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Abstract. Quasi-Nelson logic is a generalization of Nelson logic in the
sense that the negation is not necessary involutive. In this paper, we give
a Hilbert-style presentationQN of quasi-Nelson logic, and show thatQN
is regularly BP-algebraizable with respect to its algebraic counterpart
obtained by the Blok-Pigozzi algorithm, namely the class of Q-algebras.
Finally, we show that the class of Q-algebras coincides with the class of
quasi-Nelson algebras.

Keywords: Quasi-Nelson logic · Algebraizable logics ·
Quasi-Nelson algebras

1 Introduction

Nelson logic N3, introduced in [10], is a conservative expansion of the negation-
free fragment of intuitionistic propositional logic by an unary logical connective
∼ of strong negation (which is involutive). The logic N3 is by now well stud-
ied, both from a proof-theoretic view and from an algebraic view. In particular,
Nelson algebras (the algebraic counterpart of N3) can be represented as twist-
structures over (i.e., special powers of) Heyting algebras [14,16]. Moreover, the
variety of Nelson algebras is term-equivalent to the variety of compatibly invo-
luted commutative integral bounded residuated lattices satisfying the Nelson
axiom (called Nelson residuated lattices, [15]).

Rivieccio and Spinks [12] introduced quasi-Nelson algebras as a natural gen-
eralization of Nelson algebras in the sense that the negation ∼ is not involutive.
Similar to Nelson algebras, quasi-Nelson algebras can be regarded as models of
non-involutive Nelson logic, which is an expansion of the negation-free fragment
of intuitionistic propositional logic; moreover, they can be represented as twist-
structures over Heyting algebras (Definition 2). Furthermore, [12] proved that
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the class of quasi-Nelson algebras is term-equivalent to the variety of commu-
tative integral bounded residuated lattices satisfying the Nelson axiom (called
quasi-Nelson residuated lattices therein). Like Nelson algebras, the class of quasi-
Nelson algebras forms a “quasivariety of logic” in the sense of Blok and La Falce
[1]; however, no axiomatization of the inherent logic of quasi-Nelson algebras has
yet been presented in the literature. Continuing the work above, in this paper we
shall first introduce a Hilbert-style calculus QN for quasi-Nelson logic, and show
that QN is algebraizable in the sense of Blok and Pigozzi. We shall further prove
that the algebraic counterpart of QN, viz., its equivalent variety semantics, is
equivalent to the class of quasi-Nelson algebras.

Although the results in this paper clearly pertain in universal algebra and
algebraic logic, they are potentially relevant to algebraic proof theory. Specifi-
cally, the term-equivalence results can throw light, as an interesting case study,
on some unsolved issues that have recently cropped up about how to characterize
the existence of (multi-type) analytic calculi for logical systems. In this respect,
the present paper can also be regarded as a continuation of [9]. As in the cases
of semi De Morgan logic and bilattice logic [6,7,9], the term-equivalent facts for
quasi-Nelson algebras could also pave the way for designing analytic calculi for
logics which are axiomatically presented by axioms which are not all analytic
inductive in the sense of [5].

The paper is organized as follows. In Sect. 2 we recall some basic definitions
and results about quasi-Nelson algebras. Section 3 gives a Hilbert-style presen-
tation QN of quasi-Nelson logic. In Sect. 4, we prove that QN is regularly BP-
algebraizable, and show that the algebraic counterpart of QN is equivalent to
the class of quasi-Nelson algebras. Finally, we mention some prospects for future
work in Sect. 5.

2 Preliminaries

In this section, we recall two equivalent presentations of quasi-Nelson algebras.
They will be used to establish the equivalence between differing algebraic seman-
tics for quasi-Nelson logic in Sect. 4.

Definition 1 ([12, Definition 4.1]). A quasi-Nelson algebra is an algebra A =
(A;∧,∨,∼,→, 0, 1) having the following properties:

(SN1) The reduct (A;∧,∨, 0, 1) is a bounded distributive lattice with lattice order
≤.

(SN2) The relation � on A defined for all a, b ∈ A by a � b iff a → b = 1 is a
quasiorder on A.

(SN3) The relation ≡ :=� ∩ (�)−1 is a congruence on the reduct
(A;∧,∨,→, 0, 1) and the quotient algebra A+ = (A;∧,∨,→, 0, 1)/ ≡ is a
Heyting algebra.

(SN4) For all a, b ∈ A, it holds that ∼(a → b) ≡ ∼∼(a ∧ ∼b).
(SN5) For all a, b ∈ A, it holds that a ≤ b iff a � b and ∼b � ∼a.
(SN6) For all a, b ∈ A,
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(SN6.1) ∼∼(∼a → ∼b) ≡ (∼a → ∼b).
(SN6.2) ∼a ∧ ∼b ≡ ∼(a ∨ b).
(SN6.3) ∼∼a ∧ ∼∼b ≡ ∼∼(a ∧ b).
(SN6.4) ∼∼∼a ≡ ∼a.
(SN6.5) a � ∼∼a.
(SN6.6) a ∧ ∼a � 0.

Let π1 and π2 denote the first and second projection functions respectively.

Definition 2 ([12, Definition 3.1]). Let H+ = 〈H+,∧+,∨+,→+, 0+, 1+〉 and
H− = 〈H−,∧−,∨−,→−, 0−, 1−〉 be Heyting algebras and n : H+ → H− and
p : H− → H+ be maps satisfying the following conditions:

(1) n preserves finite meets, joins and the bounds (i.e., one has n(x ∧+ y) =
n(x) ∧− n(y), n(x ∨+ y) = n(x) ∨− n(y), n(1+) = 1− and n(0+) = 0−),

(2) p preserves meets and the bounds (i.e., one has p(x ∧− y) = p(x) ∧+ p(y),
p(1−) = 1+ and p(0−) = 0+),

(3) n · p = IdH− and IdH+ ≤+ p · n.

The algebra H+ �� H− = 〈H+ × H−,∧,∨,→,∼, 0, 1〉 is defined as follows. For
all 〈a+, a−〉, 〈b+, b−〉 ∈ H+ × H−,

1 = 〈1+, 0−〉
0 = 〈0+, 1−〉

∼〈a+, a−〉 = 〈p(a−), n(a+)〉
〈a+, a−〉 ∧ 〈b+, b−〉 = 〈a+ ∧+ b+, a− ∨− b−〉
〈a+, a−〉 ∨ 〈b+, b−〉 = 〈a+ ∨+ b+, a− ∧− b−〉

〈a+, a−〉 → 〈b+, b−〉 = 〈a+ →+ b+, n(a+) ∧− b−)〉.
A twist-structure A over H+ �� H− is a {∧,∨,→,∼, 0, 1}-subalgebra of

H+ �� H− with carrier set A such that for all 〈a+, a−〉 ∈ A, a+ ∧+ p(a−) = 0+

and n(a+) ∧− a− = 0−.

Lemma 1 of [13] shows that (1)–(3) implies that p also preserves →, i.e.
p(x →− y) = p(x) →+ p(y). By (SN3) in Definition 1, a quasi-Nelson algebras
has the global outline of a Heyting algebra. Moreover, let A− := {[∼a] | a ∈
A} ⊆ A+, n([a]) := [∼∼a] and p([a]) := [a], where [.] is the equivalence class
defined by ≡ in Definition 1. By Proposition 4.2 in [12], the following theorem
holds:

Theorem 1. Every quasi-Nelson algebra A is isomorphic to a twist-structure
over A+,A− by the map ι(a) := 〈[a], [∼a]〉.

