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Abstract. For one of the most well-known many-valued logics FDE,
there are several semantics, including the star semantics by Richard
Routley and Valerie Routley, the two-valued relational semantics by
Michael Dunn and the four-valued semantics by Nuel Belnap. The last
semantics inspired Yaroslav Shramko and Heinrich Wansing to introduce
the trilattice SIXTEEN3. In this article, we offer two alternative seman-
tical presentations for SIXTEEN3, by applying the Routleys’ semantics
and the Dunn semantics. Based on our new semantics, we discuss related
systems with less truth values, as well as the relation to FDE-based
modal logics.
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1 Introduction

1.1 Background (I): From Belnap to Shramko-Wansing

Ever since Jan �Lukasiewicz and Emil Post started to explore more than two
truth values independently in the 1920s, infinitely many kinds of many-valued
logics have been introduced. The one that plays the crucial role in this paper is
the four-valued logic of Belnap and Dunn, also known as FDE.

The four-valued truth tables for FDE were known since the 1950s, when
Timothy Smiley pointed this out to Nuel Belnap, but the four values did not
have an intuitive reading. It was Dunn who explicitly connected these four values
to the classical truth values, true and false (see [6]). This then inspired Belnap
to write the two influential papers [2,3]. In particular, the four values are now
seen as the power set P({1, 0}) of the set of the classical truth-values {1, 0}, and
receive the following intuitive reading:
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{0} = told false, {} = told neither true nor false,
{1} = told true, {1, 0} = told both true and false.

The above reading also inspired another perspective on the four-values,
namely the bilattice of the power set of {1, 0} (cf. [1,8]). In particular, two
orders measure the degree of truth and the amount of information.

In [21–23] Shramko and Wansing then took this idea of Belnap even a step fur-
ther. By arguing that the computer metaphor of Belnap can be transformed into
considering a computer network communicating with each other about proposi-
tions, Shramko and Wansing developed the idea that such computers should be
able to handle information that can be, for example, overcomplete and at the
same time just true or false. In this way, they introduced SIXTEEN3 which
takes the power set of P({1, 0}) to generate a “useful sixteen-valued logic” which
is meant to represent “how a computer network should think”. This is thus a
generalization of Belnap’s “useful four-valued logic” which is meant to repre-
sent “how a computer should think”. Moreover, SIXTEEN3 is now a trilattice,
rather than a bilattice, where an independent degree of falsity can be defined as
an additional order.

Due to the interesting motivation, SIXTEEN3 has now collected a lot of
the attention it deserves. Just to mention some relevant work, Odintsov in [12],
added some new algebraic insights and marked an important step on the prob-
lem of axiomatization. Heinrich Wansing considers sequent calculi related to
SIXTEEN3 in [25], and an analytic tableaux calculus is devised by Muskens
and Wintein in [10]. Finally, the property of interpolation is studied again by
Muskens and Wintein in [11].

1.2 Background (II): Routley and Dunn Semantics for FDE

As it is well-known, the four-valued interpretation of FDE is not the only seman-
tics.1 For the purpose of this paper, we focus on the following two: Routleys’
star semantics and Dunn’s relational semantics. Let us briefly highlight the key
ideas of the two semantics which are both two-valued semantics.2

Routleys’ star semantics, devised by Routley and Routley in [20], is a two-
valued world semantics, as in the well-known Kripke semantics, but includes the
so-called star operation which is an involutive operation on worlds. This star
operation is used to interpret the negation. For conjunction and disjunction, it
remains to be completely classical.

Dunn’s relational semantics (or Dunn semantics in short) is yet another two-
valued semantics which is also free of worlds. The crucial idea is to use a relation
rather than a function in interpreting the language. In particular, formulas may
be related to both true and false, or neither true nor false. As a consequence,
truth and falsity conditions are both necessary, though in the case of FDE, those
conditions remain completely classical.

1 For a recent overview, see for example [17].
2 The formal details will be given in the next section, so we are justified to be brief.
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Both approaches have virtues of their own. On the one hand, Routleys’
semantics is rather successful when applied to relevant logics. On the other
hand, Dunn gives wonderful insights by giving an intuitive reading of truth val-
ues, as we already observed above through Belnap’s semantics. In any case, the
important thing here is that there are interesting two-valued semantics for FDE.

1.3 Aim

Based on these backgrounds, the motivation for this paper is rather simple: can
we also devise two-valued semantics for logics related to SIXTEEN3? To the
best of our knowledge, this seems to be not addressed yet in the literature.
Therefore, we aim at marking the first step towards filling that gap.

