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Abstract. Logics with team semantics provide alternative means for
logical characterization of complexity classes. Both dependence and inde-
pendence logic are known to capture non-deterministic polynomial time,
and the frontiers of tractability in these logics are relatively well under-
stood. Inclusion logic is similar to these team-based logical formalisms
with the exception that it corresponds to deterministic polynomial time
in ordered models. In this article we examine connections between syn-
tactical fragments of inclusion logic and different complexity classes in
terms of two computational problems: maximal subteam membership
and the model checking problem for a fixed inclusion logic formula. We
show that very simple quantifier-free formulae with one or two inclusion
atoms generate instances of these problems that are complete for (non-
deterministic) logarithmic space and polynomial time. Furthermore, we
present a fragment of inclusion logic that captures non-deterministic log-
arithmic space in ordered models.

Keywords: Team semantics · Inclusion logic · Complexity ·
Consistent query answering

1 Introduction

In this article we study the computational complexity of inclusion logic. Inclusion
logic was introduced by Galliani [9] as a variant of dependence logic, developed
by Väänänen in 2007 [26]. Dependence logic is a logical formalism that extends
first-order logic with novel atomic formulae dep(x1, . . . , xn) expressing that a
variable xn depends on variables x1, . . . , xn−1. One motivation behind depen-
dence logic is to find a unifying logical framework for analyzing dependency
notions from different contexts. Since its introduction, versions of dependence
logic have been formulated and investigated in a variety of logical environments,
including propositional logic [16,29,31], modal logic [7,27], probabilistic logics
[5], and two-variable logics [22]. Recent research has also pursued connections
and applications of dependence logic to fields such as database theory [14,15],
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Bayesian networks [4], and social choice theory [24]. A common notion underly-
ing all these endeavours is that of team semantics. Team semantics, introduced
by Hodges in [17], is a semantical framework where formulae are evaluated over
multitudes instead of singletons of objects as in classical logics. Depending on the
application domain these multitudes may then refer to assignment sets, proba-
bility distributions, or database tables, each having their characteristic versions
of team semantics [5,15,26].

After the introduction of dependence logic Grädel and Väänänen observed
that team semantics can be also used to create logics for independence [11]. This
was followed by [9] in which Galliani investigated logical languages built upon
multiple different dependency notions. Inspired by the inclusion dependencies of
database theory, one of the logics introduced was inclusion logic that extends
first-order logic with inclusion atoms. Given two sequences of variables x and y
having same length, an inclusion atom x ⊆ y expresses that the set of values
of x is included in the set of values of y. Inclusion logic was shown to be equi-
expressive to positive greatest-fixed point logic in [10]. In contrast to dependence
logic which is equivalent to existential second-order logic [26], and thus to non-
deterministic polynomial time (NP), this finding established inclusion logic as
the first team-based based logic for polynomial time (P). Our focus in this
article is to pursue this connection further by investigating the complexity of
quantifier-free inclusion logic in terms of two computational problems: maximal
subteam membership and model checking problems. In particular, we identify
complexity thresholds for these problems in terms of first-order definability, (non-
deterministic) logarithmic space, and polynomial time.

The maximal subteam membership problem MSM(φ) for a formula φ asks
whether a given assignment is in the maximal subteam of a given team that sat-
isfies φ. This problem is closely related to the notion of a repair of an inconsistent
database [2]. A repair of a database instance I w.r.t. some set Σ of constraints
is an instance J obtained by deleting and/or adding tuples from/to I such that
J satisfies Σ, and the difference between I and J is minimal according to some
measure. If only deletion of tuples is allowed, J is called a subset repair. It was
observed in [3] that if Σ consists of inclusion dependencies, then for every I there
exists a unique subset repair J of I; this was later generalized to arbitrary LAV
tgds (local-as-view tuple generating dependencies) in [25].

The research on database repair has been mainly focused on two problems:
consistent query answering and repair checking. In the former, given a query
Q and a database instance I the problem is to compute the set of tuples that
belong to Q(J) for every repair J of I. The latter is the decision problem: is J
a repair of I for two given database instances I and J . The complexity of these
problems for various classes of dependencies and different types of repairs has
been extensively studied in the literature; see e.g. [1,3,23,25]. In this setting, the
maximal subteam membership problem can be seen as a variant of the repair
checking problem: regarding a team as a (unirelational) database instance I and
a formula φ of inclusion logic as a constraint, an assignment is a positive instance
of MSM(φ) just in case it is in the unique subset repair of I. Note however, that
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in MSM(φ), the task is essentially to compute the maximal subteam from a
given database instance I, instead of just checking that a given J is the unique
subset repair of I. Note further, that using a single formula φ as a constraint
is actually more general than using a (finite) set Σ of inclusion dependencies.
Indeed, as φ we can take the conjunction of all inclusions in Σ. Furthermore,
using disjunctions and quantifiers, we can form constraints not expressible in the
usual formalism with a set of dependencies.

The complexity of model checking in team semantics has been studied in
[6,21] for dependence and independence logics. For these logics increase in com-
plexity arises particularly from disjunctions. For example, model checking for
a disjunction of three (two, resp.) dependence atoms is complete for NP (NL,
resp.), while a single dependence atom is first-order definable [21]. The results
of this paper, in contrast, demonstrate that the complexity of inclusion logic
formulae is particularly sensitive to conjunctions. We show that MSM(φ) is
complete for non-deterministic logarithmic space if φ is of the form x ⊆ y or
x ⊆ y ∧ y ⊆ x; for any other conjunction of (non-trivial) unary inclusion atoms
MSM(φ) is complete for polynomial time. This result gives a complete character-
ization of the maximal subteam membership problem for conjunctions of unary
inclusion atoms. Based on it we also prove complexity results for model check-
ing of quantifier-free inclusion logic formulae. For instance, for any non-trivial
quantifier-free φ in which x, y, z do not occur, model checking of x ⊆ y ∨ φ is
NL-hard, while that of (x ⊆ z ∧ y ⊆ z) ∨ φ is P-complete.

We conclude the paper by presenting a fragment of inclusion logic that cap-
tures NL. Analogous fragments have previously been established at least for
dependence logic. By relating to the Horn fragment of existential second-order
logic, Ebbing et al. define a fragment of dependence logic that corresponds to
P [8]. The fragment presented in this paper is constructed by restricting occur-
rences of inclusion atoms and universal quantifiers, and the correspondence with
NL is shown by using the well-known characterization of NL in terms of tran-
sitive closure logic [19,20].

2 Preliminaries

We generally use x, y, z, . . . for variables and a, b, c, . . . for elements of models. If
p and q are two tuples, we write pq for the concatenation of p and q.

