Technical Conference, pp. 305–320 (2014)

48. Pass, R., Shi, E.: Hybrid consensus: efficient consensus in the permissionless model.
IACR Cryptology ePrint Archive 2016, 917 (2016)

49. Saramago, R., Alchieri, E.A.P., Rezende, T.F., Camargos, L.: On the impossibility
of byzantine collision-fast atomic broadcast. In: 2018 IEEE 32nd International
Conference on Advanced Information Networking and Applications (AINA). pp.
414–421, May 2018. https://doi.org/10.1109/AINA.2018.00069

50. Schmidt, R., Camargos, L., Pedone, F.: On collision-fast atomic broadcast. Tech-
nical report, SemanticScholar (2007)

https://doi.org/10.1007/3-540-61769-8_1
https://doi.org/10.1109/ICPCA.2011.6106475
https://doi.org/10.1007/978-3-540-30183-7_2
https://doi.org/10.1007/978-3-540-30183-7_2
https://doi.org/10.1504/IJSSC.2017.089882
https://doi.org/10.1504/IJSSC.2017.089882
https://doi.org/10.1109/TDSC.2006.35
https://doi.org/10.1504/IJGUC.2016.077488
https://dev.mysql.com/doc/refman/5.7/en/group-replication.html
https://dev.mysql.com/doc/refman/5.7/en/group-replication.html
https://doi.org/10.1504/IJSSC.2018.094467
https://doi.org/10.1504/IJSSC.2018.094467
https://doi.org/10.1504/IJSSC.2016.076564
https://doi.org/10.1504/IJSSC.2016.076564
https://doi.org/10.1016/j.sysarc.2016.12.007
https://doi.org/10.1007/978-3-642-24434-6_27
https://doi.org/10.1007/978-3-642-24434-6_27
https://doi.org/10.1109/AINA.2018.00069

Byzantine Collision-Fast Consensus Protocols 127

51. Schmidt, R., Camargos, L., Pedone, F.: Collision-fast atomic broadcast. In: Pro-
ceedings of the 2014 IEEE 28th International Conferene on Advanced Information
Networking and Applications, AINA 2014, pp. 1065–1072. IEEE Computer Society,
Washington, DC (2014)

52. Schütt, T., Schintke, F., Reinefeld, A.: Scalaris: Reliable transactional P2P
key/value store. In: Proceedings of the 7th ACM SIGPLAN Workshop on
ERLANG, ERLANG 2008, New York, NY, USA, pp. 41–48 (2008)

53. Valduriez, P., Pacitti, E.: Data management in large-scale P2P systems. In:
Daydé, M., Dongarra, J., Hernández, V., Palma, J.M.L.M. (eds.) VECPAR 2004.
LNCS, vol. 3402, pp. 104–118. Springer, Heidelberg (2005). https://doi.org/10.
1007/11403937 9

54. Veronese, G.S., Correia, M., Bessani, A.N., Lung, L.C., Verissimo, P.: Efficient
byzantine fault-tolerance. IEEE Trans. Comput. 62(1), 16–30 (2013). https://doi.
org/10.1109/TC.2011.221

55. Vukolić, M.: The quest for scalable blockchain fabric: proof-of-work vs. BFT repli-
cation. In: Camenisch, J., Kesdoğan, D. (eds.) iNetSec 2015. LNCS, vol. 9591, pp.
112–125. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39028-4 9

56. Weiss, S., Urso, P., Molli, P.: Logoot: a scalable optimistic replication algorithm
for collaborative editing on P2P networks. In: 2009 29th IEEE International Con-
ference on Distributed Computing Systems, pp. 404–412, June 2009

57. Zhao, W., Melliar-Smith, P.M., Moser, L.E.: Fault tolerance middleware for cloud
computing. In: 2010 IEEE 3rd International Conference on Cloud Computing, pp.
67–74, July 2010. https://doi.org/10.1109/CLOUD.2010.26

https://doi.org/10.1007/11403937_9
https://doi.org/10.1007/11403937_9
https://doi.org/10.1109/TC.2011.221
https://doi.org/10.1109/TC.2011.221
https://doi.org/10.1007/978-3-319-39028-4_9
https://doi.org/10.1109/CLOUD.2010.26

A Methodological Approach for Time
Series Analysis and Forecasting

of Web Dynamics

Maria Carla Calzarossa1(B), Marco L. Della Vedova2, Luisa Massari1,
Giuseppe Nebbione1, and Daniele Tessera2

1 Dipartimento di Ingegneria Industriale e dell’Informazione, Università di Pavia,
Pavia, Italy

{mcc,luisa.massari}@unipv.it, giuseppe.nebbione01@ateneopv.it
2 Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore,

Brescia, Italy
{marco.dellavedova,daniele.tessera}@unicatt.it

Abstract. The web is a complex information ecosystem that provides
a large variety of content changing over time as a consequence of the
combined effects of management policies, user interactions and external
events. These highly dynamic scenarios challenge technologies dealing
with discovery, management and retrieval of web content. In this paper,
we address the problem of modeling and predicting web dynamics in the
framework of time series analysis and forecasting. We present a general
methodological approach that allows the identification of the patterns
describing the behavior of the time series, the formulation of suitable
models and the use of these models for predicting the future behavior.
Moreover, to improve the forecasts, we propose a method for detecting
and modeling the spiky patterns that might be present in a time series.
To test our methodological approach, we analyze the temporal patterns
of page uploads of the Reuters news agency website over one year. We
discover that the upload process is characterized by a diurnal behavior
and by a much larger number of uploads during weekdays with respect to
weekend days. Moreover, we identify several sudden spikes and a daily
periodicity. The overall model of the upload process – obtained as a
superposition of the models of its individual components – accurately
fits the data, including most of the spikes.

Keywords: Web dynamics · Temporal patterns ·
Time series analysis · Forecasting · Performance modeling ·
Search engines · ARMA models

1 Introduction

The web is a huge repository of information that provides users with an enhanced
experience by combining many different content forms, e.g., text, audio, images,
c© Springer-Verlag GmbH Germany, part of Springer Nature 2019
N. T. Nguyen et al. (Eds.): TCCI XXXIII, LNCS 11610, pp. 128–143, 2019.
https://doi.org/10.1007/978-3-662-59540-4_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-59540-4_7&domain=pdf
https://doi.org/10.1007/978-3-662-59540-4_7

Time Series Analysis and Forecasting of Web Dynamics 129

video, animations. This complex information ecosystem is regularly updated to
keep the content fresh and attract at the same time the interest of the users.
New pages are uploaded, existing pages are updated and eventually removed.

All these changes are often the result of combined effects that involve the
management policies of the websites, the behavior of the users as well as exter-
nal events. For example, news websites are generally updated to report the latest
news stories and their developments as well as to keep the websites “alive”. The
changes of social media websites are mainly driven by the activities and inter-
actions of their users who post and share content, add comments and likes.
Corporate websites are periodically updated to advertise and promote the com-
panies and their business and improve customer perception and search engine
rankings.

These highly dynamic scenarios challenge all technologies aimed at discovery,
retrieval and management of web content and in particular search engines. In
fact, to avoid wasting resources, reduce bandwidth usage and server load and
keep web pages fresh, these technologies need to adjust their crawling policies
according to the dynamics of the websites [4,15]. Hence, it is necessary to derive
accurate predictions of the frequency and extent of website changes.

The problem of predicting the future behavior of a phenomenon based on its
past behavior can be addressed under different perspectives [18]. In this paper
we investigate this problem in the framework of time series analysis – a popular
method used for modeling and making forecasts of temporal data. More pre-
cisely, we present a general methodological approach for studying the dynamics
of any phenomenon that can be described by a time series. In fact, even though
time series analysis and forecasting techniques are well defined, their application
requires particular care. Our approach tries to overcome this issue by address-
ing time series analysis as a sequence of steps dealing with the characterization
of the overall statistical properties of the time series, the identification of the
underlying patterns describing its behavior, the formulation of suitable models
and finally the use of these models for predicting the future behavior. More-
over, we include in the framework a novel approach for accurately detecting and
modeling the spiky patterns that might be present in a time series.

As an application of the proposed approach, we investigate the dynamics of
the Reuters news agency website1. Nevertheless, we outline that this approach
is general enough and can be easily applied to study and predict the dynamics
of various types of web services and applications (e.g., content delivery, video
streaming, mobile apps and embedded ads) as well as of the traffic they generate.

In this paper we focus on the analysis of the time series representing the
patterns of page uploads. In fact, for news websites these patterns are usually
characterized by a time-dependent behavior with well defined periodicity and
large fluctuations. Hence, to predict future uploads from past uploads, it is crit-
ical to identify models that accurately explain these behaviors.

We summarize our contributions as follows:

– definition of a methodological framework for time series analysis and fore-
casting,

1 http://www.reuters.com

http://www.reuters.com

130 M. C. Calzarossa et al.

– identification and modeling of spiky/bursty patterns, and
– application of the proposed approach to study the dynamics of the Reuters

news agency website.

The layout of this paper is the following: Sect. 2 reviews the state of the art,
while Sect. 3 presents the methodological approach proposed for time series anal-
ysis and forecasting. The dataset considered in the study and the results of the
analysis and prediction of the dynamics of the Reuters website are addressed in
Sects. 4 and 5, respectively. Section 6 summarizes the paper and outlines possible
research directions.

2 Related Work

The problem of estimating and predicting web dynamics has been studied under
different – although complementary – angles. Some works specifically focused
on the changes of individual web pages (see, e.g., [1,13,17,20,22]), while others
studied the overall evolution of websites (see, e.g., [3,5–10]). These works have
important implications on content reuse and caching and more generally on
information retrieval technologies.

In the framework of page changes, the extensive analysis presented by Fetterly
et al. [13] suggests that changes of web pages are somehow correlated, thus future
changes can be easily predicted from past changes. Similarly, Shi et al. [22] outline
that within news and e-commerce websites, objects are characterized by different
freshness times with most objects that do not change within the timescale of a
week and fewer objects that change within the timescale of a day.

Lim et al. [17] analyze and quantify consecutive changes of individual pages
by means of two measures, namely, distance and clusteredness measures. Their
study shows that in general changes are small and rather clustered. A similar
approach has been applied in [5] to assess the extent of page changes and adjust
the models of change rates of the websites accordingly. Measures, such as edit
distance, cosine coefficient of similarity, are used for this purpose.

Content change prediction is addressed by Radinsky and Bennet [20] through
an expert predictive framework that takes into account various features, such as
degree and relationships among changes and similarity in the types of changes. A
temporal modeling framework that captures the dynamic nature of Web behav-
iors is presented in [21]. The proposed models include the typical characteristics
observed in query and URL click behavior of Web searchers, that is, trend, peri-
odicity and surprise disruptions.

The temporal patterns of the content changes of three major news webites
have been studied in [8]. The patterns of each website are represented as peri-
odic time series whose models explain their dynamics and are the basis for the
forecasting.

Yang and Leskovec [23] investigate the temporal patterns associated with
online textual content by formulating a time series clustering problem that allows
the identification of the shapes characterizing different types of media.

Time Series Analysis and Forecasting of Web Dynamics 131

The problem of predicting the time between changes of web pages under
blind sampling is addressed by Li et al. [16]. A stochastic modeling framework
where updates and sampling follow independent point processes is proposed.

An interesting survey on different approaches applied for quantifying
changes and predicting their frequency and dynamics is provided by Oita and
Senellart [19].

In this work, we address the problem of modeling and predicting the dynamics
of web content changes by devising a systematic methodological framework based
on time series analysis. This framework is general and can be easily applied for
investigating the characteristics of any temporal data and make forecasts.

3 Methodological Framework

A time series is a sequence of discrete or continuous observations collected at
equally spaced time intervals, i.e., {Yt} = {yt1 , yt2 , ..., ytN } with t1 ≤ t2 ≤ ... ≤
tN [14]. As already pointed out, although the techniques for time series analysis
and forecasting are well defined, for a proper application of these techniques it
is necessary to define a systematic methodological approach.

The workflow of Fig. 1 summarizes the methodological framework proposed
in this paper. Starting from the background knowledge of the phenomenon being
investigated and from the raw data transformed into a time series, it is necessary
to gain some preliminary insights into the behavior of this time series through
an exploratory data analysis (EDA) of its temporal patterns. In particular, from
the statistical properties of the time series it is possible to explain the inherent
structure that has to be modeled. These models are then used to make forecasts.
The details of each of these steps are presented in what follows.

3.1 Exploratory Data Analysis

The exploratory analysis of the data is an important step for understanding the
overall behavior and the statistical properties of the time series under investiga-
tion. Visualization and statistical techniques work for this purpose.

More precisely, the exploratory analysis includes the computation of descrip-
tive statistics, such as mean, percentiles, autocorrelations. In particular, the
autocorrelation function at varying time lags is particularly useful in the anal-
ysis of a time series since it suggests how similar a sequence is to its previous
values. Moreover, autocorrelations allow for checking the randomness of the data
and assessing the stationarity of the time series.

In addition, visualization techniques are applied to obtain an overview of
the temporal patterns of the time series (see Fig. 2). Their visual inspection
highlights recognizable patterns, such as trend, seasonal or cyclic. The trend
denotes steadily increasing or decreasing patterns over quite long periods of
time. The seasonality denotes a behavior that repeats in time on a regular basis
over a fixed period, e.g., each month, each year. On the contrary, a cyclic pattern
denotes a behavior that repeats over a variable period.

132 M. C. Calzarossa et al.

Time series visualization is also very useful for recognizing sudden rises fol-
lowed by falls in the data. The nature of these spiky or bursty patterns depends
on the intrinsic characteristics of the phenomenon described by the time series.
They might represent typical behaviors or anomalous behaviors, thus corre-
sponding to potential outliers. We recall that outliers are defined as the observa-
tions in the series that are significantly different from the rest of the observations.

Statistical measures, such as median absolute deviation, Z-score, are applied
for the identification of outliers and more generally of spiky patterns.

All these patterns must be treated with particular caution since they might
affect the time series analysis and have negative effects on its models. In gen-
eral, once the patterns have been identified, a good practice is to remove the
corresponding observations from the data and replace them with observations
obtained by interpolation over neighbor observations. Nevertheless, as we will

Fig. 1. Methodological framework for time series analysis and forecasting.

Time Series Analysis and Forecasting of Web Dynamics 133

discuss in Sect. 3.3, the presence of typical spiky patterns has to be properly
included in the final model of the time series.

3.2 Periodicity Estimation

The detection of periodic behaviors in a time series is another important step
toward time series modeling. Hence, the periods – usually not known a priori –
have to be accurately estimated.

Spectral analysis is a popular method used for this purpose. This is because
this method characterizes the frequency representation of a signal. Peaks in
the frequency domain will correspond to periods in the time domain. Thus, by
analyzing peaks and finding the dominant frequencies, it is possible to estimate
the periods of the repeated temporal patterns.

More precisely, the spectral analysis applied to the autocorrelation function
of the time series relies on the computation of the discrete Fourier coefficients
fk associated with the k/T frequencies, that is:

fk =
∑N−1

j=0 ytje
−i2π j

N k , k = 0, 1, 2, ..., N − 1.

The power spectrum density – represented by the absolute value of each Fourier
coefficient – highlights the peaks in the spectrum of the autocorrelation function.