On a broader scope, reducing the number of truth-values of a given system
can be traced back to Suszko (cf. [24]), who believed that any multiplication
of truth-values is a “mad idea”. We do not wish to conflate our approach of
reducing the number of truth-values with Suszko’s critique about many-valued
logics in general, but rather during the course of this article we will present an
alternative strategy to obtain that goal.3

The paper is organized as follows. In Sects. 2 and 3 we will briefly recapitulate
the basics of FDE and SIXTEEN3. These are followed by Sects. 4 and 5 in
which we introduce the new two-valued semantics for SIXTEEN3. Based on
the new semantics, we will reflect upon the implications in Sect. 6. Finally, we
conclude the paper in Sect. 7 by summarizing our main observations and discuss
some possible topics for further research.

2 Two-Valued Semantics for FDE

Our propositional languages consist of a finite set C of propositional connectives
and a countable set Prop of propositional variables which we refer to as LC. Fur-
thermore, we denote by FormC the set of formulas defined as usual in LC. In this
paper, we always assume that {∼,∧,∨} ⊆ C and just include the propositional
connective(s) not from {∼,∧,∨} in the subscript of LC. Moreover, we denote a
formula of LC by A, B, C, etc. and a set of formulas of LC by Γ , Δ, Σ, etc.

First, we review Routleys’ star semantics.

Definition 1. A Routley interpretation for L is a structure 〈W, ∗, v〉 where
W 	= ∅ is a set of worlds, ∗ : W −→ W is a function with w∗∗ = w, and
v : W × Prop −→ {0, 1}. The function v is extended to I : W × Form −→ {0, 1}
as follows:

I(w, p) = v(w, p), I(w,A ∧ B) = 1 iff I(w,A) = 1 and I(w,B) = 1,
I(w,∼A) = 1 iff I(w∗, A)	=1, I(w,A ∨ B) = 1 iff I(w,A) = 1 or I(w,B) = 1.

3 For a mechanical procedure to reduce the number of truth values in FDE and its
expansions, see [16].
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Definition 2. For all Γ ∪ {A} ⊆ Form, Γ |=∗ A iff for all Routley interpreta-
tions 〈W, ∗, v〉 and for all w ∈ W , if I(w,B) = 1 for all B ∈ Γ then I(w,A) = 1.

Second, we review Dunn’s relational semantics.

Definition 3. A Dunn-interpretation for L is a relation, r, between proposi-
tional variables and the values 1 and 0, namely r ⊆ Prop × {1, 0}. Given an
interpretation, r, this is extended to a relation between all formulas and truth
values by the following clauses:

∼Ar1 iff Ar0, ∼Ar0 iff Ar1,
A ∧ Br1 iff Ar1 and Br1, A ∧ Br0 iff Ar0 or Br0,
A ∨ Br1 iff Ar1 or Br1, A ∨ Br0 iff Ar0 and Br0.

Definition 4. For all Γ ∪{A} ⊆ Form, Γ |=r A iff for all Dunn-interpretations
r, if Br1 for all B ∈ Γ then Ar1.

Then, the following result is rather well-known.

Fact 5. For all Γ ∪ {A} ⊆ Form, Γ |=r A iff Γ |=∗ A.

A proof can be found, e.g., in [18, 8.7.17, 8.7.18]. In fact, something stronger can
be established by a careful examination of Graham Priest’s proof. To this end,
we introduce another semantic consequence relation.

Definition 6. For all Γ ∪ {A} ⊆ Form, Γ |=∗,2 A iff for all Routley inter-
pretations 〈W, ∗, v〉 such that the number of worlds is 2 and for all w ∈ W , if
I(w,B)=1 for all B ∈ Γ then I(w,A) = 1.

Then, we obtain the following.

Lemma 1. For all Γ ∪ {A} ⊆ Form, Γ |=r A iff Γ |=∗,2 A.

Proof. For the proof of the left-to-right direction, Priest’s construction works
perfectly well with the two-world case. For the other direction, Priest’s con-
struction already establishes the desired result. ��

As an immediate corollary, we obtain the following result, which can be
regarded as logical folkore.

Theorem 1. For all Γ ∪ {A} ⊆ Form, Γ |=∗ A iff Γ |=∗,2 A. That is, two
worlds suffice for the extensional fragment.

Remark 1. In view of the above result, we may conclude that there is a clear
understanding of the star in the context of the above language. The star world
is simply the other world. Of course, this only works with the simple language,
not in the language with the intensional conditional. In the latter case, the star
operation is elegantly characterized by Restall (cf. [19]).
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3 Basics of SIXTEEN3

3.1 Language

There are several languages discussed in relation to the trilattice SIXTEEN3.
Following the convention specified in the previous section, we will mainly deal
with L∼f

and L∼f ,∧f ,∨f
. The latter is referred to as Ltf in the literature, but for

the sake of presentation, we will use the above notation with the hope of being
more accessible to wider audience.

Note too that we are omitting the subscript t for connectives. We fully under-
stand that this goes very much against the spirit of the trilattice in general,
but for the sake of presentation, and ease of comparison between FDE and
SIXTEEN3, we keep the basic connectives free of subscripts.

