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Abstract. Let (ωn, �) be the n-th direct power of (ω, ≤), natural num-
bers with the standard ordering, and let (ωn, ≺) be the n-th direct power
of (ω, <). We show that for all finite n, the modal algebras of (ωn, �)
and of (ωn, ≺) are locally finite. In particular, it follows that the modal
logics of these frames have the finite model property.
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1 Introduction

We consider modal logics of direct products of linear orders. It is known that the
logics of finite direct powers of real numbers and of rational numbers with the
standard non-strict ordering have the finite model property, are finitely axioma-
tizable, and consequently are decidable. These non-trivial results were obtained
in [5], and independently in [16]. Later, analogous results were obtained for
the logics of finite direct powers of (R, <) [14]. Recently, it was shown that
the direct squares (R,≤,≥)2 and (R, <,>)2 have decidable bimodal logics [6,7].
Direct products of well-founded orders have never been investigated before in
the context of modal logic.

Let (ωn,�) be the n-th direct power of (ω,≤), natural numbers with the
standard ordering: for x, y ∈ ωn, x � y iff x(i) ≤ y(i) for all i < n. Likewise, let
(ωn,≺) be the the direct power (ω,<)n: x ≺ y iff x(i) < y(i) for all i < n.

The main result of this paper (Theorem 1) shows that for all finite n > 0, the
modal algebras of the frames (ωn,�) and (ωn,≺) are locally finite. It particular,
it follows that the modal logics of these frames have the finite model property.
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2 Partitions of Frames, Local Finiteness, and the Finite
Model Property

We assume the reader is familiar with the basic notions of modal logics [1,4].
By a logic we mean a normal propositional modal logic. For a (Kripke) frame F,
Log(F) denotes its modal logic, i.e., the set of all modal formulas that are valid
in F. For a set W , P(W ) denotes the powerset of W . The (complex) algebra of
a frame (W,R) is the modal algebra (P(W ), R−1). The algebra of F is denoted
by A(F). A logic has the finite model property if it is complete with respect to a
class of finite frames (equivalently, finite algebras).

A partition A of a set W is a set of non-empty pairwise disjoint sets such
that W =

⋃ A. A partition B refines A, if each element of A is the union of
some elements of B.

Definition 1. Let F = (W,R) be a Kripke frame. A partition A of W is tuned
(in F) if for every U, V ∈ A,

∃u ∈ U ∃v ∈ V uRv ⇒ ∀u ∈ U ∃v ∈ V uRv.

F is tunable if for every finite partition A of F there exists a finite tuned refinement
B of A.

Proposition 1. If F is tunable, then Log(F) has the finite model property.

Apparently, this fact was first observed by H. Franzén (see [13]). This proposition
can be explained as follows. Let L be the logic of a frame F, or in other words, the
logic of the modal algebra A(F). Equivalently, L is the logic of finitely generated
subalgebras of A(F). Recall that an algebra A is locally finite if every finitely
generated subalgebra of A is finite. It follows that if A(F) is locally finite, then L
has the finite model property. Hence, Proposition 1 is a corollary of the following
observation.

Proposition 2. The algebra of a frame F is locally finite iff F is tunable.

Proof. From Definition 1 we have: a finite partition B is tuned in F = (W,R)
iff the family {∪x | x ⊆ B} of subsets of W forms a subalgebra of the modal
algebra A(F) = (P(W ), R−1).

Assume that A(F) is locally finite and A is a finite partition of W . Consider
the subalgebra B of A(F) generated by the elements of A. Then the set B of the
atoms of B is a finite tuned refinement of A.

Now assume that F is tunable and B is the subalgebra of A(F) generated by
a finite family V of subsets of W . Let A be the quotient set W/∼, where

u ∼ v iff ∀A ∈ V (u ∈ A ⇔ v ∈ A).

Since A is a finite partition of W , there exists its finite tuned refinement B. The
finite family {∪x | x ⊆ B} is the carrier of a subalgebra of A(F) and contains V.
Hence the algebra B is finite. ��
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Thus, logics of tunable frames have the finite model property, and moreover,
algebras of tunable frames are locally finite.

Example 1. Consider the frame (ω,≤), natural numbers with the standard order-
ing. Suppose that A is a finite partition of ω. If every A ∈ A is infinite, then
A is tuned in (ω,≤) and in (ω,<). Otherwise, let k0 be the greatest element of
the finite set

⋃{A ∈ A | A is finite}, and U = {k | k0 < k < ω}. Consider the
following finite partition B of ω:

B = {{k} | k ≤ k0} ∪ {A ∩ U | A is an infinite element of A}.

