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Abstract. The Lambek calculus was introduced as a mathematical
description of natural languages. The original Lambek calculus is NP-
complete (Pentus), while its product-free fragment with only one impli-
cation is polynomially decidable (Savateev). We consider Lambek cal-
culus with the additional connectives: conjunction and disjunction. It is
known that this system is PSPACE-complete (Kanovich, Kanazawa). We
prove, in contrast with the polynomial-time result for the product-free
Lambek calculus with one implication, that the derivability problem is
still PSPACE-complete even for a very small fragment (\,∧), including
one implication and conjunction only. PSPACE-completeness is also pro-
vided for the (\,∨) fragment, which includes only one implication and
disjunction. Categorial grammars based on the original Lambek calculus
generate exactly the class of context-free languages (Gaifman, Pentus).
The class of languages generated by Lambek grammars extended with
conjunction is known to be closed under intersection (Kanazawa), and
therefore includes all finite intersections of context-free languages and,
moreover, images of such intersections under alphabetic homomorphisms.
We show that the same closure under intersection holds for Lambek
grammars extended with disjunction, even for our small (\,∨) fragment.

Keywords: Lambek calculus · Lambek grammars · Completeness ·
PSPACE-completeness

1 Introduction

Lambek calculus has been invented to analyze natural and artificial languages by
means of categorial grammars [4,17,19,20]. Though the original Lambek calcu-
lus can describe only context-free languages [23], it has been proven to be NP-
complete [24], even if we confine ourselves to the product-free Lambek calculus
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equipped only with the left implication and the right implication [27]. On the con-
trary, the product-free Lambek calculus, with only one implication, is known to
be decidable in polynomial time [26], see also [15]. It is known [2,3] that already
the fragment with only one implication is sufficient to generate all context-free lan-
guages.

This paper is focused on the complexity issues for Lambek calculus extended
with two additional connectives: additive conjunction and disjunction. This cal-
culus is presented on Table 1 in the form of a sequent calculus. Notice that
antecedents of sequents are linearly ordered sequences of formulae, not sets or
multisets.

Table 1. The Inference rules of Lambek calculus with conjunction and disjunction

I
A � A

L\ Φ � A Σ1, B, Σ2 � C
Σ1, Φ, (A\ B), Σ2 � C

R\ A, Σ � B
Σ � (A\ B) (Σ is not empty)

L/
Φ � A Σ1, B, Σ2 � C

Σ1, (B/A), Φ, Σ2 � C
R/

Σ, A � B
Σ � (B/A) (Σ is not empty)

L· Σ1, A, B, Σ2 � C
Σ1, (A· B), Σ2 � C

R· Σ1 � A Σ2 � B
Σ1, Σ2 � (A· B)

L∨ Σ1, A, Σ2 � C Σ1, B, Σ2 � C
Σ1, (A ∨ B), Σ2 � C

R∨ Σ � A
Σ � (A ∨ B)

Σ � B
Σ � (A ∨ B)

L∧ Σ1, A, Σ2 � C
Σ1, (A ∧ B), Σ2 � C

R∧ Σ � A Σ � B
Σ � (A ∧ B)

Σ1, B, Σ2 C

As shown above on the example of the Lambek calculus without additive
connectives, there are two different ways of measuring complexity for extensions
of the Lambek calculus. The first one is the standard notion of algorithmic com-
plexity of the derivability problem for the calculus in question. For the Lambek
calculus with additive connectives, 25 years ago, Kanovich [10] and Kanazawa [9]
show that its derivability problem is PSPACE-complete. Here we strengthen this
result and prove PSPACE-hardness for the smallest possible fragments, with only
two connectives: L(\,∧), with only one implication and additive conjunction,
and L(\,∨), with one implication and disjunction. The first result is presented
in Sect. 2. The second result is similar, so we give only a sketch of the proof, in
AppendixA. The upper PSPACE bound is known for the whole Lambek calcu-
lus with additive connectives [9,10], [13, Sect. 8] and therefore inherited by its
fragments, L(\,∧) and L(\,∨).

The other complexity measure is the expressive power of categorial grammars
based on a given calculus. A categorial grammar G is a triple 〈Σ, �,H〉, where Σ
is a finite alphabet, � is a finite binary correspondence between letters of Σ and
Lambek formulae (these formulae could also include additive connectives), and
H is a formula. A non-empty word w = a1 . . . an over Σ is accepted by G, if there
exist formulae A1, . . . , An such that ai � Ai (i = 1, . . . , n) and A1, . . . , An � H
is a derivable sequent. The language generated by G is the set of all accepted
words.
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For Lambek grammars extended with conjunction, Kanazawa [8] proves that,
in addition to context-free languages, they can generate finite intersections of
such languages and images of such intersections under alphabetic homomor-
phisms (i.e., homomorphisms which map letters to letters). In Sect. 3 we prove
the dual result, that Lambek grammars enriched with disjunction have the same
property. Namely, we show that L(\,∨), the product-free fragment with only
one implication and disjunction, is already sufficient to generate finite inter-
sections of such languages and images of such intersections under alphabetic
homomorphisms.