3.2 Semantics

Let 16 be the set of generalized truth values which consists of the following 16
values:

1. ∅ = { }
2. N = {{ }}
3. F = {{0}}
4. T = {{1}}
5. B = {{0, 1}}
6. NF = {{ }, {0}}
7. NT = {{ }, {1}}
8. NB = {{ }, {0, 1}}

9. FT = {{0}, {1}}
10. FB = {{0}, {0, 1}}
11. TB = {{1}, {0, 1}}
12. NFT = {{ }, {0}, {1}}
13. NFB = {{ }, {0}, {0, 1}}
14. NTB = {{ }, {1}, {0, 1}}
15. FTB = {{0}, {1}, {0, 1}}
16. A = {{ }, {0}, {1}, {0, 1}}

Note here that we changed the notation slightly from the original presentation.
More specifically, we replaced T and F by 1 and 0. Moreover, the naming strategy
for the truth values is very simple. Recall the following representation:

1. n={ }, for neither true nor false
2. f={0}, for false only

3. t={1}, for true only
4. b={0, 1}, for both true and false

Then, except for the value A, the inclusion of capital letters N, F, T and B
corresponds to the fact that n, f, t and b are members of the generalized truth
value. And, for A, it stands for all values n, f, t and b are members of the set.

Now we can define three different orderings on 16.

Definition 7. For every x, y ∈ 16:

1. x ≤i y iff x ⊆ y;
2. x ≤t y iff x1 ⊆ y1 and y−1 ⊆ x−1,

where x1 := {z ∈ x : 1 ∈ z} and x−1 := {z ∈ x : 1 	∈ z};
3. x ≤f y iff x0 ⊆ y0 and y−0 ⊆ x−0,

where x0 := {z ∈ x : 0 ∈ z} and x−0 := {z ∈ x : 0 	∈ z}.
We can then easily see that meets and joins exist in 16 for all three partial orders.
Therefore, we use � and � with the appropriate subscripts for these operations



SIXTEEN3 in Light of Routley Stars 521

under the corresponding orders. Then, the algebraic structure of 16 comes out
as the trilattice SIXTEEN3 = 〈16,�i,�i,�t,�t,�f ,�f 〉.

We can associate with each of the lattice orders of SIXTEEN3 a unary
operation which is an involution of order two with respect to this ordering and
preserves the other orders. The unary operations −t, −f , and −i corresponding
to the orders ≤t, ≤f and ≤i, respectively, are defined as follows.

x −tx −fx −ix x −tx −fx −ix x −tx −fx −ix x −tx −fx −ix

∅ ∅ ∅ A B F T FTB NB FT FT FT NFB FTB NFT F
N T F NFT NF TB NF NF FB FB NT FB NTB NFT FTB T
F B N NFB NT NT FB NT TB NF TB TB FTB NFB NTB B
T N B NTB FT NB NB NB NFT NTB NFB N A A A ∅

We are now ready to assign generalized truth values of 16 to our language.
More specifically, given a 16-valuation v : Prop → 16, we extend the valuation
to Form∼f ,∧f ,∨f

as follows.

Definition 8. For every A,B ∈ Form∼f ,∧f ,∨f
:

1. v(A ∧ B) = v(A) �t v(B)
2. v(A ∨ B) = v(A) �t v(B)
3. v(∼A) = −tv(A)

4. v(A ∧f B) = v(A) �f v(B)
5. v(A ∨f B) = v(A) �f v(B)
6. v(∼fA) = −fv(A)

Based on this, we can finally define the semantic consequence relations.

Definition 9. For every A,B ∈ Form∼f ,∧f ,∨f
:

• A |=t B iff for all 16-valuations v: v(A) ≤t v(B);
• A |=f B iff for all 16-valuations v: v(A) ≤f v(B).

Remark 2. We are not using the information order at all to interpret our lan-
guage, but we introduced them above to emphasize that 16 is a trilattice. We
will come back to the unary connective interpreted via −i towards the end of
this paper, but only briefly, in the conclusion section. For discussions on the
language including informational connectives, see e.g. [14].

3.3 Proof Systems

We now turn to the proof system. Note that we will only offer the proof system
for the language L∼f

, and just remark on the case of full language, namely the
language L∼f ,∧f ,∨f

.

Definition 10. � is a binary consequence relation on the language L∼f
satis-

fying the following axioms and rules.



