
Rosalie Iemhoff
Michael Moortgat
Ruy de Queiroz (Eds.)

 123

LN
CS

 1
15

41

26th International Workshop, WoLLIC 2019
Utrecht, The Netherlands, July 2–5, 2019
Proceedings

Logic, Language,
Information,
and Computation

Lecture Notes in Computer Science 11541

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board Members

David Hutchison, UK
Josef Kittler, UK
Friedemann Mattern, Switzerland
Moni Naor, Israel
Bernhard Steffen, Germany
Doug Tygar, USA

Takeo Kanade, USA
Jon M. Kleinberg, USA
John C. Mitchell, USA
C. Pandu Rangan, India
Demetri Terzopoulos, USA

FoLLI Publications on Logic, Language and Information
Subline of Lectures Notes in Computer Science

Subline Editors-in-Chief

Valentin Goranko, Stockholm University, Sweden

Michael Moortgat, Utrecht University, The Netherlands

Subline Area Editors

Nick Bezhanishvili, University of Amsterdam, The Netherlands
Anuj Dawar, University of Cambridge, UK
Philippe de Groote, Inria Nancy, France
Gerhard Jäger, University of Tübingen, Germany
Fenrong Liu, Tsinghua University, Beijing, China
Eric Pacuit, University of Maryland, USA
Ruy de Queiroz, Universidade Federal de Pernambuco, Brazil
Ram Ramanujam, Institute of Mathematical Sciences, Chennai, India

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Rosalie Iemhoff • Michael Moortgat •

Ruy de Queiroz (Eds.)

Logic, Language,
Information,
and Computation
26th International Workshop, WoLLIC 2019
Utrecht, The Netherlands, July 2–5, 2019
Proceedings

123

Editors
Rosalie Iemhoff
Department of Philosophy and Religious
Studies
Utrecht University
Utrecht, The Netherlands

Michael Moortgat
Utrecht Institute of Linguistics OTS
Utrecht University
Utrecht, The Netherlands

Ruy de Queiroz
Centro de Informática
Universidade Federal de Pernambuco
(UFPE)
Recife, Brazil

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-662-59532-9 ISBN 978-3-662-59533-6 (eBook)
https://doi.org/10.1007/978-3-662-59533-6

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer-Verlag GmbH Germany, part of Springer Nature 2019, corrected publication 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer-Verlag GmbH, DE
part of Springer Nature
The registered company address is: Heidelberger Platz 3, 14197 Berlin, Germany

https://doi.org/10.1007/978-3-662-59533-6

Preface

This volume contains the papers presented at the 26th Workshop on Logic, Language,
Information, and Computation (WoLLIC 2019) held during July 2–5, 2019, at Utrecht
University, The Netherlands. The WoLLIC series of workshops started in 1994 with
the aim of fostering interdisciplinary research in pure and applied logic. The idea is to
have a forum that is large enough in the number of possible interactions between logic
and the sciences related to information and computation, and yet is small enough to
allow for concrete and useful interaction among participants.

There were 60 submissions. Each submission was reviewed by at least two Program
Committee members, with additional reviewers in the case of diverging scores. The
committee decided to accept 41 papers; one paper was subsequently withdrawn. The
program also included six invited lectures by Lev Beklemishev (Steklov Institute),
Raffaella Bernardi (University of Trento), Marta Bílková (Czech Academy of Sci-
ences), Johan Bos (University of Groningen), George Metcalfe (University of Bern),
and Reinhard Muskens (University of Tilburg). The invited speakers were shared by
two satellite workshops organized in conjunction with WoLLIC: Proof Theory in Logic
(July 1–2, 2019, organizer R. Iemhoff) and Compositionality in Formal and Distri-
butional Models of Natural Language Semantics (July 6 2019, organizer M. Moortgat).

In a special session during WoLLIC 2019, a short movie was screened in remem-
brance of the 85th anniversary of the award of a doctorate in mathematics to Paul Erdös
(March 26, 1913 to September 20, 1996), a renowned Hungarian mathematician
considered to be one of the most prolific mathematicians and producers of mathe-
matical conjectures of the 20th century: Erdös 100, a 30-minute video prepared for the
centennial celebration in 2013 of Paul Erdös’s birth, directed by George Paul Csicsery
(Zala Films).

We would very much like to thank all Program Committee members and external
reviewers for the work they put into reviewing the submissions. The help provided by
the EasyChair system created by Andrei Vorokonkov is gratefully acknowledged.
Finally, we would like to acknowledge the support of the Netherlands Organisation for
Scientific Research NWO (projects 639.073.807 and 360-89-070) and of the Faculty of
Humanities at Utrecht University, and the scientific sponsorship of the following
organizations: Interest Group in Pure and Applied Logics (IGPL), The Association for
Logic, Language and Information (FoLLI), Association for Symbolic Logic (ASL),
European Association for Theoretical Computer Science (EATCS), European Asso-
ciation for Computer Science Logic (EACSL), Sociedade Brasileira de Computação
(SBC) and Sociedade Brasileira de Lógica (SBL).

July 2019 Rosalie Iemhoff
Michael Moortgat
Ruy de Queiroz

Organization

Program Committee

Raffaella Bernardi University of Trento, Italy
Nick Bezhanishvili ILLC, University of Amsterdam, The Netherlands
Ivano Ciardelli Ludwig Maximilian University of Munich, Germany
Philippe de Groote Inria, France
Valeria de Paiva Samsung Research America and University

of Birmingham, UK
Ruy De Queiroz Universidade Federal de Pernambuco, Brazil
Giuseppe Greco Utrecht University, The Netherlands
Rosalie Iemhoff (Chair) Utrecht University, The Netherlands
Roberto Maieli Roma Tre University, Italy
Michael Moortgat (Chair) Utrecht University, The Netherlands
Richard Moot CNRS (LIRMM) and University of Montpellier, France
Larry Moss Indiana University Bloomington, USA
Sara Negri University of Helsinki, Finland
Carlo Nicolai University of Oxford, UK
Alessandra Palmigiano Technical University of Delft, The Netherlands
Yde Venema ILLC, University of Amsterdam, The Netherlands
Fan Yang University of Helsinki, Finland

Local Organising Committee

Giuseppe Greco (Chair) Utrecht University
Iris van der Giessen

(Webmaster)
Utrecht University

Sam van Gool Utrecht University
Rosalie Iemhoff Utrecht University
Raheleh Jalali Czech Academy of Sciences
Michael Moortgat Utrecht University
Amir Tabatabai Utrecht University

Additional Reviewers

Acclavio, Matteo
Aguzzoli, Stefano
Badia, Guillermo
Barenboim, Leonid
Beklemishev, Lev
Bezhanishvili, Guram

Bimbo, Katalin
Buszkowski, Wojciech
Chen, Jinsheng
Dorais, François
Farooque, Mahfuza
Fernández Gil, Oliver

Flaminio, Tommaso
Fujiwara, Makoto
Fussner, Wesley
Gabelaia, David
Galliani, Pietro
Gattinger, Malvin
Gore, Rajeev
Goubault-Larrecq, Jean
Grilletti, Gianluca
Grädel, Erich
Guerrieri, Giulio
Kanazawa, Makoto
Kopczynski, Eryk
Kulikov, Vadim
Kuznets, Roman
Lange, Martin
Leigh, Graham
Liang, Fei
Licata, Daniel R.
Lück, Martin
Ma, Minghui
Maffezioli, Paolo
Marcone, Alberto
Marcos, Joao
Mummert, Carl
Muskens, Reinhard
Nordvall Forsberg, Fredrik
Norrish, Michael
Oliva, Paulo
Orlandelli, Eugenio

Pagani, Michele
Pakhomov, Fedor
Pavlovic, Edi
Pedicini, Marco
Peltier, Nicolas
Pistone, Paolo
Poggiolesi, Francesca
Powell, Thomas
Protopopescu, Tudor
Puncochar, Vit
Ramos, Marcus
Rijke, Egbert
Rivieccio, Umberto
Salvati, Sylvain
Sano, Katsuhiko
Santocanale, Luigi
Standefer, Shawn
Sternagel, Christian
Straßburger, Lutz
Tedder, Andrew
Tzimoulis, Apostolos
Ugolini, Sara
Uustalu, Tarmo
Valentín, Oriol
Valota, Diego
van Ditmarsch, Hans
van Gool, Sam
Wang, Yanjing
Zohar, Yoni

viii Organization

Abstracts of Invited Talks

Reflection Algebras for Theories of Iterated
Truth Definitions

Lev Beklemishev

Steklov Mathematical Institute of Russian Academy of Sciences
lbekl@yandex.ru

We consider extensions of the language of Peano arithmetic by iterated truth defini-
tions satisfying uniform Tarskian biconditionals. Given a first-order language L con-
taining that of arithmetic one can add a new symbol T for a truth predicate and
postulate the equivalence of each formula /ðxÞ of L with Tðp/ðxÞqÞ where p/ðxÞq
denotes the Gödel number of the result of substituting numeral for x into /. This
extension procedure can be repeated transfinitely many times.

Without further axioms, such theories are known to be weak conservative exten-
sions of the original system of arithmetic. Much stronger systems, however, are
obtained by adding either induction axioms or reflection axioms on top of them.
Theories of this kind can interpret some well-known predicatively reducible fragments
of second-order arithmetic such as iterated arithmetical comprehension. Feferman and
Schütte studied related systems of ramified analysis. They used their systems to
explicate the intuitive idea of a predicative proof and determined the ordinal C0 as the
bound to transfinite induction provable in predicative systems.

We obtain sharp results on the proof-theoretic strength of these systems using
methods of provability logic, in particular, we calculate their proof-theoretic ordinals
and conservativity spectra. We consider the semilattice of axiomatizable extensions of
a basic theory of iterated truth definitions. We enrich the structure of this semilattice by
suitable reflection operators and isolate the corresponding strictly positive modal logic
(reflection calculus) axiomatizing the identities of this structure. The variable-free
fragment of the logic provides a canonical ordinal notation system for the class
of theories under investigation. This setup allows us to obtain in a technically smooth
way conservativity relationships for iterated reflection principles of various strength
which provide a sharp proof-theoretic analysis of our systems.

Joint work with F. Pakhomov and E. Kolmakov. This work is supported by a grant
of the Russian Science Foundation (project No. 16-11-10252).

Jointly Learning to See, Ask, and Guess

Raffaella Bernardi

University of Trento
raffaella.bernardi@unitn.it

In our daily use of natural language, we constantly profit of our strong reasoning skills
to interpret utterances we hear or read. At times we exploit implicit associations we
have learned between words or between events, at others we explicitly think about a
problem and follow the reasoning steps carefully and slowly. We could say that the
latter are the realm of logical approaches based on symbolic representations, whereas
the former are better modelled by statistical models, like Neural Networks (NNs), based
on continuous representations.

My talk will focus on how NNs can learn to be engaged in a conversation on visual
content. Specifically, I will present our work on Visual Dialogue (VD) taking as
example two tasks oriented VDs, GuessWhat?! [2] and GuessWhich [1]. In these tasks,
two NN agents interact to each other so that one of the two (the Questioner), by asking
questions to the other (the Answerer), can guess which object the Answerer has in mind
among all the entities in a given image (GuessWhat?!) or which image the Answerer
sees among several ones seen by the Questioner at end of the dialogue (GuessWhich).

I will present our Questioner model: it encodes both visual and textual inputs,
produces a multimodal representation, generates natural language questions, under-
stands the Answerer’s responses and guesses the object/image. I will show how
training the NN agent’s modules (Question generator and Guesser) jointly and coop-
eratively help the model performance and increase the quality of the dialogues. In
particular, I will compare our model’s dialogues with those of VD models which
exploit much more complex learning paradigms, like Reinforcement Learning, show-
ing that more complex machine learning methods do not necessarily correspond to
better dialogue quality or even better quantitative performance.

The talk is based on [3] and other work available at https://vista-unitn-uva.github.io/.

References

1. Das, A., Kottur, S., Moura, J.M., Lee, S., Batra, D.: Learning cooperative visual dialog agents
with deep reinforcement learning. In: International Conference on Computer Vision (ICCV)
(2017)

2. de Vries, H., Strub, F., Chandar, S., Pietquin, O., Larochelle, H., Courville, A.C.: Guess-
what?! Visual object discovery through multi-modal dialogue. In: Conference on Computer
Vision and Pattern Recognition (CVPR) (2017)

3. Shekhar, R., et al.: Beyond task success: a closer look at jointly learning to see, ask, and
guesswhat. In: NAACL (2019)

https://vista-unitn-uva.github.io/

On Infinitary Proof Theory of Logics
of Information and Common Belief

Marta Bílková

Institute of Computer Science, the Czech Academy of Sciences
bilkova@cs.cas.cz

Abstract. Recently there has been a growing interest in applying non-classically
based modal logics in the context of logics for agency and social behaviour. In
particular, substructural or other information-based modal logics of knowledge
and belief, or similar versions of PDL, have been designed. While basic modal
extensions of substructural logics on one side, and classically based logics of
common belief and other fixed point modalities, are relatively well understood
when it comes to completeness and proof theory, with logics we have in mind it
is not so.
In this talk, we will mainly concentrate on logics of common belief. We will

consider two natural ways of axiomatizing the common belief over a basic
modal logic (Belnap-Dunn logic or distributive substructural logics, extended by
normal diamond and box modalities): one finitary, which is the standard
Kozen’s axiomatization, and the other infinitary, with an infinitary rule replacing
the induction rule and using finite approximations of the fixed points. The
finitary axiomatization is used to obtain, using an algebraic (and coalgebraic)
insight, the soundness of the infinitary rule.
We will then concentrate on the infinitary part of the story and draw a general,

duality based picture connecting the syntax and poset-based frame semantics
of the infinitary axiomatizations, including a completeness argument based on a
canonical model construction. Here, the infintary case differs from the usual
finitary account of (non-classical) modal logics: in particular, one needs to use
an appropriate version of Lindenbaum or Belnap Pair-Extension lemma.
Finally, we use the above insight to discuss proof theory of such logics within

the framework of display calculi.

Interlingual Meaning Representations

Johan Bos

University of Groningen
johan.bos@rug.nl

What is meaning, and how can it be captured in a concrete representation? This is a
challenging question, given the fact that meanings enjoy a large degree of abstraction.
A question that directly follows from this is to what extent meanings (or if you prefer:
representations of meaning), need to be language neutral. Most of the current
large-scale meaning representations employed in natural language processing are tai-
lored to specific object languages, often English [3–5] because it has been the domi-
nating language of study in computational linguistics (but this is slowly changing,
fortunately). This is completely understandable from a short-term, practical perspec-
tive. But from a theoretical point of view, this doesn’t make sense at all (just think
about how translations from one language into another preserve meaning). A natural
question to ask, then, is how far we can stretch interlingual meaning representations.
What is required to achieve this—what resources and (linguistic) knowledge do we
need? What challenges are we facing? What role can and must logic play?

In most logical approaches to semantics, a part of the meaning representation is, by
its very nature, independent of the object language: the logical symbols used to express
negation, conjunction, disjunction, and quantification. The non-logical symbols are
usually represented by strings resembling words of a specific language (again, usually
English). This is a tradition started by Montague [11], and followed by many others
[7, 8]. So logic only gives a partial guidance to our endeavour of making meaning
representations more interlingual. Should we expect more from logic? What is a good
balance between logical and non-logical ingredients in a meaning representation? Let
us look at a concrete example.

The Parallel Meaning Bank, PMB [1], is a semantically annotated corpus for four
languages (English, Dutch, German, and Italian). It comprises translations between
these languages, and under the assumption that translations preserve meaning, the PMB
is the perfect environment to investigate interlingual meaning representations. The
meaning representations in the PMB combine the logical aspects of Discourse Rep-
resentation Theory [9] with lexical resources including WordNet [6], VerbNet [10], and
FrameNet [2]. The PMB data demonstrates that even closely related languages behave
differently in (for instance) marking definiteness, realisation of verbal arguments, and
multi-word expressions. Despite these new challenges, I will argue that providing
interlingual meaning representations is a welcome direction not only in computational,
but also in formal approaches to meaning.

References

1. Abzianidze, L., et al.: The parallel meaning bank: towards a multilingual corpus of transla-
tions annotated with compositional meaning representations. In: Proceedings of the 15th
Conference of the European Chapter of the Association for Computational Linguistics,
pp. 242–247, Valencia, Spain (2017)

2. Baker, C.F., Fillmore, C.J., Lowe, J.B.: The Berkeley FrameNet project. In: 36th Annual
Meeting of the Association for Computational Linguistics and 17th International Conference
on Computational Linguistics, Proceedings of the Conference, pp. 86–90. Université de
Montréal, Montreal (1998)

3. Banarescu, L., et al.: Abstract meaning representation for sembanking. In: Proceedings of the
7th Linguistic Annotation Workshop and Interoperability with Discourse, pp. 178–186, Sofia,
Bulgaria, August 2013. http://www.aclweb.org/anthology/W13-2322

4. Bos, J., Basile, V., Evang, K., Venhuizen, N., Bjerva, J.: The groningen meaning bank. In:
Ide, N., Pustejovsky, J. (eds.) Handbook of Linguistic Annotation, vol. 2, pp. 463–496.
Springer, Dordrecht (2017). https://doi.org/10.1007/978-94-024-0881-2_18

5. Butler, A.: The Semantics of Grammatical Dependencies, vol. 23. Emerald Group Publishing
Limited (2010)

6. Fellbaum, C. (ed.): WordNet. An Electronic Lexical Database. The MIT Press (1998)
7. Heim, I.: The Semantics of Definite and Indefinite Noun Phrases. Ph.D. thesis, University of

Massachusetts (1982)
8. Kamp, H.: A theory of truth and semantic representation. In: Groenendijk, J., Janssen, T.M.,

Stokhof, M. (eds.) Truth, Interpretation and Information, pp. 1–41. FORIS, Dordrecht,
Holland/Cinnaminson, USA (1984)

9. Kamp, H., Reyle, U.: From Discourse to Logic; An Introduction to Modeltheoretic Semantics
of Natural Language, Formal Logic and DRT. Kluwer, Dordrecht (1993)

10. Kipper, K., Korhonen, A., Ryant, N., Palmer, M.: A large-scale classification of English
verbs. Lang. Resour. Eval. 42(1), 21–40 (2008)

11. Montague, R.: The proper treatment of quantification in ordinary English. In: Hintikka, J.,
Moravcsik, J., Suppes, P. (eds.) Approaches to Natural Language, pp. 221–242. Reidel,
Dordrecht (1973)

Interlingual Meaning Representations xv

http://www.aclweb.org/anthology/W13-2322
https://doi.org/10.1007/978-94-024-0881-2_18

Proof Theory for Group-Like Structures

George Metcalfe

Mathematical Institute, University of Bern, Switzerland
george.metcalfe@math.unibe.ch

A central goal of structural proof theory is the development of analytic proof systems
for logics and classes of structures that can be used to investigate their algorithmic and
model-theoretic properties, notably, decidability and complexity bounds, (uniform)
interpolation and amalgamation, and admissible rules and generation by subclasses.
Although this endeavour has been successful for broad families of non-classical logics,
it hits a roadblock when confronted with some of the most studied structures in
mathematics, in particular, structures related in some way to groups. Not only is this an
unfortunate limitation on the scope of proof-theoretic methods for tackling problems in
algebra, these structures also serve as semantics for a wide range of substructural and
many-valued logics.

In this talk, I will explore some recent attempts to address these limitations. First, I
will explain how proof systems for classes of ordered groups introduced in [3, 5] relate
to total orders on free groups [1, 2] and can be used to establish various decidability,
complexity, and generation results. In the second part of the talk, I will consider how
these results for ordered groups can be extended, via a Glivenko-style theorem, to
classes of residuated lattices with close connections to BCI-algebras, Dubreil-Jacotin
semigroups, and Casari’s comparative logic [4]. Finally, I will describe some of the
many open problems for this topic.

References

1. Colacito, A., Metcalfe, G.: Ordering groups and validity in lattice-ordered groups. J. Pure
Appl. Algebra (to appear)

2. Colacito, A., Metcalfe, G.: Proof theory and ordered groups. In: Kennedy, J., de Queiroz, R.
(eds.) WoLLIC 2017. LNCS, vol. 10388, pp. 80–91. Springer, Heidelberg (2017). https://doi.
org/10.1007/978-3-662-55386-2_6

3. Galatos, N., Metcalfe, G.: Proof theory for lattice-ordered groups. Ann. Pure Appl. Log.
8(167), 707–724 (2016)

4. Gil-Férez, J., Lauridsen, F.M., Metcalfe, G.: Self-cancellative residuated lattices (2019).
http://arxiv.org/abs/1902.08144

5. Metcalfe, G., Olivetti, N., Gabbay, D.: Sequent and hypersequent calculi for abelian and
Łukasiewicz logics. ACM Trans. Comput. Log. 6(3), 578–613 (2005)

https://doi.org/10.1007/978-3-662-55386-2_6
https://doi.org/10.1007/978-3-662-55386-2_6
http://arxiv.org/abs/1902.08144

Logic, Lambdas, Vectors, and Concepts

Reinhard Muskens

Tilburg University
r.a.muskens@gmail.com
http://freevariable.nl

In this talk I will consider a range of approaches to modelling natural language
meaning and explore possibilities to combine them. One approach I will consider is the
one that I am most familiar with. It stems from Richard Montague’s [4] observation that
natural languages and logical languages can be treated on a par. Let’s call this the
logical approach. Another approach will be the distributional one, characterised by
Firth’s dictum that “you shall know a word by the company it keeps”. A third category
of approaches can be called conceptual. It includes forms of semantics that build on
Peter Gärdenfors’s [2] theory of “Conceptual Spaces”, but also theories such as the one
in Löbner [3], which is based on Barsalou’s [1] frames.

Can these theories be combined? In particular, can work in the logical tradition be
combined with any of the other theories? This would possibly be advantageous, as the
virtues of the logical approach and any of the other approaches tend to be comple-
mentary. If a combined theory could be made to work, we could potentially profit from
the best of two worlds.

One virtue that the logical tradition can bring to other approaches is ease of
composition. In the talk I will emphasise that logical semantics in fact consists of two
components. The first is the use of the (simply) typed lambda calculus as a composition
engine. The second is logic in a more narrow sense, some theory of operators such as
:. _, ^, 8, 9, h, }, and friends. It is entirely possible to have the first component
without having the second and in fact in joint work with Mehrnoosh Sadrzadeh
(e.g. [5]) we have used the lambda calculus to provide phrases with vector-based
meanings on the basis of vector-based word meanings. The typed lambda calculus is a
general theory of typed functions and in itself it is quite neutral with respect to the kind
of functions it is applied to. It is also the case that many theories of syntax have a
simple interface with semantics via lambdas. This means that once a semantic theory
has been provided with a compositional mechanism via the lambda calculus, it will also
connect with those syntactic formalisms.

I will explore to what extent this mechanism could also be put to use in the
approaches to semantics I have dubbed “conceptual” and what may be good ways to
combine the resulting compositional conceptual semantics with a logical semantics
based on truth-conditions.

References

1. Barsalou, L.: Perceptual symbol systems. Behav. Brain Sci. 22, 577–660 (1999)
2. Gärdenfors, P.: Conceptual Spaces: The Geometry of Thought. MIT Press (2004)
3. Löbner, S.: Functional concepts and frames. In: Gamerschlag, T., Gerland, D., Osswald, R.,

Petersen, W. (eds.) Meaning, Frames, and Conceptual Representation, pp. 15–42. Düsseldorf
University Press, Düsseldorf (2015)

4. Montague, R.: The proper treatment of quantification in ordinary english. In: Hintikka, J.,
Moravcsik, J., Suppes, P. (eds.) Approaches to Natural Language, pp. 221–242. Reidel,
Dordrecht (1973). Reprinted in [6]

5. Sadrzadeh, M., Muskens, R.: Static and dynamic vector semantics for lambda calculus models
of natural language. J. Lang. Model. 6(2), 319–351 (2019)

6. Thomason, R. (ed.): Formal Philosophy, Selected Papers of Richard Montague. Yale
University Press (1974)

xviii R. Muskens

Contents

On Combinatorial Proofs for Logics of Relevance and Entailment. 1
Matteo Acclavio and Lutz Straßburger

An Infinitary Treatment of Full Mu-Calculus . 17
Bahareh Afshari, Gerhard Jäger, and Graham E. Leigh

Algebraic and Topological Semantics for Inquisitive Logic
via Choice-Free Duality . 35

Nick Bezhanishvili, Gianluca Grilletti, and Wesley H. Holliday

Rigid First-Order Hybrid Logic. 53
Patrick Blackburn, Manuel Martins, María Manzano,
and Antonia Huertas

The One-Variable Fragment of Corsi Logic . 70
Xavier Caicedo, George Metcalfe, Ricardo Rodríguez,
and Olim Tuyt

Analytic Calculi for Monadic PNmatrices. 84
Carlos Caleiro and Sérgio Marcelino

Non Normal Logics: Semantic Analysis and Proof Theory 99
Jinsheng Chen, Giuseppe Greco, Alessandra Palmigiano,
and Apostolos Tzimoulis

Modeling the Interaction of Computer Errors by Four-Valued
Contaminating Logics . 119

Roberto Ciuni, Thomas Macaulay Ferguson, and Damian Szmuc

Modelling Informational Entropy . 140
Willem Conradie, Andrew Craig, Alessandra Palmigiano,
and Nachoem M. Wijnberg

Hennessy-Milner Properties for (Modal) Bi-intuitionistic Logic 161
Jim de Groot and Dirk Pattinson

The McKinsey-Tarski Theorem for Topological Evidence Logics 177
Alexandru Baltag, Nick Bezhanishvili, and Saúl Fernández González

A Self-contained Provability Calculus for C0 . 195
David Fernández-Duque and Eduardo Hermo-Reyes

Descriptive Complexity of Deterministic Polylogarithmic Time. 208
Flavio Ferrarotti, Senén González, José María Turull Torres,
Jan Van den Bussche, and Jonni Virtema

A Representation Theorem for Finite Gödel Algebras with Operators 223
Tommaso Flaminio, Lluis Godo, and Ricardo O. Rodríguez

Bar Induction and Restricted Classical Logic . 236
Makoto Fujiwara

Uniform Labelled Calculi for Conditional and Counterfactual Logics. 248
Marianna Girlando, Sara Negri, and Giorgio Sbardolini

Bar-Hillel Theorem Mechanization in Coq . 264
Sergey Bozhko, Leyla Khatbullina, and Semyon Grigorev

Proof-Net as Graph, Taylor Expansion as Pullback 282
Giulio Guerrieri, Luc Pellissier, and Lorenzo Tortora de Falco

Complexity Thresholds in Inclusion Logic . 301
Miika Hannula and Lauri Hella

The Multiresolution Analysis of Flow Graphs. 323
Steve Huntsman

An Exponential Lower Bound for Proofs in Focused Calculi 342
Raheleh Jalali

The Complexity of Multiplicative-Additive Lambek Calculus:
25 Years Later . 356

Max Kanovich, Stepan Kuznetsov, and Andre Scedrov

L-Models and R-Models for Lambek Calculus Enriched with Additives
and the Multiplicative Unit. 373

Max Kanovich, Stepan Kuznetsov, and Andre Scedrov

Logics for First-Order Team Properties . 392
Juha Kontinen and Fan Yang

Modal Auxiliaries and Negation: A Type-Logical Account 415
Yusuke Kubota and Robert Levine

Subset Models for Justification Logic . 433
Eveline Lehmann and Thomas Studer

Algebraic Semantics for Quasi-Nelson Logic . 450
Fei Liang and Thiago Nascimento

xx Contents

A Case for Property-Type Semantics . 467
Kristina Liefke

Note on Globally Sound Analytic Calculi for Quantifier Macros 486
Matthias Baaz and Anela Lolic

Closure Ordinals of the Two-Way Modal l-Calculus. 498
Gian Carlo Milanese and Yde Venema

SIXTEEN3 in Light of Routley Stars . 516
Hitoshi Omori and Daniel Skurt

An Algorithmic Approach to the Existence of Ideal Objects
in Commutative Algebra . 533

Thomas Powell, Peter Schuster, and Franziskus Wiesnet

Reverse Mathematics and Computability Theory of Domain Theory 550
Sam Sanders

Cut Elimination for the Weak Modal Grzegorczyk Logic
via Non-well-Founded Proofs . 569

Yury Savateev and Daniyar Shamkanov

On First-Order Expressibility of Satisfiability in Submodels 584
Denis I. Saveliev

Substructural Propositional Dynamic Logics . 594
Igor Sedlár

Modal Logics of Finite Direct Powers of x Have the Finite
Model Property. 610

Ilya Shapirovsky

Knowledge Without Complete Certainty . 619
Hans van Ditmarsch and Louwe B. Kuijer

A Framework for Distributional Formal Semantics 633
Noortje J. Venhuizen, Petra Hendriks, Matthew W. Crocker,
and Harm Brouwer

Weak Conservativity . 647
Richard Zuber

Correction to: Algebraic and Topological Semantics for Inquisitive
Logic via Choice-Free Duality . C1

Nick Bezhanishvili, Gianluca Grilletti, and Wesley H. Holliday

Author Index . 661

Contents xxi

On Combinatorial Proofs for Logics
of Relevance and Entailment

Matteo Acclavio1(B) and Lutz Straßburger2(B)

1 Università Roma Tre, Rome, Italy
http://matteoacclavio.com/Math.html

2 Inria Saclay, Palaiseau, France
http://www.lix.polytechnique.fr/Labo/Lutz.Strassburger/

Abstract. Hughes’ combinatorial proofs give canonical representations
for classical logic proofs. In this paper we characterize classical combi-
natorial proofs which also represent valid proofs for relevant logic with
and without the mingle axiom. Moreover, we extend our syntax in order
to represent combinatorial proofs for the more restrictive framework of
entailment logic.

Keywords: Combinatorial proofs · Relevant logic · Entailment logic ·
Skew fibrations · Proof theory

1 Introduction

Combinatorial proofs have been conceived by Hughes [12] as a way to write
proofs for classical propositional logic without syntax. Informally speaking, a
combinatorial proof consists of two parts: first, a purely linear part, and second,
a part that handles duplication and erasure. More formally, the first part is
a variant of a proof net of multiplicative linear logic (MLL), and the second
part is given by a skew fibration (or equivalently, a contraction-weakening map)
from the cograph of the conclusion of the MLL proof net to the cograph of the
conclusion of the whole proof. For the sake of a concise presentation, the MLL
proof net is given as a cograph together with a perfect matching on the vertices
of that graph. An important point is that in order to represent correct proofs,
the proof nets have to obey a connectedness- and an acyclicity-condition.

To give an example, we show here the combinatorial proof of Pierce’s law
((a → b) → a) → a, which can be written in negation normal form (NNF) as
(ā _ b) _ ā) _ a:

(1)

c© Springer-Verlag GmbH Germany, part of Springer Nature 2019
R. Iemhoff et al. (Eds.): WoLLIC 2019, LNCS 11541, pp. 1–16, 2019.
https://doi.org/10.1007/978-3-662-59533-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-59533-6_1&domain=pdf
https://doi.org/10.1007/978-3-662-59533-6_1

2 M. Acclavio and L. Straßburger

On the left above, we have written the conclusion of the proof as formula, and
on the right as cograph, whose vertices are the atom occurrences of the formula,
and whose edges are depicted as regular (red) lines. The linear part of the proof
is given by the cograph determined by the four vertices and the regular (red)
edge in the upper half of the diagram. The perfect matching is indicated by the
bold (blue) edges. Finally, the downward arrows describe the skew fibration. In
our example there is one atom in the conclusion (the a) that is the image of
two vertices, indicating that it is the subject of a contraction in the proof. Then
there is an atom (the b) that is not the image of any vertex above, indication
that it is coming from a weakening in the proof.

Relevance logics have been studied by philosophers [2,3] to investigate when an
implication is relevant, i.e., uses all its premises. In particular, in relevance logic,
the implication A → (B → A) is rejected because the B is not used to draw the
conclusion A. In other words, we can no longer deduce A from A^B. Put in proof
theoretic terms, this corresponds to disallowing the weakening rule in a proof
system. Carrying this observation to our combinatorial proofs mentioned above,
this says that the skew fibration, that maps the linear part to the conclusion,
must be surjective. The first contribution of this paper is to show that the
converse also holds, provided that the surjection is with respect to the vertices
and the edges. We will call such a skew fibration relevant. Then a classical
combinatorial proof is a proof of relevance logic if and only if its skew fibration
is relevant.

The mingle axiom is in its original form A → (A → A) [2, p. 97]. In the
implication-negation fragment of relevant logic, it can be derived from the more
primitive form A → (B → (B̄ → A)) (see also [2, p. 148]), which is equivalent to
(A^B) → (A_B), which is known as mix in the linear logic community. When
mix is added to MLL, the connectedness-condition has to be dropped. This leads
to the second result of this paper: adding mingle to relevance logic corresponds
to dropping the connectedness condition from the combinatorial proofs.

Interestingly, Hughes’ original version of combinatorial proofs included mix
(i.e., there was no connectedness-condition). If weakening ⊥ → A is present,
then mix is derivable, so that the presence or absence of mix does not have
an effect on provability. However, when weakening is absent, as it is the case
with many substructural logics, then mix/mingle has an impact on provability,
and for this reason, we present combinatorial proofs in their basic form without
mix, and follow the presentation in [18], using the notion of RB-cographs due to
Retoré [16].

Entailment logic is a further refinement of relevance logic, insisting not only
on the relevance of premises but also on their necessity (in the sense of the modal
logic S4)1. More precisely, the logic rejects the implication A → ((A → A) → A).
In terms of the sequent calculus, this means that the two sequents

1 We do not discuss the philosophical considerations leading to this logic. For this, the
reader is referred to the Book by Anderson and Belnap [2]. We take here the logic
as given and discuss its proofs.

On Combinatorial Proofs for Logics of Relevance and Entailment 3

Γ � A → B and Γ,A � B (2)

are only equivalent if all formulas in the context Γ are of shape C → D for some
C and D. If we write A → B as Ā_B, then _ is not associative, as the rejected
A → ((A → A) → A) would be written as Ā _ ((A ^ Ā) _ A), and the accepted
(A → A) → (A → A) as (A ^ Ā) _ (Ā _ A). The consequence of this is that in
combinatorial proofs we can no longer use simple cographs to encode formulas,
as these identify formulas up to associativity and commutativity of ^ and _.
We solve this problem by putting weights on the edges in the graphs. This leads
us to our third contribution of this paper: combinatorial proofs for entailment
logic.

Outline of the Paper. In this paper we study the implication-negation-
fragment of relevance logic. For this, we recall in Sect. 2 the corresponding
sequent calculi, following the presentation in [14] and [5]. Then, in Sect. 3 we
introduce another set of sequent calculi, working with formulas in NNF, and
we show the equivalence of the two presentations. The NNF presentation allows
us to reuse standard results from linear logic. In Sects. 4 and 5, we introduce
cographs and skew fibrations, so that in Sect. 6 we can finally define combinato-
rial proofs for relevance logic with and without mingle. Then, in Sects. 7 and 8
we extend our construction to the logic of entailment.

2 Sequent Calculus, Part I

In this section we recall the sequent calculi for the implication-negation-fragment
of relevance logic (denoted by R�̃), of relevance logic with mingle (denoted by
RM�̃), of entailment logic (denoted by E�̃), and classical propositional logic
(denoted by CL�̃).

For this, we consider the class I of formulas (denoted by A,B, . . .) generated
by a countable set A = {a, b, . . . } of propositional variables and the connectives
→ and (̄·) by the following grammar:

A,B ::= a | Ā | A → B (3)

A sequent Γ in I is a multiset of occurrence of formulas, written as list and
separated by commas: Γ = A1, . . . , An. We denote by Γ � a sequent of formulas
in I of the form A1 → B1, . . . , An → Bn, and we write Γ for the sequent obtained
from Γ by negating all its formulas, i.e., if Γ = A1, . . . , An then Γ = Ā1, . . . , Ān.

In Fig. 1 we give the standard sequent systems for the logics E�̃,R�̃,RM�̃,
and CL�̃ as given in [5,14].

Theorem 2.1. A formula is a theorem of the logic E�̃ (resp. R�̃,RM�̃, CL�̃)
iff it is derivable in the sequent calculus LE�̃, (resp. LR�̃, LRM�̃, LK�̃) [14].

Observe that the system LE�̃ in Fig. 1 does contain the cut-rule, whereas the
other systems are cut-free. The reason is that due to the form of the EAX, the
cut cannot be eliminated.

In order to obtain cut-free systems for all four logics, we move to the negation
normal form in the next section.

4 M. Acclavio and L. Straßburger

Fig. 1. Rules for the standard sequent systems for the logics E�̃, R�̃, RM�̃, and CL�̃.

3 Sequent Calculus, Part II

In this section we consider formulas in negation normal form (NNF), i.e., the
class L of formulas (also denoted by A,B, . . .) generated by the countable set
A = {a, b, . . . } of propositional variables, their duals Ā = {ā, b̄, . . . }, and the
binary connectives ^ and _, via the following grammar:

A,B ::= a | ā | A ^ B | A _ B (4)

An atom is a formula a or ā with a ∈ A. As before, a sequent Γ is a multiset of
formulas separated by comma. We define negation as a function on all formulas
in NNF via the De Morgan laws:

¯̄a = a A ^ B = Ā _ B̄ A _ B = Ā ^ B̄ (5)

There is a correspondence between the class I defined in the previous section
and the class L of formulas in NNF, defined via the two translations [·]L : I → L
and [·]I : L → I:

[a]L = a, [Ā]L = [A]L, [A → B]L = [A]L _ [B]L (6)

and

[a]I = a, [ā]I = ā, [A _ B]I = [A]I → [B]I , [A ^ B]I = [A]I → [B]I (7)

Proposition 3.1. If A is a formula in NNF, then [[A]I]L = A.

The proof is straightforward, but in general we do not have [[B]L]I = B for
formulas in I, since we can have arbitrary nestings of negation and [¯̄B]L = [B]L.
For this reason, we use here the NNF notation, as it is more concise and carries
less redundancy.

We can use this correspondence to translate the sequent systems in Fig. 1
into the NNF notation. We go one step further and give cut-free systems LE′,
LR′, LRM′, and LK. They are given in Fig. 2, where we denote by Γ^ a sequent
of the form A1 ^ B1, . . . , An ^ Bn (i.e., all formulas in Γ^ are conjunctions).
That figure also defines the linear logic systems MLL, MLLmix, and MLLE that
we will need in the course of this paper.

On Combinatorial Proofs for Logics of Relevance and Entailment 5

Fig. 2. The cut-free sequent systems for formulas in NNF

Fig. 3. The deep rules for medial, contraction, atomic contraction and weakening.

We make also use of the deep inference rules in Fig. 3 (see also [6,10]), where
a context Γ{ } is a sequent or a formula, where a hole { } takes the place of an
atom. We write Γ{A} when we replace the hole with a formula A.

If S is a sequent system and Γ a sequent, we write
S

Γ if Γ is derivable
in S. Moreover, if S is a set of inference rules with exactly one premise, we write

Γ ′ S
Γ whenever there is a derivation from Γ ′ to Γ using only rules in S.

Lemma 3.2. If Γ is a sequent in L, then

LE′Y{cut}
Γ ⇐⇒ LE �̃

[Γ]I

Proof. The proof follows the definitions of the two translations [·]I and [·]L. In
fact, C- and cut-rules are the same in the two systems and →-rule is equivalent

to _E-rule. Moreover, it s trivial to prove by induction that
LE′

A, Ā. Finally:

and

�	

6 M. Acclavio and L. Straßburger

One important property of the systems in Fig. 2 is cut admissibility.

Theorem 3.3 (Cut admissibility). Let Γ be a sequent in L, and let S be one
of the systems MLL,MLLmix,MLLE, LE

′, LR′, LRM′, LK. Then

SY{cut}
Γ ⇐⇒ S

Γ

Proof. The proof is a standard cut permutation argument. For LK it can already
be found in [9] and for all other systems it is the same proof, observing that no
reduction step introduces a rule that is not present in the system. �	

The following lemma relates the mix-rule from linear logic to the mingle
axiom rule mAX:

Lemma 3.4. Let S be a sequent system, if Γ is a sequent in L then

SY{mAX}
F ⇐⇒

SY{mix}
F

Proof. First, mAX can be derived using mix:

Conversely, if Γ,Δ is the conclusion of a mix inference,

it suffices to replace one axiom of the derivation of Γ and one axiom of the
derivation of Δ by a single mAX, that is

�	
This is enough to show the equivalence between the systems in Figs. 1 and 2.

On Combinatorial Proofs for Logics of Relevance and Entailment 7

Theorem 3.5. If Γ is a sequent in L, then

LE′

Γ ⇐⇒ LE �̃
[Γ]I

LR′

Γ ⇐⇒ LR �̃
[Γ]I

LRM′

Γ ⇐⇒ LRM �̃
[Γ]I

LK
Γ ⇐⇒ LK �̃

[Γ]I

Proof. This follows from Lemma 3.2, Theorem 3.3, and Lemma 3.4, using the
definitions of [·]I and [·]L. �	

Finally, the most important reason to use the systems in Fig. 2 instead of the
ones in Fig. 1 is the following decomposition theorem:

Theorem 3.6. If Γ is a sequent in L, then

LE′

Γ ⇐⇒ MLLE

Γ ′ C↓

Γ
LR′

Γ ⇐⇒ MLL
Γ ′ C↓

Γ
LRM′

Γ ⇐⇒ MLLmix

Γ ′ C↓

Γ
LK

Γ ⇐⇒ MLL
Γ ′ C↓,W↓

Γ

Proof. The proof is given by rules permutation. It suffices to consider all W-
and C-rules as their deep counterpart and move their instance as down as pos-
sible in the derivation. Conversely, it suffices to move up all occurrences of
C↓ and W↓ until the context is shallow and then replace them by C and W
instances. This permutation works because for each instance of C↓ or W↓ that
occurs in the proof, the principle formula is a subformula of the conclusion
of the proof. �	

4 Cographs

A graph is a set VG vertices and a set G" of edges, which are two-

element subsets of VG . We write v
G"w for {v, w} ∈ G", and we write v

G

"w if

{v, w} /∈ G". We omit the index/superscript G when it is clear from the context.
When drawing a graph we use v w for v"w. If v
"w and v
= w we either
draw no edge or use v w.

A cograph G is a P4-free graph, i.e. a graph G with no u, v, y, z ∈ V such that
their induced subgraph has the following shape:2

For two disjoint graphs G and H, we define their (disjoint) union G _H and
their join G ^H as follows:

(8)
2 In the literature, this condition is also called Z-free or N-free.

8 M. Acclavio and L. Straßburger

which can be visualized as follows:

We say that a graph is A-labeled if each vertex is marked with an atom in
A Y Ā. We can associate to each formula F in L an A-labeled cograph [[F]]
inductively:

[[a]] = •a, [[ā]] = •ā, [[A _ B]] = [[A]] _ [[B]], [[A ^ B]] = [[A]] ^ [[B]]

If Γ = A1, . . . , An is a sequent of formulas in L, we define [[Γ]] = [[A1]]_· · ·_[[An]].
The interest in cographs comes from the following two well-known theorems

(see, e.g., [8,15]).

Theorem 4.1. A A-labeled graphs G is a cograph iff there is a formula F ∈ L
such that G = [[F]].

Theorem 4.2. [[F]] = [[F ′]] iff F and F ′ are equivalent modulo associativity and
commutativity of ^ and _.

5 Skew Fibrations

Definition 5.1. Let G and H be graphs. A skew fibration f : G → H is a map-
ping from VG to VH that preserves ":

– if u
G"v then f(u) H"f(v),

and that has the skew lifting property:

– if w
H"f(v) then there is u ∈ VG such that u

G"v and w
H

"f(u).

A skew fibration f : G → H is relevant if it is surjective on vertices and on ":

– for every w ∈ VH there is a u ∈ VG such that f(u) = w, and
– if w

H"t then there are u, v ∈ VG such that f(u) = w and f(v) = t and u
G"v.

The purpose of skew fibrations in this setting is to give a combinatorial charac-
terization of derivations containing only contractions and weakenings.

Theorem 5.2. If Γ, Γ ′ are sequents in L then

1. Γ ′ C↓,W↓

Γ iff there is a skew fibration f : [[Γ ′]] → [[Γ]].

2. Γ ′ C↓

Γ iff there is a relevant skew fibration f : [[Γ ′]] → [[Γ]].

On Combinatorial Proofs for Logics of Relevance and Entailment 9

Proof. The first statement has been proved independently in [13] and in [17].
The proof of the second statement is similar, but the relevant condition rules

out weakening. Let Γ ′ = Γ0, Γ1, . . . , Γn = Γ such that
Γi{Ai _ Ai}−−−−−−−−−−−−−−−−− C↓

Γi+1 = Γi{Ai}
. By

induction over the size of Ai, there is a relevant skew fibration fi : Γi → Γi+1

for each i ∈ {0, . . . n − 1} and the composition of such fi is still a relevant skew
fibration. Conversely, in case of f a relevant skew fibration, the lifting property
becomes the following:

– if w
H"f(v) then there is u ∈ VG such that u

G"v and f(u) = w.

which, by induction over Γ , allows to prove that:

– if [[Γ]] = •a then [[Γ ′]] = •a _ · · ·_ •a;
– if [[Γ]] = G _H then [[Γ ′]] = G′ _H′ with f(G′) = G and f(H′) = H;
– if [[Γ]] = G ^H then either [[Γ ′]] = G′ ^H′ with f(G′) = G and f(H′) = H, or

[[Γ ′]] = (G′
1 ^H′

1) _ · · ·_ (G′
n ^H′

n) with f(G′
i) = G and f(H′

i) = H for each
i ∈ {1, . . . , n}.

These decompositions guide the definition of a derivation Γ ′ C↓

Γ . �	

6 RB-cographs and Combinatorial Proofs

In this section we finally define combinatorial proofs. For this we use Retoré’s
RB-cographs [16]:

Definition 6.1 ([16]). An RB-cograph is a tuple where

is a cograph and
GO a irreflexive, symmetric binary relation such

that for every v ∈ VG there is a unique w ∈ VG with v
GOw.

As done in (1) in the introduction, we use v w for v"w, and v w for vOw
when drawing an RB-cograph.

Definition 6.2 ([16]). If u and v are two vertices of a RB-cograph, an alternat-
ing elementary path (æ-path) from x0 to xn is a sequence of pairwise dis-
joint vertices x0, . . . , xn ∈ V such that either x0"x1Ox2"x3Ox4 · · ·xn or
x0Ox1"x2Ox3"x4 · · ·xn. An æ-cycle is an æ-path of even length with x0 = xn.
A chord of æ-path x0, . . . , xn is an edge xi"xj with i + 1 < j. The æ-path is
chordless if it has no chord. A RB-cograph is æ-connected if there is a chord-
less æ-path between each pair of vertices G and it is æ-acyclic if there are no
chordless æ-cycle.

Theorem 6.3 ([16]). If Γ is a sequent over L then

1.
MLL

Γ ⇐⇒ there is an æ-connected, æ-acyclic RB-cograph G with GR = [[Γ]]

2.
MLLmix

Γ ⇐⇒ there is an æ-acyclic RB-cograph G with GR = [[Γ]]

10 M. Acclavio and L. Straßburger

We say that a map f from an RB-cograph C to a A-labeled cograph is axiom
preserving if for all u, v with u

COv we have that f(u) and f(v) are labeled by
two dual atoms.

Definition 6.4. Let Γ be a sequent over L.

1. A combinatorial LK-proof of Γ is an axiom-preserving skew fibration f : C →
[[Γ]] where C is an æ-connected, æ-acyclic RB-cograph.

2. A combinatorial LR′-proof of Γ is an is an axiom-preserving relevant skew
fibration f : C → [[Γ]] where C is an æ-connected, æ-acyclic RB-cograph.

3. Finally, a combinatorial LRM′-proof of Γ is an is an axiom-preserving relevant
skew fibration f : C → [[Γ]] where C is an æ-acyclic RB-cograph.

Theorem 6.5. Let Γ be a sequent over L, and let S ∈ {LR′, LRM′, LK}. Then
S

Γ ⇐⇒ there is a combinatorial S -proof of Γ.

Proof. This follows from Theorems 3.6, 5.2 and 6.3. For LK this has already been
shown in [12,13,17,18]. �	

Below are a combinatorial LR′-proof (on the left) and a combinatorial LRM′-
proof (on the right):

Theorem 6.6. Let Γ be a sequent and G a graph together with a binary relation
on its vertices, and let f be a map from G to [[Γ]]. It can be decided in polynomial
time in |VG | + |Γ | whether f : G → [[Γ]] is a combinatorial LR′-proof (resp. a
combinatorial LRM′-proof).

Proof. All necessary properties can be checked in polynomial time. �	

7 Sequent Calculus, Part III

In the remainder of the paper, we extend our results to the entailment logic E�̃.
The reason why we need a separate treatment is due to some intrinsic technical
drawbacks occurring in the LE′ sequent calculus. The first is that commas used
to separate formulas in a sequent can not be interpreted as disjunction, as we
usually do in classical logic. Using the display calculi [4] terminology, in LE′ the
comma is extensional while _ and ^ are intensional. Moreover, ^ and _ are not
associative and this give birth to unusual behaviors. For example (A_A)_(Ā^Ā)
is provable in LE′ while A _ (A _ (Ā ^ Ā)) is not.

On Combinatorial Proofs for Logics of Relevance and Entailment 11

We first introduce the class of entailed formulas E which are generated by a
countable set A = {a, b, . . . } of propositional variables and the following gram-
mar:

A,B ::= a | ā | A ^ B | A _ B |An (9)

where n > 0. Moreover, we consider the sequents Γ{An+1} and Γ{A,An} to be
equal. In other words, An has to be thought of as an abbreviation for the sequent
A, . . . , A (n copies of A) that is allowed to occur as a subformula in a formula.
We define the sequent systems MLL•E and LE• on entailed formulas given by the
rules in Fig. 4.

Fig. 4. The cut-free systems MLL•
E and LE•

Theorem 7.1. If Γ is a sequent over L then

LE′

Γ ⇐⇒ LE•

Γ

Proof. It suffices to remark that LE• rules behave as LE′ rules on standard NNF-
formulas. �	

Let C↓
E be the deep inference rule

F{An}
−−−−−−−− C↓

EF{A} . Then we have a result similar
to Theorem 3.6.

Theorem 7.2. If F is a formula in E then

LE•

F ⇐⇒
MLL•

E

F ′ C↓
E

Γ

Proof. By rule permutations, similarly to the proof of Theorem3.6. �	

8 Weighted Cographs and Fibrations

Definition 8.1. A weighted graph is a given by graph

together with a weight function δ : VG×VG → N such that if u
G"v then δ(u, v) > 0

and δ(u, u) = 0.

We use the following notations: we write u
G"kv iff u

G"v and δ(u, v) = k, and

we write u
G
�kv iff u

G

"v and δ(u, v) = k. When drawing a graph we use v wk

for v"kw and we use v wk for v�kw. If v�0w we often draw no edges.

12 M. Acclavio and L. Straßburger

Definition 8.2. A weighted cograph is a weighted graph such
that:

1. the graphs and are Z-free for all i
= 0;
2. for all u, v, w ∈ VG , and any n,m, k, l, h ∈ N, with n,m, k being pairwise

distinct and h > 0, the following configurations are forbidden:

3. for all u, v, w ∈ VG with

either n = 0 or m = 0 or n > m.

We define the juxtaposition, graded union and graded join operations for
weighted graphs:

where δ0 is the weight function which assigns to each (u, v) ∈ VG×VHYVH×VG
the weight 0, while δ" (resp. δ�) is the weight function which assigns to each
(u, v) ∈ VG × VH Y VH × VG the weight k = 1 + max{δ(w, z) | w

G"z or w
H"z}

(respectively k = 1 + max{δ(w, z) | w
G

"z or w

H

"z}). We represent these opera-

tions as follows:

We associate to each entailed formula F (sequent Γ) a graded relation web:

[[[[a]]]] = •a, [[[[ā]]]] = •ā, [[[[A _ B]]]] = [[[[A]]]] _ [[[[B]]]],

[[[[A ^ B]]]] = [[[[A]]]] ^ [[[[B]]]], [[[[A,B]]]] = [[[[A]]]] � [[[[B]]]]

Two weighted graphs G and H are isomorphic (denoted G � H) if there is
a bijection φ between VG and VH which preserves edges and weights order, that
is u

G"v iff φ(u) H"φ(v), and δ(u, v) > δ(u′, v′) iff δ(φ(u), φ(v)) > δ(φ(u′), φ(v′)).
Then Theorem 4.1 can be extended to the following:

Theorem 8.3. A A-labeled weighted graph G is a weighted cograph iff there is
a sequent Γ of entailed formulas such that G � [[[[Γ]]]].

On Combinatorial Proofs for Logics of Relevance and Entailment 13

Proof. The proof is similar to the one of Theorem4.1. However, the condition
G � [[[[Γ]]]] (instead of G = [[[[Γ]]]]) is due to the existence of weighted cographs not
of the form [[[[Γ]]]]. By means of example take a b2 � [[[[a ^ b]]]] = a b1 . �	
Definition 8.4. A weighted skew fibration f : G → H is a skew fibration between
weighted graphs that preserves the weights.

Note that this means in particular that f(u) = f(v) implies that δ(u, v) = 0.

Theorem 8.5. Let Γ and Γ ′ be sequents over E. Then Γ ′ C↓
E

Γ iff there is a
weighted relevant skew fibration f : [[[[Γ ′]]]] → [[[[Γ]]]].

Proof. The proof is similar to the one for (non-weighted) relevant skew fibrations.
First, let Γ ′ = Γ0, Γ1, . . . , Γn = Γ be a sequence of sequents such that

Γi{Ai, Ai}−−−−−−−−−−−−−−−−− C↓
EΓi+1 = Γi{Ai}
.

By definition of juxtaposition, join and union cograph operations we have that
fi : [[[[Γi]]]] � [[[[Γi+1]]]] is a relevant skew fibration and preserves " and weights.
Then also f = fn−1 ◦ · · · ◦ f0 is a weighted relevant skew fibration.

The converse follows by remarking that f(u) = f(v) iff u�0v. �	

9 Weighted RB-cographs

Definition 9.1. A weighted RB-cograph is a tuple where:

– is a weighted cograph;

–
GO is a perfect matching on VG ;

A weighted RB-cograph is æ-connected (æ-acyclic) if the
RB-cograph is an æ-connected (æ-acyclic) RB-cograph. A
weighted RB-cograph is entailed if it is æ-connected, æ-acyclic, and satisfies the
following condition:

– if a, b, c ∈ V such that a�mb for m > 0, and c�na and c�nb, with n > m
or n = 0, then there is d ∈ V such that

a b

c dk

n nn n

m

Theorem 9.2. If Γ is a sequent of entailed formulas then
MLL•

E

Γ ⇐⇒ there is an entailed weighted RB-cographG with GRδ = [[[[Γ]]]]

14 M. Acclavio and L. Straßburger

Fig. 5. Construction rules for entailed weighted RB-cographs.

Proof. The proof piggybacks on Retoré’s sequentialization proof [16]. Each proof
in MLLE induces the construction of an entailed weighted cograph G by the opera-
tions shown in Fig. 5. In fact, each of these operations preserves æ-connectedness,
æ-acyclicity and entailment conditions.

Conversely, let Γ be the sequent such that [[[[Γ]]]] = GRδ and let FΓ be the
formula in L obtained by substituting each comma occurring in Γ by a _. By
Theorem 6.3 we have derivation πMLL of FΓ in MLL. We construct a derivation
πLE of Γ in MLL•E by induction over the rules in πMLL:

– If the last rule in πL is an ax-rule, then the last rule in π•
LE is a ax-rule;

– If the last rule in πL is an _-rule of the form
Γ,A,B

−−−−−−−−−− _
Γ,A _ B

, then δ(a, b) =

δ(a′, b′) for all a, a′ ∈ V[[[[A]]]] and b, b′ ∈ V[[[[B]]]]. If δ(u, v) = 0 we skip this rule
inference in the construction of πLE (the _ introduced by this rule in FΓ is
a comma in Γ). Otherwise, the last rule in π•

LE is a _•
E-rule. In fact, for each

c ∈ V[[[[Γ]]]] by entailment condition there are d ∈ V[[[[Γ]]]] such that c"d; that is
Γ = Γ^.

– If the last rule in πL is an ^-rule, then the last rule in π•
LE is a ^•

E-rule. �	
Definition 9.3. A combinatorial LE′-proof of a sequent Γ in L is given by an
axiom-preserving weighted relevant skew fibration f : CRδ → [[[[Γ]]]] where C is an
entailed weighted RB-cograph.

Theorem 9.4. Let Γ be a sequent in L then
LE′

Γ ⇐⇒ there is a combinatorial LE′-proof f : CRδ → [[[[Γ]]]]

Proof. This follows from Theorems 7.1, 7.2, 8.5 and 9.2. �	
Below is an example of a combinatorial LE′-proof. On the left the conclusion

is shown as sequent, and on the right as weighted cograph.

On Combinatorial Proofs for Logics of Relevance and Entailment 15

Theorem 9.5. Let Γ be a sequent and G a graph together with a binary relation
on it vertices and a weight function on its edges, and let f be a map from G to
[[[[Γ]]]]. It can be decided in polynomial time in |VG | + |Γ | whether f : G → [[[[Γ]]]] is
a combinatorial LE′-proof.

Proof. All necessary properties (forbidden edges configurations for G being a
weighted cograph, æ-connectedness and æ-acyclicity, and f being a weighted
relevant skew fibration) can be checked in polynomial time. �	

10 Conclusion

In this paper we presented combinatorial proofs for entailment logic E�̃, classical
relevant logics R�̃ and classical relevant logic with mingle RM�̃. In some sense,
combinatorial proof for entailment logic can be considered as a case study for
logics with commutative but not associative connectives.

In fact, this paper can be seen as a small step in a larger research project
showing that combinatorial proofs are a uniform, modular and bureaucratic-
free way of representing proofs for a large class of logics. Apart from the logics
studied in this paper, this goal has been achieved for multiplicative linear logic
with and without mix in [16], for classical propositional logic in [12,13,18], and
for intuitionistic propositional logic in [11]. For first-order logic, modal logics,
and larger fragments of linear logic, this is work in progress.

A necessary condition for a logic to have combinatorial proofs seems to be the
ability to separate the multiplicative (linear) fragment from the additive (con-
traction+weakening) fragment. This can happen inside some form of deep infer-
ence proof system [6,10], and is realized in this paper in Theorems 3.6 and 7.2.

A crucial condition that combinatorial proofs should obey, in order to be
called combinatorial proofs for a chosen logic, is that all combinatorial properties
needed for correctness of a given proof object can be checked in polynomial time
with respect to its size. Then combinatorial proofs form a proof system (in the
sense of Cook and Reckhow [7]) for the chosen logic. The combinatorial proofs
we give in this paper have this property.

Thanks to their combinatorial (or bureaucracy-free) nature, combinatorial
proofs allow us to capture a less coarser notion of proof identity with respect to
the one given by syntactic formalisms like sequent calculus and analytic tableaux.
Following the work in [1,13,19] we put forward the following notion of proof
identity:

Two proofs are the same iff they have the same combinatorial proof.

References

1. Acclavio, M., Straßburger, L.: From syntactic proofs to combinatorial proofs. In:
Galmiche, D., Schulz, S., Sebastiani, R. (eds.) IJCAR 2018. LNCS (LNAI), vol.
10900, pp. 481–497. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
94205-6 32

https://doi.org/10.1007/978-3-319-94205-6_32
https://doi.org/10.1007/978-3-319-94205-6_32

16 M. Acclavio and L. Straßburger

2. Anderson, A.R., Belnap Jr., N.D.: Entailment: The Logic of Relevance and Neces-
sity, vol. 1. Princeton University Press, Princeton (1975)

3. Anderson, A.R., Belnap Jr., N.D., Dunn, J.M.: Entailment, Vol. II: The Logic of
Relevance and Necessity, vol. 5009. Princeton University Press, Princeton (2017)

4. Belnap Jr., N.D.: Display logic. J. Philos. Log. 11, 375–417 (1982)
5. Belnap Jr., N.D., Wallace, J.R.: A decision procedure for the system eī of entail-

mengt with negation. Zeitschrift für Math. Log. Grundlagen der Math. 11, 277–289
(1965)

6. Brünnler, K., Tiu, A.F.: A local system for classical logic. In: Nieuwenhuis, R.,
Voronkov, A. (eds.) LPAR 2001. LNCS (LNAI), vol. 2250, pp. 347–361. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-45653-8 24

7. Cook, S.A., Reckhow, R.A.: The relative efficiency of propositional proof systems.
J. Symb. Log. 44(1), 36–50 (1979)

8. Duffin, R.: Topology of series-parallel networks. J. Math. Anal. Appl. 10(2), 303–
318 (1965)

9. Gentzen, G.: Untersuchungen über das logische Schließen I. Math. Z. 39, 176–210
(1935)

10. Guglielmi, A., Straßburger, L.: Non-commutativity and MELL in the calculus of
structures. In: Fribourg, L. (ed.) CSL 2001. LNCS, vol. 2142, pp. 54–68. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-44802-0 5

11. Heijltjes, W., Hughes, D., Straßburger, L.: Intuitionistic proofs without syntax. In:
LICS 2019 (2019)

12. Hughes, D.: Proofs without syntax. Ann. Math. 164(3), 1065–1076 (2006)
13. Hughes, D.: Towards Hilbert’s 24th problem: combinatorial proof invariants: (pre-

liminary version). Electron. Notes Theor. Comput. Sci. 165, 37–63 (2006)
14. McRobbie, M.A., Belnap, N.D.: Relevant analytic tableaux. Stud. Log. 38(2), 187–

200 (1979)
15. Möhring, R.H.: Computationally tractable classes of ordered sets. In: Rival, I.

(ed.) Algorithms and Order, pp. 105–194. Kluwer Academic Publishers, Dordrecht
(1989)

16. Retoré, C.: Handsome proof-nets: perfect matchings and cographs. Theor. Comput.
Sci. 294(3), 473–488 (2003)

17. Straßburger, L.: A characterization of medial as rewriting rule. In: Baader, F. (ed.)
RTA 2007. LNCS, vol. 4533, pp. 344–358. Springer, Heidelberg (2007). https://doi.
org/10.1007/978-3-540-73449-9 26

18. Straßburger, L.: Combinatorial flows and their normalisation. In: Miller, D. (ed.)
2nd International Conference on Formal Structures for Computation and Deduc-
tion, FSCD 2017. LIPIcs, Oxford, UK, 3–9 September 2017, vol. 84, pp. 31:1–31:17.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2017)

19. Straßburger, L.: The problem of proof identity, and why computer scientists should
care about Hilbert’s 24th problem. Philos. Trans. Roy. Soc. A 377 (2019)

https://doi.org/10.1007/3-540-45653-8_24
https://doi.org/10.1007/3-540-44802-0_5
https://doi.org/10.1007/978-3-540-73449-9_26
https://doi.org/10.1007/978-3-540-73449-9_26

An Infinitary Treatment of Full
Mu-Calculus

Bahareh Afshari1,2(B), Gerhard Jäger2, and Graham E. Leigh3

1 University of Amsterdam, Amsterdam, The Netherlands
b.afshari@uva.nl

2 University of Bern, Bern, Switzerland
gerhard.jaeger@inf.unibe.ch

3 University of Gothenburg, Gothenburg, Sweden
graham.leigh@gu.se

Abstract. We explore the proof theory of the modal μ-calculus with
converse, aka the ‘full μ-calculus’. Building on nested sequent calculi for
tense logics and infinitary proof theory of fixed point logics, a cut-free
sound and complete proof system for full μ-calculus is proposed. As a
corollary of our framework, we also obtain a direct proof of the regular
model property for the logic: every satisfiable formula has a tree model
with finitely many distinct subtrees. To obtain the results we appeal to
the basic theory of well-quasi-orderings in the spirit of Kozen’s proof of
the finite model property for μ-calculus without converse.

1 Introduction

Modal logic provides an effective language for expressing properties of state-
based systems. When equipped with operators that can test for infinite behaviour
like looping and reachability, the logic becomes a powerful tool for specifying cor-
rectness of nonterminating reactive processes such as communication protocols
and control systems. An elegant example of such a logic is the modal μ-calculus,
an extension of modal logic which captures the essence of inductive and co-
inductive reasoning.

In modal μ-calculus two quantifiers, μ and ν, binding propositional vari-
ables, are added to the syntax of modal logic. The formulæ μxφ and νxφ are
interpreted over directed graphs as, respectively, the least and greatest fixed
points of the monotone function x �→ φ(x). The calculus can thus be thought
of as a logic that allows for restricted second-order quantification while still
maintaining decidability. Indeed all standard computational problems, such as
model-checking and satisfiability, are decidable for this logic (see e.g. [4,15]).

Despite its importance, many fundamental questions regarding μ-calculus,
and in particular its intricate proof theory, remain open. There are two notable
proof systems for modal μ-calculus. Kozen [19] proposed extending the axioms
of basic modal logic K with the fixed point axioms

φ(μxφ) → μxφ(x) φ(ψ) → ψ � μxφ(x) → ψ

c© Springer-Verlag GmbH Germany, part of Springer Nature 2019
R. Iemhoff et al. (Eds.): WoLLIC 2019, LNCS 11541, pp. 17–34, 2019.
https://doi.org/10.1007/978-3-662-59533-6_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-59533-6_2&domain=pdf
https://doi.org/10.1007/978-3-662-59533-6_2

18 B. Afshari et al.

Fig. 1. Axioms and rules of Koz.

asserting that μxφ is a pre-fixed point of φ(x) and that it is the least such.
Completeness for the aconjunctive fragment of the language was established

by Kozen [19], but full completeness of this axiomatisation was not proved until
Walukiewicz’ seminal work [31]. Walukiewicz’ proof combines an analysis of
tableaux, games and automata which, it is generally agreed, is highly complex
[3,9]. A natural sequent representation of Kozen’s axiomatisation, denoted Koz,
is given in Fig. 1. The fixed point rule, μ, and the induction rule, ind, capture
the two fixed point axioms above.

The second important axiomatisation for μ-calculus is a cut-free infinitary
system due to Jäger, Kretz and Studer [16]. The system, denoted K+

ω (μ) in [16],
is Koz with the cut and ind rules replaced by the single inference

Γ, ν0xφ Γ, ν1xφ · · ·
Γ, νxφ

νω

The formula νnxφ denotes the finite approximation to the greatest fixed point:
ν0xφ = � and νn+1xφ = φ(νnxφ) for each n < ω. The proof of completeness
for the system K+

ω (μ) is established by adapting the method of canonical model
construction for modal logics to the fixed point extension. To demonstrate sound-
ness of the system, more specifically that of νω-rule, the finite model property
of μ-calculus [18,29] is invoked.

In this paper we are interested in the proof theory of μ-calculus extended
by converse modalities. The extension, known as the two-way μ-calculus or full
μ-calculus, assumes each action a is associated a “converse” action a and that a
transition system has an a-edge from vertices u to v iff it has an a-edge from v
to u. Axiomatically, one stipulates φ → [a]〈a〉φ for every formula and action.

Checking satisfiability for μ-calculus with converse was proven to be decid-
able by Vardi in [30] (see also [5]) where he introduces the two-way automata
characterising this extension and shows the emptiness problem is decidable. In
contrast to pure modal μ-calculus, the finite model property fails.

To the best of our knowledge, a sound and complete axiomatisation for full
μ-calculus has not been given. This can seem somehow surprising if one were
to speculate that the presence of converse can simplify completeness results –
such as is the case for the computational tree logic CTL* with past [24,25].
One can add to Koz suitable converse axioms and ask whether the resulting

An Infinitary Treatment of Full Mu-Calculus 19

system is complete. Walukiewicz’ completeness proof for modal μ-calculus does
not easily lend itself to this question because its machinery, particularly the parts
based on tableaux, fall short of converse. Similarly, for the alternative proof of
completeness via cyclic proofs given in [1] it is unclear how modalities operating
in both directions can be incorporated.

There is another possibility for obtaining a sound and complete axiomati-
sation for full μ-calculus, namely an adaptation of the infinitary system K+

ω (μ)
of [16], which is undertaken in this paper. There are two obstacles to this app-
roach: accommodating converse in the canonical model construction and recov-
ering any structural properties that remain in the absence of the finite model
property that are needed to show soundness of an infinitary ν-rule.

We overcome the first issue by stepping into the framework of nested sequents
in the style of Kashima’s work for tense logics [17]. The failure of the finite model
property shows the νω-rule is unsound in the presence of converse. We establish
soundness for the infinitary ν-rule with a premise for each approximant below
ωω and prove that the ensuring nested sequent calculus is complete for the full μ-
calculus. Moreover, we observe that this bound is optimal over trees: the greatest
fixed point cannot be identified with its transfinite approximant for any ordinal
below ωω.

Related Work. The history of modal logic with converse goes back to Prior and
his introduction of tense logics.1 Temporal logics with past have been widely
studied. For example, completeness of converse PDL was first shown in [23],
and a sound and complete axiomatisation of PCTL* (computation tree logic
with past) is given in [24]. More recent work relevant to this paper include
the treatment of tense logics in [14] and the completeness proof for the flat
fragment of μ-calculus [8]. The literature on nested sequents is also rich: they
have been used to establish algorithmic properties on a wide range of logics
(e.g. [2,10,11,13,26]). The explicit use of ordinal approximations in the language
of μ-calculus is a feature that has been used by other authors studying fixed-
point logics. Of particular note is the work of [6] in which they are utilised for
the correspondence between circular proofs and induction.

2 Full µ-calculus

Fix finite sets Act and Var of actions and variables, respectively. The μ-calculus
formulæ are given by the following grammar, where a ranges over actions and
x over variables.

φ ··= x | φ ∧ φ | φ ∨ φ | [a]φ | 〈a〉φ | μxφ | νxφ

The two propositional quantifiers μ and ν are called the least, and greatest,
fixed point quantifier respectively. The syntax above omits both negation
and proposition constants. Constants for ‘true’ and ‘false’ can be defined via

1 For a comprehensive account see, e.g., [12].

20 B. Afshari et al.

the quantifiers: � = νx. x and ⊥ = μx. x; other (unspecified) propositional
constants can be represented via additional actions. Negation is representable
via De Morgan duality in the usual way; see e.g., [7, Chap. 8]. We write φ(x/ψ)
for the result of substituting the formula ψ for every free occurrence of x in φ
subject to the proviso that no free variable of ψ becomes bound.

In the full μ-calculus every action a ∈ Act has an associated converse which
we denote as a. Thus we assume the presence of an involution, · : Act → Act, on
the set of actions: for every a ∈ Act we have a �= a, and a = a. If a formula φ
contains at most one of a or a for each a ∈ Act we may call φ pure.

We recall the standard Kripke semantics for the modal μ-calculus.

Definition 1. A labelled frame is a pair (S,E) where S is a non-empty set
of vertices and E ⊆ Act × S × S is a set of (labelled) edges. The symmet-
ric closure of a frame (S,E) is the frame (S,E′) where E′ = E ∪ {(a, v, u) |
(a, u, v) ∈ E}. A frame is symmetric if it is identical to its symmetric closure.

If the labelled frame (S,E) is clear from the context, we write u
a−→ v (or simply

u −→ v) if (a, u, v) ∈ E. Labelled frames provide a semantics for μ-calculus
formulæ via the possible worlds interpretation of the modal connectives:

Definition 2. Let φ be a formula, possibly with free variables, S = (S,E) a
labelled frame, and V ⊆ Var × S. The denotation of φ in S relative to V ,
in symbols ||φ||SV , is the subset of S defined with the standard semantics for
boolean and modal operators (e.g. [7]) and the following equations for fixed point
quantifiers, where

V [x �→ T] = {(y, u) ∈ V | y �= x} ∪ ({x} × T).

||μxφ||SV =
⋂

{T ⊆ S | ||φ||SV [x�→T] ⊆ T}
||νxφ||SV =

⋃
{T ⊆ S | T ⊆ ||φ||SV [x�→T]}

We write (S , u) |= φ to express u ∈ ||φ||S∅ . A formula φ is satisfied by S if
(S , u) |= φ for some vertex u and is true in S if (S , u) |= φ for every vertex u.
Given a class of frames C, a formula φ has a model in C if φ is satisfied in some
frame S ∈ C, and is valid over C if φ is true in every frame in C. If mention
of C is omitted we have in mind the class of all countable frames.

Definition 3. Let � be a well-formed formula. The Fischer–Ladner closure
of �, denoted FL(�), is the smallest set of formulæ containing � satisfying the
following conditions.

– If φ ◦ ψ ∈ FL(�) for ◦ ∈ {∧,∨} then {φ, ψ} ⊆ FL(�).
– If �φ ∈ FL(�) for � ∈ {[a], 〈a〉 | a ∈ Act} then φ ∈ FL(�).
– If σxφ ∈ FL(�) for σ ∈ {μ, ν} then φ(x/σxφ) ∈ FL(�).

In what follows we utilise an extended language where the greatest fixed point
quantifier ν spawns an infinite hierarchy of ‘approximation’ quantifiers indexed
by ordinals. Fix an ordinal κ. The κ-formulæ are generated as follows

φ ··= x | φ ∧ φ | φ ∨ φ | [a]φ | 〈a〉φ | μxφ | νxφ | ναxφ (α < κ)

An Infinitary Treatment of Full Mu-Calculus 21

The intended reading of the quantifier να is of α-times unfolding the matrix,
taking conjunctions at limits with ν0xφ equivalent to �. When κ is fixed it is
convenient to identify the unannotated quantifier ν with νκ. From a κ-formula
φ we derive a μ-calculus formula φ−, called the template of φ, by removing the
approximation of every quantifier.

The class of ω-formulæ corresponds to the language L+
μ of [16]. The following

definition expands the generalisation of the Fischer–Ladner closure in [16] to a
form appropriate for κ-formulæ.

Definition 4. The strong closure of a κ-formula �, denoted SCκ(�), is the
smallest set containing � closed under the formation rules for the Fischer–Ladner
closure and the following clause.

– If ναxφ ∈ SCκ(�) (α ≤ κ) then {φ(x/νβxφ) | β < α} ⊆ SCκ(�).

Semantics for κ-formulæ is obtained by extending the definition for μ-calculus
formulæ to accommodate the approximating quantifiers subject to the equation
(S , u) |= ναxφ iff (S , u) |= φ(x/νβxφ) for every β < α. Standard arguments
on the fixed point semantics show there exists κ s.t. νxφ ↔ νκxφ is true in S .

An important concept in μ-calculus is the relation of subsumption between
variables occurring in a given formula, a syntactic constraint that mirrors the
priority of quantifiers implicit in the semantics. In the present article, we take a
pragmatic approach to subsumption, assuming a fixed strict partial order on Var,
called the subsumption order, and constrain considerations to formulæ whose
variables respect this relation, in the sense that if y occurs free in a sub-formula
σxφ then y subsumes x. We call such formulæ well-formed. The subsumption
order must be irreflexive, asymmetric, transitive and for every x ∈ Var the set
of variables subsuming x should be linearly ordered by subsumption.

If φ is well-formed then for a substitution φ(x/ψ) to be ‘correct’ it suffices
that x does not subsume any free variable of ψ. Thus, every formula occurring in
the Fischer–Ladner closure of a well-formed formula is well-formed. It is common
to assume that each quantified formula uniquely determines a variable symbol
that is bound; we call such a formula well-named. Note, however, that, unlike
the notion of well-formed, the Fischer–Ladner closure conditions do not preserve
well-namedness.

Definition 5. Lμ denotes the set of closed formulæ that appear in the Fischer–
Ladner closure of some well-named formula.

We likewise need to isolate a class of κ-formulæ to assist the presentation of
our results. The class of κ-formulæ with templates in Lμ is natural, but there is a
strict sub-class of these formulæ that we should restrict attention to. This turns
out to be the collection of κ-formulæ that arise when evaluating the denotation
of an φ ∈ Lμ subject to the identification of ν with νκ. These formulæ, which
we call well-annotated, satisfy the following three conditions:

1. Their template is well-formed.
2. If ναx and νβx are two quantifiers binding the same variable then α = β.

22 B. Afshari et al.

3. The set of variable symbols bound by a quantifier να with α < κ is linearly
ordered by the subsumption relation.

The set of well-annotated κ-formulæ is denoted Lκ
μ. It is a simple exercise

to check that every formula in the strong closure of a well-annotated formula is
well-annotated.2

2.1 Nested Sequent Calculi

Nested sequents were utilised by Kashima to establish canonical completeness
for tense logics [17]. In the following we adapt Kashima’s approach to Lω1

μ . For
the present section κ is an arbitrary ordinal ≤ω1.

Definition 6. A sequent is a finite set of closed Lκ
μ formulæ. The nested

sequents (ns) are defined inductively:

1. every plain sequent is a nested sequent,
2. if Γ is a nested sequent and a is an action then a{Γ} is a ns,
3. if Γ,Δ are ns then so is Γ ∪ Δ.

As is usual, we use comma to abbreviate the union of two (nested) sequents
and identify singleton sequents with their unique element. Hence, every nested
sequent can be presented in the form

Γ = φ1, . . . , φm, a1{Δ1}, . . . , an{Δn} (1)

where φ1, . . . , φn ∈ Lκ
μ, Δ1, . . . , Δn are nested sequents and a1, . . . , ak ∈ Act.

The intended interpretation of the nested sequent Γ in (1) is the formula

ι(Γ) =
m∨

i=1

φi ∨
n∨

i=1

[ai]ι(Δi).

A sequent with context (simply context) is a nested sequent built from
an additional unit [], called the context, which must have exactly one occurrence
within the nested sequent. If Γ is a sequent with context and Δ is a nested
sequent Γ [Δ] is the nested sequent given by substituting Δ for [] in Γ .

Definition 7. Fix κ ≤ ω1. Kκ
μ+ is the calculus deriving nested sequents given by

the inferences in Fig. 2. Kκ
μ denotes the subsystem without the inference cona.

A special case of the ν.α inference is when α = 0, whereby the sequent Γ [ν0xφ]
is derivable without premises. Hence, Kκ

μ � Γ [�] for any sequent context Γ [].
Clearly, a smaller value of κ makes introducing greatest fixed points easier. The
following properties can be established by induction on the length of derivations.

Lemma 1. 1. If Kα
μ+ is complete so is Kβ

μ+ for every β ≤ α; similarly for Kκ
μ.

2. For all φ ∈ Lμ and contexts Γ [], Kκ
μ � Γ [φ, φ] where φ denotes the De Morgan

dual of φ.
3. If Kκ

μ+ � Γ [ναxφ] then Kκ
μ+ � Γ [νβxφ] for every β < α; similarly for Kκ

μ.

2 See Appendix A for precise definitions of the concepts of this section.

An Infinitary Treatment of Full Mu-Calculus 23

Fig. 2. System Kκ
μ+ ; Kκ

μ is Kκ
μ+ without cona.

3 Completeness: Building Canonical Models

Definition 8. A κ-system (in �) is a tuple (S,E, λ) where (S,E) is a frame
and λ : S → Pow(SCκ(�)) assigns to each vertex of S a set of κ-formulæ from
the strong closure of �. A system (T,E, λ) expands a system (S, F, ρ) if S ⊆ T ,
F ⊆ E, and ρ(u) ⊆ λ(u) for every u ∈ S.

Explicit mention of κ and � will be dropped if they can be inferred from
context and, when there is no cause for confusion, vertices of a system will be
identified with their labels: φ ∈ u in place of φ ∈ λ(u). Recall that edges of a
labelled frame (and so of a system) are labelled by actions and that symmetry
is not assumed. A nested sequent Γ = Δ0, a1{Δ1}, . . . , al{Δl} (Δ0 ⊆ Lκ

μ) has a
natural representation as finite κ-system, tree(Γ), comprising a root with label
Δ0 and, for each 0 < i ≤ l, an ai-child with immediate subtree tree(Δi).

For the proof of completeness, starting from an assumption that a sequent Γ
is underivable we will construct a system expanding Γ by saturating the sequent
through the Kκ

μ+ rules applied from conclusion to premise. Deconstructing a
modality corresponds to creating, or saturating, other vertices in the system.
This method combines saturation arguments for the (pure) modal μ-calculus [16]
and the tableau-style constructions for tense logic [17]. If we obtain two differ-
ent annotations of the same formula, say ναxφ and νβxφ, then clearly, from
the perspective of non-derivability, the smaller approximation suffices. Thus, to
maintain some control on the κ-formulæ enumerated via the process, we desire
an ordering on Lκ

μ formulæ based on the ordinal approximations.
Recall a quasi-order is a reflexive, transitive relation. Let � be the quasi-

order on Lκ
μ determined by φ � ψ iff φ− = ψ− and for every maximal chain

x1, . . . , xn of the ν-quantified variables in φ such that xi subsumes xi+1, we
have (α1, . . . , αn) ≤ (β1, . . . , βn), where αi (βi) is the ordinal assigned to xi in
φ (resp. ψ) and ≤ is the lexicographic ordering on sequences of ordinals.3

Definition 9. A κ-system S is saturated if the following hold for every u ∈
S , φ, ψ ∈ Lκ

μ, a ∈ Act and α ≤ κ.

(a) φ ∧ ψ ∈ u implies φ ∈ u or ψ ∈ u,

3 Cf. Appendix A.

24 B. Afshari et al.

(b) φ ∨ ψ ∈ u implies φ ∈ u and ψ ∈ u,
(c) μxφ ∈ u implies φ(x/μxφ) ∈ u,
(d) ναxφ ∈ u implies φ(x/νβxφ) ∈ u for some β < α,
(e) [a]φ ∈ u implies for some u

a−→ v and ψ ∈ v we have ψ � φ,
(f) 〈a〉φ ∈ u and either u

a−→ v or v
a−→ u implies ψ ∈ v for some ψ � φ.

Our notion of saturation combines a number of features from other work. It
is closely related to Kozen’s well-annotations in [18] expanded to cover converse
modalities in the style of Kashima [17]. Note, however, that our quasi-order
differs from Kozen’s. Dropping the two modal clauses e and f yields the definition
of saturation in [16], for κ = ω.

Lemma 2. Let S be a saturated κ-system.

1. The symmetric closure of S is saturated.
2. For every u ∈ S and φ ∈ u, (S , u) �|= φ (Truth Lemma).

Proof. The first claim is immediate given the formulation of condition f. For 2,
we refer the reader to [18, Lemma 4.2], noting that, like the quasi-order utilised in
[18], denotation is monotone in �: if φ � ψ then (S , u) |= ψ implies (S , u) |= φ
for any u. A more detailed proof of the result, based on the assignment of a rank
to each formula of Lκ

μ, is given in [16, Lemma 33].4

We establish weak completeness of the calculi Kκ
μ+ and Kκ

μ, namely that every
underivable sequent has a counter-model. In view of Lemma2, it suffices to show
that every underivable sequent expands to a saturated system. In contrast to
the constructions in [16,17] (for pure μ-calculus and tense logic respectively), we
cannot expect the result to be a finite system (i.e. a nested sequent); in general,
an infinite tree will result.

Lemma 3 (Saturation Lemma). Suppose Kκ
μ+ �� Γ . There exists a saturated

κ-system T expanding Γ such that every formula occurring in the label of a
vertex of T is an element of SCκ(�) for some formula �.

Proof. We require an auxiliary notion of saturation. Let us call a κ-system 0-
saturated if the saturation conditions hold with the possible exception of the
clauses for modalities, e and f. Every underivable nested sequent can be expanded
to a 0-saturated nested sequent that remains underivable. The proof of this fact
follows the argument of Lemma 24 in [16].

Suppose Kκ
μ+ �� Γ . We define a sequence of nested sequents Γ = Γ0, Γ1, Γ2, . . .

such that Γi+1 expands Γi and Γi is underivable. Given Γi, obtain Γi+1 by

1. expanding Γi to a 0-saturated nested sequent Γ ′
i ;

2. expanding Γ ′
i to a ns Γi+1 by correcting any failure of conditions e or f:

a. For any v ∈ Γ ′
i and formula [a]φ ∈ u for which there is no a-child of u in

Γ ′
i containing φ, create a a-child with label {φ};

4 As already remarked, [16] deals only with the case κ = ω. However, their notion of
rank and the proof of the Truth Lemma readily generalises to arbitrary κ.

An Infinitary Treatment of Full Mu-Calculus 25

b. If v is a a-child of u in Γ ′
i , expand the label of u to include {φ | 〈a〉φ ∈ v}

and the label of v to include {φ | 〈a〉φ ∈ u}.

The process of 0-saturation preserves underivability. Moreover, Γ ′
i can be derived

from Γi+1 by a sequence of cona, [a] and 〈a〉 inferences, hence Γi+1 is underivable.
Let T be the limit of trees tree(Γi) for i < ω. By construction, T is a saturated
κ-system fulfilling the requirements of the lemma. ��

As a consequence of the Saturation and Truth lemmas we deduce complete-
ness for full μ-calculus. An analogous argument establishes completeness for the
pure fragment.

Theorem 1. Kκ
μ+ is complete over symmetric frames. Kκ

μ is complete for arbi-
trary frames.

Proof. Suppose Γ is underivable in Kκ
μ+ and let S be the symmetric closure of

the κ-system expanding Γ provided by Lemma 3. As a consequence of Lemma 2,
(S , r) �|= ι(Γ) where r is the root of S . Hence, Γ is not valid. An analogous
argument establishes completeness for Kκ

μ.

4 Soundness: Refining Canonical Models

We now turn to soundness theorems for the systems Kκ
μ+ and Kκ

μ for certain κ.
It can be easily confirmed that for either system the only inference we need be
concerned with is the introduction rule for the greatest fixed point, νκ.

Some cases of soundness can be inferred from known properties of the μ-
calculus. For instance, the pure μ-calculus (without converse modalities) has
the finite model property: every satisfiable formula has a finite model [18,29].
On the class of finite models the greatest fixed point coincides with the ω-th
approximation, νω. Thus soundness of Kω

μ obtains.

Theorem 2. Kω
μ is sound and complete for arbitrary frames.

The above theorem can also be deduced without directly appealing to the
finite model property, by manipulating saturated systems. This argument was
already made by Kozen [18] and will be extended below.

The full μ-calculus lacks the finite model property (there are satisfiable for-
mulæ with no finite models) but every satisfiable formula has a model which is
(the symmetric closure of) a finitely branching tree [30]. As a consequence we
deduce Kκ

μ+ is unsound for κ ≤ ω but sound for κ ≥ ω1.

Theorem 3. Kω1
μ+ is sound and complete for arbitrary (symmetric) frames.

In the sequel we prove a strengthening of Theorem 3: the calculus Kωω

μ+ is
sound and complete for symmetric frames; and observe that, over trees, Kκ

μ+

is is unsound for every κ < ωω. Our argument relies on a particular property
of the quasi-order � we introduced earlier, which we now state. Given a set
X ⊆ SCκ(�) let Ker X = {φ ∈ X | ∀ψ ∈ X ψ �� φ} be the set of �-minimal
elements of X. Recall, a quasi-order ≤ on a set Q is a well-quasi-order (wqo
for short) if for every function f : ω → Q there exists i < j such that f(i) ≤ f(j).

26 B. Afshari et al.

Lemma 4. (SCκ(�),�) is a wqo. Moreover, there exists k such that for every
X ⊆ SCκ(�), |Ker X| < k.

That � is a well-quasi-order follows from the observation that the ordering
can be expressed as a sum of products of well-orders. Being a wqo we immediately
deduce that KerX is finite for every X ⊆ SCκ(�). The stronger result stated
follows from the constraints we imposed in the definition of Lκ

μ, namely condition
3.5 Specifically, it is this property that marks the essential difference between �
and the wqo � in [18].

We require a lifting of � to sets of κ-formulæ. A natural candidate is the
Smyth powerdomain introduced in [27] and given by X � Y iff for every ψ ∈ Y
there exists φ ∈ X such that φ � ψ. In general, this lifting does not preserve
well-quasi-orders [20] but, rather, the stronger notion of better-quasi-order due
to Nash-Williams [21,22]; (SCκ(�),�) is readily seen to be a better-quasi-order.

For our strengthening of Theorem3, however, we depend on a refinement of
the Smyth powerdomain whereby X is bounded by Y if Y can be realised as the
image of X under an endomorphism on (κ,<). This choice is motivated by the
observation that saturation is preserved under any change of annotating ordinals
by a strictly monotone function on κ. The main technical result is to establish
that this notion of boundedness is a well-quasi-order on Pow(SCκ(�)) for every
� ∈ Lμ. We begin making the above definitions precise.

Let I(κ) be the set of strictly monotone functions on ordinals ≤κ. Note that
such functions are increasing, so α ≤ f(α) ≤ κ for every α ≤ κ. Each f ∈ I(κ)
induces an operation on Lκ

μ mapping φ to the result of replacing each annotated
quantifier να by νf(α), which we denote as φf . Similarly, for X ⊆ Lκ

μ, define
Xf = {φf | φ ∈ X} and for a system T = (S,E, λ) we let T f be the system
(S,E, λf) where λf : w �→ λ(w)f . The following is straightforward to verify.

Lemma 5. Let f ∈ I(κ). If X � Y then Xf � Y f . Hence, if T is a saturated
κ-system, so is T f .

We are now in a position to define the quasi-order on Pow(SCκ(�)):

X �∗ Y ··= ∃f ∈ I(κ) s.t. Ker Y = Ker(Xf)

Since (KerX)f = Ker Xf for every X ⊆ SCκ(�) and f ∈ I(κ), like the Smyth
powerdomain, �∗ is determined by its restriction to kernels: X �∗ Ker X �∗ X.
The fact that kernels are bounded (Lemma 4) is crucial for the following result.

We call κ principal if κ = ωα for some α.

Theorem 4. If κ is principal then (Pow(SCκ(�)),�∗) is a wqo.

Proof. Let Varν(φ) be the set of ν-quantified variables in φ. To each φ ∈ Lκ
μ we

may associate a function oφ : Varν(φ) → κ + 1 such that φ can be obtained from
its template by replacing each quantifier νx in φ− by νoφ(x)x. We consider finite
sequences in FL(�) × Var × (κ + 1), ordered pointwise by (φi, xi, αi)i<m ≤pw

5 See Appendix B for a proof of this fact.

An Infinitary Treatment of Full Mu-Calculus 27

(ψi, yi, βi)i<n iff m = n and for all i < m, φi = ψi, xi = yi and αi ≤ βi. When
restricted to a set of sequences of bounded length, ≤pw is a wqo. For X ⊆ SCκ(�),
let X∗ = (φi, xi, δi)i<k be a sequence in FL(�) × Var × (κ + 1) such that

Ker X = {φ ∈ SCκ(�) | ∀x ∈ Varν(φ)∃i < k(φi = φ− ∧ xi = x ∧ oφ(x) =
∑

j≤i

δj)}.

Without loss of generality, we assume a total ordering < of FL(�) × Var and
that δi+1 = 0 implies (φi, xi) < (φi+1, xi+1). By Lemma 4, k can be chosen
independent of X. Hence it remains only to observe that for principal κ, X �∗

Y iff X∗ ≤pw Y ∗. ��
Given systems T and T ′, write T �∗ T ′ if T ′ is isomorphic to T f for

some f ∈ I(κ). If T is a tree, Tu denotes the sub-tree rooted at u ∈ T . Suppose
T is a system over a finite tree. We say T is quasi-saturated if:

1. T validates the saturation conditions for all vertices with the exception of a
finite set L of leaves;

2. every l ∈ L may fail the saturation requirements only in condition f;
3. for every l ∈ L there exists a non-leaf vertex u in T such that u �∗ l.

Theorem 5. Let Γ be a nested sequent. TFAE

1. There exists a saturated expansion of Γ .
2. There exists a finite quasi-saturated expansion of Γ .
3. There exists a saturated expansion of Γ , T , which is a tree, and a finite set

U ⊆ T such that for every v ∈ T there exists u ∈ U satisfying Tu �∗ Tv.
4. There exists a saturated expansion of Γ with a regular underlying frame.

Proof. The implications 3 ⇒ 4 and 4 ⇒ 1 follow from the definitions. Moreover,
Theorem 4 yields 1 ⇒ 2. We show 2 ⇒ 3. Suppose S = (S,E, λ) is quasi-
saturated and let U = S \L be the vertices of S that fulfil all the saturation
conditions. Fix a vertex l ∈ L. By assumption there exists u ∈ U with u �∗ l.
Let Su = (Su, Eu, λ|Su) be the sub-tree of S rooted at u, and f ∈ I(κ) be
such that uf = l. Consider the system S ′ = (Su)f = (Su, Eu, λ′). In particular,
λ′(u) = λ(l). Define T to be the system comprising the disjoint union of S and
S ′ where the leaf l in S is identified with the root u of S ′. We claim T is quasi-
saturated. Let l′ be a leaf in T \S which fails the saturation conditions and let
u′ ∈ U be such that λS (u′) �∗ λS (l′). By construction λT (u′) = λS (u′) and
λT (l′) = λS (l′)f , so λT (u′) �∗ λT (l′) by transitivity. Repeating the method
of unravelling the unsaturated leaves and considering the limit system yields a
saturated system with the desired properties. ��
The following, due to Vardi [30], is an immediate consequence of Theorem 5.

Corollary 1. The full μ-calculus has the regular model property.

We claim the above result enables us to lower the bound on Kω1
μ+ . The idea

is to find a refinement of Theorem 5 that controls the approximations appearing
in a saturated system. This is the role of the next proposition.

28 B. Afshari et al.

Proposition 1. Let T be a κ-system satisfying condition 3 in Theorem5. Sup-
pose for every u ∈ U and φ � ψ ∈ u, if (T , u) �|= φ then φ ∈ u. Then
Ker u ⊆ Lωω

μ for every u ∈ U .

Proof. Suppose T = (S,E, λ) is as stated. We may assume U is closed down-
wards in the accessibility relation on T . Let T0 be the finite sub-system
restricted to vertices in U and their immediate successors. By assumption, T0 is
quasi-saturated. Let L = {l0, . . . , ln−1} be the vertices of T0 not in U . These are
leaves and for each i < n, let ui ∈ U be such that λ(ui) �∗ λ(li). Consider the
κ-system S0 = (S0, E0, λ0) where S0 = U ∪ L, E0 = E|S0 and λ0 = (Ker ◦λ)|S0

with | denoting restricting the domain of the function/relation.
We have that λ(u) �∗ λ(v) implies λ0(u) �∗ λ0(v), so S0 is quasi-saturated.

Let O be the set of ordinals occurring in the sets λ0(u) for u ∈ S0, which is
finite, and (αi)i<|O| enumerate the elements in O in increasing order. Define
f : O → ωω by f(αi) = min{αi, ω

i}. We claim S f
0 is quasi-saturated. Since f is

strictly monotone it suffices to check, for each i < n, that

λ0(ui)f �∗ λ0(li)f . (2)

Fixing i < n, let a0 < · · · < ak be such that αa0 , . . . , αak
enumerates the

ordinals in λ0(ui) and let b0 < · · · < bl < |O| be the analogous sequence for
λ0(li). Given λ0(ui) �∗ λ0(li) we must have k = l and aj ≤ bj for each j ≤ k.
By induction on j ≤ k we may define h ∈ I(ωω) such that h(f(αaj

)) = f(αbj
)

for every j ≤ k. In other words, h witnesses (2). So S f
0 is quasi-saturated.

Moreover, for every vertex u of S0, λ0(u)f � λ0(u) � λ(u) by the choice of f ,
hence λ0(u)f ⊆ λ(u) by the Truth Lemma and the additional assumption on T .
But then Keru ⊆ λ0(u)f ⊆ Lωω

μ . ��
Thus we obtain the following theorem.

Theorem 6. Kωω

μ+ is sound and complete system over symmetric frames.

Proof. Suppose Γ = Δ[νxφ] is not valid. Applying Theorem5 we obtain a κ-
system expanding Γ , which can be further expanded to a system S satisfying
the assumptions of Proposition 1 with the additional property that the vertex
u which contains the formula νxφ specified by the context is an element of the
designated finite set U . As a consequence of the proposition, Keru ⊆ Lωω

μ . By
saturation, ναxφ′ ∈ u for some α < ωω and φ′ � φ, whence the Truth Lemma
implies Γ [ναxφ] is not valid. Thus the rule νωω is sound. Completeness is given
by Theorem 1. ��

It is not difficult (though rather technical) to show that the ordinal ωω is
optimal for obtaining soundness over trees by leveraging the failure of the finite
model property. For instance, to observe that the inference νω2 is unsound (over
trees), consider the sequent Γ = �, ψ, φ where ψ expresses the existence of a
finite {a, b}-path, � = 〈a〉� ∨ 〈b〉� and

φ = νx([b](x ∧ �) ∧ μy〈b〉(y ∨ x) ∧ μy〈a〉(y ∨ x)).

An Infinitary Treatment of Full Mu-Calculus 29

This observation can be readily generalised to show νωn is unsound for each n.
Combining with the previous theorem we conclude

Theorem 7. Kκ
μ+ is unsound over trees for every κ < ωω.

5 Discussion

There is an interesting tradeoff between the difficulty in establishing sound-
ness and completeness for different axiomatisations of μ-calculus. With Kozen’s
axiomatisation the difficulty lies in showing completeness (soundness being rea-
sonably straightforward) whereas in the goal-oriented proof system of [28] or the
circular axiomatisations proposed in [1] the proof of soundness is more involved.
The infinitary proof system Kωω

μ+ belongs to this second category.
Finally, we wish to remark on one further result contained in Vardi’s seminal

article: the tree languages definable by μ-calculus formulæ with converse modal-
ities are precisely those definable by formulæ without converse. Suppose φ �→ φ∗

is an effective translation of formulæ into pure formulæ such that φ ↔ φ∗ is true
in the symmetric closure of every tree. To re-phrase Vardi’s result, an arbitrary
tree can be endowed with a saturated ωω-system containing φ in the root iff it
can be given a saturated ω-system with root containing φ∗. Since we know that
the ordinals ωω and ω are optimal for the respective languages (over trees), this
leads us to wonder what features of the interpretation give rise to this necessary
collapse (the ‘only if’ direction) and expansion (‘if’ direction) of ordinals. We
cannot say at this stage, but believe questions in this vein demonstrate a clear
gap in our understanding of the proof theory of fixed point logic.

Acknowledgements. The work was initiated during the authors’ research visit to
the Hausdorff Research Institute for Mathematics (HIM), University of Bonn, as part
of the trimester program Types, Sets and Constructions, May–Aug 2018. Both the
financial support and the hospitality of HIM, are gratefully acknowledged.

This research was supported by the Swedish Research Council (grants 2016-03502
and 2017-05111) and the Knut and Alice Wallenberg Foundation.

The authors also wish to thank Rajeev Goré for his unsparing advice to look at
nested sequents, Steve Simpson for his interest and references to the theory of better-
quasi-orders, and Valentin Goranko for his suggestions which have improved the final
presentation of the results.

A Well-Annotated Formulæ

We begin by making more precise the definition of well-annotated κ-formulæ,
and the properties that this class satisfy.

Fix κ ≤ ω1 and let � denote the subsumption ordering on Var, where x � y
reads as x subsumes y. We assume � is a strict partial order on Var which is
downwards linear. Recall that we consider � fixed and that all formulæ respect
�. Hence, if μyφ is a formula with x free, then x � y.

30 B. Afshari et al.

An κ-assignment is a partial function from Var into ordinals <κ whose
domain is linearly ordered by �. A(κ) is the set of κ-assignments and we let
dom o denote the domain of o ∈ A(κ). It proves convenient to occasionally treat
assignments as total functions o : Var → κ+1, and set dom o = {x ∈ Var | o(x) <
κ}. Given o ∈ A(κ) and x ∈ Var, o�x denotes the restriction of o to the variables
subsuming x:

o�x(y) =

{
o(y), if y � x,

κ, otherwise.

For φ ∈ Lμ and o ∈ A(κ), φo is the κ-formula generated as follows.

xo = x (φ ∧ ψ)o = φo ∧ ψo ([a]φ)o = [a]φo (μxφ)o = μxφo�x

(φ ∨ ψ)o = φo ∨ ψo (〈a〉φ)o = 〈a〉φo (νxφ)o = νo(x)xφo�x

That is, ν-quantifiers in φo are approximated by their value under o (which
is no approximation if the variable is outside the domain) except for variables
occurring within the scope of a variable lower in the subsumption ordering. The
significance of constraining dom o to be linearly ordered will become apparent
shortly when we consider a quasi-ordering of A(κ).

Example 1. Suppose x � y and o(x) = α and o(y) = β, with α, β < κ. Let φ be
a formula without quantifiers containing both x and y free. Then (νyνxφ)o =
νβyναφ, whereas (νxνyφ)o = ναxνyφ. The requirement that dom o is linear
means that if ((νxφ) ∨ (νzψ))o = (ναxφ′) ∨ (νγzχ′) then either one of α and γ
is κ, or x and z are comparable in �.

Definition 10. The image of a well-formed formula under a κ-assignment is
well-annotated. We let Lκ

μ be the set of well-annotated κ-formulæ.

Recall that substitution is well-defined for well-formed formulæ.

Lemma 6. If � is well-named then every formula in SCκ(�) is well-annotated.

Proof. Suppose φ = (νxψ)o = ναxψo�x ∈ SCκ(�). Then for each β < α, we have
φ′ = ψo�x(x/νβxψo�x) ∈ SCκ(�) by the closure condition and we require to show
that φ′ is well-annotated. Assume o(x) < κ (otherwise the result is immediate)
and let o′ be the assignment with domain {y ∈ dom o | y �x∨y = x} determined
by o′(y) = o(y) for y � x and o′(x) = β. Given the fact that � is well-named, x
does not appear bound in ψ, whence it is easy to check that φ′ = ψ(x/νxψ)o′

.
The other closure conditions are straightforward.

As defined, κ-assignments do not uniquely determine the formulæ in Lκ
μ. Each

ψ ∈ Lμ determines an obvious equivalence relation on A(κ), given by o ∼ψ o′ iff
ψo = ψo′

. However, for each φ ∈ Lκ
μ there exists a unique κ-assignment o with

smallest domain such that φ = ψo, where ψ = φ− is the template of φ. We call
this assignment the ordinal assignment of φ and denote it oφ.

We can thus give the formal definition of the quasi-order � introduced
immediately prior to Definition 9. This starts with a quasi-order ≤ on κ-
assignments, defined by o ≤ ô iff dom o ⊆ dom ô and for every maximal chain

An Infinitary Treatment of Full Mu-Calculus 31

x0�x1� · · ·�xn ∈ dom o the sequence (o(x0), . . . , o(xn)) is lexicographically prior
to (ô(x0), . . . , ô(xn)).

Lemma 7. (A(κ),≤) is a well-quasi-order. Moreover, there exists k such that
for every set X ⊆ A(κ) with |X| ≥ k there exists o, ô ∈ X s.t. o < ô.

Proof. Transitivity of ≤ is established by induction along � in Var. So, ≤ is a
quasi-order. Moreover, this quasi-order is a well-order on sets of κ-assignments
with the same domain since it reduces to the lexicographic ordering on κk for
some k (as domains are linearly ordered by �). Since Var is a finite set, both
claims follow. ��
Definition 11. Fix � ∈ Lμ and for φ, ψ ∈ SCκ(�) define φ � ψ iff φ− = ψ−

and oφ ≤ oψ.

This relation is well-defined because of Lemma 6, which implies that every for-
mula in the strong closure of an Lμ formula is well-annotated and, hence, has a
defined ordinal assignment.

We consider it instructive to note that there is another natural quasi-order
sitting strictly between Kozen’s � and our �, obtained by dropping the restric-
tion of linearity of annotated quantifiers but otherwise applying the lexicographic
ordering in �. This too is a wqo, but does not satisfy the second part of Lemma4.

B Omitted Proofs

We now present some missing arguments from the main text. We begin with
Lemma 4 as this result follows directly from our work on ordinal assignments:

Lemma 4. (SCκ(�),�) is a wqo. Moreover, there exists k such that for every
X ⊆ SCκ(�), |Ker X| < k.

Proof. We need only remark that the quasi-order (SCκ(�),�) can be expressed
as the disjoint union of finitely many copies of (A(κ),≤), one for each formula
in FL(�), an operation that preserves wqo-ness. The second claim follows from
this fact and Lemma 7.

Lemma 1(2): For all φ ∈ Lμ and contexts Γ [], Kκ
μ � Γ [φ, φ].

Proof. Induction on φ = φ(x1, . . . , xk) shows the inference

Γ [ψ1, χ1] · · · Γ [ψk, χk]
Γ [φ(ψ1, . . . , ψk), φ(χ1, . . . , χk)]

is admissible in Kκ
μ and Kκ

μ+ . For the case φ = νyφ0, we have a derivation
of Γ [φ, ν0yφ0] by ν.0, and from Γ [φ, ναyφ0] we derive Γ [φ, να+1yφ0] via the
induction hypothesis and inferences μ and ν.(α + 1). Thus transfinite induction
shows that Γ [φ, ναyφ0] is derivable for every α < κ, whence Γ [φ, φ] results.

32 B. Afshari et al.

Theorem 4. The proof of this theorem ends with a statement of the following
equivalence:

∀X,Y ⊆ SCκ(�) : X �∗ Y iff X∗ ≤pw Y ∗

On first appearance this result appears non-trivial. However, it is an easy con-
sequence of the following result relating finite sets of ordinals, the verification of
which is straightforward.

Lemma 8. Given a non-empty finite set of ordinals A, let A∗ = (δA
i)i<|A|

denote the unique sequence such that A = {∑j≤i δA
j | i < |A|}. Fix a prin-

cipal ordinal κ and let A,B ⊂ κ be non-empty finite sets of the same cardinality.
There exists f ∈ I(κ) such that B = {f(α) | α ∈ A} iff A∗ ≤pw B∗.

References

1. Afshari, B., Leigh, G.E.: Cut-free completeness for modal mu-calculus. In: 32nd
Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2017, pp. 1–
12. IEEE Computer Society (2017). https://doi.org/10.1109/LICS.2017.8005088

2. Arisaka, R., Das, A., Straßburger, L.: On nested sequents for constructive modal
logics. Log. Methods Comput. Sci. 11(3) (2015). https://doi.org/10.2168/LMCS-
11(3:7)2015

3. Bradfield, J., Stirling, C.: 12 modal mu-calculi. In: Blackburn, P., Benthem,
J.V., Wolter, F. (eds.) Handbook of Modal Logic. Studies in Logic and Practical
Reasoning, vol. 3, pp. 721–756. Elsevier (2007). https://doi.org/10.1016/S1570-
2464(07)80015-2

4. Bradfield, J., Walukiewicz, I.: The mu-calculus and model checking. In: Clarke,
E., Henzinger, T., Veith, H., Bloem, R. (eds.) Handbook of Model Checking, pp.
871–919. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-10575-8 26

5. Cachat, T.: Two-way tree automata solving pushdown games. In: Grädel, E.,
Thomas, W., Wilke, T. (eds.) Automata Logics, and Infinite Games. LNCS, vol.
2500, pp. 303–317. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-
36387-4 17

6. Dam, M., Gurov, D.: μ-calculus with explicit points and approximations. J. Log.
Comput. 12(2), 255–269 (2002). https://doi.org/10.1093/logcom/12.2.255

7. Demri, S., Goranko, V., Lange, M.: Temporal Logics in Computer Science: Finite-
State Systems. Cambridge Tracts in Theoretical Computer Science. Cambridge
University Press, Cambridge (2016). https://doi.org/10.1017/CBO9781139236119

8. Enqvist, S.: Flat modal fixpoint logics with the converse modality. J. Log. Comput.
28(6), 1065–1097 (2018). https://doi.org/10.1093/logcom/exy016

9. Enqvist, S., Seifan, F., Venema, Y.: Completeness for the modal μ-calculus: sep-
arating the combinatorics from the dynamics. Theor. Comput. Sci. 727, 37–100
(2018). https://doi.org/10.1016/j.tcs.2018.03.001

10. Fitting, M.: Nested sequents for intuitionistic logics. Notre Dame J. Form. Log.
55(1), 41–61 (2014). https://doi.org/10.1215/00294527-2377869

11. Fitting, M., Kuznets, R.: Modal interpolation via nested sequents. Ann. Pure Appl.
Log. 166(3), 274–305 (2015). https://doi.org/10.1016/j.apal.2014.11.002

12. Goranko, V., Galton, A.: Temporal logic. In: Zalta, E.N. (ed.) The Stanford Ency-
clopedia of Philosophy, winter 2015. Metaphysics Research Lab, Stanford Univer-
sity (2015)

https://doi.org/10.1109/LICS.2017.8005088
https://doi.org/10.2168/LMCS-11(3:7)2015
https://doi.org/10.2168/LMCS-11(3:7)2015
https://doi.org/10.1016/S1570-2464(07)80015-2
https://doi.org/10.1016/S1570-2464(07)80015-2
https://doi.org/10.1007/978-3-319-10575-8_26
https://doi.org/10.1007/3-540-36387-4_17
https://doi.org/10.1007/3-540-36387-4_17
https://doi.org/10.1093/logcom/12.2.255
https://doi.org/10.1017/CBO9781139236119
https://doi.org/10.1093/logcom/exy016
https://doi.org/10.1016/j.tcs.2018.03.001
https://doi.org/10.1215/00294527-2377869
https://doi.org/10.1016/j.apal.2014.11.002

An Infinitary Treatment of Full Mu-Calculus 33

13. Goré, R.: And-Or tableaux for fixpoint logics with converse: LTL, CTL, PDL
and CPDL. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS
(LNAI), vol. 8562, pp. 26–45. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-08587-6 3

14. Goré, R., Postniece, L., Tiu A.: On the correspondence between display postulates
and deep inference in nested sequent calculi for tense logics. Log. Methods Comput.
Sci. 7(2) (2011). https://doi.org/10.2168/LMCS-7(2:8)2011

15. Grädel, E., Thomas, W., Wilke, T. (eds.): Automata Logics, and Infinite Games: A
Guide to Current Research. Springer, New York (2002). https://doi.org/10.1007/
3-540-36387-4

16. Jäger, G., Kretz, M., Studer, T.: Canonical completeness of infinitary μ. J. Log.
Algebr. Program. 76(2), 270–292 (2008). https://doi.org/10.1016/j.jlap.2008.02.
005

17. Kashima, R.: Cut-free sequent calculi for some tense logics. Stud. Log. 53(1), 119–
135 (1994). https://doi.org/10.1007/BF01053026

18. Kozen, D.: A finite model theorem for the propositional μ-calculus. Stud. Log.
47(3), 233–241 (1988). https://doi.org/10.1007/BF00370554

19. Kozen, D.: Results on the propositional μ-calculus. Theor. Comput. Sci. 27, 333–
354 (1983). https://doi.org/10.1016/0304-3975(82)90125-6

20. Marcone, A.: Fine analysis of the quasi-orderings on the power set. Order 18(4),
339–347 (2001). https://doi.org/10.1023/A:1013952225669

21. Nash-Williams, C.S.J.A.: On better-quasi-ordering transfinite sequences. Math.
Proc. Camb. Philos. Soc. 64(2), 273–290 (1968). https://doi.org/10.1017/
S030500410004281X

22. Nash-Williams, C.S.J.A.: On well-quasi-ordering transfinite sequences. Math.
Proc. Camb. Philos. Soc. 61(1), 33–39 (1965). https://doi.org/10.1017/
S0305004100038603

23. Parikh, R.: The completeness of propositional dynamic logic. In: Winkowski,
J. (ed.) MFCS 1978. LNCS, vol. 64, pp. 403–415. Springer, Heidelberg (1978).
https://doi.org/10.1007/3-540-08921-7 88

24. Reynolds, M.: An axiomatization of PCTL*. Inf. Comput. 201(1), 72–119 (2005).
https://doi.org/10.1016/j.ic.2005.03.005

25. Reynolds, M.: More past glories. In: 15th Annual IEEE Symposium on Logic
in Computer Science, LICS 2000, pp. 229–240. IEEE Computer Society (2000).
https://doi.org/10.1109/LICS.2000.855772

26. Shamkanov, D.S.: Nested sequents for provability logic GLP. Log. J. IGPL 23(5),
789–815 (2015). https://doi.org/10.1093/jigpal/jzv029

27. Smyth, M.B.: Power domains. J. Comput. Syst. Sci. 16, 23–36 (1978). https://doi.
org/10.1016/0022-0000(78)90048-X

28. Stirling, C.: A tableau proof system with names for modal mu-calculus. In:
Voronkov, A., Korovina, M.V. (eds.) HOWARD-60: a festschrift on the occasion of
howard Barringer’s 60th Birthday. EPiC Series in Computing, vol. 42, pp. 306–318.
EasyChair (2014)

29. Streett, R.S., Emerson, E.A.: An automata theoretic decision procedure for the
propositional mu-calculus. Inf. Comput. 81, 249–264 (1989). https://doi.org/10.
1016/0890-5401(89)90031-X

https://doi.org/10.1007/978-3-319-08587-6_3
https://doi.org/10.1007/978-3-319-08587-6_3
https://doi.org/10.2168/LMCS-7(2:8)2011
https://doi.org/10.1007/3-540-36387-4
https://doi.org/10.1007/3-540-36387-4
https://doi.org/10.1016/j.jlap.2008.02.005
https://doi.org/10.1016/j.jlap.2008.02.005
https://doi.org/10.1007/BF01053026
https://doi.org/10.1007/BF00370554
https://doi.org/10.1016/0304-3975(82)90125-6
https://doi.org/10.1023/A:1013952225669
https://doi.org/10.1017/S030500410004281X
https://doi.org/10.1017/S030500410004281X
https://doi.org/10.1017/S0305004100038603
https://doi.org/10.1017/S0305004100038603
https://doi.org/10.1007/3-540-08921-7_88
https://doi.org/10.1016/j.ic.2005.03.005
https://doi.org/10.1109/LICS.2000.855772
https://doi.org/10.1093/jigpal/jzv029
https://doi.org/10.1016/0022-0000(78)90048-X
https://doi.org/10.1016/0022-0000(78)90048-X
https://doi.org/10.1016/0890-5401(89)90031-X
https://doi.org/10.1016/0890-5401(89)90031-X

34 B. Afshari et al.

30. Vardi, M.Y.: Reasoning about the past with two-way automata. In: Larsen, K.G.,
Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 628–641. Springer,
Heidelberg (1998). https://doi.org/10.1007/BFb0055090

31. Walukiewicz, I.: Completeness of Kozen’s axiomatisation of the propositional mu-
calculus. In: Proceedings of the 10th Annual IEEE Symposium on Logic in Com-
puter Science, LICS 1995, pp. 14–24. IEEE Computer Society (1995). https://doi.
org/10.1109/LICS.1995.523240

https://doi.org/10.1007/BFb0055090
https://doi.org/10.1109/LICS.1995.523240
https://doi.org/10.1109/LICS.1995.523240

Algebraic and Topological Semantics
for Inquisitive Logic

via Choice-Free Duality

Nick Bezhanishvili1, Gianluca Grilletti1(B), and Wesley H. Holliday2

1 ILLC, University of Amsterdam, Amsterdam, The Netherlands
N.Bezhanishvili@uva.nl, grilletti.gianluca@gmail.com

2 University of California, Berkeley, USA
wesholliday@berkeley.edu

Abstract. We introduce new algebraic and topological semantics for
inquisitive logic. The algebraic semantics is based on special Heyting
algebras, which we call inquisitive algebras, with propositional valua-
tions ranging over only the ¬¬-fixpoints of the algebra. We show how
inquisitive algebras arise from Boolean algebras: for a given Boolean alge-
bra B, we define its inquisitive extension H(B) and prove that H(B) is
the unique inquisitive algebra having B as its algebra of ¬¬-fixpoints.
We also show that inquisitive algebras determine Medvedev’s logic of
finite problems. In addition to the algebraic characterization of H(B),
we give a topological characterization of H(B) in terms of the recently
introduced choice-free duality for Boolean algebras using so-called upper
Vietoris spaces (UV-spaces) [2]. In particular, while a Boolean algebra
B is realized as the Boolean algebra of compact regular open elements
of a UV-space dual to B, we show that H(B) is realized as the algebra
of compact open elements of this space. This connection yields a new
topological semantics for inquisitive logic.

1 Introduction
The inquisitive logic InqB [7] is an extension of propositional logic that encom-
passes logical relations between questions in addition to statements. To define
InqB, Ciardelli et al. [6] introduced a semantics based on states of partial infor-
mation, called support semantics, which generalizes the standard truth-based
semantics of propositional logic. In [4], connections between this semantics and
several intermediate logics—including Medvedev’s logic ML [10] and the Kreisel-
Putnam logic KP [3, p. 148]—were studied: in particular, InqB can be charac-
terized as the logic of general intuitionistic Kripke models based on Medvedev’s
frames for which the valuations of atomic propositions are principal upsets. Even
though the algebraic structures arising from this characterization have been con-
sidered in the literature [8], a proper algebraic and topological semantics for
inquisitive logic is still missing. The aim of this paper is to fill this gap.

The original version of this chapter was revised: An acknowledgement has been added.
The correction to this chapter is available at https://doi.org/10.1007/978-3-662-59533-
6 41

c© Springer-Verlag GmbH Germany, part of Springer Nature 2019
R. Iemhoff et al. (Eds.): WoLLIC 2019, LNCS 11541, pp. 35–52, 2019.
https://doi.org/10.1007/978-3-662-59533-6_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-59533-6_3&domain=pdf
https://doi.org/10.1007/978-3-662-59533-6_41
https://doi.org/10.1007/978-3-662-59533-6_41
https://doi.org/10.1007/978-3-662-59533-6_3

36 N. Bezhanishvili et al.

After reviewing inquisitive logic and some topological preliminaries in Sect. 2,
we start in Sect. 3 with an algebraic semantics for inquisitive logic based on Heyt-
ing algebras with propositional valuations ranging over only the ¬¬-fixpoints of
the algebra. The Kripke semantics for inquistive logic can be seen as a partic-
ular instance of this algebraic semantics: for F a Medvedev frame, the algebra
Upp(F) of principal upsets of F is the algebra of ¬¬-fixpoints of the Heyt-
ing algebra Up(F) of all upsets of F . For our algebraic semantics, we motivate
restricting attention to only special Heyting algebras, which we call inquisitive
algebras, of which Up(F) for a Medvedev frame F is an example.

We show how inquisitive algebras arise from Boolean algebras: for a given
Boolean algebra B, we define in Sect. 4.1 its inquisitive extension H(B) and prove
in Sect. 4.2 that H(B) is the unique inquisitive algebra having B as its algebra of
¬¬-fixpoints. We also show that inquisitive algebras determine Medvedev’s logic.
In addition to the algebraic characterization of H(B) in Sect. 4.2, we give a topo-
logical characterization of H(B) in Sect. 4.3 in terms of the recently introduced
choice-free duality for Boolean algebras using so-called upper Vietoris spaces
(UV-spaces) [2], which we review in Sect. 2.2. In particular, while a Boolean
algebra B is realized as the Boolean algebra of compact regular open elements
of a UV-space dual to B, we show that H(B) is realized as the algebra of compact
open elements of this space.

The topological characterization of H(B) leads in Sect. 5 to a new topological
semantics for inquisitive logic based on UV-spaces. As an additional benefit, we
obtain a new topological semantics for Medvedev’s logic.

We conclude in Sect. 6 with some directions for future research. Several
appendices contain proofs deferred in the main text.

2 Preliminaries

2.1 Inquisitive Logic

In this section, we introduce the syntax and the world-based semantics of inquis-
itive logic and present some basic results used throughout the paper. Further
details can be found in [5,7].

Fix a set AP of atomic propositions.

Definition 2.1. The set L of inquisitive formulas (over AP) is defined by the
following grammar:

φ := ⊥ | p | (φ ∧ φ) | (φ → φ) | (φ

�

φ)

where p ∈ AP. We define ¬φ := φ → ⊥ and (φ ∨ ψ) := ¬(¬φ ∧ ¬ψ).

The standard propositional language is the

�

-free fragment of our language. We
will refer to formulas in this fragment as classical formulas.

The intuitive interpretation of classical formulas is the same as in proposi-
tional logic. For example, the formula p ∨ ¬p is interpreted as the (tautological)

Algebraic and Topological Semantics for Inquisitive Logic 37

statement “p holds or p does not hold.” The role of the new connective
�

, called
inquisitive disjunction, is to introduce questions in the logic. For example, the
intuitive reading of the formula p

� ¬p is the question “Does p hold?” This intu-
ition is formalized by the standard support semantics for this language [6].

Definition 2.2. Let W be a set of valuations for AP (i.e., functions from AP
to {0, 1}). We recursively define the support relation � for formulas in L by:

W � ⊥ ⇐⇒ W = ∅
W � p ⇐⇒ ∀w ∈ W. w(p) = 1
W � φ ∧ ψ ⇐⇒ W � φ and W � ψ
W � φ → ψ ⇐⇒ ∀V ⊆ W. [if V � φ then V � ψ]
W � φ

�

ψ ⇐⇒ W � φ or W � ψ.

A set W of valuations is interpreted as a state of partial information: we
know that the actual state of affairs is represented by one of the valuations in
W, but we do not know by which one. The information available is enough to
assert that a statement holds if every w ∈ W agrees on the statement being
true. Under this interpretation, every W supports a tautology such as p ∨ ¬p
(cf. Lemma 2.3 below). When it comes to questions, the information available
solves a question if every w ∈ W agrees on the same solution. For example “Does
p hold?”, represented by p

� ¬p, is solved in W if w(p) = 1 for every w ∈ W or
w(p) = 0 for every w ∈ W, that is, if W � p

� ¬p.
The following lemma can be proven by a straightforward induction.

Lemma 2.3

1. For every φ, ∅ � φ;
2. If W � φ and V ⊆ W, then V � φ;
3. If α is a classical formula, W � α iff ∀w ∈ W. w(α) = 1.1

This lemma tells us that for a given W and φ, the set �φ�
W := {V ⊆ W | V � φ} is

a non-empty ⊆-downset; and moreover, if φ is classical, it is a principal downset.
These observations suggest the following connection with Medvedev’s logic ML—
recall that ML is the logic of Medvedev frames, which are Kripke frames of the
form (P0(W),⊇) for W a finite set, where P0(W) = {V ⊆ W | V = ∅}.

Lemma 2.4 ([4, Proposition 2.2.2]). Let W be a set of valuations and consider
the intuitionistic Kripke model (P0(W),⊇, V) where

V (p) = P0({w ∈ W | w(p) = 1}).

Then for every formula φ ∈ L, we have2

W � φ ⇐⇒ (P0(W),⊇, V) � φ.

1 Here we consider the standard extension of valuations over atomic propositions to
arbitrary propositional formulas.

2 Under the intuitionistic semantics, we interpret

�

as the intuitionistic disjunction.

38 N. Bezhanishvili et al.

If W is finite, then (P0(W),⊇) is a Medvedev frame; and V (p) has to be a
principal upset of this frame. Moreover, if we are interested in the validity of a
fixed formula φ(p1, . . . , pn), we can restrict our attention to sets of valuations
over p1, . . . , pn, which are always finite. Thus, we obtain the following.

Proposition 2.5. InqB is the logic of the class of intuitionistic Kripke models

{(P0(X),⊇, V) | X is finite and V (p)is principal for all p ∈ AP}.

In [5, Sect. 3.1] a sound and complete natural deduction system for InqB is
presented, which is equivalent to the following Hilbert style system:

Axioms IPC: Axioms of IPC.
KP: (¬φ → ψ

�

χ) → (¬φ → ψ)
�

(¬φ → χ) for every φ, ψ, χ ∈ L.
DNE: ¬¬p → p for every p ∈ AP.

Rules MP: φ, φ → ψ/ψ.

2.2 UV-Spaces

In this section, we recall the basic constructions of the choice-free duality for
Boolean algebras recently developed in [2]. They will be used in Sects. 4.3 and 5,
where we introduce a topological semantics for inquisitive logic.

Recall that for any poset (X,≤), we define

Cl≤(U) = {x ∈ X | ∃y ≥ x. y ∈ U}, (1)
Int≤(U) = X \ Cl≤(X \ U) = {x ∈ X | ∀y ≥ x. y ∈ U}. (2)

We call a set U ≤-regular open if U = Int≤Cl≤(U). Let X be a topological
space and ≤ its specialization order. Let RO(X) be the collection of ≤-regular
open subsets of X. Let CO(X) denote the collection of compact open subsets of
X. Finally, let CORO(X) = CO(X) ∩ RO(X).

Definition 2.6. An upper Vietoris space (UV-space) is a T0 space X such that:

1. CORO(X) is closed under ∩ and Int≤(X \ ·);
2. if x ≤ y, then there is a U ∈ CORO(X) such that x ∈ U and y ∈ U ;
3. every proper filter in CORO(X) is CORO(x) = {U ∈ CORO(X) | x ∈ U}

for some x ∈ X.

Given a UV-space X the set CORO(X) forms a Boolean algebra, where ∧ is
the intersection, ∨ is Int≤Cl≤ of the union, and ¬ is Int≤ of the set-theoretic
complement. It was observed in [2] that CORO(X) coincides with the set of
compact regular open (in the topology of X) subsets of X. Conversely, for a
Boolean algebra B we consider the set UV (B) of all proper filters of B and define
a topology generated by {â | a ∈ B}, where â = {x ∈ UV (B) | a ∈ x}. Then
UV (B) is a UV-space, where the specialization order is the inclusion order of

Algebraic and Topological Semantics for Inquisitive Logic 39

filters, and B is isomorphic to the algebra CORO(UV (B)). This correspondence
can be extended to a full (choice-free) duality of the category of Boolean algebras
and the category of UV-spaces [2]. The name “upper Vietoris” refers to the fact
that, assuming the Axiom of Choice, the UV-dual of a Boolean algebra B is
homeomorphic to the space of closed subsets of the Stone dual of B equipped
with the upper Vietoris topology (for a choice-free version of this, see [2]).

3 Algebraic Semantics via Inquisitive Algebras

In this section, we define inquisitive algebras and a semantics for InqB via these
algebras. We start with the following well-known result (see, e.g., [9, p. 51]).

Proposition 3.1. For any Heyting algebra H, let H¬¬ = {¬¬x | x ∈ H}. Then:

1. H¬¬ forms a bounded {∧,→}-subalgebra of H;
2. H¬¬ forms a Boolean algebra with join given by a ∨H¬¬ b = ¬¬(a ∨H b).

Example 3.2. Let B be a complete Boolean algebra and consider the Heyt-
ing algebras Dw0(B) and Dwp(B) of its non-empty and principal downsets,
respectively. The latter is isomorphic to B, with the join in Dwp(B) given by
{a}↓ ∨ {b}↓ = ¬¬({a}↓ ∪ {b}↓) = {a ∨B b}↓, where U↓ is the downset generated
by U . Then as shown in AppendixA:

Dwp(B) = (Dw0(B))¬¬. (3)

Example 3.3. Let B be a Boolean algebra—not necessarily complete—and let
Dwfg(B) be the set of finitely generated downsets of B. Then as shown in
AppendixA:

Dwp(B) = (Dwfg(B))¬¬. (4)

Elements of Dwfg(B) can be represented in a special way that will be useful
for later results. The proof of the next lemma is straightforward.

Lemma 3.4. Every downset D ∈ Dwfg(B) can be represented in a unique way
as D = {a1, . . . , an}↓ with ai ≤ aj for i = j.

We now define an algebraic semantics for inquisitive logic by restricting the
interpretations of atoms to H¬¬, as in the definition of inquisitive validity below.
We will denote the meet, join, and implication in a Heyting algebra with the
same symbols used for the connectives of our language, ∧,

�

, and →.

Definition 3.5 (Algebraic semantics)

Let H be a Heyting algebra and V : AP → H. For each φ ∈ L, we define
�φ�

H,V ∈ H recursively as follows:

�⊥�
H,V = ⊥ �φ ∧ ψ�

H,V = �φ�
H,V ∧ �ψ�

H,V

�p�
H,V = V (p) �φ

�

ψ�
H,V = �φ�

H,V �

�ψ�
H,V

�φ → ψ�
H,V = �φ�

H,V → �ψ�
H,V

.

40 N. Bezhanishvili et al.

Let H,V � φ mean that �φ�
H,V = �.

A formula φ is intuitionistically valid in H if for every V : AP → H, we
have �φ�

H,V = �. Let IntLog(H) be the set of formulas intuitionistically valid
in H. A formula is intuitionistically valid if it is intuitionistically valid in every
Heyting algebra.

A formula φ is inquisitively valid in H if for every V : AP → H¬¬, we have
�φ�

H,V = �. Let InqLog(H) be the set of formulas inquisitively valid in H. A
formula is inquisitively valid if it is inquisitively valid in every Heyting algebra.

From now on we write �φ� instead of �φ�
H,V if H and V are clear from context.

Some properties of the semantics are straightforward to prove. For example:

Lemma 3.6. If φ does not contain the symbol
�

, then �φ� ∈ H¬¬.

It is immediate that every intuitionistic theorem is an inquisitve validity. And
since the image of the valuations is restricted to H¬¬, the formula ¬¬p → p is also
valid. But it is not the case that ¬¬φ → φ is valid for every φ ∈ L, as Example 3.7
shows, so the set of validities is not closed under uniform substitution.

Example 3.7. Consider H = Dwfg(P(W)) for a finite set W with at least
two elements. Notice that H = Dw0(P(W)) ∼= Dw(P0(W)). In this case the
algebraic semantics boils down to the support semantics for inquisitive logic
(cf. Lemma 2.4).

Given A ⊆ W , one can easily verify that ¬¬{A}↓ = {A}↓ and consequently
¬¬p → p ∈ InqLog(H). On the other hand, for A,B ⊆ W we have ¬¬{A,B}↓ =
{A ∪ B}↓ and thus ¬¬(p

�

q) → (p

�

q) /∈ InqLog(H).
A natural question to ask is for which Heyting algebra H we have InqB ⊆

InqLog(H). The following obvious lemma gives a partial answer to this question.
We call H a KP-algebra if H validates KP.

Lemma 3.8. If H is a KP-algebra, then InqB ⊆ InqLog(H).

Combining Lemma3.8 with the fact that the standard support semantics is a
special case of our algebraic semantics (see Example 3.7), we obtain the following:

Proposition 3.9. The set of formulas valid on KP-algebras is exactly the set
of InqB validities.

However, arbitrary KP-algebras are somewhat “too big” for our semantics.
For example, if H = Dw0(B) for a complete Boolean algebra B, then no matter
what valuation we consider, the semantic value �φ� of a formula φ must be
an element of the subalgebra generated by Dwp(B), that is, Dwfg(B). This
observation can be formalized as follows.

Lemma 3.10. Let H be a Heyting algebra and H ′ the subalgebra of H generated
by H¬¬. Then:

1. (H ′)¬¬ = H¬¬;

Algebraic and Topological Semantics for Inquisitive Logic 41

2. for every valuation V : AP → H¬¬ and formula φ we have �φ�
H,V = �φ�

H′,V ;
3. if H is a KP-algebra, so is H ′.

Thus, without loss of generality, we can restrict attention to algebras in which
H¬¬ generates H.

Definition 3.11. A Heyting algebra H is regularly generated if it is generated
by H¬¬.

In fact, we can motivate one more restriction on the class of algebras we
consider. As in Subsect. 2.1, formulas of InqB are interpreted as sentences (state-
ments or questions) and the support semantics agrees with this interpretation.
For example, a question p

� ¬p (“Does p hold?”) is supported in an information
model iff either p (“p holds”) or ¬p (“p does not hold”) is supported in the model.
However, this is not necessarily the case in the algebraic setting: for example, a
Boolean algebra B is trivially a regularly generated KP-algebra, since B¬¬ = B;
and �p

� ¬p� = � regardless of the value of �p� and �¬p�.
This motivates us to recall the following standard definition [3, p. 455].

Definition 3.12. A Heyting algebra H is well connected if for all a, b ∈ H, if
a

�

b = 1, then a = 1 or b = 1.

Thus, we finally arrive at our definition of the class of inquisitive algebras.

Definition 3.13 (Inquisitive algebra). An inquisitive algebra is a regularly
generated well-connected KP-algebra.

In the next section, we show how to construct inquisitive algebras from
Boolean algebras.

4 Inquisitive Extension of a Boolean Algebra

4.1 Construction of the Inquisitive Extension

We will show that for a given Boolean algebra B, there exists a unique inquisitive
algebra H such that B is isomorphic to H¬¬. We will construct this H as a
quotient of the free Heyting algebra built using elements of B as constants.
Consider the set

T =
{

t(b1, . . . , bn)
∣

∣

∣ t is a term in the signature
{

∧̇, ∨̇, →̇, ⊥̇, �̇
} }

.

We also introduce the shorthand ¬̇t for t →̇ ⊥̇.
Define the binary relation ≈ on T as the smallest equivalence relation such

that:

– ≈ respects all Heyting algebra equations (e.g., for commutativity of ∧̇ we
require t1 ∧̇ t2 ≈ t2 ∧̇ t1);

– ≈ respects KP: ¬̇t1 →̇ (t2 ∨̇ t3) ≈ (t1 →̇ t2) ∨̇ (t1 →̇ t3).

42 N. Bezhanishvili et al.

– ≈ agrees with the operations on B: for a, b ∈ B, a ∧̇ b ≈ a ∧ b; a →̇ b ≈ a → b;
⊥̇ ≈ ⊥; �̇ ≈ �.

T / ≈ has a natural structure of a KP-algebra, with operations defined as

[t1] ∧ [t2] = [t1 ∧̇ t2] [t1]

�

[t2] = [t1 ∨̇ t2] [t1] → [t2] = [t1 →̇ t2].

We call this algebra the inquisitive extension of B and denote it by H(B).
Notice that by construction it is a regularly generated KP-algebra. To simplify
the notation, subsequently we will drop the square brackets. By construction,
the following universal property holds.

Lemma 4.1. Let B be a Boolean algebra and H a KP-algebra such that B =
H¬¬. Then there exists a unique homomorphism h : H(B) → H such that
h|B = idB. Moreover, if H is regularly generated, then h is surjective.

Proof. Consider the map f : T → H defined by the clauses

f(b) = b, for b ∈ B f(t1 ∧̇ t2) = f(t1) ∧ f(t2)
f(t1 ∨̇ t2) = f(t1)

�
f(t2) f(t1 →̇ t2) = f(t1) → f(t2).

Since H is a KP-algebra and agrees with the operations on B, f factors through
H(B), and thus we obtain a quotient map h : H(B) → H. Moreover, by con-
struction, h is a Heyting algebra homomorphism.

The image of B is fixed and H(B) is generated by B, so uniqueness follows.
Moreover, if H is regularly generated, then h is surjective, since B ⊆ h[H(B)]
and B generates H.

The previous result allows us to understand the structure of the algebra
H(B). In particular, elements of H(B) can be represented in a disjunctive normal
form, corresponding to the normal form of InqB formulas (see [5, Prop. 2.4.4]).

Proposition 4.2

1. Every x ∈ H(B) can be represented in a unique way as x = a1

�

. . .

�

an with
a1, . . . , an ∈ B and ai ≤ aj for i = j.

2. H(B) ∼= Dwfg(B).

We will call a representation of x as in item 1 non-redundant.

Proof. For the proof of item 1, see AppendixB.
For item 2, consider the map h : H(B) → Dwfg(B). Since

h(a1

�

. . .

�

an) = h(a1) ∪ · · · ∪ h(an) = {a1, . . . , an}↓,

h is injective. It is then easy to see that h is an isomorphism.

A direct consequence of Proposition 4.2 is that H(B) is well connected and
thus an inquisitive algebra. We can also prove the following interesting property
of H(B), which will be useful for later applications.

Algebraic and Topological Semantics for Inquisitive Logic 43

Lemma 4.3. Let H ′ be a finitely generated subalgebra of H(B). Then H ′ is a
subalgebra of a finite subalgebra of H(B) of the form H(B′), where B′ a Boolean
subalgebra of B.

Proof. Let a1
1

�

. . .

�

a1
k1

, . . . an
1

�

. . .

�

an
kn

be the non-redundant representa-
tions of the generators of H ′, and let A be the set A = {ai

j | i ≤ n, j ≤ ki}. Let
B′ be the Boolean subalgebra of B generated by A. Notice that this is a finite
algebra. Clearly H ′ ⊆ H(B′) ⊆ H(B).

Finally, the isomorphism of Proposition 4.2.2 maps H(B′) onto Dwfg(B′)—
which is finite, since |Dwfg(B′)| is equal to the number of antichains in B′.
Therefore, H(B′) is finite.

The results of this section allow us to draw a strong connection between
regularly generated KP-algebras and Medvedev’s logic ML.

Theorem 4.4. If H is a regularly generated KP-algebra, then H is an ML-
algebra.

Proof. Let H be a regularly generated KP-algebra. Then, by Lemma4.1, H is a
homomorphic image of some algebra of the form H(B). Thus, it suffices to show
that H(B) is an ML-algebra.

It is well known that for every Heyting algebra A and intermediate logic L
we have that A is an L-algebra iff every finitely generated subalgebra of A is an
L-algebra. Therefore, by Lemma 4.3, we obtain that H(B) is an ML-algebra iff
H(B′) is an ML-algebra for every finite Boolean subalgebra B′ of B.

Thus, we only need to prove the result for algebras of the form H(B′) where
B′ is finite. Then B′ ∼= P(W) for some finite set W . By Proposition 4.2,

H(B′) ∼= Dwfg(B′) ∼= Dwfg(P(W)) ∼= Dw0(P(W)) ∼= Dw(P0(W)),

which is exactly the algebra corresponding to the Medvedev frame (P0(W),⊇).
We conclude that H(B) is an ML-algebra and therefore H is also an ML-algebra.

Corollary 4.5

IntLog({H | H is a regularly generated KP-algebra})
= IntLog({H(B) | B is a finite Boolean algebra})
= ML.

Proof. Let C1 be the class of regularly generated KP-algebras and C2 the class of
H(B)’s for a finite Boolean algebra B. Firstly, notice that every H(B) is a regu-
larly generated KP-algebra, so C2 ⊆ C1. Consequently IntLog(C1) ⊆ IntLog(C2).
Therefore, we just need to prove that ML ⊆ IntLog(C1) and IntLog(C2) ⊆ ML.

The first inclusion follows directly from Theorem 4.4. For the second inclu-
sion, consider an arbitrary Medvedev frame (P0(W),⊇)—recall that W is finite.
As noticed in the proof of Theorem4.4, the Heyting algebra corresponding to
this frame is Dw(P0(W)) ∼= H(P(W)). Hence it is isomorphic to an element of
C2. It follows that IntLog(C2) ⊆ ML, as required.

44 N. Bezhanishvili et al.

4.2 Algebraic Characterization of the Inquisitive Extension

We are now ready to provide our first characterization of H(B).

Theorem 4.6. For a Boolean algebra B, its inquisitive extension H(B) is the
unique (up to isomorphism) inquisitive algebra such that H(B)¬¬ is isomorphic
to B.

Proof. Let H be an inquisitive algebra where H¬¬ ∼= B, and fix an isomorphism
g : H¬¬ → B. By Lemma 4.1, there exists a unique morphism h : H(B) → H
such that h|H(B) = g, which is surjective since H is regularly generated.

It only remains to show that h is also injective, thus proving that h is an
isomorphism. For the proof of injectivity, see AppendixC.

Corollary 4.7. A Heyting algebra A is an inquisitive algebra iff A is isomorphic
to H(A¬¬).

Proof. The right-to-left implication is clear. For the left-to-right, consider an
inquisitive algebra A. By Theorem 4.6, H(A¬¬) is isomorphic to any inquisitive
algebra with A¬¬ as the set of ¬¬-fixpoints. In particular, A ∼= H(A¬¬).

We conclude this section with a result analogous to Corollary 4.5 but now for
inquisitive logic.

Corollary 4.8

InqLog({H | H is a KP-algebra})
= InqLog({H(B) | B is a finite Boolean algebra})
= InqB .

Proof. By Lemma 3.8, InqB is included in the inquisitive logic of the two classes
of algebras. For the other inclusion: by Proposition 4.2, given a finite set W we
have H(P(W)) ∼= Dw(P0(W)). So by Proposition 2.5, the inquisitive logic of
the second class of algebras is indeed InqB; and since the first class of algebras
includes the second, we obtain both equalitites.

4.3 Topological Characterization of the Inquisitive Extension

Using the UV-spaces of Sect. 2.2, we can give a topological realization of H(B),
which in the next section will lead to a topological semantics of inquisitive logic.
By item 2 of the following theorem, H(B) may be characterized as (isomorphic
to) the Heyting algebra of compact open sets of the UV-space dual to B.

Theorem 4.9. Let B be a Boolean algebra and X its dual UV-space.

1. (O(X),⊆) ∼= Dw0(B).
2. (CO(X),⊆) ∼= Dwfg(B) ∼= H(B).

Proof. See AppendixD.

Algebraic and Topological Semantics for Inquisitive Logic 45

For those familiar with Esakia duality for Heyting algebras, we can further
exploit Theorem 4.9 to obtain a connection between the choice-free duality for
Boolean algebras and Esakia duality. This connection uses the following.

Proposition 4.10. The following function defines an order isomorphism
between the set Spec(H(B)) of prime filters of H(B), ordered by inclusion, and
the set Filt(B) of filters of B, ordered by inclusion:

r : (Spec(H(B)),⊆) → (Filt(B),⊆)
F �→ F ∩ B

Proof. See AppendixE.

Proposition 4.11. Given B a Boolean algebra, the Esakia space Spec(H(B))
dual to H(B) is homeomorphic to the UV-space UV (B) dual to B.

Proof. The map r defined in Proposition 4.10 above is a homeomorphism; all the
verifications are standard and left to the reader.

In particular, this gives us an alternative proof of Theorem4.9.2.
The results of this section are summarized in Fig. 1.

Fig. 1. Summary of results of Sect. 4.3.

5 Topological Semantics for Inquisitive Logic

Theorem 4.9 and Lemma 5.2 allow us to define a topological semantics for InqB
using the duality based on UV-spaces.

Definition 5.1 (Topological semantics)

Let X be a UV-space and V : AP → CORO(X) an atomic valuation. For each
inquisitive formula φ ∈ L, we define its semantic valuation �φ�

X,V ∈ CO(X) by
recursion as follows:3

�⊥�
X,V = ∅ �φ ∧ ψ�

X,V = �φ�
X,V ∩ �ψ�

X,V

�p�
X,V = V (p) �φ

�

ψ�
X,V = �φ�

X,V ∪ �ψ�
X,V

�φ → ψ�
X,V = Int

(

(X \ �φ�
X,V) ∪ �ψ�

X,V
)

.

We adopt the same notational conventions for validity as in Definition 3.5.

3 Notice that Theorem4.9 ensures that �φ → ψ�X,V ∈ CO(X).

46 N. Bezhanishvili et al.

In the Boolean algebra CORO(X), implication is given by U → V = ¬U ∨ V
= Int≤Cl≤(Int≤(X \ U) ∪ V), and it is easy to check that the right-hand side
is equal to Int≤((X \ U) ∪ V). By the next result, we can also think in terms
of the interior operator Int of the main topology, as in Definition 5.1, instead of
the interior operator Int≤ of the order topology.

Lemma 5.2. Given A,B ∈ CO(X), Int((X \ A) ∪ B) = Int≤((X \ A) ∪ B).

Proof. See AppendixF.

Corollary 5.3. The set of formulas valid on UV-spaces under this semantics is
exactly the set of theorems of InqB.

Proof. Let X be a UV-space. By Theorem 4.9, CO(X) ∼= H(CORO(X)). More-
over, by [2], every Boolean algebra is isomorphic to one of the form CORO(X).
Combining this result with Corollary 4.8, we obtain:

InqLog({X | X a UV-space}) = InqLog({H(B) | B a Boolean algebra}) = InqB .

We conclude this section by pointing out a connection with Medvedev’s logic
ML. UV-spaces can be used to give a new topological semantics for ML in a
way analogous to inquisitive logic, namely by allowing valuations to range over
CO-sets in Definition 5.1—and not only CORO-sets.

Corollary 5.4. ML is sound and complete with respect to the topological seman-
tics presented above.

Proof. This follows directly from Corollary 4.5 and Theorem 4.9.

6 Conclusion

In this paper, we introduced algebraic and topological semantics for inquisitive
logic and connected them via choice-free duality for Boolean algebras [2]. This
opens up new avenues for further research, three of which we will briefly mention.

The main results of this paper are concerned with KP-algebras, since the
KP-axiom is essential for inquisitive logic. However, one could consider the more
general case of arbitrary (regularly generated) Heyting algebras and study the
corresponding generalized inquisitive logics.

Another generalization to consider is to replace the double negation nucleus
¬¬ with an arbitrary (perhaps definable) nucleus on a Heyting algebra. Of
course, the algebra of fixed points of such a nucleus will no longer be Boolean.
This yields the nuclear semantics for “inquisitive intuitionistic logic” in [1]. How
to characterize inquisitive extensions in that setting and what topological duality
to use for their representation remain open problems.

Finally, just as in the case of intermediate and modal logics, where algebraic
semantics and duality provide tools for studying lattices of these logics, we hope
that this newly developed algebraic semantics and duality will open the door for
investigations of lattices of inquisitive logics.

Algebraic and Topological Semantics for Inquisitive Logic 47

Acknowledgment. This project has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research and innovation
programme (grant agreement No 680220).

A Examples 1 and 2

Proof of (3)
Given a complete Boolean algebra B, we show that Dwp(B) = (Dw0(B))¬¬.
First, if we consider a principal downset, we have

¬{b}↓ = {a ∈ B | a ∧ b = ⊥} = {¬b}↓ =⇒ ¬¬{b}↓ = {b}↓.

So Dwp(B) ⊆ (Dw0(B))¬¬. For the other inclusion, it suffices to show that ¬D
is principal for every downset D. We have

¬D = {a ∈ B | ∀d ∈ D. a ∧ d ≤ ⊥} ⊆
{

∨

¬D
}↓

.

On the other hand,
∨

¬D ∈ ¬D, since for every e ∈ D, we have

e ∧
∨

¬D =
∨

{e ∧ a | ∀d ∈ D. a ∧ d ≤ ⊥} =
∨

{⊥} = ⊥.

It follows that ¬D = {
∨

¬D}↓. Thus, ¬D is principal.

Proof of (4)
Given a Boolean algebra B, we show that Dwp(B) = (Dwfg(B))¬¬. The inclu-
sion Dwp(B) ⊆ (Dwfg(B))¬¬ is proved as above. For the other inclusion it
suffices to show that for any b1, . . . , bn ∈ B, ¬{b1, . . . , bn}↓ is principal. This
follows from the equalities

¬{b1, . . . , bn}↓ = {a ∈ B | ∀i ≤ n. a ∧ bi = ⊥} = {¬b1 ∧ · · · ∧ ¬bn}↓.

B Proof of Proposition 4.2

We divide the proof in two steps: proving that every element x ∈ H(B) can be
written in the form x = b1

�

. . .

�

bm with b1, . . . , bm ∈ B; and proving that from
this form we can obtain a non-redundant representation.

For the first part: since H(B) is the quotient of the set T of terms, we can
proceed by induction on t ∈ T .

– If x ∈ B, then we are done.
– If x = y ∧ z, then consider two representations y = c1

�

. . .

�

ck and
z = d1

�

. . .

�

dl. Then

x = y ∧ z = (c1

�

. . .

�

ck) ∧ (d1

�

. . .

�

dl) = \∨{ci ∧ dj | i ≤ k, j ≤ l}.

48 N. Bezhanishvili et al.

– If x = y

�

z, then

x = y

�

z = c1

�

. . .

�

ck

�

d1

�

. . .

�

dl.

– If x = y → z, then

x = y → z = (c1

�

. . .

�

ck) → (d1

�

. . .

�

dl)
= (c1 → d1

�

. . .