3 A Hilbert System for Quasi-Nelson Logic

In this section, we give a Hilbert-style presentation QN of quasi-Nelson logic
and highlight some theorems and derivations of QN that will be used to prove
its algebraizability in subsequent sections.
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Fix a denumerable set Atprop of propositional variables, and let p denote an
element in Atprop. The language L of quasi-Nelson logic over Atprop is defined
recursively as follows:

ϕ ::= p | ∼ϕ | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | (ϕ → ϕ)

To simplify the notation, in what follows, we omit the outmost parenthesis. Let
ϕ ↔ ψ := (ϕ → ψ) ∧ (ψ → ϕ). We use Fm to denote the set of all formulas. A
logic is then defined as a finitary and substitution-invariant consequence relation
�⊆ P(Fm) × Fm.

The Hilbert-system for QN of quasi-Nelson logic consists of the following
axiom schemes:

AX1 ϕ → (ψ → ϕ)
AX2 (ϕ → (ψ → χ)) → ((ϕ → ψ) → (ϕ → χ))
AX3 (ϕ ∧ ψ) → ϕ
AX4 (ϕ ∧ ψ) → ψ
AX5 (ϕ → ψ) → ((ϕ → χ) → (ϕ → (ψ ∧ χ)))
AX6 ϕ → (ϕ ∨ ψ)
AX7 ψ → (ϕ ∨ ψ)
AX8 (ϕ → χ) → ((ψ → χ) → ((ϕ ∨ ψ) → χ))
AX9 ∼∼(∼ϕ → ∼ψ) → (∼ϕ → ∼ψ)
AX10 (∼ϕ ∧ ∼ψ) ↔ ∼(ϕ ∨ ψ)
AX11 (∼∼ϕ ∧ ∼∼ψ) ↔ ∼∼(ϕ ∧ ψ)
AX12 ∼∼∼ϕ → ∼ϕ
AX13 ∼(ϕ → ψ) ↔ ∼∼(ϕ ∧ ∼ψ)
AX14 ϕ → ∼∼ϕ
AX15 (ϕ → ψ) → (∼∼ϕ → ∼∼ψ)
AX16 ∼ϕ → ∼(ϕ ∧ ψ)
AX17 ∼(ϕ ∧ ψ) → ∼(ψ ∧ ϕ)
AX18 ∼(ϕ ∧ (ψ ∧ χ)) ↔ ∼((ϕ ∧ ψ) ∧ χ)
AX19 ∼ϕ → ∼(ϕ ∧ (ψ ∨ ϕ))
AX20 ∼ϕ → ∼(ϕ ∧ (ϕ ∨ ψ))
AX21 ∼(ϕ ∧ (ψ ∨ χ)) ↔ ∼((ϕ ∧ ψ) ∨ (ϕ ∧ χ))
AX22 ∼(ϕ ∨ (ψ ∧ χ)) ↔ ∼((ϕ ∨ ψ) ∧ (ϕ ∨ χ))
AX23 ∼ϕ ↔ ∼(ϕ ∧ (ψ → ψ))
AX24 ∼(ϕ → ϕ) → ψ
AX25 (∼ϕ → ∼ψ) → (∼(ϕ ∧ ψ) → ∼ψ)
AX26 (∼ϕ → ∼ψ) → ((∼χ → ∼γ) → (∼(ϕ ∧ χ) → ∼(ψ ∧ γ)))

together with the single inference rule of modus ponens (MP): ϕ,ϕ → ψ � ψ.

Remark 1. Notice that since the inter-derivability relation �� does not realize
a congruence on the formula algebra, QN is not selfextensional [17], and hence
does not fall within the setting of [5]. Therefore, the analytic calculus for quasi-
Nelson logic is challenge. However, the term-equivalent facts in Sect. 4 make it
possible to solve this problem.
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AX1–AX8 together with (MP) provide an axiomatization of the negation-
free fragment of intuitionistic propositional logic, while AX9-AX14 are the log-
ical analogues of (SN4) and (SN6) respectively. It is not difficult to see that
intuitionistic propositional logic is a strengthening of QN.

By the usual inductive argument on the length of derivations, it is not difficult
to prove that the deduction theorem holds for QN.

Theorem 2 (Deduction Theorem). If Φ ∪ {ϕ} � ψ, then Φ � ϕ → ψ.

In what follows, we prove some theorems and derivations which will be used
in the next section.

Corollary 1. (1) ϕ → ϕ
(2) ϕ → (ψ → (ϕ ∧ ψ))
(3) (ϕ ∧ ∼ϕ) → ψ
(4) ∼(ϕ ∧ ϕ) → ∼ϕ
(5) {ϕ → ψ,ψ → χ} � ϕ → χ

Proof. The proofs for (1) and (5) are same as the proofs in classical propositional
logic [8, Chap. 2] and hence are omitted.

As to (2), we have:

1. ϕ assumption
2. ϕ → (ψ → ϕ) AX1
3. ψ → ϕ 1, 2, MP
4. ψ → ψ Corollary 1.1
5. ψ → ϕ ∧ ψ 3, 4, AX5, MP

and hence ϕ → (ψ → (ϕ ∧ ψ)) is derivable by the deduction theorem.
As to (3), we have:

1. ϕ ∧ ∼ϕ assumption
2. ∼∼(ϕ ∧ ∼ϕ) AX14
3. ∼(ϕ → ϕ) 2, AX13, MP
4. ψ 3, AX24, MP

and hence (ϕ ∧ ∼ϕ) → ψ is derivable by the deduction theorem.
As to (4), we have:

1. (∼ϕ → ∼ϕ) → (∼(ϕ ∧ ϕ) → ∼ϕ) AX25
2. ∼ϕ → ∼ϕ Corollary 1.1
3. ∼(ϕ ∧ ϕ) → ∼ϕ 1, 2, MP

4 QN Is Regularly BP-Algebraizable

In this section, we prove that QN is regularly BP-algebraizable. We give an
algebraic semantics (called Q-algebras) for it via the algorithm of [2, Theorem
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2.17]. Furthermore, we show that Q-algebras coincides with quasi-Nelson alge-
bras defined as in Sect. 2. Combining with Theorem 4.4 in [12], we arrive at four
equivalent characterizations of quasi-Nelson logic.

Before proving QN is regularly BP-algebraizable, we first recall some relevant
definitions from [4]. Let Fm be a set of formulas, henceforth the set of equations
of the language L is denoted by Eq and is defined as Eq := Fm × Fm. We write
ϕ ≈ ψ rather than (ϕ,ψ).

Definition 3. A logic L is algebraizable if and only if there are equations
E(ϕ) ⊆ Eq and a transform ρ : Eq → 2Fm, denoted by Δ(ϕ,ψ) := ρ(ϕ ≈ ψ),
such that L respects the following conditions:

(Alg) ϕ ��L Δ(E(ϕ))
(Ref) �L Δ(ϕ,ϕ)
(Sym) Δ(ϕ,ψ) �L Δ(ψ,ϕ)
(Trans) Δ(ϕ,ψ) ∪ Δ(ψ, γ) �L Δ(ϕ, γ)
(Cong) for each n-ary operator •, ⋃n

i=1 Δ(ϕi, ψi) �L Δ(•(ϕ1, . . . , ϕn), •
(ψ1, . . . , ψn))

We call any such E(ϕ) the set of defining equations and any such Δ(ϕ,ψ) the
set of equivalence formulas of L.