2 PSPACE-Hardness of the Fragment L(\,∧)

Within our fragment L(\,∧), we intend to encode quantified Boolean statements
of the form:

∃x1∀x2∃x3∀x4 . . . ∃x2n−1∀x2n (C1 ∨ C2 ∨ · · · ∨ Cm) (1)

Here (C1 ∨ C2 ∨ · · · ∨ Cm) is a DNF over the Boolean variables x1, x2, . . .x2n.

Definition 1. We express validity of (1) in terms of the winning strategy
given by a binary tree of height 2n+1, the nodes of which are labelled as follows.

The root is labelled by “ ∃x1” and has only one outgoing edge the end of which
is labelled by “ ∀x2”. In its turn, this node has two outgoing edges the ends of
which are labelled by the same “ ∃x3”.

By induction, for 1 ≤ k ≤ n, each of the nodes on the level 2k−1 is labelled
by “ ∃x2k−1”, and each of the nodes on the level 2k is labelled by “ ∀x2k”.

At the node “ ∃x2k−1”, the choice move of the proponent is to label the
unique outgoing edge either by t2k−1, meaning x2k−1 be true, or by f2k−1,
meaning x2k−1 be false. Being at the next node, “ ∀x2k”, the opponent
responds by labeling two outgoing edges by t2k and f2k, resp.

Lastly, on the final level 2n+1, each terminal node v is labelled by some C� so
that, collecting the sequence of α1, α2, . . . , α2n−1, α2n that label the respective
edges along the branch leading from the root “ ∃x1” to this leaf v, we get:

C�(α1, α2, . . . , α2n−1, α2n) = 
 (2)

We illustrate the challenges we have to answer to with Example 1.

Example 1. We consider the following statement (which is invalid):

∃x1∀x2 (C1 ∨ C2) = ∃x1∀x2 ((x1 ∧ ¬x2) ∨ (¬x1 ∧ x2)) (3)

To provide (2), we express C1 and C2 as the formulas E1 and E2, resp.

E1 = (f2\ (t1\
)) ≡ ((t1 · f2)\
) (4)
E2 = (t2\ (f1\
)) ≡ ((f1 · t2)\
) (5)
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Following [9,10], we intend to express the “choice move” ∃x1 as (t1∧f1), and the
“branching move” ∀x2 as (t2 ∨ f2), resulting in the following encoding sequent:

(t1 ∧ f1), (t2 ∨ f2), (E1 ∧ E2) � 
 (6)

Taking (t1 ∧ f1), (t2 ∨ f2) as a sequence, we assume that these formulas should
be executed in the natural order . Starting with (t1 ∧f1), we have to prove either

t1, (t2 ∨ f2), (E1 ∧ E2) � 
 (7)

or
f1, (t2 ∨ f2), (E1 ∧ E2) � 
 (8)

Since both sequents are not derivable, we might have concluded that (6) was not
derivable and, hence, it was in a proper correlation with the invalid (3).
However, if we first apply (t2 ∨f2), the related sequents turn out to be derivable

(t1 ∧ f1), t2, (E1 ∧ E2) � 
 (9)
(t1 ∧ f1), f2, (E1 ∧ E2) � 
 (10)

which shows that in fact (6) is derivable and, hence, fails to express the
invalid (3).

The intuitive remedy proposed by [9,10,18] is to force the correct order of
actions by means of “leading” qi. E.g., here we can express the “choice move”
∃x1 and the “branching move” ∀x2 as the following formulas adjusted

(q0\ ((t1 · q1) ∧ (f1 · q1))) (11)
(q1\ ((t2 · q2) ∨ (f2 · q2))) (12)

resulting in the correct non-provable encoding sequent, something like that

q0, (q0\ ((t1 · q1) ∧ (f1 · q1))), (q1\ ((t2 · q2) ∨ (f2 · q2))), (q2\ (E1 ∧ E2)) � 

(13)

The challenge of implementing this approach within L(\,∧) consists of two parts:

(a) get rid off the disjunctions, in the absence of the full duality of ∧ and ∨;
(b) get rid off the positive products of the form (A\ (B1 · B2))

2.1 The Relative Negation and Double Negation (Non-commutative)

Definition 2. In our encodings we will use the following abbreviation. We fix
an atomic proposition b, and define ‘relative negation’ Ab by: Ab = (A\ b).

Our relative negation can be seen as a non-commutative analogue of the linear
logic negation [5], which is defined by A⊥ = A −◦ ⊥.

As for the relative “double negation”, the novelty of our approach is that
we are in favour of the “asymmetric” Abb = ((A\ b)\ b), because of its nice
properties proven in Lemma 1.
We use also the following notation for the towers of double negations:

A[0] = A, A[k+1] = (A[k]\ b) (14)
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Remark 1. The “double negation” in the symmetrical form: bAb = (b/(A\b)),
has received recognition as being appropriate and logical within a non-
commutative linear logic framework (see [1]).