�

dl) ∧ · · · ∧ (ck → d1

�

. . .
�

dl)

= ∧l
i=1 ((ci → d1)

�

. . .

�

(ci → dl)) (by KP)

= ∨f :[n]→[m]

(

∧l
i=1(ci → df(i))

)

.

For the second part: let x = b1

�

. . .

�

bm be an arbitrary representation of x.
If ∀i, j. bi ≤ bj , then we are done. Otherwise, suppose (without loss of generality)
that b1 ≤ b2. Then

b1

�

b2

�

. . .

�

bn = b2

�
. . .

�

bn.

Repeating this procedure, we obtain a non-redundant representation of x.

C Proof of Theorem4.6

It only remained to prove that h is injective. Let x, y ∈ H(B) and suppose that
h(x) = h(y). Let x = a1

�
. . .

�

an and y = b1

�

. . .

�

bm be their non-redundant
representations. Then where �,�,⇒ are the operations of H, we have

a1 � · · · � an = b1 � · · · � bm

=⇒ (a1 � · · · � an) ⇔ (b1 � · · · � bm) = �

=⇒
{⊔

f :[n]→[m]

�
i≤n(ai ⇒ bf(i)) = �

⊔

g:[m]→[n]

�
j≤m(bj ⇒ ag(j)) = �

=⇒
{∃f : [n] → [m].

�
i≤n(ai ⇒ bf(i)) = �

∃g : [m] → [n].
�

j≤m(bj ⇒ ag(j)) = � (since H is inquisitive)

=⇒
{

∀i ≤ n. ∃j ≤ m. (ai ⇒ bj) = �
∀j ≤ m. ∃i ≤ n. (bj ⇒ ai) = �

=⇒
{

∀i ≤ n. ∃j ≤ m. ai ≤ bj
∀j ≤ m. ∃i ≤ n. bj ≤ ai

(since h|B = idB)

=⇒
{

x ≤ y
y ≤ x

=⇒ x = y.

So h is injective and thus an isomorphism, as required.

D Proof of Theorem4.9

To prove Theorem 4.9, we will use the following lemma.

Lemma D.1. Let A =
⋃

i∈I Ui and B =
⋃

j∈J Vj be open sets of a UV-space
X, where Ui, Vj are CORO-sets. Then A ⊆ B iff ∀i ∈ I. ∃j ∈ J. Ui ⊆ Vj.

Algebraic and Topological Semantics for Inquisitive Logic 49

Proof. Firstly, we show that every CORO-set U is the upset of a singleton: since
{U}↑ is a filter in CORO(X), there exists a point x such that {U}↑ = CORO(X).
It follows that U =

⋂

CORO(x) = {x}↑.
We can use this to prove the result. Call xi the generator of Ui for each i ∈ I.

A ⊆ B ⇐⇒
⋃

i∈I Ui ⊆
⋃

j∈J Vj ⇐⇒ ∀i ∈ I. Ui ⊆
⋃

j∈J Vj

⇐⇒ ∀i ∈ I. Ui ⊆
⋃

j∈J Vj ⇐⇒ ∀i ∈ I. xi ∈
⋃

j∈J Vj

⇐⇒ ∀i ∈ I. ∃j ∈ J. xi ∈ Vj ⇐⇒ ∀i ∈ I. ∃j ∈ J. Ui ⊆ Vj .

We are now ready to prove Theorem4.9.
Proof of Theorem 4.9.

For the first part: consider the map f : O(X) → Dw0(B) defined by4

f

(

⋃

i∈I

âi

)

= {ai | i ∈ I}↓.

To show that f is well defined and order preserving and reflecting, we observe
the following equivalences, using Lemma D.1 for the first:

⋃

i∈I

âi ⊆
⋃

j∈J

̂bj ⇐⇒ ∀i ∈ I. ∃j ∈ J. âi ⊆ ̂bj

⇐⇒ ∀i ∈ I. ∃j ∈ J. ai ≤ bj

⇐⇒ ∀i ∈ I. ∃j ∈ J. {ai}↓ ⊆ {bj}↓

⇐⇒ {ai | i ∈ I}↓ ⊆ {bj | j ∈ J}↓.

Thus, f is also injective. Notice that surjectivity is trivially satisfied. Hence f is
an isomorphism.

For the second part: since elements of CO(X) are exactly the sets of the form
â1 ∪ · · · ∪ ân for some a1, . . . , an ∈ B, we obtain that f |CO(X) is an isomorphism
with range Dwfg(B), as required.

E Proof of Proposition 4.10

It is immediate that r is well defined and order preserving. For injectivity, notice
that a prime filter p of H(B) is completely determined by the elements of B it
contains, since for every non-redundant representation a1

�

. . .

�

an, we have

a1

�

. . .

�

an ∈ p ⇐⇒ a1 ∈ p or . . . or an ∈ p. (5)

Using this fact, we can also show surjectivity: let F be a filter of B and define
pF as the smallest set including F and respecting (5). Then clearly pF is an

4 Here we are adopting the convention {}↓ := {⊥}, so that f(∅) = {⊥}.

50 N. Bezhanishvili et al.

upset and respects the

�

-condition of prime filters. Moreover, it is closed under
meets, since

a1

�

. . .

�

an ∈ pF and b1

�

. . .

�

bm ∈ pF

⇐⇒ ∃i. ai ∈ pF and ∃j. bj ∈ pF

⇐⇒ ∃i. ai ∈ F and ∃j. bj ∈ F

⇐⇒ ∃i. ∃j. ai ∧ bj ∈ F

⇐⇒ ∃i. ∃j. ai ∧ bj ∈ pF

⇐⇒ (a1

�

. . .

�

an) ∧ (b1

�

. . .

�

bm) = \∨{ai ∧ bj | i ≤ n, j ≤ m} ∈ pF .

Since r(pF) = F , we also have surjectivity.

F Proof of Lemma5.2

To prove Lemma 5.2, we first need to establish some technical results. In the
following we denote X \A by A. For a UV space X and x, y ∈ X, let x�y be the
greatest lower bound of x and y in the specialization order of X [2, Corollary 5.4].

Lemma F.1. Let U ∈ CORO(X) and x1, x2 ∈ U . Then x1 � x2 ∈ U .

Proof. By Corollary 5.4 of [2], U = U ∨ U = U ∪ {x � y | x, y ∈ U}.

Lemma F.2. Given U, V ∈ CORO(X), Int≤
(

U ∪ V
)

= ¬U ∨ V .

Proof.
Left-to-right inclusion. Consider an element x ∈ Int≤

(

U ∪ V
)

. If x ∈ ¬U∪V ,
then there is nothing to prove; so suppose this is not the case. By Corollary 5.4
of [2], there is a decomposition x = x1 � x2 such that x1 ∈ ¬U and x2 ∈ U .

Since x2 /∈ U and x2 ≥ x ∈ Int≤
(

U ∪ V
)

, it follows that x2 ∈ V . So
x ∈ {y � z | y ∈ ¬U, z ∈ V } ⊆ ¬U ∨ V , as desired.
Right-to-left inclusion. Consider x ∈ ¬U ∨ V and take an arbitrary w ≥ x.
We want to show that w ∈ U ∪ V .

If w ∈ ¬U ∪ V ⊆ U ∪ V , then there is nothing to prove; so suppose this is
not the case. By Corollary 5.4 of [2], we can write w = w1 � w2 with w1 ∈ ¬U
and w2 ∈ V . In particular, w1 is a successor of w not in U , and since U is a
≤-downset, it follows that w ∈ U ⊆ U ∪ V .

Since w was an arbitrary successor of x, it follows x ∈ Int≤
(

U ∪ V
)

.

Lemma F.3. Given Ui, Vj ∈ CORO(X), the following identity holds:

Int≤

⎛

⎝

(

m
⋂

i=1

Ui

)

∪

⎛

⎝

n
⋃

j=1

Vj

⎞

⎠

⎞

⎠ =
⋃

f :[m]→[n]

m
⋂

i=1

(

¬Ui ∨ Vf(i)

)

.

Algebraic and Topological Semantics for Inquisitive Logic 51

Proof. By Lemma F.2, the identity is equivalent to

Int≤

⎛

⎝

(

m
⋂

i=1

Ui

)

∪

⎛

⎝

n
⋃

j=1

Vj

⎞

⎠

⎞

⎠ =
⋃

f :[m]→[n]

Int≤

(

m
⋂

i=1

(

U i ∪ Vf(i)

)

)

.

Let L and R be the left-hand side and right-hand side, respectively.
Right-to-left inclusion. Consider x ∈ R. This means that:

∃f : [m] → [n]. ∀y ≥ x. y ∈
m
⋂

i=1

(

U i ∪ Vf(i)

)

.

So with fixed f as above, given y ≥ x, we have:

y ∈
m
⋂

i=1

(

U i ∪ Vf(i)

)

⊆
m
⋂

i=1

⎛

⎝U i ∪

⎛

⎝

n
⋃

j=1

Vj

⎞

⎠

⎞

⎠ =

(

m
⋂

i=1

Ui

)

∪

⎛

⎝

n
⋃

j=1

Vj

⎞

⎠ .

As y was an arbitrary successor of x, it follows that x ∈ L.
Left-to-right inclusion. We will show this step by contradiction. Suppose that
x /∈ R. This means that:

∀f : [m] → [n]. ∃y ≥ x. ∃i ∈ [m]. y /∈ U i ∪ Vf(i),

or equivalently
∃i ∈ [m]. ∀j ∈ [n]. {x}↑ ∩ Ui ∩ V j = ∅.

Fix an index k instantiating the first quantifier, and consider for each j ∈ [n]
an element yj ∈ {x}↑ ∩ Uk ∩ V j . Define y = y1 � · · · � yn. We have:

– For every j ∈ [n], yj ≥ x, and thus y ≥ x.
– Since yj ∈ V j and Vj is open, it follows that Cl({yj}) ⊆ V j ; and consequently

y ∈ V j , since y ≤ yj .
– Since y1, . . . , yn ∈ Uk, we have y ∈ Uk (see Lemma F.1).

So it follows that y ≥ x and y ∈ Uk ∩ V1 ∩ · · · ∩ Vn. Thus in particular
y /∈

(⋂m
i=1 U i

)

∪
(

⋃n
j=1 Vj

)

, from which we obtain x /∈ L, as desired.

We are now able to prove Lemma 5.2.

Proof (Proof of Lemma 5.2). By Lemma F.3, Int≤(A ∪ B) ∈ CO(X). Since the
order topology is finer than the main topology, we have

Int(A ∪ B) = Int
(

Int≤(A ∪ B)
)

= Int≤(A ∪ B).

52 N. Bezhanishvili et al.

References

1. Bezhanishvili, G., Holliday, W.H.: Inquisitive intuitionistic logic. Manuscript
(2019)

2. Bezhanishvili, N., Holliday, W.H.: Choice-free Stone duality. J. Symb. Log. (Forth-
coming)

3. Chagrov, A., Zakharyaschev, M.: Modal logic. In: Oxford Logic Guides, vol. 35.
The Clarendon Press, New York (1997)

4. Ciardelli, I.: Inquisitive semantics and intermediate logics. MSc thesis, University
of Amsterdam (2009)

5. Ciardelli, I.: Questions in logic. Ph.D. thesis, Institute for Logic, Language and
Computation, University of Amsterdam (2016)

6. Ciardelli, I., Groenendijk, J., Roelofsen, F.: Inquisitive semantics: a new notion of
meaning. Lang. Linguist. Compass 7(9), 459–476 (2013)

7. Ciardelli, I., Groenendijk, J., Roelofsen, F.: Inquisitive Semantics. Oxford Univer-
sity Press, Oxford (2018)

8. Frittella, S., Greco, G., Palmigiano, A., Yang, F.: A multi-type calculus for inquis-
itive logic. In: Väänänen, J., Hirvonen, Å., de Queiroz, R. (eds.) WoLLIC 2016.
LNCS, vol. 9803, pp. 215–233. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-52921-8 14

9. Johnstone, P.T.: Stone spaces. In: Cambridge Studies in Advanced Mathematics,
vol. 3. Cambridge University Press, Cambridge (1982)

10. Medvedev, Y.T.: Interpretation of logical formulas by means of finite problems.
Sov. Math. Dokl. 7(4), 857–860 (1966)

https://doi.org/10.1007/978-3-662-52921-8_14
https://doi.org/10.1007/978-3-662-52921-8_14

Rigid First-Order Hybrid Logic

Patrick Blackburn1(B), Manuel Martins2, Maŕıa Manzano3,
and Antonia Huertas4

1 IKH, Roskilde University, Roskilde, Denmark
patrick.rowan.blackburn@gmail.com

2 CIDMA, University of Aveiro, Aveiro, Portugal
martins@ua.pt

3 University of Salamanca, Salamanca, Spain
mara@usal.es

4 Universitat Oberta de Catalunya, Barcelona, Spain
mhuertass@uoc.edu

Abstract. Hybrid logic is usually viewed as a variant of modal logic
in which it is possible to refer to worlds. But when one moves beyond
propositional hybrid logic to first or higher-order hybrid logic, it becomes
useful to view it as a systematic modal language of rigidification. The key
point is this: @ can be used to rigidify not merely formulas, but other
types of symbol as well. This idea was first explored in first-order hybrid
logic (without function symbols) where @ was used to rigidify the first-
order constants. It has since been used in hybrid type-theory: here one
only has function symbols, but they are of every finite type, and @ can
rigidify any of them. This paper fills the remaining gap: it introduces a
first-order hybrid language which handles function symbols, and allows
predicate symbols to be rigidified. The basic idea is straightforward, but
there is a slight complication: transferring information about rigidity
between the level of terms and formulas. We develop a syntax to deal
with this, provide an axiomatization, and prove a strong completeness
result for a varying domain (actualist) semantics.

Keywords: Hybrid logic · First-order modal logic · Rigidity ·
Rigid predicate symbols · Function symbols · Varying domains ·
Actualist semantics · Henkin models

1 Introduction

Hybrid logic is usually viewed as a variant of modal logic in which it is possible to
refer to worlds. But when one moves beyond propositional hybrid logic to first- or
even higher-order hybrid logic, it becomes more useful to view it as a systematic
modal language of rigidification. Rigidity has long been an important concept in
first-order modal logic: a first-order constant is said to be rigid if it denotes the
same individual in all worlds, and free first-order variables in most first-order
modal logics are interpreted rigidly. But rigidity is also central to hybrid logic,
and it is central at all levels, from the propositional to the type-theoretic.
c© Springer-Verlag GmbH Germany, part of Springer Nature 2019
R. Iemhoff et al. (Eds.): WoLLIC 2019, LNCS 11541, pp. 53–69, 2019.
https://doi.org/10.1007/978-3-662-59533-6_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-59533-6_4&domain=pdf
https://doi.org/10.1007/978-3-662-59533-6_4

54 P. Blackburn et al.

Recall that propositional hybrid logic makes use of special propositional sym-
bols called nominals (typically written as i, j and k) that are true at exactly one
world in any model: in effect, nominals act as names for the unique world they
are true at. Basic hybrid logic also allows us to write expressions of the form
@ip, which means “evaluate p at the unique world called i”. Read this way, @i

is a modality whose task is to inspect what is going on at the i-world, and see
whether p is true there or not. But @i can also be read as a rigidifier : “form the
rigid proposition @ip out of the proposition p”. Note that @ip is indeed rigid: it
is either true at all worlds, or false at all worlds, depending on whether p is true
or false at the i-world.

As was soon realized, we can use @ to rigidify more than propositions. The
paper [5], which explores first-order hybrid logic, took the first step in this direc-
tion by introducing expressions of the form (@ic). Here c is a first-order constant,
which may denote different individuals in different worlds, and (@ic) is the rigid
constant that denotes (at all worlds) whatever it is that c denotes at world i.1 For
example, if we think of c as a (non-rigid) constant that names Donald-Trump in
some world w, and Bernie-Sanders in some other world w′, then, if j is the nomi-
nal that names world w′, (@jc) is a rigid constant that names Bernie-Sanders at
all worlds. On the technical side, it was observed that Henkin-stye model build-
ing techniques could be used to build first-order Kripke models whose frames
were defined using equivalence classes of nominals, and whose domains of quan-
tification were defined using equivalence classes of rigidified constants; this led
to a number of general completeness and interpolation results (see [2,6]).

But the idea of using @ as a general-purpose rigidifier has been most widely
applied in the setting of higher-order hybrid logic. A range of higher-order
hybrid logics, most based on Church’s theory of simple types, have been defined
(see [1,4,9,10]) and general Henkin-style completeness results for them proved.
Although these systems differ in various ways, they have two points in common.
First, they all allow expressions of the form (@if) to be formed where f is a
function symbol of any finite type. That is: in the higher-order setting, @ is
totally overloaded—it can rigidify all the types of information that these lan-
guages can describe. Second, the higher-order Kripke models needed to prove
completeness are constructed out the equivalence classes2 of nominals (to define
the frame) and equivalence classes of rigidified function symbols are used to
define the needed function hierarchies.

One gap in this picture remains, and the purpose of this paper is to start
filling it: to strengthen the first-order hybrid language defined in [5] to handle
first-order function symbols and rigidified predicate symbols. There are several

1 Note that in this paper expressions of the form (@ic) were introduced in addition to
expressions of the form @ip. As the authors of this paper put it: they deliberately
overloaded the @ symbol. In this paper, we are going to overload @ even more.
Our basic convention will be to omit the enclosing out brackets when propositional
information is rigidified (as in @ip), and to use enclosing brackets when other types
of information are rigidified (as in (@ic)). More on this later.

2 Or sets of rigidified function symbols in the partial type theory explored in [9].

Rigid First-Order Hybrid Logic 55

reasons for exploring such languages. For a start, many of the classical con-
ceptual problems surrounding modal logic arise in first-order modal logic. One
could explore them in a higher-order logic, but these are more complex, and bring
new philosophical problems along with them. An expressive first-order hybrid
language—one that makes it possible to rigidify constants, function symbols,
predicate symbols and formulas—offers useful resources for addressing classi-
cal conceptual issues. Rigidifying predicate symbols, for example, allows us to
express precise distinctions: we can talk about the relation of Love with reference
to the pairs of individuals in love in the i-world, that is, (@iLove); or we can
specify that we are interested in its denotation in the j-world using (@jLove).

There is also a more down-to-earth reason for our interest in this language: it
is rare to see function symbols treated in any detail in discussions of first-order
modal logic. Most authors skate lightly over the omission, and the reader is left
with the impression that extending first-order modal logic to cope with function
is a routine extension of what is already known. This seems misguided. First-
order modal logic raises a wide range of technical and conceptual challenges,
especially if one wants to work with varying domains (that is: with an actualist
semantics). This paper provides a general approach to handling function symbols
in a first-order modal logic with an actualist semantics.

The basic ideas explored in this paper are straightforward and build on previ-
ous work in the hybrid literature (probably [6] and [3] are the two most directly
relevant references). However there is one complication: transferring information
about rigidity between the first-order terms and formulas (this is an issue that
does not arise in the type-theoretic case, where one only has to deal with func-
tion symbols). We cope with this by defining a recursive notion of rigidification,
which keeps the term syntax relatively simple.

We proceed as follows. In Sect. 2 we define the syntax of our first-order lan-
guage of rigidification, and what it means to rigidify a term. In Sect. 3 we define a
varying domain semantics for our language, and note a basic lemma about rigid
terms. In Sect. 4 we provide an axiomatisation, and in Sect. 5 and the Appendix
we prove that it is complete. Finally, in Sect. 6 we sketch the ways we are devel-
oping the work reported here.

2 Rigid First-Order Hybrid Logic

We start with a first-order signatures, consisting of n-ary function and relation
symbols:

Definition 1 (Signature). A first-order signature Σ is a pair ((Funcn)n∈N,
(Reln)n∈N), where Funcn and Reln are sets of functional and relational symbols
of arity n, respectively. The indexed elements in either family may be empty, and
if they are all empty, we have the empty signature. The elements of Func0 (if
any) are called constants, and the elements of Rel0 (if any) are called proposi-
tional symbols.

56 P. Blackburn et al.

We intend to use such signatures in a first-order hybrid language, thus we
next to add first-order variables and nominals, and then “rigidify the signature”
by allowing any function or relation symbol (including any constants or propo-
sitional symbols) to be preceded by rigidifying operators of the form @i.

Definition 2. A first-order hybrid similarity type τ is a tuple 〈Σ,X,NOM〉 where
Σ is first-order signature, X is a countably infinite set of variables and NOM is a
set of symbols, called nominals. The NOM-rigidification of Σ (with respect to τ)
is the signature: @Σ = ((@Funcn)n∈N, (@Reln)n∈N), where @Funcn = {(@if) :
i ∈ NOM, f ∈ Funcn} and @Reln = {(@iP) : i ∈ NOM, P ∈ Reln}.

Given a similarity type τ , we define the set of rigid terms, and the set of
terms, as follows:

Definition 3 (Terms). Let τ be a first-order hybrid similarity type.
The set of rigid Σ-terms over τ , @Term(τ), is recursively defined by:

– for any x ∈ X, x ∈ @Term(τ);
– for any f@ ∈ @Funcn, and all terms ti ∈ @Term(τ), i = 1, . . . , n,

f@(t1, . . . , tn) ∈ @Term(τ).

The set of Σ-terms over τ , Term(τ), is recursively defined by:

– for any x ∈ X, x ∈ Term(τ);
– for any f ∈ Funcn ∪ @Funcn, and all terms ti ∈ Term(τ), i = 1, . . . , n,

f(t1, . . . , tn) ∈ Term(τ).

Clearly every rigid term is a term, that is, @Term(τ) ⊆ Term(τ). We call a term
ground if it contains no variables.

The elements of Func0 (that is, constants) will play an important role in the
completeness proof, as we will then expand our language by adding denumerably
many new constants (“Henkin witness constants”) to prove our Lindenbaum
lemma. So it is worth noting that (by the previous definition) elements of the
form (@ic), where c is a constant symbol, are indeed rigid terms (that is, elements
of @Term(τ)) as all such expressions belong to @Func0.

Now for an important definition. Given a term t and a nominal i, we can
(recursively) rigidify t at i, as follows:

Definition 4 (Rigidification of a term). Let t ∈ Term(τ) and i ∈ NOM.
The rigidification of t at i is the term @it ∈ @Term(τ) recursively defined by:

– if t ∈ X, @it := t
– if t = f(t1, . . . , tn) with f ∈ @Funcn, then @it := f(@it1, . . . ,@itn)
– if t = f(t1, . . . , tn) with f ∈ Funcn, then @it := (@if)(@it1, . . . ,@itn)

To spell this out: first, the rigidification process ignores variables, as they will
always be interpreted rigidly. Second, if the functor prefixing a term is of the
form (@jf), which means that we have a syntactic guarantee that it is rigid, then
we ignore it and go on to recursively rigidify its arguments. Third, if the functor

Rigid First-Order Hybrid Logic 57

prefixing a term is of the form f (that is, we have no syntactic guarantee of its
rigidity) we replace the functor f by the rigid form (@if) and go on to recursively
rigidify its arguments. Note that for the special case of constants (functions of
arity 0) we have: given a constant c, and nominals i and j, the rigidification of c
with respect to i is (@ic), and the rigidification of c with respect to j is (@jc). So
the base case of the recursion is simply the rigidification-of-first-order-constants
used in [5]. Also note that when a term t ∈ @Term(τ) is rigidified, the result is
simply t itself. That is, rigidification is the identity map on @Term(τ).

Definition 5. The set of Fm(τ) of first-order hybrid formulas is the smallest
set such that:

1. NOM ⊆ Fm(τ);
2. t1 ≈ t2 ∈ Fm(τ), for any t1, t2 ∈ Term(τ)
3. P (t1, . . . , tn) ∈ Fm(τ), for any P ∈ Reln ∪ @Reln and t1, . . . , tn ∈ Term(τ);
4. if ϕ ∈ Fm(τ) and i is a nominal, then @iϕ ∈ Fm(τ);
5. if ϕ ∈ Fm(τ), then ¬ϕ,�ϕ ∈ Fm(τ);
6. if ϕ ∈ Fm(τ) and ψ ∈ Fm(τ) then ϕ ∧ ψ ∈ Fm(τ) and ϕ ∨ ψ ∈ Fm(τ).
7. if x ∈ X and ϕ ∈ Fm(τ), then ∀xϕ ∈ Fm(τ).

We use familiar abbreviations: ♦ϕ is ¬�¬ϕ, ∃xϕ is ¬∀x¬ϕ, ϕ → ψ is ¬(ϕ ∧
¬ψ), and so on. We define EXISTS(t) to be ∃x (x ≈ t), provided that x does not
occur in t, as is standard in varying domain approaches to first-order modal logic.

It is worth explicitly noting some of the syntactic distinctions that can be
drawn in this language. Let i and j be nominals, let c and d be constant sym-
bols, and let P be a two-place predicate symbol. Then P (c, d) is a formula, one
that displays no syntactic indications concerning rigidity. P ((@ic), (@jd)) is also
a formula, though this time the two constants it contains have been rigidified.
Furthermore, (@iP)(c, d) is also a formula, though here it is the initial predicate
has been rigidified. Indeed, (@iP)((@ic), (@jd)) is a formula too, though this
time the predicate and both constants have been rigidified. But there are other
possibilities. In particular, note that @iP (c, d) is also a formula: it is the formula
P (c, d) preceded by @i. Note that this is not the same formula as (@iP)(c, d).
Indeed, under the semantics we shall shortly define, the two formulas have impor-
tantly different properties: @iP (c, d) is guaranteed to be a rigid proposition (it
will either be true at all worlds or false at all worlds) while (@iP)(c, d) may vary
in truth value from world to world.

Hopefully these examples help make our basic bracketing convention clear:
when we combine @i with any formula ϕ (that is: propositional information)
then we write the resulting formula as @iϕ (that is: with no enclosing brackets).
On the other hand, when we combine @i with either a function symbol f , a
constant symbol c, or a predicate symbol P of arity � 1, then we write the
resulting rigidifications as (@if), (@ic) and (@iP) respectively (that is: with
enclosing brackets). In the case of a predicate symbol p of arity 0 (that is: the
propositional symbol p) we write @ip, since propositional symbols are formulas.

However one other point should be emphasized: in statements of lemmas
and axiom schemas we sometimes write expressions of the form @it (for i a

58 P. Blackburn et al.

nominal and t a term). Here it is important to recall that such expressions are
not members of the object language, rather they are metalinguistic abbreviation
for the rigidification of t at i as defined by Definition 4.

3 Semantics

We now define a varying domain (actualist) semantics for our language. There
are several choices available; here we simply remark that we have aimed for a
general semantics, and typically follow the decisions made in [8]. We will say
more about this in the paper’s conclusion.

Definition 6 (Skeleton). A skeleton over τ is a tuple M = (W,Dom,D,R),
where W = ∅, Dom is a nonempty set, D : W → P (Dom) such that D(w) = ∅

and R ⊆ W 2. We will usually write Dw for D(w).

That is: we have a non-empty set of worlds W , a binary accessibility relation R
between these worlds, a global domain of objects Dom, and a function D which
tells us which elements of these domain elements actually exist at any world w.
We call Dw (for any w ∈ W) a local domain. Local domains can be distinct,
which is why this is a “varying domain” semantics.

Definition 7. A model for a rigid first-order hybrid similarity type τ is a pair
M = (M, I), where M is a skeleton and I is the interpretation function such
that:

– For any i ∈ NOM, I(i) ∈ W ,
– For any P ∈ Reln and any w ∈ W , Iw(P) ⊆ (Dom)n, and
– For any f ∈ Funcn and any w ∈ W , Iw(f) : (Dom)n → Dom.

Note that (following [8]) we allow the interpretation of a predicate P to
involve individuals that do not exist in the local domain. Analogously, we inter-
pret function symbols in a way that lets them take as input entities that do not
exist at the local domain, and to output non-local entities as well. This seems the
simplest and most general starting point, but we’ll say more about this decision
in the paper’s conclusion.

Definition 8. Let M = (M, I) be a model and g : X → Dom be a variable
assignment. The interpretation of terms is recursively defined as follows:

– if t ∈ X, [t]M,w,g = g(t).
– if t = f(t1, . . . , tn), f ∈ Funcn with n � 0,

[t]M,w,g = Iw(f)([t1]
M,w,g

, . . . , [tn]M,w,g)
– if t = (@if)(t1, . . . , tn), f ∈ Funcn with n � 0

[t]M,w,g = II(i)(f)([t1]
M,w,g

, . . . , [tn]M,w,g)

We can now give the satisfaction definition.

Rigid First-Order Hybrid Logic 59

Definition 9. Let M = (M, I) be a model, g : X → Dom an assignment and
w ∈ W . Then:
M, w, g � i iff I(i) = w

M, w, g � t1 ≈ t2 iff [t1]
M,w,g = [t2]

M,w,g

M, w, g � P (t1, . . . , tn) iff ([t1]
M,w,g

, . . . , [tn]M,w,g) ∈ Iw(P),
for P ∈ Reln and t1, . . . , tn ∈ Term(τ)

M, w, g � (@iP)(t1, . . . , tn) iff ([t1]
M,w,g

, . . . , [tn]M,w,g) ∈ II(i)(P),
for P ∈ Reln and t1, . . . , tn ∈ Term(τ)

M, w, g � ¬ϕ iff M, w, g � ϕ
M, w, g � ϕ ∧ ψ iff M, w, g � ϕ and M, w, g � ψ
M, w, g � @iϕ iff M, I(i), g � ϕ
M, w, g � �ϕ iff for all w′ ∈ W such that wRw′,M, w′, g � ϕ
M, w, g � ∀xϕ iff for all d ∈ Dw,M, w, g[x �→ d] � ϕ

A formula ϕ is said to be true at a world w under the assignment g if and
only if M, w, g � ϕ. It is valid in a model M, denoted by M � ϕ, if and only
if, for every world w and every assignment g we have that M, w, g � ϕ.

Lemma 1. For every t ∈ Term(τ), every assignment g on M, every world w,
and every nominal i we have that:

[t]M,I(i),g = [@it]M,w,g

Proof. By induction on the structure of t. Recall from Definition 4 that @it is
the (recursively defined) rigidification of term t.

4 Axiomatisation

This section gives an axiomatisation Kτ for first-order hybrid logic, given a
first-order hybrid similarity type τ . We will take all propositional tautologies as
axioms, and in addition:

Distributivity axioms
(K�) �(ϕ → ψ) → (�ϕ → �ψ).
(K@) @i(ϕ → ψ) → (@iϕ → @iψ).

Quantifier axioms
(Q1) ∀x(ϕ → ψ) → (ϕ → ∀xψ), where x does not occur free in ϕ.
(Q2) ∀xϕ → (EXISTS(τ) → ϕ(τ

x)), where τ is rigid.
(Q3) ∃yEXISTS(y)

Basic hybrid axioms
(Ref @) @ii.
(Agree) @i@jϕ ↔ @jϕ.
(Selfdual@) @iϕ ↔ ¬@i¬ϕ.
(Intro) i → (ϕ ↔ @iϕ).
(Back) ♦@iϕ → @iϕ.

60 P. Blackburn et al.

Axioms for ≈
(Ref ≈) t1 ≈ t1, for all t1 ∈ Term(τ).
(Sym≈) (t1 ≈ t2) → (t2 ≈ t1), for all t1, t2 ∈ Term(τ).
(Trans≈)

(
(t1 ≈ t2) ∧ (t2 ≈ t3)

) → (t1 ≈ t3), for all t1, t2, t3 ∈ Term(τ).
(Func) (t1 ≈ t′

1 ∧ ... ∧ tn ≈ t′
n) → f(t1, . . . , tn) ≈ f(t′

1, . . . , t
′
n),

where f ∈ Func ∪ @Func, and ti, t
′
i ∈ Term(τ), for i = 1, . . . , n, n � 0.

(Pred) (t1 ≈ t′
1 ∧ ... ∧ tn ≈ t′

n) → P (t1, . . . , tn) ↔ P (t′
1 . . . , t′

n),
where P ∈ Rel ∪ @Rel, and ti, t

′
i ∈ Term(τ), for i = 1, . . . , n, n � 0.

Interactions between @ and ≈
(Rigidify) @i(c ≈ (@ic)), for any constant c.
(K@≈) @i(t1 ≈ t2) ↔ (@it1 ≈ @it2), for all t1, t2 ∈ Term(τ).
(Nom≈) @ij → (@it ≈ @jt), t ∈ Term(τ).
(Agree≈) @i(t1 ≈ t2) ↔ (t1 ≈ t2), for all t1, t2 ∈ @Term(τ).

Linking formula rigidity with predicate-and-term rigidity
(Shuffle-1) @iP (t1, . . . , tn) ↔ (@iP)(@it1, . . . ,@itn).
(Shuffle-2) @i(@jP)(t1, . . . , tn) ↔ (@jP)(@it1, . . . ,@itn).

As rules of proof we take the following (these proof rules are discussed in
detail in [6], and we shall note some results from this paper in what follows). For
any formulas ϕ and ψ, and any nominals i and j we have:

(MP)
ϕ → ψ ϕ

ψ

(Gen@)
ϕ

@iϕ

(Gen�)
ϕ

�ϕ

(Gen∀)
ϕ

∀xϕ

(Name)
@iϕ

ϕ
, where i does not occur in ϕ.

(BG)
@i♦j → @jϕ

@i�ϕ
, if j = i and j does not occur in ϕ.

(Subs)
ϕ

ϕ′ , where ϕ′ is any formula obtained from ϕ by replacing

nominals by nominals and variables by rigidified terms.
As usual, we say that a proof of a formula ϕ is a finite sequence of formulas

such that every formula in the sequence is either an axiom, or is obtained from
previous formula(s) in the sequence using the rules of proof. We write � ϕ
whenever we have such a sequence and say that ϕ is a Kτ -theorem. If Γ ∪{ϕ} is
a set of formulas, a proof of ϕ from Γ is a proof of �Kτ (γ1 ∧ . . .∧γn) → ϕ where
{γ1, . . . , γn} ⊆ Γ . A formula ϕ is provable from a set of formulas Γ (officially
written as Γ �Kτ

ϕ, though we will usually just write Γ � ϕ instead) if and only
if there is a proof of ϕ from Γ . The Deduction Theorem holds: Γ ∪ {ϕ} � ψ iff
Γ � ϕ → ψ.

Rigid First-Order Hybrid Logic 61

Proposition 1. The following are all Kτ -theorems:
(K−1

@) � (@iϕ → @iψ) → @i(ϕ → ψ)
(Nom) � @ij → (@iϕ → @jϕ)
(Sym) � @ij → @ji
(Bridge) � @i♦j ∧ @jϕ → @i♦ϕ
(Conj) � @i(ϕ ∧ ψ) ↔ (@iϕ ∧ @iψ)
(Elim) � (i ∧ @iϕ) → ϕ

Proof. See [6].

Proposition 2. The following rules are admissible in Kτ :
(Name′)

i → ϕ

ϕ
, where i does not occur in ϕ.

(Paste♦)
(@i♦j ∧ @jϕ) → ψ

@i♦ϕ → ψ
, if j �= i does not occur in ϕ or ψ.

(Paste∀)
(@iEXISTS(t) ∧ @iϕ(@it

x
)) → ψ

@i∃xϕ → ψ
, t is ground and does not occur in ψ.

Proof. See [6].

Corollary 1. Let Γ ∪ {ϕ,ψ} be a set of formulas and i, j nominals. Then:

1. if i does not occur in Γ ∪ {ϕ}, then

Γ � i → ϕ ⇒ Γ � ϕ.

2. if j = i does not occur in Γ ∪ {ϕ,ψ}, then

Γ � (@i♦j ∧ @jϕ) → ψ ⇒ Γ � @i♦ϕ → ψ.

3. if t is ground and does not occur in Γ ∪ {ϕ,ψ}, then

Γ � (@iEXISTS(t) ∧ @iϕ(
@it

x
)) → ψ ⇒ Γ � @i∃xϕ → ψ.

Proof. Immediate from the previous proposition.

5 Soundness and Completeness

Theorem 1 (Soundness). Every theorem of Kτ is valid. That is, for any for-
mula ϕ ∈ Fm(τ), we have that � ϕ ⇒ � ϕ.

Proof. Fairly straightforward. The Distributivity, Quantifier, Basic Hybrid
Axioms and the Axioms for ≈ are all familiar from modal, hybrid, first-order
or equational logic. The soundness of K@≈, Nom≈, and Agree≈ rests on Defi-
nitions 4 and 8. Note that Shuffle-2 also holds in the special case i = j. If you
are unfamiliar with hybrid logic, the soundness of the (Name) and (BG) rules
may not be obvious: they are best thought of as analogous to natural deduction
rules (the conclusion of each rule “discharges” a nominal in the premiss) and the
side conditions are important. For detailed discussion of both rules (and some
variants) see [6].

62 P. Blackburn et al.

Definition 10. Let Γ ⊆ Fm(τ).

– Γ is said to be Kτ -inconsistent if Γ �Kτ
ϕ for any ϕ ∈ Fm(τ). Otherwise we

say that Γ is Kτ -consistent.
– Γ is maximal Kτ -consistent if Γ is consistent and any set of formulas that

properly extends Γ is Kτ -inconsistent.
– Γ is named if it contains at least one nominal.
– Γ is ♦-saturated if for all @i♦ϕ ∈ Γ , there is a nominal j such that @i♦j

and @jϕ belong to Γ .
– Γ is ∃-saturated if for all formula @i∃xϕ ∈ Γ there is a constant c such that

@i(EXISTS(c)) ∈ Γ and @iϕ
(@ic)

x ∈ Γ .

Lemma 2. Let Γ ⊆ Fm(τ). Then

1. Γ is inconsistent iff there is a formula ϕ such that Γ � ϕ and Γ � ¬ϕ.
2. ϕ ∈ Γ then Γ � ϕ.
3. Γ ∪ {ϕ} is inconsistent iff Γ � ¬ϕ.
4. If Γ is maximal consistent then, Γ � ϕ ⇒ ϕ ∈ Γ.

Proof. Standard.

We are ready to prove the Lindenbaum lemma we require: every Kτ -
consistent set of formulas can be extended to a named, ♦-saturated, ∃-saturated,
maximal Kτ -consistent set.

Lemma 3 (Lindenbaum). Let (in)n∈N and (cn)n∈N be countably infinite sets
of new nominals and new constants, respectively. Let τ be the new signature
obtained by extending Σ and NOM with these symbols, and Kτ the first-order
hybrid logic over the extended signature. (Note that by the substitution rule, Kτ

is a conservative extension of Kτ .) Every Kτ -consistent set of formulas Γ can be
extended to a named, ♦-saturated, ∃-saturated and maximal Kτ -consistent set.

Proof. Let Γ be a Kτ -consistent set of formulas. We also have (in)n∈N and
(cn)n∈N, countably infinite sets of new nominals and constants respectively, at
our disposal. We define the set Γ ∗ to be

⋃
n∈N

Γn, where:
Γ 0 = Γ ∪ {i0};

Γ n+1 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Γ n , if Γ n ∪ {ϕn} is inconsistent

Γ n ∪ {ϕn, @i♦im, @imψ} , if ϕn = @i♦ψ and Γ n ∪ {ϕn}
is consistent

Γ n ∪ {ϕn, @i(EXISTS(cm)), @iψ
@icm

x
} , if ϕn = @i∃xψ and Γ n ∪ {ϕn}

is consistent,

Γ n ∪ {ϕn} , otherwise

In these clauses, im is the first new nominal not occurring in Γn or in ϕn and
cm is the first new constant not in Γn or in ϕn. We now prove by induction that
Γ ∗ is Kτ -consistent.

Rigid First-Order Hybrid Logic 63

Suppose that Γ 0 is not consistent. Then Γ ∪ {i0} � ⊥. Hence, by the Deduc-
tion Theorem, Γ � i0 → ⊥. Since i0 does not occur in Γ ∪ {ϕ}, by Corollary 1
clause 1 Γ � ⊥, which is absurd since Γ is consistent.

Next, assume that Γn is Kτ -consistent and consider ϕn of the form @i♦ψ.
Suppose for the sake of a contradiction that Γn ∪ {ϕn} is consistent, but that
Γn+1 is not. Then Γn ∪ {@i♦ψ,@i♦im, @im

ψ} � ⊥. Hence, by the Deduction
Theorem, Γn ∪ {@i♦ψ} � (@i♦im ∧ @im

ψ) → ϕ. By Corollary 1 clause 2, Γn ∪
{@i♦ψ} � @i♦ψ → ⊥. Applying modus ponens yields Γn ∪ {@i♦ψ} � ⊥, which
contradicts our assumption that Γn ∪ {ϕn} is consistent.

Next, assume that Γn is Kτ -consistent and consider ϕn of the form @i∃xψ.
Suppose for the sake of a contradiction that Γn ∪ {ϕn} is consistent, but that
Γn+1 is not. This means that

Γn ∪ {ϕn,@i(EXISTS(cm)),@iψ
(@icm)

x
} � ⊥.

Then, using the Deduction Theorem, we have that

Γn ∪ {ϕn} � (@i(EXISTS(cm)) ∧ @iψ
(@icm)

x
) → ⊥.

Then, using Corollary 1 clause 3, we have that

Γn ∪ {ϕn} � @i∃xψ → ⊥.

Thus, Γn ∪ {ϕn} � ⊥, contradicting its consistency.
Since Γn is Kτ -consistent for n ∈ N, it follows that Γ ∗ :=

⋃
n∈N

Γn is also
Kτ -consistent. Moreover, Γ ∗ is also maximal. For suppose for the sake of a
contradiction that it is not: that is, suppose that there exists a formula ϕ /∈ Γ ∗

such that Γ ∗∪{ϕ} is Kτ -consistent. Then ϕ = ϕn, for some n ∈ N, and Γn∪{ϕn}
is consistent. Consequently, ϕn ∈ Γn+1 which is an absurd since we assumed that
ϕ /∈ Γ ∗. So Γ ∗ is maximal, and we have proved our Lindenbaum lemma.

In the sequel, given a Kτ -consistent set of formulas Γ , Γ ∗ will denote the
named, ♦-saturated, ∃-saturated, maximal consistent extension of Γ , defined in
the proof of Lemma 3.

Definition 11. Let Γ be a named, maximal Kτ -consistent set of formulas.
Binary relations ∼n and ∼r, over NOM and @Term(τ), respectively, are defined
as follows:

– i ∼n j ⇔ @ij ∈ Γ , i, j ∈ NOM
– t ∼r t′ ⇔ t ≈ t′ ∈ Γ , t, t′ ∈ @Term(τ)

Lemma 4. The relations ∼n and ∼r are equivalence relations. Moreover, if
tk ∼r t′k for k = 1, . . . , n, then (@if)(t1, . . . , tn) ∼r (@if)(t′1, . . . , t

′
n).

Proof. The proofs that ∼n and ∼r are equivalence relations are straightforwrd
(and standard). The proof of the last statement uses the axiom:

(t1 ≈ t′1 ∧ ... ∧ tn ≈ t′n) → f(t1, . . . , tn) ≈ f(t′1, . . . , t
′
n),

where f ∈ Funcn ∪ @Funcn, n � 0.

64 P. Blackburn et al.

Definition 12. Suppose Γ is a named, ♦-saturated, ∃-saturated and maximal
Kτ -consistent set of formulas. Then the Henkin structure

MΓ = ((WΓ ,DomΓ ,DΓ , RΓ), IΓ)

is defined by:

– WΓ = {|i| : i is a nominal}
– DomΓ = {|t| ∈ @Term(τ) : t is ground}
– DΓ

|i| = {|t| ∈ Dom : @iEXISTS(t) ∈ Γ}
– |i|RΓ |j| iff @i♦j ∈ Γ
– IΓ

|i|(i) = |i|, for each nominal i

– for each f ∈ Funcn and |t1|, . . . , |tn| ∈ DomΓ ,
IΓ
|i|(f)(|t1|, . . . , |tn|) = |(@if)(t1, . . . , tn)|

– for each P ∈ Reln,
IΓ
|i|(P) = {(|t1|, . . . , |tn|) ∈ DomΓ : (@iP)(t1, . . . , tn) ∈ Γ)}

Let us briefly check this definition. Note that RΓ is well defined. For suppose
i′ ∈ |i|, then @ii

′ ∈ Γ so, if @i♦j ∈ Γ , by (Nom), @i′♦j ∈ Γ . Now suppose
j′ ∈ |j|, then @jj

′ ∈ Γ so, if @i♦j ∈ Γ , by (Bridge), @i♦j′ ∈ Γ . We leave the
reader to check that the functions and predicate interpretations are well-defined
as well.

With this done, we are ready to state the Truth Lemma which establishes
that the Henkin structure MΓ is the model we are looking for; the Truth Lemma
is stated and proved in the appendix. This leads to:

Theorem 2 (Completeness). Let τ be a first-order hybrid similarity type ϕ
be a sentence and Γ a set of sentences. Then

Γ � ϕ ⇒ Γ � ϕ.

6 Conclusions and Future Work

We want to view hybrid logic as a general language of rigidification, and use it to
explore conceptual and technical issues in first-order modal logic; this paper is
our first step in this direction. The completeness result just proved takes us closer
to this goal, because it covers not merely the basic logic, but also completeness
with respect to any extension obtained by adding pure axioms or existential sat-
uration rules (for a definition and detailed discussion of these concepts, see [6]).
Adding pure axioms automatically yields completeness for many different frame
conditions (for example, transitivity, reflexivity, and irreflexivity), and for addi-
tional modalities (such as the Priorean tense operators and the universal modal-
ity). More importantly for present purposes, such tools also immediately yield
completeness for conditions of particular relevance to first-order modal logic. To
give three such examples from [6], adding the pure axiom

@iEXISTS(@kc) → @jEXISTS(@kc)

Rigid First-Order Hybrid Logic 65

gives us a complete axiomatisation for constant domain (possibilist) semantics,
adding

@iEXISTS(@kc) ∧ @jEXISTS(@kc) → @ij

gives us completeness with respect to the condition that all local domains be
disjoint, and adding the existential saturation rule

if � @iEXISTS(@jc) → ϕ then � ϕ,

where i is a nominal distinct from j not occurring in ϕ, gives us completeness
with respect to the class of models in which every object in the domain (that is:
every element of Dom) is also an element of some local domain. Thus the system
defined in this paper already achieves a reasonable degree of generality.

But there are a number of issues that should be explored further. In this paper
we have taken a minimalist approach to rigidification syntax. In particular, we
did not have expressions of the form @it in the object language, we instead used
such expressions as metalinguistic abbreviations for the rigidification of t at i
(as defined in Definition 4). However, having explored this minimal choice, we
are now experimenting with extended versions of the language in which all such
expressions are part of the object language. This seems useful for at least two
reasons.

First, we want to develop and axiomatize richer forms of rigid first-order
hybrid logic which incorporate the ↓ binder. This binder is a standard tool in
hybrid logic: it binds nominals to the world of evaluation. For example, ↓ i.♦¬i
is a formula that is true at any world w in any model if and only if w is an
irreflexive world. Now, when we add the ↓ binder to the language explored in
this paper, it will let us bind the nominals in rigidified function and predicate
symbols. This is an extension worth exploring, but it seems more interesting to
add ↓ to an extended version of the language in which all expressions of the
form @it are available. Why? Because once we add ↓, it seems both natural and
desirable to be able to form arbitrary terms of the form ↓ i.@it, and this of
course requires that we have all terms of the form @it available (and open for
binding) in the object language.

Similar remarks apply to the other extension we are exploring: a general
treatment of partial functions in a varying domain setting. We have explored
this combination of ideas in the setting of higher-order hybrid logic [9], and are
currently transferring the key ideas down to the first-order setting defined in
this paper. Because the standard hybrid logical results concerning pure axioms
and existential saturation rules still hold in our approach to partiality (which
draws on ideas due to William Farmer [7]), we are confident that this can be
done smoothly, and that the result will be a general first-order modal framework
for working with partiality in an actualist semantics. But, once again, it seems
that this extension may be more usefully carried out in a language in which all
expressions of the form @it are available at the object-level. In this paper we have
interpreted function symbols in a way that lets them take as input entities that
do not exist at the local domain, and to output non-local entities as well. But
this hard-wires a lot into the semantics. We hope to find a flexible language in

66 P. Blackburn et al.

which a wide variety of choices about the semantics of functions (and predicates)
can simply be axiomatised using such standard hybrid tools such as pure axioms
and existential saturation rules. Partialising the semantics Farmer-style, adding
object-level expressions of the form @it, and exploring the impact of ↓, seems a
promising route to such a system.

Acknowledgements. The authors are grateful to the Spanish Ministerio de Economı́a
y Competitividad for funding the project Intensionality as a unifier: Logic, Language
and Philosophy, FFI2017-82554, hosted by the Universidad de Salamanca. Patrick
Blackburn would also like to thank the Danish Council for Independent Research
(FKK) for funding as part of the project: The Primacy of Tense: A. N. Prior Now
and Then. Manuel Martins was also supported by ERDF, through the COMPETE
2020 Programme, and by FCT, within the projects POCI-01-0145-FEDER-016692 and
UID/MAT/04106/2019.

Appendix

This appendix sketches the definitions and lemmas that lead to the Truth
Lemma, and thus to the Completeness Theorem stated in the main text. As
a first step, given an assignment function g on the Henkin structure MΓ defined
in Definition 12, we need an inductive definition of how to substitute a suitable
rigid term for a variables inside terms and formulas; the substitution syntacti-
cally mirrors the assignment function.

We do so as follows. Given a variable assignment g into MΓ (that is, g : X →
DomΓ) we first define a substitution function ĝ : X → @Term(τ) in the following
way: for any variable x, we define xĝ := tk, where tk is the first rigid ground term
in @Term(τ) with lowest k such that g(x) = |tk|. Here we assume that @Term(τ)
is ordered. We extend ĝ to arbitrary terms t by defining: if t = f(t1, . . . , tn) then
tĝ = f(tĝ1, . . . , t

ĝ
n).

We extend ĝ to formulas in the following way:

– iĝ := i, i ∈ NOM
– (t1 ≈ t2)ĝ := (tĝ1 ≈ tĝ2), t1, t2 ∈ Term(τ)
– (P (t1, . . . , tn))ĝ := P (tĝ1, . . . , t

ĝ
n), P ∈ Reln ∪ @Reln and t1, . . . , tn ∈ Term(τ)

– (@iϕ)ĝ := @i(ϕĝ), ϕ ∈ Fm(τ) and i ∈ NOM
– (¬ϕ)ĝ := ¬(ϕĝ) and (♦ϕ)ĝ := ♦(ϕĝ), ϕ ∈ Fm(τ)
– (ϕ ∧ ψ)ĝ := ϕĝ ∧ ψĝ and (ϕ ∨ ψ)ĝ := ϕĝ ∨ ψĝ, for ϕ ∈ Fm(τ) and ψ ∈ Fm(τ)
– (∃xϕ)ĝ := ∃x(ϕĝx

x), x ∈ X and ϕ ∈ Fm(τ), where ĝx
x = ĝ \ {(x, ĝ(x))}) ∪

{(x, x)})

For any t ∈ Term(τ) and any assignment g on MΓ , in what follows we will
simply write tg for tĝ. A similar simplification will be adopted for formulas.

Lemma 5. For any t ∈ Term(τ) and any assignment g on MΓ we have

[t]M
Γ ,|i|,g = |@it

g|

Rigid First-Order Hybrid Logic 67

Proof. By induction on term structure.

(t ∈ X)
[x]M

Γ ,|i|,g = g(x)
= |tk|, where tk is the first ground (and rigid) term in
@Term(τ) with lowest k such that g(x) = |tk|.
= |@itk|, since tk ∈ @Term(τ), by definition @itk = tk
= |@ix

g|
(t = f(t1, . . . , tn), f ∈ Funcn, n � 0)
[f(t1, . . . , tn)]M

Γ ,|i|,g = I|i|(f)([t1]
M,|i|,g

, . . . , [tn]M,|i|,g)
= I|i|(f)(|@it

g
1|, . . . , |@it

g
n|) (Ind. Hyp.)

= |(@if)(@it
g
1, . . . ,@it

g
n)|

= |@i(f(tg1, . . . , t
g
n))|

= |@it
g|

(t = (@jf)(t1, . . . , tn), f ∈ Funcn, n � 0)

[(@jf)(t1, . . . , tn)]M
Γ ,|i|,g = I|j|(f)([t1]

M,|i|,g
, . . . , [tn]M,|i|,g)

= I|j|(f)(|@it
g
1|, . . . , |@it

g
n|) (Ind. Hyp.)

= |(@jf)(@it
g
1, . . . ,@it

g
n)|

= |@i((@jf)(tg1, . . . , t
g
n))|

= |@it
g|

Lemma 6 (Truth Lemma). For every nominal i, any assignment g on MΓ

and every formula ϕ

MΓ , |i|, g � ϕ ⇔ @iϕ
g ∈ Γ

Proof. The proof proceeds by induction on the complexity of ϕ.

– ϕ = j
We have that

MΓ ∗
, |i|, g � j iff |i| = |j| iff @ij ∈ Γ iff @ij

g ∈ Γ .
– ϕ = t1 ≈ t2,

MΓ , |i|, g � t1 ≈ t2 iff [t1]
M,|i|,g = [t2]

M,|i|,g

iff |@it
g
1| = |@it

g
2|, by Lemma 5

iff @it
g
1 ∼r @it

g
2

iff @it
g
1 ≈ @it

g
2 ∈ Γ

iff @i(t
g
1 ≈ tg2) ∈ Γ , by axiom K@≈

iff @i(t1 ≈ t2)g ∈ Γ
– ϕ = P (t1, . . . , tn), with P ∈ Reln ∪ @Reln and t1, . . . , tn ∈ Term(τ);

If P ∈ Reln:
MΓ , |i|, g � P (t1, . . . , tn) iff ([t1]

M,|i|,g
, . . . , [tn]M,|i|,g) ∈ I|i|(P)

iff (|@it
g
1|, . . . , |@it

g
n|) ∈ I|i|(P), by Lemma 5

iff (@iP)(@it
g
1, . . . ,@it

g
n) ∈ Γ

iff @i(P (tg1, . . . , t
g
n)) ∈ Γ ,

by the Shuffle-1 Axiom
(@iP)(@it1, . . . ,@itn) ↔ @i(P (t1, . . . , tn)

iff @i((P (t1, . . . , tn)g) ∈ Γ

68 P. Blackburn et al.

If P = (@jS), with S ∈ Reln:
MΓ , |i|, g � (@jS)(t1, . . . , tn) iff ([t1]

M,|i|,g, . . . , [tn]M,|i|,g) ∈ I|j|(S)
iff (|@it

g
1|, . . . , |@it

g
n|) ∈ I|j|(S), by Lemma 5

iff (@jS)(@it
g
1, . . . , @it

g
n) ∈ Γ

iff @i((@jS)(tg
1, . . . , t

g
n)) ∈ Γ ,

by the Shuffle-2 axiom
(@jS)(@it1, . . . , @itn) ↔ @i((@jS)(t1, . . . , tn)

iff @i(((@jS)(t1, . . . , tn)g) ∈ Γ
– ϕ = @jψ.

MΓ , |i|, g � @jψ iff MΓ , |j|, g � ψ
iff @j(ψ)g ∈ Γ , IH
iff (@jψ)g ∈ Γ
iff @i(@jψ)g ∈ Γ , by Agree

– ϕ = ¬ψ.
MΓ , |i|, g � ¬ψ iff MΓ , |i|, g � ψ

iff @i(ψ)g ∈ Γ , IH
iff ¬@i(ψ)g ∈ Γ , as Γ is maximal consistent
iff @i¬(ψ)g ∈ Γ , by Selfdual@
iff @i(¬ψ)g ∈ Γ

– ϕ = ♦ψ.
MΓ , |i|, g � ♦ψ iff there is j such that |i|RΓ |j| and MΓ , |j|, g � ψ

iff there is j such that |i|RΓ |j| and @iψ
g ∈ Γ , by IH

iff @i♦ψg ∈ Γ ,
by Bridge (since @i♦j ∈ Γ) and ♦-saturation

iff @i(♦ψ)g ∈ Γ
– ϕ = ψ1 ∧ ψ2

MΓ , |i|, g � ψ1 ∧ ψ2 iff MΓ , |i|, g � ψ1 and MΓ , |i|, g � ψ2

iff @i(ψ1)g ∈ Γ and @i(ψ2)g ∈ Γ , IH
iff @i(ψ1)g ∧ @i(ψ2)g ∈ Γ , as Γ is maximal consistent
iff @i((ψ1)g ∧ (ψ2)g) ∈ Γ
iff @i(ψ1 ∧ ψ2)g) ∈ Γ

– ϕ = ∃xψ.
MΓ , |i|, g � ∃xψ iff exists θ ∈ D|i| s.t M, w, g[x
→ θ] � ϕ

iff exists θ ∈ D|i| s.t @iϕ
g[x �→θ] ∈ Γ , induction hypothesis

iff(∗) @i(∃xϕ)g ∈ Γ
Proof of (∗)
The implication “⇒” holds by the Corollary 1 clause 3.
The implication “⇐” holds by ∃- saturation. @i(∃xϕ)g ∈ Γ implies that there
exists a constant c such that @iEXISTS(c) ∈ Γ and (ϕ)gx

x (x �→ @ic) ∈ Γ . So
there is θ := @ic ∈ D|i|(because @iEXISTS(c) ∈ Γ) s.t @iϕ

g[x�→θ] ∈ Γ .

Lemma 7. Let Γ be a consistent set of sentences. Then, there is a nominal k
such that for every ϕ ∈ Γ ,

MΓ , |k| � ϕ

Theorem 3 (Completeness). Let τ be a first-order hybrid similarity type ϕ
be a sentence and Γ a set of sentences. Then

Γ � ϕ ⇒ Γ � ϕ.

Rigid First-Order Hybrid Logic 69

References

1. Areces, C., Blackburn, P., Huertas, A., Manzano, M.: Completeness in hybrid type
theory. J. Philos. Log. 43, 209–238 (2014)

2. Areces, C., Blackburn, P., Marx, M.: Repairing the interpolation theorem in quan-
tified modal logic. Ann. Pure Appl. Log. 124(1–3), 287–299 (2003)

3. Barbosa, L.S., Martins, M.A., Carreteiro, M.: A Hilbert-style axiomatisation for
equational hybrid logic. J. Log. Lang. Inf. 23(1), 31–52 (2014)

4. Blackburn, P., Huertas, A., Manzano, M., Jørgensen, K.F.: Henkin and hybrid
logic. In: Manzano, M., Sain, I., Alonso, E. (eds.) The Life and Work of Leon
Henkin. SUL, pp. 279–306. Springer, Cham (2014). https://doi.org/10.1007/978-
3-319-09719-0 19

5. Blackburn, P., Marx, M.: Tableaux for quantified hybrid logic. In: Egly, U.,
Fermüller, C.G. (eds.) TABLEAUX 2002. LNCS (LNAI), vol. 2381, pp. 38–52.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45616-3 4

6. Blackburn, P., ten Cate, B.: Pure extensions, proof rules, and hybrid axiomatics.
Studia Logica 84, 277–322 (2006)

7. Farmer, W.M.: A partial functions version of Church’s simple theory of types. J.
Symb. Log. 55(3), 1269–1291 (1990)

8. Fitting, M., Mendelsohn, R.: First-Order Modal Logic. Springer, Heidelberg (1998).
https://doi.org/10.1007/978-94-011-5292-1

9. Manzano, M., Huertas, A., Blackburn, P., Martins, M.: Hybrid partial type theory
(2019, Submitted)

10. Manzano, M., Martins, M., Huertas, A.: Completeness in equational hybrid propo-
sitional type theory. Studia Logica (2018). https://doi.org/10.1007/s11225-018-
9833-5

https://doi.org/10.1007/978-3-319-09719-0_19
https://doi.org/10.1007/978-3-319-09719-0_19
https://doi.org/10.1007/3-540-45616-3_4
https://doi.org/10.1007/978-94-011-5292-1
https://doi.org/10.1007/s11225-018-9833-5
https://doi.org/10.1007/s11225-018-9833-5

The One-Variable Fragment of Corsi
Logic

Xavier Caicedo1, George Metcalfe2(B), Ricardo Rodŕıguez3,4, and Olim Tuyt2

1 Departamento de Matemáticas, Universidad de los Andes, Bogotá, Colombia
xcaicedo@uniandes.edu.co

2 Mathematical Institute, University of Bern, Bern, Switzerland
{george.metcalfe,olim.tuyt}@math.unibe.ch

3 UBA. FCEyN. Departamento de Computación, Buenos Aires, Argentina
ricardo@dc.uba.ar

4 CONICET-UBA. Inst. de Invest. en Cs. de la Computación,
Buenos Aires, Argentina

Abstract. The one-variable fragment of the first-order logic of linear
intuitionistic Kripke models, referred to here as Corsi logic, is shown to
have as its modal counterpart the many-valued modal logic S5(G). It
is also shown that S5(G) can be interpreted in the crisp many-valued
modal logic S5(G)C, the modal counterpart of the one-variable fragment
of first-order Gödel logic. Finally, an algebraic finite model property is
proved for S5(G)C and used to establish co-NP-completeness for validity
in the aforementioned modal logics and one-variable fragments.

1 Introduction

One-variable fragments of first-order logics are often studied as propositional
modal logics, where each unary predicate P (x) is replaced with a propositional
variable p and quantifiers (∀x) and (∃x) are replaced with modalities � and ♦,
respectively. This shift in perspective can be useful in obtaining axiomatization,
finite model property, and complexity results both for the fragments and for
corresponding classes of algebraic models. In particular, the modal logic S5 and
intuitionistic modal logic MIPC (corresponding to monadic Boolean algebras and
monadic Heyting algebras) are modal counterparts of the one-variable fragments
of first-order classical logic and intuitionistic logic, respectively. Both these modal
logics have the finite model property and are decidable. The correspondence
between one-variable fragments of first-order intermediate logics and varieties
of monadic Heyting algebras has been considered in some depth in [2,14,15].
Decidability and complexity results have also been obtained for intermediate
modal logics viewed as fragments of classical bimodal logics (see [8] for details).

In this paper, we investigate the one-variable fragment of the first-order logic
of linear intuitionistic Kripke models, axiomatized by Corsi in [7] as the extension
of first-order intuitionistic logic with the prelinearity axiom schema (α → β) ∨
(β → α), and referred to here as Corsi logic. In particular, we prove that the

c© Springer-Verlag GmbH Germany, part of Springer Nature 2019
R. Iemhoff et al. (Eds.): WoLLIC 2019, LNCS 11541, pp. 70–83, 2019.
https://doi.org/10.1007/978-3-662-59533-6_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-59533-6_5&domain=pdf
https://doi.org/10.1007/978-3-662-59533-6_5

The One-Variable Fragment of Corsi Logic 71

modal counterpart of this one-variable fragment is the many-valued modal logic
S5(G), with propositional connectives interpreted using the standard semantics
of Gödel logic and � and ♦ interpreted as infima and suprema relative to [0, 1]-
valued accessibility relations. It has been shown in [6] that an axiomatization
of S5(G) is obtained by extending MIPC with the prelinearity axiom schema,
and that adding also the axiom schema �(�ϕ ∨ ψ) → (�ϕ ∨ �p) yields an
axiomatization of the crisp version S5(G)C of S5(G), obtained by restricting to
{0, 1}-valued accessibility relations. The logic S5(G)C is the modal counterpart of
the one-variable fragment of first-order Gödel logic or, equivalently (see [1,16]),
the first-order logic of linear intuitionistic Kripke models with constant domains.

The logic S5(G) lacks the finite model property with respect to its standard
Kripke semantics, but is complete with respect to a variety of monadic Heyting
algebras that has this property (see [2]) and is hence decidable. We provide here
an alternative decidability proof that also establishes co-NP-completeness. First,
we give an interpretation of the one-variable fragment of Corsi logic in the one-
variable fragment of first-order Gödel logic, yielding an interpretation of S5(G)
in S5(G)C. Although S5(G)C also lacks the finite model property, decidability
(indeed co-NP-completeness) has been established in [5] using an alternative
Kripke semantics that does have the property. We show here that this rather ad
hoc alternative semantics emerges naturally from a well-known representation of
monadic Heyting algebras (see [2]). Finally, an algebraic finite model property
is established for S5(G)C, and used to prove co-NP-completeness for the two
many-valued modal logics and their associated one-variable fragments.

2 The One-Variable Fragments

In this section, we present the one-variable fragments of first-order intermediate
logics defined over all linear Kripke models and the linear Kripke models that
have constant domains. For convenience, we restrict our definitions here to the set
Fm1 of one-variable first-order formulas α, β, . . . , built inductively as usual from
a countably infinite set of unary predicates {Pi}i∈N, propositional connectives
∧,∨,→,⊥,�, a fixed variable x, and quantifiers ∀,∃.

A monadic intuitionistic Kripke model (for short, IK1-model) is a 4-tuple
M = 〈W,
, {Dw}w∈W , {Iw}w∈W 〉 consisting of a non-empty poset 〈W,
〉, a
non-empty set Dw for each w ∈ W called the domain of w, and functions
{Iw}w∈W mapping each Pi to some Iw(Pi) ⊆ Dw, satisfying for all w, v ∈ W
and i ∈ N,

w
 v =⇒ Dw ⊆ Dv and Iw(Pi) ⊆ Iv(Pi).

72 X. Caicedo et al.

Satisfaction in M is then defined inductively as follows for w ∈ W and a ∈ Dw:

M, w |=a ⊥ ⇐⇒ never
M, w |=a � ⇐⇒ always
M, w |=a Pi(x) ⇐⇒ a ∈ Iw(Pi)
M, w |=a α ∧ β ⇐⇒ M, w |=a α and M, w |=a β
M, w |=a α ∨ β ⇐⇒ M, w |=a α or M, w |=a β
M, w |=a α → β ⇐⇒ M, v |=a α implies M, v |=a β for all v � w
M, w |=a (∀x)α ⇐⇒ M, v |=b α for all v � w and b ∈ Dv

M, w |=a (∃x)α ⇐⇒ M, w |=b α for some b ∈ Dw.

Let us call M an IKL1-model if
 is linear, a CDIK1-model if it has constant
domains (i.e., Dw = Dv for all v, w ∈ W), and a CDIKL1-model if both these
conditions are satisfied. We say that α ∈ Fm1 is valid in M if M, w |=a α for all
w ∈ W and a ∈ Dw. Given L ∈ {IK1, IKL1,CDIK1,CDIKL1}, we say that α ∈ Fm1

is L-valid, denoted by |=L α, if it is valid in all L-models.
Let IQC be an axiomatization for first-order intuitionistic logic and consider

the following axiom schema for all (i.e., not just one-variable) first-order formulas
α and β, where x is not free in β for (cd):

(prl) (α → β) ∨ (β → α) and (cd) (∀x)(α ∨ β) → ((∀x)α ∨ β).

By known completeness results for first-order logics, we obtain for any α ∈ Fm1:

|=IK1 α ⇐⇒ �IQC α [12]; |=CDIK1 α ⇐⇒ �IQC+(cd) α [9];
|=IKL1 α ⇐⇒ �IQC+(prl) α [7]; |=CDIKL1 α ⇐⇒ �IQC+(cd)+(prl) α [16].

Now let Fm�♦ be the set of modal formulas ϕ,ψ, . . . , built inductively over a set
of propositional variables {pi}i∈N, propositional connectives ∧,∨,→,⊥,�, and
modal connectives �,♦. Recall also the standard translations (−)∗ and (−)◦

between Fm�♦ and Fm1, where � ∈ {∧,∨,→}, c ∈ {⊥,�}:

(Pi(x))∗ = pi p◦
i = Pi(x)

c∗ = c c◦ = c

(α � β)∗ = α∗ � β∗ (ϕ � ψ)◦ = ϕ◦ � ψ◦

((∀x)α)∗ = �α∗ (�ϕ)◦ = (∀x)ϕ◦

((∃x)α)∗ = ♦α∗ (♦ϕ)◦ = (∃x)ϕ◦.

Clearly (α∗)◦ = α for any α ∈ Fm1 and (ϕ◦)∗ = ϕ for any ϕ ∈ Fm�♦.
Let MIPC be an axiomatization of intuitionistic propositional logic extended

with the necessitation rule ϕ/�ϕ and the axiom schema

�(ϕ → ψ) → (�ϕ → �ψ) ♦(ϕ ∨ ψ) → (♦ϕ ∨ ♦ψ)
�ϕ → ϕ ϕ → ♦ϕ
♦ϕ → �♦ϕ ♦�ϕ → �ϕ
�(ϕ → ψ) → (♦ϕ → ♦ψ),

The One-Variable Fragment of Corsi Logic 73

and consider the additional axiom schema

(prl) (ϕ → ψ) ∨ (ψ → ϕ) and (cd)� �(�ϕ ∨ ψ) → (�ϕ ∨ �ψ).

The following completeness results are known:

|=IK1 α ⇐⇒ �MIPC α∗ [4];
|=CDIK1 α ⇐⇒ �MIPC+(cd)� α∗ [13];
|=CDIKL1 α ⇐⇒ �MIPC+(cd)�+(prl) α∗ [6].

In Sect. 3 of this paper, we establish the missing result for Corsi logic.

Theorem 1. For any α ∈ Fm1, |=IKL1 α ⇐⇒ �MIPC+(prl) α∗.

The one-variable fragment of first-order intuitionistic logic IK1 has the finite
model property and is decidable [13], but the precise complexity is not known,
whereas CDIKL1, the one-variable fragment of first-order Gödel logic [1,16], lacks
the finite model property but is co-NP-complete [5]. The one-variable fragment
IKL1 of Corsi logic also lacks the finite model property. For example, the formula
(∀x)¬¬P0(x) → ¬¬(∀x)P0(x) (where ¬α is defined as α → ⊥) is valid in all finite
IKL1-models, but not in the infinite IKL1-model M = 〈N,≤, {Dn}n∈N, {In}n∈N〉
with Dn = {a0, . . . , an} and In(P0) = {a0, . . . , an−1} for each n ∈ N. On the
other hand, it is known (see [2]) that the variety of monadic Heyting algebras
corresponding to the axiom system MIPC +(prl) has the finite model property,
implying, by Theorem1, that validity in IKL1 is decidable. We prove a stronger
result here, giving first an interpretation of IKL1 in CDIKL1 (Sect. 4) and then
establishing an algebraic finite model property for CDIKL1 (Sect. 5), to obtain
the following complexity bound.

Theorem 2. Validity in IKL1 is co-NP-complete.

3 The Many-Valued Modal Logics

In this section, we prove that the one-variable fragment of Corsi logic has as
its modal counterpart the many-valued modal logic S5(G). Since the latter was
axiomatized in [6] as an extension of MIPC with the prelinearity axiom schema
(prl), this result yields a proof of Theorem1.

Consider first the standard Gödel algebra G = 〈[0, 1],∧,∨,→, 0, 1〉 where
x → y is y if x > y, and 1 otherwise. An S5(G)-model is a triple M = 〈W,R, V 〉
consisting of a non-empty set W , a map R : W ×W → [0, 1] satisfying Rww = 1
(reflexivity); Rwv = Rvw (symmetry); and Rwv∧Rvu ≤ Rwu (transitivity), and
a map V : {pi}i∈N×W → [0, 1]. The map V is extended to V : Fm�♦×W → [0, 1]
inductively by the clauses V (⊥, w) = 0, V (�, w) = 1, V (ϕ � ψ,w) = V (ϕ,w) �
V (ψ,w) for � ∈ {∧,∨,→}, and

V (�ϕ,w) =
∧

{Rwv → V (ϕ, v) | v ∈ W}
V (♦ϕ,w) =

∨
{Rwv ∧ V (ϕ, v) | v ∈ W}.

74 X. Caicedo et al.

If Rvw ∈ {0, 1} for all v, w ∈ W , then M is called an S5(G)C-model. A formula
ϕ ∈ Fm�♦ is said to be valid in M if V (ϕ,w) = 1 for all w ∈ W , and L-valid for
L ∈ {S5(G),S5(G)C}, written |=L ϕ, if ϕ is valid in all L-models.

An S5(G)C-model M = 〈W,R, V 〉 is called universal if Rwv = 1 for all
w, v ∈ W ; we then write M = 〈W,V 〉, since the conditions for �,♦ simplify to

V (�ϕ,w) =
∧

{V (ϕ, v) | v ∈ W} and V (♦ϕ,w) =
∨

{V (ϕ, v) | v ∈ W}.

It is easily proved that |=S5(G)C ϕ if and only if ϕ is valid in all universal S5(G)C-
models, and that this holds if and only if ϕ◦ is valid in first-order Gödel logic. The
equivalence between first-order Gödel logic and the logic of linear Kripke models
with constant domains (see [1,16]) therefore yields the following correspondence.

Theorem 3. For any α ∈ Fm1, |=CDIKL1 α ⇐⇒ |=S5(G)C α∗.

The rest of this section is devoted to proving the analogous result for IKL1.

Theorem 4. For any α ∈ Fm1, |=IKL1 α ⇐⇒ |=S5(G) α∗.

We consider first the right-to-left direction. Proceeding contrapositively, let
(without loss of generality) ϕ ∈ Fm�♦ and suppose that �|=IKL1 ϕ◦. Then there
exists a countable IKL1-model M = 〈W,
, {Dw}w∈W , {Iw}w∈W 〉, w0 ∈ W , and
a0 ∈ Dw0 such that M, w0 �|=a0 ϕ◦. Let Up(〈W,
〉) be the complete linearly
ordered set of upsets of 〈W,
〉 ordered by inclusion with W and ∅ as greatest
and least elements, respectively. Since W is countable, there exists a complete
(i.e., preserving all suprema and infima) order-embedding of Up(〈W,
〉) into
〈[0, 1],≤〉 (see [1]) and we may therefore implicitly identify Up(〈W,
〉) with a
subset of [0, 1].

Let W ∗ =
⋃

v∈W Dv and for each a ∈ W ∗, let U(a) = {v ∈ W | a ∈ Dv}, i.e.,
U(a) is the largest (with respect to ⊆) U ∈ Up(〈W,
〉) such that a ∈ ⋂

v∈U Dv.
We define an S5(G)-model M∗ = 〈W ∗, R, V 〉 where for all a, b ∈ W ∗,

Rab =

{
W a = b

U(a) ∩ U(b) a �= b
and V (pi, a) = {v ∈ W | a ∈ Iv(Pi)}.

Note that each V (pi, a) is an upset of 〈W,
〉 since u
 v implies Iu(Pi) ⊆ Iv(Pi),
and that Raa = W , Rab = Rba, and Rab ∧ Rbc ≤ Rac for all a, b, c ∈ W ∗.

The following lemma yields V (ϕ, a0) �= W and hence �|=S5(G) ϕ as required.

Lemma 1. For any ϕ ∈ Fm�♦, w ∈ W , and a ∈ Dw,

M, w |=a ϕ◦ ⇐⇒ w ∈ V (ϕ, a).

Proof. The following observation will be useful. If a ∈ Dw then for any b ∈ W ∗,
b ∈ Dw if and only if w ∈ Rab. Indeed, if b = a, this is trivial. If b �= a, then as
a ∈ Dw, w ∈ U(a) ∩ U(b) if and only if w ∈ U(b), i.e., b ∈ Dw.

We prove the claim by induction on the length of ϕ. The base cases for ⊥,
�, and pi are immediate from the definitions. The cases for ∧ and ∨ are also
straightforward, so let us just consider the cases when ϕ is of the form ψ1 → ψ2,
�ψ, or ♦ψ. Let w ∈ W and a ∈ Dw, and set [w) = {v ∈ W | v � w}.

The One-Variable Fragment of Corsi Logic 75

• Suppose that ϕ = ψ1 → ψ2.

M, w |=a (ψ1 → ψ2)◦ ⇐⇒ M, v |=a ψ◦
1 implies M, v |=a ψ◦

2 for all v � w

⇐⇒ v ∈ V (ψ1, a) implies v ∈ V (ψ2, a) for all v � w

⇐⇒ [w) ∩ V (ψ1, a) ⊆ V (ψ2, a)
⇐⇒ [w) ⊆ (V (ψ1, a) → V (ψ2, a))
⇐⇒ w ∈ V (ψ1 → ψ2, a).

• Suppose that ϕ = �ψ.

M, w |=a (�ψ)◦ ⇐⇒ M, v |=b ψ◦ for all v � w and b ∈ Dv

⇐⇒ v ∈ V (ψ, b) for all v � w such that v ∈ Rab

⇐⇒ [w) ∩ Rab ⊆ V (ψ, b) for all b ∈ W ∗

⇐⇒ w ∈ (Rab → V (ψ, b)) for all b ∈ W ∗

⇐⇒ w ∈ V (�ψ).

• Suppose that ϕ = ♦ψ.

M, w |=a (♦ψ)◦ ⇐⇒ M, w |=b ψ◦ for some b ∈ Dw

⇐⇒ w ∈ Rab and w ∈ V (ψ, b) for some b ∈ Dw

⇐⇒ w ∈
∨

{Rab ∩ V (ψ, b) | b ∈ W ∗}
⇐⇒ w ∈ V (♦ψ, b).

The second-to-last equivalence follows from the fact that in Up(〈W,
〉)
suprema are interpreted as unions. ��
For the left-to-right direction, we also proceed contrapositively. For technical

reasons, however, we show first that we can restrict our attention to a restricted
class of S5(G)-models. We say that an S5(G)-model M = 〈W,R, V 〉 is irrational
if V (ϕ,w) is irrational, 0, or 1 for all ϕ ∈ Fm�♦ and w ∈ W .

Lemma 2. For any countable S5(G)-model M = 〈W,R, V 〉, there exists an
irrational S5(G)-model M′ = 〈W,R′, V ′〉 such that for all ϕ,ψ ∈ Fm�♦, w ∈ W :

V (ϕ,w) < V (ψ,w) ⇐⇒ V ′(ϕ,w) < V ′(ψ,w).

Proof. By [10, Lemma 3.7], there exists a complete order-embedding f from the
countable set S = {V (ϕ,w) | w ∈ W, ϕ ∈ Fm�♦} ∪ R[W × W] into Q ∩ [0, 1].
Now for each q ∈ Q ∩ [0, 1], let

g(q) =

{
π
3 q q ≤ 1

2
π
6 + (2 − π

3)(q − 1
2) q > 1

2 .

Then g is a complete order-embedding from Q ∩ [0, 1] into ([0, 1]\Q) ∪ {0, 1}
with g(0) = 0, g(1) = 1. So h = g ◦ f is a complete order-embedding from S

76 X. Caicedo et al.

into ([0, 1]\Q) ∪ {0, 1} with h(0) = 0, h(1) = 1. Finally, let M′ = 〈W,R′, V ′〉
where R′wv = h(Rwv) and V ′(pi, w) = h(V (pi, w)) for w, v ∈ W and i ∈ N.
A straightforward induction on formula length yields V ′(ϕ,w) = h(V (ϕ,w)) for
any ϕ ∈ Fm�♦ and w ∈ W and the claim follows immediately. ��

Now let M = 〈W,R, V 〉 be any irrational S5(G)-model and fix w0 ∈ W . Let
(0, 1)Q denote (0, 1) ∩ Q. We define the IKL1-model

M◦ = 〈(0, 1)Q,≥, {Dq}q∈(0,1)Q , {Iq}q∈(0,1)Q〉
such that for each q ∈ (0, 1)Q and unary predicate Pi,

Dq = {v ∈ W | Rw0v ≥ q} and Iq(Pi) = {v ∈ W | V (pi, v) ≥ q} ∩ Dq.

Lemma 3. For any ϕ ∈ Fm�♦, q ∈ (0, 1)Q, and w ∈ Dq,

M◦, q |=w ϕ◦ ⇐⇒ V (ϕ,w) ≥ q.

Proof. We prove the claim by induction on the length of ϕ. The base cases follow
by definition and the cases of the propositional connectives are straightforward.
We consider the modal cases.

• For ϕ = �ψ, observe first that

M◦, q |=w (∀x)ψ◦ ⇐⇒ M◦, r |=v ψ◦ for all r ≤ q and v ∈ Dr

⇐⇒ V (ψ, v) ≥ r for all r ≤ q and v ∈ Dr;
V (�ψ,w) ≥ q ⇐⇒ ∧{Rwv → V (ψ, v) | v ∈ W} ≥ q

⇐⇒ Rwv → V (ψ, v) ≥ q for all v ∈ W
⇐⇒ V (ψ, v) ≥ q ∧ Rwv for all v ∈ W.

For the left-to-right direction suppose that V (ψ, v) ≥ r for all r ≤ q and
v ∈ Dr. By assumption, w ∈ Dq, so Rw0w ≥ q. Let v ∈ W . If q ≤ Rwv, then,
by symmetry and transitivity, Rw0v ≥ q, i.e., v ∈ Dq, and hence V (ψ, v) ≥
q = q ∧ Rwv. If q > Rwv, then Rw0w ≥ q > Rwv. By symmetry and
transitivity, Rw0v = Rwv. For all r ∈ (0, 1)Q such that r ≤ Rw0v, it holds
that v ∈ Dr, so V (ψ, v) ≥ r. Since (0, 1)Q is dense in (0, 1)\Q, we have
sup{r ∈ (0, 1)Q | Rw0v ≥ r} = Rw0v and hence V (ψ, v) ≥ Rw0v = Rwv.
For the right-to-left direction, suppose that V (ψ, v) ≥ q ∧Rwv for all v ∈ W .
Let r ≤ q and v ∈ Dr. Then Rw0v ≥ r. Since w ∈ Dq, also Rw0w ≥ q ≥ r,
and by symmetry and transitivity, Rwv ≥ r. Hence V (ψ, v) ≥ q ∧ Rwv ≥ r.

• For ϕ = ♦ψ, observe first that since M is irrational and q ∈ (0, 1)Q, V (ϕ,w) ≥
q if and only if V (ϕ,w) > q. Now observe that

M◦, q |=w (∃x)ψ◦ ⇐⇒ M◦, q |=v ψ◦ for some v ∈ Dq

⇐⇒ V (ψ, v) ≥ q for some v ∈ Dq;
V (♦ψ,w) ≥ q ⇐⇒ ∨{Rwv ∧ V (ψ, v) | v ∈ W} ≥ q

⇐⇒ ∨{Rwv ∧ V (ψ, v) | v ∈ W} > q
⇐⇒ Rwv ∧ V (ψ, v) ≥ q for some v ∈ W.

The One-Variable Fragment of Corsi Logic 77

For the left-to-right direction, suppose that V (ψ, v) ≥ q for some v ∈ Dq.
Since w, v ∈ Dq, by transitivity, Rwv ≥ q and hence Rwv ∧ V (ψ, v) ≥ q.
For the right-to-left direction, suppose that there exists v ∈ W such that
Rwv ∧ V (ψ, v) ≥ q, i.e., Rwv ≥ q and V (ψ, v) ≥ q. Since w ∈ Dq, also
Rwv ≥ q, so v ∈ Dq and V (ψ, v) ≥ q. ��
To conclude the proof of Theorem4 suppose that �|=S5(G) ϕ. It follows that

there exist an S5(G)-model 〈W,R, V 〉 and w ∈ W such that V (ϕ,w) < 1. By
Lemma 2, there exist an irrational S5(G)-model M = 〈W,R′, V ′〉 and r ∈ (0, 1)Q
such that V ′(ϕ,w) < r < 1. But then, by Lemma 3, for the IKL1-model M◦

defined above, M◦, r �|=w ϕ◦. That is, �|=IKL1 ϕ◦.

4 An Interpretation of S5(G) in S5(G)C

In this section, we provide an interpretation of the one-variable fragment of Corsi
logic in the one-variable fragment of first-order Gödel logic, thereby obtaining
also an interpretation of S5(G) in S5(G)C. The key idea of this interpretation
is to use a distinguished unary predicate P0 for a CDIKL1-model to describe
the domains of a corresponding IKL1-model. To this end, we let Fmr

1 ⊆ Fm1

denote the set of one-variable first-order formulas not containing P0, and define
an IKLr1-model to be an IKL1-model M = 〈W,
, {Dw}w∈W , {Iw}w∈W 〉 such that
the functions {Iw}w∈W are restricted to {Pi}i∈N+ .

With every CDIKL1-model M = 〈W,
, {D}, {Iw}w∈W 〉, we associate an IKLr1-
model Mr = 〈W,
, {Dw}w∈W , {Ir

w}w∈W 〉, where for each w ∈ W and i ∈ N
+,

Dw = Iw(P0) and Ir
w(Pi) = Iw(Pi) ∩ Dw.

Notice that M �→ Mr is a surjective map from CDIKL1-models to IKLr1-models.
Now for each α ∈ Fmr

1, we define αc ∈ Fm1 by relativizing quantifiers to
the unary predicate P0. Inductively, we let (Pi(x))c = Pi(x) for each i ∈ N

+,
⊥c = ⊥, �c = �, (α � β)c = αc � βc for � ∈ {∧,∨,→},

((∀x)α)c = (∀x)(P0(x) → αc), and ((∃x)α)c = (∃x)(P0(x) ∧ αc).

Lemma 4. Given any α ∈ Fmr
1, CDIKL1-model M = 〈W,
, {D}, {Iw}w∈W 〉,

w ∈ W , and a ∈ Iw(P0),

Mr, w |=a α ⇐⇒ M, w |=a αc.

Proof. We prove the claim by induction on the length of α. For the base case,
for each i ∈ N

+, using the assumption that a ∈ Dw,

Mr, w |=a Pi(x) ⇐⇒ a ∈ Ir
w(Pi) ⇐⇒ a ∈ Iw(Pi) ⇐⇒ M, w |=a Pi(x).

78 X. Caicedo et al.

The cases for the propositional connectives follow easily using the induction
hypothesis and the definition of αc, so we just check the cases for the quantifiers:

Mr, w |=a (∀x)β ⇐⇒ Mr, v |=b β for all v � w and b ∈ Dv

⇐⇒ M, v |=b βc for all v � w and b ∈ Iv(P0)

⇐⇒ (M, v |=b P0(x) ⇒ M, v |=b βc) for all v � w and b ∈ D

⇐⇒ M, v |=b P0(x) → βc for all v � w and b ∈ D

⇐⇒ M, w |=a (∀x)(P0(x) → βc)

⇐⇒ M, w |=a ((∀x)β)c.

Mr, w |=a (∃x)β ⇐⇒ Mr, w |=b β for some b ∈ Dw

⇐⇒ M, w |=b βc for some b ∈ Iw(P0)

⇐⇒ (M, w |=b P0(x) and M, w |=b βc) for some b ∈ D

⇐⇒ M, w |=b P0(x) ∧ βc for some b ∈ D

⇐⇒ M, w |=a (∃x)(P0(x) ∧ βc)

⇐⇒ M, w |=a ((∃x)β)c. ��
Corollary 1. For any sentence α ∈ Fmr

1, |=IKL1 α ⇐⇒ |=CDIKL1 αc.

Proof. Consider a CDIKL1-model M = 〈W,
, {D}, {Iw}w∈W 〉 and any a ∈ D.
Since α ∈ Fmr

1 is a sentence, M |= αc if and only if M, w |=a αc for all w ∈ W .
So, by the previous lemma, M |= αc if and only if Mr, w |=a α for all w ∈ W ,
which holds, since α ∈ Fmr

1 is a sentence, if and only if Mr |= α. The result
now follows immediately using the fact that the map M �→ Mr is surjective. ��

Now let Fmr
�♦ ⊆ Fm�♦ denote the set of modal formulas not containing

p0. For each ϕ ∈ Fmr
�♦, we define ϕc ∈ Fm1 by relativizing modalities to p0.

Inductively, we let (pi)c = pi for each i ∈ N
+, ⊥c = ⊥, �c = �, (ϕ�ψ)c = ϕc�ψc

for � ∈ {∧,∨,→},

(�ϕ)c = �(p0 → ϕc), and (♦ϕ)c = ♦(p0 ∧ ϕc).

The main result of this section then follows directly using Theorems 3 and 4 and
Corollary 1.

Theorem 5. For all ϕ ∈ Fm�♦, |=S5(G) ϕ ⇐⇒ |=S5(G)C (�ϕ)c.

Let us remark that the above proof generalizes in a straightforward way to
provide an interpretation of the full first-order Corsi logic in the first-order logic
of linear Kripke models with constant domains, or, equivalently, first-order Gödel
logic. Moreover, the predicate used in this interpretation corresponds exactly to
the existence predicate considered in the context of Scott logics by Iemhoff in [11]
and is closely related also to the normalized probability distribution used for the
possibilistic logic studied in [3]. We intend to investigate these connections in
more detail in future work.

The One-Variable Fragment of Corsi Logic 79

5 A Complexity Result

As has been mentioned already, neither S5(G) nor S5(G)C admits the finite
model property with respect to their standard Kripke semantics. It is known,
however, that S5(G) does admit the finite model property with respect to its
algebraic semantics (see [2]), and we prove here that the same result holds also
for S5(G)C. We then use this finite model property to give a new proof that
validity in S5(G)C is co-NP-complete (first proved in [5]), and hence also, by
Theorem 5, the same result for S5(G).

An algebra 〈H,∧,∨,→,⊥,�,�,♦〉 (also shortened to 〈H,�,♦〉) is called a
monadic Heyting algebra if H = 〈H,∧,∨,→,⊥,�〉 is a Heyting algebra and �,♦
are unary operators on H satisfying for all a, b ∈ H,

(1a) �a ≤ a (1b) a ≤ ♦a

(2a) �(a ∧ b) = �a ∧ �b (2b) ♦(a ∨ b) = ♦a ∨ ♦b

(3a) �� = � (3b) ⊥ = ♦⊥
(4a) �♦a = ♦a (4b) ♦�a = �a

(5a) ♦(♦a ∧ b) = ♦a ∧ ♦b.

If a monadic Heyting algebra satisfies the prelinearity law (x → y)∨(y → x) ≈ �,
then we call it a monadic linear Heyting algebra, and if it satisfies also the
constant domain law �(�x∨y) ≈ �x∨�y, we call it a monadic Gödel algebra. It
is straightforward to prove that the varieties (equivalently, equational classes) of
monadic linear Heyting algebras and monadic Gödel algebras provide equivalent
algebraic semantics for S5(G) and S5(G)C, respectively. Indeed, the lattices of
axiomatic extensions of MIPC and varieties of monadic Heyting algebras are
dual (see [2]).

These algebras also admit a useful alternative representation. For any
monadic Heyting algebra 〈H,�,♦〉, the set H0 = {�a | a ∈ H} = {♦a | a ∈ H}
forms a subuniverse of H satisfying for all a ∈ H,

�a =
∨

{b ∈ H0 | b ≤ a} and ♦a =
∧

{b ∈ H0 | b ≥ a}.

Conversely, call any subuniverse H0 of a Heyting algebra H where all such
suprema and infima exist in H0 relatively complete. Defining � and ♦ as above for
any relatively complete subuniverse H0 of a Heyting algebra H yields a monadic
Heyting algebra 〈H,�,♦〉.
Theorem 6 (cf. [2]). There exists a one-to-one correspondence between mon-
adic Heyting algebras 〈H,�,♦〉 and pairs 〈H,H0〉 of Heyting algebras where H0

is a relatively complete subuniverse of H.

We use this alternative representation to establish the finite model property
for the variety of monadic Gödel algebras. Let us call a monadic Gödel algebra
standard if it is of the form 〈GW ,�,♦〉, where W is any non-empty set, GW is

80 X. Caicedo et al.

the Heyting algebra with universe [0, 1]W and operations defined pointwise, and
for each f ∈ [0, 1]W and w ∈ W ,

�(f)(w) =
∧

{f(v) | v ∈ W} and ♦(f)(w) =
∨

{f(v) | v ∈ W}.

Using the completeness results of [6], a formula ϕ ∈ Fm�♦ is S5(G)C-valid if
and only if ϕ ≈ � is valid in all standard monadic Gödel algebras. However, this
equivalence fails when restricted to standard monadic Gödel algebras 〈GW ,�,♦〉
where W is finite.

Observe now that for any standard monadic Gödel algebra 〈GW ,�,♦〉, the
subuniverse {�f | f ∈ [0, 1]W } consists of all constant functions for r ∈ [0, 1],

fr : W → [0, 1]; w �→ r.

We broaden the class of standard monadic Gödel algebras by considering also
subuniverses consisting of only some of these constant functions.

Lemma 5. For any complete sublattice T of [0, 1] containing {0, 1}, the set
{fr | r ∈ T} is a relatively complete subuniverse of GW and yields a monadic
Gödel algebra with modal operators

�f(w) =
∨

{r ∈ T | r ≤
∧

{f(v) | v ∈ W}}
♦f(w) =

∧
{r ∈ T | r ≥

∨
{f(v) | v ∈ W}}.

Proof. It is easy to check that {fr | r ∈ T} is a subuniverse of GW . To show that
it is relatively complete, consider

∨{fr | fr ≤ g, r ∈ T} for some g ∈ GW . Then
fr ≤ g for r ∈ T amounts to r ≤ g(v) for all v ∈ W , i.e., r ≤ ∧{g(v) | v ∈ W}.
So

∨{fr | fr ≤ g, r ∈ T} =
∨{fr | r ≤ ∧{g(v) | v ∈ W}, r ∈ T}, which exists in

T since T is complete. Similarly,
∧{fr | fr ≥ g} exists in T , so {fr | r ∈ T} is

relatively complete. Hence 〈GW , {fr | r ∈ T}〉 corresponds to a monadic Heyting
algebra. Clearly, this algebra also satisfies the prelinearity law and it is easy to
check that the constant domain law is satisfied using properties of T and relative
completeness. ��

Note that the algebras described in the previous lemma correspond exactly
to the alternative semantics used in [5] to prove decidability and complexity
results for S5(G)C. Here we obtain simpler proofs of these results (avoiding a
rather complicated “squeezing” of truth values argument) by establishing a finite
model property with respect to this class of monadic Gödel algebras.

Lemma 6. Suppose that the equation ϕ ≈ � is not valid in a standard monadic
Gödel algebra 〈GW ,�,♦〉 for some ϕ ∈ Fm�♦ of length n−2. Then there exist a
non-empty set W ′ ⊆ W , a set T ⊆ [0, 1] with {0, 1} ⊆ T , and a subalgebra A of
G with T ⊆ A satisfying |W ′] ≤ n, |T | ≤ n, and |A| ≤ n2, such that ϕ ≈ � is not
valid in the finite monadic Gödel algebra corresponding to 〈AW ′

, {fr | r ∈ T}〉.

The One-Variable Fragment of Corsi Logic 81

Proof. Suppose that ϕ ≈ � is not valid in some standard monadic Gödel algebra
〈GW ,�,♦〉 for some ϕ ∈ Fm�♦ of length n − 2. Then there exists an evaluation
e from Fm�♦ to GW satisfying e(ϕ)(w) < 1 for some w ∈ W . Let Σ ⊆ Fm�♦ be
the set of subformulas of ϕ, noting that |Σ| ≤ n − 2. We define

T = {0, 1} ∪ {e(�ψ)(w) | �ψ ∈ Σ} ∪ {e(♦ψ)(w) | ♦ψ ∈ Σ}.

Clearly, |T | ≤ n. For each �ψ ∈ Σ and ♦ψ ∈ Σ, we pick a witness v�ψ ∈ W or
v♦ψ ∈ W , respectively, such that

e(�ψ)(w) =
∨

{r ∈ T | r ≤ e(ψ)(v�ψ)}
e(♦ψ)(w) =

∧
{r ∈ T | r ≥ e(ψ)(v♦ψ)}.

We define

W ′ = {w} ∪ {v�ψ | �ψ ∈ Σ} ∪ {v♦ψ | ♦ψ ∈ Σ} and e′ = e�GW ′ .

Clearly, |W ′| ≤ n. Moreover, e′(ϕ)(w) = e(ϕ)(w) < 1 and hence ϕ ≈ � is
not valid in the monadic Gödel algebra corresponding to 〈GW ′

, {fr | r ∈ T}〉.
Finally, we define

A = {0, 1} ∪
⋃

ψ∈Σ

e(ψ)[W ′].

Clearly, T ⊆ A and |A| ≤ n2. Moreover, AW ′
is a finite subuniverse of GW ′

,
and ϕ ≈ � is not valid in the finite monadic Gödel algebra corresponding to
〈AW ′

, {fr | r ∈ T}〉. ��
An analysis of the number of steps needed to find a finite countermodel yields

an upper complexity bound for checking validity in S5(G)C.

Theorem 7

(a) The variety of monadic Gödel algebras has the finite model property.
(b) Checking validity in S5(G)C is co-NP-complete.

Proof. (a) The variety of monadic Gödel algebras is generated by its standard
members, and hence the finite algebras described in the previous lemma also
generate this variety.

(b) To check the non-validity of an equation ϕ ≈ �, we fix sets A and W ′

that we may identify with K = {1, 2, . . . , n2}, where n − 2 is the length of ϕ,
letting A denote the unique Gödel algebra induced by the standard order. It
suffices to find a relative subuniverse T ⊆ A and an evaluation e : Pr(Σ) →
AW ′

(where Pr(Σ) is the set of propositional variables occurring in Σ that we
may also identify with K) and check e(ϕ) < � when evaluated in the algebra
〈AW ′

, {fr | r ∈ T}〉. Finding such T and e is equivalent to finding a characteristic
function T̃ : A → {0, 1} and a function ẽ : Pr(Σ) × W ′ → A; that is, finding a
pair of sequences of length n2 and n4 respectively with entries in K. The tasks
of guessing non-deterministically these sequences and checking e(ϕ) < � in the

82 X. Caicedo et al.

resulting algebra can be performed in polynomial time. Hence checking non-
validity is in NP. But also non-modal formulas are valid in S5(G)C if and only
if they are valid in Gödel logic, which is known to be co-NP-complete. Hence
checking validity in S5(G)C is co-NP-complete. ��

Using the interpretation of S5(G) in S5(G)C, provided by Theorem5, that
is linear in the length of the input formula, it follows that also checking validity
in S5(G) is co-NP-complete. The correspondence between validity in S5(G) and
the one-variable fragment of Corsi logic provided by Theorem1, again linear in
the length of the input formula, then completes the proof of Theorem2.

Acknowledgements. The second and fourth authors were supported by the Swiss
National Science Foundation grant 200021 165850, the first author by the Univer-
sidad de los Andes Science Faculty Research Fund, and the third author by the
research projects PIP 112-20150100412CO, CONICET, UBA-CyT 20020150100002BA
and PICT/O 2016-0215. The authors have also received funding from the EU Hori-
zon 2020 research and innovation programme under the Marie Sk�lodowska-Curie grant
agreement No 689176.

References

1. Beckmann, A., Preining, N.: Linear Kripke frames and Gödel logics. J. Symb. Log.
72, 26–44 (2007)

2. Bezhanishvili, G.: Varieties of monadic Heyting algebras - part I. Studia Logica
61(3), 367–402 (1998)

3. Bou, F., Esteva, F., Godo, L., Rodriguez, R.O.: Possibilistic semantics for a modal
KD45 extension of Gödel fuzzy logic. In: Carvalho, J.P., Lesot, M.-J., Kaymak, U.,
Vieira, S., Bouchon-Meunier, B., Yager, R.R. (eds.) IPMU 2016. CCIS, vol. 611, pp.
123–135. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40581-0 11

4. Bull, R.A.: MIPC as formalisation of an intuitionist concept of modality. J. Symb.
Log. 31, 609–616 (1966)

5. Caicedo, X., Metcalfe, G., Rodŕıguez, R., Rogger, J.: Decidability in order-based
modal logics. J. Comput. Syst. Sci. 88, 53–74 (2017)

6. Caicedo, X., Rodŕıguez, R.: Bi-modal Gödel logic over [0,1]-valued Kripke frames.
J. Log. Comput. 25(1), 37–55 (2015)

7. Corsi, G.: Completeness theorem for Dummett’s LC quantified. Studia Logica 51,
317–335 (1992)

8. Gabbay, D.M., Kurucz, A., Wolter, F., Zakharyaschev, M.: Many-Dimensional
Modal Logics. Elsevier, Amsterdam (2003)

9. Görnemann, S.: A logic stronger than intuitionism. J. Symb. Log. 36(2), 249–261
(1971)

10. Horn, A.: Logic with truth values in a linearly ordered Heyting algebra. J. Symb.
Log. 34(3), 395–409 (1969)

11. Iemhoff, R.: A note on linear Kripke models. J. Log. Comput. 15(4), 489–506
(2005)

12. Kripke, S.A.: Semantical analysis of intuitionistic logic I. In: Crossley, J.N., Dum-
mett, M.A.E. (eds.) Formal Systems and Recursive Functions, Studies in Logic and
the Foundations of Mathematics, vol. 40, pp. 92–130. Elsevier (1965)

https://doi.org/10.1007/978-3-319-40581-0_11

The One-Variable Fragment of Corsi Logic 83

13. Ono, H.: On some intuitionistic modal logics. Publ. RIMS, Kyoto Univ. 13, 687–
722 (1977)

14. Ono, H., Suzuki, N.-Y.: Relations between intuitionistic modal logics and interme-
diate predicate logics. Rep. Math. Log. 22, 65–87 (1988)

15. Suzuki, N.-Y.: Kripke bundles for intermediate predicate logics and Kripke frames
for intuitionistic modal logics. Studia Logica 49(3), 289–306 (1990)

16. Takano, M.: Ordered sets R and Q as bases of Kripke models. Studia Logica 46,
137–148 (1987)

Analytic Calculi for Monadic PNmatrices

Carlos Caleiro and Sérgio Marcelino(B)

SQIG - Instituto de Telecomunicações, Dep. Matemática - Instituto Superior Técnico,
Universidade de Lisboa, Lisbon, Portugal

{ccal,smarcel}@math.tecnico.ulisboa.pt

Abstract. Analytic calculi are a valuable tool for a logic, as they allow
for effective proof-search and decidability results. We study the axiom-
atization of generalized consequence relations determined by monadic
partial non-deterministic matrices (PNmatrices). We show that simple
axiomatizations can always be obtained, using inference rules which can
have more than one conclusion. Further, we prove that these axiomati-
zations are always analytic, which seems to raise a contrast with recent
non-analyticity results for sequent-calculi with PNmatrix semantics.

1 Introduction

PNmatrices were introduced in [5], as a generalization of non-deterministic
matrices (Nmatrices) [1,2]. Adding non-determinism and also partiality to the
traditional notion of logical matrix (see [17]) has proven quite relevant in a myr-
iad of recent compositional results in logic [3,5,6,11,13], namely as semantical
counterparts of certain families of sequent-calculi. However, while Nmatrices still
inherit from logical matrices a local semantical form of analyticity (a well formed
valuation on a set of formulas closed for subformulas can always be extended to a
full valuation), the partiality allowed by PNmatrices spoils this property. It turns
out that for the sequent-calculi using these semantical tools, partiality seems to
devoid them of a usable (even if generalized) subformula property capable of
guaranteeing analyticity (and elimination of non-analytic cuts) [5,11].

Concerning other types of calculi, traditional Hilbert-style calculi are clearly
not an option if any form of analyticity is expected. However, a very simple and
powerful (and too often neglected) generalization of Hilbert-calculi has been pro-
posed in [16]. Along with their proposal, Shoesmith and Smiley already showed
that every logical matrix can be given a multiple conclusion axiomatization with
rules of the form Γ

Δ where both Γ (read conjunctively, as usual) and Δ (read
disjunctively) are sets of formulas. This axiomatization is finite for a given finite

This research was done under the scope of Project UID/EEA/50008/2019 of Instituto
de Telecomunicações (IT, financed by the applicable framework (FCT/MEC through
national funds and cofunded by FEDER-PT2020), and is part of the MoLC project of
SQIG at IT. Thanks are due to two anonymous referees for their valuable feedback,
which helped improving an earlier version of this paper.

c© Springer-Verlag GmbH Germany, part of Springer Nature 2019
R. Iemhoff et al. (Eds.): WoLLIC 2019, LNCS 11541, pp. 84–98, 2019.
https://doi.org/10.1007/978-3-662-59533-6_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-59533-6_6&domain=pdf
https://doi.org/10.1007/978-3-662-59533-6_6

Analytic Calculi for Monadic PNmatrices 85

matrix, in contrast with the existence of finite matrices whose logic cannot be
finitely axiomatized in Hilbert-style [18].

In a recent paper [14], we have extended the result of [16] and shown that
multiple conclusion axiomatizations can be easily obtained for every Nmatrix
with the additional expressiveness requirement of being monadic. Further, we
showed that the calculi obtained enjoy a suitably generalized subformula prop-
erty which allowed us to prove the analyticity of the axiomatizations obtained.
Herein, we go a step further and analyze the case of PNmatrices. It turns out
that the same exact methods can be used to obtain sound and complete axiom-
atizations of the (generalized) consequence relations of any monadic PNmatrix.
However, perhaps expectedly, the calculi obtained are not analytic, again due to
partiality. What is really interesting, though, is that in the framework of mul-
tiple conclusion calculi it is extremely easy to remedy this situation: with the
addition of a few sound rules, the calculus not only remains complete, of course,
but it also becomes analytic.

The paper is organized as follows. Section 2 introduces and illustrates multiple
conclusion logics and calculi (after [16] and [14]), as well as analyticity; and
then recalls the fundamental aspects of (P)Nmatrices (after [1] and [5]), and
the key property of being monadic (see [14,16]). Section 3 defines the calculi
to be associated with each monadic PNmatrix and proves our main results,
i.e., their completeness and analyticity. Along these sections we will illustrate
our methods using the implication-free fragment of Kleene’s strong three-valued
logic (see [12]). In Sect. 4 we present a detailed example, one of the problematic
paraconsistent logics of [11]. We close, in Sect. 5, discussing the results obtained,
their import and limitations, and possible extensions of this work.

2 Preliminaries

In any context, given a function h : X → Y and Z ⊆ X we use h(Z) to denote
the set {h(z) : z ∈ Z}.

A propositional signature Σ is an N-indexed set Σ = {Σ(k) : k ∈ N}, where
each Σ(k) contains the k-ary connectives of Σ. As usual, we may write c© ∈ Σ
when c© ∈ Σ(k) for some k ∈ N. The language LΣ(P) is the carrier of the
absolutely free Σ-algebra generated over a given set of propositional variables
P . Elements of LΣ(P) are called formulas. Notationwise, we use A,B,C, . . . to
denote formulas, and Γ,Δ,Ω, . . . to denote sets of formulas. For convenience, we
often use commas and write Γ,Δ instead of Γ ∪ Δ, or Γ,A instead of Γ ∪ {A},
or A,B instead of {A,B}.

Given a formula A ∈ LΣ(P), we denote by var(A) (resp. sub(A)) the set of
propositional variables (resp. subformulas) of A. A substitution is a mapping
σ : P → LΣ(P), uniquely extendable into an endomorphism ·σ : LΣ(P) →
LΣ(P). We also use Γ to denote LΣ(P) \ Γ . If A,B1, . . . , Bn ∈ LΣ(P) is such
that var(A) ⊆ {p1, . . . , pn} then we use A(B1, . . . , Bn) to denote the formula Aσ

where σ is any substitution such that σ(p1) = B1, . . . , σ(pn) = Bn.

86 C. Caleiro and S. Marcelino

For added self-containment, as well as to fix notation, we recall the main
notions regarding multiple conclusion logics and calculi, as well Nmatrices,
PNmatrices and monadicity.

2.1 Multiple Conclusions

Fixed a signature Σ, a (schematic) (multiple conclusion) inference rule is a pair
〈Γ,Δ〉 ∈ ℘(LΣ(P)) × ℘(LΣ(P)), usually simply written as Γ

Δ , where Γ is the
set of premises and Δ the set of conclusions. A (multiple conclusion) calculus
is a set of inferences rules. A calculus is finitary if each of its rules has finitely
many premises and conclusions.

Example 1. Consider a signature Σ containing a unary connective ¬ and a binary
connective ∧. The following four rules define a calculus R1.

q , ¬q , ¬(p ∧ q)
p , ¬p , p ∧ q

r∧ab0

q , ¬q , p ∧ q

p , ¬p , ¬(p ∧ q) r∧ab1

q , ¬q

p , ¬p , p ∧ q , ¬(p ∧ q) r∧aba

q , ¬q , p ∧ q , ¬(p ∧ q)
p , ¬p

r∧abb

The next three rules define another calculus, R2.

p , q , ¬q

¬p , p ∧ q
r∧120

p , q , ¬q , p ∧ q

¬p , ¬(p ∧ q) r∧121

p , q , ¬q , p ∧ q , ¬(p ∧ q)
¬p

r∧122

Inference rules can be used in derivations of conclusions from premises. How-
ever, contrarily to the case of Hilbert-style rules where derivations correspond
to sequences of formulas resulting from premises by application of instances of
rules, in this generalized setting derivations must now have a tree structure [16].
In order to show that Δ follows from Γ using the rules in R one must be able to
build a tree starting from formulas in Γ and branching out whenever applying
an instance of a rule, in such a way that all branches of the tree finally include
some formula of Δ.

Given a rooted tree t let <t be the (partial) order induced by t on its nodes
by the relation of descendency. We denote: the set of nodes of t as nodest; the
root of t as roott (the minimal element in <t); the set of leaf nodes of t as
leavest (the maximal elements in <t); the set of immediate children of node s as
childnt(s) (the minimal descendants of node s); and the ancestors of node s as
ancestt(s) = {s′ : s′ <t s}. A tree t is said to be bounded if nodest \ leavest =⋃

s∈leavest ancest
t(s), which means that every branch of the tree has a maximal

element (leaf).
We say that a bounded rooted tree t labelled by � : nodest → ℘(LΣ(P))∪{∗}

is an R-derivation provided that for each node s /∈ leavest we have that �(s) ⊆
LΣ(P) and there is a rule Γ

Δ ∈ R and a substitution σ : P → LΣ(P) such that
Γ σ ⊆ �(s) and:

Analytic Calculi for Monadic PNmatrices 87

– if Δ = ∅ then childnt(s) = {s∗} and �(s∗) = ∗,
– if Δ = ∅ then childnt(s) = {sA : A ∈ Δσ} and each �(sA) = �(s) ∪ {A}.

Given Γ,Δ ⊆ LΣ(P), we say that an R-derivation t is a R-proof of Δ from Γ
whenever �(roott) ⊆ Γ and �(s)∩Δ = ∅ for every s ∈ leavest with �(s) = ∗. Note
that leaves labelled by ∗ signal discontinued branches of a derivation. It should
be noted that whenever R is finitary it is sufficient to consider finite proof trees.
We write Γ �R Δ whenever there exists an R-proof of Δ from Γ .

Example 2. Below, we depict examples of derivations, namely of p,¬p �R1 q,¬q,
and of p, q,¬q �R2 ¬p, using the calculi defined in Example 1. Note that we label
each child node with only the new formula, instead of the whole set, which can
be collected from the labels of its ancestors.

p,¬p �R1 q,¬q
p,¬p

¬(q ∧ p)

q ∧ p

¬qq

r∧abb

¬qq

r∧ab0
q ∧ p

¬(q ∧ p)

¬qq

r∧abb

¬qq

r∧ab1
¬qq

r∧aba

p, q,¬q �R2 ¬p
p, q,¬q

p ∧ q

¬(p ∧ q)

¬p
r∧122

¬p
r∧121

¬p
r∧120

�

A generalized consequence relation on LΣ(P), or Scottian, or multiple conclu-
sion consequence relation, after [15,16] is a relation � ⊆ ℘(LΣ(P)) × ℘(LΣ(P))
satisfying the properties below for every Γ,Δ, Γ ′,Δ′ ⊆ LΣ(P):

(O) if Γ ∩ Δ = ∅ then Γ � Δ,
(D) if Γ � Δ then Γ, Γ ′ � Δ,Δ′,
(C) if Γ,Ω � Ω,Δ for each Ω ⊆ LΣ(P), then Γ � Δ,
(S) if Γ � Δ then Γ σ � Δσ for each substitution σ : P → LΣ(P).

Furthermore, if R is finitary then �R further satisfies the following property
for every Γ ⊆ LΣ(P):

(F) if Γ � Δ then there exist finite sets Γ0 ⊆ Γ and Δ0 ⊆ Δ such that Γ0 � Δ0.

Property (C) is best known as cut for sets or transitivity, though we prefer
to call it case exhaustion. The other properties are usually known as overlap
(O) or reflexivity, dilution (D) or monotonicity, substitution invariance (S) or
structurality, and finitariness (F) (see [15–17]).

Proposition 1. For a calculus R over signature Σ, �R is the smallest gener-
alized consequence relation on LΣ(P) which contains R.

Proof. The proof is a straightforward generalization of [16, Theorem 3.5], where
the finitary case is dealt with using a property known as cut for formulas (CF),
which is equivalent to (C) for finitary consequence relations1. ��
1 Cut for formulas demands, for every Γ, Δ, {A} ⊆ LΣ(P):

(CF) if Γ, A � Δ and Γ � A, Δ then Γ � Δ.

88 C. Caleiro and S. Marcelino

In the context of a given generalized consequence relation �, we denote by
�T= � ∩ (℘(LΣ(P)) × LΣ(P)) the Tarskian companion of �. Recall that, in
general, there may be many different generalized consequence relations with
exactly the same companion [16].

We will say that a calculus R defines an axiomatization of a generalized
consequence relation � when �R = �. Of course, in such a case, R can also be
used as a calculus for �T.

Fix a signature Σ and a calculus R. Given Λ ⊆ LΣ(P) we write2 Γ �Λ
R Δ

when there exists an R-proof of Δ from Γ where all occurring formulas are in
Λ. Controlling the possible formulas appearing in a derivation is key to defining
a suitable notion of analyticity for multiple conclusion axiomatizations.

Let Φ ⊆ LΣ(P). We say that R is Φ-analytic if when Γ �R Δ then Γ �ΥΦ

R Δ
with Υ = sub(Γ ∪ Δ) and ΥΦ = Υ ∪ {Aσ : A ∈ Φ, σ : P → Υ}. Intuitively,
this means that an R-proof of Δ from Γ needs only to use formulas which are
subformulas of Γ ∪ Δ, or instances of Φ with such subformulas. Hence, formulas
in ΥΦ can be seen as a certain notion of generalized subformula. Clearly, a Φ-
analytic calculus R is consistent (i.e., ∅ �R ∅) if and only if the rule ∅

∅ /∈ R.
Analyticity is even more interesting for finite sets Φ, as in these cases we know
that deciding the logic is in coNP, and there is an algorithm for proof-search in
EXPTIME (see the discussion in the conclusion of [14]).

2.2 Logical Matrices, Non-determinism, Partiality, and Monadicity

A partial non-deterministic matrix M over a signature Σ, or Σ-PNmatrix , is a
tuple 〈V,D, ·M〉 where V is a set (of truth-values), D ⊆ V is the set of designated
values and, for each k ∈ N and c© ∈ Σ(k), ·M gives the interpretation function
c©M : V k → ℘(V) of c© in M. Given X ⊆ V we will use X to denote V \ X. In
particular, the values in D shall be referred to as undesignated. Whenever the
interpretation function is always different from the empty set we say the PNma-
trix is total, or proper, or simply say it is an Nmatrix. The common deterministic
notion of a logical matrix is recovered by considering (P)Nmatrices for which the
interpretation function always yields a singleton.

Given a PNmatrix M = 〈V,D, ·M〉, each set X ⊆ V defines a sub-PNmatrix
(or simple refinement) of M defined by MX = 〈X,DX , ·X〉 with DX = D ∩X
and c©X(x1, . . . , xk) = c©M(x1, . . . , xk) ∩ X for each c© ∈ Σ(k) and x1, . . . , xk ∈
X. We denote by TM the set of all subsets of the values of each non-empty total
sub-PNmatrix of M, that is,

TM =
⋃

∅�=X⊆V
MX total

℘(X).

Example 3. The Tarskian consequence relation of the implication-free fragment
of Kleene’s strong three-valued logic can be defined over a signature with one

2 Note that in general �Λ
R is not a generalized consequence relation. It still satisfies

properties (D) and (C), but only weaker versions of (O) and (S).

Analytic Calculi for Monadic PNmatrices 89

unary connective ¬ and two binary connectives ∧,∨ by means of two three-valued
matrices: those arising from the three-valued chain with only the top element
designated, or both non-bottom elements designated [12]. Equivalently, the logic
is given by the P(N)matrix K = 〈{0, a, b, 1}, {b, 1}, ·K〉 defined by the following
truth-tables, where we omit brackets for non-empty (in this case, singleton) sets.

∧K 0 a b 1
0 0 0 0 0
a 0 a ∅ a
b 0 ∅ b b
1 0 a b 1

∨K 0 a b 1
0 0 a b 1
a a a ∅ 1
b b ∅ b 1
1 1 1 1 1

¬K

0 1
a a
b b
1 0

Note that TK = {X ⊆ {0, a, b, 1} : {a, b} � X}. The three-valued matrices
mentioned above clearly correspond to K{0,a,1} and K{0,b,1}, respectively.

A M-valuation is a function v : LΣ(P) → V such that for each c© ∈ Σ(k)

and A1, . . . , Ak ∈ LΣ(P) we have v(c©(A1, . . . , Ak)) ∈ c©M(v(A1), . . . , v(Ak)).
Note that this implies that v(LΣ(P)) ∈ TM. We extend the interpretation in a
PNmatrix M to any formula A ∈ LΣ(P) with var(A) ⊆ {p1 . . . , pn} by letting
AM(x1, . . . , xn) = {v(A) : v is an M-valuation, v(p1) = x1, . . . , v(pn) = xn}.

As is well known, if M = 〈V,D, ·M〉 is a matrix then every function f : Q → V
with Q ⊆ P can be extended to a M-valuation (in an essentially unique way for all
formulas A with var(A) ⊆ Q). When M is a Nmatrix, however, we know from [2]
that a function f : Γ → V with Γ ⊆ LΣ(P) can be extended to a M-valuation
provided that sub(Γ) ⊆ Γ and that f(c©(A1, . . . , Ak)) ∈ c©M(f(A1), . . . , f(An))
whenever c©(A1, . . . , Ak) ∈ Γ . In case M is a PNmatrix, in general, one does not
even have such a guarantee, unless f(Γ) ∈ TM [5] (take, for instance, Γ = {p, q}
and f(p) = a, f(q) = b in the PNmatrix K of Example 3).

Every M-valuation v defines a set Ωv ⊆ LΣ(P) with Ωv = {A : v(A) ∈ D}.
Of course, it follows that Ωv = {A : v(A) /∈ D}. Let Γ,Δ ⊆ LΣ(P) be arbitrary
sets of formulas. We write Γ �M Δ if every M-valuation v is such that Γ ∩Ωv = ∅
or Δ ∩ Ωv = ∅. It is well known that �M is a generalized consequence relation,
and �T

M
the usual Tarskian consequence relation defined from a (partial) (non-

deterministic) matrix. If M is finite (i.e., its underlying set of truth-values is
finite) then �M and �T

M
are known to be finitary. Every Tarskian, or Scottian

consequence relation is known to be characterized by a set of logical matrices [16,
17] (as usual, as the intersection of the consequence relations characterized by
each of the matrices). Still, only logics satisfying cancellation can be given by a
single logical matrix [17]. Easily, every logic can be given by a single PNmatrix,
as one can use partiality to merge a set of matrices (or Nmatrices) into a single
PNmatrix, as in Example 3 above. This ability of PNmatrices adds to the power
of non-determinism already present in Nmatrices. In [7], we have completely
characterized those Tarskian logics definable by finitely many finite matrices.
However, there are logics which cannot be defined by finitely many finite matrices
but can still be defined by one finite Nmatrix [1,13].

When axiomatizing the consequence relation determined by a PNmatrix M,
we say that a set of rules R is sound (with respect to M) if �R ⊆ �M. This

90 C. Caleiro and S. Marcelino

means that every M-valuation v respects the rules of R, in the sense that for
every rule Γ

Δ ∈ R we have that Γ ∩ Ωv = ∅ or Δ ∩ Ωv = ∅. Conversely, we say
that R is complete (with respect to M) if �M ⊆ �R. This means that if Γ �R Δ
then there exists a M-valuation v such that Γ ⊆ Ωv and Δ ⊆ Ωv. Soundess and
completeness jointly imply �R = �M.

Fix a signature Σ and a Σ-Nmatrix M = 〈V,D, ·M〉. We want to use the
resources of the logic to distinguish between the different truth-values. Namely,
we require that the syntax of the logic, granted the shadow of bivalence present
in the contrast between designated and undesignated values, is enough to dis-
tinguish among the truth-values [8,14,16]. A pair of non-empty sets of elements
∅ = X,Y ⊆ V are separated, X#Y , if X ⊆ D and Y ⊆ D, or vice versa. A
formula S with var(S) ⊆ {p} such that SM(x)#SM(y) is said to separate x and
y, and called a monadic separator for M. The PNmatrix M is said to be monadic
if there is a monadic separator for every pair of distinct elements of V .

3 Axiomatizing Monadic PNmatrices

We extend to PNmatrices the results obtained in [14] about the construction
of analytic calculi for monadic Nmatrices. Granted a monadic PNmatrix M =
〈V,D, ·M〉 and some set Θ = {Sxy : x, y ∈ V, x = y} of monadic separators for M

such that each Sxy separates x and y, a discriminator for M is the V -indexed
family Θ̃ = {Θ̃x}x∈V , with each Θ̃x = {Sxy : y ∈ V \ {x}}. Each Θ̃x is naturally
partitioned into Ωx = {S ∈ Θ̃x : SM(x) ⊆ D} and �x = {S ∈ Θ̃x : SM(x) ⊆ D}.
This partition is easily seen to characterize precisely the truth-values of M.

Lemma 1. Let M = 〈V,D, ·M〉 be a monadic Σ-PNmatrix with discriminator
Θ̃. For every M-valuation v, x ∈ V and A ∈ LΣ(P), we have

v(A) = x if and only if v(Ωx(A)) ⊆ D and v(�x(A)) ⊆ D.

Proof. Let v(A) = x. For each S ∈ Θ̃x, clearly, we have that v(S(A)) ∈
SM(v(A)) = SM(x) ⊆ D if and only if S ∈ Ωx.

Now, let v(A) = y = x and consider Sxy ∈ Θ̃x. Since Sxy
M

(x)#Sxy
M

(y), it
follows that v(Sxy(A)) ∈ Sxy

M
(v(A)) = Sxy

M
(y) ⊆ D if and only if Sxy

M
(x) ⊆ D if

and only if Sxy ∈ �x. ��

Given X ⊆ V , let Ω∗
X denote any set built by choosing one element from

each Ωx for x ∈ X, and �∗
X denote any set built by choosing one element from

each �x for x ∈ X. In particular, if X = ∅ then Ω∗
X = �∗

X = ∅ are the only
possibilities. On the other hand, if for some x ∈ X one has Ωx = ∅ then there
is no possible choice for Ω∗

X , and similarly there is no possible choice for �∗
X

whenever �x = ∅ for some x ∈ X.

Example 4. The PNmatrix K introduced in Example 3 is monadic. Indeed we
have that Θ = {p,¬p} is a set separators for K, and setting Θ̃0 = Θ̃a = Θ̃b =
Θ̃1 = Θ defines a discriminator for K. In this case we have that

Analytic Calculi for Monadic PNmatrices 91

x Ωx �x

0 {¬p} {p}
a ∅ {p,¬p}
b {p,¬p} ∅
1 {p} {¬p}

We also have that Ω∗
{0} = �∗

{1} = {¬p} and Ω∗
{1} = �∗

{0} = {p}. Furthermore,
Ω∗

{b} has two possible values, either Ω∗
{b} = {p} or Ω∗

{b} = {¬p}. Similarly, �∗
{a}

also has the same two possible values. On the contrary, there is no possible choice
for Ω∗

{a} (nor for Ω∗
X if a ∈ X) or �∗

{b} (nor for �∗
X if b ∈ X).

We now define a set of inference rules respected by any monadic PNmatrix.

Definition 1. Let M = 〈V,D, ·M〉 be a monadic PNmatrix, Θ̃ a discriminator
for M. We define the set of rules R

˜Θ
M

= R∃ ∪ RD ∪ RΣ ∪ RT as follows:

– R∃ contains, for each X ⊆ V and each possible �∗
X and Ω∗

X
, the rule

�∗
X(p)

Ω∗
X

(p)

– RD contains, for each x ∈ V , the rule

Ωx(p)
p,�x(p)

if x ∈ D
Ωx(p), p
�x(p)

if x /∈ D

– RΣ =
⋃

c©∈Σ R c© where, for c© ∈ Σ(k), R c© contains, for each x1, . . . , xk ∈ V
and y /∈ c©M(x1, . . . , xk), the rule

⋃

1≤i≤k

Ωxi
(pi) , Ωy(c©(p1 . . . , pk))

⋃

1≤i≤k

�xi
(pi) , �y(c©(p1 . . . , pk))

– RT contains, for each X ⊆ V with X /∈ TM, the rule
⋃

xi∈X

Ωxi
(pi)

⋃

xi∈X

�xi
(pi)

Note that the rules above form a finite collection of finite rules whenever
Θ is finite, which is always possible for finite M over finite Σ. The number of
propositional variables used in the inference rules R

˜Θ
M

\ RT is k + 1 where k is
the maximum arity of a connective in Σ, when it exists. Further, the number of
variables in RT is bounded by the number of values of M.

Note also that, often, many of the rules obtained by this general process
are useless (e.g., in the sense that they are instances of overlap), or can be
substantially simplified, or are simply derivable from other rules.

92 C. Caleiro and S. Marcelino

Example 5. Recall the PNmatrix K introduced in Example 3 and its descrimi-
nator Θ̃ from Example 4. A simplified version of the axiomatization R

˜Θ
K

consists
of the following rules.

p , q

p ∧ q
r1

p ∧ q

p
r2

p ∧ q

q
r3

¬p

¬(p ∧ q) r4

¬q

¬(p ∧ q) r5

¬(p ∧ q)
¬p , ¬q

r6

p

p ∨ q
r7

q

p ∨ q
r8

¬(p ∨ q)
¬p

r9

¬(p ∨ q)
¬q

r10

¬p , ¬q

¬(p ∨ q) r11

p ∨ q

p , q
r12

p

¬¬p
r13

¬¬p

p
r14

p , ¬p

q , ¬q
r15

Note that every rule resulting from R∃ and RD is a case of overlap and was
omitted. After simplification, the rules r1–r6 correspond to R∧, r7–r12 to R∨,
r13–r14 to R¬, and r15 results from RT (with X = {a, b}).

Notice that the four rules of the calculus R1 introduced in Example 1 (where
each r∧aby corresponds to R∧ for y /∈ (a ∧K b) = ∅) have been omitted, as they
are easily derivable from r15. Several other innocuous simplifications have been
applied.

It is not hard to understand in general that the rules proposed in Defini-
tion 1 capture the behaviour of the given PNmatrix M. Namely, R∃ allows one
to exclude combinations of separators that do not correspond to truth-values,
RD distinguishes those combinations of separators that characterize designated
values from those that characterize undesignated values, RΣ completely deter-
mines the interpretation of connectives in M. The novelty with respect to [14]
consists in the rules RT , which do not apply to Nmatrices, as they guarantee
that values are taken within a total sub-PNmatrix of M. The following results
rigorously capture these intuitions.

Proposition 2. Given a monadic PNmatrix M = 〈V,D, ·M〉 with discriminator
Θ̃, R

˜Θ
M

is a calculus sound with respect to M.

Proof. We show that every M-valuation v respects the rules of R
˜Θ
M

= R∃ ∪ RD ∪
RΣ ∪ RT . For rules of each type, we show that if v fails to respect a rule then a
contradiction can be obtained. Lemma1 is instrumental, in all cases.

R∃: If (i) v(�∗
X(p)) ⊆ D and (ii) v(Ω∗

X(p)) ⊆ D, then it easily follows that (i)
for each x ∈ X there is y = x with Sxy ∈ �x and v(Sxy(p)) ∈ D and (ii)
for each x ∈ X there is y = x with Sxy ∈ Ωx and v(Sxy(p)) ∈ D, and thus
Lemma 1 guarantees that (i) v(p) /∈ X and (ii) v(p) /∈ X, which contradicts
the fact that v(p) ∈ V = X ∪ X.

RD: If we have v(Ωx(p)) ⊆ D and v(�x(p)) ⊆ D then Lemma 1 guarantees that
v(p) = x, therefore v(p) ∈ D if and only if x ∈ D is a contradiction.

Analytic Calculi for Monadic PNmatrices 93

RΣ: If v(Ωxi
(pi)) ⊆ D and v(�xi

(pi)) ⊆ D then Lemma 1 guarantees that
v(pi) = xi for each 1 ≤ i ≤ k, further, if v(Ωy(c©(p1 . . . , pk))) ⊆ D and
v(�y(c©(p1 . . . , pk))) ⊆ D then Lemma 1 guarantees that v(c©(p1 . . . , pk)) =
y, and thus y = v(c©(p1 . . . , pk)) ∈ c©M(v(p1), . . . , v(pk)) = c©M(x1, . . . , xk)
which contradicts the fact that y /∈ c©M(x1, . . . , xk).

RT : If v(Ωxi
(pi)) ⊆ D and v(�xi

(pi)) ⊆ D then Lemma 1 guarantees that
v(pi) = xi for each xi ∈ X, therefore X ⊆ v(LΣ(P)) ∈ TM which contradicts
the fact that X /∈ TM. ��

Having established the soundness of the calculi R
˜Θ
M

, we now proceed to prove
their completeness and analyticity. We first need another auxiliary result.

Lemma 2. Let M = 〈V,D, ·M〉 be a monadic PNmatrix, Θ̃ a discriminator for
M, and R

˜Θ
M

= R∃ ∪ RD ∪ RΣ ∪ RT . For every Ω,Υ ⊆ LΣ(P) with sub(Υ) ⊆ Υ ,
we have:

(a) if Ω �ΥΘ

R∃
Ω then for every A ∈ Υ there is x ∈ V such that Ωx(A) ⊆ Ω and

�x(A) ⊆ Ω,
(b) if Ω �ΥΘ

RD
Ω then for every A ∈ Υ and x ∈ V with Ωx(A) ⊆ Ω and �x(A) ⊆

Ω, we have that x ∈ D iff A ∈ Ω,
(c) if Ω �ΥΘ

RΣ
Ω then for every c© ∈ Σ(k), A = c©(A1, . . . , Ak) ∈ Υ and

x1, . . . , xk ∈ V with Ωxi
(Ai) ⊆ Ω and �xi

(Ai) ⊆ Ω for each 1 ≤ i ≤ k, we
have that Ωy(A) ⊆ Ω and �y(A) ⊆ Ω implies y ∈ c©M(x1, . . . , xk),

(d) if Ω �ΥΘ

RT
Ω then {x ∈ V : Ωx(A) ⊆ Ω,�x(A) ⊆ Ω for A ∈ Υ} ∈ TM.

Proof. We prove each of the items.
(a) Assume that for some A ∈ Υ there is no x ∈ V with Ωx(A) ⊆ Ω and

�x(A) ⊆ Ω. Then, we can consider X = {x ∈ V : �x(A) ∩ Ω = ∅}, and
X = V \ X. Define �∗

X by choosing some S ∈ �x such that S(A) ∈ �x(A) ∩ Ω
for each x ∈ X, and Ω∗

X
by choosing some S ∈ Ωx such that S(A) ∈ Ωx(A) ∩ Ω

for each x ∈ X. We have that �∗
X(A) ⊆ Ω ∩ ΥΘ and Ω∗

X
(A) ⊆ Ω ∩ ΥΘ. Hence,

Ω �ΥΘ

R∃
Ω.

(b) Assume that there is A ∈ Υ such that Ωx(A) ⊆ Ω, �x(A) ⊆ Ω and
x ∈ D. Then Ωx(A) ⊆ Ω ∩ΥΘ and �x(A) ⊆ Ω ∩ΥΘ. Hence, Ω �ΥΘ

RD
Ω. The case

where x /∈ D is analogous.
(c) Assume that there is A = c©(A1, . . . , Ak) ∈ Υ , Ωxi

(Ai) ⊆ Ω and
�xi

(Ai) ⊆ Ω for 1 ≤ i ≤ k, and for some y /∈ c©M(x1 . . . , xn) we have
Ωy(A) ⊆ Ω and �y(A) ⊆ Ω. Then

⋃

1≤i≤k

Ωxi
(pi) ∪ Ωy(c©(p1 . . . , pk)) ⊆ Ω ∩ ΥΘ

and
⋃

1≤i≤k

�xi
(pi) ∪ �y(c©(p1 . . . , pk)) ⊆ Ω ∩ ΥΘ. Hence, Ω �ΥΘ

RΣ
Ω.

(d) Let X = {x ∈ V : Ωx(A) ⊆ Ω,�x(A) ⊆ Ω for A ∈ Υ}. For each
xi ∈ X pick Ai ∈ Υ such that Ωxi

(Ai) ⊆ Ω and �xi
(Ai) ⊆ Ω. Easily, then,⋃

xi∈X

Ωxi
(Ai) ⊆ Ω ∩ ΥΘ and

⋃

xi∈X

�xi
(Ai) ⊆ Ω ∩ ΥΘ, andΩ �ΥΘ

RT
Ω if X /∈ TM.

��

94 C. Caleiro and S. Marcelino

With Proposition 2 and Lemma 2 in hand, it is relatively straightforward to
show that R

˜Θ
M

is a Θ-analytic calculus that provides an axiomatization of the
generalized consequence relation determined by M.

Theorem 1. Given a monadic PNmatrix M = 〈V,D, ·M〉 with discriminator Θ̃,
R

˜Θ
M

is a Θ-analytic axiomatization of �M.

Proof. Let R = R
˜Θ
M

= R∃ ∪RD∪RΣ ∪RT . Soundness follows from Proposition 2,
that is, �R ⊆ �M. Let us detail the analytic completeness part.

Given Γ,Δ ⊆ LΣ(P), it is clear that �ΥΘ

R ⊆ �R ⊆ �M for Υ = sub(Γ ∪ Δ).
We show that if Γ �ΥΘ

R Δ then Γ �M Δ. Knowing that Γ �ΥΘ

R Δ, by property
(C), we get that there is Ω ⊆ LΣ(P) such that Γ,Ω �ΥΘ

R Δ,Ω. Now, using
Lemma 2 (a), (b) and (c), one can build a function f : Υ → V with f(A) ∈ D
iff A ∈ Ω, and such that f(c©(A1, . . . , Ak)) ∈ c©M(f(A1), . . . , f(Ak)) whenever
c©(A1, . . . , Ak) ∈ Υ . At last, Lemma 2 (d) guarantees that f(Υ) ∈ TM, and we
conclude that f can be extended to a full M-valuation and thus Γ �M Δ. ��

We must emphasize here that the RT rules play no role when we are interested
in proving just the completeness of R

˜Θ
M

. Indeed, taking Υ = LΣ(P), we can use
Lemma 2 (a), (b) and (c), which only depend on R∃ ∪ RD ∪ RΣ , and directly
obtain a valuation over M. The precise role of the RT rules can be made clearer.
In [14], we showed that the local demands necessary in order to guarantee the
extension of valuation functions to full valuations over Nmatrices, were sufficient
to show that the axiomatization R = R

˜Θ
M

\RT would grant an Θ-analytic calculus
for �M. Expectedly, this property may not be true, in general, if M is a PNmatrix.
At this point, we could simply have adopted the strategy delineated in [11],
decomposing the given PNmatrix into its total sub-Nmatrices, then providing
analytic calculi for each of them, and finally using these calculi together in order
to deal with �M. But we could do better. The rules in RT are sound, and
therefore they must be derivable in R

˜Θ
M

\RT . Example 2, on the left, examplifies
precisely this fact, given the explanation in Example 5 above. In general, however,
the derivation we manage to obtain is not Θ-analytical. In the example, we see
that in order to obtain the derivation we need to use the rules of the connectives
that lead to the relevant partial entry of the PNmatrix (just conjunction, in
this case), thus loosing the generalized subformula property. However, notably,
adding RT to the axiomatization restored analyticity.

4 A Detailed Example

In this section we consider as a full fledge example a logic of formal inconsis-
tency [9], over a signature containing two single unary connective ¬ and ◦ and
three binary connectives ∧, ∨ and →. Namely, we take the logic resulting from
adding the axioms ◦p → ◦(p ∧ q) and (¬p ∨ ¬q) → ¬(p ∧ q) to the basic logic of
formal inconsistency KB [4,10].

Analytic Calculi for Monadic PNmatrices 95

As shown in [11], the logic is characterized by the three-valued PNmatrix
P = 〈{0, 1, 2}, {1, 2}, ·P〉 defined by the following truth-tables (again we omit
brackets for non-empty sets.).

∧P 0 1 2
0 0 0 0
1 0 1 ∅
2 0 2 2

∨P 0 1 2
0 0 1, 2 1, 2
1 1, 2 1, 2 1, 2
2 1, 2 1, 2 1, 2

→P 0 1 2
0 1, 2 1, 2 1, 2
1 0 1, 2 1, 2
2 0 1, 2 1, 2

¬P ◦P
0 1, 2 1, 2
1 0 1, 2
2 1, 2 0

It is clear that TP = {X ⊆ {0, 1, 2} : {1, 2} � X}. This happens because there
is an empty entry in the truth-tables of P, namely 1∧P 2 = ∅, which implies that
no P-valuation v can have v(A) = 1 and v(B) = 2 for A,B ∈ LΣ(P). Thus,
all the truth-table entries corresponding to applications of any of the binary
connectives ∧,∨,→ to a pair of values formed with 1 and 2 are irrelevant and
could be empty as well, namely 2 ∧P 1, 1 ∨P 2, 2 ∨P 1, 1 →P 2, 2 →P 1. This would
not change the logic, but would potentially introduce subtle differences in the
rules obtained directly by our method.

It is easy to see that Θ = {p,¬p} is a set of separators for P, and therefore
it is monadic. Furthermore, setting Θ̃0 = {p} and Θ̃1 = Θ̃2 = {p,¬p} defines a
discriminator for P, which yields the following partitions:

x Ωx �x

0 ∅ {p}
1 {p} {¬p}
2 {p,¬p} ∅

Note that there is no possible choice for Ω∗
X if 0 ∈ X, and also no possible

choice for �∗
X if 2 ∈ X. Applying Definition 1 we obtain, after simplification of

the axiomatization R
˜Θ
P

, the following inference rules.

p , q

p ∧ q
r1

p ∧ q

p
r2

p ∧ q

q
r3

¬p

¬(p ∧ q) r4

p

p ∨ q
r5

q

p ∨ q
r6

p ∨ q

p , q
r7

p , p → q

q
r8

q

p → q
r9 p , p → q

r10

p , ◦p
r11

p

¬p , ◦p
r12

p , ¬p , ◦p
r13 p,¬p

r14

p , q , ¬q

¬p
r15

Note that every rule resulting from R∃ and RD is a case of overlap and was
omitted. After simplification, the rules r1–r4 correspond to R∧, r5–r7 to R∨,
r8–r10 to R→, r11–r13 to R◦, and r14 to R¬, whereas r15 results from RT (with
X = {1, 2}).

Of course, several innocuous (Θ-analytical) simplifications have been applied.
For instance, the three rules of the calculus R2 introduced in Example 1 (where
each r∧12y corresponds to R∧ for y /∈ (1 ∧P 2) = ∅) are all subsumed by r15.
More interestingly, as already explained in regard to the previous example, rule

96 C. Caleiro and S. Marcelino

r15 is derivable from the other three rules too, as shown in Example 2, on the
right. That derivation is, of course, not Θ-analytical.

It is interesting to see that the following two additional, useful, rules

¬q

¬(p ∧ q) r16

¬(p ∧ q)
¬p,¬q

r17

can be analytically derived from the others.
¬q �P ¬(p ∧ q)

¬q

¬(p ∧ q)p ∧ q

p

q

¬p

¬(p ∧ q)
r4

r15

r3

r2

r14

¬(p ∧ q) �P ¬p,¬q
¬(p ∧ q)

¬pp

¬qq

p ∧ q

¬p
r15

r1

r14

r14

Finally, we present derivations of the two intended axioms.
�P ◦p → ◦(p ∧ q)

∅

◦p → ◦(p ∧ q)◦p

◦(p ∧ q)

◦p → ◦(p ∧ q)
r9

p ∧ q

p

q

◦(p ∧ q)

◦p → ◦(p ∧ q)
r9

¬(p ∧ q)

¬q

¬p

∗
r13

r14

¬p

∗
r13

r17

r12

r3

r2

r11

r10

�P (¬p ∨ ¬q) → ¬(p ∧ q)

∅

(¬p ∨ ¬q) → ¬(p ∧ q)¬p ∨ ¬q

¬q

¬(p ∧ q)

(¬p ∨ ¬q) → ¬(p ∧ q)
r9

r16

¬p

¬(p ∧ q)

(¬p ∨ ¬q) → ¬(p ∧ q)
r9

r4

r7

r10

Analytic Calculi for Monadic PNmatrices 97

5 Conclusion and Future Work

In this paper we have shown the usefulness of multiple conclusion calculi, namely
by proving that one can mechanically obtain analytic calculi for any given
monadic PNmatrix. The monadicity requirement is fundamental, here, and cor-
responds to the sufficient expressiveness used in [3,8,11]. However, there is pos-
sibly still some room for improvement. Shoesmith and Smiley in [16] also used
monadicity for logical matrices, but then showed that a more general notion
of separability, using parameters, (readily available for reduced matrices) would
suffice. We believe that a deeper understanding of what it means to reduce
(P)Nmatrices, as well as how to deal with parameters, may help to generalize
the present results.

Continued exploration of further compositional results that may be covered
by these techniques is important. Still, we can identify two relatively obvious
topics of further work: a detailed implementation of our methods and related
proof search and decidability algorithms; and a deeper study of the relationship
between multiple conclusion calculi and sequent-calculi, that may render our
methods useful in designing analytic sequent-calculi, even when their semantics
is not given by proper PNmatrices.

References

1. Avron, A., Lev, I.: Non-deterministic multiple-valued structures. J. Log. Comput.
15(3), 241–261 (2005)

2. Avron, A., Zamansky, A.: Non-deterministic semantics for logical systems. In: Gab-
bay, D., Guenthner, F. (eds.) Handbook of Philosophical Logic. HALO, vol. 16, pp.
227–304. Springer, Heidelberg (2011). https://doi.org/10.1007/978-94-007-0479-
4 4

3. Avron, A., Ben-Naim, J., Konikowska, B.: Cut-free ordinary sequent calculi for
logics having generalized finite-valued semantics. Logica Universalis 1(1), 41–70
(2007)

4. Avron, A., Konikowska, B., Zamansky, A.: Cut-free sequent calculi for C-systems
with generalized finite-valued semantics. J. Log. Comput. 23(3), 517–540 (2013)

5. Baaz, M., Lahav, O., Zamansky, A.: Finite-valued semantics for canonical labelled
calculi. J. Autom. Reason. 51(4), 401–430 (2013)

6. Caleiro, C., Marcelino, S., Marcos, J.: Combining fragments of classical logic: when
are interaction principles needed? Soft Comput. 23(7), 2213–2231 (2019)

7. Caleiro, C., Marcelino, S., Rivieccio, U.: Characterizing finite-valuedness. Fuzzy
Sets Syst. 345, 113–125 (2018)

8. Caleiro, C., Marcos, J., Volpe, M.: Bivalent semantics, generalized compositionality
and analytic classic-like tableaux for finite-valued logics. Theor. Comput. Sci. 603,
84–110 (2015)

9. Carnielli, W., Coniglio, M., Marcos, J.: Logics of formal inconsistency. In: Gabbay,
D., Guenthner, F. (eds.) Handbook of Philosophical Logic, vol. 14. Kluwer (2007)

10. Carnielli, W., Marcos, J.: A taxonomy of C-systems. In: Carnielli, W., Coniglio,
M., D’Ottaviano, I. (eds.) Paraconsistency: The Logical Way to the Inconsistent.
Lecture Notes in Pure and Applied Mathematics, vol. 228, pp. 1–94. Marcel Dekker
(2002)

https://doi.org/10.1007/978-94-007-0479-4_4
https://doi.org/10.1007/978-94-007-0479-4_4

98 C. Caleiro and S. Marcelino

11. Ciabattoni, A., Lahav, O., Spendier, L., Zamansky, A.: Taming paraconsistent (and
other) logics: an algorithmic approach. ACM Trans. Comput. Log. 16(1), 5:1–5:23
(2014)

12. Font, J.: Belnap’s Four-valued logic and De Morgan lattices. Log. J. IGPL 5(3),
1–29 (1997)

13. Marcelino, S., Caleiro, C.: Disjoint fibring of non-deterministic matrices. In:
Kennedy, J., de Queiroz, R.J.G.B. (eds.) WoLLIC 2017. LNCS, vol. 10388, pp.
242–255. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-55386-
2 17

14. Marcelino, S., Caleiro, C.: Axiomatizing non-deterministic many-valued general-
ized consequence relations. Synthese (to appear). https://doi.org/10.1007/s11229-
019-02142-8

15. Scott, D.: Completeness and axiomatizability in many-valued logic. In: Henkin, L.,
Addison, J., Chang, C., Craig, W., Scott, D., Vaught, R. (eds.) Proceedings of the
Tarski Symposium, volume XXV of Proceedings of Symposia in Pure Mathematics,
pp. 411–435. American Mathematical Society (1974)

16. Shoesmith, D., Smiley, T.: Multiple-Conclusion Logic. Cambridge University Press,
Cambridge (1978)

17. Wójcicki, R.: Theory of Logical Calculi, Synthese Library, vol. 199. Kluwer (1998)
18. Wroński, A.: A three element matrix whose consequence operation is not finitely

based. Bull. Sect. Log. 2(8), 68–70 (1979)

https://doi.org/10.1007/978-3-662-55386-2_17
https://doi.org/10.1007/978-3-662-55386-2_17
https://doi.org/10.1007/s11229-019-02142-8
https://doi.org/10.1007/s11229-019-02142-8

Non Normal Logics: Semantic Analysis
and Proof Theory

Jinsheng Chen1(B), Giuseppe Greco2, Alessandra Palmigiano1,3,
and Apostolos Tzimoulis4

1 Delft University of Technology, Delft, The Netherlands
jinsheng.chen@foxmail.com

2 University of Utrecht, Utrecht, The Netherlands
3 University of Johannesburg, Johannesburg, South Africa

4 Vrije Universiteit Amsterdam, Amsterdam, The Netherlands

Abstract. We introduce proper display calculi for basic monotonic
modal logic, the conditional logic CK and a number of their axiomatic
extensions. These calculi are sound, complete, conservative and enjoy
cut elimination and subformula property. Our proposal applies the multi-
type methodology in the design of display calculi, starting from a seman-
tic analysis based on the translation from monotonic modal logic to nor-
mal bi-modal logic.

Keywords: Monotonic modal logic · Conditional logic ·
Proper display calculi

1 Introduction

By non normal logics we understand in this paper those propositional logics
algebraically captured by varieties of Boolean algebra expansions, i.e. algebras
A = (B,FA, GA) such that B is a Boolean algebra, and FA and GA are finite, pos-
sibly empty families of operations on B in which the requirement is dropped that
each operation in FA be finitely join-preserving or meet-reversing in each coor-
dinate and each operation in GA be finitely meet-preserving or join-reversing in
each coordinate. Very well known examples of non normal logics are monotonic
modal logic [4] and conditional logic [3,29], which have been intensely investi-
gated, since they capture key aspects of agents’ reasoning, such as the epistemic
[34], strategic [31,32], and hypothetical [13,26].