3.3 Decomposition

Time series decomposition is primarily applied to better understand its proper-
ties, exploring its behavior over time and improve forecasts. In general, a time
series exhibits a huge variety of patterns whose classification is at the basis of
the decomposition. In fact, the components have to correspond to the underlying
pattern categories.

A classical decomposition approach of a time series relies on an additive
model that includes deterministic parts, e.g., the trend and seasonal components,
and stochastic parts, e.g., the irregular component corresponding to the random
noise. Hence, the time series Yt is given by Yt = Tt + St + εt, where Tt, St and
εt denote the trend, seasonal and irregular components, respectively.

Depending on the characteristics of the time series, smoothing techniques,
such as moving average, exponential smoothing, locally weighted polynomial
regression, Loess regression, are applied for identifying these components [11].

The estimation of the deterministic components is obtained by fitting appro-
priate models to the data, while the estimation of the stochastic component
– depending on its statistical dependence and random behavior – relies on
techniques, such as moving average, auto regressive, Holt-Winters, Box and
Jenkins [2].

Another important step proposed in this methodology to improve the fore-
casts is aimed at including in the final model of the time series the contribution
of the spiky patterns identified by the exploratory data analysis (see Sect. 3.1).
For this purpose, it is necessary to detect and model the temporal behavior of

134 M. C. Calzarossa et al.

these patterns. In particular, classifiers (e.g., decision trees, logistic regression)
applied to some short term historical data of the time series allow for predicting
spikes. By fitting these models, we estimate the probability associated with a
future observation being a spike. Moreover, these patterns – depending on their
behavior – are described by simple models, such as split, tailing, fronting. The
time series final model is then adjusted by adding the contribution of the model
chosen to represent the patterns.

3.4 Forecasting

The final step of the methodological framework deals with making forecasts using
the models previously identified. This step is rather straightforward. In fact, the
predicted value of the time series Ŷt+h at time t+h is obtained by superimposing
the values predicted by these models. In detail, for the deterministic components,
the new values are extrapolated from the corresponding models computed at time
t+h. On the contrary, approaches, such as the Box-Jenkins approach, are applied
to compute the forecasts of the stochastic component, while the forecasts of the
spiky patterns rely on classification techniques applied to short term historical
data.

The evaluation of the performance of the forecasts at varying time lags h
is based on standard measures of accuracy (e.g., mean error, mean absolute
deviation, mean absolute percent error, mean squared error and its square root).

4 Dataset

To test our methodological approach, we analyzed the temporal patterns of
the uploads of new pages on the Reuters news agency website over one year.
In what follows we describe the dataset considered in this study and its main
characteristics.

4.1 Description

The dataset relies on a publicly available unofficial Reuters dataset2 that stores
information about the archival time of the web pages together with their title
– referred to as news title in what follows – and the corresponding URL. From
this huge dataset – that spans several years from 2007 until 2016 – we extracted
the data of 50 weeks since January 4, 2015 that refers to 893,905 pages.

Before applying our methodology, we applied some preliminary transforma-
tions to this raw data (see Fig. 1). In particular, since we were interested in
modeling and predicting the dynamics of the upload process of new pages rather
than their archival process – which is usually of little interest for search engines
and similar technologies – it was necessary to adjust the timestamps associated
with the pages. For this purpose, we crawled the Reuters website – using the
URLs stored in the dataset – to discover the actual publish time of the web

2 https://github.com/philipperemy/Reuters-full-data-set

https://github.com/philipperemy/Reuters-full-data-set

Time Series Analysis and Forecasting of Web Dynamics 135

pages. In detail, to avoid overloading the website, we applied this process to a
sample of 13,546 pages, that is, about 1.5% of the pages. For each of them, we
extracted the og:article:published time metadata tag3 used to specify when
the page was first published. We discovered that a page is archived on average
19.65 hours after its upload. As expected, the archival process is rather determin-
istic: the corresponding standard deviation is only 0.47. Hence, by subtracting
this average from the archival time, we obtained an accurate estimation of the
publish time – used in what follows to describe the upload process.

Another step of the data transformation process deals with approximately
30,000 news titles including the keyword “UPDATE”. A manual inspection of
a sample of the corresponding pages has shown that these pages were updated
once or multiple times after their first upload. Hence, not to mix the upload
and update processes, we discarded these observations. The resulting dataset
consists of the data of 864,304 pages.

4.2 Characteristics

The exploratory analysis of the data is aimed at gaining some preliminary
insights into the time series describing the behavior of the page upload pro-
cess and into the content of the news titles. We first characterized the dynamics
of the website in terms of number of page uploads per day. Figure 2 shows the
temporal patterns of this time series over the 50 weeks analyzed in this study. We
notice large fluctuations, where the number of uploads per day ranges from 206
up to 4,822 and it is much lower during weekends with respect to weekdays. On
average about 3,300 pages are uploaded during a weekday, whereas only about
355 during weekend days (see Table 1 for the details).

Time [week]

N
um

be
r o

f u
pl

oa
ds

0
10

00
20

00
30

00
40

00
50

00

1 25 50

Fig. 2. Temporal patterns of the time series representing the number of uploads per
day over 50 weeks.

3 http://ogp.me/

http://ogp.me/

136 M. C. Calzarossa et al.

Table 1. Basic statistics of the number of uploads per day broken down for weekdays
and weekend days.

Mean St. dev Min Max

Weekdays 3,315.15 681.9 790 4,822

Weekend days 355.16 53.6 206 540

Overall 2,469.44 1,458 206 4,822

The analysis of the number of uploads at a finer granularity, i.e. per hour,
confirms these findings, namely, big differences between weekdays and weekend
days (see Fig. 3). This was expected since the Reuters website is mainly focused
on business and financial news.

0.00

0.25

0.50

0.75

1.00

0 200 400 600
Number of uploads per hour

E
C

D
F

Weekend days

Weekdays

Fig. 3. Cumulative distribution function of the number of page uploads per hour for
weekdays and for weekend days. (Color figure online)

An overview of the temporal patterns of the time series over three weeks is
shown in Fig. 4. The figure clearly suggests diurnal patterns characterized by
sudden spikes with as many as 500 uploads in an hour. We outline that the
values of approximately 10% of the observations of the overall time series exceed
250, while only 1% exceed 450.

This spiky behavior is also highlighted in the boxplot of Fig. 5 showing the
number of uploads per hour for each day of the week across all weeks. In general,
Tuesdays are characterized by the largest variability. Moreover, the website is
more active during the mid days of the week.

This characterization, together with the business-oriented focus of the news
published on the Reuters website, has suggested that the dynamics of the website
is mainly relevant during weekdays. Hence, the time series analysis addresses the
page upload dynamics over weekdays only. We analyze the data of 828,788 pages
– accounting for approximately 96% of the data.

Another interesting aspect considered in the exploratory data analysis deals
with news titles. Although this analysis is not strictly related to the dynamics of
the website, it provides some insights in the content of the news. In particular,
we analyzed these titles in terms of the words they consist of, i.e., the single
units of textual information (tokens).

Time Series Analysis and Forecasting of Web Dynamics 137

●
●●
●●●

●
●●●

●

●
●●
●●
●●
●
●●●

●●●●
●
●
●●

●●●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●●●●

●

●
●●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●
●

●
●●

●

●●●
●

●

●

●
●

●

●●

●
●

●

●

●

●

●●

●●●●

●

●●
●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●
●●●

●●

●

●
●

●●

●

●

●

●

●●●

●

●

●

●
●

●
●●●●●●●●●

●

●
●●●●●●●●●

●●
●●●●●●●●●●●

●
●
●●
●●
●
●●●●●

●●
●
●
●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●
●●

●
●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●
●●●●

●

●
●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●
●
●
●

●

●
●
●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●
●
●●●

●●●●
●

●

●
●●●●●

●●●●
●●●

●
●
●●●●

●●
●
●
●●
●●
●●
●
●
●
●
●
●●

●

●●
●
●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●●
●
●
●
●

●

●
●
●
●

●

●

●

●

●

●
●
●

●●

●

●

●
●

●
●
●
●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●
●

●

●

●
●
●

●

●
●●

●

●

●

●●●

●
●

●

●
●
●
●
●●
●●●

●●

●

●●●
●
●
●●
●●●

●
●●

Time

U
pl

oa
ds

/h
ou

r

Jan 4 Jan 11 Jan 18

0
10

0
20

0
30

0
40

0
50

0

Fig. 4. Temporal patterns of the number of uploads per hour over three weeks.

The number of words per title does not significantly vary: 62% of the titles
consist of a number of words between 8 and 13. On average a title includes 10.91
words with a standard deviation of 4.38 words.

To avoid redundancy, inflectional and related forms of a word, we applied
Natural Language Processing (NLP) techniques, such as tokenization, stop words
removal and stemming [12]. After this process, we obtained 124,914 unique stems
(out of 319,165 unique word). The distribution of the popularity of the top 30
stems is shown in Fig. 6. These stems account for 950,736 occurrences, that
correspond to 13.4% of the total number of occurrences. In particular, the most
popular stem, i.e., announc occurs 86,104 times. As expected, most of the stems
are related to the financial domain.

Additionally we performed topic modeling in order to extract topics from
news titles. For this purpose we applied a graphical probabilistic model, namely,
Latent Dirichlet Allocation (LDA) to the titles of the pages uploaded over three
weeks – starting May 4, 2015. We labeled each title with the most relevant
topic identified by the LDA. For example, it is interesting to point out that
by considering three topics, news titles are subdivided into three sets including
32%, 38% and 30% of the pages. The temporal patterns of the number of page
uploads per hour subdivided according to these topics is shown in Fig. 7. As can
be seen – even though the page published during weekend days mainly refer to
one topic – in general the website is characterized by a mix of pages covering
different topics that does not depend on the time of the day and the day of the
week.

5 Results

In this section, we present the results of the analysis of the time series referring to
250 weekdays, namely, a “training” time series consisting of 5,400 observations

138 M. C. Calzarossa et al.

●●●●●
●●●●●

●
●●●
●●●●●●
●●●●
●
●●●●●●●●
●
●●
●●
●

●
●

●

●

●●

●●
●●

●

●●
●●

●

●
●
●
●

●

●
●

●

●
●

●

●

●
●●●
●

●

●

●

●●
●

●

●

●

●

●
●
●
●●

●

●

●●

●

●●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●●
●
●

●

●●●●

●

●

●
●●
●

●
●●
●
●
●●
●●●●●●●

●●
●

●
●
●

●

●

●

●
●
●

●●
●
●

●

●

●

●●
●
●●

●

●

●

●●●●
●

●
●●

●

●●●●●●
●
●●
●
●

●
●

●
●

●

●
●●●●●

●

●
●

●●

●
●●●
●
●

●

●
●
●
●●
●●
●●
●

●

●

Sun Mon Tue Wed Thu Fri Sat

0
10

0
30

0
50

0
N

um
be

r o
f u

pl
oa

ds
 p

er
 h

ou
r

Fig. 5. Boxplot of the number of page uploads per hour for each day of the week.

fund
stock

technolog
compani

launch
corpor
million
manag
tracker

etf
form
rate

share
bank

confer
year

financi
first
valu

group
global
asset

research
net

result
report

quarter
brief

market
announc

0 25000 50000 75000
Number of occurrences

Fig. 6. Popularity of the top 30 stems appearing in the news titles.

– referring to the uploads per hour over 225 consecutive days – and a “valida-
tion” time series consisting of 600 observations – referring to the uploads of the
remaining 25 days.

As previously discussed, the upload patterns exhibit large variability across
days, hours and even weeks (see Fig. 4). To further investigate the properties
of these temporal patterns, we analyze in the lag plots of Fig. 8 the overall
behavior of time series to assess whether there is any autocorrelation structure.
The observations tend to group around the diagonal for small time lags, thus
exhibiting a positive autocorrelation. On the contrary, for larger time lags the
observations are more scattered.

The patterns of the autocorrelation function with time lags from one to
120 hours (i.e., five days) – summarized in Fig. 9(a) – clearly suggest a peri-
odic behavior of the uploads. All values fall outside the 95% confidence bands
highlighted in the diagram by dashed lines. Similarly, the power spectrum of the
autocorrelation function shown in Fig. 9(b) confirms that the time series exhibits
a certain periodicity. More precisely, the peak at frequency 24/T indicates the
presence of a daily periodicity. This finding will be used for the identification of
the deterministic components of the time series.

Time Series Analysis and Forecasting of Web Dynamics 139

0

100

200

300

May 04 May 11 May 18 May 25
Time

U
pl

oa
ds

/h
ou

r
Topic1
Topic2
Topic3

Fig. 7. Temporal patterns of the number of uploads per hour subdivided according to
the topics identified by LDA. (Color figure online)

0 100 200 300 400

0
10

0
20

0
30

0
40

0

Yt−1

Y
t

0 100 200 300 400

0
10

0
20

0
30

0
40

0

Yt−2

Y
t

0 100 200 300 400

0
10

0
20

0
30

0
40

0

Yt−3

Y
t

0 100 200 300 400

0
10

0
20

0
30

0
40

0

Yt−6

Y
t

Fig. 8. Lag plots of the time series at varying time lags, i.e., 1, 2, 3 and 6.

As outlined in Sect. 3.3, the decomposition of the time series into deter-
ministic, i.e., trend and seasonal, and stochastic, i.e., irregular, parts relies on
an additive approach. In detail, we applied the Loess method to estimate the
trend and seasonal components, while the irregular component corresponds to
the remainder of the time series.

An example of the decomposition of the time series representing the upload
patterns over five days is shown in Fig. 10. Note that we applied the decom-
position to the “adjusted” time series where the spikes previously identified
have been replaced with observations obtained by interpolation over neighbor
observations.

Because of the characteristics of the deterministic components, we selected
their models in the family of trigonometric polynomials and we applied least
square techniques to fit the models to the data. In details, the model identi-
fied for the trend component is a trigonometric polynomial of degree four with
eight parameters including the intercept. The seasonal component is modeled
by a trigonometric polynomial of degree one with two parameters. On the con-
trary, the best fit of the irregular component is represented by an ARMA model
(1, 2) × (1, 0)24.

140 M. C. Calzarossa et al.

Lag [hour]

Au
to

co
rr

el
at

io
n

0 24 48 72 96 120
−1

−0.5

 0

0.50

1

Frequency [T=225 days]

Po
w

er
 d

en
si

ty

T/24 T/6 T/3

0.
0

0.
1

0.
2

0.
3

(a) autocorrelation function (b) power spectrum

Fig. 9. Autocorrelation function of the time series computed for time lags ranging from
one to 120 h (a) and corresponding power spectrum (b).

● ●
●

●
●

●

● ● ●
●

●

● ● ● ● ●
●

● ●

●

●

●

●

●
●

● ● ● ●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

● ● ●

●

●

● ● ● ● ● ●

●

●

●

●

●

●

● ●

●
● ●

●

●

● ●
●

●

●

● ● ● ● ● ●

●

●

●

●

●

●

●

●
●

●
● ●

● ●

●

●
●

● ●

●

●

●

●

● ● ●

●

●

●

●
●

U
pl

oa
ds

/h
ou

r

0
50

100
150
200
250
300
350

Tr
en

d

95
100
105
110
115
120

S
ea

so
na

l

−100

−50

0

50

100

Irr
eg

ul
ar

−50

0

50

100

Mon Tue Wed Thu Fri

Fig. 10. Temporal patterns of the time series over five days and decomposition into
trend, seasonal and irregular components. The labels on the x axis are centered at 12
noon.