Definition 4. Let L be algebraizable. We say L is finitely algebraizable when
the set of equivalence formulas is finite. We say L is BP-algebraizable when it
is finitely algebraizable and the set of defining equations is finite.

Definition 5. A logic L is regularly BP-algebraizable when it is BP-
algebraizable and satisfies:

(G) ϕ,ψ �L Δ(ϕ,ψ)

for any nom-empty set Δ(ϕ,ψ) of equivalence formulas.

Let E(ϕ) := {ϕ ≈ ϕ → ϕ}, and Δ(ϕ,ψ) := {ϕ → ψ,ψ → ϕ,∼ϕ →
∼ψ,∼ψ → ∼ϕ}. In what follows, we prove in the Appendix that QN is reg-
ularly BP-algebraizable.

Proposition 1. QN is regularly BP-algebraizable.

By the algorithm in [4, Proposition 3.41], we can obtain the corresponding
algebras for QN:

Definition 6. An Q-algebra is a structure A = (A;∧,∨,∼,→) which satisfies
the following equations and quasiequations:

(1) E(ϕ) for each ϕ ∈ AX.
(2) E(Δ(ϕ,ϕ)).
(3) E(Δ(ϕ,ψ)) implies ϕ ≈ ψ.
(4) E(ϕ) and E(ϕ → ψ) implies E(ψ).
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We will introduce below a class of algebras that thanks to Proposition 1 is
equivalent to the class given in Definition 6, as can be seen in [3, Theorem 30].

Definition 7. Let L be a logic with a set Ax of axioms and a set Ru of proper
inference rules. Assume L is regularly algebraizable with finite equivalence system
Δ(ϕ,ψ) = {ε0(ϕ,ψ), · · · , εn−1(ϕ,ψ)}. Let � be a fixed but arbitrary theorem of
L. Then the unique equivalent quasivariety of L is defined by the identities:

(1) ϕ ≈ � for each ϕ ∈ Ax
(2) (ψ0 ≈ �, · · · , ψp−1 ≈ �) implies ϕ ≈ �, for each inference rule in Ru.
(3) Δ(ϕ,ψ) ≈ � implies ϕ ≈ ψ.

In what follows, we show that the class given in Definition 7 is term-equivalent to
the class of quasi-Nelson algebras and as it is the unique equivalent quasivariety
of L, this class must be Q-algebras.

Proposition 2. Every Q-algebra is a quasi-Nelson algebra.

Proof. As to (SN1), let 1 := ϕ → ϕ and 0 := ∼(ϕ → ϕ), in order to prove that
(A;∧,∨, 0, 1) is a bounded distributive lattice with lattice order ≤, it suffices to
show that it satisfies the following properties: (i) idempotence, the difficult part is
∼(ϕ∧ϕ) → ∼ϕ and ∼ϕ → ∼(ϕ∧ϕ), which follow from Corollary 1.3 and AX16;
(ii) commutativity: the difficult part is ∼(ϕ∧ψ) → ∼(ψ∧ϕ) which is AX17; (iii)
associativity: the difficult part is ∼(ϕ∧(ψ∧χ)) ↔ ∼((ϕ∧ψ)∧χ) which is AX18;
(iv) absorption: the difficult part is ∼(ϕ∧(ψ∨ϕ)) ↔ ∼ϕ and ∼(ϕ∧(ϕ∨ψ)) ↔ ∼ϕ
which are AX19 and AX20 respectively; (v) distributivity: the difficult part is
∼(ϕ∧ (ψ ∨χ)) ↔ ∼((ϕ∧ψ)∨ (ϕ∧χ)) and ∼(ϕ∨ (ψ ∧χ)) ↔ ∼((ϕ∨ψ)∧ (ϕ∨χ))
which are AX21 and AX22 respectively. Hence, (A;∧,∨, 0, 1) is a distributive
lattice, it is bounded by AX23, AX24 and Corollary 1.1.

As to (SN2), it suffices to show that the relation satisfies reflexivity and
transitivity. In order to prove them, it is useful to show that ϕ → ψ ≈ 1 iff
� ϕ → ψ. The right to left direction follows from the definition of E. The left
to right direction follows from the definition of Δ. Hence, the reflexivity follows
from Corollary 1.1, and transitivity follows from Corollary 1.3.

As to (SN3), by (SN2) and Definition 6(3), the relation ≡ is a equivalent
relation. By the same proof as in intuitionistic propositional logic, we can show
that ≡ is closed under ∨,∧, 0, 1,→ and hence it is a congruence on (A;∧,∨,→
, 0, 1). To prove A+ = (A;∧,∨,→, 0, 1)/≡ is a Heyting algebra, it suffices to
show that [ϕ] ∧ [ψ] ≤≡ [χ] iff [ϕ] ≤≡ [ψ] → [χ] where [.] means the equivalence
class defined by ≡. It is equivalent to show that ((ϕ ∧ ψ) ∧ χ) ↔ (ϕ ∧ ψ) iff
(ϕ ∧ (ψ → χ)) ↔ ϕ, which follows from Theorem 2, Corollary 1.2, AX3, and
AX4.

As to (SN5), it suffices to prove that (ϕ∧ψ) → ϕ, ϕ → (ϕ∧ψ), ∼(ϕ∧ψ) → ∼ϕ
and ∼ϕ → ∼(ϕ∧ψ) iff ϕ → ψ and ∼ψ → ∼ϕ. From right to left, ∼(ϕ∧ψ) → ∼ϕ
follows from ∼ψ → ∼ϕ and AX25, others are obvious. From left to right, ϕ → ψ
follows from ϕ → (ϕ ∧ ψ), AX4 and Corollary 1.5. ∼ψ → ∼ϕ follows from
∼(ϕ ∧ ψ) → ∼ϕ, AX16, AX17 and Corollary 1.5.

(SN4) and (SN6) follows from AX9–AX15.
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Corollary 2. Given a quasi-Nelson algebra A, for any a, b, c ∈ A, we have:

(1) a ∧ (a → b) � b.
(2) a ∧ b � c iff a � b → c.

Proof. (1) By (SN2), we need to prove (a ∧ (a → b)) → b = 1. Hence, it suffices
to show 〈[(a ∧ (a → b)) → b], [∼((a ∧ (a → b)) → b)]〉 = 〈[1], [0]〉 by Theorem 1.
By (SN3), we have (a ∧ (a → b)) → b ≡ 1. Moreover, ∼((a ∧ (a → b)) → b) ≡
(∼∼a ∧ ∼∼(a → b)) ∧ ∼b ≡ ∼(a → b) ∧ ∼∼(a → b) � 0 by (SN4), (SN6.3),
(SN6.4) and (SN6.6). We also have 0 � ∼((a ∧ (a → b)) → b) since 0 is the least
element and (SN5). Therefore, ∼((a ∧ (a → b)) → b) ≡ 0.