Non normal logics have been extensively investigated both with model-
theoretic tools [23] and with proof-theoretic tools [28,30]. Specific to proof theory,
the main challenge is to endow non normal logics with analytic calculi which
can be modularly expanded with additional rules so as to uniformly capture
wide classes of axiomatic extensions of the basic frameworks, while preserving

This research is supported by the NWO Vidi grant 016.138.314, the NWO Aspasia
grant 015.008.054, and a Delft Technology Fellowship awarded to the third author.

c© Springer-Verlag GmbH Germany, part of Springer Nature 2019
R. Iemhoff et al. (Eds.): WoLLIC 2019, LNCS 11541, pp. 99–118, 2019.
https://doi.org/10.1007/978-3-662-59533-6_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-59533-6_7&domain=pdf
https://doi.org/10.1007/978-3-662-59533-6_7

100 J. Chen et al.

key properties such as cut elimination. In this paper, we propose a method to
achieve this goal. We will illustrate this method for the two specific signatures
of monotonic modal logic and conditional logic.

Our starting point is the very well known observation that, under the inter-
pretation of the modal connective of monotonic modal logic in neighbourhood
frames F = (W, ν), the monotonic ‘box’ operation can be understood as the
composition of a normal (i.e. finitely join-preserving) semantic diamond 〈ν〉 and
a normal (i.e. finitely meet-preserving) semantic box [�]. The binary relations
Rν and R� corresponding to these two normal operators are not defined on one
and the same domain, but span over two domains, namely Rν ⊆ W × P(W) is
s.t. wRνX iff X ∈ ν(w) and R� ⊆ P(W) × W is s.t. XR�w iff w ∈ X (cf. [23,
Definition 5.7], see also [14,25]). We refine and expand these observations so as
to: (a) introduce a semantic environment of two-sorted Kripke frames (cf. Defini-
tion 1) and their heterogeneous algebras (cf. Definition 2); (b) outline a network
of discrete dualities and adjunctions among these semantic structures and the
algebras and frames for monotone modal logic and conditional logic (cf. Propo-
sitions 1, 2, 3 and 4); (c) based on these semantic relationships, introduce multi-
type normal logics into which the original non normal logics can embed via
suitable translations (cf. Sect. 4) following a methodology which was successful
in several other cases [7,9–11,16,17,19,22,27,33]; (d) retrieve well known dual
characterization results for axiomatic extensions of monotone modal logic and
conditional logics as instances of general algorithmic correspondence theory for
normal (multi-type) LE-logics applied to the translated axioms (cf. Sect. B); (e)
extract analytic structural rules from the computations of the first order corre-
spondents of the translated axioms, so that, again by general results on proper
display calculi [20] (which, as discussed in [1], can be applied also to multi-type
logical frameworks) the resulting calculi are sound, complete, conservative and
enjoy cut elimination and subformula property.

2 Preliminaries

Notation. Throughout the paper, the superscript (·)c denotes the relative com-
plement of the subset of a given set. When the given set is a singleton {x},
we will write xc instead of {x}c. For any binary relation R ⊆ S × T , and any
S′ ⊆ S and T ′ ⊆ T , we let R[S′] := {t ∈ T | (s, t) ∈ R for some s ∈ S′}
and R−1[T ′] := {s ∈ S | (s, t) ∈ R for some t ∈ T ′}. As usual, we write R[s]
and R−1[t] instead of R[{s}] and R−1[{t}], respectively. For any ternary relation
R ⊆ S × T × U and subsets S′ ⊆ S, T ′ ⊆ T , and U ′ ⊆ U , we also let

– R(0)[T ′, U ′] = {s ∈ S | ∃t∃u(R(s, t, u) & t ∈ T ′ & u ∈ U ′)},
– R(1)[S′, U ′] = {t ∈ T | ∃s∃u(R(s, t, u) & s ∈ S′ & u ∈ U ′)},
– R(2)[S′, T ′] = {u ∈ U | ∃s∃t(R(s, t, u) & s ∈ S′ & t ∈ T ′)}.

Any binary relation R ⊆ S × T gives rise to the modal operators
〈R〉, [R], [R〉, 〈R] : P(T) → P(S) s.t. for any T ′ ⊆ T

– 〈R〉T ′ := R−1[T ′] = {s ∈ S | ∃t(sRt & t ∈ T ′)};

Non Normal Logics: Semantic Analysis and Proof Theory 101

– [R]T ′ := (R−1[T ′c])c = {s ∈ S | ∀t(sRt → t ∈ T ′)};
– [R〉T ′ := (R−1[T ′])c = {s ∈ S | ∀t(sRt → t /∈ T ′)};
– 〈R]T ′ := R−1[T ′c] = {s ∈ S | ∃t(sRt & t /∈ T ′)}.

By construction, these modal operators are normal. In particular, 〈R〉 is
completely join-preserving, [R] is completely meet-preserving, [R〉 is completely
join-reversing and 〈R] is completely meet-reversing. Hence, their adjoint maps
exist and coincide with [R−1]〈R−1〉, [R−1〉, 〈R−1] : P(S) → P(T), respectively.
Any ternary relation R ⊆ S×T ×U gives rise to the modal operators �R: P(T)×
P(U) → P(S) and �R : P(T) × P(S) → P(U) and �R: P(S) × P(U) → P(T)
s.t. for any S′ ⊆ S, T ′ ⊆ T , and U ′ ⊆ U ,

– T ′ �R U ′ := (R(0)[T ′, U ′c])c = {s ∈ S | ∀t∀u(R(s, t, u) & t ∈ T ′ ⇒ u ∈ U ′)};
– T ′�RS′ := R(2)[T ′, S′] = {u ∈ U | ∃t∃s(R(s, t, u) & t ∈ T ′ & s ∈ S′)};
– S′ �R U ′ := (R(1)[S′, U ′c])c = {t ∈ T | ∀s∀u(R(s, t, u) & s ∈ S′ ⇒ u ∈ U ′)}.

The stipulations above guarantee that these modal operators are normal.
In particular, �R and �R are completely join-reversing in their first coordinate
and completely meet-preserving in their second coordinate, and �R is completely
join-preserving in both coordinates. These three maps are residual to each other,
i.e. S′ ⊆ T ′ �R U ′ iff T ′�RS′ ⊆ U ′ iff T ′ ⊆ S′ �R U ′ for any S′ ⊆ S, T ′ ⊆ T ,
and U ′ ⊆ U .

2.1 Basic Monotonic Modal Logic and Conditional Logic

Syntax. For a countable set of propositional variables Prop, the languages L∇
and L> of monotonic modal logic and conditional logic over Prop are defined as
follows:

L∇ � φ :: = p | ¬φ | φ ∧ φ | ∇φ L> � φ :: = p | ¬φ | φ ∧ φ | φ > φ.

The connectives
,∧,∨,→ and ↔ are defined as usual. The basic mono-
tone modal logic L∇ (resp. basic conditional logic L>) is a set of L∇-formulas
(resp. L>-formulas) containing the axioms of classical propositional logic and
closed under modus ponens, uniform substitution and M (resp. RCEA and RCKn

for all n ≥ 0):
ϕ → ψ

M ∇ϕ → ∇ψ

ϕ ↔ ψ
RCEA

(ϕ > χ) ↔ (ψ > χ)
ϕ1 ∧. . .∧ ϕn → ψ

RCKn

(χ > ϕ1) ∧. . .∧ (χ > ϕn) → (χ > ψ)

Algebraic Semantics. A monotone Boolean algebra expansion, abbreviated as m-
algebra (resp. conditional algebra, abbreviated as c-algebra) is a pair A = (B,∇A)
(resp. A = (B, >A)) s.t. B is a Boolean algebra and ∇A is a unary monotone
operation on B (resp. >A is a binary operation on B which is finitely meet-
preserving in its second coordinate). Interpretation of formulas in algebras under
assignments h : L∇ → A (resp. h : L> → A) and validity of formulas in algebras
(in symbols: A |= φ) are defined as usual. By a routine Lindenbaum-Tarski
construction one can show that L∇ (resp. L>) is sound and complete w.r.t. the
class of m-algebras (resp. c-algebras).

102 J. Chen et al.

Canonical Extensions. The canonical extension of an m-algebra (resp. c-algebra)
A is Aδ := (Bδ,∇A

δ

) (resp. Aδ := (Bδ, >A
δ

)), where Bδ is the canonical extension
of B [24], and ∇A

δ

(resp. >A
δ

) is the σ-extension of ∇A (resp. the π-extension of
>A). By general results of π-extensions of maps (cf. [15]), the canonical extension
of an m-algebra (resp. c-algebra) is a perfect m-algebra (resp. c-algebra), i.e. the
Boolean algebra B on which it is based can be identified with a powerset algebra
P(W) up to isomorphism.

Frames and Models. A neighbourhood frame, abbreviated as n-frame (resp. con-
ditional frame, abbreviated as c-frame) is a pair F = (W, ν) (resp. F = (W, f))
s.t. W is a non-empty set and ν : W → P(P(W)) is a neighbourhood function
(f : W × P(W) → P(W) is a selection function). In the remainder of the paper,
even if it is not explicitly indicated, we will assume that n-frames are mono-
tone, i.e. s.t. for every w ∈ W , if X ∈ ν(w) and X ⊆ Y , then Y ∈ ν(w). For
any n-frame (resp. c-frame) F, the complex algebra of F is F

∗ := (P(W),∇F
∗
)

(resp. F∗ := (P(W), >F
∗
)) s.t. for all X,Y ∈ P(W),

∇F
∗
X := {w | X ∈ ν(w)} X >F

∗
Y := {w | f(w,X) ⊆ Y }.

The complex algebra of an n-frame (resp. c-frame) is an m-algebra (resp. a c-
algebra). Models are pairs M = (F, V) such that F is a frame and V : L → F

∗ is
a homomorphism of the appropriate type. Hence, truth of formulas at states in
models is defined as M, w � ϕ iff w ∈ V (ϕ), and unravelling this stipulation for
∇- and >-formulas, we get:

M, w � ∇ϕ iff V (ϕ) ∈ ν(w) M, w � ϕ > ψ iff f(w, V (ϕ)) ⊆ V (ψ).

Global satisfaction (notation: M � φ) and frame validity (notation: F � φ) are
defined in the usual way. Thus, by definition, F � φ iff F

∗ |= φ, from which the
soundness of L∇ (resp. L>) w.r.t. the corresponding class of frames immediately
follows from the algebraic soundness. Completeness follows from algebraic com-
pleteness, by observing that (a) the canonical extension of any algebra refuting
φ will also refute φ; (b) canonical extensions are perfect algebras; (c) perfect
algebras can be associated with frames as follows: for any A = (P(W),∇A)
(resp. A = (P(W), >A)) let A∗ := (W, ν∇) (resp. A∗ := (W, f>)) s.t. for all
w ∈ W and X ⊆ W ,

ν∇(w) := {X ⊆ W | w ∈ ∇X} f>(w,X) :=
⋂

{Y ⊆ W | w ∈ X > Y }.

If X ∈ ν∇(w) and X ⊆ Y , then the monotonicity of ∇ implies that ∇X ⊆ ∇Y
and hence Y ∈ ν∇(w), as required. By construction, A |= φ iff A∗ � φ. This
is enough to derive the frame completeness of L∇ (resp. L>) from its algebraic
completeness.

Proposition 1. If A is a perfect m-algebra (resp. c-algebra) and F is an n-frame
(resp. c-frame), then (F∗)∗ ∼= F and (A∗)∗ ∼= A.

Non Normal Logics: Semantic Analysis and Proof Theory 103

Axiomatic Extensions. A monotone modal logic (resp. a conditional logic) is any
extension of L∇ (resp. L>) with L∇-axioms (resp. L>-axioms). Below we collect
correspondence results for axioms that have cropped up in the literature [23,
Theorem 5.1], [30].

Theorem 1. For every n-frame (resp. c-frame) F,
N F � ∇� iff F |= ∀w[W ∈ ν(w)]

P F � ¬∇⊥ iff F |= ∀w[∅ �∈ ν(w)]

C F � ∇p ∧ ∇q → ∇(p ∧ q) iff F |= ∀w∀X∀Y [(X ∈ ν(w) & Y ∈ ν(w)) ⇒ X ∩ Y ∈ ν(w)]

T F � ∇p → p iff F |= ∀w∀X[X ∈ ν(w) ⇒ w ∈ X]

4 F � ∇∇p → ∇p iff F |= ∀w∀Y X[(X ∈ ν(w) & ∀x(x ∈ X ⇒ Y ∈ ν(x))) ⇒ Y ∈ ν(w)]

4’ F � ∇p → ∇∇p iff F |= ∀w∀X[X ∈ ν(w) ⇒ {y | X ∈ ν(y)} ∈ ν(w)]

5 F � ¬∇¬p → ∇¬∇¬p iff F |= ∀w∀X[X /∈ ν(w) ⇒ {y | X ∈ ν(y)}c ∈ ν(w)]

B F � p → ∇¬∇¬p iff F |= ∀w∀X[w ∈ X ⇒ {y | Xc ∈ ν(y)}c ∈ ν(w)]

D F � ∇p → ¬∇¬p iff F |= ∀w∀X[X ∈ ν(w) ⇒ Xc �∈ ν(w)]

CS F � (p ∧ q) → (p > q) iff F |= ∀x∀Z[f(x, Z) ⊆ {x}]

CEM F � (p > q) ∨ (p > ¬q) iff F |= ∀X∀y[|f(y, X)| ≤ 1]

ID F � p > p iff F |= ∀x∀Z[f(x, Z) ⊆ Z].

3 Semantic Analysis

3.1 Two-Sorted Kripke Frames and Their Discrete Duality

Structures similar to those below are considered implicitly in [23], and explicitly
in [12].

Definition 1. A two-sorted n-frame (resp. c-frame) is a structure K :=
(X,Y,R�, R ��, Rν , Rνc) (resp. K := (X,Y,R�, R ��, Tf)) such that X and Y are
nonempty sets, R�, R �� ⊆ Y × X and Rν , Rνc ⊆ X × Y and Tf ⊆ X × Y × X.
Such an n-frame is supported if for every D ⊆ X,

R−1
ν [(R−1

� [Dc])c] = (R−1
νc [(R−1

�� [D])c])c. (1)

For any two-sorted n-frame (resp. c-frame) K, the complex algebra of K is

K
+ := (P(X),P(Y), [�]K

+
, 〈��〉K

+
, 〈ν〉K

+
, [νc]K

+
)

(resp. K+ := (P(X),P(Y), [�]K
+
, [��〉K

+
,�K

+
)), s.t.

〈ν〉K
+

: P(Y) → P(X) [�]K
+

: P(X) → P(Y) 〈�〉K
+

: P(X) → P(Y)
U �→ R−1

ν [U] D �→ (R−1
� [Dc])c D �→ R−1

�� [D]

[νc]K
+

: P(Y) → P(X) [�〉K
+

: P(X) → P(Y) �K
+
: P(Y) × P(X) → P(X)

U �→ (R−1
νc [Uc])c D �→ (R−1

�� [D])c (U, D) �→ (T
(0)
f [U, Dc])c

The adjoints and residuals of the maps above (cf. Sect. 2) are defined as follows:

[ν]K
+

: P(X) → P(Y) 〈∈〉K+
: P(Y) → P(X) [�∈]K

+
: P(Y) → P(X)

D �→ (Rν [Dc])c U �→ R�[U] U �→ (R��[Uc])c

〈 νc〉K+
: P(X) → P(Y) [�∈〉K+

: P(Y) → P(X) �K+
: P(X) × P(X) → P(Y)

D �→ Rνc [D] U �→ (R��[U])c (C, D) �→ (T
(1)
f [C, Dc])c

�K+
: P(Y) × P(X) → P(X)

(U, D) �→ T
(2)
f [U, D]

104 J. Chen et al.

Complex algebras of two-sorted frames can be recognized as heterogeneous
algebras (cf. [2]) of the following kind:

Definition 2. A heterogeneous m-algebra (resp. c-algebra) is a structure

H := (A,B, [�]H, 〈��〉H, 〈ν〉H, [νc]H) (resp. H := (A,B, [�]H, [��〉H,�H))

such that A and B are Boolean algebras, 〈ν〉H, [νc] : B → A are finitely join-
preserving and finitely meet-preserving respectively, [�]H, [��〉H, 〈��〉H : A → B

are finitely meet-preserving, finitely join-reversing, and finitely join-preserving
respectively, and �H: B × A → A is finitely join-reversing in its first coordinate
and finitely meet-preserving in its second coordinate. Such an H is complete if
A and B are complete Boolean algebras and the operations above enjoy the com-
plete versions of the finite preservation properties indicated above, and is perfect
if it is complete and A and B are perfect. The canonical extension of a heteroge-
neous m-algebra (resp. c-algebra) H is H

δ := (Aδ,Bδ, [�]H
δ

, 〈��〉H
δ

, 〈ν〉H
δ

, [νc]H
δ

)
(resp. H

δ := (Aδ,Bδ, [�]H
δ

, [��〉H
δ

,�H
δ

)), where A
δ and B

δ are the canonical
extensions of A and B respectively [24], moreover [�]H

δ

, [��〉H
δ

, [νc]H
δ

,�H
δ

are
the π-extensions of [�]H, [��〉H, [νc]H,�H respectively, and 〈ν〉H

δ

, 〈��〉H
δ

are the
σ-extensions of 〈ν〉H, 〈��〉H respectively.

Definition 3. A heterogeneous m-algebra H := (A,B, [�]H, 〈��〉H, 〈ν〉H, [νc]H) is
supported if 〈ν〉H[�]Ha = [νc]H〈��〉Ha for every a ∈ A.

It immediately follows from the definitions that

Lemma 1. The complex algebra of a supported two-sorted n-frame is a hetero-
geneous supported m-algebra.

Definition 4. If H = (P(X),P(Y), [�]H, 〈��〉H, 〈ν〉H, [νc]H) is a perfect hetero-
geneous m-algebra (resp. H = (P(X),P(Y), [�]H, [��〉H,�H) is a perfect hetero-
geneous c-algebra), its associated two-sorted n-frame (resp. c-frame) is

H+ := (X,Y,R�, R ��, Rν , Rνc) (resp. H+ := (X,Y,R�, R ��, Tf)), s.t.

– R� ⊆ Y × X is defined by yR�x iff y /∈ [�]Hxc,
– R�� ⊆ Y × X is defined by xR��y iff y ∈ 〈�〉H{x} (resp. y /∈ [�〉H{x}),
– Rν ⊆ X × Y is defined by xRνy iff x ∈ 〈ν〉H{y},
– Rνc ⊆ X × Y is defined by xRνcy iff x /∈ [νc]Hyc,
– Tf ⊆ X × Y × X is defined by (x′, y, x) ∈ Tf iff x′ /∈ {y} �H xc.

From the definition above it readily follows that:

Lemma 2. If H is a perfect supported heterogeneous m-algebra, then H+ is a
supported two-sorted n-frame.

The theory of canonical extensions (of maps) and the duality between perfect
BAOs and Kripke frames can be readily extended to the present two-sorted case.
The following proposition collects these well known facts, the proofs of which
are analogous to those of the single-sort case, hence are omitted.

Non Normal Logics: Semantic Analysis and Proof Theory 105

Proposition 2. For every heterogeneous m-algebra (resp. c-algebra) H and
every two-sorted n-frame (resp. c-frame) K,

1. H
δ is a perfect heterogeneous m-algebra (resp. c-algebra);

2. K
+ is a perfect heterogeneous m-algebra (resp. c-algebra);

3. (K+)+ ∼= K, and if H is perfect, then (H+)+ ∼= H.

3.2 Equivalent Representation of m-Algebras and c-Algebras

Every supported heterogeneous m-algebra (resp. c-algebra) can be associated
with an m-algebra (resp. a c-algebra) as follows:

Definition 5. For every supported heterogeneous m-algebra H = (A,B, [�]H,
〈��〉H, 〈ν〉H, [νc]H) (resp. c-algebra H = (A,B, [�]H, [��〉H,�H)), let H• :=
(A,∇H•) (resp. H• := (A, >H•)), where for every a ∈ A (resp. a, b ∈ A),

∇H•a = 〈ν〉H[�]Ha = [νc]H〈��〉Ha (resp. a >H• b := ([�]Ha ∧ [��〉Ha) �H b).

It immediately follows from the stipulations above that ∇H• is a monotone map
(resp. >H• is finitely meet-preserving in its second coordinate), and hence H• is
an m-algebra (resp. a c-algebra). Conversely, every complete m-algebra (resp. c-
algebra) can be associated with a supported heterogeneous m-algebra (resp. a
c-algebra) as follows:

Definition 6. For every complete m-algebra C = (A,∇C) (resp. complete c-
algebra C = (A, >C)), let C• := (A,P(A), [�]C

•
, 〈��〉C

•
, 〈ν〉C

•
, [νc]C

•
) (resp. C• :=

(A,P(A), [�]C
•
, [��〉C

•
, �C

•
)), where for every a ∈ A and B ∈ P(A),

[�]
C•

a := {b ∈ A | b ≤ a} 〈ν〉C•
B :=

∨
{∇C

b | b ∈ B} [��〉C•
a := {b ∈ A | a ≤ b}

[ν
c
]
C•

B :=
∧

{∇C
b | b /∈ B} B �C•

a :=
∧

{b >
C

a | b ∈ B} 〈��〉C•
a := {b ∈ A | a � b}.

One can readily see that the operations defined above are all normal by construc-
tion, and that they enjoy the complete versions of the preservation properties
indicated in Definition 2. Moreover, 〈ν〉C

•
[�]C

•
a = ∇Ca = [νc]C

•〈��〉C
•
a for every

a ∈ A. Hence,

Lemma 3. If C is a complete m-algebra (resp. complete c-algebra), then C
• is

a complete supported heterogeneous m-algebra (resp. c-algebra).

The assignments (·)• and (·)• can be extended to functors between the appro-
priate categories of single-type and heterogeneous algebras and their homomor-
phisms. These functors are adjoint to each other and form a section-retraction
pair. Hence:

Proposition 3. If C is a complete m-algebra (resp. c-algebra), then C ∼= (C•)•.
Moreover, if H is a complete supported heterogeneous m-algebra (resp. c-algebra),
then H ∼= C

• for some complete m-algebra (resp. c-algebra) C iff H ∼= (H•)•.

The proposition above characterizes up to isomorphism the supported hetero-
geneous m-algebras (resp. c-algebras) which arise from single-type m-algebras
(resp. c-algebras). Thanks to the discrete dualities discussed in Sects. 2.1 and
3.1, we can transfer this algebraic characterization to the side of frames, as
detailed in the next subsection.

106 J. Chen et al.

3.3 Representing n-Frames and c-Frames as Two-Sorted Kripke
Frames

Definition 7. For any n-frame (resp. c-frame) F, we let F
� := ((F∗)•)+, and

for every supported two-sorted n-frame (resp. c-frame) K, we let K� := ((K+)•)∗.

Spelling out the definition above, if F = (W, ν) (resp. F = (W, f)) then F
� =

(W,P(W), R�, R ��, Rν , Rνc) (resp. F� = (W,P(W), R ��, R�, Tf)) where:

– Rν ⊆ W × P(W) is defined as xRνZ iff Y ∈ ν(x);
– Rνc ⊆ W × P(W) is defined as xRνcZ iff Z /∈ ν(x);
– R� ⊆ P(W) × W is defined as ZR�x iff x ∈ Z;
– R �� ⊆ P(W) × W is defined as ZR ��x iff x /∈ Z;
– Tf ⊆ W × P(W) × W is defined as Tf (x, Z, x′) iff x′ ∈ f(x, Z).

Moreover, if K = (X,Y,R�, R ��, Rν , Rνc) (resp. K = (X,Y,R�, R ��, Tf)),
then K� = (X, ν�) (resp. K� = (X, f�)) where:

– ν�(x) = {D ⊆ X | x ∈ R−1
ν [(R−1

� [Dc])c]} = {D ⊆ X | x ∈ (R−1
νc [(R−1

�� [D])c])c};

– f�(x, D) =
⋂{C ⊆ X | x ∈ T

(0)
f [{C}, Dc]}.

Lemma 4. If F = (W, ν) is an n-frame, then F
� is a supported two-sorted n-

frame.

Proof. By definition, F� is a two-sorted n-frame. Moreover, for any D ⊆ W ,

(R−1
νc [(R−1

�� [D])c])c = {w | ∀X(X /∈ ν(w) ⇒ ∃u(X � u & u ∈ D))}
= {w | ∀X(X /∈ ν(w) ⇒ D ⊆ X)}
= {w | ∀X(D ⊆ X ⇒ X ∈ ν(w))}
= {w | ∃X(X ∈ ν(w) & X ⊆ D)} (∗)
= R−1

ν [(R−1
� [Dc])c].

To show the identity marked with (∗), from top to bottom, take X := D;
conversely, if D ⊆ Z then X ⊆ Z, and since by assumption X ∈ ν(w) and ν(w)
is upward closed, we conclude that Z ∈ ν(w), as required.

The next proposition is the frame-theoretic counterpart of Proposition 3.

Proposition 4. If F is an n-frame (resp. c-frame), then F ∼= (F�)�. Moreover,
if K is a supported two-sorted n-frame (resp. c-frame), then K ∼= F

� for some
n-frame (resp. c-frame) F iff K ∼= (K�)�.

4 Embedding Non-Normal Logics into Two-Sorted
Normal Logics

The two-sorted frames and heterogeneous algebras discussed in the previous
section serve as semantic environment for the multi-type languages defined
below.

Non Normal Logics: Semantic Analysis and Proof Theory 107

Multi-type Languages. For a denumerable set Prop of atomic propositions, the
languages LMT∇ and LMT> in types S (sets) and N (neighbourhoods) over Prop
are defined as follows:

S � A :: = p | � | ⊥ | ¬A | A ∧ A | 〈ν〉α | [νc]α S � A :: = p | � | ⊥ | ¬A | A ∧ A | α � A
N � α :: = 1 | 0 | ∼α | α ∩ α | [�]A | 〈��〉α N � α :: = 1 | 0 | ∼α | α ∩ α | [�]A | [��〉A.

Algebraic Semantics. Interpretation of LMT∇-formulas (resp. LMT>formulas)
in heterogeneous m-algebras (resp. c-algebras) under homomorphic assignments
h : LMT∇ → H (resp. h : LMT> → H) and validity of formulas in heterogeneous
algebras (H |= Θ) are defined as usual.

Frames and Models. LMT∇-models (resp. LMT>-models) are pairs N = (K, V)
s.t. K = (X,Y,R�, R ��, Rν , Rνc) is a supported two-sorted n-frame (resp. K =
(X,Y,R�, R ��, Tf) is a two-sorted c-frame) and V : LMT → K

+ is a hetero-
geneous algebra homomorphism of the appropriate signature. Hence, truth of
formulas at states in models is defined as N, z � Θ iff z ∈ V (Θ) for every
z ∈ X ∪ Y and Θ ∈ S ∪ N, and unravelling this stipulation for formulas with a
modal operator as main connective, we get:

– N, x � 〈ν〉α iff N, y � α for some y s.t. xRνy;
– N, x � [νc]α iff N, y � α for all y s.t. xRνcy;
– N, y � [�]A iff N, x � A for all x s.t. yR�x;
– N, y � 〈�〉A iff N, x � A for some x s.t. yR ��x;
– N, y � [�〉A iff N, x � A for all x s.t. yR ��x;
– N, x � α � A iff for all y and all x′, if Tf (x, y, x′) and N, y �

α then N, x′ � A.

Global satisfaction (notation: N � Θ) is defined relative to the domain of
the appropriate type, and frame validity (notation: K � Θ) is defined as usual.
Thus, by definition, K � Θ iff K

+ |= Θ, and if H is a perfect heterogeneous
algebra, then H |= Θ iff H+ � Θ.

Sahlqvist Theory for Multi-type Normal Logics. This semantic environment sup-
ports a straightforward extension of Sahlqvist theory for multi-type normal log-
ics, which includes the definition of inductive and analytic inductive formulas
and inequalities in LMT∇ and LMT> (cf. Sect. A), and a corresponding version
of the algorithm ALBA [6] for computing their first-order correspondents and
analytic structural rules.

Translation. Sahlqvist theory and analytic calculi for the non-normal logics L∇
and L> and their analytic extensions can be then obtained ‘via translation’,
i.e. by recursively defining translations τ1, τ2 : L∇ → LMT∇ and (·)τ : L> →
LMT> as follows:

τ1(p) = p τ2(p) = p pτ = p
τ1(φ ∧ ψ) = τ1(φ) ∧ τ1(ψ) τ2(φ ∧ ψ) = τ2(φ) ∧ τ2(ψ) (φ ∧ ψ)τ = φτ ∧ ψτ

τ1(¬φ) = ¬τ2(φ) τ2(¬φ) = ¬τ1(φ) (¬φ)τ = ¬φτ

τ1(∇φ) = 〈ν〉[�]τ1(φ) τ2(∇φ) = [νc]〈��〉τ2(φ) (φ > ψ)τ = ([�]φτ ∧ [��〉φτ) � ψτ

The following proposition is shown by a routine induction.

108 J. Chen et al.

Proposition 5. If F is an n-frame (resp. c-frame) and φ � ψ is an L∇-sequent
(resp. φ is an L>-formula), then F � φ � ψ iff F

� � τ1(φ) � τ2(ψ) (resp.
F � φ iff F

� � φτ).

With this framework in place, we are in a position to (a) retrieve correspondence
results in the setting of non normal logics, such as those collected in Theorem 1,
as instances of the general Sahlqvist theory for multi-type normal logics, and (b)
recognize whether the translation of a non normal axiom is analytic inductive,
and compute its corresponding analytic structural rules (cf. Sect. B).

Axiom Translation Inductive Analytic
N ∇� � ≤ [νc]〈��〉� � �
P ¬∇⊥ � ≤ ¬〈ν〉[�]⊥ � �
C ∇p ∧ ∇q → ∇(p ∧ q) 〈ν〉[�]p ∧ 〈ν〉[�]q ≤ [νc]〈��〉(p ∧ q) � �
T ∇p → p 〈ν〉[�]p ≤ p � �
4 ∇∇p → ∇p 〈ν〉[�]〈ν〉[�]p ≤ [νc]〈��〉p � ×
4’ ∇p → ∇∇p 〈ν〉[�]p ≤ [νc]〈��〉[νc]〈��〉p � ×
5 ¬∇¬p → ∇¬∇¬p ¬[νc]〈��〉¬p ≤ [νc]〈��〉¬〈ν〉[�]¬p � ×
B p → ∇¬∇¬p p ≤ [νc]〈��〉¬〈ν〉[�]¬p � ×
D ∇p → ¬∇¬p 〈ν〉[�]p ≤ ¬〈ν〉[�]¬p � �

CS (p ∧ q) → (p > q) (p ∧ q) ≤ (([�]p ∧ [��〉p) � q) � �
CEM (p > q) ∨ (p > ¬q) � ≤ (([�]p ∧ [��〉p) � q) ∨ (([�]p ∧ [��〉p) � ¬q) � �

ID p > p � ≤ ([�]p ∧ [��〉p) � p � �

5 Proper Display Calculi

In this section we introduce proper multi-type display calculi for L∇ and L> and
their axiomatic extensions generated by the analytic axioms in the table above.

Languages. The language LDMT∇ of the calculus D.MT∇ for L∇ is defined as
follows:

S

{
A :: = p | � | ⊥ | ¬A | A ∧ A | 〈ν〉α | [νc]α

X :: = A | �̂ | ⊥̌ | ¬̃X | X ∧̂ X | X ∨̌ X | 〈ν̂〉Γ | [ν̌c]Γ | 〈∈̂〉Γ | [ˇ∈]Γ

N

{
α :: = [�]A | 〈�〉A
Γ :: = α | 1̂ | 0̌ | ∼̃Γ | Γ ∩̂ Γ | Γ ∪̌ Γ | [�̌]X | 〈ˆ�〉X | [ˇν]X | 〈ˆνc〉X

The language LDMT> of the calculus D.MT> for L> is defined as follows:

S

{
A :: = p | � | ⊥ | ¬A | A ∧ A | α � A

X :: = A | �̂ | ⊥̌ | ¬̃X | X ∧̂ X | X ∨̌ X | 〈∈̂〉Γ | Γ �̌ X | Γ �̂ X | [ˇ∈〉Γ

N

{
α :: = [�]A | [�〉A | α ∩ α

Γ :: = α | 1̂ | 0̌ | ∼̃Γ | Γ ∩̂ Γ | Γ ∪̌ Γ | [�̌]X | [ˇ�〉X | X �̌ X

Multi-type Display Calculi. In what follows, we use X,Y,W,Z as structural S-
variables, and Γ,Δ,Σ,Π as structural N-variables.

Propositional Base. The calculi D.MT∇ and D.MT> share the rules listed
below.

– Identity and Cut:

IdS
p � p

X � A A � Y
CutS

X � Y

Γ � α α � Δ
CutN

Γ � Δ

Non Normal Logics: Semantic Analysis and Proof Theory 109

– Pure S-type display rules:

⊥ ⊥ � ⊥̌
�

�̂ � �
¬̃X � Y

galS ¬̃Y � X

X � ¬̃Y
galS

Y � ¬̃X

X ∧̂ Y � Z
resS

Y � ¬̃X ∨̌ Z

X � Y ∨̌ Z
resS

¬̃Y ∧̂ X � Z

– Pure N-type display rules:

Γ ∩̂ Δ � Σ
resN

Δ � ∼̃Γ ∪̌ Σ

Γ � Δ ∪̌ Σ
resN

∼̃Δ ∩̂ Γ � Σ

∼̃Γ � Δ
galN ∼̃Δ � Γ

Γ � ∼̃Δ
galN

Δ � ∼̃Γ

– Pure-type structural rules (these include standard Weakening (W), Contrac-
tion (C), Commutativity (E) and Associativity (A) in each type which we
omit to save space):

X � Y
contS ¬̃Y � ¬̃X

X � Y
�̂

X ∧̂ �̂ � Y

X � Y
⊥̌

X � Y ∨̌ ⊥̌
Γ � Δ

contN ∼̃Δ � ∼̃Γ

Γ � Δ
1̂

Γ ∩̂ 1̂ � Δ

Γ � Δ
0̌

Γ � Δ ∪̌ 0̌

– Pure S-type logical rules:

A ∧̂ B � X∧
A ∧ B � X

X � A Y � B ∧
X ∧̂ Y � A ∧ B

¬̃A � X¬ ¬A � X
X � ¬̃A ¬
X � ¬A

Monotonic Modal Logic. D.MT∇ also includes the rules listed below.

– Multi-type display rules:

〈ν̂〉Γ � X
〈ν̂〉[ˇν]

Γ � [ˇν]X

〈ˆνc〉X � Γ
〈ˆνc〉[ν̌c]

X � [ν̌c]Γ

〈∈̂〉Γ � X
〈∈̂〉[�̌]

Γ � [�̌]X

〈∈̂〉Γ � X
〈∈̂〉[�̌]

Γ � [�̌]X

〈ˆ�〉X � Γ
〈ˆ��〉[ˇ�∈]

X � [ˇ∈]Γ

– Logical rules for multi-type connectives:

〈ν̂〉α � X
〈ν〉 〈ν〉α � X

Γ � α 〈ν〉
〈ν̂〉Γ � 〈ν〉α

α � Γ
[νc]

[νc]α � [ν̌c]Γ

X � [ν̌c]α
[νc]

X � [νc]α

〈ˆ�〉A � Γ
〈��〉 〈�〉A � Γ

X � A 〈��〉
〈ˆ�〉X � 〈�〉A

A � X
[�]

[�]A � [�̌]X

Γ � [�̌]A
[�]

Γ � [�]A

Conditional Logic. D.MT> includes left and right logical rules for [�], the
display postulates 〈∈̂〉[�̌] and the rules listed below.

110 J. Chen et al.

– Multi-type display rules:

X � Γ �̌ Y
�̂ �̌

Γ �̂ X � Y

Γ � X �̌ Y
�̌ �̌

X � Γ �̌ Y

X � [ˇ∈〉Γ
[ˇ�∈〉[ˇ��〉

Γ � [ˇ�〉X

– Logical rules for multi-type connectives and pure G-type logical rules:

Γ � α A � X�
α � A � Γ �̌ X

X � α �̌ A �
X � α � A

X � A
[��〉

[�〉A � [ˇ�〉X
Γ � [ˇ�〉A

[��〉
Γ � [�〉A

α ∩̂ β � Γ∩
α ∩ β � Γ

Γ � α Δ � β ∩
Γ ∩̂ Δ � α ∩ β

Axiomatic Extensions. Each rule is labelled with the name of its correspond-
ing axiom.

〈ˆ��〉�̂ � Γ
N

�̂ � [ν̌c]Γ

Δ � [ˇ��〉〈∈̂〉Γ 〈∈̂〉Γ � X
ID

�̂ � (Γ ∩̂ Δ) �̌ X

〈ˆ��〉(〈∈̂〉Γ ∧̂ 〈∈̂〉Δ) � Θ
C 〈ν̂〉Γ ∧̂ 〈ν̂〉Δ � [ν̌c]Θ

Γ � [�̌] ¬̃〈∈̂〉Δ
D 〈ν̂〉Δ � ¬̃〈ν̂〉Γ

Γ � [�̌]⊥̌
P

�̂ � ¬̃〈ν̂〉Γ

Γ � [�̌][ˇ�∈〉Δ X � [ˇ�∈〉Δ Y � Z
CS

X ∧̂ Y � (Γ ∩̂ Δ) �̌ Z

Π � [ˇ��〉〈∈̂〉Γ Π � [ˇ��〉〈∈̂〉Θ Δ � [ˇ��〉〈∈̂〉Γ Δ � [ˇ��〉〈∈̂〉Θ Y � X
CEM

�̂ � ((Γ ∩̂ Δ) �̌ X) ∨̌ ((Θ ∩̂ Π) �̌ ¬̃Y)

Γ � [�̌]X
T 〈ν̂〉Γ � X

Properties. The calculi introduced above are proper (cf. [20,35]), and hence
the general theory of proper multi-type display calculi guarantees that they
enjoy cut elimination and subformula property [8], and are sound w.r.t. their
corresponding class of perfect heterogeneous algebras (or equivalently, two-sorted
frames) [20]). In particular, key to the soundness argument for the axiomatic
extensions is the observation that (multi-type) analytic inductive inequalities
are canonical (i.e. preserved under taking canonical extensions of heterogeneous
algebras [6]). Canonicity is also key to the proof of conservativity of the calculi
w.r.t. the original logics (this is a standard argument which is analogous to those
in e.g. [18,21]). Completeness is argued by showing that the translations of each
rule and axiom is derivable in the corresponding calculus, and is sketched below.

N. ∇
 � [νc]〈��〉
 P. ¬∇⊥ � ¬〈ν〉[�]⊥ T. ∇A → A �
〈ν〉[�]A � A

�̂ � �
〈�̂〉�̂ � 〈�〉�

N
�̂ � [ν̌c]〈�〉�

⊥ � ⊥̌
[�]⊥ � [�̌]⊥̌

P
�̂ � ¬̃[�]⊥

A � A
[�]A � [�̌]A

T 〈ν̂〉[�]A � A

ID. A > A � ([�]A ∧ [��〉A) � A

Non Normal Logics: Semantic Analysis and Proof Theory 111

A � A

[�〉A � [ˇ�〉A
A � [ˇ∈〉[�〉A

[�]A � [�̌][ˇ∈〉[�〉A
〈∈̂〉[�]A � [ˇ∈〉[�〉A

[�〉A � [ˇ�〉〈∈̂〉[�]A

A � A
[�]A � [�̌]A

〈∈̂〉[�]A � A
ID

�̂ � ([�̌]A ∩̂ [ˇ�〉A) �̌ A

CS. (A ∧ B) → (A > B) � (A ∧ B) � ([�]A ∩ [��〉A) � B

A � A

[��〉A � [ˇ��〉A
A � [ˇ�∈〉[��〉A

[�]A � [�̌][ˇ�∈〉[��〉A

A � A

[��〉A � [ˇ��〉A
A � [ˇ�∈〉[��〉A B � B

CS
A ∧̂ B � ([�̌]A ∩̂ [ˇ��〉A) �̌ B

CEM. (A > B) ∨ (A > ¬B) � ([�]A ∩ [��〉A) � B ∨ ([�]A ∩ [��〉A) � ¬B

[��〉A � [ˇ��〉〈∈̂〉[�]A [��〉A � [ˇ��〉〈∈̂〉[�]A [��〉A � [ˇ��〉〈∈̂〉[�]A [��〉A � [ˇ��〉〈∈̂〉[�]A
CEM

�̂ � ([�]A ∩̂ [��〉A) �̌ B ∨̌ ([�]A ∩̂ [��〉A) �̌ ¬̃B

C. ∇A ∧ ∇B → ∇(A ∧ B) � 〈ν〉[�]A ∧ 〈ν〉[�]B � [νc]〈��〉(A ∧ B)
D. ∇A → ¬∇¬A � 〈ν〉[�]A � ¬〈ν〉[�]¬A

A � A
[�]A � [�]A

〈∈̂〉[�]A � A

B � B
[�]B � [�]B

〈∈̂〉[�]B � B

〈∈̂〉[�]A ∧̂ 〈∈̂〉[�]B � A ∧ B

〈ˆ�〉(〈∈̂〉[�]A ∧̂ 〈∈̂〉[�]B) � 〈�〉(A ∧ B)
C 〈ν̂〉[�]A ∧̂ 〈ν̂〉[�]B � [ν̌c]〈�〉(A ∧ B)

A � A
[�]A � [�̌]A

〈∈̂〉[�]A � A

¬A � ¬̃〈∈̂〉[�]A

[�]¬A � [�̌] ¬̃〈∈̂〉[�]A
D 〈ν̂〉[�]A � ¬̃〈ν̂〉[�]¬A

The (translations of the) rules M, RCEA and RCKn are derivable via the log-
ical rules for the corresponding multi-type connectives, adjunction/residuation,
weakening, contraction, the usual definition of ↔ and the fact that if (A →
B) ∧ (B → A) is derivable, then each conjoint is derivable too.

A Analytic Inductive Inequalities

In the present section, we specialize the definition of analytic inductive inequal-
ities (cf. [20]) to the multi-type languages LMT∇ and LMT> reported below.

S � A :: = p | � | ⊥ | ¬A | A ∧ A | 〈ν〉α | [νc]α S � A :: = p | � | ⊥ | ¬A | A ∧ A | α � A
N � α :: = 1 | 0 | ∼α | α ∩ α | [�]A | 〈��〉A N � α :: = 1 | 0 | ∼α | α ∩ α | [�]A | [��〉A.

112 J. Chen et al.

An order-type over n ∈ N is an n-tuple ε ∈ {1, ∂}n. If ε is an order type,
ε∂ is its opposite order type; i.e. ε∂(i) = 1 iff ε(i) = ∂ for every 1 ≤ i ≤ n.
The connectives of the language above are grouped together into the families
F := FS ∪ FN ∪ FMT and G := GS ∪ GN ∪ GMT, defined as follows:

FS := {¬} GS = {¬}
FN := {∼} GN := {∼}
FMT := {〈ν〉, 〈��〉} GMT := {[�], [νc],�, [��〉}

For any f ∈ F (resp. g ∈ G), we let nf ∈ N (resp. ng ∈ N) denote the arity of
f (resp. g), and the order-type εf (resp. εg) on nf (resp. ng) indicate whether
the ith coordinate of f (resp. g) is positive (εf (i) = 1, εg(i) = 1) or negative
(εf (i) = ∂, εg(i) = ∂).

Definition 8 (Signed Generation Tree). The positive (resp. negative) gen-
eration tree of any LMT-term s is defined by labelling the root node of the gen-
eration tree of s with the sign + (resp. −), and then propagating the labelling on
each remaining node as follows: For any node labelled with � ∈ F ∪ G of arity
n, and for any 1 ≤ i ≤ n, assign the same (resp. the opposite) sign to its ith
child node if ε(i) = 1 (resp. if ε(i) = ∂). Nodes in signed generation trees are
positive (resp. negative) if are signed + (resp. −).

For any term s(p1, . . . pn), any order type ε over n, and any 1 ≤ i ≤ n, an ε-
critical node in a signed generation tree of s is a leaf node +pi with ε(i) = 1
or −pi with ε(i) = ∂. An ε-critical branch in the tree is a branch ending in an
ε-critical node. For any term s(p1, . . . pn) and any order type ε over n, we say
that +s (resp. −s) agrees with ε, and write ε(+s) (resp. ε(−s)), if every leaf
in the signed generation tree of +s (resp. −s) is ε-critical. We will also write
+s′ ≺ ∗s (resp. −s′ ≺ ∗s) to indicate that the subterm s′ inherits the positive
(resp. negative) sign from the signed generation tree ∗s. Finally, we will write
ε(s′) ≺ ∗s (resp. ε∂(s′) ≺ ∗s) to indicate that the signed subtree s′, with the
sign inherited from ∗s, agrees with ε (resp. with ε∂).

Definition 9 (Good branch). Nodes in signed generation trees will be called
Δ-adjoints, syntactically left residual (SLR), syntactically right residual (SRR),
and syntactically right adjoint (SRA), according to the specification given in
Table 1. A branch in a signed generation tree ∗s, with ∗ ∈ {+,−}, is called a
good branch if it is the concatenation of two paths P1 and P2, one of which may
possibly be of length 0, such that P1 is a path from the leaf consisting (apart from
variable nodes) only of PIA-nodes and P2 consists (apart from variable nodes)
only of Skeleton-nodes.

+

Skeleton

+p s1

PIA

≤ −
Skeleton

+p s2

PIA

Non Normal Logics: Semantic Analysis and Proof Theory 113

Table 1. Skeleton and PIA nodes.

Definition 10 (Analytic inductive inequalities). For any order type ε and
any irreflexive and transitive relation <Ω on p1, . . . pn, the signed generation tree
∗s (∗ ∈ {−,+}) of an LMT term s(p1, . . . pn) is analytic (Ω, ε)-inductive if

1. every branch of ∗s is good (cf. Definition 9);
2. for all 1 ≤ i ≤ n, every SRR-node occurring in any ε-critical branch with leaf

pi is of the form �(s, β) or �(β, s), where the critical branch goes through β
and
(a) ε∂(s) ≺ ∗s (cf. discussion before Definition 9), and
(b) pk <Ω pi for every pk occurring in s and for every 1 ≤ k ≤ n.

An inequality s ≤ t is analytic (Ω, ε)-inductive if the signed generation trees
+s and −t are analytic (Ω, ε)-inductive. An inequality s ≤ t is analytic inductive
if is analytic (Ω, ε)-inductive for some Ω and ε.

B Algorithmic Proof of Theorem1

In what follows, we show that the correspondence results collected in Theorem 1
can be retrieved as instances of a suitable multi-type version of algorithmic
correspondence for normal logics (cf. [5,6]), hinging on the usual order-theoretic
properties of the algebraic interpretations of the logical connectives, while admit-
ting nominal variables of two sorts. For the sake of enabling a swift translation
into the language of m-frames and c-frames, we write nominals directly as sin-
gletons, and, abusing notation, we quantify over the elements defining these
singletons. These computations also serve to prove that each analytic structural
rule is sound on the heterogeneous perfect algebras validating its correspondent
axiom. In the computations relative to each analytic axiom, the line marked with
(�) marks the quasi-inequality that interprets the corresponding analytic rule.
This computation does not prove the equivalence between the axiom and the
rule, since the variables occurring in each starred quasi-inequality are restricted
rather than arbitrary. However, the proof of soundness is completed by observing
that all ALBA rules in the steps above the marked inequalities are (inverse) Ack-
ermann and adjunction rules, and hence are sound also when arbitrary variables
replace (co-)nominal variables.

114 J. Chen et al.

N. F � ∇� � � ⊆ [νc]〈��〉� P. F |= ¬∇⊥ � � ⊆ ¬〈ν〉[�]⊥
� ⊆ [νc]〈��〉� � ⊆ ¬〈ν〉[�]⊥

iff ∀X∀w[〈��〉� ⊆ {X}c ⇒ {w} ⊆ [νc]{X}c] iff ∀X[X ⊆ [�]⊥ ⇒ T ⊆ ¬〈ν〉X]

(�) first. app. (�) first. app.

iff ∀X∀w[X = W ⇒ {w} ⊆ [νc]{X}c) iff W ⊆ ¬〈ν〉[�]∅
(〈�〉� = {W}c)

iff ∀w[{w} ⊆ [νc]{W}c] iff W ⊆ ¬〈ν〉{∅} [�]∅ = {Z ⊆ W | Z ⊆ ∅}
iff ∀w[{w} ⊆ (R−1

νc [W])c] iff W ⊆ {w ∈ W | wRν∅}c

iff ∀w[{w} ⊆ R−1
ν [W]] iff ∀w[∅ �∈ ν(w)].

iff ∀w[W ∈ ν(w)]

C. F |= ∇p ∧ ∇q → ∇(p ∧ q) � 〈ν〉[�]p ∧ 〈ν〉[�]q ⊆ [νc]〈��〉(p ∧ q)

〈ν〉[�]p ∧ 〈ν〉[�]q ⊆ [νc]〈��〉(p ∧ q)

iff ∀Z1Z2Z3∀pq[{Z1} ⊆ [�]p & {Z2} ⊆ [�]q & 〈��〉(p ∧ q) ⊆ {Z3}c ⇒ 〈ν〉{Z1} ∧ 〈ν〉{Z2} ⊆ [νc]{Z3}c]

first approx.

iff ∀Z1Z2Z3∀pq[〈∈〉{Z1} ⊆ p & 〈∈〉{Z2} ⊆ q & 〈��〉(p ∧ q) ⊆ {Z3}c ⇒ 〈ν〉{Z1} ∧ 〈ν〉{Z2} ⊆ [νc]{Z3}c]

Residuation

iff ∀Z1∀Z2∀Z3[〈��〉(〈∈〉{Z1} ∧ 〈∈〉{Z2}) ⊆ {Z3}c ⇒ 〈ν〉{Z1} ∧ 〈ν〉{Z2} ⊆ [νc]{Z3}c] (�) Ackermann

iff ∀Z1∀Z2∀Z3[(〈∈〉{Z1} ∧ 〈∈〉{Z2}) ⊆ [�∈]{Z3}c ⇒ 〈ν〉{Z1} ∧ 〈ν〉{Z2} ⊆ [νc]{Z3}c] Residuation

iff ∀Z1∀Z2∀Z3[∀x(xR∈Z1 & xR∈Z2 ⇒ ¬xR/∈Z3) ⇒ ∀x(xRνZ1 & xRνZ2 ⇒ ¬xRνc Z3)]

Standard translation

iff ∀Z1∀Z2∀Z3[∀x(x ∈ Z1 & x ∈ Z2 ⇒ x ∈ Z3) ⇒ ∀x(Z1 ∈ ν(x) & Z2 ∈ ν(x) ⇒ Z3 ∈ ν(x))]

Relations interpretation

iff ∀Z1∀Z2∀Z3[Z1 ∩ Z2 ⊆ Z3 ⇒ ∀x(Z1 ∈ ν(x) & Z2 ∈ ν(x) ⇒ Z3 ∈ ν(x))]

iff ∀Z1∀Z2∀x(Z1 ∈ ν(x) & Z2 ∈ ν(x) ⇒ Z1 ∩ Z2 ∈ ν(x))]. Monotonicity

4’. F |= ∇p → ∇∇p � 〈ν〉[�]p ⊆ [νc]〈��〉[νc]〈��〉p

〈ν〉[�]p ⊆ [νc]〈��〉[νc]〈��〉p

iff ∀Z1∀x′∀p[{Z1} ⊆ [�]p & [νc]〈��〉[νc]〈��〉p ⊆ {x′}c) ⇒ 〈ν〉{Z1} ⊆ {x′}c] first approx.

iff ∀Z1∀x′∀p[〈∈〉{Z1} ⊆ p & [νc]〈��〉[νc]〈��〉p ⊆ {x′}c) ⇒ 〈ν〉{Z1} ⊆ {x′}c] Residuation

iff ∀Z1∀x′[[νc]〈��〉[νc]〈��〉〈∈〉{Z1} ⊆ {x′}c ⇒ 〈ν〉{Z1} ⊆ {x′}c] Ackermann

iff ∀Z1[〈ν〉{Z1} ⊆ [νc]〈��〉[νc]〈��〉〈∈〉{Z1}]

iff ∀Z1∀x[xRνZ1 ⇒ ∀Z2(xRνc Z2 ⇒ ∃y(Z2R��y & ∀Z3(yRνc Z3 ⇒ ∃w(Z3R��w & wR∈Z1))))]

Standard translation

iff ∀Z1∀x[x ∈ ν(Z) ⇒ ∀Z2(Z2 �∈ ν(x) ⇒ ∃y(y �∈ Z2 & ∀Z3(Z2 �∈ ν(y) ⇒ ∃w(w �∈ Z3 & w ∈ Z1))))]

Relations translation

iff ∀Z1∀x[x ∈ ν(Z) ⇒ ∀Z2(Z2 �∈ ν(x) ⇒ ∃y(y �∈ Z2 & ∀Z3(Z2 �∈ ν(y) ⇒ Z1 � Z3)))]

Relations translation

iff ∀Z1∀x[x ∈ ν(Z) ⇒ (∀Z2(∀y(∀Z3(Z1 ⊆ Z3 ⇒ Z3 ∈ ν(y)) ⇒ y ∈ Z2) ⇒ Z2 ∈ ν(x)))]

Contraposition

iff ∀Z1∀x[x ∈ ν(Z) ⇒ (∀Z2(∀y(Z1 ∈ ν(y)) ⇒ y ∈ Z2) ⇒ Z2 ∈ ν(x)))] Monotonicity

iff ∀Z1∀x[x ∈ ν(Z) ⇒ {y | Z1 ∈ ν(y)} ∈ ν(x)]. Monotonicity

4. F |= ∇∇p → ∇p � 〈ν〉[�]〈ν〉[�]p ⊆ [νc]〈��〉p

〈ν〉[�]〈ν〉[�]p ⊆ [νc]〈��〉p

iff ∀x∀Z1∀p[{x} ⊆ 〈ν〉[�]〈ν〉[�]p & 〈��〉p ⊆ {Z1}c ⇒ {x} ⊆ [νc]{Z1}c] first approx.

iff ∀x∀Z1∀p[{x} ⊆ 〈ν〉[�]〈ν〉[�]p & p ⊆ [/∈]{Z1}c ⇒ {x} ⊆ [νc]{Z1}c] Adjunction

iff ∀x∀Z1[{x} ⊆ 〈ν〉[�]〈ν〉[�][/∈]{Z1}c ⇒ {x} ⊆ [νc]{Z1}c] Ackermann

iff ∀x∀Z1[(∃Z2(xRνZ2 & ∀y(Z2R�y ⇒ ∃Z3(yRνZ3 & ∀w(Z3R�w ⇒ ¬wR�∈Z1))))) ⇒ ¬xRνc Z1]

Standard translation

iff ∀x∀Z1[((∃Z2 ∈ ν(x))(∀y ∈ Z2)(∃Z3 ∈ ν(y))(∀w ∈ Z3)(w ∈ Z1)) ⇒ Z1 ∈ ν(x)]

Relation translation

iff ∀x∀Z1[((∃Z2 ∈ ν(x))(∀y ∈ Z2)(∃Z3 ∈ ν(y))(Z3 ⊆ Z1)) ⇒ Z1 ∈ ν(x)]

iff ∀x∀Z1∀Z2[(Z2 ∈ ν(x) & (∀y ∈ Z2)(∃Z3 ∈ ν(y))(Z3 ⊆ Z1)) ⇒ Z1 ∈ ν(x)]

iff ∀x∀Z1∀Z2[(Z2 ∈ ν(x) & (∀y ∈ Z2)(Z1 ∈ ν(y))) ⇒ Z1 ∈ ν(x)] Monotonicity

Non Normal Logics: Semantic Analysis and Proof Theory 115

5. F |= ¬∇¬p → ∇¬∇¬p � ¬[νc]〈��〉¬p ⊆ [νc]〈��〉¬〈ν〉[�]¬p

¬[νc]〈��〉¬p ⊆ [νc]〈��〉¬〈ν〉[�]¬p

iff ∀x∀Z1[[νc]〈��〉¬〈ν〉[�]¬p ⊆ {x}c & 〈��〉¬p ⊆ {Z1}c ⇒ ¬[νc]{Z}c ⊆ {x}c] first approx.

iff ∀x∀Z1[[νc]〈��〉¬〈ν〉[�]¬p ⊆ {x}c & ¬[�∈]{Z1}c ⊆ p ⇒ ¬[νc]{Z}c ⊆ {x}c] Residuation

iff ∀x∀Z1[[νc]〈��〉¬〈ν〉[�]¬¬[�∈]{Z1}c ⊆ {x}c ⇒ ¬[νc]{Z}c ⊆ {x}c] Ackermann

iff ∀Z1[¬[νc]{Z1}c ⊆ [νc]〈��〉¬〈ν〉[�]¬¬[�∈]{Z1}c]

iff ∀Z1∀x[xRνc Z1 ⇒ ∀Z2(xRνc Z2 ⇒ ∃y(Z2R��y & ∀Z3(yRνZ3 ⇒ ∃w(Z3R�w & wR/∈Z1))))]

Standard translation

iff ∀Z1∀x[Z1 /∈ ν(x) ⇒ (∀Z2 /∈ ν(x))(∃y /∈ Z2)(∀Z3 ∈ ν(y))(∃w ∈ Z3)(w /∈ Z1)]

Relation translation

iff ∀Z1∀x[Z1 /∈ ν(x) ⇒ (∀Z2 /∈ ν(x))(∃y /∈ Z2)(∀Z3 ∈ ν(y))(Z3 � Z1)]

iff ∀Z1∀x[Z1 /∈ ν(x) ⇒ ∀Z2(((∀y /∈ Z2)(∃Z3 ∈ ν(y))(Z3 ⊆ Z1)) ⇒ Z2 ∈ ν(x))]

Contraposition

iff ∀Z1∀x[Z1 /∈ ν(x) ⇒ ∀Z2((∀y /∈ Z2)(Z1 ∈ ν(y)) ⇒ Z2 ∈ ν(x))] Monotonicity

iff ∀Z1∀x[Z1 /∈ ν(x) ⇒ {y | Z1 ∈ ν(y)}c ∈ ν(x))] Monotonicity

B. F |= p → ∇¬∇¬p � p ⊆ [νc]〈��〉¬〈ν〉[�]¬p

p ⊆ [νc]〈��〉¬〈ν〉[�]¬p

iff ∀x∀p[{x} ⊆ p ⇒ {x} ⊆ [νc]〈��〉¬〈ν〉[�]¬p] first approx.

iff ∀x[{x} ⊆ [νc]〈��〉¬〈ν〉[�]¬{x}] Ackermann

iff ∀x[{x} ⊆ [νc]〈��〉[ν]〈�〉{x}]

iff ∀x[∀Z1(xRνc Y ⇒ ∃y(Y R��x & ∀Z2(yRνZ2 ⇒ Z2R�x)))] Standard translation

iff ∀x[∀Z1(Z1 �∈ ν(x) ⇒ ∃y(x �∈ Z1 & ∀Z2(Z2 ∈ ν(y) ⇒ x ∈ Z2)))] Relations translation

iff ∀x[∀Z1(∀y(∀Z2(x /∈ Z2 ⇒ Z2 /∈ ν(y)) ⇒ y ∈ Z1) ⇒ Z1 ∈ ν(x))] Contrapositive

iff ∀x[∀Z1(∀y({x}c /∈ ν(y1)) ⇒ y ∈ Z1) ⇒ Z1 ∈ ν(x))] Monotonicity

iff ∀x[{y | {x}c /∈ ν(y)} ∈ ν(x))] Monotonicity

iff ∀x∀X[x ∈ X ⇒ {y | Xc /∈ ν(y)} ∈ ν(x)] Monotonicity

D. F |= ∇p → ¬∇¬p � 〈ν〉[�]p ⊆ ¬〈ν〉[�]¬p

〈ν〉[�]p ⊆ ¬〈ν〉[�]¬p

iff ∀Z∀Z′[{Z} ⊆ [�]p & Z′ ⊆ [�]¬p ⇒ 〈ν〉{Z} ⊆ ¬〈ν〉Z′] first approx.

iff ∀Z∀Z′[〈∈〉{Z} ⊆ p & {Z′} ⊆ [�]¬p ⇒ 〈ν〉{Z} ⊆ ¬〈ν〉{Z′}] Residuation

iff ∀Z∀Z′[{Z′} ⊆ [�]¬〈∈〉{Z} ⇒ 〈ν〉{Z} ⊆ ¬〈ν〉{Z′}] (�) Ackermann

iff ∀Z[〈ν〉{Z} ⊆ ¬〈ν〉[�]¬〈∈〉{Z}]

iff ∀Z[〈ν〉{Z} ⊆ [ν]〈�〉〈∈〉{Z}]

iff ∀Z∀x[xRνZ ⇒ ∀Y (xRνY ⇒ ∃w(Y R�w & wR∈Z))] Standard Translation

iff ∀Z∀x[Z ∈ ν(x) ⇒ ∀Y (Y ∈ ν(x) ⇒ ∃w(w ∈ Y & w ∈ Z))] Relation translation

iff ∀Z∀x[Z ∈ ν(x) ⇒ ∀Y (Y ∈ ν(x) ⇒ Y � Zc)]

iff ∀Z∀x[Z ∈ ν(x) ⇒ ∀Y (Y ⊆ Zc ⇒ Y /∈ ν(x))] Contrapositive

iff ∀Z∀x∀Y [Z ∈ ν(x) ⇒ Zc /∈ ν(x)] Monotonicity

CS. F |= (p ∧ q) → (p � q) � (p ∧ q) ⊆ ([�]p ∧ [��〉p)�q

(p ∧ q) ⊆ ([�]p ∩ [��〉p)�q

iff ∀x∀Z∀x′∀pq[{x} ⊆ p ∧ q & {Z} ⊆ [�]p ∩ [��〉p & q ⊆ {x′}c ⇒ {x} ⊆ {Z}�{x′}c]

first. approx.

iff ∀x∀Z∀x∀p∀q[{x} ⊆ p & {x} ⊆ q & {Z} ⊆ [�]p & {Z} ⊆ [��〉p & q ⊆ {x′}c ⇒ {x} ⊆ {Z}�{x′}c]

Splitting rule

iff ∀x∀Z∀x′∀p∀q[{x} ⊆ p & {x} ⊆ q & {Z} ⊆ [�]p & p ⊆ [�∈〉{Z} & q ⊆ {x′}c ⇒ {x} ⊆ {Z}�{x′}c]

Residuation

iff ∀x∀Z∀x′∀q[{x} ⊆ [�∈〉{Z} & {x} ⊆ q & {Z} ⊆ [�][�∈〉{Z} & q ⊆ {x′}c ⇒ {x} ⊆ {Z}�{x′}c]

Ackermann

iff ∀x∀Z∀x′[{x} ⊆ [�∈〉{Z} & {Z} ⊆ [�][�∈〉{Z} & {x} ⊆ {x′}c ⇒ {x} ⊆ {Z}�{x′}c]

(�) Ackermann

iff ∀x∀Z[{x} ⊆ [�∈〉{Z} & {Z} ⊆ [�][�∈〉{Z} ⇒ {x} ⊆ {Z}�{x}]

iff ∀x∀Z[¬xR�∈Z & ∀y(ZR�y ⇒ ¬yR�∈Z) ⇒ ∀y(Tf (x, Z, y) ⇒ y = x)] Standard translation

iff ∀x∀Z[x ∈ Z & ∀y(y ∈ Z ⇒ Z ∈ y) ⇒ ∀y(y ∈ f(x, Z) ⇒ y = x)] Relation interpretation

iff ∀x∀Z[x ∈ Z ⇒ ∀y(y ∈ f(x, Z) ⇒ y = x)]

iff ∀x∀Z[x ∈ Z ⇒ f(x, Z) ⊆ {x}]

116 J. Chen et al.

ID. F |= p � p � ([�]p ∩ [��〉p)�p

� ⊆ ([�]p ∩ [��〉p)�p

iff ∀ZZ′∀x′p[({Z} ⊆ [�]p & {Z′} ⊆ [��〉p & p ⊆ {x′}c) ⇒ � ⊆ ({Z} ∩ {Z′})�{x′}c] first approx.

iff ∀ZZ′∀x′p[(〈∈〉{Z} ⊆ p & {Z′} ⊆ [��〉p & p ⊆ {x′}c) ⇒ � ⊆ ({Z} ∩ {Z′})�{x′}c] Adjunction

iff ∀Z∀Z′∀x′[({Z′} ⊆ [��〉〈∈〉{Z} & 〈∈〉{Z} ⊆ {x′}c) ⇒ � ⊆ ({Z} ∩ {Z′})�{x′}c Ackermann

iff ∀Z∀Z′[{Z′} ⊆ [��〉〈∈〉{Z} ⇒ ∀x′[〈∈〉{Z} ⊆ {x′}c ⇒ � ⊆ ({Z} ∩ {Z′})�{x′}c]] Currying

iff ∀Z∀Z′[{Z′} ⊆ [��〉〈∈〉{Z} ⇒ � ⊆ ({Z} ∩ {Z′})�〈∈〉{Z}] (�) Ackermann

iff ∀x∀Z∀Z′[∀w(Z′R��w ⇒ ¬wR∈Z) ⇒ ∀y(Tf (x, Z, y) & Z = Z′ ⇒ y ∈ Z)]

Standard Translation

iff ∀x∀Z∀Z′∀y[∀w(Z′R��w ⇒ ¬wR∈Z) & (Tf (x, Z, y) & Z = Z′ ⇒ y ∈ Z)]

iff ∀x∀Z∀Z′∀y[∀w(w /∈ Z′ ⇒ w /∈ Z) & (y ∈ f(x, Z) & Z = Z′ ⇒ y ∈ Z)]

Relation interpretation

iff ∀x∀Z∀Z′∀y[Z ⊆ Z′ & (y ∈ f(x, Z) & Z = Z′ ⇒ y ∈ Z)]

iff ∀x∀Z∀y[(y ∈ f(x, Z) ⇒ y ∈ Z)]

iff ∀x∀Z[f(x, Z) ⊆ Z]

T. F |= ∇p → p � 〈ν〉[�]p ⊆ p

〈ν〉[�]p ⊆ p
iff ∀x∀Z∀p[p ⊆ {x}c & {Z} ⊆ [�]p ⇒ 〈ν〉{Z} ⊆ {x}c] first approx.
iff ∀x∀Z∀p[p ⊆ {x}c & 〈∈〉{Z} ⊆ p ⇒ 〈ν〉{Z} ⊆ {x}c] Adjunction
iff ∀x∀Z[〈∈〉{Z} ⊆ {x}c ⇒ 〈ν〉{Z} ⊆ {x}c] (
) Ackermann
iff ∀Z[〈ν〉{Z} ⊆ 〈�〉{Z}] inverse approx.
iff ∀x∀Z[xRνZ ⇒ xR�Z] Standard translation
iff ∀x∀Z[Z ∈ ν(x) ⇒ x ∈ Z]. Relation translation

CEM. F |= (p � q) ∨ (p � ¬q) � (([�]p ∩ [��〉p)�q) ∨ (([�]p ∩ [��〉p)�¬q)

� ⊆ (([�]p ∩ [��〉p)�q) ∨ (([�]p ∩ [��〉p)�¬q)

iff ∀p∀q∀X∀Y ∀x∀y({X} ⊆ [�]p ∩ [��〉p & {Y } ⊆ [�]p ∩ [��〉p & q ⊆ {x}c & {y} ⊆ q

⇒ � ⊆ ({X}�{x}c) ∨ ({Y }�¬{y}) first approx.

iff ∀p∀q∀X∀Y ∀x∀y({X} ⊆ [�]p & {X} ⊆ [��〉p & {Y } ⊆ [�]p & {Y } ⊆ [��〉p & q ⊆ {x}c & {y} ⊆ q

⇒ � ⊆ ({X}�{x}c) ∨ ({Y }�¬{y}) (�) Splitting

iff ∀p∀q∀X∀Y ∀x∀y({X} ⊆ [�]p & p ⊆ [�∈〉{X} & {Y } ⊆ [�]p & p ⊆ [�∈〉{Y } & q ⊆ {x}c & {y} ⊆ q

⇒ � ⊆ ({X}�{x}c) ∨ ({Y }�¬{y}) Residuation

iff ∀X∀Y ∀x∀y({X} ∨ {Y } ⊆ [�]([�∈〉{X} ∧ [�∈〉{Y }) & {y} ⊆ {x}c

⇒ � ⊆ ({X}�{x}c) ∨ ({Y }�¬{y}) Ackermann

iff ∀X∀Y ∀x({X} ∨ {Y } ⊆ [�]([�∈〉{X} ∧ [�∈〉{Y }) ⇒ ∀y({y} ⊆ {x}c ⇒ � ⊆ ({X}�{x}c) ∨ ({Y }�¬{y}))

Currying

iff ∀X∀Y ∀x({X} ∨ {Y } ⊆ [�]([�∈〉{X} ∧ [�∈〉{Y }) ⇒ � ⊆ ({X}�{x}c) ∨ ({Y }�¬{x}c))

iff ∀X∀Y ∀x[(∀y(XR�y or Y R�y) ⇒ ¬yR�∈X & ¬yR�∈Y)

⇒ ∀y(¬Tf (y, X, x) or (∀z(Tf (y, Y, z) ⇒ z = x)))] Standard translation

iff ∀X∀Y ∀x[(∀y(y ∈ X or y ∈ Y) ⇒ y ∈ X & y ∈ Y)

⇒ ∀y(x /∈ f(y, X) or (∀z(z ∈ f(y, Y) ⇒ z = x)))] Relation interpretation

iff ∀X∀Y ∀x[(X ∪ Y ⊆ X ∩ Y) ⇒ ∀y(x /∈ f(y, X) or (∀z(z ∈ f(y, Y) ⇒ z = x)))]

iff ∀X∀Y ∀x[X = Y ⇒ ∀y(x /∈ f(y, X) or (∀z(z ∈ f(y, Y) ⇒ z = x)))]

iff ∀X∀x∀y[(x /∈ f(y, X) or (∀z(z ∈ f(y, X) ⇒ z = x)))]

iff ∀X∀x∀y[(x ∈ f(y, X) ⇒ f(y, X) = {x})]

iff ∀X∀y[|f(y, X)| ≤ 1]

References

1. B́ılková, M., Greco, G., Palmigiano, A., Tzimoulis, A., Wijnberg, N.: The logic of
resources and capabilities. Rev. Symb. Log. 11(2), 371–410 (2018)

2. Birkhoff, G., Lipson, J.: Heterogeneous algebras. J. Comb. Theory 8(1), 115–133
(1970)

3. Chellas, B.F.: Basic conditional logic. J. Philos. Log. 4(2), 133–153 (1975)
4. Chellas, B.F.: Modal Logic: An Introduction. Cambridge University Press, Cam-

bridge (1980)
5. Conradie, W., Ghilardi, S., Palmigiano, A.: Unified correspondence. In: Baltag, A.,

Smets, S. (eds.) Johan van Benthem on Logic and Information Dynamics. OCL,
vol. 5, pp. 933–975. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
06025-5 36

https://doi.org/10.1007/978-3-319-06025-5_36
https://doi.org/10.1007/978-3-319-06025-5_36

Non Normal Logics: Semantic Analysis and Proof Theory 117

6. Conradie, W., Palmigiano, A.: Algorithmic correspondence and canonicity for
non-distributive logics. Ann. Pure Appl. Log. (2019, in press). ArXiv preprint
arXiv:1603.08515

7. Frittella, S., Greco, G., Kurz, A., Palmigiano, A.: Multi-type display calculus for
propositional dynamic logic. J. Log. Comput. 26(6), 2067–2104 (2016)

8. Frittella, S., Greco, G., Kurz, A., Palmigiano, A., Sikimić, V.: Multi-type sequent
calculi. In: Indrzejczak, A., et al. (eds.) Proceedings of Trends in Logic XIII, pp.
81–93 (2014)

9. Frittella, S., Greco, G., Kurz, A., Palmigiano, A., Sikimic, V.: Multi-type display
calculus for dynamic epistemic logic. J. Log. Comput. 26(6), 2017–2065 (2016)

10. Frittella, S., Greco, G., Kurz, A., Palmigiano, A., Sikimic, V.: A proof-theoretic
semantic analysis of dynamic epistemic logic. J. Log. Comput. 26(6), 1961–2015
(2016)

11. Frittella, S., Greco, G., Palmigiano, A., Yang, F.: A multi-type calculus for inquis-
itive logic. In: Väänänen, J., Hirvonen, Å., de Queiroz, R. (eds.) WoLLIC 2016.
LNCS, vol. 9803, pp. 215–233. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-52921-8 14

12. Frittella, S., Palmigiano, A., Santocanale, L.: Dual characterizations for finite lat-
tices via correspondence theory for monotone modal logic. JLC 27(3), 639–678
(2017)

13. Gabbay, D., Giordano, L., Martelli, A., Olivetti, N., Sapino, M.L.: Conditional
reasoning in logic programming. J. Log. Program. 44(1–3), 37–74 (2000)

14. Gasquet, O., Herzig, A.: From classical to normal modal logics. In: Wansing, H.
(ed.) Proof Theory of Modal Logic. APLS, vol. 2, pp. 293–311. Springer, Dordrecht
(1996). https://doi.org/10.1007/978-94-017-2798-3 15

15. Gehrke, M., Jónsson, B.: Bounded distributive lattice expansions. Mathematica
Scandinavica, 13–45 (2004)

16. Greco, G., Jipsen, P., Manoorkar, K., Palmigiano, A., Tzimoulis, A.: Logics for
rough concept analysis. In: Khan, M.A., Manuel, A. (eds.) ICLA 2019. LNCS, vol.
11600, pp. 144–159. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-
662-58771-3 14

17. Greco, G., Liang, F., Manoorkar, K., Palmigiano, A.: Proper multi-type display
calculi for rough algebras. ArXiv preprint arXiv:1808.07278 (2018)

18. Greco, G., Liang, F., Moshier, M.A., Palmigiano, A.: Multi-type display calculus
for semi De Morgan logic. In: Kennedy, J., de Queiroz, R.J.G.B. (eds.) WoLLIC
2017. LNCS, vol. 10388, pp. 199–215. Springer, Heidelberg (2017). https://doi.org/
10.1007/978-3-662-55386-2 14

19. Greco, G., Liang, F., Palmigiano, A., Rivieccio, U.: Bilattice logic properly dis-
played. Fuzzy Sets Syst. 363, 138–155 (2018)

20. Greco, G., Ma, M., Palmigiano, A., Tzimoulis, A., Zhao, Z.: Unified correspondence
as a proof-theoretic tool. J. Log. Comput. 28(7), 1367–1442 (2018)

21. Greco, G., Palmigiano, A.: Linear logic properly displayed. arXiv preprint
arXiv:1611.04184 (2016)

22. Greco, G., Palmigiano, A.: Lattice logic properly displayed. In: Kennedy, J., de
Queiroz, R.J.G.B. (eds.) WoLLIC 2017. LNCS, vol. 10388, pp. 153–169. Springer,
Heidelberg (2017). https://doi.org/10.1007/978-3-662-55386-2 11

23. Hansen, H.H.: Monotonic modal logics. Institute for Logic, Language and Compu-
tation (ILLC), University of Amsterdam (2003)

24. Jónsson, B., Tarski, A.: Boolean algebras with operators. Part I. Am. J. Math.
73(4), 891–939 (1951)

http://arxiv.org/abs/1603.08515
https://doi.org/10.1007/978-3-662-52921-8_14
https://doi.org/10.1007/978-3-662-52921-8_14
https://doi.org/10.1007/978-94-017-2798-3_15
https://doi.org/10.1007/978-3-662-58771-3_14
https://doi.org/10.1007/978-3-662-58771-3_14
http://arxiv.org/abs/1808.07278
https://doi.org/10.1007/978-3-662-55386-2_14
https://doi.org/10.1007/978-3-662-55386-2_14
http://arxiv.org/abs/1611.04184
https://doi.org/10.1007/978-3-662-55386-2_11

118 J. Chen et al.

25. Kracht, M., Wolter, F.: Normal monomodal logics can simulate all others. J. Symb.
Log. 64(1), 99–138 (1999)

26. Lewis, D.: Counterfactuals. Wiley, Hoboken (2013)
27. Manoorkar, K., Nazari, S., Palmigiano, A., Tzimoulis, A., Wijnberg, N.M.: Rough

concepts (2018, Submitted)
28. Negri, S.: Proof theory for non-normal modal logics: the neighbourhood formalism

and basic results. IFCoLog J. Log. Appl. 4, 1241–1286 (2017)
29. Nute, D.: Topics in Conditional Logic, vol. 20. Springer, Heidelberg (2012)
30. Olivetti, N., Pozzato, G., Schwind, C.: A sequent calculus and a theorem prover

for standard conditional logics. ACM Trans. Comput. Log. 8, 40–87 (2007)
31. Pauly, M.: A modal logic for coalitional power in games. JLC 12(1), 149–166 (2002)
32. Pauly, M., Parikh, R.: Game logic - an overview. Studia Logica 75(2), 165–182

(2003)
33. Tzimoulis, A.: Algebraic and proof-theoretic foundations of the logics for social

behaviour. Ph.D. thesis. TU Delft (2018)
34. van Benthem, J., Pacuit, E.: Dynamic logics of evidence-based beliefs. Studia Log-

ica 99(1–3), 61 (2011)
35. Wansing, H.: Displaying Modal Logic, vol. 3. Springer, Heidelberg (2013)

Modeling the Interaction of Computer
Errors by Four-Valued Contaminating

Logics

Roberto Ciuni1, Thomas Macaulay Ferguson2,3(B), and Damian Szmuc4

1 Department FISPPA, Section of Philosophy, University of Padova, Padua, Italy
roberto.ciuni@unipd.it
2 Cycorp, Austin, USA

3 Saul Kripke Center, CUNY Graduate Center, New York, USA
tferguson@gradcenter.cuny.edu

4 IIF-SADAF, CONICET and Department of Philosophy,
University of Buenos Aires, Buenos Aires, Argentina

szmucdamian@gmail.com

Abstract. Logics based on weak Kleene algebra (WKA) and related
structures have been recently proposed as a tool for reasoning about
flaws in computer programs. The key element of this proposal is the
presence, in WKA and related structures, of a non-classical truth-value
that is “contaminating” in the sense that whenever the value is assigned
to a formula φ, any complex formula in which φ appears is assigned
that value as well. Under such interpretations, the contaminating states
represent occurrences of a flaw. However, since different programs and
machines can interact with (or be nested into) one another, we need to
account for different kind of errors, and this calls for an evaluation of sys-
tems with multiple contaminating values. In this paper, we make steps
toward these evaluation systems by considering two logics, HYB1 and
HYB2, whose semantic interpretations account for two contaminating
values beside classical values 0 and 1. In particular, we provide two main
formal contributions. First, we give a characterization of their relations
of (multiple-conclusion) logical consequence—that is, necessary and suf-
ficient conditions for a set Δ of formulas to logically follow from a set Γ
of formulas in HYB1 or HYB2. Second, we provide sound and complete
sequent calculi for the two logics.

1 Introduction

Applications of logic to the topic of reasoning about computer errors date back
at least to McCarthy’s [16]. There, critical errors affecting sequential (i.e., ‘lazy’
or ‘short-circuit’) evaluation are considered, and the main intuition concerning
such errors is that the exact step of the computation in which the error occurs
determine which string of information fails to be computed. For instance, if one
is computing the value of φ ∨ ψ and an error occurs while computing the value
of φ, then the computation will stop without establishing a value. By contrast,
c© Springer-Verlag GmbH Germany, part of Springer Nature 2019
R. Iemhoff et al. (Eds.): WoLLIC 2019, LNCS 11541, pp. 119–139, 2019.
https://doi.org/10.1007/978-3-662-59533-6_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-59533-6_8&domain=pdf
https://doi.org/10.1007/978-3-662-59533-6_8

120 R. Ciuni et al.

if the error occurs when computing the value of ψ and after computing the
value of φ—assigning, say, 1—then the computation will prove successful and
assign value 1 to φ ∨ ψ. This kind of error, in a nutshell, suggests the need for
a non-commutative disjunction (and conjunction). Avron and Konikowska’s [1]
made progress with respect to [16] by providing tools for reasoning about errors
in parallel computing, and by proposing a four-valued logic for reasoning about
the interaction of the two kinds of errors. In particular, the logic for reasoning
on errors in parallel computing is the strong Kleene logic K3, which is in turn
interpreted on the so-called (strong) Kleene algebra from [15].

More recently, [11] has discussed another kind of error, such as those that
emerge from the failure to declare a variable in programs that are based on C++.
An interesting consequence by the discussion in [11] is that these kinds of error
are not suitably represented by structures such as strong Kleene algebra, or by
the matrix proposed in [16]. By contrast, such errors would be better represented
by weak Kleene algebra (WKA). This algebra comprises a non-classical value n
beside 0 and 1; such a value, in turn, contaminates the other, in the sense that,
if it is assigned to any input of a truth function, it will be assigned to the output
of the truth function, independently from the value of the other inputs.

Two non-trivial logics are based on WKA, namely systems Kw
3 from [4] and

PWK from [14]. [11] considers the former in his computational interpretation of
the third value from WKA.

The kinds of error pointed at in [11] are novel with respect to [1,16], but
contrary to [1], [11] does not consider the interaction of distinct types of error.
This is limiting, since a host of different errors may display the contaminating
behavior of value n, or a very close behavior—see Sect. 4 below. This seems to
call for sublogics of Kw

3 , where each contaminating value represent a different
kind of error.

In this paper, we consider two families of computer errors that, in our view,
can be represented by a contaminating value. These are code errors involving
errors in software, and physical errors involving the physical machine on which
the software runs—see Sect. 4 below. In order to provide reasoning tools that can,
in principle, capture the interaction of these two kinds of errors, we introduce
a four-valued algebra that is somehow inspired to WKA; we call this further
structure ‘hybrid algebra’, since it hybridizes two different contaminating values.
Also, we introduce two logics that are interpreted on the hybrid algebra, namely
the four-valued systems HYB1 and HYB2. These in turn provides reasoning tools
that can account for the interaction of the two kinds of errors above.

Given the role played by contaminating values in the systems we present
here, we call Kw

3 , PWK, HYB1 and HYB2 ‘contaminating logics’. We provide
some semantic and proof-theoretical results for the two four-valued contaminat-
ing logics HYB1 and HYB2. In particular, we provide sound and complete sequent
calculi, and a characterization of the two logics—that is, a way to establish HYB1-
and HYB2-consequence relations on the ground of Kw

3 - or PWK-consequence
relations, or, alternatively, on the ground of classical consequence. In view of
the results concerning sequent calculi, we focus on so-called multiple-conclusion

Modeling the Interaction of Computer Errors 121

consequence relations. We believe this secures a nice uniformity between the
semantic and the proof-theoretic parts of the paper.

The paper proceeds as follows. After introducing some preliminaries in
Sect. 2, in Sect. 3 we present the basic contaminating logics Kw

3 and PWK from
[4] and [14], respectively. This will allow the reader to familiarize with contam-
inating logics and their envisaged applications to computer errors. In Sect. 4,
we discuss the interaction of different sources of computer errors, with each of
the sources discussed operating at different levels. In order to capture such an
interaction, we introduce the hybrid algebra HYB and two four-valued contam-
inating logics interpreted on it, namely systems HYB1 and HYB2. In Sect. 5,
we provide sound and complete annotated sequent calculi for the two logics.
Section 6 provides conclusions and discuss some research directions.

2 Preliminaries

Given a similarity type ν and a countably infinitely set X = {p, q, r, . . . } of
generators (the propositional variables), we define the formula algebra Fml over
X of type ν as the absolutely free algebra defined on X, with Fml denoting
the universe of Fml, and the members of Fml being formulas, which we denote
by φ, ψ, θ, Γ,Δ, Ψ . . . denote sets of formulas. In this paper, Fml will be a
formula algebra of type (1, 2, 2), namely, of the type containing the connectives
¬,∨,∧. Given this, we feel free to omit reference to the type ν in what follows.1

We define a logic (of type ν) as a pair S = 〈Fml,�S〉, with Fml a formula
algebra (of type ν) and �S ⊆ P(Fml)×P(Fml) a substitution invariant multiple-
conclusion consequence relation.

We define a matrix as a pair M = 〈A,D〉 with A an algebra (of some given
type ν) with universe A and D ⊂ A. D is called the filter of M. Informally, we
think of the members of A as truth-values, and of members of D as designated
truth values.2

The following notion of a submatrix is relevant for our purposes:

Definition 1. A matrix M = 〈A,D〉 is a submatrix of a matrix M′ = 〈A′,D′〉
(M 	 M′) if and only if A is a subalgebra of A′ and D = D′ ∩ A.

In this paper, we focus on matrices that have the MCL of classical logic as a
submatrix. In particular, classical logic CL can be defined as 〈Fml, |=MCL

〉, and
1 Throughout the paper, we adopt the standard notation and basic definitions from
Abstract Algebraic Logic, as presented e.g. in [13]. One important exception with
regard to [13], however, concerns our definition of multiple-conclusion matrix conse-
quence (see below).

2 Notice that, in using these notions, we do not assume or even try to stress that we
do not allow the presence of matrices whose algebraic reduct is the trivial algebra.
However, as will become clear shortly, in this paper our interest is in investigating
logics induced by matrices having contaminating values which, in turn, extend the
two-valued matrix inducing classical logic—i.e. the matrix whose algebraic reduct
is the two-element Boolean algebra. We would like to thank an anonymous reviewer
for urging us to clarify this issue.

122 R. Ciuni et al.

MCL is defined as 〈B2, {1}〉, where B2 = 〈{0, 1},¬,∨,∧〉 is the well-known two-
element Boolean algebra of type (1, 2, 2). The elements 0 and 1 of its universe
are informally interpreted as ‘false’ and ‘true’, respectively, with 1 being the only
designated value in MCL.

A further relevant notion is that of a valuation:

Definition 2. A valuation is a homomorphism v : Fml −→ A from a formula
algebra Fml into an algebra A of the same type.

We denote by HomFml,A the set of valuations for Fml defined on A. When Fml
is clear by the context and we wish to focus on the matrix rather than on the
algebra, we write HomM . For every M = 〈A,D〉, we let HomM(Γ) be the set
{v ∈ HomM | v[Γ] ⊆ D} of the models of Γ based on M.

Logical matrices, in turn, can be seen to give raise to substitution invari-
ant multiple-conclusion consequence relations—the so-called matrix consequence
relation—as the next definition illustrates:

Definition 3. Given a matrix M = 〈A,D〉, the relation |=M ⊆ P(Fml) ×
P(Fml) defined as follows:

Γ |=M Δ ⇔ for every v ∈ HomM , ν[Γ] ⊆ D implies ν(ψ) ∈ D for some ψ ∈ Δ

is a multiple-conclusion matrix consequence relation.

We follow standard terminology and say that Δ is a tautology if and only if
∅ |=M Δ, and we say that Γ is unsatisfiable if and only if Γ |=M ∅—i.e., if Γ
has no models. We write φ |=M ψ instead of {φ} |=M {ψ}, and φ, ψ |=M γ, δ
instead of {φ, ψ} |=M {γ, δ}. We also use other notation, writing e.g. Γ,Δ for
Γ ∪Δ, or Γ, φ for Γ ∪{φ}.3 Finally, when |=MS

is the matrix consequence relation
of a logic S, we refer to |=MS

as to S-consequence.
Notice that the notion of multiple-conclusion consequence from Definition 3

differs from the one given in [13] in that the present interpretation comes with a
disjunctive reading of the right side of |=M , while [13, Definition 1.7] comes with
a conjunctive reading of it—implying that all the formulas in the conclusion-set
have to be satisfied. In [13], the author himself notices that his definition is not
standard.

Since the disjunctive reading of the right side of |=M fits the interpretation
of two-sided sequents in sequent calculi, we believe that in the present paper
Definition 3 proves more suitable than the one from [13]. In particular, a uniform
reading seems more appropriate in view of the results on sequent calculi from
Sect. 5.

3 Basic Contaminating Logics

Here, we introduce two logics that are based on the so-called weak Kleene alge-
bra (WKA) from [15]. These are relevant for our purposes, since WKA is a
submatrix of the structures on which HYB1 and HYB2 are based.
3 For this notation, see also [13, Chap. 1].

Modeling the Interaction of Computer Errors 123

Definition 4. [Weak Kleene Algebra] The weak Kleene algebra WKA is the
algebra WKA of type (1, 2, 2) such that (1) WKA = 〈{0, n, 1},¬,∨,∧〉 and (2)
has operations ¬,∨,∧ behaving as per Table 1.

Table 1. Matrices for WKA.

¬
1 0
n n
0 1

∨ 1 n 0
1 1 n 1
n n n n
0 1 n 0

∧ 1 n 0
1 1 n 0
n n n n
0 0 n 0

Given its behavior w.r.t. the connectives, value n from Table 1 is usually said
to be contaminating [6,9] or infectious [11,18]. Here, we prefer the first label.
The following gives a straightforward and intuitive expression to this intuitive
notion:

Observation 1 (Contamination). For all formulas φ in Fml and valuation
v ∈ HomFml,WKA:

v(φ) = n iff v(p) = n for some p ∈ var(φ)

The LTR (left-to-right) direction is shared by all the most widespread three-
valued logics; the RTL (right-to-left) direction is clear from Table 1, and it implies
that φ takes value n if some p ∈ var(φ) has the value, and no matter what the
value of q is for any q ∈ var(φ) \ {p}.

WKA provides the simplest case of contamination, where a value n contami-
nates all the values in the universe A of the algebra in question. Another example
of this is the four-valued matrix used to interpret the system Sfde from [10].

Two distinct non-trivial systems can be defined on WKA:4 The logic Kw
3 has

been introduced in [4] in order to reason about Russell’s paradox and related set-
theoretic antinomies. [11] has later proposed Kw

3 and cognate formalisms as a tool
to reason about the way C++ processes information (see below). The logic PWK
has been first introduced in [14] in order to reason about meaningless expressions
and is investigated by [5,6,8]. We discuss some background and motivations for
these logics at the end of the present section. Kw

3 and PWK are defined as follows:

Definition 5. Kw
3 = 〈Fml, |=MKw

3
〉 and PWK = 〈Fml, |=MPWK

〉, where:

MKw
3

= 〈WK, {1}〉 MPWK = 〈WK, {n, 1}〉

The following observation details some validities and the most notable failures
of Kw

3 and PWK:

4 We do not consider here the trivial systems resulting from D = A and D = ∅.

124 R. Ciuni et al.

Observation 2. The following holds for Kw
3 -consequence and PWK-consequence:

1a ∅ �|=MKw
3

φ 1b ∅ |=MPWK
φ

for every φ ∈ Fml for φ a classical tautology
2a β �|=MKw

3
α 2b β |=MPWK

α

for α a classical tautology for α a classical tautology
3a α,¬α |=MKw

3
β 3b α,¬α �|=MPWK

β

4a α ⊃ (β ∧ ¬β) |=MKw
3

¬α 4b α ⊃ (β ∧ ¬β) �|=MPWK
¬α

5a α, α ⊃ β |=MKw
3

β 5b α, α ⊃ β �|=MPWK
β

We refer the reader to [6,11] for these failures and validities. Given the standard
definitions of paraconsistency and paracompleteness,5 an immediate consequence
of Observation 2 is that Kw

3 is paracomplete and PWK is paraconsistent.
Kw
3 shares the above failures and validities with the related strong Kleene

logic K3 from [15], while PWK shares the above failures and validities with the
related LP by [17].

The contaminating behavior of n contributes to some further failure, which
are distinctive of Kw

3 , PWK, and their sublogics:

φ ��MKw
3

φ ∨ ψ Failure of Addition
φ ∧ ψ ��MPWK

φ Failure of Simplification

In particular, we have v(φ ∨ ψ) = n in any valuation v such that v(φ) = 1
and v(ψ) = n. Since n /∈ DMKw

3
, this implies failure of disjunctive addition in

Kw
3 . Also, v(φ ∧ ψ) = n in any valuation v such that v(φ) = 0 and v(ψ) = n.

Since DMPWK
= {n, 1}, this implies failure of conjunctive simplification.

By contrast, the following local versions of these properties hold:

φ ∨ ψ �MKw
3

φ ∨ ¬φ Local Excluded Middle
φ ∧ ¬φ �MPWK

φ ∧ ψ Local Explosion

[8] provides sound and complete sequent calculi for Kw
3 and PWK while

[5] provides a sound and complete Hilbert-style axiomatization of PWK. [7]
proves that Kw

3 -consequence and PWK-consequence can be characterized in terms
of classical consequence via two different variable-inclusion requirements. In
particular:

Proposition 1 ([7], Theorems 3.4 and 4.3). MKw
3
- and MPWK-consequence

can be characterized as follows:

Γ �MKw
3

Δ ⇔ V ar(Δ′) ⊆ V ar(Γ) for some Δ′ ⊆ Δ s.t. Γ �MCL
Δ′

Γ �MPWK
Δ ⇔ V ar(Γ ′) ⊆ V ar(Δ) for some Γ ′ ⊆ Γ s.t. Γ ′ �MCL

Δ

5 A system is paraconsistent if it falsifies Ex Falso Quodlibet φ, ¬φ |= β, and is
paracomplete if it falsifies Excluded Middle ∅ |= φ ∨ ¬φ.

Modeling the Interaction of Computer Errors 125

This result provides a characterization of Kw
3 and PWK—that is, they specify

necessary and sufficient conditions for a set Δ to follow from a set Γ of formulas
in Kw

3 and PWK, respectively.

Discussion. PWK has been introduced by [14] in order to capture the impact
of meaningless expressions on reasoning. One point worth noting is that [14]
supports that some formulas should be valid even if there are occasions in which
they are meaningless—in our matrix-based setting, this equates with designating
n alongside 1. [14] defends this by arguing that the validity of a formula should
be judged solely on the basis of its meaningful instances.

The idea motivating introduction of Kw
3 in [4] is that statements such as

Russell’s paradox would be meaningless. Under this interpretation, the third
value n in WKA represents this further semantical category, and any v(p) = n
is a valuation where p is deemed meaningless.

Notice that this ‘meaninglessness’ interpretation fares well with the fact that
n is a contaminating element in WKA: if p is meaningless, then it is not possible
to process any information involving it—that is, it is not possible to process any
formula φ in which p occurs.

[11] provides a computational application of this conceptual and formal appa-
ratus, with particular attention paid to programming language C++. In this
language, if some syntactical object p is to be used as a Boolean variable, the
interpreter must be informed that p is to be used in this way. When the program
is executed, an instruction is made to allocate sufficient memory for p to take a
value. To declare the Boolean variable p is to allocate the necessary resources,
e.g., by reserving a physical address for its value. If a variable is undeclared, then
it is meaningless: even if a formula is well-formed, if its atomic variables have not
yet been declared, it is no more serviceable than an ill-formed string of symbols.
In particular, the algorithm from Fig. 1 exemplifies how a C++-based program
would react when fed with an undeclared variable.

Fig. 1. Algorithm with undeclared variables

The fact that undeclared variables in a formula prevents the entire formula
from being evaluated matches the contaminating behavior of the third value n
from WKA; also, a formula that cannot be processed cannot be assigned values
0 or 1 as well, and this fits with n /∈ D. The algorithm in Fig. 1 shows that
addition is bound to fail exactly as it does in Kw

3 [11, p. 352]. This example
suggests that Kw

3 enjoys some legitimacy as a tool to reason about the way C++

processes information.

126 R. Ciuni et al.

Figure 1 also suggests that undeclared variables also bring a kind of computer
error: if they are involved, a C++-based program becomes unable to process
relevant information along the lines of classical logic (or the logic of choice on
which the program is based).

Application of logic to computer errors is not new. [16] proposes non-
commutative disjunction and conjunction in order to reason about errors in
sequential computing. Crucial to this proposal is a matrix-based semantics
involving a third truth value beside 1 and 0. [1] applies the system by [16]
to critical errors from sequential computing—that is, errors that make the com-
putation stop—and the strong Kleene logic from [15] to non-critical errors from
parallel computing—that is, errors that can be somehow remedied. Also, [1] pro-
poses a four-valued sublogic of both McCarthy’s and Kleene’s systems, which
allows for reasoning on both kinds of errors.

Errors due to undeclared variables differ from those considered by [1] and [16],
insofar as they represent computation stops that are due to a syntactic failure.
This, and the logical features of errors due to undeclared variables, justify the
application of a different system such as Kw

3 or some relevant subsystem.

4 Four-Valued Contaminating Logics

Failure to assign a value to an undeclared variable in C++ is an error in code,
and hence on the level of software. Errors of this kind may cause a process to
halt. Beside these kinds of errors, we have errors on the level of hardware. An
instance of these are the physical errors that are caused when an environment
attempts to retrieve a value from a physical address that is corrupt.

Catastrophic, physical errors that cause some failure at the level of hardware
clearly affect the software running on this hardware. By contrast, errors causing
failure at the level of a virtual machine need not propagate to all the environ-
ments in the system. Both errors may happen, but they will affect the entire
system in different ways. This calls for an interaction of different types of errors,
and this interaction seems to be hierarchical in a sense, since the level at which
an error takes place contributes to determine how much of the environment is
affected by that error. We believe that this interaction is suitably captured by
applying two contaminating values similar to the value n from Table 1, and we
briefly discuss why.

Errors in Code and Physical Errors. Consider errors in code. The triggering
of the syntactic error at the local level—that is, within the virtual machine—may
cause the environment within which the executable was run to halt prematurely.
This calls for some truth value that displays a contaminating behavior in the
style of n from Table 1, since the situation we have described represents the
capacity of an error to affect any string of information or environment in which
the error takes place. At the same time, however, this error happens within the
scope of a virtual machine, which in turn insulates the operating system from
such local errors. This is better represented by a value that is just partially

Modeling the Interaction of Computer Errors 127

contaminating, that is a value that contaminates some, but not all other values.
Value n from Table 1 cannot capture this, since it contaminates all other values
in the universe of WKA. Thus, we need to adjust n to fit our current purpose.

Going to physical errors at the level of the hardware, if the operating system
attempts to retrieve a value on behalf of a virtual machine from a bad address,
the error that causes the operating system to fail will bring down the virtual
machine alongside it. This calls for a contaminating value that affects all other
values, including possibly partially contaminating values like the one discussed
above.

In a nutshell, the logical representation of the interaction of the two kinds
of errors above requires two values that are contaminating in some sense—in
particular, we need one value to be contaminating in a weaker sense than n, and
the other to be contaminating in exactly the same sense of n.

Reasoning About the Interaction of the Two Errors. In this section we
propose the two logics HYB1 and HYB2 as tools that can be used for reasoning
about the interaction of the kind of errors that we have been discussed above.
Both HYB1 and HYB2 display the two different types of contaminating values
that we see fit in capturing the two different kinds of errors that we have discussed
above. Also, HYB1 and HYB2 include both a designated and an undesignated
contaminating value.

Whether one or more contaminating values should be designated or not is, in
our view, a pragmatic issue, determined by an end user’s interest. For instance, a
developer may be concerned with the stability of the code itself and not with the
stability of the physical memory. Thus, one might be justified in modeling this
global error via a designated value. Take the concrete case of a large ontology
with an integrated theorem prover, for example. Here, one might wish for certain
theorems to be derivable, in spite of the potential for hardware errors. In this
case, practical concerns make lead the ontology’s developers to discount this type
of situation from consideration when judging validity. Also, when one is testing
code, some tiers of errors are important to acknowledge while others are not.
Simply put, whether one’s code leads to a software error is part of a developer’s
concern; the fact that a particular piece of hardware upon which the software
runs crashes due to faulty RAM is not.

We acknowledge that the examples above do not bring conclusive evidence
for designating a contaminating values, but we also believe that they provide
reasons for it, which would deserve further discussion and testing. We postpone
a detailed discussion of this issue to a further paper. In this paper, we take this
provisional reasons as strong enough to support the elaboration of four-valued
logics with both designated and undesignated values.

Thus, in the next sections we extend our previous considerations to build
appropriate semantic tools to model such settings. We do this by appealing to
the idea of a linear order of contaminating values, such that the greater contami-
nating values contaminate the smaller ones and, of course, the non-contaminating
values.

128 R. Ciuni et al.

4.1 An Algebra for the Interaction of Different Computer Errors

First, we introduce a structure that can represent the interaction between com-
puter errors that we have envisaged above:

Definition 6. [Hybrid Algebra] The hybrid algebra is the algebra HYB of type
(1, 2, 2) such that (1) HYB = 〈{0, n1, n2, 1},¬,∨,∧〉 and (2) has operations
¬,∨,∧ behaving as per Table 2.

Table 2. Matrices for HYB.

¬
1 0
n1 n1

n2 n2

0 1

∨ 1 n1 n2 0
1 1 n1 n2 1
n1 n1 n1 n2 n1

n2 n2 n2 n2 n2

0 1 n1 n2 0

∧ 1 n1 n2 0
1 1 n1 n2 0
n1 n1 n1 n2 n1

n2 n2 n2 n2 n2

0 0 n1 n2 0

Values n1 and n2 from Table 2 enjoys a sort of contaminating behavior in the
style of n, but notice that the behavior of n1 does not satisfy the conditions sorted
out by Observation 1. In order to qualify their different behaviors, we adjust the
notion of contamination from Observation 1 and we define a full-fledged, general
notion of contamination:

Definition 7. An algebra A of type ν has a contaminating element k if and
only if there is a non-empty A′ ⊆ A, with A′ �= {k}, such that for every m-ary
g ∈ ν and every {a1, . . . , am} ⊆ A′:

if k ∈ {a1, . . . , am} then gA(a1, . . . , am) = k

Both n1 and n2 satisfy Definition 7. Since n2 contaminates every other value,
we will say that n2 is absolutely contaminating. By contrast, we will say that n1

is just partially contaminating, since it contaminates all values but n2.

Discussion of the Two Contaminating Values. Given its partially con-
taminating behavior, value n1 fits our description of how errors in code work.
Indeed, n1 does not trump any other value, and this seems to fit the fact that
errors in code do not necessarily affect any environment, while they do prevent
computation to proceed in the virtual machine where they occur. By contrast,
given its absolutely contaminating behavior, value n2 fits our description of how
physical errors work at the level of physical hardware. Again, the former trumps
any other value, and this seems fit the fact that a physical errors occurring in
the operating system affects any environment.

Modeling the Interaction of Computer Errors 129

4.2 Logics Based on HYB

We now discuss two non-trivial logics induced by logical matrices built using
the HYB algebra, the systems HYB1 and HYB2. We give sound and complete
sequent calculi in Sect. 5. In what follows, we familiarize with the two systems,
and provide characterizations in the style of Theorem 3.4 and Theorem 4.3 from
[7]. The two logics are defined as follows:

Definition 8. HYB1 = 〈Fml, |=MHYB1
〉 and HYB2 = 〈Fml, |=MHYB2

〉, where:
MHYB1 = 〈HYB, {n1, 1}〉 MHYB2 = 〈HYB, {n2, 1}〉

Each of HYB1 and HYB2 shares all the failures of Kw
3 and PWK, since the

former are subsystems of the latter. Additionally, the following distinguish the
two logics HYB1 and HYB2 from Kw

3 and PWK:

φ ∨ ψ �MHYB1
φ ∨ ¬φ φ ∧ ¬φ ��MHYB1

φ ∧ ψ

φ ∨ ψ ��MHYB2
φ ∨ ¬φ φ ∧ ¬φ �MHYB2

φ ∧ ψ

As for Local Excluded Middle, any valuation v such that v(ψ) = v(φ ∨ ψ) = n2

and v(φ) = n1 is such that v(φ ∨ ψ) ∈ DMHYB2
and v(φ ∨ ¬φ) /∈ DMHYB2

. Also,
for every valuation v such that v(φ ∨ ψ) ∈ {n1, 1}, we have v(φ ∨ ¬φ) ∈ {n1, 1}.
Since DMHYB1

= {n1, 1}, the inference has no countermodel in MHYB1 . As for
Local Explosion, any valuation v where v(φ ∧ ¬φ) = n1 and v(ψ) = n2 pro-
vides a countermodel to the inference in HYB1; for every valuation v where
v(φ) = v(φ ∧ ¬φ) = n2, we have v(φ ∧ ψ) = n2 by contamination. Since
DMHYB2

= {n2, 1}, the rule has no countermodel in MHYB2 .

The following lemma plays a crucial role in proving Theorem2 from this
section and Theorem 6 from Sect. 5:

Lemma 1. The consequence relations |=MHYB1
and |=MHYB2

are dual, that is:

Γ |=MHYB1
Δ ⇔ Δ¬ |=MHYB2

Γ¬

where, for every Γ ⊆ Fml, Γ¬ = {¬φ | φ ∈ Γ}.

Discussion of the Interaction of n1 and n2 in HYB1 and HYB2. Val-
ues n1 and n2 may represent, as we have discussed above, code errors in a
virtual machine, and physical errors in the operating system. Given what we
have proposed about the pragmatic nature of designation of a contaminating
value, two combinations are possible: code errors are taken as non-catastrophic
and physical errors as fatal, or vice versa. The two options correspond to tak-
ing HYB1 and HYB2 as one’s logic of choice, respectively. Under this informal
reading, φ ∨ ψ |=MHYB1

φ ∨ ¬φ can be seen as a way of expressing that, if
both φ and ψ are free from fatal errors at the software level, then any of the
involved formulas can be assigned a value—which implies that either φ or its
negation will receive a designated value, given the behavior of ¬. By contrast,

130 R. Ciuni et al.

φ ∨ ψ �|=MHYB2
φ ∨ ¬φ implies that, if some supposedly non-catastrophic error

occurs in processing either φ or ψ, nothing excludes that the other piece of infor-
mation is not involved in some error in code, which is less contaminating but
fatal, under this specific interpretation.

Although we have a preference for the option that supports HYB1 over
HYB2—we feel that physical errors at the level of the operating system can
be hardly seen as unthreatening—we believe that it is worth exploring both
options.

4.3 Characterizating Logical Consequence in HYB1

The following is a characterization result for HYB1:

Theorem 1

Γ |=HYB1 Δ iff Γ |=PWK Δ′ for at least a non-empty Δ′ ⊆ Δ s.t. var(Δ′) ⊆ var(Γ).

This fits with the way HYB1 conceives of the hierarchy of errors represented
by n1 and n2: since the fatal errors are those represented by the most contami-
nating value, any information that is included in the premises will be safe from
fatal errors, since the premises itself must be, if they are to be designated.

Theorem 1 in turn explains why the PWK-valid inference from φ∧¬φ to φ∧ψ
fails in HYB1, while the PWK-valid inference from φ ∨ ψ to φ ∨ ¬φ is valid in
HYB1. The former violates the variable-inclusion requirement from Theorem1,
while the latter complies with it.

4.4 Characterizing Logical Consequence in HYB2

With the above notions and facts at hand, we are ready to provide the charac-
terization result for HYB2:

Theorem 2

Γ |=HYB2 Δ iff Γ ′ |=Kw
3

Δ for at least a non-empty Γ ′ ⊆ Γ s.t. var(Γ ′) ⊆ var(Δ).

This fits with the way HYB2 conceives of the hierarchy of errors represented
by n1 and n2: since the fatal errors are those represented by the least contaminat-
ing value, if information from part of the premise is included in the conclusion,
then the latter will be safe from fatal errors, since otherwise the premises would
not be.

Theorem 2 explains φ ∨ ψ �|=HYB2 φ ∨ ¬φ. Indeed, although the inference is
Kw
3 -valid, there is no guarantee that the variables of φ ∨ ψ are all contained in

those of φ—notice that φ ∨ ψ is, in turn, the only non-empty subset of φ ∨ ψ.
The following corollary will be helpful in proving Lemma2 from Sect. 5. It is

a straightforward consequence of Proposition 1, Theorems 1 and 2:

Modeling the Interaction of Computer Errors 131

Corollary 1. MHYB1-consequence and MHYB2-consequence can be character-
ized as follows:

Γ �MHYB1
Δ ⇔ V ar(Γ ′) ⊆ V ar(Δ′) ⊆ V ar(Γ)

for some Γ ′ ⊆ Γ,Δ′ ⊆ Δ s.t. Γ ′ �MCL
Δ′

Γ �MHYB2
Δ ⇔ V ar(Δ′) ⊆ V ar(Γ ′) ⊆ V ar(Δ)

for some Γ ′ ⊆ Γ,Δ′ ⊆ Δ s.t. Γ ′ �MCL
Δ′

4.5 Discussion of Theorems 1 and 2

Sublogics like HYB1 and HYB2 are attracting increasing attention [3,18], and
they are natural way to generalize the three-valued contaminating settings based
on WKA to four-valued settings involving more than one contaminating value.
However, these logics have not yet received detailed investigations. The two the-
orems from the present section make a significant contribution to our knowledge
of such logics, and we believe that this explains their relevance.

Additionally, we believe that our results make a significant progress with
respect to [12, Observation 1], that also provides a clear direction for a general
characterization methods for logics endowed with many contaminating values.
First, [12, Observation 1] is concerned with single-conclusion consequence rela-
tions, while our results suggest a method that would apply to the more general
multiple-conclusion case. Second, and more important, [12, Observation 1] con-
cerns logics where contaminating values are not designated, while Theorem 2
provides an insight that is relevant also for logics that comprise one (or more)
designated contaminating values. Although the insight from [12, Observation 1]
easily extends to HYB1, it is not clear if it extends naturally to HYB2. Thus, the
present results offer an insight that is more general than the insight offered by
[12, Observation 1].

5 Sequent Calculi

We go now to the sequent calculi for HYB1 and HYB2. More precisely, we pro-
vide sound and complete calculi of annotated sequents for the two four-valued
logics. An annotated sequent is an object of the form Γ, �Γ ′� ⇒ Δ, �Δ′� where
Γ, Γ ′,Δ,Δ′ are sets of formulas of the language. In annotated sequent calculi,
additional rules are provided in order to capture the interaction among formulas
within squared brackets, outside square brackets, and the interaction of formulas
within square brackets and formulas outside the brackets.

Our results extend the ones from [8] for Kw
3 and PWK. As in [8], each of our

calculi places restrictions on several rules—more precisely, the rules need some
variable inclusion condition to be satisfied in order to be applicable. We will
specify the relevant restrictions when needed.

Below, we present the rules for the two annotated calculi and proceed to
demonstrate the soundness and completeness of the two calculi.

132 R. Ciuni et al.

5.1 Rules

Both systems include the following three rules, where for every Γ ⊆ Fml, Γ ∗

is any modification of Γ by permuting elements, absorbing redundancies, or
duplicating formulas:

[Axiom]
∅, �p� ⇒ ∅, �p�

Γ, �Ξ� ⇒ Δ, �Θ�
[Structural]

Γ ∗, �Ξ∗� ⇒ Δ∗, �Θ∗�

Γ, �Γ ′� ⇒ Δ, �Δ′�
[Weak]

Γ,Ξ, �Γ ′� ⇒ Δ,Θ, �Δ′�

[Axiom] secures the validity of those classical axioms in which a propositional
variable is within the scope of a square bracket in each sequent. [Structural]
grants standard structural rules, but Weakening, within any of the four slots.
[Weak] differs from the Weakening for non-annotated calculi as we can only
allow Weakening outside the scope of the bracket. The following “push” rules
below meet the need to shift formulas from outside the scope of a square bracket
into the brackets. It is with these rules that variable-inclusion restrictions come
into play:

Γ, φ, �Γ ′� ⇒ Δ, �Δ′�
[PushL]

Γ, �Γ ′, φ� ⇒ Δ, �Δ′�
Γ, �Γ ′� ⇒ Δ,ψ, �Δ′�

[PushR]
Γ, �Γ ′� ⇒ Δ, �Δ′, ψ�

Restrictions for PushL and PushR. In the HYB1 calculus, [PushL] requires
the restriction V ar(φ) ⊆ V ar(Δ′) and [PushR] requires V ar(ψ) ⊆ V ar(Γ ∪ Γ ′).
In the HYB2 calculus, the [PushL] and [PushR] rules require V ar(φ) ⊆ V ar(Δ∪
Δ′) and V ar(ψ) ⊆ V ar(Γ ′), respectively.

Negation rules come with a pair of right rules and a pair of left rules, since we
need to distinguish the case where we are introducing the sign within the scope
of a square bracket from the case in which we are introducing the sign out of
such a scope. The right rules:

Γ, �Γ ′, φ� ⇒ Δ, �Δ′�
[¬R1]

Γ, �Γ ′� ⇒ Δ, �Δ′,¬φ�

Γ, φ, �Γ ′� ⇒ Δ, �Δ′�
[¬R2]

Γ, �Γ ′� ⇒ Δ,¬φ, �Δ′�

The left rules:

Γ, �Γ ′� ⇒ Δ, �Δ′, ψ�
[¬L1]

Γ, �Γ ′,¬ψ� ⇒ Δ, �Δ′�
Γ, �Γ ′� ⇒ Δ,ψ, �Δ′�

[¬L2]
Γ,¬ψ, �Γ ′� ⇒ Δ, �Δ′�

Restrictions for ¬R1, ¬R2, and ¬L1, ¬R2. In the HYB1 calculus, [¬R1]
and [¬R2] require V ar(φ) ⊆ V ar(Γ ∪ Γ ′); in the HYB2 calculus, [¬R1] requires
that V ar(φ) ⊆ V ar(Γ ′), and [¬R1] has no proviso. In both calculi, [¬L1] requires
that V ar(ψ) ⊆ V ar(Δ′) and [¬L2] has no proviso.

Conjunction rules also come in pairs:

Modeling the Interaction of Computer Errors 133

Γ, �Γ ′, φ, ψ� ⇒ Δ, �Δ′�
[∧L1]

Γ, �Γ ′, φ ∧ ψ� ⇒ Δ, �Δ′�
Γ, φ, ψ, �Γ ′� ⇒ Δ, �Δ′�

[∧L2]
Γ, φ ∧ ψ, �Γ ′� ⇒ Δ, �Δ′�

Rules [∧L1] and [∧L2] require no provisos in either HYB1 or HYB2. However, the
following mixed rule requires a variable-inclusion restriction:

Γ, φ, �Γ ′, ψ� ⇒ Δ, �Δ′�
[∧L∗]

Γ, �Γ ′, φ ∧ ψ� ⇒ Δ, �Δ′�

In HYB1, the rule is definable provided that V ar(φ) ⊆ V ar(Δ′), while in HYB2,
V ar(φ) ⊆ V ar(Δ ∪ Δ′) is required. For the right rules, we consider the case
in which both conjuncts are outside of the scope of �−� and the case in which
both are within its scope. Note, again, that we can appeal to [PushR] in order
to cover mixed cases.

Γ, �Γ ′� ⇒ Δ, �Δ′, φ� Γ, �Γ ′� ⇒ Δ, �Δ′, ψ�
[∧R1]

Γ, �Γ ′� ⇒ Δ, �Δ′, φ ∧ ψ�

Γ, �Γ ′� ⇒ Δ,φ, �Δ′� Γ, �Γ ′� ⇒ Δ,ψ, �Δ′�
[∧R2]

Γ, �Γ ′� ⇒ Δ,φ ∧ ψ, �Δ′�

Again, neither [∧R1] nor [∧R2] requires a proviso in the two logics, but one could
introduce a definable rule that requires that V ar(φ) ⊆ V ar(Γ ∪ Γ ′) in HYB1

and V ar(φ) ⊆ V ar(Γ ′) in HYB2:

Γ, �Γ ′� ⇒ Δ,φ, �Δ′� Γ, �Γ ′� ⇒ Δ, �Δ′, ψ�
[∧R∗]

Γ, �Γ ′� ⇒ Δ, �Δ′, φ ∧ ψ�

Disjunction rules are as follows:

Γ, �Γ ′, φ� ⇒ Δ, �Δ′� Γ, �Γ ′, ψ� ⇒ Δ, �Δ′�
[∨L1]

Γ, �Γ ′, φ ∨ ψ� ⇒ Δ, �Δ′�

Γ, φ, �Γ ′� ⇒ Δ, �Δ′� Γ, ψ, �Γ ′� ⇒ Δ, �Δ′�
[∨L2]

Γ, φ ∨ ψ, �Γ ′� ⇒ Δ, �Δ′�

Neither [∨L1] nor [∨L2] require provisos. Again, for the right rules, we consider
the case in which both disjuncts are outside of the scope of �−� and the case in
which both are within its scope. Note, again, that we can appeal to [PushR] in
order to cover mixed cases.

Γ, �Γ ′� ⇒ Δ, �Δ′, φ, ψ�
[∨R1]

Γ, �Γ ′� ⇒ Δ, �Δ′, φ ∨ ψ�

Γ, �Γ ′� ⇒ Δ,φ, ψ, �Δ′�
[∨R2]

Γ, �Γ ′� ⇒ Δ,φ ∨ ψ, �Δ′�

5.2 Soundness and Completeness

Now we state soundness and completeness of HYB1 is sound and complete with
respect to MHYB1 (Theorems 3 and 4), and HYB2 is sound and complete with
respect to MHYB2 (Theorems 5 and 6).

134 R. Ciuni et al.

Theorem 3 (Soundness of HYB1). If Γ, �Γ ′� ⇒ Δ, �Δ′� is provable in HYB1,
then Γ ∪ Γ ′ �MHYB2

Δ ∪ Δ′.

In what follows, when we talk about ‘the two-sided sequent calculi for PWK
and Kw

3 ’, we will be referring to the calculi from [8], which are presented there
as fragments of Gentzen’s sequent calculus for classical logic (indeed, as frag-
ments where some of the operational rules were restricted with variable inclusion
requirements). This is important for understanding the following lemma, which
helps prove the completeness of HYB1 with respect to MHYB2 .

Lemma 2. If Γ �MHYB2
Δ such that Γ ′ ⊆ Γ , Δ′ ⊆ Δ, V ar(Γ ′) ⊆ V ar(Δ′) ⊆

V ar(Γ) and Γ ′ �MCL
Δ′, then Γ ′ ⇒ Δ′ is provable in the calculus for PWK.

Definition 9. In the HYB1 calculus, a PWK rule that applies only to formulas
within brackets is a “bracketed rule”.

Theorem 4 (Completeness of HYB1). If Γ �MHYB2
Δ such that Γ ′ ⊆ Γ ,

Δ′ ⊆ Δ, V ar(Γ ′) ⊆ V ar(Δ′) ⊆ V ar(Γ) and Γ ′ �MCL
Δ′, then Γ ′, �Γ ′′� ⇒

Δ′, �Δ′′� is provable in HYB1, where Γ = Γ ′ ∪ Γ ′′ and Δ = Δ′ ∪ Δ′′.

The duality of HYB1 and HYB2 allows us to leverage Lemma 1 to establish the
corresponding results for HYB2.

Theorem 5 (Soundness of HYB2). If Γ, �Γ ′� ⇒ Δ, �Δ′� is provable in HYB2,
then Γ ∪ Γ ′ �MHYB1

Δ ∪ Δ′.

Theorem 6 (Completeness of HYB2). If Γ �MHYB1
Δ such that Γ ′ ⊆ Γ ,

Δ′ ⊆ Δ, V ar(Δ′) ⊆ V ar(Γ ′) ⊆ V ar(Δ) and Γ ′ �MCL
Δ′, then Γ ′, �Γ ′′� ⇒

Δ′, �Δ′′� is provable in HYB2, where Γ = Γ ′ ∪ Γ ′′ and Δ = Δ′ ∪ Δ′′.

It is clear from the above rules that the Subformula Property holds of HYB1 and
HYB2.

We will finish by considering how to approach the admissibility of the Cut rule
in the calculi HYB1 and HYB2. Our calculi for HYB1 and HYB2 are decorated,
since we use a bracketing device in each of the antecedent and succedent to
track variable-inclusion properties. Although we feel that there are conceptual
differences between the bracketing device employed in our calculi and the labeling
employed by many-sided sequent calculi (like those described in [2]), similar
issues arise in formulating the Cut rule. Given a set A = {a1, a2, . . . , an} whose
members are interpreted as truth values and where a1 = 0 and a2 = 1, many-
side sequent calculi allow for sequents of the form Γ1 | · · · | Γn. The standard
informal meaning of such a sequent is: ‘for some i between 1 and n, and some φ
in Γi, φ has value ai’. In a nutshell, each “side” of a sequent plays the role of a
distinct truth-value.6

6 This illustrates the difference between our calculi and many-sided sequent calculi.
Contrary to the latter, the bracketing in our calculi for HYB1 and HYB2 does not a
priori correspond to truth-values.

Modeling the Interaction of Computer Errors 135

This leads Baaz et al. to define not one Cut, but many, depending on the
two sides in which the cut formula is found. Treating our calculi as many-sided
calculi would lead us to six distinct structural rules that look like Cut. Clearly,
not all of these are plausibly admissible. While

Γ, �Γ ′, φ� ⇒ Δ, �Δ′� Θ, �Θ′� ⇒ Ξ, �Ξ ′, φ�
[Cut 2, 4]

Γ,Θ, �Γ ′, Θ′� ⇒ Δ,Ξ, �Δ′, Ξ ′�

seems plausible,

Γ, φ, �Γ ′� ⇒ Δ, �Δ′� Θ, �Θ′, φ� ⇒ Ξ, �Ξ ′�
[Cut 1, 2]

Γ,Θ, �Γ ′, Θ′� ⇒ Δ,Ξ, �Δ′, Ξ ′�

seems wildly implausible. The questions of which candidate versions of Cut are
admissible in these calculi and how the case differs from the many-sided case are
intriguing but left for future research.

6 Conclusions

In this paper, we have discussed the interaction of computer errors that come
from different sources and, especially, takes place at different levels in the system.
Some of these errors are suitably represented by values that are contaminating
in a sense closely resembling the third value from WKA. The paper discusses
this structure together with the two non-trivial logics that can be interpreted
on it. These are the systems PWK from [14] and Kw

3 from [4]. In particular, Kw
3

and cognate formalisms have been given a computational interpretation in [11],
where the logic is used in order to reason about those failures in C++-based
programs that are due to the presence of undeclared variables. Since computer
errors may have a variety of different sources, and differ in their effects on the
environment, we discuss the interaction of two different kinds of computer errors,
namely those which occur at the level of software, and those which occur at the
level of hardware. In order to capture the interaction of these two kinds of errors,
we introduce the four-valued algebra HYB, and two logics based on that: the
systems HYB1 and HYB2. We provide characterization results for the two logics—
that is, we provide necessary and sufficient conditions for two sets Γ and Δ of
formulas to be in the relation of HYB1- or HYB2-consequence. Before closing, we
discuss some directions for future research.

First, we plan to devote future work to an investigation into the matter of
designation (or not) of contaminating truth-values (see Sect. 4 for the issue). This
is a very important point. Indeed, the increasing use of virtualization and cloud
computing entails that one frequently encounters programs running in a cascade
of virtual machines nested in one another. Interest of the user and specific appli-
cation may lead to discount some errors and consider them uninteresting and
unthreatening. In this case, one might want to designate the relevant contami-
nating truth value, since this represent the ability of the computation to go on,
the error notwithstanding. We wish to cast this general framework against the
background of concrete scenarios of nested computer errors.

136 R. Ciuni et al.

Another interesting issue raised by a referee concerns the role of error detec-
tion and correction. Our model of computation in this paper presupposes that
any error is fatal to the system in which it occurs but there are numerous tech-
niques employed allowing a process to recover in the face of otherwise catas-
trophic errors; in the present day, any important transmission of data is accom-
panied by a host of safeguards to preserve its integrity, through the use of e.g.
checksums. This suggests that a more accurate model allows not only for error-
free states and catastrophic states, but also states intermediate between these, in
which a process has encountered—and recovered from—an otherwise fatal error.
Whether this type of case can be accurately modeled by many-valued matri-
ces and, if so, whether the inclusion of such states influences the consequence
relations is clearly worth investigating.

Appendix

Proof of Lemma 1: We start with the LTR direction. Suppose that Γ �MHYB1

Δ. This means that, if v(ψ) ∈ {0, n2} for every ψ ∈ Δ, then v(φ) ∈ {0, n2}
for some φ ∈ Γ and every v ∈ HomFml,HYB. Given the behavior of n2 w.r.t.
negation, this implies that, if v(θ) = {1, n2} for every θ ∈ Δ¬, then v(ζ) =
{1, n2} for some ζ ∈ Γ¬ and every v ∈ HomFml,HYB. Since DHYB2 = {1, n2},
this implies Δ¬ |=MHYB2

Γ¬. The RTL direction is proved along the very same
lines. �
Proof of Theorem 1: We start with the LTR direction. We first prove that
if Γ |=HYB1 Δ, then Γ ′ |=HYB1 Δ for at least a non-empty Δ′ ⊆ Δ such that
var(Δ′) ⊆ var(Γ). Assume the antecedent as the initial hypothesis, and suppose
that Γ �|=HYB1 Δ′ for every Δ ⊆ Δ′ such that var(Δ′) ⊆ var(Γ). This implies
that there is valuation v ∈ HomFml,HYB such that v(ψ) ∈ {n2, 0} for every
ψ ∈ Δ′ and yet v(φ) ∈ {1, n1} for every φ ∈ Γ . By the contaminating behavior of
n2 from Table 2 and var(Δ′) ⊆ var(Γ), this implies v(ψ) = 0 for every ψ ∈ Δ′.
More in general, we have v(p) �= n2 for every p ∈ var(Γ), and by this, we
have v(q) �= n2 for every q ∈ var(

⋃
Δ′∈GΔ,Γ

). This implies that v(φ) = {n1, 1}
for every φ ∈ Γ . v can be extended to a valuation v′ ∈ HomFml,HYB such
that v′(p) = v(p) if p ∈ var(Γ), and v′(p) = n2 otherwise. This implies that
v′(φ) ∈ {1, n1} for every φ ∈ Γ , v′(θ) = n2 for every θ ∈ Δ \ ⋃

Δ′∈GΔ,Γ
, and

v(ψ) = 0 for every ψ ∈ Δ. But this in turn contradicts the initial hypothesis,
given the definition of HYB1-consequence. Thus, we have that, if Γ |=HYB1 Δ,
then Γ |=HYB2 Δ′ for at least a non-empty Δ′ ⊆ Δ such that var(Δ′) ⊆
var(Γ). Since HYB2 is a sublogic of PWK, we conclude that Γ |=HYB1 Δ implies
Γ |=PWK Δ′ for at least a non-empty Δ′ ⊆ Δ such that var(Δ′) ⊆ var(Γ).

As for the RTL direction, assume as the initial hypothesis that Γ |=PWK Δ′

for at least a non-empty Δ′ ⊆ Δ such that var(Δ′) ⊆ var(Γ). To establish
Γ |=HYB1 Δ′, fix any valuation U ∈ Hom such that v(φ) ∈ {1, n1} for every
φ ∈ Γ ′. Our goal is to show that v(ψ) ∈ {1, n1} for some ψ ∈ Δ. We consider
two cases:

Modeling the Interaction of Computer Errors 137

Case (1): v(φ) = n1 for some φ ∈ Γ . Fix some formula θ ∈ Γ such that v(θ) = n1.
By the contaminating behavior of n1 from Table 2, there is a q ∈ var(θ) such that
v(q) = n1. Remember that var(Δ′) ⊆ var(Γ), and suppose that q ∈ var(Γ) ∩
var(Δ′). Since var(Δ′) ⊆ var(Γ) and v(p) �= n2 for every p ∈ var(Γ), we have
v(q) �= n2 for every q ∈ var(Δ′). Suppose now that v(φ) ∈ {1, n1} for every
φ ∈ Γ and v(ψ) = 0 for every ψ ∈ Δ′. This implies that there is a valuation
V ∈ Hom such that v(φ) ∈ {1, n} for every φ ∈ Γ and v(ψ) = 0 for every ψ ∈ Δ′.
But this contradicts the initial hypothesis that Γ |=PWK Δ′.
Case (2): v(φ) �= n1 for every φ ∈ Γ ′. This implies that v(φ) = 1 for every φ ∈ Γ ,
and, by the contaminating behavior of n1, n2 from Table 2, v(p) = 1 for every
p ∈ var(Γ). From this and Γ |=CL Δ′ (which follows from the initial hypothesis
Γ |=PWK Δ′), we have that v(ψ) = 1 for some ψ ∈ Δ, as desired.

Since these two cases are jointly exhaustive, we conclude Γ |=HYB1 Δ′. From
this and the Definition of |=HYB1 , it follows that Γ |=HYB1 Δ. �
Proof of Theorem 2: By Theorem 1 and Lemma 1. �
Proof of Theorem 3: Any initial sequent ∅, �p� ⇒ ∅, �p� has the form
Γ, �Γ ′� ⇒ Δ, �Δ′� in which Γ and Δ are empty and Γ ′ = Δ′ = {p}. In this
case, the sequent enjoys the property that:7

1. V ar(Γ ′) ⊆ V ar(Δ′) ⊆ V ar(Γ ∪ Γ ′)
2. Γ ′ ⊆ Γ ∪ Γ ′ and Δ′ ⊆ Δ ∪ Δ′

3. The sequent Γ ′ ⇒ Δ′ is derivable in LK

It can be easily checked that this property is preserved under each of the fore-
going rules. The case of the Exchange and Contraction rules, and Weakening
(outside the scope of the square brackets) can be noted to preserve this prop-
erty, since they correspond to properties that are valid in every Tarskian logic
and HYB1 is a Tarskian logic, as every matrix logic is—see [19]. We notice that
this property is preserved by the other rules as follows. Moreover, this can also
be checked to apply straightforwardly to the “push” rules and the operational
rules (in- and outside the square brackets). Hence, any derivable sequent enjoys
the above tripartite property.

Now, we know that Ξ �MHYB2
Θ if and only if there exists a Ξ ′ ⊆ Ξ and a

Θ′ ⊆ Θ such that V ar(Ξ ′) ⊆ V ar(Θ′) ⊆ V ar(Ξ) and Ξ ′ �MCL
Θ′. Because of

soundness of LK (a presentation of which is described in [8]), the above tripartite
property entails validity in MHYB2 . Soundness of HYB2 with respect to MHYB1

is proved by similar reasoning. �
Proof of Lemma 2: Assume Γ �MHYB2

Δ. Then by Corollary 1 for MHYB2 , we
know that there are Γ ′ ⊆ Γ , Δ′ ⊆ Δ, with V ar(Γ ′) ⊆ V ar(Δ′) ⊆ V ar(Γ) and
Γ ′ �MCL

Δ′. By completeness of LK, this implies that Γ ′ ⇒ Δ′ is provable in
LK. We also know that V ar(Γ ′) ⊆ V ar(Δ′). Hence, by [8, Lemma 21], these
two observations jointly imply that Γ ′ ⇒ Δ′ is provable in the sequent calculus
for PWK. �
Proof of Theorem 4: Assume that Γ �MHYB2

Δ. Then, by Lemma 2, there is
a PWK proof of Γ ′ ⇒ Δ′. Call this proof, i.e. a rooted binary tree, Π. We can

7 As usual, this label denotes the standard sequent calculus for classical logic CL.

138 R. Ciuni et al.

design an algorithm to transform a PWK proof of this sequent into an HYB1

proof of Γ, �Γ ′� ⇒ Δ, �Δ′�.
First, replace every node Ξ ⇒ Θ of Π by a node ∅, �Ξ� ⇒ ∅, �Θ�. Then,

place below each leaf, or axiom node, one instance of [Weak], such that from
an axiom ∅, �p� ⇒ ∅, �p� we infer in one step the sequent Γ, �p� ⇒ Δ, �p�.
After that, for each non-axiom node place Γ to the left of the square brackets in
the antecedent and Δ to the left of the square brackets in the succedent. In the
resulting proof, each PWK rule is applied within the scope of the square brackets.
Moreover, we can check that every application of a PWK rule corresponds to a
“bracketed rule” in HYB1 that respects the corresponding provisos.

Actually, since Weakening is not fully admissible within the scope of square
brackets, something must be said about this case. Suppose in an H proof of
Γ ′ ⇒ Γ ′ there is an ineliminable application of Weakening that allows to go
from a node Ξ ⇒ Θ to a node Ξ,Ξ ′ ⇒ Θ,Θ′—whence we can legitimately call
Ξ ′ and Θ′ the active (sets of) formulas in this step. Then the current algorithm
can be further specified by saying that if Π is a proof which has no ineliminable
application of Weakening, then we proceed as previously stated. However, if
Π has an ineliminable application of Weakening, then we enlarge every node
(outside the square brackets) with Γ and Ξ ′, and Δ and Θ′, in their respective
sides. Finally, when the Π requires the corresponding application of Weakening,
we mimic this in HYB1 applying the [PushL] and [PushR] rules to Ξ ′ and Θ′, as
needed.

This renders a rooted binary tree Π∗ with Γ, �Γ ′� ⇒ Δ, �Δ′� as its termi-
nal sequent. We then proceed to apply the rules [PushL], [PushR] followed by
elimination of duplicate formulas in Γ ′ and Δ′. We end up with a HYB1 proof
ending with Γ ′′, �Γ ′� ⇒ Δ′′, �Δ′�, for which Γ ′′ ∪ Γ ′ = Γ and Δ′′ ∪ Δ′ = Δ and
V ar(Γ ′) ⊆ V ar(Δ′) ⊆ V ar(Γ ′′ ∪ Γ ′) = Γ . �
Proof of Theorem 5: By Theorem 3 and Lemma 1. �
Proof of Theorem 6: By Theorem 4 and Lemma 1. �

References

1. Avron, A., Konikowska, B.: Proof systems for reasoning about computation errors.
Studia Logica 91(2), 273–293 (2009)

2. Baaz, M., Fermüller, C., Zach, R.: Elimination of cuts in first-order many-valued
logic. J. Inf. Process. Cybern. 29, 333–355 (1994)

3. Barrio, E., Pailos, F., Szmuc, D.: A cartography of logics of formal inconsistency
and truth (2016, manuscript)

4. Bochvar, D.: On a three-valued calculus and its application in the analysis of the
paradoxes of the extended functional calculus. Matematicheskii Sbornik 4, 287–308
(1938)

5. Bonzio, S., Gil-Ferez, J., Paoli, F., Peruzzi, L.: On paraconsistent weak Kleene
logic: axiomatization and algebraic analysis. Studia Logica 105(2), 253–297 (2017)

6. Ciuni, R., Carrara, M.: Characterizing logical consequence in paraconsistent weak
Kleene. In: Felline, L., Ledda, A., Paoli, F., Rossanese, E. (eds.) New Developments
in Logic and the Philosophy of Science, pp. 165–176. College Publications, London
(2016)

Modeling the Interaction of Computer Errors 139

7. Ciuni, R., Carrara, M.: Semantical analysis of weak Kleene logic (Under submis-
sion, ms)

8. Coniglio, M.E., Corbalan, M.I.: Sequent calculi for the classical fragment of
Bochvar and Halldén’s nonsense logic. In: Kesner, D., Petrucio, V., (eds.) Pro-
ceedings of the 7th LSFA Workshop, Electronic Proceedings in Computer Science,
pp. 125–136 (2012)

9. Correia, F.: Weak necessity on weak Kleene matrices. In: Advances in Modal Logic,
vol. 4 (2004)

10. Deutsch, H.: Relevant analytic entailment. Relevance Log. Newsl. 2, 26–44 (1977)
11. Ferguson, T.M.: A computational interpretation of conceptivism. J. Appl. Non-

Class. Log. 24(4), 333–367 (2014)
12. Ferguson, T.M.: Logics of nonsense and Parry systems. J. Philos. Log. 44(1), 65–80

(2015)
13. Font, J.M.: Abstract Algebraic Logic. College Publications, London (2016)
14. Halldén, S.: The Logic of Nonsense. Lundequista Bokhandeln, Uppsala (1949)
15. Kleene, S.: Introduction to Metamathematics. North Holland, Amsterdam (1952)
16. McCarthy, J.: A basis for a mathematical theory of computation. In: Braffort, P.,

Hirschberg, D. (eds.) Computer Programming and Formal Systems, pp. 33–70.
North-Holland Publishing Company, Amsterdam (1963)

17. Priest, G.: In Contradiction, 2nd edn. Oxford University Press, Oxford (2006)
18. Szmuc, D.: Defining LFIs and LFUs in extensions of infectious logics. J. Appl.

Non-Class. Log. 26(4), 286–314 (2016)
19. Wójcicki, R.: Logical matrices strongly adequate for structural sentential calculi.

Bulletin de l’Academie Polonaise des Sciences Série des Sciences Mathématiques
Astronomiques et Physiques 17, 333–335 (1969)

Modelling Informational Entropy

Willem Conradie1, Andrew Craig2(B), Alessandra Palmigiano2,3,
and Nachoem M. Wijnberg2,4

1 University of the Witwatersrand, Johannesburg, South Africa
2 University of Johannesburg, Johannesburg, South Africa

acraig@uj.ac.za
3 Delft University of Technology, Delft, The Netherlands
4 University of Amsterdam, Amsterdam, The Netherlands

Abstract. By ‘informational entropy’, we understand an inherent
boundary to knowability, due e.g. to perceptual, theoretical, evidential
or linguistic limits. In this paper, we discuss a logical framework in which
this boundary is incorporated into the semantic and deductive machinery,
and outline how this framework can be used to model various situations
in which informational entropy arises.

Keywords: Lattice-based modal logic · Epistemic logic ·
Concept lattice · Graph-based semantics · Polarity-based semantics

1 Introduction

This paper contributes to a line of research stemming from the theory of canon-
icity and correspondence of lattice expansions [4,8,9,18], which aims at defining
and studying relational semantic frameworks for lattice-based logics. The present
contribution specifically builds on the graph-based semantics introduced in [2],
on the basis of a ‘modal expansion’ of Ploščica’s representation [23], its rela-
tionship with canonical extensions of bounded lattices [11,13], and the ensuing
algebraic canonicity and correspondence results [2,9]. The resulting relational
structures introduced in this paper, called graph-based frames (cf. Definition 2),
are more general than those in [2], as the ‘TiRS’ conditions have been removed.
Hence, rather than being characterized as discrete duals of perfect modal lat-
tices, the graph-based structures considered here are in a discrete adjunction
with complete modal lattices, much in the same way in which the class of the
relational structures interpreting the same logic in [6], which are based on polar-
ities rather than on graphs, was generalized in [7] so as to remove the ‘RS’
conditions. However, the notions of satisfaction and refutation of formulas at
states of graph-based frames can be extracted from their interpretation on the
complex algebras of graph-based frames by an analogous ‘dual characterization’

The research of the third author is supported by the NWO Vidi grant 016.138.314, the
NWO Aspasia grant 015.008.054, and a Delft Technology Fellowship awarded in 2013.

c© Springer-Verlag GmbH Germany, part of Springer Nature 2019
R. Iemhoff et al. (Eds.): WoLLIC 2019, LNCS 11541, pp. 140–160, 2019.
https://doi.org/10.1007/978-3-662-59533-6_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-59533-6_9&domain=pdf
https://doi.org/10.1007/978-3-662-59533-6_9

Modelling Informational Entropy 141

process which the frames-to-algebras direction of the adjunction is enough to
convey.

Besides this technical contribution, there is also a conceptual contribution
which consists of making sense of this semantic framework in a more fundamen-
tal way. Our proposal in this respect is to use graph-based frames to provide a
purely qualitative representation of the notion of relative entropy in information
theory [24], which is a stochastic measure of noise in communication systems.
As is argued by Weaver [24], the significance of the key notions and insights
developed in information theory goes very much beyond the original “engineer-
ing aspects of communication”, and invests also such aspects as meaning and
knowledge. If the notion of relative entropy is construed more broadly in this
way, so as to capture conceptual noise, then it can be understood as the inher-
ent boundary to knowability due e.g. to perceptual, theoretical, evidential or
linguistic limits. In this paper, as specific examples, we model phenomena of
informational entropy (under this broader understanding) arising in natural lan-
guage and visual perception. The interpretation proposed in the present paper
is further pursued in [3], where informational entropy arises from the scientific
theories on which empirical studies are grounded, and in [10], where it arises
from socio-political theories.

Of course, the interpretation and use of graph-based structures proposed in
the present paper does not exclude the possibility of other interpretations and
uses, as is suggested by the fact that the ‘companion’ polarity-based semantics
for lattice-based modal logic has been used to provide different interpretations of
the lattice-based modal logic, including one in which lattice-based modal logic is
viewed as an epistemic logic of categories [6,7] and one [5,19] in which the same
logic is viewed as the logic of rough concepts, where polarity-based semantics is
used as an encompassing framework for the integration of rough set theory [22]
and formal concept analysis [17], and as a basis for further developments such
as a Dempster–Shafer theory of concepts [16].

2 Preliminaries

Notation. We let ΔU denote the identity relation on a set U , and we will drop
the subscript when it causes no ambiguity. The superscript (·)c denotes the
relative complement of the subset of a given set. Hence, for any binary relation
R ⊆ S × T , we let Rc ⊆ S × T be defined by (s, t) ∈ Rc iff (s, t) /∈ R. For
any such R and any S′ ⊆ S and T ′ ⊆ T , we let R[S′] := {t ∈ T | (s, t) ∈
R for some s ∈ S′} and R−1[T ′] := {s ∈ S | (s, t) ∈ R for some t ∈ T ′}, and
write R[s] and R−1[t] for R[{s}] and R−1[{t}], respectively. Any such R gives rise
to the semantic modal operators 〈R〉, [R] : P (T) → P (S) s.t. 〈R〉W := R−1[W]
and [R]W := (R−1[W c])c for any W ⊆ T . For any T ⊆ U × V , and any U ′ ⊆ U
and V ′ ⊆ V , let

T (1)[U ′] := {v | ∀u(u ∈ U ′ ⇒ uTv)} T (0)[V ′] := {u | ∀v(v ∈ V ′ ⇒ uTv)}.
(1)

142 W. Conradie et al.

Known properties of this construction (cf. [14, Sects. 7.22–7.29]) are collected
below.

Lemma 1. 1. X1 ⊆ X2 ⊆ U implies T (1)[X2] ⊆ T (1)[X1], and Y1 ⊆ Y2 ⊆ V
implies T (0)[Y2] ⊆ T (0)[Y1].

2. U ′ ⊆ T (0)[V ′] iff V ′ ⊆ T (1)[U ′].
3. U ′ ⊆ T (0)[T (1)[U ′]] and V ′ ⊆ T (1)[T (0)[V ′]].
4. T (1)[U ′] = T (1)[T (0)[T (1)[U ′]]] and T (0)[V ′] = T (0)[T (1)[T (0)[V ′]]].
5. T (0)[

⋃
V] =

⋂
V ′∈V T (0)[V ′] and T (1)[

⋃
U] =

⋂
U ′∈U T (1)[U ′].

For any relation T ⊆ U × V , and any U ′ ⊆ U and V ′ ⊆ V , let

T [1][U ′] := {v | ∀u(u ∈ U ′ ⇒ uT cv)} T [0][V ′] := {u | ∀v(v ∈ V ′ ⇒ uT cv)}.
(2)

Hence, T [1][U ′] = (T c)(1)[U ′] and T [0][V ′] = (T c)(0)[V ′], therefore, the following
lemma is an immediate consequence of Lemma 1 instantiated to T := T c.

Lemma 2. 1. X1 ⊆ X2 ⊆ U implies T [1][X2] ⊆ T [1][X1], and Y1 ⊆ Y2 ⊆ V
implies T [0][Y2] ⊆ T [0][Y1].

2. U ′ ⊆ T [0][V ′] iff V ′ ⊆ T [1][U ′].
3. U ′ ⊆ T [0][T [1][U ′]] and V ′ ⊆ T [1][T [0][V ′]].
4. T [1][U ′] = T [1][T [0][T [1][U ′]]] and T [0][V ′] = T [0][T [1][T [0][V ′]]].
5. T [0][

⋃
V] =

⋂
V ′∈V T [0][V ′] and T [1][

⋃
U] =

⋂
U ′∈U T [1][U ′].

2.1 Basic Normal Non-distributive Modal Logic

The logic discussed below was considered in [6] as an instance of a logic to which
a general methodology applies for endowing lattice-based logics with relational
semantics (cf. [9, Sect. 2]). The semantics of this logic was based on a restricted
class of formal contexts. These restrictions were lifted in [7].

Basic Logic. Let Prop be a (countable or finite) set of atomic propositions. The
language L of the basic normal non-distributive modal logic is defined as follows:

ϕ := ⊥ |
 | p | ϕ ∧ ϕ | ϕ ∨ ϕ | �ϕ | ♦ϕ,

where p ∈ Prop. The basic, or minimal normal L-logic is a set L of sequents
φ ψ with φ, ψ ∈ L, containing the following axioms:

p p, ⊥ p, p
,

p p ∨ q, q p ∨ q, p ∧ q p, p ∧ q q,

 �
, �p ∧ �q �(p ∧ q), ♦⊥ ⊥, ♦p ∨ ♦q ♦(p ∨ q)

and closed under the following inference rules:

φ � χ χ � ψ

φ � ψ

φ � ψ

φ (χ/p) � ψ (χ/p)

χ � φ χ � ψ

χ � φ ∧ ψ

φ � χ ψ � χ

φ ∨ ψ � χ

φ � ψ

�φ � �ψ

φ � ψ

♦φ � ♦ψ

By an L-logic we understand any extension of L with L-axioms φ ψ.

Modelling Informational Entropy 143

Algebraic Semantics. The logic above is sound and complete w.r.t. the class
LE of normal lattice expansions A = (L,�,♦), where L = (L,∧,∨,
,⊥) is a
general lattice, and � and ♦ are unary operations on L satisfying the following
identities:

�
 =
 �(a ∧ b) = �a ∧ �b ♦⊥ = ⊥ ♦(a ∨ b) = ♦a ∨ ♦b.

In what follows, we will sometimes refer to elements of LE as L-algebras. Since L
is selfextensional (i.e. the interderivability relation is a congruence of the formula
algebra), a standard Lindenbaum–Tarski construction is sufficient to show its
completeness w.r.t. LE, i.e. that an L-sequent φ ψ is in L iff LE |= φ ψ.

3 Graph-Based Semantics for the Basic Non-distributive
Modal Logic

Graph-based models for non-distributive logics arise in close connection with the
topological structures dual to general lattices in Ploščica’s representation [23],
see also [11,13]. However, an important difference in the current paper is that
we do not require the TiRS conditions [11, Sect. 2].

A reflexive graph is a structure X = (Z,E) such that Z is a nonempty set,
and E ⊆ Z × Z is a reflexive relation. From now on, we will assume that all
graphs we consider are reflexive even when we drop the adjective. Any graph
X = (Z,E) defines the polarity1

PX = (ZA, ZX , IEc) where ZA = Z = ZX

and IEc ⊆ ZA × ZX is defined as aIEcx iff aEcx. More generally, any relation
R ⊆ Z × Z ‘lifts’ to relations IRc ⊆ ZA × ZX and JRc ⊆ ZX × ZA defined as
aIRcx iff aRcx and xJRca iff xRca. The next lemma follows directly from these
definitions:

Lemma 3. For any relation R ⊆ Z × Z and any Y,B ⊆ Z,

I
(0)
Rc [Y] = R[0][Y] I

(1)
Rc [B] = R[1][B] J

(0)
Rc [B] = R[0][B] J

(1)
Rc [Y] = R[1][Y].

The complete lattice X
+ associated with a graph X is defined as the concept

lattice of PX. For any lattice L, let Flt(L) and Idl(L) denote the set of filters and

1 A formal context [17], or polarity, is a structure P = (A, X, I) such that A and X
are sets, and I ⊆ A × X is a binary relation. Every such P induces maps (·)↑ :
P(A) → P(X) and (·)↓ : P(X) → P(A), respectively defined by the assignments
B↑ := I(1)[B] and Y ↓ := I(0)[Y]. A formal concept of P is a pair c = (B, Y) such
that B ⊆ A, Y ⊆ X, and B↑ = Y and Y ↓ = B. Given a formal concept c = (B, Y)
we will often write [[c]] for B and ([c]) for Y and, consequently, c = ([[c]], ([c])). The
set L(P) of the formal concepts of P can be partially ordered as follows: for any
c = (B1, Y1), d = (B2, Y2) ∈ L(P),

c ≤ d iff B1 ⊆ B2 iff Y2 ⊆ Y1.