Since the final model has to include the contribution of the spiky patterns
previously identified, we applied a logistic regression to predict whether the
observation yt corresponds to a spike. In particular, the model takes into account
the time t together with yt−1 and the difference between yt−1 and yt−2.

An example of the overall model of the time series over ten days is shown in
Fig. 11. We notice that the model accurately fits the data even though – because
of their peculiarities – some of the spikes have not been precisely captured. The
root mean squared error computed over the entire “training” time series is equal
to 40.1.

Time Series Analysis and Forecasting of Web Dynamics 141

●●●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●●
●
●●

●●●

●

●

●

●
●

●

●
●

●

●
●

●

●

●●

●●●●●

●

●●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●
●
●
●

●

●●●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●
●●

●

●
●●

●

●
●

●

●

●

●

●

●

●●
●

●

●●●
●
●
●
●

●
●●

●●

●

●

●

●

●

●
●●

●●

●

●

●
●

●●
●
●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●
●
●

●

●●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●●

●

●
●

●●
●

●

●●●

●

●

●

●●●

●
●

●

●

Time [hour]

U
pl

oa
ds

/h
ou

r

0

200

400

600

Mon Tue Wed Thu Fri Mon Tue Wed Thu Fri

Fig. 11. Overall model (red curve) of the upload patterns (represented by circles) over
ten days. The labels on the x axis are centered at 12 noon. (Color figure online)

The final model is used for making forecasts of the future dynamics of the
website. For this purpose, we used the “validation” time series consisting of the
observations over 25 days. More precisely, we extrapolate the trigonometric poly-
nomials that best fit the trend and seasonal components of the time series, while
the predictions of the irregular component rely on the Box-Jenkins approach.
The logistic regression model previously identified has been used to predict the
spiky patterns. Figure 12 shows an example of the predictions over ten days with
a time horizon h equal to one hour.

●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●●

●
●
●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●●●●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●●●●

●

●●
●●

●

●

●

●

●

●
●
●

●●

●

●

●

●
●
●●

●●

●

●
●●

●

●

●

●●

●

●
●

●

●●

●

●

●●●

●●
●●

●

●
●●

●

●

●

●●●

●

●

●

●●●
●●

●
●●●●●

●
●
●
●●

●

●

●

●●

●
●

●
●
●
●
●●

●●●
●●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●
●

●

●

●
●

●

●
●

●
●

●

●
●

●

●●

●

●

●

●●

●●●●

●

●

●
●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●
●
●
●
●●

●

●

●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●●●

●

●

●●
●

●
●

●

●

●

●

●

●

●
●

●
●

●

●●

●
●●●

●

●

●●●

●

●

Time

U
pl

oa
ds

/h
ou

r

0

200

400

600

Mon Tue Wed Thu Fri Mon Tue Wed Thu Fri

Fig. 12. Predictions of the upload patterns over ten days with a time horizon of one
hour. The red curve refers to the predictions, the circles to data. The labels on the x
axis are centered at 12 noon. (Color figure online)

We outline that our methodological approach has several advantages with
respect to other approaches (e.g., Holt-Winters, Seasonal ARIMA, Recurrent
Neural Networks). In details, the periodicity estimation and the identification of
the underlying patterns (e.g., spiky patterns) are very useful for understanding
and exploring the properties of the time series and improving forecasts. For
example, sophisticated methods, such as RNNs, do not provide any insights in
the temporal patterns. In addition, their application is usually computationally
intensive and requires large training datasets. Similarly, SARIMA models do
not break down the contributions of the underlying patterns of the time series.
On the contrary, even though Holt-Winters models take into account trend and

142 M. C. Calzarossa et al.

seasonal components, they describe these components in terms of a sequence of
coefficients and smoothing equations.

6 Conclusions

The web is a large information ecosystem where content changes over time as
a consequence of combined effects involving the management policies of the
websites, the behavior of the users and external events. These dynamics challenge
technologies aimed at content management and retrieval.

Time series analysis is a valid and well defined method to model and predict
the behavior of temporal data. Nevertheless, its application requires particular
care. In this paper we proposed a general methodological framework for time
series analysis and forecasting that specifically addresses the estimation of the
its periodicity, the detection and modeling of the spikes and the decomposition
of the time series into its underlying patterns.

The methodology has been applied to investigate and predict the dynamics
of the Reuters news agency website. The page upload process of this website is
characterized by a diurnal pattern and a much larger number of uploads during
weekdays with respect to weekend days. Moreover, this process exhibits several
sudden spikes. From the analysis of the content of the news titles we observed
that the pages published on the website cover different topics that do not depend
on the time of the day and on day of the week.

The individual components of the time series have been independently mod-
eled and these models have then been used for making forecasts.

We outline that the proposed methodological approach – although tested in
this paper in the framework of web dynamics – is general enough and can be
applied to model and predict the behavior of any phenomenon represented as a
time series.

As a future work, we plan to investigate the dynamics of the access patterns
of web robots and identify differences and similarities between the patterns of
good and malicious robots. Another possible research direction is in the area
of topic modeling to classify pages and assess the relationships between web
dynamics and the topics being addressed.

References

1. Adar, E., Teevan, J., Dumais, S.T., Elsas, J.: The web changes everything: under-
standing the dynamics of web content. In: Proceedings of the 2nd ACM Interna-
tional Conference on Web Search and Data Mining - WSDM 2009, pp. 282–291.
ACM (2009)

2. Box, G.E.P., Jenkins, G.M., Reinsel, G.C., Ljung, G.M.: Time Series Analysis:
Forecasting and Control, 5th edn. Wiley, Hoboken (2015)

3. Brewington, B., Cybenko, G.: How dynamic is the web? Comput. Netw. 33(1–6),
257–276 (2000)

4. Calzarossa, M., Massari, L., Tessera, D.: Workload characterization: a survey revis-
ited. ACM Comput. Surv. 48(3), 48:1–48:43 (2016)

Time Series Analysis and Forecasting of Web Dynamics 143

5. Calzarossa, M., Tessera, D.: Characterization of the evolution of a news Web site.
J. Syst. Softw. 81(12), 2236–2344 (2008)

6. Calzarossa, M., Tessera, D.: Time series analysis of the dynamics of news websites.
In: Proceedings of the 13th International Conference on Parallel and Distributed
Computing, Applications and Technologies - PDCAT 2012, pp. 529–533. IEEE
Computer Society Press (2012)

7. Calzarossa, M., Tessera, D.: Multivariate analysis of web content changes. In: Pro-
ceedings of the 11th ACS/IEEE International Conference on Computer Systems
and Applications - AICCSA 2014, pp. 699–706. IEEE Computer Society Press
(2014)

8. Calzarossa, M., Tessera, D.: Modeling and predicting temporal patterns of web
content changes. J. Netw. Comput. Appl. 56, 115–123 (2015)

9. Calzarossa, M., Tessera, D.: Analysis and forecasting of web content dynamics. In:
Proceedings of the 32nd International Conference on Advanced Information Net-
working and Applications Workshops - WAINA 2018, pp. 12–17. IEEE Computer
Society Press (2018)

10. Cho, J., Garcia-Molina, H.: Estimating frequency of change. ACM Trans. Internet
Technol. 3(3), 256–290 (2003)

11. Cleveland, R., Cleveland, W., McRae, J., Terpenning, I.: STL: a seasonal-trend
decomposition procedure based on loess (with discussion). J. Official Stat. 6, 3–73
(1990)

12. Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., Kuksa, P.:
Natural language processing (almost) from scratch. J. Mach. Learn. Res. 12, 2493–
2537 (2011)

13. Fetterly, D., Manasse, M., Najork, M., Wiener, J.: A large-scale study of the evo-
lution of Web pages. Softw.: Pract. Experience 34(2), 213–237 (2004)

14. Hamilton, J.D.: Time Series Analysis. Princeton University Press, Princeton (1994)
15. Ke, Y., Deng, L., Ng, W., Lee, D.L.: Web dynamics and their ramifications for the

development of web search engines. Comput. Netw. 50(10), 1430–1447 (2006)
16. Li, X., Cline, D.B.H., Loguinov, D.: Temporal update dynamics under blind sam-

pling. IEEE/ACM Trans. Networking 25(1), 363–376 (2017)
17. Lim, L., Wang, M., Padmanabhan, S., Vitter, J.S., Agarwal, R.: Characterizing

web document change. In: Wang, X.S., Yu, G., Lu, H. (eds.) Advances in Web-Age
Information Management - WAIM 2001. LNCS, vol. 2118, pp. 133–144. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-47714-4 13

18. Makridakis, S., Wheelwright, S.C., Hyndman, R.J.: Forecasting - Methods and
Applications, 3rd edn. Wiley, Hoboken (1998)

19. Oita, M., Senellart, P.: Deriving dynamics of web pages: a survey. In: Proceedings
of the 1st International Temporal Workshop on Web Archiving - In Conjunction
with WWW 2011, pp. 25–32 (2011)

20. Radinsky, K., Bennett, P.: Predicting content change on the web. In: Proceedings of
the 6th ACM International Conference on Web Search and Data Mining - WSDM
2013, pp. 415–424. ACM (2013)

21. Radinsky, K., et al.: Behavioral dynamics on the web: learning, modeling, and
prediction. ACM Trans. Inf. Syst. 31(3), 16:1–16:37 (2013)

22. Shi, W., Collins, E., Karamcheti, V.: Modeling object characteristics of dynamic
Web content. J. Parallel Distrib. Comput. 63(10), 963–980 (2003)

23. Yang, J., Leskovec, J.: Patterns of temporal variation in online media. In: Proceed-
ings of the 4th ACM International Conference on Web Search and Data Mining -
WSDM 2011, pp. 177–186. ACM (2011)

https://doi.org/10.1007/3-540-47714-4_13

Static and Dynamic Group Migration
Algorithms of Virtual Machines
to Reduce Energy Consumption

of a Server Cluster

Dilawaer Duolikun1,3(B), Tomoya Enokido2,3, and Makoto Takizawa1,3

1 Graduate School of Science and Engineering, Hosei University, Tokyo, Japan
dilewerdolkun@gmail.com

2 Faculty of Business Administration, Rissho University, Tokyo, Japan
eno@ris.ac.jp

3 Faculty of Science and Engineering, Hosei University, Tokyo, Japan
makoto.takizawa@computer.org

Abstract. In prevent global warming, it is critical to reduce electric
energy consumed in information systems, especially servers in clusters
like cloud computing systems. In this paper, a process migration app-
roach is discussed to reduce the total energy consumption of clusters
by using virtual machines. We propose a pair of the static SM(v) and
dynamic DM(v) migration algorithms where a group of at most v (≥0)
virtual machines migrate from a host server to a guest server. A group
of virtual machines on a host server to migrate to a guest server are
selected so that the total energy to be consumed by the host and guest
servers can be reduced. In the SM(v) algorithm, the total number of
virtual machines is fixed in a cluster. In the DM(v) algorithm, virtual
machines are resumed and suspended so that the number of processes
on each virtual machine is kept fewer. In the evaluation, we show the
total energy consumption of servers can be mostly reduced in the DM(v)
algorithm compared with other algorithms.

Keywords: Energy-efficient computation ·
Dynamic virtual machine migration ·
Static virtual machine migration ·
Group migration of virtual machines · DM(v) algorithm ·
SM(v) algorithm

1 Introduction

In order to prevent global warming, electric energy consumed in information sys-
tems has to decrease to reduce carbon dioxide emission [10]. Information systems
are getting more scalable like cloud computing systems [23] and IoT (Internet of
Things) [20,22] and especially servers consume huge amount of electric energy.
In order to discuss how to reduce energy consumption of servers, a formal model
is needed to estimate how much electric power [W] a server consumes to perform
c© Springer-Verlag GmbH Germany, part of Springer Nature 2019
N. T. Nguyen et al. (Eds.): TCCI XXXIII, LNCS 11610, pp. 144–166, 2019.
https://doi.org/10.1007/978-3-662-59540-4_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-59540-4_8&domain=pdf
https://doi.org/10.1007/978-3-662-59540-4_8

Static and Dynamic Group Migration Algorithms of Virtual Machines 145

application processes. Power consumption and computation models [11–16] are
proposed to estimate the total power consumption of a whole server to perform
application processes and the execution time of each application process. Based
on the power consumption and computation models, the electric energy to be
consumed by a server to perform application processes is able to be estimated.
Types of algorithms [12–14,17] are proposed to select a server to perform an
application process issued by a client. In the SLEA (simple locally energy-aware)
algorithm [16], a host server is selected, which is expected to consume minimum
energy in a cluster. In the SGEA (simple globally energy-aware) algorithm [17],
a host server is selected, where total energy to be consumed by not only the
host server but also all the other servers is minimum. Total energy consumed by
servers is more reduced in the SGEA algorithm than the SLEA algorithm [17].
A process migration approach [2–7,25] is also proposed where a process on a
host server migrates to a guest server if total energy to be consumed by the host
and guest servers can be reduced. It is not easy to migrate types of processes
among servers, especially heterogeneous servers with different architectures and
operating systems. Clusters of servers recently support applications with virtual
machines like KVM [1]. Processes can easily migrate among types of servers by
migrating a virtual machine where the processes are performed [1].

In our previous studies, static and dynamic migration algorithms are pro-
posed to energy-efficiently migrate virtual machines with application processes
among servers [4,8,9]. In the static migration algorithm [4], a cluster supports
applications with the fixed number of virtual machines. The size of a virtual
machine means the number of application processes performed on the virtual
machine. If a virtual machine with application processes migrates from a host
server to a guest server, the number of application processes on the host and
guest servers decreases and increases, respectively. This means, the host and
guest servers consume less and more energy, respectively. A virtual machine gets
larger as processes are issued. If a virtual machine on the host server gets too
large, a guest server may not be found. Hence, each virtual machine has to be
kept so small that the virtual machine can migrate to another server any time.

Dynamic migration algorithms [8,9] are proposed where virtual machines
are resumed and suspended as the number of application processes increases
and decreases, respectively. In addition, one virtual machine migrates from a
host server to a guest server. Each virtual machine can be smaller even if more
number of application processes are performed in a cluster. In another dynamic
algorithm [9], a group of multiple virtual machines migrate from a host server to a
guest server. Here, it is shown the energy consumption of servers and the average
execution time of processes can be reduced by migrating virtual machines.

In this paper, a group of multiple virtual machines in parallel migrate from
a host server to a guest server. We have to estimate energy to be consumed
by servers to perform application processes based on the power consumption
and computation models. In order to make the estimation simple, the total
amount of computation of each application process is assumed to be the same
and to finish. Furthermore, the amount of computation to be performed by each
application process is assumed to depend on the number of application processes
concurrently performed. That is, the more number of application processes are

146 D. Duolikun et al.

performed on a server, the more amount of computation to be performed by each
application process. We propose an algorithm to estimate energy to be consumed
by servers based on the assumption. By using the estimation model, we propose
a pair of dynamic DM(v) and static SM(v) group migration algorithms where a
group of at most v (≥0) virtual machines migrate from a host server to a guest
server so that the total energy to be consumed by the host and guest servers
can be reduced. In the SM(v) algorithm, a set of virtual machines is fixed in a
cluster. On the other hand, a set of virtual machines is dynamically changed by
resuming and suspending virtual machines in the DM(v) algorithm. Here, the
SM(*) and DM(*) algorithms means, as many number of virtual machines as
possible migrate from a host server to a guest server. In the evaluation, the total
energy consumption of servers and the average execution time of application
processes can be mostly reduced in the DM(*) algorithm compared with other
algorithms.