Throughout the paper we assume that the reader has a basic familiar-
ity of computational complexity. We use the notation L, NL, P and NP for
the classes consisting of all problems computable in logarithmic space, non-
deterministic logarithmic space, polynomial time and non-deterministic polyno-
mial time, respectively.

2.1 Team Semantics

As is customary for logics in the team semantics setting, we assume that all
formulae are in negation normal form (NNF). Thus, we give the syntax of first-
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order logic (FO) as follows:

φ :: = t = t′ | ¬t = t′ | Rt | ¬Rt | φ ∧ φ | φ ∨ φ | ∃xφ | ∀xφ,

where t and t′ are terms and R is a relation symbol of the underlying vocabulary.
For a first-order formula φ, we denote by Fr(φ) the set of free variables of φ,
defined in the usual way. The team semantics of FO is given in terms of the notion
of a team. Let A be a model with domain A. An assignment s of A is a function
from a finite set of variables into A. We write s(a/x) for the assignment that
maps all variables according to s, except that it maps x to a. For an assignment
s = {(xi, ai) | 1 ≤ i ≤ n}, we may use a shorthand s = (a1, . . . , an) if the
underlying ordering (x1, . . . , xn) of the domain is clear from the context. A team
X of A with domain dom(X) = {x1, . . . , xn} is a set of assignments from dom(X)
into A. For V ⊆ dom(X), the restriction X � V of a team X is defined as
{s � V | s ∈ X}. If X is a team, V ⊆ dom(X), and F : X → P(A) \ {∅}, then
X[F/x] denotes the team {s(a/x) | s ∈ X, a ∈ F (s)}. For a set B, X[B/x] is
the team {s(b/x) | s ∈ X, b ∈ B}. Also, if s is an assignment, then by A |=s φ
we refer to Tarski semantics.

Definition 1. For a model A, a team X and a formula in FO, the satisfaction
relation A |=X φ is defined as follows:

– A |=X α if ∀s ∈ X : A |=s α, when α is a literal,
– A |=X φ ∧ ψ if A |=X φ and A |=X ψ,
– A |=X φ∨ψ if A |=Y φ and A |=Z ψ for some Y,Z ⊆ X such that Y ∪Z = X,
– A |=X ∃xφ if A |=X[F/x] φ for some F : X → P(A) \ {∅},
– A |=X ∀xφ if A |=X[A/x] φ.

If A |=X φ, then we say that A and X satisfy φ. If φ does not contain
quantifiers or symbols from the underlying vocabulary, in which case satisfaction
of a formula does not depend on the model A, we say that X satisfies φ, written
X |= φ, if A |=X φ for all models A with a suitable domain (i.e., a domain that
includes all the elements appearing in X). If φ is a sentence, that is, a formula
without any free variables, then we say that A satisfies φ, and write A |= φ, if
A |={∅} φ, where {∅} is the team that consists of the empty assignment ∅.

We say that two sentences φ and ψ are equivalent, written φ ≡ ψ, if A |= φ
⇐⇒ A |= ψ for all models A. For two logics L1 and L2, we write L1 ≤ L2 if
every L1-sentence is equivalent to some L2-sentence; the relations “≡” and “<”
for L1 and L2 are defined in terms of “≤” in the standard way.

Satisfaction of a first-order formula reduces to Tarski semantics in the fol-
lowing way.

Proposition 2 (Flatness [26]). For all models A, teams X, and formulae
φ ∈ FO,

A |=X φ iff A |=s φ for all s ∈ X.

A straightforward consequence is that first-order logic is downwards closed.

Corollary 3 (Downward Closure). For all models A, teams X, and formulae
φ ∈ FO,

If A |=X φ and Y ⊆ X, then A |=Y φ.
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2.2 Inclusion Logic

Inclusion logic (FO(⊆)) is defined as the extension of FO by inclusion atoms.

Inclusion Atom. Let x and y be two tuples of variables of the same length.
Then x ⊆ y is an inclusion atom with the satisfaction relation:

A |=X x ⊆ y if ∀s ∈ X∃s′ ∈ X : s(x) = s′(y).

Inclusion logic is local, meaning that satisfaction of a formula depends only
on its free variables. Furthermore, the expressive power of inclusion logic is
restricted by its union closure property which states that satisfaction of a formula
is preserved under taking arbitrary unions of teams.

Proposition 4 (Locality [9]). Let A be a model, X a team, φ ∈ FO(⊆) a
formula, and V a set of variables such that Fr(φ) ⊆ V ⊆ dom(X). Then

A |=X φ ⇐⇒ A |=X�V φ.

Proposition 5 (Union Closure [9]). Let A be a model, X a set of teams, and
φ ∈ FO(⊆) a formula. Then

∀X ∈ X : A |=X φ =⇒ A |=⋃ X φ.

Note that union closure implies the empty team property, that is, A |=∅ φ for all
inclusion logic formulae φ.

The starting point for our investigations is the result by Galliani and Hella
[10] characterizing the expressivity of inclusion logic in terms of positive greatest
fixed point logic. The latter logic is obtained from greatest fixed-point logic (the
dual of least fixed point logic) by restricting to formulae in which fixed point
operators occur only positively, that is, within a scope of an even number of
negations. In finite models this positive fragment captures the full fixed point
logic (with both least and greatest fixed points), and hence it follows from the
famous result of Immerman [18] and Vardi [28] that inclusion logic captures
polynomial time in finite ordered models.

Theorem 6 ([10]). Every inclusion logic sentence is equivalent to some positive
greatest fixed point logic sentence, and vice versa.

Theorem 7 ([10]). A class C of finite ordered models is in P iff it can be defined
in FO(⊆).

2.3 Transitive Closure Logic

In Sect. 6 we relate inclusion logic to transitive closure logic, and hence we next
give a short introduction to the latter. A 2k-ary relation R is said to be transitive
if (a, b) ∈ R and (b, c) ∈ R imply (a, c) ∈ R for k-tuples a, b, c. The transitive
closure of a 2k-ary relation R, written TC(R), is defined as the intersection of
all 2k-ary relations S ⊇ R that are transitive. The transitive closure of R can
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be alternatively defined as R∞ =
⋃∞

i=0 Ri for Ri defined recursively as follows:
R0 = R and Ri+1 = R ◦ Ri for i > 0; here A ◦ B denotes the composition of
two relations A and B. Note that (a, b) ∈ Ri if and only if there is an R-path of
length i + 1 from a to b.

An assignment s, a model A, and a formula ψ(x, y, z), where x and y are
k-ary, give rise to a 2k-ary relation defined as follows:

Rψ,A,s = {ab ∈ M2k | A |= ψ(a, b, s(z))}.

We can now define transitive closure logic. Given a term t, a model A, and
an assignment s, we write tA,s for the interpretation of t under A, s, defined in
the usual way.