Each element of B is either infinite, or a singleton, and singletons in B cover an
initial segment of ω. Thus, B is a finite refinement of A which is tuned in (ω,≤)
and in (ω,<).

It follows that the algebras of the frames (ω,≤) and (ω,<) are locally finite.

Remark 1. Recall that a logic L is locally finite (in another terminology, locally
tabular) if the Lindenbaum algebra of L is locally finite [4]. Equivalently, a logic
L is locally finite if the variety of its algebras is locally finite, i.e., every finitely
generated algebra validating L is finite.

A logic of a transitive frame is locally finite iff the frame is of finite height
[8,11]. Thus, although the algebras of the frames (ω,≤) and (ω,<) are locally
finite, the logics of these frames are not. Hence, local finiteness of the algebra
A(F) does not imply local finiteness of the logic Log(F).

Local finiteness of the variety generated by an algebra A of a finite signature is
equivalent to uniform local finiteness of A: an algebra A is uniformly locally finite
if there exists a function f : ω → ω such that the cardinality of a subalgebra of
A generated by m < ω elements does not exceed f(m); see [9, Sect. 14, Theorem
3].

Local finiteness of modal logics is formulated in terms of tuned partitions
as follows [15]: the logic of a frame F is locally finite iff there exists a function
f : ω → ω such that for every finite partition A of W there exists a refinement
B of A such that |B| ≤ f(|A|) and B is tuned in F.

3 Main Result

Theorem 1. For all finite n > 0, the algebras A(ωn,�) and A(ωn,≺) are locally
finite.

The simple case n = 1 was considered in Example 1. To prove the theorem
for the case of arbitrary finite n, we need some auxiliary constructions.

Definition 2. Consider a non-empty V ⊆ ωn. Put

J(V ) = {i < n | ∃x ∈ V ∃y ∈ V x(i) �= y(i)},
I(V ) = {i < n | ∀x ∈ V ∀y ∈ V x(i) = y(i)} = n\J(V ).
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The hull of V is the set

V = {y ∈ ωn | ∀i ∈ I(V ) (y(i) = x(i) for some (for all) x ∈ V )}.

V is pre-cofinal if it is cofinal in its hull, i.e.,

∀x ∈ V ∃y ∈ V x � y.

A partition A of V ⊆ ωn is monotone if

– all of its elements are pre-cofinal, and
– for all x, y ∈ V such that x � y we have J([x]A) ⊆ J([y]A),

where [x]A is the element of A containing x.

Lemma 1. If A is a monotone partition of ωn, then A is tuned in (ωn,�) and
in (ωn,≺).

Proof. Let A,B ∈ A, x, y ∈ A, x � z ∈ B. Let u be the following point in ωn:

u(i) = y(i) + 1 for i ∈ J(A), and u(i) = z(i) for i ∈ I(A). (1)

We have
{i < n | u(i) �= z(i)} ⊆ n\I(A) = J(A) ⊆ J(B);

the first inclusion follows from (1), the second follows from the monotonicity of
A. Hence, we have u(i) = z(i) for all i ∈ I(B). By the definition of B, we have
u ∈ B. Since B is cofinal in B (we use monotonicity again), for some u′ ∈ B we
have u � u′.

By (1), we have y(i) ≤ u(i) for all i < n: indeed, y(i) = x(i) ≤ z(i) = u(i) for
i ∈ I(A), and u(i) = y(i) + 1 otherwise. Thus, y � u, and so y � u′. It follows
that A is tuned in (ωn,�).

In order to show that A is tuned in (ωn,≺), we now assume that x ≺ z. Then
we have y(i) < u(i) for all i < n, since y(i) = x(i) < z(i) = u(i) for i ∈ I(A),
and u(i) = y(i) + 1 otherwise. Hence y ≺ u. Since u � u′, we have y ≺ u′, as
required. ��

Let A be a partition of a set W . For V ⊆ W , the partition

A�V = {A ∩ V | A ∈ A & A ∩ V �= ∅}

of V is called the restriction of A to V .
For a family B of subsets of W , the partition induced by B on V ⊆ W is the

quotient set V/∼, where

x ∼ y iff ∀A ∈ B (x ∈ A ⇔ y ∈ A).

Lemma 2. Any finite partition of ωn has a finite monotone refinement.
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Proof. By induction on n. Let A be a finite partition of ωn.
Suppose n = 1. Let k0 be the greatest element of the finite set

⋃
{A ∈ A | A is finite}.