(2) From left to right, we only need to show that: if (a ∧ b) → c = 1 then
a → (b → c) = 1 by (SN2). Hence, by Theorem 1, it suffices to show that
if 〈[(a ∧ b) → c], [∼(a ∧ b) → c)]〉 = 〈[1], [0]〉, then 〈[a → (b → c)], [∼(a →
(b → c))]〉 = 〈[1], [0]〉. The assumption implies that: (i) (a ∧ b) → c ≡ 1 and
(ii) ∼((a ∧ b) → c) ≡ 0. (i) implies a → (b → c) ≡ (a ∧ b) → c ≡ 1 by
(SN3). Since ∼((a ∧ b) → c) ≡ (∼∼a ∧ ∼∼b) ∧ ∼c by (SN4), (SN6.3) and
(SN6.4), (ii) implies (∼∼a ∧ ∼∼b) ∧ ∼c ≡ 0. Therefore, by the same argument,
∼(a → (b → c)) ≡ (∼∼a ∧ ∼∼b) ∧ ∼c ≡ 0. The argument for the right to left
direction is quite similar and hence omitted.

Proposition 3. Every quasi-Nelson algebra is a Q-algebra.

Combining Theorem 4.4 in [12] with Propositions 2 and 3, we have:

Theorem 3. The following algebras are term-equivalent:

(1) Quasi-Nelson residuated lattices ([12][Definition 2.3]);
(2) Twist-structures over pairs of Heyting algebras (Definition 2);
(3) Quasi-Nelson algebras (Definition 1);
(4) Q-algebras (Definition 6).

5 Future Work

Since its introduction in [12], many questions regarding the class of quasi-Nelson
algebras have been proposed and answered. This paper is the first attempt to
introduce a Hilbert-style axiomatization of the inherent logic of quasi-Nelson
algebras. There are some directions for future work based on the results in
the present paper. Given that intuitionistic propositional logic is an exten-
sion of quasi-Nelson logic, a natural further direction of research is to inves-
tigate the position of quasi-Nelson logic in the hierarchy of subintuitionistic
logics. In [6,7,9], the equivalence established between semi De Morgan algebras
(resp. bilattices) and their heterogeneous counterparts has made it possible to
introduce proper display (hence analytic) calculi for semi-De Morgan logic and
bilattice logic. Interestingly, in the case of semi De Morgan logic, this equivalence
result is very similar to the term-equivalence result with which Palma [11] proved
that the variety of semi De morgan algebras is closed under canonical extensions.
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A natural question is then whether this strategy can be systematically extended
so as to to design analytic calculi for logics which are axiomatically presented by
axioms which are not all analytic inductive, as is also the case of quasi-Nelson
logic.

Appendix: Proofs of the Main Results

Proposition 1: QN is regularly BP-algebraizable.

Proof. As to (Alg), it suffices to prove that:

ϕ �� {ϕ → (ϕ → ϕ), (ϕ → ϕ) → ϕ,∼ϕ → ∼(ϕ → ϕ),∼(ϕ → ϕ) → ∼ϕ}

The right to left direction can be proved by Theorem 2 and MP. From left to
right, ϕ � ϕ → (ϕ → ϕ) immediately follows from Theorem 2, and hence the
proof is omitted. We only prove the last two items: (i) ϕ � ∼ϕ → ∼(ϕ → ϕ) and
(ii) ϕ � ∼(ϕ → ϕ) → ∼ϕ. For (i),

1. ϕ assumption
2. ∼ϕ → (ϕ ∧ ∼ϕ) Corollary 1.2, 1, MP
3. ∼ϕ → ∼(ϕ → ϕ) Corollary 1.3, 2, Corollary 1.5

(ii) follows from AX24, Corollary 1.3, and Corollary 1.5. (Ref) immediately fol-
lows from Corollary 1.1. (Sym) is a straightforward consequence of the definition
of Δ.

As to (Trans), we need to prove that: (i)

{ϕ ↔ ψ,∼ϕ ↔ ∼ψ} ∪ {ψ ↔ χ,∼ψ ↔ ∼χ} � ϕ ↔ χ

and (ii)

{ϕ ↔ ψ,∼ϕ ↔ ∼ψ} ∪ {ψ ↔ χ,∼ψ ↔ ∼χ} � ∼ϕ ↔ ∼χ

For (i), this is an immediate consequence of Corollary 1.5. For (ii), we show
� ∼(ϕ → ψ) → (∼(ψ → χ) → γ), which implies (ii).

1. ∼(ϕ → ψ) assumption
2. ∼(ψ → χ) assumption
3. ∼∼(ϕ ∧ ∼ψ) 1, AX13, MP
4. ∼∼ϕ ∧ ∼∼∼ψ 3, AX11, MP
5. ∼∼ψ ∧ ∼∼∼χ same as 1, 3, 4 above
6. ∼∼(ψ ∧ ∼ψ) → γ AX13, AX24, Corollary 1.5
7. (∼∼ψ ∧ ∼∼∼ψ) → γ AX11, 6, Corollary 1.5
8. (((∼∼ϕ ∧ ∼∼∼ψ) ∧ ∼∼ψ) ∧ ∼∼∼χ) → γ AX3, AX4, 7, Corollary 1.5
9. γ 4, 5, 8, MP

and hence we have � ∼(ϕ → ψ) → (∼(ψ → χ) → γ) by the deduction theorem.
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As to (Cong), we need to prove that → respects (Alg) for each connective
• ∈ {∧,∨,→,∼}.

For (∼), we need to prove that: (i)

{ϕ → ψ,ψ → ϕ,∼ϕ → ∼ψ,∼ψ → ∼ϕ} � ∼ϕ → ∼ψ

and
{ϕ → ψ,ψ → ϕ,∼ϕ → ∼ψ,∼ψ → ∼ϕ} � ∼ψ → ∼ϕ

It follows by hypothesises. And we need to prove (ii)

{ϕ → ψ,ψ → ϕ,∼ϕ → ∼ψ,∼ψ → ∼ϕ} � ∼∼ϕ → ∼∼ψ

and
{ϕ → ψ,ψ → ϕ,∼ϕ → ∼ψ,∼ψ → ∼ϕ} � ∼∼ψ → ∼∼ϕ

They are shown by AX15, hypothesises and MP.
For (∧), we need to prove that: (i)

{ϕ1 ↔ ψ1,∼ϕ1 ↔ ∼ψ1} ∪ {ψ2 ↔ ϕ2,∼ϕ2 ↔ ∼ψ2} � (ϕ1 ∧ ϕ2) → (ψ1 ∧ ψ2)

and

{ϕ1 ↔ ψ1,∼ϕ1 ↔ ∼ψ1} ∪ {ϕ2 ↔ ψ2,∼ϕ2 ↔ ∼ψ2} � (ψ1 ∧ ψ2) → (ϕ1 ∧ ϕ2)

They are shown as follows:

1. ϕ1 → ψ1 assumption
2. ϕ2 → ψ2 assumption
3. (ϕ1 ∧ ϕ2) → ϕ1 AX3
4. (ϕ1 ∧ ϕ2) → ψ1 1, 3, Corollary 1.5
5. (ϕ1 ∧ ϕ2) → ψ2 same as 1, 3, 4 above
6. (ϕ1 ∧ ϕ2) → (ψ1 ∧ ψ2) AX5, 4, 5, MP

The other proof is similar; And we need to prove (ii)