E.g., the natural A � bAb is valid, in contrast to our Abb, see Lemma 1(e).
However, the crucial Lemma 1(a) is destroyed with bAb, which is the reason

for our “non-logical” choice of Abb.

For a sequence Γ = A1, A2, .., As, by Γ bb we denote the sequence Abb
1 , Abb

2 , .., Abb
s .

Lemma 1. (a) The following rules are derivable in Lambek calculus, s ≥ 1:

A1, A2, . . . , As � C

Abb
1 , Abb

2 , . . . , Abb
s � Cbb

(15)

(b) Though ∨ and ∧ are not fully dual: (A ∧ B)b �� (Ab ∨ Bb), the following
equivalence fits our purposes:

Ab ∧ Bb � (A ∨ B)b and (A ∨ B)b � Ab ∧ Bb (16)

(c) To simulate branching, we will use the derivable rule:

Γ, A, Δ � C Γ, B, Δ � C

Γ bb, (Ab ∧ Bb)b, Δbb � Cbb
(17)

(d) With Gi = (qi−1\B), the crucial rule of “leading” qi−1 is given by:

Γ, γ, B, Δ � C
Γ, γ, qi−1, Gi, Δ � C

Γ bb, (γ · qi−1)bb, Gbb
i , Δbb � Cbb

(18)

(e) Essential complications are caused by the fact that A � Abb is not valid.

Lemma 2. If c does not occur in A1, . . . , An, B, then the sequent Acc
1 , . . . , Acc

n �
Bcc is equiderivable with A1, . . . , An � B.

Proof. The right-to-left direction is due to Lemma1(i). For the left-to-right direc-
tion, we use the reversibility of R \:

B \ c, (A1 \ c) \ c, . . . , (An \ c) \ c � c.

By induction on k, let us show derivability of

An−k, . . . , An, B \ c, (A1 \ c) \ c, . . . , (An−k−1 \ c) \ c � c.

Induction base (k = 0) is given above. For the induction step, apply Lemma11
below, which yields derivability of

An−k, . . . , An, B \ c, (A1 \ c) \ c, . . . , (An−k−2 \ c) \ c � An−k−1 \ c

and reverse the R \ rule. Finally, we get A1, . . . , An, B \ c � c, and one more
application of Lemma 11 yields the necessary A1, . . . , An � B.



The Complexity of Multiplicative-Additive Lambek Calculus: 25Years Later 361

2.2 Complexity of the fragment L(\,∧)

Remark 2. Because of Lemma 1, for the sake of readability, here we will conceive
of the formula ((A · B)\C) as abbreviation for (B\ (A\C)). In particular, (A ·
B)b is abbreviation for (B\ (A\ b)). The formula (A ∨ B)b is conceived of as
abbreviation for ((A\ b) ∧ (B\ b)).

Theorem 1. The fragment L(\,∧) is PSPACE-hard.

Proof. The direction from winning trees to derivable sequents is provided by
Corollary 1.

By running from the leaves of the winning tree, labelled by some C�, to its
root “ ∃x1”, we have to address the following issues:

(a) With one and the same sequent of polynomial size, deal with the exponential
number of branches and their sequences of α1, α2, . . . , α2n−1, α2n that label
the respective edges along the branch leading from the root to some leaf v.

(b) In particular, verify “polynomially” the corresponding equalities (2).

Remark 3. To guarantee the proper order of the inference rules applied, we use
the “leading” q0, q1, . . . , q2n−1, q2n, and c�,2n, c�,2n−1,. . . , c�,2, c�,1, c�,0. The
latter c�,i is used to keep one and the same C� in the process of verifying (2).

2.3 Verifying the Equality (2)

We start with (b), assuming that the sequence α1, α2, . . . , α2n−1, α2n is fixed.

Definition 3. Let F� denote: (q2n\ c�,2n), and H� denote: (c�,0\ (e0\ e0)).
For 1 ≤ i ≤ 2n, let E�,i denote the formula: (c�,i\ (ti\ c�,i−1)), if the conjunct
C� contains the variable xi; and E�,i denote the formula: (c�,i\ (fi\ c�,i−1)), if
the conjunct C� contains the variable ¬xi; and E�,i denote the formula:
((c�,i\ (ti\ c�,i−1)) ∧ (c�,i\ (fi\ c�,i−1))), if C� contains neither xi, nor ¬xi.
We introduce their “closed” versions:

˜F =
m
∧

�=1

F�, ˜H =
m
∧

�=1

H�, ˜Ei =
m
∧

�=1

E�,i (19)

Lemma 3. In case (2) holds, a sequent of the specific form is derivable:

ebb
0 , αbb

1 , αbb
2 , . . . , αbb

2n−2, α
bb
2n−1, (α2n · q2n)bb, Δbb

n � ebb
0 (20)

where Δn is a sequence of formulas: Δn = ˜F , ˜E2n, ˜E2n−1, . . . , ˜E2, ˜E1, ˜H.