With this order, L(P) is a complete lattice, the concept lattice P
+ of P. Any complete

lattice L is isomorphic to the concept lattice P
+ of some polarity P.

144 W. Conradie et al.

ideals of L, respectively. The graph associated with L is XL := (Z,E) where Z
is the set of tuples (F, J) ∈ Flt(L) × Idl(L) such that F ∩ J = ∅. For z ∈ Z,
we denote by Fz the filter part of z and by Jz the ideal part of z. Clearly, filter
parts and ideal parts of states of XL must be proper. The (reflexive) E relation
is defined by zEz′ if and only if Fz ∩ Jz′ = ∅.

Definition 1. [18, Sect. 2] Let L be a (bounded) sublattice of a complete lattice
L

′.

1. L is dense in L
′ if every element of L

′ can be expressed both as a join of
meets and as a meet of joins of elements from L.

2. L is compact in L
′ if, for all S, T ⊆ L, if

∨
S ≤ ∧

T then
∨

S′ ≤ ∧
T ′ for

some finite S′ ⊆ S and T ′ ⊆ T .
3. The canonical extension of a lattice L is a complete lattice L

δ containing L

as a dense and compact sublattice.

The canonical extension of any bounded lattice exists [18, Proposition 2.6] and
is unique up to isomorphism [18, Proposition 2.7].

Proposition 1. [12, Proposition 4.2] For any lattice L, the complete lattice XL
+

is the canonical extension of L.

Furthermore, from results in [18, Sects. 5 and 6], we know that if A = (L,�,♦)
is an L-algebra, then the additional operations can be extended to XL

+ in order
to get a complete L-algebra.

Definition 2. A graph-based L-frame is a structure F = (X, R♦, R�) where
X = (Z,E) is a reflexive graph,2 and R♦ and R� are binary relations on Z
satisfying the following E-compatibility conditions (notation defined in (2)): for
all b, y ∈ Z,

(R[0]
� [y])[10] ⊆ R

[0]
� [y] (R[1]

� [b])[01] ⊆ R
[1]
� [b]

(R[0]
♦ [b])[10] ⊆ R

[0]
♦ [b] (R[1]

♦ [y])[01] ⊆ R
[1]
♦ [y].

The complex algebra of a graph-based L-frame F = (X, R♦, R�) is the com-
plete L-algebra F

+ = (X+, [R�], 〈R♦〉), where X
+ is the concept lattice of PX,

and [R�] and 〈R♦〉 are unary operations on P
+
X

defined as follows: for every
c = ([[c]], ([c])) ∈ P

+
X
,

[R�]c := (R[0]
� [([c])], (R[0]

� [([c])])[1]) and 〈R♦〉c := ((R[0]
♦ [[[c]]])[0], R[0]

♦ [[[c]]]).

2 Applying the notation (2) to a graph-based L-frame F, we will sometimes abbreviate
E[0][Y] and E[1][B] as Y [0] and B[1], respectively, for each Y, B ⊆ Z. If Y = {y} and
B = {b}, we write y[0] and b[1] for {y}[0] and {b}[1], and write Y [01] and B[10] for

(Y [0])[1] and (B[1])[0], respectively. Notice that, by Lemma 3, Y [0] = I
(0)
Ec [Y] = Y ↓

and B[1] = I
(1)
Ec [B] = B↑, where the maps (·)↓ and (·)↑ are those associated with the

polarity PX.

Modelling Informational Entropy 145

The following lemma is an immediate consequence of Lemma 9 in the
appendix, using Lemma 3 and the observation in Footnote 2.

Lemma 4. 1. The following are equivalent for every graph (Z,E) and every
relation R ⊆ Z × Z:
(i) (R[0][y])[10] ⊆ R[0][y] for every y ∈ Z;
(ii) (R[0][Y])[10] ⊆ R[0][Y] for every Y ⊆ Z;
(iii) R[1][B] = R[1][B[10]] for every B ⊆ Z.

2. The following are equivalent for every graph (Z,E) and every relation R ⊆
Z × Z:
(i) (R[1][b])[01] ⊆ R[1][b] for every b ∈ Z;
(ii) (R[1][B])[01] ⊆ R[1][B] for every B ⊆ Z;
(iii) R[0][Y] = R[0][Y [01]] for every Y ⊆ Z.

For any graph-based L-frame F, let us define ⊆ Z ×Z by iff aR�x, and
R� ⊆ Z × Z by aR�x iff xR♦a. Hence, for every B, Y ⊆ Z,

(3)

By Lemma 4, the E-compatibility of R� and R♦ guarantees that the operations
[R�], 〈R♦〉 (as well as [R�],) are well defined on X

+.

Lemma 5. Let F = (X, R�, R♦) be a graph-based L-frame. Then the algebra
F

+ = (X+, [R�], 〈R♦〉) is a complete lattice expansion such that [R�] is com-
pletely meet-preserving and 〈R♦〉 is completely join-preserving.

Proof. As mentioned above, the E-compatibility of R� and R♦ guarantees that
the maps [R�], 〈R♦〉, [R�], : X

+ → X
+ are well defined. Since X

+ is a
complete lattice, by [14, Proposition 7.31], to show that [R�] is completely meet-
preserving and 〈R♦〉 is completely join-preserving, it is enough to show that

is the left adjoint of [R�] and [R�] is the right adjoint of 〈R♦〉. For any
c = ([[c]], ([c])), d = ([[d]], ([d])) ∈ X

+,

Likewise, one shows that [R�] is the right adjoint of 〈R♦〉.
For an L-algebra L and K ⊆ L, we let

�K = {�u | u ∈ K} and ♦K = {♦v | v ∈ K}.

Further, for K ⊆ L, we denote by �K� (�K�) the ideal (filter) generated by K.

Lemma 6. Let L be an L-algebra with F ∈ Flt(L) and J ∈ Idl(L). Then

1. F ∩ �J �= ∅ if and only if F ∩ ��J� �= ∅;
2. ♦F ∩ J �= ∅ if and only if �♦F � ∩ J �= ∅.

146 W. Conradie et al.

Proof. Let us prove item 1. The left-to-right direction is immediate since �J ⊆
��J�. Conversely, assume that there are elements u1, . . . , un ∈ J such that
�u1 ∨ · ∨ �un ∈ F . Because � is monotone and F is upward closed, then
�(u1∨. . .∨un) ∈ F . Because u1, . . . , un ∈ J and J is an ideal, then u1∨·∨un ∈ J ,
which completes the proof that F ∩ �J �= ∅. The proof of item 2 is similar and
omitted.

Definition 3. Given a complete L-algebra A = (L,�,♦) we define its associated
L-frame to be the structure FA = (XL, R�, R♦) where R�, R♦ ⊆ Z ×Z are given
by xR�y iff Fx ∩ �Jy = ∅ and xR♦y iff Jx ∩ ♦Fy = ∅.
Proposition 2. For any L-algebra A, the associated L-frame FA is a graph-
based L-frame.

Proof. We show that (R[0]
� [y])[10] ⊆ R

[0]
� [y]. The other three properties will follow

by similar arguments. With the help of Lemma6(1), we observe that

R
[0]
� [y] = {u ∈ Z | (u, y) /∈ R�} = {u ∈ Z | Fu ∩�Jy �= ∅} = {u ∈ Z | Fu ∩	�Jy
 �= ∅}.

We have

(R[0]
� [y])[1] = {z ∈ Z | ∀u(u ∈ R

[0]
� [y] ⇒ (u, z) /∈ E)}

= {z ∈ Z | ∀u(Fu ∩ �Jy �= ∅ ⇒ Fu ∩ Jz �= ∅)}
= {z ∈ Z | �Jy ⊆ Jz}.

Hence

a ∈ (R[0]
� [y])[10] iff ∀z ∈ Z(�Jy ⊆ Jz ⇒ (a, z) /∈ E)

iff ∀z ∈ Z(�Jy ⊆ Jz ⇒ Fa ∩ Jz �= ∅)
iff Fa ∩ ��Jy� �= ∅
iff Fa ∩ �Jy �= ∅ Lemma 6
iff a ∈ R

[0]
� [y].

Definition 4. A graph-based L-model is a tuple M = (F, V) where F is a graph-
based L-frame and V : Prop → F

+. Since V (p) is therefore a formal concept, we
will write V (p) = ([[p]], ([p])).

For every graph-based L-model M = (F, V), the valuation V can be extended
compositionally to all L-formulas as follows:

V (p) = ([[p]], ([p]))
V (�) = (Z, ∅) V (⊥) = (∅, Z)

V (φ ∧ ψ) = ([[φ]] ∩ [[ψ]], ([[φ]] ∩ [[ψ]])[1]) V (φ ∨ ψ) = ((([φ]) ∩ ([ψ]))[0], ([φ]) ∩ ([ψ]))

V (�φ) = (R
[0]
� [([φ])], (R

[0]
� [([φ])])[1]) V (♦φ) = ((R

[0]
♦ [[[φ]]])[0], R

[0]
♦ [[[φ]]])

and moreover, the existence of the adjoints of [R�] and 〈R♦〉 supports the inter-
pretation of the following expansion:

Modelling Informational Entropy 147

Spelling out the definition above (cf. [2]), we can define the satisfaction and
co-satisfaction relations M, z � φ and M, z � φ for every graph-based L-model
M = (F, V), z ∈ Z, and any L-formula φ, by the following simultaneous recur-
sion:

M, z � ⊥ never M, z � ⊥ always
M, z � � always M, z � � never
M, z � p iff z ∈ [[p]] M, z � p iff ∀z′[z′Ez ⇒ z′ �� p]
M, z � φ ∨ ψ iff M, z � φ and M, z � ψ M, z � φ ∨ ψ iff ∀z′[zEz′ ⇒ M, z′ �� φ ∨ ψ]
M, z � φ ∧ ψ iff M, z � φ and M, z � ψ M, z � φ ∧ ψ iff ∀z′[z′Ez ⇒ M, z′ �� φ ∧ ψ]
M, z � ♦φ iff ∀z′[zR♦z′ ⇒ M, z′ �� φ] M, z � ♦φ iff ∀z′[zEz′ ⇒ M, z′ �� ♦φ]
M, z � �ψ iff ∀z′[zR�z′ ⇒ M, z′ �� ψ] M, z � �ψ iff ∀z′[z′Ez ⇒ M, z′ �� �ψ]

An L-sequent φ ψ is true in M, denoted M |= φ ψ, if for all z, z′ ∈ Z, if
M, z � φ and M, z′ � ψ then zEcz′. An L-sequent φ ψ is valid in F, denoted
F |= φ ψ, if it is true in every model based on F.

The next lemma follows immediately from the definition of an L-sequent
being true in a graph-based L-model.

Lemma 7. Let F be a graph-based L-frame and φ ψ an L-sequent. Then
F |= φ ψ iff F

+ |= φ ψ.

The next proposition follows from the fact that L is sound and complete with
respect to the class of L-algebras and Lemma 7.

Proposition 3. The basic non-distributive modal logic L is sound w.r.t. the
class of graph-based L-frames. I.e., if an L-sequent φ ψ is provable in L, then
F |= φ ψ for every graph-based frame F.

Let AL be the Lindenbaum–Tarski algebra of L. We will abuse notation
and write φ instead [φ] (i.e. formulas instead of their equivalence classes) for the
elements of the Lindenbaum–Tarski algebra AL. Define the canonical graph-based
model to be ML = (FAL

, V) where V (p) = ({z ∈ Z | p ∈ Fz}, {z ∈ Z | p ∈ Jz}).
By Proposition 2, FAL

is a graph-based L-frame. That V is well defined can be
shown as follows:

({z ∈ Z | p ∈ Fz})[1] = {z ∈ Z | ∀z′(p ∈ Fz ⇒ (z, z′) /∈ E)}
= {z ∈ Z | ∀z′(p ∈ Fz ⇒ Fz ∩ Jz′ �= ∅)}
= {z ∈ Z | p ∈ Jz}

Lemma 8. Let φ ∈ L. Then

1. ML, z � φ iff φ ∈ Fz

2. ML, z � φ iff φ ∈ Jz.

Proof. Let us show item 1 under the additional assumption that φ is a theorem
of L (i.e. L derives
 φ). Then φ belongs to every filter, hence to show the
required equivalence, we need to show that [[φ]]ML

= Z. If L derives
 φ,
then, by soundness, ML |=
 φ. Then for every state z in ML, we have
ML, z �� φ. Indeed, suppose for contradiction that ML, z � φ for some state
z. Since ML, z �
, then by spelling out the definition of satisfaction of a

148 W. Conradie et al.

sequent in a model in the instance ML |=
 φ, we would conclude that
(z, z) /∈ E, i.e. E is not reflexive, which contradicts the fact that E is reflexive
by construction. This finishes the proof that if L derives
 φ, then ([φ])ML

= ∅.
Hence, [[φ]]ML

= (([φ])ML
)[1] = ∅[1] = Z, as required.

Likewise, one can show item 2 of the lemma under the additional assumption
that L derives φ ⊥.

Now, assuming that L derives neither
 φ nor φ ⊥, we proceed by
induction on φ. The base cases are straightforward. Consider φ = α ∨ β. Now

ML, z � α ∨ β iff ∀z′ ∈ Z[zEz′ ⇒ ML, z′ �� α ∨ β]
iff ∀z′ ∈ Z[zEz′ ⇒ (ML, z′ �� α or ML, z′ �� β)]
iff ∀z′ ∈ Z[Fz ∩ Jz′ = ∅ ⇒ (α /∈ Jz′ or β /∈ Jz′)] inductive hypothesis
iff ∀z′ ∈ Z[Fz ∩ Jz′ �= ∅ or (α /∈ Jz′ or β /∈ Jz′)].

Consider z′ ∈ Z defined by z′ = (�
�, �(α ∨ β)�), where �
� and �(α ∨ β)�
denote, respectively, the filter generated by
 and the ideal generated by α ∨ β.
The state z′ is indeed well-defined since by assumption (α∨β) /∈ �
�. Moreover,
since
 � α ∨ β, this filter and ideal are disjoint. Clearly α ∈ Jz′ and β ∈ Jz′ so
we must have Fz ∩ �(α ∨ β)� �= ∅ so α ∨ β ∈ Fz. Conversely, suppose α ∨ β ∈ Fz

and consider z′ ∈ Z with zEz′. Then Fz ∩ Jz′ = ∅ so α ∨ β /∈ Jz′ and since this
is a down-set we have α /∈ Jz′ and β /∈ Jz′ and by the inductive hypothesis we
have ML, z′ �� α and ML, z′ �� β.

The proof that ML, z � α ∨ β iff α ∨ β ∈ Jz follows easily from the fact that
Jz is an ideal. The proof of φ = α ∧ β is similar to φ = α ∨ β but with the role
of � and � interchanged.

Now consider φ = �ψ and assume that ML, z � �ψ. We have

ML, z � �ψ iff ∀z′ ∈ Z[zR�z′ ⇒ ML, z′ �� ψ]
iff ∀z′ ∈ Z[zR�z′ ⇒ ψ /∈ Jz′] inductive hypothesis
iff ∀z′ ∈ Z[Fz ∩ �Jz′ = ∅ ⇒ ψ /∈ Jz′]
iff ∀z′ ∈ Z[ψ ∈ Jz′ ⇒ Fz ∩ �Jz′ �= ∅]

Consider z′ = (�
�, �ψ�). Clearly ψ ∈ Jz′ so there exists α ∈ Fz ∩ �Jz′ . Now
α = �β for some β ≤ ψ (in the lattice order of AL), i.e. β ψ and therefore
�β �ψ, whence �ψ ∈ Fz. For the converse, if �ψ ∈ Fz then clearly the
statement ∀z′ ∈ Z[Fz ∩ �Jz′ = ∅ ⇒ ψ /∈ Jz′] is true and so ML, z � �ψ. Now

ML, z � �ψ iff ∀z′ ∈ Z[z′Ez ⇒ ML, z′ �� �ψ]
iff ∀z′ ∈ Z[z′Ez ⇒ �ψ /∈ Fz′] from above
iff ∀z′ ∈ Z[Fz′ ∩ Jz = ∅ ⇒ �ψ /∈ Fz′]
iff ∀z′ ∈ Z[�ψ ∈ Fz′ ⇒ Fz′ ∩ Jz �= ∅]
iff �ψ ∈ Jz.

The forward implication of the last equivalence follows by taking z′ =
(��ψ�, �⊥�).

The case of φ = ♦ψ follows using a similar proof to that of φ = �ψ except
starting by first showing ML, z � ♦ψ iff ♦ψ ∈ Jz.

Theorem 1. The basic non-distributive modal logic L is complete w.r.t. the
class of graph-based L-frames.

Modelling Informational Entropy 149

Proof. Consider an L-sequent φ ψ that is not derivable in L. Then �φ�∩�ψ� = ∅
in the Lindenbaum-Tarski algebra. Let z := (�φ�, �ψ�) be the corresponding state
in ML By Lemma 8 we have M, z � φ and M, z � ψ, but zEz. Hence M �|= φ ψ.

4 Sahlqvist Correspondence on Graph-Based Frames

Parametric Notions. We find it useful to phrase the correspondence results of
the present section in terms of a number of notions, parametric in E, which
generalize familiar notions about sets and relations which are staples of corre-
spondence theory in Kripke frames. The following definition will make it possible
to concisely express relevant first order conditions. Properties of this definition
are collected in Sect. B.

Definition 5. For any graph X = (Z,E) and relations R,S ⊆ Z × Z, the E-
compositions of R and S are the relations R ◦E S ⊆ Z × Z and R •E S ⊆ Z × Z
defined as follows: for any a, x ∈ Z,

x(R ◦E S)a iff ∃b(xRb & E(1)[b] ⊆ S(0)[a]).

a(R •E S)x iff ∃y(aRy & E(0)[y] ⊆ S(0)[x]).

If E = Δ, then E(1)[b] = E(0)[b] = {b} for every b ∈ Z, and hence (R ◦E S)
and (R •E S) reduce both to the usual relational composition of R and S. The
interpretation of E-compositions will be discussed in Sect. 5, while a number of
their key properties are proven in AppendixB.

Definition 6. For any graph X = (Z,E), the relation R ⊆ Z × Z is:

E-reflexive iff E ⊆ R; sub-E iff R ⊆ E; E◦-transitive iff R ◦E R ⊆ R; E•-
transitive iff R •E R ⊆ R.

When E := Δ, we obtain the usual reflexivity, transitivity etc.

Proposition 4. For any graph-based L-frame F = (X, R�, R♦),

1. F |= �φ φ iff E ⊆ R� (R� is E-reflexive).
2. F |= φ ♦φ iff E ⊆ R� (R♦ is E-reflexive).
3. F |= �φ ��φ iff R� •E R� ⊆ R� (R� is E•-transitive).
4. F |= ♦♦φ ♦φ iff R♦ ◦E R♦ ⊆ R♦ (R♦ is E◦-transitive).
5. F |= φ �φ iff R� ⊆ E (R� is sub-E).
6. F |= ♦φ φ iff R� ⊆ E (R♦ is sub-E).

Proof. The modal principles above are all Sahlqvist (cf. [9, Definition 3.5]).
Hence, they all have first-order correspondents, both on Kripke frames and on
graph-based L-frames, which can be computed e.g. via the algorithm ALBA
(cf. [9, Sect. 4]). Below, we do so for the modal axiom in item 1 (for the remain-
ing items, see AppendixC). In what follows, the variables j are interpreted as
elements of the set J := {(a[10], a[1]) | a ∈ Z} which completely join-generates
F

+, and the variables m as elements of M := {(x[0], x[01]) | x ∈ Z} which
completely meet-generates F

+.

150 W. Conradie et al.

∀p [�p ≤ p]
iff ∀p∀j∀m[(j ≤ �p & p ≤ m) ⇒ j ≤ m] first approximation
iff ∀j∀m[j ≤ �m ⇒ j ≤ m] Ackermann’s Lemma
iff ∀m[�m ≤ m] J completely join-generates F

+

Translating the universally quantified algebraic inequality above into its con-
crete representation in F

+ requires using the interpretation of m as ranging in
M and the definition of [R�] and [R�], as follows:

∀x ∈ Z R
[0]
� [x[01]] ⊆ E[0][x] translation

iff ∀x ∈ Z R
[0]
� [x] ⊆ E[0][x] Lemma 4 since R� is E-compatible

iff Rc
� ⊆ Ec (2)

iff E ⊆ R�.

5 Graph-Based Frames as Models of Informational
Entropy

As shown in the previous sections, graph-based frames – such as those defined for
the language L – provide a mathematically grounded semantic environment for
lattice-based logics such as L. However, in order for this environment to ‘make
sense’ in a more fundamental way, we need to: (a) specify how it generalizes the
Kripke semantics of classical normal modal logic; (b) couple it with an extra-
mathematical interpretation which simultaneously accounts for the meaning of
all connectives, and coherently extends to the meaning of axioms and of their
first order correspondents. Below, we propose a way to address these issues.

By assumption, the graphs X = (Z,E) on which the semantics of L is based
are reflexive, i.e. Δ ⊆ E. Hence, a good starting point to address (a) is to
understand this semantics when E = Δ. In this case, the polarity arising from X

is PX = (ZA, ZX , IΔc), and, as is well known and easy to see (cf. [5, Proposition
1]), the complete lattice X

+ arising from X is (isomorphic to) the powerset
algebra P (Z), and can be represented as a concept lattice the join-generators of
which are (a[10], a[1]) = ({a}, {a}c) for every a ∈ Z, and the meet generators of
which are (x[0], x[01]) = ({x}c, {x}) for every x ∈ Z. Notice also that if E :=
Δ, then B↑ = Bc and Y ↓ = Y c for all B, Y ⊆ Z. Hence, the interpretation
of L-formulas on frames based on X = (Z,Δ) reduces as shown below. These
computations show that indeed, when E := Δ, we recover the usual Kripke-style
interpretation of the logical connectives, both propositional and modal.

V (p) = ([[p]], ([p])) = ([[p]], [[p]]c)

V (�) = (Z, Z [1]) = (Z, Zc)

V (⊥) = (Z [0], Z) = (Zc, Z)

V (φ ∧ ψ) = ([[φ]] ∩ [[ψ]], ([[φ]] ∩ [[ψ]])[1]) = ([[φ]] ∩ [[ψ]], ([[φ]] ∩ [[ψ]])c)

V (φ ∨ ψ) = ((([φ]) ∩ ([ψ]))[0], ([φ]) ∩ ([ψ])) = ([[φ]] ∪ [[ψ]], ([[φ]] ∪ [[ψ]])c)

V (�φ) = (R
[0]
� [([φ])], (R

[0]
� [([φ])])[1]) = ((R−1

� [[[φ]]c])c, R−1
� [[[φ]]c]) (∗)

V (♦φ) = ((R
[0]
♦ [[[φ]]])[0], R

[0]
♦ [[[φ]]]) = (R−1

♦ [[[φ]]], (R−1
♦ [[[φ]]])c) (∗∗)

Modelling Informational Entropy 151

To justify the lines marked with (∗) and (∗∗),

R
[0]
� [([φ])] = (Rc

�)(0)[[[φ]]c] R
[0]
♦ [[[φ]]] = (Rc

♦)(0)[[[φ]]]
= {z | ∀y(y /∈ [[φ]] ⇒ zRc

�y)} = {z | ∀y(y ∈ [[φ]] ⇒ zRc
♦y)}

= {z | ∀y(zR�y ⇒ y ∈ [[φ]])} = {z | ∀y(zR♦y ⇒ y ∈ [[φ]]c)}
= ({z | ∃y(zR�y & y ∈ [[φ]]c)})c = ({z | ∃y(zR♦y & y ∈ [[φ]])})c

= (R−1
� [[[φ]]c])c = (R−1

♦ [[[φ]]])c

Earlier on, we observed that the E-composition of relations reduces to the
usual relational composition when E := Δ, and so do the ‘E-versions’ of rela-
tional properties such as reflexivity and transitivity (cf. Definition 6). So, in a
slogan, the graph-based interpretation of the modal operators is classical modulo
a shift from Δ to E. In what follows we focus on this shift.

Drawing from the literature in information science and modal logic, we can
regard the vertices of X = (Z,E) as states, and interpret zEy as ‘z is indiscernible
from y’. The reflexivity of E is the minimal property we assume of such a relation,
i.e. that every state is indiscernible from itself.3 The closure a[10] of any a ∈
Z arises by first considering the set a[1] of all the states from which a is not
indiscernible, and then the set of all the states that can be told apart from
every state in a[1]. Then clearly, a is an element of a[10], but this is as far as we
can go: a[10] represents a horizon to the possibility of completely ‘knowing’ a.
This horizon could be epistemic, cognitive, technological, or evidential. Hence,
E := Δ represents the limit case in which a[10] = {a} for each state, i.e. there
are no bounds to the ‘knowability’ of each state of Z.

As we saw in Definition 2, the elements of the complex algebra of a graph-
based frame are tuples (B, Y) such that Y = B[1] and B = Y [0]. This two-sided
representation yields a corresponding interpretation of L-formulas ϕ as tuples
([[ϕ]], ([ϕ])) which, as discussed above, reduce to ([[ϕ]], [[ϕ]]c) when E := Δ. Hence,
formulas ϕ are assigned both a satisfaction set [[ϕ]] and a refutation set ([ϕ])
which, as is the case when E := Δ, determine each other, i.e. ([ϕ]) = [[ϕ]][1] and
[[ϕ]] = ([ϕ])[0]. The latter identities imply that [[ϕ]][10] = [[ϕ]] and ([ϕ])[01] = ([ϕ]),
i.e. both the satisfaction and the refutation set of any formula are stable. The
stability requirement, which is mathematically justified by the need of defining
a compositional semantics for L, can also be understood at a more fundamental
level: if E encodes an inherent boundary to perfect knowability (i.e. the informa-
tional entropy of the title), this boundary should be incorporated in the meaning
of formulas which are both satisfied and refuted ‘up to E’, i.e. not by arbitrary
subsets of the domain of the graph, but only by subsets which are preserved
(i.e. faithfully translated) in the shift from Δ to E.

This is similar to the persistency restriction in the interpretation of formulas
of intuitionistic (modal) logic. Just like the interpretation of implication changes

3 In well-known settings (e.g. [15,22]), indiscernibility is modelled as an equivalence
relation. However, transitivity will fail, for example, when zEy iff d(z, y) < α for
some distance function d. It has been argued in the psychological literature (cf. [21,
25]) that symmetry will fail in situations where indiscernibility is understood as
similarity, defined e.g. as z is similar to y iff z has all the features y has.

152 W. Conradie et al.

in the shift from classical to intuitionistic semantics, the interpretation of dis-
junction changes from classical to graph-based semantics and becomes weaker:
the stipulation [[φ ∨ ψ]] = (([φ]) ∩ ([ψ]))[0] requires a state z to satisfy φ∨ψ exactly
when z can be told apart from any state that refutes both φ and ψ. All states
in [[φ]] ∪ [[ψ]] will satisfy this requirement, but more states might as well which
neither satisfy φ nor ψ, provided that E detects their being different from every
state that refutes both φ and ψ.

Additional relations on graphs-based frames can be regarded as encoding
subjective indiscernibility, i.e. zR�y iff z is indiscernible from y according to a
given agent. Under this interpretation, the stipulation [[�φ]] = R

[0]
� [([φ])] requires

�φ to be satisfied at exactly those states that the agent can tell apart from each
state refuting φ, and the stipulation ([♦φ]) = R

[0]
♦ [[[φ]]] requires ♦φ to be refuted

at exactly those states that the agent can tell apart from each state satisfying φ,
and be satisfied at the states that can be told apart from every state in ([♦φ]).
Hence, under the interpretation indicated above, these semantic clauses support
the usual reading of �φ as ‘the agent knows/believes φ’ and ♦φ as ‘the agent
considers φ plausible’.

Finally, we illustrate, by way of examples, how this interpretation coherently
extends to axioms. In Proposition 4, we show that, also on graph-based frames,
well known modal axioms from classical modal logic have first-order correspon-
dents, which are the parametrized ‘E-counterparts’ of the first order correspon-
dents on Kripke frames. Interestingly, this surface similarity goes deeper, and in
fact guarantees that the intended meaning of a given axiom under a given inter-
pretation is preserved in the translation from Δ to E. As a first illustration of
this phenomenon, consider the axiom �φ φ, which, under the epistemic read-
ing, in classical modal logic captures the characterizing property of the factivity
of knowledge (if the agent knows φ, then φ is true). This axiom corresponds to
E ⊆ R� on graph-based frames (cf. Proposition 4). This condition requires that
if the agent tells apart z from y, then indeed z is not indistinguishable from y.
That is, the agent’s assessments are correct, which mutatis mutandis, is exactly
what factivity is about.

Likewise, as is well known, under the epistemic reading, axiom �φ ��φ
captures the so called positive introspection condition: knowledge of φ implies
knowledge of knowing φ. This axiom corresponds to R� •E R� ⊆ R� on graph-
based frames (cf. Proposition 4). This condition requires that if the agent cannot
distinguish a state y from a and nothing from which y is (in principle) indis-
tinguishable she can distinguish from x, then she cannot distinguish x from a.
Equivalently, if she can distinguish x from a, then every state which she can-
not distinguish from a cannot be distinguished (in principle) from some state
from which she can distinguish x. This is exactly what positive introspection is
about. As a third example, consider the axiom φ �φ, which in the epistemic
logic literature is referred to as the omniscience principle (if φ is true, then the
agent knows φ). This axiom corresponds to R� ⊆ E on graph-based frames
(cf. Proposition 4). This condition requires the agent to tell apart z from every
state y from which z is not indistinguishable, which is indeed what an omniscient
agent should be able to do.

Modelling Informational Entropy 153

6 Sources of Informational Entropy

In this section we discuss two examples of the use graph-based models to capture
situations where informational entropy arises. The first considers synonymy in
natural a language while the second deals with colour perception an the limits
of the human visual apparatus.

Synonymy in Natural Language. The exact nature of synonymy is debated, but
there is evidence to suggest that this relation, although reflexive, can fail to
be an equivalence, both on symmetry and transitivity. For example, one study
[1] looks at English synonyms in an online thesaurus and finds high degree of
asymmetry. For example, http://thesaurus.com lists cushion in the entry for
pillow, but does not list pillow in the entry for cushion, suggesting that cushion
is a synonym for pillow but not vice versa. To take another example, in a South
African context, the term chips covers both what Americans would call fries and
what the British would call crisps. A South African English speaker would thus
regards chips as a synonym for both fries and crisps, but would regard neither
fries nor crisps as synonyms for chips. Chips is by far the most commonly used
word, with fries and crisps only used when disambiguation is required. This
can be modelled with the graph-based frame in the figure below, where the solid
arrows represent the E-relation, taken as the South African synonymity relation.
As the reader can easily verify, the closed sets of this graph are exactly ∅,
{fries}, {crisps}, {fries, crisps} and {crisps, chips, fries}4. For any given word,
the smallest of these sets containing it can be thought of as its ‘semantic scope’.
In particular, this accurately represents the fact that the words fries and crisps
have unambiguous meanings while, without the benefit of context, chips could
mean either of the others.

Now consider an American tourist trying to make sense of local usage. Having
some experience with British usage, she assumes chips and fries as interchange-
able terms, and say she also knows that South Africans use chips as a synonym
for crisps. This epistemic situation is modelled by the dashed arrows in the figure
below which define the E-compatible relation R.

fries crisps

chips

We could evaluate a proposition letter p, with intended interpretation ‘spe-
cific terms for fried potatoes’, to ([[p]], ([p])) = ({fries, crisps}, {chips}), which
would yield [[�Rp]] = {crisps} capturing the fact that crisps is the only term the
tourist can be sure denotes a specific kind of fried potato.

4 Notice that since the E-relation in this example is only ‘one step’, it is automatically
transitive and therefore a pre-order. Hence, unsurprisingly, the associated concept
lattice is distributive.

http://thesaurus.com

154 W. Conradie et al.

Perceptual Limits. The wavelength of visible light lies roughly in the rage from
380 to 780 nm. The smallest difference between wavelengths in this range which
is detectable by the human eye is known as the differentiation minimum. The
differentiation minimum varies with wavelengths and is best in the green-blue
(around 490 nm) and orange (around 590 nm) spectra, where it is as low as 1 nm.
It goes as high as 7 nm in the low 400 and middle 600 ranges, but averages round
4 nm over the spectrum of visible light. Deficient colour vision is characterized
by significantly higher individual differentiation minima in certain ranges [20].

We model this situation using a graph-based frame. Firstly, write [380, 780]
for {x ∈ N | 380 ≤ x ≤ 780} and represent the differentiation minimum by the
function δ : [380, 780] → N mapping every integer valued wavelength between
380 nm and 780 nm to the associated differentiation minimum. Represent the
(possibly deficient) colour vision of an agent A by δA : [380, 780] → N such that
δA(x) ≥ δ(x) for all x ∈ [380, 780]. We will make the assumption that δ has no
sudden “jumps”, specifically, that for all x ∈ [380, 779], |δ(x) − δ(x + 1)| ≤ 1.
We will assume that for all x ∈ [380, 780], if (x − δA(x)) ≥ 380, there exists
x� ∈ [x − δA(x) + 1, x] such that δ(x�) = x� − (x − δA(x)) and, symmetrically,
that if (x+δA(x)) ≤ 780, there exists xr ∈ [x, x+δA(x)−1] such that δ(xr) = (x+
δA(x))−xr. This assumption is needed for technical reasons. However, is justified
in the case of x� (and symmetrically in the case of xr) by the consideration that,
since x− δA(x) is the first point to the left of x in the spectrum which agent can
discern from x, there should be a point in between x − δA(x) + 1 and x which
is minimally discernible from x − δA(x) according to differentiation minimum
(and could be x itself, if the agent’s perception at this point coincides with the
differentiation minimum).

Let F = (X, R♦, R�) where X = ([380, 780], E) such that xEy iff |x−y| < δ(x)
and xR♦y iff xR�y iff |x − y| < δA(x). Note that E is reflexive, but need be
neither symmetric nor transitive. Using the assumptions above, one can prove
that R� is E-compatible.

Suitable proposition letters to interpret on F would be colour terms like
green, yellow, orange etc. For example, according to the standard division of
the spectrum into colours, one would evaluate [[green]] = [520, 560], [[yellow]] =
[560, 590] and [[orange]] = [590, 635]. As a simplified and stylized example (but
one nevertheless not too unrealistic for the range we focus on subsequently), let
us take δ and δA to be defined as in the following table:

Interval δ δA

370–519 3 7

520–550 4 8

551–570 3 7

571–780 2 6

In this model we get [[�green]] = R[0][([green])] = R[0][[370, 516]∪ [563, 780]] =
[524, 556] which represent the range of wavelengths that the agent definitely per-

Modelling Informational Entropy 155

ceives as green. On the other hand ([♦green]) = R[1][[[green]]] = R[1][[520, 560]] =
[370, 512] ∪ [567, 780] which is the set of wavelengths which the agent definitely
perceives as not green. This leaves the intervals [513, 523] and [557, 568] where
the agent cannot tell whether the corresponding colour is green or not.

7 Conclusions

The present contributions lay the ground for a number of further developments,
some of which are listed below.

Parametric Sahlqvist Theory. In Proposition 4 we were able to formulate
our correspondence results as parametric versions (where E is the parameter)
of well known relational properties such as reflexivity and transitivity (cf. Def-
inition 6). This phenomenon was also observed in [5, Proposition 5]. A natural
question is whether these instances can be subsumed by a more general and sys-
tematic parametric Sahlqvist theory, where the generalized frame correspondent
of any Sahlqvist formula would be obtainable directly as a parametrization of
its classical frame correspondents.

Gödel-McKinsey-Tarski Translation. As mentioned in Sect. 5, one way of
making sense of the present framework is by comparing it with the relational
semantics of intuitionistic logic. In the later, the relation E is reflexive and tran-
sitive, and rather than being used to generate the semantics of modal operators
on powerset algebras, it is used to generate an algebra of stable sets, namely
the persistent (i.e. upward closed or downward closed) sets. Hence a natural
direction is to build a non-distributive version of the transfer results induced by
a suitable counterpart of Gödel-McKinsey-Tarski translation. We are presently
pursuing this direction.

Many-Valued Graph-Based Semantics. In this paper, we only treat exam-
ples of informational entropy due to linguistic and perceptual limits. However,
a very interesting area of application for this framework is the formal analysis
of informational entropy induced by theoretical frameworks adopted to conduct
scientific experiments. These situations are also amenable to be studied using a
many-valued version of the present framework, which we have started to out-
line in [3].

A Equivalent Compatibility Conditions in Formal
Contexts

Lemma 9. 1. The following are equivalent for every formal context P =
(A,X, I) and every relation R ⊆ A × X:
(i) R(0)[x] is Galois-stable for every x ∈ X;
(ii) R(0)[Y] is Galois-stable for every Y ⊆ X;
(iii) R(1)[B] = R(1)[B↑↓] for every B ⊆ A.

156 W. Conradie et al.

2. The following are equivalent for every formal context P = (A,X, I) and every
relation R ⊆ A × X:
(i) R(1)[a] is Galois-stable for every a ∈ A;
(ii) R(1)[B] is Galois-stable, for every B ⊆ A;
(iii) R(0)[Y] = R(0)[Y ↓↑] for every Y ⊆ X.

Proof. We only prove item 1, the proof of item 2 being similar. For (i) ⇒ (ii),
see [7, Lemma 4]. The converse direction is immediate.

(i) ⇒ (iii). Since (·)↑↓ is a closure operator, B ⊆ B↑↓. Hence, Lemma 1.1
implies that R

(1)
� [B↑↓] ⊆ R

(1)
� [B]. For the converse inclusion, let x ∈ R

(1)
� [B].

By Lemma 1.2, this is equivalent to B ⊆ R
(0)
� [x]. Since R

(0)
� [x] is Galois-stable

by assumption, this implies that B↑↓ ⊆ R
(0)
� [x], i.e., again by Lemma1.2, x ∈

R
(1)
� [B↑↓]. This shows that R

(1)
� [B] ⊆ R

(1)
� [B↑↓], as required.

(iii) ⇒ (i). Let x ∈ X. It is enough to show that (R(0)
� [x])↑↓ ⊆ R

(0)
� [x].

By Lemma 1.2, R
(0)
� [x] ⊆ R

(0)
� [x] is equivalent to x ∈ R

(1)
� [R(0)

� [x]]. By assump-
tion, R

(1)
� [R(0)

� [x]] = R
(1)
� [(R(0)

� [x])↑↓], hence x ∈ R
(1)
� [(R(0)

� [x])↑↓]. Again by
Lemma 1.2, this is equivalent to (R(0)

� [x])↑↓ ⊆ R
(0)
� [x], as required.

B Composing Relations on Graph-Based Structures

The present section collects properties of the E-compositions (cf. Definition 5).

Lemma 10. For any graph X = (Z,E), relations R,S ⊆ Z × Z and a, x ∈ Z,

(R ◦E S)[0][a] = R[0][E[0][S[0][a]]], (R ◦E S)[1][x] = R[1][E[1][S[1][x]]],
(R •E S)[0][x] = R[0][E[1][S[0][x]]] and (R •E S)[1][a] = R[1][E[0][S[1][a]]].

Proof. We only prove the identities in the left column.

R[0][E[0][S[0][a]]] = R[0][E[0][{x | xSca}]] definition of S[0][a]
= R[0][{b | ∀x(xSca ⇒ bEcx)}] definition of E[0][−]
= R[0][{b | S[0][a] ⊆ E[1][b]}]
= R[0][{b | E(1)[b] ⊆ S(0)[a]}] Lemma 3
= {x | ∀b(E(1)[b] ⊆ S(0)[a] ⇒ xRcb)} definition of R[0][−]
= ({x | ∃b(xRb & E(1)[b] ⊆ S(0)[a])})c

= ({x | x(R ◦E S)a})c Definition 5
= {x | x(R ◦E S)ca}
= (R ◦E S)[0][a].

R[0][E[1][S[0][x]]] = R[0][E[1][{a | aScx}]] definition of S[0][x]
= R[0][{y | ∀a(aScx ⇒ aEcy)}] definition of E[1][−]
= R[0][{y | S[0][x] ⊆ E[0][y]}]
= R[0][{y | E(0)[y] ⊆ S(0)[x]}] Lemma 3
= {b | ∀y(E(0)[y] ⊆ S(0)[x] ⇒ bRcy)} definition of R[0][−]
= ({b | ∃y(bRy & E(0)[y] ⊆ S(0)[x])})c

= ({b | b(R •E S)x})c Definition 5
= {b | b(R •E S)cx}
= (R •E S)[0][x].

Modelling Informational Entropy 157

Lemma 11. If R, T ⊆ Z × Z and R is E-compatible, then so are R ◦E T and
R •E T .

Proof. Let a ∈ Z. By Lemma 10, (R;T)[0][a] = R[0][I [0][T [0][a]]], hence the fol-
lowing chain of identities holds:

((R ;T)[0][a])[01] = (R[0][I [0][T [0][a]]])[01] = R[0][I [0][T [0][a]]] = (R;T)[0][a],

the second identity in the chain above following from the E-compatibility of R
and Lemma 4.1. The remaining conditions for the E-compatibility of R◦E T and
R •E T are shown similarly.

The following lemma is the counterpart of [5, Lemma 6] in graph-based
semantics.

Lemma 12. If R, T ⊆ Z × Z are E-compatible, then for any B, Y ⊆ Z,

(R ◦E T)[1][Y] = R[1][E[1][T [1][Y]]] (R ◦E T)[0][B] = R[0][E[0][T [0][B]]].

(R •E T)[1][B] = R[1][E[0][T [1][B]]] (R •E T)[0][Y] = R[0][E[1][T [0][Y]]].

Proof. We only prove the first identity, the remaining ones being proved simi-
larly.

R[1][E[1][T [1][Y]]] = R[1][E[1][T [1][
⋃

x∈Y {x}]]]
= R[1][E[1][

⋂
x∈Y T [1][x]]] Lemma 2.5

= R[1][E[1][
⋂

x∈Y E[0][E[1][T [1][x]]]]] T is E-compatible
= R[1][E[1][E[0][

⋃
x∈Y E[1][T [1][x]]]]] Lemma 2.5

= R[1][
⋃

x∈Y E[1][T [1][x]]] Lemma 4
=

⋂
x∈Y R[1][E[1][T [1][x]]] Lemma 2.5

=
⋂

x∈Y (R ◦E T)[1][x] Lemma 10
= (R ◦E T)[1][

⋃
x∈Y {x}] Lemma 2.5

= (R ◦E T)[1][Y].

Lemma 13. If R, T, U ⊆ Z × Z are E-compatible, then (R ◦E T) ◦E U = R ◦E

(T ◦E U) and (R •E T) •E U = R •E (T •E U).

Proof. For every x ∈ Z, repeatedly applying Lemma12 we get:

(R ◦E (T ◦E U))[1][x] = R[1][E[1][(T ◦E U)[1][x]]]
= R[1][E[1][T [1][E[1][U [1][x]]]]]
= (R ◦E T)[1][E[1][U [1][x]]]
= ((R ◦E T) ◦E U)[1][x],

which shows that x(R ◦E (T ◦E U))ca iff x((R ◦E T) ◦E U)ca for any x, a ∈ Z,
and hence x(R ◦E (T ◦E U))a iff x((R ◦E T) ◦E U)a for any x, a ∈ Z, as required.
The remaining statements are proven similarly.

158 W. Conradie et al.

C Proof of Proposition 4

2.

∀p [p ≤ ♦p]
iff ∀p∀j∀m[(j ≤ p & ♦p ≤ m) ⇒ j ≤ m] first approximation
iff ∀p∀j∀m[(j ≤ p & p ≤ �m) ⇒ j ≤ m] adjunction
iff ∀j∀m[j ≤ �m ⇒ j ≤ m] Ackermann’s Lemma
iff ∀m[�m ≤ m] J completely join-generates F

+

i.e. ∀x ∈ Z R
[0]
� [x[01]] ⊆ E[0][x] translation

iff ∀x ∈ Z R
[0]
� [x] ⊆ E[0][x] Lemma 4 since R� is E-compatible

iff Rc
� ⊆ Ec (2)

iff E ⊆ R�.

3.

∀p [�p ≤ ��p]
iff ∀p∀j∀m[(j ≤ �p & p ≤ m) ⇒ j ≤ ��m] first approximation
iff ∀j∀m[j ≤ �m ⇒ j ≤ ��m] Ackermann’s Lemma
iff ∀m[�m ≤ ��m] J completely join-generates F

+

i.e. ∀x ∈ Z R
[0]
� [x[01]] ⊆ R

[0]
� [E[1][R

[0]
� [x[01]]]] translation

iff ∀x ∈ Z R
[0]
� [x] ⊆ R

[0]
� [E[1][R

[0]
� [x]]] Lemma 4 since R� is E-compatible

iff ∀x ∈ Z R
[0]
� [x] ⊆ (R� •E R�)[0][x] Lemma 12

iff Rc
� ⊆ (R� •E R�)c (2)

iff R� •E R� ⊆ R�.

4.

∀p [♦♦p ≤ ♦p]
iff ∀p∀j∀m[(j ≤ p & ♦p ≤ m) ⇒ ♦♦j ≤ m] first approximation
iff ∀j∀m[♦j ≤ m ⇒ ♦♦j ≤ m] Ackermann’s Lemma
iff ∀j[♦♦j ≤ ♦j] M completely meet-generates F

+

i.e. ∀a ∈ Z R
[0]
♦ [a[10]] ⊆ R

[0]
♦ [(R

[0]
♦ [a[10]])[0]] translation

iff ∀a ∈ Z R
[0]
♦ [a] ⊆ R

[0]
♦ [(R

[0]
♦ [a])[0]] Lemma 4 since R♦ is E-compatible

iff ∀a ∈ Z R
[0]
♦ [a] ⊆ (R♦ ◦ R♦)[0][a] Lemma 12

iff Rc
♦ ⊆ (R♦ ◦E R♦)c (2)

iff R♦ ◦E R♦ ⊆ R♦.

5.

∀p[p ≤ �p]
iff ∀p∀j∀m[(j ≤ p & p ≤ m) ⇒ j ≤ �m] first approximation
iff ∀j∀m[j ≤ m ⇒ j ≤ �m] Ackermann’s Lemma
iff ∀m[m ≤ �m] J completely join-generates F

+

i.e. ∀x ∈ Z E[0][x] ⊆ R
[0]
� [x[01]] translation

iff ∀x ∈ Z E[0][x] ⊆ R
[0]
� [x] Lemma 4 since R� is E-compatible

iff Ec ⊆ Rc
� (2)

iff R� ⊆ E.

Modelling Informational Entropy 159

6.

∀p [♦p ≤ p]
iff ∀p∀j∀m[(j ≤ p & p ≤ m) ⇒ ♦j ≤ m] first approximation
iff ∀j∀m[j ≤ m ⇒ ♦j ≤ m] Ackermann’s Lemma
iff ∀j∀m[j ≤ m ⇒ j ≤ �m] adjunction
iff ∀m[m ≤ �m] J completely join-generates F

+

i.e. ∀x ∈ Z E[0][x] ⊆ R
[0]
� [x[01]] translation

iff ∀x ∈ Z E[0][x] ⊆ R
[0]
� [x] Lemma 4 since R� is E-compatible

iff Ec ⊆ Rc
� (2)

iff R� ⊆ E.

References

1. Chodorow, M.S., Ravin, Y., Sachar, H.E.: A tool for investigating the synonymy
relation in a sense disambiguated thesaurus. In: Second Conference on Applied
Natural Language Processing, pp. 144–151 (1988)

2. Conradie, W., Craig, A.: Relational semantics via TiRS graphs. In: TACL 2015
Extended Abstract (2015)

3. Conradie, W., Craig, A., Palmigiano, A., Wijnberg, N.: Modelling competing theo-
ries. In: Proceedings of the EUSFLAT 2019, Atlantis Studies in Uncertainty Mod-
elling (2019, accepted)

4. Conradie, W., Craig, A., Palmigiano, A., Zhao, Z.: Constructive canonicity for
lattice-based fixed point logics. In: Kennedy, J., de Queiroz, R.J.G.B. (eds.) WoL-
LIC 2017. LNCS, vol. 10388, pp. 92–109. Springer, Heidelberg (2017). https://doi.
org/10.1007/978-3-662-55386-2 7. ArXiv preprint arXiv:1603.06547

5. Conradie, W., et al.: Rough concepts (2019, submitted)
6. Conradie, W., Frittella, S., Palmigiano, A., Piazzai, M., Tzimoulis, A., Wijnberg,

N.M.: Categories: how I learned to stop worrying and love two sorts. In: Väänänen,
J., Hirvonen, Å., de Queiroz, R. (eds.) WoLLIC 2016. LNCS, vol. 9803, pp. 145–
164. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-52921-8 10

7. Conradie, W., Frittella, S., Palmigiano, A., Piazzai, M., Tzimoulis, A., Wijnberg,
N.M.: Toward an epistemic-logical theory of categorization. In: Proceedings of the
TARK 2017. EPTCS, vol. 251, pp. 167–186 (2017)

8. Conradie, W., Palmigiano, A.: Constructive canonicity of inductive inequalities.
arXiv preprint arXiv:1603.08341 (2016)

9. Conradie, W., Palmigiano, A.: Algorithmic correspondence and canonicity for non-
distributive logics. Ann. Pure Appl. Log. (2019). https://doi.org/10.1016/j.apal.
2019.04.003

10. Conradie, W., Palmigiano, A., Robinson, C., Tzimoulis, A., Wijnberg, N.M.: Mod-
elling socio-political competition (2019, submitted)

11. Craig, A., Gouveia, M., Haviar, M.: TiRS graphs and TiRS frames: a new setting
for duals of canonical extensions. Algebra Universalis 74(1–2), 123–138 (2015)

12. Craig, A., Haviar, M.: Reconciliation of approaches to the construction of canonical
extensions of bounded lattices. Mathematica Slovaca 64, 1–22 (2014)

13. Craig, A., Haviar, M., Priestley, H.A.: A fresh perspective on canonical extensions
for bounded lattices. Appl. Categor. Struct. 21(6), 725–749 (2013)

14. Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order. Cambridge Uni-
versity Press, Cambridge (2002)

https://doi.org/10.1007/978-3-662-55386-2_7
https://doi.org/10.1007/978-3-662-55386-2_7
http://arxiv.org/abs/1603.06547
https://doi.org/10.1007/978-3-662-52921-8_10
http://arxiv.org/abs/1603.08341
https://doi.org/10.1016/j.apal.2019.04.003
https://doi.org/10.1016/j.apal.2019.04.003

160 W. Conradie et al.

15. Fagin, R., Halpern, J., Moses, Y., Vardi, M.: Reasoning About Knowledge. The
MIT Press, Cambridge (1995)

16. Frittella, S., Manoorkar, K., Palmigiano, A., Tzimoulis, A., Wijnberg, N.M.:
Towards a Dempster-Shafer theory of concepts (2019, submitted)

17. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations.
Springer, Heidelberg (2012)

18. Gehrke, M., Harding, J.: Bounded lattice expansions. J. Algebra 238(1), 345–371
(2001)

19. Greco, G., Jipsen, P., Manoorkar, K., Palmigiano, A., Tzimoulis, A.: Logics for
rough concept analysis. In: Khan, M.A., Manuel, A. (eds.) ICLA 2019. LNCS, vol.
11600, pp. 144–159. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-
662-58771-3 14

20. Krúdy, Á., Ladunga, K.: Measuring wavelength discrimination threshold along the
entire visible spectrum. Periodica Polytechnica Mechanical Engineering 45(1), 41–
48

21. Nosofsky, R.M.: Stimulus bias, asymmetric similarity, and classification. Cogn. Psy-
chol. 23(1), 94–140 (1991)

22. Pawlak, Z.: Rough set theory and its applications to data analysis. Cybern. Syst.
29(7), 661–688 (1998)

23. Ploščica, M.: A natural representation of bounded lattices. Tatra Mt. Math. Publ.
5, 75–88 (1995)

24. Shannon, C.E., Weaver, W.: The Mathematical Theory of Communication. Uni-
versity of Illinois Press, Champaign (1949)

25. Tversky, A.: Features of similarity. Psychol. Rev. 84(4), 327 (1977)

https://doi.org/10.1007/978-3-662-58771-3_14
https://doi.org/10.1007/978-3-662-58771-3_14

Hennessy-Milner Properties for (Modal)
Bi-intuitionistic Logic

Jim de Groot(B) and Dirk Pattinson(B)

The Australian National University, Canberra, Australia
{jim.degroot,dirk.pattinson}@anu.edu.au

Abstract. Bi-intuitionistic logic is an extension of intuitionistic propo-
sitional logic with a binary operator that is residuated with respect
to disjunction. Our main result is a Hennessy-Milner property for bi-
intuitionistic logic interpreted over certain classes of Kripke models. We
generalise this to obtain a corresponding result for modal bi-intuitionistic
logic. Our main technical tools are a categorical duality between (modal)
descriptive Kripke frames and (modal) bi-Heyting algebras, and the use
of behavioural equivalence.

Keywords: Bi-intuitionistic logic · Modal logic · Bisimulation ·
Hennessy-Milner property

1 Introduction

Bi-intuitionistic logic, also known as subtractive logic [4] and Heyting-Brouwer
logic [12], is the extension of intuitionistic logic with a subtraction arrow
which is dual to Heyting implication. It was introduced by Rauszer with Kripke
semantics and a Hilbert calculus [14].

Bi-intuitionistic logic has been studied from various perspectives. From the
point of view of computer science, the subtraction arrow can be used to describe
control mechanisms such as co-routines [4]. In philosophy the subtraction arrow
can be used to reason about refutation [15,16]. Within logic, bi-intuitionistic
logic is interesting because it is a non-classical logic which is more expressive
than intuitionistic logic. Its proof theory has been studied in, amongst other
papers, [7,10,16].

In this paper we study bisimulations for frame semantics of bi-intuitionistic
logic. We show that the class of (Kripke) models with finite connected compo-
nents enjoys the Hennessy-Milner property. In fact, this follows from a stronger
theorem which states that logical equivalence, bisimilarity, and behavioural
equivalence coincide for the collection of so-called bi-descriptive Kripke frames.

A key ingredient in the proof of the latter is the duality between the category
of bi-Heyting algebras and the category of bi-descriptive Kripke frames. This
allows us to view bi-descriptive Kripke frames from a different perspective. In
particular, the existence of an initial object in the category of bi-Heyting models
c© Springer-Verlag GmbH Germany, part of Springer Nature 2019
R. Iemhoff et al. (Eds.): WoLLIC 2019, LNCS 11541, pp. 161–176, 2019.
https://doi.org/10.1007/978-3-662-59533-6_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-59533-6_10&domain=pdf
https://doi.org/10.1007/978-3-662-59533-6_10

162 J. de Groot and D. Pattinson

entails a final bi-descriptive Kripke model which is used to show that logical
equivalence implies behavioural equivalence.

We then generalise these results to the extension of bi-intuitionistic logic with
two unary modal operators, � and ♦. We introduce these modal operators in a
way similar to [17]. We define modal bi-Heyting algebras, modal Kripke frames
and modal bisimulations, and show that logical equivalence, modal bisimilarity,
and behavioural equivalence coincide on bi-descriptive modal Kripke frames.

Structure of the Paper. Section 2 reviews bi-intuitionistic logic and bi-Heyting
algebras; in Sect. 3 we define bi-descriptive Kripke frames and exhibit its duality
with bi-Heyting algebras as a restriction of known results from intuitionistic
logic; in Sect. 4 we compare bisimilarity to logical equivalence and behavioural
equivalence, and arrive at a Hennessy-Milner type theorem; and finally, in Sect. 5,
we outline a similar procedure for modal bi-intuitionistic logic.

Related Work. Bisimulations for bi-intuitionistic logic were studied by Badia [1]
in the context of characterising bi-intuitionistic logic as the bisimulation invari-
ant fragment of the first order language with a distinguished binary relation sym-
bol and a unary relation symbol for every proposition letter. The equivalence
of bisimilarity and logical equivalence is not addressed. Our semantic models
for modal bi-intuitionistic logic are a generalisation of the modal intuitionistic
frames of [17] where again Hennessy-Milner theorems are not discussed. Results
of this type for intuitionistic (not bi-intuitionistic) propositional (not modal)
logic and finite frames are presented in [9].

2 Preliminaries: Bi-intuitionistic Logic

We recall bi-intuitionistic logic, bi-Heyting algebras and bi-Esakia spaces and
their relationships, crucially the dual equivalence of bi-Heyting algebras and
bi-Esakia spaces. Throughout, Prop is a set of proposition letters.

Definition 2.1. The language L of bi-intuitionistic logic is given by

φ ::= p | ⊥ | � | φ ∨ φ | φ ∧ φ | φ → φ | φ φ

where p ∈ Prop. We abbreviate ¬φ = (φ → ⊥) and ∼φ = (� φ).

This language is equivalent to the one given by Rauszer in [13] who gave a
Hilbert-style axiomatisation in [13, Sect. 9]. The algebraic structures correspond-
ing to bi-intuitionistic logic are bi-Heyting algebras, also introduced by Rauszer,
as semi-Boolean algebras [13, Sect. 1.1].

Definition 2.2. A bi-Heyting algebra is a bounded distributive lattice
(H,⊥,�,∨,∧) with two binary operations → and that satisfy

a → b ≤ c iff c ∧ a ≤ b, a b ≤ c iff a ≤ b ∨ c.

Hennessy-Milner Properties for (Modal) Bi-intuitionistic Logic 163

A bi-Heyting morphism is a bounded distributive lattice morphism which pre-
serves → and . We write biHA for the category of bi-Heyting algebras and
bi-Heyting morphisms, and usually identify an algebra with its carrier.

Example 2.3. 1. Every Boolean algebra is a bi-Heyting algebra, with a → b =
¬a ∨ b and a b = a ∧ ¬b.

2. Every complete distributive lattice that satisfies the infinite distributive laws
a ∧ ∨

i∈I bi =
∨

i∈I(a ∧ bi) and a ∨ ∧
i∈I bi =

∧
i∈I(a ∨ bi) is a bi-Heyting

algebra, with a → b =
∨{c | c ∧ a ≤ b} and a b =

∧{c | a ≤ b ∨ c}.
3. An example of complete distributive lattices that satisfy the infinite distribu-

tive laws above is given by Alexandrov spaces, i.e. topological spaces where
an arbitrary intersection of opens is again open. If (X, τ) is an Alexandrov
space, then τ is a bi-Heyting algebra with

a → b =
⋃

{c ∈ τ | c ∩ a ⊆ b} and a b =
⋂

{c ∈ τ | a ⊆ b ∪ c}

where ∨ and ∧ are given by union and intersection, respectively.

Formulae are interpreted in bi-Heyting algebras via valuations.

Definition 2.4. A valuation for a bi-Heyting algebra H is a map V : Prop → H
and a pair H = (H,V) of a bi-Heyting algebra and a valuation is called a bi-
Heyting model. A bi-Heyting model morphism from H = (H,V) to H′ = (H ′, V ′)
is a bi-Heyting morphism f : H → H ′ satisfying V ′ = f ◦ V . The category of
bi-Heyting models and their morphisms is denoted by biHM.

The interpretation of an L-formula in H = (H,V) is defined recursively by
�p�H = V (p) and �φ � ψ�H = �φ�H � �ψ�H for � ∈ {∨,∧,→, }. We say that a
formula φ is valid on a bi-Heyting model H if �φ�H = �, notation: H � φ, and φ
is valid on a bi-Heyting algebra H if it is valid on (H,V) for every valuation V ,
notation: H � φ.

Bi-Heyting morphisms preserve truth in a standard way:

Proposition 2.5. If f : H → H′ is a bi-Heyting model morphism and φ a
formula, then f(�φ�H) = �φ�H

′
.

As usual, the Lindenbaum-Tarski algebra (L, VL), consisting of formulae mod-
ulo provable equivalence in the Hilbert-axiomatisation [13, Sect. 9] is the initial
model.

Proposition 2.6. The bi-Heyting model L = (L, VL) is initial in biHM.

Proof. For a bi-Heyting model H = (H,VH), the assignment [p] �→ �p�H extends
to a bi-Heyting model morphism fH which is unique by Proposition 2.5. ��
The equivalence between bi-Heyting algebras and bi-Esakia spaces needs the
following notions about sets with binary relations.

164 J. de Groot and D. Pattinson

Definition 2.7. Let (X,R) be a set with a binary relation. Then

↑Ra = {x ∈ X | ∃y ∈ a s.t. yRx}, ↓Ra = {x ∈ X | ∃y ∈ a s.t. xRy}
are the upward (resp. downward) closure of a subset a ⊆ X. We omit the sub-
script R if no confusion is likely to arise.

Definition 2.8. Let (X,R) and (X ′, R′) be two sets with arbitrary binary rela-
tions, and f : X → X ′ a function. Then f is called bounded if

(i) If xRy then f(x)R′f(y);
(ii) If f(x)R′y′ then there exists y ∈ X such that xRy and f(y) = y′.

The map f is called bi-bounded if moreover it satisfies

(iii) If y′R′f(x) then there exists y ∈ X such that yRx and f(y) = y′.

y f(y) y y′ x f(x)

x f(x) x f(x) y y′
≤

f

≤′ ≤

f

≤′ ≤

f

≤′

Fig. 1. Conditions (i), (ii) and (iii) of bi-bounded morphisms.

This now puts us into a position to define bi-Esakia spaces. As (bi-)Esakia spaces
are special cases of Priestly and Esakia spaces, we recall their definitions. A
Priestly Space is an ordered topological space (X, τ,R) where (X, τ) is a Stone
space and R ⊆ X × X is a partial order that satisfies the Priestley separation
axiom: whenever (x, y) /∈ R are not related, there exists a clopen upset a such
that x ∈ a and y /∈ a.

An Esakia Space is a Priestley space where the relation R is additionally
clopen, that is, ↓R (a) is clopen for every clopen subset a ⊆ X.

Definition 2.9 (Bi-Esakia Spaces and Morphisms). A bi-Esakia space is
an Esakia space (X, τ,R) where R is forward clopen, that is, ↑R (a) is clopen
whenever a is clopen. A bi-Esakia morphism is a continuous function that is
bi-bounded with respect to the underlying Kripke frames.

It turns out that the Priestley separation axiom is automatic once we have
a relation that is both clopen, and forward clopen.

Lemma 2.10. Let X = (X, τ) be a Stone space and R a relation on X. Then
(X , R) is a bi-Esakia space if and only if R clopen and forward clopen.

Proof. If R is forward clopen, then it is point closed, that is, ↑R ({x}) is closed
for all x ∈ X. This is because R(x) =

⋂{R[a] | x ∈ a, a clopen}, which is
the intersection of clopen sets, hence closed. The result then follows from [2,
Proposition 2.3.21]. ��

Hennessy-Milner Properties for (Modal) Bi-intuitionistic Logic 165

The following theorem was proven by Esakia in [6]. The duality is a restriction
of Esakia duality [5], which is in turn a restriction of Priestley duality [11].

Theorem 2.11. We have a dual equivalence of categories biHA ≡op biES.

3 Frame Semantics and Duality for Bi-intuitionistic Logic

We construct a categorical duality between (certain) frames and bi-Heyting alge-
bras which is used to establish the connection between logical and behavioural
equivalence in Sect. 4. We recall the Kripke semantics for bi-intuitionistic logic
of [14, Sect. 2.8] and introduce bi-general and bi-descriptive Kripke frames (and
models). The latter congregate in a category dually equivalent to biHA.

Definition 3.1. A Kripke frame is a poset (X,≤). A valuation for (X,≤) is
a map V : Prop → Up(X,≤) = {a ⊆ X | a = ↑a} and a tuple (X,≤, V) of
a Kripke frame and a valuation is called a Kripke model. A bi-bounded model
morphism from (X,≤, V) to (X ′,≤′, V ′) is a bi-bounded morphism f between
the underlying frames satisfying V = f−1 ◦V ′. We write biKF for the category of
Kripke frames and bi-bounded morphisms and biKM for the category of Kripke
models and bi-bounded model morphisms.

Note that the objects of biKF are the usual intuitionistic Kripke frames [3,
Sect. 2.2], but we require morphisms to be bi-bounded rather than bounded.

Definition 3.2. Define the operators → and on the collection Up(X,≤) of
upsets of a Kripke frame by

a → b = {x ∈ X | ∀y ≥ x (y ∈ a → y ∈ b)} = X \ ↓(a \ b),
a b = {x ∈ X | ∃y ≤ x s.t. y ∈ a and y /∈ b} = ↑(a \ b).

The semantics of a formula in L in a Kripke model (X,≤, V) is given by �p� =
V (p) for propositions, ∪ and ∩ for disjunction and conjunction, and → and

via the above operations. We call two states x and x′ in two Kripke models
logically equivalent if they satisfy precisely the same formulas, notation: x ≡L x′.

Proposition 4.5 below states that bi-bounded morphisms preserve logical truth.
The Hennessy-Milner results of the next section rely on the following notion of
connected ≤-components. Recall that a connected component of an undirected
graph G is a subgraph in which every two points in the subgraph are connected
by a (finite) path, and which is not connected to any other vertices in G. For
our purposes, we require that components are moreover non-empty.

Definition 3.3. A connected ≤-component of a Kripke frame (X,≤) is a non-
empty connected component of the underlying undirected graph.

We give examples of a Kripke frame and model with infinite components. As
we will see later this gives rise to an example where logical equivalence and
bisimilarity disagree.

166 J. de Groot and D. Pattinson

Example 3.4. Let W = {(n, k) ∈ (N ∪ {∞}) × N | k < n} ∪ {x} and define an
order � by: (n, k) � x for all (n, k) ∈ W and (n, k) � (n′, k′) iff n = n′ and
k ≤ k′. It is easy to see that the only connected �-component of (W,�) is W
itself.

For Prop = {pi | i ∈ N} ∪ {q} define the valuation V by V (q) = {x} and
V (pi) = {(n, k) ∈ W | i ≤ k}∪ {x}. Then the triple (W,�, V) is a Kripke model
with an infinite connected �-component. See Fig. 3 below for a for a pictorial
presentation.

The following lemma is a consequence of the definition of bi-bounded morphisms:

Lemma 3.5. Let f : (X,≤) → (X ′,≤′) be a bi-bounded morphism and a′ a
connected ≤′-component. Then (im f) ∩ a′ �= ∅ iff a′ ⊆ (im f).

Let M = (X,≤, V) be a Kripke model and a a connected ≤-component of
M. Setting ≤a =≤�a×a and Va(p) = V (p) ∩ a, we obtain a sub-Kripke model
Ma = (a,≤a, Va) generated by a. We have:

Lemma 3.6. The restriction of the identity morphism on M to a is a bi-bounded
model morphism Ma → M.

We generalise Kripke frames to bi-general Kripke frames. These are Kripke
frames together with a set of cones, which is closed under certain operations.
They are general intuitionistic Kripke frames [3, Sect. 8.1] with an extra closure
operator on the set of cones.

Definition 3.7. A bi-general Kripke frame is a tuple (X,≤, P) of a Kripke
frame (X,≤) and a set of cones P ⊆ Up(X,≤) containing ∅ and X, closed
under union, intersection, and the operations → and from Definition 3.2. A
bi-general morphism f : (X,≤, P) → (X ′,≤′, P ′) is a bi-bounded morphism
between the underlying Kripke frames such that f−1(a′) ∈ P for all a′ ∈ P ′.
The category of bi-general Kripke frames and morphisms is called biGKF.

An admissible valuation for a bi-general Kripke frame is a map V : Prop → P
and a pair of a bi-general Kripke frame with an admissible valuation is called
a bi-general model. The interpretation of formulas is the same as for Kripke
frames. A bi-general model morphism is a bi-general morphism which is also a
bi-bounded model morphism.

Every Kripke frame (X,≤) can be viewed as a bi-general Kripke frame by putting
P = Up(X,≤). As this makes every bi-bounded morphism automatically bi-
general, we have an embedding biKF → biGKF.

To construct algebras from frames, note that the complex algebra X∗ =
(P, ∅,X,∪,∩,→,) of a bi-general frame X = (X,≤, P) is a bi-Heyting algebra.
If f : X → X′ is a bi-general frame morphism, f∗ = f−1 is a bi-Heyting algebra
morphism as f−1 preserves all unions and all intersections. There is a bijective
correspondence between valuations for X and valuations for X∗:

Lemma 3.8. Let X = (X,≤, P) be a bi-general frame. A map V : Prop → P is
an admissible valuation iff it is a valuation for X∗.

Hennessy-Milner Properties for (Modal) Bi-intuitionistic Logic 167

Conversely, if H is a bi-Heyting algebra then H∗ = (pfH,⊆, H̃) is a bi-general
Kripke frame where pfH is the collection of prime filters of H (e.g. [2, Definition
2.2.20]), H̃ = {ã | a ∈ H} and ã = {u ∈ pfH | a ∈ u}. In general we have
(H∗)∗ � H for every bi-Heyting algebra H, but not (X∗)∗ � X, for every bi-
general Kripke frame X.

To obtain a dual equivalence, we need to restrict bi-general Kripke frames.

Definition 3.9. A bi-general Kripke frame X = (X,≤, P) is called bi-
descriptive if it is refined, i.e. for every x, y ∈ X, x �≤ y implies that there
is a ∈ P such that x ∈ a and y /∈ a; and compact, i.e. for every A ⊆ P
and B ⊆ {X \ a | a ∈ P}, if A ∪ B has the finite intersection property, then⋂

(A ∪ B) �= ∅.
The category of bi-descriptive Kripke frames and bi-general morphisms is

denoted by biDKF. A bi-descriptive model is a bi-general model whose underlying
bi-general frame is bi-descriptive. The category of bi-descriptive Kripke models
and bi-general model morphisms is denoted by biDKM.

In other words: a bi-descriptive Kripke frame is a descriptive frame in the sense of
[3, Sect. 8.4] which is also a bi-general Kripke frame. It is proven in [3, Proposition
8.50] that a Kripke frame is compact if and only if it is finite.An easy example
of an infinite bi-descriptive Kripke frame is the set N ∪ {∞} ordered by ≤ in
the standard way, with cofinite upsets and the empty set as admissible cones.

A well-known result in intuitionistic logic is the isomorphism between the cate-
gory of descriptive intuitionistic Kripke frames and the category of Esakia spaces
[5] (see [2] for an English reference). It is routine to see that this isomorphism
restricts to the bi-intuitionistic counterparts defined in Definitions 2.9 and 3.9.

Theorem 3.10. We have an isomorphism and equivalences of categories:

biES ∼= biDKF, biHAop ≡ biDKF, biHMop ≡ biDKM.

Proof (Sketch). The middle equivalence follows from combining the left isomor-
phism and Theorem 2.11. The right equivalence follows from the middle one and
Lemma 3.8. So we prove the left isomorphism.

For a bi-descriptive Kripke frame X = (X,≤, P) let −P = {X\a | a ∈ P} and
let X be the set X with the topology generated by the clopen subbase P ∪ −P .
Then (X ,≤) is a bi-Esakia space. Conversely, for a bi-Esakia space (X ,≤) with
underlying set X let ClpUp(X ,≤) be the collection of clopen upsets of X and
define X = (X,≤,ClpUpX). It is routine to see that a function f : (X,≤, P) →
(X ′,≤′, P ′) is a bi-general morphism if and only if it is an Esakia morphism. ��

4 Bisimulation and the Hennessy-Milner Property

We define bisimulations and prove a Hennessy-Milner theorem for Kripke models
whose connected components are finite. This follows as logical equivalence, bisim-
ilarity and behavioural equivalence coincide on bi-descriptive Kripke frames.

168 J. de Groot and D. Pattinson

Definition 4.1. Let M = (X,≤, V) and M′ = (X ′,≤′, V ′) be two Kripke mod-
els. A bisimulation between M and M′ is a relation B ⊆ X × X ′ such that for
all (x, x′) with xBx′, we have

(B1) For all p ∈ Prop, x ∈ V (p) iff x′ ∈ V ′(p);
(B2) If x′ ≤ y′ then there exists y ∈ X such that x ≤ y and yBy′;
(B3) If x ≤ y then there exists y′ ∈ X ′ such that x′ ≤ y′ and yBy′;
(B4) If y′ ≤ x′ then there exists y ∈ X such that y ≤ x and yBy′;
(B5) If y ≤ x then there exists y′ ∈ X ′ such that y′ ≤ x′ and yBy′.

If there is a bisimulation linking two state x and x′ we say that they are bisimilar,
notation: x � x′. A bisimulation between bi-descriptive Kripke models is simply
a bisimulation between the underlying Kripke models.

y y′ y y′ x x′ x x′

x x′ x x′ y y′ y y′
≤

B

≤

B

≤

B

≤

B

Fig. 2. Conditions (B2) to (B5) of a bisimulation.

If B is a bisimulation between M and M′, then we call {x ∈ X | ∃x′ ∈
X ′ s.t. (x, x′) ∈ B} the domain of B and {x′ ∈ X ′ | ∃x ∈ X s.t. (x, x′) ∈ B} the
codomain of B. If B′ is a bisimulation between M′ and M′′ whose domain equals
the codomain of B, then an easy verification shows that B ◦B′ is a bisimulation
between M and M′′.

Remark 4.2. Directed bisimulations [1, Definition 4] between Kripke models are
pairs (Z1, Z2) of simulations, i.e. pairs (Z1, Z2) of two relations Z1 ⊆ X ×X ′ and
Z2 ⊆ X ′ ×X satisfying certain conditions. This is closely related to bisimulation
as just introduced: if B is a bisimulation then (B,B−1) is a directed bisimulation,
and if (Z1, Z2) is a directed bisimulation, then Z1 ∩ Z−1

2 is a bisimulation.
Although not carried out in op.cit., one could define x and x′ to be directed

bisimilar if there is a directed bisimulation (Z1, Z2) with (x, x′) ∈ Z1 and (x′, x) ∈
Z2. Directed bisimilarity and bisimilarity as defined in Definition 4.1 above are
then easily seen to coincide.

As usual, morphisms between Kripke models give rise to bisimulations:

Example 4.3. Let f : (X,≤, V) → (X ′,≤′, V ′) be bi-bounded model morphism
and Gr f = {(x, f(x)) | x ∈ X} the graph of f . Let a′ ⊆ X ′ be a nonempty
union of connected ≤′-components, then (Gr f) ∩ (X × a′) is a bisimulation.
(This follows easily from the definition of bi-bounded morphisms.) If moreover
a′ is a connected ≤′-component and (im f) ∩ a′ �= ∅, then by Lemma 3.5 the
codomain of this bisimulation is a′.

Hennessy-Milner Properties for (Modal) Bi-intuitionistic Logic 169

The following proposition follows from [1, Lemma 4], but can also be proven by
a straightforward induction on the complexity of the formula.

Proposition 4.4. Let B be a bisimulation between Kripke models M and M′

and φ a formula in L. If xBx′ then M, x � φ iff M′, x′ � φ.

As a consequence of Example 4.3 and Proposition 4.4 we obtain:

Proposition 4.5. Let f : M → M′ be a bi-bounded model morphism between
Kripke models, x ∈ M and φ ∈ L. Then M, x � φ iff M′, f(x) � φ.

A competing notion, behavioural equivalence, is given via co-spans.

Definition 4.6. Let x ∈ M and x′ ∈ M′ be two states in two Kripke models.
We call x and x′ behaviourally equivalent in biKM if there is a cospan

(1)

in biKM such that f(x) = f ′(x′), notation: x �biKM x′. Behavioural equivalence
in biDKM is defined similarly, and we require the cospan (1) to be in biDKM.

Note that behavioural equivalence relies on the category we are working in;
caution is commendable. It is easy to see that behavioural equivalence in biDKM
implies behavioural equivalence in biKM: simply forget about the descriptive
structure of the models in use. We will now show that behavioural equivalence
implies bisimilarity (hence logical equivalence).

Proposition 4.7. Any two behaviourally equivalent states are bisimilar.

Proof. If x ∈ M and x′ ∈ M′ are behaviourally equivalent, there is a Kripke
model N = (Y,≤Y , VY) and model morphisms f : M → N and f ′ : M′ → N
satisfying f(x) = f ′(x′). Let a ⊆ Y be the connected ≤Y -component containing
f(x) (hence also f ′(x′)). Then B = (Gr f)∩(X×a) and B′ = (Gr f ′)∩(X ′×a) are
bisimulations with codomain a by Example 4.3. Hence the composition B◦(B′)−1

is a bisimulation between M and M′ linking x and x′. ��
Restricting to bi-descriptive Kripke models yields an equivalence between logical
and behavioural equivalence, and bisimilarity. This is similar to corresponding
results in modal logic, but additionally considers behavioural equivalence.

Theorem 4.8. Let M and M′ be two bi-descriptive Kripke models, x ∈ M and
x′ ∈ M′. Then

x � x′ iff x ≡L x′ iff x �biKM x′.

Proof. Behavioural equivalence implies bisimilarity by Proposition 4.7 and bisim-
ilarity implies logical equivalence by Proposition 4.4. We just show that logical
equivalence implies behavioural equivalence.

Recall from Proposition 2.6 that L = (L, VL), the Lindenbaum-Tarski algebra
with canonical valuation, is initial in biHM. Let Z = pfL and VZ(p) = φ([p]) =

170 J. de Groot and D. Pattinson

{u ∈ pfL | p ∈ u}. Then L∗ = Z = (Z, VZ) and by Theorem 3.10 Z is final in
biDKM. For an arbitrary bi-descriptive Kripke model M = (X,≤, P, V) define

thM : M → Z, x �→ {[φ] ∈ L | M, x � φ}.

Then th−1
M : L → pfM sends an element [φ] ∈ L to th−1

M ([φ]) = {x ∈ M |
M, x � φ} = �φ�M = �φ�pfM. Therefore th−1

M is precisely one of the maps
described in Proposition 2.6, hence a bi-Heyting model morphism. Consequently
thM is a bi-general model morphism. If x and x′ are logically equivalent then
thM(x) = thM′(x′) and hence x �biDKM x′. ��
Since finite Kripke models are finite bi-descriptive Kripke models, the following
theorem is a consequence of Theorem 4.8.

Corollary 4.9. Let M and M′ be finite Kripke models, x ∈ M and x′ ∈ M′.
Then x ≡L x′ iff x � x′.

We can obtain the same result for Kripke models with finite connected compo-
nents. (These are precisely the filtered colimits [8] of the finite Kripke models.)

Corollary 4.10. Let M and M′ be two Kripke models whose connected compo-
nents are finite, x ∈ M and x′ ∈ M′. Then

x ≡L x′ iff x � x′.

Proof. ‘If’ is Proposition 4.4. For ‘only if’ suppose x ≡L x′. Let a and a′ be the
connected components containing x and x′ respectively. Let Ma be the submodel
of M with underlying set a and similar for M′

a′ . It follows from combining
Lemma 3.6 and Proposition 4.5 that Ma, x � φ iff M′

a′ , x′ � φ for all formulas,
so by Theorem 4.9 there is a bisimulation B ⊆ a × a′ linking x and x′. It is easy
to check that this B also defines a bisimulation between M and M′. ��

The following example shows that we cannot drop the assumption that the
connected components be finite.

Example 4.11. Recall the Kripke model W = (W,�, V) from Example 3.4 and
let W′ = (W ′,�′, V ′) be the submodel of W with underlying set W ′ = {(n, k) ∈
N×N | k < n} ∪ {x}. (Note that W′ does not have an infinite branch.) We shall
write x′ for the point x in W ′. See Fig. 3 for pictorial presentations of the two
models. We claim that x and x′ are logically equivalent but not bisimilar.

Suppose towards a contradiction that there exists a bisimulation B linking x
and x′. Since (∞, 0) � x in W there must be some y′ ∈ W ′ such that (∞, 0)By
and y′ �′ x′. Then y′ cannot be x′, because W, (∞, 0) �� q, hence W ′, y′ �� q,
whereas W ′, x′ � q. So y is of the form (n′, k′) for some n′, k′ ∈ N with k′ < n′.
But then W ′, (n′, k′) � pn′+1 → q, while W, (∞, 0) �� pn′+1 → q. Therefore
(∞, 0) and (n′, k′) are not logically equivalent, hence by Proposition 4.4 they
cannot be bisimilar. This contradicts the assumption that there exists a bisim-
ulation B linking x and x′, thus x and x′ are not bisimilar.

Hennessy-Milner Properties for (Modal) Bi-intuitionistic Logic 171

Next we show that x ∈ W and x′ ∈ W ′ are logically equivalent.Recall from
Example 3.4 that we take Prop = {pi | i ∈ N} ∪ {q} and let Propm = {pi | i ∈
N, i ≤ m} ∪ {q}. Then L(Prop) =

⋃
m∈N

L(Propm). Define Rm ⊆ W × W ′ by

Rm = {(x, x′)} ∪ {(
(n, k), (n′, k′)

) | either [n = n′ and k = k′]
or [k, k′ ≥ m]

or [n, n′ > m and k = k′ < m]
}
.

It can be shown by induction that whenever (z, z′) ∈ Rm, we have W, z � φ iff
W ′, z′ � φ for all φ ∈ L(Propm). It follows that x and x′ are logically equivalent
because (x, x′) ∈ Rm for all m ∈ N.

Thus we have found two logically equivalent states that are not bisimilar.

q p0

p1

p0p2

p1

p0

p3

p2

p1

p0

q p0

p1

p0p2

p1

p0

p3

p2

p1

p0

Fig. 3. The figures depicts the models W and W′ from Example 4.11. The pi denote
the lowest occurrence of a proposition letter in each branch of the models. That is, if
pi is true in some state, then it is also true in all states above.

5 Generalisation to Modal Bi-intuitionistic Logic

We extend the language of bi-intuitionistic logic with two modal operators, � and
♦. Our approach resembles the one in [17], where the authors extend intuitionistic
logic with two modal operators using similar structures to interpret formulae.

The frames we use for interpreting this language are the ones used in [17].
We extend this viewpoint by also considering morphism which allows us to study
behavioural equivalence. Our descriptive versions of these frames require addi-
tional closure properties compared to the descriptive frames in op.cit, to account
for the subtraction connective.

After introducing the language and its algebraic semantics, we proceed sim-
ilar to Sects. 3 and 4 and define modal (bi-descriptive) Kripke frames, obtain a

172 J. de Groot and D. Pattinson

categorical duality with the category of modal bi-Heyting algebras and modal bi-
Heyting morphisms, and investigate the relations between the notions of logical
equivalence, bisimilarity, and behavioural equivalence.

Definition 5.1. Let L�♦ be the language given by the grammar

φ ::= p | ⊥ | � | φ ∨ φ | φ ∧ φ | φ → φ | φ φ | �φ | ♦φ,

for p ∈ Prop. We add the following axioms to those of bi-intuitionistic logic [13]:

(�1) �� ↔ �
(�2) �(φ ∧ ψ) ↔ �φ ∧ �ψ

(♦1) ♦⊥ ↔ ⊥
(♦2) ♦(φ ∨ ψ) ↔ ♦φ ∨ ♦ψ.

Modal bi-intuitionistic logic corresponds to modal bi-Heyting algebras.

Definition 5.2. A modal bi-Heyting algebra is a tuple (H,�,♦) of a bi-Heyting
algebra H and two unary operators �,♦ : H → H such that � satisfies (�1)
and (�2), and ♦ satisfies (♦1) and (♦2).

A valuation on a modal bi-Heyting algebra is an assignment V : Prop → H
and a modal bi-Heyting algebra together with a valuation is called a modal bi-
Heyting model. The interpretation of formulas from L�♦ in a modal bi-Heyting
model is defined recursively, with the bi-intuitionistic connectives as in Defini-
tion 2.4, together with ��φ� = �(�φ�) and �♦φ� = ♦(�φ�).

A modal bi-Heyting morphism is a bi-Heyting morphism f : H → H ′ such
that f(�a) = �f(a) and f(♦a) = ♦f(a) and a modal bi-Heyting model morphism
f : (H,V) → (H ′, V ′) is a modal bi-Heyting morphism f : H → H ′ satisfying
V ′ = f ◦V . The category of modal bi-Heyting algebras and morphisms is denoted
mbiHA and the category of modal bi-Heyting models and the corresponding
morphisms is denoted by mbiHM.

As in the non-modal case, the Lindenbaum-Tarski algebra L of L�♦ (for the
axioms of Definition 5.1) equipped with the canonical valuation VL is initial in
mbiHM. Formulae of L�♦ can also be interpreted over modal Kripke frames.

Definition 5.3. A modal Kripke frame is a tuple (X,≤, R�, R♦) where (X,≤)
is a Kripke frame and R�, R♦ are binary relations on X satisfying

(R1) ≤ ◦R�◦ ≤= R�; (R2) ≤−1 ◦R♦◦ ≤−1= R♦.

A valuation for a modal Kripke frame (X,≤, R�, R♦) is a function V : Prop →
Up(X,≤) and a modal Kripke model is a modal Kripke frame together with a
valuation. The semantics for modal bi-intuitionistic formulas in a modal Kripke
model M = (X,≤, R�, R♦, V) is as in Definition 3.2, with additionally

M, x � �φ iff ∀y (xR�y implies y � φ),
M, x � ♦φ iff ∃y s.t. xR♦y and y � φ.

It is easy to verify that the truth set of every formula is an upset in (X,≤).
A modal Kripke morphism from (X,≤, R�, R♦) to (X,≤, R�, R♦) is a func-

tion f : X → X ′ such that:

Hennessy-Milner Properties for (Modal) Bi-intuitionistic Logic 173

1. f : (X,≤) → (X ′,≤′) is bi-bounded;
2. f : (X,R�) → (X ′, R′

�) and f : (X,R♦) → (X ′, R′
♦) are bounded.

A modal Kripke model morphism is a Kripke model morphism between the
underlying Kripke models which is also a modal Kripke morphism. Denote the
category of modal Kripke frames (models) and modal Kripke (model) morphisms
by mbiKF (mbiKM).

Trivially, our results also apply for models that postulate additional coherence
conditions between the various relations, because both logical equivalence and
bisimilarity are oblivious to the class of models under consideration.

Definition 5.4. A bi-general modal Kripke frame is a tuple (X,≤, R�, R♦, P)
such that (X,≤, R�, R♦) is a modal Kripke frame, (X,≤, P) is a bi-general
Kripke frame, and moreover P is closed under

�a = {x ∈ X | ∀y ∈ X (xR�y implies y ∈ a)},

♦a = {x ∈ X | ∃y ∈ a s.t. xR♦y}.

A morphism between bi-general modal Kripke frames (X,≤, R�, R♦, P) and
(X ′,≤, R′

�, R′
♦, P ′) is a modal Kripke morphism f : (X, ≤, R�, R♦) → (X ′, ≤,

R′
�, R′

♦) such that f−1(a′) ∈ P for all a′ ∈ P ′.

A bi-general modal Kripke frame X = (X,≤, R�, R♦, P) gives rise to a modal
bi-Heyting algebra X∗ = (P, ∅,X,∪,∩,→, ,�,♦). Conversely, from a modal
bi-Heyting algebra (H,�,♦) we can construct a bi-general modal Kripke frame
by taking (X,≤, P) to be the bi-descriptive Kripke frame dual to H and defining

uR�v iff ∀a ∈ H (�a ∈ u → a ∈ v)
uR♦v iff ∀a ∈ H (v ∈ a → u ∈ ♦a).

In general, we have (H∗)∗ � H, but not (X∗)∗ � X. For this to be true, we need
to restrict to the class of bi-descriptive modal Kripke frames as before.

Definition 5.5. A bi-general modal Kripke frame (X,≤, R�, R♦, P) is called
bi-descriptive if the underlying bi-general frame (X,≤, P) is bi-descriptive and
the relations R� and R♦ satisfy

(R3) xR�y iff ∀a ∈ P (x ∈ �a → y ∈ a);
(R4) xR♦y iff ∀a ∈ P (y ∈ a → x ∈ ♦a).

The category of bi-descriptive modal Kripke frames (models) and bi-general
modal frame (model) morphisms is denoted by mbiDKF (mbiDKM).

Setting f∗ = f−1 for morphisms f in mbiDKF and g∗ = g−1 for morphisms g in
mbiHA, we obtain two functors (−)∗ : mbiDKF → mbiHA and (−)∗ : mbiHA →
mbiDKF. These yield the following theorem:

Theorem 5.6. We have a dual equivalences of categories mbiDKF ≡op mbiHA
and mbiDKM ≡op mbiHM.

174 J. de Groot and D. Pattinson

The object part of Theorem 5.6 is essentially a restriction of results in [17].

Proposition 5.7. Let H = (H,�,♦) be a modal bi-Heyting algebra. Then H � φ
if and only if H∗ � φ.

Proof. First, observe that a valuation for H is simply a valuation for the under-
lying bi-Heyting algebra, and an admissible valuation for H∗ is an admissible
valuation for the underlying bi-descriptive Kripke frame. Therefore Lemma3.8
states that valuations for H and H∗ correspond one-to-one.

Let V be any valuation for H and V∗ the corresponding valuation on H∗.
Then V∗ is defined by V∗(p) = φ(V (p)) = {u | V (p) ∈ u}. It is routine to show
that �φ�(H,V) = � iff �φ�(H∗,V∗) = pfH, i.e. the entire set of prime filters of H. ��
Now that we have our duality in place, we turn our attention to bisimulations.

Definition 5.8. Let M = (X,≤, R�, R♦, V) and M′ = (X ′,≤′, R′
�, R′

♦, V ′)
be two modal Kripke models. A bisimulation between M and M′ is a relation
B ⊆ X × X ′ such that B is a bisimulation between (X,≤, V) and (X ′,≤′, V ′)
(in the sense of Definition 4.1) and for all (x, x′) ∈ B we have:

(B6) If x′R′
�y′ then there exists y ∈ X such that xR�y and yBy′;

(B7) If xR�y then there exists y′ ∈ X ′ such that x′R′
�y′ and yBy′;

(B8) If x′R′
♦y′ then there exists y ∈ X such that xR♦y and yBy′;

(B9) If xR♦y then there exists y′ ∈ X ′ such that x′R′
♦y′ and yBy′.

Note that these are two pairs of back and forth conditions (Fig. 4).

y y′ y y′ y y′ y y′

x x′ x x′ x x′ x x′
R�

B

R�

B

R♦

B

R♦

B

Fig. 4. Conditions (B6) to (B9) of bisimulations between modal Kripke models.

Proposition 5.9. Let M and M′ be two models, B a bisimulation between M
and M′. Then for all φ and (x, x′) ∈ B we have M, x � φ iff M′, x′ � φ.

Behavioural equivalence is defined similar to Definition 4.6: Two states x ∈ M
and x′ ∈ M′ in two modal Kripke models are said to be behaviourally equivalent

in mbiKM if there is a cospan in biKM such that f(x) =
f ′(x′), notation: x �mbiKM x′. Behavioural equivalence in mbiDKM is defined
analogously, except that we require the cospan to be in mbiDKM.

Proposition 5.10. Let M and M′ be (bi-descriptive) modal Kripke models. If
x ∈ M and x′ ∈ M′ are behaviourally equivalent, then they are bisimilar.

Hennessy-Milner Properties for (Modal) Bi-intuitionistic Logic 175

Proof. We give a proof for the case where M and M′ are modal Kripke models.
The proof for bi-descriptive modal Kripke models is analogous.

If x and x′ are behaviourally equivalent, then there must exist a bi-descriptive
modal Kripke model N and model morphisms f : M → N and f ′ : M′ → N
satisfying f(x) = f ′(x′). Let B = {(y, y′) ∈ X ×X ′ | f(y) = f ′(y′)}. It is routine
to check that this is a bisimulation. ��
Restricting to descriptive models yields the following analog of Theorem 4.8. The
proof is similar to that of Theorem4.8 and uses Propositions 5.9 and 5.10.

Theorem 5.11. Let M and M′ be two descriptive modal Kripke models and
x ∈ M, x′ ∈ M′ two states. Then x � x′ iff x ≡L x′ iff x �mbiKM x′.

Since finite descriptive modal Kripke models are precisely the finite modal Kripke
models it follows that:

Corollary 5.12. Let M and M′ be finite modal Kripke models, x ∈ M and
x′ ∈ M′. Then x ≡L x′ iff x � x′.

Using a suitable notion of component, we can derive an analog of Theorem4.10.
A component in a modal Kripke frame (X,≤, R�, R♦) is a nonempty subset
a ⊆ X satisfying a = ↑≤a = ↓≤a = ↑R�a = ↑R♦a. Since these components are
closed under intersection, we can define the minimal component of x ∈ X as the
intersection of all components containing x.

Corollary 5.13. Let M and M′ be two modal Kripke models such that the min-
imal component for each element in both models is finite, x ∈ M and x′ ∈ M′.
Then x ≡L x′ iff x � x′.

6 Conclusion

We have established previously unknown Hennessy-Milner theorems for both
bi-intuitionistic logic and a version of modal bi-intuitionistic logic: logical equiv-
alence and bisimilarity agree on models with finite connected components. As our
models are based on posets (to interpret intuitionistic implication and its dual),
this implies that the order relation and its inverse are image finite. Our main tech-
nical tool in the proofs are various categorical equivalences for bi-intuitionistic
logic. An intriguing open question is to isolate a more general semantic property
that implies Hennessy-Milner type results uniformly for a large class of logics.

References

1. Badia, G.: Bi-simulating in bi-intuitionistic logic. Studia Logica 104, 1037–1050
(2016)

2. Bezhanishvili, N.: Lattices of intermediate and cylindric modal logics. Ph.D. thesis.
University of Amsterdam (2006)

176 J. de Groot and D. Pattinson

3. Chagrov, A., Zakharyaschev, M.: Modal Logic. Oxford University Press, Oxford
(1997)

4. Crolard, T.: A formulae-as-types interpretation of subtractive logic. J. Log. Com-
put. 14(4), 529–570 (2004)

5. Esakia, L.: Topological Kripke models. Soviet Mathematics Doklady 15, 147–151
(1974)

6. Esakia, L.: The problem of dualism in the intuitionistic logic and Browerian lattices.
In: V International Congress of Logic, Methodology and Philosophy of Science,
Canada, pp. 7–8 (1975)

7. Goré, R.: Dual intuitionistic logic revisited. In: Dyckhoff, R. (ed.) TABLEAUX
2000. LNCS, vol. 1847, pp. 252–267. Springer, Heidelberg (2000). https://doi.org/
10.1007/10722086 21

8. Lane, S.: Categories for the Working Mathematician. Graduate Texts in Mathe-
matics. Springer, New York (1971). https://doi.org/10.1007/978-1-4612-9839-7

9. Patterson, A.: Bisimulation and propositional intuitionistic logic. In: Mazurkiewicz,
A., Winkowski, J. (eds.) CONCUR 1997. LNCS, vol. 1243, pp. 347–360. Springer,
Heidelberg (1997). https://doi.org/10.1007/3-540-63141-0 24

10. Pinto, L., Uustalu, T.: Proof search and counter-model construction for bi-
intuitionistic propositional logic with labelled sequents. In: Giese, M., Waaler,
A. (eds.) TABLEAUX 2009. LNCS, vol. 5607, pp. 295–309. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-02716-1 22

11. Priestley, H.A.: Representation of distributive lattices by means of ordered Stone
spaces. Bull. Lond. Math. Soc. 2(2), 186–190 (1970)

12. Rauszer, C.: A formalization of the propositional calculus of H-B logic. Studia
Logica 33(1), 23–34 (1974)

13. Rauszer, C.: Semi-Boolean algebras and their application to intuitionistic logic with
dual operations. In: Fundamenta Mathematicae LXXXIII, pp. 219–249 (1974)

14. Rauszer, C.: An algebraic and Kripke-style approach to a certain extension of intu-
itionistic logic. Dissertationes Mathematicae, Polish Scientific Publishers (1980)

15. Restall, G.: Extending intuitionistic logic with subtraction (1997). http://
consequently.org/writing/

16. Tranchini, L.: Natural deduction for bi-intuitionistic logic. J. Appl. Log. 25, 72–96
(2017)

17. Wolter, F., Zakharyaschev, M.: Intuitionistic modal logic. In: Cantini, A., Casari,
E., Minari, P. (eds.) Logic and Foundations of Mathematics. SYLI, vol. 280, pp.
227–238. Springer, Dordrecht (1999). https://doi.org/10.1007/978-94-017-2109-
7 17

https://doi.org/10.1007/10722086_21
https://doi.org/10.1007/10722086_21
https://doi.org/10.1007/978-1-4612-9839-7
https://doi.org/10.1007/3-540-63141-0_24
https://doi.org/10.1007/978-3-642-02716-1_22
http://consequently.org/writing/
http://consequently.org/writing/
https://doi.org/10.1007/978-94-017-2109-7_17
https://doi.org/10.1007/978-94-017-2109-7_17

The McKinsey-Tarski Theorem
for Topological Evidence Logics

Alexandru Baltag1, Nick Bezhanishvili1, and Saúl Fernández González2(B)

1 ILLC, Universiteit van Amsterdam, Amsterdam, The Netherlands
2 IRIT, Université de Toulouse, Toulouse, France

saul.fgonzalez@irit.fr

Abstract. We prove an analogue of the McKinsey and Tarski theorem
for the recently introduced dense-interior semantics of topological evi-
dence logics. In particular, we show that in this semantics the modal
logic S4.2 is sound and complete for any dense-in-itself metrizable space.
As a result S4.2 is complete with respect to the real line R, the rational
line Q, the Baire space B, the Cantor space C, etc. We also show that an
extension of this logic with the universal modality is sound and complete
for any idempotent dense-in-itself metrizable space, obtaining as a result
that this logic is sound and complete with respect to Q, B, C, etc.

1 Introduction

Epistemic logics (i.e. the family of modal logics concerned with what an epistemic
agent believes or knows) has by now a well-established semantics in the form of
Kripke frames [11]. Hintikka [11] reasonably claims that the accessibility relation
encoding knowledge must be minimally reflexive and transitive, which on the
syntactic level translates to the corresponding logic of knowledge containing
the axioms of S4. This, paired with the fact (proven by McKinsey and Tarski
[14]) that S4 is the logic of topological spaces under the interior semantics, lays
the ground for a topological treatment of knowledge. Moreover, treating the
knowledge modality as the topological interior operator, and the open sets as
“pieces of evidence” adds an evidential dimension to the notion of knowledge
that one cannot obtain within the framework of Kripke frames.

Reading epistemic sentences using the interior semantics might be too sim-
plistic: it equates “knowing” and “having evidence”. In addition, the attempts
to bring the notion of belief into this framework have not been very successful.

Following [18], a logic that allows us to talk about knowledge, belief and the
relation thereof, about evidence (both basic and combined) and justification is
introduced in [2]. This is the framework of topological evidence models (topo-e-
models) and this paper builds on it.

McKinsey and Tarski also proved in [14] a stronger result—their celebrated
theorem—namely, that there are single spaces (dense-in-themselves and metriz-
able) such as the real line, whose logic is S4. The present paper aims to translate
the spirit of this theorem to the framework of topo-e-models. To this respect, we
c© Springer-Verlag GmbH Germany, part of Springer Nature 2019
R. Iemhoff et al. (Eds.): WoLLIC 2019, LNCS 11541, pp. 177–194, 2019.
https://doi.org/10.1007/978-3-662-59533-6_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-59533-6_11&domain=pdf
https://doi.org/10.1007/978-3-662-59533-6_11

178 A. Baltag et al.

introduce a notion of generic models over a language L, which are topological
spaces whose logic is precisely the sound and complete L-logic of topo-e-models,
and provide several examples of generic models for the different fragments of
the language. More precisely, we show that in this new semantics the modal
logic S4.2 is sound and complete for any dense-in-itself metrizable space. As a
result S4.2 is complete with respect to the real line R, the rational line Q, the
Baire space B, the Cantor space C, etc. We also show that extensions of this
logic (e.g., with the global modality) are sound and complete for any idempo-
tent dense-in-itsef metrizable space such as Q, B, C, etc. Our proofs rely on a
recent topological proof of the McKinsey and Tarski theorem [5]. Namely, an
open and continuous onto map from any dense-in-itself metrizable space onto a
finite rooted S4-frame defined in [5] can be used to define an open and continu-
ous onto map from such a space but now with the dense-interior topology onto
a finite rooted S4.2-frame.

This paper is structured as follows: in the present section we show how to use
topological spaces to model epistemic sentences and introduce the framework of
topological evidence models. In Sect. 2, we explain how McKinsey and Tarski’s
theorem encodes a notion of generic model which we then use to state and prove
our main results. These results also include different fragments of the language
within the framework of topo-e-models. Finally, we conclude in Sect. 3.

1.1 Logics of Knowledge and Belief

Below we list some logics of belief and knowledge which were mentioned in the
introduction and will be used throughout this paper.

The modal logic S4 is the least set of formulas in the language L� which
contains all the propositional tautologies, is closed under uniform substitution
and the rules of modus ponens (from φ and φ → ψ infer ψ) and necessitation
(from φ infer �φ) and contains the axioms:

(K) �(φ → ψ) → (�φ → �ψ);
(T) �φ → φ (factivity of knowledge);
(4) �φ → ��φ (positive introspection).

The modal logic S5 contains the axioms and rules of S4 plus the axiom:

(5) ¬�φ → �¬�φ (negative introspection).

S4.2 is S4 plus the axiom:

(.2) ¬�¬�φ → �¬�¬φ.

KD45 has the (K), (4) and (5) axioms plus:

(D) �φ → ¬�¬φ.

The logic Stal, with respect to a language with the K and B modalities, adds
the axioms in Table 1 to the S4 axioms for K.

The McKinsey-Tarski Theorem for Topological Evidence Logics 179

Table 1. Extra axioms for Stal

(PI) Bφ → KBφ;

(NI) ¬Bφ → K¬Bφ;

(KB) Kφ → Bφ;

(CB) Bφ → ¬B¬φ;

(FB) Bφ → BKφ

1.2 The Interior Semantics: The McKinsey-Tarski Theorem

Let Prop be a countable set of propositional variables and consider a modal
language L� defined as follows: φ := p |φ ∧ φ | ¬φ |�φ, with p ∈ Prop.

A topological model is a topological space (X, τ) together with a valuation
V : Prop → 2X . The semantics of a formula φ is defined recursively as follows:
‖p‖ = V (p); ‖φ ∧ ψ‖ = ‖φ‖ ∩ ‖ψ‖, ‖¬φ‖ = X\‖φ‖, ‖�φ‖ = Int ‖φ‖, where Int is
the interior operator of the topology.

We now give some examples of topological spaces (which will be used through-
out the remainder of this paper) in which we model epistemic sentences.

Example 1.1 (The real line). Let R be the set of real numbers. We define the
natural topology τR on R, as the topology generated by the basis of open intervals

B = {(a, b) : a, b ∈ R, a < b}.

Equivalently, U ⊆ R is an open set if, for each x ∈ U , there exists some ε > 0
such that (x − ε, x + ε) ⊆ U .

Example 1.2 (The rational numbers). The natural topology τQ on the set of ratio-
nal numbers Q is simply the subspace topology1 τR|Q or, equivalently, the topol-
ogy generated on Q by the basis of open intervals {(a, b) : a, b ∈ R, a < b}, where
(a, b) = {x ∈ Q : a < x < b}.

Example 1.3 (The Baire space and the Cantor space). Let ωω be the set of
infinite sequences of natural numbers, and ω∗ be the set of finite such sequences.
For s ∈ ω∗ and α ∈ ωω we say s � α whenever s is an initial segment of α, i.e.,
whenever s = 〈s1, ..., sn〉 with si = α(i) for 1 ≤ i ≤ n. For s ∈ ω∗, let O(s)
denote the set of sequences of natural numbers that have s as an initial segment,
i.e. O(s) = {α ∈ ωω : s � α}. The Baire space B = (ωω, τB) is the topological
space that has ωω as its underlying set together with the topology τB generated
by the basis

BB = {O(s) : s ∈ ω∗}.

1 Given a topological space (X, τ) and a set Y ⊆ X, we can define the subspace topology
τ |Y on Y as the set

τ |Y := {U ∩ Y : U ∈ τ}.

Note that (Y, τ |Y) is trivially a topological space.

180 A. Baltag et al.

We can analogously define the Cantor space C on the set 2ω of countable
sequences of zeros and ones. The Cantor space has a visual representation in
the form of the infinite binary tree. This is a tree whose nodes are the finite
sequences of zeros and ones. It has the empty sequence as the root and each
node 〈i1, ..., in〉 ∈ 2∗ has exactly two successors, namely 〈i1, ..., in, 0〉 as its left
successor and 〈i1, ..., in, 1〉 as its right successor. The elements of the Cantor
space can be identified with branches of this tree, where a branch is a countable
collection of nodes {s0, s1, s2, ...} such that s0 is the empty sequence (i.e. the
root of the tree) and each sk+1 is an immediate successor of sk. The basic open
sets O(s) are identified with “fans”, each fan being the subtree that spurs from
one node. An open set is any union of some of these fans. α ∈ 2ω is in a basic
open set O(s) whenever the corresponding branch “enters” the fan.

Example 1.4 (The binary tree T2). If we consider the nodes of the infinite binary
tree instead of its branches to be the points of our space, we can equip it with
a topology by setting the basic open sets to be those of the form O(s), where
s = 〈a0, ..., an〉 and t ∈ O(s) if and only if t is a finite sequence of length greater
than or equal to n + 1 with its n + 1 first elements being a0, ..., an.

The interior semantics on topological spaces generalises the Kripke semantics
on preordered frames2. If we are reading � as an epistemic operator, we can
translate the semantics of [11] into this topological framework, with the addition
that having a topological space allows us to have an evidential view of knowledge.
Indeed, if we read � as a knowledge modality, we interpret the open sets in the
topology to be pieces of evidence the agent has, and we say that P entails Q
whenever P ⊆ Q, then the interior semantics defined above gives us that the
agent knows φ whenever she has a piece of evidence which entails φ.

Let us revisit some of the examples above in this light.

Example 1.5. An underfunded ornithologist measures the weight of a bird. Her
devices of measurement produce results with a margin of error of ±10 g. Let us
code the set of possible worlds with the positive real numbers (0,∞), where at
world x the weight of the bird is precisely x grams. Now, suppose the actual
world is x0 = 509 and the ornithologist obtains a measurement of 500 g ± 10 g.
Then the open interval (490, 510) is her piece of evidence. With this, there are
things she knows and things she does not know. She does not know, for instance,
the proposition “the bird is heavier than 500 g” to be true. She knows, however,
that the bird is heavier than 400 g. This proposition can be interpreted as the
set of worlds P = (400,∞) and she has a piece of evidence which includes the
actual world and entails this proposition: x0 ∈ (490, 510) ⊆ P .

2 Given a preordered set (X, ≤), the collection of upwards-closed sets defines an
Alexandroff topology on X, i.e., a topology closed under infinite intersections. Con-
versely, given an Alexandroff topological space (X, τ) the relation x ≤ y iff x ∈ U
implies y ∈ U , for all U ∈ τ , defines a preorder. This correspondence is 1–1 and
moreover x ∈ Int P iff y ∈ P for all y ≥ x. For details, see, e.g., [3].

The McKinsey-Tarski Theorem for Topological Evidence Logics 181

Example 1.6. Let us equate a world with an infinite stream of data, represented
by a sequence of natural numbers. We are thus in our Baire space. Our epistemic
agent this time is a scientist, and her evidence comes in the form of observations,
which are finite streams of data that the scientist is able to grasp. A world
is compatible with her observation whenever the stream of data is an initial
segment of said world. If she observes s = 〈a1, ..., an〉, then the set of worlds
compatible with it (the corresponding piece of evidence in our sense) is precisely
the basic open set O(s).

In this setting, open sets correspond to verifiable propositions: if P is an open
set and the actual world x0 is in P , then there exist a basic open set O(s) such
that x0 ∈ O(s) ⊆ P . Thus this scientist can potentially make an observation,
s, which will allow her to know P . Similarly, closed sets correspond to refutable
propositions and clopen sets to decidable propositions. For more details on this
interpretation, see [12].

1.3 McKinsey and Tarski: S4 as a Topological Logic of Knowledge

Modelling knowledge as topological interior gives us an intuitive, evidence-based
idea of what knowledge amounts to. Moreover, the interior semantics generalises
the Kripke semantics for preorders and:

Theorem 1.7 (McKinsey and Tarski [14]). S4 is sound and complete with
respect to topological spaces under the interior semantics.

McKinsey and Tarski also proved a stronger result. We do not need to consider
the class of all topological spaces to obtain the logic S4. They showed that,
instead, we can take some particular, “natural” topological space used to model
knowledge, whose logic is S4.

Definition 1.8. A topological space (X, τ) is called dense-in-itself if no single-
ton is an open set, i.e., if {x} /∈ τ for all x ∈ X. We say (X, τ) is metrizable if
there exists a metric3 d on X which generates τ .

Remark 1.9. All the spaces presented as examples in Subsect. 1.2 are both dense-
in-themselves and metrizable. The corresponding metric for the spaces R and Q

is d(x, y) = |x − y|, and clearly no singleton contains an open interval in these
spaces. The binary tree T2 clearly has no open singletons and it is a regular
space with a countable basis and thus metrizable. B and C are homeomorphic
to dense-in-themselves metrizable subspaces of R (for details on these claims,
see [7,15]).

Theorem 1.10 (McKinsey and Tarski [14]). S4 is the logic of any dense-
in-itself metrizable space.4

3 I.e. a map d : X × X → [0, ∞) satisfying for all x, y, z ∈ X: (i.) d(x, y) = 0 iff x = y;
(ii.) d(x, y) = d(y, x); (iii.) d(x, z) ≤ d(x, y) + d(y, z). A metric d on X induces a
topology τd: we say that a set U ⊆ X is open if, for every x ∈ U , there exists some
ε > 0 such that d(x, y) < ε implies y ∈ U .

4 The original formulation of this theorem talked about dense-in-itself, metrizable,
separable spaces. It was shown in [16] that the separability condition can be dropped.

182 A. Baltag et al.

We thus have a semantics based on evidence that allows us to talk about
knowledge and whose logic is a philosophically suitable epistemic logic. More-
over, we have some specific spaces which provide “nice” ways to conceptualise
knowledge and whose logic is still S4.

This semantics, however, is not the topic of this paper. Instead, we will
be working with the dense interior semantics. Understanding the conceptual
reasons to move away from the interior and introducing this semantics is the
aim of the next subsection.

1.4 Dense Interior

The relation between belief and knowledge has historically been a main focus
of epistemology. One would want to have a formal system that accounts for
knowledge and belief together, which requires careful consideration regarding
the way in which they interact. Canonically, knowledge has been thought of
as “true, justified belief”. However, Gettier’s counterexamples of cases of true,
justified belief which do not amount to knowledge shattered this paradigm [8].

Stalnaker [18] argues that a relational semantics is insufficient to capture
Gettier’s considerations in [8] and, trying to stay close to most of the intuitions
of Hintikka in [11], provides an axiomatisation for a system of knowledge and
belief. This system, Stal, has two modal operators, B and K, and on top of the
S4 axioms and rules for K it adds the axioms of Table 1.

In this logic, knowledge is an S4.2 modality, belief is a KD45 modality and the
following formulas can be proven: Bφ ↔ ¬K¬Kφ and Bφ ↔ BKφ. “Believing
p” is the same as “not knowing you don’t know p” and belief becomes “subjective
certainty”, in the sense that the agent cannot distinguish whether she believes
or knows p, and believing amounts to believing that one knows.

Now, modelling epistemic sentences via the interior semantics defined above
forces us to equate “knowing” with “having evidence”. Moreover, attempts to
introduce belief in this framework have had some flagrant issues. To give some
examples, the framework considered in [19], in which knowledge is interior and
belief is read as the dual of the derived set operator5, makes knowledge amount to
true belief, which clearly falls short. [1] takes a Stalnakerian stand but it confines
us to work with hereditarily extremally disconnected spaces (h.e.d)6, which seems
to be a rather restricted class of spaces. None of the “natural” spaces provided
above as examples are h.e.d.

In [2] a new semantics is introduced, building on the idea of evidence models
of [4] which exploits the notion of evidence-based knowledge allowing to account
for notions as diverse as basic evidence versus combined evidence, factual, mis-
leading and nonmisleading evidence, etc. It is a semantics whose logic maintains
a Stalnakerian spirit with regards to the relation between knowledge and belief,

5 BP = ¬d(¬P), where d(P) = {x : ∀U ∈ τ(x ∈ U implies ∃y ∈ P ∩ U, y �= x)}.
6 A space is extremally disconnected (e.d.) if the closure of an open set is open, and
hereditarily so if all its subspaces are e.d.

The McKinsey-Tarski Theorem for Topological Evidence Logics 183

which behaves well dynamically and which does not confine us to work with
“strange” classes of spaces.

This is the dense interior semantics, defined on topological evidence models.

1.5 The Logic of Topological Evidence Models

We briefly present here the framework introduced in [2]. Our language is now
L∀KB��0 , which includes the modalities K (knowledge), B (belief), [∀] (infallible
knowledge), �0 (basic evidence), � (combined evidence).

Definition 1.11 (The dense interior semantics). We interpret sentences
on topological evidence models (i.e. tuples (X, τ,E0, V) where (X, τ, V) is a
topological model and E0 is a subbasis of τ) as follows: x ∈ �Kφ� iff x ∈ Int�φ�
and Int�φ� is dense7; x ∈ �Bφ� iff Int�φ� is dense; x ∈ �[∀]φ� iff �φ� = X;
x ∈ ��0φ� iff there is e ∈ E0 with x ∈ e ⊆ �φ�; x ∈ ��φ� iff x ∈ Int�φ�. Validity
is defined in the standard way.

We see that “knowing” does not equate “having evidence” in this framework,
but it is rather something stronger: in order for the agent to know P , she needs
to have a piece of evidence for P which is dense, i.e., which has nonempty
intersection with (and thus cannot be contradicted by) any other potential piece
of evidence she could gather.

Fragments of the Logic. The following logics are obtained by considering cer-
tain fragments of the language (i.e. certain subsets of the modalities above).

“K-only”, LK S4.2.
“Knowledge”, L∀K S5 axioms and rules for [∀], plus S4.2 for K, plus

[∀]φ → Kφ and ¬[∀]¬Kφ → [∀]¬K¬φ.
“Combined evidence”, L∀� S5 for [∀], S4 for �, plus [∀]φ → �φ.
“Evidence”, L∀��0 S5 for [∀], S4 for �, plus the axioms

�0φ → �0�0φ, [∀]φ → �0φ, �0φ → �φ,
(�0φ ∧ [∀]ψ) → �0(φ ∧ [∀]ψ).

We will refer to these logics respectively as S4.2K , Logic∀K , Logic∀� and
Logic∀��0

. K and B are definable in the evidence fragments8, thus we can think
of the logic of L∀��0 as the “full logic”.

2 Generic Spaces for the Logic of Topo-e-models

McKinsey and Tarski’s theorem [14] stating that S4 is the logic of any dense-
in-itself metrizable space (such as the real line R) under the interior semantics
tells us that we have a space which gives a somewhat “natural” way of capturing

7 A set U ⊆ X is dense whenever Cl U = X or equivalently whenever U ∩ V �= ∅ for
all nonempty open set V .

8 Kφ ≡ �φ ∧ [∀]�♦φ and Bφ ≡ ¬K¬Kφ.

184 A. Baltag et al.

knowledge yet it is “generic” enough so that its logic is precisely the logic of all
topological spaces. Whatever is not provable in the logic of knowledge S4 will
find a refutation in R and whatever is true in S4 will hold in every model based
on the topology of the real line.

Translating this idea to the framework of topo-e-models is the aim of this
paper. We wish to find topological evidence models which capture the logics
presented in the preceding chapter, that is, special spaces whose logic under
the dense interior semantics is exactly the logic of topo-e-models. We start by
formalising the idea of “generic”.

Definition 2.1 (Generic models). Let L be a language and (X, τ) a topolog-
ical space. We will say that (X, τ) is a generic model for L if the sound and
complete L-logic over the class of all topological evidence models is sound and
complete with respect to the family

{(X, τ,E0) : E0 is a subbasis of τ}.

If �0 is not in the language, then a generic model is simply a topological space
which is sound and complete with respect to the corresponding L-logic.

Since McKinsey and Tarski’s original paper (which appeared in 1944), a number
of simplified proofs of this result have been obtained. For an overview, we refer
to [3]. Many of these proofs are built on the following idea. It is a well-known fact
that S4 is sound and complete with respect to finite rooted preorders (see e.g.
[6]). One then constructs an interior map (a surjective map which is continuous
and open9) from a dense-in-itself metrizable space (X, τ) onto any such preorder
(W,≤). It can be proven that given such a map f : X → W and a valuation V
on (W,≤), if we define V f (p) := {x ∈ X : fx ∈ V (p)} it is the case that, for
any formula φ in the language of S4, x |= φ in (X, τ, V f) if and only if fx |= φ
in (W,≤, V). Completeness is then a straightforward consequence, for if S4 �� φ,
then there is a model based on a finite rooted preorder (W,≤, V) refuting φ and
thus we can refute φ on (X, τ, V f). The next subsection builds on a recent proof
of the McKinsey-Tarski theorem, contained in [5], which is purely topological.

2.1 S4.2 as the Logic of R

This section is devoted to the proof of our analogue of McKinsey and Tarski’s
theorem:

Theorem 2.2. S4.2K is the logic of any dense-in-itself metrizable space if we
read K as dense interior. That is, for any formula φ in the language LK , and
any dense-in-itself metrizable space (X, τ), we have that S4.2K � φ if and only
if (X, τ) |= φ with the dense interior semantics.

9 A map f : (X, τ) → (Y, σ) is continous is U ∈ σ implies f−1[U] ∈ τ and open if
U ∈ τ implies f [U] ∈ σ.

The McKinsey-Tarski Theorem for Topological Evidence Logics 185

Before tackling this proof, we will need to introduce some auxiliary notions.
Given a topological space (X, τ) define τ+ to be the collection of dense open

sets in (X, τ) plus the empty set:

τ+ = {U ∈ τ : Cl U = X} ∪ {∅}.

Recall that a topological space is extremally disconnected if the closure of
any open set is an open set. The following is straightforward to check.

Lemma 2.3. (X, τ+) is an extremally disconnected topological space and, for
any valuation V and any formula φ in the modal language LK we have that
�φ�(X,τ,V) under the dense interior semantics coincides with ‖φ‖(X,τ+,V) under
the interior semantics.

Lemma 2.4. For any topological space (X, τ), we have that (X, τ+) |= S4.2
under the interior semantics.

Proof. Follows from the above together with the soundness and completeness of
S4.2 with respect to extremally disconnected spaces (see, e.g., [1,3]).

Now, we will be using the known result that S4.2 is sound and complete with
respect to the class of finite rooted frames (W,≤) in which ≤ is a reflexive,
transitive and weakly directed10 relation [6]. Note that if a frame is rooted and
weakly directed, for every pair of points x, y ∈ W , and given that r ≤ x, y where
r is the root of W , weak directedness grants us the existence of some z such that
z ≥ x, y. But this means that, for every pair of points x and y, the set ↑x ∩ ↑y
is nonempty, and thus for every pair of nonempty upsets U and V we have that
U ∩ V �= ∅. This means that every nonempty upset is dense in such a frame,
and therefore that the topology of upsets τ = Up(W) coincides with τ+. This
fact, paired with the previous lemma, immediately gives us the folowing result.

Lemma 2.5. Let F = (W,≤) be a reflexive, transitive and weakly directed rooted
frame. Then the dense interior semantics on (W,Up(W)) coincides with the inte-
rior semantics on it, which in turn coincides with the standard Kripke semantics
on (W,≤). In other words, in any model based on such a frame

x |= Kφ if and only if y |= φ for all y ≥ x.

Moreover, we have the following:

Lemma 2.6. Let (X, τ) be some topological space and (W,≤, V) be a finite,
rooted, reflexive, transitive and weakly directed Kripke model. Let

f : (X, τ+) � (W,Up(W))

be an onto interior map and define

V f (p) := {x ∈ X : fx ∈ V (p)}.

Then for every x ∈ X we have that (X, τ, V f), x |= φ under the dense interior
semantics if and only if (W,≤, V), fx |= φ under the Kripke semantics.
10 A relation ≤ is weakly directed whenever x ≤ y, z implies that there exists t ≥ y, z.

186 A. Baltag et al.

Proof. Straightforward induction on the complexity of φ.

Definition 2.7. Given topological spaces (X, τ) and (Y, σ), we will refer to an
open (resp. continuous, interior) map f : (X, τ+) → (Y, σ) as a dense-open
(resp. dense-continuous, dense-interior) map f : (X, τ) → (Y, σ).

Given all the above, in order to prove completeness it suffices to show that there
exists a dense-interior map from any dense-in-itself metrizable space (X, τ) onto
any finite S4.2 frame. This way, if a formula φ is not a theorem of S4.2, then
it will be refuted on some such frame and therefore, by using this map plus
Lemma 2.6, we can construct a valuation on (X, τ) which refutes φ. And indeed:

Theorem 2.8. Given a dense-in-itself metrizable space (X, τ) and a finite
rooted S4.2 frame (W,≤) there exists an onto dense-interior map f̄ : (X, τ) �
(W,≤).

Proof. See AppendixA.1.

This finishes the proof of Theorem2.2.

2.2 Adding Belief

The logic Stal introduced in Sect. 1.1 is the logic of topo-e-models for the belief
and knowledge fragment. The formula Bφ ↔ ¬K¬Kφ is provable in Stal (see
[18]). In particular, for any formula φ in the language LKB , there exists a formula
ψ in the language LK such that |=Stal φ ↔ ψ (indeed, we get ψ by substituting
every instance of B in φ with ¬K¬K).

And thus we have the following:

Theorem 2.9. Stal is sound and complete with respect to any dense-in-itself
metrizable space with the dense interior semantics.

Proof. Soundness follows from the fact that Stal is sound with respect to topo-
e-models. For completeness, suppose Stal �� φ and take ψ in the language LK

such that |=Stal φ ↔ ψ. Then S4.2 �� ψ, hence by Theorem 2.2, for any dense-in-
itself metrizable space (X, τ), there is a point x ∈ X and valuation V such that
(X, τ+, V), x �|= ψ. By soundness and the fact that |=Stal φ ↔ ψ, we conclude
that φ is false at x as well.

2.3 The Global Modality [∀] and the Logic of Q

Three fragments including the global modality [∀] will be considered in the
present subsection: the knowledge fragment (the one which includes the K and
[∀] modalities), the factive evidence fragment (including � and [∀]) and the evi-
dence fragment (including [∀], � and �0).

First let us concentrate on the factive evidence fragment. Recall that the logic
of this fragment, Logic∀�, consists of S5∀ plus S4� plus the axiom [∀]φ → �φ.

The McKinsey-Tarski Theorem for Topological Evidence Logics 187

This logic is not complete with respect to R. Consider the following formula:

[∀](�p ∨ �¬p) → ([∀]p ∨ [∀]¬p) (Con)

It is the case that (Con) is not derivable in the logic yet it is always true in R.
More generally:

Theorem 2.10 (Shehtman [17]). A topological space (X, τ) satisfies (Con) if
and only if it is connected11.

Instead of considering connected spaces and adding (Con) as an axiom to our
logic (an axiom which would be hard to justify epistemically), we will show
completeness of this fragment (plus the other two mentioned above which include
the global modality) with respect to a dense-in-itself, metrizable yet disconnected
space, namely Q. This parallels a similar result of [17] stating that Q is sound
and complete with respect to S4 with the global modality.

The Knowledge Fragment L∀K . Similarly to Subsect. 2.1, we will use com-
pleteness of the logic with respect to a class of finite frames, namely:

Lemma 2.11 ([9]). Logic∀K is sound and complete with respect to finite models
of the form (W,R, V) where W is a finite set, R is a preorder with a final
cluster12 and K and [∀] are respectively interpreted as the Kripke modality for
R and the universal modality.

Once again, we can easily check the following statement.

Lemma 2.12. Let M = (W,R, V) be a finite preordered model with a final
cluster, (X, τ) a topological space and f : X � W an onto dense-interior map.
Then for any formula φ we have (X, τ, Vf), x |= φ iff M, fx |= φ, where Vf (p) =
f−1[V (p)].

Then, to prove completeness, it suffices to find such a map from Q. And indeed:

Theorem 2.13. Given a finite preorder with a final cluster (W,R), there exists
an onto dense-interior map f : (Q, τQ) � (W,R).

Proof. See AppendixA.2.

The Factive Evidence Fragment L∀�. It is proved in [9] that Logic∀� is sound
and complete with respect to finite relational models of the form (X,≤, V) where
≤ is a preorder.

Thus, to prove completeness of this logic with respect to Q it suffices to find
a suitable open and continuous map from Q onto any such finite frame. And
indeed (by a proof similar to the one of Theorem2.13) we obtain:
11 A space X is connected if there is no proper subset A ⊆ X such that both A and

X\A are open. R is a connected space.
12 I.e. a set A ⊆ W such that wRa for all a ∈ A and all w ∈ W .

188 A. Baltag et al.

Theorem 2.14. Let (W,≤) be any finite preordered frame. Then there exists an
open, continuous and surjective map f : (Q, τQ) � (W,Up≤(W)).

Again, noting that if we define V f (p) = {x ∈ Q : fx ∈ V (p)} we obtain x |= φ
in (Q, τQ, V f) if and only if fx |= φ in (W,≤, V), completeness follows.

Adding Basic Evidence: The Evidence Fragment L∀��0
. Let us now

account for basic evidence. We take the fragment consisting of the modal oper-
ators �, [∀] and �0. Recall that we interpret formulas of this fragment on topo-
e-models (X, τ,E0, V), where E0 is a subbasis for (X, τ), in the following way:
x ∈ ��0φ� if and only if there exists e ∈ E0 with x ∈ e ⊆ �φ�.

The logic of this fragment is Logic∀��0
, as discussed in Sect. 1.5. It is proven

in [2] that this logic is sound and complete with respect to finite pseudo-models,
i.e., structures of the form (X,≤, EX

0 , V), where ≤ is a preorder and EX
0 is a

subbasis for Up(X) with X ∈ E0.
Completeness is an immediate corollary of the following result:

Theorem 2.15. Let M = (X,≤, EX
0 , V) be a pseudo-model as defined above

and f : Q � X be an onto interior map. Then if we define V Q(p) = f−1[V (p)]
and EQ

0 := {e ⊆ Q : f [e] ∈ EX
0 }, we have that N = (Q, τQ, EQ

0 , V Q) is a topo-e-
model and, for every φ in the language, N, x |= φ iff M, fx |= φ.

Proof. See AppendixA.3.

To summarise the results in this subsection we obtain:

Theorem 2.16. (Q, τQ) is a generic model for the fragments L∀�, L∀K and
L∀��0 .

Proof. The result follows from Theorems 2.13, 2.14 and 2.15, respectively.

A Condition for Generic Models. We will now generalize the results in the
present subsection to a class of spaces. One can easily see that the only part
in the proof of Theorem2.13 which uses a special property of Q which R does
not have is that we partition Q in n subspaces which are homeomorphic to Q

itself. Given a dense-in-itself metrizable space which admits such partition, all
the proofs in the present subsection will work mutatis mutandis. We will now
give a necessary and sufficient condition for such a space to have this property.

Definition 2.17 (Idempotent spaces). A topological space (X, τ) is idempo-
tent whenever (X, τ) is homeomorphic to the sum (X, τ) ⊕ (X, τ).13

Then the following holds:

Lemma 2.18. A topological space (X, τ) is idempotent if and only if it can be
partitioned in n subspaces homeomorphic to itself for each n ≥ 1.
13 (X, τ) ⊕ (Y, σ) is the space which has the disjoint union (X × {1}) ∪ (Y × {2}) as its

underlying set and τ ⊕ σ = {(U × {1}) ∪ (V × {2}) : U ∈ τ, V ∈ σ} as its topology.

The McKinsey-Tarski Theorem for Topological Evidence Logics 189

Proof. If (X, τ) admits a partition in two subspaces homeomorphic to itself,
since these are disjoint their union (which is X) is homeomorphic to their sum,
which is homeomorphic to X ⊕ X.

Conversely, if (X, τ) is idempotent we can reason recursively to find that X
is homeomorphic to the sum X1 ⊕ ... ⊕ Xn where each Xi is a copy of X. Let
f : X1 ⊕ ...⊕Xn → X be a homeomorphism. Then {f [X1], ..., f [Xn]} constitutes
a partition of X in n subspaces, each of them homeomorphic to X.

And thus, we have the general result:

Corollary 2.19. Any dense-in-itself idempotent metrizable space is sound and
complete with respect to Logic∀K , Logic∀� and Logic∀��0

.

All the spaces introduced in Sect. 1, except for R and T2, are dense-in-themselves,
metrizable and idempotent spaces. And thus:

Theorem 2.20. The rational line Q, the Cantor space C and the Baire space
B are generic spaces for the fragments LK , LKB, L∀�, L∀K and L∀��0 .

Completeness of Logic∀��0
with Respect to Q with a Particular Sub-

basis. While so far in the present section we have shown several of the logics
in [2] to be sound and complete with respect to single generic models, we failed
to provide a single topo-e-model for the fragment involving the basic evidence
modality. Instead, we showed that the corresponding logic is sound and complete
with respect to the class of topological evidence models based on (Q, τQ) with
arbitrary subbases. But can we find one subbasis S such that the logic of the
single space (Q, τQ,S) is precisely Logic∀��0

?
This would need to be a subbasis which is not a basis (for otherwise �φ ↔

�0φ would be a theorem of the logic). One obvious candidate is perhaps the
most paradigmatic case of subbasis-which-is-not-a-basis, namely

S = {(a,∞), (−∞, b) : a, b ∈ Q}.

We will show that this subbasis does not lead to a complete logic. To show
why, consider the following formula, with three propositional variables p1, p2, p3:

γ =
∧

i=1,2,3

(�0pi ∧ [∃]�0¬pi)
∧

i�=j∈{1,2,3}
[∃](�0pi ∧ ¬�0pj),

where [∃] is the dual of [∀] (i.e. [∃]φ = ¬[∀]¬φ). Then γ is consistent in the logic
yet it cannot be satisfied by any model based on Q with the aforementioned
subbasis.

Indeed, note that, in any topo-e-model, ��0φ� is a union of elements in the
subbasis. In particular, with the subbasis S as defined above, we have that ��0φ�
is always of the form ��0φ� = (−∞, a) ∪ (b,∞) for some a, b ∈ R ∪ {−∞,∞}
(here, we call (−∞,−∞) = (∞,∞) = ∅ and (−∞,∞) = Q).

Moreover, if the set ��0φ ∧ [∃]�0¬φ� is nonempty, then it is straightforward
to see that ��0φ� has to be either of the form (a,∞) or of the form (−∞, a) for
some a ∈ R.

190 A. Baltag et al.

By this observation, the first conjunct of γ gives that ��0pi� is of the form
(a,∞) or (−∞, a) for some a ∈ R. By the second conjunct, the sets ��0pi� and
��0pj� need to be incomparable for i �= j. But of course, at least two of the sets
��0pi� have to be of the same form (either (−∞, ai) and (−∞, aj) or (ai,∞)
and (aj ,∞)), and thus it obviously cannot be the case that three such sets are
incomparable. Therefore (Q, τQ,S) |= ¬γ.

However, γ is consistent. To show this, we use the fact (see [2]) that the logic is
complete with respect to quasi-models, i.e. structures of the form (X,≤, E0, V),
where ≤ is a preorder and E0 is a collection of ≤-upsets. [∀] is interpreted
globally, � is interpreted as the Kripke modality for ≤ and x ∈ ��0φ� if and
only if there is some e ∈ E0 with x ∈ e ⊆ �φ�. Let (X,≤) be the following poset:

x1 x2 x3

z

y

and call ei = {xi, z} for i = 1, 2, 3. Let E0 = {e1, e2, e3, {y},X} and V (pi) = ei

for i = 1, 2, 3. It is clear that (X,≤, E0, V) is a quasi-model and that z |= �0pi,
xi |= �0pi ∧ ¬�0pj for j �= i, and y |= �0¬pi. Thus z |= γ and γ is therefore
consistent in the logic. Since every model based on Q with E0 as a subbasis
makes ¬γ true yet ¬γ /∈ Logic∀��0

, incompleteness follows.
We conjecture that no particular subbasis will give us completeness. Proving

this result, or otherwise finding such a subbasis, constitutes an interesting line
of future work.

3 Conclusions and Future Work

We have shown that there are topological spaces which are generic enough to
capture the logic of topological evidence models, mirroring the McKinsey-Tarski
theorem within the framework of topological evidence logics.

A number of questions still remain open. One potential direction for future
work is to see whether the completeness results in this paper extend to strong
completeness (it is shown in [13] that, under the interior semantics, S4 is strongly
complete with respect to any dense-in-itself metrizable space).

It will also be interesting to add a dynamic dimension to this work: one of
the advantages of topo-e-models over other topological treatments of evidence
logics is how well these models behave dynamically. In [2], dynamic extensions
for these logics which include modalities for public announcement or evidence
addition are given, along with sound an complete axiomatisations. Thus, one
may wonder whether our models are also generic for these logics.

Acknowledgements. We would like to thank Guram Bezhanishvili for helpful discus-
sions and for suggesting the proof of Theorem 2.8. We are also grateful to the reviewers
of WoLLIC 2019 for useful comments, which improved the presentation of the paper.

The McKinsey-Tarski Theorem for Topological Evidence Logics 191

A Appendices

A.1 Proof of Theorem2.8

Let us take a finite rooted preorder F = (W,≤) and a dense-in-itself metrizable
space (X, τ) and construct a dense-interior onto map f̄ : (X, τ) � (W,≤).14 For
this construction, we will use the following two lemmas. Their proofs15 can be
found respectively in [5, Lemmas 4.13 and 4.22] and [10, Thm. 41].

Lemma A.1. (i) If F = (W,≤) is a finite rooted preorder, and (G, τ) is a
dense-in-itself metrizable space, there exists a continuous, open and surjec-
tive map f : (G, τ) → (W,Up≤(W)).

(ii) (Partition Lemma) Let X be a dense-in-itself metrizable space and n ≥ 1.
Then there is a partition {G,U1, ..., Un} of X such that G is a dense-in-itself
closed subspace of X with dense complement and each Ui is an open set.

Lemma A.2. Given a dense-in-itself metrizable space X and n ≥ 1, X can be
partitioned in n dense sets.

Note that F has a final cluster, i.e., a set A ⊆ W with the property that w ≤ a
for all w ∈ W and all a ∈ A. Indeed, let r ∈ W be the root and let x, y ∈ W
be any two maximal elements (which exist, on account that F is finite). Since
r ≤ x and r ≤ y, by weak directedness, there is a z such that x, y ≤ z. But by
maximality of x and y, we have that z ≤ x and z ≤ y, hence, by transitivity,
x ≤ y and y ≤ x: the maximal elements of F form a final cluster. Let this cluster
be A = {a1, ..., an}.

If W = A, then we simply partition X in n dense sets {A1, ..., An} as per
Lemma A.2 and we take f̄ to map each x ∈ Ai to ai. It is a straightforward check
that f̄ is dense-open (the image of a dense open set is W) and dense-continuous
(the preimage of a nonempty upset is X). Otherwise, let us call B := W \ A,
which is a finite rooted preorder. Let {G,U1, ..., Un} be a partition of X as given
by the Partition Lemma. Since G is a dense-in-itself metrizable space and B
is a finite rooted preorder, by LemmaA.1(i), there exists an onto interior map
(with respect to the subspace topology of G) f : G � B. We extend this map
to f̄ : X � W by mapping each x ∈ Ui to ai.

We now show that f̄ is the desired map. It is surjective by construction. It is
dense-open, for given a nonempty dense open set U ⊆ X, we have that U ∩ G
is an open set in the subspace topology of G and therefore f̄ [U ∩ G] = f [U ∩ G]
is an upset in B. On the other hand, U \ G = U ∩ (X \ G) is the intersection of
two dense open sets and therefore is dense open, which means it has nonempty
intersection with each of the Ui and hence f̄ [U \ G] = A. Therefore, f̄ [U] is the
union of an upset in B with A, and thus is an upset in W .

To see that f̄ is dense-continuous, take a nonempty upset U ⊆ W , which will
be a disjoint union U = B′ ∪ A, with B′ being an upset in B. Then f̄−1[B′] =

14 We wish to thank Guram Bezhanishvili for the idea of this construction.
15 Lemma A.1 is a cornerstone of the proof of McKinsey and Tarski’s theorem.

192 A. Baltag et al.

f−1[B′] is an open set in X and f̄−1[A] = U1 ∪ ... ∪ Un = X \ G. Therefore,
f̄−1[U] is the union of an open set and a dense open set and thus a dense open
set. This concludes the proof.

A.2 Proof of Theorem2.13

Let (W,≤) be a finite preorder with a final cluster. We have the following:

Lemma A.3. (W,≤) is a p-morphic image of a finite disjoint union of finite
rooted S4.2 frames, via a dense-open and dense-continuous p-morphism.

Proof. Let x1, ..., xn be the minimal elements of W . Now, for 1 ≤ i ≤ n take
W ′

i = ↑xi ×{i}. Define an order on W ′ = W ′
1 ∪ ...∪W ′

n by: (x, i) ≤ (y, j) iff i = j
and x ≤ y. Then W ′

1, ...,W
′
n are pairwise disjoint finite rooted S4.2 frames (with

A × {i} as a final cluster) and (x, i) �→ x is a p-morphism from W ′ onto W . It
is easy to see that this mapping is dense-open (for every nonempty open set is
dense in W) and dense-continuous (for the preimage of a nonempty W -upset is
a W ′-upset which contains all the final clusters, and thus is dense).

We can use Lemma A.3 to construct the map: let W ′
1, ...,W

′
n be the family of

pairwise disjoint finite rooted S4.2 frames whose union W ′ has (W,≤) as a p-
morphic image.

Take z1, ..., zn−1 ∈ R\Q and consider the intervals A1 = (−∞, z1), An =
(zn−1,∞) and Ai = (zi−1, zi) for 1 < i < n. Now, each Ai, as a subspace,
is homeomorphic to Q (and thus a dense-in-itself metrizable space). From each
(Ai, τ |Ai

) we can find a dense-open, dense-continuous and surjective map fi onto
W ′

i . Then f = f1∪...∪fn is a dense-interior map onto W ′ which, when composed
with the p-morphism in Lemma A.3, gives us the desired map.

A.3 Proof of Theorem2.15

We show that EQ

0 is a subbasis for Q. First, given that X ∈ EX
0 and f [Q] = X,

we have that Q ∈ EQ

0 , thus
⋃

EQ

0 = Q.
Now, suppose p ∈ U ∈ τQ. We show that there exist eq

1, ..., e
q
n ∈ EQ

0 such
that p ∈ eq

1 ∩ ... ∩ eq
n ⊆ U . Note that fp ∈ f [U] which is an open set. Since

EX
0 is a subbasis for (X,≤) this means that there exist ex

1 , ..., ex
n ∈ EX

0 with
fp ∈ ex

1 ∩ ... ∩ ex
n ⊆ f [U]. Now set

eq
i := f−1[ex

i]\{y /∈ U : fy ∈ f [U]}.

The fact that eq
i ∈ EQ

0 follows from the fact that f [eq
i] = ex

i . Indeed, if y ∈ f [eq
i]

then y ∈ ff−1[ex
i] = ex

i and conversely if y ∈ ex
i , then either y ∈ f [U] (in which

case y = fz for some z ∈ U and thus z ∈ f−1[ex
i] and therefore z /∈ {z′ /∈ U :

fz′ ∈ f [U]}, which implies z ∈ eq
i) or y /∈ f [U] (in which case y = fz for some

z by surjectivity and z /∈ {z′ /∈ U : fz′ ∈ f [U]}, thus z ∈ eq
i). In either case,

y ∈ f [eq
i].

The McKinsey-Tarski Theorem for Topological Evidence Logics 193

Finally, note that eq
1 ∩ ... ∩ eq

n ⊆ U . Indeed, for any x ∈ eq
1 ∩ ... ∩ eq

n we have
that fx ∈ ex

1 ∩ ... ∩ ex
n ⊆ f [U], and thus by the definition of the eq

i ’s it cannot be
the case that x /∈ U .

So for p ∈ U ∈ τQ we have found elements eq
1, ...e

q
n ∈ EQ

0 such that p ∈
eq
1 ∩ ... ∩ eq

n ⊆ U , and therefore EQ

0 is a subbasis.
Now set a valuation V Q(p) = {x ∈ Q : fx ∈ V (p)} and let us show that, for

any formula φ in the language and any x ∈ Q, we have that (Q, τQ, EQ

0 , V Q), x |=
φ if and only if (X,≤, EX

0 , V), fx |= φ. This is done by an induction on formulas;
the only induction step that requires some attention is the one referring to �0.

Let x |= �0ψ. This means that there exists some e ∈ EQ

0 with x ∈ e
and y |= ψ for all y ∈ e. But then fx ∈ f [e] ∈ EX

0 and by the induction
hypothesis we have fy |= ψ for all fy ∈ f [e] and thus fx |= �0ψ. Conversely, if
fx ∈ e′ ⊆ �ψ�X for some e′ ∈ EX

0 , we have that x ∈ f−1[e′] ∈ EQ

0 and fy |= ψ
for each y ∈ f−1[e′] and thus, by induction hypothesis, y |= ψ. Therefore
x |= �0ψ.

References

1. Baltag, A., Bezhanishvili, N., Özgün, A., Smets, S.: The topology of belief, belief
revision and defeasible knowledge. In: Grossi, D., Roy, O., Huang, H. (eds.) LORI
2013. LNCS, vol. 8196, pp. 27–40. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40948-6 3

2. Baltag, A., Bezhanishvili, N., Özgün, A., Smets, S.: Justified belief and the topology
of evidence. In: Väänänen, J., Hirvonen, Å., de Queiroz, R. (eds.) WoLLIC 2016.
LNCS, vol. 9803, pp. 83–103. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-52921-8 6

3. van Benthem, J., Bezhanishvili, G.: Modal logics of space. In: Aiello, M., Pratt-
Hartmann, I., Van Benthem, J. (eds.) Handbook of Spatial Logics, pp. 217–298.
Springer, Dordrecht (2007). https://doi.org/10.1007/978-1-4020-5587-4 5

4. van Benthem, J., Pacuit, E.: Dynamic logics of evidence-based beliefs. Stud. Log.
99(1–3), 61–92 (2011)

5. Bezhanishvili, G., Bezhanishvili, N., Lucero-Bryan, J., van Mill, J.: A new proof
of the McKinsey-Tarski theorem. Stud. Log. 106(6), 1291–1311 (2018)

6. Blackburn, P., De Rijke, M., Venema, Y.: Modal Logic, vol. 53. Cambridge Uni-
versity Press, Cambridge (2001)

7. Engelking, R.: General Topology. Sigma Series in Pure Mathematics. Heldermann
Verlag, Berlin (1989)

8. Gettier, E.L.: Is justified true belief knowledge? Analysis 23(6), 121–123 (1963)
9. Goranko, V., Passy, S.: Using the universal modality: gains and questions. J. Log.

Comput. 2(1), 5–30 (1992)
10. Hewitt, E.: A problem of set-theoretic topology. Duke Math. J. 10(2), 309–333

(1943)
11. Hintikka, J.: Knowledge and Belief: An Introduction to the Logic of the Two

Notions. Contemporary Philosophy. Cornell University Press, Ithaca (1962)
12. Kelly, K.: The Logic of Reliable Inquiry. Logic and Computation in Philosophy.

Oxford University Press, Oxford (1996)
13. Kremer, P.: Strong completeness of S4 for any dense-in-itself metric space. Rev.

Symb. Log. 6(3), 545–570 (2013)

https://doi.org/10.1007/978-3-642-40948-6_3
https://doi.org/10.1007/978-3-642-40948-6_3
https://doi.org/10.1007/978-3-662-52921-8_6
https://doi.org/10.1007/978-3-662-52921-8_6
https://doi.org/10.1007/978-1-4020-5587-4_5

194 A. Baltag et al.

14. McKinsey, J.C.C., Tarski, A.: The algebra of topology. Ann. Math. 45, 141–191
(1944)

15. Munkres, J.R.: Topology. Prentice Hall, Upper Saddle River (2000)
16. Rasiowa, H., Sikorski, R.: The Mathematics of Metamathematics. Institut Math-

ematyczny, Polskiej Akademii Nauk: Monographie Mathematyczne. PWN-Polish
Scientific Publishers, Warszawa (1970)

17. Shehtman, V.: “Everywhere” and “Here”. J. Appl. Non-Class. Log. 9(2–3), 369–
379 (1999)

18. Stalnaker, R.: On logics of knowledge and belief. Philos. Stud. 128(1), 169–199
(2006)

19. Steinsvold, C.: Topological models of belief logics. City University of New York
(2006)

A Self-contained Provability Calculus
for Γ0

David Fernández-Duque1(B) and Eduardo Hermo-Reyes2

1 Ghent University, Ghent, Belgium
David.FernandezDuque@UGent.be

2 University of Barcelona, Barcelona, Spain
ehermo.reyes@ub.edu

Abstract. Beklemishev introduced an ordinal notation system for the
Feferman-Schütte ordinal Γ0 based on the autonomous expansion of prov-
ability algebras. In this paper we present the logic BC (for Bracket Cal-
culus). The language of BC extends said ordinal notation system to a
strictly positive modal language. Thus, unlike other provability logics,
BC is based on a purely modal signature that gives rise to an ordinal
notation system instead of modalities indexed by some ordinal given a
priori. Moreover, since the order between these notations can be estab-
lished in terms of derivability within the calculus, the inferences in this
system can be carried out without using any external property of ordi-
nals. The presented logic is proven to be equivalent to RCΓ0 , that is, to
the strictly positive fragment of GLPΓ0 .

Keywords: Provability logic · Proof theory · Ordinal analysis

1 Introduction

In view of Gödel’s second incompleteness theorem, we know that the consistency
of any sufficiently powerful formal theory cannot be established using purely
‘finitary’ means. Since then, the field of proof theory, and more specifically of
ordinal analysis, has been successful in measuring the non-finitary assumptions
required to prove consistency assertions via computable ordinals. Among the
benefits of this work is the ability to linearly order natural theories of arith-
metic with respect to notions such as their ‘consistency strength’ (e.g., their
Π0

1 ordinal) or their ‘computational strength’ (their Π0
2 ordinal). Nevertheless,

the assignment of these proof-theoretic ordinals to formal theories depends on a
choice of a ‘natural’ presentation for such ordinals, with well-known pathological
examples having been presented by Kreisel [24] and Beklemishev [8].1 This raises

1 The Π1
1 ordinal of a theory is another measure of its strength and does not have

such sensitivity to a choice of notation system. However, there are some advantages
to considering Π0

1 ordinals, among others that they give a finer-grained classification
of theories.

c© Springer-Verlag GmbH Germany, part of Springer Nature 2019
R. Iemhoff et al. (Eds.): WoLLIC 2019, LNCS 11541, pp. 195–207, 2019.
https://doi.org/10.1007/978-3-662-59533-6_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-59533-6_12&domain=pdf
http://orcid.org/0000-0001-8604-4183
http://orcid.org/0000-0002-8982-6030
https://doi.org/10.1007/978-3-662-59533-6_12

196 D. Fernández-Duque and E. Hermo-Reyes

the question of what it means for something to be a natural ordinal notation
system, or even if such a notion is meaningful at all.

One possible approach to this problem comes from Beklemishev’s ordinal
analysis of Peano arithmetic (PA) and related theories via their provability alge-
bras. Consider the Lindenbaum algebra of the language of arithmetic modulo
provability in a finitary theory U such as primitive recursive arithmetic (PRA)
or the weaker elementary arithmetic (EA). For each natural number n and each
formula ϕ, the n-consistency of ϕ is the statement that all Σn consequences of
U +ϕ are true, formalizable by some arithmetical formula 〈n〉ϕ (where ϕ is iden-
tified with its Gödel number). In particular, 〈0〉ϕ states that ϕ is consistent with
U . An iterated consistency assertion, also called worm, is then an expression of
the form 〈n1〉 . . . 〈nk〉�, where � is some fixed tautology.