{ϕ1 ↔ ψ1,∼ϕ1 ↔ ∼ψ1} ∪ {ψ2 ↔ ϕ2,∼ϕ2 ↔ ∼ψ2} � ∼(ϕ1 ∧ ϕ2) → ∼(ψ1 ∧ ψ2)

and

{ϕ1 ↔ ψ1,∼ϕ1 ↔ ∼ψ1} ∪ {ϕ2 ↔ ψ2,∼ϕ2 ↔ ∼ψ2} � ∼(ψ1 ∧ ψ2) → ∼(ϕ1 ∧ ϕ2)

They can be proved by AX 26, hypothesises and MP.
For (∨), we need to prove that: (i)

{ϕ1 ↔ ψ1,∼ϕ1 ↔ ∼ψ1} ∪ {ψ2 ↔ ϕ2,∼ϕ2 ↔ ∼ψ2} � (ϕ1 ∨ ϕ2) → (ψ1 ∨ ψ2)

and

{ϕ1 ↔ ψ1,∼ϕ1 ↔ ∼ψ1} ∪ {ψ2 ↔ ϕ2,∼ϕ2 ↔ ∼ψ2} � (ψ1 ∨ ψ2) → (ϕ1 ∨ ϕ2)
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They are shown as follows, By AX6, AX7, hypothesis and corollary 1.5 we have
the two following derivations:

1. ϕ1 → ψ1 assumption
2. ϕ2 → ψ2 assumption
3. ψ1 → (ψ1 ∨ ψ2) AX6
4. ϕ1 → (ψ1 ∨ ψ2) 1, 3, Corollary 1.5
5. ϕ2 → (ψ1 ∨ ψ2) same as 1, 3, 4 above
6. (ϕ1 ∨ ϕ2) → (ψ1 ∨ ψ2) AX8, 4, 5, MP

the other proof is similar; And we need to prove (ii)

{ϕ1 ↔ ψ1,∼ϕ1 ↔ ∼ψ1} ∪ {ψ2 ↔ ϕ2,∼ϕ2 ↔ ∼ψ2} � ∼(ϕ1 ∨ ϕ2) → ∼(ψ1 ∨ ψ2)

and

{ϕ1 ↔ ψ1,∼ϕ1 ↔ ∼ψ1} ∪ {ψ2 ↔ ϕ2,∼ϕ2 ↔ ∼ψ2} � ∼(ψ1 ∨ ψ2) → ∼(ϕ1 ∨ ϕ2)

We only prove the first one, the other proof is similar and hence omitted.

1. ∼ϕ1 → ∼ψ1 assumption
2. ∼ϕ2 → ∼ψ2 assumption
3. (∼ϕ1 ∧ ∼ϕ2) → ∼ψ1 1, AX3, Corollary 1.5
4. (∼ϕ1 ∧ ∼ϕ2) → ∼ψ2 2, AX4, Corollary 1.5
5. (∼ϕ1 ∧ ∼ϕ2) → (∼ψ1 ∧ ∼ψ2) 3, 4, AX5, Corollary 1.5
6. ∼(ϕ1 ∨ ϕ2) → ∼(ψ1 ∨ ψ2) AX10, 5, Corollary 1.5

For (→), we need to prove that: (i)

{ϕ1 ↔ ψ1,∼ϕ1 ↔ ∼ψ1} ∪ {ψ2 ↔ ϕ2,∼ϕ2 ↔ ∼ψ2} � (ϕ1 → ϕ2) → (ψ1 → ψ2)

and

{ϕ1 ↔ ψ1,∼ϕ1 ↔ ∼ψ1} ∪ {ψ2 ↔ ϕ2,∼ϕ2 ↔ ∼ψ2} � (ψ1 → ψ2) → (ϕ1 → ϕ2)

They can be shown by Corollary 1.5; And we need to prove (ii)

{ϕ1 ↔ ψ1, ∼ϕ1 ↔ ∼ψ1} ∪ {ψ2 ↔ ϕ2, ∼ϕ2 ↔ ∼ψ2} � ∼(ϕ1 → ϕ2) → ∼(ψ1 → ψ2)

and

{ϕ1 ↔ ψ1, ∼ϕ1 ↔ ∼ψ1} ∪ {ψ2 ↔ ϕ2, ∼ϕ2 ↔ ∼ψ2} � ∼(ψ1 → ψ2) → ∼(ϕ1 → ϕ2)

We only prove the first one, the other proof is similar and hence omitted.

1. ϕ1 → ψ1 assumption
2. ∼ϕ2 → ∼ψ2 assumption
3. (ϕ1 → ψ1) → (∼∼ϕ1 → ∼∼ψ1) AX15
4. ∼∼ϕ1 → ∼∼ψ1 1,3, MP
5. (∼∼ϕ1 ∧ ∼∼∼ϕ2) → ∼∼ψ1 4, AX3, Corollary 1.5
6. (∼∼ϕ1 ∧ ∼∼∼ϕ2) → ∼∼∼ψ2 same as 1, 3, 4, 5. above
7. (∼∼ϕ1 ∧ ∼∼∼ϕ2) → (∼∼ψ1 ∧ ∼∼∼ψ2) AX5, 6, 7, MP
8. ∼∼(ϕ1 ∧ ∼ϕ2) → ∼∼(ψ1 ∧ ∼ψ2) AX11, 7, Corollary 1.5
9. ∼(ϕ1 → ϕ2) → ∼(ψ1 → ψ2) AX13, 8, Corollary 1.5
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Therefore, QN is algebraizable, and it is regularly BP-algebraizable since the
set of equivalence (defined by Δ) is finite. In order to prove that QN is regularly
BP-algebraizable see that ϕ,ψ �L ϕ → ψ and ϕ,ψ �L ψ → ϕ follow from
deduction theorem and that ϕ,ψ �L∼ ϕ →∼ ψ and ϕ,ψ �L∼ ψ →∼ ϕ follow
from deduction theorem and Corollary 1.4.

Proposition 3. Every quasi-Nelson algebra is a Q-algebra.

Proof. We need to prove that a quasi-Nelson algebra satisfies all equations and
quasi-equations in Definition 7. Henceforward, see that being � a quasiorder
(SN2), it holds the following equation: ϕ → ϕ ≈ 1.

1. ϕ ≈ 1 for each ϕ ∈ AX.

E(AX1). We need to show that ϕ → (ψ → ϕ) ≈ 1. By (SN2), it suffices to show
ϕ � ψ → ϕ. By Corollary 2.2, it is equivalent to show ϕ ∧ ψ � ϕ, which can
be proved by (SN1) and (SN5).