NB: Notice that Δn does not depend on particular α1, α2, . . . , α2n−1, α2n.
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Proof. Since αi−1, αi, c�,i, E�,i,αi
� (αi−1 · c�,i−1), by a simple inverse induc-

tion on i, we can “consume” all of the αi, c�,i with getting the sequents derivable:

e0, α1, α2, . . . , α2n, q2n, F�, E�,2n, E�,2n−1, . . . E�,2, E�,1,H� � e0

and (see the rule L∧)

e0, α1, α2, . . . , α2n−2, α2n−1, α2n, q2n, Δn � e0

resulting in (20) with the help of Lemma 1.

2.4 Simulating the Opponent’s and Proponent’s Moves

Now we are ready to simulate the moves in the play.

Lemma 4. For any sequence α1, α2, . . . , α2n−1, α2n, labeling the branch that
leads from the root to “ ∀x2n”, the opponent move at “ ∀x2n” is to label two out-
going edges by t2n and f2n resp. We simulate the move by the derivable sequent:

e
[6]
0 , α

[6]
1 , α

[6]
2 , . . . , α

[6]
2n−2, (α[4]

2n−1 · q2n−1)[2], G
[2]
2n, Δ[6]

n � e
[6]
0 (21)

where
G2n = (q2n−1\

(

(t2n · q2n)[3] ∧ (f2n · q2n)[3]
)[1]) (22)

Proof. Having got two sequences at hand

α1, α2, . . . , α2n−1, t2n,

and
α1, α2, . . . , α2n−1, f2n,

by Lemma 3 we have

e
[2]
0 , α

[2]
1 , α

[2]
2 , . . . , α

[2]
2n−2, α

[2]
2n−1, (t2n · q2n)[2], Δ[2]

n � e
[2]
0 (23)

and
e
[2]
0 , α

[2]
1 , α

[2]
2 , . . . , α

[2]
2n−2, α

[2]
2n−1, (f2n · q2n)[2], Δ[2]

n � e
[2]
0 (24)

by Lemma 1(c) we produce

e
[4]
0 , α

[4]
1 , α

[4]
2 , . . . , α

[4]
2n−2, α

[4]
2n−1,

(

(t2n · q2n)[3] ∧ (f2n · q2n)[3]
)[1]

, Δ[4]
n � e

[4]
0

and conclude, Lemma 1(d), with the sequent (21) where G2n is given by (22).

Lemma 5. For the shorter sequence α1, α2, . . . , α2n−1, labeling the one-edge
shorter branch that leads from the root to “ ∃x2n−1”, the proponent move at
“ ∃x2n−1” is to label the outgoing edge by α2n−1.
We simulate the move by the derivable sequent:

e
[8]
0 , α

[8]
1 , α

[8]
2 , . . . , α

[8]
2n−3, (α[6]

2n−2 · q2n−2)[2], G
[2]
2n−1, G

[4]
2n, Δ[8]

n � e
[8]
0 (25)

where
G2n−1 = (q2n−2\

(

(t[4]2n−1 · q2n−1)[2] ∧ (f [4]
2n−1 · q2n−1)[2]

)

) (26)
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Proof. Lemma 4 provides

e
[6]
0 , α

[6]
1 , α

[6]
2 , . . . , α

[6]
2n−2, (α[4]

2n−1 · q2n−1)[2], G
[2]
2n, Δ[6]

n � e
[6]
0

and, hence,

e
[6]
0 , α

[6]
1 , α

[6]
2 , . . . , α

[6]
2n−2,

(

(t[4]2n−1· q2n−1)[2]∧(f [4]
2n−1· q2n−1)[2]

)

, G
[2]
2n, Δ[6]

n � e
[6]
0

By Lemma 1(d) we conclude with the desired (25).

Corollary 1. If the statement (1) is valid then the following sequent is derivable
in Lambek:

(e[6n]
0 · q0)[2], G

[2]
1 , G

[4]
2 , . . . , G

[4n−2]
2n−1 , G

[4n]
2n , Δ[6n+2]

n � e
[6n+2]
0 (27)

where

G1 = (q0\
(

(t[6n−2]
1 · q1)[2] ∧ (f [6n−2]

1 · q1)[2]
)

) (28)

G2 = (q1\
(

(t[6n−6]
2 · q2)[3] ∧ (f [6n−6]

2 · q2)[3]
)[1]) (29)

...

G2n−1 = (q2n−2\
(

(t[4]2n−1 · q2n−1)[2] ∧ (f [4]
2n−1 · q2n−1)[2]

)

) (30)

G2n = (q2n−1\
(

(t2n · q2n)[3] ∧ (f2n · q2n)[3]
)[1]) (31)

Proof. By the bottom-up induction following the previous lemmas.

The direction from derivable sequents to winning trees is provided by Lemma 6.

Lemma 6. If the sequent (27) is derivable in Lambek then the statement (1) is
valid.

Proof Sketch. Being derivable in Lambek calculus, the sequent (27) is derivable
in linear logic. Replacing b with ⊥, we get that Abb ≡ A, resulting in that we
can confine ourselves to Horn-like formulas, similar to (11) and (12), with the
leading propositions from Remark 3. In its turn, such a Horn-like derivation can
be transformed into a Horn-like tree program (see [11,12,18]), which in fact
happens to be a winning strategy for the statement (1).