The operators 〈n〉 and their duals [n] satisfy Japaridze’s provability logic
GLP [22], a multi-modal extension of the Gödel-Löb provability logic GL [12].
As Beklemishev showed, the set of worms is well-ordered by their consistency
strength <0, where A <0 B if A → 〈0〉B is derivable in GLP. Moreover, this
well-order is of order-type ε0, which characterizes the proof-theoretical strength
of PA. This tells us that proof-theoretic ordinals already appear naturally within
Lindenbaum algebras of arithmetical theories.

Beklemishev also observed that this process can be extended by consider-
ing worms with ordinal entries. Extensions of GLP, denoted GLPΛ, have been
considered in cases where Λ is an ordinal [3,14,18] or even an arbitrary lin-
ear order [6]. Proof-theoretic interpretations for GLPΛ have been developed
by Fernández-Duque and Joosten [17] for the case where Λ is a computable
well-order. Nevertheless, we now find ourselves in a situation where an expres-
sion 〈λ〉ϕ requires a system of notation for the ordinal λ. Fortunately we may
‘borrow’ this notation from finitary worms and represent λ itself as a worm.
Iterating this process we obtain the autonomous worms, whose order types are
exactly the ordinals below the Feferman-Schütte ordinal Γ0. By iterating this
process we obtain a notation system for worms which uses only parentheses,
as ordinals (including natural numbers) can be iteratively represented in this
fashion. Thus the worm 〈0〉� becomes (), 〈1〉� becomes (()), 〈ω〉� becomes
((())), etc.

These are Beklemishev’s brackets, which provide a notation system for Γ0

without any reference to an externally given ordinal [3]. However, it has the
drawback that the actual computation of the ordering between different worms
is achieved via a translation into a traditional ordinal notation system. Our goal
is to remove the need for such an intermediate step by providing an autonomous
calculus for determining the ordering relation (and, more generally, the logical
consequence relation) between bracket notations. To this end we present the
bracket calculus; our main result is that our calculus is sound and complete with
respect to the intended embedding into GLPΓ0 .

2 The Reflection Calculus

Japaridze’s logic GLP gained much interest due to Beklemishev’s proof-theoretic
applications [2]; however, from a modal logic point of view, it is not an easy

A Self-contained Provability Calculus for Γ0 197

system to work with. To this end, in [4,5,13] Beklemishev and Dashkov intro-
duced the system called Reflection Calculus, RC, that axiomatizes the fragment
of GLPω consisting of implications of strictly positive formulas. This system
is much simpler than GLPω but yet expressive enough to maintain its main
proof-theoretic applications. In this paper we will focus exclusively on reflection
calculi, but the interested reader may find more information on the full GLP in
the references provided.

Similar to GLPΛ, the signature of RCΛ contains modalities of the form 〈α 〉
for α ∈ Λ. However, since this system only considers strictly positive formulas,
the signature does not contain negation, disjunction or modalities [α]. Thus,
the set of formulas in this signature is defined as follows:

Definition 1. Fix an ordinal Λ. By FΛ we denote the set of formulas built-up
by the following grammar:

ϕ := � | p | (ϕ ∧ ψ) | 〈α 〉ϕ for α ∈ Λ.

Next we define a consequence relation over FΛ. For the purposes of this
paper, a deductive calculus is a pair X = (FX,�X) such that FX is some set, the
language of X, and �X ⊆ FX × FX. We write ϕ ∼=X ψ for ϕ �X ψ and ψ �X ϕ.
We will omit the subscript X when this does not lead to confusion, including in
the definition below, where � denotes �RCΛ

.

Definition 2. Given an ordinal Λ, the calculus RCΛ over FΛ is given by the
following set of axioms and rules:

Axioms:

1. ϕ � ϕ, ϕ � �;
2. ϕ ∧ ψ � ϕ, ϕ ∧ ψ � ψ;
3. 〈α 〉〈α 〉ϕ � 〈α 〉ϕ;

4. 〈α 〉ϕ � 〈β 〉ϕ for α > β;
5. 〈α 〉ϕ∧〈β 〉ψ � 〈α 〉(ϕ∧〈β 〉ψ)

for
α > β.

Rules:

1. If ϕ � ψ and ϕ � χ, then ϕ � ψ ∧ χ;
2. If ϕ � ψ and ψ � χ, then ϕ � χ;

3. If ϕ � ψ, then 〈 α 〉ϕ � 〈α 〉ψ;

For each RCΛ-formula ϕ, we can define the signature of ϕ as the set of
ordinals occurring in any of its modalities.

Definition 3. For any ϕ ∈ FΛ, we define the signature of ϕ, S(ϕ), as follows:

1. S(�) = S(p) = ∅;
2. S(ϕ ∧ ψ) = S(ϕ) ∪ S(ψ);
3. S(〈α 〉ϕ) = {α} ∪ S(ϕ).

198 D. Fernández-Duque and E. Hermo-Reyes

With the help of this last definition we can make the following observation:

Lemma 1. For any ϕ, ψ ∈ FΛ:

1. If S(ψ) �= ∅ and ϕ � ψ, then max S(ϕ) ≥ max S(ψ);
2. If S(ϕ) = ∅ and ϕ � ψ, then S(ψ) = ∅.

Proof. By an easy induction on the length of the derivation of ϕ � ψ.

The reflection calculus has natural arithmetical [17], Kripke [5,13], algebraic
[11] and topological [7,14,20,21] interpretations for which it is sound and com-
plete, but in this paper we will work exclusively with reflection calculi from a
syntactical perspective. Other variants of the reflection calculus have been pro-
posed, for example working exclusively with worms [1], admitting the transfinite
iteration of modalities [19], or allowing additional conservativity operators [9,10].

3 Worms and the Consistency Ordering

In this section we review the consistency ordering between worms, along with
some of their basic properties.

Definition 4. Fix an ordinal Λ. The set of worms in FΛ, WΛ, is recursively
defined as follows: 1. � ∈ WΛ; 2. If A ∈ WΛ and α < Λ, then 〈α 〉A ∈ WΛ.
Similarly, we inductively define for each α ∈ Λ the set of worms W

≥α
Λ where

all ordinals are at least α: 1. � ∈ W
≥α
Λ ; 2. If A ∈ W

≥α
Λ and β ≥ α, then

〈β 〉A ∈ W
≥α
Λ .

Definition 5. Let A = 〈ξ1〉 . . . 〈ξn〉� and B = 〈ζ1〉 . . . 〈ζm〉� be worms. Then,
define AB = 〈ξ1〉 . . . 〈ξn〉〈ζ1〉 . . . 〈ζm〉�. Given an ordinal λ, define λ ↑ A to be
〈λ + ξ1〉 . . . 〈λ + ξn〉�.

Often we will want to put an extra ordinal between two worms, and we write
B〈λ〉A for B(〈λ〉A). Next, we define the consistency ordering between worms.

Definition 6. Given an ordinal Λ, we define a relation <0 on WΛ by B <0 A
if and only if A � 〈0〉B. We also define B ≤0 A if B <0 A or B ∼= A.

The ordering ≤0 has some nice properties. Recall that if A is a set (or class),
a preorder on A is a trasitive, reflexive relation � ⊆ A × A. The preorder � is
total if, given a, b ∈ A, we always have that a � b or b � a, and antisymmetric if
whenever a � b and b � a, it follows that a = b. A total, antisymmetric preorder
is a linear order. We say that 〈A,�〉 is a pre-well-order if � is a total preorder
and every non-empty B ⊆ A has a minimal element (i.e., there is m ∈ B such
that m � b for all b ∈ B). A well-order is a pre-well-order that is also linear.
Note that pre-well-orders are not the same as well-quasiorders (the latter need
not be total). Pre-well-orders will be convenient to us because, as we will see,
worms are pre-well-ordered but not linearly ordered.

A Self-contained Provability Calculus for Γ0 199

Theorem 1. For any ordinal Λ, the relation ≤0 is a pre-well-order on WΛ.

Note that ≤0 fails to be a linear order merely because it is not antisym-
metric. To get around this, one may instead consider worms modulo provable
equivalence. Alternately, as Beklemishev has done [3], one can choose a canonical
representative for each worm.

Definition 7 (Beklemishev Normal Form). A worm A ∈ W is defined
recursively to be in BNF if either

1. A = �, or
2. A := Ak〈α 〉Ak−1〈α 〉 . . . 〈α〉A0 with

– α = min S(A);
– k ≥ 1;
– Ai ∈ W

≥α+1
Λ , for i ≤ k;

such that Ai ∈ BNF and Ai �RCΓ0
〈α + 1 〉Ai+1 for each i < k.

This definition essentially mirrors that of Cantor normal forms for ordinals.
The following was proven in [3].

Theorem 2. Given any worm A there is a unique A′ ∈ BNF such that A ∼= A′.

4 Hyperexponential Notation for Γ0

Ordinal numbers are canonical representatives of well-orders; we assume some
basic familiarity with them, but a detailed account can be found in a text such
as [23]. In particular, since the set of worms modulo equivalence yields a well-
order, we can use ordinal numbers to measure their order-types. More generally,
if A = 〈A,�〉 is any pre-well-order, for a ∈ A we may define an ordinal o(a) =
supb≺a(o(b) + 1), where by convention sup ∅ = 0, representing the order-type
of a; this definition is sound since A is pre-well-ordered. The rank of A is then
defined as supa∈A(o(a) + 1).

The following lemma is useful in characterizing the rank function [15].

Lemma 2. Let 〈A,�〉 be a well-order. Then o : A → Ord is the unique function
such that

1. x ≺ y implies that o(x) < o(y),
2. if ξ < o(x) then ξ = o(y) for some y ∈ A.

In order to compute the ordinals o(A), let us recall a notation system for Γ0

using hyperexponentials [16]. The class of all ordinals will be denoted Ord, and ω
denotes the first infinite ordinal. Recall that many number-theoretic operations
such as addition, multiplication and exponentiation can be defined on the class
of ordinals by transfinite recursion. The ordinal exponential function ξ �→ ωξ is
of particular importance for representing ordinal numbers. When working with
order types derived from reflection calculi, it is convenient to work with a slight
variant of this exponential.

200 D. Fernández-Duque and E. Hermo-Reyes

Definition 8 (Exponential function). The exponential function is the nor-
mal function e : Ord → Ord given by ξ �→ −1 + ωξ.

The function e is an example of a normal function, i.e. f : Ord → Ord which
is strictly increasing and continuous, in the sense that if λ is a limit then f(λ) =
supξ<λ f(ξ). When f : X → X, it is natural and often useful to ask whether f
has fixed points, i.e., solutions to the equation x = f(x). In particular, normal
functions have many fixed points:

Proposition 1. Every normal function on Ord has arbitrarily large fixed points.

The first ordinal α such that α = ωα is the limit of the ω-sequence
(ω, ωω, ωωω

, . . .), and is usually denoted ε0. Every ξ < ε0 can be written in
terms of 0 using only addition and the function ω �→ ωξ via its Cantor normal
form. The hyperexponential function is then a natural transfinite iteration of the
ordinal exponential which remains normal after each iteration.

Definition 9 (Hyperexponential functions). The hyperexponential func-
tions (eζ)ζ∈Ord are the unique family of normal functions that satisfy

1. e1 = e,
2. eα+β = eα ◦ eβ for all α and β, and
3. if (fξ)ξ∈Ord is a family of functions satisfying 1 and 2, then for all α, β ∈ Ord,

eαβ ≤ fαβ.

Fernández-Duque and Joosten proved that the hyperexponentials are well-
defined [16]. If α > 0 then eαβ is always additively indecomposable in the sense
that ξ, ζ < eαβ implies that ξ + ζ < eαβ; note that zero is additively indecom-
posable according to our definition. In [15] it is also shown that the function
ξ �→ eξ1 is itself a normal function, hence it has a least non-zero fixed point: this
fixed point is the Feferman-Schütte ordinal, Γ0. Just like ordinals below ε0 may
be written using 0, addition, and ω-exponentiation, every ordinal below Γ0 may
be written in terms of 0, 1, addition and the function (ξ, ζ) �→ eξζ.

Theorem 3. Let A,B be worms and α be an ordinal. Then,

1. o(�) = 0,
2. o(B〈 0 〉A) = o(A) + 1 + o(B), and
3. o(α ↑ A) = eαo(A).

Remark 1. We will not discuss notation systems based on the Veblen hierarchy
(φξ)ξ∈Ord, but a fairly simple translation from one notation to the other is given in
[16]. Beklemishev [3] gives an explicit computation of o in terms of the standard
Veblen functions.

Finally we mention a useful property of o proven in [15], where max A is the
greatest ordinal appearing in A.

Lemma 3. Let A �= � be a worm and μ an ordinal. Then,

1. if μ ≤ max A, then o(〈μ〉�) ≤ o(A), and
2. if max A < μ, then o(A) < o(〈μ〉�).

A Self-contained Provability Calculus for Γ0 201

5 Beklemishev’s Bracket Notation System for Γ0

Before we introduce the full bracket calculus, let us review Beklemishev’s nota-
tion system from [3].

Definition 10. By W() we denote the smallest set such that: 1. � ∈ W(); 2. if
a, b ∈ W(), then (a)b ∈ W().

By convention we shall write ()a, for a ∈ W() to the denote (�)a ∈ W().
We can define a translation ∗ : W() → W in such a way that an element

a ∈ W() will denote the ordinal o(a∗):

1. �∗ = �
2.

(
(a)b

)∗ = 〈 o(a∗) 〉b∗.

Therefore, we can also define o∗ : W() → Γ0 as o∗(a) = o(a∗).
Next we make some observations about how the ordinals represented by

worms in W() can be bounded in terms of the maximum number of nested
brackets occurring in them. With this purpose, we introduce the following two
definitions.

Definition 11. For a ∈ W(), we define the nesting of a, N(a), as the maximum
number of nested brackets. That is:

1. N(�) = 0;
2. N((a)b) = max

(
N(a) + 1, N(b)

)
.

Definition 12. We recursively define the function h : N → Γ0 as follows:

1. h(0) = 0;
2. h(n + 1) = eh(n)1.

Note that limn→∞ h(n) = Γ0. In the following proposition we can find upper
and lower bounds for any ordinal o∗(a), with a ∈ W(), according to the nesting
of a.

Proposition 2. For a ∈ W(), if N(a) = n, then h(n) ≤ o∗(a) < h(n + 1).

Proof. By induction on n. If n = 0 then we must have a = �, hence h(0) = 0 =
o∗(a) < 1 = h(1).

For n = n′ +1, we have that a = (a0) . . . (am) for some m ∈ ω. Moreover,

1. N(ai) ≤ n′ for i, 0 ≤ i ≤ m;
2. there is aJ such that N(aJ) = n′.

Thus by the I.H. we get that a∗ = 〈α0〉 . . . 〈αk〉� such that:

1. For each i, αi < h(n′ + 1);
2. There is αJ ≥ h(n′).

202 D. Fernández-Duque and E. Hermo-Reyes

By Lemma 3,

o(〈h(n′)〉�) ≤ o(a∗) < o(〈h(n′ + 1)〉�);

but by Theorem 3 o(〈h(n′)〉�) = eh(n′)1 = h(n), while o(〈h(n′+1)〉�) = eh(n)1 =
h(n + 1), as needed.

As a consequence of this last proposition, we get the following corollaries.

Corollary 1. For a ∈ W(), if N(a) = n, then a∗ ∈ Wh(n).

Corollary 2. For a, b ∈ W(), o∗(a) ≥ o∗(b) ⇒ N(a) ≥ N(b).

Proof. We reason by contrapositive applying Proposition 2.

6 The Bracket Calculus

In this section we introduce the Bracket Calculus, denoted BC. This system is
analogous to RCΓ0 and, as we will see later, both systems can be shown to be
equivalent under a natural translation of BC-formulas into RCΓ0-formulas.

The main feature of BC is that it is based on a signature that uses purely
modal notations instead of modalities indexed by ordinals. Moreover, since the
order between these notations can be established in terms of derivability within
the calculus, the inferences in this system can be carried out without using
any external property of ordinals. In this sense, we say that BC provides an
autonomous provability calculus.

The set of BC-formulas, F(), is defined by extending W() to a strictly positive
signature.

Definition 13. By F() we denote the set of formulas built-up by the following
grammar:

ϕ := � | p | ϕ ∧ ψ | (a)ϕ for a ∈ W().

Similarly to RC, BC is based on sequents, i.e. expressions of the form ϕ � ψ,
where ϕ, ψ ∈ F(). In addition to this, we will also use a� b, for a, b ∈ W(), to
denote that either a � () b or a � b are derivable. Analogously, we will use a� b
to denote that the sequent a � ()b is derivable.

Definition 14. BC is given by the following set of axioms and rules:

Axioms: 1. ϕ � ϕ, ϕ � �; 2. ϕ ∧ ψ � ϕ, ϕ ∧ ψ � ψ;
Rules:

1. If ϕ � ψ and ϕ � χ, then ϕ � ψ ∧ χ;
2. If ϕ � ψ and ψ � χ, then ϕ � χ;
3. If ϕ � ψ and a� b, then (a)ϕ � (b)ψ and (a) (b)ϕ � (b)ψ;
4. If a� b, then (a)ϕ ∧ (b)ψ � (a)

(
ϕ ∧ (b)ψ

)
.

A Self-contained Provability Calculus for Γ0 203

7 Translation and Preservability

In this section we introduce a way of interpreting BC-formulas as RCΓ0-
formulas, and prove that under this translation, both systems can derive exactly
the same sequents.

Definition 15. We define a translation τ between F() and FΓ0 , τ : F() → FΓ0 ,
as follows:

1. �τ = �;
2. pτ = p;

3. (ϕ ∧ ψ)τ = (ϕτ ∧ ψτ);
4. ((a)ϕ)τ = 〈 o∗(a) 〉ϕτ .

Note that for a ∈ W(), aτ = a∗. From this and a routine induction, the
following can readily be verified.

Lemma 4. Given ϕ ∈ F() and α ∈ S(ϕτ), there is a subformula a ∈ W() of ϕ
such that α = o∗(a).

The following lemma establishes the preservability of BC with respect to
RCΓ0 , under τ .

Lemma 5. For any ϕ, ψ ∈ F(): ϕ �BC ψ =⇒ ϕτ �RCΓ0
ψτ .

Proof. By induction on the length of the derivation. We can easily check that
the set of axioms of BC is preserved under τ . Likewise, the cases for a derivation
ending on Rules 1 or 2 are straightforward. Thus, we only check Rules 3 and 4.

Regarding Rule 3, we need to prove that if a � b then both sequents
〈o∗(a)〉ϕτ � 〈o∗(b)〉ψτ and 〈o∗(a)〉〈o∗(b)〉ϕτ � 〈o∗(b)〉ψτ are derivable in RCΓ0 .
We can make the following observations by applying the I.H.:

1. Since a � b, we have that either aτ � 〈0〉bτ or aτ � bτ are derivable in RCΓ0 .
Therefore, o(aτ) ≥ o(bτ). Since o∗(a) = o(a∗) = o(aτ) and the same equality
holds for b, we have that o∗(a) ≥ o∗(b).

2. We also have that ϕτ �RCΓ0
ψτ and thus, by Rule 3 of RCΓ0 we obtain that

〈o∗(a)〉ϕτ � 〈o∗(a)〉ψτ and 〈o∗(a)〉〈o∗(b)〉ϕτ � 〈o∗(a)〉〈o∗(b)〉ψτ are derivable
in RCΓ0 .

On the one hand, by these two facts together with Axiom 4 we obtain that
〈o∗(a)〉ϕτ �RCΓ0

〈o∗(b)〉ψτ . On the other hand, we can combine Axioms 4 and
3 to get that 〈o∗(a)〉〈o∗(b)〉ϕτ �RCΓ0

〈o∗(b)〉ψτ .
We follow an analogous reasoning in the case of Rule 4. By the I.H. we

have that aτ �RCΓ0
〈0〉bτ . Therefore o∗(a) > o∗(b) and by Axiom 5, 〈o∗(a)〉ϕ ∧

〈o∗(b)〉ψ �RCΓ0
〈o∗(a)〉(ϕ ∧ 〈o∗(b)〉ψ)

.

With the following definition we fix a way of translating FΓ0-formulas into
formulas in F(). However, since different words in W() might denote the same
ordinal, we need a normal form theorem for W().

204 D. Fernández-Duque and E. Hermo-Reyes

Definition 16. We define NF ⊂ W() to be the smallest set of W()-words such
that � ∈ NF and for any (a)b ∈ W(), if a, b ∈ NF and

(
(a)b

)∗ ∈ BNF, then
(a)b ∈ NF.

Every element of W() has a unique normal form, as shown by L. Beklemishev
in [3].

Theorem 4 (Beklemishev). For each α ∈ Γ0 we can associate a unique aα ∈
NF such that o∗(aα) = α.

Proposition 3 (Beklemishev). The ordering
(
NF, <0

)
is a well-ordering of

order type Γ0.

Now we are ready to translate FΓ0 -formulas into F()-formulas.

Definition 17. We define a translation ι between FΓ0 and F(), ι : FΓ0 → F(),
as follows:

1. �ι = �;
2. pι = p;

3. (ϕ ∧ ψ)ι = (ϕι ∧ ψι);
4. (〈α〉ϕ)ι = (aα)ϕ

ι.

The following remark follows immediately from the definitions of τ and ι.

Remark 2. For any ϕ ∈ FΓ0 , (ϕι)τ = ϕ. In particular, if A ∈ WΓ0 is a worm
then Aι is a worm and o∗(Aι) = o((Aι)∗) = o((Aι)τ) = o(A).

With the next definition, we extend the nesting N(a) of a∈ W() to F()-
formulas.

Definition 18. For ϕ ∈ F(), we define the nesting of ϕ, Nt(ϕ), as the maximum
number of nested brackets. That is:

1. Nt(�) = Nt(p) = N(�);
2. Nt(ϕ ∧ ψ) = max

(
Nt(ϕ), Nt(ψ)

)
;

3. Nt((a)ϕ) = max
(
N((a)), Nt(ϕ)

)
= max

(
N(a) + 1, Nt(ϕ)

)
.

The upcoming remark collects a useful observation concerning the nesting
Nt(ϕ) of a formula ϕ and its subformulas. This fact can be verified by an easy
induction.

Remark 3. For any ϕ ∈ F() with ϕ �= p, there is a subformula a ∈ W() of ϕ such
that Nt(ϕ) = Nt(a). Moreover, if Nt(ϕ) ≥ 1, there is a subformula a ∈ W() of ϕ
such that Nt(ϕ) = Nt(a) + 1.

The following lemma relates the derivability in RCΓ0 under τ , and the nest-
ing of formulas in F().

Lemma 6. For any ϕ, ψ ∈ F():

ϕτ �RCΓ0
ψτ =⇒ Nt(ϕ) ≥ Nt(ψ).

A Self-contained Provability Calculus for Γ0 205

Proof. Suppose that ϕτ �RCΓ0
ψτ . If S(ψτ) = ∅ then it is easy to check

that Nt(ψ) = 0 and there is nothing to prove, so assume otherwise. Then, by
Lemma 1.1, max S(ϕτ) ≥ max S(ψτ). Using Lemma 4, let a ∈ W() be a sub-
formula of ϕ such that o∗(a) = max S(ϕτ). Moreover, since S(ψτ) = ∅, then
Nt(ψ) ≥ 1. Therefore, with the help of Remark 3 we can consider b ∈ W(), a sub-
formula of ψ such that Nt(ψ) = N(b)+1. If we had N(a) < N(b) then it would fol-
low from Corollary 2 that o∗(a) < o∗(b), contradicting maxS(ϕτ) ≥ max S(ϕτ).
Thus N(a) ≥ N(b) and Nt(ϕ) ≥ N(a) + 1 ≥ Nt(ψ), as needed.

With the following theorem we conclude the proof of the preservability
between BC and RCΓ0 .

Theorem 5. For any ϕ, ψ ∈ F():

ϕτ �RCΓ0
ψτ ⇐⇒ ϕ �BC ψ.

Proof. The right-to-left direction is given by Lemma5, so we focus on the other.
Proceed by induction on Nt(ϕ). For the base case, assume Nt(ϕ) = 0 and
ϕτ �RCΓ0

ψτ . By a subsidiary induction on the length of the derivation of
ϕτ �RCΓ0

ψτ , we set to prove ϕ �BC ψ. If the derivation has length one it
suffices to check RCΓ0-Axioms 1 and 2, which is immediate. If it has length
greater than one it must end in a rule. The case for RCΓ0-Rule 1 follows by the
I.H.. For RCΓ0-Rule 2, we have that there is χ ∈ FΓ0 such that ϕτ �RCΓ0

χ
and χ �RCΓ0

ψτ . By Remark 2 and Lemma 6, we get that ϕτ �RCΓ0
(χι)τ and

(χι)τ �RCΓ0
ψτ with Nt(χι) = 0. Thus, by the subsidiary I.H., ϕ �BC χι and

χι �BC ψ and by BC-Rule 2, ϕ �BC ψ.
For the inductive step, let Nt(ϕ) = n + 1. We proceed by a subsidiary induc-

tion on the length of the derivation. If ϕτ �RCΓ0
ψτ is obtained by means of

RCΓ0-Axioms 1 and 2, then clearly ϕ �BC ψ. If ϕτ �RCΓ0
ψτ is an instance of

RCΓ0-Axiom 3, then we have that ϕτ := 〈 o∗(a) 〉〈 o∗(b) 〉χτ and ψτ := 〈 o∗(c) 〉χτ

for some χ ∈ F() and a, b, c ∈ W() such that o∗(a) = o∗(b) = o∗(c). Hence, there
are A, B, C ∈ W such that a∗ = A, b∗ = B and c∗ = C, and so A �RCΓ0

B and
B �RCΓ0

C. Since Nt(w) < n + 1 for w ∈ {a, b, c}, by the main I.H. we have
that a �BC b and b �BC c. Thus, we have the following BC-derivation:

χ � χ b � c
(Rule 3)

(b)χ � (c)χ a � b
(Rule 3)

(a)(b)χ � (b)(c)χ

χ � χ b � c
(Rule 3)

(b)(c)χ � (c)χ
(Rule 2)

(a)(b)χ � (c)χ

If ϕτ �RCΓ0
ψτ is obtained by using RCΓ0-Axiom 4, then ϕτ := 〈 o∗(a) 〉χτ

and ψτ := 〈 o∗(b) 〉χτ . for some χ ∈ F() and a, b,∈ W() with o∗(a) > o∗(b).
Therefore, there are A, B ∈ WΓ0 such that A �RCΓ0

〈 0 〉B, a∗ = A and b∗ = B.
Since o∗(a) ≥ o∗(()b), by Lemma 1, Nt(()b) ≤ Nt(a) and since ϕτ := 〈 o∗(a) 〉χτ ,
we have that Nt(a) < Nt(ϕ). Thus, by the main I.H. a �BC ()b and by BC-Rule
3, (a)χ �BC (b)χ. If ϕτ �RCΓ0

ψτ is an instance of RCΓ0-Axiom 5, then we
have that ϕτ := 〈 o∗(a) 〉χτ

0 ∧ 〈 o∗(b) 〉χτ
1 and ψτ := 〈 o∗(a) 〉(χτ

0 ∧ 〈 o∗(b) 〉χτ
1

)
,

206 D. Fernández-Duque and E. Hermo-Reyes

for some χ0, χ1 ∈ F() and a, b ∈ W() with o∗(a) > o∗(b). Therefore, there
are A, B ∈ WΓ0 such that a∗ = A, b∗ = B and A �RCΓ0

〈 0 〉B. By Lemma 1
together with the main I.H. we obtain that a �BC ()b and by applying BC-
Rule 4, (a)χ0 ∧ (b)χ1 � (a)

(
χ0 ∧ (b)χ1

)
. Regarding rules, RCΓ0-Rule 1 is

immediate and RCΓ0-Rule 3 follows an analogous reasoning to that of Axiom 4.
This way, we only check RCΓ0-Rule 2. Assume ϕτ �RCΓ0

ψτ is obtained by an
application of RCΓ0-Rule 2. Then, there is χ ∈ FΓ0 such that ϕτ �RCΓ0

χ and
χ �RCΓ0

ψτ . By Remark 2 together with Lemm 6 we obtain that ϕτ �RCΓ0
(χι)τ

and (χι)τ �RCΓ0
ψτ with Nt(χ) ≤ n + 1. By the subsidiary I.H. ϕ �BC χι and

χι �BC ψ and hence, by BC-Rule 2, ϕ �BC ψ.

With this we obtain our main result: an autonomous calculus for representing
ordinals below Γ0.

Theorem 6. For a, b ∈ NF define a � b if and only if a �BC ()b. Then, � is a
strict linear order of order-type Γ0.

Proof. By Theorem 5, a � b if and only if aτ �RCΓ0
〈 0 〉bτ if and only if o∗(a) <

o∗(b). Moreover if ξ < o∗(a) then by item 2 of Lemma 2 there is some B <0 aτ

such that ξ = o(B), hence in view of Remark 2, ξ = o∗(Bι). Thus by Lemma 2,
o∗ is the order-type function on NF. That the range of o∗ is Γ0 follows from
Proposition 2 which tells us that o∗(a) < h(N(a) + 1) < Γ0 for all a ∈ W(),
while if we define recursively a0 = � and an+1 = (an), Theorem 3 and an easy
induction readily yield Γ0 = limn→∞ h(n) = limn→∞ o∗(an).

8 Concluding Remarks

Beklemishev’s ‘brackets’ provided an autonomous notation system for Γ0 based
on worms, but did not provide a method for comparing different worms without
first translating into a more traditional notation system. Our calculus BC shows
that this is not necessary, and indeed all derivations may be carried out entirely
within the brackets notation. To the best of our knowledge, this yields the first
ordinal notation system presented as a purely modal deductive system.

Our analysis is purely syntactical and leaves room for a semantical treatment
of BC. As before one may first map BC into RCΓ0 and then use the Kripke
semantics presented in [5,13], but we leave the question of whether it is possible
to define natural semantics that work only with BC expressions and do not
directly reference ordinals.

Moreover, [15] suggests variants of the brackets notation for representing the
Bachmann-Howard ordinal and beyond. Sound and complete calculi for these
systems remain to be found.

References

1. de Almeida Borges, A., Joosten, J.: The worm calculus. In: Bezhanishvili, G.,
D’Agostino, G., Metcalfe, G., Studer, T. (eds.) Advances in Modal Logic, vol. 12.
College Publications (2018)

A Self-contained Provability Calculus for Γ0 207

2. Beklemishev, L.D.: Provability algebras and proof-theoretic ordinals, I. Ann. Pure
Appl. Log. 128, 103–124 (2004)

3. Beklemishev, L.D.: Veblen hierarchy in the context of provability algebras. In:
Hájek, P., Valdés-Villanueva, L., Westerst̊ahl, D. (eds.) Logic, Methodology and
Philosophy of Science, Proceedings of the Twelfth International Congress, pp. 65–
78. Kings College Publications (2005)

4. Beklemishev, L.D.: Calibrating provability logic. In: Bolander, T., Braüner, T.,
Ghilardi, T.S., Moss, L. (eds.) Advances in Modal Logic, vol. 9, pp. 89–94. College
Publications, London (2012)

5. Beklemishev, L.D.: Positive provability logic for uniform reflection principles. Ann.
Pure Appl. Log. 165(1), 82–105 (2014)

6. Beklemishev, L.D., Fernández-Duque, D., Joosten, J.J.: On provability logics with
linearly ordered modalities. Stud. Log. 102(3), 541–566 (2014)

7. Beklemishev, L.D., Gabelaia, D.: Topological completeness of the provabilitylogic
GLP. Ann. Pure Appl. Log. 164(12), 1201–1223 (2013)

8. Beklemishev, L.: Another pathological well-ordering. Bull. Symb. Log. 7(4), 534–
534 (2001)

9. Beklemishev, L.D.: On the reflection calculus with partial conservativity operators.
In: Kennedy, J., de Queiroz, R.J.G.B. (eds.) WoLLIC 2017. LNCS, vol. 10388, pp.
48–67. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-55386-2 4

10. Beklemishev, L.: Reflection calculus and conservativity spectra. Russ. Math. Surv.
73(4), 569–613 (2018)

11. Beklemishev, L.D.: A universal algebra for the variable-free fragment of RC∇. In:
Artemov, S., Nerode, A. (eds.) LFCS 2018. LNCS, vol. 10703, pp. 91–106. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-72056-2 6

12. Boolos, G.S.: The Logic of Provability. Cambridge University Press, Cambridge
(1993)

13. Dashkov, E.V.: On the positive fragment of the polymodal provability logicGLP.
Math. Notes 91(3–4), 318–333 (2012)

14. Fernández-Duque, D.: The polytopologies of transfinite provability logic. Arch.
Math. Log. 53(3–4), 385–431 (2014)

15. Férnandez-Duque, D.: Worms and spiders: reflection calculi and ordinal notation
systems. J. Appl. Log. - IfCoLoG J. Log. Appl. 4(10), 3277–3356 (2017)

16. Fernández-Duque, D., Joosten, J.J.: Hyperations, Veblen progressions and transfi-
nite iteration of ordinal functions. Ann. Pure Appl. Log. 164(7–8), 785–801 (2013)

17. Fernández-Duque, D., Joosten, J.J.: The omega-rule interpretation of transfinite
provability logic. ArXiv:1205.2036 [math.LO] (2013)

18. Fernández-Duque, D., Joosten, J.J.: Well-orders in the transfinite Japaridze alge-
bra. ArXiv:1212.3468 [math.LO] (2013)

19. Hermo-Reyes, E., Joosten, J.J.: Relational semantics for the Turing Schmerl calcu-
lus. In: Bezhanishvili, G., D’Agostino, G., Metcalfe, G., Studer, T. (eds.) Advances
in Modal Logic, vol. 12, pp. 327–346. College Publications, London (2018)

20. Icard III, T.F.: A topological study of the closed fragment of GLP. J. Log. Comput.
21, 683–696 (2011)

21. Ignatiev, K.N.: On strong provability predicates and the associated modal logics.
J. Symb. Log. 58, 249–290 (1993)

22. Japaridze, G.K.: The modal logical means of investigation of provability. Ph.D.
thesis, Moscow State University (1986). (in Russian)

23. Jech, T.: Set Theory, The Third Millenium Edition, Revised and Expanded. Mono-
graphs in Mathematics. Springer, Heidelberg (2002). https://doi.org/10.1007/3-
540-44761-X

24. Kreisel, G.: Wie die beweistheorie zu ihren ordinalzahlen kam und kommt. Jahres-
bericht der Deutschen Mathematiker-Vereinigung 78, 177–224 (1976/1977)

https://doi.org/10.1007/978-3-662-55386-2_4
https://doi.org/10.1007/978-3-319-72056-2_6
http://arxiv.org/abs/1205.2036
http://arxiv.org/abs/1212.3468
https://doi.org/10.1007/3-540-44761-X
https://doi.org/10.1007/3-540-44761-X

Descriptive Complexity of Deterministic
Polylogarithmic Time

Flavio Ferrarotti1(B) , Senén González1, José Maŕıa Turull Torres2,
Jan Van den Bussche3 , and Jonni Virtema3

1 Software Competence Center Hagenberg, Hagenberg, Austria
{flavio.ferrarotti,senen.gonzalez}@scch.at

2 Universidad Nacional de La Matanza, Buenos Aires, Argentina
jturull@unlam.edu.ar

3 Hasselt University, Hasselt, Belgium
{jan.vandenbussche,jonni.virtema}@uhasselt.be

Abstract. We propose a logical characterization of problems solvable in
deterministic polylogarithmic time (PolylogTime). We introduce a novel
two-sorted logic that separates the elements of the input domain from
the bit positions needed to address these elements. In the course of prov-
ing that our logic indeed captures PolylogTime on finite ordered struc-
tures, we introduce a variant of random-access Turing machines that can
access the relations and functions of the structure directly. We inves-
tigate whether an explicit predicate for the ordering of the domain is
needed in our logic. Finally, we present the open problem of finding an
exact characterization of order-invariant queries in PolylogTime.

1 Introduction

The research area known as Descriptive Complexity [7,11,15] relates computa-
tional complexity to logic. For a complexity class of interest, one tries to come up
with a natural logic such that a property of inputs can be expressed in the logic
if and only if the problem of checking the property belongs to the complexity
class. An exemplary result in this vein is that a family F of finite structures (over
some fixed finite vocabulary) is definable in existential second-order logic (ESO),
if and only if the membership problem for F belongs to NP [4]. We also say that
ESO captures NP. The complexity class P is captured, on ordered finite struc-
tures, by a fixpoint logic: the extension of first-order logic with least-fixpoints
[14,22].

After these two seminal results, many more capturing results have been devel-
oped, and the benefits of this enterprise have been well articulated by several

The research reported in this paper results from the project Higher-Order Logics and
Structures supported by the Austrian Science Fund (FWF: [I2420-N31]) and the
Research Foundation Flanders (FWO: [G0G6516N]). It was further supported by
the Austrian Research Promotion Agency (FFG) through the COMET funding for the
Software Competence Center Hagenberg.

c© Springer-Verlag GmbH Germany, part of Springer Nature 2019
R. Iemhoff et al. (Eds.): WoLLIC 2019, LNCS 11541, pp. 208–222, 2019.
https://doi.org/10.1007/978-3-662-59533-6_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-59533-6_13&domain=pdf
http://orcid.org/0000-0003-2278-8233
http://orcid.org/0000-0003-0072-3252
http://orcid.org/0000-0002-1582-3718
https://doi.org/10.1007/978-3-662-59533-6_13

Descriptive Complexity of Deterministic Polylogarithmic Time 209

authors in the references given earlier, and others [1]. We just mention here
the advantage of being able to specify properties of structures (data structures,
databases) in a logical, declarative manner; at the same time, we are guaranteed
that our computational power is well delineated.

The focus of the present paper is on computations taking deterministic poly-
logarithmic time, i.e., time proportional to logk n for some arbitrary but fixed k.
Such computations are practically relevant and common on ordered structures.
Well known examples are binary search in an array or search in a balanced
search tree. Another natural example is the computation of f(x1, . . . , xr), where
x1, . . . , xr are numbers taken from the input structure and f is a function com-
putable in polynomial time when numbers are represented in binary.

Computations with sublinear time complexity can be formalized in terms
of Turing machines with random access to the input [15]. When a family F of
ordered finite structures over some fixed finite vocabulary is defined by some
deterministic polylogarithmic-time random-access Turing machine, we say that
F belongs to the complexity class PolylogTime. In this paper, we show how this
complexity class can be captured by a new logic which we call index logic.

Index logic is two-sorted; variables of the first sort range over the domain of
the input structure. Variables of the second sort range over an initial segment
of the natural numbers; this segment is bounded by the logarithm of the size
of the input structure. Thus, the elements of the second sort represent the bit
positions needed to address elements of the first sort. Index logic includes full
fixpoint logic on the second sort. Quantification over the first sort, however, is
heavily restricted. Specifically, a variable of the first sort can only be bound using
an address specified by a subformula that defines the positions of the bits of the
address that are set. This “indexing mechanism” lends index logic its name.

In the course of proving our capturing result, we consider a new variant
of random-access Turing machines. In the standard variant, the entire input
structure is presented as one binary string. In our new variant, the different
relations and functions of the structure can be accessed directly. We will show
that both variants are equivalent, in the sense that they lead to the same notion
of PolylogTime. We note that, in descriptive complexity, it is common practice
to work only with relational structures, as functions can be identified with their
graphs. In a sublinear-time setting, however, this does not work. Indeed, let f be
a function and denote its graph by f̃ . If we want to know the value of f(x), we
cannot spend the linear time needed to find a y such that f̃(x, y) holds. Thus,
in this work, we allow structures containing functions as well as relations.

At first glance, one might think that a simpler approach to ours, for the
characterization of PolylogTime, could be to adapt the construction used by
Immerman and Vardi [14,22] to capture P. For instance, by querying binary
representations of the indices with Immerman’s BIT predicate, where BIT(x, i)
holds iff the i-th bit of x in binary is 1, or avoiding our new variant of random-
access Turing machine. In fact, that was our initial approach to the problem.
This results, however, in a long and cumbersome characterization proof, mostly
due to the need to express arithmetic operations within the logic to access the
relevant parts of the input, since in PolylogTime we cannot read it in whole.
A challenge, in this sense, was to develop a logic which enables the expression

210 F. Ferrarotti et al.

of PolylogTime problems in a relatively clean and natural way. For this, the
indexing mechanism in our logic is a key contribution. The alternative of using
fixed point operations and BIT to address values of the first sort leads to a logic
which is rather awkward to define and to use.

We also devote attention to gaining a detailed understanding of the expres-
sivity of index logic. Specifically, we observe that order comparisons between
quantified variables of the first sort can be expressed in terms of their addresses.
For constants of the first sort that are directly given by the structure, how-
ever, we show that this is not possible. In other words, index logic without an
explicit order predicate on the first sort would no longer capture PolylogTime
for structures with constants.

Related Work. Many natural fixed point computations, such as transitive clo-
sure, converge after a polylogarithmic number of steps. This motivated the study
in [10] of a fragment of fixed point logic with counting (FPC) that only allows
polylogarithmically many iterations of the fixed point operators (polylog-
FPC). They noted that on ordered structures polylog-FPC captures NC, i.e.,
the class of problems solvable in parallel polylogarithmic time. This holds even
in the absence of counting, which on ordered structures can be simulated using
fixed point operators. Moreover, an old result in [13] directly implies that poly-
log-FPC is strictly weaker than FPC with regards to expressive power.

It is well known that the (nondeterministic) logarithmic time hierarchy corre-
sponds exactly to the set of first-order definable Boolean queries (see [15], Theo-
rem 5.30). The relationship between uniform families of circuits within NC1 and
nondeterministic random-access logarithmic time machines was studied in [19].
However, the study of descriptive complexity of classes of problems decidable
by deterministic formal models of computation in polylogarithmic time, i.e., the
topic of this paper, has been overlooked by previous works.

On the other hand, nondeterministic polylogarithmic time complexity
classes, defined in terms of alternating random-access Turing machines and
related families of circuits, have received some attention [5,18]. Recently, a the-
orem analogous to Fagin’s famous theorem [4], was proven for nondeterministic
polylogarithmic time [5]. For this task, a restricted second-order logic for finite
structures, where second-order quantification ranges over relations of size at most
polylogarithmic in the size of the structure, and where first-order universal quan-
tification is bounded to those relations, was exploited. This latter work, is closely
related to the work on constant depth quasipolynomial size AND/OR circuits
and the corresponding restricted second-order logic in [18]. Both logics capture
the full alternating polylogarithmic time hierarchy, but the additional restriction
in the first-order univesal quantification in the second-order logic defined in [5],
enables a one-to-one correspondence between the levels of the polylogarithmic
time hierarchy and the prenex fragments of the logic, in the style of a result
of Stockmeyer [21] regarding the polynomial-time hierarchy. Unlike the classi-
cal results of Fagin and Stockmeyer [4,21], the results on the descriptive com-
plexity of nondeterministic polylogarithmic time classes only hold over ordered
structures.

Descriptive Complexity of Deterministic Polylogarithmic Time 211

2 Preliminaries

We allow structures containing functions as well as relations and con-
stants. Unless otherwise stated, we work with finite ordered struc-
tures of finite vocabularies. A finite structure A of vocabulary σ =
{Rr1

1 , . . . , R
rp
p , c1, . . . cq, f

k1
1 , . . . , fks

s }, where each Rri
i is an ri-ary relation sym-

bol, each ci is a constant symbol, and each fki
i is a ki-ary function symbol,

consists of a finite domain A and interpretations for all relation, constant and
function symbols in σ. An interpretation of a symbol Rri

i is a relation RA
i ⊆ Ari ,

of a symbol ci is a value cAi ∈ A, and of a symbol fki
i is a function fA

i : Aki → A.
Every finite ordered structure has a corresponding isomorphic structure whose
domain is an initial segment of the natural numbers. Thus, we assume as usual
that A = {0, 1, . . . , n − 1}, where n is the cardinality |A| of A.

In this paper, log n always refers to the binary logarithm of n, i.e., log2 n.
We write logk n as a shorthand for (�log n�)k.

3 Deterministic Polylogarithmic Time

The sequential access that Turing machines have to their tapes makes it impossi-
ble to do nontrivial computations in sub-linear time. Therefore, logarithmic time
complexity classes are usually studied using models of computation that have
random access1 to their input, i.e., that can access every input address directly.
As this also applies to the polylogarithmic complexity classes studied in this
paper, we adopt a Turing machine model that has a random access read-only
input, similar to the logarithmic-time Turing machine in [19].

Our concept of a random-access Turing machine is that of a multi-tape Tur-
ing machine which consists of: (1) a finite set of states, (2) a read-only random
access input-tape, (3) a sequential access address-tape, and (4) one or more (but
a fixed number of) sequential access work-tapes. All tapes are divided into cells,
each equipped with a tape head which scans the cells, and are “semi-infinite”
in the sense that they have no rightmost cell, but have a left-most cell. The
tape heads of the sequential access address-tape and work-tapes can move left
or right. When a head is in the leftmost cell, it is not allowed to move left.
The address-tape alphabet only contains symbols 0, 1 and � (for blank). The
position of the input-tape head is determined by the number i stored in binary
in between the left-most cell and the first blank cell of the address-tape (if the
left-most cell is blank, then i is considered to be 0) as follows: If i is strictly
smaller than the length n of the input string, then the input-tape head is in the
(i + 1)-th cell. Otherwise, if i ≥ n, then the input-tape head is in the (n + 1)-th
cell scanning the special end-marker symbol �.

1 The term random access refers to the manner how random-access memory (RAM)
is read and written. In contrast to sequential memory, the time it takes to read or
write using RAM is almost independent of the physical location of the data in the
memory. We want to emphasise that there is nothing random in random access.

212 F. Ferrarotti et al.

Formally, a random-access Turing machine M with k work-tapes is a five-
tuple (Q,Σ, δ, q0, F). Here Q is a finite set of states; q0 ∈ Q is the initial state. Σ
is a finite set of symbols (the alphabet of M). For simplicity, we fix Σ = {0, 1,�}.
F ⊆ Q is the set of accepting final states. The transition function of M is of the
form δ : Q × (Σ ∪ {�}) × Σk+1 → Q × (Σ × {←,→,−})k+1. We assume that
the tape head directions ← for “left”, → for “right” and − for “stay”, are not
in Q ∪ Σ.

A configuration of M on a fixed input w0 is a k + 2 tuple (q, i, w1, . . . , wk),
where q is the current state of M , i ∈ Σ∗#Σ∗ represents the current contents of
the index-tape cells, and each wj ∈ Σ∗#Σ∗ represents the current contents of
the j-th work-tape cells. We do not include the contents of the input-tape cells
in the configuration since they cannot be changed. Further, the position of the
input-tape head is uniquely determined by the contents of the index-tape cells.
The symbol # (which we assume is not in Σ) marks the position of the tape
head. By convention, the head scans the symbol immediately at the right of #.
All symbols in the infinite tapes not appearing in their corresponding strings
i, w0, . . . , wk are assumed to be the special symbol blank �.

At the beginning of a computation, all work-tapes are blank except the input-
tape, that contains the input string, and the index-tape that contains a 0 (mean-
ing that the input-tape head scans the first cell of the input-tape). Thus, the
initial configuration of M is (q0,#0,#, . . . ,#). A computation is a sequence of
configurations which starts with the initial configuration and ends in a configu-
ration in which no more steps can be performed, and such that each step from
a configuration to the next obeys the transition function. An input string is
accepted if an accepting configuration, i.e., a configuration in which the current
state belongs to F , is reached.

Example 1. Following a simple strategy, a random-access Turing machine M can
figure out the length n of its input as well as �log n� in polylogarithmic time.
In its initial step, M checks whether the input-tape head scans the end-marker
�. If it does, then the input string is the empty string and its work is done.
Otherwise, M writes 1 in the first cell of its address tape and keeps writing 0’s
in its subsequent cells right up until the input-tape head scans �. At this point
the resulting binary string in the index-tape is of length �log n�. Next, M moves
its address-tape head back to the first cell (i.e., to the only cell containing a 1 at
this point). From here on, M repeatedly moves the index head one step to the
right. Each time it checks whether the index-tape head scans a blank � or a 0.
If � then M is done. If 0, it writes a 1 and tests whether the input-tape head
jumps to the cell with �; if so, it rewrites a 0, otherwise, it leaves the 1. The
binary number left on the index-tape at the end of this process is n − 1. Adding
one in binary is now an easy task. ��

The formal language accepted by a machine M , denoted L(M), is the set
of strings accepted by M . We say that L(M) ∈ DTIME[f(n)] if M makes at
most O(f(n)) steps before accepting or rejecting an input string of length n.
We define the class of all formal languages decidable by (deterministic) random-
access Turing machines in polylogarithmic time as follows:

Descriptive Complexity of Deterministic Polylogarithmic Time 213

PolylogTime =
⋃

k∈N

DTIME[logk n]

It follows from Example 1 that a PolylogTime random-access Turing machine
can check any numerical property that is polynomial time in the size of its input
in binary. For instance, it can check whether the length of its input is even, by
simply looking at the least-significant bit.

When we want to give a finite structure as an input to a random-access
Turing machine, we encode it as a string, adhering to the usual conventions in
descriptive complexity theory [15]. Let σ={Rr1

1 , . . . , R
rp
p , c1, . . . , cq, f

k1
1 , . . . , fks

s }
be a vocabulary, and let A with A={0, 1, . . ., n−1} be an ordered structure of
vocabulary σ. Each relation RA

i ⊆ Ari of A is encoded as a binary string bin(RA
i)

of length nri , where 1 in a given position indicates that the corresponding tuple is
in RA

i . Likewise, each constant number cAj is encoded as a binary string bin(cAj)
of length �log n�.

We can also encode the functions in a structure. We view k-ary functions as
consisting of �log n� k-ary relations, where the i-th relation indicates whether
the i-th bit is 1. Thus, each function fA

i is encoded as a binary string bin(fA
i)

of length �log n�nki .
The encoding of the whole structure bin(A) is the concatenation of the binary

strings encoding its relations, constants and functions. The length n̂ = |bin(A)|
of this string is nr1 + · · · + nrp + q�log n� + �log n�nk1 + · · · + �log n�nks , where
n = |A| denotes the size of the input structure A. Note that log n̂ ∈ O(�log n�),
so DTIME[logk n̂] = DTIME[logk n].

4 Direct-Access Turing Machines

In this section, we propose a new model of random-access Turing machines. In
the standard model reviewed above, the entire input structure is assumed to be
encoded as one binary string. In our new variant, the different relations and func-
tions of the structure can be accessed directly. We then show that both variants
are equivalent, in the sense that they lead to the same notion of PolylogTime.
The direct-access model will then be useful to give a transparent proof of our
capturing result.

Let our vocabulary σ = {Rr1
1 , . . . , R

rp
p , c1, . . . cq, f

k1
1 , . . . , fks

s }. A direct-access
Turing machine that takes σ-structures A as input, is a multitape Turing
machine with r1+ · · ·+rp+k1+ · · ·+ks distinguished work-tapes, called address-
tapes, s distinguished read-only (function) value-tapes, q + 1 distinguished read-
only constant-tapes, and one or more ordinary work-tapes.

Let us define a transition function δl for each tape l separately. These tran-
sition functions take as an input the current state of the machine, the bit read
by each of the heads of the machine, and, for each relation Ri ∈ σ, the answer
(0 or 1) to the query (n1, . . . , nri

) ∈ RA
i . Here, nj denotes the number written

in binary in the jth distinguished tape of Ri.

214 F. Ferrarotti et al.

Thus, with m the total number of tapes, the state transition function has
the form

δQ : Q × Σm × {0, 1}p → Q.

If l corresponds to an address-tape or an ordinary work-tape, we get the form

δl : Q × Σm × {0, 1}p → Σ × {←,→,−}.

If l corresponds to one of the read-only tapes, we have

δl : Q × Σm × {0, 1}p → {←,→,−}.

Finally we update the contents of the function value-tapes. If l is the func-
tion value-tape for a function fi, then the content of the tape l is updated to
fi(n1, . . . nki

) written in binary. Here, nj denotes the number written in binary
in the jth distinguished address-tape of fi after the execution of the above tran-
sition functions. If one of the nj is too large, the tape l is updated to contain
only blanks. Note that the head of the tape remains in place; it was moved by
δl already.

In the initial configuration, read-only constant-tapes for the constant symbols
c1, . . . , cq hold the values in binary of their values in A. One additional constant-
tape (there are q+1 of them) holds the size n of the domain of A in binary. Each
address-tape, each value-tape, and each ordinary work-tape holds only blanks.

Theorem 2. A class of finite ordered structures C of some fixed vocabulary σ
is decidable by a random-access Turing machine working in PolylogTime with
respect to n̂, where n̂ is the size of the binary encoding of the input structure, iff
C is decidable by a direct-access Turing machine in PolylogTime with respect to
n, where n is the size of the domain of the input structure.

The proof (omitted) is based on computing precise locations in which bits can
be found, and, for the other direction, on a binary search technique to compute
n from n̂.

5 Index Logic

In this section we introduce index logic, a new logic which over ordered finite
structures captures PolylogTime. Our definition of index logic is inspired by the
second-order logic in [18], where relation variables are restricted to valuations
on the sub-domain {0, . . . , �log n� − 1} (n being the size of the interpreting
structure), as well as by the well known counting logics as defined in [9].

Given a vocabulary σ, for every ordered σ-structure A, we define a corre-
sponding set of natural numbers Num(A) = {0, . . . , �log n� − 1} where n = |A|.
Note that Num(A) ⊆ A, since we assume that A is an initial segment of the
natural numbers. This simplifies the definitions, but it is otherwise unnecessary.

Index logic is a two-sorted logic. Individual variables of the first sort v range
over the domain A of A, while individual variables of the second sort n range

Descriptive Complexity of Deterministic Polylogarithmic Time 215

over Num(A). We denote variables of sort v with x, y, z, . . ., possibly with a
subindex such as x0, x1, x2, . . . , and variables of type n with x, y, z, also possibly
with a subindex. Relation variables, denoted with uppercase letters X,Y,Z, . . .,
are always of sort n, and thus range over relations defined on Num(A).

Definition 3. Let σ be a vocabulary, we inductively define terms and formulae
of index logic as follows:

– Each individual variable of sort v and each constant symbol in σ is a term
of sort v.

– Each individual variable of sort n is a term of sort n.
– If t1, . . . , tk are terms of sort v and f is a k-ary function symbol in σ, then

f(t1, . . . , tk) is a term of sort v.
– If t1, t2 are terms of a same sort, then t1 = t2 and t1 ≤ t2 are (atomic)

formulae.
– If t1, . . . , tk are terms of sort v and R is a k-ary relation symbol in σ, then

R(t1, . . . , tk) is an (atomic) formula.
– If t1, . . . , tk are terms of sort n and X is a k-ary relation variable, then

X(t1, . . . , tk) is an (atomic) formula.
– If t is a term of sort v, ϕ is a formula and x is an individual variable of sort

n, then t = index{x : ϕ(x)} is an (atomic) formula.
– If t̄ is tuple of terms of sort n, x̄ is tuples of variables also of sort n, X is

a relation variable, the lengths of t̄ and x̄ are the same and coincide with the
arity of X, and ϕ is a formula, then [IFPx̄,Xϕ]t̄ is an (atomic) formula.

– If ϕ,ψ are formulae, then ϕ ∧ ψ, ϕ ∨ ψ, and ¬ψ are formulae.
– If x is a variable of type n and ϕ is a formula, then ∃x(ϕ) and ∀x(ϕ) are

formulae.
– If x = index{x : α(x)} is an atomic formula such that x does not appear free

in α(x), and ϕ is a formula, then ∃x(x = index{x : α(x)} ∧ ϕ) is a formula.

The concept of a valuation is the standard for a two-sorted logic. Thus, a
valuation over a structure A is any total function val from the set of all variables
of index logic to values satisfying the following constraints:

– If x is a variable of type v, then val(x) ∈ A.
– If x is a variable of type n, then val(x) ∈ Num(A).
– If X is a relation variable with arity r, then val(X) ⊆ (Num(A))r.

Valuations extend to terms and tuples of terms in the usual way. Further, we
say that a valuation val is v-equivalent to a valuation val ′ if val(v′) = val ′(v′)
for all variables v′ other than v.

Fixed points are defined in the standard way (see [2] and [17] among others).
Given an operator F : P(B) → P(B), a set S ⊆ B is a fixed point of F if
F (S) = S. A set S ⊆ B is a least fixed point of F if it is a fixed point and for
every other fixed point S′ of F we have S ⊆ S′. We denote the least fixed point
of F as lfp(F). The inflationary fixed point of F , denoted by ifp(F), is the union
of all sets Si where S0 = ∅ and Si+1 = Si ∪ F (Si).

216 F. Ferrarotti et al.

Let ϕ(X, x̄) be a formula of vocabulary σ, where X is a relation variable of
arity k and x is a k-tuple of variables of type n. Let A be a σ-structure. The for-
mula ϕ(X, x̄) gives rise to an operator FA

ϕ,x̄,X : P((Num(A))k) → P((Num(A))k)
defined as follows:

FA
ϕ,x̄,X(S) := {ā ∈ (Num(A))k | A, val |= ϕ(X, x̄) for some valuation val with

val(X) = S and val(x̄) = ā}.

Definition 4. The formulae of IFPplog are interpreted as follows:

– A, val |= t1 = t2 iff val(t1) = val(t2).
– A, val |= t1 ≤ t2 iff val(t1) ≤ val(t2).
– A, val |= R(t1, . . . , tk) iff (val(t1), . . . , val(tk)) ∈ RA.
– A, val |= X(t1, . . . , tk) iff (val(t1), . . . , val(tk)) ∈ val(X).
– A, val |= t = index{x : ϕ(x)} iff val(t) in binary is bmbm−1 · · · b0, where

m = �log |A|� − 1 and bj = 1 iff A, val ′ |= ϕ(x) for val′ x-equivalent to val
and val ′(x) = j.

– A, val |= [IFPx̄,Xϕ]t̄ iff val(t̄) ∈ ifp(FA
ϕ,x̄,X).

– A, val |= ¬ϕ iff A, val �|= ϕ.
– A, val |= ϕ ∧ ψ iff A, val |= ϕ and A, val |= ψ.
– A, val |= ϕ ∨ ψ iff A, val |= ϕ or A, val |= ψ.
– A, val |= ∃x(ϕ) iff there is a val ′ x-equivalent to val such that A, val ′ |= ϕ.
– A, val |= ∀x(ϕ) iff for all val ′ x-equivalent to val , it holds that A, val ′ |= ϕ.
– A, val |= ∃x(x = index{x : α(x)} ∧ ϕ) iff there is a val ′ x-equivalent to val

such that A, val ′ |= x = index{x : α(x)} and A, val ′ |= ϕ.

It immediately follows from the famous result by Gurevich and Shelah regard-
ing the equivalence between inflationary and least fixed points [12], that an equiv-
alent index logic can be obtained if we (1) replace [IFPx̄,Xϕ]t̄ by [LFPx̄,Xϕ]t̄
in the formation rule for the fixed point in Definition 3, adding the restric-
tion that every occurrence of X in ϕ is positive2, and (2) fix the interpretation
A, val |= [LFPx̄,Xϕ]t̄ iff val(t̄) ∈ lfp(FA

ϕ,x̄,X).
Moreover, the convenient tool of simultaneous fixed points, which allows one

to iterate several formulae at once, can still be used here since it does not increase
the expressive power of the logic. Following the syntax and semantics proposed by
Ebbinghaus and Flum [2], a version of index logic with simultaneous inflationary
fixed point can be obtained by replacing the clause corresponding to IFP in
Definition 3 by the following:

– If t̄ is tuple of terms of sort n, and for m ≥ 0 and 0 ≤ i ≤ m, we have
that x̄i is a tuple of variables of sort n, Xi is a relation variable whose arity
coincides with the length of x̄i, the lengths of t̄ and x̄0 are the same, and ϕi

is a formula, then [S-IFPx̄0,X0,...,x̄m,Xm
ϕ0, . . . , ϕm]t̄ is an atomic formula.

2 This ensures that FA
ϕ,x̄,X is monotonous and thus that the least fixed point lfp(FA

ϕ,x̄,X)
is guaranteed to exists.

Descriptive Complexity of Deterministic Polylogarithmic Time 217

The interpretation is that A, val |= [S-IFPx̄0,X0,...,x̄m,Xm
ϕ0, . . . , ϕm]t̄ iff val(t̄)

belongs to the first (here X0) component of the simultaneous inflationary fixed
point.

Thus, we can use index logic with the operators IFP, LFP, S-IFP or S-LFP
interchangeably.

The following result confirms that our logic serves our purpose.

Theorem 5. Over ordered structures, index logic captures PolylogTime.

The proof of the theorem can be found in the full arXiv version of this article
[6]; instead we give two worked-out examples illustrating the power of index logic.

5.1 Finding the Binary Representation of a Constant

Assume a constant symbol c of sort v. In this example, we show a formula βc(x)
such that the sentence c = index{x : βc} is valid over the class of all finite
ordered structures. In other words, βc defines the binary representation of the
number c.

Informally, βc works by iterating through the bit positions y from the most
significant to the least significant. These bits are accumulated in a relation vari-
able Z. For each y we set the corresponding bit, on the condition that the result-
ing number does not exceed c. The set bits are collected in a relation variable
Y .

In the formal description of βc below, we use the following abbreviations.
We use M to denote the most significant bit position. Thus, formally, z = M
abbreviates ∀z′ z′ ≤ z. Furthermore, for a unary relation variable Z, we use
z = min Z with the obvious meaning. We also use abbreviations such as z = z′−1
with the obvious meaning.

Now βc is a simultaneous fixpoint [S-IFPy,Y,z,Z ϕY , ϕZ](x) where

ϕZ := (Z = ∅ ∧ z = M) ∨ (Z �= ∅ ∧ z = min Z − 1)
ϕY := Z �= ∅ ∧ y = min Z ∧ ∃x(x = index{z : Y (z) ∨ z = y} ∧ c ≥ x).

5.2 Binary Search in an Array of Key Values

In order to develop insight in how index logic works, we develop in detail an
example showing how binary search in an array of key values can be expressed
in the logic.

We represent the data structure as an ordered structure A over the vocabu-
lary consisting of a unary function K, a constant symbol N , a constant symbol
T , and a binary relation ≺. The domain of A is an initial segment of the natural
numbers. The constant l := NA indicates the length of the array; the domain
elements 0, 1, . . . , l − 1 represent the cells of the array. The remaining domain
elements represent key values. Each array cell holds a key value; the assignment
of key values to array cells is given by the function KA.

218 F. Ferrarotti et al.

The simplicity of the above abstraction gives rise to two peculiarities, which,
however, pose no problems. First, the array cells belong to the range of the
function K. Thus, array cells are allowed to play a double role as key values.
Second, the function K is total, so it is also defined on the domain elements that
are not array cells. We will simply ignore K on that part of the domain.

We still need to discuss ≺ and T . We assume ≺A to be a total order, used
to compare key values. So ≺A can be different from the built-in order <A. For
the binary search procedure to work, the array needs to be sorted, i.e., A must
satisfy ∀x∀y(x < y → (K(x) � K(y))). Finally, the constant t := TA is the test
value. Specifically, we are going to exhibit an index logic formula that expresses
that t is a key value stored in the array. In other words, we want to express the
condition

∃x(x < N ∧ K(x) = T). (γ)

Note that, we express here condition (γ) by a first-order formula that is not an
index formula. So, our aim is to show that γ is still expressible, over all sorted
arrays, by an index formula.

We recall the procedure for binary search [16] in the following form, using
integer variables L, R and I:

L := 0
R := N − 1
while L �= R do

I := �(L + R)/2�
if K(I) � T then R := I − 1 else L := I

od
if K(L) = T return ‘found’ else return ‘not found’

We are going to express the above procedure as a simultaneous fixpoint,
using binary relation variables L and R and a unary relation variable Z. We
collect the iteration numbers in Z, thus counting until the logarithm of the size
of the structure. Relation variables L and R are used to store the values, in
binary representation, of the integer variables L and R during all iterations.
Specifically, for each i ∈ Num(A), the value of the term index{x : L(i, x)} will
be the value of the integer variable L before the i-th iteration of the while loop
(and similarly for R).

In the formal expression of γ below, we use the formula βc from Sect. 5.1,
with N − 1 playing the role of c. We also assume the following formulas:

– A formula avg that expresses, for unary relation variables X and Y and
a numeric variable x, that the bit x is set in the binary representation of
�x+y�/2, where x and y are the numbers represented in binary by X and Y .

– A formula minusone(X, y), expressing that the bit y is set in the binary
representation of x − 1, where x is the number represented in binary by X.

These formulas surely exist because index logic includes full fixpoint logic on the
numeric sort; fixpoint logic captures PTIME on the numeric sort; and computing
the average, or subtracting one, are PTIME operations on binary numbers.

Descriptive Complexity of Deterministic Polylogarithmic Time 219

We are going to apply the formula avg where X and Y are given by L(z, .)
and R(z, .). So, formally, below, we use avg ′(z, x) for the formula obtained from
formula avg by replacing each subformula of the form X(u) by L(z, u), and Y (u)
by R(z, u).

Furthermore, we are going to apply formula minusone where X is given by
avg ′. So, formally, minusone ′ will denote the formula obtained from minusone
by replacing each subformula of the form X(u) by avg ′(z, u).

A last abbreviation we will use is test , which will denote the formula ∃e(e =
index{x : avg ′} ∧ K(e) � T).

Now γ is expressed by ∃x(x = index{l : ψ(l)} ∧ K(x) = T), where

ψ(l) := ∃s∀s′(s′ ≤ s ∧ [S-IFPz,x,L,z,x,R,z,Z ϕL, ϕR, ϕZ](s, l))
ϕZ := (Z = ∅ ∧ z = 0) ∨ (Z �= ∅ ∧ z = max Z + 1)
ϕL := Z �= ∅ ∧ z = max Z + 1 ∧

∃z′(z′ = max Z ∧ (test → L(z′, x)) ∧ (¬test → avg ′(z′, x)))

ϕR := (Z = ∅ ∧ z = 0 ∧ βN−1(x)) ∨ (Z �= ∅ ∧ z = max Z + 1 ∧
∃z′(z′ = max Z ∧ (test → minusone ′(z′, x)) ∧ (¬test → R(z′, x))))

6 Definability in Deterministic PolylogTime

We observe here that very simple properties of structures are nondefinable in
index logic. Moreover, we provide an answer to a fundamental question on the
primitivity of the built-in order predicate (on terms of sort v) in our logic.
Indeed, we are working with ordered structures, and variables of sort v can
only be introduced by binding them to an index term. Index terms are based
on sets of bit positions which can be compared as binary numbers. Hence, it
is plausible to suggest that the built-in order predicate can be removed from
our logic without losing expressive power. We prove, however, that this does not
work in the presence of constant or function symbols in the vocabulary.

Proposition 6. Assume that the vocabulary includes a unary relation symbol
P . Checking emptiness (or non-emptiness) of PA in a given structure A is not
computable in PolylogTime.

Proof. We will show that emptiness is not computable in PolylogTime. For a
contradiction, assume that it is. Consider first-order structures over the vocab-
ulary {P}, where P is a unary relation symbol. Let M be some Turing machine
that decides in PolylogTime, given a {P}-structure A, whether PA is empty.
Let f be a polylogarithmic function that bounds the running time of M . Let n
be a natural number such that f(n) < n.

Let A∅ be the {P}-structure with domain {0, . . . , n−1}, where PA = ∅. The
encoding of A∅ to the Turing machine M is the sequence s := 0 . . . 0︸ ︷︷ ︸

n times

. Note that

220 F. Ferrarotti et al.

the running time of M with input s is strictly less than n. This means that there
must exist an index i of s that was not read in the computation M(s). Define

s′ := 0 . . . 0︸ ︷︷ ︸
i times

1 0 . . . 0︸ ︷︷ ︸
n − i − 1 times

.

Clearly the output of the computations M(s) and M(s′) are identical, which is a
contradiction since s′ is an encoding of a {P}-structure where the interpretation
of P is a singleton. ��
The technique of the above proof can be adapted to prove a plethora of undefin-
ability results, e.g., it can be shown that k-regularity of directed graphs cannot
be decided in PolylogTime, for any fixed k.

We can develop this technique further to show that the order predicate on
terms of sort v is a primitive in the logic. The proof of the following lemma is
quite a bit more complicated and can be found in the full arXiv version [6] of
this article.

Lemma 7. Let P and Q be unary relation symbols. There does not exist an
index logic formula ϕ such that for all {P,Q}-structures A such that PA and
QA are disjoint singleton sets {l} and {m}, respectively, it holds that

A, val |= ϕ if and only if l < m.

Theorem 8. Let c and d be constant symbols in a vocabulary σ. There does not
exist an index logic formula ϕ that does not use the order predicate ≤ on terms
of sort v and that is equivalent with the formula c ≤ d.

The proof, by contradiction, shows that a formula ϕ as stated in the theorem
would contradict the above lemma. We give the translation in the full arXiv
version [6] of this article.

We conclude this section by affirming that, on purely relational vocabularies,
the order predicate on sort v is redundant. The intuition for this result was given
in the beginning of this section and we omit the formal proof.

Theorem 9. Let σ be a vocabulary without constant or function symbols. For
every sentence ϕ of index logic of vocabulary σ there exists an equivalent sentence
ϕ′ that does not use the order predicate on terms of sort v.

7 Discussion

An interesting open question concerns order-invariant queries. Indeed, while
index logic is defined to work on ordered structures, it is natural to try to under-
stand which queries about ordered structures that are actually invariant of the
order, are computable in PolylogTime. Results of the kind given by Proposition 6
already suggest that very little may be possible. Then again, any polynomial-time
numerical property of the size of the domain is clearly computable. We would

Descriptive Complexity of Deterministic Polylogarithmic Time 221

love to have a logical characterization of the order-invariant queries computable
in PolylogTime.

Another natural direction is to get rid of Turing machines altogether and work
with a RAM model working directly on structures, as proposed by Grandjean
and Olive [8]. Plausibly by restricting their model to numbers bounded in value
by a polynomial in n (the size of the structure), we would get an equivalent
PolylogTime complexity notion.

In this vein, we would like to note that extending index logic with numeric
variables that can hold values up to a polynomial in n, with arbitrary polynomial-
time functions on these, would be useful syntactic sugar that would, however,
not increase the expressive power.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley,
Boston (1995)

2. Ebbinghaus, H.D., Flum, J.: Finite Model Theory, 2nd edn. Springer, Heidelberg
(1999)

3. Fagin, R.: Contributions to model theory of finite structures. Ph.D. thesis, U. C.
Berkeley (1973)

4. Fagin, R.: Generalized first-order spectra and polynomial-time recognizable sets.
In: Karp, R. (ed.) Complexity of Computation. SIAM-AMS Proceedings, vol. 7,
pp. 43–73 (1974)

5. Ferrarotti, F., González, S., Schewe, K.D., Turull Torres, J.M.: The polylog-time
hierarchy captured by restricted second-order logic. In: Post-Proceedings of the
20th International Symposium on Symbolic and Numeric Algorithms for Scientific
Computing. IEEE Computer Society (2019, to appear)

6. Ferrarotti F., González S., Turull Torres J.M., Van den Bussche J.,
Virtema J.: Descriptive complexity of deterministic polylogarithmic time. CoRR
abs/1903.03413 (2019)

7. Grädel, E., et al.: Finite Model Theory and Its Applications. Springer, Heidelberg
(2007). https://doi.org/10.1007/3-540-68804-8

8. Grandjean, E., Olive, F.: Graph properties checkable in linear time in the number
of vertices. J. Comput. Syst. Sci. 68, 546–597 (2004)

9. Grohe, M.: Descriptive Complexity, Canonisation, and Definable Graph Structure
Theory. Lecture Notes in Logic. Cambridge University Press, Cambridge (2017)

10. Grohe, M., Pakusa, W.: Descriptive complexity of linear equation systems and
applications to propositional proof complexity. In: Proceedings of the 32nd Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS 2017, pp. 1–12. IEEE
Computer Society (2017)

11. Gurevich, Y.: Toward logic tailored for computational complexity. In: Börger, E.,
Oberschelp, W., Richter, M.M., Schinzel, B., Thomas, W. (eds.) Computation and
Proof Theory. LNM, vol. 1104, pp. 175–216. Springer, Heidelberg (1984). https://
doi.org/10.1007/BFb0099486

12. Gurevich, Y., Shelah, S.: Fixed-point extensions of first-order logic. Ann. Pure
Appl. Logic 32, 265–280 (1986)

13. Immerman, N.: Number of quantifiers is better than number of tape cells. J. Com-
put. Syst. Sci. 22(3), 384–406 (1981)

https://doi.org/10.1007/3-540-68804-8
https://doi.org/10.1007/BFb0099486
https://doi.org/10.1007/BFb0099486

222 F. Ferrarotti et al.

14. Immerman, N.: Relational queries computable in polynomial time. Inf. Control 68,
86–104 (1986)

15. Immerman, N.: Descriptive Complexity. Springer, New York (1999). https://doi.
org/10.1007/978-1-4612-0539-5

16. Knuth, D.: The Art of Computer Programming. Sorting and Searching, vol. 3.
Addison-Wesley, Boston (1998)

17. Libkin, L.: Elements of Finite Model Theory. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-662-07003-1

18. Mix Barrington, D.A.: Quasipolynomial size circuit classes. In: Proceedings of
the Seventh Annual Structure in Complexity Theory Conference, Boston, Mas-
sachusetts, USA, 22–25 June 1992, pp. 86–93. IEEE Computer Society (1992)

19. Mix Barrington, D.A., Immerman, N., Straubing, H.: On uniformity within NC1.
J. Comput. Syst. Sci. 41(3), 274–306 (1990)

20. Ramakrishnan, R., Gehrke, J.: Database Management Systems, 3rd edn. McGraw-
Hill, Inc., New York (2003)

21. Stockmeyer, L.J.: The polynomial-time hierarchy. Theor. Comput. Sci. 3(1), 1–22
(1976)

22. Vardi, M.: The complexity of relational query languages. In: Proceedings 14th
ACM Symposium on the Theory of Computing, pp. 137–146 (1982)

https://doi.org/10.1007/978-1-4612-0539-5
https://doi.org/10.1007/978-1-4612-0539-5
https://doi.org/10.1007/978-3-662-07003-1
https://doi.org/10.1007/978-3-662-07003-1

A Representation Theorem for Finite
Gödel Algebras with Operators

Tommaso Flaminio1(B), Lluis Godo1, and Ricardo O. Rodŕıguez2

1 Artificial Intelligence Research Institute (IIIA - CSIC),
Campus UAB, 08193 Bellaterra, Spain

{tommaso,godo}@iiia.csic.es
2 FCEyN, Departamento de Computación,

CONICET-UBA, Inst. de Invest. en Cs. de la Computación, UBA,
Buenos Aires, Argentina

ricardo@dc.uba.ar

Abstract. In this paper we introduce and study finite Gödel algebras
with operators (GAOs for short) and their dual frames. Taking into
account that the category of finite Gödel algebras with homomorphisms
is dually equivalent to the category of finite forests with order-preserving
open maps, the dual relational frames of GAOs are forest frames: finite
forests endowed with two binary (crisp) relations satisfying suitable prop-
erties. Our main result is a Jónsson-Tarski like representation theorem
for these structures. In particular we show that every finite Gödel algebra
with operators determines a unique forest frame whose set of subforests,
endowed with suitably defined algebraic and modal operators, is a GAO
isomorphic to the original one.

Keywords: Finite Gödel algebras · Modal operators · Finite forests ·
Representation theorem

1 Introduction

Fuzzy modal logic is an active and relatively recent area of research aimed at
generalizing classical modal logic to the many-valued or fuzzy framework. This
is usually done by considering a Kripke-style relational semantics in which both
accessibility relations and evaluations of modal formulas (in each world) are
allowed to take values in the real unit interval [0, 1], instead of the classical
two-valued set {0, 1} (see [4,5,7] for instance).

In this contribution we put forward a new, algebraic-oriented perspective
to the area of fuzzy modal logic, and in particular to Gödel modal logic by
defining and studying the class of finite Gödel algebras with operators (GAOs
for short). These structures are obtained by expanding the language of Gödel
algebras (i.e. prelinear Heyting algebras) by means of two modal operators ♦
and � equationally described by the same axioms used to define these operators
in Boolean algebras with operators (BAOs), see [3].
c© Springer-Verlag GmbH Germany, part of Springer Nature 2019
R. Iemhoff et al. (Eds.): WoLLIC 2019, LNCS 11541, pp. 223–235, 2019.
https://doi.org/10.1007/978-3-662-59533-6_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-59533-6_14&domain=pdf
https://doi.org/10.1007/978-3-662-59533-6_14

224 T. Flaminio et al.

Obviously, while in a BAO the operators ♦ and � are inter-definable, this is
not the general case in a GAO since the negation operator in a Gödel algebra
is not involutive. Hence, the equation ♦x = ¬�¬x does not hold in general in a
GAO.

In the same way the dual frames of BAOs are Kripke frames, the duality
between finite Gödel algebras and finite forests (see [1]) leads us to introduce
the dual structures of GAOs as triples (F, R♦, R�), where F = (F,≤) is a finite
forest, while R♦ and R� are binary (crisp) relations on F satisfying suitable
conditions of (anti-)monotonicity in their first argument.

The main result of this paper is a Jónsson-Tarski like representation theorem
for GAOs. In particular we will show how, starting from a Gödel algebra with
operators (A,♦,�), one can uniquely define a forest frame (F, R♦, R�) such
that (A,♦,�) is isomorphic to the GAO whose Gödel reduct is the algebra of
subforests of F and whose modal operators are defined from the binary relations
R♦ and R�.

Finally, we will discuss the effect of a stronger axiomatization for ♦ and �
on the side of the corresponding forest frame. In particular we will see that the
equations usually imposed on positive modal algebras [6,8] allow for a simpler
description of the forest frames needed in the representation theorem.

This paper is organized as follows. After this introduction, in the follow-
ing Sect. 2 we will recall basic facts on finite Gödel algebras and finite forests.
In Sect. 3 we will consider the case of Gödel algebras expanded by the modal
operator ♦, while Gödel algebras with a � operator will be studied in Sect. 4.
Section 5 is dedicated to introduce Gödel algebras with both ♦ and � and also
to discuss the effect of the stronger axiomatization for these modalities obtained
by adding the equations of positive modal algebras. We will end this paper in
Sect. 6 where we present our future work.

2 Finite Gödel Algebras and Forests

Gödel algebras, the algebraic semantics of infinite-valued Gödel logic [9], are
idempotent, bounded, integral, commutative residuated lattices of the form A =
(A,∧,∨,→,⊥,�) satisfying the prelinearity equation: (a → b)∨ (b → a) = �. In
other words, Gödel algebras are prelinear Heyting algebras. If not unless specified,
all algebras we will consider in this paper are finite.

Let A be a Gödel algebra and denote by FA the set of its prime filters, i.e.,
filters principally generated by the join-irreducible elements of A. Unlike the
case of boolean algebras, prime and maximal filters are not the same for Gödel
algebras and indeed FA can be ordered in a nontrivial way. In particular, if for
f1, f2 ∈ FA we define f1 ≤ f2 iff (as prime filters) f1 ⊇ f2, FA = (FA,≤) turns
out to be a finite forest, i.e., a poset such that the downset of each element is
totally ordered.

Finite forests play a crucial role in the theory of Gödel algebras. Indeed, let
F = (F,≤) be a finite forest, SF be the set of all downward closed subsets of
F (i.e., the subforests of F) and consider the following operations on SF: for all
x, y ∈ F ,

A Representation Theorem for Finite Gödel Algebras with Operators 225

1. x ∧ y = x ∩ y (the set-theoretic intersection);
2. x ∨ y = x ∪ y (the set-theoretic union);
3. x → y = F \ ↑(x \ y) (where \ denotes the set-theoretical difference and for

every z ∈ F , ↑z = {k ∈ F | k ≥ z}).1

The algebra SF = (SF,∧,∨,→, ∅, F) is a Gödel algebra [1, §4.2] and the following
is a Stone-like representation theorem for these structures.

Lemma 1 ([1, Theorem4.2.1]). Every Gödel algebra A is isomorphic to SFA

through the map r : A → SFA

r : a ∈ A �→ {f ∈ FA | a ∈ f}.

Example 1. Let free1 be the 1-generated free Gödel algebra (Fig. 1). Its prime
filters, which are all principally generated as upsets of its join-irreducible ele-
ments, are f1 = {y ∈ free1 | y ≥ x} = {x, x ∨ ¬x,¬¬x,�}, f2 = {y ∈ free1 | y ≥
¬x} = {¬x, x ∨ ¬x,�}, and f3 = {y ∈ free1 | y ≥ ¬¬x} = {¬¬x,�}. The forest
Ffree1 is obtained by ordering {f1, f2, f3} by reverse inclusion.

Let us consider the set SFfree1
of subforests of Ffree1 :

SFfree1
= {∅, Ffree1 , {f2}, {f1}, {f2, f1}, {f3, f1}}

with operations ∧,∨,→ as in (1–3) above. Lemma 1 shows that algebra SFfree1
is

a Gödel algebra which is isomorphic to free1.

⊥

x¬x

¬¬x

�

¬x ∨ x

f2 f1

f3

∅

{f1}{f2}

{f1, f3}

Ffree1

{f1, f2}

Fig. 1. From left to right: The Hasse diagram of the free Gödel algebra over one gener-
ator free1, the forest Ffree1 of its prime filters, and the Hasse diagram of its isomorphic
copy SFfree1

1 Without danger of confusion, and thanks to the following result, we will not distin-
guish the symbols of a Gödel algebra A from those of SF.

226 T. Flaminio et al.

3 Gödel Algebras with ♦-Operators

Definition 1. A ♦-Gödel algebra is a pair (A,♦) where A is a Gödel algebra
and ♦ : A → A satisfies the following equations:
(♦1) ♦(⊥) = ⊥;
(♦2) ♦(a ∨ b) = ♦a ∨ ♦b.

Definition 2. A ♦-forest frame is a pair (F, R) where F = (F,≤) is a finite
forest and R ⊆ F × F satisfies the following condition:

(A) for all x, y, z ∈ F , if y ≤ x and R(x, z), then R(y, z)2.

For every ♦-forest frame (F, R), let SF be defined as in the previous section
and consider the map δR : SF → SF such that, for every a ∈ SF

δR(a) = {y ∈ F | ∃z ∈ a, R(y, z)}. (1)

Notice that, for all a ∈ SF, δR(a) ∈ SF, i.e., δR(a) is a subforest of F. Indeed
if x ∈ δR(a) then there exists z ∈ a such that R(x, z). Let y ≤ x in F. Then
(A) of Definition 2 implies R(y, z) as well, that is y ∈ δR(a) and hence δR(a) is
downward closed. Further, the following properties hold.

Proposition 1. For every ♦-forest frame (F, R) let δR : SF → SF be defined as
in (1). Then:

1. δR(⊥) = ⊥;
2. For all b ∈ SF, δR(b) =

⋃{δR(a) | a ≤ b and a is join-irreducible}.
Proof. (1) The bottom element of SF is the empty forest, whence ∅ = {y ∈ F |
∃z ∈ ∅, R(y, z)} = δR(⊥).
(2) The claim is trivial if b is join irreducible. Thus, let b = a1 ∨ . . . ∨ am with
the ai’s being join irreducible. Therefore, δR(b) = {y ∈ F | ∃z ∈ b, R(y, z)} =
{y ∈ F | ∃z ∈ a1 ∨ . . . ∨ am, R(y, z)} = {y ∈ F | ∃z ∈ a1 ∪ . . . ∪ am, R(y, z)} =⋃m

i=1({y ∈ F | ∃z ∈ ai, R(y, z)}) =
⋃m

i=1 δR(ai). ��
Lemma 2. For each ♦-forest frame (F, R), (SF, δR) is a ♦-Gödel algebra.

Proof. From Lemma 1, SF is a Gödel algebra. Equation (♦1) holds because of
Proposition 1(1). Further, if a, b ∈ SF, by Proposition 1(2), δR(a ∨ b) = δR(a) ∪
δR(b) = δR(a) ∨ δR(b) by definition of δR. Thus, δR satisfies (♦2). ��

Now, let (A,♦) be a ♦-Gödel algebra, let FA be as in Sect. 2 and define
Q♦ ⊆ FA × FA as follows: for all f1, f2 ∈ FA,

Q♦(f1, f2) iff ♦(f2) ⊆ f1, (2)

where, for every filter f , ♦(f) = {♦x | x ∈ f}. Then the following holds.

2 Along this paper we will adopt the notation R(x, y) to denote that the pair (x, y)
belongs to the relation R.

A Representation Theorem for Finite Gödel Algebras with Operators 227

Lemma 3. For each ♦-Gödel algebra (A,♦), (FA, Q♦) is a ♦-forest frame.

Proof. It is enough to prove that the condition (A) of Definition 2 holds. Let
f1, f2, f3 ∈ FA and assume Q♦(f1, f3) (i.e., ♦(f3) ⊆ f1) and f1 ≥ f2, meaning
that, as prime filters, f1 ⊆ f2. Then, ♦(f3) ⊆ f1 ⊆ f2 and hence Q♦(f2, f3).

Now, our aim is to extend the isomorphism r of Lemma 1 to the case of ♦-Gödel
algebras. Let hence (A,♦) be a ♦-Gödel algebra and define, for every a ∈ A,

r(♦(a)) = {f ∈ FA | ♦(a) ∈ f}. (3)

Theorem 1. For every ♦-Gödel algebra (A,♦), the map r : (A,♦) → (SFA
,

δQ♦) is an isomorphism. In particular, for all a ∈ A,

r(♦(a)) = δQ♦(r(a)). (4)

Proof. We proved in Lemma 1 that SFA
is a Gödel algebra and the map r : A →

SFA
is a Gödel isomorphism. Thus, it remains to show that (4) holds. First of

all notice that it is sufficient to prove it for the case of a being a join-irreducible
element of A. Indeed, assume that (4) holds for join irreducible elements and let
b be not join irreducible. Then b can be displayed as b = a1 ∨ . . .∨ ak, where the
ai’s are join irreducible. By (♦2), ♦(b) = ♦(a1) ∨ . . . ∨ ♦(ak). Therefore, since r
is a Gödel algebra isomorphism,

r(♦(b)) = r(♦(a1)) ∨ . . . ∨ r(♦(ak)).

By assumption, r(♦ai) = δQ♦(r(ai)) for all i = 1, . . . , k. Thus, r(♦(b)) =
δQ♦(a1) ∨ . . . ∨ δQ♦(ak) which equals δQ♦(b) by Proposition 1(2).

Let hence a be join irreducible. By Lemma1, we have:

δQ♦(r(a)) = {f ∈ FA | ∃g ∈ r(a), Q♦(f, g)}
= {f ∈ FA | ∃g ∈ FA, (a ∈ g & Q♦(f, g)}
= {f ∈ FA | ∃g ∈ FA, (a ∈ g & ♦(g) ⊆ f)}

Therefore, if f ∈ δQ♦(r(a)), ♦(a) ∈ f and hence f ∈ r(♦(a)).
To prove the other inclusion we have to show that if f ′ ∈ r(♦(a)), there exists

an f ∈ FA such that a ∈ f and ♦(f) ⊆ f ′. Since a is join irreducible, the filter
fa = {b ∈ A | b ≥ a} is prime. Let us prove that ♦(fa) ⊆ f ′.

Claim. ♦(fa) ⊆ f♦(a) = {x ∈ A | x ≥ ♦(a)}.

As a matter of fact, if z ∈ ♦(fa), then there exists b ≥ a such that z = ♦(b).
Since ♦ is monotone, ♦(b) ≥ ♦(a), whence z = ♦(b) ∈ f♦(a).

Claim. For all f ′ ∈ r(♦(a)), f♦(a) ⊆ f ′.

Indeed, if x ∈ f♦(a), then x ≥ ♦(a) and hence x ∈ f ′ because ♦(a) ∈ f ′ and f ′

is upward closed.
By the above claims, for all f ′ ∈ r(♦(a)), ♦(fa) ⊆ f ′, whence

r(♦(a)) ⊆ δQ♦(r(a)).

Thus, for all a, r(♦(a)) = δQ♦(r(a)) which settles the claim. ��

228 T. Flaminio et al.

Example 2. Let free1 be as in Example 1 and let ♦ : free1 → free1 be the following
map:

♦(⊥) = ⊥;♦(x) = ¬x;♦(¬x) = ¬x ∨ x;♦(¬x ∨ x) = ¬x ∨ x;
♦(¬¬x) = �;♦(�) = �.

It is easy to check that ♦ satisfies (♦1) and (♦2) of Definition 1 and hence
(free1,♦) is a ♦-Gödel algebra.

Let Ffree1 be the dual forest of free1 as in Example 1 and let us compute
Q♦ according to (2). First: ♦(f1) = {¬x, x ∨ ¬x,�}; ♦(f2) = {x ∨ ¬x,�} and
♦(f3) = {�}. Therefore, (see Fig. 2)

⊥

x¬x

¬¬x

�

¬x ∨ x

f2 f1

f3

∅

{f1}{f2}

{f1, f3}

Ffree1

{f1, f2}

Fig. 2. From left to right: The Hasse diagram of the free Gödel algebra over one
generator free1 and a ♦ operator (dotted arrows); the forest Ffree1 of its prime filters
and the relation Q♦ (dotted arrows); the Hasse diagram of its isomorphic copy SFfree1
endowed with the operator δQ♦ (dotted arrows).

Q♦ = {(f1, f2), (f1, f3), (f2, f2), (f2, f1), (f2, f3), (f3, f3)}.

The relation Q♦ satisfies the property (A) of Definition 2. Indeed, f1 ≤ f3, and
for all f ∈ Ffree1 , if Q♦(f3, f) then Q♦(f1, f). Therefore (Ffree1 , Q♦) is a ♦-forest
frame.

Finally, let SFfree1
be the isomorphic copy of free1 as in Example 1 and let

δQ♦ : SFfree1
→ SFfree1

be as in (1):
δQ♦(∅) = {f ∈ Ffree1 | ∃g ∈ ∅, Q♦(f, g)} = ∅;
δQ♦({f1}) = {f ∈ Ffree1 | ∃g ∈ {f1}, Q♦(f, g)} = {f2};
δQ♦({f2}) = {f ∈ Ffree1 | ∃g ∈ {f2}, Q♦(f, g)} = {f1, f2};
δQ♦({f1, f2}) = {f ∈ Ffree1 | ∃g ∈ {f1, f2}, Q♦(f, g)} = {f1, f2};
δQ♦({f1, f3}) = {f ∈ Ffree1 | ∃g ∈ {f1, f3}, Q♦(f, g)} = {f1, f2, f3} = Ffree1 ;
δQ♦(Ffree1) = {f ∈ Ffree1 | ∃g ∈ Ffree1 , Q♦(f, g)} = Ffree1 .
Therefore, (free1,♦) and (SFfree1

, δQ♦) are isomorphic ♦-Gödel algebras.

4 Gödel Algebras with �-Operators

Definition 3. A �-Gödel algebra is a pair (A,�) such that A is a Gödel algebra
and � : A → A satisfies the following equalities:

A Representation Theorem for Finite Gödel Algebras with Operators 229

(�1) �(�) = �;
(�2) �(a ∧ b) = �a ∧ �b.

Definition 4. A �-forest frame is a pair (F, R) where F = (F,≤) is a finite
forest and R ⊆ F × F satisfies the following condition:

(M) for all x, y, z ∈ F , if x ≤ y and R(x, z), then R(y, z).

For every �-forest frame (F, R), let βR : SF → SF be defined as follows: for all
a ∈ SF,

βR(a) = {y ∈ F | ∀z ∈ F, (R(y, z) ⇒ z ∈ a)}. (5)

For all a ∈ SF, βR(a) is a subforest of F. Indeed, if x ∈ βR(a) then ∀z ∈
F, (R(x, z) ⇒ z ∈ a). Let y ≤ x. Thus, for all z ∈ F either R(y, z) is false (and
in this case the condition R(y, z) ⇒ z ∈ a is trivially true), or R(y, z) is true
in which case R(x, z) is true as well, because of (M), and hence z ∈ a. Thus
y ∈ βR(a).

Proposition 2. The following properties hold:

1. βR(�) = �;
2. For all b ∈ AF , βR(b) =

⋃
({βR(a) | a ≤ b and a is join irreducible}).

Proof. (1) Recall from Sect. 2 that the top element of SF is F . Thus, βR(�) =
βR(F) = {y ∈ F | ∀z ∈ F, (R(y, z) ⇒ z ∈ F)}. Obviously, the condition
(R(y, z) ⇒ z ∈ F) is true for all z ∈ F and hence βR(F) = F .
(2) Skipping the trivial case in which b is join irreducible, let b = a1 ∨ . . . ∨ am

with the ai’s join irreducible. Remember that in classical logic, for every finite
k, x ⇒ (∃i ∈ {1, . . . , k}(yi)) = ∃i ∈ {1, . . . , k} (x ⇒ yi), hence

βR(b) = {y ∈ F | ∀z ∈ F, (R(y, z) ⇒ z ∈ b)}
= {y ∈ F | ∀z ∈ F, (R(y, z) ⇒ z ∈ ∨m

i=1 ai)}
= {y ∈ F | ∀z ∈ F, (R(y, z) ⇒ (∃i ∈ {1, . . . ,m} (z ∈ ai)))}
= {y ∈ F | ∀z ∈ F, ∃i ∈ {1, . . . , k} (R(y, z) ⇒ z ∈ ai)}
=

⋃m
i=1{y ∈ F | ∀z ∈ F, (R(y, z) ⇒ z ∈ ai)}

=
⋃m

i=1 βR(ai).

The claim is hence settled. ��
Lemma 4. For every �-forest frame (F, R), (SF, βR) is a �-Gödel algebra.

Proof. We already showed that βR(�) = �. If a, b ∈ SF and recalling that, as
subforests of F , a ∧ b = a ∩ b, one has

βR(a ∧ b) = {y ∈ F | ∀z ∈ F, (R(y, z) ⇒ z ∈ a ∧ b)}
= {y ∈ F | ∀z ∈ F, (R(y, z) ⇒ z ∈ a ∩ b)}
= {y ∈ F | ∀z ∈ F, (R(y, z) ⇒ z ∈ a)} ∩

{y ∈ F | ∀z ∈ F, (R(y, z) ⇒ z ∈ b)}
= βR(a) ∩ βR(b)
= βR(a) ∧ βR(b).

��

230 T. Flaminio et al.

Let (A,�) be a �-Gödel algebra and define Q� on FA ×FA as follows: for each
f1, f2 ∈ FA,

Q�(f1, f2) iff �−1(f1) ⊆ f2, (6)

where, for every filter f , �−1(f) = {x ∈ A | �(x) ∈ f}.

Lemma 5. For every �-Gödel algebra (A,�), (FA, Q�) is a �-forest frame.

Proof. Let f1, f2, f3 ∈ FA. If f1 ≤ f2 in the order of FA, then f1 ⊇ f2 as prime
filters, whence if �−1(f1) ⊆ f3 then �−1(f2) ⊆ f3. Therefore, if Q�(f1, f3), then
Q�(f2, f3) which settles the claim.

The following result is the analogous of Theorem1 in the case of �-Gödel algebras
where r is the map of Lemma 1 which extends to all elements of a �-Gödel
algebra (A,�) by the following stipulation:

r(�(a)) = {f ∈ FA | �(a) ∈ f}. (7)

Theorem 2. For every finite �-Gödel algebra (A,�), the map r : (A,�) →
(SFA

, βQ�) defined as above is an isomorphism. In particular, for all a ∈ A,

r(�(a)) = βQ�(r(a)). (8)

Proof. Let us start proving that for all a ∈ A, βQ�(r(a)) ⊆ r(�(a)). By defini-
tion,

βQ�(r(a)) = {f ∈ FA | ∀g ∈ FA (Q�(f, g) ⇒ g ∈ r(a))}
= {f ∈ FA | ∀g ∈ FA (�−1(f) ⊆ g ⇒ a ∈ g)}.

Let f ∈ βQ�(r(a)) and assume, by way of contradiction, that f �∈ r(�(a)), that
is to say, a �∈ �−1(f). Notice that this assumption forces a �= �.

Claim. �−1(f) is a filter of A.

As a matter of facts, � ∈ �−1(f) because � ∈ f and �� = �. Further, if
a, b ∈ �−1(f), then �a ∈ f and �b ∈ f , whence �(a) ∧ �(b) ∈ f since f is
a filter. Hence �(a ∧ b) ∈ f by (�2) showing that �−1(f) is ∧-closed. Finally,
if a ∈ �−1(f) and b ≥ a, then by the monotonicity of �, �(b) ≥ �(a), hence
�(b) ∈ f because f us upward closed. Therefore, �−1(f) is a filter of A.

Going back to the proof of Theorem2, if a ∈ �−1(f) and since a �= �, by
[9, Lemma 2.3.15], there exists a prime filter p of A such that p ⊇ �−1(f) and
a �∈ p. On the other hand, Q�(f, p) because p extends �−1(f) and a �∈ p. Thus,
f �∈ βQ�(r(a)) and a contradiction has been reached.

For the other inclusion, we have to prove that if �(a) ∈ f , then for all g ∈ FA,
Q�(f, g) ⇒ a ∈ g. If �(a) ∈ f , then a ∈ �−1(f). Therefore, for all g ∈ FA, if
Q�(f, g), then �−1(f) ⊆ g and hence a ∈ g which settles the claim. ��

A Representation Theorem for Finite Gödel Algebras with Operators 231

Example 3. As in the previous Examples 1 and 2 let free1 the free, 1-generated
Gödel algebra and consider the map � : free1 → free1 defined as follows (dashed
arrows in the leftmost picture of Fig. 3):

�(⊥) = ⊥; �(x) = x; �(¬x) = ⊥; �(¬x∨x) = x; �(¬¬x) = ¬¬x; �(�) = �.

That operation makes (free1,�) into a �-Gödel algebra.

For the reader convenience, let us compute �−1(f) (for f ∈ Ffree1): Adopting
the same notation of the previous examples,

�−1(f1) = {�}; �−1(f2) = f2; �−1(f3) = f3.

Therefore, by (6), Q� ⊆ Ffree1 × Ffree1 is the following relation (check Fig. 3,
central picture):

Q� = {(f1, f1), (f2, f2), (f3, f3), (f2, f1), (f2, f3), (f3, f1)}.

Notice that (Ffree1 , Q�) is a �-forest frame. Indeed, f1 ≤ f3 and for all f ∈ Ffree1 ,
Q�(f1, f) ≤ Q�(f3, f).

Finally, let SFfree1
be the isomorphic copy of free1 as in Example 1 and let us

define βQ� as above, i.e., for all a ∈ SFfree1
,

βQ�(a) = {f ∈ Ffree1 | for all g ∈ Ffree1 , if Q�(f, g) then g ∈ a}.

The computation is tedious and we will only show βQ�({f1, f2}). The remaining
cases are left to the reader.

βQ�({f1, f2}) = {f ∈ Ffree1 | for all g ∈ Ffree1 , if Q�(f, g) then g ∈ {f1, f2}}.

Let us enter a case distinction:

– f1 ∈ βQ�({f1, f2}). Let g be arbitrary in Ffree1 . In particular, if g = f1, then
Q�(f1, f1) and f1 ∈ {f1, f2}; if g = f2, we have Q�(f1, f2) and again f2 ∈
{f1, f2}; if g = f3, (f1, f3) �∈ Q� whence we conclude that f1 ∈ βQ�({f1, f2}).

– f2 ∈ βQ�({f1, f2}). Again we distinguish the following cases: for g = f1 or
g = f2, Q�(f2, g) and g ∈ {f1, f2}; if g = f3, Q�(f2, f3) but f3 �∈ {f1, f2},
whence f2 �∈ βQ�({f1, f2}).

– f3 ∈ βQ�({f1, f2}). Notice immediately that for g = f3 one has Q�(f3, f3)
but f3 �∈ {f1, f2}, whence f3 �∈ βQ�({f1, f2}).

Therefore, βQ�({f1, f2}) = {f1} (see Fig. 3, dashed arrows in the rightmost
picture, for the remaining cases).

232 T. Flaminio et al.

⊥

x¬x

¬¬x

�

¬x ∨ x

f2 f1

f3

∅

{f1}{f2}

{f1, f3}

Ffree1

{f1, f2}

Fig. 3. From left to right: The Hasse diagram of the free Gödel algebra over one
generator free1 and a � operator (dotted arrows); the forest Ffree1 of its prime filters
and the relation Q� (dotted arrows); the Hasse diagram of its isomorphic copy SFfree1
endowed with the operator βQ� (dotted arrows).

5 Gödel Algebras with ♦ and � Operators

The notions of results provided in the previous sections immediately give us the
following

Definition 5. A Gödel algebra with operators (GAO for short) is a triple
(A,♦,�) where A is a Gödel algebra, ♦ and � are unary operators of A which
satisfy the equations (♦1)-(♦2) and (�1)-(�2) of Definitions 1 and 3 respectively.

Let us observe that the equations for ♦ and � are minimal in the sense
that (♦1)-(♦2) and (�1)-(�2) are the weakest requirements we may ask the
modal operators to satisfy, taking into account that, since the negation operator
in Gödel algebras is not involutive, ♦ and � are not inter-definable as in the
classical setting. A similar remark concerning the minimality of those equations,
but in the more general setting of Heyting algebras with operators, can be found
in [10].

This remark leads us to the following notion of frame for GAOs which, not
surprisingly, includes both that of ♦- and �-forest frame.

Definition 6. A forest frame is a triple (F, R♦, R�) such that (F, R♦) is a ♦-
forest frame and (F, R�) is a �-forest frame.

Given a GAO (A,♦,�) and following exactly the same constructions and
results described in the previous Sects. 3 and 4, it is immediate to show that,
indeed, (FA, Q♦, Q�) is a forest frame and, vice versa, given any forest frame
(F, R♦, R�), the algebra (SF, δR♦ , βR�) is a GAO. The following result, which
is an immediate consequence of Theorems 1 and 2, is a Jónsson-Tarski like rep-
resentation for GAOs.

Theorem 3. Let (A,♦,�) be a GAO. The map r : (A,♦,�) → (AFA
, δQ♦ ,

βQ�), where δQ♦ and βQ� are defined by Eqs. (3) and (7), is an isomorphism.
In particular, for all a ∈ A,

r(♦(a)) = δQ♦(r(a)) and r(�(a)) = βQ�(r(a)). (9)

A Representation Theorem for Finite Gödel Algebras with Operators 233

Following [6,8], let us consider the following equations:
(D1) �(a ∨ b) ≤ �a ∨ ♦b;
(D2) �a ∧ ♦b ≤ ♦(a ∧ b).

For every Gödel algebra A, let us denote by A− its {→,¬}-free reduct. Then,
if (A,♦,�) satisfies (D1) and (D2), (A−,♦,�) is a positive modal algebra in
the sense of [6,8]. Since the set of prime filters of A and that of A− coincide,
FA− = FA and, following [6], let us define RA ⊆ FA− × FA− as follows: for all
f1, f2 ∈ FA,

RA(f1, f2) iff �−1(f1) ⊆ f2 ⊆ ♦−1(f1).

Observing that f2 ⊆ ♦−1(f1) iff ♦(f2) ⊆ f1, by [6, Lemma 2.1(1)], we have that
RA = Q♦ ∩ Q�, where Q♦ and Q� are defined as in (2) and (6) respectively.

Now, let SFA− be the Gödel algebra of subforests of FA− and define δRA
and

βRA
on SFA− by (1) and (5) respectively. Then the following is an immediate

consequence of [6, Theorem 2.2] (see also [8, Theorem 8.1]).

Proposition 3. Let (A,♦,�) be a GAO which satisfies (D1) and (D2). Then
its {→,¬}-free reduct (A−,♦,�) and the positive algebra ((SFA−)−, δRA

, βRA
)

are isomorphic (as positive modal algebras).

Clearly, SFA− = SFA
. Now, it is not difficult to extend the above result to GAOs

satisfying (D1) and (D2) by expanding the algebra ((SFA−)−, δRA
, βRA

) by the
operator → defined as in Sect. 2: for all x, y ∈ SFA

,

x → y = FA \ ↑(x \ y).

Then, (SFA−)− plus → and ¬ (defined as usual by ¬x = x → ∅) is a Gödel
algebra isomorphic to SFA

. Thus, the following holds.

Theorem 4. Every GAO (A,♦,�) satisfying (D1) and (D2) is isomorphic to
(SFA

, δRA
, βRA

) (as Gödel algebras with operators).

6 Conclusion and Future Work

In the present paper we have introduced finite Gödel algebras with modal oper-
ators and their dual forest frames. Our main result is a Jónsson-Tarski like rep-
resentation theorem for these structures. Further, we have introduced a proper
subclass of Gödel algebras with operators, and we have shown for them a simpli-
fied representation which uses, on the dual side of forest frames, only one acces-
sibility relation. It is important to notice that, in contrast with [5] where the
authors consider Kripke frames for Gödel modal logic with a unique [0, 1]-valued
accessibility relation, the dual frames of our Gödel algebras with operators have
two crisp accessibility relations. This latter observation offers, in our opinion,
a fresh new perspective on the semantic approach to fuzzy modal logics which
deserves to be further investigated.

234 T. Flaminio et al.

As for future work we plan the address the following questions:

(1) To extend the results of this paper to the whole class of Gödel algebras. In this
direction we will investigate an extension of Theorem 3 for general Gödel algebras
with operators. In order to achieve this goal we will take into account that the
prime spectrum of a Gödel algebra forms an Esakia space whose underline poset
is a forest (see [11, Theorem 2.4]).
(2) The whole class of Gödel algebras with operators forms a variety which
determines the equivalent algebraic semantics of a Gödel modal logic. This logic,
denoted by G�♦, can be regarded as the axiomatic extension of intuitionistic
modal logic IntK�♦ [12] by the prelinearity axiom (ϕ → ψ) ∨ (ψ → ϕ). Our
main plans in this direction are to show that G�♦ has the finite model property
and to compare G�♦ with the other approaches to Gödel modal logic existing in
the literature, in particular with that of [5]. In this paper the authors introduce
a logic with both � and ♦ operators, stronger than G�♦3, that is shown to be
complete with respect to the class of Kripke models over the standard Gödel
algebra (on the unit real interval [0, 1]) where both the accessibility relation and
formulas are evaluated on [0, 1].
(3) Finite Nilpotent Minimum (NM) algebras with (or without) a negation fix-
point are dually equivalent to the category of finite forests (and hence categori-
cally equivalent to finite Gödel algebras) [1, Proposition 4.5.4 and §4.5] and [2,
Corollary 4.10]. In particular, the connected (disconnected, respectively) rotation
of the {⊥}-free reduct of any finite, directly indecomposable Gödel algebra A is
a finite, directly indecomposable, NM-algebra with (without) negation fixpoint
and each directly indecomposable NM-algebra with (without) negation fixpoint
arises in this way (see [1, §4.5] and references therein). Taking into account this
structural description, we plan to extend the analysis reported in this paper to
the classes of NM-algebras with, or without, negation fixpoint.

Acknowledgments. The authors acknowledge partial support by the SYSMICS
project (EU H2020-MSCA-RISE-2015 Project 689176). Further, Flaminio acknowl-
edges partial support by the Spanish Ramon y Cajal research program RYC-2016-
19799; Flaminio and Godo by the Spanish FEDER/MINECO project TIN2015- 71799-
C2-1-P; Rodriguez, by the projects UBA-CyT: 20020150100002BA and PIP 112-2015-
0100412 CO.

References

1. Aguzzoli, S., Bova, S., Gerla, B.: Free algebras and functional representation for
fuzzy logics. In: Cintula, P., Hájek, P., Noguera, C. (eds.) Handbook of Mathe-
matical Fuzzy Logic - Volume 2, Chap. IX. Studies in Logic, vol. 38, pp. 713–791.
College Publications, London (2011)

2. Aguzzoli, S., Flaminio, T., Ugolini, S.: Equivalences between subcategories of MTL-
algebras via Boolean algebras and prelinear semihoops. J. Log. Comput. 27(8),
2525–2549 (2017)

3 In particular it includes Fisher-Servi connecting axioms ♦(ϕ → ψ) → (�ϕ → ♦ψ)
and (♦ϕ → �ϕ) → �(ϕ → ψ).

A Representation Theorem for Finite Gödel Algebras with Operators 235

3. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press,
Cambridge (2001)

4. Bou, F., Esteva, F., Godo, L., Rodriguez, R.: On the minimum many-values modal
logic over a finite residuated lattice. J. Log. Comput. 21(5), 739–790 (2011)

5. Caicedo, X., Rodŕıguez, R.O.: Bi-modal Gödel logic over [0, 1]-valued Kripke
frames. J. Log. Comput. 25(1), 37–55 (2015)

6. Celani, S., Jansana, R.: Priestley duality, a Sahlqvist theorem and a Goldblatt-
Thomason theorem for positive modal logic. Log. J. IGPL 7(6), 683–715 (1999)

7. Diaconescu, D., Metcalfe, G., Schnüriger, L.: A real-valued modal logic. Log. Meth-
ods Comput. Sci. 14(1), 1–27 (2018)

8. Dunn, M.: Positive modal logics. Stud. Log. 55, 301–317 (1995)
9. Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer Academic Publishers, Dor-

drecht (1998)
10. Hasimoto, Y.: Heyting algebras with operators. Math. Log. Q. 47(2), 187–196

(2001)
11. Horn, A.: Logic with truth values in a linearly ordered Heyting algebra. J. Symb.

Log. 34, 395–405 (1969)
12. Wolter, F., Zakharyaschev, M.: Intuitionistic modal logic. In: Cantini, A., Casari,

E., Minari, P. (eds.) Logic and Foundations of Mathematics, pp. 227–238. Kluwer,
Dordrecht (1999)

Bar Induction and Restricted
Classical Logic

Makoto Fujiwara(B)

School of Science and Technology, Meiji University,
1-1-1 Higashi-Mita, Tama-ku, Kawasaki-shi, Kanagawa 214-8571, Japan

makotofujiwara@meiji.ac.jp

Abstract. Bar induction is originally discussed by L. E. J. Brouwer
under the name of “bar theorem” in his intuitionistic mathematics.
Nowadays, there are several formulations of bar induction. Over a well-
known classical subsystem RCA0 of second-order arithmetic, they are
equivalent to the full second-order comprehension axiom. However, their
interrelation from the purely constructive point of view (in the sense
of Bishop) is still unknown. In this paper, we investigate the interrela-
tion between decidable bar induction, monotone bar induction, and bar
induction with neither the decidable condition nor the monotonicity con-
dition in the assumptions over an intuitionistic fragment of RCA0, and
show that the third one is equivalent to the second one plus the numeri-
cal constant domain axiom which comes from the study of intermediate
predicate logics. In addition, we consider the restrictions of bar induc-
tion where the side-predicates are of the form ∃z Qqf(z) where Qqf(z) is
quantifier-free. Then we show the close relation between the restrictions
of bar induction and the negative translation of a principle classically
equivalent to the arithmetical comprehension axiom.

Keywords: Reverse mathematics · Intuitionistic mathematics ·
Bar induction · Subsystems of second-order arithmetic

Bar induction is originally introduced by L. E. J. Brouwer in his intuitionistic
mathematics. As mentioned in [13], however, it is first formulated in a workable
form by S. C. Kleene [11]. In this paper, we investigate the logical relationship
between a couple of forms of bar induction and their syntactical restrictions in
the context of constructive reverse mathematics, which is a research project to
reveal the constructive derivability relation between mathematical statements
(see [9]). The base theory which we are working on is a subsystem EL0 of so-
called elementary analysis EL ([16, 1.9.10]), which has two-sorted variables in
its language. Note that the subscript 0 of EL0 denotes the restriction of the
induction scheme to quantifier-free formulas in this context. We refer the reader
to see e.g. [2,3,6] for the details of EL0. Note that EL0 is an intuitionistic variant
of the most popular base system RCA0 of classical reverse mathematics [15]. By
investigating the derivability relation between mathematical statements over EL0
c© Springer-Verlag GmbH Germany, part of Springer Nature 2019
R. Iemhoff et al. (Eds.): WoLLIC 2019, LNCS 11541, pp. 236–247, 2019.
https://doi.org/10.1007/978-3-662-59533-6_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-59533-6_15&domain=pdf
https://doi.org/10.1007/978-3-662-59533-6_15

Bar Induction and Restricted Classical Logic 237

rather than RCA0, we can obtain a sharper classification than classical reverse
mathematics (see Corollary 28).

Throughout this paper, we use the lower-case letters x, y, z, i etc. for number
(type-0) variables and use the lower-case Greek letters α, β, γ etc. for function
(type-1) variables where the arity will be clear from the context. In addition, we
suppress a surjective coding of finite sequences of natural numbers onto natural
numbers (see e.g. [16, 1.3.9]) for readability and use a lower-case letter s or s′

to express a code for a finite sequence of natural numbers, while literally it is
just a type-0 variable. We mean by 〈·〉 a (code for a) finite sequence. For a (code
for a) finite sequence s, |s| denotes the length of s, si denotes the i-th element
of s for i < |s|, and s ∗ 〈y〉 denotes the concatenation of s and 〈y〉. In addition,
−̇ is a (primitive recursive) function symbol such that x−̇0 = x and x−̇(y + 1)
= max{x − (y + 1), 0}. For function (type-1) variable β and number (type-0)
variable x, β̄x denotes the (code of) finite sequence 〈β(0), β(1), . . . , β(x − 1)〉 for
x > 0 and β̄0 := 〈 〉. As usual, ∃i < xA(i) is the abbreviation of ∃i(i < x∧A(i)).
For an axiom (scheme), A, EL0 + A denotes the system obtained from EL0 by
adding also A as its axiom (scheme).

We assume that the reader has some familiarity with (two-sorted) intuition-
istic arithmetic. Note that ¬∃xC is intuitionistically equivalent to ∀x¬C for
arbitrary formula C, which is frequently used throughout this paper.

1 Several Formulations of Bar Induction

Definition 1 (Bar Induction). There are several existing formulations of
Brouwer’s bar induction. We first present seemingly the most typical formulation
from [11,13], which is known as monotone bar induction

MBI0:

⎛
⎜⎜⎝

(i)∀α∃xP (ᾱx)
(ii)∀s, s′(P (s) → P (s ∗ s′))
(iii)∀s(P (s) → Q(s))
(iv)∀s(∀yQ(s ∗ 〈y〉) → Q(s))

⎞
⎟⎟⎠ → Q(〈 〉).

Another well-known formulation is so-called decidable bar induction DBI0

where the monotonicity condition (ii) is replaced by the decidable condition (ii)′ :
∀s(P (s)∨¬P (s)). On the other hand, if one considers bar induction over classical
logic, the monotonicity or decidable condition is superfluous (see [13] for details).
The main principle in this paper is unrestricted bar induction BI0 where the
second condition is omitted. The unrestricted bar induction has been investigated
extensively in a recent paper [14]. In addition, we also investigate their special
cases where P and Q are the same formulas and employ notations MBI0∗, DBI0∗,
and BI0∗ respectively for them. Such a restriction is already taken into account in
[17]. For any syntactical class Γ of formulas, (Full,Γ)-BI0 and Γ-BI0∗ denote the
restrictions of BI0 and BI0∗ respectively where Q is in Γ. The same restrictions
of MBI0,DBI0,MBI0∗, and DBI0∗ are denoted in the same manner. Note that the
superscript 0 of our bar induction denotes that they are for type-0 objects, which
Brouwer discussed about, while the extended bar induction for finite-type objects
has been studied in connection with bar recursion (see e.g. [4]).

238 M. Fujiwara

Fact 2 ([17, p. 229]). MBI0 is equivalent to MBI0∗ over EL0.

Proof. We show MBI0 from MBI0∗. For P and Q in MBI0, let P ′(s) :≡ Q′(s) :≡
∀s′Q(s ∗ s′). By applying MBI0∗ to P ′ and Q′, one can easily obtain Q(〈 〉). ��
Remark 3. The proof above does not work for the syntactical restrictions of
MBI0 in general. As we show in Corollary 23, however, the corresponding equiv-
alence holds for Σ0

1 restrictions (in the presence of Markov’s principle MP).

Fact 4. For any syntactical class Γ of formulas, (Full,Γ)-BI0 is equivalent to
Γ-BI0∗ over EL0.

Proof. Apply Γ-BI0∗ to P ′(s) :≡ Q′(s) :≡ Q(s) for given Q in (Full,Γ)-BI0. ��
Note that MBI0 is a weakening of BI0. In addition, as shown in [13, Theorem

4A], DBI0 is intuitionistically derivable from MBI0 (without using the continuity
principle which is inconsistent with classical logic). Combined with Fact 2, we
have that all of BI0,MBI0,DBI0,DBI0∗ are classically equivalent. In fact, simply
by imitating the proofs of Propositions 16 and 21 below, one can see that all of
those bar induction are equivalent to countable choice AC0,0 (see also [13]), and
hence also to the full second-order comprehension axiom CA0 (see [12, Propo-
sition 11.1]) over RCA0(=EL0 + LEM). Therefore a natural question from the
viewpoint of constructive reverse mathematics is how much restricted classical
logic grasp the gap between them.

2 Decomposition of BI0 into MBI0 and CD0

In this section, we show that BI0 can be decomposed into MBI0 and the so-called
constant domain axiom

CD0: ∀x(C(x) ∨ D) → ∀xC(x) ∨ D, where D does not contain x (of type 0)
as a free variable.

It is well-known in the study of intermediate logics that the above axiom is not
intuitionistically probable and the intermediate logic obtaining by adding the
axiom to intuitionistic first-order logic is sound and complete for the subclass of
Kripke models with constant domains (see e.g. [1] or [8]). As long as the author
knows, this is the first time that the constant domain axiom is taken into account
in the context of constructive reverse mathematics.

Proposition 5. LPO (limited principle of omniscience, sometimes denoted by
Σ0

1-LEM):
∀α(∃xα(x) = 0 ∨ ¬∃xα(x) = 0)

is provable in EL0 + CD0.

Proof. We reason informally in EL0+CD0. Fix α. Since ∃xα(x) = 0 → ∃xα(x) =
0, we have ∀y(α(y) = 0 → ∃xα(x) = 0). Since α(y) = 0 is decidable in the
system, we have ∀y(¬α(y) = 0∨∃xα(x) = 0). Applying CD0, we have ∀y¬α(y) =
0 ∨ ∃xα(x) = 0, which is equivalent to LPO. ��

Bar Induction and Restricted Classical Logic 239

Lemma 6. CD0 is provable in EL0 + BI0.

Proof. We reason informally in EL0 + BI0∗ (note Fact 4). Assume ∀x(C(x) ∨ D)
where D does not contain x as a free variable. Let

P (s) :≡ (|s| = 0 → ∀xC(x) ∨ D) ∧ (|s| > 0 → C(s0)).

First, we show the first condition for BI0∗. Fix α. By our assumption, we have
D ∨ C(α(0)), which is equivalent to

∃x
(
(x = 0 → D) ∧ (x = 0 → C(α(0)))

)
.

Then we have ∃xP (ᾱ(x)) straightforwardly.
Next, we show the other condition for BI0∗. Assume ∀y P (s ∗ 〈y〉). If |s| > 0,

then P (s) follows immediately. If |s| = 0, then by our assumption we have
∀y C(y) and hence P (〈 〉). Thus we have P (s).

Applying BI0∗, we have P (〈 〉), and hence, ∀xC(x) ∨ D. ��
Remark 7. By Proposition 5 and Lemma 6, it follows that LPO is derived from
BI0 (cf. [17, Chapter 4, Exercise 4.8.11]).

Lemma 8. BI0 is provable in EL0 + MBI0 + CD0.

Proof. We reason informally in EL0 +MBI0 +CD0. By Fact 4, it suffices to show
BI0∗. Assume ∀α∃xP (ᾱx) and ∀s(∀yP (s ∗ 〈y〉) → P (s)).

Let P ′(s) :≡ ∃s′ � sP (s′), where s′ � s denotes that the finite sequence
coded by s′ is an initial segment of the one coded by s. Then we have ∀α∃xP ′(ᾱx)
and ∀s, s′(P ′(s) → P ′(s ∗ s′)) immediately. For the inductive condition, assume
∀y P ′(s ∗ 〈y〉). By the decidability of the length of finite sequences, we have

∀y(∃s′ � sP (s′) ∨ P (s ∗ 〈y〉)).
Since the left-hand side does not contain y as a free variable, by applying CD0,
we have

∃s′ � sP (s′) ∨ ∀y P (s ∗ 〈y〉).
By our assumption, we have ∃s′ � sP (s′) ∨ P (s), and hence P ′(s) follows.

Applying MBI0∗, we have P ′(〈 〉), and hence P (〈 〉). ��
Theorem 9. BI0 is equivalent to MBI0 plus CD0 over EL0.

Proof. Immediate from Lemmas 6 and 8. ��
Remark 10. The decomposition of BI0 into MBI0 and CD0 in Theorem9 is
proper in the sense that MBI0 is not provable in EL+ CD0 (even in EL+ LEM)
and CD0 (already LPO) is not provable in EL + MBI0 (see e.g. [10]).

It is known that MBI0 is intuitionistically derivable from DBI0 together with
some continuity axiom (see [17, Chapter 4, Section 8.13, Proposition (ii)]) which
is inconsistent with classical logic. As long as the author knows, however, it is
open how much amount of classical logic is required for deriving MBI0 from DBI0

(or DBI0∗). On the other hand, by slightly modifying the proof of Proposition 21
below, we have that DBI0∗ is provable in EL0 + MP + AC0,0.

240 M. Fujiwara

Remark 11. The result corresponding to Theorem9 is briefly mentioned in the
context of sheaf models [5, pp. 287–288].

3 On Σ0
1 Restrictions of Bar Induction

Definition 12.

– Σ0
1 is the class of formulas of the form ∃z Qqf where Qqf is quantifier-free.

– Σ0
1
N is the class of formulas of the form ¬¬∃z Qqf where Qqf is quantifier-free.

Here Qqf may contain free variables other than z as parameters.

In this section, we consider the restricted bar induction where the side-
predicate Q is in Σ0

1. In his intuitionistic mathematics, Brouwer used bar induc-
tion to derive so-called fan theorem, which is exactly the principle used to derive
many mathematical theorems. In particular, one can straightforwardly see that
Σ0

1-MBI0∗ (or even (Full,Σ0
1)-DBI0) derives fan theorem for binary trees FANKL

(see [12, Chapter 12]), which is actually sufficient to derive many mathematical
theorems. On the other hand, it is well-known in classical reverse mathematics
that subsystem ACA0 (see [15]) of second-order arithmetic is sufficient to prove
many theorems in ordinary (non-set-theoretic) mathematics. As mentioned in
[7, Section 1], the negative translation (Π0

1-AC0,0)N of Π0
1-AC0,0:

∀α(∀x∃y∀z α(x, y, z) = 0 → ∃β∀x, z α(x, β(x), z) = 0)

is the key principle of the intuitionistic system which interprets ACA0 by the
negative translation (see e.g. [16, Section 1.10] or [12, Chapter 10]). Therefore,
it is presumable that there is some connection between (Π0

1-AC0,0)N and the
restrictions of bar induction where the side-predicate Q is in Σ0

1. In the following,
we investigate the precise relation between them. It should be a contribution to
a foundational issue on Brouwer’s mathematics from the modern viewpoint.
As a by-product, one can reduce the consistency of ACA0 into that of a semi-
intuitionistic system with the restricted bar induction where the side-predicate
Q is in Σ0

1
N (see Corollary 18).

Definition 13. The following are the principles used in this section.

¬¬Π0
1-AC0,0: ∀α¬¬(∀x∃y∀z α(x, y, z) = 0 → ∃β∀x, z α(x, β(x), z) = 0).

Σ0
2-DNS0: ∀α(∀x¬¬∃y∀z α(x, y, z) = 0 → ¬¬∀x∃y∀z α(x, y, z) = 0).

Σ0
1-DNS0: ∀α(∀x¬¬∃y α(x, y) = 0 → ¬¬∀x∃y α(x, y) = 0).

MP (= Σ0
1-DNE): ∀α(¬¬∃xα(x) = 0 → ∃xα(x) = 0).

Σ0
1-DNS1: ∀α¬¬∃xAqf(α, x) → ¬¬∀α∃xAqf(α, x),

where Aqf may contain free variables other than α and x as parameters.

Fact 14. The following hold over EL0:

1. MP implies Σ0
1-DNS1.

2. Σ0
1-DNS1 implies Σ0

1-DNS0.

Bar Induction and Restricted Classical Logic 241

3. Σ0
2-DNS0 implies Σ0

1-DNS0.

We first present a simple decomposition result of the negative translation
(Π0

1-AC0,0)N of Π0
1-AC0,0, which is classically equivalent to the arithmetical com-

prehension axiom ACA (see [12, Section 11.3]).

Proposition 15. The negative translation (Π0
1-AC0,0)N of Π0

1-AC0,0 is equiva-
lent to ¬¬Π0

1-AC0,0 plus Σ0
2-DNS0 over EL0.

Proof. Note that the negative translation (Π0
1-AC0,0)N of Π0

1-AC0,0 is (intuition-
istically equivalent to)

∀α(∀x¬¬∃y∀z α(x, y, z) = 0 → ¬¬∃β∀x, z α(x, β(x), z) = 0).

Since ¬¬Π0
1-AC0,0 is intuitionistically equivalent to

∀α(∀x∃y∀z α(x, y, z) = 0 → ¬¬∃β∀x, z α(x, β(x), z) = 0),

it is straightforward to see the equivalence. ��
In the following, we show some equivalences between (Π0

1-AC0,0)N and bar
induction restricted to Σ0

1 side-predicates. For one direction, we use the idea
of Ferreira’s elegant proof of the fact that the numerical double negation shift
principle is derivable from MBI0 together with the characteristic principles of
the Dialectica interpretation (see [4]). Another direction is shown by carefully
inspecting the proof of bar induction with the use of classical logic.

Proposition 16. EL0 + Σ0
1-DNS1 + Σ0

1
N-MBI0∗ � (Π0

1-AC0,0)N.

Proof. This is exactly an imitation of the essential part of the proof of the
main theorem in [4]. Recall that (Π0

1-AC0,0)N is intuitionistically equivalent to
∀α(∀x¬¬∃y∀z α(x, y, z) = 0 → ¬¬∃β∀x, z α(x, β(x), z) = 0).

We reason informally in EL0 + Σ0
1-DNS1 + Σ0

1
N-MBI0∗. Fix α and assume

∀x¬¬∃y∀z α(x, y, z) = 0 (1)

and
¬∃β∀x, z α(x, β(x), z) = 0 (2)

to obtain a contradiction. Let P (s) :≡ ¬¬∃i < |s|∃z¬α(i, si, z) = 0. Then P (s) is
equivalent (over EL0) to a formula in Σ0

1
N and ¬P (〈 〉) trivially holds. In addition,

P is monotone obviously. Therefore, by Σ0
1
N-MBI0∗, it suffices to show the double

negations of the conditions (i) and (iv) (for this P in question) in Definition 1.
We first show ¬¬(i). By (2), we have ∀β¬¬∃x, z¬α(x, β(x), z) = 0 straight-

forwardly. Then, applying Σ0
1-DNS1, we have ¬¬∀β∃x, z¬α(x, β(x), z) = 0, and

hence ¬¬∀β∃x∃i < x∃z¬α(i, β(i), z) = 0. Thus obtain ∀β∃xP (β̄x).
In the following, we show (iv). Let ∀yP (s ∗ 〈y〉), namely,

∀y¬¬(∃i < |s|∃z¬α(i, si, z) = 0 ∨ ∃z¬α(|s|, y, z) = 0) (3)

242 M. Fujiwara

holds. By (1), we have ¬¬∃y∀z α(|s|, y, z) = 0, which is equivalent to

¬∀y¬¬∃z¬α(|s|, y, z) = 0 (4)

By (3) and (4), we have ¬¬∃i < |s|∃z¬α(i, si, z) = 0, namely, P (s). ��

Proposition 17. EL0 + (Full,Σ0
1
N)-DBI0 � Σ0

1
N-MBI0∗.

Proof. Assume P (s) :≡ Q(s) :≡ ¬¬∃xPqf(x, s) (where Pqf(x, s) is quantifier-
free) in Σ0

1
N satisfy (i), (ii), and (iv) in Definition 1. Define P ′(s) as

¬¬∃x < |s|Pqf(x, s).

Since P satisfies the monotonicity condition (ii) as well as the condition (i), it is
straightforward to show that P ′ satisfies (i), namely, ∀α∃xP ′(ᾱx). In addition,
since the existential quantifier on x is bounded in P ′,

(ii)′ : ∀s(P (s′) ∨ ¬P (s′))

is provable in EL0 (see e.g. [14] or [6]). Furthermore, P ′ and Q trivially satisfy
(iii) in Definition 1. Applying (Full,Σ0

1
N)-DBI0 to P ′ and Q ∈ Σ0

1
N, we have

Q(〈 〉). ��
Corollary 18. The consistency of ACA0 is reduced to that of EL0 +Σ0

1-DNS1 +
(Full,Σ0

1
N)-DBI0.

Proof. By Propositions 17 and 16. ��
Remark 19. Recently, Nemoto and Sato showed in [14] that the consistency of
ACA0 is reduced to that of EL−

0 + (Full,Σ0
1)-DBI0 (where EL−

0 is a weakening of
EL0). On the other hand, our proofs of Propositions 17 and 16 seem to show that
it is reduced to EL−

0 + Σ0
1-DNS1 + (Full,Σ0

1
N)-DBI0 rather than Corollary 18.

Lemma 20. EL0 + Σ0
1-DNS0 � Π0

1-IND where Π0
1-IND denotes the induction

scheme for formulas of Π0
1 form:

∀yAqf (0, y) ∧ ∀x(∀yAqf(x, y) → ∀yAqf(x + 1, y)) → ∀x∀yAqf(x, y),

where Aqf is a quantifier-free formula possibly containing other free-variables as
parameters.

Proof. We reason informally in EL0 + Σ0
1-DNS0. Assume ∀yAqf(0, y) and

∀x(∀yAqf(x, y) → ∀yAqf(x + 1, y)) to show ¬∃x, y¬Aqf(x, y), which is equiv-
alent to ∀x∀yAqf(x, y).

Let x′, y′ satisfy ¬Aqf(x′, y′). By the second assumption, it is straightforward
to have

∀x, y¬¬∃z(¬Aqf(x + 1, y) → ¬Aqf(x, z)).

Bar Induction and Restricted Classical Logic 243

Using Σ0
1-DNS0, we have ¬¬∀x, y∃z(¬Aqf(x + 1, y) → ¬Aqf(x, z)), and hence,

¬¬∃β∀x, y(¬Aqf(x + 1, y) → ¬Aqf(x, β(x, y))) (5)

by QF-AC0,0 (contained in EL0).
Reason inside the double negations and fix β in (5). Define γ by primitive

recursion as {
γ(0) := y′

γ(i + 1) := β(x′−̇(i + 1), γ(i)).

We claim ∀i ≤ x′¬Aqf(x′−̇i, γ(i)) by (quantifier-free) induction on i. The initial
case follows from our definitions. For the induction step, assume i + 1 ≤ x′. By
the induction hypothesis, we have ¬Aqf(x′−̇i, γ(i)). Since x′−̇(i+1) ≥ 0, by (5),
we have ¬Aqf(x′−̇(i+1), β(x′−̇(i+1), γ(i))), and hence ¬Aqf(x′−̇(i+1), γ(i+1)).
This completes the proof of the claim.

Thus we have ¬¬∀i ≤ x′¬Aqf(x′−̇i, γ(i)). Instantiating i with x′, we have
¬Aqf(0, γ(x′)), which contradicts our first assumption. ��

Proposition 21. EL0 + Σ0
2-DNS0 + ¬¬Π0

1-AC0,0 � Σ0
1
N-BI0∗.

Proof. We reason informally in EL0 + Σ0
2-DNS0 + ¬¬Π0

1-AC0,0. Fix a predicate
P (s) in Σ0

1
N. Assume (i), (iv) in Definition 1. Since P is in Σ0

1
N, it suffices to

show ¬¬P (〈 〉). In the following, we assume ¬P (〈 〉) and show ¬(i). Since ¬(i)
follows from ¬∀α¬¬∃xP (ᾱx) which is intuitionistically equivalent to

¬¬∃α∀x¬P (ᾱx), (6)

our goal is to show (6). By (iv), we have ∀s(¬P (s) → ¬∀xP (s ∗ 〈x〉)), which
is equivalent (since P is in Σ0

1
N) to ∀s(¬P (s) → ¬¬∃x¬P (s ∗ 〈x〉)). Since

∀s¬¬(P (s) ∨ ¬P (s)) is provable in EL0, we have

∀s¬¬∃x(¬P (s) → ¬P (s ∗ 〈x〉)). (7)

Since ∀s, x¬¬(P (s ∗ 〈x〉) ∨ ¬P (s ∗ 〈x〉)) is provable in EL0, it is not hard to see
(7) is equivalent to

∀s¬¬∃x∃y∀z Rqf(s, x, y, z)

for some quantifier-free Rqf(s, x, y, z). Then by using Σ0
2-DNS0 and ¬¬Π0

1-AC0,0,
we have

¬¬∃β∀s(¬P (s) → ¬P (s ∗ 〈β(s)〉)). (8)

Reason inside the double negations and fix β in (8). Define α : N → N(set of the
codes for finite sequences) as α(0) := 〈 〉 and α(i + 1) := α(i) ∗ 〈β(α(i))〉. From
our assumption ¬P (〈 〉) and (8), we have ∀x¬P (ᾱx) by induction on x, which is
guaranteed by Lemma 20 and Fact 14.(3) since P is in Σ0

1
N. Thus we have (6).��

Theorem 22. The following are pairwise equivalent over EL0 + Σ0
1-DNS1:

244 M. Fujiwara

1. (Full,Σ0
1
N)-BI0;

2. (Full,Σ0
1
N)-MBI0;

3. (Full,Σ0
1
N)-DBI0;

4. Σ0
1
N-BI0∗;

5. Σ0
1
N-MBI0∗;

6. (Π0
1-AC0,0)N;

7. ¬¬Π0
1-AC0,0 plus Σ0

2-DNS0.

Proof. The equivalence between 1 and 4 is from Fact 4. Obviously, 1 implies 2
and also 3. In addition, 2 implies 5, and 3 implies 5 by Proposition 17. On the
other hand, 5 implies 6 by Proposition 16 (using Σ0

1-DNS1). The equivalence
between 6 and 7 is from Proposition 15. Finally, 7 implies 4 by Proposition 21. ��
Corollary 23. All of (Full,Σ0

1)-BI0, (Full,Σ0
1)-MBI0, (Full,Σ0

1)-DBI0, Σ0
1-BI0∗,

Σ0
1-MBI0∗, (Π0

1-AC0,0)N, and ¬¬Π0
1-AC0,0 plus Σ0

2-DNS0 are pairwise equivalent
over EL0 + MP.

Proof. In the presence of MP, every formula in Σ0
1 is equivalent to its double

negation, which is in Σ0
1
N. On the other hand, Σ0

1-DNS1 is provable in EL0 +MP
by Fact 14.(1). Therefore, the corollary follows from Theorem22. ��
Remark 24. Note that ¬¬Π0

1-AC0,0 is not provable in EL + MP + Σ0
2-DNS0

(even in EL + LEM) and Σ0
2-DNS0 is not provable in EL + MP + ¬¬Π0

1-AC0,0

(see [7]). That is to say, the decomposition of (Π0
1-AC0,0)N into ¬¬Π0

1-AC0,0

and Σ0
2-DNS0 (Proposition 21) is proper still in the presence of MP.

A natural question is whether MP is necessary for the equivalence in Corol-
lary 23. The following lemma reveals that MP is necessary for proving Σ0

1-BI0∗
from (Π0

1-AC0,0)N while it is not the case for Σ0
1
N-BI0∗ as shown in Proposition 21.

The proof is a modification of the discussion in [17, Chapter 4, Section 8.18]

Lemma 25. MP is provable in EL0 + Σ0
1-BI0∗.

Proof. Fix α and assume ¬¬∃xα(x) = 0 (equivalently ¬∀x¬α(x) = 0). Let

P (s) :≡ (|s| > 0 ∧ ¬α(s0) = 0) ∨ (|s| = 0 ∧ ∃xα(x) = 0)

For the condition (i) in Definition 1, fix γ. Now α(γ(0)) = 0 or α(γ(0)) = 0. In the
former case, we have P (γ̄0). In the latter case, we have P (γ̄1). For the condition
(iv) in Definition 1, assume ∀y P (s ∗ 〈y〉). If |s| > 0, P (s) follows immediately.
Let |s| = 0. Then ∀y¬α(y) = 0 follows from ∀y P (s ∗ 〈y〉), which contradicts our
assumption, and hence ∃xα(x) = 0 follows. Thus we have P (s).

Since P (s) is equivalent to a formula in Σ0
1, applying Σ0

1-BI0∗, we have P (〈 〉),
and hence ∃xα(x) = 0. ��
Theorem 26. The following are pairwise equivalent over EL0:

Bar Induction and Restricted Classical Logic 245

1. (Full,Σ0
1)-BI0;

2. (Full,Σ0
1)-MBI0 plus MP;

3. (Full,Σ0
1)-DBI0 plus MP;

4. Σ0
1-BI0∗;

5. Σ0
1-MBI0∗ plus MP;

6. (Π0
1-AC0,0)N plus MP;

7. ¬¬Π0
1-AC0,0 plus Σ0

2-DNS0 plus MP.

Proof. Immediate from Corollary 23 and Lemma 25. ��
Remark 27. Since ¬¬Π0

1-AC0,0 + Σ0
2-DNS0 has a modified realizability inter-

pretation in Gödel’s T (verifiably in a classical system), it follows that MP is not
provable in EL + ¬¬Π0

1-AC0,0 + Σ0
2-DNS0. Combining this fact with Remark 24,

one can see that ¬¬Π0
1-AC0,0, Σ0

2-DNS0 and MP are pairwise independent over
EL.

Since Π0
1-AC0,0 is classically equivalent to the arithmetical comprehension

axiom ACA (in the function-based language) as mentioned in [12, Section 11.3],
by Corollary 23, we obtain the following result for classical reverse mathematics
[15].

Corollary 28. All of (Full,Σ0
1)-BI0, (Full,Σ0

1)-MBI0, (Full,Σ0
1)-DBI0,

Σ0
1-BI0∗, Σ0

1-MBI0∗, and Σ0
1-DBI0∗ are equivalent to ACA over RCA0.

The equivalence between 1 and 2 in Theorem 26 can be seen as a result
corresponding to Theorem9 when the side-predicates are restricted to formulas
in Σ0

1. If one wants to show just the equivalence, however, there is a simpler
proof without going through (Π0

1-AC0,0)N:

Proposition 29. EL0 + Σ0
1-DNS0 + Σ0

1
N-MBI0∗ � Σ0

1
N-BI0∗.

Proof. The idea is similar to that for the proof of Lemma8. We reason informally
in EL0 + Σ0

1-DNS0 + Σ0
1
N-MBI0∗. Assume that P (s)(≡ Q(s)) :≡ ¬¬R(s) in Σ0

1
N

(namely, R(s) is in Σ0
1) satisfies the conditions (i) and (iv) in Definition 1. Define

P ′(s) as
¬¬∃s′ � sR(s′).

Since R is in Σ0
1, it is straightforward to show that there is a formula in Σ0

1
N

which is equivalent (over EL0) to P ′. P ′ obviously satisfies (ii) in Definition 1.
Since P satisfies (i), P ′ also satisfies (i). In the following, we show that P ′

satisfies (iv). Assume ∀y P ′(s ∗ 〈y〉), namely, ∀y¬¬∃s′ � s ∗ 〈y〉R(s′). By the
decidability of the length of finite sequences, we have

∀y¬¬ (∃s′ � sR(s′) ∨ R(s ∗ 〈y〉)) .

Since there is a formula in Σ0
1 which is equivalent (over EL0) to ∃s′ � sR(s′) ∨

R(s ∗ 〈y〉), by Σ0
1-DNS0, we have

¬¬∀y (∃s′ � sR(s′) ∨ R(s ∗ 〈y〉)) . (9)

246 M. Fujiwara

Since ∀s¬¬ (∃s′ � sR(s′) ∨ ¬∃s′ � sR(s′)) is provable in EL0, one can obtain

¬¬ (∃s′ � sR(s′) ∨ ∀y R(s ∗ 〈y〉)) .

from (9). Since ¬¬R(s) satisfies (iv), we have

¬¬ (∃s′ � sR(s′) ∨ ¬¬R(s)) .

Then we have ¬¬ (∃s′ � sR(s′) ∨ R(s)) , which is equivalent to P ′(s).
Applying Σ0

1
N-MBI0∗ to P ′, we have P ′(〈 〉), and hence, P (〈 〉). ��

Corollary 30. EL0 + MP + Σ0
1-MBI0∗ � Σ0

1-BI0∗.

Proof. In the presence of MP, every formula in Σ0
1 is equivalent to its double

negation, which is in Σ0
1
N. On the other hand, Σ0

1-DNS0 is provable in EL0 +MP
by Fact 14. Therefore, the corollary follows from Proposition 29. ��
Corollary 31. (Full,Σ0

1)-BI0 and (Full,Σ0
1)-MBI0 plus MP are equivalent over

EL0.

Proof. By Corollary 30, Fact 4, and Lemma 25. ��

Acknowledgment. The author thanks to Tatsuji Kawai for providing an important
information on a previous work mentioned in Remark 11. The author is grateful also
to Ryota Akiyoshi, Hajime Ishihara, Ulrich Kohlenbach and Takako Nemoto for help-
ful discussion. A part of this work had been carried out while the author had vis-
ited Ludwig-Maximilians-Universität München in February 2017. The visit was hosted
by Helmut Schwichtenberg and supported by Core-to-Core Program (A. Advanced
Research Networks). Another part of this work had been carried out while the author
had visited the Hausdorff Research Institute for Mathematics (HIM), University of
Bonn, for their trimester program “Types, Sets and Constructions” in July and August
2018. The author thanks the institute for their support and hospitality. This work is
also supported by Waseda University Grant for Special Research Projects 2016S-173
and 2018K-461.

References

1. Ardeshir, M., Ruitenburg, W., Salehi, S.: Intuitionistic axiomatizations for
bounded extension kripke models. Ann. Pure Appl. Log. 124(1), 267–285 (2003).
https://doi.org/10.1016/S0168-0072(03)00058-7

2. Berger, J., Ishihara, H., Kihara, T., Nemoto, T.: The binary expansion and the
intermediate value theorem in constructive reverse mathematics. Arch. Math. Log.
58(1), 203–217 (2019). https://doi.org/10.1007/s00153-018-0627-2

3. Dorais, F.G.: Classical consequences of continuous choice principles from intuition-
istic analysis. Notre Dame J. Form. Log. 55(1), 25–39 (2014). https://doi.org/10.
1215/00294527-2377860

4. Ferreira, F.: A short note on Spector’s proof of consistency of analysis. In: Cooper,
S.B., Dawar, A., Löwe, B. (eds.) CiE 2012. LNCS, vol. 7318, pp. 222–227. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-30870-3 22

https://doi.org/10.1016/S0168-0072(03)00058-7
https://doi.org/10.1007/s00153-018-0627-2
https://doi.org/10.1215/00294527-2377860
https://doi.org/10.1215/00294527-2377860
https://doi.org/10.1007/978-3-642-30870-3_22

Bar Induction and Restricted Classical Logic 247

5. Fourman, M.P., Hyland, J.M.E.: Sheaf models for analysis. In: Fourman, M., Mul-
vey, C., Scott, D. (eds.) Applications of Sheaves. LNM, vol. 753, pp. 280–301.
Springer, Heidelberg (1979). https://doi.org/10.1007/BFb0061823

6. Fujiwara, M.: Intuitionistic and uniform provability in reverse mathematics. Ph.D.
thesis, Tohoku University (2015)

7. Fujiwara, M., Kohlenbach, U.: Interrelation between weak fragments of double
negation shift and related principles. J. Symb. Log. 83(3), 991–1012 (2018).
https://doi.org/10.1017/jsl.2017.63

8. Görnemann, S.: A logic stronger than intuitionism. J. Symb. Log. 36(2), 249–261
(1971). https://doi.org/10.2307/2270260

9. Ishihara, H.: Constructive reverse mathematics: compactness properties. In: From
Sets and Types to Topology and Analysis. Oxford Logic Guides, vol. 48, pp. 245–
267. Oxford University Press, Oxford (2005). https://doi.org/10.1093/acprof:oso/
9780198566519.003.0016

10. Ishihara, H., Nemoto, T.: On the independence of premiss axiom and rule, preprint.
http://www.jaist.ac.jp/∼t-nemoto/ipr2.pdf

11. Kleene, S.C., Vesley, R.E.: The Foundations of Intuitionistic Mathematics. North-
Holland Publishing Co., Amsterdam (1965)

12. Kohlenbach, U.: Applied Proof Theory: Proof Interpretations and their Use in
Mathematics. Springer Monographs in Mathematics. Springer, Berlin (2008).
https://doi.org/10.1007/978-3-540-77533-1

13. Kreisel, G., Howard, W.A.: Transfinite induction and bar induction of types zero
and one, and the role of continuity in intuitionistic analysis. J. Symb. Log. 31(3),
325–358 (1966). https://doi.org/10.2307/2270450

14. Nemoto, T., Sato, K.: A marriage of Brouwer’s intuitionism and Hilbert’s finitism
I: Arithmetic. J. Symb. Log. (to appear)

15. Simpson, S.G.: Subsystems of Second Order Arithmetic. Perspectives in Logic, 2nd
edn. Cambridge University Press, Cambridge (2009)

16. Troelstra, A.S. (ed.): Metamathematical Investigation of Intuitionistic Arithmetic
and Analysis. Lecture Notes in Mathematics, vol. 344. Springer, Berlin (1973)

17. Troelstra, A.S., van Dalen, D.: Constructivism in Mathematics, An Introduction,
Vol. I. Studies in Logic and the Foundations of Mathematics, vol. 121. North
Holland, Amsterdam (1988)

https://doi.org/10.1007/BFb0061823
https://doi.org/10.1017/jsl.2017.63
https://doi.org/10.2307/2270260
https://doi.org/10.1093/acprof:oso/9780198566519.003.0016
https://doi.org/10.1093/acprof:oso/9780198566519.003.0016
http://www.jaist.ac.jp/~t-nemoto/ipr2.pdf
https://doi.org/10.1007/978-3-540-77533-1
https://doi.org/10.2307/2270450

Uniform Labelled Calculi for Conditional
and Counterfactual Logics

Marianna Girlando1,2(B), Sara Negri2, and Giorgio Sbardolini3

1 Aix Marseille Univ, Université de Toulon, CNRS, LIS, Marseille, France
marianna.girlando@univ-amu.fr

2 University of Helsinki, Helsinki, Finland
sara.negri@helsinki.fi

3 The Ohio State University, Columbus, USA
sbardolini.1@osu.edu

Abstract. Lewis’s counterfactual logics are a class of conditional logics
that are defined as extensions of classical propositional logic with a two-
place modal operator expressing conditionality. Labelled proof systems
are proposed here that capture in a modular way Burgess’s preferential
conditional logic PCL, Lewis’s counterfactual logic V, and their exten-
sions. The calculi are based on preferential models, a uniform semantics
for conditional logics introduced by Lewis. The calculi are analytic, and
their completeness is proved by means of countermodel construction.
Due to termination in root-first proof search, the calculi also provide a
decision procedure for the logics.