Put B = {{k} | k ≤ k0}. Let C be the partition induced by A∪B on ω. Consider
x ∈ ω and put A = [x]C . If x ≤ k0, then A = A = {x} and J(A) = ∅. If
x > k0, then A is cofinal in ω = A, J(A) = {0}. It follows that C is the required
monotone refinement of A.

Suppose n > 1. For k ∈ ω let Uk = {y ∈ ωn | y(i) ≥ k for all i < n}. Since A
is finite, we can choose a natural number k0 such that

if y ∈ Uk0 , then [y]A is cofinal in ωn. (2)

Indeed, if A ∈ A is not cofinal in ωn, then UkA
∩A = ∅ for some kA < ω; hence,

(2) holds whenever k0 is greater than every such kA.
It follows that the partition A�Uk0 is monotone: it consists of sets that are

cofinal in ωn (and so, they are obviously pre-cofinal), and J(A) = n for all
A ∈ A�Uk0 .

We are going to extend this partition step by step in order to obtain a
sequence of finite monotone partitions of Uk0−1, . . . , U0 = ωn, respectively refin-
ing A�Uk0−1, . . . ,A�U0 = A.

First, let us describe the construction for the case k0 = 1, the crucial technical
step of the proof.

Claim A. Suppose that B is a finite monotone partition of U1 refining A�U1. Then
there exists a finite monotone partition C of ωn refining A such that B ⊆ C.

Proof. C will be the union of B and a partition of the set

V = {x ∈ ωn | x(i) = 0 for some i < n} = ωn\U1.

To construct the required partition of V , for I ⊆ n put

VI = {x | ∀i < n (i ∈ I ⇔ x(i) = 0)}.

Then {VI | ∅ �= I ⊆ n} is a partition of V , V∅ = U1.
Each VI considered with the order � on it is isomorphic to (ωn−|I|,�). Thus,

by the induction hypothesis, for a non-empty I ⊆ n we have:

Each finite partition of VI admits a finite monotone refinement. (3)

For I ⊆ n, by induction on the cardinality of I we define a finite partition CI

of VI .
We put C∅ = B.
Assume that I is non-empty. Consider the projection PrI : x �→ y such that

y(i) = 0 whenever i ∈ I, and y(i) = x(i) otherwise. Note that for all K ⊂ I,
x ∈ VK implies PrI(x) ∈ VI . Let D be the partition induced on VI by the family

A ∪
⋃

K⊂I

{PrI(A) | A ∈ VK}. (4)
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By an immediate induction argument, D is finite. Let CI be a finite monotone
refinement of D, which exists according to (3).

We put
C =

⋃

I⊆n

CI .

Then C is a finite refinement of A. We have to check monotonicity.
Every element A of C is pre-cofinal, because A is an element of a monotone

partition CI for some I. In order to check the second condition of monotonicity,
we consider x, y in ωn with x � y and show that

J([x]C) ⊆ J([y]C). (5)

Let x ∈ VI , y ∈ VK for some I,K ⊆ n. Since x � y, we have K ⊆ I. If K = I,
then (5) holds, since in this case [x]C and [y]C belong to the same monotone
partition CI . Assume that K ⊂ I. In this case we have:

J([x]C) ⊆ J([PrI(y)]C) ⊆ J(PrI([y]C)) ⊆ J([y]C).

To check the first inclusion, we observe that PrI(y) belongs to VI (since K ⊂ I).
This means that [x]C and [PrI(y)]C are elements of the same partition CI . We
have x � PrI(y), since x ∈ VI and x � y. Now the first inclusion follows from
monotonicity of CI . By (4), PrI([y]C) is the union of some elements of CI (since
K ⊂ I and [y]C ∈ CK); trivially, PrI(y) ∈ PrI([y]C), hence [PrI(y)]C is a subset
of PrI([y]C). This yields the second inclusion. The third inclusion is immediate
from Definition 2. Thus, we have (5), which proves the claim. ��

From Claim A it is not difficult to obtain the following:

Claim B. Let 0 < k < ω. If B is a finite monotone partition of Uk refining A�Uk,
then there exists a finite monotone partition C of Uk−1 refining A�Uk−1 such
that B ⊆ C.