522 H. Omori and D. Skurt

A ∧ B � A (at1)
A ∧ B � B (at2)
A � A ∨ B (at3)
B � A ∨ B (at4)
A ∧ (B ∨ C) � (A ∧ B) ∨ C (at5)
A � ∼∼A (at6)
∼∼A � A (at7)
A � ∼f∼fA (at8)
∼f∼fA � A (at9)
∼f∼A � ∼∼fA (at10)

A � B B � C

A � C
(rt1)

A � B A � C

A � B ∧ C
(rt2)

A � C B � C

A ∨ B � C
(rt3)

A � B

∼B � ∼A
(rt4)

A � B

∼fA � ∼fB
(rt5)

Remark 3. Note that the binary consequence relation characterized in terms of
the axioms from (at1) to (at7), as well as the rules from (r1) to (rt4) is sound
and complete with respect to FDE for the language L.

Finally, the following result was established by Shramko and Wansing in [22,
Theorems 4.10, 4.13].

Theorem 2 (Shramko & Wansing). For all A,B ∈ Form∼f
, A � B iff

A |=t B.

Remark 4. The problem of axiomatizing |=t for the language L∼f ,∧f ,∨f
was left

open in [22], but Odintsov in [12] marked the first step by showing that |=t is
axiomatizable and that the consequence relation can be characterized by the
intersection of two related consequence relations. Odintsov also introduced an
expansion of L∼f ,∧f ,∨f

by adding an implication, and presented an axiomatiza-
tion of |=t in the expanded language. A definite solution to the original problem
was given in [14] by Odintsov and Wansing by making use of algebraic results
related to SIXTEEN3.

4 Alternative Semantics for SIXTEEN3 (I)

The first alternative semantics will have two star operations. More specifically, we
take the star semantics for FDE, and add one more star to capture the additional
connective ∼f . Our strategy here is to prove the soundness and completeness
with respect to the proof system given by Shramko and Wansing to establish
the equivalence between the original semantics and the two-star semantics.

4.1 Semantics

Definition 11. A two-star interpretation for L∼f
is at tuple M =

〈W, g, ∗1, ∗2, v〉 where W 	= ∅ is a set of worlds, g ∈ W ; ∗i : W −→ W is a
function with w∗i∗i = w and w∗i∗j = w∗j∗i ; v : W ×Prop → {0, 1}. The function
v is extended to I : W × Form → {0, 1} by the following condition:
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I(w, p) = v(w, p),
I(w,∼A)=1 iff I(w∗1 , A)	=1, I(w,A ∧ B)=1 iff I(w,A)=1 and I(w,B)=1,
I(w,∼fA)=1 iff I(w∗2 , A)=1, I(w,A ∨ B)=1 iff I(w,A)=1 or I(w,B)=1.

Remark 5. It should be clear, from the definition, that the fragment with only
the “truth connectives” will coincide with FDE. Note also that the truth con-
dition for ∼f does not look like a truth condition for negation. We will reflect
upon this connective in Sect. 6.

We then define two kinds of semantic consequence relation.

Definition 12. Let Γ ∪ {A} be set of sentences in L∼f
. Then,

• Γ |=∗,∀ A iff for all two-star interpretations 〈W, g, ∗1, ∗2, v〉 and for all w ∈
W , I(w,A) = 1 if I(w,B) = 1 for all B ∈ Γ .

• Γ |=∗,g A iff for all two-star interpretations 〈W, g, ∗1, ∗2, v〉, I(g,A) = 1 if
I(g,B) = 1 for all B ∈ Γ .

Remark 6. As we will establish below, these two consequence relations are equiv-
alent as in some (not all!) modal logics (recall Kripke’s seminal paper and the
more recent text books). However, it will be useful to have both for our purposes.

4.2 Equivalence of Three Semantic Consequence Relations

We will now establish the equivalence of |=t, |=∗,∀ and |=∗,g via the proof system.
More specifically, in view of Theorem 2 of Shramko and Wansing, we prove the
following three statements: for all A,B ∈ Form∼f

,

if A � B then A |=∗,∀ B, if A |=∗,∀ B then A |=∗,g B, if A |=∗,g B then A � B.

Note here that the second item is obvious. Therefore, we prove the first and the
third item. The first item, which is soundness, is quite straightforward.

Proposition 1. For all A,B ∈ Form∼f
, if A � B then A |=∗,∀ B.

Proof. We only note that we need |=∗,∀, instead of |=∗,g, to establish the sound-
ness, especially for the rules (rt4) and (rt5). ��

For the purpose of establishing the third item, we construct a suitable canon-
ical model. To this end, we introduce some standard notions.

Definition 13. Let Γ be a set of sentences. Then, Γ is

• a theory iff Γ is closed under � and ∧, i.e., for all A,B, if A ∈ Γ and A � B
then B ∈ Γ , and if A ∈ Γ and B ∈ Γ , then A ∧ B ∈ Γ ;

• prime iff for all A,B, if A ∨ B ∈ Γ then A ∈ Γ or B ∈ Γ .

The following fact is well known, due to Lindenbaum.