Keywords: Conditional logics · Counterfactual logics · Proof theory ·
Preferential models · Labelled calculi

1 Introduction

In Stalnaker’s and Lewis’s approach, conditional logics are defined as extensions
of classical propositional logic by means of a two-place modal operator, the
conditional, here denoted as >. This intensional operator is intended to express
a more fine-grained notion of conditionality than material implication.

Lewis introduced counterfactual conditional logics to extend formal reason-
ing to counterfactual sentences, i.e., statements of the form If Trump hadn’t won
the elections, Clinton would have been president. Other than counterfactual log-
ics (system V and its extensions) conditional logics include a weaker family of
systems: in this paper, we consider preferential conditional logic PCL and all its
extensions. These latter systems have received attention in artificial intelligence
since the conditional operator can be interpreted as expressing non monotonic

This work was partially supported by the Academy of Finland research project no.
1308664 and by the project TICAMORE ANR-16-CE91-0002-01.

c© Springer-Verlag GmbH Germany, part of Springer Nature 2019
R. Iemhoff et al. (Eds.): WoLLIC 2019, LNCS 11541, pp. 248–263, 2019.
https://doi.org/10.1007/978-3-662-59533-6_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-59533-6_16&domain=pdf
https://doi.org/10.1007/978-3-662-59533-6_16

Uniform Labelled Calculi for Conditional and Counterfactual Logics 249

inferences, i.e., sentences of the form Normally, cats are afraid of dogs. In partic-
ular, the fragment of PCL without nesting of the conditional operator is equiva-
lent to system P of [14]. There are other applications of conditional logics in the
fields of knowledge base update [13], causality [8] and, in an epistemic setting,
belief revision [4,12].

The semantics of conditional logics is defined in terms of possible world struc-
tures in which, intuitively, a formula A > B is true at world x if B is true in the
set of worlds at which A is true that are more similar, in a sense to be formalized,
to x. Preferential models were proposed by Lewis and studied, among others,
by Burgess, who proved completeness of PCL with respect to these models [5].
Halpern and Friedman extended the proof to extensions of PCL [7]. On a formal
level, these models explicitly employ the notion of comparative similarity among
worlds: they are defined by adding to a set of possible worlds W a family of
subsets Wx for each x ∈ W , representing the worlds accessible from x, and a
binary relation �x, expressing similarity among worlds. Thus, y �x z means
world y is at least as similar as z to world x.

In this article, we define a family of modular labelled calculi G3P∗ for con-
ditional logic PCL and all its extensions, including counterfactual logics, i.e., V

and its extensions. The calculi are based on preferential semantics: following the
well-established methodology proposed by the second author, the calculi import
into the sequent calculus the semantic elements of preferential models by means
of syntactic elements (labels and relational symbols).

In [20], the second and third author presented a labelled calculus based on
ternary relations for a system of Lewis’s conditional logic VC (V to which the
condition of Centering is added). The present article stems form a comment in
Weiss’s thesis [22]: the author observes, correctly, that Negri and Sbardolini’s
proof system is actually adequate to capture the stronger system VCU (VC +
Uniformity). This led us to an analysis of labelled calculi based on preferential
models. It turns out that it is possible to define modular proof systems on the
basis of these natural classes of models.

The article is organised as follows. In Sect. 2, conditional logics and preferen-
tial models are introduced. Section 3 presents the rules of the calculi G3P∗ and
Sect. 4 their structural properties. In Sect. 5, we define a proof search strategy
that ensures termination in root-first proof search for the systems without the
semantic conditions of Uniformity and Absoluteness. This allows to prove com-
pleteness of the calculi by extracting a countermodel from failed proof search.
The conclusion (Sect. 6) gives a comparison of the calculi presented in this article
with other proof systems for conditional logics found in the literature.

2 Conditional Logics and Preferential Models

The language of conditional logics is defined by means of the following grammar,
for p propositional variable, A,B ∈ Lcond, and > the conditional operator:

Lcond = p | ⊥ | A ∧ B | A ∨ B | A → B | A > B

250 M. Girlando et al.

An axiomatization of PCL is defined adding to the axioms and inference rules
of classical propositional logic the following:
RCEA A↔B

(A>C)↔(B>C) RCK A→B
(C>A)→(C>B)

R-And (A > B) ∧ (A > C) → (A > (B ∧ C)) ID A > A

CM (A > B) ∧ (A > C) → ((A ∧ B) > C) RT (A > B) ∧ ((A ∧ B) > C) → (A > C)
OR (A > C) ∧ (B > C) → ((A ∨ B) > C)

An axiomatization of Lewis’s logic V is obtained by adding axiom CV to PCL.
Extensions of both PCL and V are defined by adding the axioms for normality,
total reflexivity, weak centering, centering, uniformity and absoluteness (denoted
below by the corresponding initials). The family of systems is represented in
Fig. 1.

CV ((A > C) ∧ ¬(A > ¬B)) → ((A ∧ B) > C)

N ¬(� > ⊥) T A → ¬(A > ⊥)

W (A > B) → (A → B) C (A ∧ B) → (A > B)

U1 (¬A > ⊥) → ¬(¬A > ⊥) > ⊥ U2 ¬(A > ⊥) → ((A > ⊥) > ⊥)

A1 (A > B) → (C > (A > B)) A2 ¬(A > B) → (C > ¬(A > B))

VC

PCLC

PCLW

PCLT

PCLN

PCL

PCLUN

PCLTU

PCLWU PCLNA

PCLTA

PCLWA

PCLCU

PCLCA

PCLU

PCLA

V

VCA

VA

VU

VN

VT

VW

VCU

VNU

VTU

VWU VNA

VTA

VWA

Fig. 1. The conditional logics cube

We use preferential models as the semantics for the conditional logics cube.
Preferential models were studied, among others, by Burgess, who proved the
adequacy of this class of models with respect to preferential logic [5].

Definition 1. A preferential model 〈W, {Wx}x∈W , {�x}x∈W , � �〉 consists of a
non-empty set of worlds, W , and for every world x ∈ W , a set Wx of worlds
accessible from it, and a binary relation �x over W . The propositional evaluation

Uniform Labelled Calculi for Conditional and Counterfactual Logics 251

� � : Atm → P(W) selects the worlds at which an atomic formula is true. The
relation �x satisfies the following properties:

– Reflexivity, for all w ∈ W , w �x w, and
– Transitivity, for all w, y, z ∈ W , if w �x y and y �x z then w �x z.

The truth condition for the conditional operator within preferential models is:

x � A > B ≡ for all z ∈ Wx, if z � A, then there exists y ∈ Wx such that
y �x z, y � A, and for all k ∈ Wx, if k �x y then k � A → B.

Extensions of preferential models are specified by adding conditions on the rela-
tion �x. These models are adequate for the logics in the conditional cube [7].

Definition 2. Extensions of preferential models are defined as follows:

– Normality: For all x ∈ W , Wx is non-empty;
– Total reflexivity: For all x ∈ W it holds that x ∈ Wx;
– Weak centering: For all x ∈ W , for all y ∈ Wx, it holds that x �x y;
– Centering: For all x ∈ W , for all y ∈ Wx, it holds that x �x y and if there is

w ∈ Wx such that for all y ∈ Wx, w �x y, then w = x;
– Uniformity: For all x ∈ W , for all y ∈ Wx it holds that Wy = Wx;
– Absoluteness: Uniformity plus for all w1, w2 ∈ Wx, w1 �x w2 iff w1 �y w2;
– Nesting: For all x ∈ W , for all w1, w2 ∈ Wx, either w1 �x w2 or w2 �x w1.

Some of the above conditions are incremental: total reflexivity implies normality,
weak centering implies total reflexivity, centering implies weak centering and
absoluteness implies uniformity.

3 Labelled Proof Systems

In this section we shall define a family of modular calculi for the conditional
cube. To this aim, we enrich our language with a sets of labels x, y, z, . . . denoting
worlds in preferential models. Furthermore, we allow the following expressions to
occur in sequents: labelled formulas x : A, denoting x � A, and relational atoms
y ∈ Wx, y �x z and x = y, having the same meaning as their semantic counter-
parts. Following [20], we introduce an indexed modal operator and reformulate
the truth condition of A > B in terms of this operator:

w � �xA ≡ for all k ∈ Wx, if k �x w then k � A

(∗)x � A > B ≡ for all z ∈ Wx, if z � A, then there exists y ∈ Wx such that
y �x z, y � A, and y � �x(A → B).

Following [19], we introduce an indexed conditional operator to treat the second
disjunct of the truth condition of the conditional operator:

Cz
x(A,B) ≡ there exists y ∈ Wx such that y �x z, y � A and y � �x(A → B)

252 M. Girlando et al.

Thus, the truth condition for the conditional operator can be stated as follows:

(∗∗)x � A > B ≡ for all z ∈ Wx, if z � A, then Cz
x(A,B).

Observe that the extension of the language is only at the level of the labelled rules
and produces, in the course of proof search, only formulas of a certain specific
form. Formulas containing the new operators never occur as proper subformulas
of other formulas and an indexed modality can have only an implication in its
scope.

The rules of the labelled proof systems are defined by analysing the truth
conditions of the above operators (Fig. 2). Rules Ref and Tr express reflexivity
and transitivity of �x; rule Ref= and Repl express reflexivity of equality and the
property of replacement of equals. We call G3P the calculus for PCL; calculi for
extensions are defined in a modular way by adding to PCL the rules correspond-
ing to the semantic properties of �x. We denote by G3P∗ the whole family of
calculi. The condition of freshness of a variable y in a rule is indicated by (y!).

In order to prove soundness of the rules of the calculus we have to provide a
definition of realization in a preferential model. The definition uses the operators
of the extended language, and to guarantee its non-circularity we need to define
a notion of weight of formulas:

Definition 3. Given a labelled formula F of the form x : A, let the pure part of
F be defined as p(x : A) = A, and the labelled part as l(x : A) = l(x : �kA) = x.
The weight of a labelled formula is an ordered pair 〈w(p(F)),w(l(F))〉 where

– for x world label, w(x) = 0
– w(p) = w(⊥) = 1; w(A◦B) = w(A)+w(B)+1, for ◦ conjunction, disjunction

or implication; w(x : �kA) = w(A) + 1; w(Cz
x(A,B)) = w(A) + w(B) + 3;

w(A > B) = w(A) + w(B) + 4.

Definition 4 (Realization). Given a model M = 〈W, {Wx}x∈W , {�x

}x∈W , � �〉, and a set P of world labels, a P -realization over M is a function
ρ : P → W that assigns to each world label x ∈ P an element ρ(x) ∈ W . Sat-
isfiability of a formula F ∈ Lcond is defined by cases as follows: M �ρ y ∈ Wx

if ρ(y) ∈ Wρ(x); M �ρ y �x z if ρ(y) �ρ(x) ρ(z); M �ρ x : p if ρ(x) ∈ �p�,
for p atomic;1 M �ρ w : �xA if for all y ∈ Wρ(x), if y �ρ(x) ρ(w), then
y � A; M �ρ Cz

x(A,B) if there exists y ∈ Wρ(x) such that y �x ρ(z), y � A
and y � �x(A → B); M �ρ x : A > B if for all k ∈ Wρ(x), if k � A, then
k � Ck

x(A,B). A sequent Γ ⇒ Δ is valid in M under the ρ realization iff when-
ever M �ρ F for all F ∈ Γ , then M �ρ G for some G ∈ Δ. A sequent is valid
in a class of preferential models if it is valid under any realization for any model
of that class.

The above definition immediately yields:

1 The definition can be extended to the propositional formulas of the language in the
standard way [17].

Uniform Labelled Calculi for Conditional and Counterfactual Logics 253

Initial sequents
x : p, Γ ⇒ Δ, x : p x : ⊥, Γ ⇒ Δ

Propositional rules (standard)
Conditional rules

k ∈ Wx, k �x w, w : �xA, k : A, Γ ⇒ Δ

k ∈ Wx, k �x w, w : �xA, Γ ⇒ Δ
L�x

k ∈ Wx, k �x w, Γ ⇒ Δ, k : A

Γ ⇒ Δ, w : �xA
R�x(k!)

y ∈ Wx, y �x z, y : A, y : �x(A → B), Γ ⇒ Δ

Cz
x(A, B), Γ ⇒ Δ

LC(y!)

y �x z, y ∈ Wx, z ∈ Wx, Γ ⇒ Δ, Cz
x(A, B), y : A y �x z, y ∈ Wx, z ∈ Wx, Γ ⇒ Δ, Cz

x(A, B), y : �x(A → B)
y �x z, y ∈ Wx, z ∈ Wx, Γ ⇒ Δ, Cz

x(A, B)
RC

z ∈ Wx, x : A > B, Γ ⇒ Δ, z : A z ∈ Wx, x : A > B, Cz
x(A, B), Γ ⇒ Δ

z ∈ Wx, x : A > B, Γ ⇒ Δ
L >

z ∈ Wx, z : A, Γ ⇒ Δ, Cz
x(A, B)

Γ ⇒ Δ, x : A > B
R >(z!)

Relational rules
w �x w, Γ ⇒ Δ

Γ ⇒ Δ
Ref

w �x z, w �x y, y �x z, Γ ⇒ Δ

w �x y, y �x z, Γ ⇒ Δ
Tr

x = x, Γ ⇒ Δ

Γ ⇒ Δ
Ref=

x = y, At(x), At(y), Γ ⇒ Δ

x = y, At(y), Γ ⇒ Δ
Repl

Rules for extensions
y ∈ Wx, Γ ⇒ Δ

Γ ⇒ Δ
N(y!)

x ∈ Wx, Γ ⇒ Δ

Γ ⇒ Δ
T

x �x y, y ∈ Wx, Γ ⇒ Δ

y ∈ Wx, Γ ⇒ Δ
W

x = y, y �x x, y ∈ Wx, Γ ⇒ Δ

y �x x, y ∈ Wx, Γ ⇒ Δ
C

z ∈ Wx, y ∈ Wx, z ∈ Wy, Γ ⇒ Δ

y ∈ Wx, z ∈ Wy, Γ ⇒ Δ
U1

z ∈ Wy, y ∈ Wx, z ∈ Wx, Γ ⇒ Δ

y ∈ Wx, z ∈ Wx, Γ ⇒ Δ
U2

y �x z, y ∈ Wx, z ∈ Wx, Γ ⇒ Δ z �x y, y ∈ Wx, z ∈ Wx, Γ ⇒ Δ

y ∈ Wx, z ∈ Wx, Γ ⇒ Δ
Nes

y �k z, y �x z, Γ ⇒ Δ

y �x z, Γ ⇒ Δ
A

At(y) denotes any atoms of the form y : p, y ∈ Wx, x ∈ Wy, y �x z, x �y z.

G3P = Initial sequents, propositional rules, conditional rules, relational rules
G3PN = G3P + N; G3PT = G3PN + T; G3PW = G3PT +W; G3PC = G3PW + C

G3PU = G3P + U1+ U2; G3PNU/TU/WU/CU = G3PN/T/W/C + U1+ U2

G3PA = G3P + A; G3PNA/TA/WA/CA = G3PN/T/W/C + A

G3PV = G3P + Nes; G3PVN/VT/VW/VCU = G3PN/T/W/C + Nes

G3PVNU/VTU/VWU/VCU = G3PNU/TU/WU/CU + Nes;
G3PVNA/VTA/VWA/VCA = G3PNA/TA/WA/CA + Nes

Fig. 2. Rules of G3P∗

Theorem 1 (Soundness). If a sequent is derivable in G3P∗, then it is valid
in the corresponding class of preferential models.

Remark 1. The sequent calculi of Fig. 2 are fully modular. However, by dropping
the requirement of modularity, it is possible to define simpler versions of the
calculi for some subfamilies of the logics. In systems with uniformity it holds
that for all x ∈ W and y ∈ Wx, Wx = Wy. Thus, we can avoid specifying
the relational atoms y ∈ Wx in the rules (with this reformulation, the rules
of uniformity would become superfluous). Similarly, in logics with absoluteness,
uniformity holds, and moreover w1 �x w2 iff w2 �y w1. Thus, we can avoid
specifying the subscript x in relational atoms y �x z, and the rule of absoluteness
becomes superfluous. Finally, in the presence of nesting the truth condition for
the conditional operator can be stated in a simpler way:

254 M. Girlando et al.

x � A > B ≡ if there exists z ∈ Wx such that z � A, then there exists y ∈ Wx

such that y � A and y � �x(A → B).

Rules based on this truth condition, in addition to the simplification explained
for uniformity, i.e., no relational atoms y ∈ Wx and no rules U1,U2, yield the
calculus proposed in [20], a proof system sound and complete with respect to
the conditional logic VCU.

4 Structural Properties

The height of a derivation is the number of nodes of the longest derivation branch,
minus one. We recall that a rule is height-preserving admissible if whenever its
premiss is derivable, the conclusion is also derivable with no greater derivation
height. A rule is height-preserving invertible if whenever its conclusion is deriv-
able, the premisses are derivable with no greater derivation height. Derivability
with height bounded by n is denoted by �n.

In order to prove admissibility of the structural rules we need a notion of
label substitution given by, for instance, x : A > B[y/x] ≡ y : A > B and
w : �xA[y/x] ≡ w : �yA, extended component-wise to sequents, and a property
of height-preserving substitution: If �n Γ ⇒ Δ, then �n Γ [y/x] ⇒ Δ[y/x].
Admissibility of generalized initial sequents (i.e., sequents of the form x : A,Γ ⇒
Δ,x : A in which A is not necessarily atomic) is shown by induction on the weight
of A. We omit the routine proofs, the details of which are similar to those in [20].

The structural rules of weakening, contraction, and cut of G3P∗ are the
following:

Γ ⇒ Δ
F , Γ ⇒ Δ

WkL
Γ ⇒ Δ

Γ ⇒ Δ,F WkR
F ,F , Γ ⇒ Δ

F , Γ ⇒ Δ
CtrL

Γ ⇒ Δ,F ,F
Γ ⇒ Δ,F CtrR

Γ ⇒ Δ,F F , Γ ′ ⇒ Δ′

Γ, Γ ′ ⇒ Δ,Δ′ cut

where F is a relational atom, a labelled formula, or a formula of the form
Cz

x(A,B). Observe that for WkR, CtrR, and cut we can without loss of generality
omit the case of relational formulas since they never occur in the right-hand side
of sequents. The calculi G3P∗ have the following structural properties:

Theorem 2.

i. All the rules are height-preserving invertible.
ii. The rules of weakening and contraction are height-preserving admissible.
iii. The rule of cut is admissible.

Proof.
i. By induction on the height of the derivation. Invertibility of relational rules,

rules for extensions, L�x, RC and L > immediately follows from admissibility of
weakening. Invertibility of the propositional rules and of R�x is proved as in [17];
invertibility of LC is similar to that of the corresponding rule in [19].

Uniform Labelled Calculi for Conditional and Counterfactual Logics 255

ii. By induction on the height n of the derivation. If n = 0, the premiss of
the contraction rule is an initial sequent, and so is its conclusion. If n > 0, we
look at the last rule (R) applied. If F is not principal in the rule, it suffices to
apply the inductive hypothesis to the premiss of (R), and then (R). If F is the
principal formula of R, or was introduced by R, we distinguish two subcases. If
(R) is a rule in which the principal formula appears also in the premiss apply
the hypothesis to the premiss, and then the rule. If (R) is a rule in which the
active formulas are subformulas of the principal formula, apply invertibility to
the premiss(es) of the rule, then the inductive hypothesis, and (R).

iii. By primary induction on the weight of the cut formula, and secondary
induction on the sum of heights of the derivations of the premisses of cut. As
usual, we proceed with a case distinction according to the last rule applied. If
at least one of the premisses is an initial sequent, the conclusion of cut is also
a sequent, or can be obtained by easy rule permutations. Similarly, if the cut
formula is not principal in the last rule R applied to one of the premiss of cut,
the conclusion of cut can be obtained by permuting the cut upwards on the
premiss of R, and then applying R again. Finally, if the cut formula is principal
in both rules applied to the premisses of cut, some more complex permutations
are needed. Propositional cases can be found in [20]. We show only the case in
which R > and L > are the rules applied to the left and right premiss of cut
respectively. Consider a derivation ending with
y ∈ Wx, y : A,Γ ⇒ Δ,Cy

x(A,B)
Γ ⇒ Δ,x : A > B

R >
z ∈ Wx, x : A > B,Γ ′ ⇒ Δ′, z : A z ∈ Wx, x : A > B,Cy

x(A,B), Γ ′ ⇒ Δ′

z ∈ Wx, x : A > B,Γ ′ ⇒ Δ′ L >

z ∈ Wx, Γ, Γ ′ ⇒ Δ,Δ′ cut

Let D1, D2, D3 be the derivations ending with the topsequents above. The cut
is transformed into four cuts of reduced rank as follows. First we have two
cuts, to topmost of reduced height, the second of reduced weight, where D1[z/y]
denotes the derivation resulting from D1 by application of an height-preserving
substitution:

Γ ⇒ Δ,x : A > B z ∈ Wx, x : A > B,Γ ′ ⇒ Δ′, z : A

z ∈ Wx, Γ, Γ ′ ⇒ Δ,Δ′, z : A
cut D1[z/y]

z ∈ W 2
x , Γ 2, Γ ′ ⇒ Δ2,Δ′, Cz

x(A,B)
cut

Second we have the cut of reduced height

Γ ⇒ Δ,x : A > B D3

z ∈ Wx, Γ, Γ ′, Cz
x(A,B) ⇒ Δ,Δ′ cut

Finally, by cut their conclusions through a fourth cut of reduced weight and
obtain the sequent z ∈ W 3

x , Γ 3, Γ ′2 ⇒ Δ3,Δ′2. Admissible weakening steps give
the conclusion of the original cut.

The case of principal cut formula of the form Cz
x(A,B) is reduced in a similar

way through four cuts, the uppermost of reduces height, and the lowermost of
reduces weight. For principal formula of the form of an indexed modality, the
conversion is the standard one for the necessity modality of labelled calculi.

256 M. Girlando et al.

Thanks to admissibility of cut, it is possible to prove the following:

Theorem 3 (Completeness). If a formula A is valid in preferential models
and extensions, then sequent ⇒ x : A, for an arbitrary label x, is derivable in
the corresponding G3P∗ calculus.

Proof. By using the known completeness result for extensions of PCL w.r.t.
preferential models and showing that the inference rules of PCL are admissible
in G3P, and that the axioms of PCL and its extensions are derivable in the
corresponding proof system of G3P∗. The proof for PCL is similar to the proof
in [20]. By way of example, we show the derivation of Axiom U1 in G3PVU,
omitting the derivable left premiss of L >.

y : ⊥ · · · ⇒ y : ¬A ⇒ y : ¬A . . .

y �x y, y �x w, y ∈ Wx, . . . , y : ¬A, y : ¬A → ⊥ ⇒ . . .
L→

k �x k, k �x w, k ∈ Wx, w ∈ Wx, w ∈ Wz, z ∈ Wx, w : ¬A,w : ¬A, k : ¬A, k : �x(¬A → ⊥), x : (¬A > ⊥) ⇒ . . .
L�x

k �x w, k ∈ Wx, w ∈ Wx, w ∈ Wz, z ∈ Wx, w : ¬A,w : ¬A, k : ¬A, k : �x(¬A → ⊥), x : (¬A > ⊥) ⇒ . . .
Ref

w ∈ Wx, w ∈ Wz, z ∈ Wx, w : ¬A,w : ¬A,Cw
x (¬A,⊥), x : (¬A > ⊥) ⇒ . . .

LC

w ∈ Wx, w ∈ Wz, z ∈ Wx, w : ¬A, x : (¬A > ⊥) ⇒ . . .
L >

w ∈ Wz, z ∈ Wx, w : ¬A, x : (¬A > ⊥) ⇒ Cz
x(¬(¬A > ⊥),⊥), Cw

z (¬A,⊥) U1

z ∈ Wx, x : (¬A > ⊥) ⇒ z : ¬A > ⊥, Cz
x(¬(¬A > ⊥),⊥)

R >

z ∈ Wx, z : ¬(¬A > ⊥), x : (¬A > ⊥) ⇒ Cz
x(¬(¬A > ⊥),⊥) R¬

x : (¬A > ⊥) ⇒ x : ¬(¬A > ⊥) > ⊥ R >

⇒ x : (¬A > ⊥) → ¬(¬A > ⊥) > ⊥ R→

By Theorems 1 and 3, and the known completeness results for PCL and its
extensions with respect to preferential models, we have:

Corollary 1. Formula A is provable in any of the systems of the conditional
logics cube if and only if ⇒ x : A is derivable in the corresponding labelled
system.

5 Termination and Completeness

In this section, we shall give an alternative direct proof of completeness for the
calculi G3P, G3PN, G3PT, G3PW, G3PC and G3PV, G3PVN, G3PVT,
G3PVW, G3PVC (from now on G3PV/N/T/W/C), i.e., the systems without
uniformity and absoluteness.2 The proof proceeds by showing how to construct
a countermodel from failed proof search. We first need to prove that root-first
proof search, which in general is not terminating because of loops, terminates
under the adoption of a suitable strategy.

Example 1. Loop generated by repeated applications of rule L > and LC (only
the right premisses of L > are shown).

2 The proofs of termination and completeness for systems with Uniformity and Abso-
luteness can be given adopting the reformulation of the calculi from Remark 1. The
proofs for the current versions of the calculi would be unnecessarily complex.

Uniform Labelled Calculi for Conditional and Counterfactual Logics 257

...
y �x z, y ∈ Wx, z �x z, z ∈ Wx, y : A, y : �x(A → B), x : A > B, x : C > D,Cz

x(C,D), Cy
x(C,D) ⇒

y �x z, y ∈ Wx, z �x z, z ∈ Wx, y : A, y : �x(A → B), x : A > B, x : C > D,Cz
x(C,D) ⇒ L >

z �x z, z ∈ Wx, x : A > B, x : C > D,Cz
x(A,B), Cz

x(C,D) ⇒ LC

z ∈ Wx, x : A > B, x : C > D,Cz
x(A,B), Cz

x(C,D) ⇒ Ref

z ∈ Wx, x : A > B, x : C > D,Cz
x(A,B) ⇒ L >

z ∈ Wx, x : A > B, x : C > D ⇒ L >

To ensure termination we introduce the notion of saturated sequent, a sequent to
which all the rules have been applied in a non-redundant way. We then specify a
proof search strategy, blocking the application of the rules to a saturated sequent.

Definition 5. Given a G3PV/N/T/W/C derivation, let B = S0, S1, . . . be a
derivation branch, with Si sequent Γk ⇒ Δk for k > 0, and S0 sequent ⇒ x0 : A0.
Let ↓ Γk/ ↓ Δk be the union of the antecedents/succedents occurring in the
derivation from S0 up to Sk. A sequent Γ ⇒ Δ is saturated if it is not an
instance of an initial sequent, and the following conditions are satisfied:

(L→) If x : A → B occurs in ↓ Γ , x : B occurs in ↓ Γ or x : A occurs in ↓ Δ;
(R→) If x : A → B occurs in ↓ Δ, x : A occurs in ↓ Γ and x : B occurs in ↓ Δ;3

(Ref) If y occurs in Γ , then y �x y occurs in Γ ;
(Tr) If y �x z and z �x k occur in Γ , y �x k occur in Γ ;
(L >) If x : A > B and z ∈ Wx occur in ↓ Γ , then either z : A occurs in ↓ Δ or

Cz
x(A,B) occurs in ↓ Γ ;

(R >) If x : A > B occurs in ↓Δ, then z ∈ Wx and z : A occur in ↓Γ , for some
z and Cz

x(A,B) occurs in Δ;
(LC) if Cz

x(A,B) occurs in Γ , then either for some y y �x z, y ∈ Wx, y : �x(A →
B) occur in ↓ Γ , or for some w such that z �= w, z �x and Cw

x (A,B) occur
in ↓ Γ ;

(RC) If y �x z, y ∈ Wx, z ∈ Wx occur in ↓ Γ and Cz
x(A,B) occurs in ↓ Δ, then

either y : A or y : �x(A) occurs in ↓ Δ;
(L�x) If y : �xA occurs in ↓ Γ , z �x y and z ∈ Wx occur in Γ , and z : A occurs

in ↓ Γ ;
(R�x) If y : �xA occurs in ↓ Δ, then either for some z, z �x y occurs in Γ and

z : A occurs in ↓ Δ, or for some w �= y, y �x w occurs in Γ and w : �xA
occurs in ↓ Δ;

(N) If x occurs in Γ , y ∈ Wx occurs in Γ , for some y;
(T) If x occurs in Γ , x ∈ Wx occurs in Γ ;
(W) If y ∈ Wx occurs in Γ , x �x y occurs in Γ ;
(C) If y �x x and y ∈ Wx occur in Γ , y = x occurs in Γ ;
(Ref=) If x occurs in Γ , then x = x occurs in Γ ;
(Repl) If y = x occurs in Γ , and if some formulas At(y) occur in Γ , formulas

At(x) occur in Γ ;
(Nes) If y ∈ Wx and z ∈ Wx occur in Γ , y �x z or z �x y occur in Γ .

3 The saturation conditions for the other propositional rules are standard [20].

258 M. Girlando et al.

In Example 1, the saturation condition (LC) blocks the application of the rule
to formula Cy

x(C,D), since y �x z and Cz
x(C,D) occur in the antecedent. Intu-

itively, rule LC is not applied to a formula Cy
x(C,D) if y has been generated

by a previous application of LC to the same Cx(C,D), possibly labelled with a
different label, i.e., if for some z, formulas y �x z and Cz

x(C,D) occur in a lower
antecedents. A similar saturation condition is needed for R�x.

Definition 6. In root-first proof search for ⇒ x0 : A0, apply the following:

1. Rules which do not introduce new labels are applied before rules which do
introduce new labels;

2. A rule R cannot be applied to a sequent if the sequent already satisfies the
saturation condition associated to R.

We need to show that every branch of a derivation starting with ⇒ x0 : A0 and
built in accordance with the strategy is finite. Since labels can be attached only
to the finitely many subformulas of formula A0, it suffices to prove that only
a finite number of labels can occur in the branch. To this aim, we construct
an acyclic graph with the labels occurring in the derivation, and show that the
graph is finite: more precisely, that every node of the graph has a finite number
of immediate successors, and that each branch of the graph is finite.

Definition 7. Given a derivation branch as in Definition 5, let x, y be labels
occurring in Γ . Let k(x) = min{t | x occurs in Γt}. We say that “x generates
y”, in symbols xRy, if for some t � k(x), k(y) = t and y ∈ Wx occurs in Γt.

By inspection on the rules of G3PV/N/T/W/C and by definition of R we have
that the relation R does not contain any cycles and forms a graph having at the
root label x0, and that all the labels occurring in the derivation occur in the
graph. The notion of conditional degree, needed to prove Lemma2, corresponds
to the level of nesting of the conditional operator >.

Definition 8. The conditional degree of a formula A is defined as: d(⊥) =
d(p) = 0; d(A ◦ B) = d(Cy

x(A,B)) = max(d(A), d(B)) for ◦ = {∧,∨,→};
d(�kA) = d(A), and d(A > B) = max(d(A), d(B)) + 1. For x a label in a
derivation, d(x) = max{d(C) | x : C occurs in ↓ Γ ∪ ↓ Δ}.

Lemma 1. Every node in the graph generated by the relation R has a finite
number of immediate successors.

Proof. By definition, label y is generated from x if there exists a t such that y
does not occur in Γs for any s < t, and y ∈ Wx occurs in Γt. We need to prove
that only a finite number of formulas y ∈ Wx can be introduced from x.

Formulas y ∈ Wx are introduced in root-first proof search by application
of rules for semantic conditions, R >, LC or R�x. In the first cases, y ∈ Wx is
introduced by N or T.4 By the saturation conditions, these rules can be applied
4 Observe that Repl does not introduce new labels; however, it could introduce new

links between the nodes of the graph. In the presence of Repl the structure generated
by R is a graph; otherwise, it is a tree.

Uniform Labelled Calculi for Conditional and Counterfactual Logics 259

at most once to a label x; thus, they generate at most 2 new labels. If y ∈ Wx is
introduced by R >, the rule must have been applied to some x : C > D occurring
in Δt−1. By the saturation condition, rule R > can be applied at most once to
each formula x : C > D, and the number of such formulas linearly depends on
d(A0), the degree of formula A0 at the root of the tree. Similarly, rule R�x is
applied to some w : �A in ↓ Γt−1, generating a new y ∈ Wx. Formulas w : �A

are introduced by RC and R >, which do not generate loops. The saturation
condition (R�x) ensures that no loops arise with formulas L�x. Thus, only a
finite number of labels can be introduced. In case y ∈ Wx is introduced by LC the
situation is more complex. As shown in Example 1, rule LC might interact with
rule L > generating a large number of new labels, however, thanks to the proof
search strategy, their number is finite. We consider a case of loop more complex
than the one in Example 1: suppose formulas x : E1 > F1, . . . , x : Ek > Fk occur
in the succedent of a sequent. Then, for some z ∈ Wx in the antecedent, we
can apply k times rule L >, generating k formulas Cz

x(E1, F1), . . . , Cz
x(Ek, Fk).

Then, rule LC can be applied to these formulas, generating k new labels z1 ∈
Wx, . . . , zk ∈ Wx, with z1 � z, . . . , zk �x z. Moreover, the rule introduces in
the antecedent formulas z1 : E1, . . . , zk : Ek and z1 : �x(E1 → F1), . . . , zk :
�x(Ek → Fk). Rule L > can be applied to these labels, generating k · k new
formulas:

Cz1
x (E1, F1), . . . , Cz1

x (Ek, Fk)
...

...
Czk

x (E1, F1), . . . , Czk
x (Ek, Fk)

Application of LC to these formulas would in principle generate k ·k new labels;
however, the saturation condition (LC) blocks the application of the rule to all
formulas. For 1 � i � k and 1 � j � k, consider formula Czi

x (Ej , Fj). It holds
that formulas zi �x z and Cz

x(Ej , Fj) occur in lower antecedents/succedents,
satisfying the saturation condition. Thus, for each y ∈ Wx, and for k >-formulas
occurring in the antecedent k · k new labels are generated. ��
Lemma 2. Every branch in the graph generated by the relation R is finite.

Proof. By induction on d(x), for x a label in the graph. We show that the length
of an arbitrary chain starting from x is bounded by the degree of the formula it
labels. If d(x) = 0, the formulas labelled with x are all atomic or propositional
formulas, and no formula y ∈ Wx needs to be introduced. If d(x) > 0, there
must be some formula x : A > B occurring in ↓ Γ ∪ ↓ Δ. Thus, there is at
least one chain of length greater than zero in the branch, and some label y such
that xRy. Observe that y can occur only as label of formulas of smaller degree
than the formulas labelled with x. More precisely, for all formulas x : A > B
with d(A > B) � d(x) occurring in ↓ Γ ∪ ↓ Δ, it holds that for all formulas
y : �x(A → B), d(y) < d(x), i.e., all labels introduced by combination of R >,
L >, LC, RC and R�x are label of formulas with a smaller degree than formulas
labelled with x. ��

260 M. Girlando et al.

It follows from Lemmas 1 and 2 that the acyclic graph is finite. Since the formulas
occurring in a derivation are subformulas of the formula A0, and since the number
of labels occurring in a derivation is finite, proof search terminates.

Theorem 4 (Termination). Proof search in G3PV/N/T/W/C built in accor-
dance with the proof search strategy for a sequent ⇒ x0 : A0 always comes to
an end in a finite number of steps, and each sequent occurring as a leaf of the
derivation tree is either an initial sequent or a saturated sequent.

Termination of proof search allows to prove completeness by constructing a coun-
termodel from a saturated sequent.

Theorem 5. Let Γ ⇒ Δ be a saturated sequent in a G3PV/N/T/W/C deriva-
tion. There exists a finite countermodel MB satisfying all formulas in ↓ Γ and
falsifying all formulas in ↓ Δ.

Proof. The countermodel MB is constructed as follows: WB = {x | x occurs in ↓
Γ∪ ↓ Δ}; for all x ∈ WB, Wx = {y | y ∈ Wx occurs in Γ}; �x= {〈y, z〉 | y �x

z occurs in Γ}; for p atomic, �p� = {x ∈ WB | x : p occurs in Γ}.
It is immediate to verify that the relation �x satisfies the properties of reflex-

ivity and transitivity; thus, MB is a model for PCL. In the presence of N, T, W,
C and Nes, the saturation conditions associated to these rules ensure that the
model MB is a model for the corresponding logic.5

Let ρ be the realization ρ(x) = x. We show that 1) if F occurs in ↓ Γ ,
MB �ρ F , and 2) if F occurs in ↓ Δ, MB �ρ F .6 The two claims are proved by
cases, and by induction on the weight of F . If F is a relational atom y ∈ Wx or
y �x z or a formula x : p, claim 1 (and claim 2) hold by definition of the model.
The propositional cases and the cases of F = x : A > B and F = y : �xA
follow applying the inductive hypothesis. By way of example, we prove claim 2
for F = x : A > B. Suppose that formula x : A > B occurs in ↓ Δ. By the
saturation condition associated to R >, for some label z, z ∈ Wx and z : A occur
in ↓Γ and Cz

x(A,B) occurs in Δ. Thus, by inductive hypothesis, MB �ρ z : A
and MB �ρ Cz

x(A,B), thus by the truth condition for the conditional, MB �ρ

x : A > B. ��
As a consequence of Theorems 4 and 5 we have that any underivable sequent
originates, in a finite number of steps, a saturated sequent which is used to
define a countermodel. We therefore have:

Corollary 2 (Strong completeness). Any sequent Γ ⇒ Δ is either derivable
in G3PV/N/T/W/C or has a (finite) countermodel in the corresponding class of
models.
5 In case of centering it is convenient to define worlds as equivalence classes, to account

for formulas x = y. Thus, [x] = {y | x = y occurs in ↓ Γ} and W c = {[x] |
y occurs in ↓ Γ∪ ↓ Δ}. Centering follows from the saturation condition (C).

6 In case of centering, we also need to show that if [x] �ρ A and y ∈ [x], then [y] �ρ A,
and that if [x] �ρ A then x : A occurs in ↓ Γ . The proof follows from admissibility
of Repl in its generalized form [20].

Uniform Labelled Calculi for Conditional and Counterfactual Logics 261

Completeness of the proof systems is an obvious consequence:

Theorem 6 (Completeness). If A is valid in one of the logics without uni-
formity and absoluteness, sequent ⇒ x : A is derivable in the corresponding
G3PV/N/T/W/C calculus.

Completeness, along with termination, allow to define a decision procedure for
the logics based on the labelled calculi. However, the resulting decision proce-
dure would be of at least NEXPTIME complexity - thus, far from the known
complexity bounds for the logics.7

6 Conclusion and Related Work

In this work, we introduced a family of uniform labelled calculi that capture in
a modular way the conditional logic PCL and its extensions, including Lewis’
counterfactual systems. The calculi internalise the semantics of preferential mod-
els. This semantics, studied, among others, by Lewis and Burgess [5,15], makes
explicit reference to the comparative plausibility ordering among worlds, implic-
itly assumed in Lewis’s sphere models.

Several labelled proof systems for conditional logics have been defined in
the literature. A recent approach, based on the methodology of neighbourhood
semantics of [18] and [19], is presented in [10] and gives a uniform family of
labelled calculi for PCL and its extensions. Neighbourhood semantics is a gen-
eralization of Lewis’s sphere semantics; whereas the latter is adequate for V,
neighbourhood semantics covers also weaker conditional logics. When compared
to labelled calculi based on neighbourhood semantics, the calculi G3P∗ appear
to be simpler: they use just one set of labels, whereas the calculi based on neigh-
bourhood semantics need two sets of labels, for worlds and for neighbourhoods. It
turns out that the preferential semantics already used to define labelled sequent
calculi for Lewis’s conditional logic VC in [20] is sufficiently expressive to treat
uniformly also the weaker extensions of PCL.

Preferential models have already been used in [9] to define tableau calculi for
PCL and all its extensions, but with the important difference, with respect to
our approach, of the addition of the Limit Assumption8 and the use of a strict
relation of comparative similarity. Another semantically inspired approach can
be found in [21], that presents a sequent calculus for system CK and some of
its extensions. These logics are the weakest conditional systems, and they are
weaker than the logics considered in this article.

Internal calculi (i.e., proof systems in which sequents have a direct formula
interpretation) for conditional logics have also been defined: in [2] nested sequent
calculi for CK and some of its extensions are devloped, whereas in [1] a nested
and optimal calculus for counterfactual logic V can be found (refer to [11] for
cases of extensions). Finally, display calculi for CK have been introduced recently
in [6].
7 Refer to [7] for complexity results for conditional logics.
8 The Limit Assumption states that there are no infinite descending �x-chains.

262 M. Girlando et al.

With respect to the labelled proof systems G3P∗, the internal calculi are
less modular: they capture weaker logics, such as CK, or subfamilies of the
logics considered in this article, such as V and its extensions. In particular, the
definition of internal calculi for PCL seems challenging: up to now, the only
internal proof system known for it is the resolution calculus presented in [16].
The labelled approach treats in a modular way both PCL and V. The challenge of
defining labelled calculi on the basis of preferential semantics lies in identifying a
decomposition of the conditional operator in terms of simpler operators directly
treatable by the sequent calculus rules. Here, this is done by introducing the
indexed operator �xA, similarly to [9,20], and the binary operator Cz

x(A,B).
As underlined in Remark 1, by dropping the requirement of modularity it

is possible to have simpler labelled calculi for sub-families of logics. We plan
to define such calculi and analyse their termination in root-first proof search,
to investigate the possibility of a better complexity bound for the correspond-
ing logics. Furthermore, following [9], simpler rules could be defined also for
G3P with the introduction of the Limit Assumption on preferential models.
Finally, we plan to study the relationship of G3P

∗
with labelled sequent calculi

for conditional logics based on neighbourhood models [10]. Via the correspon-
dence between neighbourhood and preferential structures [3], we conjecture that
the two families of calculi can be proved equivalent. It would be interesting to
know which family of calculi allows for the better decision procedure in terms of
complexity.

References

1. Alenda, R., Olivetti, N., Pozzato, G.L.: Nested sequent calculi for conditional logics.
In: del Cerro, L.F., Herzig, A., Mengin, J. (eds.) JELIA 2012. LNCS (LNAI), vol.
7519, pp. 14–27. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-
33353-8 2

2. Alenda, R., Olivetti, N., Pozzato, G.L.: Nested sequent calculi for normal condi-
tional logics. J. Logic Comput. 26(1), 7–50 (2013)

3. Alexandroff, P.: Diskrete Räume. Mat.Sb. (NS) 2(3), 501–519 (1937)
4. Baltag, A., Smets, S.: A qualitative theory of dynamic interactive belief revision.

Log. Found. Game Decis. Theory (LOFT 7) 3, 9–58 (2008)
5. Burgess, J.P.: Quick completeness proofs for some logics of conditionals. Notre

Dame J. Formal Log. 22(1), 76–84 (1981)
6. Chen, J., Greco, G., Palmigiano, A., Tzimoulis, A.: Non normal logics: semantic

analysis and proof theory. arXiv preprint arXiv:1903.04868 (2019)
7. Friedman, N., Halpern, J.Y.: On the complexity of conditional logics. In: Doyle,

J., Sandewall, E., Torasso, P. (eds.) Principles of knowledge Representation and
Reasoning: Proceedings of the Fourth International Conference (KR 1994), pp.
202–213. Morgan Kaufmann Pub. (1994)

8. Galles, D., Pearl, J.: An axiomatic characterization of causal counterfactuals.
Found. Sci. 3(1), 151–182 (1998)

9. Giordano, L., Gliozzi, V., Olivetti, N., Schwind, C.: Tableau calculus for preference-
based conditional logics: PCL and its extensions. ACM Trans. Comput. Log. 10(3),
21 (2009)

https://doi.org/10.1007/978-3-642-33353-8_2
https://doi.org/10.1007/978-3-642-33353-8_2
http://arxiv.org/abs/1903.04868

Uniform Labelled Calculi for Conditional and Counterfactual Logics 263

10. Girlando, M.: On the proof theory of conditional logics. Ph.D. thesis, University
of Helsinki (2019)

11. Girlando, M., Lellmann, B., Olivetti, N., Pozzato, G.L.: Standard sequent calculi
for Lewis’ logics of counterfactuals. In: Michael, L., Kakas, A. (eds.) JELIA 2016.
LNCS (LNAI), vol. 10021, pp. 272–287. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-48758-8 18

12. Girlando, M., Negri, S., Olivetti, N., Risch, V.: Conditional beliefs: from neigh-
bourhood semantics to sequent calculus. Rev. Symb. Log. 11, 1–44 (2018)

13. Grahne, G.: Updates and counterfactuals. J. Log. Comput. 8(1), 87–117 (1998)
14. Kraus, S., Lehmann, D., Magidor, M.: Nonmonotonic reasoning, preferential mod-

els and cumulative logics. Artif. Intell. 44(1–2), 167–207 (1990)
15. Lewis, D.K.: Counterfactuals. Blackwell, Oxford (1973)
16. Nalon, C., Pattinson, D.: A resolution-based calculus for preferential logics. In:

Galmiche, D., Schulz, S., Sebastiani, R. (eds.) IJCAR 2018. LNCS (LNAI), vol.
10900, pp. 498–515. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
94205-6 33

17. Negri, S.: Proof analysis in modal logic. J. Philos. Log. 34(5–6), 507 (2005)
18. Negri, S.: Proof theory for non-normal modal logics: the neighbourhood formalism

and basic results. IFCoLog J. Log. Appl. 4, 1241–1286 (2017)
19. Negri, S., Olivetti, N.: A sequent calculus for preferential conditional logic based

on neighbourhood semantics. In: De Nivelle, H. (ed.) TABLEAUX 2015. LNCS
(LNAI), vol. 9323, pp. 115–134. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-24312-2 9

20. Negri, S., Sbardolini, G.: Proof analysis for Lewis counterfactuals. Rev. Symb. Log.
9(1), 44–75 (2016)

21. Poggiolesi, F.: Natural deduction calculi and sequent calculi for counterfactual
logics. Studia Logica 104(5), 1003–1036 (2016)

22. Weiss, Y.: Frontiers of conditional logic. Ph.D. thesis, The Graduate Center, City
University of New York (2019)

https://doi.org/10.1007/978-3-319-48758-8_18
https://doi.org/10.1007/978-3-319-48758-8_18
https://doi.org/10.1007/978-3-319-94205-6_33
https://doi.org/10.1007/978-3-319-94205-6_33
https://doi.org/10.1007/978-3-319-24312-2_9
https://doi.org/10.1007/978-3-319-24312-2_9

Bar-Hillel Theorem Mechanization in Coq

Sergey Bozhko1(B), Leyla Khatbullina2, and Semyon Grigorev3,4

1 Max Planck Institute for Software Systems (MPI-SWS), Saarbrücken, Germany
sbozhko@mpi-sws.com

2 St. Petersburg Electrotechnical University “LETI”, St. Petersburg, Russia
leila.xr@gmail.com

3 St. Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg, Russia
s.v.grigoriev@spbu.ru

4 JetBrains Research, Universitetskaya emb., 7-9-11/5A, St. Petersburg, Russia
semen.grigorev@jetbrains.com

Abstract. Formal language theory has a deep connection with such
areas as static code analysis, graph database querying, formal verifica-
tion, and compressed data processing. Many application problems can
be formulated in terms of languages intersection. The Bar-Hillel theo-
rem states that context-free languages are closed under intersection with
a regular set. This theorem has a constructive proof and thus provides
a formal justification of correctness of the algorithms for applications
mentioned above. Mechanization of the Bar-Hillel theorem, therefore, is
both a fundamental result of formal language theory and a basis for the
certified implementation of the algorithms for applications. In this work,
we present the mechanized proof of the Bar-Hillel theorem in Coq.

Keywords: Formal languages · Coq · Bar-Hillel theorem · Closure ·
Intersection · Regular language · Context-free language

1 Introduction

Formal language theory has a deep connection with different areas such as static
code analysis [25,29,35,36,39–41], graph database querying [19,20,23,42], for-
mal verification [9,12], and others. One of the most frequent uses is to formulate
a problem in terms of languages intersection. In verification, one language can
serve as a model of a program and another language describe undesirable behav-
iors. When the intersection of these two languages is not empty, one can conclude
that the program is incorrect. Usually, the only concern is the decidability of the
languages intersection emptiness problem. But in some cases, a constructive rep-
resentation of the intersection may prove useful. This is the case, for example,
when the intersection of the languages models graph querying: a language pro-
duced by intersection is a query result and to be able to process it, one needs
the appropriate representation of the intersection result.

The research was supported by the Russian Science Foundation, grant № 18-11-00100.

c© Springer-Verlag GmbH Germany, part of Springer Nature 2019
R. Iemhoff et al. (Eds.): WoLLIC 2019, LNCS 11541, pp. 264–281, 2019.
https://doi.org/10.1007/978-3-662-59533-6_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-59533-6_17&domain=pdf
http://orcid.org/0000-0002-7966-0698
https://doi.org/10.1007/978-3-662-59533-6_17

Bar-Hillel Theorem Mechanization in Coq 265

Let us consider several applications starting with the user input validation.
The problem is to check if the input provided by the user is correct with respect
to some validation template such as a regular expression for e-mail validation.
User input can be represented as a one word language. The intersection of such
a language with the language specifying the validation template is either empty
or contains the only string: the user input. If the intersection is empty, then the
input should be rejected.

Checking that a program is syntactically correct is another example. The
AST for the program (or lack thereof) is just a constructive representation of
the intersection of the one-word language (the program) and the programming
language itself.

Graph database regular querying serves as an example of the intersection of
two regular languages [1,2,23]. Next and one of the most comprehensive cases
with decidable emptiness problem is an intersection of a regular language with
a context-free language. This case is relevant for program analysis [36,39,40],
graph analysis [17,20,42], context-free compressed data processing [26], and
other areas. The constructive intersection representation in these applications
is helpful for further analysis.

The intersection of some classes of languages is not generally decidable. For
example, the intersection of the linear conjunctive and the regular languages,
used in the static code analysis [41], is undecidable while multiple context-free
languages (MCFL) is closed under intersection with regular languages and empti-
ness problem for MCFLs is decidable [38]. Is it possible to express any useful
properties in terms of regular and multiple context-free languages intersection?
This question is beyond the scope of this paper but provides a good reason for
future research in this area. Moreover, the history of pumping lemma for MCFG
shows the necessity to mechanize formal language theory. In this paper, we focus
on the intersection of regular and context-free languages.

Some applications mentioned above require certifications. For verification
this requirement is evident. For databases it is necessary to reason about secu-
rity aspects and, thus, we should create certified solutions for query executing.
Certified parsing may be critical for secure data loading (for example in Web),
as well as certified regular expressions for input validation. As a result, there
is a significant number of papers focusing on regular expressions mechanization
and certification [14], and a number on certified parsers [5,15,18]. On the other
hand, mechanization (formalization) is important by itself as theoretical results
mechanization and verification, and there is a lot of work done on formal lan-
guages theory mechanization [4,16,32]. Also, it is desirable to have a base to
reason about parsing algorithms and other problems of languages intersection.

Context-free languages are closed under intersection with regular languages.
It is stated as the Bar-Hillel theorem [3] which provides a constructive proof
and construction for the resulting language description. We believe that the
mechanization of the Bar-Hillel theorem is a good starting point for certified
application development and since it is one of the fundamental theorems, it is
an important part of formal language theory mechanization. And this work aims
to provide such mechanization in Coq.

266 S. Bozhko et al.

Our current work is the first step: we provide mechanization of theoretical
results on context-free and regular languages intersection. We choose the result
of Jana Hofmann on context-free languages mechanization [21] as a base for our
work. The main contribution of this paper is the constructive proof of the Bar-
Hillel theorem in Coq. All code is published on GitHub: https://github.com/
YaccConstructor/YC in Coq.

2 Bar-Hillel Theorem

In this section, we provide the Bar-Hillel theorem and sketch the proof which
we use as the base of our work. We also provide some additional lemmas which
are used in the proof of the main theorem.

Lemma 1. If L is a context-free language and ε /∈ L then there is a grammar
in Chomsky Normal Form that generates L.

Lemma 2. If L �= ∅ and L is regular then L is the union of regular language
A1, . . . ,An where each Ai is accepted by a DFA with precisely one final state.

Theorem 1 (Bar-Hillel). If L1 is a context-free language and L2 is a regular
language, then L1 ∩ L2 is context-free.

Sketch of the proof.

1. By Lemma 1 we can assume that there is a context-free grammar GCNF in
Chomsky normal form, such that L(GCNF) = L1

2. By Lemma 2 we can assume that there is a set of regular languages {A1 . . . An}
where each Ai is recognized by a DFA with precisely one final state and
L2 = A1 ∪ . . . ∪ An

3. For each Ai we can explicitly define a grammar of the L(GCNF) ∩ Ai

4. Finally, we join them together with the union operation

As far as Bar-Hillel theorem operates with arbitrary context-free languages
and the selected proof requires grammar in CNF, it is necessary to implement
a certified algorithm for the conversion of an arbitrary CF grammar to CNF.
We wanted to reuse existing mechanized proof for the conversion. We chose the
one provided in Smolka’s work and discussed it in the context of our work in
Sect. 3.1.

3 Bar-Hillel Theorem Mechanization in Coq

In this section, we describe in detail all the fundamental parts of the proof. We
also briefly describe the motivation to use the chosen definitions. In addition, we
discuss the advantages and disadvantages of using third-party proofs.

The overall goal of this section is to provide a step-by-step algorithm which
constructs the context-free grammar of the intersection of two languages. The
final formulation of the theorem can be found in the last subsection.

https://github.com/YaccConstructor/YC_in_Coq
https://github.com/YaccConstructor/YC_in_Coq

Bar-Hillel Theorem Mechanization in Coq 267

3.1 Hofmann’s Results Generalization

A substantial part of this proof relies on the work of Hofmann [21]1 from which
many definitions and theorems were taken. Namely, the definition of a gram-
mar, the definitions of a derivation in grammar, some auxiliary lemmas about
the decidability of properties of grammar and derivation. We also use the theo-
rem that states that there always exists the transformation from a context-free
grammar to a grammar in Chomsky Normal Form.

However, the proof of the existence of the transformation to CNF had one
major flaw that we needed to fix: the representation of terminals and nonter-
minals. In the definition of the grammar, a terminal is an element of the set
of terminals—the alphabet of terminals. It is sufficient to represent each termi-
nal by a unique natural number—conceptually, the index of the terminal in the
alphabet.

The same observation is correct for nonterminals. Sometimes it is useful
when the alphabet of nonterminals bears some structure. For the purposes of
our proof, nonterminals are better represented as triples. We decided to make
terminals and nonterminals to be polymorphic over the alphabet. We are only
concerned that the representation of symbols is a type with decidable relation
of equality. Namely, let Tt and Vt be such types, then we can define the types
of terminals and nonterminals over Tt and Vt respectively.

Fortunately, the proof of Hofmann has a clear structure, and there was only
one aspect of the proof where the use of natural numbers was essential. The
grammar transformation which eliminates long rules creates new nonterminals.
In the original proof, it was done by taking the maximum of the nonterminals
included in the grammar. It is not possible to use the same mechanism for an
arbitrary type.

To tackle this problem, we introduced an additional assumption on the
alphabet types for terminals and nonterminals. We require the existence of the
bijection between natural numbers and the alphabet of terminals as well as
nonterminals.

Another difficulty is that the original work defines grammar as a list of rules
and does not specify the start nonterminal. Thus, in order to define the language
described by a grammar, one needs to specify the start terminal explicitly. It
leads to the fact that the theorem about the equivalence of a CF grammar and
the corresponding CNF grammar is not formulated in the most general way,
namely, it guarantees equivalence only for non-empty words.

The predicate “is grammar in CNF” as defined in Hofmann [21] does not
treat the case when the empty word is in the language. That is, with respect to
the definition in [21], a grammar cannot have epsilon rules at all.

The question of whether the empty word is derivable is decidable for both the
CF grammar and the DFA. Therefore, there is no need to adjust the definition
1 Jana Hofmann, Verified Algorithms for Context-Free Grammars in Coq.
Related sources in Coq: https://www.ps.uni-saarland.de/∼hofmann/bachelor/
coq src.zip. Documentation: https://www.ps.uni-saarland.de/∼hofmann/bachelor/
coq/toc.html. Access date: 10.10.2018.

https://www.ps.uni-saarland.de/~hofmann/bachelor/coq_src.zip
https://www.ps.uni-saarland.de/~hofmann/bachelor/coq_src.zip
https://www.ps.uni-saarland.de/~hofmann/bachelor/coq/toc.html
https://www.ps.uni-saarland.de/~hofmann/bachelor/coq/toc.html

268 S. Bozhko et al.

of the grammar (and subsequently all proofs). It is possible just to consider two
cases (1) when the empty word is derivable in the grammar (and acceptable by
DFA) and (2) when the empty word is not derivable. We use this feature of CNF
definition to prove some of the lemmas presented in this paper.

3.2 Basic Definitions

In this section, we introduce the basic definitions used in the paper, such as
alphabets, context-free grammar, and derivation.

We define a symbol as either a terminal or a nonterminal. Next, we define a
word and a phrase as lists of terminals and symbols respectively. One can think
that word is an element of the language defined by the grammar, and a phrase
is an intermediate result of derivation. Also, a right-hand side of any derivation
rule is a phrase.

The notion of nonterminal does not make sense for DFA, but in order to
construct the derivation in grammar, we need to use nonterminals in intermediate
states. For phrases, we introduce a predicate that defines whenever a phrase
consists of only terminals. If it is the case, the phrase can be safely converted to
the word.

We inherit the definition of CFG from [21]. The rule is defined as a pair of
a nonterminal and a phrase, and a grammar is a list of rules. Note, that this
definition of a grammar does not include the start nonterminal, and thus does
not specify the language by itself.

An important step towards the definition of a language specified by a gram-
mar is the definition of derivability. Proposition der(G,A, p) means that the
phrase p is derivable in the grammar G starting from the nonterminal A.

Also, we use the proof of the fact that every grammar is convertible into CNF
from [21] because this fact is important for our proof.

We define the language as follows. We say that a phrase (not a word) w
belongs to the language generated by a grammar G from a nonterminal A, if w
is derivable from nonterminal A in grammar G and w consists only of terminals.

3.3 General Scheme of the Proof

A general scheme of our proof is based on the constructive proof presented
in [8]. This proof does not use push-down automata explicitly and operates with
grammars, so it is pretty simple to mechanize it. Overall, we will adhere to the
following plan.

1. We consider the trivial case when DFA has no states.
2. We state that every CF language can be converted to CNF.
3. We show that every DFA can be presented as a union of DFAs with the single

final state.
4. We construct an intersection of grammar in CNF with DFA with one final

state.
5. We prove that the union of CF languages is CF language.

Bar-Hillel Theorem Mechanization in Coq 269

6. We putting everything mentioned above together. Additionally, we handle the
fact that the initial CF language may contain the ε word. By the definition
which we reuse from [21], the grammar in CNF has no epsilon rules, but
we still need to consider the case when the empty word is derivable in the
grammar. We postpone this consideration to the last step. Only one of the
following statements is true: ε ∈ L(G) and ε ∈ L(dfa) or ¬ε ∈ L(G) or ¬ε ∈
L(dfa). So, we should just check emptiness of languages as a separated case.

3.4 Trivial Cases

First, we consider the case when the number of the DFA states is zero. In this
case, we immediately derive a contradiction. By definition, any DFA has an
initial state. It means that there is at least one state, which contradicts the
assumption that the number of states is zero.

It is worth to mention, that in the proof [8] cases when the empty word is
derivable in the grammar or a DFA specifies the empty language are discarded
as trivial. It is assumed that one can carry out themselves the proof for these
cases. In our proof, we include the trivial cases in the corresponding theorems.

3.5 Regular Languages and Automata

In this section, we describe definitions of DFA and DFA with exactly one final
state, we also present the function that converts any DFA to a set of DFAs
with one final state and lemma that states this split in some sense preserves the
language specified.

We assume that a regular language is described by a DFA. We do not impose
any restrictions on the type of input symbols and the number of states in DFA.
Thus, the DFA is a 5-tuple: (1) a type of states, (2) a type of input symbols, (3)
a start state, (4) a transition function, and (5) a list of final states.

Next, we define a function that evaluates the finish state of the automaton
if it starts from the state s and receives a word w.

We say that the automaton accepts a word w being in state s if the function
(final state s w) returns a final state. Finally, we say that an automaton accepts
a word w, if the DFA starts from the initial state and stops in a final state.

The definition of the DFA with exactly one final state differs from the defi-
nition of an ordinary DFA in that the list of final states is replaced by one final
state. Related definitions such as accepts and dfa language are slightly modified.

We define functions s accepts and s dfa language for DFA with one final
state in the same fashion. In the function s accepts, it is enough to check for
equality the state in which the automaton stopped with the finite state. Function
s dfa language is the same as dfa language except for that the function for a
DFA with one final state should use s accepts instead of accepts.

Now we can define a function that converts an ordinary DFA into a set of
DFAs with exactly one final state. Let d be a DFA. Then the list of its final
states is known. For each such state, one can construct a copy of the original
DFA, but with one selected final state.

270 S. Bozhko et al.

As a result prove the theorem that the function of splitting preserves the
language.

Theorem 2. Let dfa be an arbitrary DFA and w be a word. Then the fact
that dfa accepts w implies that there exists a single-state DFA s dfa, such
that s dfa ∈ split dfa(dfa) and s dfa accepts w. And vice versa, for any
s dfa ∈ split dfa(dfa) the fact that s dfa accepts a word w implies that dfa
also accepts w.

3.6 Chomsky Induction

Many statements about properties of words in a language can be proved by
induction over derivation structure. Although a one can get a phrase as an
intermediate step of derivation, DFA only works on words, so we can not simply
apply induction over the derivation structure. To tackle this problem, we created
a custom induction principle for grammars in CNF.

The current definition of derivability does not imply the ability to “reverse”
the derivation back. That is, nothing about the rules of the grammar or proper-
ties of derivation follows from the fact that a phrase w is derived from a nontermi-
nal A in a grammar G. Because of this, we introduce an additional assumption
on derivations that is similar to the syntactic analysis of words. Namely, we
assume that if the phrase w is derived from the nonterminal A in grammar G,
then either there is a rule A → w ∈ G or there is a rule A → rhs ∈ G and w is
derivable from rhs.

Any word derivable from a nonterminal A in the grammar in CNF is either
a solitary terminal or can be split into two parts, each of which is derived from
nonterminals B and C, when the derivation starts with the rule A → BC. Note
that if we naively take a step back, we can get a nonterminal which derives some
substring in the middle of the word. Such a situation does not make any sense
for DFA.

By using induction, we always deal with subtrees that describe a substring
of the word.

To put it more formally:

Lemma 3. Let G be a grammar in CNF. Consider an arbitrary nonterminal
N ∈ G and phrase which consists only of terminals w. If w is derivable from N
and |w| ≥ 2, then there exists two nonterminals N1,N2 and two phrases w1, w2

such that: N → N1N2 ∈ G, der(G, N1, w1), der(G, N2, w2), |w1| ≥ 1,
|w2| ≥ 1 and w1 ++ w2 = w.

Lemma 4. Let G be a grammar in CNF. And P be a predicate on nonterminals
and phrases (i.e. P : var → phrase → Prop). Let’s also assume that the
following two hypotheses are satisfied: (1) for every terminal production (i.e. in
the form N → a) of grammar G, P (r, [r]) holds and (2) for every N ,N1,N2

such that: N → N1N2 ∈ G and two phrases that consist only of terminals
w1,w2, if P (N1,w1), P (N2,w2), der(G,N1,w1) and der(G,N2,w2) then
P (N ,w1 ++w2). Then for any nonterminal N and any phrase consisting only
of terminals w, the fact that w is derivable from N implies P (N ,w).

Bar-Hillel Theorem Mechanization in Coq 271

3.7 Intersection of CFG and Automaton

Since we already have lemmas about the transformation of a grammar to CNF
and the transformation of a DFA to a DFA into a set of DFA’s with exactly
one accepting state, further we assume that we only deal with (1) DFA with
exactly one final state—dfa and (2) grammar in CNF—G. In this section, we
describe the proof of the lemma that states that for any grammar in CNF and
any automaton with exactly one state there is a grammar for an intersection of
the languages.

Construction of Intersection. We present the adaptation of the algorithm
given in [8].

Let GINT be the grammar of intersection. In GINT , nonterminals are pre-
sented as triples (from × var × to) where from and to are states of dfa, and var
is a nonterminal of G.

Since G is a grammar in CNF, it has only two types of productions: (1) N → a
and (2) N → N1N2, where N,N1, N2 are nonterminals and a is a terminal.

For every production N → N1N2 in G we generate a set of productions of the
form (from,N, to) → (from,N1,m)(m,N2, to) where: from, m, to enumerate all
dfa states.

For every production of the form N → a we add a set of productions of
the form (from,N, (dfa step(from, a))) → a where from enumerates all dfa
states and dfa step (from, a) is the state in which the dfa appears after receiving
terminal a in the state from.

Next, we join the functions above to get a generic function that works for
both types of productions.

Note that at this point we do not conduct any manipulations with the start
nonterminal. Nevertheless, the hypothesis of the uniqueness of the final state
of the DFA helps to define the start nonterminal of the grammar of intersec-
tion unambiguously. The start nonterminal for the intersection grammar is the
following nonterminal: (start, S, final) where: start—the start state of DFA, S—
the start nonterminal of the initial grammar, and final—the final state of DFA.
Without the assumption that the DFA has only one final state it is not clear
how to unequivocally define the start nonterminal over the alphabet of triples.

Correctness of Intersection. In this subsection, we present a high-level
description of the proof of correctness of the intersection function.

In the interest of clarity of exposition, we skip some auxiliary lemmas and
facts like that we can get the initial grammar from the grammar of intersection
by projecting the triples back to the corresponding terminals/nonterminals. Also
note that grammar remains in CNF after the conversion, since the transformation
of rules does not change the structure of them, but only replaces their terminals
and nonterminals with attributed ones.

Next, we prove the following lemmas. First, the fact that a word can be
derived in the initial grammar and is accepted by s dfa implies it can be derived

272 S. Bozhko et al.

in the grammar of the intersection. And the other way around, the fact that a
word can be derived in the grammar of the intersection implies that it is derived
in the initial grammar and is accepted by s dfa.

Let G be a grammar in CNF. In order to use Chomsky Induction, we also
assume that syntactic analysis is possible.

Theorem 3. Let s dfa be an arbitrary DFA, let r be a nonterminal of grammar
G, let from and to be two states of the DFA. We also pick an arbitrary word—
w. If it is possible to derive w from r and the s dfa starting from the state
from finishes in the state to after consuming the word w, then the word w
is also derivable in grammar (convert rules G next) from the nonterminal
(from, r, to).

On the other side, now we need to prove the theorems of the form “if it is
derivable in the grammar of triples, then it is accepted by the automaton and is
derivable in the initial grammar”.

We start with the DFA.

Theorem 4. Let from and to be states of the automaton, var be an arbitrary
nonterminal of G. We prove that if a word w is derived from the nontermi-
nal (from,var, to) in the grammar (convert rules G), then the automaton
starting from the state from accepts the word w and stops in the state to.

Next, we prove the similar theorem for the grammar.

Theorem 5. Let from and to be the states of the automaton, let var be an
arbitrary nonterminal of grammar G. We prove that if a word w is derivable
from the nonterminal (from,var, to) in the grammar (convert rules G),
then w is also derivable in the grammar G from the nonterminal var.

In the end, one needs to combine both theorems to get a full equivalence. By
this, the correctness of the intersection is proved.

3.8 Union of Languages

During the previous step, we constructed a list of context-free grammars. In this
section, we provide a function which constructs a grammar for the union of the
languages.

First, we need to make sure the sets of nonterminals for each of the gram-
mars under consideration have empty intersections. To achieve this, we label
nonterminals. Each grammar of the union receives a unique ID number and all
nonterminals within one grammar will have the same ID as the grammar. In
addition, it is necessary to introduce a new start nonterminal of the union.

Bar-Hillel Theorem Mechanization in Coq 273

The function that constructs the union grammar takes a list of grammars,
then, it (1) splits the list into head [h] and tail [tl], (2) labels [length tl] to h, (3)
adds a new rule from the start nonterminal of the union to the start nonterminal
of the grammar [h], finally (4) the function is recursively called on the tail [tl]
of the list.

Proof of Languages Equivalence. We prove that the function gram-
mar union constructs a correct grammar of the union language. Namely, we
prove the following theorem.

Theorem 6. Let grammars be a sequence of pairs of starting nonterminals
and grammars. Then for any word w, the fact that w belongs to the language
of the union is equivalent to the fact that there exists a grammar (st, gr) ∈
grammars such that w belongs to the language generated by (st, gr).

3.9 Putting All Parts Together

Now we can put all previously described lemmas together to prove the main
statement of this paper (Fig. 1).

Theorem grammar_of_intersection_exists:

exists

(NewNonterminal: Type)

(IntersectionGrammar: @grammar Terminal NewNonterminal) St,

forall word,

dfa_language dfa word /\ language G S (to_phrase word) <->

language IntersectionGrammar St (to_phrase word).

Fig. 1. Final theorem

Theorem 7. Let T t and Nt be a decidable types. T t and Nt is types of ter-
minals and nonterminals correspondingly. If there exists a bijection from Nt to
N and syntactic analysis in the sense of definition is possible, then for any DFA
dfa that define language over T t and any context-free grammar G, there exists
the context-free grammar GIN T , such that L(GIN T) = L(G) ∩ L(dfa).

274 S. Bozhko et al.

4 Related Works

There is a large number of contributions in the mechanization of different parts
of formal languages theory and certified implementations of parsing algorithms
and algorithms for graph database querying. These works use various tools, such
as Coq, Agda, HOL4, and are aimed at different problems such as the theory
mechanization or executable algorithm certification. We discuss only a small part
which is close enough to the scope of this work.

4.1 Formal Language Theory in Coq

The massive amount of work was done by Ruy de Queiroz who formalized dif-
ferent parts of formal language theory, such as pumping lemma [31,33], context-
free grammar simplification [34] and closure properties [30] in Coq. The work
on closure properties contains mechanization of such properties as closure under
union, Kleene star, but it does not contain mechanization of the intersection
with a regular language. All these results are summarized in [32].

Gert Smolka et al. also provide a large number of contributions on regular
and context-free languages formalization in Coq [10,11,21,22]. The paper [21]
describes the certified transformation of an arbitrary context-free grammar to the
Chomsky normal form which is required for our proof of the Bar-Hillel theorem.
Initially, we hoped to reuse these both parts because the Bar-Hillel theorem is
about both context-free and regular languages, and it was the reason to choose
results of Gert Smolka as the base for our work. But the works on regular and on
context-free languages are independent, and we are faced with the problems of
reusing and integration, so in the current proof, we use only results on context-
free languages.

4.2 Formal Language Theory in Other Languages

In the parallel with works in Coq there exist works on formal languages mecha-
nization in other languages and tools such as Agda [13] or HOL4 [6].

Firstly, there are works of Denis Firsov who implements some parts of the
formal language theory and parsing algorithms in Agda. In particular, Firsov
implements CYK parsing algorithm [13,15] and Chomsky Normal Form [16],
and some other results on regular languages [14].

There are also works on the formal language theory mechanization in HOL-
4 [4,6,7] by Aditi Barthwal and Michael Norrish. This work contains basic def-
initions and a big number of theoretical results, such as Chomsky normal form

Bar-Hillel Theorem Mechanization in Coq 275

and Greibach normal form for context-free grammars. As an application of the
mechanized theory authors, provide certified implementation of the SLR parsing
algorithm [5].

5 Conclusion

We present mechanized in Coq proof of the Bar-Hillel theorem, the fundamental
theorem on the closure of context-free languages under intersection with the
regular set. By this, we increase mechanized part of formal language theory and
provide a base for reasoning about many applicative algorithms which are based
on language intersection. We generalize the results of Gert Smolka and Jana
Hofmann: the definition of the terminal and nonterminal alphabets in context-
free grammar were made generic, and all related definitions and theorems were
adjusted to work with the updated definition. It makes previously existing results
more flexible and eases reusing. All results are published at GitHub and are
equipped with automatically generated documentation.

The first open question is the integration of our results with other results on
formal languages theory mechanization in Coq. There are two independent sets
of results in this area: works of Ruy de Queiroz and works of Gert Smolka. We
use part of Smolka’s results in our work, but even here we do not use existing
results on regular languages. We believe that theory mechanization should be
unified and results should be generalized. We think that these and other related
questions should be discussed in the community.

One direction for future research is mechanization of practical algorithms
which are just implementation of the Bar-Hillel theorem. For example, context-
free path querying algorithm, based on CYK [20,42] or even on GLL [37] parsing
algorithm [17]. Final target here is the certified algorithm for context-free con-
strained path querying for graph databases.

Another direction is mechanization of other problems on language intersec-
tion which can be useful for applications. For example, the intersection of two
context-free grammars one of which describes finite language [28]. It may be
useful for compressed data processing [24] or speech recognition [27]. And we
believe all these works should share the common base of mechanized theoretical
results.

A Coq Listing

This listing contains main theorems and definitions from our work.

276 S. Bozhko et al.

Lemma language_normal_form (G:grammar) (A: var) (u: word):
u <> [] -> (language G A u <-> language (normalize G) A u).

Inductive symbol : Type :=
| Ts : ter -> symbol
| Vs : var -> symbol.

Definition word := list ter.
Definition phrase := list symbol.
Inductive rule : Type := | R : var -> phrase -> rule.
Definition grammar := list rule.

Inductive der (G : grammar) (A : var) : phrase -> Prop :=
| vDer : der G A [Vs A]
| rDer l : (R A l) el G -> der G A l
| replN B u w v :

der G A (u ++ [Vs B] ++ w) ->
der G B v -> der G A (u ++ v ++ w).

Definition language (G : grammar) (A : var) (w : phrase) :=
der G A w /\ terminal w.

Context {State T: Type}.

Record dfa: Type :=
mkDfa {

start: State;
final: list State;
next: State -> ter T -> State;

}.

Fixpoint final_state (next_d: dfa_rule) (s: State) (w: word): State :=
match w with
| nil => s
| h :: t => final_state next_d (next_d s h) t
end.

Record s_dfa : Type :=
s_mkDfa {

s_start: State;
s_final: State;
s_next: State -> (@ter T) -> State;

}.

Fixpoint split_dfa_list (st_d : State) (next_d : dfa_rule)

Inductive ter : Type := | T : Tt -> ter.
Inductive var : Type := | V : Vt -> var.

Bar-Hillel Theorem Mechanization in Coq 277

(f_list : list State): list (s_dfa) :=
match f_list with
| nil => nil
| h :: t => (s_mkDfa st_d h next_d) :: split_dfa_list st_d next_d t
end.

Definition split_dfa (d: dfa) :=
split_dfa_list (start d) (next d) (final d).

Lemma correct_split:
forall dfa w,

dfa_language dfa w <->
exists sdfa, In sdfa (split_dfa dfa) /\ s_dfa_language sdfa w.

Definition syntactic_analysis_is_possible :=
forall (G : grammar) (A : var) (w : phrase),
der G A w -> (R A w \in G) \/ (exists rhs, R A rhs \in G /\ derf G rhs w).

Definition convert_nonterm_rule_2 (r r1 r2: _) (state1 state2 : _) :=
map (fun s3 => R (V (s1, r, s3))

[Vs (V (s1, r1, s2)); Vs (V (s2, r2, s3))])
list_of_states.

Definition convert_nonterm_rule_1 (r r1 r2: _) (s1 : _) :=
flat_map (convert_nonterm_rule_2 r r1 r2 s1) list_of_states.

Definition convert_nonterm_rule (r r1 r2: _) :=
flat_map (convert_nonterm_rule_1 r r1 r2) list_of_states.

Definition convert_terminal_rule
(next: _) (r: _) (t: _): list TripleRule :=
map (fun s1 => R (V (s1, r, next s1 t)) [Ts t]) list_of_states.

Definition convert_rule (next: _) (r: _) :=
match r with
| R r [Vs r1; Vs r2] =>

convert_nonterm_rule r r1 r2
| R r [Ts t] =>

convert_terminal_rule next r t
| _ => [] (* Never called *)

end.

Definition convert_rules
(rules: list rule) (next: _): list rule :=
flat_map (convert_rule next) rules.

278 S. Bozhko et al.

Definition convert_grammar grammar s_dfa :=
convert_rules grammar (s_next s_dfa).

Inductive labeled_Vt : Type :=
| start : labeled_Vt
| lV : nat -> Vt -> labeled_Vt.

Definition label_var (label: nat) (v: @var Vt): @var labeled_Vt :=
V (lV label v).

Definition label_grammar_and_add_start_rule label grammar :=
let ’(st, gr) := grammar in
(R (V start) [Vs (V (lV label st))]) :: label_grammar label gr.

Fixpoint grammar_union (grammars : seq (@var Vt * (@grammar Tt Vt)))
: @grammar Tt labeled_Vt :=

match grammars with
| [] => []
| (g::t) => label_grammar_and_add_start_rule (length t)

g ++ (grammar_union t)
end.

Variable grammars: seq (var * grammar).

Theorem correct_union:
forall word,

language (grammar_union grammars)
(V (start Vt)) (to_phrase word) <->

exists s_l,
language (snd s_l) (fst s_l) (to_phrase word) /\ In s_l grammars.

Theorem grammar_of_intersection_exists:
exists

(NewNonterminal: Type)
(IntersectionGrammar: @grammar Terminal NewNonterminal) St,

forall word,
dfa_language dfa word /\ language G S (to_phrase word) <->
language IntersectionGrammar St (to_phrase word).

References

1. Abiteboul, S., Vianu, V.: Regular path queries with constraints. J. Comput.
Syst. Sci. 58(3), 428–452 (1999). http://www.sciencedirect.com/science/article/
pii/S0022000099916276

2. Alkhateeb, F.: Querying RDF(S) with Regular Expressions. Theses, Univer-
sité Joseph-Fourier - Grenoble I, June 2008. https://tel.archives-ouvertes.fr/tel-
00293206

3. Bar-Hillel, Y., Perles, M., Shamir, E.: On formal properties of simple phrase struc-
ture grammars. Sprachtypologie und Universalienforschung 14, 143–172 (1961)

http://www.sciencedirect.com/science/article/pii/S0022000099916276
http://www.sciencedirect.com/science/article/pii/S0022000099916276
https://tel.archives-ouvertes.fr/tel-00293206
https://tel.archives-ouvertes.fr/tel-00293206

Bar-Hillel Theorem Mechanization in Coq 279

4. Barthwal, A.: A formalisation of the theory of context-free languages in higher
order logic. Ph.D. thesis, College of Engineering & Computer Science, The Aus-
tralian National University, December 2010

5. Barthwal, A., Norrish, M.: Verified, executable parsing. In: Castagna, G. (ed.)
ESOP 2009. LNCS, vol. 5502, pp. 160–174. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-00590-9 12

6. Barthwal, A., Norrish, M.: A formalisation of the normal forms of context-free
grammars in HOL4. In: Dawar, A., Veith, H. (eds.) CSL 2010. LNCS, vol. 6247, pp.
95–109. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15205-
4 11

7. Barthwal, A., Norrish, M.: Mechanisation of PDA and grammar equivalence for
context-free languages. In: Dawar, A., de Queiroz, R. (eds.) WoLLIC 2010. LNCS
(LNAI), vol. 6188, pp. 125–135. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-13824-9 11

8. Beigel, R., Gasarch, W.: A Proof that if L = L1 ∩ L2 where L1 is CFL and L2 is
Regular then L is Context Free Which Does Not use PDAs. http://www.cs.umd.
edu/∼gasarch/BLOGPAPERS/cfg.pdf/

9. Bouajjani, A., Esparza, J., Maler, O.: Reachability analysis of pushdown automata:
application to model-checking. In: Mazurkiewicz, A., Winkowski, J. (eds.) CON-
CUR 1997. LNCS, vol. 1243, pp. 135–150. Springer, Heidelberg (1997). https://
doi.org/10.1007/3-540-63141-0 10

10. Doczkal, C., Kaiser, J.-O., Smolka, G.: A constructive theory of regular languages
in Coq. In: Gonthier, G., Norrish, M. (eds.) CPP 2013. LNCS, vol. 8307, pp. 82–97.
Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03545-1 6

11. Doczkal, C., Smolka, G.: Regular language representations in the constructive type
theory of Coq. J. Autom. Reason. 61(1), 521–553 (2018). https://doi.org/10.1007/
s10817-018-9460-x

12. Emmi, M., Majumdar, R.: Decision problems for the verification of real-time soft-
ware. In: Hespanha, J.P., Tiwari, A. (eds.) HSCC 2006. LNCS, vol. 3927, pp.
200–211. Springer, Heidelberg (2006). https://doi.org/10.1007/11730637 17

13. Firsov, D.: Certification of Context-Free Grammar Algorithms (2016)
14. Firsov, D., Uustalu, T.: Certified parsing of regular languages. In: Gonthier, G.,

Norrish, M. (eds.) CPP 2013. LNCS, vol. 8307, pp. 98–113. Springer, Cham (2013).
https://doi.org/10.1007/978-3-319-03545-1 7

15. Firsov, D., Uustalu, T.: Certified CYK parsing of context-free languages. J. Log.
Algebraic Methods Program. 83(5–6), 459–468 (2014)

16. Firsov, D., Uustalu, T.: Certified normalization of context-free grammars. In: Pro-
ceedings of the 2015 Conference on Certified Programs and Proofs, pp. 167–174.
ACM (2015)

17. Grigorev, S., Ragozina, A.: Context-free path querying with structural representa-
tion of result. arXiv preprint arXiv:1612.08872 (2016)

18. Gross, J., Chlipala, A.: Parsing Parses A Pearl of (Dependently Typed) Program-
ming and Proof (2015)

19. Hellings, J.: Conjunctive Context-Free Path Queries (2014)
20. Hellings, J.: Querying for paths in graphs using context-free path queries. arXiv

preprint arXiv:1502.02242 (2015)
21. Hofmann, J.: Verified Algorithms for Context-Free Grammars in Coq (2016)
22. Kaiser, J.O.: Constructive formalization of regular languages. Ph.D. thesis, Saar-

land University (2012)

https://doi.org/10.1007/978-3-642-00590-9_12
https://doi.org/10.1007/978-3-642-00590-9_12
https://doi.org/10.1007/978-3-642-15205-4_11
https://doi.org/10.1007/978-3-642-15205-4_11
https://doi.org/10.1007/978-3-642-13824-9_11
https://doi.org/10.1007/978-3-642-13824-9_11
http://www.cs.umd.edu/~gasarch/BLOGPAPERS/cfg.pdf/
http://www.cs.umd.edu/~gasarch/BLOGPAPERS/cfg.pdf/
https://doi.org/10.1007/3-540-63141-0_10
https://doi.org/10.1007/3-540-63141-0_10
https://doi.org/10.1007/978-3-319-03545-1_6
https://doi.org/10.1007/s10817-018-9460-x
https://doi.org/10.1007/s10817-018-9460-x
https://doi.org/10.1007/11730637_17
https://doi.org/10.1007/978-3-319-03545-1_7
http://arxiv.org/abs/1612.08872
http://arxiv.org/abs/1502.02242

280 S. Bozhko et al.

23. Koschmieder, A., Leser, U.: Regular path queries on large graphs. In: Ailamaki, A.,
Bowers, S. (eds.) SSDBM 2012. LNCS, vol. 7338, pp. 177–194. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-31235-9 12

24. Lohrey, M.: Algorithmics on SLP-compressed strings: a survey. Groups Complex.
Cryptol. 4, 241–299 (2012)

25. Lu, Y., Shang, L., Xie, X., Xue, J.: An incremental points-to analysis with CFL-
reachability. In: Jhala, R., De Bosschere, K. (eds.) CC 2013. LNCS, vol. 7791, pp.
61–81. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37051-9 4

26. Maneth, S., Peternek, F.: Grammar-based graph compression. Inf. Syst. 76, 19–45
(2018). http://www.sciencedirect.com/science/article/pii/S0306437917301680

27. Nederhof, M.J., Satta, G.: Parsing non-recursive context-free grammars. In: Pro-
ceedings of the 40th Annual Meeting on Association for Computational Linguistics,
ACL 2002, pp. 112–119. Association for Computational Linguistics, Stroudsburg
(2002). https://doi.org/10.3115/1073083.1073104

28. Nederhof, M.J., Satta, G.: The language intersection problem for non-recursive
context-free grammars. Inf. Comput. 192(2), 172–184 (2004). http://www.
sciencedirect.com/science/article/pii/S0890540104000562

29. Pratikakis, P., Foster, J.S., Hicks, M.: Existential label flow inference via CFL
reachability. In: Yi, K. (ed.) SAS 2006. LNCS, vol. 4134, pp. 88–106. Springer,
Heidelberg (2006). https://doi.org/10.1007/11823230 7

30. Ramos, M.V.M., de Queiroz, R.J.G.B.: Formalization of closure properties for
context-free grammars. CoRR abs/1506.03428 (2015). http://arxiv.org/abs/1506.
03428

31. Ramos, M.V.M., de Queiroz, R.J.G.B., Moreira, N., Almeida, J.C.B.: Formal-
ization of the pumping lemma for context-free languages. CoRR abs/1510.04748
(2015). http://arxiv.org/abs/1510.04748

32. Ramos, M.V.M., de Queiroz, R.J.G.B., Moreira, N., Almeida, J.C.B.: On the for-
malization of some results of context-free language theory. In: Väänänen, J., Hir-
vonen, Å., de Queiroz, R. (eds.) WoLLIC 2016. LNCS, vol. 9803, pp. 338–357.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-52921-8 21

33. Ramos, M.V., Almeida, J.C.B., de Queiroz, R.J., Moreira, N.: Some applications of
the formalization of the pumping lemma for context-free languages. In: Proceedings
of the 13th Workshop on Logical and Semantic Frameworks with Applications, pp.
43–56 (2018)

34. Ramos, M.V., de Queiroz, R.J.: Formalization of simplification for context-free
grammars. arXiv preprint arXiv:1509.02032 (2015)

35. Rehof, J., Fähndrich, M.: Type-base flow analysis: from polymorphic subtyping to
CFL-reachability. ACM SIGPLAN Not. 36(3), 54–66 (2001)

36. Reps, T., Horwitz, S., Sagiv, M.: Precise interprocedural dataflow analysis via
graph reachability. In: Proceedings of the 22nd ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, POPL 1995, pp. 49–61. ACM,
New York (1995). https://doi.org/10.1145/199448.199462

37. Scott, E., Johnstone, A.: GLL parsing. Electron. Notes Theor. Comput. Sci.
253(7), 177–189 (2010)

38. Seki, H., Matsumura, T., Fujii, M., Kasami, T.: On multiple context-free gram-
mars. Theor. Comput. Sci. 88(2), 191–229 (1991). http://www.sciencedirect.com/
science/article/pii/030439759190374B

39. Vardoulakis, D., Shivers, O.: CFA2: a context-free approach to control-flow anal-
ysis. In: Gordon, A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp. 570–589. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-11957-6 30

https://doi.org/10.1007/978-3-642-31235-9_12
https://doi.org/10.1007/978-3-642-37051-9_4
http://www.sciencedirect.com/science/article/pii/S0306437917301680
https://doi.org/10.3115/1073083.1073104
http://www.sciencedirect.com/science/article/pii/S0890540104000562
http://www.sciencedirect.com/science/article/pii/S0890540104000562
https://doi.org/10.1007/11823230_7
http://arxiv.org/abs/1506.03428
http://arxiv.org/abs/1506.03428
http://arxiv.org/abs/1510.04748
https://doi.org/10.1007/978-3-662-52921-8_21
http://arxiv.org/abs/1509.02032
https://doi.org/10.1145/199448.199462
http://www.sciencedirect.com/science/article/pii/030439759190374B
http://www.sciencedirect.com/science/article/pii/030439759190374B
https://doi.org/10.1007/978-3-642-11957-6_30

Bar-Hillel Theorem Mechanization in Coq 281

40. Yan, D., Xu, G., Rountev, A.: Demand-driven context-sensitive alias analysis for
Java. In: Proceedings of the 2011 International Symposium on Software Testing
and Analysis, ISSTA 2011, pp. 155–165. ACM, New York (2011). https://doi.org/
10.1145/2001420.2001440

41. Zhang, Q., Su, Z.: Context-sensitive data-dependence analysis via linear conjunc-
tive language reachability. SIGPLAN Not. 52(1), 344–358 (2017). https://doi.org/
10.1145/3093333.3009848

42. Zhang, X., Feng, Z., Wang, X., Rao, G., Wu, W.: Context-free path queries on
RDF graphs. In: Groth, P., et al. (eds.) ISWC 2016. LNCS, vol. 9981, pp. 632–648.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46523-4 38

https://doi.org/10.1145/2001420.2001440
https://doi.org/10.1145/2001420.2001440
https://doi.org/10.1145/3093333.3009848
https://doi.org/10.1145/3093333.3009848
https://doi.org/10.1007/978-3-319-46523-4_38

Proof-Net as Graph, Taylor Expansion
as Pullback

Giulio Guerrieri1 , Luc Pellissier2(B), and Lorenzo Tortora de Falco3

1 Department of Computer Science, University of Bath, Bath, UK
g.guerrieri@bath.ac.uk

2 IRIF, Université Paris Diderot, Paris, France
pellissier@irif.fr

3 Dipartimento di Matematica e Fisica, Università Roma Tre, Rome, Italy
tortora@uniroma3.it

Abstract. We introduce a new graphical representation for multiplica-
tive and exponential linear logic proof-structures, based only on stan-
dard labelled oriented graphs and standard notions of graph theory. The
inductive structure of boxes is handled by means of a box-tree. Our
proof-structures are canonical and allows for an elegant definition of their
Taylor expansion by means of pullbacks.

Keywords: Linear logic · Proof-net · Taylor expansion · Graph

1 Introduction

Linear Logic (LL) [14] has been introduced by Girard as a refinement of intu-
itionnistic and classical logic that isolates the infinitary parts of reasoning under
two modalities: the exponentials ! and ?. These modalities give a logical status to
the operations of memory/hypothesis management such as copying/contraction
or erasing/weakening : a linear proof corresponds to a program/proof that uses
its arguments/hypotheses linearly, i.e. only once, while an exponential proof
corresponds to a program/proof that can use its arguments/hypotheses at will.

One of the features of LL is that it allows us to represent its proofs as proof-
nets, a graphical syntax alternative to sequent calculus. Sequent calculus is a
standard formalism for several logical systems. However, sequent calculus forces
an order among inference rules even when they are evidently independent, a
drawback called bureaucracy. Proof-nets, instead, are a geometrical, parallel and
bureaucracy-free representation of proofs as labeled oriented graphs. In proof-
nets deductive rules are disposed on the plane, in parallel, and connected only by
their causal relation. Clearly, not all graphs that can be written in the language of
LL are proof-nets, i.e. represent a proof in LL sequent calculus. Proof-nets are spe-
cial inhabitants of the wider land of proof-structures: they can be characterized,
among proof-structures, by abstract (geometric) conditions called correctness
criteria [14]. The procedure of cut-elimination can be applied directly to proof-
structures, and proof-nets can also be seen as the proof-structures with a good
c© Springer-Verlag GmbH Germany, part of Springer Nature 2019
R. Iemhoff et al. (Eds.): WoLLIC 2019, LNCS 11541, pp. 282–300, 2019.
https://doi.org/10.1007/978-3-662-59533-6_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-59533-6_18&domain=pdf
http://orcid.org/0000-0002-0469-4279
https://doi.org/10.1007/978-3-662-59533-6_18

Proof-Net as Graph, Taylor Expansion as Pullback 283

behavior with respect to cut-elimination [3]. Cut-elimination defined on proof-
structures is more elegant than in sequent calculus because it drastically reduces
the need for commutative steps, the non-interesting and bureaucratic burden in
every sequent calculus proof of cut-elimination. Indeed, in proof-structures there
is no last rule, and so most commutative cut-elimination cases simply disappear.

Unfortunately, this is a faithful picture of the advantages of proof-structures
only in the multiplicative fragment of LL (MLL) [9], which does not contain
exponentials ! and ?, and so it is not sufficiently expressive to encode classical
or intuitionistic logic (or the λ-calculus) in. To handle the exponentials Girard
was forced to introduce boxes. They come with the black-box principle: “boxes
are treated in a perfectly modular way: we can use the box B without knowing
its content, i.e., another box B′ with exactly the same doors would do as well”
[14].

According to this principle, boxes forbid interaction between their content
and their outer environment. This is evident in the definition of correctness
criteria for MELL (the multiplicative-exponential fragment of LL) and in the def-
inition of cut-elimination steps for MELL. Let us consider cut-elimination. Some
cut-elimination steps require us to duplicate or erase whole sub-proofs, typically
the steps for the !-modality in MELL. Proofs in sequent calculus are tree-shaped
and bear a clear notion of last rule, the root of the tree. This property has an
obvious but important consequence: given a !-rule r in a sequent calculus proof,
there is an evident sub-proof ending with r, the sub-tree rooted in r. Therefore,
non-linear cut-elimination steps can easily be defined by duplicating or erasing
sub-trees. Switching to proof structures, the situation radically changes, because
a proof structure in general has many last rules, one for each formula in the
conclusions. Given a rule r it is not clear how to find a sub-proof-structure end-
ing with r. Thus, in order to define cut-elimination steps for the !-modality in
MELL proof-structures—which requires to identify some sub-proof-structure—
some information has to been added.

The typical solution is to re-introduce part of the bureaucracy in MELL proof-
structures, pairing each !-rule with an explicit box containing the sub-proof that
can be duplicated or erased during cut-elimination. In some fragments of MELL
(for instance the intuitionistic one corresponding to the λ-calculus [24] or more
in general the polarized one [1]) where proof-structures still have an implicit tree-
like structure (since among the conclusions there is always exactly one distinct
output, the analogue of sequent calculus last rule), the explicit box is actually
not needed. But here we are interested in the full (classical) MELL fragment,
where linear negation is involutive and classical duality can be interpreted as the
possibility of juggling between different conclusions. Concretely, in the literature
mainly two kinds of solution that make use of explicit boxes can be found:

1. A MELL proof-structure is an oriented graph together with some additional
information to identify the content and the border of each box. This additional
information can be provided either informally, just drawing the border of each
box in the graph [10,14,19], but then the definition of MELL proof-structure

284 G. Guerrieri et al.

is not rigorous; or in a more formal way [6,7,15], but then the definition is
highly technical and ad hoc;

2. A MELL proof-structure is an inductive oriented graph [8,17,22,26], i.e. an
oriented graph where with any vertex v of type ! is associated another oriented
graph representing the content of the box of v. This inductive solution can be
taken to extremes by representing proof-structures with term-like syntax [12].

The drawback of Item 1 is that the definition of MELL proof-structure is
not easily manageable because either it is not precise or it is too tricky. Item
2, instead, provides more manageable definitions of MELL proof-structures, but
another drawback arises: they intrinsically are not canonical, in that there are
different inductive presentations of a MELL proof-structure defined up to associa-
tivity and commutativity of contractions, neutrality of weakening with respect to
contraction, and permutation of weakenings and contractions with box-border.

Our Contribution. We present here a purely graphical definition of MELL proof-
structures (Sect. 3), so as to keep Girard’s original intuition of a proof-structure
as a graph even in MELL. This definition follows the non-inductive approach seen
in Item 1: we use n-ary vertices of type ? collapsing weakening, dereliction and
contraction (like in [10]). In this way, we get a canonical representation of MELL
proof-structures. But our definition is completely based on standard notions
(recalled in Sect. 2) coming from the theory of graphs, being formal (with an eye
towards complete computer formalization) but avoiding ad hoc technicalities to
identify the border and the content of a box. The inductive structure of boxes
is handled by means of a box-tree: indeed, a MELL proof-structure R is given
by an oriented labelled graph |R| plus a tree AR (representing the order of the
boxes of R) and a graph morphism boxR from |R| to AR which allows us to
recognize the content and the border of all boxes in R. In this way, our MELL
proof-structures are still manageable: sophisticated operations on them, such as
the Taylor expansion [11] can be easily defined. As a test of the usability of our
MELL proof-structures, we give an elegant definition of their Taylor expansion,
by means of pullbacks (Sect. 5).

Moreover, our setting allows us to define in a simple way correctness graphs
(used to characterize the proof-structures that are proof-nets, i.e. that correspond
to proofs in the LL sequent calculus), as we show in Sect. 4 for MLL.

Since the main contribution of our work is to provide a new definition of MELL
proof-structures, our paper contains several definitions and no new theorems.

2 Preliminaries on Graphs

Graphs with Half-Edges. There are many formalizations of the familiar notion
of graph. Here we adopt the one due to [4]:1 a graph is still a set of edges and
a set of vertices, but edges are now split in halves, allowing some of them to

1 The folklore attributes the definition of graphs with half-edges to Kontsevitch and
Manin, but the idea can actually be traced back to Grothendieck’s dessins d’enfant.

Proof-Net as Graph, Taylor Expansion as Pullback 285

be hanging. Splitting every edge in two has at least three features that are of
particular interest for representing LL proof-structures:

– two half-edges are connected by an involution, thus defining an edge. The
fixpoints of this involution are thus dangling edges, connected to only one
vertex: they are suited to represent the conclusions of a proof-structure. In this
way it is also easy to define some intuitive but formally tricky operations such
as the graft or the substitution of a graph for another graph (see Example 1);

– given a graph and any of its vertices, it is natural to define the corolla of the
vertex, that is the vertex itself with all the half-edges connected to it;

– finally, while studying proof-structures, it is always necessary to treat them
both as oriented and unoriented graphs. With this definition of graph, an
orientation, so as a labeling and a coloring, are structures on top of the
structure of the unoriented graph (see Definition 3).

Definition 1 (graph). A (finite) graph τ is a quadruple (Fτ , Vτ , ∂τ , jτ), where

– Fτ is a finite set, whose elements are called flags of τ ;
– Vτ is a finite set, whose elements are called vertices of τ ;
– ∂τ : Fτ → Vτ is a function associating with each flag its boundary;
– jτ : Fτ → Fτ is an involution.

The graph τ is empty if Vτ = ∅.
A flag that is a fixed point of the involution jF is a tail of τ . A two-element

orbit {f, f ′} of jF is an edge of τ between ∂τ (f) and ∂τ (f ′), and f and f ′ are
the halves of such an edge. The set of edges of τ is denoted by Eτ .

Given two graphs τ and τ ′, it is always possible to consider their disjoint
union τ � τ ′ defined as the disjoint union of the underlying sets and functions.

A one-vertex graph with set of flags F and involution the identity function
idF on F is called the corolla with set of flags F ; it is usually denoted by ∗F .

Given a graph τ = (Fτ , Vτ , ∂τ , jτ), a vertex v defines a corolla τv = (Fv, {v},
∂τ |Fv

, idFv
) where Fv = ∂−1

τ (v). Every graph can be described as the set of
corollas of its vertices, together with the involution glueing the flags in edges.

Definition 2 (graph morphism and isomorphism). Let τ, σ be two graphs.
A graph morphism h : τ → σ from τ to σ is a couple of functions (hF : Fτ →
Fσ, hV : Vτ → Vσ) such that hV ◦ ∂τ = ∂σ ◦ hF and hF ◦ jτ = jσ ◦ hF .

A graph morphism is injective if its component functions are. A graph iso-
morphism is a graph morphism whose component functions are bijections.

The category Graph has graphs as objects and morphisms of graphs as
morphisms: indeed, graph morphisms compose (by composing the underlying
functions) and the couple of identities (on vertices and flags) is neutral. It is a
monoidal category, with disjoint union as a monoidal product.

286 G. Guerrieri et al.

Graphs with Structure. Some structure can be put on top of a graph.

Definition 3 (structured graph). Let τ = (Fτ , Vτ , ∂τ , jτ) be a graph.

– A labeled graph (τ, �τ) with labels in I is a graph τ and a function �τ : Vτ → I.
– A colored graph (τ, cτ) is a graph τ with a function cτ : Fτ → C such that

cτ (f) = cτ (f ′) for the two halves f, f ′ of any edge of τ .
– An oriented graph (τ, oτ) is a graph τ with a function oτ : Fτ → {in,out}

such that oτ (f) �= oτ (f ′) for the two halves f, f ′ of any edge of τ . If oτ (f) =
out and oτ (f ′) = in, {f, f ′} is said an edge of τ from ∂τ (f) to ∂τ (f ′); in-
oriented (resp. out-oriented) tails of τ are called inputs (resp. outputs) of τ ;
if v is a vertex of τ , its inputs (resp. its outputs) are the elements of the set
inτ (v) = ∂−1

τ (v) ∩ o−1
τ (in); (resp. outτ (v) = ∂−1

τ (v) ∩ o−1
τ (out));

– An ordered graph (τ,<τ) is a graph together with an order on the flags.

Different structures on a graph can combine: for instance, a graph τ can be
endowed with both a labeling �τ and an orientation oτ .

Graphs can be depicted in diagrammatic form. As a graph is just a disjoint
union of corollas glued with the involution, we only need to depict corollas (as
in Fig. 1, on the left) and place the two halves of an edge next to each other (as
in Fig. 1, on the right). In oriented graphs, inputs of a corolla are depicted above
the corolla, outputs are below; arrows also show the orientation. The color of a
flag f (if any) is written next to f . The label of a vertex v (if any) is written
inside v. If ordered, flags of a corolla are depicted increasing from left to right.

Example 1. The oriented labeled colored ordered corolla τ5 = (∗5, o5, �5, c5, <5)
depicted in Fig. 1 (on the left) has ∗ as only vertex and 5 = {0, 1, 2, 3, 4} as set
of flags; it is endowed with the order 0 <5 4 and 1 <5 2 <5 3, and

– the orientation o5 : 5 → {in,out} defined by o5(0) = o5(4) = out and
o5(1) = o5(2) = o5(3) = in,

– the labeling �5 : {∗} → {�} defined by �5(∗) = �,
– the coloring c5 : 5 → {a0, . . . , a4} defined by c(i) = ai for all i ∈ 5.

Consider also the oriented labeled colored corolla σax, whose only vertex
is labeled by ax, and whose only flags are the outputs 5 (labeled by a2) and 6
(labeled by a3). The oriented labeled colored ordered two-vertex graph ρ depicted
in Fig. 1 (on the right) is obtained from the corollas τ5 and σax by defining the
involution jρ : {0, . . . , 6} → {0, . . . , 6} as jρ(i) = jτ5(i) for i ∈ {0, 1, 4}, and
jρ(i) = i + 3 for i ∈ {2, 3}, and jρ(i) = i − 3 for i ∈ {5, 6}.

Each enrichment of the structure of graphs introduced in Definition 3 induces
a notion of morphism that preserves such a structure, and an associated category.
For instance, a morphism h : (τ, oτ) → (σ, oσ) where (τ, oτ) and (σ, oσ) are ori-
ented graphs, is a graph morphism h = (hF , hV) : τ → σ such that oσ ◦hF = oτ .

Proof-Net as Graph, Taylor Expansion as Pullback 287

Fig. 1. An oriented labeled colored ordered corolla (on the left), and an oriented labeled
colored ordered two-vertex graph (on the right).

Trees and Paths. An unoriented path on a graph τ is a finite and even sequence
of flags ϕ = (f1, . . . , f2n) for some n ∈ N such that, for all 1 � i � n, jτ (f2i−1) =
jτ (f2i) and (if i �= n) ∂τ (f2i) = ∂τ (f2i+1). We say that ϕ is between ∂τ (f1) and
∂τ (f2n) if n > 0 (and it is a cycle if moreover ∂τ (f1) = ∂τ (f2n)), otherwise it is
the empty (unoriented) path, which is between any vertex and itself; the length
of ϕ is n. Two vertices are connected if there is an unoriented path between
them.

Let τ be a graph: τ is connected if any vertices v, v′ ∈ Vτ are connected; a
connected component of τ is a maximal (with respect the inclusion of flags and
vertices) connected sub-graph of τ ; τ is acyclic (or a forest) if it has no cycles;
τ is a tree if it is a connected forest.

A rooted tree τ is an oriented tree such that each vertex has exactly one
output. Thus, τ has exactly one output tail: its boundary is called the root of τ .

Remark 1. Let τ and τ ′ be two rooted trees, and h : τ → τ ′ be an oriented graph
morphism. As hF preserves tails and orientation, hV maps the root of τ to the
root of τ ′. Rooted trees and oriented graph morphisms form a category RoTree.

An oriented path on an oriented graph τ is an unoriented path (f1, . . . , f2n)
for some n ∈ N such that f2i−1 is output and f2i is input for all 1 � i � n. Such
a path is said to be from ∂τ (f1) to ∂τ (f2n) if n > 0, otherwise it is the empty
(oriented) path, which is from any vertex to itself.

The set of oriented paths on an oriented tree is finite. As such, given a tree
τ , we define its reflexive-transitive closure, or free category, τ� as the oriented
graph with same vertices and same tails as τ , and with an edge from v to v′ for
any oriented path from v to v′ in τ . The operator (·)� lifts to a functor from the
category RoTree to the category of oriented graphs.

3 DiLL Proof-Structures

This section is the core of our paper. We define here proof-structures corre-
sponding to some fragments or extension of LL: MELL, DiLL and DiLL0. Full
differential linear logic (DiLL) is an extension of MELL (with the same language
as MELL) provided with both promotion rule (i.e. boxes) and co-structural rules
(the duals of the structural rules handling the ?-modality) for the !-modality:
DiLL0 and MELL are particular subsystems of DiLL, respectively the promotion-
free one (i.e. without boxes) and the one without co-structural rules. As the

288 G. Guerrieri et al.

study of cut-elimination is left to future work, our interest for DiLL is just to
have an unitary syntax subsuming both MELL and DiLL0: this is why, unlike
[22,26], our DiLL proof-structures are not allowed to contain a set of DiLL proof-
structures inside a box.

Given a countably infinite set of propositional variables X,Y,Z, . . . , (MELL)
formulas (whose set is denoted by FMELL) are defined by the following grammar:

A,B :: = X | X⊥ | 1 | ⊥ | A ⊗ B | A ` B | !A | ?A

Linear negation (·)⊥ is defined via De Morgan laws 1⊥ = ⊥, (A⊗B)⊥ = A⊥`B⊥

and (!A)⊥ = ?A⊥, so as to be involutive, i.e. A⊥⊥ = A for any formula A.
Variables and their negations are atomic formulas; ⊗ and ` (resp. ! and ?) are
multiplicative (resp. exponential) connectives; 1 and ⊥ are multiplicative units.

We equip an oriented graph with labels (specifying the type of the vertices,
which is a MELL connective or unit), colors (specifying the type of the flags,
which is a MELL formula), and a function that specifies the deepest box each
flag or vertex is in; all of them are subject to compatibility conditions.

Definition 4 (module, proof-structure). A (DiLL) module M =
(|M |, �, o, c, <) is a labeled (�), oriented (o), colored (c), ordered (<) graph |M |
such that:

– � : V|M | → {ax, cut,1,⊥,⊗,`, ?, !} associates with each vertex its type;
– c : F|M | → FMELL associates with each flag its type;
– < is a strict order on the flags of |M | that is total on the tails of |M | and on

the inputs of each vertex labeled by ` or ⊗;
– for every vertex v ∈ V|M |,

• if �(v) = cut, v has no output and exactly two inputs i1 and i2, such that
c(i1) = c(i2)⊥;

• if �(v) = ax, v has no inputs and exactly two outputs o1 and o2, such that
c(o1) = c(o2)⊥;

• if �(v) ∈ {1,⊥}, v has no inputs and only one output o, with c(o) = �(v);
• if �(v) ∈ {⊗,`}, v has exactly two inputs i1 < i2 and one output o, such

that c(o) = c(i1) �(v) c(i2);
• if �(v) ∈ {?, !}, v has exactly n � 0 inputs i1, . . . , in and one output o,

such that c(o) = �(v) c(ij) for all 1 � j � n;2
In Fig. 2 we depicted the corollas associated with all types of vertices.

A (DiLL) proof-structure is a tuple R = (|R|,A, box), where |R| = (‖R‖, �R,
oR, cR, <R) is a module with no input tails, called the structured graph of R
(and ‖R‖ is the graph of R). Moreover, the following hold:

– A is a rooted tree with no input tails, called the box-tree of R.

2 This implies that c(ij) = c(ik) for all 1 � j, k � n.

Proof-Net as Graph, Taylor Expansion as Pullback 289

Fig. 2. DiLL cells, with their labels and their typed inputs and outputs.

– box : |R| → A� is a morphism of oriented graphs,3 the box-function of R,
such that boxF induces a partial bijection from

⋃
v∈V‖R‖,�(v)=! in|R|(v) to the

set of input flags in A.4 Moreover, for any vertex v ∈ V‖R‖ with f ∈ in|R|(v),
if boxV (∂‖R‖ ◦ j‖R‖(f)) �= boxV (∂‖R‖(f)) then �(v) ∈ {!, ?}.5

A proof-structure is empty (denoted by ε) if its graph is empty.
A MELL proof-structure is a proof-structure such that:

– for all v ∈ V‖R‖, if �(v) = ! then card(in|R|(v)) = 1;
– boxF induces a (total) bijection from

⋃
v∈V‖R‖,�(v)=! in|R|(v) to the set of input

flags in A.

A DiLL0 proof-structure is a proof-structure whose box-tree contains only its
root in the set of vertices. A MLL (resp. MLL–) proof-structure is a DiLL0 proof-
structure whose structured graph has no vertices of type ! or ? (resp. 1, ⊥, ! or ?).

Given a proof-structure R = (|R|,A, box), the output tails of |R| are the con-
clusions of R. So, if f is the output of the root of A, the pre-images f1, . . . , fn of
f via boxF ordered according to <|R| form a finite sequence of the conclusions of
R. The type of R is the list (c|R|(f1), . . . , c|R|(fn)) of the types of the conclusions.

Borrowing the terminology of interaction nets [13,16], if R is a proof-
structure, we say that the vertices of |R| are the cells of R, the flags of |R|
are the ports of R.

3 The structured graph |R| of R is more structured (it is also labeled, colored, ordered)
than an oriented graph such as A�. When we talk of a morphism between two
structured graphs where one of the two, say τ , is less structured than the other, say
σ, we mean that τ must be only considered with the same structure as σ. Thus, in
this case, box is a morphism from (‖R‖, oR)—discarding �R, cR, <R—to A�.

4 This means that for any input flag f ′ in A there is exactly one input f of some
vertex of type ! in |R| such that boxF (f) = f ′; but boxF (f) need not be an input
flag in A for any input f of some vertex of type ! in |R| (by definition of morphism,
boxF (f) is necessarily an input flag in A�). Intuitively, a vertex v of type ! represents
a generalized co-contraction (in particular, a co-weakening if it has no inputs), and
a box is associated with (and only with) each input f of v such that boxF (f) is an
input flag in A (and not only in A�): f represents the principal door (in the border)
of such a box (note that for f ′ ∈ F‖R‖, if f ′ �= f then boxF (f ′) �= boxF (f) and that
boxV (∂‖R‖ ◦ j‖R‖(f)) �= boxV (∂‖R‖(f)) for such a f).

5 Roughly, it says that the border of a box is made of (inputs of) vertices of type !
or ?.

290 G. Guerrieri et al.

Fig. 3. A MELL proof-structure R with its box-tree AR. The dotted arrows represent
the edges added to AR by the reflexive-transitive closure (·)�.

Remark 2 (box). In our syntax, boxes do not have explicit constructors or cells,
hence boxes and depth of a proof structure are recovered in a non-inductive way.

Let R = (|R|,AR, boxR) be a proof-structure. With every flag f of |R| such
that boxRF

(f) is an input flag of AR
6 is associated a box Bf , that is the subgraph

of |R| (which is actually a proof-structure) made up of all the cells v (with their
inputs and outputs) such that there is an oriented path on AR from boxRV

(v)
to boxRV

(∂‖R‖ ◦ j‖R‖(f)): a conclusion of such a box Bf associated with f is
every output f ′ of a vertex v in Bf such that ∂‖R‖ ◦ j‖R‖(f ′) is not in Bf .
Summing up, every non-root vertex of AR represents a box in R, and the root
of AR represents the parts of R outside all the boxes. The tree-structure of AR

expresses the nesting condition of boxes.
The depth of a cell v of R is the length of the oriented path in AR from

boxR(v) to the root of AR. The depth of R is the maximal depth of the cells of R.

Example 2. In Fig. 3 a MELL proof-structure R is depicted: the structured graph
|R| of R is on the left; the box-tree AR of R is on the right. The box-function
boxR is kept implicit by means of colors: the colored areas in |R| represent boxes,
and the same color is used on AR to show where each box is mapped by boxR.

The proof-structures we have just defined are quite rigid: they depend on
their carrier-sets of cells and wires. Nonetheless, a precise answer to the ques-
tion “When two proof-structures can be considered equal?” requires a notion of
isomorphism inherited by the notion of graph isomorphism.

6 According to the constraints on boxR, this condition can be fulfilled only by inputs
of a cell of type ! (a !-cell, for short) in |R|, and an input of a !-cell need not fulfill
it; in particular, if R is a MELL proof-structure, then this condition is fulfilled by all
and only the inputs of !-cells (and such an input is unique for any !-cell) in |R|; but
if R is a DiLL0 proof-structure, then this condition is not fulfilled by any flag in |R|
(since AR has no inputs) and so boxR is a graph morphism associating the root of
AR with any vertex of |R|. Therefore, in a DiLL0 proof-structure ρ = (|ρ|, Aρ, boxρ),
Aρ and boxρ do not induce any structure on |ρ|: ρ can be identified with |ρ|.

Proof-Net as Graph, Taylor Expansion as Pullback 291

Fig. 4. Sequent calculi for MLL– (all rules but (mix), (emp), (1), (⊥)), MLL (all rules).

Definition 5 (isomorphism of proof-structures). Let R = (|R|,AR, boxR)
and R′ = (|R′|,AR′ , boxR′) be proof-structures, with |R| = (‖R‖, �R, oR, cR, <R)
and |R′| = (‖R′‖, �R′ , oR′ , cR′ , <R′). An isomorphism of proof-structures f : R
R′ is a couple f = (f|·|, fbox) where:

– f|·| : |R| → |R′| is an isomorphism of the structured graphs of R and R′,
– fbox : AR → AR′ is an isomorphism of the box-trees of R and R′,

such that the following diagram commutes

|R| A�
R

|R′| A�
R′

boxR

f|·| f�
box

boxR′

Note that if R is isomorphic to a proof-structure R′, and R is a MELL or
DiLL0 proof-structure, then R′ is respectively a MELL or DiLL0 proof-structure.

4 Sequent Calculi, Proof-Nets and Correctness for MLL

Every proof in the sequent calculus for LL can be translated in a proof-structure
with the same conclusions. Figure 4 gives the rules of the sequent calculi for
two multiplicative fragments of LL: MLL– (without units) and MLL (with units
and mix). A MLL– (resp. MLL) formula is a MELL formula without exponential
connectives and multiplicative units (resp. without exponential connectives). A
sequent is a finite sequence of (MLL– or MLL, depending on the context) formulas
A1, . . . , An. Capital Greek letters Γ,Δ, . . . range over sequents.

Definition 6 (translation, proof-net). Let X ∈ {MLL–,MLL}.
With any proof π in the sequent calculus for X and conclusion � Γ is associ-

ated a X proof-structure Rπ with type Γ , called the translation of π, defined by
induction on the size of π as follows:7

π = (ax)
� A,A⊥ � |Rπ| = A A⊥

ax

7 We write only the graph |Rπ| of Rπ, because its box-tree ARπ and its box-function
boxRπ are trivial (see Footnote 6).

292 G. Guerrieri et al.

π =

.... π1

� Γ,A

.... π2

� A⊥,Δ
(cut)� Γ,Δ

� |Rπ| = |Rπ1 | |Rπ2 |

Γ A A⊥ Δ

cut

π =

.... π1

� Γ,A,B,Δ
(exc)� Γ,B,A,Δ

� |Rπ| =

B A

|Rπ1 |

Γ Δ

π = (emp)� � |Rπ| = |ε| (ε is the empty proof-structure)

π =

.... π1

� Γ

.... π2

� Δ (mix)� Γ,Δ

� |Rπ| = |Rπ1 | |Rπ2 |

Γ Δ

π = (1)� 1 � |Rπ| = 1

1

π =

.... π1

� Γ (⊥)� Γ,⊥
� |Rπ| =

⊥
|Rπ1 |

Γ

⊥

π =

.... π1

� Γ,A,B
(`)� Γ,A ` B

� |Rπ| = |Rπ1 |

Γ A B

`
A ` B

π =

.... π1

� Γ,A

.... π2

� B,Δ
(⊗)� Γ,A ⊗ B,Δ

� |Rπ| = |Rπ1 | |Rπ2 |

Γ A B Δ

⊗
A ⊗ B

A proof-structure R is a X proof-net (or is X sequentializable) if R = Rπ

(i.e. R is the translation of π) for some proof π in the X sequent calculus.

The translation is not surjective (neither injective) over proof-structures, even
when we restrict to MLL– or MLL proof-structures. Purely graph-theoretical con-
ditions, called correctness criteria, have been presented in order to characterize

Proof-Net as Graph, Taylor Expansion as Pullback 293

the set of sequentializable proof-structures. We give here two among the most cel-
ebrated of such correctness criteria, switching acyclicity and its variant switching
acyclicity and connectedness, presented originally in [9]. We define them via the
switching operation on a proof-structure R, which roughly consists of “detach-
ing” all inputs but one of every vertex of type ` in R. This switching can be
easily defined in our setting, thanks to modules and involutions.

Definition 7 (switching, correctness graph). Let R be a MLL proof-
structure, whose structured graph is |R| and whose (unoriented) graph is ‖R‖.

A switching of R is a function sR : {v ∈ V‖R‖ | �|R|(v) = `} → F‖R‖ such
that sR(v) is one of the two inputs of v.

With every switching sR of R is associated a sR-correctness graph τ(sR),
which is the (unoriented) graph obtained from ‖R‖ by replacing the involution
j‖R‖ : F‖R‖ → F‖R‖ for ‖R‖ with jτ(sR) : F‖R‖ → F‖R‖ defined as follows:

jτ(sR)(f) =

⎧
⎪⎨

⎪⎩

j‖R‖(f) if f is an input of a vertex v such that either
�|R|(v) = ` and sR(v) = f , or �|R|(v) �= `;

f otherwise.

A MLL proof-structure R is switching acyclic (resp. switching acyclic and
connected) if every correctness graph of R is acyclic (resp. acyclic and con-
nected).

Theorem 1 (Sequentialization, [9]).

1. A MLL– proof-structure is MLL– sequentializable iff it is switching acyclic and
connected.

2. A MLL proof-structure is MLL sequentializable iff it is switching acyclic.

The definitions and the results of this section can be easily generalized to
DiLL0 and MELL proof-structures.

5 The Taylor Expansion

The Taylor expansion [11] of a MELL (or more in general a DiLL) proof-structure
R is a (usually infinite) set of DiLL0 proof-structures: roughly speaking, each
element of the Taylor expansion of R is obtained from R by replacing each box
B in R with nB copies of its content (for some nB ∈ N), recursively on the
depth of R. Note that nB depends not only on B but also on which “copy”
of all boxes containing B we are considering. Up to now (with the exception
of [15]), the Taylor expansion of MELL proof-structure is defined globally and
inductively [19,21]: with every MELL proof-structure R is directly associated its
Taylor expansion (the whole set!) by induction on the depth of R.

We adopt an alternative non-inductive approach, which strongly refines [15]:
the Taylor expansion is defined pointwise (see Example 3 and Fig. 5). Indeed,

294 G. Guerrieri et al.

proof-structures have a tree structure that is made explicit through their box-
function. The definition of the Taylor expansion of a proof-structure uses this
tree structure: first we define how to “expand” a tree via the notion of thick
subtree [5] (Definition 8), then we take all the expansions of the tree structure of
a proof-structure and we pull them back to the underlying graphs (Definition 9),
finally we forget the tree structures associated with them (Definition 10).

Definition 8 (thick subtree [5]). Let τ be a rooted tree. A thick subtree of
τ is a pair (σ, h) of a rooted tree σ and a graph morphism h : σ → τ .

As in analysis, an addend of the Taylor expansion of an analytical function f
is an approximant of f , here if A is the box-tree of a proof-structure R, a thick
subtree of A is a sort of approximant of A taking recursively a number of copies
(possibly 0) of each input of the vertices of A, i.e. of each box of R.

Example 3. The following is (a graphical presentation of) a thick subtree (τ, h)
of the box-tree AR of the proof-structure R in Fig. 3, where the graph morphism
h : τ → AR is depicted chromatically (same color means same image via h).

Intuitively, τ is obtained from AR by taking 3 copies of the blue box, 1 copy of
the red box, 4 copies of the orange box; in the first (resp. second; third) copy of
the blue box, 1 copy (resp. 0 copies; 2 copies) of the purple box has been taken.

The crucial point is to pull back the expansion of trees to proof-structures.
In Appendix A we recall the definition of pullback in the category of graphs.

Definition 9 (proto-Taylor expansion). Let R = (|R|,AR, boxR) be a proof-
structure. The proto-Taylor expansion of R is set Tproto

R of thick subtrees of AR.
Let t = (τt, ht) ∈ Tproto

R . The t-expansion of R is the pullback (Rt, pt, pR):

Rt τ�
t

|R| A�
R

pt

pR h�
t

boxR

computed in the category of graphs and graph morphisms.8

8 This means that τ�
t and A�

R are considered as (unoriented) graphs, see also Foot-
note 3.

Proof-Net as Graph, Taylor Expansion as Pullback 295

Given a proof-structure R and t = (τt, ht) ∈ Tproto
R , the t-expansion

(Rt, pt, pR) of R is a naked graph. In order for it to be lifted into a DiLL0
proof-structure, we need to define more structure on it, using either t or R.

– Oriented, labeled and colored structures on the graph |R| are defined through
functions defined on the flags and vertices of |R|; hence, by precomposing
with the graph morphism pR = (pRF

, pRV
) : Rt → |R|, this transports to a

structure of oriented labeled and colored graph on Rt;
– the order on the flags of Rt is defined as the order induced by their image in

|R|: f < f ′ if and only if pRF
(f) < pRF

(f ′);
– let [τt] be the tree made up only of the root of τt and its output and let

ι : τt → [τt] be the graph morphism sending all the vertices of τt to the root
of τt; ι� induces by post-composition a morphism ht = ι� ◦ pt : Rt → [τt]�.

With its structure of oriented, labeled, ordered and colored graph, the triple
(Rt, [τt], ht) is a DiLL0 proof-structure.

Definition 10 (Taylor expansion). Let R be a proof-structure. The Taylor
expansion of R is the set TR = {(Rt, [τt], ht) | t = (τt, ht) ∈ Tproto

R }.

An element of the Taylor expansion of a proof-structure is thus a DiLL0
proof-structure. It has much less structure than the pullback (Rt, pt, pR), which
defines a DiLL0 proof-structure Rt coming with its projections pt : Rt → τ�

t and
pR : Rt → |R|. In particular, a cell in Rt is labelled (through the projections) by
the cell of |R| and the branch of the box-tree of R it arose from. But (Rt, [τt], ht)
where Rt is without its projections pt and pR loses the correspondence with
R = (|R|,AR, boxR) (see Fig. 5). Reconstructing such projections, starting only
from an element of the Taylor expansion, can be seen as the core of the works
on the injectivity of the Taylor expansion, see [7,15].

Remark 3. From the definition it follows that each element of the Taylor expan-
sion of a proof-structure R has the same conclusions and the same type as R.
More precisely, let R be a proof-structure and ρ be in the Taylor expansion of R: f

Fig. 5. The element of the Taylor expansion of the MELL proof-structure R in Fig. 3
obtained from the element of Tproto

R depicted in Example 3.

296 G. Guerrieri et al.

is a conclusion of ρ and an output of a cell v of ρ if and only if pRF
(f) is a conclu-

sion of R and an output of a cell pRV
(v) of R. And c|ρ|(f) = c|R|(pRF

(f)) (i.e. the
type of f in ρ is the same as the type of pRF

(f) in R) and �|ρ|(v) = �|R|(pRV
(v))

(i.e. the type of v in ρ is the same as the type of pRV
(v) in R).

Remark 4. One could go further and define an incomplete Taylor expansion of
a proof-structure, where some boxes are expanded, but not all. This extension
fits into this framework: the absence of boxes in an element (Rt, [τt], ht) of the
Taylor expansion owes only to the fact that [τt] is a root. By replacing this root
by a rooted tree, we keep track of which boxes are expanded and which are not.

6 Conclusions

Cut-Elimination. The fact that we get a canonical (as explained in Sect. 1)
representation of MELL proof-structures is not only an aesthetic matter: it has
important consequences on the definition of cut elimination, because it avoids
the presence of the bureaucratic commutative-steps. As a notable consequence,
as proved in [2], the proof of strong normalization for MELL becomes quite
elegant and much easier than with non-canonical MELL proof-structures [23].
The canonicity of our definition of MELL proof-structures paves the way to such
a smooth cut elimination; we plan to work out this issue in future work.

Taylor Expansion and Relational Semantics. Relational semantics is the simplest
denotational model of LL. It can be seen as a degenerate case of Girard’s coherent
semantics [14]: formulas are interpreted as sets and proof-structures as relations
between them. It is well-known that, given a MELL proof-structure R, there is
a correspondence between certain equivalence classes on its relational semantics
�R� and the elements of its Taylor expansion TR: in particular, two cut-free MELL
proof-structures with atomic axioms have the same relational semantics if and
only if they have the same Taylor expansion. This equivalence, which relates the
syntactic notion of Taylor expansion to the semantic notion of relational model,
holds only with a canonical representation MELL proof-structures, such as ours.

Mix and Forests. In an ongoing work, we are naturally led to consider several
proof-structures at the same time and to “mix” them in a single proof-structure.
Our definition of proof-structure (Definition 4) is perfectly suited for this pur-
pose. Indeed, the definition of a box-tree lends itself to a generalization: consid-
ering not trees, but forests of boxes. The graph morphism condition implies, if
its image is a forest, that the proof-structure contains several connected compo-
nents; and each inverse image of a tree in the forest is actually a proof-structure.

So, by slightly generalizing the definition, we can consider a list of proof-
structures as a whole proof-structure, while respecting their individuality, con-
trarily to all of them having the same image through box. This allows us to
mimic the situation of the mix rule of sequent calculus: taking two proofs and
considering it one can be done by merging two roots of a box-forest.

Proof-Net as Graph, Taylor Expansion as Pullback 297

A Most General Taylor Expansion: Milner’s Absorption. It is possible to go
farther in the definition of the Taylor expansion and to specify a new box-tree
that need not be trivial. This allows for instance to expand some boxes and not
all; and even to expand partially a box: copying alongside a box its contents and
(co-)contracting the box with the copies.

This is reminiscent of the π-calculus and of Mazza’s parsimonious λ-calculus
[18], where the exponentials verify the isomorphism !A A ⊗ !A.

Other Boxes. Boxes for other connectives of linear logic have been considered
in various works: quantifiers (both first-order and second order [14]), fix-points
[20] and additives [14,25]. The boxing tree represents a sequential structure that
is added on top of a proof-structure. All these connective share in common to
require such a sequentialization.

As the different kind of sequentialization need to merge correctly, we believe
this approach to be adapted without problems to other kinds of boxes, paving
the way to a unified notion of proof-structures for a richer system than MELL.

Technical Appendix

A Computing a Pullback in the Category of Graphs

The category of graphs has all pullbacks, a fact that we use extensively. We
recall here all the definitions and facts that are packed in that affirmation.

Definition 11 (pullback). Let C be a category. Let X, Y , and Z be three
objects of C and f : X → Z and g : Y → Z be two arrows of C.

The pullback of X and Y along f and g is the triple (A, !X , !Y) such that the
diagram

A X

Y Z

!X

!Y f

g

commutes and, for every other (B, h : B → X, k : B → Y) making the same
diagram commute, there exists a unique arrow p : B → A such that:

B

A X

Y Z

h

k

p

!X

!Y f

g

298 G. Guerrieri et al.

It is unique (up to unique isomorphism), and it is customary to write X×Z Y
a pullback of X and Y over Z (leaving f and g implicit) and a pullback diagram
with a corner:

A X

Y Z

!X

!Y f

g

All pullbacks exist in the category of graphs. Explicitely, let τ =
(Fτ , Vτ , ∂τ , jτ), σ = (Fσ, Vσ, ∂σ, jσ) and ρ = (Fρ, Vρ, ∂ρ, jρ) be three graphs
and g : σ → τ , h : ρ → τ be two graph morphisms. Consider the two sets

F = {(f1, f2) ∈ Fσ × Fρ | gF (f1) = hF (f2)}
V = {(v1, v2) ∈ Vσ × Vρ | gV (v1) = hV (v2)}

They are both equiped with two projections, which we will write πF
σ , πF

ρ , πV
σ , πV

ρ .
Let f ∈ F .

gV ◦ ∂σ ◦ πF
σ (f) = ∂τ ◦ gF ◦ πF

σ (f), because g is a graph morphism

= ∂τ ◦ hF ◦ πF
ρ (f), by definition of F

= hV ◦ ∂ρ ◦ πF
ρ (f), because h is a graph morphism

Hence, we can define ∂ : F → V by ∂(f) = (∂σ ◦πF
σ (f), ∂ρ ◦πF

ρ (f)). In the same
way, we define j : F → F by j(f) = (jσ ◦ πF

σ (f), jρ ◦ πF
ρ (f)), and check that it

is an involution.
Hence σ ×τ ρ = (F, V, ∂, j) is a graph and πσ = (πF

σ , πV
σ) : σ ×τ ρ → σ and

πρ = (πF
ρ , πV

ρ) : σ ×τ ρ → ρ are graph morphisms.

σ ×τ ρ ρ

σ τ

πρ

πσ h
g

Consider now any μ = (Fμ, Vμ, ∂μ, jμ) such that the diagram

μ ρ

σ τ

p

q h
g

commutes. For f ∈ Fμ, let rF (f) = (pF (f), qF (f)) and for v ∈ Vμ, let rV (v) =
(pV (v), qV (v)). We check that it defines a graph morphism r : μ → σ ×τ ρ and
it factorises p and q.

Proof-Net as Graph, Taylor Expansion as Pullback 299

References

1. Accattoli, B.: Compressing polarized boxes. In: 28th Annual Symposium on Logic
in Computer Science (LICS 2013), pp. 428–437. IEEE Computer Society (2013).
https://doi.org/10.1109/LICS.2013.49

2. Accattoli, B.: Linear logic and strong normalization. In: 24th International Confer-
ence on Rewriting Techniques and Applications (RTA 2013). LIPIcs, vol. 21, pp.
39–54. Schloss Dagstuhl (2013). https://doi.org/10.4230/LIPIcs.RTA.2013.39

3. Béchet, D.: Minimality of the correctness criterion for multiplicative proof nets.
Math. Struct. Comput. Sci. 8(6), 543–558 (1998)

4. Borisov, D.V., Manin, Y.I.: Generalized Operads and Their Inner Cohomomor-
phisms, pp. 247–308. Birkhäuser Basel, Basel (2008). https://doi.org/10.1007/978-
3-7643-8608-5_4

5. Boudes, P.: Thick subtrees, games and experiments. In: Curien, P.-L. (ed.) TLCA
2009. LNCS, vol. 5608, pp. 65–79. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-02273-9_7

6. de Carvalho, D., Tortora de Falco, L.: The relational model is injective for mul-
tiplicative exponential linear logic (without weakenings). Ann. Pure Appl. Log.
163(9), 1210–1236 (2012)

7. de Carvalho, D.: Taylor expansion in linear logic is invertible. Log. Methods Com-
put. Sci. 14(4), 1–73 (2018). https://doi.org/10.23638/LMCS-14(4:21)2018

8. de Carvalho, D., Pagani, M., Tortora de Falco, L.: A semantic measure of the
execution time in linear logic. Theor. Comput. Sci. 412(20), 1884–1902 (2011).
https://doi.org/10.1016/j.tcs.2010.12.017

9. Danos, V., Regnier, L.: The structure of multiplicatives. Arch. Math. Log. 28(3),
181–203 (1989). https://doi.org/10.1007/BF01622878

10. Danos, V., Regnier, L.: Proof-nets and the Hilbert Space. In: Proceedings of the
Workshop on Advances in Linear Logic, pp. 307–328. Cambridge University Press
(1995)

11. Ehrhard, T., Regnier, L.: Uniformity and the Taylor expansion of ordinary lambda-
terms. Theor. Comput. Sci. 403(2–3), 347–372 (2008)

12. Ehrhard, T.: A new correctness criterion for MLL proof nets. In: Joint Meeting of
the Twenty-Third Conference on Computer Science Logic and the Twenty-Ninth
Symposium on Logic in Computer Science (CSL-LICS 2014), pp. 38:1–38:10. ACM
(2014). https://doi.org/10.1145/2603088.2603125

13. Ehrhard, T., Regnier, L.: Differential interaction nets. Theor. Comput. Sci. 364(2),
166–195 (2006). https://doi.org/10.1016/j.tcs.2006.08.003

14. Girard, J.Y.: Linear logic. Theor. Comput. Sci. 50(1), 1–101 (1987). https://doi.
org/10.1016/0304-3975(87)90045-4

15. Guerrieri, G., Pellissier, L., Tortora de Falco, L.: Computing connected proof(-
structure)s from their Taylor expansion. In: 1st International Conference on Formal
Structures for Computation and Deduction (FSCD 2016). LIPIcs, vol. 52, pp. 20:1–
20:18. Schloss Dagstuhl (2016). https://doi.org/10.4230/LIPIcs.FSCD.2016.20

16. Lafont, Y.: Interaction nets. In: Seventeenth Annual ACM Symposium on Prin-
ciples of Programming Languages (POPL 1990), pp. 95–108. ACM Press (1990).
https://doi.org/10.1145/96709.96718

17. Laurent, O.: Polarized proof-nets and lambda-μ-calculus. Theor. Comput. Sci.
290(1), 161–188 (2003). https://doi.org/10.1016/S0304-3975(01)00297-3

18. Mazza, D.: Simple parsimonious types and logarithmic space. In: 24th Annual
Conference on Computer Science Logic (CSL 2015). LIPIcs, vol. 41, pp. 24–40.
Schloss Dagstuhl (2015). https://doi.org/10.4230/LIPIcs.CSL.2015.24

https://doi.org/10.1109/LICS.2013.49
https://doi.org/10.4230/LIPIcs.RTA.2013.39
https://doi.org/10.1007/978-3-7643-8608-5_4
https://doi.org/10.1007/978-3-7643-8608-5_4
https://doi.org/10.1007/978-3-642-02273-9_7
https://doi.org/10.1007/978-3-642-02273-9_7
https://doi.org/10.23638/LMCS-14(4:21)2018
https://doi.org/10.1016/j.tcs.2010.12.017
https://doi.org/10.1007/BF01622878
https://doi.org/10.1145/2603088.2603125
https://doi.org/10.1016/j.tcs.2006.08.003
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.4230/LIPIcs.FSCD.2016.20
https://doi.org/10.1145/96709.96718
https://doi.org/10.1016/S0304-3975(01)00297-3
https://doi.org/10.4230/LIPIcs.CSL.2015.24

300 G. Guerrieri et al.

19. Mazza, D., Pagani, M.: The separation theorem for differential interaction nets.
In: Dershowitz, N., Voronkov, A. (eds.) LPAR 2007. LNCS (LNAI), vol. 4790, pp.
393–407. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75560-
9_29

20. Montelatici, R.: Polarized proof nets with cycles and fixpoints semantics. In: Hof-
mann, M. (ed.) TLCA 2003. LNCS, vol. 2701, pp. 256–270. Springer, Heidelberg
(2003). https://doi.org/10.1007/3-540-44904-3_18

21. Pagani, M., Tasson, C.: The inverse Taylor expansion problem in linear logic.
In: Proceedings of the 24th Annual Symposium on Logic in Computer Science
(LICS 2009), pp. 222–231. IEEE Computer Society (2009). https://doi.org/10.
1109/LICS.2009.35

22. Pagani, M.: The cut-elimination theorem for differential nets with promotion. In:
Curien, P.-L. (ed.) TLCA 2009. LNCS, vol. 5608, pp. 219–233. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-02273-9_17

23. Pagani, M., Tortora de Falco, L.: Strong normalization property for second order
linear logic. Theor. Comput. Sci. 411(2), 410–444 (2010). https://doi.org/10.1016/
j.tcs.2009.07.053

24. Solieri, M.: Geometry of resource interaction and Taylor-Ehrhard-Regnier expan-
sion: a minimalist approach. Math. Struct. Comput. Sci. 28(5), 667–709 (2018).
https://doi.org/10.1017/S0960129516000311

25. Tortora de Falco, L.: The additive multiboxes. Ann. Pure Appl. Log. 120(1–3),
65–102 (2003). https://doi.org/10.1016/S0168-0072(02)00042-8

26. Tranquilli, P.: Intuitionistic differential nets and lambda-calculus. Theor. Comput.
Sci. 412(20), 1979–1997 (2011). https://doi.org/10.1016/j.tcs.2010.12.022

https://doi.org/10.1007/978-3-540-75560-9_29
https://doi.org/10.1007/978-3-540-75560-9_29
https://doi.org/10.1007/3-540-44904-3_18
https://doi.org/10.1109/LICS.2009.35
https://doi.org/10.1109/LICS.2009.35
https://doi.org/10.1007/978-3-642-02273-9_17
https://doi.org/10.1016/j.tcs.2009.07.053
https://doi.org/10.1016/j.tcs.2009.07.053
https://doi.org/10.1017/S0960129516000311
https://doi.org/10.1016/S0168-0072(02)00042-8
https://doi.org/10.1016/j.tcs.2010.12.022

Complexity Thresholds in Inclusion Logic

Miika Hannula1(B) and Lauri Hella2

1 University of Helsinki, Helsinki, Finland
miika.hannula@helsinki.fi

2 Tampere University, Tampere, Finland
lauri.hella@tuni.fi

Abstract. Logics with team semantics provide alternative means for
logical characterization of complexity classes. Both dependence and inde-
pendence logic are known to capture non-deterministic polynomial time,
and the frontiers of tractability in these logics are relatively well under-
stood. Inclusion logic is similar to these team-based logical formalisms
with the exception that it corresponds to deterministic polynomial time
in ordered models. In this article we examine connections between syn-
tactical fragments of inclusion logic and different complexity classes in
terms of two computational problems: maximal subteam membership
and the model checking problem for a fixed inclusion logic formula. We
show that very simple quantifier-free formulae with one or two inclusion
atoms generate instances of these problems that are complete for (non-
deterministic) logarithmic space and polynomial time. Furthermore, we
present a fragment of inclusion logic that captures non-deterministic log-
arithmic space in ordered models.

Keywords: Team semantics · Inclusion logic · Complexity ·
Consistent query answering

1 Introduction

In this article we study the computational complexity of inclusion logic. Inclusion
logic was introduced by Galliani [9] as a variant of dependence logic, developed
by Väänänen in 2007 [26]. Dependence logic is a logical formalism that extends
first-order logic with novel atomic formulae dep(x1, . . . , xn) expressing that a
variable xn depends on variables x1, . . . , xn−1. One motivation behind depen-
dence logic is to find a unifying logical framework for analyzing dependency
notions from different contexts. Since its introduction, versions of dependence
logic have been formulated and investigated in a variety of logical environments,
including propositional logic [16,29,31], modal logic [7,27], probabilistic logics
[5], and two-variable logics [22]. Recent research has also pursued connections
and applications of dependence logic to fields such as database theory [14,15],

The first author was supported by grant 308712 of the Academy of Finland.

c© Springer-Verlag GmbH Germany, part of Springer Nature 2019
R. Iemhoff et al. (Eds.): WoLLIC 2019, LNCS 11541, pp. 301–322, 2019.
https://doi.org/10.1007/978-3-662-59533-6_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-59533-6_19&domain=pdf
http://orcid.org/0000-0002-9637-6664
https://doi.org/10.1007/978-3-662-59533-6_19

302 M. Hannula and L. Hella

Bayesian networks [4], and social choice theory [24]. A common notion underly-
ing all these endeavours is that of team semantics. Team semantics, introduced
by Hodges in [17], is a semantical framework where formulae are evaluated over
multitudes instead of singletons of objects as in classical logics. Depending on the
application domain these multitudes may then refer to assignment sets, proba-
bility distributions, or database tables, each having their characteristic versions
of team semantics [5,15,26].

After the introduction of dependence logic Grädel and Väänänen observed
that team semantics can be also used to create logics for independence [11]. This
was followed by [9] in which Galliani investigated logical languages built upon
multiple different dependency notions. Inspired by the inclusion dependencies of
database theory, one of the logics introduced was inclusion logic that extends
first-order logic with inclusion atoms. Given two sequences of variables x and y
having same length, an inclusion atom x ⊆ y expresses that the set of values
of x is included in the set of values of y. Inclusion logic was shown to be equi-
expressive to positive greatest-fixed point logic in [10]. In contrast to dependence
logic which is equivalent to existential second-order logic [26], and thus to non-
deterministic polynomial time (NP), this finding established inclusion logic as
the first team-based based logic for polynomial time (P). Our focus in this
article is to pursue this connection further by investigating the complexity of
quantifier-free inclusion logic in terms of two computational problems: maximal
subteam membership and model checking problems. In particular, we identify
complexity thresholds for these problems in terms of first-order definability, (non-
deterministic) logarithmic space, and polynomial time.

The maximal subteam membership problem MSM(φ) for a formula φ asks
whether a given assignment is in the maximal subteam of a given team that sat-
isfies φ. This problem is closely related to the notion of a repair of an inconsistent
database [2]. A repair of a database instance I w.r.t. some set Σ of constraints
is an instance J obtained by deleting and/or adding tuples from/to I such that
J satisfies Σ, and the difference between I and J is minimal according to some
measure. If only deletion of tuples is allowed, J is called a subset repair. It was
observed in [3] that if Σ consists of inclusion dependencies, then for every I there
exists a unique subset repair J of I; this was later generalized to arbitrary LAV
tgds (local-as-view tuple generating dependencies) in [25].

The research on database repair has been mainly focused on two problems:
consistent query answering and repair checking. In the former, given a query
Q and a database instance I the problem is to compute the set of tuples that
belong to Q(J) for every repair J of I. The latter is the decision problem: is J
a repair of I for two given database instances I and J . The complexity of these
problems for various classes of dependencies and different types of repairs has
been extensively studied in the literature; see e.g. [1,3,23,25]. In this setting, the
maximal subteam membership problem can be seen as a variant of the repair
checking problem: regarding a team as a (unirelational) database instance I and
a formula φ of inclusion logic as a constraint, an assignment is a positive instance
of MSM(φ) just in case it is in the unique subset repair of I. Note however, that

Complexity Thresholds in Inclusion Logic 303

in MSM(φ), the task is essentially to compute the maximal subteam from a
given database instance I, instead of just checking that a given J is the unique
subset repair of I. Note further, that using a single formula φ as a constraint
is actually more general than using a (finite) set Σ of inclusion dependencies.
Indeed, as φ we can take the conjunction of all inclusions in Σ. Furthermore,
using disjunctions and quantifiers, we can form constraints not expressible in the
usual formalism with a set of dependencies.

The complexity of model checking in team semantics has been studied in
[6,21] for dependence and independence logics. For these logics increase in com-
plexity arises particularly from disjunctions. For example, model checking for
a disjunction of three (two, resp.) dependence atoms is complete for NP (NL,
resp.), while a single dependence atom is first-order definable [21]. The results
of this paper, in contrast, demonstrate that the complexity of inclusion logic
formulae is particularly sensitive to conjunctions. We show that MSM(φ) is
complete for non-deterministic logarithmic space if φ is of the form x ⊆ y or
x ⊆ y ∧ y ⊆ x; for any other conjunction of (non-trivial) unary inclusion atoms
MSM(φ) is complete for polynomial time. This result gives a complete character-
ization of the maximal subteam membership problem for conjunctions of unary
inclusion atoms. Based on it we also prove complexity results for model check-
ing of quantifier-free inclusion logic formulae. For instance, for any non-trivial
quantifier-free φ in which x, y, z do not occur, model checking of x ⊆ y ∨ φ is
NL-hard, while that of (x ⊆ z ∧ y ⊆ z) ∨ φ is P-complete.

We conclude the paper by presenting a fragment of inclusion logic that cap-
tures NL. Analogous fragments have previously been established at least for
dependence logic. By relating to the Horn fragment of existential second-order
logic, Ebbing et al. define a fragment of dependence logic that corresponds to
P [8]. The fragment presented in this paper is constructed by restricting occur-
rences of inclusion atoms and universal quantifiers, and the correspondence with
NL is shown by using the well-known characterization of NL in terms of tran-
sitive closure logic [19,20].

2 Preliminaries

We generally use x, y, z, . . . for variables and a, b, c, . . . for elements of models. If
p and q are two tuples, we write pq for the concatenation of p and q.

Throughout the paper we assume that the reader has a basic familiar-
ity of computational complexity. We use the notation L, NL, P and NP for
the classes consisting of all problems computable in logarithmic space, non-
deterministic logarithmic space, polynomial time and non-deterministic polyno-
mial time, respectively.

2.1 Team Semantics

As is customary for logics in the team semantics setting, we assume that all
formulae are in negation normal form (NNF). Thus, we give the syntax of first-

304 M. Hannula and L. Hella

order logic (FO) as follows:

φ :: = t = t′ | ¬t = t′ | Rt | ¬Rt | φ ∧ φ | φ ∨ φ | ∃xφ | ∀xφ,

where t and t′ are terms and R is a relation symbol of the underlying vocabulary.
For a first-order formula φ, we denote by Fr(φ) the set of free variables of φ,
defined in the usual way. The team semantics of FO is given in terms of the notion
of a team. Let A be a model with domain A. An assignment s of A is a function
from a finite set of variables into A. We write s(a/x) for the assignment that
maps all variables according to s, except that it maps x to a. For an assignment
s = {(xi, ai) | 1 ≤ i ≤ n}, we may use a shorthand s = (a1, . . . , an) if the
underlying ordering (x1, . . . , xn) of the domain is clear from the context. A team
X of A with domain dom(X) = {x1, . . . , xn} is a set of assignments from dom(X)
into A. For V ⊆ dom(X), the restriction X � V of a team X is defined as
{s � V | s ∈ X}. If X is a team, V ⊆ dom(X), and F : X → P(A) \ {∅}, then
X[F/x] denotes the team {s(a/x) | s ∈ X, a ∈ F (s)}. For a set B, X[B/x] is
the team {s(b/x) | s ∈ X, b ∈ B}. Also, if s is an assignment, then by A |=s φ
we refer to Tarski semantics.

Definition 1. For a model A, a team X and a formula in FO, the satisfaction
relation A |=X φ is defined as follows:

– A |=X α if ∀s ∈ X : A |=s α, when α is a literal,
– A |=X φ ∧ ψ if A |=X φ and A |=X ψ,
– A |=X φ∨ψ if A |=Y φ and A |=Z ψ for some Y,Z ⊆ X such that Y ∪Z = X,
– A |=X ∃xφ if A |=X[F/x] φ for some F : X → P(A) \ {∅},
– A |=X ∀xφ if A |=X[A/x] φ.

If A |=X φ, then we say that A and X satisfy φ. If φ does not contain
quantifiers or symbols from the underlying vocabulary, in which case satisfaction
of a formula does not depend on the model A, we say that X satisfies φ, written
X |= φ, if A |=X φ for all models A with a suitable domain (i.e., a domain that
includes all the elements appearing in X). If φ is a sentence, that is, a formula
without any free variables, then we say that A satisfies φ, and write A |= φ, if
A |={∅} φ, where {∅} is the team that consists of the empty assignment ∅.