E(AX2). We need to show that (ϕ → (ψ → χ)) → ((ϕ → ψ) → (ϕ → χ)) ≈ 1.
By Theorem 1, it suffices to show that

((〈[ϕ], [∼ϕ]〉 → (〈[ψ], [∼ψ]〉 → 〈[χ], [∼χ]〉)) →
((〈[ϕ], [∼ϕ]〉 → 〈[ψ], [∼ψ]〉) → (〈[ϕ], [∼ϕ]〉 → 〈[χ], [∼χ]〉)) = 〈[1], [0]〉

By Definition 2, it is equivalent to show:

(〈[ϕ], [∼ϕ]〉 → (〈[ψ → χ], n[ψ] ∧ [∼sχ]〉)) →
((〈[ϕ → ψ], n[ϕ] ∧ [∼ ψ]〉) → 〈[ϕ → χ], n[ϕ] ∧ [∼ χ]〉)

= (〈[ϕ → (ψ → χ)], n[ϕ] ∧ n[ψ] ∧ [∼ χ]〉) →
(〈[(ϕ → ψ) → (ϕ → χ)], n[ϕ → ψ] ∧ n[ϕ] ∧ [∼ χ]〉)

= 〈[(ϕ → (ψ → χ)) → ((ϕ → ψ) → (ϕ → χ))],
n[ϕ → (ψ → χ)] ∧ n[ϕ → ψ] ∧ n[ϕ] ∧ [∼ χ]〉 = 〈[1], [0]〉

Since A+ is a Heyting algebra, (ϕ → (ψ → χ)) → ((ϕ → ψ) → (ϕ → χ) ≡ 1.
Moreover, by the fact that n preserves meet and bounds, and A− is a Heyting
algebra, and the definition of n, we obtain that

n[ϕ → (ψ → χ)] ∧ n[ϕ → ψ] ∧ n[ϕ] ∧ [∼ χ]〉
= n[ϕ → (ψ → χ) ∧ (ϕ → ψ) ∧ ϕ] ∧ [∼ χ] ≤≡ n[χ] ∧ [∼ χ]

= [∼ ∼ χ ∧ ∼ χ] = [0]

where ≤≡ is the lattice order in A−, and hence n[ϕ → (ψ → χ)] ∧ n[ϕ →
ψ] ∧ n[ϕ] ∧ [∼ χ] = [0] since [0] is the least element in A−.

E(AX3) and E(AX4). They are immediate consequences of (SN1) and (SN5).
E(AX5). We need to show that (ϕ → ψ) → ((ϕ → χ) → (ϕ → (ψ ∧ χ))) ≈ 1.

By Theorem 1, it suffices to show that

(〈[ϕ], [∼ ϕ]〉 → 〈[ψ], [∼ ψ]〉) → ((〈[ϕ], [∼ ϕ]〉 →
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〈[χ], [∼ χ]〉) → (〈[ϕ], [∼ ϕ]〉 → (〈[ψ], [∼ ψ]〉 ∧ 〈[χ], [∼ χ]〉)) = 〈[1], [0]〉
By Definition 2, it is equivalent to show:

(〈[ϕ], [∼ ϕ]〉 → 〈[ψ], [∼ ψ]〉) →
((〈[ϕ], [∼ ϕ]〉 → 〈[χ], [∼ χ]〉) → (〈[ϕ], [∼ ϕ]〉 → (〈[ψ], [∼ ψ]〉 ∧ 〈[χ], [∼ χ]〉))

= 〈[ϕ → ψ], n[ϕ] ∧ [∼ ψ]〉 →
(〈[ϕ → χ], n[ϕ] ∧ [∼ χ]〉 → (〈[ϕ], [∼ ϕ]〉 → 〈[ψ ∧ χ], [∼ ψ ∨ ∼ χ]〉))

= 〈[ϕ → ψ], n[ϕ] ∧ [∼ ψ]〉 →
(〈[ϕ → χ], n[ϕ] ∧ [∼ χ]〉 → (〈[ϕ → ψ ∧ χ], n[ϕ] ∧ 〈[∼ ψ ∨ ∼χ]〉))

= 〈[ϕ → ψ], n[ϕ] ∧ [∼ ψ]〉 →
(〈[(ϕ → χ) → (ϕ → ψ ∧ χ)], n[ϕ → χ] ∧ n[ϕ] ∧ 〈[∼ ψ ∨ ∼χ]〉))

= 〈[(ϕ → ψ) → ((ϕ → χ) → (ϕ → ψ ∧ χ))],
n[ϕ → ψ] ∧ n[ϕ → χ] ∧ n[ϕ] ∧ 〈[∼ ψ ∨ ∼χ]〉)

= 〈[1], [0]〉
Since A+ is a Heyting algebra, (ϕ → ψ) → ((ϕ → χ) → (ϕ → ψ ∧ χ)) ≡ 1.
Moreover,

n[ϕ → ψ] ∧ n[ϕ → χ] ∧ n[ϕ] ∧ 〈[∼ ψ ∨ ∼χ]〉
= n[(ϕ → ψ) ∧ (ϕ → χ) ∧ ϕ] ∧ 〈[∼ ψ ∨ ∼ χ]〉 ≤≡

n[ψ] ∧ n[χ] ∧ 〈[∼ ψ ∨ ∼χ]〉 = [∼ ψ] ∧ [∼ ∼ χ] ∧ 〈[∼ ψ ∨ ∼χ]〉 = [0]

By the fact that n preserves meet and bounds, and A− is a Heyting algebra,
and the definition of n. Hence, n[ϕ → ψ]∧n[ϕ → χ]∧n[ϕ]∧〈[∼ ψ∨∼χ]〉 = [0]
since [0] is the least element in A−.

E(AX6) and E(AX7). They are immediate consequences of (SN1) and (SN5).
E(AX8). We need to show that (ϕ → χ) → ((ψ → χ) → ((ϕ ∨ ψ) → χ)) ≈ 1.

By Theorem 1, it suffices to show that

(〈[ϕ], [∼ ϕ]〉 → 〈[χ], [∼ χ]〉) →
(〈[ψ], [∼ ψ]〉 → 〈[χ], [∼ χ]〉) → ((〈[ϕ], [∼ ϕ]〉 ∨ 〈[ψ], [∼ ψ]〉) → 〈[χ], [∼ χ]〉))

= 〈[1], [0]〉
By Definition 2, it is equivalent to show:

(〈[ϕ], [∼ ϕ]〉 → 〈[χ], [∼ χ]〉) →
((〈[ψ], [∼ ψ]〉 → 〈[χ], [∼ χ]〉) → ((〈[ϕ], [∼ ϕ]〉 ∨ 〈[ψ], [∼ ψ]〉) → 〈[χ], [∼ χ]〉))

= 〈[ϕ → χ], n[ϕ] ∧ [∼ χ]〉 →
(〈[ψ → χ], n[ψ] ∧ [∼ χ]〉 → (〈[ϕ ∨ ψ], [∼ ϕ ∧ ∼ψ]〉 → 〈[χ], [∼ χ]〉))

= 〈[ϕ → χ], n[ϕ] ∧ [∼ χ]〉 →
(〈[ψ → χ], n[ψ] ∧ [∼ χ]〉 → (〈[ϕ ∨ ψ → χ], n[ϕ ∨ ψ] ∧ [∼ χ]〉))

= 〈[ϕ → χ], n[ϕ] ∧ [∼ χ]〉 →
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(〈[(ψ → χ) → (ϕ ∨ ψ → χ)], n[ψ → χ] ∧ n[ϕ ∨ ψ] ∧ [∼ χ]〉))
= 〈[(ϕ → χ) → ((ψ → χ) → (ϕ ∨ ψ → χ))],
n[ϕ → χ] ∧ n[ψ → χ] ∧ n[ϕ ∨ ψ] ∧ [∼ χ]〉

= 〈[1], [0]〉

Since A+ is a Heyting algebra, (ϕ → χ) → ((ψ → χ) → (ϕ ∨ ψ → χ)) ≡ 1.
Moreover,

n[ϕ → χ] ∧ n[ψ → χ] ∧ n[ϕ ∨ ψ] ∧ [∼ χ]
= n[(ϕ → χ) ∧ (ψ → χ) ∧ (ϕ ∨ ψ)] ∧ [∼ χ]〉 ≤≡

n[χ] ∧ [∼ χ] = [∼ ∼χ] ∧ [∼ χ] = [0]

By the fact that n preserves meet and bounds, and A− is a Heyting algebra,
and the definition of n. Hence, n[ϕ → χ] ∧ n[ψ → χ] ∧ n[ϕ ∨ ψ] ∧ [∼ χ] = [0]
since [0] is the least element in A−.