This concludes the proof of Lemma 6 and thereby the proof of Theorem1.
In fact, we have proved a more general result.

Corollary 2. Let L be a calculus that includes L(\,∧), with or without Lambek’s
restriction, and is in turn included in linear logic. Then the fragment of L, which
uses only one implication and conjunction, is PSPACE-hard.

Proof. Given an instance of quantified Boolean formula (1), we take the sequent
(27) and prove that there exists a winning tree if and only if (27) is derivable in
L. Namely, if there is a winning tree, that sequent is derivable in L(\,∧) with
Lambek’s restriction, and thereby in the corresponding fragment of L. On the
other hand, if that sequent is derivable in L, then, repeating proof of Lemma6
for the derivation in linear logic, we conclude that there exists a winning tree.
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We can also modify this technique to establish PSPACE-hardness for the
fragment L(\,∨), which includes only one implication and disjunction.

Theorem 2. The fragment L(\,∨) is PSPACE-hard.

We give a proof sketch in AppendixA.

3 Grammars Based on the Lambek Calculus with
Disjunction

Theorem 3. For any fragment of the Lambek calculus with conjunction and
disjunction, which includes at least one division operation, \, and disjunction,
∨, the class of languages generated by categorial grammars based on this calculus
(in particular, the class of languages generated by L(\,∨)-grammars) is closed
under finite intersections.

This theorem immediately yields the following corollary.

Corollary 3. Grammars based on L(\,∨) can generate arbitrary finite inter-
sections of context-free languages.

Moreover, L(\,∨) also captures images of such intersections under alpha-
betic homomorphisms. A alphabetic homomorphism is a mapping h : Σ+

1 → Σ+
2

of words over one alphabet to words of another one, such that h(Σ1) ⊆ Σ2

and h(uv) = h(u)h(v) for any u, v ∈ Σ+
1 . The class of languages generated

by L(\,∨)-grammars is closed under alphabetic homomorphisms. Indeed, if the
grammar G = 〈Σ1, �,H〉 generates language M , then Gh = 〈Σ2, �h,H〉, where
a �h A iff b � A for some b ∈ h−1(a), generates h(M). This yields the following
stronger corollary.

Corollary 4. Grammars based on L(\,∨) can generate all language of the form
h(M1 ∩ . . . ∩ Mk), where M1, . . . , Mk are context-free and h is a alphabetic
homomorphism.

Notice that this extension of Corollary 3 is non-trivial, since h(M1 ∩ M2) is
not always equal to h(M1) ∩ h(M2). There is an example by Păun [22] of a
language which is not a finite intersection of context-free languages, but can be
obtained from such an intersection by applying a alphabetic homomorphism:
{a2n2 | n ≥ 1} = h({(anbn)n | n ≥ 1}), where h(a) = h(b) = a.

Before proving Theorem3, we establish several technical lemmata. The first
one is a simplified version of Kanazawa’s [9] Lemma 13.

Definition 4. Let the set of variables include two disjoint subsets, Var1 and
Var2. A formula is called a Pi-formula if it includes only variables from Vari

(i = 1, 2).

Lemma 7. Let Γ and Δ sequences consisting of P1-formulae and P2-formulae,
in an arbitrary order. Let B be a P2-formula and C be a P1-formula. Then the
sequent Γ,B,Δ � C is not derivable.
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Proof. Induction on a cut-free derivation. The sequent in question could not
be in axiom, because then B = C, and P1-formulae and P2-formulae do not
intersect.

Now consider the last rule applied in the derivation. If it is a one-premise rule,
i.e., one of L·, R/, R\, L∧, R∨, then its premise also satisfies the conditions of
the lemma, and such a sequent, by induction hypothesis, could not be derivable.
Contradiction. The same happens with L∨ and R∧, where both premises are
not derivable by induction hypothesis. For R·, induction hypothesis yields non-
derivability of the premise into which the B formula goes.

The most tricky cases are L\ and L/. We consider the former; the latter is
dual. Recall that L\ is a rule of the form

Φ � E Σ1, F,Σ2 � C

Σ1, Φ,E \ F,Σ2 � C
L\

Now the question is where comes B. There are three possible cases.

Case 1: B is in Σ1 or Σ2. In this case, the right premise satisfies the condition
of the lemma, and is therefore not derivable by induction hypothesis.
Case 2: B is in Φ. In this case, let us consider E \ F , which is either a P1-
formula or a P2-formula. If E \ F is a P1-formula, then so is E, and the left
premise, Φ � E, satisfies the condition of the lemma and is not derivable by
induction. If E \ F is a P2-formula, then so is F , and now the right premise
Σ1, F,Σ2 � C, satisfies the condition of the lemma, and induction hypothesis
yields its non-derivability.
Case 3: B = E \ F . The right premise satisfies the condition of the lemma (F is
a P2-formula and C is a P1-formula), and is therefore not derivable my induction
hypothesis.