We say that two sentences φ and ψ are equivalent, written φ ≡ ψ, if A |= φ
⇐⇒ A |= ψ for all models A. For two logics L1 and L2, we write L1 ≤ L2 if
every L1-sentence is equivalent to some L2-sentence; the relations “≡” and “<”
for L1 and L2 are defined in terms of “≤” in the standard way.

Satisfaction of a first-order formula reduces to Tarski semantics in the fol-
lowing way.

Proposition 2 (Flatness [26]). For all models A, teams X, and formulae
φ ∈ FO,

A |=X φ iff A |=s φ for all s ∈ X.

A straightforward consequence is that first-order logic is downwards closed.

Corollary 3 (Downward Closure). For all models A, teams X, and formulae
φ ∈ FO,

If A |=X φ and Y ⊆ X, then A |=Y φ.

Complexity Thresholds in Inclusion Logic 305

2.2 Inclusion Logic

Inclusion logic (FO(⊆)) is defined as the extension of FO by inclusion atoms.

Inclusion Atom. Let x and y be two tuples of variables of the same length.
Then x ⊆ y is an inclusion atom with the satisfaction relation:

A |=X x ⊆ y if ∀s ∈ X∃s′ ∈ X : s(x) = s′(y).

Inclusion logic is local, meaning that satisfaction of a formula depends only
on its free variables. Furthermore, the expressive power of inclusion logic is
restricted by its union closure property which states that satisfaction of a formula
is preserved under taking arbitrary unions of teams.

Proposition 4 (Locality [9]). Let A be a model, X a team, φ ∈ FO(⊆) a
formula, and V a set of variables such that Fr(φ) ⊆ V ⊆ dom(X). Then

A |=X φ ⇐⇒ A |=X�V φ.

Proposition 5 (Union Closure [9]). Let A be a model, X a set of teams, and
φ ∈ FO(⊆) a formula. Then

∀X ∈ X : A |=X φ =⇒ A |=⋃ X φ.

Note that union closure implies the empty team property, that is, A |=∅ φ for all
inclusion logic formulae φ.

The starting point for our investigations is the result by Galliani and Hella
[10] characterizing the expressivity of inclusion logic in terms of positive greatest
fixed point logic. The latter logic is obtained from greatest fixed-point logic (the
dual of least fixed point logic) by restricting to formulae in which fixed point
operators occur only positively, that is, within a scope of an even number of
negations. In finite models this positive fragment captures the full fixed point
logic (with both least and greatest fixed points), and hence it follows from the
famous result of Immerman [18] and Vardi [28] that inclusion logic captures
polynomial time in finite ordered models.

Theorem 6 ([10]). Every inclusion logic sentence is equivalent to some positive
greatest fixed point logic sentence, and vice versa.

Theorem 7 ([10]). A class C of finite ordered models is in P iff it can be defined
in FO(⊆).

2.3 Transitive Closure Logic

In Sect. 6 we relate inclusion logic to transitive closure logic, and hence we next
give a short introduction to the latter. A 2k-ary relation R is said to be transitive
if (a, b) ∈ R and (b, c) ∈ R imply (a, c) ∈ R for k-tuples a, b, c. The transitive
closure of a 2k-ary relation R, written TC(R), is defined as the intersection of
all 2k-ary relations S ⊇ R that are transitive. The transitive closure of R can

306 M. Hannula and L. Hella

be alternatively defined as R∞ =
⋃∞

i=0 Ri for Ri defined recursively as follows:
R0 = R and Ri+1 = R ◦ Ri for i > 0; here A ◦ B denotes the composition of
two relations A and B. Note that (a, b) ∈ Ri if and only if there is an R-path of
length i + 1 from a to b.

An assignment s, a model A, and a formula ψ(x, y, z), where x and y are
k-ary, give rise to a 2k-ary relation defined as follows:

Rψ,A,s = {ab ∈ M2k | A |= ψ(a, b, s(z))}.

We can now define transitive closure logic. Given a term t, a model A, and
an assignment s, we write tA,s for the interpretation of t under A, s, defined in
the usual way.

Definition 8 (Transitive Closure Logic). Transitive closure logic (TC)
is obtained by extending first-order logic with transitive closure formulae
[TCx,yψ(x, y, z)](t0, t1) where t0 and t1 are k-tuples of terms, and ψ(x, y, z) is a
formula where x and y are k-tuples of variables. The semantics of the transitive
closure formula is defined as follows:

A |=s [TCx,yψ(x, y, z)](t0, t1) iff (tA,s
0 , t

A,s
1) ∈ TC(Rψ,A,s).

Thus, [TCx,yψ(x, y, z)](t0, t1) is true if and only if there is a ψ-path from t0
to t1. It is well known that transitive closure logic captures non-deterministic
logarithmic space in finite ordered models. In particular, this can be achieved by
using only one application of the TC operator. We use below the notation min
for the least element of the linear order, and min for the tuple (min, . . . ,min).
Similarly, max denotes the tuple (max, . . . ,max), where max is the greatest
element.

Theorem 9 ([19,20]). A class C of finite ordered models is in NL iff it can be
defined in TC. Furthermore, every TC-sentence is equivalent in finite ordered
models to a sentence of the form

[TCx,yα(x, y)](min,max)

where α is first-order.

3 Maximal Subteam Membership

In this section we define the maximal subteam membership problem. We first
discuss some of its basic properties and then investigate its complexity over
quantifier-free inclusion logic formulae.

3.1 Introduction

For a model A, a team X, and an inclusion logic formula φ, we define ν(A,X, φ) as
the unique subteam Y ⊆ X such that A |=Y φ, and A �|=Z φ if Y � Z ⊆ X. Due

Complexity Thresholds in Inclusion Logic 307

to the union closure property ν(A,X, φ) always exists and it can be alternatively
defined as the union of all subteams Y ⊆ X such that A |=Y φ. If φ does not
contain quantifiers or symbols from the underlying vocabulary, then we may
write ν(X,φ) instead of ν(A,X, φ). The maximal subteam membership problem
is now given as follows.

Definition 10. Let φ ∈ FO(⊆). Then MSM(φ) is the problem of determining
whether s ∈ ν(A,X, φ) for a given model A, a team X and an assignment s ∈ X.

Grädel proved that for any FO(⊆)-formula φ, there is a formula ψ of positive
greatest fixed point logic such that for any model A and assignment s, A |=s ψ
if and only if s is in the maximal team of A satisfying φ (see Theorem 24 in
[12]). An easy adaptation of the proof shows that ν(A,X, φ) is also definable in
positive greatest fixed point logic. Thus, it follows that every maximal subteam
membership problem is polynomial time computable.

Lemma 11. For every formula φ ∈ FO(⊆), MSM(φ) is in P.

In this section we will restrict our attention to maximal subteam problems
for quantifier free formulae. Before proceeding to our findings we need to present
some auxiliary concepts and results. The following lemmata will be useful below.

Lemma 12. Let α, β ∈ FO(⊆), and let X be a team of a model A. Then
ν(A,X, α ∨ β) = ν(A,X, α) ∪ ν(A,X, β).

Proof. For “⊆”, note that by definition there are Y,Z ⊆ X such that Y ∪ Z =
ν(A,X, α∨β), Y |= α and Z |= β, and hence Y ⊆ ν(A,X, α) and Z ⊆ ν(A,X, β).
For “⊇”, note that ν(A,X, α)∪ν(A,X, β) satisfies α∨β so it must be contained
by ν(A,X, α ∨ β). ��

As an easy corollary we obtain the following lemma.

Lemma 13. Let α, β ∈ FO(⊆), and assume that MSM(α) and MSM(β) both
belong to a complexity class C ∈ {L,NL}. Then MSM(α ∨ β) is in C.

The maximal subteam problem for a single inclusion atom x ⊆ y can be nat-
urally represented using directed graphs. In this representation each assignment
forms a vertex, and an assignment s has an outgoing edge to another assignment
s′ if s(x) = s′(y). Over finite teams an assignment then belongs to the maximal
subteam for x ⊆ y if and only if it is connected to a cycle.1

Lemma 14. Let A be a model, X a finite team, x and y two tuples of the same
length from dom(X), s an assignment of X, and α a first-order formula. Let
G = (X,E) be a directed graph where (s, s′) ∈ E iff s(x) = s′(y) and A |={s,s′} α.
Then

(a) s ∈ ν(A,X, x ⊆ y ∧ α) ⇐⇒ G contains a path from s to a cycle,
1 We are grateful to Phokion Kolaitis, who pointed out this fact to the second author

in a private discussion 2016.

308 M. Hannula and L. Hella

(b) s ∈ ν(A,X, x ⊆ y ∧ y ⊆ x ∧ α) ⇐⇒ G contains a path from one cycle to
another via s.

Proof. Assume for the first statement that s ∈ ν(A,X, x ⊆ y ∧ α). Then there
is a subteam Y ⊆ X such that s ∈ Y and A |=Y x ⊆ y ∧ α. Thus for each
s′ ∈ Y there exists s′′ ∈ Y such that s′′(y) = s′(x). Moreover, A |={s′,s′′} α,
whence (s′, s′′) ∈ E. In particular there is a non-ending path in G starting from
s. Since X is finite, this path necessarily ends in a cycle. Conversely, assume G
contains a path from s to a cycle. Then A |=Y x ⊆ y ∧ α where Y consists of all
assignments in the path and cycle. Hence, s ∈ ν(A,X, x ⊆ y ∧ α).

For the second statement note that, by the argument above, s ∈ ν(A,X, y ⊆
x∧α) if and only if G′ = (X,E−1) contains a path from s to a cycle. But clearly
an E−1-path from s to an E−1-cycle is an E-path from an E-cycle to s. ��

3.2 Complexity

Next we turn to the computational complexity of maximal subteam membership.
In what follows, we give a complete characterization of the maximal subteam
problem for arbitrary conjunctions and disjunctions of unary inclusion atoms.
A unary inclusion atom is an atom of the form x ⊆ y where x and y are single
variables. The characterization is given in terms of inclusion graphs.

Definition 15. Let Σ be a set of unary inclusion atoms over variables in V .
Then the inclusion graph of Σ is defined as GΣ = (V,E) such that (x, y) ∈ E
iff x �= y and x ⊆ y appears in Σ.

We will now prove the following theorem.

Theorem 16. Let Σ be a finite set of unary inclusion atoms, and let φ be the
conjunction of all atoms in Σ. Then MSM(φ) is

(a) trivially true if GΣ has no edges,
(b) NL-complete if GΣ has an edge (x, y) and no other edges except possibly for

its inverse (y, x),
(c) P-complete otherwise.

The first statement above follows from the observation that MSM(φ) is true
for all inputs if φ is a conjunction of trivial inclusion atoms x ⊆ x. The second
statement is shown by relating to graph reachability. Given a directed graph
G = (V,E) and two vertices a and b, the problem REACH is to determine
whether G contains a path from a to b. This problem is a well-known complete
problem for NL.

Lemma 17. MSM(x ⊆ y) and MSM(x ⊆ y ∧ y ⊆ x) are NL-complete.

Proof. Hardness. We give a logarithmic space many-one reduction from
REACH. Let G = (V,E) be a directed graph, and let a, b ∈ V . W.l.o.g. we
can assume that G has no cycles. Note that we obtain a directed acyclic graph

Complexity Thresholds in Inclusion Logic 309

by replacing nodes v with nodes (v, i) and edges (v, v′) with edges ((v, i), (v′, j)),
for i, j ∈ {1, . . . , |V |} such that i < j. Then (b, |V |) is reachable from (a, 1) in
the acyclic graph if and only if b is reachable from a in the initial graph.

Define E′ as the extension of E with an extra edge (b, a). Then b is reachable
from a in G if and only if a belongs to a cycle in G′ = (V,E′). We reduce from
(G, a, b) to a team X = {sc,d | (c, d) ∈ E′} where su,v maps (y, x) to (u, v) (see
Fig. 1). By Lemma 14, b is reachable from a if and only if sb,a ∈ ν(X,φ), where
φ is either x ⊆ y or x ⊆ y ∧ y ⊆ x.
Membership. By Lemma 14 MSM(x ⊆ y) and MSM(x ⊆ y ∧ y ⊆ x) reduce to
reachability variants that are clearly in NL. ��

Fig. 1. Reduction from REACH to MSM(φ). The input assignment is underlined and
the assignments written in bold form a subteam satisfying φ.

Next we turn to the third statement of Theorem16. Recall that membership
in P follows directly from Lemma 11. For P-hardness we reduce from the mono-
tone circuit value problem (see, e.g., [30]). The proof essentially follows from the
following lemma.

Lemma 18. MSM(x ⊆ z∧y ⊆ z), MSM(x ⊆ y∧y ⊆ z), and MSM(x ⊆ y∧x ⊆ z)
are P-complete.

Proof. Let φ be either x ⊆ z ∧ y ⊆ z, x ⊆ y ∧ y ⊆ z, or x ⊆ y ∧ x ⊆ z. We give
a logarithmic-space many-one reduction to MSM(φ) from the monotone circuit
value problem (MCVP). Given a Boolean word w ∈ {�,⊥}n, and a Boolean
circuit C with n inputs, one output, and gates with labels from {AND,OR}, this
problem is to determine whether C outputs �. If C outputs � on w, we say that
it accepts w. W.l.o.g. we may assume that the in-degree of each AND and OR
gate is 2. We annotate each input node by its corresponding input � or ⊥, and
each gate by some distinct number i ∈ N \ {0}. Then each gate has two child
nodes iL, iR that are either natural numbers or input values from {�,⊥}. Next
we construct a team X whose values consist of node annotations i,�,⊥ and
distinct copies ci of AND gates i. The team X is constructed by the following
rules (see Fig. 2):

– add s0 : (x, y, z) �→ (1,�,�) where 1 is the output gate,

310 M. Hannula and L. Hella

– for AND gates i, add si,0 : (x, y, z) �→ (iL, i, ci), si,1 : (x, y, z) �→ (iR, ci, i), and
si : (x, y, z) �→ (ci,�,�),

– for OR gates i, add si,L : (x, y, z) �→ (iL, i, i) and si,R : (x, y, z) �→ (iR, i, i).

We will show that C accepts w iff s0 ∈ ν(X,φ). For the only-if direction we
actually show a slightly stronger claim. That is, we show that s0 ∈ ν(X,φ) is
implied even if φ is the conjunction of all unary inclusion atoms between x, y, z.

Assume first that C accepts w. We show how to build a subteam Y ⊆ X
such that it includes s0 and satisfies all unary inclusion atoms between x, y, z.
First construct a subcircuit C ′ of C recursively as follows: add the output gate
� to C ′; for each added AND gate i, add both child nodes of i; for each added
OR gate i, add a child node of i that is evaluated true under w. In other words,
C ′ is a set of paths from the output gate to the input gates that witnesses the
assumption that C accepts w. The team Y will now list the auxiliary values ci

and the gates of C ′ in each column x, y, z. We construct Y by the following rules:

– add s0,
– for AND gates i in C ′, add si,0, si,1, and si,
– for OR gates i in C ′, add si,P iff iP is in C ′, for P = L,R.

First observe that Y is formed symmetrically in terms of y and z, and thus
these columns share the same values. Consider then the symmetric difference
between values in columns x and y. Initially, for Y = {s0}, this set is {1,�}.
An inductive argument now shows that, following the partial ordering induced
from C ′, an application of a construction rule to a gate i of C ′ modifies the
symmetric difference by removing i (and also � if � is a child of i) and adding
any child node of i that is a gate in C ′. In the end the symmetric difference is
the empty set, and thus we conclude that Y satisfies all unary inclusion atoms
between x, y, z.

Vice versa, consider the standard semantic game between Player I and Player
II on the given circuit C and input word w. This game starts from the output
gate 1, and at each AND (OR, resp.) gate i Player I (Player II, resp.) selects
the next node from its two child nodes iL and iR. Player II wins iff the game
ends at an input node that is true. By the assumption that s0 ∈ ν(X,φ) we
find a team Y that contains s0 and satisfies φ. Note that Y cannot contain any
assignment that maps x to ⊥. For showing that C accepts w it thus suffices to
show that Player II has a strategy which imposes the following restriction: for
each visited node annotated by i, we have s(x) = i for some s ∈ Y . At start
this holds by the assumption that s0 ∈ Y . Assume that i is any gate with s ∈ Y
such that s(x) = i. If φ is x ⊆ z ∧ y ⊆ z, we have two cases. If i is an OR gate
then we find s′ from Y with s′(y) = s′(z) = i. Then the strategy of Player II is
to select the gate s′(x) as her next step. If i is an AND gate, an application of
x ⊆ z gives s′ from Y with s′(z) = i. Then s′(y) = ci, which means that further
application of y ⊆ z yields s′′ from Y with s′′(z) = ci and hence s′′(y) = i. Now
{s′(x), s′′(x)} = {iL, iR}, and thus the claim holds for either selection by Player
I. The induction step is analogous for the cases where φ is x ⊆ y ∧ y ⊆ z or
x ⊆ y ∧ x ⊆ z. This concludes the proof. ��

Complexity Thresholds in Inclusion Logic 311

Fig. 2. MCVP and MSM(φ)

Fig. 3. Subgraphs of GΣ

The third statement of Theorem16 now follows. Any GΣ not covered by the
previous lemma has a subgraph of a form depicted in Fig. 3. Of these G1–G3

were considered above, and the reduction for G4 is essentially identical to that
for G1; take a new variable for the new target node and insert values identical
to those of z. Additionally, for each node in GΣ but not in Gi take a copy of
any column in the team. That this suffices follows from the arguments of the
previous lemmata; in particular, from the fact that any true MCVP instance
generates a subteam that satisfies all possible unary inclusion atoms between
variables.

Considering disjunctions, observe that MSM over a disjunction of unary inclu-
sion atoms is either trivially true or NL-complete. For membership in NL, see
Lemma 13. For NL-hardness of MSM(x ⊆ y ∨ y ⊆ x) we use exactly the same
reduction from REACH as in Lemma 17: indeed, by Lemma 12 sb,a ∈ ν(X,x ⊆
y ∨ y ⊆ x) if and only if sb,a ∈ ν(X,x ⊆ y) or sb,a ∈ ν(X, y ⊆ x). The first
condition holds if and only if a belongs to a cycle in G′ = (V,E′), which implies
that b is reachable from a in G; and the second condition holds if and only if b
belongs to a cycle in the graph obtained by inverting the edges of G′, which like-

312 M. Hannula and L. Hella

wise implies that b is reachable from a in G. Provided that another non-trivial
inclusion atom u ⊆ v appears in the disjunction, then {u, v} �⊆ {x, y} and the
values for u, v can be defined in such a way that the maximal subteam for u ⊆ v
is empty.

Corollary 19. Let Σ be a finite set of unary inclusion atoms, and let φ be the
disjunction of all atoms in Σ. Then MSM(φ) is

(a) trivially true if Σ contains a trivial inclusion atom,
(b) NL-complete otherwise.

Note that the results of this section generalize to inclusion atoms of higher
arity, obtained by replacing variables x with tuples x such that all pairs of
distinct tuples have no common variables. More complex cases arise if the tuples
are allowed to overlap. In the full version of the paper [13] we also consider
maximal subteam membership over input teams in which the inclusion atoms
reference a key. In such cases the complexity of maximal subteam membership
collapses to lower levels. For instance, MSM(x ⊆ z) (MSM(x ⊆ z ∧ y ⊆ z), resp.)
is L-complete (NL-complete, resp.) over teams in which z is a key.

4 Consistent Query Answering

The maximal subteam membership problem has a close connection to database
repairing which provides a framework for managing inconsistency in databases.
An inconsistent database is a database that does not satisfy all the integrity
constraints that it is supposed to satisfy. Inconsistency may arise, e.g., from
data integration where the task is to bring together data from different sources.
Often in practise inconsistency is handled through data cleaning which is the
process of identifying and correcting inaccurate data records from databases.
An inherent limitation of this approach is its inability to avoid arbitrary choices
as consistency can usually be restored in a number of ways. The approach of
database repair is to tolerate inconsistencies in databases and investigate reliable
answers to queries.

A database is an interpretation of a relational vocabulary σ = {R1, . . . , Rn} in
which each Ri is associated with an arity #Ri. Given a (finite) set Σ of integrity
constraints, a database D is called inconsistent (w.r.t. to Σ) if D �|= Σ, and
consistent otherwise. Given a partial order ≤ on databases over a fixed σ, and a
set Σ of integrity constraints, a repair of an inconsistent database I is a database
D such that it is consistent and all D′ < D are inconsistent. The database D is
called a ⊕-repair if the partial order is defined in terms of symmetric difference:
D ≤ D′ if D ⊕ I ⊆ D′ ⊕ I. If additionally D is a subset (superset, resp.) of I,
then D is called a subset-repair (superset-repair, resp.). An answer to a first-
order query q = ψ(x1, . . . , xn) on a database D is any (a1, . . . , an) such that D
satisfies ψ(a1, . . . , an), and a consistent answer on an inconsistent database I is
any value (a1, . . . , an) such that each repair D of I satisfies ψ(a1, . . . , an).

Let ∗ ∈ {⊕, subset, superset} and let Σ be a set of integrity constraints.
The ∗-repair checking problem w.r.t. Σ (∗-RC(Σ)) is to determine, given two

Complexity Thresholds in Inclusion Logic 313

databases D and I, whether D is a ∗-repair of I. Let also q be a Boolean query.
The ∗-consistent query answering problem w.r.t. Σand q (∗-CQA(Σ, q)) is to
determine, given an inconsistent database I, whether q is true in every ∗-repair
of I. LAV tgds are first-order formulae of the form

φ = ∀x(ψ(x) → ∃yθ(x, y))

where ψ is a single relational atom and θ is a conjunction of relational atoms,
and each variable from x occurs in ψ (but not necessarily in θ). Inclusion depen-
dencies are the special case of LAV tgds in which also θ is a single relational
atom, and no variable occupies two positions in one relational atom. An inclu-
sion dependency is called unary if a single variable from x appears in exactly
one relation position of θ, and it is called unirelational if ψ and θ contain the
same relation symbol. Note that unary inclusion atoms correspond to unary
unirelational inclusion dependencies.

Example 20. Figure 4 depicts a database D consisting of two ternary relations
TEACHING and EMPLOYEE. Let Σ consist of a single unary inclusion depen-
dency which states that each lecturer in TEACHER is a name in EMPLOYEE.
The database is inconsistent because Bob is not listed in EMPLOYEE, and it has
a unique subset-repair in which (Bob, Mechanics, Spring 2019) is removed from
TEACHING. A superset-repair is obtained by adding (Bob, a, b) to EMPLOYEE
where a and b are any data values. Such repairs are also ⊕-repairs. Consider a
query q that returns lecturers located at the Math department. Regardless of
the repair type this query has only one consistent answer: Alice.

Consistent query answering and repair checking are known to be tractable
for LAV tgds. A conjunctive query is a first-order formula of the form ∃xθ(x)
where θ is a conjunction of relational atoms.

Theorem 21 ([25]). Let ∗ ∈ {⊕, subset, superset}, let Σ be a set of LAV tgds,
and let q be a conjunctive query. The ∗-repair checking problem w.r.t. Σ and
the ∗-consistent query answering problem w.r.t. Σ and q are both solvable in
polynomial time.

Fig. 4. Database D

Furthermore, it is known that so-called weakly acyclic collections of LAV
tgds enjoy subset-repair checking in logarithmic space [1]. Nevertheless, it seems

314 M. Hannula and L. Hella

not much attention in general has been devoted to complexity thresholds within
polynomial time. Our results can thus be seen as steps toward this direction as
the trichotomy in Theorem 16 extends to repair checking and consistent query
answering. Let IC be a collection of finite sets of integrity constraints and let
C be a complexity class. We say that the ∗-consistent query answering problem
is C-complete for IC if for all Σ ∈ IC, ∗-CQA(Σ, q) is in C for all Boolean
conjunctive queries q and C-complete for some such q.

Theorem 22. Let ∗ ∈ {⊕, subset}. The subset-repair checking problem and the
∗-consistent query answering problem for finite sets Σ of unary unirelational
inclusion dependencies are

(a) first-order definable if GΣ has no edges,
(b) NL-complete if GΣ has an edge (x, y) and no other edges except possibly for

its inverse (y, x),
(c) P-complete otherwise.

Proof. Since NL and P are closed under complement, we may consider the
complement of subset-repair checking. For the upper bounds note that D is a
repair of I if and only if D satisfies Σ (a first-order property) and no tuple in
I \ D is in the unique subset-repair of I. That Σ has a unique subset-repair
follows already from the union closure property of inclusion logic (Proposition 5)
(or that of LAV tgds [25]). For the lower bounds note that in our reductions
s ∈ ν(X,φ) if and only if ν(X,φ) �= ∅.2

Consider then subset-consistent query answering over a Boolean conjunctive
query q = ∃x(Ri1(x1) ∧ . . . ∧ Rin(xn)) where x1, . . . , xn are subsequences of x
(note that q may contain multiple relation symbols even though all constraints
are unirelational). Considering first the upper bounds, in case (a) q itself may
be used for the first-order definition, and in cases (b) and (c) evaluation of
the relational atoms Ri1(xi) may be reduced to the maximal subteam mem-
bership problem. For the lower bounds we may simply use atomic queries that
describe the input assignment for the maximal subteam membership problem.
For instance, in case (b) subset-CQA(Σ, q) is NL-hard for q = R(a, b) where
a and b are constant values from the reduction in Lemma17. That the result
holds also for ⊕-consistent query answering follows from the fact that each set
of inclusion dependencies Σ has a unique subset repair which is also the unique
universal subset repair and the unique universal ⊕-repair [25]. A database U is
a universal ∗-repair of an inconsistent database I if for each conjunctive query
q, a tuple is a consistent answer to q on I if and only if it is an answer to q on
U and contains only values that appear in I. That is, it only suffices to consult
the universal repair for consistent answers. ��

2 In point of fact, the reduction of Lemma 18 requires slight modification: remove
assignments (ci, �, �) and add assignments (ci, j, k) for each assignment (i, j, k) ∈ X
where i is an AND gate.

Complexity Thresholds in Inclusion Logic 315

5 Model Checking

In this section we discuss the model checking problem for quantifier-free inclusion
logic formulae. It turns out that the results of the previous section are now easily
adaptable. As above, we herein restrict attention to quantifier-free formulae.

Definition 23. Let φ ∈ FO(⊆). Then MC(φ) is the problem of determining
whether A |=X φ, given a model A and a team X.

Hardness results for model checking can now be obtained by relating to max-
imal subteam membership.

Lemma 24. Let α, β ∈ FO(⊆) be such that

(i) Fr(α) ∩ Fr(β) = ∅,
(ii) MSM(α) is C-hard for C ∈ {L,NL,P}, and
(iii) There is a team Y of dom(A) with domain Fr(β) such that ∅ �= ν(A, Y, β) �

Y .

Then MC(α ∨ β) is C-hard.

Proof. Let (A,X, s) be an instance of MSM(α), that is, A is a model, X a team
over Fr(α) and s ∈ X. It suffices to define a first-order reduction from (A,X, s)
to a team X ′ over Fr(α) ∪ Fr(β) such that s ∈ ν(A,X, α) iff A |=X′ α ∨ β. Let
Z0 := ν(A, Y, β) and Z1 := Y \ Z0. Note that by condition (i), the union of any
t ∈ X and t′ ∈ Y is an assignment over Fr(α) ∪ Fr(β). We define

X ′ := {s ∪ t′ | t′ ∈ Z1} ∪ {t ∪ t′ | t ∈ X \ {s}, t′ ∈ Z0}.

Since Z0 and Z1 are fixed, X ′ is first-order definable from (A,X, s). By Locality
(Proposition 4), we have ν(A,X ′, α) � Fr(α) = ν(A,X ′ � Fr(α), α) = ν(A,X, α),
and similarly ν(A,X ′, β) � Fr(β) = ν(A, Y, β) = Z0. Hence, it follows from
Lemma 12 that A |=X′ α∨β iff for all t∪ t′ ∈ X ′ : t ∈ ν(A,X, α)∨ t′ ∈ ν(A, Y, β)
iff s ∈ ν(A,X, α). ��

Note that A |=X φ if and only if ν(A,X, φ) = X over inclusion logic formulae
φ. Hence, model checking can be reduced to maximal subteam membership tests
over each individual assignment of a team. In particular, this means that model
checking is at most as hard as maximal subteam membership; in some cases,
as illustrated in Proposition 26(a), it is strictly less hard. Observe that we may
omit the case C = P because MC(α) is in P for any α ∈ FO(⊆) (Theorem 7).

Lemma 25. Let α ∈ FO(⊆) be such that MSM(α) is in C ∈ {L,NL}. Then
MC(α) is in C.

By Lemmata 13, 24, 25, Theorem 7, and the results of the previous section,
the computational complexity of model checking for various quantifier-free inclu-
sion formulae directly follows. The following proposition illustrates some exam-
ples. Note that the semantics of the inclusion atom is clearly first-order express-
ible, and the same applies to any conjunction of inclusion atoms.

316 M. Hannula and L. Hella

Proposition 26.

(a) MC(x ⊆ y) and MC(x ⊆ y ∧ u ⊆ v) are first-order definable.
(b) MC(x ⊆ y ∨ u ⊆ v) and MC(x ⊆ y ∨ u = v) are NL-complete.
(c) MC((x ⊆ z∧y ⊆ z)∨u ⊆ v) and MC((x ⊆ z∧y ⊆ z)∨u = v) are P-complete.

6 An NL Fragment of Inclusion Logic

Our aim in this section is to find a natural fragment of inclusion logic that cap-
tures the complexity class NL over ordered finite models. Our approach is to con-
sider preservation of NL-computability under the standard logical operators of
FO(⊆). By Lemma 13, we already know that NL-computability of maximal sub-
team membership is preserved under disjunctions. However, Theorem16 shows
that conjunction can increase the complexity of the maximal subteam mem-
bership problem from NL to P-complete, and by Proposition 26, combining a
conjunction with a disjunction leads to P-complete model checking problems.
Thus conjunction cannot be used freely in the fragment we aim for.

The following proposition shows that a single universal quantifier can also
increase complexity from NL to P-complete. In the proof we show P-hardness by
reduction from the P-complete problem GAME. An input to GAME is a DAG
(directed acyclic graph) G = (V,E) together with a node a ∈ V . Given such
input (V,E, a) we consider the following game Gm(V,E, a) between two players,
I and II. During the game the players move a pebble along the edges of G. In the
initial position the pebble is on the node a0 = a. If after 2i moves the pebble is
on a node a2i, then player I chooses a node a2i+1 such that (a2i, a2i+1) ∈ E, and
player II responds by choosing a node a2i+2 such that (a2i+1, a2i+2) ∈ E. The
first player unable to move loses the game, and the other player wins it. Since G
is a DAG, every play of the game is finite. In particular, the game is determined,
i.e., one of the players has a winning strategy. Now we define (V,E, a) to be a
positive instance of GAME if and only if player II has a winning strategy in
Gm(V,E, a).

Note that GAME can be seen as a variation of the monotone circuit value
problem MCVP. Indeed, it is straighforward to define for a given monotone cir-
cuit C and input word w an input (V,E, a) for GAME such that Gm(V,E, a) sim-
ulates the evaluation game of C on w. Thus MCVP is logarithmic-space reducible
to GAME. Conversely, it is also easy to give a logarithmic-space reduction from
GAME to MCVP.

Proposition 27. Let φ be the formula ∀z(¬Eyz ∨ z ⊆ x). Then MSM(φ) is
P-complete. Consequently, MC(φ ∨ Euv) is also P-complete.

Proof. We give now a reduction from GAME to MSM(φ). Let (V,E, a) be an
input to GAME. Without loss of generality we assume that there is b ∈ V
such that (b, a) ∈ E. Now we simply let A = (V,E), X = {s : {x, y} → V |
(s(x), s(y)) ∈ E} and s0 = {(x, b), (y, a)}.

We will use below the notation I = {c ∈ V | ∀d ∈ V : (c, d) �∈ E)}. Thus, I
consists of those elements c ∈ V for which player II wins Gm(V,E, c) immediately

Complexity Thresholds in Inclusion Logic 317

because I cannot move. Furthermore, we denote by W the set of all elements
c ∈ V such that player II has a winning strategy in Gm(V,E, c).

Let Y be the subteam of X consisting of those assignments s ∈ X for which
s(y) ∈ W . We will show that Y = ν(A,X, φ). Hence in particular s0 ∈ ν(A,X, φ)
if and only if (V,E, a) is a positive instance of GAME, as desired.

To prove that Y ⊆ ν(A,X, φ) it suffices to show that A |=Y φ. Thus let
Z = Y [A/z], Z ′ = {s ∈ Z | (s(y), s(z)) �∈ E} and Z ′′ = (Z \ Z ′) ∪ Z0, where
Z0 = {s ∈ Z | s(z) = s(x) and s(y) ∈ I} (an example of Z ′′ is illustrated in
Fig. 5). Then clearly A |=Z′ ¬Eyz. To show that A |=Z′′ z ⊆ x assume that
s ∈ Z ′′. If s ∈ Z \ Z ′, then (s(y), s(z)) ∈ E, and since s � {x, y} ∈ Y , player II
has an answer c to the move s(z) of player I in Gm(V,E, s(y)) such that c ∈ W .
Thus, s∗ = {(x, s(z)), (y, c)} ∈ Y . If c ∈ I, then s∗(s∗(x)/z) ∈ Z0. Otherwise
there is some d ∈ V such that (c, d) ∈ E, whence s∗(d/z) ∈ Z \Z ′. In both cases,
there is s′ ∈ Z ′′ such that s′(x) = s(z). Assume then that s ∈ Z0. Then by the
definition of Z0 we have s(x) = s(z). Thus we see that for every s ∈ Z ′′ there is
s′ ∈ Z ′′ such that s′(x) = s(z). Now we can conclude that A |=Z ¬Eyz ∨ z ⊆ x,
and hence A |=Y φ.

To prove that ν(A,X, φ) ⊆ Y it suffices to show that if A |=Y ′ φ for a team
Y ′ ⊆ X, then s(y) ∈ W for every s ∈ Y ′. Thus assume that Y ′ satisfies φ
and s ∈ Y ′. We describe a winning strategy for player II in Gm(V,E, s(y)). If
s(y) ∈ I she has a trivial winning strategy. Otherwise player I is able to move;
let c ∈ V be his first move. Since A |=Y ′ φ, there are Z ′, Z ′′ ⊆ Y ′[A/z] such that
Y ′[A/z] = Z ′ ∪ Z ′′, A |=Z′ ¬Eyz and A |=Z′′ z ⊆ x. Consider the assignment
s′ = s(c/z) ∈ Y ′[A/z]. Since (s′(y), s′(z)) = (s(y), c) ∈ E, it must be the case
that s′ ∈ Z ′′. Thus there is s′′ ∈ Z ′′ such that s′′(x) = s′(z) = c. Then the
assignment s∗ = s′′ � {x, y} is in Y ′ ⊆ X, whence (c, d) ∈ E, where d = s∗(y).
Let d be the answer of player II for the move c of player I. We observe now that
using this strategy player II can find a legal answer from the set {s∗(y) | s∗ ∈ Y ′}
to any move of player I, as long as player I is able to move. Since the game is
determined, this is indeed a winning strategy.

Using Lemma 24, we see that MC(∀z(¬Eyz ∨ z ⊆ x) ∨ β) is P-hard for any
non-trivial formula β such that x, y �∈ Fr(β), in particular for β = Euv. ��

This proposition now demonstrates that, similarly as conjunction, universal
quantification cannot be freely used if the goal is to construct a fragment of
inclusion logic that captures NL. On the positive side, we prove next that exis-
tential quantification preserves NL-computability. Furthermore, we show that
the same holds for conjunction, provided that one of the conjuncts is in FO.

Lemma 28. Let φ ∈ FO(⊆), ψ ∈ FO, and let X be a team of a model A. Then

(a) ν(A,X,∃xφ) = {s ∈ X | s(a/x) ∈ X ′ for some a ∈ A}, where X ′ =
ν(A,X[A/x], φ),

(b) ν(A,X, φ ∧ ψ) = ν(A,X ′, φ), where X ′ = ν(A,X, ψ).

Proof. (a) Let X ′ = ν(A,X[A/x], φ) and X ′′ = {s ∈ X | s(a/x) ∈ X ′

for some a ∈ A}. Assume that Y ⊆ X is a team such that A |=Y ∃xφ.

318 M. Hannula and L. Hella

Fig. 5. GAME and MSM(∀z(¬Eyz ∨ z ⊆ x)). The assignments marked by a circle
constitute Z′′.

Then there is a function F : X → P(A) \ {∅} such that A |=Y [F/x] φ, and
since clearly Y [F/x] ⊆ X[A/x], we have Y [F/x] ⊆ X ′. Thus for every s ∈ Y
there is a ∈ A such that s(a/x) ∈ X ′, and hence we see that Y ⊆ X ′′. In
particular ν(A,X,∃xφ) ⊆ X ′′. To prove the converse inclusion it suffices to
show that A |=X′′ ∃xφ. Let G : X ′′ → P(A) \ {∅} be the function defined by
G(s) = {a ∈ A | s(a/x) ∈ X ′}. By the definition of X ′′, this function is well-
defined and G(s) �= ∅ for all s ∈ X ′′. It is now easy to see that X ′′[G/x] = X ′,
whence A |=X′′[G/x] φ, as desired.

(b) Let X ′ = ν(A,X, ψ) and X ′′ = ν(A,X ′, ψ). Assume first that Y ⊆ X is
a team such that A |=Y φ ∧ ψ. Then A |=Y ψ, whence Y ⊆ X ′, and furthermore
Y ⊆ X ′′, since A |=Y φ. In particular, ν(A,X, φ ∧ ψ) ⊆ X ′′. On the other hand,
by definition A |=X′′ φ. Similarly A |=X′ ψ, whence by downward closure of FO
(Corollary 3), A |=X′′ ψ. Thus we see that A |=X′′ φ ∧ ψ, which implies that
X ′′ ⊆ ν(A,X, φ ∧ ψ). ��

As a straightforward corollary to this lemma we obtain the following com-
plexity preservation result.

Proposition 29. Let φ ∈ FO(⊆), ψ ∈ FO, and assume that MSM(φ) is in a
complexity class C ∈ {L,NL}. Then

(a) MSM(∃xφ) is in C, and
(b) MSM(φ ∧ ψ) is in C.

Proof. (a) By Lemma 28(a), to check whether a given assignment s is in
ν(A,X,∃xφ) it suffices to check whether s(a/x) is in ν(A,X[A/x], φ) for some
a ∈ A. Clearly this task can be done in C assuming that MSM(φ) is in C.

(b) By Lemma 28(a), it suffices to show that the problem whether an assign-
ment s is in ν(A,X ′, φ), where X ′ = ν(A,X, ψ), can be solved in C with respect
to the input (s,A,X). Since ψ ∈ FO, the team X ′ can be computed in C, whence
the claim follows from the assumption that MSM(φ) is in C. ��

Summarising Lemma 13 and Proposition 29, NL-computability of maximal
subteam membership is preserved by disjunction, conjunction with first-order

Complexity Thresholds in Inclusion Logic 319

formulas, and existential quantification. Since maximal subteam problem is in
NL for all first-order formulas and, by Lemma17, for all inclusion atoms, we
define a weak fragment FO(⊆)w of inclusion logic by the following grammar:

φ :: = α | x ⊆ y | φ ∨ φ | φ ∧ α | ∃xφ,

where α ∈ FO.

Theorem 30. MC(φ) is in NL for every φ ∈ FO(⊆)w.

Proof. By an easy induction we see that MSM(φ) is in NL for every φ ∈ FO(⊆)w.
The claim follows now from Lemma 25.

Vice versa, to show that each NL property of ordered models can be
expressed in FO(⊆)w, it suffices to show that TC translates to FO(⊆)w over
ordered models.

Theorem 31. Over finite ordered models, TC ≤ FO(⊆)w.

Proof. By Theorem 9 we may assume without loss of generality that any TC
sentence φ is of the form [TCx,yα(x, y)](min,max) where x and y are n-ary
sequences of variables. We next define an equivalent FO(⊆)w sentence φ′. For
two tuples of variables x and y of the same length, we write x < y as a shorthand
for the formula expressing that x is less than y in the induced lexicographic
ordering, and x = y for the conjunction expressing that x and y are pointwise
identical. The sentence φ′ is given as follows:

φ′ := ∃xytxty(ψ1 ∧ ψ2 ∧ ψ3 ∧ ψ4) (1)

where

– ψ1 := yty ⊆ xtx,
– ψ2 := (tx < max ∧ tx < ty ∧ α(x, y)) ∨ (tx = max ∧ ty = min),
– ψ3 := ¬tx = min ∨ x = min, and
– ψ4 := ¬tx = max ∨ x = max.

Observe that in (1) the tuple tx can be thought of as a counter which indicates
an upper bound for the α-path distance of x from min.

Assuming A |= φ′, we find a non-empty team X such that A |=X ψ1 ∧
ψ2 ∧ ψ3 ∧ ψ4. Now, A |=X ψ1 ∧ ψ2 entails that there is an assignment s ∈ X
mapping tx to min, and A |=X ψ3 implies that s maps x to min, too. Then
A |=X ψ1 ∧ ψ2 entails that there is an α-path from min to s′(x) for some s′ ∈ X
with s′(tx) = max. Lastly, by A |=X ψ4 it follows that s′(x) = max which shows
that [TCx,yα(x, y)](min,max).

Assume then that [TCx,yα(x, y)](min,max), that is, there is an α-path
v1, . . . , vk where v1 = min and vk = max. We may assume that there are no
cycles in the path. Let ai denote the ith element in the lexicographic order-
ing of An. We let X = {s1, . . . , sk} be such that (x, y, tx, ty) is mapped to
(vi, vi+1, ai, ai+1) by si, for i = 1, . . . , k − 2, to (vk−1, vk, ak−1,max) by sk−1,
and to (vk, v1,max,min) by sk. It is straightforward to verify that A |=X

ψ1 ∧ ψ2 ∧ ψ3 ∧ ψ4 from which it follows that A |= φ′. ��

320 M. Hannula and L. Hella

It now follows by the above two theorems and Theorem9 that FO(⊆)w cap-
tures NL.

Theorem 32. A class C of finite ordered models is in NL iff it can be defined
in FO(⊆)w.

7 Conclusion

We have studied the complexity of inclusion logic from the vantage point of
two computational problems: the maximal subteam membership and the model
checking problems for fixed inclusion logic formulae. We gave a complete charac-
terization for the former in terms of arbitrary conjunctions/disjunctions of unary
inclusion atoms. In particular, we showed that maximal subteam membership
is P-complete for any conjunction of unary inclusion atoms, provided that the
conjunction contains two non-trivial atoms that are not inverses of each other.
Using these results we characterized the complexity of model checking for several
quantifier-free inclusion logic formulae. We leave it for future research to address
the complexity of quantifier-free inclusion logic formulae that involve inclusion
atoms of higher arity and both disjunctions and conjunctions.

Assuming the presence of quantifiers we presented a simple universally quan-
tified formula that has P-complete maximal subteam membership problem.
Finally, we defined a fragment of inclusion logic, obtained by restricting the scope
of conjunction and universal quantification, that captures non-deterministic log-
arithmic space over finite ordered models.

Acknowledgements. We are grateful to Phokion Kolaitis, who raised the questions
on the complexity of quantifier-free formulas of inclusion logic in a private discussion
with the second author in 2016.

References

1. Afrati, F.N., Kolaitis, P.G.: Repair checking in inconsistent databases: algorithms
and complexity. In: 12th International Conference on Database Theory - ICDT
2009, St. Petersburg, Russia, 23–25 March 2009, pp. 31–41 (2009)

2. Arenas, M., Bertossi, L.E., Chomicki, J.: Consistent query answers in inconsistent
databases. In: Proceedings of the Eighteenth ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems, Philadelphia, Pennsylvania, USA,
31 May–2 June 1999, pp. 68–79 (1999)

3. Chomicki, J., Marcinkowski, J.: Minimal-change integrity maintenance using tuple
deletions. Inf. Comput. 197(1–2), 90–121 (2005)

4. Corander, J., Hyttinen, A., Kontinen, J., Pensar, J., Väänänen, J.: A logical app-
roach to context-specific independence. In: Väänänen, J., Hirvonen, Å., de Queiroz,
R. (eds.) WoLLIC 2016. LNCS, vol. 9803, pp. 165–182. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-52921-8 11

5. Durand, A., Hannula, M., Kontinen, J., Meier, A., Virtema, J.: Approximation and
dependence via multiteam semantics. Ann. Math. Artif. Intell. 83, 297–320 (2018)

https://doi.org/10.1007/978-3-662-52921-8_11

Complexity Thresholds in Inclusion Logic 321

6. Durand, A., Kontinen, J., de Rugy-Altherre, N., Väänänen, J.: Tractability frontier
of data complexity in team semantics. In: Proceedings Sixth International Sym-
posium on Games, Automata, Logics and Formal Verification, GandALF 2015,
Genoa, Italy, 21–22nd September 2015, pp. 73–85 (2015)

7. Ebbing, J., Hella, L., Meier, A., Müller, J.-S., Virtema, J., Vollmer, H.: Extended
modal dependence logic EMDL. In: Libkin, L., Kohlenbach, U., de Queiroz, R.
(eds.) WoLLIC 2013. LNCS, vol. 8071, pp. 126–137. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-39992-3 13

8. Ebbing, J., Kontinen, J., Müller, J.-S., Vollmer, H.: A fragment of dependence logic
capturing polynomial time. Log. Methods Comput. Sci. 10(3) (2014)

9. Galliani, P.: Inclusion and exclusion dependencies in team semantics: on some
logics of imperfect information. Ann. Pure Appl. Log. 163(1), 68–84 (2012)

10. Galliani, P., Hella, L.: Inclusion logic and fixed point logic. In: Rocca, S.R.D. (ed.)
Computer Science Logic 2013 (CSL 2013). Leibniz International Proceedings in
Informatics (LIPIcs), Dagstuhl, Germany, vol. 23, pp. 281–295. Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik (2013)

11. Grädel, E.: Model-checking games for logics of imperfect information. Theor. Com-
put. Sci. 493, 2–14 (2012)

12. Grädel, E.: Games for inclusion logic and fixed-point logic. In: Abramsky, S., Kon-
tinen, J., Väänänen, J., Vollmer, H. (eds.) Dependence Logic, pp. 73–98. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-31803-5 5

13. Hannula, M., Hella, L.: Complexity thresholds in inclusion logic. CoRR,
abs/1903.10706 (2019)

14. Hannula, M., Kontinen, J.: A finite axiomatization of conditional independence
and inclusion dependencies. Inf. Comput. 249, 121–137 (2016)

15. Hannula, M., Kontinen, J., Virtema, J.: Polyteam semantics. In: Artemov, S.,
Nerode, A. (eds.) LFCS 2018. LNCS, vol. 10703, pp. 190–210. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-72056-2 12

16. Hannula, M., Kontinen, J., Virtema, J., Vollmer, H.: Complexity of propositional
logics in team semantic. ACM Trans. Comput. Log. 19(1), 2:1–2:14 (2018)

17. Hodges, W.: Compositional semantics for a language of imperfect information. J.
Interest Group Pure Appl. Log. 5(4), 539–563 (1997)

18. Immerman, N.: Relational queries computable in polynomial time. Inf. Control
68(1), 86–104 (1986)

19. Immerman, N.: Languages that capture complexity classes. SIAM J. Comput.
16(4), 760–778 (1987)

20. Immerman, N.: Nondeterministic space is closed under complementation. SIAM J.
Comput. 17(5), 935–938 (1988)

21. Kontinen, J.: Coherence and computational complexity of quantifier-free depen-
dence logic formulas. Studia Logica 101(2), 267–291 (2013)

22. Kontinen, J., Kuusisto, A., Lohmann, P., Virtema, J.: Complexity of two-variable
dependence logic and if-logic. Inf. Comput. 239, 237–253 (2014)

23. Koutris, P., Wijsen, J.: Consistent query answering for primary keys in logspace. In:
22nd International Conference on Database Theory, ICDT 2019, Lisbon, Portugal,
26–28 March 2019, pp. 23:1–23:19 (2019)

24. Pacuit, E., Yang, F.: Dependence and independence in social choice: Arrow’s theo-
rem. In: Abramsky, S., Kontinen, J., Väänänen, J., Vollmer, H. (eds.) Dependence
Logic, pp. 235–260. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
31803-5 11

25. ten Cate, B., Fontaine, G., Kolaitis, P.G.: On the data complexity of consistent
query answering. Theory Comput. Syst. 57(4), 843–891 (2015)

https://doi.org/10.1007/978-3-642-39992-3_13
https://doi.org/10.1007/978-3-319-31803-5_5
https://doi.org/10.1007/978-3-319-72056-2_12
https://doi.org/10.1007/978-3-319-31803-5_11
https://doi.org/10.1007/978-3-319-31803-5_11

322 M. Hannula and L. Hella

26. Väänänen, J.: Dependence Logic. Cambridge University Press, Cambridge (2007)
27. Väänänen, J.: Modal dependence logic. In: Apt, K.R., van Rooij, R. (eds.) New

Perspectives on Games and Interaction. Amsterdam University Press, Amsterdam
(2008)

28. Vardi, M.Y.: The complexity of relational query languages. In: Proceedings of the
Fourteenth Annual ACM Symposium on Theory of Computing, pp. 137–146. ACM
(1982)

29. Virtema, J.: Complexity of validity for propositional dependence logics. Inf. Com-
put. 253, 224–236 (2017)

30. Vollmer, H.: Introduction to Circuit Complexity - A Uniform Approach. EATCS
Series. Springer, Heidelberg (1999). https://doi.org/10.1007/978-3-662-03927-4

31. Yang, F., Väänänen, J.: Propositional logics of dependence. Ann. Pure Appl. Logic
167(7), 557–589 (2016)

https://doi.org/10.1007/978-3-662-03927-4

The Multiresolution Analysis
of Flow Graphs

Steve Huntsman(B)

BAE Systems FAST Labs, 4301 North Fairfax Drive, Arlington, VA 22203, USA
steve.huntsman@baesystems.com

Abstract. We introduce and prove basic results about several graph-
theoretic notions relevant to the multiresolution analysis of flow graphs
that represent the transfer of control in computer programs. We take a
category-theoretical viewpoint to demonstrate that our definitions are
natural and to motivate particular incarnations of related constructions.

Keywords: Program analysis · Flow graph · Program structure tree ·
Operad · Symmetric monoidal category

1 Introduction

The notion of a “flow graph” is central to the analysis and compilation of com-
puter programs, encompassing constructs that represent the transfer of control
and data [7,21,22]. As the complexity of software increases, so does the scale of
the corresponding flow graphs: accordingly, a framework for the analysis of flow
graphs at multiple resolutions is desirable. Such a framework was originally pre-
sented in [15], based on a hierarchical representation of input/output structure
called the program structure tree (PST).

For an illustration of this framework, consider the simple imperative program
“skeleton” and associated control flow graph in Fig. 1. The result of “stretching”
it à la Sect. B and the PST of the result are shown in Fig. 2. Iterating the process
of pruning each leaf of the PST à la Sect. 5 leads to “coarsened” control flow
graphs such as those in Fig. 3.

The utility of this framework is enhanced by [30], which shows how to restruc-
ture the control flow graph of a program in such a way that subroutines can be
identified as programs in their own right using the control flow graph alone. This
feeds naturally into a “multiresolution analysis” of recursively composing (resp.
decomposing) a program from (resp. into) subprograms in a way that can help
with building, understanding, and modifying large programs.

This paper extends the work of [15] while correcting both an error of defi-
nition (for interiors of single-entry/single-exit regions) found in [3], and another
subtler error in the original proof of Theorem1, by unifying and formalizing
several natural concepts relevant to the decomposition and construction of flow
graphs. This has several benefits: as the most basic example, we provide a def-
inition of flow graph that is slightly different than its other usual variants but
c© Springer-Verlag GmbH Germany, part of Springer Nature 2019
R. Iemhoff et al. (Eds.): WoLLIC 2019, LNCS 11541, pp. 323–341, 2019.
https://doi.org/10.1007/978-3-662-59533-6_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-59533-6_20&domain=pdf
https://doi.org/10.1007/978-3-662-59533-6_20

324 S. Huntsman

1 START
2 repeat
3 repeat
4 repeat
5 if b goto 7
6 if b
7 repeat

S8
9 until b
10 endif
11 until b
12 do while b
13 do while b
14 repeat

S51
16 until b
17 enddo
18 enddo
19 until b
20 until b
21 HALT

 START:#1 repeat:#2 repeat:#3 repeat:#4 if b goto 7:#5 if b:#6 repeat:#7 S:#8
 until b:#9 endif:#10 until b:#11 do while b:#12

 do while b:#13
 repeat:#14 S:#15 until b:#16 enddo:#17

 enddo:#18

 until b:#19 until b:#20 HALT:#21

Fig. 1. (L) A simple imperative program. S denotes a generic statement (or subroutine);
b denotes a generic Boolean predicate. (R) The corresponding control flow graph:
branches are shaded black (resp., gray) if the corresponding b evaluates to � or ⊥.

 START:#1 repeat:#2 repeat:#3 repeat:#4 if b goto 7:#5
 if b:#6 repeat:#7 S:#8 until b:#9 endif:#10 until b:#11 until b:#11 do while b:#12

 do while b:#12
 do while b:#13

 do while b:#13
 repeat:#14 S:#15 until b:#16 enddo:#17

 enddo:#18

 until b:#19 until b:#20 HALT:#21

 START:1-HALT:21
 repeat:2-until b:20
 repeat:3-until b:19

 repeat:4-until b:11_2
 if b goto 7:5-until b:11

 S:8-S:8
 endif:10-endif:10

 do while b:12-do while b:12_2 do while b:13-do while b:13_2 repeat:14-until b:16
 S:15-S:15

 enddo:17-enddo:17

 enddo:18-enddo:18

Fig. 2. (L) “Stretching” (à la Sect. B) the flow graph of Fig. 1. (R) The resulting PST.

 START:1 repeat:2 repeat:3 repeat:4 if b goto 7:5 if b:6
 repeat:7 until b:9 until b:11 until b:11_2 do while b:12 do while b:12_2

 do while b:13 do while b:13_2
 repeat:14 until b:16

 until b:19 until b:20 HALT:21

 START:1
 repeat:2

 repeat:3
 repeat:4
 until b:11_2
 do while b:12 do while b:12_2 do while b:13 do while b:13_2

 until b:19
 until b:20
 HALT:21

 START:1

 repeat:2

 repeat:3

 do while b:12
 do while b:12_2

 until b:19

 until b:20

 HALT:21

Fig. 3. Succesively coarsening (à la Sect. 5) the flow graph of Fig. 2

The Multiresolution Analysis of Flow Graphs 325

that is mathematically more natural and well-behaved. This in turn leads to a
simpler analogue of the “refined process structure tree” of [23,29] and natural
category-theoretic constructions. These include multiresolution operations that
approximate and/or refine flow graphs at multiple scales, as well as series and
parallel operations that respectively embody sequential execution and if/else
constructs in control flow.

While most of the results of this paper are conceptually straightforward and
many are at least latent in the literature, few of them have been simultaneously
formulated explicitly and mathematically. Indeed, the practical motivation for
this paper is simply to show that the “right” definition of a flow graph entails all
the obvious desiderata, particularly for treating subroutines as programs in their
own right. As Sect. 7 highlights, the precise ability to compose flow graphs in
category-theoretically nice ways is novel (though it is obvious that such a thing
should be possible somehow): the unit object presents the principal difficulty, and
much of our effort is focused on this issue for the case of parallel composition.
This compositionality can inform the internal representation of graphical data
structures and techniques for their manipulation in binary program analysis
platforms such as [5] and program synthesizers [12] as well as compilers.

In particular, constraining the notion of a valid control flow graph to the
one considered in the paper could confer an advantage from the point of view
of precompilation or reuse/modification: our results give a recipe for inserting
and combining precompiled code in a convenient way. In a similar vein, we may
want to understand a disassembled binary by synthesizing a similar or equivalent
program. After restructuring the control flow graph along the lines of [30] and
performing some straightforward normalizations (see Sect. B), we could construct
the PST and attempt program synthesis for each of the subroutines correspond-
ing to a leaf node. In particular, we could generate inputs and observe outputs
to each of these subroutines, so that program induction is a viable fallback at
each point. Recursively going up the PST, we (attempt to) get such a globally
synthesized program, and our results indicate precisely how synthesized/induced
programs of intermediate scale can be maintained and reasoned over.

In other words, the constructions of the paper can inform tools that blur the
lines between compilation and decompilation. In particular, the central results
of Sects. 5 and 6 contain the technical details necessary to have confidence that
intermediate representations of programs can be (de)composed in a mathemati-
cally principled way, offering a firm foundation for future tools. Although super-
ficial errors in [15] and hitherto unrecognized categorical structure in the PST
have hindered its use,1 we believe that tools based on it can and should be built.

1 To illustrate this point, we quote liberally from [3]: “Unfortunately, we discovered an
error in the aforementioned proof regarding SSI [static single information] form...we
discovered that this mistake had been made in an earlier paper as well, and that
other mistakes had been made in several papers that built on SSI form. The goal of
this article, therefore, is to clear up the mistakes to the greatest possible extent...The
key mistake was...made by Johnson et al. [15], who introduced a data structure called

326 S. Huntsman

The paper is organized as follows: we discuss dominance relations in Sect. 2;
flow graphs, single-entry/single-exit regions, and the PST in Sect. 3; we introduce
the structure of a category on flow graphs in Sect. 4 (this delay is to connect the
paper to prior work most clearly); we discuss multiresolution transformations on
flow graphs in Sect. 5; and in Sect. 6 we discuss series and parallel composition
of flow graphs in the context of formal tensor product structures. Section 7 dis-
cusses two-terminal graphs before our concluding remarks in Sect. 8. Section A
contains proofs and Sect. B sketches a “stretching” operation that enhances the
applicability of our constructions.

We remark at the outset that all graphs (and related objects) are assumed
finite throughout this paper. By convention, digraphs are allowed to have loops
from a vertex to itself. Given a vertex v in a digraph, let d+

0 (v), d−
0 (v), and

d0(v) respectively denote the number of incoming edges excluding any loop, the
number of outgoing edges excluding any loop, and the number (≤ 1) of loops at
v. A vertex v is a source iff d+

0 (v) = 0 and a target iff d−
0 (v) = 0, i.e., loops have

no bearing on these properties.

2 Dominance Relations

Let G be a digraph and j, k ∈ V (G). We say that j dominates k, written j dom k,
iff every path from a source s in G to k passes through j [7,21]. Define Djk = 1
if j dom k and Djk = 0 otherwise. Similarly, let D† := D(G∗), where G∗ is the
reversal or adjoint of G with adjacency matrix A∗ and corresponding dominance
relation dom†. If D†

jk = 1, i.e., if j dom† k, write k pdom j and say that k
postdominates j. Both the dominance and postdominance relations extend to
edges. The following two lemmas are straightforward.

Lemma 1. For distinct edges {ej}3
j=1 in a digraph G, if e1 dom e3 and

e2 dom e3, then either e1 dom e2 or e2 dom e1. Similarly, if e1 pdom e2 and
e1 pdom e3, then either e2 pdom e3 or e3 pdom e2. ��
Lemma 2. If e1 dom e2 and e1 pdom e2 with e1 �= e2, then a path from a source
to a target that traverses e2 contains a cycle of the form (e1, . . . , e2, . . . , e1). ��

We use Lemma 2 to fix a subtle (and minor) error in a proof of Theorem1
that was originally presented by [15]. This helps us to rescue the framework of
[15] in its entirety from the problems raised by [3].

3 Flow Graphs, Single-Entry/Single-Exit Regions,
and the Program Structure Tree

A flow graph G is a digraph with exactly one source and exactly one target, such
that there is a unique (entry) edge from the source and a unique (exit) edge to

the program structure tree (PST), which attempted to represent the structure of a
control flow graph hierarchically.”.

The Multiresolution Analysis of Flow Graphs 327

the target, and such that identifying the source of the entry edge with the target
of the exit edge yields a strongly connected digraph. (We do not require the
entry and exit edges to be distinct, e.g., if |V (G)| = 2.)2

A single entry/single exit (SESE) region in a digraph G is defined as an
ordered pair of edges (e1, e2) satisfying each of the following conditions [15]:
e1 dom e2, e2 pdom e1, and a cycle in G contains e1 iff it contains e2. See Fig. 5
for examples. Note first that (e1, e1) is a degenerate SESE region,3 and second
that a nondegenerate SESE region (e1, e2) (i.e., a SESE region with e1 �= e2)
unambiguously corresponds to the ordered vertex pair (t(e1), s(e2)), where s(·)
and t(·) respectively denote the source and target of an edge. We may use either
the edge or vertex pairs above to specify a nondegenerate SESE region. Note
also that in a DAG the third condition above is trivial. Finally, note that the
edges es from the source and et to the target of a flow graph G together define
a SESE region and vice versa. With this in mind, write either G or (es, et) for
the flow graph or the equivalent SESE region.

We give a few simple results (the first is straightforward enough that we omit
a proof) before moving on to a fundamental theorem.

Lemma 3. If (e1, e2) and (e2, e3) are SESE regions, then so is (e1, e3). ��
Lemma 4. If (e1, e2) and (e1, e3) are SESE regions with e2 �= e3 and e2 dom e3,
then (e2, e3) is a (nondegenerate) SESE region.

Corollary 1. If (e1, e2) is a SESE region with e2 �= e3 and e2 dom e3, and
(e2, e3) is not a SESE region, then (e1, e3) is also not a SESE region.4 ��

The interior G◦ of G ≡ (es, et) is the set of vertices that are each on at
least one path starting from t(es) that does not encounter t(et). Critically, this
definition differs slightly from Definition 6 of [15], wherein the interior of a SESE

1 2 3
4

5
6 7

8

9
10 11 12

13

Fig. 4. As [3] points out, the nondegenerate SESE regions ((2, 3), (6, 7)) and
((6, 7), (10, 11)) have interiors that intersect at vertex 13 according to the original defi-
nition of [15]. Our definition of the interior of a SESE region eliminates such unwanted
behavior and allows us to salvage the original attempt to prove Theorem 1

2 NB. One sometimes sees variants of the definition and naming of this particular sort
of concept, for the latter most typically as “flowgraph”, “flowchart”, or “flow chart”.
Some concepts with the same name are technically quite different but “spiritually”
viewed in a similar context, as, e.g., in the work of Manin [8,19].

3 NB. Degenerate SESE regions (e1, e1) are excluded by the original definition of [15].
We allow such regions to make the series tensor product of Sect. 6.1 work nicely.

4 A useful restatement of this is that if (e1, e2) is a SESE region with e2 �= e3 and
e2 dom e3, then (e1, e3) is not a SESE region unless (e2, e3) is a SESE region.

328 S. Huntsman

region (es, et) is defined as {j ∈ V : es dom j∧et pdom j}. An example in Sect. 5
of [3] and reproduced in Fig. 4 illustrates the difference between these definitions.

A nondegenerate SESE region (e1, e2) is called canonical if for any SESE
region (e1, e

′
2) it is the case that e2 dom e′

2 and if for any SESE region (e′
1, e2)

it is the case that e1 pdom e′
1. Our definition of the interior of a SESE region

enables the following corrected version of Theorem 1 of [15] (cf. [3]).

Theorem 1. Interiors of distinct canonical SESE regions are disjoint or nested.

Therefore canonical SESE regions are also minimal, so we may use the two
terms interchangeably: we generally prefer and use the latter. The inclusion
relation on minimal SESE regions induces a tree—viz., the PST. An example of
this nesting behavior and the corresponding PST are depicted in Fig. 5.

G

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

PST(G)

1 2

3 4 5

6

7

12

131718 10

Fig. 5. (L) SESE regions of the flow graph G are outlined in gray: minimal (resp.,
non-minimal) SESE region outlines are solid (resp., dashed). Locally maximal but not
minimal SESE regions are ((2, 3), (4, 8)), ((8, 7), (6, 9)), and ((19, 18), (13, 9)). (R) The
PST encodes the nesting of minimal SESE regions. Nodes are labeled by the target of
the incoming edge (with a “phantom” edge from −∞ to the source). The sets {3, 4},
{6, 7}, and {13, 17, 18} correspond to locally maximal SESE regions that could sensibly
be “aggregated” by identifying the respective vertices and omitting any resulting loops:
however, a more mathematically natural variant of this construction is discussed in
Sect. 5.

Lemma 5. A nondegenerate SESE region (e0, e∞) decomposes as (e0, e∞) =⋃m
j=1(ej−1, ej), where em ≡ e∞ and (ej−1, ej) are minimal SESE regions.

Define an edge-indexed matrix S by Se1,e2 = 1 if (e1, e2) is a nondegener-
ate SESE region and Se1,e2 = 0 otherwise. Then S is the adjacency matrix of
a digraph whose weakly connected components correspond to the situation in
Lemma 5. We therefore obtain the following lemma.

The Multiresolution Analysis of Flow Graphs 329

Lemma 6. Each weakly connected component of the digraph corresponding to
S is a transitive tournament, hence has a unique source, target, and a path of
length 1 from source to target defining a locally maximal SESE region. ��

A closely related construction is the subject of Sect. 5.

4 The Category of Flow Graphs

The principal goal of this section is merely to motivate and justify the details
of the sequel. The key points are the introduction of the category Dgph of
digraphs, and of its full subcategory Flow whose objects are flow graphs.

It is natural to attempt to regard transformations of mathematical objects
as morphisms in an appropriate category [18]. Unfortunately, in many if not
most cases involving digraphs, such an attempt is complicated by technicalities
that commonly arise from loops [4]. The basic problem is that while identifying
vertices should induce a graph morphism, such a morphism should also preserve
edges. In particular, the morphism should preserve any edges between the ver-
tices to be identified, necessarily inducing a loop. Insofar as we want loops in
a coarse-grained control flow graph to correspond to actual loops in the atomic
control flow, this is highly undesirable.

The common way around this problem is to treat loops on a separate footing.
Following [4], define the category Dgph as follows. An object of Dgph is a
reflexive digraph G = (U,α, ω) given by a set U and head and tail functions
α, ω : U → U satisfying α◦ω = ω and ω◦α = α. Meanwhile, for G′ = (U ′, α′, ω′),
a morphism f ∈ Dgph(G,G′) is a function f : U → U ′ satisfying f ◦ α = α′ ◦ f
and f ◦ ω = ω′ ◦ f .

The vertices of G = (U,α, ω) are the (mutual) image V ≡ V (G) of α and ω;
the loops are the set L ≡ L(G) := {u ∈ U : α(u) = ω(u)} (so that V ⊆ L), and
the edges are the set E ≡ E(G) := U\L.5 Thus a morphism f : U → U ′ restricts
to f |V : V → V ′, f |L : L → L′, and f |E : E → U ′. In particular, morphisms are
only partially specified by their actions on vertices, and the following definition
is essentially a convention about how to treat vertex identification by default.

We define Flow to be the full subcategory of Dgph whose objects are (com-
binatorially realized as) flow graphs.6

5 Coarsening Flow Graphs

We begin this section with intuition: the coarsening of a flow graph G is obtained
by taking each leaf of its PST and absorbing the interior of the corresponding
sub-flow graph into its source. (See Fig. 6.) The details are below.
5 The usual notion of a digraph is recovered by considering α × ω and its appropriate

restrictions on U2, L2, and E2: e.g., we can abusively write E = (α × ω)(E2), where
the LHS and RHS respectively refer to usual and reflexive notions of digraph edges.

6 As pointed out by D. Spivak, it would be desirable to describe flow graphs in terms
of Dgph, e.g. as algebras for some monad.

330 S. Huntsman

For G ∈ Dgph, define the absorption of k into j to be the morphism in
Dgph (or the morphism’s image, depending on context) which corresponds to
identifying k with j, and in the case k �= j subsequently annihilating any loop
at j (by mapping it to the vertex j). It is clear that first absorbing k and then
m into j is equivalent to first absorbing m and then k into j. Consequently, for
U ⊆ V (G) we may define the absorption of U into j in the obvious way.7

For G,H ∈ Flow with H ⊂ G, define the absorption of H to be the result
of absorbing the interior of H into its source (considered as a vertex in G).
This amounts to replacing H with a single edge between its source and target.
Finally, define the coarsening �G of G to be the result of absorbing all of the
sub-flow graphs corresponding to leaves of the program structure tree of G. The
fact that �G is well-defined follows from [15] (cf. the “prime subprogram parse”
of [27]) along with the preceding considerations. In particular, the definitions of
absorption and coarsening yield the following technical lemma.

Lemma 7. Let G ∈ Flow and let �G result from absorbing the vertex sets Lk

into k for all k ∈ K (so that Lk corresponds to a leaf of the program structure
tree and k �∈ Lk). Let L := ∪k∈KLk (this set should not be confused with the
set of loops in G) and J := V \(K ∪ L), so that V = J ∪ K ∪ L and J,K,L are
mutually disjoint. Let j, j′ ∈ J ; k, k′ ∈ K with k �= k′, and �, �′ ∈ L. Finally,
write L+

k := {k}∪Lk and let g ∈ V . Then the adjacency matrix of �G w.r.t. the
vertex set of G is A′, where A′

jj′ = Ajj′ , A′
jk′ =

∨
�′∈L+

k′
Aj�′ , A′

kj′ =
∨

�∈L+
k

A�j′ ,
A′

kk′ =
∨

�∈L+
k ,�′∈L+

k′
A��′ , and A′

kk = A′
g�′ = A′

�g′ = 0. ��

The real matter of substance in coarsening a flow graph is producing the sets
J , K, and L referred to just above (it turns out to be easier to construct the Lk

from L than to go in the opposite direction).

Theorem 2. Using the notation of the preceding lemma, define a matrix M as
follows. For each leaf (e1, e2) of the program structure tree, let (e1, e2)◦ denote
its interior, and for all j ∈ (e1, e2)◦ set Mj,s(e1) = 1. Then M is the adjacency
matrix of a DAG (in fact, a forest) whose weakly connected components have
vertex sets L+

k and corresponding targets k.

Having considered coarsening flow graphs, we note that the appropriate
mathematical formalization in the opposite direction—i.e., of inserting one flow
7 Failing to make fixed choices about whether to preserve or annihilate loops from,

or formed at, absorbed and absorbing vertices amounts to a context-driven decision
about the absorption process that is unlikely to be of any utility and need not be
considered. Therefore, we proceed here to consider the space of such possible fixed
choices. In the context of control flow graphs, a loop corresponds closely to a do-
while construct. With this in mind, preserving such a construction under absorption
corresponds to inserting additional computations into a do-while loop, or forming a
new do-while loop around existing computations, altering the control flow. Mean-
while, annihilating loops corresponds to embedding the do-while construct within
a larger sequence of computations, preserving the control flow. This is prima facie
cause to restrict consideration to the definition of absorption introduced above.

The Multiresolution Analysis of Flow Graphs 331

�G

1 2

8

9 11 12

14 15 16

19 20

�2G

1 2

8

9

19 20

Fig. 6. (L) Coarsening of the flow graph G from Fig. 5. (Note that the pullback of the

diagram a
g◦f−→ c

g←− b is a
id←− a

f−→ b, so that f is the pullback of g ◦ f by g. We may
therefore think of �G somewhat literally as a kind of pullback of G by the leaves of its
program structure tree.) (R) Coarsening again. A third coarsening is trivial.

graph into another8—is captured by the assertion that flow graphs form a (sym-
metric) operad [17,20,26] (cf. [24,25]). At a high level, an operad is a collection
of objects that “plug into each other” like maps f(m) : Xm → X à la

f(m) ◦� g(n) := f(·1, . . . , ·�−1, g(·�, . . . , ·�+n−1), ·�+n, . . . , ·m+n).

Let P (n) denote the set of flow graphs with n ordered edges and define the
following family of maps

◦ : P (n) × P (k1) × · · · × P (kn) → P (k1 + · · · + kn)
(G,G1, . . . , Gn) �→ G ◦ (G1, . . . , Gn) (1)

by replacing, for each 1 ≤ j ≤ n, the jth edge in G with Gj in the obvious way.
Writing k0 ≡ 0, the edge ordering on G ◦ (G1, . . . , Gn) is obtained by assigning
edges

∑j−1
i=0 ki + 1, . . . ,

∑j
i=0 ki to Gj ↪→ G ◦ (G1, . . . , Gn) in the same order as

the edges of Gj , i.e., the edge ordering is inherited from its local components.
Definition-checking or direct comparison to other insertion operads (e.g. the

little d-disks or d-cubes operads in Top) yields the following

Theorem 3. The triple {e, {P (n)}∞
n=1, ◦}, where e denotes the flow graph with

one edge, forms an operad (in Set). ��
Thus the operadic composition ◦ and coarsening � operations are not only

natural, but complementary, and we readily obtain the following lemma.

Lemma 8. If G ∈ P (n) and �Gj = e �= Gj, then �(G ◦ (G1, . . . Gn)) = G. ��

8 Note that we are not explicitly considering the insertion of loops in this setting.

332 S. Huntsman

6 Tensoring Flow Graphs

6.1 Tensoring in Series

There is an essentially trivial tensor product on Flow. The idea is simply to
identify the exit edge of the first flow graph with the entry edge of the second
flow graph, i.e., to combine flow graphs in series. The reason that this tensor
product structure is interesting and useful is that it allows us a way to model
additional structure in an enriched category. Specifically, this leads to the Flow-
category SubFlowG of sub-flow graphs of a flow graph G.

We provide a quick sketch of the details here. Let f ∈ Flow(G,Gf) and
f ′ ∈ Flow(G′, G′

f ′) with V (G)∩V (G′) = ∅. Define G�G′ to be the flow graph
obtained by identifying the exit edge of G and the entry edge of G′, and define
f � f ′ to be the morphism in Flow(G � G′, Gf � G′

f ′) obtained by identifying
the output of f on the exit edge of G with that of f ′ on the entry edge of G′.

The following lemmas are straightforward.

Lemma 9. Flow is a monoidal category with tensor product given by �, and
with unit object the flow graph e consisting of a single edge. ��
Lemma 10. For a generic flow graph G, we can form a category SubFlowG

enriched [16] over Flow as follows:

– SubFlowG := E(G);9

– for es, et ∈ SubFlowG, the hom object SubFlowG(es, et) ∈ Flow is the
(possibly empty) flow graph with entry edge es and exit edge et;

– the composition morphism is induced by �;
– the identity element is determined by the flow graph e with one edge. ��

An important advantage of SubFlowG over the path category of G is that
the former is finite (and the preceding sections essentially detail its construction),
whereas the latter is infinite whenever there is a cycle in G.

6.2 Tensoring in Parallel

In this section we show that Flow carries a nontrivial monoidal structure (i.e.,
there is a tensor product operation that coherently combines flow graphs “in
parallel” and not merely “in series” [6]). While the concept is rather obvious,
the details are technical and we consequently make them explicit. In particular,
although Flow is conceptually rather similar to the categories of n-cobordisms
or tangles, the disjoint union only yields a tensor product in the latter cases:
here, it must be modified to account for flow graphs whose entry and exit edges
are identical or adjacent.

Let s(e+), t(e+), s(e−), t(e−) be four fixed distinct points not contained in the
vertex set of any graph already under consideration, so that e± := (s(e±), t(e±))
9 In particular, loops and reflexive self-edges are not included here, though the former

may be accommodated without substantial changes.

The Multiresolution Analysis of Flow Graphs 333

may be regarded as two separated abstract edges. If G is a flow graph with entry
edge es and (possibly adjacent or even identical) exit edge et, define a Dgph-
morphism (i.e., the image may not be a flow graph) φG by the vertex/loop map

φG(j) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

s(e+) if j = s(es)
t(e+) if j = t(es)

or t(es) = s(et) and j = t(et)
s(e−) if t(es) �= s(et) and es �= et and j = s(et)
t(e−) if t(es) �= s(et) and es �= et and j = t(et)
j otherwise

(2)

along with the extension to edges determined by not sending edges to (diago-
nal/reflexive edges or) loops.

Intuitively, if the entry and exit edges of G are neither identical nor adjacent,
then φG maps them respectively to e+ and e−: otherwise, φG maps the entry
edge to e+ and everything else (vertices and edges to the vertex; loops to a loop)
to t(e+). The rationale for the latter case is that it is the only really generic
and consistent way for us to complete the definition of such a nontrivial Dgph-
morphism from a flow graph, and in fact this sort of definitional guidance is
perhaps the primary rationale for invoking category theory ab initio.

The following lemma is straightforward.

Lemma 11. With j, k ∈ V (G) with j �= k and j′, k′ ∈ V (G′) with j′ �= k′,
φG(j) = φG(k) ⇒ {j, k} = {t(es), t(et)}; similarly, φG′(j′) = φG′(k′) ⇒
{j′, k′} = {t(e′

s), t(e
′
t)}. ��

If V (G) ∩ V (G′) = ∅, we define

G ⊗ G′ := G � G′/ ∼, (3)

where the equivalence relation on the disjoint (graph) union is determined, for
j, k ∈ V (G) with j �= k and j′, k′ ∈ V (G′) with j′ �= k′, by

(j, 0) ∼ (j, 0) ∀j;
(j′, 1) ∼ (j′, 1) ∀j′;
(j, 0) ∼ (k, 0) ⇐⇒ (φG(j) = φG(k)) ∧ �;

(j′, 1) ∼ (k′, 1) ⇐⇒ (φG′(j′) = φG′(k′)) ∧ �′;
(j, 0) ∼ (j′, 1) ⇐⇒ (φG(j) = φG′(j′)) ∧ �[j] ∧ �[j′]. (4)

where we use the shorthands � := (t(e′
s) �= s(e′

t)) ∧ (e′
s �= e′

t); �′ := (t(es) �=
s(et)) ∧ (es �= et); �[j] := (t(es) = s(et)) ∧ (j ∈ {t(es), t(et)}) ⇒ �, and �[j′] :=
(t(e′

s) = s(e′
t)) ∧ (j′ ∈ {t(e′

s), t(e
′
t)}) ⇒ �′, with an obvious extension to edges.

(Here e′
s and e′

t denote the entry and exit edges of G′.)

Lemma 12. (4) indeed defines an equivalence relation.

334 S. Huntsman

The following lemma is straightforward.

Lemma 13. If G and G′ are flow graphs, then so is G ⊗ G′. Furthermore, if e
denotes the flow graph with a single edge, then G ⊗ e ∼= e ⊗ G ∼= G. ��

Thus in particular we have inclusions iG : φG(G) ↪→ G ⊗ G′ and i′G′ :
φG′(G′) ↪→ G ⊗ G′ given respectively by iG(φG(j)) = [(j, 0)] and i′G′(φG′(j′)) =
[(j′, 1)], where as per usual practice [·] indicates an equivalence class under ∼.
G ⊗ G′ is a flow graph formed by identifying the entry edges of G and G′, and
identifying the respective exit edges if this does not affect the interiors of the
factors, and otherwise collapsing the smaller factor in a way that sufficiently
extends the identification of entry edges.

Meanwhile, for f ∈ Flow(G,Gf) and f ′ ∈ Flow(G′, G′
f ′), we define f ⊗f ′ ∈

Flow(G ⊗ G′, Gf ⊗ G′
f ′) as follows (see also Fig. 7):

(f ⊗ f ′)(k) :=

{
[(f(j), 0)] if k = [(j, 0)]
[(f ′(j′), 1)] if k = [(j′, 1)]

(5)

along with the implied extension to edges.

G φG(G) G ⊗ G′ φG′(G′) G′

Gf φGf (Gf) Gf ⊗ G′
f ′ φG′

f′ (G
′
f ′) G′

f ′

φG iG i′G′ φG′

f f ⊗ f ′ f ′

φGf iGf
i′G′

f′ φG′
f′

Fig. 7. The tensor product of morphisms in Flow.

Lemma 14. (5) is well-defined.

Theorem 4. Flow is a monoidal category with tensor product ⊗ given by (3)
and (5), and with unit object the flow graph e consisting of a single edge.

Corollary 2. (Flow,⊗) is a symmetric monoidal category. ��

6.3 Remarks

The series and parallel tensor operations described above are very similar in
spirit to the composition operations encountered in the study of so-called series-
parallel graphs [2,10] (cf. [9]). While the category-theoretical analysis of series
and parallel tensor operations in the context of something like a system or wiring
diagram has a very long history [1], a precise treatment appropriate to our
development does not appear to be present in the literature.

The Multiresolution Analysis of Flow Graphs 335

7 Two-Terminal Graphs

Many of the considerations of the present paper have obvious analogues in the
case of two-terminal graphs (TTGs). In particular, [27,29] describes a multires-
olution decomposition of TTGs (cf. [11]) that is a more granular version of the
PST. This refined process structure tree reduces via a straightforward graph
transformation (similar to that in Sect. B) to constructing the SPQR tree [23].

Unfortunately, computing SPQR trees is a notoriously intricate exercise:
indeed, a correct linear time algorithm was not actually implemented until 2000
[13], though an incorrect version of the same algorithm was first described in
1973 [14]. Today there is still not a completely explicit description of the correct
linear time algorithm in the literature: for such an account it is necessary to
refer to one of the two known publically available implementations in the C++
OGDF10 and the Java jBPT11 frameworks.12,13

While the computation and properties of the fundamental decomposition for
TTGs are more involved than the PST, some analogues of the constructions
detailed in this paper are simpler since TTGs are defined to omit loops. On the
other hand, one minor complication relative to flow graphs that informs notions
of coarsening and inclusion operads for TTGs is that some TTGs can have
their sources and targets swapped. A more significant (and perhaps surprising)
complication is that it is not clear how to define a canonical parallel tensor
operation for TTGs: the principal difficulty is the unit object. Lacking such
an operation would be a significant shortcoming relative to the framework for
flow graphs, as parallel tensoring in Flow corresponds to introducing an if/else
statement in control flow.

8 Conclusion

Besides applications to understanding and manipulating programs mentioned
in Sect. 1, our particular notion of a flow graph naturally yields an interesting
category that readily admits explicit representations and manipulations in (and
of!) software. While some of the constructions involved are somewhat delicate
and inelegant (for example, much of Sect. 6.2), this is due to properly accounting
for degenerate cases that are of little practical concern but that nevertheless
constrain practical and principled techniques for representing, reasoning about,
and composing program artifacts.

Put another way, requiring that flow graphs exhibit category-theoretical
desiderata places strong but satisfiable restrictions on them that can usefully
inform the architecture of program analysis platforms, program synthesizers,

10 http://www.ogdf.net/.
11 https://code.google.com/archive/p/jbpt/.
12 An alternative algorithm is in [28], but we are not aware of an implementation.
13 For acyclic TTGs it is not hard to see that the analogue of SESE regions are vertex

pairs (j, k) s.t. DjkD†
jk − δjk = 1, but the cyclic case is much harder.

http://www.ogdf.net/
https://code.google.com/archive/p/jbpt/

336 S. Huntsman

compilers, etc. More generally, category theory allows us to address corner cases
in the construction and manipulation of data structures whose resolution is not
obvious.

Acknowledgements. We thank Brendan Fong, Artem Polyvyanyy, and David Spivak
for helpful comments.

A Proofs

Proof (Lemma 4). The only thing to show is that e3 pdom e2. It must be the case
that either e2 pdom e3 or e3 pdom e2, so assume the former. Since e2 dom e3

also, we must have that any source-target path traversing e3 contains a cycle
of the form (e2, . . . , e3, . . . , e2) by Lemma 2; deleting all cycles from this path
yields a source-target path traversing e2 but not e3. Reversing this path yields
a contradiction to the assumption that e2 pdom e3. ��
Proof (Theorem 1). [Although our definition of the interior of a SESE differs in
a slight but critical way from from [15], the proof is a mostly straightforward
adaptation of the original attempt. That said, we also fix a minor gap of the
original attempt for case (ii).]

Let (e1, e2) and (e′
1, e

′
2) be distinct canonical SESE regions whose interiors are

not disjoint, and let v be in their intersection. Since e1 dom v and e′
1 dom v, it

must be that either e1 dom e′
1 or e′

1 dom e1: assume the former w.l.o.g. Similarly,
since e2 pdom v and e′

2 pdom v, either e2 pdom e′
2 or e′

2 pdom e2: in the former
case, (e′

1, e
′
2) ⊂ (e1, e2) and we are done, so assume the latter case. We now

have three cases to consider: (i) e2 = e′
1; (ii) e2 �= e′

1 and e′
1 dom e2; and (iii)

e2 �= e′
1 and e′

1 does not dominate e2. We shall show that each case leads to a
contradiction.

Case (i). Since in this case e2 = e′
1, we have that e2 dom v and e2 pdom v,

so it must be that any path from the source to the target that traverses v must
contain a cycle of the form (e2, . . . , v, . . . , e2) by Lemma 2. But this means that v
cannot be in the interior of (e1, e2), a contradiction: hence case (i) cannot hold.

Case (ii). Since in this case e′
1 dom e2 and generically e1 dom e′

1, we may
decompose any path γ02 from the source to e2 (using an obvious notation) as
γ02 ≡ γ01γ11′γ1′2. Meanwhile since e2 pdom e1, we may decompose any path
γ1∞ from e1 to the target as γ1∞ ≡ γ12γ2∞. Taken together, these decomposi-
tions imply that we can decompose any path from the source to the target that
traverses e′

1 as γ01γ11′γ1′2γ2∞, so that e2 pdom e′
1 and e′

1 pdom e1.
Moreover, if there is a cycle that traverses e1, it also traverses e2 and vice

versa, so we may write such a cycle as ω12 ≡ γ12γ21, where γ12 ≡ γ11′γ1′2 as
above. Hence such a cycle ω12 must traverse e′

1. Similarly, if there is a cycle that
traverses e′

1, it also traverses e′
2 and vice versa, so we may write such a cycle as

ω1′2′ ≡ γ1′2′γ2′1′ , where γ1′2′ traverses e2 since e′
2 pdom e2. Hence such a cycle

ω1′2′ must traverse e2. It follows that (e′
1, e2) is a SESE region.

Since both (e1, e2) and (e′
1, e

′
2) are canonical SESE regions, we have that

e1 pdom e′
1 and e′

2 dom e2. At the same time, e′
1 pdom e1, so it must be that

The Multiresolution Analysis of Flow Graphs 337

e1 = e′
1. It follows that (e1, e

′
2) is also a SESE region, and therefore also that

e2 dom e′
2, so it must be that e2 = e′

2. This contradicts the hypothesis that
(e1, e2) and (e′

1, e
′
2) are distinct: hence case (ii) cannot hold.

Case (iii). Since in this case e′
1 does not dominate e2, there is a path γ02 from

the source to e2 that avoids e′
1. Suppose that e′

1 does not postdominate e2, i.e.,
suppose that there is a path γ2∞ from e2 to the target that avoids e′

1. Then since
e′
2 pdom e2, γ2∞ must traverse e′

2. But since e′
1 dom e′

2 and the concatenated
path γ ≡ γ02γ2∞ from the source to the target traverses e′

2, it must be that γ2∞
traverses e′

1, contradicting the assumption that e′
1 does not postdominate e2.

Therefore since e′
1 pdom e2 and e2 pdom v, we have that e′

1 pdom v. Moreover,
e′
1 dom v, so any path from the source to the target that traverses v must contain

a cycle of the form (e′
1, . . . , v, . . . , e′

1) by Lemma 2. But this means that v cannot
be in the interior of (e′

1, e
′
2). By contradiction, case (iii) cannot hold. ��

Proof (Lemma 5). Suppose w.l.o.g. that (e0, e∞) is not minimal. Then at least
one of the following is true: (i) there exists a nondegenerate SESE region (e0, e1)
such that e∞ does not dominate e1; (ii) there exists a nondegenerate SESE region
(e−1, e∞) such that e0 does not postdominate e−1. Consider case (i), and assume
w.l.o.g. that (e0, e1) is minimal (otherwise, we have at least one of case (i) or
(ii) again). Then e1 dom e∞, so (e1, e∞) is a nondegenerate SESE region and we
can write (e0, e∞) = (e0, e1) ∪ (e1, e∞). Exactly similar reasoning informs case
(ii), and an induction establishes the lemma. ��
Proof (Theorem 2). Let (e1, e2) be a leaf of the PST. If s(e1) is in the interior
of some other leaf (e′

1, e
′
2) of the PST, then e1 = e′

2. Therefore, Ms(e′
2),s(e

′
1)

= 1
and any other vertices j with Mj,s(e′

1)
= 1 correspond to the remaining elements

of (e′
1, e

′
2)

◦, which are leaves in the digraph GM with adjacency matrix M . On
the other hand, if s(e1) is not in the interior of some other leaf of the PST, then
it is a target in GM . The result follows. ��
Proof (Lemma 12). Since it is obvious from the structure of �[j] and �[j′] that
(j′, 1) ∼ (j, 0) ⇐⇒ (j, 0) ∼ (j′, 1), the only thing to show is transitivity.
A (perhaps unnecessarily) mechanical proof consists of verifying each of the
eight assertions (�1,b1 , b1) ∼ (�2,b2 , b2) ∼ (�3,b3 , b3) ⇒ (�1,b1 , b1) ∼ (�3,b3 , b3) for
(b1, b2, b3) ∈ {0, 1}3 and �1,b1 , �2,b2 , �3,b3 distinct.

First, consider (b1, b2, b3) = (0, 0, 0): we must show in this case that
(φG(�10) = φG(�20) = φG(�30)) ∧ � implies (φG(�10) = φG(�30)) ∧ �, but this
is trivial.

Next, consider (b1, b2, b3) = (0, 0, 1). Here we must show that (φG(�10) =
φG(�20) = φG′(�31))∧�∧�[�20]∧�[�31] implies (φG(�10) = φG′(�31))∧�[�10]∧�[�31].
By Lemma 11, {�10, �20} = {t(es), t(et)}, so t(es) = s(et) and �[�10] is true,
establishing the desired result.

For (b1, b2, b3) = (0, 1, 0), we must show that (φG(�10) = φG′(�21) =
φG(�30)) ∧ �[�10] ∧ �[�21] ∧ �[�30] implies (φG(�10) = φG(�30)) ∧ �. By Lemma 11,
{�10, �30} = {t(es), t(et)}, so t(es) = s(et) and �10, �30 ∈ {t(es), t(et)}. Since in
the present case both �[�10] and �[�30] are true by assumption and we have just
shown their hypotheses true, their mutual conclusion � is also true here. This

338 S. Huntsman

yields the desired implication. (NB. Although �[�21] is true in this case, neither
its hypothesis nor its conclusion are.)

By symmetry, the last case we need to consider is (b1, b2, b3) = (0, 1, 1): we
need to show here that (φG(�10) = φG′(�21) = φG′(�31))∧�[�10]∧�[�21]∧�′ implies
(φG(�10) = φG′(�31)) ∧ �[�10] ∧ �[�31]. By Lemma 11, {�21, �31} = {t(e′

s), t(e
′
t)},

so t(e′
s) = s(e′

t) and �[�31] is true, so we are done. ��
Proof (Lemma 14). We need to show that whenever [(j, 0)] = [(j′, 1)] we also
have [(f(j), 0)] = [(f ′(j′), 1)]. An equivalent assertion is that whenever φG(j) =
φG′(j′), we also have φGf

(f(j)) = φG′
f′ (f

′(j′)). There are precisely four cases
in which the hypothesis can hold, corresponding to the first four cases of (2)
(note that the second case has four subcases). In the first case, both [(f(j), 0)]
and [(f ′(j′), 1)] must be the source of the entry edge in Gf ⊗ G′

f ′ since f and
f ′ are morphisms in Flow; similarly, the other cases respectively give that both
[(f(j), 0)] and [(f ′(j′), 1)] must be the target of the entry edge, the source of the
exit edge, and the target of the exit edge. ��
Proof (Theorem 4). We must establish two things: that ⊗ is a bifunctor, and
that it satisfies the necessary coherence conditions.

To see that ⊗ is a bifunctor, first note that (idG ⊗ idG′)([(j, 0)]) = [(j, 0)] =
idG⊗G′([(j, 0)]) by (5), and (idG ⊗idG′)([(j′, 1)]) = [(j′, 1)] = idG⊗G′([(j′, 1)]), so
that idG ⊗ idG′ = idG⊗G′ . Now we must show that (g ⊗ g′) ◦ (f ⊗ f ′) = (g ◦ f) ⊗
(g′ ◦f ′). But this is easily seen since, again by (5), we have (g ⊗g′)([(f(j), 0)]) =
[(g(f(j)), 0)] = ((g ◦ f) ⊗ (g′ ◦ f ′))([(j, 0)]) and similarly (g ⊗ g′)([(f ′(j′), 1)]) =
[(g′(f ′(j′)), 1)] = ((g ◦ f) ⊗ (g′ ◦ f ′))([(j′, 1)]). Since the action on edges follows
trivially, ⊗ is indeed a bifunctor.

To see that the putative tensor product is coherent, we first note that the
triangle equation turns out to be trivial, so we need only verify the pentagon
equation, which we recall in Fig. 8. The associator αG,G′,G′′ : (G ⊗ G′) ⊗ G′′ →
G ⊗ (G′ ⊗ G′′) is given by

αG,G′,G′′ :

⎧
⎪⎨

⎪⎩

[([(j, 0)], 0)] �→ [(j, 0)]
[([(j′, 1)], 0)] �→ [([(j′, 0)], 1)]
[(j′′, 1)] �→ [([(j′′, 1)], 1)]

(6)

along with the implied extension to edges. The explicit form of (6) makes it clear
that the associator is bijective, and hence an isomorphism.

For notational convenience, let W,X, Y, Z denote flow graphs with
(w, x, y, z) ∈ V (W) × V (X) × V (Y) × V (Z). The three steps on the top of
the pentagon are

[([([(w, 0)], 0)], 0)]
[([([(x, 1)], 0)], 0)]

[([(y, 1)], 0)]
[(z, 1)]

�→
[([(w, 0)], 0)]

[([([(x, 0)], 1)], 0)]
[([([(y, 1)], 1)], 0)]

[(z, 1)]

�→
[(w, 0)]

[([([(x, 0)], 0)], 1)]
[([([(y, 1)], 0)], 1)]

[([(z, 1)], 1)]

�→
[(w, 0)]

[([(x, 0)], 1)]
[([([(y, 0)], 1)], 1)]
[([([(z, 1)], 1)], 1)]

.

(7)

The Multiresolution Analysis of Flow Graphs 339

((W ⊗ X) ⊗ Y) ⊗ Z (W ⊗ (X ⊗ Y)) ⊗ Z

(W ⊗ X) ⊗ (Y ⊗ Z)

W ⊗ ((X ⊗ Y) ⊗ Z)

W ⊗ (X ⊗ (Y ⊗ Z))

αW,X,Y ⊗ idZ

αW⊗X,Y,Z

αW,X⊗Y,Z

αW,X,Y ⊗Z

idW ⊗ αX,Y,Z

Fig. 8. The pentagon equation.

while the two steps on the bottom of the pentagon are

[([([(w, 0)], 0)], 0)]
[([([(x, 1)], 0)], 0)]

[([(y, 1)], 0)]
[(z, 1)]

�→
[([(w, 0)], 0)]
[([(x, 1)], 0)]
[([(y, 0)], 1)]
[([(z, 1)], 1)]

�→
[(w, 0)]

[([(x, 0)], 1)]
[([([(y, 0)], 1)], 1)]
[([([(z, 1)], 1)], 1)]

. (8)

The pentagon equation follows from the equality of the rightmost parts of (7)
and (8), as does the theorem. ��

B Stretching Flow Graphs

By inserting new vertices and edges, we can transform many “approximate” flow
graphs into bona fide sub-flow graphs that can then be captured by the PST.

Lemma 15 (“Sketch of stretch”). Let G be a flow graph. For each vertex
v ∈ G◦, perform transformations indicated by the table below. The cumulative
result of these transformations is well-defined; repeating them has no effect. ��

d+(v) > 1? ⊥ ⊥ ⊥ ⊥ � � � �
d−(v) > 1? ⊥ ⊥ � � ⊥ ⊥ � �
d0(v) = 1? ⊥ � ⊥ � ⊥ � ⊥ �
old motif
new motif same same same same

Call the result of the process sketched in Lemma 15 the stretching of G.
This construction is similar to the “normalization” of two-terminal graphs (see
Sect. 7).

Corollary 3. There is a bijective correspondence between induced subgraphs
with single sources and targets and SESE regions in a stretching. In particu-
lar, any loop corresponds to a minimal SESE region in a stretching. ��

By considering the complete bipartite graph K3,3, it is easy to show the
following

Lemma 16. There exists a planar flow graph with a nonplanar stretching. ��

340 S. Huntsman

References

1. Bainbridge, E.S.: Feedback and generalized logic. Inf. Control 31, 75 (1976)
2. Bang-Jensen, J., Gutin, G.: Digraphs: Theory, Algorithms and Applications.

Springer, Heidelberg (2009). https://doi.org/10.1007/978-1-84800-998-1
3. Boissinot, B., et al.: SSI properties revisited. ACM TECS 11S, 21 (2012)
4. Brown, R., et al.: Graphs of morphisms of graphs. Electron. J. Comb. 15, A1

(2008)
5. Brumley, D., Jager, I., Avgerinos, T., Schwartz, E.J.: BAP: a binary analysis plat-

form. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp.
463–469. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-
1 37

6. Coecke, B. (ed.): New Structures for Physics. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-12821-9

7. Cooper, K.D., Torczon, L.: Engineering a Compiler, 2nd edn. Morgan Kaufmann,
Burlington (2012)

8. Delaney, C., Marcolli, M.: Dyson-Schwinger equations in the theory of compu-
tation. In: Álvarez-Cónsul, L., Burgos-Gil, J.I., Ebrahimi-Fard, K. (eds.) AMS
Feynman Amplitudes, Periods, and Motives (2015)

9. Dougherty, D.J., Gutiérrez, C.: Normal forms for binary relations. Theor. Comput.
Sci. 360, 228 (2006)

10. Duffin, R.J.: Topology of series-parallel networks. J. Math. Anal. Appl. 10, 303
(1965)

11. Fugishige, S.: Canonical decompositions of symmetric submodular systems. Dis-
cret. Appl. Math. 5, 175 (1983)

12. Gulwani, S.: Dimensions in program synthesis. In: PPDP (2010)
13. Gutwenger, C., Mutzel, P.: A linear time implementation of SPQR-trees. In: Marks,

J. (ed.) GD 2000. LNCS, vol. 1984, pp. 77–90. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-44541-2 8

14. Hopcroft, J., Tarjan, R.: Dividing a graph into triconnected components. SIAM J.
Comput. 2, 135 (1973)

15. Johnson, R., Pearson, D., Pingali, K.: The program structure tree: computing
control regions in linear time. In: PLDI (1994)

16. Kelly, G.M.: Basic Concepts of Enriched Category Theory. Cambridge University
Press, Cambridge (1982)

17. Leinster, T.: Higher Operads, Higher Categories. Cambridge University Press,
Cambridge (2004)

18. MacLane, S.: Categories for the Working Mathematician, 2nd edn. Springer, Hei-
delberg (2010)

19. Manin, Yu.I.: Renormalization and computation I: motivation and background.
arXiv:0904.4921 (2009)

20. Markl, M., Shnider, S., Stasheff, J.: Operads in Algebra, Topology and Physics.
AMS (2002)

21. Muchnick, S.S.: Advanced Compiler Design and Implementation. Morgan Kauf-
mann, Burlington (1997)

22. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer,
Heidelberg (2010)

23. Polyvyanyy, A., Vanhatalo, J., Völzer, H.: Simplified computation and general-
ization of the refined process structure tree. In: Bravetti, M., Bultan, T. (eds.)
WS-FM 2010. LNCS, vol. 6551, pp. 25–41. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-19589-1 2

https://doi.org/10.1007/978-1-84800-998-1
https://doi.org/10.1007/978-3-642-22110-1_37
https://doi.org/10.1007/978-3-642-22110-1_37
https://doi.org/10.1007/978-3-642-12821-9
https://doi.org/10.1007/978-3-642-12821-9
https://doi.org/10.1007/3-540-44541-2_8
https://doi.org/10.1007/3-540-44541-2_8
http://arxiv.org/abs/0904.4921
https://doi.org/10.1007/978-3-642-19589-1_2
https://doi.org/10.1007/978-3-642-19589-1_2

The Multiresolution Analysis of Flow Graphs 341

24. Rupel, D., Spivak, D.I.: The operad of temporal wiring diagrams: formalizing a
graphical language for discrete-time processes. arXiv:1307.6894 (2013)

25. Spivak, D.I.: The operad of wiring diagrams: formalizing a graphical language for
databases, recursion, and plug-and-play circuits. arXiv:1305.0297 (2013)

26. Stasheff, J.: What is an operad? Not. AMS 51, 630 (2004)
27. Tarjan, R.E., Valdes, J.: Prime subprogram parsing of a program. In: POPL (1980)
28. Tsin, Y.H.: Decomposing a multigraph into split components. In: CATS (2012)
29. Vanhatalo, J., Völzer, H., Koehler, J.: The refined process structure tree. Data

Knowl. Eng. 68, 793 (2009)
30. Zhang, F., D’Hollander, E.H.: Using hammock graphs to structure programs. IEEE

Trans. Soft. Eng. 30, 231 (2004)

http://arxiv.org/abs/1307.6894
http://arxiv.org/abs/1305.0297

An Exponential Lower Bound
for Proofs in Focused Calculi

Raheleh Jalali1,2(B)

1 Institute of Mathematics of the Czech Academy of Sciences,
Prague, Czech Republic
jalali@math.cas.cz

2 Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic

Abstract. In [7], Iemhoff introduced a special form of sequent-style
rules and axioms, which she called focused, and studied the relation-
ship between the focused proof systems, the systems only consisting of
this kind of rules and axioms, and the uniform interpolation of the logic
that the system captures. Subsequently, as a negative consequence of
this relationship, she excludes almost all super-intuitionistic logics from
having these focused proof systems. In this paper, we will provide a com-
plexity theoretic analogue of her negative result to show that even in the
cases that these systems exist, their proof-length would computationally
explode. More precisely, we will first introduce two natural subclasses
of focused rules, called PPF and MPF rules. Then, we will introduce
some CPC-valid (IPC-valid) sequents with polynomially short tree-like
proofs in the usual Hilbert-style proof system for classical logic, or equiv-
alently LK + Cut, that have exponentially long proofs in the systems
only consisting of PPF (MPF) rules.

Keywords: Focused calculi · Propositional proof complexity ·
Feasible interpolation · Super-intuitionistic logics

1 Introduction

In the field of proof theory, proof systems, as the main players of the game,
deserve to be considered as the objects of the study themselves. Regarding
this matter, there are various problems to attack. One of them is investigating
whether some special kinds of proof systems exist and if they do, what prop-
erties they or their corresponding logics posses, including the Craig or uniform
interpolation of the corresponding logic, or the complexity of proofs in the given
proof system.

These problems have been studied by many researchers (for instance [3,6,7]).
In [6] and [7], Iemhoff inspected the relationship between a specific kind of proof
system and the uniform interpolation property of the logic that the proof sys-
tem captures. She introduced the so-called focused rules and axioms, and studied

Supported by the ERC Advanced Grant 339691 (FEALORA) and by the grant 19-
05497S of GA ČR.

c© Springer-Verlag GmbH Germany, part of Springer Nature 2019
R. Iemhoff et al. (Eds.): WoLLIC 2019, LNCS 11541, pp. 342–355, 2019.
https://doi.org/10.1007/978-3-662-59533-6_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-59533-6_21&domain=pdf
https://doi.org/10.1007/978-3-662-59533-6_21

An Exponential Lower Bound for Proofs in Focused Calculi 343

the sequent calculi only consisting of these rules and axioms, which she named
focused calculi. Roughly speaking, a focused axiom is just a modest generaliza-
tion of the axioms of the classical sequent-style proof system, LK. A focused
rule is a rule where only one side of its sequents, either left or right, is active in
all the premises and in the conclusion and also all the variables in its premises
occur in its conclusion. For instance, the usual conjunction and disjunction rules
in LK, are focused, while the cut rule is not. After her formalization of the
focused rules and focused axioms, she provided a method to prove that a super-
intuitionistic logic enjoys the uniform interpolation property if it has a termi-
nating focused proof system. Since there are only seven super-intuitionistic log-
ics with the uniform interpolation property, she finally excluded almost all the
super-intuitionistic logics (except at most seven of them) from having a focused
proof system.

Inspired by Iemhoff’s work, in [1] we proposed a generalization of focused
rules, called semi-analytic rules, to cover a wider range of proof systems for a
wider range of logics. Stated informally, in a semi-analytic rule, the side condition
is relaxed and the formulas can appear freely in any side of the sequents in the
premises and the conclusion. Iemhoff’s results in [6] and [7] are then strength-
ened to also hold for these rules. It implies that many substructural logics and
almost all super-intuitionistic logics (except at most seven of them) do not have
a sequent style proof system only consisting of semi-analytic rules and focused
axioms.

This paper is a sequel of [1] in its extension of the negative results of [6] and
[7] to the remaining cases in which the interpolation property exists. For this
purpose, we change our focus from the existence of a proof system of some kind
to its efficiency to show an exponential lower bound for the focused proof systems
of a certain sort. Beside the clear impacts in the study of focused rules, these
lower bounds can also be considered as the basic steps in a universal approach to
the proof complexity of the propositional proof systems. In such an approach, we
are interested in investigating the proof lengths of a given sequence of tautologies
in a generically given proof system with a certain form of axioms and rules. The
method we use here is the well-known technique in proof complexity called the
feasible interpolation. It reduces a problem in proof complexity to a problem
in circuit complexity by extracting a Boolean circuit for an interpolant from
a given proof for an implication, where the size of the circuit is polynomially
bounded by the size of the proof. The feasible interpolation property for various
classical calculi has been studied by Kraj́ıček [9], Pudlák [10], and Pudlák and
Sgall [13]. For the intuitionistic calculus, the feasible interpolation theorem was
proved by Pudlák in [12] based on the feasible witnessing of the disjunction
property developed in [14]. Buss and Pudlák in [15] and Buss and Mints in [14]
studied the connection between intuitionistic propositional proof lengths and
Boolean circuits. In [5], Hrubeš showed the connection is tighter in the sense
that the circuit in question in [15] and [14] is monotone. Here we will use the
technique of [5] as we will explain in a moment. For more information on feasible
interpolation and its role in proof complexity, the reader is refered to [11].

344 R. Jalali

In this paper, we will prove two lower bounds, one for the classical logic and
the other for super-intuitionistic logics. For the first one, we will define a natural
subclass of the focused rules, which we will call polarity preserving focused, PPF,
rules. Then, we show that there are CPC-tautologies with exponential proof
lengths in any proof system only consisting of PPF rules and focused axioms,
which we call PPF calculi, while they have polynomial proof lengths in LK.
This shows an exponential speed-up of the Frege-style proof system for classical
logic with respect to any PPF calculus. To prove the similar exponential lower
bound for intuitionistically valid formulas, we first define monotonicity preserv-
ing focused, MPF, rules and subsequently MPF calculi. Then, we will use the
mentioned lower bound technique developed by Hrubeš in [4] and [5] to obtain an
exponential lower bound for the lengths of proofs of particular IPC-tautologies
in MPF calculi, while they have polynomial length proofs in LK.

2 Preliminaries

In this section, we will present some definitions and notions that will be needed
in the rest of the paper.

Note that any finite object O that we use here, such as a formula or a proof,
can be represented by a fixed suitable binary string and by |O| we mean the
length of the string representing the object.

In this paper, we work with the usual propositional language {∧,∨,¬,→,
⊥,�}. By IPC and CPC we mean intuitionistic and classical propositional
logics, respectively. By meta-language, we mean the language in which we define
the sequent calculi. A meta-formula is defined inductively; an atom and a formula
symbol are meta-formulas and we can construct new meta formulas using the
existing ones and the connectives of the language. A meta-multiset is a set of
meta-formulas and meta-multiset variables. By V (A), we mean the atoms and
meta-formula variables of the meta-formula A.

By a sequent Γ ⇒ Δ, we mean an expression where Γ and Δ are multisets
and it is interpreted as

∧
Γ → ∨

Δ. A meta-sequent is essentially a sequent
defined by meta-multisets. A rule is an expression of the form:

T1, · · · , Tn

T

where Ti’s and T are meta-sequents. A sequent calculus is a set of rules.
By monotone LK, mLK, we mean the sequent calculus consisting of the

axioms of LK, the structural rules (exchange, weakening, contraction), and its
usual conjunction and disjunction rules.

A calculus G is sound for logic L, if G � Γ ⇒ Δ implies L � ∧
Γ → ∨

Δ. It
is called complete if L � ∧

Γ → ∨
Δ implies G � Γ ⇒ Δ and feasibly complete

if the length of the tree-like proof is polynomially bounded by the sequent, i.e.,
there exists a tree-like proof π of Γ ⇒ Δ in G such that |π| ≤ |Γ ⇒ Δ|O(1). We
say that logic M is an extension of logic L, if L � A implies M � A. We say a
calculus H is an extension of a calculus G, if for any rule of G, if all the premises

An Exponential Lower Bound for Proofs in Focused Calculi 345

are provable in H, then the consequence is also provable in H. Moreover, H is
called an axiomatic extension of G, when all the provable sequents of G are
considered as axioms of H, and H can add some rules to them.

A logic L is called sub-classical if CPC extends L. In the same way, a calculus
G is called sub-classical if LK extends G.

A logic L (calculus G) has the Craig interpolation property when for any
formula φ → ψ (sequent Γ ⇒ Δ), if L � φ → ψ (G � Γ ⇒ Δ) then there exists a
formula θ such that V (θ) ⊆ V (φ) ∩ V (ψ) (V (θ) ⊆ V (Γ) ∩ V (Δ)) and L � φ → θ
and L � θ → ψ (G � Γ ⇒ θ and G � θ ⇒ Δ). The calculus G has feasible
interpolation if for any tree-like proof π of Γ ⇒ Δ, there exists an interpolant θ
such that |θ| ≤ |π|O(1).

3 Focused Calculi

In this section we will give the definitions of the focused axioms, rules and calculi,
which are the building blocks of the rest of the paper.

Definition 3.1. A rule is called focused (a left focused rule, L, or a right focused
rule, R) if it has one of the following forms:

〈〈Γi, φ̄ir ⇒ Δi〉mi
r=1〉ni=1

L
Γ1, · · · , Γn, φ ⇒ Δ1, · · · ,Δn

〈〈Γi ⇒ φ̄ir,Δi〉mi
r=1〉ni=1

R
Γ1, · · · , Γn ⇒ φ,Δ1, · · · ,Δn

where Γi’s and Δi’s are meta-multiset variables, φ̄ir is a multi-set of formulas,
and

⋃
i,r V (φir) ⊆ V (φ). By the notation 〈〈·〉r〉i, we mean the sequents first range

over 1 ≤ r ≤ mi and then over 1 ≤ i ≤ n.

Example 3.2. The usual conjunction and disjunction rules in LK are focused.
On the other hand, the implication rules:

Γ ⇒ φ,Δ Σ,ψ ⇒ Λ

Γ,Σ, φ → ψ ⇒ Δ,Λ

Γ, φ ⇒ ψ,Δ

Γ ⇒ φ → ψ,Δ

are not focused, simply because both sides of the sequents are active.

Definition 3.3. A sequent is called a focused axiom if it is of the following form:

(1) Identity axiom: (φ ⇒ φ)
(2) Context-free right axiom: (⇒ ᾱ)
(3) Context-free left axiom: (β̄ ⇒)
(4) Contextual left axiom: (Γ, φ̄ ⇒ Δ)
(5) Contextual right axiom: (Γ ⇒ φ̄,Δ)

where Γ and Δ are meta-multiset variables and in 2–5, the set of the variables
of any two elements of ᾱ, β̄ and φ̄ must be the same.

Example 3.4. It is easy to see that the axioms of LK, (φ ⇒ φ), (Γ ⇒ �,Δ)
and (Γ,⊥ ⇒ Δ) are focused. Here are some more examples which are not in LK:

φ,¬φ ⇒ , ⇒ φ,¬φ

346 R. Jalali

Γ,¬� ⇒ Δ , Γ ⇒ Δ,¬⊥
First let us investigate the power of focused rules and focused axioms. The

natural question to ask is whether it is possible to have a calculus consisting
only of these rules and axioms, that is complete for some given logic. For CPC
the answer is yes, and the following theorem can be considered as a witness of
the power and naturalness of focused axioms and rules.

Theorem 3.5. CPC has a sequent calculus consisting only of focused rules and
focused axioms.

Proof. Consider a sequent calculus containing the usual axioms of CPC and the
following axioms:

Axioms:

φ ⇒ φ φ,¬φ ⇒ ⇒ φ,¬φ

Γ ⇒ ¬⊥,Δ Γ,¬� ⇒ Δ

The usual left and right rules for disjunction and conjunction and the follow-
ing rules for implication:

Γ ⇒ ¬φ, ψ,Δ

Γ ⇒ φ → ψ,Δ

Γ1,¬φ ⇒ Δ1 Γ2, ψ ⇒ Δ2

Γ1, Γ2, φ → ψ ⇒ Δ1,Δ2

And finally, for any combination ¬∨, ¬∧, and ¬¬ we have the corresponding
right and left rules, using De Morgan’s laws. For instance, we have

Γ ⇒ ¬φ,Δ
R¬∧

Γ ⇒ ¬(φ ∧ ψ),Δ

It is easy to check that all the rules of this sequent calculus are focused and the
system is sound and complete for CPC. The proof of the completeness part is
based on the observation that if Γ, Γ ′ ⇒ Δ,Δ′ is provable in the usual calculus
for classical logic, then Γ,¬Δ ⇒ ¬Γ ′,Δ′ is provable in the new calculus. The
proof is an easy application of induction on the length of the usual LK proof of
Γ, Γ ′ ⇒ Δ,Δ′. ��

So far, we have seen some definitions and a sequent calculus consisting only
of focused axioms and rules. Now, it is time to examine how effective such a
characterization can be. For this purpose, from now on we will restrict our inves-
tigations to two natural sub-classes of focused rules, polarity preserving focused,
PPF rules, and monotonicity preserving focused, MPF rules.

Definition 3.6. Let P be a set of meta-formula variables or atomic constants.
A meta-formula ψ is called P-monotone if for any φ ∈ P, all occurrences of φ in ψ
are positive, i.e., φ does not occur in the scope of negations or in the antecedents
of implications. A multiset Γ of meta-formulas is called P-monotone if all of its
elements are P-monotone.

A meta-formula is called monotone if it is constructed by conjunctions and
disjunctions on meta-formula variables, atomic constants and variable-free for-
mulas.

An Exponential Lower Bound for Proofs in Focused Calculi 347

Remark 3.7. Note that since any variable-free formula is classically equivalent
to � or ⊥, then any monotone formula in our sense is classically equivalent to the
usual monotone formulas i.e., the formulas constructed from atomic formulas by
applying conjunctions and disjunctions. Therefore, from now on, in the classical
settings, we always assume that a monotone formula has the mentioned simpler
form.

Definition 3.8. A focused rule is called polarity preserving, PPF, if it preserves
P-monotonicity backwardly for any P, i.e., if the antecedent of the consequence
is P-monotone, then the antecedents of all the premises are also P-monotone.
It is monotonicity preserving, MPF, if it is focused and preserves monotonicity
backwardly, in the same way.

Example 3.9. All analytic focused rules in the language of CPC, the focused
rules in which any formula in the premises is a subformula of a formula in the
consequence, are both PPF and MPF.

3.1 The Classical Case

Let us first see a relationship between focused calculi and the Craig interpolation
property.

Theorem 3.10. Let G be a sequent calculus extending mLK and only con-
sisting of focused rules and focused axioms. Then, G has feasible interpolation
property. Moreover, if the rules are also PPF and Γ is P-monotone, then Γ ⇒ Δ
has a feasible P-monotone interpolant.

Proof. We need to prove that to any provable sequent Γ ⇒ Δ, we can assign a
formula C such that G � Γ ⇒ C and G � C ⇒ Δ and V (C) ⊆ V (Γ) ∩ V (Δ).
Use induction on the length of the proof π of the sequent Γ ⇒ Δ in G. If Γ ⇒ Δ
is a focused axiom, it is easy to see that in different cases of the focused axioms,
the interpolant C is either φ or ⊥ or �. We check the case 4 of the focused
axioms. The rest are similar. In this case, we have to find C such that Γ, φ̄ ⇒ C
and C ⇒ Δ. We claim that C = ⊥ works here. Note that in the focused axioms,
since Γ and Δ are meta-multiset variables, we can substitute anything for them.
Hence, we have Γ, φ̄ ⇒ ⊥, since it is an instance of the axiom 4 when Δ is
substituted by ⊥. And ⊥ ⇒ Δ is an instance of the axiom ⊥ in mLK which is
weaker than the system G by assumption.

For the rules, suppose the last rule used in the proof π is the following left
focused rule:

〈〈Γi, φ̄ir ⇒ Δi〉r〉i
Γ1, · · · , Γn, φ ⇒ Δ1, · · · ,Δn

Then, by induction, there are formulas Cir such that Γi, φ̄ir ⇒ Cir and Cir ⇒
Δi. Using the right and left disjunction rules we have Γi, φ̄ir ⇒ ∨

r Cir and∨
r Cir ⇒ Δi. By the left disjunction rule we have

∨
i

∨
r Cir ⇒ Δ1, · · · ,Δn. And

if we substitute the sequents Γi, φ̄ir ⇒ ∨
r Cir in the original left focused rule

348 R. Jalali

we get Γ1, · · · , Γn, φ ⇒ ∨
r C1r, · · · ,

∨
r Cnr and then using the right disjunction

rule we get Γ1, · · · , Γn, φ ⇒ ∨
i

∨
r Cir.

Note that for any i and r, by induction we have V (Cir) ⊆ V (Γi ∪ {φir}) ∩
V (Δi). Using this and the fact that for focused rules

⋃
ir V (φir) ⊆ V (φ), we can

easily show that V (
∨

i

∨
r Cir) ⊆ V (Γ ∪{φ})∩V (Δ), where Γ = Γ1, · · · , Γn and

Δ = Δ1, · · · ,Δn. Therefore, we have shown that
∨

i

∨
r Cir is the interpolant.

The case for a right focused rule is dual to the previous case.
The proof for the upper bound for the length of the interpolant goes as

follows. We claim that our previously constructed interpolant C has the property
|C| ≤ |π|2 and we will prove it by induction on π.

For the axioms, as we have seen, the interpolant is either φ (in the case that
the sequent is of the form of the first axiom (φ ⇒ φ)) or ⊥ or � (in other cases).
In these cases, we have |C| ≤ |π|.

For the left focused rules, we have shown that C =
∨

i

∨
r Cir. Let NR be the

number of the premises of the rule R, which is the last rule used in the proof. We
have that the number of the formulas which appear in C, i.e. Cir, is equal to NR.
The rest of the symbols appeared in C are connectives, and the number of them
is again equal to NR. Since the sequent Γ ⇒ Δ is the conclusion of a rule in G,
the lengths of the proofs of its premises are less than the length of π and we can
use the induction hypothesis for them. Then |C| ≤ Σi,r|Cir|+NR. By induction
hypothesis we have |Cir| ≤ |πir|2, where πir is the proof of the sequent whose
interpolant is Cir. But since the proof is tree-like, we have Σir|πir| ≤ |π|. It is
easy to see that |C| ≤ Σi,r|πi,r|2 + NR ≤ Σi,r|πi,r|2 + Σi,r|πi,r| ≤ (Σi,r|πi,r|)2 ≤
|π|2, and the claim follows. We have used the fact that NR ≤ Σi,r|πi,r|. The
latter is an easy consequence of the fact that the number of πi,r in total is NR.

Finally, for P-monotonicity note that since Γ is P-monotone and all the rules
are PPF, all the antecedents in the proof must be P-monotone, as well. Therefore,
the interpolants of the axioms are P-monotone. Because, for the axioms, except
for the axiom φ ⇒ φ, the interpolants are variable-free and hence P-monotone.
And for the identity axiom φ ⇒ φ, the interpolant is φ itself which is also P-
monotone. Finally, since the interpolants are constructed by the interpolants of
the axioms via disjunctions and conjunctions, the interpolant for Γ ⇒ Δ is also
P-monotone. ��

The following theorem is our first example of the mentioned ineffectiveness
of the combination of focused axioms and PPF rules. It shows that none of the
combinations of focused axioms and PPF rules can simulate the cut rule in a
feasible way.

Corollary 3.11. There is no calculus G consisting of only focused axioms and
PPF rules, sound and feasibly complete for CPC. More precisely, if G is a
complete calculus for CPC, then there exists a sequence of CPC-valid sequents
φn ⇒ ψn, with polynomially short tree-like proofs in the Hilbert-style system or
equivalently in LK+Cut such that ||φn ⇒ ψn||G, the length of the shortest tree-
like G-proof of φn ⇒ ψn, is exponential in n. Therefore, the PPF rules together
with focused axioms are either incomplete or feasibly incomplete for CPC.

An Exponential Lower Bound for Proofs in Focused Calculi 349

Proof. Assume that G is a calculus for CPC consisting of PPF rules and focused
axioms. In the following, we bring the definitions for clique and coloring formulas
from [8]. Note that we use [n] to denote {1, 2, · · · , n}. Let Cliquekn(p̄, q̄) be the
proposition asserting that q̄ is a clique of size at least k on a graph with vertices
[n]. There are

(
n
2

)
atoms pij where pij = 1 if and only if there is an edge between

nodes {i, j} ∈ (
n
2

)
. There are also k.n atoms qui where their intended meaning

is to describe a mapping from [k] to [n]. Cliquekn(p̄, q̄) is the conjunction of the
following clauses:

• ∨
i∈[n] qui, all u ≤ k,

• ¬qui ∨ ¬quj , all u ∈ [k] and i �= j ∈ [n],
• ¬qui ∨ ¬qvi, all u �= v ∈ [k] and i ∈ [n],
• ¬qui ∨ ¬qvj ∨ pij , all u �= v ∈ [k] and {i, j} ∈ (

n
2

)
.

The proposition Colormn (p̄, r̄) asserts that r̄ is an m-coloring of the same graph
represented by p̄ and also uses n.m atoms ria where i ∈ [n] and a ∈ [m].
Colormn (p̄, r̄) is the conjunction of the following clauses:

• ∨
a∈[m] ria, all i ∈ [n],

• ¬ria ∨ ¬rib, all a �= b ∈ [m] and i ∈ [n],
• ¬ria ∨ ¬rja ∨ ¬pij , all a ∈ [m] and {i, j} ∈ (

n
2

)
.

Note that by the formalization of the Clique formula, every occurrence of p̄ in
Cliquekn(p̄, q̄) is positive (which means it is monotone in p̄). We know that for
m < k, the formula ¬Cliquekn(p̄, q̄) ∨ ¬Colormn (p̄, r̄) is a tautology in classical
logic which implies that

Cliquekn(p̄, q̄) ⇒ ¬Colormn (p̄, r̄)

is CPC-valid.
First observe that by the Craig interpolation theorem for CPC and the fact

that the antecedent is monotone in p̄, there exists a monotone interpolant I(p̄)
such that

Cliquekn(p̄, q̄) ⇒ I(p̄) ⇒ ¬Colormn (p̄, r̄)

which means that if the graph H represented by p̄ has a k-clique then I(p̄) = 1
and if H has an m-coloring then I(p̄) = 0. In other words, if I(p̄) �= 0 then H
does not have an m-coloring and if I(p̄) �= 1 then H does not have a k-clique.
By the result in [2], every such monotone interpolant I must have exponential
length in n for suitable polynomially bounded choices for k and m.

Secondly, define φn(p̄, q̄) = Cliquekn(p̄, q̄) and ψn(p̄, r̄) = ¬Colormn (p̄, r̄). We
will show that this family of sequents, φn(p̄, q̄) ⇒ ψn(p̄, r̄), serve as the CPC-
valid sequents mentioned in the theorem. The idea is simple. First note that the
fact that the sequent

Cliquekn(p̄, q̄) ⇒ ¬Colormn (p̄, r̄)

has a tree-like proof of the size nO(1) in the classical Hilbert-style proof system
or equivalently LK + Cut is a folklore well-known fact in the proof complexity

350 R. Jalali

community. Now pick πn as the shortest tree-like proof of the sequent in G.
Note that the antecedent of our sequent, Cliquekn(p̄, q̄), is p̄-monotone. Hence,
by Theorem 3.10, the interpolant for the sequent φn(p̄, q̄) ⇒ ψn(p̄, r̄) will be p̄-
monotone, as well. And since p̄ are the only common variables and hence the only
variables in the interpolant, the interpolant is monotone. However, G captures
CPC. Therefore, the whole process provides a classical monotone interpolant
for the sequent

Cliquekn(p̄, q̄) ⇒ ¬Colormn (p̄, r̄)

which we will call Cn. By Theorem 3.10, we have |Cn| ≤ |πn|2. However, any
such Cn should be exponentially long in n as we explained before. Therefore,
the shortest proof πn for our sequent is exponentially long.

��

3.2 The Intuitionistic Case

It is also possible to lower down the previous exponential lower bound to the level
of the IPC-valid sequents. For that purpose we need a new form of interpolation
and its preservation theorem.

Definition 3.12. A sequent is called a strongly focused axiom if it has one of
the following forms:

(1) φ ⇒ φ
(2) ⇒ ᾱ
(3) β̄ ⇒
(4) Γ, φ̄ ⇒ Δ
(5) Γ ⇒ φ̄,Δ

where in (2) and (5), ᾱ and φ̄ have no variable and Γ and Δ are meta-multiset
variables.

Example 3.13. For the strongly focused axioms, note that all the axioms of
LK are strongly focused. An example of a focused axiom which is not strongly
focused is (⇒ φ,¬φ). Since otherwise it would have been an instance of either 2
or 5, which is not possible. The reason is that φ can have a variable which must
not appear in the right side of the sequent.

Definition 3.14. Let G and H be two sequent calculi. G has H-monotone
feasible interpolation with the exponent m ≥ 1 if for any k and any sequent
S = (Σ ⇒ Λ1, · · · , Λk) if S is provable in G by a tree-like proof π and for any
1 ≤ j ≤ k, Λj �= ∅, then there exist formulas |Cj | ≤ |π|m for 1 ≤ j ≤ k such that
(Σ ⇒ C1, · · · , Ck) and (Cj ⇒ Λj) are provable in H and V (Cj) ⊆ V (Σ)∩V (Λj),
where V (A) is the set of the atoms of A. Moreover, if Σ is monotone, then Cj is
also monotone for all 1 ≤ j ≤ k. We call Cj ’s, the interpolants of the partition
Λ1, · · · , Λk of the succedent of the sequent S. The system G has H-monotone
feasible interpolation if it has H-monotone feasible interpolation with some expo-
nent m ≥ 1.

An Exponential Lower Bound for Proofs in Focused Calculi 351

Theorem 3.15. Let G and H be two sequent calculi such that G is a set of
strongly focused axioms, H extends mLK and any sequent in G is provable in
H. Then G has H-monotone feasible interpolation with the exponent one.

Proof. We will consider the strongly focused axioms one by one:

(1) In this case the sequent S is of the form (φ ⇒ φ). Therefore, Λ1 = φ. Pick
C1 = φ. It is easy to see that this C1 works and since φ is monotone, C1 is
also monotone.

(2) For the case (⇒ ᾱ), consider Cj to be
∨

Λj . We can easily see that these
Cj ’s work, using the left and right disjunction rules. For the variables, since
V (ᾱ) = ∅, we have V (Cj) ⊆ V (∅) ∩ V (Λj). And for the monotonicity, since
V (Cj) = ∅, then Cj is monotone.

(3) The case (β̄ ⇒) does not happen.
(4) If S is of the form Γ, φ̄ ⇒ Δ define Cj = ⊥. First note that we have

Γ, φ̄ ⇒ ⊥,⊥, · · · ,⊥ where in the right hand-side we have k many ⊥’s. The
reason is that this sequent is an instance of the axiom (4) itself. Moreover,
for every j we have ⊥ ⇒ Λj since it is an instance of the axiom ⊥. And
again V (Cj) = ∅.

(5) If S is of the form (Γ ⇒ φ̄,Δ) define Cj =
∨

(Λj ∩ φ̄). It is easy to see that
this Cj works. Because, Cj ⇒ Λj is an instance of an axiom. We also have
Γ ⇒ C1, · · · , Ck, since in the right hand-side we will have the formula φ̄
(together with some other formulas which we will treat as the context) and
it will become an instance of the same axiom. Note that since V (φ̄) = ∅,
there is nothing to check for the variables. For the monotonicity, note that
V (Cj) = ∅, therefore Cj is monotone.

Note that in all cases and for all 1 ≤ j ≤ k, |Cj | ≤ |π|.
The next theorem shows that MPF rules preserve the monotone feasible

interpolation property. We will use this theorem later in the lower bound result
that we have promised before.

Theorem 3.16. (monotone feasible interpolation) Let G and H be two sequent
calculi such that H extends mLK and axiomatically extends G by MPF rules.
Then if G has H-monotone feasible interpolation property, so does H.

Proof. To prove the theorem, we will prove the following claim:

Claim. Let G and H be two sequent calculi such that H extends mLK and
axiomatically extends G by MPF rules and G has H-monotone feasible inter-
polation with the exponent m. Then for any H-provable sequent Γ ⇒ Δ and
any non-trivial partition of Δ as Λ1, · · · , Λk (non-trivial means that none of the
Λj ’s are empty), there exist the required interpolants Cj as in the Definition 3.14
such that Σj |Cj | ≤ |π|M where M = m + 1.

The proof uses induction on the H-length of π (the number of the rules of H
in the proof π). First we will explain how to construct Cj ’s. Then we will prove
the bound for the given construction.

352 R. Jalali

If the H-length of π is zero, it means that the proof is in G. Hence the claim
is clear by the assumption. There are two cases to consider based on the last
rule of the proof.

◦ If the last rule used in the proof is a right focused one, then it is of the following
form:

〈〈Γi ⇒ φ̄ir,Δi〉r〉i
Γ ⇒ φ,Δ

where Γ = Γ1, · · · , Γn and Δ = Δ1, · · · ,Δn. And, again Λ1, · · · , Λk are given
such that they are non-empty and

⋃k
j=1 Λj = Δ ∪ {φ}. W.l.o.g. suppose φ ∈ Λ1

and we denote Λ1 − {φ} by Λ′
1. Consider the case that all of the Λij = Δi ∩ Λj

and φ̄ir ∪ Λ′
i1 are non-empty where Λ′

i1 = Δi ∩ Λ′
1. By induction hypothesis for

the premises, there exist formulas Dir1, · · · ,Dirk such that for every i, r and
j �= 1

Dir1 ⇒ φ̄ir, Λ
′
i1 , Dirj ⇒ Λij , Γi ⇒ Dir1, · · · ,Dirk

Again, note that if some of Λij ’s or φ̄ir, Λ
′
i1 are empty, we can eliminate them

from the partition to have a non-trivial partition and hence to apply the IH.
Then in these cases, we can simply pick Dirj as ⊥. Now using the rules (R∨),
(L∨), (R∧) and (L∧), we get for every i and j �= 1

∧

r
Dir1 ⇒ φ̄ir, Λ

′
i1 ,

∨

r
Dirj ⇒ Λij , Γi ⇒ ∧

r
Dir1,

∨

r
Dir2, · · · ,

∨

r
Dirk

Note that in the right sequent, we first use (R∨) to get Γi ⇒
Dir1,

∨

r
Dir2, · · · ,

∨

r
Dirk, and then we can use the rule (R∧). Now, we can sub-

stitute the left sequents in the original rule to get
∧

r

Dir1 ⇒ φ,Λ′
1

and using the rule (L∧) we have
∧

i

∧

r

Dir1 ⇒ φ,Λ′
1

We denote
∧

i

∧

r
Dir1 by C1. Using the rule (L∨) for the sequents

∨

r
Dirj ⇒ Λij

we get ∨

i

∨

r

Dirj ⇒ Λj

and we denote
∨

i

∨

r
Dirj by Cj for j �= 1. We can see that first using the rule

(R∨) and after that using the rule (R∧) we get

Γ ⇒
∧

i

∧

r

Dir1,
∨

i

∨

r

Dir2, · · · ,
∨

i

∨

r

Dirk

An Exponential Lower Bound for Proofs in Focused Calculi 353

which is
Γ ⇒ C1, · · · , Ck

It only remains to check the variables. If a variable is in Cj , then it is in one of
Dirj ’s. By induction hypothesis we have V (Dir1) ⊆ V (Γ1)∩V ({{φ̄ir}∪Λ′

i1}) ⊆
V (Γ) ∩ V ({{φ} ∪ Λ′

1}) and V (Dirj) ⊆ V ({Γi}) ∩ V (Λij) ⊆ V (Γ) ∩ V (Λj), since
the rule is occurrence preserving, and this is what we wanted.
◦ The case of the left focused rule is similar to the case for right.

For the monotonicity part, since the extending rules are MPF, it is easy
to prove that if the antecedent of the consequence is monotone, then all the
antecedents, everywhere in the proof up to the sequents in G, are also monotone.
Since G has H-monotone feasible interpolation property, the interpolants in the
base case are monotone. Finally, since the conjunctions and disjunctions do not
change monotonicity, our constructed interpolants are also monotone.

For the upper bound part, use a similar proof to the corresponding part in
Theorem 3.10, this time using the induction on π to show that Σj |Cj | ≤ |π|M .
For the axioms note |Cj | ≤ |π|m for 1 ≤ j ≤ k by the assumption that G has
H-monotone feasible interpolation with the exponent m. Since the partition is
non-trivial k ≤ |S| ≤ |π|, hence Σk

j=1|Cj | ≤ k|π|m ≤ |π|m+1 = |π|M .
For the rules, define X as the set of all (i, r, j)’s where Dirj is ⊥ coming from

handling the empty cases. It is clear that X has at most NR elements, the number
of the premises of the rule R. We have Σj |Cj | ≤ Σ(i,r,j)/∈X |Dirj | + |X| + NR ≤
Σir|πir|M + 2NR ≤ (Σir|πir| + 1)M ≤ |π|M . The second inequality holds using
the induction hypothesis and the third inequality holds because NR ≤ Σir|πir|
and M ≥ 2.

Finally, the theorem is a clear consequence of the Claim. It is enough to apply
the Claim to provide the formulas Cj such that Σj |Cj | ≤ |π|M which implies
|Cj | ≤ |π|M . ��
Lemma 3.17. [5] Let A(p̄, r̄1) and B(q̄, r̄2) be propositional formulas and p̄, q̄,
r̄1 and r̄2 be mutually disjoint. Let p̄ = p1, · · · , pn and q̄ = q1, · · · , qn. Assume
that A is monotone in p̄ or B is monotone in q̄ and A(p̄, r̄1) ∨ B(¬p̄, r̄2) is a
classical tautology. Then

∧n

i=1
(pi ∨ qi) ⇒ ¬¬A(p̄, r̄1),¬¬B(q̄, r̄2)

is IPC -valid.

Proof. For the details, the reader is referred to [5]. ��
Theorem 3.18. Let G and H be two sequent calculi such that H is sub-classical,
extends mLK, axiomatically extends G by MPF rules and G has H-monotone
feasible interpolation property. Then there exists a family of IPC-valid sequents
φn ⇒ ψn with the length of φn ⇒ ψn bounded by a polynomial in n such that
either there exists some n such that H � φn ⇒ ψn or ||φn ⇒ ψn||H , the shortest
tree-like H-proof of φn ⇒ ψn, is exponential in n. Therefore, the MPF rules
together with strongly focused axioms are either incomplete or feasibly incomplete
for IPC.

354 R. Jalali

Proof. The proof is similar and also inspired by the lower bound proof given in
[5]. Similar to the proof of Corollary 3.11, consider the CPC-valid sequent

Cliquekn(p̄, r̄2) ⇒ ¬Colormn (p̄, r̄1)

which is equivalent to

⇒ ¬Cliquekn(p̄, r̄2),¬Colormn (p̄, r̄1)

Then, using the Lemma 3.17, if we rewrite ¬Cliquekn(p̄, r̄2) as B(¬p̄, r̄2) and
¬Colormn (p̄, r̄1) as A(p̄, r̄1), we can easily see that A is monotone in p̄ and
A(p̄, r̄1)∨B(¬p̄, r̄2) is a classical tautology. Hence, we can transfer the CPC-valid
sequent

⇒ ¬Cliquekn(p̄, r̄2),¬Colormn (p̄, r̄1)

to a sequent of the form
∧

i
(pi ∨ qi) ⇒ ¬¬A(p̄, r̄1),¬¬B(q̄, r̄2)

valid in IPC. Now, let

φn(p̄, q̄) ⇒ ψn(p̄, r̄1), θn(q̄, r̄2)

be this sequent. We will show that this family of sequents, φn(p̄, q̄) ⇒
ψn(p̄, r̄1), θn(q̄, r̄2), serve as the IPC-valid sequents mentioned in the theorem.

If for some n we have H � φn ⇒ ψn, θn, then the claim follows. Therefore,
suppose that for every n we have H � φn ⇒ ψn, θn. Let πn be the shortest
tree-like proof of the sequent φn ⇒ ψn, θn in H. By Theorem 3.16, for every n,
there exist monotone formulas Cn(p̄) and Dn(q̄) such that |Cn| ≤ |πn|O(1) and
|Dn| ≤ |πn|O(1) and the followings are provable in H: (φn ⇒ Cn,Dn), (Cn ⇒
ψn), (Dn ⇒ θn). Since H captures a sub-classical logic we have (φn ⇒ Cn,Dn),
(Cn ⇒ ψn), (Dn ⇒ θn) in CPC. Since (φn ⇒ Cn,Dn) is valid in classical
logic, we have Cn(p̄) ∨ Dn(¬p̄) = 1. On the other hand, since An is classically
equivalent to ψn we know that Cn(p̄) = 1 implies A(p̄, r̄1) = 1. Similarly, we
have that Dn(q̄) = 1 implies B(q̄, r̄2) = 1. We Claim that Cn(p̄) interpolates
¬B(¬p̄, r̄2) ⇒ A(p̄, r̄1). One direction is proved. For the other direction, note
that if B(¬p̄, r̄2) = 0 then Dn(¬p̄) = 0 and since Cn(p̄) ∨ Dn(¬p̄) = 1 we have
Cn(p̄) = 1. Hence the monotone formula Cn interpolates ¬B(¬p̄, r̄2) ⇒ A(p̄, r̄1)
or equivalently the sequent

Cliquekn(p̄, r̄2) ⇒ ¬Colormn (p̄, r̄1)

However, in the proof of the Corollary 3.11, we mentioned that any such mono-
tone interpolant must have exponential length. Together with the fact that
|Cn(p̄)| ≤ |πn|O(1), we can conclude that ||φn ⇒ ψn, θn||H is exponential in
n which implies the claim.

Corollary 3.19. There is no calculus consisting only of strongly focused axioms
and MPF rules, sound and feasibly complete for super-intuitionistic logics.

An Exponential Lower Bound for Proofs in Focused Calculi 355

Proof. This is an obvious consequence of Theorems 3.15, 3.16 and 3.18. The only
point that we have to explain is that if a calculus G consisting only of strongly
focused axioms and MPF rules is sound and complete for a super-intuitionistic
logic, then G extends mLK. The reason is that G is complete for a super-
intuitionistic logic and any calculus complete even for IPC extends mLK.

Aknowlegment. We are thankful to Pavel Pudlák and Amir Akbar Tabatabai for the
invaluable discussions that we have had, and their helpful suggestions and comments
on the earlier drafts of this paper. We are also thankful to Rosalie Iemhoff for our
fruitful discussions on the different aspects of what we call universal proof theory.

References

1. Tabatabai, A.A., Jalali, R.: Universal proof theory: semi-analytic rules and inter-
polation. Manuscript (2019)

2. Alon, N., Boppana, R.: The monotone circuit complexity of boolean functions.
Combinatorica 7(1), 1–22 (1987)

3. Ciabattoni, A., Galatos, N., Terui, K.: Algebraic proof theory for substructural
logics: cut-elimination and completions. Ann. Pure Appl. Logic 163(3), 266–290
(2012)

4. Hrubeš, P.: A lower bound for intuitionistic logic. Ann. Pure Appl. Logic 146(1),
72–90 (2007)

5. Hrubeš, P.: On lengths of proofs in non-classical logics. Ann. Pure Appl. Logic
157(2–3), 194–205 (2009)

6. Iemhoff, R.: Uniform interpolation and sequent calculi in modal logic (2016).
https://link.springer.com/article/10.1007/s00153-018-0629-0

7. Iemhoff, R.: Uniform interpolation and the existence of sequent calculi (2017)
8. Kraj́ıček, J.: Proof complexity. In: Encyclopaedia of Mathematics and Its Appli-

cations, vol. 170, pp. 326–327. Cambridge University Press (2019)
9. Kraj́ıček, J.: Interpolation theorems, lower bounds for proof systems, and indepen-

dence results for bounded arithmetic. J. Symbolic Logic 62(2), 457–486 (1997)
10. Pudlák, P.: Lower bounds for resolution and cutting plane proofs and monotone

computations. J. Symbolic Logic 62, 981–998 (1997)
11. Pudlák, P.: The lengths of proofs. In: Buss, S. (ed.) Handbook of Proof Theory,

Studies in Logic and the Foundations of Mathematics, vol. 137, pp. 1–78. Elsevier,
Amsterdam (1998)

12. Pudlák, P.: On the complexity of propositional calculus, sets and proofs. In: Logic
Colloquium 1997, pp. 197–218. Cambridge University Press (1999)

13. Pudlák, P., Sgall, J.: Algebraic models of computation and interpolation for alge-
braic systems. DIMACS Series in Discrete Math. Theor. Comp. Sci. 39, 279–295
(1998)

14. Buss, S., Mints, G.: The complexity of the disjunction and existence properties in
intuitionistic logic. Ann. Pure Appl. Logic 99, 93–104 (1999)

15. Buss, S., Pudlák, P.: On the computational content of intuitionistic propositional
proofs. Ann. Pure Appl. Logic 109, 46–94 (2001)

https://link.springer.com/article/10.1007/s00153-018-0629-0

The Complexity
of Multiplicative-Additive Lambek

Calculus: 25Years Later

Max Kanovich1,4, Stepan Kuznetsov2,4(B), and Andre Scedrov3,4

1 University College London, London, UK
m.kanovich@ucl.ac.uk

2 Steklov Mathematical Institute of the RAS, Moscow, Russia
sk@mi-ras.ru

3 University of Pennsylvania, Philadelphia, USA
scedrov@math.upenn.edu

4 National Research University Higher School of Economics, Moscow, Russia

Abstract. The Lambek calculus was introduced as a mathematical
description of natural languages. The original Lambek calculus is NP-
complete (Pentus), while its product-free fragment with only one impli-
cation is polynomially decidable (Savateev). We consider Lambek cal-
culus with the additional connectives: conjunction and disjunction. It is
known that this system is PSPACE-complete (Kanovich, Kanazawa). We
prove, in contrast with the polynomial-time result for the product-free
Lambek calculus with one implication, that the derivability problem is
still PSPACE-complete even for a very small fragment (\,∧), including
one implication and conjunction only. PSPACE-completeness is also pro-
vided for the (\,∨) fragment, which includes only one implication and
disjunction. Categorial grammars based on the original Lambek calculus
generate exactly the class of context-free languages (Gaifman, Pentus).
The class of languages generated by Lambek grammars extended with
conjunction is known to be closed under intersection (Kanazawa), and
therefore includes all finite intersections of context-free languages and,
moreover, images of such intersections under alphabetic homomorphisms.
We show that the same closure under intersection holds for Lambek
grammars extended with disjunction, even for our small (\,∨) fragment.

Keywords: Lambek calculus · Lambek grammars · Completeness ·
PSPACE-completeness

1 Introduction

Lambek calculus has been invented to analyze natural and artificial languages by
means of categorial grammars [4,17,19,20]. Though the original Lambek calcu-
lus can describe only context-free languages [23], it has been proven to be NP-
complete [24], even if we confine ourselves to the product-free Lambek calculus

c© Springer-Verlag GmbH Germany, part of Springer Nature 2019
R. Iemhoff et al. (Eds.): WoLLIC 2019, LNCS 11541, pp. 356–372, 2019.
https://doi.org/10.1007/978-3-662-59533-6_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-59533-6_22&domain=pdf
https://doi.org/10.1007/978-3-662-59533-6_22

The Complexity of Multiplicative-Additive Lambek Calculus: 25Years Later 357

equipped only with the left implication and the right implication [27]. On the con-
trary, the product-free Lambek calculus, with only one implication, is known to
be decidable in polynomial time [26], see also [15]. It is known [2,3] that already
the fragment with only one implication is sufficient to generate all context-free lan-
guages.

This paper is focused on the complexity issues for Lambek calculus extended
with two additional connectives: additive conjunction and disjunction. This cal-
culus is presented on Table 1 in the form of a sequent calculus. Notice that
antecedents of sequents are linearly ordered sequences of formulae, not sets or
multisets.

Table 1. The Inference rules of Lambek calculus with conjunction and disjunction

I
A � A

L\ Φ � A Σ1, B, Σ2 � C
Σ1, Φ, (A\ B), Σ2 � C

R\ A, Σ � B
Σ � (A\ B) (Σ is not empty)

L/
Φ � A Σ1, B, Σ2 � C

Σ1, (B/A), Φ, Σ2 � C
R/

Σ, A � B
Σ � (B/A) (Σ is not empty)

L· Σ1, A, B, Σ2 � C
Σ1, (A· B), Σ2 � C

R· Σ1 � A Σ2 � B
Σ1, Σ2 � (A· B)

L∨ Σ1, A, Σ2 � C Σ1, B, Σ2 � C
Σ1, (A ∨ B), Σ2 � C

R∨ Σ � A
Σ � (A ∨ B)

Σ � B
Σ � (A ∨ B)

L∧ Σ1, A, Σ2 � C
Σ1, (A ∧ B), Σ2 � C

R∧ Σ � A Σ � B
Σ � (A ∧ B)

Σ1, B, Σ2 C

As shown above on the example of the Lambek calculus without additive
connectives, there are two different ways of measuring complexity for extensions
of the Lambek calculus. The first one is the standard notion of algorithmic com-
plexity of the derivability problem for the calculus in question. For the Lambek
calculus with additive connectives, 25 years ago, Kanovich [10] and Kanazawa [9]
show that its derivability problem is PSPACE-complete. Here we strengthen this
result and prove PSPACE-hardness for the smallest possible fragments, with only
two connectives: L(\,∧), with only one implication and additive conjunction,
and L(\,∨), with one implication and disjunction. The first result is presented
in Sect. 2. The second result is similar, so we give only a sketch of the proof, in
AppendixA. The upper PSPACE bound is known for the whole Lambek calcu-
lus with additive connectives [9,10], [13, Sect. 8] and therefore inherited by its
fragments, L(\,∧) and L(\,∨).

The other complexity measure is the expressive power of categorial grammars
based on a given calculus. A categorial grammar G is a triple 〈Σ, �,H〉, where Σ
is a finite alphabet, � is a finite binary correspondence between letters of Σ and
Lambek formulae (these formulae could also include additive connectives), and
H is a formula. A non-empty word w = a1 . . . an over Σ is accepted by G, if there
exist formulae A1, . . . , An such that ai � Ai (i = 1, . . . , n) and A1, . . . , An � H
is a derivable sequent. The language generated by G is the set of all accepted
words.