Definition 8 (Transitive Closure Logic). Transitive closure logic (TC)
is obtained by extending first-order logic with transitive closure formulae
[TCx,yψ(x, y, z)](t0, t1) where t0 and t1 are k-tuples of terms, and ψ(x, y, z) is a
formula where x and y are k-tuples of variables. The semantics of the transitive
closure formula is defined as follows:

A |=s [TCx,yψ(x, y, z)](t0, t1) iff (tA,s
0 , t

A,s
1 ) ∈ TC(Rψ,A,s).

Thus, [TCx,yψ(x, y, z)](t0, t1) is true if and only if there is a ψ-path from t0
to t1. It is well known that transitive closure logic captures non-deterministic
logarithmic space in finite ordered models. In particular, this can be achieved by
using only one application of the TC operator. We use below the notation min
for the least element of the linear order, and min for the tuple (min, . . . ,min).
Similarly, max denotes the tuple (max, . . . ,max), where max is the greatest
element.

Theorem 9 ([19,20]). A class C of finite ordered models is in NL iff it can be
defined in TC. Furthermore, every TC-sentence is equivalent in finite ordered
models to a sentence of the form

[TCx,yα(x, y)](min,max)

where α is first-order.

3 Maximal Subteam Membership

In this section we define the maximal subteam membership problem. We first
discuss some of its basic properties and then investigate its complexity over
quantifier-free inclusion logic formulae.

3.1 Introduction

For a model A, a team X, and an inclusion logic formula φ, we define ν(A,X, φ) as
the unique subteam Y ⊆ X such that A |=Y φ, and A �|=Z φ if Y � Z ⊆ X. Due
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to the union closure property ν(A,X, φ) always exists and it can be alternatively
defined as the union of all subteams Y ⊆ X such that A |=Y φ. If φ does not
contain quantifiers or symbols from the underlying vocabulary, then we may
write ν(X,φ) instead of ν(A,X, φ). The maximal subteam membership problem
is now given as follows.

Definition 10. Let φ ∈ FO(⊆). Then MSM(φ) is the problem of determining
whether s ∈ ν(A,X, φ) for a given model A, a team X and an assignment s ∈ X.

Grädel proved that for any FO(⊆)-formula φ, there is a formula ψ of positive
greatest fixed point logic such that for any model A and assignment s, A |=s ψ
if and only if s is in the maximal team of A satisfying φ (see Theorem 24 in
[12]). An easy adaptation of the proof shows that ν(A,X, φ) is also definable in
positive greatest fixed point logic. Thus, it follows that every maximal subteam
membership problem is polynomial time computable.

Lemma 11. For every formula φ ∈ FO(⊆), MSM(φ) is in P.

In this section we will restrict our attention to maximal subteam problems
for quantifier free formulae. Before proceeding to our findings we need to present
some auxiliary concepts and results. The following lemmata will be useful below.

Lemma 12. Let α, β ∈ FO(⊆), and let X be a team of a model A. Then
ν(A,X, α ∨ β) = ν(A,X, α) ∪ ν(A,X, β).

Proof. For “⊆”, note that by definition there are Y,Z ⊆ X such that Y ∪ Z =
ν(A,X, α∨β), Y |= α and Z |= β, and hence Y ⊆ ν(A,X, α) and Z ⊆ ν(A,X, β).
For “⊇”, note that ν(A,X, α)∪ν(A,X, β) satisfies α∨β so it must be contained
by ν(A,X, α ∨ β). ��

As an easy corollary we obtain the following lemma.

Lemma 13. Let α, β ∈ FO(⊆), and assume that MSM(α) and MSM(β) both
belong to a complexity class C ∈ {L,NL}. Then MSM(α ∨ β) is in C.

The maximal subteam problem for a single inclusion atom x ⊆ y can be nat-
urally represented using directed graphs. In this representation each assignment
forms a vertex, and an assignment s has an outgoing edge to another assignment
s′ if s(x) = s′(y). Over finite teams an assignment then belongs to the maximal
subteam for x ⊆ y if and only if it is connected to a cycle.1

Lemma 14. Let A be a model, X a finite team, x and y two tuples of the same
length from dom(X), s an assignment of X, and α a first-order formula. Let
G = (X,E) be a directed graph where (s, s′) ∈ E iff s(x) = s′(y) and A |={s,s′} α.
Then

(a) s ∈ ν(A,X, x ⊆ y ∧ α) ⇐⇒ G contains a path from s to a cycle,
1 We are grateful to Phokion Kolaitis, who pointed out this fact to the second author

in a private discussion 2016.
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(b) s ∈ ν(A,X, x ⊆ y ∧ y ⊆ x ∧ α) ⇐⇒ G contains a path from one cycle to
another via s.

Proof. Assume for the first statement that s ∈ ν(A,X, x ⊆ y ∧ α). Then there
is a subteam Y ⊆ X such that s ∈ Y and A |=Y x ⊆ y ∧ α. Thus for each
s′ ∈ Y there exists s′′ ∈ Y such that s′′(y) = s′(x). Moreover, A |={s′,s′′} α,
whence (s′, s′′) ∈ E. In particular there is a non-ending path in G starting from
s. Since X is finite, this path necessarily ends in a cycle. Conversely, assume G
contains a path from s to a cycle. Then A |=Y x ⊆ y ∧ α where Y consists of all
assignments in the path and cycle. Hence, s ∈ ν(A,X, x ⊆ y ∧ α).

For the second statement note that, by the argument above, s ∈ ν(A,X, y ⊆
x∧α) if and only if G′ = (X,E−1) contains a path from s to a cycle. But clearly
an E−1-path from s to an E−1-cycle is an E-path from an E-cycle to s. ��

3.2 Complexity

Next we turn to the computational complexity of maximal subteam membership.
In what follows, we give a complete characterization of the maximal subteam
problem for arbitrary conjunctions and disjunctions of unary inclusion atoms.
A unary inclusion atom is an atom of the form x ⊆ y where x and y are single
variables. The characterization is given in terms of inclusion graphs.

Definition 15. Let Σ be a set of unary inclusion atoms over variables in V .
Then the inclusion graph of Σ is defined as GΣ = (V,E) such that (x, y) ∈ E
iff x �= y and x ⊆ y appears in Σ.

We will now prove the following theorem.

Theorem 16. Let Σ be a finite set of unary inclusion atoms, and let φ be the
conjunction of all atoms in Σ. Then MSM(φ) is

(a) trivially true if GΣ has no edges,
(b) NL-complete if GΣ has an edge (x, y) and no other edges except possibly for

its inverse (y, x),
(c) P-complete otherwise.