The next 4 lemmas are proved by straightforward induction on derivation.
We put their proofs in AppendixB.

Definition 5. Define the notion of strictly positive occurrence of a subformula
inside a formula:

– A is strictly positive in itself;
– C occurs strictly positively in A \ B if and only if it occurs strictly positively

in B; the same for B / A;
– C occurs strictly positively in A · B if and only if if occurs strictly positively

in A or in B; the same for A ∨ B and A ∧ B.

Lemma 8 (Disjunctive Property). Let F1 and F2 be arbitrary formulae, and
E1, . . . , En be formulae without ∧ in which subformulae of the form A ∨ B do
not occur strictly positively. Then the derivability E1, . . . , En � F1 ∨ F2 implies
the derivability of E1, . . . , En � Fi for i = 1 or 2.

Lemma 9. If F1, . . . , Fn do not include variable b, then F1, . . . , Fn � b is not
derivable.
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Lemma 10. If F1, . . . , F�, E1 \ b, . . . , Ek \ b, b � b is derivable and F1, . . . , F� do
not include b, then k = 	 = 0.

Lemma 11. If F1, . . . , F�, E1 \ b, . . . , Ek \ b → b is derivable and F1, . . . , F� do
not include b, then F1, . . . , F�, E1 \ b, . . . , Ek−1 \ b → Ek is derivable.

The following lemma is the key one for the proof of Theorem3.

Lemma 12. Let A1, . . . , An, C be P1-formulae, B1, . . . , Bn,D be P2-formulae,
and let b be a fresh variable, b /∈ Var1 ∪ Var2. Also suppose that no formula of
the form E ∨ F occurs in A1, . . . , An, B1, . . . , or Bn strictly positively. Then
the sequent

((A1 \ b) ∨ (B1 \ b)) \ b, . . . , ((An \ b) ∨ (Bn \ b)) \ b � ((C \ b) ∨ (D \ b)) \ b

is derivable if and only if so are A1, . . . , An � C and B1, . . . , Bn � D.

In the notations of Subsect. 2.1, the first sequent of this lemma can be shortly
written as (Ab

1 ∨ Bb
1)

b, . . . , (Ab
n ∨ Bb

n)b � (Cb ∨ Db)b. Though (Ab ∨ Bb)b is not
equivalent to A ∧ B, and even not equivalent to (A ∧ B)bb, this sequent happens
to be equiderivable with A1 ∧ B1, . . . , An ∧ Bn � C ∧ D, which Kanazawa [9]
used for his intersection construction with additive conjunction.

Proof. The “if” part is straightforwardly established by direct derivation.
For the “only if” part we first use the reversibility of R\ and L∨, which

yields derivability of the following two sequents:

C \ b, ((A1 \ b) ∨ (B1 \ b)) \ b, . . . , ((An \ b) ∨ (Bn \ b)) \ b � b

D \ b, ((A1 \ b) ∨ (B1 \ b)) \ b, . . . , ((An \ b) ∨ (Bn \ b)) \ b � b.

Let us analyze the derivation of the first sequent. We claim derivability of
K1, . . . ,Kn, C \ b � b, where each Ki is either Ai or Bi. In order to prove it,
consider a more general statement, the derivability of

Kn−k, . . . ,Kn, C \ b, (Ab
1 ∨ Bb

1)
b, . . . , (Ab

n−k−1 ∨ Bb
n−k−1)

b � b.

This statement is proved by induction on k. Indeed, for k = 0 derivability of this
sequent was shown above. For the induction step, suppose that

Kn−k, . . . ,Kn, C \ b, (Ab
1 ∨ Bb

1)
b, . . . , (Ab

n−k−1 ∨ Bb
n−k−1)

b � b

is derivable and apply Lemma11, which yields derivability of

Kn−k, . . . ,Kn, C \ b, (Ab
1 ∨ Bb

1)
b, . . . , (Ab

n−k−2 ∨ Bb
n−k−2)

b � Ab
n−k−1 ∨ Bb

n−k−1.

Now apply the Disjunctive Property (Lemma 8) and obtain derivability of

Kn−k, . . . ,Kn, C \ b, (Ab
1 ∨ Bb

1)
b, . . . , (Ab

n−k−2 ∨ Bb
n−k−2)

b � Kn−k−1 \ b,
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where Kn−k−1 is either An−k−1 or Bn−k−1. Reversion of L\ yields the necessary

Kn−(k+1),Kn−k, . . . ,Kn, C \ b, (Ab
1 ∨ Bb

1)
b, . . . , (Ab

n−k−2 ∨ Bb
n−k−2)

b � b.

In the end of the induction, for k = n − 1, we get K1, . . . ,Kn, C \ b � b, and one
more application of Lemma 11 yields K1, . . . ,Kn � C.

Now recall that C is a P1-formula, and each of K1, . . . ,Kn is a P1-formula or
a P2-formula. If Ki = Bi for some i, i.e., it is a P2-formula, then K1, . . . ,Kn � C
is not derivable by Lemma 7. Thus, for all i we have Ki = Ai, and obtain the
needed sequent A1, . . . , An � C.