E(AX9)–E(AX14). They are immediate consequences of (SN6.1), (SN6.2),
(SN6.3), (SN6.4), (SN4) and (SN6.5) respectively.

E(AX15). We need to show that (ϕ → ψ) → (∼ ∼ ϕ → ∼ ∼ ψ) ≈ 1. By
Theorem 1, it suffices to show that

(〈[ϕ], [∼ ϕ]〉 → 〈[ψ], [∼ ψ]〉) → (∼ ∼〈[ϕ], [∼ ϕ]〉 → ∼ ∼〈[ψ], [∼ ψ]〉 = 〈[1], [0]〉

By Definition 2, it is equivalent to show:

〈[ϕ → ψ], n[ϕ] ∧ [∼ ψ]〉 → (〈pn[ϕ], np[∼ ϕ]〉 → 〈pn[ψ], np[∼ ψ]〉)
= 〈[ϕ → ψ], n[ϕ] ∧ [∼ ψ]〉 → 〈pn[ϕ] → pn[ψ], npn[ϕ] ∧ np[∼ ψ]〉
= 〈[ϕ → ψ] → (pn[ϕ] → pn[ψ]), n[ϕ → ψ] ∧ npn[ϕ] ∧ np[∼ ψ]〉

= 〈[ϕ → ψ] → (pn[ϕ] → pn[ψ]), n[ϕ → ψ] ∧ n[ϕ] ∧ [∼ ψ]〉 = 〈[1], [0]〉.

Since A+ is a Heyting algebra and n preserves meet, n[ϕ] ∧ n[(ϕ → ψ)] =
n[ϕ ∧ (ϕ → ψ)] ≤≡ n[ψ]. Hence, pn[ϕ] ∧ pn[ϕ → ψ] = pn[ϕ ∧ (ϕ → ψ)] ≤≡
pn[ψ] by p is order-preserving and preserve meet. By residuation law, we
obtain that pn[ϕ → ψ] ≤≡ pn[ϕ] → pn[ψ], and hence [ϕ → ψ] ≤ pn[ϕ] →
pn[ψ] since IdA+ ≤≡ pn, that is, [ϕ → ψ] → (pn[ϕ] → pn[ψ]) = [1]. For
the other part, since n[ϕ → ψ] ∧ n[ϕ] ∧ [∼ψ] = n[ϕ ∧ (ϕ → ψ)] ∧ [∼ ψ] ≤≡
n[ψ] ∧ [∼ ψ] = [∼ ψ] ∧ [∼ ψ] = [0] by the fact that n preserves meet and the
definition of n. Therefore, n[ϕ → ψ] ∧ n[ϕ] ∧ [∼ ψ] = [0] since [0] is the least
element in A−.

E(AX16). Since ϕ∧ψ ≤ ϕ by (SN1), we have ∼ ϕ � ∼(ϕ∧ψ) by (SN5), which
is equivalent to ∼ϕ → ∼(ϕ ∧ ψ) ≈ 1 by (SN2).

E(AX17)–E(AX22). The arguments are similar as above. All of them are ver-
ified by (SN1), (SN5) and (SN2).

E(AX23). Since ϕ∧(ψ → ψ) ≤ ϕ, thanks (SN5) we have ∼ ϕ �∼ (ϕ∧(ψ → ψ))
and by (SN2) follows ∼ ϕ →∼ (ϕ ∧ (ψ → ψ)). The other way around is the
same idea, given that ψ → ψ ≈ 1 and ϕ ≤ ϕ ∧ (ψ → ψ).
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E(AX24). We want to prove that ∼ (ϕ → ϕ) → ψ ≈ 1. By Theorem 1, it
is equivalent to prove that 〈[∼ (ϕ → ϕ) → ψ], [∼ (∼ (ϕ → ϕ) → ψ)]〉 =
〈[1], [0]〉. Thanks (SN3) we know that ∼ (ϕ → ϕ) → ψ ≡ 1. Regarding
∼ (∼ (ϕ → ϕ) → ψ), observe that ∼ (∼ (ϕ → ϕ) → ψ) ≡∼∼ ϕ∧ ∼ ϕ∧ ∼ ψ
by (SN4), (SN6.3), (SN6.4) and (SN6.6). Finally ∼∼ ϕ∧ ∼ ϕ∧ ∼ ψ ≡ 0 by
(SN6.6) and the fact that 0 is the least element.

E(AX25). We need to show that (∼ ϕ → ∼ ψ) → (∼(ϕ ∧ ψ) → ∼ ψ) ≈ 1. By
Theorem 1 it suffices to show that

(∼〈[ϕ], [∼ ϕ]〉 → ∼〈[ψ], [∼ ψ]〉) →
(∼(〈[ϕ], [∼ ϕ]〉 ∧ 〈[ψ], [∼ ψ]〉) → ∼〈[ψ], [∼ ψ]〉) = 〈[1], [0]〉

By Definition 2, it is equivalent to show:

(∼〈[ϕ], [∼ ϕ]〉 → ∼〈[ψ], [∼ ψ]〉) →
(∼(〈[ϕ], [∼ ϕ]〉 ∧ 〈[ψ], [∼ ψ]〉) → ∼〈[ψ], [∼ ψ]〉)

= (〈p[∼ ϕ], n[ϕ]〉 → 〈p[∼ ψ], n[ψ]〉) →
(∼(〈[ϕ ∧ ψ], [∼ ϕ ∨ ∼ψ]〉) → 〈p[∼ ψ], n[ψ]〉)

= 〈p[∼ ϕ] → p[∼ ψ], np[∼ ϕ] ∧ n[ψ]〉 →
(〈p[∼ ϕ ∨ ∼ψ], n[ϕ ∧ ψ]〉 → 〈p[∼ ψ], n[ψ]〉)

= 〈p[∼ ϕ] → p[∼ ψ], np[∼ ϕ] ∧ n[ψ]〉 →
〈p[∼ ϕ ∨ ∼ ψ] → p[∼ ψ], np[∼ ϕ ∨ ∼ ψ] ∧ n[ψ]〉

= 〈(p[∼ ϕ] → p[∼ ψ]) →
(p[∼ ϕ ∨ ∼ ψ]→p[∼ ψ]), n(p[∼ ϕ]→p[∼ ψ]) ∧ np[∼ ϕ∨∼ ψ] ∧ n[ψ]〉=〈[1], [0]〉
Since A− is a Heyting algebra and p preserves → and bounds, (p[∼ ϕ] →
p[∼ ψ]) → (p[∼ ϕ ∨ ∼ψ] → p[∼ ψ]) = p(([∼ ϕ] → [∼ ψ]) → ([∼ ϕ ∨ ∼ ψ] →
[∼ ψ])) = p[1] = [1]. Moreover,

n(p[∼ ϕ] → p[∼ ψ]) ∧ np[∼ ϕ ∨ ∼ψ] ∧ n[ψ]
= np([∼ ϕ] → [∼ ψ]) ∧ np[∼ ϕ ∨ ∼ψ] ∧ n[ψ]

= ([∼ ϕ] → [∼ψ]) ∧ [∼ ϕ ∨ ∼ ψ] ∧ n[ψ]
= (([∼ ϕ] → [∼ ψ]) ∧ [∼ ϕ] ∧ n[ψ]) ∨ (([∼ ϕ] → [∼ ψ]) ∧ [∼ ψ] ∧ n[ψ]) ≤≡ [0]

since np = IdA− and A− is a Heyting algebra. Therefore, n(p[∼ ϕ] →
p[∼ ψ]) ∧ np[∼ ϕ ∨ ∼ ψ] ∧ n[ψ] = [0] since [0] is the least element in A−.