Lemma 2 (Lindenbaum). For all A,B, if A 	� B then there is a prime theory
Γ such that A ∈ Γ and B 	∈ Γ .
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We will also make use of the following lemma which is already established
by Shramko and Wansing in [22, Lemma 4.11].

Lemma 3 (Shramko & Wansing). Let Γ be a theory, and let Γ ∗ be defined
as follows:

Γ ∗ := {A : ∼fA ∈ Γ}
Then Γ ∗ is a theory, ∼fA ∈ Γ ∗ iff A ∈ Γ , and Γ ∗ is prime iff Γ is prime.

We can then prove completeness as well.

Theorem 3. For all A,B ∈ Form∼f
, if A |=∗,g B then A � B.

Proof. The details can be found in AppendixA. ��
As a corollary, we obtain the following desired result:

Corollary 1. For all A,B ∈ Form∼f
, A |=t B iff A |=∗,g B iff A |=∗,∀ B.

We will now turn to two observations related to this result.

4.3 Two Basic Observations

First, we observe that we only need four worlds for two-star interpretations to
characterize the syntactic consequence relation �. To this end, we introduce one
more semantic consequence relation.

Definition 14. For all A,B ∈ Form∼f
, A |=∗,g,4 B iff for all two-star inter-

pretations 〈W, g, ∗1, ∗2, v〉 such that the number of worlds is 4, I(g,B) = 1 if
I(g,A) = 1.

Then, we obtain in analogy to Theorem1 the following result:

Proposition 2. For all A,B ∈ Form∼f
, A |=∗,g B iff A |=∗,g,4 B.

Proof. The left-to-right direction is obvious. For the other direction, it suffices
to prove that A � B if A |=∗,g,4 B in view of Proposition 1. But this is already
established by the proof for Theorem3. ��
Remark 7. We have a relatively clear formal understanding of star operations.
However, as in the case for FDE, we do not know what they mean. Only that
each star corresponds to a different “mate” relation, cf. [18, p. 151].

The second observation, which relies on the first observation, is that |=t

is equivalent to yet another semantic consequence relation defined in terms of
preservation of designated values. More precisely, we introduce the following
consequence relation.

Definition 15. For all A,B ∈ Form∼f
, A |=16 B iff for all 16-valuations v:

v(B) ∈ D if v(A) ∈ D, where D := {x ∈ 16 : T ∈ x}.
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Then, by unpacking the definition of |=∗,g,4, we obtain the following result:

Proposition 3. For all A,B ∈ Form∼f
, A |=t B iff A |=16 B.

Remark 8. The reason of introducing |=∗,g is to establish this connection to the
16-valued semantic consequence relation defined via designated values.

Note also that the result of the proposition above was already discussed in
Lemma 4.3 in [22], for the language L. In Lemma 4.9 of the same paper an
additional restriction for the consequence relation is discussed for the language
L∼f ,∧f ,∨f

In the language L∼f
, however, we do not need such additional restric-

tion.

5 Alternative Semantics for SIXTEEN3 (II)

The second alternative semantics will have only one star operation, but will be
based on four-valued worlds, in analogy to the relational semantics of FDE.
Therefore, the new semantics presented in this section can be seen as a hybrid
of Routleys’ semantics and Dunn semantics. The equivalence of the semantics
will be established through the semantics given in the previous section.

5.1 Semantics

Definition 16. A one-star interpretation for L∼f
is a tuple M = 〈W, g, ∗, r〉

where W is a non-empty set of worlds, g ∈ W ; ∗ : W −→ W is a function
with w∗∗ = w; and rw ⊆ Prop × {0, 1} for all w ∈ W . Given an interpretation,
rw, this is extended to a relation between all formulas and truth values by the
following clauses:

∼Arw1 iff Arw∗0, ∼Arw0 iff Arw∗1,
A ∧ Brw1 iff Arw1 and Brw1, A ∧ Brw0 iff Arw0 or Brw0,
A ∨ Brw1 iff Arw1 or Brw1, A ∨ Brw0 iff Arw0 and Brw0,
∼fArw1 iff Arw∗1, ∼fArw0 iff Arw∗0.

Remark 9. As one can see from the above definition, the one-star interpretation
is a hybrid of Routleys’ semantics, for the use of the star operation, and Dunn
semantics, for the use of the relation instead of the function.

Definition 17. For all A,B ∈ Form∼f
, A |=r B iff for all one-star interpreta-

tions M, Brg1 if Arg1.

5.2 Equivalence of Two Semantics

Proposition 4. For all A,B ∈ Form∼f
, if A |=∗,g B then A |=r B.

Proof. The details are spelled out in AppendixB. ��
Proposition 5. For all A,B ∈ Form∼f

, if A |=r B then A |=∗,g B.