The first statement above follows from the observation that MSM(φ) is true
for all inputs if φ is a conjunction of trivial inclusion atoms x ⊆ x. The second
statement is shown by relating to graph reachability. Given a directed graph
G = (V,E) and two vertices a and b, the problem REACH is to determine
whether G contains a path from a to b. This problem is a well-known complete
problem for NL.

Lemma 17. MSM(x ⊆ y) and MSM(x ⊆ y ∧ y ⊆ x) are NL-complete.

Proof. Hardness. We give a logarithmic space many-one reduction from
REACH. Let G = (V,E) be a directed graph, and let a, b ∈ V . W.l.o.g. we
can assume that G has no cycles. Note that we obtain a directed acyclic graph
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by replacing nodes v with nodes (v, i) and edges (v, v′) with edges ((v, i), (v′, j)),
for i, j ∈ {1, . . . , |V |} such that i < j. Then (b, |V |) is reachable from (a, 1) in
the acyclic graph if and only if b is reachable from a in the initial graph.

Define E′ as the extension of E with an extra edge (b, a). Then b is reachable
from a in G if and only if a belongs to a cycle in G′ = (V,E′). We reduce from
(G, a, b) to a team X = {sc,d | (c, d) ∈ E′} where su,v maps (y, x) to (u, v) (see
Fig. 1). By Lemma 14, b is reachable from a if and only if sb,a ∈ ν(X,φ), where
φ is either x ⊆ y or x ⊆ y ∧ y ⊆ x.
Membership. By Lemma 14 MSM(x ⊆ y) and MSM(x ⊆ y ∧ y ⊆ x) reduce to
reachability variants that are clearly in NL. ��

Fig. 1. Reduction from REACH to MSM(φ). The input assignment is underlined and
the assignments written in bold form a subteam satisfying φ.

Next we turn to the third statement of Theorem16. Recall that membership
in P follows directly from Lemma 11. For P-hardness we reduce from the mono-
tone circuit value problem (see, e.g., [30]). The proof essentially follows from the
following lemma.

Lemma 18. MSM(x ⊆ z∧y ⊆ z), MSM(x ⊆ y∧y ⊆ z), and MSM(x ⊆ y∧x ⊆ z)
are P-complete.

Proof. Let φ be either x ⊆ z ∧ y ⊆ z, x ⊆ y ∧ y ⊆ z, or x ⊆ y ∧ x ⊆ z. We give
a logarithmic-space many-one reduction to MSM(φ) from the monotone circuit
value problem (MCVP). Given a Boolean word w ∈ {�,⊥}n, and a Boolean
circuit C with n inputs, one output, and gates with labels from {AND,OR}, this
problem is to determine whether C outputs �. If C outputs � on w, we say that
it accepts w. W.l.o.g. we may assume that the in-degree of each AND and OR
gate is 2. We annotate each input node by its corresponding input � or ⊥, and
each gate by some distinct number i ∈ N \ {0}. Then each gate has two child
nodes iL, iR that are either natural numbers or input values from {�,⊥}. Next
we construct a team X whose values consist of node annotations i,�,⊥ and
distinct copies ci of AND gates i. The team X is constructed by the following
rules (see Fig. 2):

– add s0 : (x, y, z) �→ (1,�,�) where 1 is the output gate,
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– for AND gates i, add si,0 : (x, y, z) �→ (iL, i, ci), si,1 : (x, y, z) �→ (iR, ci, i), and
si : (x, y, z) �→ (ci,�,�),

– for OR gates i, add si,L : (x, y, z) �→ (iL, i, i) and si,R : (x, y, z) �→ (iR, i, i).

We will show that C accepts w iff s0 ∈ ν(X,φ). For the only-if direction we
actually show a slightly stronger claim. That is, we show that s0 ∈ ν(X,φ) is
implied even if φ is the conjunction of all unary inclusion atoms between x, y, z.

Assume first that C accepts w. We show how to build a subteam Y ⊆ X
such that it includes s0 and satisfies all unary inclusion atoms between x, y, z.
First construct a subcircuit C ′ of C recursively as follows: add the output gate
� to C ′; for each added AND gate i, add both child nodes of i; for each added
OR gate i, add a child node of i that is evaluated true under w. In other words,
C ′ is a set of paths from the output gate to the input gates that witnesses the
assumption that C accepts w. The team Y will now list the auxiliary values ci

and the gates of C ′ in each column x, y, z. We construct Y by the following rules:

– add s0,
– for AND gates i in C ′, add si,0, si,1, and si,
– for OR gates i in C ′, add si,P iff iP is in C ′, for P = L,R.

First observe that Y is formed symmetrically in terms of y and z, and thus
these columns share the same values. Consider then the symmetric difference
between values in columns x and y. Initially, for Y = {s0}, this set is {1,�}.
An inductive argument now shows that, following the partial ordering induced
from C ′, an application of a construction rule to a gate i of C ′ modifies the
symmetric difference by removing i (and also � if � is a child of i) and adding
any child node of i that is a gate in C ′. In the end the symmetric difference is
the empty set, and thus we conclude that Y satisfies all unary inclusion atoms
between x, y, z.

Vice versa, consider the standard semantic game between Player I and Player
II on the given circuit C and input word w. This game starts from the output
gate 1, and at each AND (OR, resp.) gate i Player I (Player II, resp.) selects
the next node from its two child nodes iL and iR. Player II wins iff the game
ends at an input node that is true. By the assumption that s0 ∈ ν(X,φ) we
find a team Y that contains s0 and satisfies φ. Note that Y cannot contain any
assignment that maps x to ⊥. For showing that C accepts w it thus suffices to
show that Player II has a strategy which imposes the following restriction: for
each visited node annotated by i, we have s(x) = i for some s ∈ Y . At start
this holds by the assumption that s0 ∈ Y . Assume that i is any gate with s ∈ Y
such that s(x) = i. If φ is x ⊆ z ∧ y ⊆ z, we have two cases. If i is an OR gate
then we find s′ from Y with s′(y) = s′(z) = i. Then the strategy of Player II is
to select the gate s′(x) as her next step. If i is an AND gate, an application of
x ⊆ z gives s′ from Y with s′(z) = i. Then s′(y) = ci, which means that further
application of y ⊆ z yields s′′ from Y with s′′(z) = ci and hence s′′(y) = i. Now
{s′(x), s′′(x)} = {iL, iR}, and thus the claim holds for either selection by Player
I. The induction step is analogous for the cases where φ is x ⊆ y ∧ y ⊆ z or
x ⊆ y ∧ x ⊆ z. This concludes the proof. ��
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Fig. 2. MCVP and MSM(φ)

Fig. 3. Subgraphs of GΣ

The third statement of Theorem16 now follows. Any GΣ not covered by the
previous lemma has a subgraph of a form depicted in Fig. 3. Of these G1–G3

were considered above, and the reduction for G4 is essentially identical to that
for G1; take a new variable for the new target node and insert values identical
to those of z. Additionally, for each node in GΣ but not in Gi take a copy of
any column in the team. That this suffices follows from the arguments of the
previous lemmata; in particular, from the fact that any true MCVP instance
generates a subteam that satisfies all possible unary inclusion atoms between
variables.