In Sect. 2, we present a system model. In Sect. 3, we discuss the power con-
sumption and computation models. In Sect. 4, we propose the SM(v) and DM(v)
algorithms. In Sect. 5, we evaluate the SM(v) and DM(v) algorithms.

2 System Model

2.1 Servers and Virtual Machines in Clusters

An application process is issued to the cluster S of servers s1, . . . , sm (m ≥ 1).
One server st is selected and the application process is performed on the server st.
There are types of application processes like computation, communication, and
storage processes [13]. In this paper, a process means which is an application
process which uses CPU resources.

Each server st is equipped with npt (≥1) homogeneous CPUs. Each CPU
includes cct (≥1) cores, each of which supports processes with ctt (≥1) threads.
Thus, a server st supports the total number ntt (=npt ·cct ·ctt) of threads on nct

(=npt · cct) cores. Processes on different threads are performed independently
of one another. A thread is active if and only if (iff) at least one process is
performed, otherwise idle. A process performed on a server is active. CPt(τ) is
a set of active processes on a server st at time τ .

A cluster supports applications with virtual resources like CPUs and storages
on servers through virtual machines. We assume each process is performed on
some virtual machine vmh and no process is directly performed on a server.
The size |vmh| of a virtual machine vmh shows the number of active processes
on the virtual machine vmh. A virtual machine vmh is smaller than another
virtual machine vmk (vmh < vmk) iff |vmh| < |vmk|. A pair of virtual machines
vmh and vmk are equivalent (vmh ≡ vmk) iff |vmh| = |vmk|. vmh ≤ vmk iff
vmh < vmk or vmh ≡ vmk. A virtual machine can migrate on a host server to
a guest server in the live migration [1]. In this paper, we assume every virtual
machine can migrate to any server anytime, i.e. memory image of each virtual
machine a priori exits on every server.

Static and Dynamic Group Migration Algorithms of Virtual Machines 147

We consider four states of a virtual machine, dormant, ready, active, and
idle. Any process can be neither performed nor issued to a dormant virtual
machine. Each dormant virtual machine is first created on some server st. Here,
DV Mt shows a collection of dormant virtual machines on a server st. By resum-
ing a dormant virtual machine, the virtual machine transits to ready state.
Processes can be issued to a ready virtual machine. A ready virtual machine is
active if a least one process is active. A ready virtual machine which is not active
is idle where a processes can be issued but no process is active. By suspending
an idle virtual machine, the virtual machine transits to dormant. V Mt is a set
of ready virtual machines on a server st. In this paper, we assume enough num-
ber of dormant virtual machines are supported by each server so that a virtual
machine can be resumed anytime.

A server is engaged iff at least one ready virtual machine resides. A server is
free, active, and idle if there are no ready virtual machine, at least one active
virtual machine, and only idle virtual machine, respectively.

2.2 Migration of Virtual Machines

A virtual machine vmh can migrate without terminating processes on the vir-
tual machine vmh in the live manner [1]. If an instruction of a process is exe-
cuted on a virtual machine vmh, the memory pages of the virtual machine
vmh are changed. On issuing a migration command “virsh migrate −live dsvm
qemu+ssh://destinationURL/system” [1] to a host server st, the memory pages
of the virtual machine vmh are first transferred to the guest server su. While
the memory pages are transferred to the server su, processes are performed
on the virtual machine vmh. This means, some memory pages are changed by
performing instructions of the processes, which are referred to as dirty. If the
transmission of the virtual machine vmh finishes, the dirty pages changed by the
processes are transferred. During the transmission of dirty pages, processes on
the virtual machine are suspended. Once the dirty pages are transferred to the
server su, the processes on the virtual machine vmh are resumed. The duration
the processes are suspended is the migration time of the virtual machine vmh.
The migration time depends on the size of dirty pages and the transmission rate
of the network.

We measure the migration time of a virtual machine vmh between a pair of
homogeneous servers st and su. The servers st and su are homogeneous with the
same architectures, i.e. the same CPU Intel Core i5-8400, 8 [GB] memory, and
1 [TB] HDD and the same operating system CentOS 7.4 [21]. The servers st and
su are interconnected in the 100Mbps LAN. A virtual machine vmh is realized
in KVM [1]. We consider a C process which just uses CPU resource. The virtual
machine vmh is first created on the server st. We consider two cases, the virtual
machine vmh does not migrate and migrates as shown in Fig. 1 (1) and (2),
respectively. In the second case, the virtual machine vmh migrates between the
servers st and su and finally migrates back to the server st. After the process p
starts on the virtual machine vmh at time st, a migration command is issued to
the server st and the virtual machine vmh migrates to the server su. After some

148 D. Duolikun et al.

computation of process p is performed on the virtual machine vmh, a migration
command is issued to the server su. After the virtual machine vmh backs to the
server st, the process p terminates at time et. We measure a pair of the starting
time st and ending time et of the process p by using the clock of the server st.
In Fig. 1, a pair of time st1 and et1 and a pair of time st2 and et2 show pairs
of starting and ending time of the process p in non-migration and migration
cases, respectively. Let tt1 be the execution time et1−st1 for non-migration case
and tt2 be et2 − st2 for the migration case. The migration time mt is given as
(tt2 − tt1)/2. Here, the memory size of the virtual machine vmh is 1 [GB]. In
Fig. 2, the migration time for lt = 1 shows mt, where mt is about 4 [s]. In this
paper, the migration time of each virtual machine is assumed to be constant mt
for every pair of the servers. This means, each virtual machine has the same size
of the virtual memory.

Fig. 1. Measurement of migration time.

Next, we consider case a group GVt of multiple virtual machines vmt1 . . .
vmtlt (lt ≥ 1) migrate from the host server st to the other guest server su. We
consider serial and parallel ways to migrate the group GVt. In the serial migration
way, one virtual machine vmtk migrates after a virtual machine vmt,k−1 finishes
to migrate. One virtual machine at a time migrates. In the parallel migration
way, the lt (≥1) virtual machines vmt1 . . . vmtlt in parallel migrate from the
server st to the server su. Figure 2 shows the migration time mttu for number
lt of virtual machines which migrate from the server st to the server su. The
migration time linearly increases as number lt of virtual machines increases.
The parallel migration time is about 20% shorter than the serial one as shown
in Fig. 2. Hence, we take the parallel way to migrate multiple virtual machines

Static and Dynamic Group Migration Algorithms of Virtual Machines 149

Fig. 2. Migration time of virtual machines.

vmt1, . . . , vmtlt on a server st to a guest server su. Let mgt(lt) show the migration
time [sec] of lt virtual machines from a host server st to a guest server su. The
migration time mgt(lt) is given as follows:

mgt(lt) = mt + β · (lt − 1) = (mt − β) + β · lt. (1)

In Fig. 2, mt = 4 and β = 25. Hence, mgt(lt) = 1.5 + 2.5 · lt [sec].

3 Energy Consumption of a Server

3.1 Power Consumption and Computation Models

In our macro-level approach [12], we consider total electric power [W] consumed
by a whole server to perform application processes and do not consider how much
power each hardware device like CPU consumes. We assume processes are fairly
allocated with CPUs, cores, and threads in each server [19]. A power consumption
model of a server st gives power to be consumed by the server st to perform pro-
cesses. In the SPC (simple power consumption) model [14], the power consump-
tion NEt(n) [W] of a server st to perform n processes is minEt + adt(n) · sEt.
Here, adt(n) = 1 if n > 0, else 0. An active and idle server st consumes the max-
imum power maxEt = minEt + sEt [W] and the minimum power minEt [W],
respectively. The SPC model holds for a server with a one-core CPU.

150 D. Duolikun et al.

In the MLPCM (multi-level power consumption) model [17,18], the power
consumption NEt(n) is minEt+napt(n) ·bEt+nact(n) ·cEt+natt(n) ·tEt. Here,
napt(n) = n if n ≤ npt, else npt. nact(n) = n if n ≤ nct, else nct, and natt(n) = n
if n ≤ ntt, else ntt. A server st consumes the maximum electric power maxEt =
minEt + npt · bEt + nct · cEt + ntt · tEt if every thread is active. For example, if
two and three processes are performed, NEt(2) = minEt +2 ·bEt +2 ·nct +2 ·tEt

and NEt(3) = minEt + 2 · bEt + 3 · nct + 3 · tEt, respectively, for a server with
dual CPUs. An idle server st consumes the minimum power minEt [W]. The
MLPCM model holds for a server with multiple CPUs.

The electric power Et(τ) of a server st to perform processes at time τ is
assumed to be NEt(|CPt(τ)|) in this paper, where CPt(τ) is a set of active
processes on the server st at time τ . Energy consumed by a server st from time
st [tu (time unit)] to time et is defined to be

∑et
τ=st NEt(|CPt(τ)|) [Wtu].

If only a process pi is performed on a server st without any other process,
the execution time Tti [tu] of the process pi is shortest, Tti = minTti. A fastest
server sf is a server where minTfi ≤ minTti for every server st. minTi stands
for minTfi. One virtual computation step [vs] is assumed to be performed on
a thread of the fastest server sf for one time unit [tu] [14,16]. This means,
the thread computation rate TCRf of a fastest server sf is one [vs/tu]. For
each server st, TCRt ≤ TCRf (=1). The total number V Ci [vs] of virtual
computation steps of a process pi is defined to be minTi [tu] ·TCRf [vs/tu]
= minTi [vs] since TCRf = 1 for a fastest server sf . Thus, minTi shows the
total number of virtual computation steps to be performed in a process pi. If
only one process pi is performed without any other process on a thread of a
server st, the maximum number maxPCRti of virtual computation steps of the
process pi are performed for one time unit. The maximum process computation
rate maxPCRti of a process pi on a server st is V Ci/minTti = minTi/minTti

[vs/tu] (≤1). On a fastest server sf , maxPCRfi = TCRf = 1. For every pair
of processes pi and pj on a server st, maxPCRti = maxPCRtj = TCRt (≤1)
[16]. The server computation rate SCRt(τ) of a server st at time τ is att(τ) ·
TCRt where att(τ) (≤ntt) is the number of active threads. The maximum server
computation rate maxSCRt is ntt ·TCRt. Here, att(τ) is assumed to be natt(n)
for number n (=|CPt(τ)|) of active processes on the server st.

In the SC (simple computation) model [14], the server computation rate
NSRt(n) [vs/tu] of a server st to perform n current processes is the maximum
server computation rate maxSCRt, i.e. TCRt. The SC model holds for a server
with a one-core CPU.

A server with multi-core CPUs follows the MLCM (multi-level computation)
model [15]. Here, n processes are performed on a server st at the server compu-
tation rate NSRt(n) [vs/tu]:

NSRt(n) =
{

n · TCRt if n ≤ ntt.
maxSCRt(= ntt · TCRt) if n > ntt.

(2)

Static and Dynamic Group Migration Algorithms of Virtual Machines 151

Each process pi is performed at rate NPRti(n) = NSRt(n)/n (≤TCRt)
[vs/tu] on a server st. Hence, NPRti(n) = NPRtj(n) = NPRt(n) for every pair
of processes pi and pj . In the SC model, NPRti(n) = maxSCRt/n = TCRt/n.
In the MLCM model, NPRt(n) = TCRt for n ≤ ntt, NPRt(n) = ntt · TCRt/n
for n > ntt.

The server computation rate SCRt(τ) [vs/tu] of a server st at time τ
is assumed to be NSRt(n) for n = |CPt(τ). The process computation rate
PCRti(τ) [vs/tu] of each process pi on the server st at time τ is SCRt(τ)/n =
NSRt(n)/n (=NPRti(n)).

Suppose a process pi on a server st starts at time st and ends at time et.
Here, the total number V Ci of virtual computation steps of the process pi is
given as follows V Ci =

∑et
τ=st NPRti(|CPt(τ)|) = minTi [vs].

[Computation model of a process pi]. At each time τ , a process pi is per-
formed on a server st as follows:

1 If the process pi starts and gets active on the server st, the variable plci is
V Ci [vs].

2 Let nt be number of active processes on the server st, i.e. nt = |CPt(τ)|.
3 If the process pi is active, plci is decremented by the process computation

rate NPRti(|nt|) = NPRt(|nt|).
4 Then, the process pi terminates if plci ≤ 0.

3.2 Estimation Models

In order to select a server where a new process to be performed and where a
virtual machine to migrate, the execution time ETi of each process pi has to be
estimated. It is not easy to a priori the total number V Ci of virtual computation
steps of each process. Hence, we assume every process pi has to perform the same
number V Ci of virtual computation steps. Then, V Ci is assumed to be one.

The total number of virtual computation steps to be performed by nt active
processes on a server st is αt(nt) · nt. In this paper, the function αt(nt) is given
for number ntt of threads as follows:

αt(nt) =

⎧
⎪⎪⎨

⎪⎪⎩

0.5 for nt ≤ ntt.
0.6 for ntt < nt ≤ 2 · ntt.
0.8 for 2 · ntt < nt ≤ 4 · ntt.
1 for nt > 4 · ntt.

(3)

For example, αt(nt) · nt = 0.8 · 4 · ntt = 3.2 · ntt for nt = 4 · ntt. The more
number of active processes, the more number of virtual computation steps each
active process has to perform.

Suppose k processes newly start on a server st where nt processes are active.
Here, k new processes are composed of k steps according to the assumption.
The total number αt(nt) · nt of virtual computation steps are performed by the
nt current processes. It takes (αt(nt) · nt + k)/NSRt(nt + k) time units [tu]
to perform (αt(nt) · nt + k) virtual computation steps of (nt + k) processes.

152 D. Duolikun et al.

Hence, the expected termination time SETt(nt, k) [tu] and expected energy
consumption SEEt(nt, k) [W tu] of each server st to perform both nt current
processes and k new processes are given as follows:

1 SETt(nt, k) = (αt(nt) · nt + k)/NSRt(nt + k) [tu].
2 SEEt(nt, k) = SETt(nt, k) · NEt(nt + k)

= (αt(nt) · nt + k) · NEt(nt + k)/NSRt(nt + k) [Wtu].

We consider a pair of servers st and su where there are nt (≥0) and nu (≥0)
processes performed, respectively. A group GVu of v (≥1) virtual machines start
migrating from the host server su to the server st at time τ . Here, totally tnvu

processes are active on the v virtual machines in the group GVu. The migration
time mtut to migrate v virtual machines is mgt(v) = mt + β · (v − 1). Every
process on each virtual machine is suspended from time τ to time τ + mtut.
The tnvu processes on the virtual machines are resumed on the server st at
time mtut. As discussed, every current process terminates on the server st by
time τ + ETt(=SETt(nt, 0)) + τ if neither any virtual machine migrates to the
server st nor a new process starts after time τ . First, suppose mtut ≤ ETt.
Here, not only nt current processes but also tnvu processes in the group GVu

are performed after time τ + mtut. The hatched area in Fig. 3(1) shows the
energy consumption of the server st. Here, αt(nt) · nt · (mtut/ETt) and αt(nt) ·
nt · (1 − mtut/ETt) virtual computation steps are so far performed and have
to be still performed, respectively, in the nt current processes. αu(nu) · tnvu

virtual computation steps have to be performed in tnvu processes. Here, it still
takes ((1 − mtut/ETt) · αt(nt) · nt + αu(nu) · tnvu/NSRt(nt + tnvu) [tu] to
perform nt current processes and tnvu processes on the server st. Hence, it takes
NTt = mtut + ((1 − mtut/ETt) · αt(nt) · nt + αu(nu) · tnvu)/NSRt(nt + tnvu)
[tu] to migrate the virtual machine group GVu to the server st. Here, the energy
NEt(nt)·mtut+NEt(nt+tnvu)·(NTt−mtut) [Wtu] is consumed by the server st.