The same reasoning applied to D \ b, (Ab
1 ∨ Bb

1)
b, . . . , (Ab

n ∨ Bb
n)b � b yields

B1, . . . , Bn � D.

Lemma 12, together with Lemma 2 of Subsect. 2.1, yield the following
corollary:

Corollary 5. Let A1, . . . , An, C be P1-formulae, B1, . . . , Bn,D be P2-formulae,
and let b and c be fresh variables (b, c /∈ Var1 ∪ Var2, b �= c). Then the sequent

((Acc
1 )b ∨ (Bcc

1 )b)b, . . . , ((Acc
n )b ∨ (Bcc

1 )b)b � ((Ccc)b ∨ (Dcc)b)b

is derivable if and only if so are A1, . . . , An � C and B1, . . . , Bn � D.

Proof. The only strictly positive subformula or Acc
i and Bcc

j is c. Thus, there is
no strictly positive subformula the form E ∨ F , and we can apply Lemma12.
This lemma yields the fact that

((Acc
1 )b ∨ (Bcc

1 )b)b, . . . , ((Acc
n )b ∨ (Bcc

1 )b)b � ((Ccc)b ∨ (Dcc)b)b

is derivable if and only if so are Acc
1 , . . . , Acc

n � Ccc and Bcc
1 , . . . , Bcc

n � Dcc. For
these two sequents, we apply Lemma 2 and replace these sequents with equideriv-
able ones, A1, . . . , An � C and B1, . . . , Bn � D.

Now we are ready to prove the main result of this section.

Proof (of Theorem3). Consider two categorial grammars over the same alphabet,
G1 = 〈Σ, �1,H1〉 and G2 = 〈Σ, �2,H2〉. Without loss of generality we can suppose
that all formulae of Gi are Pi-formulae (otherwise just rename the variables).
Construct the new grammar G = 〈Σ, �,H〉, where, for each a ∈ Σ we postulate
a � ((Acc)b ∨ (Bcc)b)b for any A and B such that a �1 A and a �2 A; H =
((Hcc

1 )b ∨ (Hcc
2 )b)b. Here b and c are fresh variables: b and c are distinct and do

not occur in G1 or G2. By Corollary 5 a word a1, . . . an is accepted by G if and
only if it is accepted by both G1 and G2. Therefore, the language generated by
G is exactly the intersection of languages generated by G1 and G2.
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4 Concluding Remarks

In this paper we have proved two refined results on the complexity of the
Lambek calculus enriched either with conjunction or disjunction. Namely, we
have established PSPACE-completeness for small fragments L(\,∧) and L(\,∨).
Notice that the encoding used in this paper is more involved than the encodings
from [6,8,10,18], because here we were not allowed to use the product (mul-
tiplicative conjunction) and one of the divisions. Besides, we have proved that
L(\,∨)-grammars generate all finite intersections of context-free languages and
images of such intersections under alphabetic homomorphisms.

There are some questions left for future work. First, we see that in our con-
structions for proving PSPACE-hardness involve formulae of unbounded implica-
tion depth. On the other hand, for the original Lambek calculus without additive
connectives, which is NP-complete, Pentus [25], nevertheless, a polynomial time
decision procedure for the case where the order (a complexity measure similar
to implication depth) of formulae is bounded by a constant d, fixed in advance.
The degree of the polynomial, of course, depends on d. For the Lambek calculus
with additives, we plan to show that it is not the case. Following the basic ideas
of our encoding, with the formulas of the implication nesting depth bounded
by some constant, we intend to simulate at least co-NP-hardness of our small
fragment L(\,∧) with one implication and conjunction.

Another open question is to describe the class of languages generated by Lam-
bek grammars with additive connectives. In particular, Kuznetsov and Okhotin
[14,16] show that such grammars can generate languages described by conjunc-
tive grammars [21]. Such grammars can be quite powerful, for example, can
generate {a4n | n ≥ 1} [7]. It is yet unknown whether all such languages can be
generated by L(\,∨)-grammars.
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A PSPACE-completeness of the fragment L(\,∨)

In this section we will modify Sect. 2 to establish PSPACE-completeness for the
fragment L(\, ∨ ), which includes only one implication and disjunction.

Remark 4. For the sake of readability, we conceive of the formula ((A · B)\C)
as abbreviation for (B\ (A\C)). In particular, (A · B)b is abbreviation for
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(B\ (A\ b)). Because of Lemma 1, the formula (Ab ∧Bb) is conceived of as abbre-
viation for ((A ∨ B)\ b) within this section.

Theorem 4. The fragment L(\,∨) is PSPACE-complete.

Proof Sketch. We start with the equality (2), assuming that α1, α2, . . . , α2n−1,
α2n are given.

To prove Lemma 14, the “disjunction analog” of Lemma3, we modify the
basic material given in the “conjunction” Definition 3 by means of Defini-
tions 6 and 7 working within the L(\,∨) fragment.