Considering disjunctions, observe that MSM over a disjunction of unary inclu-
sion atoms is either trivially true or NL-complete. For membership in NL, see
Lemma 13. For NL-hardness of MSM(x ⊆ y ∨ y ⊆ x) we use exactly the same
reduction from REACH as in Lemma 17: indeed, by Lemma 12 sb,a ∈ ν(X,x ⊆
y ∨ y ⊆ x) if and only if sb,a ∈ ν(X,x ⊆ y) or sb,a ∈ ν(X, y ⊆ x). The first
condition holds if and only if a belongs to a cycle in G′ = (V,E′), which implies
that b is reachable from a in G; and the second condition holds if and only if b
belongs to a cycle in the graph obtained by inverting the edges of G′, which like-
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wise implies that b is reachable from a in G. Provided that another non-trivial
inclusion atom u ⊆ v appears in the disjunction, then {u, v} �⊆ {x, y} and the
values for u, v can be defined in such a way that the maximal subteam for u ⊆ v
is empty.

Corollary 19. Let Σ be a finite set of unary inclusion atoms, and let φ be the
disjunction of all atoms in Σ. Then MSM(φ) is

(a) trivially true if Σ contains a trivial inclusion atom,
(b) NL-complete otherwise.

Note that the results of this section generalize to inclusion atoms of higher
arity, obtained by replacing variables x with tuples x such that all pairs of
distinct tuples have no common variables. More complex cases arise if the tuples
are allowed to overlap. In the full version of the paper [13] we also consider
maximal subteam membership over input teams in which the inclusion atoms
reference a key. In such cases the complexity of maximal subteam membership
collapses to lower levels. For instance, MSM(x ⊆ z) (MSM(x ⊆ z ∧ y ⊆ z), resp.)
is L-complete (NL-complete, resp.) over teams in which z is a key.

4 Consistent Query Answering

The maximal subteam membership problem has a close connection to database
repairing which provides a framework for managing inconsistency in databases.
An inconsistent database is a database that does not satisfy all the integrity
constraints that it is supposed to satisfy. Inconsistency may arise, e.g., from
data integration where the task is to bring together data from different sources.
Often in practise inconsistency is handled through data cleaning which is the
process of identifying and correcting inaccurate data records from databases.
An inherent limitation of this approach is its inability to avoid arbitrary choices
as consistency can usually be restored in a number of ways. The approach of
database repair is to tolerate inconsistencies in databases and investigate reliable
answers to queries.

A database is an interpretation of a relational vocabulary σ = {R1, . . . , Rn} in
which each Ri is associated with an arity #Ri. Given a (finite) set Σ of integrity
constraints, a database D is called inconsistent (w.r.t. to Σ) if D �|= Σ, and
consistent otherwise. Given a partial order ≤ on databases over a fixed σ, and a
set Σ of integrity constraints, a repair of an inconsistent database I is a database
D such that it is consistent and all D′ < D are inconsistent. The database D is
called a ⊕-repair if the partial order is defined in terms of symmetric difference:
D ≤ D′ if D ⊕ I ⊆ D′ ⊕ I. If additionally D is a subset (superset, resp.) of I,
then D is called a subset-repair (superset-repair, resp.). An answer to a first-
order query q = ψ(x1, . . . , xn) on a database D is any (a1, . . . , an) such that D
satisfies ψ(a1, . . . , an), and a consistent answer on an inconsistent database I is
any value (a1, . . . , an) such that each repair D of I satisfies ψ(a1, . . . , an).

Let ∗ ∈ {⊕, subset, superset} and let Σ be a set of integrity constraints.
The ∗-repair checking problem w.r.t. Σ (∗-RC(Σ)) is to determine, given two



Complexity Thresholds in Inclusion Logic 313

databases D and I, whether D is a ∗-repair of I. Let also q be a Boolean query.
The ∗-consistent query answering problem w.r.t. Σand q (∗-CQA(Σ, q)) is to
determine, given an inconsistent database I, whether q is true in every ∗-repair
of I. LAV tgds are first-order formulae of the form

φ = ∀x(ψ(x) → ∃yθ(x, y))

where ψ is a single relational atom and θ is a conjunction of relational atoms,
and each variable from x occurs in ψ (but not necessarily in θ). Inclusion depen-
dencies are the special case of LAV tgds in which also θ is a single relational
atom, and no variable occupies two positions in one relational atom. An inclu-
sion dependency is called unary if a single variable from x appears in exactly
one relation position of θ, and it is called unirelational if ψ and θ contain the
same relation symbol. Note that unary inclusion atoms correspond to unary
unirelational inclusion dependencies.

Example 20. Figure 4 depicts a database D consisting of two ternary relations
TEACHING and EMPLOYEE. Let Σ consist of a single unary inclusion depen-
dency which states that each lecturer in TEACHER is a name in EMPLOYEE.
The database is inconsistent because Bob is not listed in EMPLOYEE, and it has
a unique subset-repair in which (Bob, Mechanics, Spring 2019) is removed from
TEACHING. A superset-repair is obtained by adding (Bob, a, b) to EMPLOYEE
where a and b are any data values. Such repairs are also ⊕-repairs. Consider a
query q that returns lecturers located at the Math department. Regardless of
the repair type this query has only one consistent answer: Alice.

Consistent query answering and repair checking are known to be tractable
for LAV tgds. A conjunctive query is a first-order formula of the form ∃xθ(x)
where θ is a conjunction of relational atoms.

Theorem 21 ([25]). Let ∗ ∈ {⊕, subset, superset}, let Σ be a set of LAV tgds,
and let q be a conjunctive query. The ∗-repair checking problem w.r.t. Σ and
the ∗-consistent query answering problem w.r.t. Σ and q are both solvable in
polynomial time.

Fig. 4. Database D

Furthermore, it is known that so-called weakly acyclic collections of LAV
tgds enjoy subset-repair checking in logarithmic space [1]. Nevertheless, it seems
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not much attention in general has been devoted to complexity thresholds within
polynomial time. Our results can thus be seen as steps toward this direction as
the trichotomy in Theorem 16 extends to repair checking and consistent query
answering. Let IC be a collection of finite sets of integrity constraints and let
C be a complexity class. We say that the ∗-consistent query answering problem
is C-complete for IC if for all Σ ∈ IC, ∗-CQA(Σ, q) is in C for all Boolean
conjunctive queries q and C-complete for some such q.