Proof. The details are spelled out in AppendixC. ��
Remark 10. As in the case for FDE it is possible that the number of worlds for
|=∗,g can be reduce to 2. This can be seen by careful examination of the proofs
of Lemma 1 and Proposition 5.
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6 Reflections on ∼f

The operator ∼f can be regarded as the negation with respect to the falsity
order of the trilattice SIXTEEN3. However, in the context of this article, in
which we focus solely on truth-order, it can be observed that ∼f is more than
just a simple negation.

6.1 ∼f in Special Cases

The introduction of SIXTEEN3 inspired Dmitri Zaitsev to consider some vari-
ants with less truth values in [26]. In brief, Zaitsev suggests to apply the power
set of a three-element set, rather than the four-element set used by Shramko and
Wansing. Due to the limitation of space, we cannot discuss the details of how
our two-valued semantics will capture one of Zaitsev’s systems.

However, since it is rather natural to consider some variants with less truth
values, we briefly consider three special cases of two-star interpretations, and
connect the resulting system to those known in the literature.

First, as expected, if we require w∗2 = w for all w ∈ W , then we simply
obtain an expansion of FDE with ∼fA � A and A � ∼fA. Second, if we require
w∗1 = w∗2 for all w ∈ W , then we obtain an expansion of FDE with ∼f as
conflation.4 Since classical negation is definable in terms of de Morgan negation
and conflation, and conflation is definable in terms of de Morgan negation and
classical negation, the resulting system is equivalent to the expansion of FDE
by classical negation, called BD+ in [5]. Finally, if we require w∗1 = w for all
w ∈ W , then ∼ is a classical negation, and ∼f is again conflation. Since de
Morgan negation is definable in terms of classical negation and conflation, the
resulting system is again equivalent to BD+.

6.2 ∼f as a Modal Operator

In SIXTEEN3, the operator ∼f serves as a negation over the falsity ordering.
In what follows, we will, however, show that truth condition for ∼f , understood
as in Sect. 4, suffice to interpret ∼f as a modal operator satisfying the K-axiom,
as well as the rule of necessitation. Since our language is rather weak, we add
→ which satisfies the following truth condition in a two-star interpretation.

I(w,A → B) = 1 iff I(w,A) 	= 1 or I(w,B) = 1.

In fact, this connective is the implication introduced by Odintsov in [12] as →t.
It is now possible to prove the following proposition.

Proposition 6. For all A,B ∈ Form∼f ,→,

1. |=∗,∀ ∼f (A → B) → (∼fA → ∼fB),

4 Given a Dunn interpretation, conflation, written as −, is characterized by the fol-
lowing truth and falsity conditions: −Ar1 iff not Ar0, and −Ar0 iff not Ar1.
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2.
|=∗,∀ A

|=∗,∀ ∼fA
and

|=∗,∀ ∼fA

|=∗,∀ A
.

Remark 11. The T and S4 axiom are not valid in this semantics. Furthermore,
the equivalence ∼∼f∼A ↔ ∼fA shows that ∼f is self-dual and hence also
contains properties of a possibility operator. The negative modality ∼ behaves
in a similar way.5

Given that ∼f is not defined via an accessibility relation over worlds, but
rather a function that maps worlds to worlds, one may doubt that ∼f counts
as modal operator at all. However, as described by van Benthem in [4], it is
possible to model propositional modal logic with a family of functions F , rather
than accessibility relations. A model M = 〈W,F , V 〉 is then a tuple in the usual
manner, with the following clause for the necessity operator: I(w,�A) = 1 iff
I(f(w), A) = 1 for all f ∈ F . For example, the modal logic T is complete with
respect “for all frames whose function set F contains the identity function” [4].

In analogy to van Benthem’s approach, we may regard our two-star interpre-
tation as a model M = 〈W, g, ∗1,F , V 〉 where F = {∗2} (recall Definition 11).
We would then have I(w,∼fA) = 1 iff I(f(w), A) = 1 for all f ∈ F . Therefore,
if van Benthem’s approach is seen as an approach to modality, then ∼f will be
also counted as a modality at least in that sense. Hence, the language L∼f

can
be interpreted as an FDE-based modal language, where FDE is captured in
terms of the star semantics (recall Definition 1), as, for example, in [7,9].6

7 Concluding Remarks

What we hope to have established in this paper is that it is possible to provide
two-valued semantics for a logic based on SIXTEEN3. In particular, we made
essential use of Routleys’ star operation for both two-valued semantics. However,
our result here is just a first step, and there seem to be a number of problems
to be explored in more details. We will mention two of them.