Next, suppose mtut > ETt. Here, nt current processes of the server st ter-
minate before tnvu processes in the group GVu start on the server st at time
τ + mtut. The hatched area in Fig. 3(2) shows energy to be consumed by the
server st. Only tnvu processes are performed from time τ + mtut to time NTt

(=mtut +αu(nu) · tnvu/NSRt(tnvu)). Here, the energy NEt(nt) ·ETt +minEt ·
(mtut − ETt) + NEt(tnvu) · (NTt − mtut) [Wtu] is consumed by the server st.

Thus, the expected termination time METt(nt, tnvu) and expected energy
consumption MEEt(nt, tnvu) of a server st to which tnvu processes on a group
GVu of virtual machines migrate from a server su are given as follows, where
ETt = SETt(nt, 0):

METt(nt, tnvu) =

⎧
⎨

⎩

mtut + ((1 − mtut/ETt) · αt(nt) · nt

+αu(nu) · tnvu)/NSRt(nt + tnvu) if ETt > mtut.
mtut + (αu(nu) · tnvu)/NSRt(tnvu) otherwise.

(4)

Static and Dynamic Group Migration Algorithms of Virtual Machines 153

MEEt(nt, tnvu) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

mtut · NEt(nt)
+ (MTEt(nt, tnvu) − mtut) · NEt(nt + tnvu)

if ETt > mtut.
ETt · NEt(nt) + minEt · (mtut − ETt)
+ (MTEt(nt, tnvu) − ETt) · NEt(tnvu) otherwise.

(5)

Since the (nu−tnvu) processes are performed on the server su after the group
GVu of virtual machines migrate to the server st, the energy SEEu(nu − tnvu,
0) is consumed by the server su. It takes SETu(nu − tnvu, 0) time units [tu] to
perform (nu −tnvu) processes on the server su. Let NEt and NEu be MEEt(nt,
tnvu) and SEEu(nu − tnvu, 0), respectively. Let NTt and NTu be METt(nt,
tnvu) and SETu(nt−tnvu, 0), respectively. The total energy TEut(nt, nu, tnvu)
to be consumed by the servers st and su to perform every current process is given
by the following function TEE(NEt, NTt, minEt, NEu, NTu, minEu) [3]:

TEE(ET, TT, MT, EU, TU, MU) =

{
ET + EU + (TT − TU)MU if TT ≥ TU.
ET + EU + (TU − TT)MT if TT < TU.

(6)

Fig. 3. Electric energy consumption MEEt of a server st.

4 Group Migration Algorithms

4.1 Selection of a Virtual Machine

We consider a cluster S of servers s1, . . . , sm (m ≥ 1). Let V M be a set of
ready virtual machines in the cluster S. Let V Mt (⊆V M) show a set of ready

154 D. Duolikun et al.

virtual machines on each server st. V Mt = V M1∪ . . .∪V Mm. Let nt and nvh be
numbers of active processes on a server st and a virtual machine vmh, respec-
tively. We propose a pair of static and dynamic types of migration algorithms.
In the static migration algorithms [24,25], the total number nv (≥1) of virtual
machines vm1, . . . , vmnv is invariant, i.e. V M = {vm1, . . . , vmnv}. Each virtual
machine vmh is deployed on some server st. The set V Mt is changed each time
a virtual machine migrates to and from the server st.

In the dynamic migration algorithms [6,7,9], virtual machines are resumed
and suspended as the number of processes increases and decreases, respectively.
There is initially no ready virtual machine and every virtual machine is dormant
on some server, i.e. V Mt = φ for every server st and V M = φ. DV Mt is a set of
dormant virtual machines on each server st. If a dormant virtual machine vmh

is resumed on a server st, the virtual machine vmh gets ready and is included
in the variable V Mt. If a ready virtual machine vmh is suspended, the virtual
machine vmh gets dormant. Here, vmh moves from V Mt to DV Mt. We assume
each server st supports enough number of dormant virtual machines in the set
DV Mt so that dormant virtual machines can be resumed anytime.

Suppose a process pi is issued to a cluster S. In the static virtual machine
migration (SVM) algorithm [Algorithm 1], one ready virtual machine vmh is
selected to perform the new process pi.

Algorithm 1. Static VM (SVM) selection
Input : pi = a new process issued by a client;
Output: st = server;

vmh = a virtual machine on the server st;
1 select a host server st where SEEt(nt, 1) is minimum;
2 select a smallest virtual machine vmh in V Mt on the server st;

As written in paper [24], the execution time of each process depends on the
total number of active processes but is independent of the number of virtual
machines on a host sever. In the dynamic virtual machine migration (DVM)
algorithm [Algorithm 2], each virtual machine is kept smaller than maxNV Mt

even if the number of active processes increases in a cluster. If nvh < maxNV Mt,
a smallest ready virtual machine vmh is selected in the set V Mt. Otherwise, a
dormant virtual machine vmh in the set DV Mt is resumed on the server st.
Then, the process pi is issued to the virtual machine vmh.

In order to reduce the number of idle virtual machines, each engaged server
st is periodically checked and idle virtual machines are suspended in the VMS
algorithm [Algorithm 3].

Static and Dynamic Group Migration Algorithms of Virtual Machines 155

Algorithm 2. Dynamic virtual machine (DVM) selection
Input : pi = new process;
Output: st = server;

vmh = virtual machine on a server st;
1 select a host server st where SEEt(nt, 1) is minimum;
2 if V Mt = φ, /* the server st is not engaged; */

3 then
4 resume a dormant virtual machine vmh in the pool DV Mt of st;
5 else
6 if nt / |V Mt| ≤ maxNV Mt; then
7 select a smallest ready virtual machine vmh in the set V Mt;
8 else
9 resume a dormant virtual machine vmh in the pool DV Mt.

Algorithm 3. Virtual machine suspension (VMS)
Input: st =a server st;

1 if |V Mt| > 1, then
2 while there is an idle virtual machine and nt/(|V Mt| − 1) < maxNV Mt

do
3 select one idle virtual machine vmh in V M t;
4 suspend the virtual machine vmh;

5 else

4.2 Group Migration of Virtual Machines

Next, we discuss how to migrate a group GVt of virtual machines on host
server st to a guest server su. Here, active virtual machines in the set V Mt =
{vmt1, . . . , vmtvt

} (vt ≥ 0)on the server st are ordered in terms of size as
vmt1 ≤ . . . ≤ vmtvt

.
At most v (≤|V Mt|) a active virtual machines on a server st and a guest

server su are selected in a group virtual machine migration GV Mt(v) algorithm
[Algorithm 4]. First, suppose no virtual machine on a host server st migrates.
Here, only nu active processes are to be performed on each server su. For each
server su (u = 1, . . . ,m), the expected energy consumption EEu = SEEu(nu,
0) and termination time ETu = SETu(nu, 0) are calculated. The total energy
CEEtu to be consumed by a pair of the host server st and every other server su

is given by the function TEE (EEt, ETt, minEt, EEu, ETu, minEu).
Next, suppose a group GVt of virtual machines on the host server st migrate

to another server. We have to find a guest server su and a group GVt of virtual
machines on the host server st. The total energy consumption NEEtu of the host
server st is obtained for each possible guest server su. First, a smallest active
virtual machine vmt1 is taken on the host server st. Here, the number nv (=nvt1)
of processes migrate as the virtual machine vmt1 migrates from the server st

156 D. Duolikun et al.

Algorithm 4. Group virtual machine migration GV M t(v) on a server st

Input : st = hoset server;
v = maximum number of virtual machines to migrate from st;

Output: s = guest server;

GVt = set of virtual machines to migrate from st to s;
1 EEt = SEEt(nt, 0); /* energy to perform nt processes on st */
2 ETt = SETt(nt, 0); /* execution time on st */
3 for each server su (�= st),

/* nu = number of current processes of su */

4 do

5 EEu = SEEu(nu, 0);
6 ETu = SETu(nu, 0);

7 CEEtu = TEE(EEt, ETt, minEt, EEu, ETu, minEu);
/* total energy consumption of st and su */

8 nv = 0; NEE = ∞; s = NULL; GVt = φ;
9 if v = ∗ or x ≥ vt then

10 x = vt;
11 else

12 if v < vt;

13 then
14 x = v;
15 else

16 i = 0;

17 while i ≤ x do

18 i = i + 1;
19 if nvti > 0, /* vmti is active */

20 then

21 nv = nv + nvti;
/* total number of processes on vmt1, . . ., vmti */

/* nv processes migrate from st to su */

22 NEt = SEEt(nt − nv, 0);
23 NTt = SETt(nt − nv, 0);

24 else

25 break;

26 for each server su (�= st) /* vmt1, . . ., vmti to migrate to su */

27 do
28 NEtu = MEEu(nu, nv);

29 NTtu = METu(nu, nvh);

30 NEEtu = TEE(NEt, NTt, minEt, NEtu, NTtu, minEu);
31 if NEEtu < CEEtu and NEEtu < NEE,

/* energy can be reduced by taking su as a guest server */

32 then

33 NEE = NEEtu; s = su;

34 GVt = GVt ∪ {vmti}; /* vmti is selected */

35 else

36 if s �= NULL, /* guest server is found */

37 then

38 migrate virtual machines in GVt from st to s;
39 else

Static and Dynamic Group Migration Algorithms of Virtual Machines 157

to another server. The host server st is expected to consume energy NEt =
SEEt(nt − nv, 0) by time NTt = SETt(nt − nv, 0). Here, since nv processes
leave the host server st, the expected energy consumption NEt is smaller than
EEt and NTt < ETt. nv processes migrate to a guest server su. Here, the server
su consumes energy NEtu = MEEu(nu, nv) by time NTtu = MTEu(nv, nvh).
Since nv processes on the virtual machine vmti are additionally performed on the
server su, NEtu > EEu and NTtu > ETu. Total energy NEE1

tu to be consumed
by the servers st and su is TEE(NEt, NTt, minEt, NEtu, NTtu, minEu). If
CEEtu > NEE1

tu, the virtual machine vmt1 can migrate from the host server
st to the server su because the total energy consumption of the servers st and
su can be reduced. The virtual machine vmt1 is included in the set GVt, i.e.
GVt = {vmt1}. NEE = NEE1

tu and s = su. If CEEu ≤ NEE1
tu, the GV Mt(v)

algorithm terminates, no virtual machine migrates from the server st.
Secondly, the virtual machine vmt1 and a next smallest active virtual machine

vmt2 are candidates to migrate from the host server st to another guest server
su. Here, there are totally nv (=nvt1 + nvt2) processes to migrate. For each
server su (su �= st), NEtu = MEEu(nu, nvt1 + nvt2) and ETtu = MTEu(nu,
nv). NEE2

tu is also calculated by using the function TEE(NEt, NTt, minEt,
NEtu, NTtu, minEu). A guest server su to migrate the virtual machines vmt1

and vmt2 is found where the total energy NEE2
tu is minimum as discussed in

the first virtual machine vmt1. If CEEtu ≤ NEE2
tu or NEEtu ≤ NEE2

tu, the
GV Mt(v) algorithm terminates and only one virtual machine vmt1 in the set
GVt migrates. Otherwise, NEE = NEE2

tu, GVt = {vmt1, vmt2}, and s = su.
Then, a third smallest active virtual machine vmt3 is a candidate in addition to
the virtual machines vmt1 and vmt2. Now, nv (=nvt1 + nvt2 + nvt3) processes
migrate. For each server su, NEEtu is calculated. Unless NEE3

tu < CEEtu

and NEE3
tu < NEEtu for every server su, GVt = {vmt1, vmt2} and a pair

of virtual machines vmt1 and vmt2 migrate to the server s. Otherwise, three
virtual machines vmt1, vmt2, and vmt3 can migrate. A server su whose NEE3

tu

is minimum is a possible guest server, i.e. s = su, NE = NEE3
tu. Here, GVt =

{vmt1, vmt2, vmt3}.
Thus, these steps are iterated. Then, a group GVt of the v virtual machines

migrate to a guest server su. Here, totally nv processes on the active virtual
machines in the set GVt migrate from the host server st to the guest server s.
In the GV M t(*) algorithm, as many number of virtual machines as possible
migrate from the host server st to the guest server s.

4.3 Migration Algorithms

The static SM(v) and dynamic DM(v) migration algorithms are composed of
selection and migration procedures. In the first selection procedure, a virtual
machine is selected to perform a new process issued by a client. In the SM(v)
and DM(v) algorithms, a virtual machine is selected in the SVM and DVM
algorithms, respectively. In the DM(v) algorithm, a dormant virtual machine on
a server st may be resumed and selected depending on the size of each exiting
virtual machine.

158 D. Duolikun et al.

In the second one, a group GVt of virtual machines migrate from the host
server st to another server. The second procedure is periodically performed on
each engaged server st. For each server st, a group GVt of virtual machines on
the server st and a host server su to which the virtual machines in the set GVt

migrate are selected in the GV Mt algorithm.
The SM(v) and DM(v) algorithms are shown in Algorithms 5 and 6,

respectively.

Algorithm 5. Static migration SM(v) algorithm
1 A virtual machine vmh on a host server st is selected to perform the process pi

by using the SVM selection algorithm. Then, the process pi is performed on the
virtual machine vmh.

2 For each server st, a group GVt of active virtual machines on the host server st
and a guest server su are periodically selected in the GV Mt(v) algorithm. The
group GVt of active virtual machines migrate from the host server st to the
guest server su if found.

Algorithm 6. Dynamic migration DM(v) algorithm
1 A virtual machine vmh on a host server st is selected to perform the process pi

by using the DVM selection algorithm. The process pi is performed on the
virtual machine vmh.

2 For each server st, a group GVt of active virtual machines on the host server st
and a guest server su are periodically selected in the GV Mt(v) algorithm. The
group GVt of active virtual machines migrate from the host server st to the
guest server su if found.

3 For each server st, the VMS algorithm is periodically performed to suspend idle
virtual machines.

5 Evaluation

5.1 Environment

In this paper, the static SM(v) and dynamic DM(v) group migration algo-
rithms are proposed. In the simulation, the algorithms are evaluated by mea-
suring the total electric energy consumption TEE [Wtu] and total active time
TAT [tu] of servers s1, . . . , sm (m ≥ 1) and the average execution time AET
[tu] of processes p1, . . . , pn (n ≥ 1). The SM(v) and DM(v) algorithms com-
pared with the non-migration type, random (RD), round robin (RR), and SGEA
[16] algorithms. We consider four servers s1, . . . , s4 (m = 4) in our laboratory,
whose parameters on power consumption and performance are shown in Table 2.
In the static migration SM(1) and SM(*) algorithms and the non-migration
RD, RR, and SGEA algorithms, V M is a set of sixteen virtual machines

Static and Dynamic Group Migration Algorithms of Virtual Machines 159

vm1, . . . , vm16 (nv = 16). Each server st initially provides four virtual machines,
i.e. |V Mt| = |V M |/m = 16/4 = 4. That is, each server st provides four virtual
machines vmt, vmt+4, vmt+8, and vmt+12.