Theorem 22. Let ∗ ∈ {⊕, subset}. The subset-repair checking problem and the
∗-consistent query answering problem for finite sets Σ of unary unirelational
inclusion dependencies are

(a) first-order definable if GΣ has no edges,
(b) NL-complete if GΣ has an edge (x, y) and no other edges except possibly for

its inverse (y, x),
(c) P-complete otherwise.

Proof. Since NL and P are closed under complement, we may consider the
complement of subset-repair checking. For the upper bounds note that D is a
repair of I if and only if D satisfies Σ (a first-order property) and no tuple in
I \ D is in the unique subset-repair of I. That Σ has a unique subset-repair
follows already from the union closure property of inclusion logic (Proposition 5)
(or that of LAV tgds [25]). For the lower bounds note that in our reductions
s ∈ ν(X,φ) if and only if ν(X,φ) �= ∅.2

Consider then subset-consistent query answering over a Boolean conjunctive
query q = ∃x(Ri1(x1) ∧ . . . ∧ Rin(xn)) where x1, . . . , xn are subsequences of x
(note that q may contain multiple relation symbols even though all constraints
are unirelational). Considering first the upper bounds, in case (a) q itself may
be used for the first-order definition, and in cases (b) and (c) evaluation of
the relational atoms Ri1(xi) may be reduced to the maximal subteam mem-
bership problem. For the lower bounds we may simply use atomic queries that
describe the input assignment for the maximal subteam membership problem.
For instance, in case (b) subset-CQA(Σ, q) is NL-hard for q = R(a, b) where
a and b are constant values from the reduction in Lemma17. That the result
holds also for ⊕-consistent query answering follows from the fact that each set
of inclusion dependencies Σ has a unique subset repair which is also the unique
universal subset repair and the unique universal ⊕-repair [25]. A database U is
a universal ∗-repair of an inconsistent database I if for each conjunctive query
q, a tuple is a consistent answer to q on I if and only if it is an answer to q on
U and contains only values that appear in I. That is, it only suffices to consult
the universal repair for consistent answers. ��

2 In point of fact, the reduction of Lemma 18 requires slight modification: remove
assignments (ci, �, �) and add assignments (ci, j, k) for each assignment (i, j, k) ∈ X
where i is an AND gate.
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5 Model Checking

In this section we discuss the model checking problem for quantifier-free inclusion
logic formulae. It turns out that the results of the previous section are now easily
adaptable. As above, we herein restrict attention to quantifier-free formulae.

Definition 23. Let φ ∈ FO(⊆). Then MC(φ) is the problem of determining
whether A |=X φ, given a model A and a team X.

Hardness results for model checking can now be obtained by relating to max-
imal subteam membership.

Lemma 24. Let α, β ∈ FO(⊆) be such that

(i) Fr(α) ∩ Fr(β) = ∅,
(ii) MSM(α) is C-hard for C ∈ {L,NL,P}, and
(iii) There is a team Y of dom(A) with domain Fr(β) such that ∅ �= ν(A, Y, β) �

Y .

Then MC(α ∨ β) is C-hard.

Proof. Let (A,X, s) be an instance of MSM(α), that is, A is a model, X a team
over Fr(α) and s ∈ X. It suffices to define a first-order reduction from (A,X, s)
to a team X ′ over Fr(α) ∪ Fr(β) such that s ∈ ν(A,X, α) iff A |=X′ α ∨ β. Let
Z0 := ν(A, Y, β) and Z1 := Y \ Z0. Note that by condition (i), the union of any
t ∈ X and t′ ∈ Y is an assignment over Fr(α) ∪ Fr(β). We define

X ′ := {s ∪ t′ | t′ ∈ Z1} ∪ {t ∪ t′ | t ∈ X \ {s}, t′ ∈ Z0}.

Since Z0 and Z1 are fixed, X ′ is first-order definable from (A,X, s). By Locality
(Proposition 4), we have ν(A,X ′, α) � Fr(α) = ν(A,X ′ � Fr(α), α) = ν(A,X, α),
and similarly ν(A,X ′, β) � Fr(β) = ν(A, Y, β) = Z0. Hence, it follows from
Lemma 12 that A |=X′ α∨β iff for all t∪ t′ ∈ X ′ : t ∈ ν(A,X, α)∨ t′ ∈ ν(A, Y, β)
iff s ∈ ν(A,X, α). ��

Note that A |=X φ if and only if ν(A,X, φ) = X over inclusion logic formulae
φ. Hence, model checking can be reduced to maximal subteam membership tests
over each individual assignment of a team. In particular, this means that model
checking is at most as hard as maximal subteam membership; in some cases,
as illustrated in Proposition 26(a), it is strictly less hard. Observe that we may
omit the case C = P because MC(α) is in P for any α ∈ FO(⊆) (Theorem 7).

Lemma 25. Let α ∈ FO(⊆) be such that MSM(α) is in C ∈ {L,NL}. Then
MC(α) is in C.

By Lemmata 13, 24, 25, Theorem 7, and the results of the previous section,
the computational complexity of model checking for various quantifier-free inclu-
sion formulae directly follows. The following proposition illustrates some exam-
ples. Note that the semantics of the inclusion atom is clearly first-order express-
ible, and the same applies to any conjunction of inclusion atoms.
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Proposition 26.

(a) MC(x ⊆ y) and MC(x ⊆ y ∧ u ⊆ v) are first-order definable.
(b) MC(x ⊆ y ∨ u ⊆ v) and MC(x ⊆ y ∨ u = v) are NL-complete.
(c) MC((x ⊆ z∧y ⊆ z)∨u ⊆ v) and MC((x ⊆ z∧y ⊆ z)∨u = v) are P-complete.

6 An NL Fragment of Inclusion Logic

Our aim in this section is to find a natural fragment of inclusion logic that cap-
tures the complexity class NL over ordered finite models. Our approach is to con-
sider preservation of NL-computability under the standard logical operators of
FO(⊆). By Lemma 13, we already know that NL-computability of maximal sub-
team membership is preserved under disjunctions. However, Theorem16 shows
that conjunction can increase the complexity of the maximal subteam mem-
bership problem from NL to P-complete, and by Proposition 26, combining a
conjunction with a disjunction leads to P-complete model checking problems.
Thus conjunction cannot be used freely in the fragment we aim for.