The first problem is related to the language. In this paper, we focused on
the most simple language associated to SIXTEEN3, namely L∼f

. However,
this is only one of the many possible choices. In particular, it seems more than
natural to deal with ∧f and ∨f , but these connectives seem to be resistant. For
example, if we consider the truth condition for ∧f in a two-star interpretation,
then a straightforward application of our method suggests to split truth condition
depending on the number of stars applied at the state. We do not know, at the
time of writing, if we can capture ∧f in a two-star interpretation by a single truth
condition. We should also note that some connectives discussed in the literature
can be captured. For example, ¬ and ∼i, in a two-star interpretation, will have
the following truth conditions respectively:
5 We thank Sergei Odintsov for pointing this out.
6 For a different approach to FDE-based modal logic, where FDE is captured in terms

of the Dunn semantics (recall Definition 3), see, for example [13,15]. Comparing the
two approaches will be future work.
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• I(w,¬A) = 1 iff I(w,A) 	= 1
• I(w,∼iA) = 1 iff I(w∗1∗2 , A) = 1

The second problem is to explore the relation between the two-valued semantics
and the trilattice. Note that in our two-valued semantics, we are making essential
use of the star operation, but this seems to give rise to some difficulties. Here
is a reason: In the context of FDE, informational join and meet of the bilattice
naturally inspire to introduce binary connectives, and these connectives can be
captured easily in terms of Dunn semantics by giving truth and falsity conditions.
However, it is far from obvious if we can capture the same connectives based on
the star semantics by equally simple conditions. And a similar issue may carry
over to the case with SIXTEEN3. In fact, this might also be related to the first
problem related to ∧f and ∨f .

A Details of the Proof of Theorem3

We prove the contrapositive. Assume A 	� B. Then, by Lindenbaum’s lemma,
there is a prime theory Γ such that A ∈ Γ and B 	∈ Γ . We then define a two-star
interpretation 〈W, g, ∗1, ∗2, v〉 as follows:

• W = {a, b, c, d}, g = a;
• a∗1 = b, b∗1 = a, c∗1 = d, d∗1 = c, a∗2 = c, b∗2 = d, c∗2 = a, d∗2 = b;
• v : W × Prop → {0, 1} is defined as follows:

v(a, p) = 1 iff p ∈ Γ ; v(c, p) = 1 iff p ∈ Γ ∗;
v(b, p) = 1 iff ∼p 	∈ Γ ; v(d, p) = 1 iff ∼p 	∈ Γ ∗.

If we can show that the above condition holds for all formulas, then the result
follows since at a ∈ W , I(a,A) = 1 but I(a,B) 	= 1, i.e. A 	|=∗ B. We prove this
by induction on the complexity of A. We only prove the cases for ∼ and ∼f ,
since the cases for ∧ and ∨ are straightforward.

Case 1. If A is an element of Prop, the result holds by definition.

Case 2. If A = ∼B, then

v(a, ∼B)=1 iff v(a∗1 , B)�=1
iff v(b, B)�=1 Def. ∗1

iff ∼B ∈ Γ IH

v(b, ∼B)=1 iff v(b∗1 , B)�=1
iff v(a, B)�=1 Def. ∗1

iff B �∈ Γ IH
iff ∼∼B �∈ Γ (at6), (at7)

v(c, ∼B)=1 iff v(c∗1 , B)�=1
iff v(d, B)�=1 Def. ∗1

iff ∼B ∈ Γ ∗ IH

v(d, ∼B)=1 iff v(d∗1 , B)�=1
iff v(c, B)�=1 Def. ∗1

iff B �∈ Γ ∗ IH
iff ∼∼B �∈ Γ ∗ (at6), (at7)
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Case 3. If A = ∼fB, then

v(a, ∼fB)=1 iff v(a∗2 , B)=1
iff v(c, B)=1 Def. ∗2

iff B ∈ Γ ∗ IH
iff ∼f∼fB ∈ Γ ∗ (at8), (at9)
iff ∼fB ∈ Γ Lem. 3

v(b, ∼fB)=1 iff v(b∗2 , B)=1
iff v(d, B)=1 Def. ∗2

iff ∼B �∈ Γ ∗ IH
iff ∼f∼B �∈ Γ Lem. 3
iff ∼∼fB �∈ Γ (at10)

v(c, ∼fB)=1 iff v(c∗2 , B)=1
iff v(a, B)=1 Def. ∗2

iff B ∈ Γ IH
iff ∼fB ∈ Γ ∗ Lem. 3

v(d, ∼fB)=1 iff v(d∗2 , B)=1
iff v(b, B)=1 Def. ∗2

iff ∼B �∈ Γ IH
iff ∼f∼B �∈ Γ ∗ Lem. 3
iff ∼∼fB �∈ Γ ∗ (at10)

This completes the proof. ��

B Details of the Proof of Proposition 4

We prove the contrapositive. Assume A 	|=r B. Then, there is a one-star inter-
pretation 〈W, g, ∗, r〉 such that Arg1, but not Brg1. We then define a two-star
interpretation 〈W, g∗1, ∗2, v〉 as follows:

• W = {a, b, c, d}, g = a;
• a∗1 = b, b∗1 = a, c∗1 = d, d∗1 = c, a∗2 = c, b∗2 = d, c∗2 = a, d∗2 = b;
• v : W × Prop → {0, 1} is defined as follows:

v(a, p) = 1 iff prg1; v(c, p) = 1 iff prg∗1;
v(b, p) = 1 iff not prg∗0 v(d, p) = 1 iff not prg0.