Proof. Consider the translation Tr : Uk−1 → ωn taking (xi)i<n to (xi−k+1)i<n.
Let B′ be the set {Tr(A) | A ∈ B} of images of elements of B by Tr, and
A′ be the set {Tr(A) | A ∈ A�Uk−1}. Then A′ is a partition of ωn, B′ is a
finite monotone partition of U1 refining A′�U1. By Claim A, there exists a finite
monotone partition C′ of ωn refining A′ such that B′ ⊆ C′. The family C =
{Tr−1(A) | A ∈ C′} is the required partition of Uk−1. ��

Applying Claim B k0 times, we obtain the required monotone refinement of
A. This proves Lemma 2. ��

From the above two lemmas we obtain that the frames (ωn,�) and (ωn,≺),
0 < n < ω, are tunable. Now the proof of Theorem1 immediately follows from
Proposition 2.

Corollary 1. For all finite n, the logics Log(ωn,�) and Log(ωn,≺) have the
finite model property.
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4 Questions and Conjectures

It is well-known that every extension of Log(ω,≤) has the finite model property
[3].

Question 1. Let L be an extension of Log(ωn,�) for some finite n > 1. Does L
have the finite model property?

Every extension of a locally finite logic is locally finite, and so has the finite
model property. Although the algebras of the frames (ωn,�) and (ωn,≺) are
locally finite, the logics of these frames are not (recall that a logic of a transitive
frame is locally finite iff the frame is of finite height [8,11]). Thus, Theorem 1
does not answer Question 1.

At the same time, Theorem 1 yields another corollary. A subframe of a frame
(W,R) is the restriction (V,R ∩ (V × V )), where V is a non-empty subset of W .
It follows from Definition 1 that if a frame is tunable then all its subframes are
(details can be found in the proof of Lemma 5.9 in [15]). From Proposition 2, we
have:

Proposition 3. If the algebra of a frame F is locally finite, then the algebra of
any subframe of F is also locally finite.

Corollary 2. For all finite n, if F is a subframe of (ωn,�) or of (ωn,≺), then
A(F) is locally finite, and Log(F) has the finite model property.

While Log(ω,≤) is not locally finite, the intermediate logic ILog(ω,≤) is
(see, e.g., [17, Sect. 3.4]).

Conjecture 1. For all finite n, ILog(ωn,�) is locally finite.

The logics of finite direct powers of (R,≤) and of (R, <) have the finite model
property, are finitely axiomatizable, and consequently are decidable [5,14,16].

Question 2. Let n > 1. Are logics Log(ωn,�) and Log(ωn,≺) decidable or at
least recursively axiomatizable?

In the one-dimensional case, decidability is a classical result: apparently, the
first published proof of finite axiomatizability and the finite model property of
the logic Log(ω,≤) is given in [2]; for the logic Log(ω,<), these properties were
established in [10] and [12].

Finally, let us address the following question: does the direct product opera-
tion on frames preserve local finiteness of their modal algebras?

Proposition 4. If a frame F is tunable and a frame G is finite, then the direct
product F × G is tunable.

Proof. Let F = (F,R), G = (G,S), and A be a finite partition of F ×G. For A in
A and y in G, we put Pry(A) = {x ∈ F | (x, y) ∈ A}, Ay = {Pry(A) | A ∈ A}.
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Let B be the partition induced on F by the family
⋃

y∈G Ay. Since B is finite,
there exists its finite refinement C that is tuned in F. Consider the partition

D = {A × {y} | A ∈ C & y ∈ G}

of F × G. Then D is a finite refinement of A. It is not difficult to check that D
is tuned in F × G. ��

If follows that if the algebra of F is locally finite and G is finite, then the
algebra of F × G is locally finite.

Question 3. Consider tunable frames F1 and F2. Is the direct product F1 × F2

tunable?

If this is true, then Theorem1 immediately follows from the simple one-
dimensional case. And, moreover, in this case Theorem 1 can be generalized to
arbitrary ordinals in view of the following observation.

Proposition 5. For every ordinal α > 0, the modal algebras A(α,≤), A(α,<)
are locally finite.

Proof. By induction on α we show that the frames (α,≤), (α,<) are tunable.
For a finite α, the statement is trivial.
Suppose that A is a finite partition of an infinite α. If every element of A is

cofinal in α, then A is tuned in (α,≤) and in (α,<). Otherwise, we put

β = sup
⋃

{A ∈ A | A is bounded in α}.

Since A is finite, we have β < α. Put B = A�β. By the induction hypothesis,
there exists a finite tuned refinement C of B. Then the partition of α induced by
A ∪ C is the required refinement of A. ��
Conjecture 2. If (αi)i<n is a finite family of ordinals, then the algebras of the
direct products

∏
i<n(αi,≤),

∏
i<n(αi, <) are locally finite.
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