E(AX26). We need to show that (∼ ϕ → ∼ψ) → ((∼ χ → ∼ γ) → (∼(ϕ∧χ) →
∼(ψ ∧ γ))) ≈ 1. By Theorem 1 it suffices to show that

(∼〈[ϕ], [∼ ϕ]〉 → ∼〈[ψ], [∼ ψ]〉) →
((∼〈[χ], [∼ χ]〉 → ∼〈[γ], [∼ γ]〉)) →

(∼(〈[ϕ], [∼ ϕ]〉 ∧ 〈[χ], [∼ χ]〉) → ∼(〈[ψ], [∼ ψ]〉 ∧ 〈[γ], [∼ γ]〉))) = 〈[1], [0]〉
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By Definition 2, it is equivalent to show:

(∼〈[ϕ], [∼ ϕ]〉 → ∼〈[ψ], [∼ ψ]〉) →
((∼〈[χ], [∼ χ]〉 → ∼〈[γ], [∼ γ]〉)) →

(∼(〈[ϕ], [∼ ϕ]〉 ∧ 〈[χ], [∼ χ]〉) → ∼(〈[ψ], [∼ ψ]〉 ∧ 〈[γ], [∼ γ]〉)))
= (〈p[∼ ϕ], n[ϕ]〉 → 〈p[∼ ψ], n[ψ]〉) →
(((〈p[∼ χ], n[χ]〉 → 〈p[∼ γ], n[γ]〉)) →

(∼〈[ϕ ∧ χ], [∼ ϕ ∨ ∼χ]〉 → ∼〈[ψ ∧ γ], [∼ ψ ∨ ∼ γ]〉))
= (〈p[∼ ϕ] → p[∼ ψ], np[∼ ϕ ∧ n[ψ]〉) →
(((〈p[∼ χ] → p[∼ γ], np[∼ χ] ∧ n[γ]〉)) →

(〈p[∼ ϕ ∨ ∼χ], n[ϕ ∧ χ]〉 → 〈p[∼ ψ ∨ ∼ γ], n[ψ ∧ γ]〉))
= (〈p[∼ ϕ] → p[∼ ψ], np[∼ ϕ ∧ n[ψ]〉) →
(((〈p[∼ χ] → p[∼ γ], np[∼ χ] ∧ n[γ]〉)) →

(〈p[∼ ϕ ∨ ∼χ] → p[∼ψ ∨ ∼ γ], np[∼ ϕ ∨ ∼ χ] ∧ n[ψ ∧ γ]〉))
= 〈(p[∼ ϕ] → p[∼ ψ]) → ((p[∼ χ] → p[∼ γ]) →

(p[∼ ϕ ∨ ∼ χ] → p[∼ ψ ∨ ∼ γ])),
n(p[∼ ϕ]→p[∼ ψ])∧n(p[∼ χ]→p[∼ γ])∧np[∼ ϕ∨∼ χ]∧n[ψ ∧ γ]〉 = 〈[1], [0]〉

Since A− is a Heyting algebra and p preserves → and bounds, (p[∼ ϕ] →
p[∼ ψ]) → ((p[∼ χ] → p[∼ γ]) → (p[∼ ϕ∨∼χ] → p[∼ ψ∨∼ γ])) = p(([∼ ϕ] →
[∼ ψ]) → (([∼ χ] → [∼ γ]) → ([∼ ϕ ∨ ∼χ] → [∼ ψ ∨ ∼ γ])) = p[1] = [1].
Moreover,

n(p[∼ ϕ] → p[∼ ψ]) ∧ n(p[∼ χ] → p[∼ γ]) ∧ np[∼ ϕ ∨ ∼χ] ∧ n[ψ ∧ γ]
= np([∼ ϕ] → [∼ ψ]) ∧ np([∼ χ] → [∼ γ]) ∧ np[∼ ϕ ∨ ∼χ] ∧ n[ψ ∧ γ]

= ([∼ ϕ] → [∼ ψ]) ∧ ([∼ χ] → [∼ γ]) ∧ [∼ ϕ ∨ ∼ χ] ∧ n[ψ ∧ γ]
= (([∼ ϕ] → [∼ ψ]) ∧ ([∼ χ] → [∼ γ]) ∧ [∼ ϕ] ∧ n[ψ ∧ γ])

∨(([∼ ϕ] → [∼ ψ]) ∧ ([∼ χ] → [∼ γ]) ∧ [∼ χ] ∧ n[ψ ∧ γ]) ≤≡
([∼ ψ] ∧ n[ψ ∧ γ]) ∨ ([∼ χ] ∧ n[ψ ∧ γ]) = [0]

since np = IdA− , n preserves meet and A− is a Heyting algebra. Therefore,
n(p[∼ ϕ] → p[∼ ψ])∧n(p[∼ χ] → p[∼ γ])∧np[∼ ϕ∨∼ χ]∧n[ψ ∧γ] = [0] since
[0] is the least element in A−.

2. We have only an inference rule in QN, modus ponens. We need to prove
that if ϕ ≈ 1 and ϕ → ψ ≈ 1, then ψ ≈ 1 and it follows from transitivity of �.

3. We shall prove that if ϕ → ψ ≈ 1, ψ → ϕ ≈ 1, ∼ϕ → ∼ ψ ≈ 1,
∼ψ → ∼ ϕ ≈ 1, then ϕ = ψ. Thanks (SN2) we have ϕ � ψ and ∼ ψ � ∼ϕ and
therefore by (SN5) follows that ϕ ≤ ψ. Following the same idea we have ψ ≤ ϕ
and being ≤ the order relation on the lattice we have ϕ ≈ ψ.
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culi. SYLI, vol. 199, pp. 341–401. Springer, Dordrecht (1988). https://doi.org/10.
1007/978-94-015-6942-2 6

https://doi.org/10.1007/978-3-662-55386-2_14
https://doi.org/10.1007/978-3-662-55386-2_14
https://doi.org/10.1007/s00500-018-3588-9
https://doi.org/10.1007/s00500-018-3588-9
https://doi.org/10.1007/978-94-015-6942-2_6
https://doi.org/10.1007/978-94-015-6942-2_6

	Algebraic Semantics for Quasi-Nelson Logic
	1 Introduction
	2 Preliminaries
	3 A Hilbert System for Quasi-Nelson Logic
	4 QN Is Regularly BP-Algebraizable
	5 Future Work
	References