The following proposition shows that a single universal quantifier can also
increase complexity from NL to P-complete. In the proof we show P-hardness by
reduction from the P-complete problem GAME. An input to GAME is a DAG
(directed acyclic graph) G = (V,E) together with a node a ∈ V . Given such
input (V,E, a) we consider the following game Gm(V,E, a) between two players,
I and II. During the game the players move a pebble along the edges of G. In the
initial position the pebble is on the node a0 = a. If after 2i moves the pebble is
on a node a2i, then player I chooses a node a2i+1 such that (a2i, a2i+1) ∈ E, and
player II responds by choosing a node a2i+2 such that (a2i+1, a2i+2) ∈ E. The
first player unable to move loses the game, and the other player wins it. Since G
is a DAG, every play of the game is finite. In particular, the game is determined,
i.e., one of the players has a winning strategy. Now we define (V,E, a) to be a
positive instance of GAME if and only if player II has a winning strategy in
Gm(V,E, a).

Note that GAME can be seen as a variation of the monotone circuit value
problem MCVP. Indeed, it is straighforward to define for a given monotone cir-
cuit C and input word w an input (V,E, a) for GAME such that Gm(V,E, a) sim-
ulates the evaluation game of C on w. Thus MCVP is logarithmic-space reducible
to GAME. Conversely, it is also easy to give a logarithmic-space reduction from
GAME to MCVP.

Proposition 27. Let φ be the formula ∀z(¬Eyz ∨ z ⊆ x). Then MSM(φ) is
P-complete. Consequently, MC(φ ∨ Euv) is also P-complete.

Proof. We give now a reduction from GAME to MSM(φ). Let (V,E, a) be an
input to GAME. Without loss of generality we assume that there is b ∈ V
such that (b, a) ∈ E. Now we simply let A = (V,E), X = {s : {x, y} → V |
(s(x), s(y)) ∈ E} and s0 = {(x, b), (y, a)}.

We will use below the notation I = {c ∈ V | ∀d ∈ V : (c, d) �∈ E)}. Thus, I
consists of those elements c ∈ V for which player II wins Gm(V,E, c) immediately
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because I cannot move. Furthermore, we denote by W the set of all elements
c ∈ V such that player II has a winning strategy in Gm(V,E, c).

Let Y be the subteam of X consisting of those assignments s ∈ X for which
s(y) ∈ W . We will show that Y = ν(A,X, φ). Hence in particular s0 ∈ ν(A,X, φ)
if and only if (V,E, a) is a positive instance of GAME, as desired.

To prove that Y ⊆ ν(A,X, φ) it suffices to show that A |=Y φ. Thus let
Z = Y [A/z], Z ′ = {s ∈ Z | (s(y), s(z)) �∈ E} and Z ′′ = (Z \ Z ′) ∪ Z0, where
Z0 = {s ∈ Z | s(z) = s(x) and s(y) ∈ I} (an example of Z ′′ is illustrated in
Fig. 5). Then clearly A |=Z′ ¬Eyz. To show that A |=Z′′ z ⊆ x assume that
s ∈ Z ′′. If s ∈ Z \ Z ′, then (s(y), s(z)) ∈ E, and since s � {x, y} ∈ Y , player II
has an answer c to the move s(z) of player I in Gm(V,E, s(y)) such that c ∈ W .
Thus, s∗ = {(x, s(z)), (y, c)} ∈ Y . If c ∈ I, then s∗(s∗(x)/z) ∈ Z0. Otherwise
there is some d ∈ V such that (c, d) ∈ E, whence s∗(d/z) ∈ Z \Z ′. In both cases,
there is s′ ∈ Z ′′ such that s′(x) = s(z). Assume then that s ∈ Z0. Then by the
definition of Z0 we have s(x) = s(z). Thus we see that for every s ∈ Z ′′ there is
s′ ∈ Z ′′ such that s′(x) = s(z). Now we can conclude that A |=Z ¬Eyz ∨ z ⊆ x,
and hence A |=Y φ.

To prove that ν(A,X, φ) ⊆ Y it suffices to show that if A |=Y ′ φ for a team
Y ′ ⊆ X, then s(y) ∈ W for every s ∈ Y ′. Thus assume that Y ′ satisfies φ
and s ∈ Y ′. We describe a winning strategy for player II in Gm(V,E, s(y)). If
s(y) ∈ I she has a trivial winning strategy. Otherwise player I is able to move;
let c ∈ V be his first move. Since A |=Y ′ φ, there are Z ′, Z ′′ ⊆ Y ′[A/z] such that
Y ′[A/z] = Z ′ ∪ Z ′′, A |=Z′ ¬Eyz and A |=Z′′ z ⊆ x. Consider the assignment
s′ = s(c/z) ∈ Y ′[A/z]. Since (s′(y), s′(z)) = (s(y), c) ∈ E, it must be the case
that s′ ∈ Z ′′. Thus there is s′′ ∈ Z ′′ such that s′′(x) = s′(z) = c. Then the
assignment s∗ = s′′ � {x, y} is in Y ′ ⊆ X, whence (c, d) ∈ E, where d = s∗(y).
Let d be the answer of player II for the move c of player I. We observe now that
using this strategy player II can find a legal answer from the set {s∗(y) | s∗ ∈ Y ′}
to any move of player I, as long as player I is able to move. Since the game is
determined, this is indeed a winning strategy.

Using Lemma 24, we see that MC(∀z(¬Eyz ∨ z ⊆ x) ∨ β) is P-hard for any
non-trivial formula β such that x, y �∈ Fr(β), in particular for β = Euv. ��

This proposition now demonstrates that, similarly as conjunction, universal
quantification cannot be freely used if the goal is to construct a fragment of
inclusion logic that captures NL. On the positive side, we prove next that exis-
tential quantification preserves NL-computability. Furthermore, we show that
the same holds for conjunction, provided that one of the conjuncts is in FO.

Lemma 28. Let φ ∈ FO(⊆), ψ ∈ FO, and let X be a team of a model A. Then

(a) ν(A,X,∃xφ) = {s ∈ X | s(a/x) ∈ X ′ for some a ∈ A}, where X ′ =
ν(A,X[A/x], φ),

(b) ν(A,X, φ ∧ ψ) = ν(A,X ′, φ), where X ′ = ν(A,X, ψ).

Proof. (a) Let X ′ = ν(A,X[A/x], φ) and X ′′ = {s ∈ X | s(a/x) ∈ X ′

for some a ∈ A}. Assume that Y ⊆ X is a team such that A |=Y ∃xφ.
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Fig. 5. GAME and MSM(∀z(¬Eyz ∨ z ⊆ x)). The assignments marked by a circle
constitute Z′′.