In the RD algorithm, one virtual machine is randomly selected. In the RR
algorithm, a virtual machine is selected after a virtual machine vmh−1. In the
SGEA algorithm, a host server st is selected so that the total energy consumption
of all the servers is minimized. Then, the process pi is performed on a smallest
virtual machine of the selected server st. In the SM(1), SM(*), DM(1), and
DM(*) algorithms, the migration time mttu of v virtual machines between every
pair of servers st and su is given by the function mgt(v) = 2.5v − 0.5. In the
dynamic DM(1) and DM(*) algorithms, there is initially no virtual machine
on each server st, i.e. V Mt = φ. Idle virtual machines are resumed and ready
virtual machines are suspended depending on number of active processes on the
virtual machines in the VMS algorithm. Here, maxNV Mt = 10. In the SM(1)
and DM(1) algorithms, only one virtual machine migrates from a host server to
a guest server. On the other hand, a group of multiple virtual machines migrate
from a host server to a guest server in the SM(*) and DM(*) algorithms. Each
engaged server is checked every σ = 5 time units in the GV Mt(v) algorithm. A
group GVt of virtual machines and a guest server su are selected and the group
GVt migrate from the server st to the server su.

Table 1. Starting time of processes.

stimei Number of processes

0 ≤< 17 · xtime/80 n/8

17 · xtime/80 ≤ < 19 · xtime/80 n/8

19 · xtime/80 ≤ < 20 · xtime/80 n/2

xtime/4 ≤ < 11 · xtime/40 n/8

11 · xtime/40 ≤ < xtime n/8

One time unit [tu] is assumed to be 100 [ms] in the simulation. Processes
p1, . . . , pn (n ≥ 1) are randomly issued to the cluster S. This means, the total
number V Ci of virtual computation steps of each process pi is randomly taken
from 15 to 25 [tu]. The starting time stimei of each process pi is also randomly
decided between 0 and xtime − 1 as shown in Table 1. In the evaluation, xtime
is 1,000 [tu]. For example, the half n/2 of n processes randomly start at time
19 · xtime/80 to xtime/4. In the simulation, the ending time etimei of each
process pi is obtained. The execution time ETi of each process pi is etimei −
stimei + 1. The simulation ends at time etime when every process terminates,
etime = max(etime1, . . . , etime2). Eight process configurations PFn1, . . . , PFn8

are randomly generated for each number n of processes.

160 D. Duolikun et al.

There are variables pli, V Ci, stimei, and etimei for each process pi. The
variable stimei and V Ci are randomly decided in each process configuration
PFng as presented here. For each process configuration PFng, the simulation is
done by the simulation algorithms shown in Algorithm 7. A variable CPt stands
for a set of active processes on a server st. Variables EEt and ATt denote the
energy consumption [Wtu] and active time [tu] of each server st, respectively.
A variable EE shows the total energy consumed by the servers s1, . . . , s4. A
variable nt denotes number of active processes on a server st. ETi denotes the
execution time of each process pi and ET indicates the total execution time of n
processes. Initially, time τ = 0, ETi = 0 for each process pi, and EEt = ATt = 0
for each server st. At each time τ , if a process pi starts, i.e. stimei = τ , a
server st and a virtual machine vmh on the server st are selected in one of
the algorithms, e.g. DM(*). Here, CPt = CPt ∪ {pi}. The variable EEt is
incremented by the power consumption NEt(nt) − minEt [W] for number nt

(=|CPt| of active processes on the server st at each time τ . The variable ATt is
incremented by one if nt > 0. Then, if a process pi terminates on a server st at
time τ , ETi = τ − stimei + 1. Time τ is incremented by one. These steps are
iterated until every process terminates.

When the simulation ends, EEt shows the total energy [Wtu] consumed by
each server st and ATt stands for the total active time [tu] of each server st. The
total energy consumption TEE of the servers is EE1 +EE2 + EE3 +EE4. The
variable TET indicates the total execution time of n processes, i.e. ET1 + . . . +
ETn. The average execution time AET of each process is TET/n.

5.2 Evaluation Results

For each number n of processes, eight process configurations PFn1, . . . , PFn8

are randomly generated. For each process configuration PFng, the total energy
consumption TEE and total active time TAT of the four servers and the total
execution time of n processes are obtained in the simulation. Then, the average
values of TEE, TAT , and TET are calculated for the eight process configura-
tions PFn1, . . . , PFn8.

Figure 4 shows the total energy consumption TEE = EE1+ . . .+EE4 [Wtu]
of the servers s1, . . . , s4 for number n of processes. The total energy consump-
tion TEE of the RD algorithm is almost the same as the RR algorithm. In
the SM(1) and DM(1) algorithms, the servers consume more energy than the
SGEA algorithm. In the SGEA algorithm, each process pi is issued to a virtual
machine on a server st where the expected energy consumption of not only the
host server st but also the other servers is minimum. In addition, the virtual
machine does not migrate. The total energy consumption TEE of the SGEA
algorithm is smaller than the half of the total energy consumption TEE of the
RR and RD algorithms. In the SM(*) and DM(*) algorithms, a group of multiple
virtual machines migrate from a host server to a guest server. Here, the total
energy consumption TEE of the servers more slowly increases than the other
algorithms even if the number n of processes increases. The total energy con-
sumption TEE of the DM(*) algorithm is smaller than the SM(*) algorithm and

Static and Dynamic Group Migration Algorithms of Virtual Machines 161

Algorithm 7. Simulation Algorithm
Input : P = set of processes p1, . . ., pn;
Output: TEE = total electric energy consumption;

1 TAT = total active time of server;
2 AET = average execution time of processes;
3 EE = 0; ET = 0;
4 for every process pi, statei = Idle;
5 for every server st,
6 EEt = ATt = 0;
7 CPt = φ;
8 τ = 0;
9 while there is some active or idle process do

10 if there is a process pi where stimei = τ then
11 select vmh on st in one of the algorithms like DM(*);
12 statei = Active; pli = V Ci;
13 CPt = CPt ∪ {pi};

14 else

15 for each server st where CPt �= φ do
16 nt = |CPt|;

/* number of active processes on st */

17 EEt = EEt + NEt(nt) - minEt;
18 ATt = ATt + 1;
19 cr = NSRt(nt) / nt; /* process computation rate */

20 for each active process pi in CPt do
21 pli = pli − cr;
22 if pli ≤ 0 then
23 statei = Terminated;
24 etimei = τ ;
25 ETi = etimei − stimei + 1;
26 CPt = CPt − {pi};

27 else

/* advance time τ */

28 τ = τ + 1;

29 TEE = EE1 + . . . + EEm;
30 TAT = AT1 + . . . + ATm;
31 AET = ET1 + . . . + ETn;

is smallest in the algorithms. For example, the total energy consumption TEE
of the DM(*) algorithm is about 50% of the RD and RR algorithms, 20% of the
SM(1) algorithm, 15% of the DM(1) algorithm, and 5% of the SGEA algorithm
for n = 2, 000. The servers consume the smallest energy in the DM(*) algorithm
than the other algorithms.

162 D. Duolikun et al.

Figure 5 shows the total active time TAT = AT1 + . . . + AT4 [tu] of the
servers s1, . . . , s4 for the number n of processes. The total active time TAT of
the RR algorithm is same as the RD algorithm. The total active time TAT
of the SGEA algorithm is shorter than the SM(1) and DM(1) algorithms but
longer than the SM(*) and DM(*) algorithms. The total active time TAT of the
DM(*) algorithm is about 45% of the RD and RR algorithms and about 5 to
10[%] shorter than the SM(*) and SGEA algorithms. This means, the servers
are more lightly loaded in the dynamic group migration DM(*) algorithm than
the other algorithms.

Figure 6 shows the average execution time AET [tu] of number n of processes.
AET is (ET1 + . . . + ETn)/n = TET/n. The average execution time AET of
processes in the SM(1) and DM(1) algorithms is about 40% smaller than the
RR and RD algorithms but is longer than the SGEA, SM(*), and DM(*) algo-
rithms. The average execution time AET of processes in the DM(*) algorithm
is the shortest in the algorithms. In the DM(*) algorithm, the average execution
time AET of processes is about 5 to 10[%] shorter than the SGEA and SM(*)
algorithms.

As shown in Figs. 4, 5 and 6, the total energy consumption TEE and total
active time TAT of the servers and the average execution time AET of the
processes can be more reduced in the DM(*) and SM(*) algorithms than the
other algorithms. Especially, the TEE, TAT , and AET are the smallest in the
DM(*) algorithm compared with the other algorithms. This means, the total
energy TEE of the servers and the average execution time AET of the processes
can be reduced by migrating a group of multiple virtual machines from a host
server to a guest server.

Table 2. Parameters of servers.

Parameters s1 s2 s3 s4

npt 2 1 1 1

nct 8 8 6 4

ntt 32 16 12 8

CRTt [vs/tu] 1.0 1.0 0.5 0.7

maxCRt [vs/tu] 32 16 6 5.6

minEt [W] 126.1 126.1 87.2 41.3

maxEt [W] 301.3 207.3 136.2 89.6

bEt [W] 30 30 16 15

cEt [W] 5.6 5.6 3.6 4.7

tEt [W] 0.8 0.8 0.9 1.1

Static and Dynamic Group Migration Algorithms of Virtual Machines 163

Fig. 4. Total electric energy consumption TEE (m = 4, σ = 5, maxNV Mt = 10).

Fig. 5. Total active time TAT (m = 4, σ = 5, maxNV Mt = 10).

164 D. Duolikun et al.

Fig. 6. Average execution time AET of processes (m = 4, σ = 5, maxNV Mt = 10).

6 Concluding Remarks

We have to reduce the total energy consumption of information systems to reduce
carbon dioxide emission. Especially, clusters of servers are getting scalable like
cloud computing systems and servers consume more energy than clients. Hence,
it is critical to reduce the energy consumed by servers. In this paper, we discussed
the virtual machine migration approach to reducing the electric energy to be con-
sumed by servers to perform application processes. In this paper, we proposed
the static migration SM(v) and dynamic migration DM(v) algorithms where a
group of at most v virtual machines migrate from a host server to a guest server.
In the DM(v) algorithm, virtual machines are dynamically resumed and sus-
pended as the number of active processes increases and decreases, respectively.
On the other hand, the number of virtual machines is invariant in a cluster in
the SM(v) algorithm. In the evaluation, we showed the total energy consumption
and total active time of servers and the average execution time of processes can
be mostly reduced in the DM(*) algorithm compared with other algorithms. By
migrating multiple virtual machines from a host server to a guest server and
dynamically suspending and resuming virtual machines, the total energy con-
sumed by all the servers and the average execution time of processes can be
reduced compared with static migration and non-migration algorithms.

Static and Dynamic Group Migration Algorithms of Virtual Machines 165

Acknowledgement. This work was supported by Japan Society for the Promotion of
Science (JSPS) KAKENHI 15H0295 and Grant-in-Aid for JSPS Research Fellow grant
18J10022.

References

1. A virtualization infrastructure for the Linux kernel (kernel-based virtual machine).
Kernel-Based Virtual Machine. https://en.wikipedia.org/wiki/

2. Duolikun, D., Enokido, T., Takizawa, M.: An energy-aware algorithm to migrate
virtual machines in a server cluster. Int. J. Space Based Situated Comput. 7(1),
32–42 (2017)

3. Duolikun, D., Nakamura, S., Enokido, T., Takizawa, M.: An energy-efficient
dynamic live migration of multiple virtual machines. In: Barolli, L., Kryvinska,
N., Enokido, T., Takizawa, M. (eds.) NBiS 2018. LNDECT, vol. 22, pp. 87–98.
Springer, Cham (2019). https://doi.org/10.1007/978-3-319-98530-5 8

4. Duolikun, D., Nakamura, S., Watanabe, R., Enokido, T., Takizawa, M.: Energy-
aware migration of virtual machines in a cluster. Advances on Broad-Band Wire-
less Computing, Communication and Applications. LNDECT, vol. 2, pp. 21–32.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-49106-6 3

5. Duolikun, D., Watanabe, R., Enokido, T., Takizawa, M.: A model for migration of
virtual machines to reduce electric energy consumption. In: Proceedings of the 19th
International Conference on Network-Based Information Systems (NBiS 2016), pp.
50–57 (2016)

6. Duolikun, D., Watanabe, R., Enokido, T., Takizawa, M.: An eco algorithm for
dynamic migration of virtual machines in a server cluster. In: Barolli, L., Enokido,
T., Takizawa, M. (eds.) NBiS 2017. LNDECT, vol. 7, pp. 42–54. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-65521-5 4

7. Duolikun, D., Watanabe, R., Enokido, T., Takizawa, M.: Energy-aware dynamic
migration of virtual machines in a server cluster. In: Barolli, L., Xhafa, F., Conesa,
J. (eds.) BWCCA 2017. LNDECT, vol. 12, pp. 161–172. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-69811-3 14

8. Duolikun, D., Watanabe, R., Enokido, T., Takizawa, M.: An eco migration algo-
rithm of virtual machines in a server cluster. In: Proceedings of IEEE the 32nd
International Conference on Advanced Information Networking and Applications
(AINA 2018), pp. 271–278 (2018)

9. Duolikun, D., Watanabe, R., Enokido, T., Takizawa, M.: Energy-efficient replica-
tion and migration of processes in a cluster. In: Proceedings of the 12th Interna-
tional Conference on Complex, Intelligent and Software Intensive Systems (CISIS
2018), pp. 118–125 (2018)

10. Elnozahy, E.N., Kistler, M., Rajamony, R.: Energy-efficient server clusters. Power
Aware Comput. Syst. 2325, 179–197 (2003)

11. Enokido, T., Aikebaier, A., Deen, M., Takizawa, M.: Power consumption-based
server selection algorithms for communication-based systems. In: Proceedings of
the 13th International Conference on Network-based Information Systems (NBiS
2010), pp. 201–208 (2010)

12. Enokido, T., Aikebaier, A., Takizawa, M.: A model for reducing power consumption
in peer-to-peer systems. IEEE Syst. J. 4(2), 221–229 (2010)

13. Enokido, T., Aikebaier, A., Takizawa, M.: Process allocation algorithms for saving
power consumption in peer-to-peer systems. IEEE Trans. Ind. Electron. 58(6),
2097–2105 (2011)

https://en.wikipedia.org/wiki/
https://doi.org/10.1007/978-3-319-98530-5_8
https://doi.org/10.1007/978-3-319-49106-6_3
https://doi.org/10.1007/978-3-319-65521-5_4
https://doi.org/10.1007/978-3-319-69811-3_14

166 D. Duolikun et al.

14. Enokido, T., Aikebaier, A., Takizawa, M.: An extended simple power consump-
tion model for selecting a server to perform computation type processes in digital
ecosystems. IEEE Trans. Ind. Inform. 10(2), 1627–1636 (2014)