Definition 6. For 1 ≤ i ≤ 2n, let E�,i,β denote the formula: (c�,i\ (β\ c�,i−1)).
Let F� denote: (q2n\ c�,2n), and H� denote: (c�,0\ (e0\ e0)).

Lemma 13. The following “verifying” sequent is derivable in Lambek calculus

e0, α1, α2, . . . , α2n, q2n, F�, E�,2n,α2n
, E�,2n−1,α2n−1 , . . . E�,2,α2 , E�,1,α1 ,H� � e0

Proof. By the inverse induction on i: αi−1, αi, c�,i, E�,i,αi
� (αi−1 · c�,i−1)

Definition 7. We introduce the following formulas:
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

˜F =
( m

∨

�=1

(F�)b

)b

, ˜H =
( m

∨

�=1

(H�)b

)b

˜Ei =
(

∨

1≤�≤m, E�,i,β∈E�,i

(E�,i,β)b

)b (32)

where a one- or two-element set of formulas, E�,i, is defined as follows:

(1) E�,i = {E�,i,ti
}, if the conjunct C� contains the variable xi,

(2) E�,i = {E�,i,fi
}, if the conjunct C� contains ¬xi,

(3) E�,i = {E�,i,ti
, E�,i,fi

}, if C� contains neither xi, nor ¬xi.

By applying (2) and Lemma 1, we get the desired verification:

Lemma 14. The following sequent is derivable in Lambek

ebb
0 , αbb

1 , αbb
2 , . . . , α2n−1, (α2n · q2n)bb, Δn � ebb

0

where Δn is a sequence of formulas: Δn = ˜F , ˜E2n, ˜E2n−1, . . . , ˜E2, ˜E1, ˜H

Corollary 6. It suffices to follow the line of reasoning in Sect. 2 to find appro-
priate G1, G2, . . . , G2n−1, G2n, such that the following sequent is derivable in
Lambek calculus if and only if the statement (1) is valid:

(e[4n]
0 · q0)[2], G

[2]
1 , G

[4]
2 , . . . , G

[4n−2]
2n−1 , G

[4n]
2n , Δ[4n]

n � e
[4n+2]
0 (33)
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B Proofs of Technical Lemmas for Section 3

Proof (of Lemma8). Induction on derivation. The sequent in question could not
be an axiom, since the antecedent of F1 ∨ F2 � F1 ∨ F2 includes F1 ∨ F2 in
a strictly positive position. Consider the last rule applied in the derivation. It
could be L\, L/, L·, or R∨. Rules with ∧ cannot be used, since there are no ∧’s
in the antecedent, and the main connective of the succedent is ∨. If the last rule
is R∨, we immediately reach our goal.

If the derivation ends with an application of L·:
E1, . . . , E

′
i, E

′′
i , . . . , En � F1 ∨ F2

E1, . . . , E
′
i · E′′

i , . . . , En � F1 ∨ F2
L·

then we apply the induction hypothesis, get E1, . . . , E
′
i, E

′′
i , . . . , En � Fi (i = 1

or 2) and apply L· to this sequent, which yields our goal.
For L\, we get the following

Ei+1, . . . , Ej−1 � E′
j E1, . . . , Ei, E

′′
j , . . . , En � F1 ∨ F2

E1, . . . , Ei, Ei+1, . . . , Ej−1, E
′
j \ E′′

j , . . . , En � F1 ∨ F2
L\

and notice that the antecedent of the right premise still satisfies the conditions of
the lemma, thus we can apply induction hypothesis. The induction hypothesis
yields E1, . . . , Ei, E

′′
j , . . . , En � Fi. Applying L/ with the same left premise,

Ei+1, . . . , Ej−1 � E′
j , yields our goal.

The L/ case is symmetric.

Proof (of Lemma 9). Induction on derivation. The axiom should be of the form
b � b, which violates the condition. For each inference rule, we apply the induc-
tion hypothesis for the premise from which the succedent b comes.

Proof (of Lemma 10). Induction on derivation. Induction base is axiom b � b.
Consider the last rule applied. If it is one of the one-premise rules, then we use
the induction hypothesis for the only premise. For applications of L/ or L\, if
the rightmost occurrence of b goes to the right premise, we again directly use
the induction hypothesis. Notice that for L\ this is always the case. The other
rule, L/, however, can decompose one of the Fi and take the rightmost b to the
left premise:

Fi+1, . . . , F�, E1 \ b, . . . , Ek \ b, b � F ′′
i F1, . . . , F

′
i � b

F1, . . . , F
′
i / F ′′

i , Fi+1, . . . , F�, E1 \ b, . . . , Ek \ b, b � b

The right premise, however, now is not derivable by Lemma9. Contradiction.

Proof (of Lemma 11). Induction on derivation again. Any one-premise rule
applied for one of the Fi, as well as L/ or L\ which keeps Ek \ b in the right
premise, is handled by directly using the induction hypothesis and applying the
same rule. The situation where L/ takes Ek \ b to the left premise leads to con-
tradiction with Lemma 9, exactly as in the proof of the previous lemma.
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