Then there is a function F : X → P(A) \ {∅} such that A |=Y [F/x] φ, and
since clearly Y [F/x] ⊆ X[A/x], we have Y [F/x] ⊆ X ′. Thus for every s ∈ Y
there is a ∈ A such that s(a/x) ∈ X ′, and hence we see that Y ⊆ X ′′. In
particular ν(A,X,∃xφ) ⊆ X ′′. To prove the converse inclusion it suffices to
show that A |=X′′ ∃xφ. Let G : X ′′ → P(A) \ {∅} be the function defined by
G(s) = {a ∈ A | s(a/x) ∈ X ′}. By the definition of X ′′, this function is well-
defined and G(s) �= ∅ for all s ∈ X ′′. It is now easy to see that X ′′[G/x] = X ′,
whence A |=X′′[G/x] φ, as desired.

(b) Let X ′ = ν(A,X, ψ) and X ′′ = ν(A,X ′, ψ). Assume first that Y ⊆ X is
a team such that A |=Y φ ∧ ψ. Then A |=Y ψ, whence Y ⊆ X ′, and furthermore
Y ⊆ X ′′, since A |=Y φ. In particular, ν(A,X, φ ∧ ψ) ⊆ X ′′. On the other hand,
by definition A |=X′′ φ. Similarly A |=X′ ψ, whence by downward closure of FO
(Corollary 3), A |=X′′ ψ. Thus we see that A |=X′′ φ ∧ ψ, which implies that
X ′′ ⊆ ν(A,X, φ ∧ ψ). ��

As a straightforward corollary to this lemma we obtain the following com-
plexity preservation result.

Proposition 29. Let φ ∈ FO(⊆), ψ ∈ FO, and assume that MSM(φ) is in a
complexity class C ∈ {L,NL}. Then

(a) MSM(∃xφ) is in C, and
(b) MSM(φ ∧ ψ) is in C.

Proof. (a) By Lemma 28(a), to check whether a given assignment s is in
ν(A,X,∃xφ) it suffices to check whether s(a/x) is in ν(A,X[A/x], φ) for some
a ∈ A. Clearly this task can be done in C assuming that MSM(φ) is in C.

(b) By Lemma 28(a), it suffices to show that the problem whether an assign-
ment s is in ν(A,X ′, φ), where X ′ = ν(A,X, ψ), can be solved in C with respect
to the input (s,A,X). Since ψ ∈ FO, the team X ′ can be computed in C, whence
the claim follows from the assumption that MSM(φ) is in C. ��

Summarising Lemma 13 and Proposition 29, NL-computability of maximal
subteam membership is preserved by disjunction, conjunction with first-order
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formulas, and existential quantification. Since maximal subteam problem is in
NL for all first-order formulas and, by Lemma17, for all inclusion atoms, we
define a weak fragment FO(⊆)w of inclusion logic by the following grammar:

φ :: = α | x ⊆ y | φ ∨ φ | φ ∧ α | ∃xφ,

where α ∈ FO.

Theorem 30. MC(φ) is in NL for every φ ∈ FO(⊆)w.

Proof. By an easy induction we see that MSM(φ) is in NL for every φ ∈ FO(⊆)w.
The claim follows now from Lemma 25.

Vice versa, to show that each NL property of ordered models can be
expressed in FO(⊆)w, it suffices to show that TC translates to FO(⊆)w over
ordered models.

Theorem 31. Over finite ordered models, TC ≤ FO(⊆)w.

Proof. By Theorem 9 we may assume without loss of generality that any TC
sentence φ is of the form [TCx,yα(x, y)](min,max) where x and y are n-ary
sequences of variables. We next define an equivalent FO(⊆)w sentence φ′. For
two tuples of variables x and y of the same length, we write x < y as a shorthand
for the formula expressing that x is less than y in the induced lexicographic
ordering, and x = y for the conjunction expressing that x and y are pointwise
identical. The sentence φ′ is given as follows:

φ′ := ∃xytxty(ψ1 ∧ ψ2 ∧ ψ3 ∧ ψ4) (1)

where

– ψ1 := yty ⊆ xtx,
– ψ2 := (tx < max ∧ tx < ty ∧ α(x, y)) ∨ (tx = max ∧ ty = min),
– ψ3 := ¬tx = min ∨ x = min, and
– ψ4 := ¬tx = max ∨ x = max.

Observe that in (1) the tuple tx can be thought of as a counter which indicates
an upper bound for the α-path distance of x from min.

Assuming A |= φ′, we find a non-empty team X such that A |=X ψ1 ∧
ψ2 ∧ ψ3 ∧ ψ4. Now, A |=X ψ1 ∧ ψ2 entails that there is an assignment s ∈ X
mapping tx to min, and A |=X ψ3 implies that s maps x to min, too. Then
A |=X ψ1 ∧ ψ2 entails that there is an α-path from min to s′(x) for some s′ ∈ X
with s′(tx) = max. Lastly, by A |=X ψ4 it follows that s′(x) = max which shows
that [TCx,yα(x, y)](min,max).

Assume then that [TCx,yα(x, y)](min,max), that is, there is an α-path
v1, . . . , vk where v1 = min and vk = max. We may assume that there are no
cycles in the path. Let ai denote the ith element in the lexicographic order-
ing of An. We let X = {s1, . . . , sk} be such that (x, y, tx, ty) is mapped to
(vi, vi+1, ai, ai+1) by si, for i = 1, . . . , k − 2, to (vk−1, vk, ak−1,max) by sk−1,
and to (vk, v1,max,min) by sk. It is straightforward to verify that A |=X

ψ1 ∧ ψ2 ∧ ψ3 ∧ ψ4 from which it follows that A |= φ′. ��
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It now follows by the above two theorems and Theorem9 that FO(⊆)w cap-
tures NL.

Theorem 32. A class C of finite ordered models is in NL iff it can be defined
in FO(⊆)w.

7 Conclusion

We have studied the complexity of inclusion logic from the vantage point of
two computational problems: the maximal subteam membership and the model
checking problems for fixed inclusion logic formulae. We gave a complete charac-
terization for the former in terms of arbitrary conjunctions/disjunctions of unary
inclusion atoms. In particular, we showed that maximal subteam membership
is P-complete for any conjunction of unary inclusion atoms, provided that the
conjunction contains two non-trivial atoms that are not inverses of each other.
Using these results we characterized the complexity of model checking for several
quantifier-free inclusion logic formulae. We leave it for future research to address
the complexity of quantifier-free inclusion logic formulae that involve inclusion
atoms of higher arity and both disjunctions and conjunctions.

Assuming the presence of quantifiers we presented a simple universally quan-
tified formula that has P-complete maximal subteam membership problem.
Finally, we defined a fragment of inclusion logic, obtained by restricting the scope
of conjunction and universal quantification, that captures non-deterministic log-
arithmic space over finite ordered models.

Acknowledgements. We are grateful to Phokion Kolaitis, who raised the questions
on the complexity of quantifier-free formulas of inclusion logic in a private discussion
with the second author in 2016.
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