15. Kataoka, H., Nakamura, S., Duolikun, D., Enokido, T., Takizawa, M.: Multi-level
power consumption model and energy-aware server selection algorithm. Int. J. Grid
Util. Comput. 8(3), 201–210 (2017)

16. Kataoka, H., Duolikun, D., Enokido, T., Takizawa, M.: Multi-level computation
and power consumption models. In: Proceedings of the 18th International Confer-
ence on Network-Based Information Systems (NBiS 2015), pp. 40–47 (2015)

17. Kataoka, H., Duolikun, D., Enokido, T., Takizawa, M.: Energy-aware server selec-
tion algorithm in a scalable cluster. In: Proceedings of IEEE the 30th International
Conference on Advanced Information Networking and Applications (AINA 2016),
pp. 565–572 (2016)

18. Kataoka, H., Sawada, A., Duolikun, D., Enokido, T., Takizawa, M.: Simple energy-
efficient server selection algorithm in a scalable cluster. Advances on Broad-Band
Wireless Computing, Communication and Applications. LNDECT, vol. 2, pp. 573–
584. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-49106-6 56

19. Mittal, N., Garg, K., Ameria, A.: A paper on modified Round-Robin Algorithm.
Int. J. Latest Technol. Eng. Manag. Appl. Sci. 5(11), 93–98 (2015)

20. McEwen, A., Cassimally, H.: Designing the Internet of Things. Wiley, Chichester
(2013)

21. Negus, C., Boronczyk, T.: CentOS Bible, 1st edn. Wiley, Indianapolis (2009)
22. Oma, R., Nakamura, S., Duolikun, D., Enokido, T., Takizawa, M.: An energy-

efficient model for fog computing in the Internet of Things (IoT). Internet Things
Eng. Cyber Phys. Hum. Syst. 1–2, 14–26 (2018)

23. Rafaels, R.J.: Cloud Computing: From Beginning to End, Create Space Indepen-
dent Publishing Platform (2015)

24. Watanabe, R., Duolikun, D., Enokido, T., Takizawa, M.: Energy-aware virtual
machine migration models in a scalable cluster of servers. In: Proceedings of IEEE
the 31st International Conference on Advanced Information Networking and Appli-
cations (AINA 2017), pp. 85–92 (2017)

25. Watanabe, R., Duolikun, D., Enokido, T., Takizawa, M.: A simply energy-efficient
migration algorithm of processes with virtual machines in server clusters. Int. J.
Wirel. Mob. Netw. Ubiquitous Comput. Dependable Appl. 8(2), 1–18 (2017)

https://doi.org/10.1007/978-3-319-49106-6_56

Unsupervised Deep Learning for Software
Defined Networks Anomalies Detection

Ahmed Dawoud(&), Seyed Shahristani, and Chun Raun

School of Computing, Engineering, and Mathematics,
Western Sydney University, Sydney, Australia
a.dawoud@westernsydney.edu.au

Abstract. Software-Defined Networks (SDN) initiates a novel networking
model. SDN introduces the separation of forwarding and control planes by
proposing a new independent plane called network controller. The architecture
enhances the network resilient, decompose management complexity, and sup-
port more straightforward network policies enforcement. However, the model
suffers severe security threats. Specifically, a centralized network controller is a
precious target for the attackers for two reasons. First, the controller is located at
a central location between the application and data planes. Second, a controller
is software which prone to vulnerabilities, e.g., buffer and stack overflow.
Hence, providing security measures is a crucial procedure towards the fully
unleash of the new model capabilities. Intrusion detection is one option to
enhance networking security. Several approaches were proposed, for instance,
signature-based, and anomaly detection. Anomaly detection is a broad approach
deployed by various methods, e.g., machine learning. For many decades
intrusion detection solution suffers performance and accuracy deficiencies. This
paper revisits network anomalies detection as recent advances in machine
learning particularly deep learning. The study proposes an intrusion detection
framework based on unsupervised deep learning algorithms. The framework
consists of an unsupervised deep learning phase followed by simple clustering
algorithms, e.g. k-means. Our results showed accuracy over 99%, that is a
significant improvement in detection accuracy.

Keywords: Software-Defined Networks � Deep learning �
Anomalies detection � Autoencoders

1 Introduction

The conventional communication networking model consists of three planes. i.e.,
management, control, and forward planes. The management plane supports network
monitoring and configuration. The control plane populates forwarding tables on the
physical devices. Consecutively, the forward plane switches packets to ingress and
egress ports based on the forwarding tables. For decades, both the control and the
forward planes are integrated into the same networking devices, for instance—switches
or routers. The conventional model provided efficiency from a performance perspec-
tive. However, current networks became excessively complicated, and there is a
necessity to adopt a more resilient architecture [1].

© Springer-Verlag GmbH Germany, part of Springer Nature 2019
N. T. Nguyen et al. (Eds.): TCCI XXXIII, LNCS 11610, pp. 167–178, 2019.
https://doi.org/10.1007/978-3-662-59540-4_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-59540-4_9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-59540-4_9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-59540-4_9&domain=pdf
https://doi.org/10.1007/978-3-662-59540-4_9

Software-Defined Networks (SDN) networking model detaches control and for-
ward planes [2]. The devices provide forwarding capabilities to switch the data flow,
while the control plane is decoupled to introduce a new entity called the network
controller. The forward plane located at the bottom of the stack includes hardware
devices, e.g., switches, routers, and firewalls and intrusion detection systems (IDS).
The devices do not possess the software intelligence needed to fill the forwarding
tables. The network logic independently relocated to the controller layer.

The controller abstracts the devices and provides resources required to programme
low-level forwarding devices. Controller aka Network Operating system (NOS) pro-
vides services like network state, and topology information. Additionally, the controller
provides northbound, and southbound APIs. The northbound API to facilitate com-
munication with the applications. Whereas, the southbound API to provide accessibility
between the controller and forwarding devices. OpenFlow is a defacto SDN south-
bound protocol [3].

The application plane resides on the top of the SDN model stack. Network pro-
grammability is a fundamental privilege achieved by SDN model, where applications in
the top plane can access the physical devices through the controller. Programmability
facilitates and accelerates the innovation with an enormous number of network
applications, e.g., monitoring, traffic engineering, security, and cloud applications.
Centralisation is an essential feature of the SDN model. A controller is a central entity
which provides a global view of the entire network; it eases the management and
policies enforcement process.

Additionally, it decreases the faults in configuring and deploying the network
policies. The centralisation enhances the network resilience and interoperability, for
instance, multiple of devices from various industrials can be integrated and abstracted
in one network. However, the controller introduces new security threats.

Network anomalies detection systems used several methods, for instance, statisti-
cal, and machine learning methods. Machine learning algorithms, e.g. supported Vector
machines SVM, and Principal Components Analysis PCA (with various variations) has
been used for attacks detections. However, the precision was not industrially appli-
cable. Likewise, classical neural networks did not show exceptional precision results.
However, recent advances in machine learning specifically, advancements in training
deep neural networks, are promising. Anomalies detection is an area where machine
learning widely contributed. However, few studies investigate the DL applicability for
network anomalies detection.

Deep Learning (DL) is deep neural network architecture; the deepness term refers
to multi hidden layers between the input and output layers. A deep network is a neural
network with hidden layers between the input and output layers. Empirically more
hidden layers mean more features to detect. Deep neural networks existed for a long
time, however; it was not possible to train the network for three reasons, i.e., Vanishing
Gradient Decent in the backpropagation algorithm, poor generalisation, and compu-
tation power.

This paper introduces a framework to enhance the security of SDN. The framework
is anomalies detection based on machine learning. We use Autoencoders, at the first
phase as the unsupervised algorithm, then we use the output as input for a simple
clustering algorithm. Hence, the deploying Autoencoders as a pre-processing phase
boosts the accuracy results.

168 A. Dawoud et al.

The next section discusses the SDN model and related security threats. The third
section investigates the deep learning and its current anomalies detection solution for
network security. The fourth section represents our proposed framework. The fifth
section is experimental for the framework implementation and results in analysis with
confusion matrices.

2 SDN Security Threats

Security threats are critical challenges in conventional networking systems. The threats
are intensifying in SDN networks. The model’s many advantages are accompanied by
additional threats that were not possible in the traditional networks. Kloti et al. have
conducted a security analysis for the OF protocol [4]. The study has deduced that
denials of services attacks have threatened the flow tables and the communication
channels; as the attacker flood those components with OpenFlow rules and requests.

Additionally, tampering attacks have substantially targeted the flow tables on the
devices by installing rules from untrusted sources. For The southbound OpenFlow
protocol, the study exposed various attacks derived from the SDN standard protocol,
for example, flow tables and on the devices control channels between the devices and
controller affected by a denial of service attacks (DoS). Application privilege conflicts
propagate to flow rules. The control channel between the controller and the switch is
initiated as a TCP connection, with an option for encryption protocol Transport Layer
Security (TLS) to secure the channel. Without an encryption method, the communi-
cation between the controller and the forwarding devices are exposed to a man in the
middle attacks.

Kreutz et al. concluded seven threats vector for SDN [5]. Three threats are directly
linked to the controller itself shown in Fig. 1 as follow,

Fig. 1. SDN controller threats

Unsupervised Deep Learning for SDN Anomalies Detection 169

1. Attacks on the communications between the controller and the data plane devices.
2. Attacks on the controller vulnerabilities
3. Attacks on the controller originated from untrusted applications

3 Anomalies Detection and Deep Learning

Intrusion Detection Systems are software or hardware systems dedicated to monitoring
the traffic for security threats. Standard intrusion detection process includes three phases,
collecting data from the network, analyzing, and then launch a proper response if a threat
exposed. There are three approaches to analyze the collected traffic named signature-
based, anomaly detection, and specification based. Firstly, signature-based, whereas a
system has a database of predefined violations’ signatures, and the system matches those
signatures against the network activity signatures. Secondly, anomalies or outlier
analysis, the system concerns about differentiate between the normal and abnormal
patterns. For the system, normal activities are identified in a baseline profile, which the
system develops in a learning phase. Thirdly the stateful protocol analysis, in this
method a predefined pattern of protocols’ behaviour is established, a comparison is
made between network activities and the expected behaviour defined by protocols, and
in the case of profile violation, an alert is raised. A combination of methods is used to
maximize the IDS performance [6]. A significant weakness in the signature-based
method is the inability to detect new attacks while anomaly detection has a higher false
alarms rate. The majority of the commercial implementations use a hybrid approach [7].

Anomalies or outliers are unexpected patterns. In the context of networking, the
intrusions or attacks are classified as unusual behaviour [8]. So at any point, the
majority of the traffic is normal. Several approaches were adopted. e.g. statistical
methods, machine learning, and biological models. The proposed framework adopts a
machine learning approach.

Recently, deep learning has revived the neural networks. It has been successfully
applied in various areas. e.g., objects and speech recognition [9]. The recent advances
in DL started in 2006 by a pre-training step using restricted Boltzmann Machines
(RBM) [10]. Later, various algorithms were proposed to solve the generalization
problem these solutions include Rectifier Linear Units (ReLU) and dropouts. DL
algorithms are classified into supervised and unsupervised. In supervised learning, the
training dataset contains the input data and data labels. This approach is suitable for
classification, and regression tasks. In the unsupervised, only an unlabeled dataset is
available. Unsupervised applications include clustering, dimensionality reduction, and
noise removal. For network anomalies detection we believe the unsupervised approach
has the following advantages.

Unsupervised can detect the internal representation of the dataset; this conforms to
the online detection. Theoretically unsupervised algorithms will discover the unprece-
dented threats. We can use the unsupervised method as a pertaining phase before
supervised or Reinforcement Learning (RL).

Unsupervised DL algorithms include Autoencoder and Restricted Boltzmann
Machines (RBM).

170 A. Dawoud et al.

An autoencoder is a neural network that consists of two phases.
An encoder is a deterministic mapping function fh that transforms an input vector x

into hidden representation y.
h ¼ fW; bg, where W is the weight matrix and, b is bias

fh xð Þ � x0

A decoder reconstructs the hidden representation z (encoder’s output) to x0 via gh.
Autoencoder measures the reconstruction error between x0 (reconstructed) and the

input x and to minimize this error (information loss) to make x0 as close as possible to x.

J Wð Þ ¼
X

jjxn � x
0
njj ð1Þ

J (W) is the cost function whose goal is to minimize the cost
Arg min ðJðWÞÞfw;w0;b;b0g
Where w and b are encoder weights and biases respectively, and w0; b0 are weights
and biases for the decoder.

Various functions can be used as cost functions for example squared error. The cost
function optimization, several options are available for instance stochastic gradient
descent SGD and AdamOptimizer.

Fiore et al. used a semi-supervised deep learning tool for network anomalies
detection [11]. Authors introduced a discriminative form of restricted Boltzmann
machines. The results were not promising specifically when testing the DRBM in a new
network. Several research papers focus on improving classical machine learning
algorithms with deep learning. Salama et al. used a Deep Belief Network (DBN) as a
dimensionality reduction tool for Support Vector Machines (SVM) classifier [12]. The
authors claimed a hybrid approach achieve approximately 93% accuracy where the
SVM and DBN scored 88% and 90% respectively. In another comparative study,
authors compare three traditional algorithms, i.e., Bays networks, C4 and SVM against
a hybrid SVM-RBM algorithm. The results showed the superiority of the hybrid
method with several attack detection, e.g., DoS and user root attacks [13]. In a broader
comparative study on anomalies detection, the authors presented a deep structured
energy-based model; The study compares their algorithms in two different decisions
boundaries against five severe anomalies detection algorithms including PCA and
SVM. The authors go further step by applying their algorithm to various data types,
i.e., static, sequential, and spatial datasets [14]. Among the static datasets, they choose
the KDD99 network dataset. Their results showed comparable or better performance to
methods like PCA and kernel PCA.

4 Detection Framework

The detection framework is positioned at a control plane. Figure 2 shows the archi-
tecture of the framework; where the IDS is a module of the controller plane. This
architecture support centralisation and flexibility. The implementation of the system is

Unsupervised Deep Learning for SDN Anomalies Detection 171

beyond the scope of this paper, as the primary goal is to investigate the accuracy of the
algorithm.

We used Tensorflow (TF) as a deep learning development library. Tensorflow is
matrices flow in a graph model. TF graph consists of nodes and edges; nodes represent
mathematical operations, edges represent multi-dimensional data arrays (tensors).

KDD99 is the most used dataset in machine learning and intrusion detection. The
dataset represents real network traffic collected data. The dataset includes 4898431
traffic records for the training, 311029 records for testing. The dataset contains four
types of attacks,

Figure 3 depicts the workflow of the simulation. The first stage of the experiments
is to build the AE network. The AE consists of two passes, the encoder, and the
decoder. Both the encoder and decoder consist of multiple layers. The dataset is loaded
into Tensorflow tensor dimension (Training samples, 41), where 41 is some features in
a single data samples (input). The weight and biases implemented as tensors for the
encoder and decoder. The dimension of weighs and biases depends on the number of
neurons (units in the hidden layer). For instance, if we decode the input into five units,
this means we will have (41, 5) tensor where 41 input units (features of one network
traffic record), and same dimensions will be used in the decoder.

The next step is to train the network; in the forward pass, we use the logits as an
activation function. Then we apply the activation function to reconstruct the record
from the decoded units, weights, and biases for the output. The next step is to compare
the original data against the reconstructed output.