If we can show that the above condition holds for all formulas, then the result
follows since at a ∈ W , v(a,A) = 1 but v(a,B) 	= 1, i.e. A 	|=∗,g B. We prove
this by induction. We only prove the cases for ∼ and ∼f , since the cases for ∧
and ∨ are straightforward.

Case 1. If A is an element of Prop, the result holds by definition.

Case 2. If A = ∼B, then

v(a, ∼B) = 1 iff v(a∗1 , B) �= 1
iff v(b, B) �= 1 Def. ∗1

iff Brg∗0 IH
iff ∼Brg1

v(b, ∼B) = 1 iff v(b∗1 , B) �= 1
iff v(a, B) �= 1 Def. ∗1

iff not Brg1 IH
iff not ∼Brg∗0

v(c, ∼B) = 1 iff v(c∗1 , B) �= 1
iff v(d, B) �= 1 Def. ∗1

iff Brg0 IH
iff ∼Brg∗1

v(d, ∼B) = 1 iff v(d∗1 , B) �= 1
iff v(c, B) �= 1 Def. ∗1

iff not Brg∗1 IH
iff not ∼Brg0
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Case 3. If A = ∼fB, then

v(a, ∼fB) = 1 iff v(a∗2 , B) = 1
iff v(c, B) = 1 Def. ∗2

iff Brg∗1 IH
iff ∼fBrg1

v(b, ∼fB) = 1 iff v(b∗2 , B) = 1
iff v(d, B) = 1 Def. ∗2

iff not Brg0 IH
iff not ∼fBrg∗0

v(c, ∼fB) = 1 iff v(c∗2 , B) = 1
iff v(a, B) = 1 Def. ∗2

iff Brg1 IH
iff ∼fBrg∗1 Lem. 3

v(d, ∼fB) = 1 iff v(d∗2 , B) = 1
iff v(b, B) = 1 Def. ∗2

iff not Brg∗0 IH
iff not ∼fBrg0

This completes the proof. ��

C Details of the Proof for Proposition 5

We prove the contrapositive. Assume A 	|=∗,g B. Then, there is a two-star inter-
pretation 〈W, g, ∗1, ∗2, v〉 such that I(g,A) = 1 but I(g,B) 	= 1. We then define
a one-star interpretation 〈W, g, ∗, r〉 as follows:

• W = {a, b}, g = a;
• a∗ = b, b∗ = a;
• rw ⊆ Prop × {0, 1} is defined as follows:

pra1 iff I(g, p) = 1; prb1 iff I(g∗2 , p) = 1;
pra0 iff I(g∗1∗2 , p) 	= 1; prb0 iff I(g∗1 , p) 	= 1.

If we can show that the above condition holds for all formulas, then the result
follows since at a ∈ W , Ara1 but not Bra1, i.e. A 	|=r B. We prove this by
induction. We only prove the cases for ∼ and ∼f , since the cases for ∧ and ∨
are straightforward.

Case 1. If A is an element of Prop, the result holds by definition.

Case 2. If A = ∼B, then

∼Bra1 iff Bra∗0
iff Brb0 Def. ∗
iff I(g∗1 , B) �= 1 IH
iff I(g, ∼B) = 1

∼Bra0 iff Bra∗1
iff Brb1 Def. ∗
iff I(g∗2 , B) = 1 IH
iff I(g∗2∗1 , ∼B) �= 1

∼Brb1 iff Brb∗0
iff Bra0 Def. ∗
iff I(g∗1∗2 , B) �= 1 IH
iff I(g∗2 , ∼B) = 1

∼Brb0 iff Brb∗1
iff Bra1 Def. ∗
iff I(g, B) = 1 IH
iff I(g∗1 , ∼B) �= 1
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Case 3. If A = ∼fB, then

∼fBra1 iff Bra∗1
iff Brb1 Def. ∗
iff I(g∗2 , B) = 1 IH
iff I(g, ∼fB) = 1

∼fBra0 iff Bra∗0
iff Brb0 Def. ∗
iff I(g∗1 , B) �= 1 IH
iff I(g∗1∗2 , ∼fB) �= 1

∼fBrb1 iff Brb∗1
iff Bra1 Def. ∗
iff I(g, B) = 1 IH
iff I(g∗2 , ∼fB) = 1

∼fBrb0 iff Brb∗0
iff Bra0 Def. ∗
iff I(g∗1∗2 , B) �= 1 IH
iff I(g∗1 , ∼fB) �= 1

This completes the proof. ��
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