Network
Traffic

Packet
Arr.

Flow
Sel-ection

Table
Selection

Key
Extract

Act-ion
App.

SDN Switch

IDControl
Plane

C
lassifier

OpenFlow protocol

Fig. 2. Proposed location of the detection system in SDN model.

172 A. Dawoud et al.

A cost function is used to compute the data loss, for instance, the squared error
function. The third step is to minimise the cost (in our case data loss). Several opti-
misation algorithms are used to minimise the loss or reconstruction rate. For example,
we used Adam optimiser. Once the network settles after various sweeps of data chunks
(batches), the second phase testing is on the network with the testing sample and try to
reconstruct the data.

For the anomalies detection, the data loss between the input and the reconstructed
record is computed. Figure 4 depicts the reconstruction error for each test sample. RE
of similar samples are close; the AE successes in finding a pattern in the data. Defining
a threshold is not practically applicable, instead of clustering REs into a set of clusters.
In the training phase, the network supposed to train on normal traffic, if an input did not
belong to one of the previous clusters, it will be classified as an anomaly.

Fig. 3. Framework flow diagram

Unsupervised Deep Learning for SDN Anomalies Detection 173

The performance of the algorithm varies depending on various criteria.

• Type of the data, whether the input is binary or decimal.
• Activation function, for example, sigmoid works better with binaries while Relu is

good for decimals.
• The cost function, for instance, squared error, and cross entropy
• Optimizer, Gradient Descent, Adam optimize, SGD (figure below shows cost

optimization using two different optimizers). The autoencoder aims to minimize the
reconstruction error over multiple sweeps of the input data. The y-axis represents
the data loss calculated by the cost function (squared error), while the x-axis rep-
resents the data sweeps. The graph shows the loss is decreased till it reaches the
minima.

Figure 5 shows the framework had deduced the cluster. It is noticeable we have
separated clusters for RE ranges. Table 2 shows the framework prediction. As some
testing samples increase the accuracy declines; the main reason for this is the number of
training samples. If the framework sees more training sample the accuracy expected to
increase.

For testing, the samples contain normal and abnormal traffic. The output was
clustered; in perfect results, those clusters only include normal or abnormal data. For
example, Table 1 shows the predicted clusters for 1300 samples.

Table 2 summaries statistics for the experiments. The first table represents the
results for AE conjunction with K-means and shift means algorithms. The accuracy
represents how often the framework is correct. The highest accuracy in the table
achieved by AE and k-means and the samples number was at the lowest. A remarkable
note here, the accuracy declines as the number of samples increases. The F1 score

R
ec

on
st

ru
ct

io
n

Er
ro

r

Fig. 4. Test sample RE distribution

174 A. Dawoud et al.

R
ec

on
st

ru
ct

io
n

Er
ro

r

REs Distributed in 8 clusters

Fig. 5. RE distribution in clusters

Table 1. 800 input in 8 clusters, each cluster contains normal or abnormal with the possibility of
false positive and false negative

Cluster 1 Normal 139 Abnormal 3

Cluster 2 Normal 4 Abnormal 183
Cluster 3 Normal 0 Abnormal 302
Cluster 4 Normal 172 Abnormal 0
Cluster 5 Normal 0 Abnormal 150
Cluster 6 Normal 100 Abnormal 2
Cluster 7 Normal 0 Abnormal 61
Cluster 8 Normal 184 Abnormal 0

Table 2. Statistical metrics for various testing iterations

AE
1300 KM

AE MS
1300

AE KM
800

AE MS
800

AE KM
400

AE MS
400

Sensitivity 0.9917 0.9932 0.9974 0.9974 1 1
Specificity 0.9943 0.9789 1 0.9952 1 0.9808
Precision 0.9933 0.975 1 0.9947 1 0.9796
Negative predictive
value

0.9929 0.9943 0.9976 0.9976 1 1

False positive rate 0.0057 0.0211 0 0.0048 0 0.0192
False discovery rate 0.0067 0.025 0 0.0053 0 0.0204
False negative rate 0.0083 0.0068 0.0026 0.0026 0 0
Accuracy 0.9931 0.9854 0.9988 0.9963 1 0.99
F1 score 0.9925 0.984 0.9987 0.996 1 0.9897

Unsupervised Deep Learning for SDN Anomalies Detection 175

considers the precision (true positive results/total true positive by the framework) and
recall (no of true positive results in the total sample). AE achieved F1 and accuracy
higher than 98.5%

To summarise the performance of a framework, the confusion matrix consists of
columns and rows that list the number of testing samples as either predicted or actual
ratios. Table 3 is a general description of the confusion matrix, where we have two
classes normal and abnormal.

Table 3. Confusion matrix components

Predicted
Normal Abnormal

Actual Normal True positive TP False negative FN
Abnormal False positive FP True negative TN

Fig. 6. AE and K-Means 400 samples Fig. 7. AE and K-Means 800 samples

Fig. 8. AE and K Means 1300 samples Fig. 9. AE and shift means 400 samples

176 A. Dawoud et al.

To validate the results the second phase was done in two different clustering
algorithms K-means and shift means. The confusion matrices for both with different
samples sizes are listed below (Figs. 6, 7, 8, 9, 10 and 11).

5 Conclusion

Deep learning algorithms achieved a breakthrough in neural networks. With a strong
record of successful applications, deep learning is a promising approach for network
anomalies detection. The paper showed the potential of unsupervised deep learning to
enhance the security of SDN.

Network anomalies detection is an area where DL can improve the detection
precision. In this paper, we proposed a semi-supervised DL based detection framework
for discovering the network abnormalities. The framework employs the unsupervised
deeply learning Autoencoder algorithm at the first phase, and a simpler algorithm, K-
means or means-shift, during the second phase.

Autoencoders calculate a reconstruction error for network traffic records. Then a K-
means or shift means cluster REs. Our approach showed robust prediction with rea-
sonable training data. AE with K-means scored the best accuracy and precision
over 99%.

References

1. Kreutz, D., Ramos, F.M.V., Esteves Verissimo, P., Esteve Rothenberg, C., Azodolmolky, S.,
Uhlig, S.: Software-defined networking: a comprehensive survey. Proc. IEEE 103(1), 14–76
(2015)

2. Open Networking Foundation (ONF): (2015). https://www.opennetworking.org/
3. McKeown, N., et al.: OpenFlow: enabling innovation in campus networks. SIGCOMM

Comput. Commun. Rev. 38(2), 69–74 (2008)

Fig. 10. AE and shift means 800 samples Fig. 11. AE and shift means 1300 samples

Unsupervised Deep Learning for SDN Anomalies Detection 177

https://www.opennetworking.org/

4. Klöti, R., Kotronis, V., Smith, P.: OpenFlow: a security analysis. In: 2013 21st IEEE
International Conference on Network Protocols (ICNP), Goettingen, pp. 1–6 (2013)

5. Kreutz, D., Ramos, F.M., Verissimo, P.: Towards secure and dependable software-defined
networks. In: Proceedings of 2nd ACM SIGCOMMWorkshop Hot Topics Software Defined
Network, pp. 55–60 (2013)

6. Ghorbani, A.A., Lu, W., Tavallaee, M.: Network Intrusion Detection and Prevention
Concepts and Techniques. Advances in Information Security, vol. 47. Springer, US (2010).
https://doi.org/10.1007/978-0-387-88771-5

7. Mudzingwa, D., Agrawal, R.: A study of methodologies used in intrusion detection and
prevention systems (IDPS). In: 2012 Proceedings of IEEE Southeastcon, pp. 1–6, 15–18
March 2012

8. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection for discrete sequences: a survey.
IEEE Trans. Knowl. Data Eng. 24(5), 823–839 (2012)

9. Krizhevsky, A., Sutskever, I., Hinton, G.: ImageNet classification with deep convolutional
neural networks. In: NIPS (2012)

10. Hinton, G.E., Osindero, S., Teh, Y.: A fast learning algorithm for deep belief nets. Neural
Comput. 18, 1527–1554 (2006)

11. Fiore, U., Palmieri, F., Castiglione, A., De Santis, A.: Network anomaly detection with the
restricted Boltzmann machine. Neurocomputing 122, 13–23 (2013)

12. Salama, M.A., Eid, H.F., Ramadan, R.A., Darwish, A., Hassanien, A.E.: Hybrid intelligent
intrusion detection scheme. In: Gaspar-Cunha, A., Takahashi, R., Schaefer, G., Costa, L.
(eds.) Soft Computing in Industrial Applications, pp. 293–303. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-20505-7_2

13. Dong, B., Wang, X.: Comparison deep learning method to traditional methods using for
network intrusion detection. In: 2016 8th IEEE International Conference on Communication
Software and Networks (ICCSN), Beijing, pp. 581–585 (2016)

14. Zhai, S., Cheng, Y., Lu, W., Zhang, Z.: Deep structured energy based models for anomaly
detection. In: Balcan, M.F., Weinberger, K.Q. (eds.) Proceedings of the 33rd International
Conference on International Conference on Machine Learning - Volume 48 (ICML 2016),
vol. 48, pp. 1100–1109. JMLR.org (2016)

15. Tavallaee, M., Bagheri, E., Lu, W., Ghorbani, A.: A detailed analysis of the KDD CUP 99
data set. In: 2009 IEEE Symposium on Computational Intelligence for Security and Defense
Applications, CISDA 2009, pp. 1–6 (2009). https://doi.org/10.1109/CISDA.2009.5356528

178 A. Dawoud et al.

http://dx.doi.org/10.1007/978-0-387-88771-5
http://dx.doi.org/10.1007/978-3-642-20505-7_2
http://dx.doi.org/10.1109/CISDA.2009.5356528

Author Index

Abdullah, Manal 1
Alchieri, Eduardo 103

Behzad, Muzammil 1
Bhattacharya, Adrija 71

Calzarossa, Maria Carla 128
Camargos, Lasaro 103
Choudhury, Sankhayan 71

Dawoud, Ahmed 167
Della Vedova, Marco L. 128
Duolikun, Dilawaer 144

Enokido, Tomoya 52, 144

Ge, Yao 1

Hassan, Muhammad Talal 1

Khan, Mahmood Ashraf 1
Kobayashi, Akio 89
Kohana, Masaki 89
Kyriazis, Dimosthenis 32

Massari, Luisa 128

Nakamura, Shigenari 52
Nebbione, Giuseppe 128

Okamoto, Shusuke 89

Raun, Chun 167
Rezende, Tuanir 103

Sakaji, Hiroki 89
Saramago, Rodrigo 103
Shahristani, Seyed 167

Takizawa, Makoto 52, 144
Tessera, Daniele 128

	Transactions on Computational Collective Intelligence TCCI XXXIII
	Editorial Preface

	Transactions on Computational Collective Intelligence
	Contents
	Performance Optimization in IoT-Based Next-Generation Wireless Sensor Networks
	1 Introduction
	1.1 Underlying Structure of WSNs
	1.2 Research Developments in WSNs
	1.3 Notations
	1.4 Recoveries via Sparse Representations
	1.5 Contribution

	2 Related Work
	3 Proposed Framework Design
	3.1 Wireless Communication Model
	3.2 Network Configuration
	3.3 Nodes Deployment and Layer-Controlled CHs Nomination
	3.4 Layer-Adaptive 3-Tier Communication Mechanism
	3.5 Coverage Model
	3.6 Data Denoising
	3.7 Region Growing Based Smoothening Filter
	3.8 Effective Collaboration via RGB Channels of Color Images

	4 Computational Complexity
	5 Results and Discussions
	6 Conclusions
	References

	Enabling Custom Security Controls as Plugins in Service Oriented Environments
	Abstract
	1 Introduction
	2 Challenges to Be Addressed
	3 Proposed Architecture
	3.1 Plugins Semantics
	3.2 Workload and Anomalies Analysis for Threats Assessment
	3.3 Multi-tenancy and Multi-stakeholder Security Support
	3.4 Plugins Enablement and Activation Framework
	3.5 Context-Aware Plugins Selection and Deployment

	4 Evaluation Results
	5 Conclusions
	References

	A Flexible Synchronization Protocol to Learn Hidden Topics in P2PPS Systems
	1 Introduction
	2 Related Studies
	3 Information Flow in TBAC Model
	3.1 TBAC Model
	3.2 Information Flow Relations

	4 Synchronization Protocols
	4.1 Protocols for Hidden Topics
	4.2 FS-H (Flexible Synchronization for Hidden Topics) Protocol

	5 Evaluation
	6 Concluding Remarks
	References

	QoS Preservation in Web Service Selection
	1 Introduction
	2 Problem Formulation
	3 Related Works
	4 Proposal in Brief
	5 Solution Proposal and Experimental Findings
	5.1 Correlation Among QoSs
	5.2 Factor Identification and Factor Analysis
	5.3 Regression Approaches Considered

	6 Performance Evaluation
	6.1 Quality Satisfaction
	6.2 Complexity Analysis

	7 Conclusion
	References

	File Assignment Control for a Web System of Contents Categorization
	1 Introduction
	2 Literature Survey
	3 Categorization Algorithm
	3.1 Scoring Method
	3.2 Estimation Process

	4 Distributed Calculation
	4.1 Dividing Step

	5 File Size Control
	6 Experimental Results
	7 Conclusion
	References

	Byzantine Collision-Fast Consensus Protocols
	1 Introduction
	2 Background
	2.1 System Model
	2.2 Atomic Broadcast
	2.3 Fast and Collision-Fast Delivery
	2.4 M-Consensus

	3 Related Works
	3.1 Paxos
	3.2 Collision-Fast Atomic Broadcast

	4 Byzantine M-Consensus
	4.1 Overview
	4.2 Protocol
	4.3 Fault Tolerance
	4.4 Latency
	4.5 Correctness
	4.6 Progress

	5 On the Impossibility of Byzantine Collision-Fast Atomic Broadcast
	6 USIG Based Byzantine Collision-Fast Atomic Broadcast
	6.1 Extending the System Model Using a Trusted Component
	6.2 Unique Sequential Identifier Generator – USIG
	6.3 USIG-BCFABCast Protocol

	7 Conclusion
	References

	A Methodological Approach for Time Series Analysis and Forecasting of Web Dynamics
	1 Introduction
	2 Related Work
	3 Methodological Framework
	3.1 Exploratory Data Analysis
	3.2 Periodicity Estimation
	3.3 Decomposition
	3.4 Forecasting

	4 Dataset
	4.1 Description
	4.2 Characteristics

	5 Results
	6 Conclusions
	References

	Static and Dynamic Group Migration Algorithms of Virtual Machines to Reduce Energy Consumption of a Server Cluster
	1 Introduction
	2 System Model
	2.1 Servers and Virtual Machines in Clusters
	2.2 Migration of Virtual Machines

	3 Energy Consumption of a Server
	3.1 Power Consumption and Computation Models
	3.2 Estimation Models

	4 Group Migration Algorithms
	4.1 Selection of a Virtual Machine
	4.2 Group Migration of Virtual Machines
	4.3 Migration Algorithms

	5 Evaluation
	5.1 Environment
	5.2 Evaluation Results

	6 Concluding Remarks
	References

	Unsupervised Deep Learning for Software Defined Networks Anomalies Detection
	Abstract
	1 Introduction
	2 SDN Security Threats
	3 Anomalies Detection and Deep Learning
	4 Detection Framework
	5 Conclusion
	References

	Author Index