358 M. Kanovich et al.

For Lambek grammars extended with conjunction, Kanazawa [8] proves that,
in addition to context-free languages, they can generate finite intersections of
such languages and images of such intersections under alphabetic homomor-
phisms (i.e., homomorphisms which map letters to letters). In Sect. 3 we prove
the dual result, that Lambek grammars enriched with disjunction have the same
property. Namely, we show that L(\,∨), the product-free fragment with only
one implication and disjunction, is already sufficient to generate finite inter-
sections of such languages and images of such intersections under alphabetic
homomorphisms.

2 PSPACE-Hardness of the Fragment L(\,∧)

Within our fragment L(\,∧), we intend to encode quantified Boolean statements
of the form:

∃x1∀x2∃x3∀x4 . . . ∃x2n−1∀x2n (C1 ∨ C2 ∨ · · · ∨ Cm) (1)

Here (C1 ∨ C2 ∨ · · · ∨ Cm) is a DNF over the Boolean variables x1, x2, . . .x2n.

Definition 1. We express validity of (1) in terms of the winning strategy
given by a binary tree of height 2n+1, the nodes of which are labelled as follows.

The root is labelled by “ ∃x1” and has only one outgoing edge the end of which
is labelled by “ ∀x2”. In its turn, this node has two outgoing edges the ends of
which are labelled by the same “ ∃x3”.

By induction, for 1 ≤ k ≤ n, each of the nodes on the level 2k−1 is labelled
by “ ∃x2k−1”, and each of the nodes on the level 2k is labelled by “ ∀x2k”.

At the node “ ∃x2k−1”, the choice move of the proponent is to label the
unique outgoing edge either by t2k−1, meaning x2k−1 be true, or by f2k−1,
meaning x2k−1 be false. Being at the next node, “ ∀x2k”, the opponent
responds by labeling two outgoing edges by t2k and f2k, resp.

Lastly, on the final level 2n+1, each terminal node v is labelled by some C� so
that, collecting the sequence of α1, α2, . . . , α2n−1, α2n that label the respective
edges along the branch leading from the root “ ∃x1” to this leaf v, we get:

C�(α1, α2, . . . , α2n−1, α2n) =
 (2)

We illustrate the challenges we have to answer to with Example 1.

Example 1. We consider the following statement (which is invalid):

∃x1∀x2 (C1 ∨ C2) = ∃x1∀x2 ((x1 ∧ ¬x2) ∨ (¬x1 ∧ x2)) (3)

To provide (2), we express C1 and C2 as the formulas E1 and E2, resp.

E1 = (f2\ (t1\
)) ≡ ((t1 · f2)\
) (4)
E2 = (t2\ (f1\
)) ≡ ((f1 · t2)\
) (5)

The Complexity of Multiplicative-Additive Lambek Calculus: 25Years Later 359

Following [9,10], we intend to express the “choice move” ∃x1 as (t1∧f1), and the
“branching move” ∀x2 as (t2 ∨ f2), resulting in the following encoding sequent:

(t1 ∧ f1), (t2 ∨ f2), (E1 ∧ E2) �
 (6)

Taking (t1 ∧ f1), (t2 ∨ f2) as a sequence, we assume that these formulas should
be executed in the natural order . Starting with (t1 ∧f1), we have to prove either

t1, (t2 ∨ f2), (E1 ∧ E2) �
 (7)

or
f1, (t2 ∨ f2), (E1 ∧ E2) �
 (8)

Since both sequents are not derivable, we might have concluded that (6) was not
derivable and, hence, it was in a proper correlation with the invalid (3).
However, if we first apply (t2 ∨f2), the related sequents turn out to be derivable

(t1 ∧ f1), t2, (E1 ∧ E2) �
 (9)
(t1 ∧ f1), f2, (E1 ∧ E2) �
 (10)

which shows that in fact (6) is derivable and, hence, fails to express the
invalid (3).

The intuitive remedy proposed by [9,10,18] is to force the correct order of
actions by means of “leading” qi. E.g., here we can express the “choice move”
∃x1 and the “branching move” ∀x2 as the following formulas adjusted

(q0\ ((t1 · q1) ∧ (f1 · q1))) (11)
(q1\ ((t2 · q2) ∨ (f2 · q2))) (12)

resulting in the correct non-provable encoding sequent, something like that

q0, (q0\ ((t1 · q1) ∧ (f1 · q1))), (q1\ ((t2 · q2) ∨ (f2 · q2))), (q2\ (E1 ∧ E2)) �

(13)

The challenge of implementing this approach within L(\,∧) consists of two parts:

(a) get rid off the disjunctions, in the absence of the full duality of ∧ and ∨;
(b) get rid off the positive products of the form (A\ (B1 · B2))

2.1 The Relative Negation and Double Negation (Non-commutative)

Definition 2. In our encodings we will use the following abbreviation. We fix
an atomic proposition b, and define ‘relative negation’ Ab by: Ab = (A\ b).

Our relative negation can be seen as a non-commutative analogue of the linear
logic negation [5], which is defined by A⊥ = A −◦ ⊥.

As for the relative “double negation”, the novelty of our approach is that
we are in favour of the “asymmetric” Abb = ((A\ b)\ b), because of its nice
properties proven in Lemma 1.
We use also the following notation for the towers of double negations:

A[0] = A, A[k+1] = (A[k]\ b) (14)

360 M. Kanovich et al.

Remark 1. The “double negation” in the symmetrical form: bAb = (b/(A\b)),
has received recognition as being appropriate and logical within a non-
commutative linear logic framework (see [1]).

E.g., the natural A � bAb is valid, in contrast to our Abb, see Lemma 1(e).
However, the crucial Lemma 1(a) is destroyed with bAb, which is the reason

for our “non-logical” choice of Abb.

For a sequence Γ = A1, A2, .., As, by Γ bb we denote the sequence Abb
1 , Abb

2 , .., Abb
s .

Lemma 1. (a) The following rules are derivable in Lambek calculus, s ≥ 1:

A1, A2, . . . , As � C

Abb
1 , Abb

2 , . . . , Abb
s � Cbb

(15)

(b) Though ∨ and ∧ are not fully dual: (A ∧ B)b �� (Ab ∨ Bb), the following
equivalence fits our purposes:

Ab ∧ Bb � (A ∨ B)b and (A ∨ B)b � Ab ∧ Bb (16)

(c) To simulate branching, we will use the derivable rule:

Γ, A, Δ � C Γ, B, Δ � C

Γ bb, (Ab ∧ Bb)b, Δbb � Cbb
(17)

(d) With Gi = (qi−1\B), the crucial rule of “leading” qi−1 is given by:

Γ, γ, B, Δ � C
Γ, γ, qi−1, Gi, Δ � C

Γ bb, (γ · qi−1)bb, Gbb
i , Δbb � Cbb

(18)

(e) Essential complications are caused by the fact that A � Abb is not valid.

Lemma 2. If c does not occur in A1, . . . , An, B, then the sequent Acc
1 , . . . , Acc

n �
Bcc is equiderivable with A1, . . . , An � B.

Proof. The right-to-left direction is due to Lemma1(i). For the left-to-right direc-
tion, we use the reversibility of R \:

B \ c, (A1 \ c) \ c, . . . , (An \ c) \ c � c.

By induction on k, let us show derivability of

An−k, . . . , An, B \ c, (A1 \ c) \ c, . . . , (An−k−1 \ c) \ c � c.

Induction base (k = 0) is given above. For the induction step, apply Lemma11
below, which yields derivability of

An−k, . . . , An, B \ c, (A1 \ c) \ c, . . . , (An−k−2 \ c) \ c � An−k−1 \ c

and reverse the R \ rule. Finally, we get A1, . . . , An, B \ c � c, and one more
application of Lemma 11 yields the necessary A1, . . . , An � B.

The Complexity of Multiplicative-Additive Lambek Calculus: 25Years Later 361

2.2 Complexity of the fragment L(\,∧)

Remark 2. Because of Lemma 1, for the sake of readability, here we will conceive
of the formula ((A · B)\C) as abbreviation for (B\ (A\C)). In particular, (A ·
B)b is abbreviation for (B\ (A\ b)). The formula (A ∨ B)b is conceived of as
abbreviation for ((A\ b) ∧ (B\ b)).

Theorem 1. The fragment L(\,∧) is PSPACE-hard.

Proof. The direction from winning trees to derivable sequents is provided by
Corollary 1.

By running from the leaves of the winning tree, labelled by some C�, to its
root “ ∃x1”, we have to address the following issues:

(a) With one and the same sequent of polynomial size, deal with the exponential
number of branches and their sequences of α1, α2, . . . , α2n−1, α2n that label
the respective edges along the branch leading from the root to some leaf v.

(b) In particular, verify “polynomially” the corresponding equalities (2).

Remark 3. To guarantee the proper order of the inference rules applied, we use
the “leading” q0, q1, . . . , q2n−1, q2n, and c�,2n, c�,2n−1,. . . , c�,2, c�,1, c�,0. The
latter c�,i is used to keep one and the same C� in the process of verifying (2).

2.3 Verifying the Equality (2)

We start with (b), assuming that the sequence α1, α2, . . . , α2n−1, α2n is fixed.

Definition 3. Let F� denote: (q2n\ c�,2n), and H� denote: (c�,0\ (e0\ e0)).
For 1 ≤ i ≤ 2n, let E�,i denote the formula: (c�,i\ (ti\ c�,i−1)), if the conjunct
C� contains the variable xi; and E�,i denote the formula: (c�,i\ (fi\ c�,i−1)), if
the conjunct C� contains the variable ¬xi; and E�,i denote the formula:
((c�,i\ (ti\ c�,i−1)) ∧ (c�,i\ (fi\ c�,i−1))), if C� contains neither xi, nor ¬xi.
We introduce their “closed” versions:

˜F =
m
∧

�=1

F�, ˜H =
m
∧

�=1

H�, ˜Ei =
m
∧

�=1

E�,i (19)

Lemma 3. In case (2) holds, a sequent of the specific form is derivable:

ebb
0 , αbb

1 , αbb
2 , . . . , αbb

2n−2, α
bb
2n−1, (α2n · q2n)bb, Δbb

n � ebb
0 (20)

where Δn is a sequence of formulas: Δn = ˜F , ˜E2n, ˜E2n−1, . . . , ˜E2, ˜E1, ˜H.

NB: Notice that Δn does not depend on particular α1, α2, . . . , α2n−1, α2n.

362 M. Kanovich et al.

Proof. Since αi−1, αi, c�,i, E�,i,αi
� (αi−1 · c�,i−1), by a simple inverse induc-

tion on i, we can “consume” all of the αi, c�,i with getting the sequents derivable:

e0, α1, α2, . . . , α2n, q2n, F�, E�,2n, E�,2n−1, . . . E�,2, E�,1,H� � e0

and (see the rule L∧)

e0, α1, α2, . . . , α2n−2, α2n−1, α2n, q2n, Δn � e0

resulting in (20) with the help of Lemma 1.

2.4 Simulating the Opponent’s and Proponent’s Moves

Now we are ready to simulate the moves in the play.

Lemma 4. For any sequence α1, α2, . . . , α2n−1, α2n, labeling the branch that
leads from the root to “ ∀x2n”, the opponent move at “ ∀x2n” is to label two out-
going edges by t2n and f2n resp. We simulate the move by the derivable sequent:

e
[6]
0 , α

[6]
1 , α

[6]
2 , . . . , α

[6]
2n−2, (α[4]

2n−1 · q2n−1)[2], G
[2]
2n, Δ[6]

n � e
[6]
0 (21)

where
G2n = (q2n−1\

(

(t2n · q2n)[3] ∧ (f2n · q2n)[3]
)[1]) (22)

Proof. Having got two sequences at hand

α1, α2, . . . , α2n−1, t2n,

and
α1, α2, . . . , α2n−1, f2n,

by Lemma 3 we have

e
[2]
0 , α

[2]
1 , α

[2]
2 , . . . , α

[2]
2n−2, α

[2]
2n−1, (t2n · q2n)[2], Δ[2]

n � e
[2]
0 (23)

and
e
[2]
0 , α

[2]
1 , α

[2]
2 , . . . , α

[2]
2n−2, α

[2]
2n−1, (f2n · q2n)[2], Δ[2]

n � e
[2]
0 (24)

by Lemma 1(c) we produce

e
[4]
0 , α

[4]
1 , α

[4]
2 , . . . , α

[4]
2n−2, α

[4]
2n−1,

(

(t2n · q2n)[3] ∧ (f2n · q2n)[3]
)[1]

, Δ[4]
n � e

[4]
0

and conclude, Lemma 1(d), with the sequent (21) where G2n is given by (22).

Lemma 5. For the shorter sequence α1, α2, . . . , α2n−1, labeling the one-edge
shorter branch that leads from the root to “ ∃x2n−1”, the proponent move at
“ ∃x2n−1” is to label the outgoing edge by α2n−1.
We simulate the move by the derivable sequent:

e
[8]
0 , α

[8]
1 , α

[8]
2 , . . . , α

[8]
2n−3, (α[6]

2n−2 · q2n−2)[2], G
[2]
2n−1, G

[4]
2n, Δ[8]

n � e
[8]
0 (25)

where
G2n−1 = (q2n−2\

(

(t[4]2n−1 · q2n−1)[2] ∧ (f [4]
2n−1 · q2n−1)[2]

)

) (26)

The Complexity of Multiplicative-Additive Lambek Calculus: 25Years Later 363

Proof. Lemma 4 provides

e
[6]
0 , α

[6]
1 , α

[6]
2 , . . . , α

[6]
2n−2, (α[4]

2n−1 · q2n−1)[2], G
[2]
2n, Δ[6]

n � e
[6]
0

and, hence,

e
[6]
0 , α

[6]
1 , α

[6]
2 , . . . , α

[6]
2n−2,

(

(t[4]2n−1· q2n−1)[2]∧(f [4]
2n−1· q2n−1)[2]

)

, G
[2]
2n, Δ[6]

n � e
[6]
0

By Lemma 1(d) we conclude with the desired (25).

Corollary 1. If the statement (1) is valid then the following sequent is derivable
in Lambek:

(e[6n]
0 · q0)[2], G

[2]
1 , G

[4]
2 , . . . , G

[4n−2]
2n−1 , G

[4n]
2n , Δ[6n+2]

n � e
[6n+2]
0 (27)

where

G1 = (q0\
(

(t[6n−2]
1 · q1)[2] ∧ (f [6n−2]

1 · q1)[2]
)

) (28)

G2 = (q1\
(

(t[6n−6]
2 · q2)[3] ∧ (f [6n−6]

2 · q2)[3]
)[1]) (29)

...

G2n−1 = (q2n−2\
(

(t[4]2n−1 · q2n−1)[2] ∧ (f [4]
2n−1 · q2n−1)[2]

)

) (30)

G2n = (q2n−1\
(

(t2n · q2n)[3] ∧ (f2n · q2n)[3]
)[1]) (31)

Proof. By the bottom-up induction following the previous lemmas.

The direction from derivable sequents to winning trees is provided by Lemma 6.

Lemma 6. If the sequent (27) is derivable in Lambek then the statement (1) is
valid.

Proof Sketch. Being derivable in Lambek calculus, the sequent (27) is derivable
in linear logic. Replacing b with ⊥, we get that Abb ≡ A, resulting in that we
can confine ourselves to Horn-like formulas, similar to (11) and (12), with the
leading propositions from Remark 3. In its turn, such a Horn-like derivation can
be transformed into a Horn-like tree program (see [11,12,18]), which in fact
happens to be a winning strategy for the statement (1).

This concludes the proof of Lemma 6 and thereby the proof of Theorem1.
In fact, we have proved a more general result.

Corollary 2. Let L be a calculus that includes L(\,∧), with or without Lambek’s
restriction, and is in turn included in linear logic. Then the fragment of L, which
uses only one implication and conjunction, is PSPACE-hard.

Proof. Given an instance of quantified Boolean formula (1), we take the sequent
(27) and prove that there exists a winning tree if and only if (27) is derivable in
L. Namely, if there is a winning tree, that sequent is derivable in L(\,∧) with
Lambek’s restriction, and thereby in the corresponding fragment of L. On the
other hand, if that sequent is derivable in L, then, repeating proof of Lemma6
for the derivation in linear logic, we conclude that there exists a winning tree.

364 M. Kanovich et al.

We can also modify this technique to establish PSPACE-hardness for the
fragment L(\,∨), which includes only one implication and disjunction.

Theorem 2. The fragment L(\,∨) is PSPACE-hard.

We give a proof sketch in AppendixA.

3 Grammars Based on the Lambek Calculus with
Disjunction

Theorem 3. For any fragment of the Lambek calculus with conjunction and
disjunction, which includes at least one division operation, \, and disjunction,
∨, the class of languages generated by categorial grammars based on this calculus
(in particular, the class of languages generated by L(\,∨)-grammars) is closed
under finite intersections.

This theorem immediately yields the following corollary.

Corollary 3. Grammars based on L(\,∨) can generate arbitrary finite inter-
sections of context-free languages.

Moreover, L(\,∨) also captures images of such intersections under alpha-
betic homomorphisms. A alphabetic homomorphism is a mapping h : Σ+

1 → Σ+
2

of words over one alphabet to words of another one, such that h(Σ1) ⊆ Σ2

and h(uv) = h(u)h(v) for any u, v ∈ Σ+
1 . The class of languages generated

by L(\,∨)-grammars is closed under alphabetic homomorphisms. Indeed, if the
grammar G = 〈Σ1, �,H〉 generates language M , then Gh = 〈Σ2, �h,H〉, where
a �h A iff b � A for some b ∈ h−1(a), generates h(M). This yields the following
stronger corollary.

Corollary 4. Grammars based on L(\,∨) can generate all language of the form
h(M1 ∩ . . . ∩ Mk), where M1, . . . , Mk are context-free and h is a alphabetic
homomorphism.

Notice that this extension of Corollary 3 is non-trivial, since h(M1 ∩ M2) is
not always equal to h(M1) ∩ h(M2). There is an example by Păun [22] of a
language which is not a finite intersection of context-free languages, but can be
obtained from such an intersection by applying a alphabetic homomorphism:
{a2n2 | n ≥ 1} = h({(anbn)n | n ≥ 1}), where h(a) = h(b) = a.

Before proving Theorem3, we establish several technical lemmata. The first
one is a simplified version of Kanazawa’s [9] Lemma 13.

Definition 4. Let the set of variables include two disjoint subsets, Var1 and
Var2. A formula is called a Pi-formula if it includes only variables from Vari

(i = 1, 2).

Lemma 7. Let Γ and Δ sequences consisting of P1-formulae and P2-formulae,
in an arbitrary order. Let B be a P2-formula and C be a P1-formula. Then the
sequent Γ,B,Δ � C is not derivable.

The Complexity of Multiplicative-Additive Lambek Calculus: 25Years Later 365

Proof. Induction on a cut-free derivation. The sequent in question could not
be in axiom, because then B = C, and P1-formulae and P2-formulae do not
intersect.

Now consider the last rule applied in the derivation. If it is a one-premise rule,
i.e., one of L·, R/, R\, L∧, R∨, then its premise also satisfies the conditions of
the lemma, and such a sequent, by induction hypothesis, could not be derivable.
Contradiction. The same happens with L∨ and R∧, where both premises are
not derivable by induction hypothesis. For R·, induction hypothesis yields non-
derivability of the premise into which the B formula goes.

The most tricky cases are L\ and L/. We consider the former; the latter is
dual. Recall that L\ is a rule of the form

Φ � E Σ1, F,Σ2 � C

Σ1, Φ,E \ F,Σ2 � C
L\

Now the question is where comes B. There are three possible cases.

Case 1: B is in Σ1 or Σ2. In this case, the right premise satisfies the condition
of the lemma, and is therefore not derivable by induction hypothesis.
Case 2: B is in Φ. In this case, let us consider E \ F , which is either a P1-
formula or a P2-formula. If E \ F is a P1-formula, then so is E, and the left
premise, Φ � E, satisfies the condition of the lemma and is not derivable by
induction. If E \ F is a P2-formula, then so is F , and now the right premise
Σ1, F,Σ2 � C, satisfies the condition of the lemma, and induction hypothesis
yields its non-derivability.
Case 3: B = E \ F . The right premise satisfies the condition of the lemma (F is
a P2-formula and C is a P1-formula), and is therefore not derivable my induction
hypothesis.

The next 4 lemmas are proved by straightforward induction on derivation.
We put their proofs in AppendixB.

Definition 5. Define the notion of strictly positive occurrence of a subformula
inside a formula:

– A is strictly positive in itself;
– C occurs strictly positively in A \ B if and only if it occurs strictly positively

in B; the same for B / A;
– C occurs strictly positively in A · B if and only if if occurs strictly positively

in A or in B; the same for A ∨ B and A ∧ B.

Lemma 8 (Disjunctive Property). Let F1 and F2 be arbitrary formulae, and
E1, . . . , En be formulae without ∧ in which subformulae of the form A ∨ B do
not occur strictly positively. Then the derivability E1, . . . , En � F1 ∨ F2 implies
the derivability of E1, . . . , En � Fi for i = 1 or 2.

Lemma 9. If F1, . . . , Fn do not include variable b, then F1, . . . , Fn � b is not
derivable.

366 M. Kanovich et al.

Lemma 10. If F1, . . . , F�, E1 \ b, . . . , Ek \ b, b � b is derivable and F1, . . . , F� do
not include b, then k = 	 = 0.

Lemma 11. If F1, . . . , F�, E1 \ b, . . . , Ek \ b → b is derivable and F1, . . . , F� do
not include b, then F1, . . . , F�, E1 \ b, . . . , Ek−1 \ b → Ek is derivable.

The following lemma is the key one for the proof of Theorem3.

Lemma 12. Let A1, . . . , An, C be P1-formulae, B1, . . . , Bn,D be P2-formulae,
and let b be a fresh variable, b /∈ Var1 ∪ Var2. Also suppose that no formula of
the form E ∨ F occurs in A1, . . . , An, B1, . . . , or Bn strictly positively. Then
the sequent

((A1 \ b) ∨ (B1 \ b)) \ b, . . . , ((An \ b) ∨ (Bn \ b)) \ b � ((C \ b) ∨ (D \ b)) \ b

is derivable if and only if so are A1, . . . , An � C and B1, . . . , Bn � D.

In the notations of Subsect. 2.1, the first sequent of this lemma can be shortly
written as (Ab

1 ∨ Bb
1)

b, . . . , (Ab
n ∨ Bb

n)b � (Cb ∨ Db)b. Though (Ab ∨ Bb)b is not
equivalent to A ∧ B, and even not equivalent to (A ∧ B)bb, this sequent happens
to be equiderivable with A1 ∧ B1, . . . , An ∧ Bn � C ∧ D, which Kanazawa [9]
used for his intersection construction with additive conjunction.

Proof. The “if” part is straightforwardly established by direct derivation.
For the “only if” part we first use the reversibility of R\ and L∨, which

yields derivability of the following two sequents:

C \ b, ((A1 \ b) ∨ (B1 \ b)) \ b, . . . , ((An \ b) ∨ (Bn \ b)) \ b � b

D \ b, ((A1 \ b) ∨ (B1 \ b)) \ b, . . . , ((An \ b) ∨ (Bn \ b)) \ b � b.

Let us analyze the derivation of the first sequent. We claim derivability of
K1, . . . ,Kn, C \ b � b, where each Ki is either Ai or Bi. In order to prove it,
consider a more general statement, the derivability of

Kn−k, . . . ,Kn, C \ b, (Ab
1 ∨ Bb

1)
b, . . . , (Ab

n−k−1 ∨ Bb
n−k−1)

b � b.

This statement is proved by induction on k. Indeed, for k = 0 derivability of this
sequent was shown above. For the induction step, suppose that

Kn−k, . . . ,Kn, C \ b, (Ab
1 ∨ Bb

1)
b, . . . , (Ab

n−k−1 ∨ Bb
n−k−1)

b � b

is derivable and apply Lemma11, which yields derivability of

Kn−k, . . . ,Kn, C \ b, (Ab
1 ∨ Bb

1)
b, . . . , (Ab

n−k−2 ∨ Bb
n−k−2)

b � Ab
n−k−1 ∨ Bb

n−k−1.

Now apply the Disjunctive Property (Lemma 8) and obtain derivability of

Kn−k, . . . ,Kn, C \ b, (Ab
1 ∨ Bb

1)
b, . . . , (Ab

n−k−2 ∨ Bb
n−k−2)

b � Kn−k−1 \ b,

The Complexity of Multiplicative-Additive Lambek Calculus: 25Years Later 367

where Kn−k−1 is either An−k−1 or Bn−k−1. Reversion of L\ yields the necessary

Kn−(k+1),Kn−k, . . . ,Kn, C \ b, (Ab
1 ∨ Bb

1)
b, . . . , (Ab

n−k−2 ∨ Bb
n−k−2)

b � b.

In the end of the induction, for k = n − 1, we get K1, . . . ,Kn, C \ b � b, and one
more application of Lemma 11 yields K1, . . . ,Kn � C.

Now recall that C is a P1-formula, and each of K1, . . . ,Kn is a P1-formula or
a P2-formula. If Ki = Bi for some i, i.e., it is a P2-formula, then K1, . . . ,Kn � C
is not derivable by Lemma 7. Thus, for all i we have Ki = Ai, and obtain the
needed sequent A1, . . . , An � C.

The same reasoning applied to D \ b, (Ab
1 ∨ Bb

1)
b, . . . , (Ab

n ∨ Bb
n)b � b yields

B1, . . . , Bn � D.

Lemma 12, together with Lemma 2 of Subsect. 2.1, yield the following
corollary:

Corollary 5. Let A1, . . . , An, C be P1-formulae, B1, . . . , Bn,D be P2-formulae,
and let b and c be fresh variables (b, c /∈ Var1 ∪ Var2, b �= c). Then the sequent

((Acc
1)b ∨ (Bcc

1)b)b, . . . , ((Acc
n)b ∨ (Bcc

1)b)b � ((Ccc)b ∨ (Dcc)b)b

is derivable if and only if so are A1, . . . , An � C and B1, . . . , Bn � D.

Proof. The only strictly positive subformula or Acc
i and Bcc

j is c. Thus, there is
no strictly positive subformula the form E ∨ F , and we can apply Lemma12.
This lemma yields the fact that

((Acc
1)b ∨ (Bcc

1)b)b, . . . , ((Acc
n)b ∨ (Bcc

1)b)b � ((Ccc)b ∨ (Dcc)b)b

is derivable if and only if so are Acc
1 , . . . , Acc

n � Ccc and Bcc
1 , . . . , Bcc

n � Dcc. For
these two sequents, we apply Lemma 2 and replace these sequents with equideriv-
able ones, A1, . . . , An � C and B1, . . . , Bn � D.

Now we are ready to prove the main result of this section.

Proof (of Theorem3). Consider two categorial grammars over the same alphabet,
G1 = 〈Σ, �1,H1〉 and G2 = 〈Σ, �2,H2〉. Without loss of generality we can suppose
that all formulae of Gi are Pi-formulae (otherwise just rename the variables).
Construct the new grammar G = 〈Σ, �,H〉, where, for each a ∈ Σ we postulate
a � ((Acc)b ∨ (Bcc)b)b for any A and B such that a �1 A and a �2 A; H =
((Hcc

1)b ∨ (Hcc
2)b)b. Here b and c are fresh variables: b and c are distinct and do

not occur in G1 or G2. By Corollary 5 a word a1, . . . an is accepted by G if and
only if it is accepted by both G1 and G2. Therefore, the language generated by
G is exactly the intersection of languages generated by G1 and G2.

368 M. Kanovich et al.

4 Concluding Remarks

In this paper we have proved two refined results on the complexity of the
Lambek calculus enriched either with conjunction or disjunction. Namely, we
have established PSPACE-completeness for small fragments L(\,∧) and L(\,∨).
Notice that the encoding used in this paper is more involved than the encodings
from [6,8,10,18], because here we were not allowed to use the product (mul-
tiplicative conjunction) and one of the divisions. Besides, we have proved that
L(\,∨)-grammars generate all finite intersections of context-free languages and
images of such intersections under alphabetic homomorphisms.

There are some questions left for future work. First, we see that in our con-
structions for proving PSPACE-hardness involve formulae of unbounded implica-
tion depth. On the other hand, for the original Lambek calculus without additive
connectives, which is NP-complete, Pentus [25], nevertheless, a polynomial time
decision procedure for the case where the order (a complexity measure similar
to implication depth) of formulae is bounded by a constant d, fixed in advance.
The degree of the polynomial, of course, depends on d. For the Lambek calculus
with additives, we plan to show that it is not the case. Following the basic ideas
of our encoding, with the formulas of the implication nesting depth bounded
by some constant, we intend to simulate at least co-NP-hardness of our small
fragment L(\,∧) with one implication and conjunction.

Another open question is to describe the class of languages generated by Lam-
bek grammars with additive connectives. In particular, Kuznetsov and Okhotin
[14,16] show that such grammars can generate languages described by conjunc-
tive grammars [21]. Such grammars can be quite powerful, for example, can
generate {a4n | n ≥ 1} [7]. It is yet unknown whether all such languages can be
generated by L(\,∨)-grammars.

Acknowledgments. We would like to thank the anonymous referees for their helpful
comments.

Financial Support

The work of Max Kanovich and Andre Scedrov was supported by the Russian Science
Foundation under grant 17-11-01294 and performed at National Research University
Higher School of Economics, Moscow, Russia. The work of Stepan Kuznetsov was
supported by the Young Russian Mathematics award, by the grant MK-430.2019.1 of
the President of Russia, and by the Russian Foundation for Basic Research grant 18-01-
00822. Section 2 was contributed by Kanovich and Scedrov. Section 3 was contributed
by Kuznetsov. Sections 1 and 4 were contributed jointly and equally by all co-authors.

A PSPACE-completeness of the fragment L(\,∨)

In this section we will modify Sect. 2 to establish PSPACE-completeness for the
fragment L(\, ∨), which includes only one implication and disjunction.

Remark 4. For the sake of readability, we conceive of the formula ((A · B)\C)
as abbreviation for (B\ (A\C)). In particular, (A · B)b is abbreviation for

The Complexity of Multiplicative-Additive Lambek Calculus: 25Years Later 369

(B\ (A\ b)). Because of Lemma 1, the formula (Ab ∧Bb) is conceived of as abbre-
viation for ((A ∨ B)\ b) within this section.

Theorem 4. The fragment L(\,∨) is PSPACE-complete.

Proof Sketch. We start with the equality (2), assuming that α1, α2, . . . , α2n−1,
α2n are given.

To prove Lemma 14, the “disjunction analog” of Lemma3, we modify the
basic material given in the “conjunction” Definition 3 by means of Defini-
tions 6 and 7 working within the L(\,∨) fragment.

Definition 6. For 1 ≤ i ≤ 2n, let E�,i,β denote the formula: (c�,i\ (β\ c�,i−1)).
Let F� denote: (q2n\ c�,2n), and H� denote: (c�,0\ (e0\ e0)).

Lemma 13. The following “verifying” sequent is derivable in Lambek calculus

e0, α1, α2, . . . , α2n, q2n, F�, E�,2n,α2n
, E�,2n−1,α2n−1 , . . . E�,2,α2 , E�,1,α1 ,H� � e0

Proof. By the inverse induction on i: αi−1, αi, c�,i, E�,i,αi
� (αi−1 · c�,i−1)

Definition 7. We introduce the following formulas:
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

˜F =
(m

∨

�=1

(F�)b

)b

, ˜H =
(m

∨

�=1

(H�)b

)b

˜Ei =
(

∨

1≤�≤m, E�,i,β∈E�,i

(E�,i,β)b

)b (32)

where a one- or two-element set of formulas, E�,i, is defined as follows:

(1) E�,i = {E�,i,ti
}, if the conjunct C� contains the variable xi,

(2) E�,i = {E�,i,fi
}, if the conjunct C� contains ¬xi,

(3) E�,i = {E�,i,ti
, E�,i,fi

}, if C� contains neither xi, nor ¬xi.

By applying (2) and Lemma 1, we get the desired verification:

Lemma 14. The following sequent is derivable in Lambek

ebb
0 , αbb

1 , αbb
2 , . . . , α2n−1, (α2n · q2n)bb, Δn � ebb

0

where Δn is a sequence of formulas: Δn = ˜F , ˜E2n, ˜E2n−1, . . . , ˜E2, ˜E1, ˜H

Corollary 6. It suffices to follow the line of reasoning in Sect. 2 to find appro-
priate G1, G2, . . . , G2n−1, G2n, such that the following sequent is derivable in
Lambek calculus if and only if the statement (1) is valid:

(e[4n]
0 · q0)[2], G

[2]
1 , G

[4]
2 , . . . , G

[4n−2]
2n−1 , G

[4n]
2n , Δ[4n]

n � e
[4n+2]
0 (33)

370 M. Kanovich et al.

B Proofs of Technical Lemmas for Section 3

Proof (of Lemma8). Induction on derivation. The sequent in question could not
be an axiom, since the antecedent of F1 ∨ F2 � F1 ∨ F2 includes F1 ∨ F2 in
a strictly positive position. Consider the last rule applied in the derivation. It
could be L\, L/, L·, or R∨. Rules with ∧ cannot be used, since there are no ∧’s
in the antecedent, and the main connective of the succedent is ∨. If the last rule
is R∨, we immediately reach our goal.

If the derivation ends with an application of L·:
E1, . . . , E

′
i, E

′′
i , . . . , En � F1 ∨ F2

E1, . . . , E
′
i · E′′

i , . . . , En � F1 ∨ F2
L·

then we apply the induction hypothesis, get E1, . . . , E
′
i, E

′′
i , . . . , En � Fi (i = 1

or 2) and apply L· to this sequent, which yields our goal.
For L\, we get the following

Ei+1, . . . , Ej−1 � E′
j E1, . . . , Ei, E

′′
j , . . . , En � F1 ∨ F2

E1, . . . , Ei, Ei+1, . . . , Ej−1, E
′
j \ E′′

j , . . . , En � F1 ∨ F2
L\

and notice that the antecedent of the right premise still satisfies the conditions of
the lemma, thus we can apply induction hypothesis. The induction hypothesis
yields E1, . . . , Ei, E

′′
j , . . . , En � Fi. Applying L/ with the same left premise,

Ei+1, . . . , Ej−1 � E′
j , yields our goal.

The L/ case is symmetric.

Proof (of Lemma 9). Induction on derivation. The axiom should be of the form
b � b, which violates the condition. For each inference rule, we apply the induc-
tion hypothesis for the premise from which the succedent b comes.

Proof (of Lemma 10). Induction on derivation. Induction base is axiom b � b.
Consider the last rule applied. If it is one of the one-premise rules, then we use
the induction hypothesis for the only premise. For applications of L/ or L\, if
the rightmost occurrence of b goes to the right premise, we again directly use
the induction hypothesis. Notice that for L\ this is always the case. The other
rule, L/, however, can decompose one of the Fi and take the rightmost b to the
left premise:

Fi+1, . . . , F�, E1 \ b, . . . , Ek \ b, b � F ′′
i F1, . . . , F

′
i � b

F1, . . . , F
′
i / F ′′

i , Fi+1, . . . , F�, E1 \ b, . . . , Ek \ b, b � b

The right premise, however, now is not derivable by Lemma9. Contradiction.

Proof (of Lemma 11). Induction on derivation again. Any one-premise rule
applied for one of the Fi, as well as L/ or L\ which keeps Ek \ b in the right
premise, is handled by directly using the induction hypothesis and applying the
same rule. The situation where L/ takes Ek \ b to the left premise leads to con-
tradiction with Lemma 9, exactly as in the proof of the previous lemma.

The Complexity of Multiplicative-Additive Lambek Calculus: 25Years Later 371

References

1. Abrusci, V.M.: A comparison between Lambek syntactic calculus and intuitionistic
linear logic. Zeitschr. Math. Logik Grundl. Math. (Math. Logic Q.) 36, 11–15
(1990)

2. Bar-Hillel, Y., Gaifman, C., Shamir, E.: On categorial and phrase-structure gram-
mars. Bull. Res. Council Israel 9F, 1–16 (1960)

3. Buszkowski, W.: The equivalence of unidirectional Lambek categorial grammars
and context-free grammars. Zeitschr. Math. Log. Grundl. Math. 31, 369–384 (1985)

4. Carpenter, B.: Type-Logical Semantics. MIT Press (1998)
5. Girard, J.-Y.: Linear logic. Theor. Comput. Sci. 50(1), 1–101 (1987)
6. Horč́ık, R., Terui, K.: Disjunction property and complexity of substructural logics.

Theor. Comput. Sci. 412(31), 3992–4006 (2011)
7. Jeż, A.: Conjunctive grammars can generate non-regular unary languages. Internat.

J. Found. Comput. Sci. 19(3), 597–615 (2008)
8. Kanazawa, M.: The Lambek calculus enriched with additional connectives. J. Log.

Lang. Inform. 1(2), 141–171 (1992)
9. Kanazawa, M.: Lambek calculus: recognizing power and complexity. In: Gerbrandy,

J., et al. (eds.) JFAK. Essays Dedicated to Johan van Benthem on the Occasion
of his 50th Birthday. Amsterdam University Press, Vossiuspers (1990)

10. Kanovich, M.I.: Horn fragments of non-commutative logics with additives are
PSPACE-complete. In: Proceedings 1994 Annual Conference of the European Asso-
ciation for Computer Science Logic, Kazimierz, Poland (1994)

11. Kanovich, M.: The direct simulation of Minsky machines in linear logic. In: Girard,
J.-Y., Lafont, Y., Regnier, L. (eds.) Advances in Linear Logic. London Mathemat-
ical Society Lecture Notes, vol. 222, pp. 123–145. Cambridge University Press,
Cambridge (1995)

12. Kanovich, M.I.: The undecidability theorem for the Horn-like fragment of linear
logic (Revisited). Math. Struct. Comput. Sci. 26(5), 719–744 (2016)

13. Kanovich, M., Kuznetsov, S., Nigam, V., Scedrov, A.: Subexponentials in non-
commutative linear logic. Math. Struct. Comput. Sci. (2018). Part of Dale Miller’s
Festschrift

14. Kuznetsov, S.: Conjunctive grammars in Greibach normal form and the Lambek
calculus with additive connectives. In: Morrill, G., Nederhof, M.-J. (eds.) FG 2012-
2013. LNCS, vol. 8036, pp. 242–249. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-39998-5 15

15. Kuznetsov, S.L.: On translating Lambek grammars with one division into context-
free grammars. Proc. Steklov Inst. Math. 294(1), 129–138 (2016)

16. Kuznetsov, S., Okhotin, A.: Conjunctive categorial grammars. In: Proceedings of
Mathematics of Language (2017)

17. Lambek, J.: The mathematics of sentence structure. Amer. Math. Monthly 65,
154–170 (1958)

18. Lincoln, P., Mitchell, J., Scedrov, A., Shankar, N.: Decision problems for proposi-
tional linear logic. Ann. Pure Appl. Logic 56, 239–311 (1992)

19. Moot, R., Retoré, C.: The Logic of Categorial Grammars. A Deductive Account of
Natural Language Syntax and Semantics. LNCS, vol. 6850. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-31555-8

20. Morrill, G.V.: Categorial Grammar: Logical Syntax, Semantics, and Processing.
Oxford University Press (2011)

https://doi.org/10.1007/978-3-642-39998-5_15
https://doi.org/10.1007/978-3-642-39998-5_15
https://doi.org/10.1007/978-3-642-31555-8

372 M. Kanovich et al.

21. Okhotin, A.: Conjunctive grammars. J. Autom. Lang. Combin. 6(4), 519–535
(2001)

22. Păun, G.: A note on the intersection of context-free languages. Fundam. Inform.
3(2), 135–139 (1980)

23. Pentus, M.: Lambek grammars are context-free. In: Proceedings of the 8th Annual
IEEE Symposium on Logic in Computer Science (LICS 1993), pp. 429–433. IEEE
Computer Society Press (1993)

24. Pentus, M.: Lambek calculus is NP-complete. Theor. Comput. Sci. 357(1–3), 186–
201 (2006)

25. Pentus, M.: A polynomial-time algorithm for Lambek grammars of bounded order.
Linguist. Anal. 36(1–4), 441–471 (2010)

26. Savateev, Yu.: Unidirectional Lambek grammars in polynomial time. Theory Com-
put. Syst. 46(4), 662–672 (2010)

27. Savateev, Yu.: Product-free Lambek calculus is NP-complete. Ann. Pure Appl.
Logic 163(7), 775–788 (2012)

L-Models and R-Models for Lambek
Calculus Enriched with Additives

and the Multiplicative Unit

Max Kanovich1,4, Stepan Kuznetsov2,4(B), and Andre Scedrov3,4

1 University College London, London, UK
m.kanovich@ucl.ac.uk

2 Steklov Mathematical Institute of the RAS, Moscow, Russia
sk@mi-ras.ru

3 University of Pennsylvania, Philadelphia, USA
scedrov@math.upenn.edu

4 National Research University Higher School of Economics, Moscow, Russia

Abstract. Language and relational models, or L-models and R-models,
are two natural classes of models for the Lambek calculus. Completeness
w.r.t. L-models was proved by Pentus and completeness w.r.t. R-models
by Andréka and Mikulás. It is well known that adding both additive
conjunction and disjunction together yields incompleteness, because of
the distributive law. The product-free Lambek calculus enriched with
conjunction only, however, is complete w.r.t. L-models (Buszkowski) as
well as R-models (Andréka and Mikulás). The situation with disjunction
turns out to be the opposite: we prove that the product-free Lambek
calculus enriched with disjunction only is incomplete w.r.t. L-models as
well as R-models. If the empty premises are allowed, the product-free
Lambek calculus enriched with conjunction only is still complete w.r.t.
L-models but in which the empty word is allowed. Both versions are
decidable (PSPACE-complete in fact). Adding the multiplicative unit
to represent explicitly the empty word within the L-model paradigm
changes the situation in a completely unexpected way. Namely, we prove
undecidability for any L-sound extension of the Lambek calculus with
conjunction and with the unit, whenever this extension includes certain
L-sound rules for the multiplicative unit, to express the natural algebraic
properties of the empty word. Moreover, we obtain undecidability for a
small fragment with only one implication, conjunction, and the unit,
obeying these natural rules. This proof proceeds by the encoding of two-
counter Minsky machines.

Keywords: Lambek calculus · Language models · Relational models ·
Distributive law · Incompleteness · Undecidability

1 Introduction

By L∨∧ we denote the Lambek calculus with additive connectives, disjunction and
conjunction. Formulae of L∨∧ are built from a countable set of variables (which
c© Springer-Verlag GmbH Germany, part of Springer Nature 2019
R. Iemhoff et al. (Eds.): WoLLIC 2019, LNCS 11541, pp. 373–391, 2019.
https://doi.org/10.1007/978-3-662-59533-6_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-59533-6_23&domain=pdf
https://doi.org/10.1007/978-3-662-59533-6_23

374 M. Kanovich et al.

we denote by p, q, r, . . .) using five binary connectives: \ (left implication), / (right
implication), · (product, or multiplicative conjunction), ∨ (additive disjunction),
and ∧ (additive conjunction). The Lambek calculus with additive connectives is
formulated as a Gentzen-style sequent calculus of a two-sided (intuitionistic) for-
mat. Being a non-commutative substructural logic, however, it has an important
difference from traditional sequent calculi. Namely, left-hand sides (antecedents)
of L∨∧ sequents are finite linearly ordered sequences (not sets or multisets) of
formulae. The right-hand side (succedent) of a sequent is a formula. Axioms and
inference rules of L∨∧ are presented on Table 1.

Table 1. Lambek calculus with additive connectives

A � A
Id

Φ � A Σ1, B, Σ2 � C

Σ1, Φ, A \ B, Σ2 � C
\L A, Σ � B

Σ � A \ B
\R, Σ is not empty

Φ � A Σ1, B, Σ2 � C

Σ1, B / A, Φ, Σ2 � C
/L

Σ, A � B

Σ � B / A
/R, Σ is not empty

Σ1, A, B, Σ2 � C

Σ1, A · B, Σ2 � C
·L Σ1 � A Σ2 � B

Σ1, Σ2 � A · B
·R

Σ1, A, Σ2 � C Σ1, B, Σ2 � C

Σ1, A ∨ B, Σ2 � C
∨L Σ � A

Σ � A ∨ B
Σ � B

Σ � A ∨ B
∨R

Σ1, A, Σ2 � C

Σ1, A ∧ B, Σ2 � C

Σ1, B, Σ2 � C

Σ1, A ∧ B, Σ2 � C
∧L Σ � A Σ � B

Σ � A ∧ B
∧R

Φ � A Σ1, Φ, Σ2 � C

Σ1, Φ, Σ2 � C
Cut

The first three connectives, namely, two implications, also called divisions
(left and right, \ and /) and product (multiplicative conjunction, ·), are due
to Lambek [15]. These connectives are called multiplicative. Two additive con-
nectives, ∨ and ∧, are added to the Lambek calculus in the spirit of Girard’s
linear logic [6] (where they are denoted by ⊕ and &, respectively). As noticed
by Abrusci [1], the Lambek calculus can be considered as a non-commutative
variant of linear logic. A specific feature of the Lambek calculus, however, is the
so-called Lambek’s non-emptiness restriction: as one can see from the form of the
rules, left-hand sides of sequents are required to be non-empty. This restriction
is motivated by linguistic applications of the Lambek calculus [17, Sect. 2.5].

The cut rule is eliminable by a standard argument. Cut elimination yields
the subformula property and makes it easy to formulate elementary fragments.
If one takes a subset of the set of connectives, and leaves only the corresponding
rules of inference, the calculus obtained is a conservative fragment of L∨∧. The
fragment without additive connectives (∨ and ∧) is the original Lambek calculus
denoted by L. Fragments with only one additive connective are denoted by L∨

L-Models and R-Models for Lambek Calculus with Additives and Unit 375

and L∧. We also consider product-free fragments with conjunction, L(\, /,∧)
and L(\,∧), which include, respectively, only \, /, ∧ and only \ and ∧.

From the point of view of semantics, there exist many classes of models for
the Lambek calculus. We consider two natural ones, language and relational
ones. Language models, or L-models, are inspired by linguistic motivation and
applications of the Lambek calculus. An L-model is defined on P(Σ+), the set
of all languages over an alphabet Σ without the empty word, by an interpreta-
tion function w which maps Lambek formulae to languages from P(Σ+). The
interpretation function is defined arbitrarily on variables, and should commute
with Lambek connectives in the following way:

w(A \ B) = w(A) \ w(B) = {u ∈ Σ+ | (∀v ∈ w(A)) vu ∈ w(B)};

w(B / A) = w(B) / w(A) = {u ∈ Σ+ | (∀v ∈ w(A))uv ∈ w(B)};
w(A · B) = w(A) · w(B) = {uv | u ∈ w(A), v ∈ w(B)}.

A sequent A1, . . . , An � B is considered true in such a model, if and only if
w(A1) · . . . · w(An) ⊆ w(B).

Notice that the empty word, ε, is not allowed due to Lambek’s restriction. The
empty set, however, could appear as a result of division, and this is absolutely
acceptable.

For a relational model, or R-model, the base set is the set of all subrelations
of a fixed transitive binary relation W ⊆ U × U , i.e., P(W). The interpretation
function now maps Lambek formulae to subsets of W , and should obey the
following commutation rules:

w(A \ B) = w(A) \ w(B) = {〈y, z〉 ∈ W | (∀〈x, y〉 ∈ w(A)) 〈x, z〉 ∈ w(B)};
w(B / A) = w(B) / w(A) = {〈x, y〉 ∈ W | (∀〈y, z〉 ∈ w(A)) 〈x, z〉 ∈ w(B)};
w(A · B) = w(A) ◦ w(B) = {〈x, z〉 | (∃y ∈ U) 〈x, y〉 ∈ w(A), 〈y, z〉 ∈ w(B)}.

Truth conditions for R-models are exactly the same as in L-models: A1, . . . , An �
B is true, iff w(A1) · . . . · w(An) ⊆ w(B).

Additive connectives, both in L-models and R-models, are interpreted as
set-theoretical union and intersection:

w(A ∨ B) = w(A) ∪ w(B);
w(A ∧ B) = w(A) ∩ w(B).

Both L-models and R-models provide sound semantics for L∨∧ (and, there-
fore, all its elementary fragments): if a sequent is derivable, then it is true in all
models. Completeness (the reverse implication), however, is a more subtle issue.

There is a folklore fact that L∨∧ is incomplete both w.r.t. both L-
interpretation and R-interpretation, due to the distibutivity law

(A ∨ C) ∧ (B ∨ C) � (A ∧ B) ∨ C.

The distributivity law is true for set-theoretic interpretation of ∨ and ∧—in
particular, in all L-models and all R-models—but is not provable in L∨∧. The

376 M. Kanovich et al.

failure to derive distributivity is a common feature of several substructural logics,
as noticed by Ono and Komori [19].

L-models and R-models are both specific subclasses of general algebraic mod-
els for L∨∧, residuated lattices [5,22]. A residuated lattice is a lattice equipped
with a monoidal structure (multiplication and the unit) and division operations,
obeying the natural condition: a � c / b ⇐⇒ a · b � c ⇐⇒ b � a \ c (where
� is the lattice preorder). Residuated lattices in general, as opposed to lat-
tices of formal languages or binary relations, are not required to be distributive.
This removes the incompleteness issue mentioned above; in fact, L∨∧ is com-
plete w.r.t. interpretations on arbitrary residuated lattices, which is proved by
an argument in the style of Lindenbaum and Tarski. Moreover, there is a more
specific completeness result for L∨∧ w.r.t. so-called syntactic concept lattices,
introduced by Wurm [23] as a modification of L-models without the distributivity
constraint.

By L∨∧ + distrib we denote L∨∧ with the distributivity principle,

(A ∨ C) ∧ (B ∨ C) � (A ∧ B) ∨ C,

added as an extra axiom (Cut is kept as an official rule of the system, since it
becomes non-eliminable after adding extra axioms). It looks natural to conjecture
completeness of L∨∧+distrib w.r.t. L-models and/or R-models. However, these
are both open questions.

Some fragments of L∨∧, however, are still complete w.r.t L-models and R-
models. Algebraically this means that, in particular, distributivity cannot be
expressed in the weaker languages of these fragments. Namely, the Lambek cal-
culus extended with conjunction only, L∧, is R-complete, as shown by Andréka
and Mikulás [2]. For L-completeness, the question about L∧, which includes
both divisions, product, and conjunction, is still open. For the Lambek calculus
without additives, however, L-completeness was shown by Pentus [21], and for
L(\, /,∧) L-completeness was shown by Buszkowski [3].

In this paper we emphasize L∨, the disjunction-only fragment of L∨∧. The
situation with disjunction turns out to be the opposite: in Sect. 2 we prove that
the product-free Lambek calculus enriched with disjunction only is incomplete
w.r.t. L-models as well as R-models—in fact, w.r.t. any class of distributive
residuated lattices.

If one abolishes Lambek’s restriction, i.e. allows the use of empty premises,
the product-free Lambek calculus enriched with conjunction only is still complete
w.r.t. L-models in which the empty word is allowed. Both versions are decidable
(PSPACE-complete in fact [11]).

Adding the multiplicative unit to represent explicitly the empty word within
the L-model paradigm changes the situation in a completely unexpected way.
Even the product-free fragment with only one implication, conjunction, and the
unit cannot be extended to a decidable system complete with respect to L-
models. This proof proceeds by the encoding of two-counter Minsky machines
with the help of certain simple rules for the multiplicative unit, caused by the
empty word.

L-Models and R-Models for Lambek Calculus with Additives and Unit 377

Let us focus on L-models. The unit in L-models is necessarily interpreted as
{ε}, where ε is the empty word. In particular, adding the unit forces us to allow
the empty word in L-models.

An attempt to axiomatise the unit constant by the rules for multiplicative
unit taken from linear logic [16] results in an L-sound, but not L-complete sys-
tem [4,12]. Unfortunately, no L-complete recursively enumerable axiomatisation
for the Lambek calculus with the unit constant is known. In Sect. 3, we present
an extension of the Lambek calculus that respects the most natural peculiarities
of the empty word ε in L-models, such as: ε · ε = ε and x · ε = ε · x. Our main
result is that this system, which we denote by L+ε, is undecidable. Moreover,
we get undecidability for any L-sound calculus that includes L+ε.

2 Incompleteness of L∨ w.r.t. L-Models and R-Models

We show that L∨ is incomplete w.r.t. language and relational models by present-
ing a concrete example of a sequent true in all such models, but not derivable
in L∨.

Theorem 1. The sequent

(((x / y) ∨ x) /((x / y) ∨ (x / z) ∨ x)) · ((x / y) ∨ x) · (((x / y) ∨ x) \((x / z) ∨ x))
� (x /(y ∨ z)) ∨ x

is not derivable in L∨, but is derivable in L∨∧ + distrib and, therefore, true in
all L-models and all R-models.

Before going into the detailed proof of this theorem, let us show the ideas
behind it. The monstruous sequent which we use as our counter-example comes
from the diamond construction originally due to Lambek [15]. For two formulae
A and B let C be their meeting formula, if both C � A and C � B are derivable,
and let D be their joining formula, if both A � D and B � D. (Meeting and
joining formulae are of course not unique.) In L∨∧, constructing meeting and
joining formulae is trivial, since one just takes C = A ∧ B and D = A ∨ B.
Moreover, this gives the maximum meeting and the minimum joining formula:
for any other meeting formula C ′ and any other joining formula D′ we have
C ′ � A ∧ B and A ∨ B � D′.

In L∨, however, only the joining formula, A∨B, is explicitly given. Wishing to
encode distributivity, we need some meeting formula to use it in lieu of A ∧ B.
Such a formula is given by the following lemma, which is a variation of the
diamond constructions of Lambek [15] and Pentus [20].

Lemma 1. For any calculus extending L, if D is a joining formula for A and B,
then (A / D)·A·(A \ B) is a meeting formula for A and B. In particular, in L∨ for
any two formulae A and B we have a meeting formula, (A/(A∨B)) ·A · (A \ B).

378 M. Kanovich et al.

Proof. For C = (A / D) · A · (A \ B) the necessary sequents C � A and C � B
are derived as follows:

A � A
B � D A � A
A / D,B � A

A/D,A,A \ B � A

(A / D) · A · (A \ B) � A

A � D
A � A B � B
A,A \ B � B

A/D,A,A \ B � B

(A / D) · A · (A \ B) � B

Now we are ready to explain the construction in Theorem1 and prove the
theorem. Take A = (x / y)∨x and B = (x / z)∨x. Then D = A∨B is equivalent
to (x / y) ∨ (x / z) ∨ x, and by Lemma 1 the left-hand side of the sequent in
Theorem 1 is exactly the meeting formula for A and B, which we denote by C.
Thus, C � A and C � B are derivable in L∨ and therefore in L∨∧, and so is
C � A ∧ B.

Recall that A ∧ B = ((x / y) ∨ x) ∧ ((x / z) ∨ x) and apply distributivity:

((x / y) ∨ x) ∧ ((x / z) ∨ x) � ((x / y) ∧ (x / z)) ∨ x.

Finally, recall that (x / y) ∧ (x / z) is equivalent to x /(y ∨ z) in L∨∧,1 which
allows us to get rid of ∧ in the right-hand side:

((x / y) ∨ x) ∧ ((x / z) ∨ x) � ((x /(y ∨ z)) ∨ x.

Now cut with C � ((x / y) ∨ x) ∧ ((x / z) ∨ x) (i.e., C � A ∧ B) yields the needed
sequent in Theorem 1.

The second statement, that this sequent is not derivable in L∨ without dis-
tributivity, does not follow automatically from the fact that distributivity is not
provable in L∨∧. This is because the formula C constructed using the diamond
construction is a stronger meeting formula than A ∧ B: C � A ∧ B, but not
A ∧ B � C. Thus, we still have to prove that the sequent in Theorem 1 is not
derivable in L∨ or, equivalently, in L∨∧.

Such a non-derivability proof can be performed, as suggested by one of
the anonymous reviewers, by presenting an algebraic counter-model, i.e., an
interpretation over a residuated lattice which falsifies the sequent in question.
(This lattice should be necessarily non-distributive, thus, it is neither an L-
model nor an R-model.) Another, purely syntactic strategy is to apply the proof
search algorithm directly (recall that the derivability problem in L∨∧ is decid-
able). Following this line, we used an automatic theorem-prover for L∨∧, and
1 The derivations establishing equivalence are as follows:

y � y x � x

x / y, y � x

(x / y) ∧ (x / z), y � x

z � z x � x
x / z, z � x

(x / y) ∧ (x / z), z � x

(x / y) ∧ (x / z), y ∨ z � x

(x / y) ∧ (x / z) � x /(y ∨ z)

y � y

y � y ∨ z x � x

x /(y ∨ z), y � x

x /(y ∨ z) � x / y

z � z
z � y ∨ z x � x

x /(y ∨ z), z � x

x /(y ∨ z) � x / z

x /(y ∨ z) � (x / y) ∧ (x / z) .

L-Models and R-Models for Lambek Calculus with Additives and Unit 379

its extension with Kleene star, implemented by Jipsen, based on [7,8,18,19].
Jipsen’s theorem-prover is avaliable online: http://www1.chapman.edu/∼jipsen/
kleene/. The algorithm performs exhaustive proof search and thus establishes
non-derivability. In order to make this paper self-contained and independent
from external derivability-checking software, in the Appendix we represent the
execution of the proof search algorithm (and, thus, the proof of non-derivability),
with some simplifications, in a human-readable form.

3 Undecidability of the Fragment (\,∧, 1)

In this section we consider the extension of the Lambek calculus with the mul-
tiplicative unit constant. In L-models, because of the principle A · 1 � A, the
constant 1 is necessarily interpreted as the singleton set {ε}, where ε is the empty
word. In particular, introducing the unit constant requires modification of the
definition of L-models by allowing the empty word to belong to our languages.
For the same reason, we have to abolish Lambek’s non-emptiness restriction.
Because of this specific interpretation of the unit constant, we introduce prin-
ciples connected with this particular interpretation of the unit. Such principles
include A · {ε} = {ε} · A and {ε} · {ε} = {ε}. On Table 2, we present a calculus,
denoted by L+ε(\,∧,1), which reflects these two principles as sequential rules.

Table 2. Axioms and inference rules for a minimal L+ε(\, ∧,1)

A � A
Id

A,1 � A
1

Φ � A Σ1, B, Σ2 � C

Σ1, Φ, A \ B, Σ2 � C
\L A, Σ � B

Σ � A \ B
\R

Σ1, A, Σ2 � C

Σ1, A ∧ B, Σ2 � C

Σ1, B, Σ2 � C

Σ1, A ∧ B, Σ2 � C
∧L Σ � A Σ � B

Σ � A ∧ B
∧R

Σ1, A, (1 ∧ G), Σ2 � C

Σ1, (1 ∧ G), A, Σ2 � C
Lε

Σ1, (1 ∧ G), A, Σ2 � C

Σ1, A, (1 ∧ G), Σ2 � C
Rε

Σ1, (1 ∧ G), (1 ∧ G), Σ2 � C

Σ1, (1 ∧ G), Σ2 � C
Dε

The “commuting” rules Lε and Rε are caused by the fact that, for any set X,

X · {ε} = {ε} · X, ∅ · X = X · ∅,

whereas the “doubling” rule Dε is caused by

{ε} · {ε} = {ε}, ∅ · ∅ = ∅.

http://www1.chapman.edu/~jipsen/kleene/
http://www1.chapman.edu/~jipsen/kleene/

380 M. Kanovich et al.

Thus, these rules express the natural algebraic properties of the empty word, ε.
However, we do not claim that we get an L-complete system. Indeed, the L-
complete extension happens to be quite involved (cf. [12]). In particular, it is
still an open problem whether it is recursively enumerable.

We emphasize that our rules Lε, Rε, and Dε are not derivable
in the multiplicative-additive Lambek calculus, that is, non-commutative
multiplicative-additive linear logic (cf. [10,16]).

The cut rule is not included in the system, so that all our derivations will be
cut-free.

Theorem 2. The derivability problem for L+ε(\,∧,1) is undecidable. More-
over, any L-sound system which includes L+ε(\,∧,1), i.e., rules of Table 2, is
undecidable.

We prove undecidability by encoding of two-counter Minsky machines (cf. [9]).
In the forward encoding, from computations to derivations, we present

explicit derivations in L+ε(\,∧,1).
For the backwards direction, from derivations to computations, we use a

semantic approach by constructing an appropriate L-model for the sequent in
question (cf. [13,14,18], where phase semantics is used for similar purposes).

Definition 1. In our encoding, we use the following construction.
We fix an atomic proposition b, and define ‘relative negation’ Ab by:

Ab = (A\ b)

Our relative negation can be seen as a non-commutative analogue of the linear
logic negation, which is defined by A⊥ = A —o ⊥.
As for the relative “double negation,” the novelty of our approach is that we are
in favour of the “asymmetric”

Abb = ((A\ b)\ b)

For the sake of readability of product-free formulas,

(a) Here we will conceive of the formula ((A· B)\C) as abbreviation for
(B\ (A\C)). In particular, (A· B)b is abbreviation for (B\ (A\ b)).

(b) Given a sequence of formulas α:

α = α1, α2, . . . αm−1, αm

we will conceive of the expression (α\C) as abbreviation for the following
product-free formula

(α\C) = (αm\ (αm−1\ (. . . \ (. . . \ (α2\ (α1\C))))))

In particular,

αb = (αm\ (αm−1\ (. . . \ (. . . \ (α2\ (α1\ b))))))

L-Models and R-Models for Lambek Calculus with Additives and Unit 381

Lemma 2. Given a sequence of formulas α and a sequence of formulas β, let
the following sequent be derivable in L+ε(\,∧,1), i.e., by the rules from Table 2:

(1 ∧ G), α, Δ � b (1)

Let gα,β be defined as:

gα,β = (β\αbb) = (β\ ((α\ b)\ b)) (2)

Then the sequent
(1 ∧ G ∧ gα,β), Δ, β � b (3)

is also (cut-free) derivable in L+ε(\,∧,1).

Proof. We develop a chain of derivable sequents:

(1 ∧ G), α, Δ � b

α, (1 ∧ G), Δ � b “ε · α ⇒ α · ε”
(1 ∧ G), Δ � (α\ b)

(1 ∧ G), Δ, ((α\ b)\ b) � b

(1 ∧ G), Δ, β, (β\ ((α\ b)\ b)) � b

(1 ∧ G), Δ, β, gα,β � b

(1 ∧ G), Δ, β, (1 ∧ gα,β) � b

(1 ∧ G), (1 ∧ gα,β), Δ, β � b “δ · ε ⇒ ε · δ”
(1 ∧ G ∧ gα,β), (1 ∧ G ∧ gα,β), Δ, β � b (4)

(1 ∧ G ∧ gα,β), Δ, β � b “ε · ε = ε”

which concludes the proof. �

Corollary 1. (“Post-ish productions”). Let ξ1, ξ2, . . . , ξn be a list of all
atomic propositions in question. Let Δ1 and Δ2 be sequences made from the
above atomic propositions (repetitions are allowed).
Let G be of the form

G ≡ G′ ∧
n∧

i=1

gξi,ξi ≡ G′ ∧
n∧

i=1

(ξi\ ξbb
i) (5)

Then a sequent of the form

(1 ∧ G), Δ1, Δ2 � b (6)

is cut-free derivable in L+ε(\,∧,1) (i.e., by the rules from Table 2) if and only
if the following sequent is cut-free derivable in L+ε(\,∧,1).

(1 ∧ G), Δ2, Δ1 � b (7)

Proof. By induction with the help of gξ,ξ of the “trivial” form, gξ,ξ = (ξ\ ξbb).

382 M. Kanovich et al.

3.1 From Computations to Derivations

Definition 2 (Machine encoding). Here e1, e2, p1, p2, l0, l1, l2, . . . are
distinct atomic propositions: e1 and e2 serve as “end markers,” p1 and p2 are
used to represent the counters c1 and c2, respectively, l0, l1, l2, . . . represent
“states.”

Taking advantage of the fact that the number of counters is no more than 2,
so that one and the same li is able of controlling the “left part” and the “right
part” simultaneously, we represent a configuration (Li, k1, k2) of our Minsky
machine in the state Li, in which the value of c1 is k1, and the value of c2 is k2,
as the following sequence of atomic propositions:

e1, p1, p1, . . . , p1︸ ︷︷ ︸
k1 times

, li, p2, p2, . . . , p2︸ ︷︷ ︸
k2 times

, e2 (8)

The final configuration (L0, 0, 0) is represented as

e1, l0, e2 (9)

Definition 3. The Minsky instructions are encoded as follows

(a) An instruction I of the form: “Li : inc(c1); goto Lj ;” will be encoded in the
“reverse” form as the product-free formula (see Definition 1)

AI = (li\ (p1· lj)bb) (10)

It is worth noting that AI = gα,β, where α = p1, lj, and β = li.
(b) An instruction I of the form “Li : inc(c2); goto Lj ;” will be encoded in

the “reverse” form as:
AI = (li\ (lj · p2)bb) (11)

(c) An instruction I of the form “Li : dec(c1); goto Lj ;” will be encoded in the
“reverse” form as:

AI = ((p1· li)\ lbb
j) (12)

(d) An instruction I of the form “Li : dec(c2); goto Lj ;” will be encoded in
the “reverse” form as:

AI = ((li· p2)\ lbb
j) (13)

(e) The most challenging issues to be addressed to is our encoding of the zero-
tests.
A zero-test with the c1 counter of the form “Li : if (c1 = 0) goto Lj ;” will
be encoded by

AI = ((e1· li)\ (e1· lj)bb) (14)

(f) A zero-test with the c2 counter of the form “Li : if (c2 = 0) goto Lj ;” will
be encoded by

AI = ((li· e2)\ (lj · e2)bb) (15)

L-Models and R-Models for Lambek Calculus with Additives and Unit 383

Lemma 3. A move by instruction of Case (a) from a configuration with Li to
the configuration with Lj is simulated as follows. Taking α = p1, lj, and β = li,
let G be of the form

G ≡ G′ ∧ AI ∧
n∧

i=1

gξi,ξi ≡ G′ ∧ gα,β ∧
n∧

i=1

(ξi\ ξbb
i) (16)

Let a sequent (representing a Minsky configuration) be cut-free derivable

(1 ∧ G), e1, p1, p1, . . . , p1︸ ︷︷ ︸
k1+1 times

, lj , p2, p2, . . . , p2︸ ︷︷ ︸
k2 times

, e2 � b (17)

Then the following sequent is also cut-free derivable in L+ε(\,∧,1).

(1 ∧ G), e1, p1, p1, . . . , p1︸ ︷︷ ︸
k1 times

, li, p2, p2, . . . , p2︸ ︷︷ ︸
k2 times

, e2 � b (18)

Proof. According to Corollary 1, the sequent (17) can be transformed into a
cut-free derivable sequent of the form

(1 ∧ G), p1, lj , p2, p2, . . . , p2︸ ︷︷ ︸
k2 times

, e2, e1, p1, p1, . . . , p1︸ ︷︷ ︸
k1 times

� b (19)

By Lemma 2, we get the following

(1 ∧ G), p2, p2, . . . , p2︸ ︷︷ ︸
k2 times

, e2, e1, p1, p1, . . . , p1︸ ︷︷ ︸
k1 times

, li � b (20)

and, applying Corollary 1 once more, we conclude with (18).

Lemma 4. A move by instruction of Case (e) from a configuration with Li to
the configuration with Lj is simulated as follows. (Here we have to answer to
the challenge of the zero-tests.) Taking α = e1, lj, and β = e1, li, let G be of the
form

G ≡ G′ ∧ AI ∧
n∧

i=1

gξi,ξi ≡ G′ ∧ gα,β ∧
n∧

i=1

(ξi\ ξbb
i) (21)

Let a sequent (representing a Minsky configuration) be cut-free derivable

(1 ∧ G), e1, lj , p2, p2, . . . , p2︸ ︷︷ ︸
k2 times

, e2 � b (22)

Then the following sequent is also cut-free derivable in L+ε(\,∧,1).

(1 ∧ G), e1, li, p2, p2, . . . , p2︸ ︷︷ ︸
k2 times

, e2 � b (23)

384 M. Kanovich et al.

Proof. By Lemma 2, applied to (22), we get the following

(1 ∧ G), p2, p2, . . . , p2︸ ︷︷ ︸
k2 times

, e2, e1, li � b (24)

and, applying Corollary 1, we conclude with (23). �

The other cases are considered in a similar fashion.

Corollary 2. With a configuration (Li, k1, k2), let M terminate in (L0, 0, 0).
Then the following sequent is cut-free derivable in L+ε(\,∧,1), i.e., by the rules
from Table 2:

(1 ∧ G), e1, p1, p1, . . . , p1︸ ︷︷ ︸
k1 times

, li, p2, p2, . . . , p2︸ ︷︷ ︸
k2 times

, e2 � b (25)

where G is of the form:

G = ((e1· l0· e2)\ b) ∧
n∧

i=1

gξi,ξi ∧
∧

over instructions I

AI (26)

Proof. By induction on the length of a terminating sequence of configurations. �

3.2 From Derivations to Computations

We prove that our encoding is faithful:

Lemma 5. Let the sequent (25) be derivable in L+ε(\,∧,1). Then, with the
configuration (Li, k1, k2), M terminates in (L0, 0, 0).

Proof. By interpretation with the help of L-models.
Each of the atomic propositions a, save b, is interpreted by “itself”:

w(a) = {a} (27)

Our specific b is interpreted as

w(b) = {xy |x and y are words such that yx ∈ BM } (28)

where the set of “terminating strings,” BM , is defined as

BM = { e1 p1p1 . . . p1︸ ︷︷ ︸
k1 times

li p2p2 . . . p2︸ ︷︷ ︸
k2 times

e2 | from (Li, k1, k2), M goes to (L0, 0, 0) }

(29)

L-Models and R-Models for Lambek Calculus with Additives and Unit 385

Lemma 6. w(1 ∧ G) = {ε}.
Proof. Assume AI be of the form (see Definition 3)

AI = (li\ (p1· lj)bb)

To show that ε ∈ w(AI), we prove that for any word x, the following holds:

p1lj · x ∈ w(b) =⇒ x · li ∈ w(b) (30)

If p1lj · x ∈ w(b) then the word x is of the form

x = p2p2 . . . p2︸ ︷︷ ︸
k2 times

e2e1 p1p1 . . . p1︸ ︷︷ ︸
k1 times

(31)

with M going from (Lj , k1 + 1, k2) to (L0, 0, 0). Then, by applying this instruc-
tion I, with (Li, k1, k2), M terminates in (L0, 0, 0). Hence

e1 p1p1 . . . p1︸ ︷︷ ︸
k1 times

li p2p2 . . . p2︸ ︷︷ ︸
k2 times

e2 ∈ BM

which results in the desired x · li ∈ w(b).
The other cases should be considered in a similar fashion. �

If the sequent (25) is derivable in L+ε(\,∧,1), then

w(1 ∧ G) · e1 p1p1 . . . p1︸ ︷︷ ︸
k1 times

li p2p2 . . . p2︸ ︷︷ ︸
k2 times

e2 ∈ w(b)

and, hence, with the configuration (Li, k1, k2), M terminates in (L0, 0, 0).
Now Theorem 2 follows from Corollary 1 and Lemma 5.

4 Concluding Remarks

In the present paper we have proved two main results.
First, the Lambek calculus extended with additive disjunction is not complete

w.r.t. L-models and R-models.
Second, any extension of the Lambek calculus with one implication, conjunc-

tion, and the multiplicative unit turns out to be undecidable, if we enrich this
calculus with the natural rules, representing the basic properties of the empty
word, ε, in L-models.

Namely, the “commuting” rules Lε and Rε are caused by that, for any word x
and set X, ε · x = x · ε, ∅ · X = X · ∅, whereas the “doubling” rule Dε is caused
by ε · ε = ε, ∅ · ∅ = ∅.

There are several questions left open. One open question is, whether the
Lambek calculus with product and both implications enriched with additive con-
junction is L-complete. Another open question is whether there is a recursively

386 M. Kanovich et al.

enumerable extension of the Lambek calculus with the unit, which is L-complete;
the same question for R-completeness. Notice that some of our rules motivated
by the L-sound behaviour of ε are not valid in R-models, where the unit is inter-
preted as the diagonal relation. More precisely, the “doubling” rule is valid in
R-models, while the “commuting” rule is not.

Acknowledgments. We would like to thank the anonymous referees for their helpful
comments. We also thank the participants of the Logical Problems in Computer Science
seminar at the Lomonosov Moscow State University for fruitful discussions and helpful
remarks.

Financial Support
The work of Max Kanovich and Andre Scedrov was supported by the Russian Science
Foundation under grant 17-11-01294 and performed at National Research University
Higher School of Economics, Moscow, Russia. The work of Stepan Kuznetsov was
supported by the Young Russian Mathematics award, by the grant MK-430.2019.1 of
the President of Russia, and by the Russian Foundation for Basic Research grant 18-01-
00822. Section 2 was contributed by Kuznetsov. Section 3 was contributed by Kanovich
and Scedrov. Sections 1 and 4 were contributed jointly and equally by all co-authors.

Appendix

In this Appendix, we give a complete proof of the fact that the sequent from
Theorem 1, namely

(((x / y) ∨ x) /((x / y) ∨ (x / z) ∨ x)) · ((x / y) ∨ x) · (((x / y) ∨ x) \((x / z) ∨ x))
� (x /(y ∨ z)) ∨ x,

is not derivable in L∨.
Our argument is based on brute-force proof search; however, some of the

sequents proven to be non-derivable get marked (numbered) and then referred
to, if they appear in the proof search again. This makes our proof a bit shorter.

Due to cut elimination, we seek only for a cut-free proof. We start with the
well-known fact that rules ·L, / R, \ R, and ∨L are invertible: derivability of their
conclusion yields derivability of their premise(s). Thus, in our proof search, if
such a rule is applicable, we can always suppose that it was applied immediately,
as the last (lowermost) rule in the derivation. Moreover, ∨L has two premises,
and they should be both derivable if so is the goal sequent. Hence, when trying
to prove non-derivability of the goal sequent we can choose one of the premises
of ∨L and prove that it is not derivable.

Now, we are ready to prove that the sequent of Theorem 1 is not derivable
in L∨. First, by invertibility of ·L we replace all ·’s by commas in the left-hand
side of the sequent:

((x / y) ∨ x) /((x / y) ∨ (x / z) ∨ x), (x / y) ∨ x, ((x / y) ∨ x) \((x / z) ∨ x)
� (x /(y ∨ z)) ∨ x

L-Models and R-Models for Lambek Calculus with Additives and Unit 387

Next, we apply invertibility of ∨L to (x / y)∨x. The sequent should be derivable
with both x / y and x in this place; we choose x / y:

((x / y) ∨ x) /((x / y) ∨ (x / z) ∨ x), x / y, ((x / y) ∨ x) \((x / z) ∨ x)
� (x /(y ∨ z)) ∨ x

The lowermost rule in the definition introduces one of the main connectives.
There are now 4 of them:

((x / y) ∨ x)
1

/ ((x / y) ∨ (x / z) ∨ x), x
2

/ y, ((x / y) ∨ x)
3

\ ((x / z) ∨ x)

� (x /(y ∨ z))
4∨ x

Now we consider all possible cases. The enumeration of cases is as follows: for
/ and \ connectives, the case number is of the form n–m, where n is the number
of the connective (as shown above) and m is the number of formulae that are
sent to Φ by the / L or \ L rule.2 For the 4th connective, ∨, we have cases 4a
and 4b, for choosing x /(y ∨ z) or x, respectively.

Case 1–1. In this case we have x / y � (x / y) ∨ (x / z) ∨ x (fine) and

(x / y) ∨ x, ((x / y) ∨ x) \((x / z) ∨ x) � (x /(y ∨ z)) ∨ x.

Invert ∨L and choose x / y. Now we have 3 options:

x
1

/ y, ((x / y) ∨ x)
2

\ ((x / z) ∨ x) � (x /(y ∨ z))
3∨ x.

Notice that here Φ in / L or \ L is determined in a unique way.
Subcase 1. We get

((x / y) ∨ x) \((x / z) ∨ x) � y (32)

as the left premise. This sequent is not derivable (\ cannot be decomposed, since
there is nothing to the left of the formula).

Subcase 2. Here we have x / y � (x / y) ∨ x (fine) as the left premise and

(x / z) ∨ x � (x /(y ∨ z)) ∨ x (33)

as the right one. We show that (33) is not derivable. Inverting ∨L and choosing
x / z yields x / z � (x /(y ∨ z)) ∨ x, and now either x / z � x /(y ∨ z) or x / z � x
should be derivable. The latter is trivially not. For the former, inverting / R and
∨L, choosing y, gives x / z, y � x, which is also not derivable.

Subcase 3a. Here we get

x / y, ((x / y) ∨ x) \((x / z) ∨ x) � x /(y ∨ z).

Inverting / R and ∨L, choosing y, gives

x/y, ((x / y) ∨ x)\((x / z) ∨ x), y � x.

2 Due to Lambek’s restriction, Φ should be non-empty, i.e., m > 0.

388 M. Kanovich et al.

Decomposing / with Φ = ((x / y) ∨ x) \((x / z) ∨ x) gives the left premise
((x / y) ∨ x) \((x / z) ∨ x) � y, which is already shown to be non-derivable (32).
Decomposing / with Φ = ((x / y) ∨ x) \((x / z) ∨ x), y gives a non-derivable right
premise x / y � x. Finally, decomposing \ gives (x / z) ∨ x, y � x, which is also
not derivable: inverting ∨L and choosing x gives x, y � x.

Subcase 3b. In this case we have

x/y, ((x / y) ∨ x)\((x / z) ∨ x) � x.

Decomposing / yields (32), which is not derivable. Decomposing \ yields ((x / z)∨
x � x, which is shown to be non-derivable by inverting ∨L and choosing x / z.

Case 1–2. The right premise now is

(x / y) ∨ x � (x /(y ∨ z)) ∨ x, (34)

which is shown to be non-derivable exactly as (33).
Case 2–1. The left premise here is (32), which is not derivable.
Case 3–1. Here the left premise is fine, and the right one is

((x / y) ∨ x) /((x / y) ∨ (x / z) ∨ x), (x / z) ∨ x � (x /(y ∨ z)) ∨ x.

Invert ∨L and choose x / z:

((x / y) ∨ x)/((x / y) ∨ (x / z) ∨ x), x/z � (x /(y ∨ z)) ∨ x.

Decomposing the left / yields (34), which is not derivable, as the right premise.
Decomposing the right / is impossible, since Φ should be non-empty. Finally,
decomposing ∨ on the right yields two subcases.

Subcase a.

((x / y) ∨ x) /((x / y) ∨ (x / z) ∨ x), x / z � x /(y ∨ z).

Inverting / R and ∨L, choosing y, yields

((x / y) ∨ x)/((x / y) ∨ (x / z) ∨ x), x/z, y � x. (35)

Decomposing the right / would yield y � z, which is not derivable. So the only
option is decomposing the left /. This gives two possible situations, depending
on how many formulae go to Φ. If Φ takes one formula, then the right premise
of / L is

(x / y) ∨ x, y � x.

The choice of x in inverting ∨L gives x, y � x, which is not derivable. If Φ takes
two formulae, then we have the right premise of the form

(x / y) ∨ x � x,

which is also not derivable, now by choosing x / y.

L-Models and R-Models for Lambek Calculus with Additives and Unit 389

Subcase b.

((x / y) ∨ x)/((x / y) ∨ (x / z) ∨ x), x / z � x.

Now we can only decompose the left /, which yields

(x / y) ∨ x, x / z � x

as the right premise. Both choices in inverting ∨L fail: neither x / y, x / z � x,
nor x, x / z � x is derivable.

Case 3–2. Here the right premise is (33), which is not derivable.
Case 4a. Here we again invert / R and ∨L, choosing y:

((x / y) ∨ x)
1

/ ((x / y) ∨ (x / z) ∨ x), x
2

/ y, ((x / y) ∨ x)
3

\ ((x / z) ∨ x), y � x

Again, as in the top-level analysis, we consider several cases.
Subcase 1–1. The right premise is of the form

(x / y) ∨ x, x / y, ((x / y) ∨ x) \((x / z) ∨ x), y � x

Invert ∨L choosing x:

x, x
1

/ y, ((x / y) ∨ x)
2

\ ((x / z) ∨ x), y � x

Here decomposition 1–1 yields non-derivable (32); 1–2 yields

((x / y) ∨ x) \((x / z) ∨ x), y � y, (36)

which is also not derivable (no decomposition possible). Decomposition 2–1 gives
right premise

x, (x / z) ∨ x, y � x,

and choosing x in the inversion of ∨L gives non-derivable x, x, y � x. Finally,
decomposition 2–2 gives

(x / z) ∨ x, y � x (37)

as the right premise, and choosing x also makes it non-derivable: x, y � x.
Subcase 1–2. This gives a non-derivable right premise (37).
Subcase 1–3. Here the right premise is (x / y)∨x � x, which is invalidated by

choosing x / y in the inversion of ∨L.
Subcases 2–1 and 2–2 give non-derivable left premises: (32) and (36) respec-

tively.
Subcase 3–1. Here we get

((x / y) ∨ x) /((x / y) ∨ (x / z) ∨ x), (x / z) ∨ x, y � x.

Inverting ∨L, choosing x / z, yields (35), which is not derivable.

390 M. Kanovich et al.

Subcase 3–2. Here the right premise is

(x / z) ∨ x, y � x,

which is not derivable (37).
Case 4b. In this case we have

((x / y) ∨ x)
1

/ ((x / y) ∨ (x / z) ∨ x), x
2

/ y, ((x / y) ∨ x)
3

\ ((x / z) ∨ x) � x.

Here we return to the beginning of the proof and consider the same cases 1–1,
1–2, 2–1, 3–1, and 3–2. Each of these cases decomposes / or \, with the same left
premise. The right premises are here are of the form Γ � x. We suppose that such
a sequent is derivable. Then, by application of ∨L, we get Γ � (x /(y ∨ z)) ∨ x.
Now we are exactly in the situation of one of the cases from 1–1 to 3–2, and can
use the argumentation above “as is.”

This finishes our case analysis and thus the proof of Theorem1.

References

1. Abrusci, V.M.: A comparison between Lambek syntactic calculus and intuitionistic
linear logic. Zeitschr. math. Logik Grundl. Math. (Math. Logic Q.) 36, 11–15 (1990)

2. Andréka, H., Mikulás, Sz.: Lambek calculus and its relational semantics: complete-
ness and incompleteness. J. Log. Lang. Inform. 3(1), 1–37 (1994)

3. Buszkowski, W.: Compatibility of a categorial grammar with an associated cate-
gory system. Zeitschr. math. Log. Grundl. Math. 28, 229–238 (1982)

4. Buszkowski, W.: On the complexity of the equational theory of relational action
algebras. In: Schmidt, R.A. (ed.) RelMiCS 2006. LNCS, vol. 4136, pp. 106–119.
Springer, Heidelberg (2006). https://doi.org/10.1007/11828563 7

5. Galatos, N., Jipsen, P., Kowalski, T., Ono, H.: Residuated lattices. An algebraic
Glimpse at Substructural Logics. Elsevier, Amsterdam (2007)

6. Girard, J.-Y.: Linear logic. Theor. Comput. Sci. 50(1), 1–101 (1987)
7. Jipsen, P., Tsinakis, C.: A survey of residuated lattices. In: Martinez, J. (ed.)

Ordered Algebraic Structures, pp. 19–56. Kluwer Academic Publishers, Dordrecht
(2002)

8. Jipsen, P.: From semirings to residuated Kleene lattices. Stud. Logica 76(2), 291–
303 (2004)

9. Kanovich, M.: The direct simulation of Minsky machines in linear logic. In: Girard,
J.-Y., Lafont, Y., Regnier, L. (eds.) Advances in Linear Logic, London Mathemat-
ical Society Lecture Notes, vol. 222, pp. 123–145. Cambridge University Press,
Cambridge (1995)

10. Kanovich, M., Kuznetsov, S., Nigam, V., Scedrov, A.: Subexponentials in non-
commutative linear logic. Math. Struct. Comput. Sci. (2018). https://doi.org/10.
1017/S0960129518000117. FirstView

11. Kanovich, M., Kuznetsov, S., Scedrov, A.: The complexity of multiplicative-
additive Lambek calculus: 25 years later. In: Iemhoff, R. et al. (eds.) WoLLIC
2019. LNCS, vol. 11541, pp. 356–372, Springer, Heidelberg (2019)

12. Kuznetsov, S.L.: Trivalent logics arising from L-models for the Lambek calculus
with constants. J. Appl. Non-Class. Log. 4(1–2), 132–137 (2014)

https://doi.org/10.1007/11828563_7
https://doi.org/10.1017/S0960129518000117
https://doi.org/10.1017/S0960129518000117

L-Models and R-Models for Lambek Calculus with Additives and Unit 391

13. Lafont, Y.: The undecidability of second order linear logic without exponentials.
J. Symb. Log. 61(2), 541–548 (1996)

14. Lafont, Y., Scedrov, A.: The undecidability of second order multiplicative linear
logic. Inf. Comput. 125(1), 46–51 (1996)

15. Lambek, J.: The mathematics of sentence structure. Amer. Math. Monthly 65,
154–170 (1958)

16. Lambek, J.: Deductive systems and categories II: standard constructions and closed
categories. In: Hilton, P. (ed.) Category Theory, Homology Theory and Their
Applications I. LNM, vol. 86, pp. 76–122. Springer, Berlin (1969)

17. Moot, R., Retoré, C.: The Logic of Categorial Grammars. A Deductive Account of
Natural Language Syntax and Semantics. LNCS, vol. 6850. Springer, Heidelberg
(2012)

18. Okada, M., Terui, K.: The finite model property for various fragments of intuition-
istic linear logic. J. Symb. Log. 64(2), 790–802 (1999)

19. Ono, H., Komori, Y.: Logics without contraction rule. J. Symb. Log. 50(1), 169–201
(1985)

20. Pentus, M.: The conjoinability relation in Lambek calculus and linear logic. J. Log.
Lang. Inform. 3(2), 121–140 (1994)

21. Pentus, M.: Models for the Lambek calculus. Ann. Pure Appl. Log. 75(1–2), 179–
213 (1995)

22. Wald, M., Dilworth, R.P.: Residuated lattices. Trans. Amer. Math. Soc. 45, 335–
354 (1939)

23. Wurm, C.: Language-theoretic and finite relation models for the (full) Lambek
calculus. J. Log. Lang. Inform. 26(2), 179–214 (2017)

Logics for First-Order Team Properties

Juha Kontinen and Fan Yang(B)

University of Helsinki, Helsinki, Finland
{juha.kontinen,fan.yang}@helsinki.fi

Abstract. In this paper, we introduce a logic based on team semantics,
called FOT, whose expressive power coincides with first-order logic both
on the level of sentences and (open) formulas, and we also show that a
sublogic of FOT, called FOT↓, captures exactly downward closed first-
order team properties. We axiomatize completely the logic FOT, and
also extend the known partial axiomatization of dependence logic to
dependence logic enriched with the logical constants in FOT↓.

Keywords: Dependence logic · Team semantics · First-order logic

1 Introduction

In this paper, we define logics based on team semantics for characterizing first-
order team properties, and we also study the axiomatization problem of these
logics.

Team semantics is a semantical framework originally introduced by Hodges
[21], and later systematically developed by Väänänen with the introduction of
dependence logic [31], which extends first-order logic with dependence atoms.
Other notable logics based on team semantics include independence logic intro-
duced by Grädel and Väänänen [16] (which is first-order logic extended with
independence atoms), and inclusion logic introduced by Galliani [11] (which is
first-order logic extended with inclusion atoms). In team semantics formulas are
evaluated in a model over sets of assignments for the free variables (called teams)
rather than single assignments as in the usual first-order logic. Teams X with the
domain {v1, . . . , vk} are essentially k-ary relations rel(X) = {(s(v1), . . . , s(vk)) |
s ∈ X}, and thus open formulas define team properties. In general, knowing
the expressive power of a logic for sentences (with no free variables) does not
automatically give a characterization for the expressive power of open formulas
of the same logic. Such a peculiar phenomenon has sparked several studies on
the expressive power of logics based on team semantics. In particular, while it
follows straightforwardly from the earlier known results of Henkin, Enderton,
Walkoe, and Hodges [8,20,22,32] that dependence logic (D) and independence
logic (Ind) are both equivalent to existential second-order logic (ESO) on the
level of sentences, it turns out that open formulas of D have different expressive
power from open formulas of Ind: The latter characterize all ESO team prop-
erties [11], whereas the former characterize only downward closed ESO team
c© Springer-Verlag GmbH Germany, part of Springer Nature 2019
R. Iemhoff et al. (Eds.): WoLLIC 2019, LNCS 11541, pp. 392–414, 2019.
https://doi.org/10.1007/978-3-662-59533-6_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-59533-6_24&domain=pdf
https://doi.org/10.1007/978-3-662-59533-6_24

Logics for First-Order Team Properties 393

properties [26]. Along the same line, a later breakthrough showed that inclusion
logic corresponds, over sentences, to positive greatest fixed-point logic [15], which
is strictly more expressive than first-order logic as well. In this paper we define a
team-based logic, called FOT, whose expressive power coincides with first-order
logic (FO) both on the level of sentences and open formulas, in the sense that
FOT-formulas characterize (modulo the empty team) exactly team properties
definable by first-order sentences with an extra relation symbol R. To the best
of the authors’ knowledge, no such logic has been defined previously.

In related previous work, it was shown in [10,13,28] that first-order logic
extended with constancy atoms =(x) and FO extended with classical negation
∼ are both equivalent to FO over sentences, whereas on the level of formulas they
are both strictly less expressive than FO, and thus fail to capture all first-order
team properties. It was also illustrated in [24] that a certain simple disjunction
of dependence atoms already defines an NP-complete team property. Therefore,
any logic based on team semantics having the disjunction ∨ inherited from first-
order logic and in which dependence atoms are expressible will be able to express
NP-complete team properties indicating that ∨ is too expressive connective to
be added to FOT. The logic FOT we define in this paper has weaker version
of disjunction \\/ and classical negation ∼̇ as well as weaker quantifiers ∀1,∃1.
We prove, in Sect. 3, that our logic FOT captures first-order team properties
(modulo the empty team) and we also show, as an application of Lyndon’s
Interpolation Theorem of first-order logic, that a sublogic of FOT, denoted as
FOT↓, captures exactly downward closed first-order team properties (modulo
the empty team).

In the second part of this paper study the axiomatization problem of our
logics FOT and FOT↓. In Sect. 4 we introduce a sound and complete system of
natural deduction for FOT that on one hand behaves like the system of FO to a
certain extend (in the sense of Lemma 12), while on the other hand incorporates
natural and interesting rules for inclusion atoms and their interaction with the
weak logical constants.

In Sect. 5, we apply our results to the problem of finding axiomatizations for
larger and larger fragments of dependence logic and its variants by extending
the known partial axiomatization of dependence logic to D enriched with the
logical constants in FOT↓ (denoted as D ⊕ FOT↓), which, by our result in
the first part of this paper, is expressively equivalent to D. While D is not
effectively axiomatizable (for it is equivalent to ESO), a complete axiomatization
for first-order consequences of D-sentences has been given in [27]. More precisely,
a system of natural deduction for dependence logic was introduced in [27] for
which the completeness theorem.

Γ � θ ⇐⇒ Γ |= θ (1)

holds whenever Γ is a set of D-sentences and θ is an FO-sentence. This result has
been, subsequently, generalized to e.g., allows also open formulas [25], and treats
also independence logic [17] or dependence logic with generalized quantifiers [9].
A recent new generalization given in [33] extends the known systems for D and

394 J. Kontinen and F. Yang

Ind to cover the case when θ in (1) is not necessarily an FO-formula but merely
a formula defining a first-order team property. However, since the problem of
whether a D- or Ind-formula defines a first-order team property is undecidable,
the extension of [33] is not effectively represented. Motivated by the results
of [33], we give an effective extension of (1), in which θ is a sentence of our
compositionally defined logic FOT↓ and Γ is a set of D ⊕ FOT↓-sentences.
Finding an effective axiomatization in the more general case of Ind enriched
with the logical constants in FOT is left as future work.

Apart from theoretical significance, our results also provide new logical tools
for the applications of team-based logics in other related areas; such applications
have been studied in recent years, e.g., in database theory [19], formal semantics
of natural language [4,5], Bayesian statistics [7,18], social choice theory [30],
and quantum information theory [23]. In particular, inquisitive logic [6] adopts,
independently, also the team semantics to provide formal semantics of questions
in natural language, and the first-order version of inquisitive logic can be viewed
as a team-based logic (in a slightly different setting) with the weak disjunction
\\/ and the weak quantifiers ∀1,∃1. The study we provide in this paper for the
expressive power and axiomatization problem of these weaker logical constants
will potentially help clarifying properties of first-order inquisitive logic. In the
recent formalization of Arrow’s Theorem [2] in social choice in independence
logic [30], the weak disjunction \\/ plays a natural role, and the completeness
theorem of the type (1) was crucial for deriving Arrow’s Theorem formally. The
axiomatization results we obtained in this paper are then expected to contribute
to the formal analysis of Arrow’s Theorem and other impossibility theorems in
social choice.

2 Preliminaries

We consider first-order vocabularies L with an equality symbol =. An L-term t is
defined inductively as usual, and formulas of First-order Logic (FO) are defined
as:

α :: = t1 = t2 | Rt1 . . . tk | ¬α | α ∧ α | α ∨ α | ∃xα | ∀xα.

Throughout the paper, we reserve the first Greek letters α, β, γ, δ for first-order
formulas. As usual, define α → β := ¬α ∨ β. We use the letters v, x, y, z, . . .
in sans-serif face to stand for sequences of variables, and sequences of terms
are denoted as t, t′, . . . We write Fv(α) for the set of free variables of α, and
write α(x) to indicate that the free variables of α are among x = 〈x1, . . . , xn〉. A
formula with no free variables is called a sentence.

For any L-model M , we use the same notation M also to denote its domain.
We write L(R) for the vocabulary expanded from L by adding a fresh relation
symbol R, and write (M,RM) for the L(R)-expansion of M in which the k-ary
relation symbol R is interpreted as RM ⊆ Mk. We sometimes write α(R) to
emphasize that the first-order formula α is in the vocabulary L(R) for some L.

We assume that the reader is familiar with the usual Tarskian semantics of
first-order logic. In this paper, we consider logics with team semantics. A team

Logics for First-Order Team Properties 395

X of M over a set V of variables is a set of assignments s : V → M , where V is
called the domain of X, denoted dom(X). Given a first-order formula α, given
any L-model M and any team X over V ⊇ Fv(α), we define the satisfaction
relation M |=X α inductively as follows:

– M |=X λ for λ a first-order atom iff for all s ∈ X, M |=s λ in the usual
sense.

– M |=X ¬α iff for all s ∈ X, M �|={s} α.
– M |=X α ∧ β iff M |=X α and M |=X β.
– M |=X α ∨ β iff there are Y,Z ⊆ X such that X = Y ∪ Z, M |=Y α and

M |=Z β.
– M |=X ∃xα iff M |=X(F/x) α for some F : X → ℘(M) \ {∅}, where

X(F/x) = {s(a/x) | s ∈ X, a ∈ F (s)}.
– M |=X ∀xα iff M |=X(M/x) α, where X(M/x) = {s(a/x) | s ∈ X, a ∈ M}.

It is easy to verify that first-order formulas have the following properties:

Empty team property: M |=∅ φ.
Downward closure: [M |=X φ and Y ⊆ X] =⇒ M |=Y φ.
Union closure: [M |=X φ and M |=Y φ] =⇒ M |=X∪Y φ.

Downward closure property together with union closure property are equivalent
to

Flatness property: M |=X φ ⇐⇒ M |={s} φ for all s ∈ X.

Logics based on team semantics do not in general have the flatness prop-
erty. For instance, dependence logic [31], which is first-order logic extended
with dependence atoms =(t1, . . . , tn, t), is downward closed but not flat; and
inclusion logic [11], which is first-order logic extended with inclusion atoms
t1, . . . , tn ⊆ t′1, . . . , t

′
n, is union closed but not flat. Especially, dependence atoms

and inclusion atoms are not flat. We recall their semantics below:

– M |=X =(t, t′) iff for all s, s′ ∈ X, s(t) = s′(t) implies s(t′) = s′(t′).
– M |=X t ⊆ t′ iff for all s ∈ X, there is s′ ∈ X such that s(t) = s′(t′).

In this paper, we study two (non-flat) logics based on team semantics, called
FOT and FOT↓, whose formulas are built from a different (yet similar) set of
connectives and quantifiers than those in first-order logic as follows:

(FOT) φ :: = λ | x ⊆ y | ∼̇φ | φ ∧ φ | φ \\/ φ | ∃1xφ | ∀1xφ

(FOT↓) φ :: = λ | ¬δ | φ ∧ φ | φ \\/ φ | ∃1xφ | ∀1xφ

where λ is an arbitrary first-order atomic formula, x and y are two sequences
of variables of the same length, and δ is a quantifier-free and disjunction-free
formula (i.e., δ :: =λ | ¬δ | δ ∧ δ). We call the logical constants ∼̇, \\/ ,∃1,∀1,
which were introduced in [1,26,33], weak classical negation, weak disjunction,
weak existential quantifier and weak universal quantifier, respectively. Their team
semantics are defined as:

396 J. Kontinen and F. Yang

– M |=X ∼̇φ iff X = ∅ or M �|=X φ.
– M |=X φ \\/ ψ iff M |=X φ or M |=X ψ.
– M |=X ∃1xφ iff M |=X(a/x) φ for some a ∈ M , where X(a/x) = {s(a/x) |

s∈X}.
– M |=X ∀1xφ iff M |=X(a/x) φ for all a ∈ M .

It is easy to verify that formulas of FOT and FOT↓ have the empty team
property, and FOT↓ formulas have the downward closure property.

In FOT we adopt the usual convention for classical implication, and write
φ � ψ for ∼̇ φ \\/ ψ and φ � ψ for (φ � ψ) ∧ (ψ � φ). With the help of the
classical implication �, one can easily express ¬δ for δ being quantifier-free and
disjunction free (or flat) as

¬δ(x) ≡ ∀1y(y ⊆ x � ∼̇ δ(y/x)).

Also, dependence atoms =(x, y) with variables as arguments are definable in
FOT:

=(x, y) ≡ ∀1u0v0u1v1((u0v0 ⊆ xy ∧ u1v1 ⊆ xy ∧ u0 = u1) � v0 = v1).

Recall that the constancy atom =(x) abbreviates the dependence atom =(〈 〉, x)
with the first argument being the empty sequence 〈 〉, and its semantics reduces
to

– M |=X =(x) iff for all s, s′ ∈ X, s(x) = s′(x).

Constancy atoms can be defined alternatively as =(x) ≡ ∃1y(y = x).

3 Characterizing First-Order Team Properties

In this section, we prove that FOT-formulas characterize first-order team prop-
erties (modulo the empty team), and FOT↓-formulas characterize downward
closed first-order team properties (modulo the empty team).

Let us first define formally the relevant notions. Observe that a team X
of an L-model M over a domain {v1, . . . , vk} can also be viewed as a k-ary
relation rel(X) ⊆ Mk defined as rel(X) = {(s(v1), . . . , s(vk)) | s ∈ X}. We call
a collection PM ⊆ ℘(Mk) of k-ary relations (or teams) of an L-model M a local
team property; and a (global) team property is a class P of local team properties
PM for all L-models M . A formula φ(v) of a logic based on team semantics clearly
defines a team property Pφ such that for all M , Pφ

M = {rel(X) | M |=X φ(v)}.
Clearly, the team properties Pφ defined by FOT↓-formulas φ are downward
closed, that is, A ⊆ B ∈ Pφ

M implies A ∈ Pφ
M for any M . Note also that while

the empty relation ∅ may not be contained in a team property PM , since all
team-based logics considered in this paper have the empty team property (i.e.,
∅ is in Pφ

M for all φ), we will confine ourselves only to those team properties P
with the empty relation ∅ contained in each local property PM .

Logics for First-Order Team Properties 397

We call a team property P first-order if there is a first-order L(R)-sentence
α(R) such that (M,A) |= α(R) iff A ∈ PM for all M and all nonempty relations
A. It is worth noting that we are using the terminology “definability” in two
different semantic settings: Even though every first-order team property P is
(trivially) defined by some first-order L(R)-sentence α(R) with an extra relation
symbol R (in the sense of the usual semantics of first-order logic), it does not
follow that each such first-order team property P is definable by some first-
order L-formula β(v) in the team semantics sense (i.e., P = Pβ

M). As a simple
illustration, in view of the flatness property of first-order formulas, the following
very simple team property (of the empty vocabulary L0)

P≤1 = {(M, rel(X)) | M an L0-model and |X| ≤ 1}

cannot be defined by any first-order formula β(v) of the empty vocabulary L0.
We now show that the team properties defined by formulas of FOT and

FOT↓ are first-order.

Theorem 1. For any L-formula φ(v1, . . . , vk) of FOT or FOT↓, there exists a
first-order L(R)-sentence γφ(R) with a fresh k-ary relation symbol R such that
for any L-model M and any team X over {v1, . . . , vk},

M |=X φ ⇐⇒ (M, rel(X)) |= γφ(R). (2)

Proof. We prove the theorem by proving a slightly more general claim: For any
subformula θ(v, x) of φ(v), there exists a first-order L(R)-formula γθ(R, x) such
that for all L-models M , teams X and sequences a of elements in M ,

M |=X(a/x) θ(v, x) ⇐⇒ (M, rel(X)) |= γθ(R, x)(a/x).

It is easy to verify that the formula γθ defined inductively as follows (and found
essentially in, e.g., [11,33]) will work:

– If θ(v, x) = δ(v, x) for some quantifier-free and disjunction-free first-order
formula δ, let γθ(R, x) = ∀u(Ru → δ(u/v, x)).

– If θ(v, x) = ρ(vx) ⊆ σ(vx), where ρ(vx) and σ(vx) are two sequences of vari-
ables from vx, let γθ(R, x) = ∀u∃w(

Ru → (Rw ∧ ρ(ux) = σ(wx))
)
.

– If θ(v, x) = θ0(v, x)∧ θ1(v, x) and does not belong to the case of the first item,
let γθ(R, x) = γθ0(R, x) ∧ γθ1(R, x).

– If θ(v, x) = θ0(v, x) \\/ θ1(v, x), let γθ(R, x) = γθ0(R, x) ∨ γθ1(R, x).
– If θ(v, x) = ∼̇ θ0(v, x), let γθ(R, x) = ∀u¬Ru ∨ ¬γθ0(R, x).
– If θ(v, x) = ∃1yθ0(v, yx), let γθ(R, x) = ∃yγθ0(R, yx).
– If θ(v, x) = ∀1yθ0(v, yx), let γθ(R, x) = ∀yγθ0(R, yx). ��

Next we prove the reverse direction of Theorem 1, from which we can conclude
that FOT-formulas characterize exactly first-order team properties (modulo the
empty team).

398 J. Kontinen and F. Yang

Theorem 2. For any first-order L(R)-sentence γ(R) with a k-ary relation sym-
bol R, there exists an L-formula φγ(v1, . . . , vk) of FOT such that for any L-
model M and any nonempty team X over {v1, . . . , vk},

M |=X φγ(v) ⇐⇒ (M, rel(X)) |= γ(R).

Moreover, if R occurs in γ(R) only negatively (i.e., every occurrence of R is in
the scope of an odd number of nested negation symbols), φγ can be also chosen
to be an FOT↓-formula.

Proof. We may assume w.l.o.g. that the first-order sentence γ(R) is in prenex
normal form Q1x1 . . . Qnxnθ(x), where Qi ∈ {∀,∃}, θ is quantifier-free and in
negation normal form (i.e., negations occur only in front of atomic formulas),
and every occurrence of R is of the form Rxi for some sequence xi of bound
variables (for Rt ≡ ∃y(y = t ∧ Ry)).

Define the translation φγ(v) := Q1
1x1 . . . Q1

nxnφθ(x, v) in FOT, where Q1
i =

∀1 if Qi = ∀, Q1
i = ∃1 if Qi = ∃, and φθ(x, v) is defined inductively as follows:

– if θ = λ(x) is an atomic formula in which R does not occur, then φλ(x, v) =
λ(x);

– if θ = Rxi, then φθ(x, v) = xi ⊆ v;
– if θ = ¬λ for some (atomic) formula λ, then φθ = ∼̇φλ;
– if θ = θ0 ∧ θ1, then φθ = φθ0 ∧ φθ1 ;
– if θ = θ0 ∨ θ1, then φθ = φθ0

\\/ φθ1 .

Next, we show by induction that for each quantifier-free formula θ(x), for any
nonempty team X over {v1, . . . , vk} and a1, . . . , an ∈ M ,

M |=X(a/x) φθ(x, v) ⇐⇒ (M, rel(X)) |= θ(a/x). (3)

If θ = λ(x) is an atomic formula in which R does not occur, then φλ = λ(x)
and

M |=X(a/x) λ(x) ⇐⇒ M |=X λ(x)(a/x)
⇐⇒ M |=s λ(x)(a/x) for all s ∈ X

⇐⇒ (M, rel(X)) |= λ(a/x). (since R does not occur in λ)

If θ = Rxi, then φθ = xi ⊆ v and

M |=X(a/x) xi ⊆ v ⇐⇒ For all s ∈ X(a/x), there exists s′ ∈ X(a/x) s.t. s(xi) = s′(v)

⇐⇒ ai ∈ rel(X) = {s′(v) | s′ ∈ X}
⇐⇒ (M, rel(X)) |= Rxi(a/x).

If θ = ¬λ(x), then

M |=X(a/x) ∼̇φλ(x, v) ⇐⇒ M �|=X(a/x) φλ(x, v) (since)X(a/x) �= ∅
⇐⇒ (M, rel(X)) �|= λ(a/x) (by induction hypothesis)
⇐⇒ (M, rel(X)) |= ¬λ(a/x).

Logics for First-Order Team Properties 399

The cases when θ = θ0(x)∨ θ1(x) and θ = θ0(x)∧ θ1(x) follow easily from the
induction hypothesis.

Finally, we have

M |=X Q1
1x1 . . . Q1

nxnφθ(x, v) ⇐⇒ Q1a1 ∈ M . . . Qnan ∈ M : M |=X(a/x) φθ(x, v)

⇐⇒ Q1a1 ∈ M . . . Qnan ∈ M : (M, rel(X)) |= θ(a/x)

⇐⇒ (M, rel(X)) |= Q1x1 . . . Qnxnθ(x).

This completes the proof for the translation into FOT. Now, if R occurs only
negatively in γ (thus also in θ), we can define alternatively the translation into
FOT↓ as: If θ = ¬Rxi, define φθ = ¬∧

j xij = vj ; if θ = α(x) is a literal in which
R does not occur, define φα = α(x). It is easy to verify that (3) still holds for
these two cases. ��

To conclude from the above theorems that FOT↓-formulas characterize
downward closed first-order team properties (modulo the empty team), we now
prove a characterization theorem for first-order sentences α(R) that define down-
ward closed team properties, by applying Lyndon’s Interpolation Theorem of
first-order logic, which we recall below.

Theorem 3 (Lyndon’s Interpolation [29]). Let α be a first-order L0-formula
and β a first-order L1-formula. If α |= β, then there is a first-order L0 ∩ L1-
formula δ such that α |= δ and δ |= β, and moreover a predicate symbol has a
positive (resp. negative) occurrence in δ only if it has a positive (resp. negative)
occurrence in both α and β.

Proposition 4. A first-order L(R)-sentence α(R) defines a downward closed
team property with respect to R if and only if there is a first-order L(R)-sentence
β(R) such that α ≡ β and R occurs only negatively in β.

Proof. “⇐=”: Suppose α is a first-order L(R)-sentence in which the k-ary predi-
cate R occurs only negatively, and we assume w.l.o.g. that α is in negation normal
form. We can show by induction that α is downwards closed with respect to R.
The only nontrivial case is when α = ¬Rt. In this case, for any model M , any
A ⊆ B ⊆ Mk, and any assignment s, (M,B) |=s ¬Rt =⇒ tM 〈s〉 /∈ B =⇒
tM 〈s〉 /∈ A =⇒ (M,A) |=s ¬Rt.

“=⇒”: Suppose that α is a first-order L(R)-sentence that is downwards closed
with respect to R. It is easy to see that α ≡ ∃S(α(S/R) ∧ ∀x(Rx → Sx)),
where α(S/R) is obtained from α by replacing every occurrence of R by S. Put
γ = α(S/R) ∧ ∀x(Rx → Sx), and note that R occurs only negatively in γ. Then,
γ |= α, since for any L(R,S)-model (M,A,B) such that (M,A,B) |= γ(R,S),
we have (M,A) |= ∃Sγ(R,S), which implies (M,A) |= α(R).

400 J. Kontinen and F. Yang

Now, by Lyndon’s Interpolation Theorem, there is a first-order L(R)-sentence
β such that γ(R,S) |= β(R) and β(R) |= α(R), and moreover, R occurs only
negatively in β. It remains to show α |= β. For any L(R)-model (M,A) such
that (M,A) |= α(R). Clearly the L(R,S)-model (M,A,A) satisfies (M,A,A) |=
α(S/R) ∧ ∀x(Rx → Sx). Since γ |= β, we have (M,A,A) |= β(R), thereby
(M,A) |= β(R). ��
Corollary 5. For any L-formula φ(v) of FOT↓, there exists a first-order L(R)-
sentence γφ(R) with R occurring only negatively such that (2) holds, and vice
versa. In particular, FOT↓-formulas characterize exactly downward closed first-
order team properties (modulo the empty team).

4 Axiomatizing FOT

In this section, we introduce a system of natural deduction for FOT, and prove
the soundness and completeness theorem. For the convenience of our proofs, we
present our system of natural deduction in sequent style.

Table 1. Introduction and elimination rules for the weak logical constants

Definition 6. The system of natural deduction for FOT consists of all rules for
identity, all rules in Table 1, and the following rules, where letters in sans-serif
face (such as x, y) stand for sequences of variables, c is a constant symbol, =(t)
is short for ∃1x(x = t), con(t) is short for

∧
i =(ti), and cx ⊆ vy is short for

∃1u(u = c ∧ ux ⊆ vy):

Logics for First-Order Team Properties 401

φ ∈ Γ
AssmI

Γ � φ

Γ, φ � ⊥ ∼̇ I
Γ � ∼̇ φ

Γ � φ Γ � ∼̇ φ ∼̇E
Γ � ψ

Γ, ∼̇ φ � ⊥
RAA

Γ � φ

conI
Γ � =(c)

Γ � con(t)
conI

Γ � =(ft)

⊆ Id
Γ � x ⊆ x

Γ � x1 . . . xn ⊆ y1 . . . yn ⊆Pro (a)
Γ � xi1 . . . xik ⊆ yi1 . . . yik

Γ � x ⊆ y Γ � y ⊆ z ⊆Tr
Γ � x ⊆ z

Γ � x ⊆ y Γ � α(y) ⊆Cmp (b)
Γ � α(x)

Γ � con(x) Γ � y ⊆ z ⊆Wcon
Γ � xy ⊆ xz

Γ � con(x) Γ � x ⊆ y ⊆W∃1
Γ � ∃1z(zx ⊆ wy)

Γ � ∼̇ x ⊆ y Γ, c ⊆ x, ∼̇ c ⊆ y � φ ∼̇⊆E (c)
Γ � φ

Γ � ∼̇ λ(x) Γ, c ⊆ x, ∼̇ λ(c) � φ ∼̇λE (c)
Γ � φ

Γ, ∃1zRz, φ(R) � ⊥ ⊆wIR (d)
Γ, φ(v) � ⊥

(a). {i1, . . . , ik} ⊆ {1, . . . , n} (b). α is ∼̇ and inclusion atom-free.
(c). c is a sequence of constant symbols that do not occur in Γ or φ, and λ is a
first-order atom. (d). Γ is a set of sentences in which R does not occur, φ(R) is an
inclusion atom-free sentence in which the relation symbol R occurs only in the form
Rx, and φ(v) is a formula with free variables v obtained from φ(R) by replacing
every Rx by x ⊆ v.

We write Γ �FOT φ or simply Γ � φ, if the sequent Γ � φ is derivable in the
system. Write φ �� ψ if φ � ψ and ψ � φ.

The weak disjunction \\/ admits the usual introduction and elimination rule,
and note that the usual elimination rule is not sound for the other disjunction
∨. The soundness of the introduction and elimination rule for ∃1 follows from
the equivalence ∃1x ≡ ∃x(=(x) ∧ φ), and the introduction and elimination rule
for ∀1 have a similar flavor. The rules ⊆ Id, ⊆Pro, ⊆Tr and ⊆Cmp for inclusion
atoms were introduced in [17], and the first three rules completely axiomatize the
implication problem of inclusion dependencies in database theory [3]. The two
weakening rules ⊆Wcon and ⊆W∃1 for inclusion atoms extend the length of an
inclusion atom. We leave it for the reader to verify that these rules for inclusion
atoms are also sound and derivable if constants are allowed to occur as arguments
in inclusion atoms (i.e., to allow inclusion atoms, e.g., of the form cx ⊆ vy). The
rules ∼̇ ⊆ E and ∼̇λE in a sense describe the meanings of a negated inclusion
atom ∼̇ x ⊆ y and a negated first-order atom λ(x) by providing a witness c. These

402 J. Kontinen and F. Yang

two rules are designed for deriving Proposition 9(ii)(v) (which is crucial for the
normal form lemma, Lemma 11, leading to the completeness theorem), and they
can also be formulated, in a more complex form, without any mention of the
constant symbols. The rule ⊆ wIR simulates the transformation in Theorem 2,
and it will be applied in the proof of the completeness theorem (Theorem13) in
a reverse manner with respect to a fresh relation symbol R, which is assumed to
be always available. How to simplify this rule ⊆wIR is left as future work.

Theorem 7 (Soundness). Γ �FOT φ =⇒ Γ |= φ.

Proof. We only verify the soundness of ∼̇⊆E and ⊆wIR.
∼̇⊆E: Suppose Γ |= ∼̇ x ⊆ y and Γ, c ⊆ x, ∼̇ c ⊆ y |= φ, and suppose that

for some L-model M and team X, M |=X Γ . Then we have M |=X ∼̇ x ⊆ y,
which implies that there exists s ∈ X such that for the L(c)-model (M, s(x)), we
have (M, s(x)) |=X c ⊆ x ∧ ∼̇ c ⊆ y. Thus, by the assumption, (M, s(x)) |=X φ,
which gives M |=X φ since c do not occur in φ.

⊆wIR: Suppose Γ, φ(v) �|= ⊥. Clearly, every FOT-formula can be turned into
a (semantically) equivalent formula in prenex and negation normal form (cf.
Proposition 8(ii)(iii)(iv)). We may then w.l.o.g. assume that φ(v) is in prenex
and negation normal form. Then there exist a model M and a nonempty team
X such that M |=X Γ and M |=X φ(v). By (the proof of) Theorem2,
(M, rel(X)) |= φ∗(R) in FO, where φ∗(R) is an FO-sentence obtained from
the inclusion atom-free FOT-sentence φ(R) by replacing every logical constant
in FOT by its counterpart in FO, i.e., by replacing ∼̇ by ¬, \\/ by ∨, ∀1 by
∀, and ∃1 by ∃. It is not hard to prove that (M, rel(X)) |={∅} φ(R) in FOT
follows . Since Γ is a set of sentences in which R does not occur, we also have
(M, rel(X)) |={∅} Γ . Also, since X �= ∅, (M, rel(X)) |= ∃1zRz. Hence, we
conclude Γ,∃1zRz, φ(R) �|= ⊥. ��

We collect the basic facts concerning the logical constants in FOT in the
following proposition. The proofs are standard and left to the reader.

Proposition 8. (i) Γ,∀1xφ � φ(c/x) and Γ, φ(c/x) � ∃1xφ.
(ii) Q1xφ∧ψ �� Q1x(φ∧ψ) and Q1xφ \\/ ψ �� Q1x(φ \\/ ψ), whenever x /∈ Fv(ψ).
(iii) Γ, φ � ψ iff Γ, ∼̇ ψ � ∼̇φ, and Γ, ∼̇ ∼̇ φ � φ.
(iv) ∼̇ ∀1xφ �� ∃1x ∼̇ φ, ∼̇ ∃1xφ �� ∀1x ∼̇φ, ∼̇(φ \\/ ψ) �� ∼̇φ ∧ ∼̇ψ and ∼̇(φ ∧

ψ) �� ∼̇ φ \\/ ∼̇ψ.

A routine inductive proof that uses Proposition 8(i) shows that the usual
Replacement Lemma holds for our logic, that is, if θ �� χ, then φ �� φ(χ/θ),
where φ(χ/θ) is obtained from φ by replacing an occurrence of θ in φ by χ.

It is easy to prove that Γ, φ � ψ iff Γ � φ � ψ. In the following proposition,
we list some derivable technical clauses that will be used in the proof of the
completeness theorem. See Appendix for the proof.

Logics for First-Order Team Properties 403

Proposition 9. Let ξ and η be two sequences of variables of the same length.

(i) xyξ ⊆ vvη �� x = y ∧ xξ ⊆ vη.
(ii) ξ ⊆ η �� ∀1x(x ⊆ ξ � x ⊆ η).
(iii) con(z) � wξ ⊆ zη � (w = z ∧ ξ ⊆ η).
(iv) con(x) � x ⊆ v � ∃1y(xy ⊆ vu).
(v) If λ(z) is a first-order atom, then λ(z) �� ∀1w(w ⊆ z � λ(w)).

To prove the completeness theorem, we also need the following three lemmas.
The first lemma emphasizes the fact that all variables quantified by the weak
quantifiers have constant values, the second lemma proves a normal form for
FOT-formulas, and the third lemma shows that derivations in the system of
FO can be simulated in the system of FOT.

Lemma 10. Let φ(v) = Q1xθ(x, v) be a formula in prenex and negation normal
form. Then φ �� φcon, where φcon is the formula obtained from φ by replacing
every (first-order or inclusion) literal μ(x, v) (i.e., an atom or negated atom) by
μ ∧ con(x).

Proof. By applying Proposition 8(ii), Q1I and Q1E, it is easy to prove that
Q1xθ(x, v) �� Q1x(θ(x, v) ∧ con(x)). Next we push the formula con(x) inside
the quantifier-free formula θ in negation normal form all the way to the
front of literals by using Replacement Lemma and the standard equivalences
(θ0 ∧ θ1) ∧ con(x) �� (θ0 ∧ con(x)) ∧ (θ1 ∧ con(x)) and (θ0 \\/ θ1) ∧ con(x) ��
(θ0 ∧ con(x)) \\/ (θ1 ∧ con(x)) . ��
Lemma 11. For every FOT-formula φ, we have φ(v) �� Q1xθ(x, v), where
θ(x, v) is a quantifier-free formula in negation normal form in which first-order
atoms are of the form λ(x), and inclusion atoms are of the form xi ⊆ v for some
variables xi from x.

Proof. We first turn φ(v) into an equivalent formula in prenex and negation
normal form by exhaustively applying Proposition 8(ii)(iii)(iv). Assume that the
bound variables of φ(v) are among x. By Lemma 10 we may also assume that
every literal μ(x, v) in φ is replaced by μ(x, v) ∧ con(x) (call such a formula a
formula in constant normal form). Observe that now in φ(v) a generic first-order
atom is of the form λ(x, v), and a generic inclusion atom is of the form ηξρσ ⊆
η′ξ′ρ′σ′ (modulo permutation by ⊆ Pro), where |η| = |η′| ≥ 0, |ξ| = |ξ′| ≥ 0,
|ρ| = |ρ′| ≥ 0 and |σ| = |σ′| ≥ 0,

– (η, η′) = (xi, xj) for some bound variables xi, xj from x;
– (ξ, ξ′) = (xi, vi) for some bound variables xi from x, and free variables vi from

v;
– (ρ, ρ′) = (vi, xi) for some free variables vi from v, and bound variables xi from
x;

– (σ, σ′) = (vi, vj) for some free variables vi, vj from v.

To obtain the required normal form we have to transform every (first-order or
inclusion) atom in φ in the required form. We achieve this in several steps.

404 J. Kontinen and F. Yang

In Step 1 of our transformation, we replace in φ(v) every inclusion atom
ηξviσ ⊆ η′ξ′xiσ

′ by vi = xi ∧ ηξσ ⊆ η′ξ′σ′. Note that by Proposition 9(iii), we
have

con(xi) ∧ ηξviσ ⊆ η′ξ′xiσ
′ �� con(xi) ∧ (vi = xi ∧ ηξσ ⊆ η′ξ′σ′)

and con(xi) ∧ ∼̇ ηξviσ ⊆ η′ξ′xiσ
′ �� con(xi) ∧ ∼̇(vi = xi ∧ ηξσ ⊆ η′ξ′σ′).

Hence, by Replacement Lemma, the resulting formula φ1(v) is provably equiv-
alent to φ. We assume further (here and also in the other steps) that φ1(v) is
turned into prenex, negation and constant normal form by applying Proposi-
tion 8(ii)(iii)(iv) and Lemma10.

In Step 2, we replace in φ1(v) every first-order atom λ(x, v) by ∀1yz(yz ⊆ xv �

λ(y, z)). By Proposition 9(v), the resulting formula φ2(v) is provably equivalent
to φ1(v). Up to now, every first-order atom in the formula is transformed to the
required form, and the steps afterwards will not generate first-order atoms in
non-normal form.

In Step 3, we apply Proposition 9(ii) to replace in φ2(v) every inclusion atom
ηξvi ⊆ η′ξ′vj by ∀1wyz(wyz ⊆ ηξvi � wyz ⊆ η′ξ′vj), and denote the resulting
formula by φ3(v). In Step 4, we apply Proposition 9(iii) to replace in φ3(v) every
inclusion atom xixk ⊆ xjvk by xi = xj ∧xk ⊆ vk, and denote the resulting formula
by φ4(v). Up to now every inclusion atom in the formula is transformed to the
form xi ⊆ vi, where xi are bound variables and vi are free variables in φ4(v). Yet,
vi may contain repetitions, and it may also be only a subsequence of v. Handling
these requires two additional steps.

In Step 5, we remove repetitions on the right side of the inclusion atoms, by
applying Proposition 9(i) to replace in φ4(v) every inclusion atom of the form
xixjxk ⊆ vivivj by xi = xj ∧xixk ⊆ vivj . Denote the resulting formula by φ5(v). In
Step 6, we extend the length of those shorter inclusion atoms. Assuming v = vivj ,
we apply Proposition 9(iv) to replace in φ5(v) every inclusion atom of the form
xi ⊆ vi by ∃1y(xiy ⊆ vivj). Denote the resulting formula by φ6(v).

As before we assume that φ6(v) is turned into prenex and negation normal
form, but now we shall apply Lemma10 in a reverse manner to remove the
added constancy atoms for each literal in φ6. Finally, the resulting provably
equivalent formula is in the required normal form. Note that our transformation
clearly terminates, because we have performed the steps in the transformation
in such an order that each step will not generate new formulas for which the
transformations in the previous steps apply. ��
Lemma 12. Let Δ∪{δ} be a set of FO-formulas whose free variables are among
x. If Δ �FO δ, then Δ∗(c/x) �FOT δ∗(c/x), where ∗ is the operation that replaces
every logical constant in FO by its counterpart in FOT, and c is a sequence of
fresh constant symbols. In particular, if Δ ∪ {δ} is a set of FO-sentences, then
Δ �FO δ implies Δ∗ �FOT δ∗.

Proof. See Appendix.

Logics for First-Order Team Properties 405

Finally, we are in a position to prove the completeness theorem of our system.

Theorem 13 (Completeness). Γ |= φ =⇒ Γ �FOT φ.

Proof. Since FOT (being expressively equivalent to FO) is compact, we may
assume that Γ is finite. Now, suppose Γ �FOT φ. By RAA we derive Γ, ∼̇ φ �FOT

⊥, which is equivalent to Q1xθ(x, v) �FOT ⊥, where ψ(v) = Q1xθ(x, v) is the
normal form of the formula

∧
Γ ∧ ∼̇ φ given by Lemma 11. By applying ⊆wIR

we obtain ∃1zRz, ψ(R) �FOT ⊥, where R is a fresh relation symbol, and ψ(R) is
the inclusion atom-free sentence obtained from ψ(v) by replacing every inclusion
atom xi ⊆ v by Rxi. It follows from Lemma 12 that ∃zRz, ψ∗(R) �FO ⊥, where ψ∗
is the FO-formula obtained from the FOT-formula ψ by replacing every logical
constant in FOT by its counterpart in FO. Now, by the completeness theorem
of FO, there exists a model (M,RM) such that RM �= ∅ and (M,RM) |= ψ∗(R).
It then follows from (the proof of) Theorem2 that M |=XR

ψ(v), where XR =
{s : {v1, . . . , vk} → M | s(v) ∈ RM} is the (nonempty) team associated with R.
Hence ψ �|= ⊥. ��

5 Axiomatizing FOT↓ Consequences in D ⊕ FOT↓

Let D⊕FOT↓ denote dependence logic (D) extended with the syntax of FOT↓,
that is, formulas of D ⊕ FOT↓ are defined by the grammar:

φ :: = λ | =(t1, . . . , tn, t) | ¬α | φ ∧ φ | φ ∨ φ | φ \\/ φ | ∃xφ | ∀xφ | ∃1xφ | ∀1xφ

where λ is a first-order atom and α is first-order. Recall that D captures down-
ward closed ESO team properties [26]. It can be easily seen from the proof
of Theorem 1 that enriching the syntax of D with the weak connective \\/ and
quantifiers ∃1,∀1 from FOT↓ does not increase the expressive power of the logic;
in other words, D⊕FOT↓ has the same expressive power as D. In this section,
we introduce a system of natural deduction for the logic D⊕FOT↓ by extending
the systems of [27] and [33] for D so that this new system is sound and complete
for FOT↓ consequences in the sense that

Γ |= θ ⇐⇒ Γ � θ

whenever Γ is a set of sentences in D ⊕ FOT↓, and θ is a sentence in FOT↓.
One crucial step in our argument for the completeness theorem involves an

application of the rule
Γ, ∼̇ φ � ⊥

RAA
Γ � φ

,

where, as in [33], the formula ∼̇φ should be read as a shorthand for the defining
formula of ∼̇ φ in the language of the logic in question. In our system this rule
will only be applied for φ being an FOT↓-sentence, and in this case ∼̇ φ ≡ ¬φ,
where ¬φ is the syntactic negation obtained by pushing negation to the very
front of first-order atoms in φ using the definitions: ¬¬λ := λ, ¬(ψ ∧ χ) :=
¬ψ \\/ ¬χ, ¬(ψ \\/ χ) := ¬ψ ∧ ¬χ, ¬∀1xψ := ∃1x¬ψ, ¬∃1xψ := ∀1x¬ψ.

406 J. Kontinen and F. Yang

Definition 14. The system of natural deduction for D ⊕ FOT↓ consists of
all rules of the system of D defined in [27] (including rules of identity, and
particularly those rules in Table 2), the rule RAA for φ in the rule being an
FOT↓-sentence, all rules in Table 1 from Sect. 4, and the following rules, where
α ranges over first-order formulas only:

Dom
Γ � ∃x∃y(x �= y)

Γ � φ ∨ ⊥ ⊥∨E
Γ � φ

Γ � con(x)
\\/wI

Γ � α(x) \\/ ¬α(x)
Γ � ∀1xα ∀1∀Trs
Γ � ∀xα

Γ � ∀1xφ ∨ ψ
∀1Ext

Γ � ∃yz∀1x((y = z ∧ φ) ∨ (y �= z ∧ ψ)) [x /∈ Fv(ψ), y, z are fresh]

Γ, con(x) � =(y)
=(·)wI

Γ � =(x, y)
Γ � =(x, y) Γ � con(x)

=(·)wE
Γ � =(y)

Table 2. Some rules from the system [27] of D

The axiom Dom stipulates that the domain of a model has at least two
elements, which we assume throughout this section. This domain assumption is
often postulated in the literature on dependence logic, especially because over
models with singleton domain all dependence atoms become trivially true (as
there is only one single assignment over such a domain). In our setting, the axiom
Dom is required for Proposition 16(v), which shows that the weak disjunction \\/

is definable in terms of the other disjunction ∨ in D (as long as the domain has
more than one elements). The rules ⊥∨E, \\/wI and ∀1∀Trs are evident. The
invertible rule ∀1Ext is an adaption of a similar rule in the system of D in [27],
and it is inspired also by a similar equivalence given in [14]. The rules =(·)wI
and =(·)wE for dependence atoms were introduced in [34] in the propositional
context.

Theorem 15 (Soundness). Γ � φ =⇒ Γ |= φ.

Proof. See Appendix. ��
In the following proposition we list some technical clauses that will be used in

our proof of the completeness theorem. See Appendix for the proof. In addition,
Proposition 8(i)(ii) are still derivable in the system of D ⊕ FOT↓ by the same
derivation.

Logics for First-Order Team Properties 407

Proposition 16. (i) � =(z, c), and in particular � =(c) for any constant sym-
bol c.

(ii) =(cx, y) �� =(x, y) for any constant symbol c.
(iii) ∀1vQu(φ ∧ =(vx, y)) �� ∀1vQu(φ ∧ =(x, y)) and ∀1vQu(φ ∧ =(x, v)) ��

∀1vQuφ.
(iv) ∃1xφ �� ∃x(=(x) ∧ φ).
(v) φ \\/ ψ �� ∃x∃y

(
=(x) ∧ =(y) ∧ (

(x = y ∧ φ) ∨ (x �= y ∧ ψ)
))

, where x, y are
fresh.

(vi) ∃x∀1yφ(x, y, z) � ∀1y∃x(=(z, x) ∧ φ) and ∀x∀1yφ �� ∀1y∀xφ.

Recall from [31] that every D-formula φ(z) is logically equivalent to a formula
of the form

∀x∃y(
∧

i∈I

=(xi, yi) ∧ α(x, y, z)
)
, (4)

where each xi are from x, each yi is from y, and α is first-order. In the next the-
orem we derive a similar normal form for formulas in D⊕FOT↓. See Appendix
for the proof.

Theorem 17. Every D⊕FOT↓-formula φ(z) is semantically equivalent to, and
provably implies a formula of the form

∀1v∀x∃y(
∧

i∈I

=(xi, yi) ∧ α(v, x, y, z)
)
, (5)

where each xi are from x, each yi is from y, and α is first-order.

Recall also from [27] that for every D-sentence ψ in normal form (4), there is
a first-order sentence Ψ of infinite length (called the game expression of ψ) such
that for any countable model M , M |= ψ iff M |= Ψ . Moreover, the infinitary
first-order sentence Ψ can be approximated by some first-order sentences Ψn

(n ∈ N) of finite length in the sense that for any recursively saturated (or finite)
model M , M |= Ψ iff M |= Ψn for all n ∈ N. Also, in the system of D one
derives ψ �D Ψn for any n ∈ N. Now, for any D ⊕ FOT↓-sentence φ = ∀1vψ of
the form (5) with ψ a D-sentence, it is not hard to show (by the same argument
as in [27]) that the game expression Φ∗ of φ can be defined as ∀vΨ , and the
n-approximation Φ∗

n can be defined as ∀vΨn for each n ∈ N. Next, as in [27], we
show that every n-approximation Φ∗

n can be derived from the formula φ.

Theorem 18. For any D ⊕ FOT↓-sentence φ and any n ∈ N, φ � Φ∗
n.

Proof. W.l.o.g. we may assume that the L-sentence φ = ∀1vψ(v) is of the form
(5) with ψ(v) a D-sentence. Let c be a sequence of new constant symbols. Observe
that the L(c)-sentence ψ(c/v) is in the normal form (4) for D-formulas. By the
result in [27] we have ψ(c/v) � Ψn(c/v). Thus, by Proposition 8(i), ∀1 I and
∀1∀Trs, we derive ∀1vψ(v) � ψ(c/v) � Ψn(c/v) � ∀1vΨn(v) � ∀vΨn(v), thereby
φ � Φ∗

n. ��
Theorem 19 (Completeness). For any set Γ of D⊕FOT↓-sentences and an
FOT↓-sentence θ, Γ |= θ =⇒ Γ � θ.

408 J. Kontinen and F. Yang

Proof. We only provide a sketch of the proof, which combines the arguments in
[27] and in [33]. Suppose Γ � θ. Then Γ, ∼̇ θ � ⊥ by RAA, where ∼̇ θ = ¬θ as
θ is an FOT↓-sentence. Let Γ ∗ be the set of all approximations of sentences in
Γ∪{¬θ}. By Theorem 18, we have Γ ∗

� ⊥. Since restricted to first-order formulas
our extended system (or the system of D as defined in [27]) has the same rules
as the deduction system of the usual first-order logic, we derive Γ ∗

�FO ⊥.
From this point on we follow exactly the argument in [27] to find a model M for
Γ ∪ {¬θ}. Thus, M |= Γ and M �|= θ. ��

Acknowledgements. The authors would like to thank two anonymous referees for
helpful suggestions concerning the presentation of this paper. Both authors were sup-
ported by grant 308712 of the Academy of Finland, and the second author was sup-
ported also by Research Funds of the University of Helsinki.

Appendix

Proof of Proposition 9

Item (i): The right to left direction follows from ⊆ Pro (applied to repeated
arguments in the inclusion atom) and rules of identity. For the left to right
direction, xyξ ⊆ vvη � xξ ⊆ vη follows from ⊆ Pro. Next, by ⊆ Pro, rules of
identity and ⊆Cmp we have xyξ ⊆ vvη � xy ⊆ vv � xy ⊆ vv ∧ v = v � x = y.

Item (ii): For the right to left direction, by Proposition 8(iii)(iv), it suffices
to show the contrapositive ∼̇ ξ ⊆ η � ∃1x(x ⊆ ξ ∧ ∼̇ x ⊆ η). For any sequence
c of fresh constant symbols, we have c ⊆ ξ, ∼̇ c ⊆ η � ∃1x(x ⊆ ξ ∧ ∼̇ x ⊆ η)
by Proposition 8(i). Then the desired clause follows from ∼̇ ⊆ E. For the other
direction, by ∀1 I, it suffices to show that ξ ⊆ η � c ⊆ ξ � c ⊆ η for c a
sequence of fresh constant symbols, which is further reduced to showing that
ξ ⊆ η, c ⊆ ξ � c ⊆ η. But this follows from ⊆Tr.

Item (iii): We first show con(z) � wξ ⊆ zη � (w = z ∧ ξ ⊆ η), which is
equivalent to con(z),wξ ⊆ zη � w = z ∧ ξ ⊆ η. By ⊆Wcon we have con(z),w ⊆
z � wz ⊆ zz. By item (i), wz ⊆ zz � w = z. Hence, by ⊆Pro the desired clause
follows. Next, we show con(z),w = z, ξ ⊆ η � wξ ⊆ zη. Again by ⊆Wcon we have
that ξ ⊆ η, con(z) � zξ ⊆ zη, and thus the desired clause follows from rules of
identity.

Item (iv): The direction con(x), x ⊆ v � ∃1y(xy ⊆ vu) is given by ⊆W∃1 , and
the other direction con(x),∃1y(xy ⊆ vu) � x ⊆ v follows easily from ⊆Pro.

Item (v): We first show the left to right direction, which, by ∀1 I, is reduced
to showing that λ(z) � c ⊆ z � λ(c) for c a sequence of fresh constant sym-
bols. But this follows from ⊆Cmp. Next, we show the other direction, which is
equivalent to the contrapositive ∼̇λ(z) � ∃1w(w ⊆ z∧∼̇ λ(w)). For any sequence
c of fresh constant symbols, we have c ⊆ z, ∼̇ λ(c) � ∃1w(w ⊆ z ∧ ∼̇λ(w)) by
Proposition 8(i). Then the desired clause follows from ∼̇λE. ��

Logics for First-Order Team Properties 409

Proof of Lemma12

We prove that Δ �FO δ implies Δ∗(c/x) �FOT δ∗(c/x) by induction on the depth
of the proof tree of Δ �FO δ. If the proof tree has depth 1, then either δ ∈ Δ
or δ is the identity axiom t = t. In both cases Δ∗(c/x) �FOT δ∗(c/x) trivially
follows in our system.

If the proof tree has depth > 1, and the last step of the derivation of Δ �FO δ
is an application of a rule for ¬ or ∧ or ∨ in FO, then we derive Δ∗(c/x) �FOT

δ∗(c/x) by applying the induction hypothesis and the corresponding (classical)
rules for ∼̇ or ∧ or \\/ in our system for FOT.

If the last step of the derivation of Δ �FO δ is an application of the ∃I rule:

...π
Δ � α(t/x) ∃I
Δ � ∃xα

where the variables and constant symbols occurring in the term t are, respec-
tively, among vy and d (denoted as t(vy, d)), then the corresponding derivation
in FOT is:

...π∗

Δ∗(c/y) � α∗(t(c′/v, c/y)/x, c/y)

conI
Δ∗(c/y) � con(c′cd)

conI
Δ∗(c/y) � =(t(c′/v, c/y, d))

∃1 I
Δ∗(c/y) � ∃1xα∗(x, c/y)

where π∗ is a derivation corresponding to π given by the induction hypothesis.
If the last step of the derivation of Δ �FO δ is an application of the ∃E rule:

...π1

Δ � ∃xα

...π2

Δ, α(v/x) � δ ∃E
Δ � δ

where v /∈ Fv(Δ ∪ {α, δ}), then the corresponding derivation in FOT is:

.

.

.π∗
1

Δ∗(c/y) � ∃1xα∗(x, c/y, c′/u)

.

.

.π∗
2

Δ∗(c/y), (α(v/x))∗(d/v, c/y, c′/u) � δ∗(c/y)
∃1E

Δ∗(c/y) � δ∗(c/y)

where π∗
1 , π∗

2 are, respectively, derivations corresponding to π1, π2 given by the
induction hypothesis, and d is a fresh constant symbol.

If the last step of the derivation of Δ �FO δ is an application of the ∀I rule:

...π
Δ � α(v/x) ∀I
Δ � ∀xα

where v /∈ Fv(Δ ∪ {α}), then the corresponding derivation in FOT is:

410 J. Kontinen and F. Yang

...π∗

Δ∗(c/y) � (α(v/x))∗(d/v, c/y)
∀1 I

Δ∗(c/y) � ∀1xα∗(x, c/y)

If the last step of the derivation of Δ �FO δ is an application of the ∀E rule:

...π
Δ � ∀xα ∀E

Δ � α(t/x)

where t = t(vy, d), then the corresponding derivation in FOT is:

...π∗

Δ∗(c/y) � ∀1xα∗(x, c/y)

conI
Δ∗(c/y) � con(c′cd)

conI
Δ∗(c/y) � =(t(c′/v, c/y, d))

∀1E
Δ∗(c/y) � α∗(t(c′/v, c/y)/x, c/y)

��

Proof of Theorem15 (Soundness Theorem of D ⊕ FOT↓)

We only verify the soundness of ∀1Ext, by showing that ∀1xφ∨ψ ≡ ∃yz∀1x((y =
z∧φ)∨(y �= z∧ψ)). For the left to right direction, suppose M |=X ∀1xφ∨ψ, and
we may w.l.o.g. also assume that x, y, z /∈ dom(X). Then there exist Y,Z ⊆ X
such that X = Y ∪ Z, M |=Y ∀1xφ and M |=Z ψ. Let a, b be two distinct
elements in M . Define F : X → ℘(M) \ {∅} as F (s) = {a}, and define G :
X(F/y) → M by taking

a ∈ G(s) ⇐⇒ s � dom(X) ∈ Y, and b ∈ G(s) ⇐⇒ s � dom(X) ∈ Z.

Putting X ′ = X(F/y)(G/z) we show that M |=X′(c/x) (y = z ∧φ)∨ (y �= z ∧ψ)
for arbitrary c ∈ M . Define Y ′ = {s ∈ X ′(c/x) | s(z) = a} and Z ′ = X ′(c/x)\Y ′.
Clearly, Y ′ ∪ Z ′ = X ′(c/x), M |=Y ′ y = z and M |=Z′ y �= z. Since M |=Z ψ
and x, y, z /∈ dom(Z), we have M |=Z′ ψ. Also, since M |=Y ∀xφ, we have
M |=Y (c/x) φ, which implies M |=Y ′ φ.

For the right to left direction, suppose M |=X ∃yz∀1x((y = z ∧φ)∨ (y �= z ∧
ψ)). Then there exist appropriate functions F,G s.t. for any a ∈ M , there exists
Ya ⊆ X(F/y)(G/z)(a/x) = X ′(a/x) s.t. M |=Ya

y = z ∧ φ and M |=X′(a/x) \Ya

y �= z ∧ ψ.
Claim: For any a, b ∈ M , Ya � dom(X) = Yb � dom(X). Indeed, for any

s ∈ Ya ⊆ X ′(a/x), we have s(y) = s(z). For s′ = s(b/x) ∈ X ′(b/x), we must
also have s′(y) = s′(z), thus s′ ∈ Yb. Hence, s � dom(X) = s′ � dom(X) ∈ Yb �
dom(X). This shows that Ya � dom(X) ⊆ Yb � dom(X). The other inclusion is
proved similarly.

Now, to show M |=X ∀1xφ ∨ ψ, let Y = Ya � dom(X) and Z = X \ Y for
any a ∈ M . Since M |=X′(a/x)\Ya

ψ and Z = X \ (Ya � dom(X)) = (X ′(a/x) \
Ya) � dom(X), we obtain M |=Z ψ. Meanwhile, for any b ∈ M , by the claim,
Y = Yb � dom(X). Since M |=Yb

φ and Yb � (dom(X) ∪ {x}) = Y (b/x), we
obtain M |=Y (b/x) φ. ��

Logics for First-Order Team Properties 411

Proof of Proposition 16

Item (i): By rules of identity we have � c = c ∧ z = z, which implies � ∃x∀y(x =
c ∧ z = z). Now, by =(·)I we derive � ∀y∃x(=(z, x) ∧ x = c ∧ z = z), which yields
� =(z, c).

Item (ii): For the direction =(cx, y) � =(x, y), by applying =(·)wE we derive
that =(cx, y),=(c), con(x) � =(y). Since � =(c) by item (i), we conclude by =(·)wI
that =(cx, y) � =(x, y). The other direction is derived similarly by applying
=(·)wE, =(·)wI and item (i).

Items (iii): By Proposition 8(i) and ∀1 I it suffices to show Qu(φ(c/v) ∧
=(cx, y)) �� Quφ(c/v)∧=(x, y) and Qu(φ(c/v)∧=(x, c)) �� Quφ(c/v). But these
follow from items (i) and (ii).

Item (iv): The direction ∃x(=(x) ∧ φ) � ∃1xφ follows easily from ∃E and ∃1 I.
For the other direction, by Proposition 16(i), we have ∃1xφ � φ(c/x). Moreover,
by rules of identity, � =(c) and ∃I, we have φ(c/x) � ∃x(x = c ∧ =(c) ∧ φ(c/x)) �
∃x(=(x) ∧ φ). Putting these together we obtain ∃1xφ � ∃x(=(x) ∧ φ).

Item (v): We first prove the right to left direction. By ∃E it suffices to prove
that =(x),=(y), (x = y ∧ φ) ∨ (x �= y ∧ ψ) � φ \\/ ψ. We first derive =(x),=(y) �
x = y \\/ x �= y by \\/wI. Next, by applying ∨Sub, ⊥∨E and \\/I, we derive

x = y, (x = y ∧ φ) ∨ (x �= y ∧ ψ) � φ ∨ (x = y ∧ x �= y) � φ ∨ ⊥ � φ � φ \\/ ψ

and similarly x �= y, (x = y ∧ φ) ∨ (x �= y ∧ ψ) � φ \\/ ψ. Hence, we conclude by
\\/E that x = y \\/ x �= y, (x = y∧φ)∨(x �= y∧ψ) � φ \\/ ψ, from which the desired
clause follows.

For the left to right direction, by \\/ I, it suffices to prove that the right
formula is derivable from both φ and ψ. We now first derive the right hand side
from φ. By the rules of identity, � ∃x∀z(x = x) for some fresh variables x, z.
Thus, we conclude by applying =(·)I that � ∀z∃x(=(x) ∧ x = x), which reduces
to � ∃x=(x). Next, we derive by rules of identity that � ∃x(=(x) ∧ ∃y(x = y))
and thus � ∃x∃y(=(x) ∧ =(y) ∧ x = y). Lastly, we conclude by the introduction
rule of ∨ that

φ � ∃x∃y(=(x)∧=(y) ∧ x = y ∧ φ) � ∃x∃y(=(x)∧=(y) ∧ ((x = y ∧ φ) ∨ (x �= y ∧ ψ))).

Similarly, to derive the right hand side from ψ, first note that by Dom we have
� ∃x∃y(x �= y) for some fresh variables x, y, which then yields � ∃x∀z∃y(x �=
y). Then, by a similar argument as above, we derive by applying =(·)I that
� ∃x(=(x) ∧ ∃y(x �= y)), and that � ∃y(=(y) ∧ ∃x(=(x) ∧ (x �= y))), from which
the required clause follows.

Item (vi): ∀x∀1yφ �� ∀1y∀xφ follows easily from Proposition 8(i). For the
other clause, by ∃E, it suffices to prove ∀1yφ(x, y, z) � ∀1y∃x(=(z, x) ∧ φ).
We derive by Proposition 8(i) and the rules for ∀,∃ that ∀1yφ(x, y, z) �
φ(x, c, z) � ∃x∀wφ(x, c, z) for some fresh constant symbol c and variable w.
Moreover, by =(·)I we derive that ∃x∀wφ(x, c, z) � ∀w∃x(=(z, x) ∧ φ(x, c, z)) �
∃x(=(z, x) ∧ φ(x, c, z)). Putting these together and by applying ∀1I we conclude
that ∀1yφ(x, y, z) � ∃x(=(z, x) ∧ φ(x, c, z)) � ∀1y∃x(=(z, x) ∧ φ). ��

412 J. Kontinen and F. Yang

Proof of Theorem17

We adapt the argument for the normal form proof in [27]. We give the semantic
and syntactic proof at the same time, and the semantic equivalence clearly fol-
lows from the syntactic equivalence (by soundness theorem) whenever the latter
is available in the following steps of the proof. First, rewrite every occurrence of
θ \\/ χ and ∃1xη in φ using the equivalent formulas with logical constants from
D given by Proposition 16(iv)(v), and denote the resulting provably equivalent
formula (which is \\/ and ∃1-free) by φ′. Next, turn the formula φ′ into a for-
mula Q1x . . . Qnθ in prenex normal form, where each Qi ∈ {∀,∃,∀1} and θ is
quantifier-free. This step is done, as in [27], by induction on the complexity
of the formula φ′, where the inductive steps with ∀1 follow from the provable
equivalences given by Proposition 8(ii) and the rule ∀1Ext.

Now, since θ(x) is a formula of D, we proceed in the same way as in [27] to
turn θ into a formula of the form ∀y∃z(∧i∈I di(x, y, z)∧α(x, y, z)) = ∀y∃zθ′, where
each di is a dependence atom and α is first-order. The formula θ is semantically
equivalent to ∀y∃zθ′, and in the deduction system of D we can prove (as is
done in [27]) that θ � ∀y∃zθ′. Thus, altogether we now have φ ≡ Qx∀y∃zθ′ and
φ � Qx∀y∃zθ′.

To turn the formula Qx∀y∃zθ′ finally into the required normal form (5), we
swap the order of the quantifiers using an inductive argument similar to that in
[27], where the inductive step for ∀1 is taken care of in the deduction system by
applying Proposition 16(vi), and on the semantic side by using the equivalences
∃x∀1yψ(x, y, z) ≡ ∀1y∃x(=(z, x) ∧ ψ) and ∀x∀1yψ ≡ ∀1y∀xψ (we leave it for the
reader to verify). To conclude the proof, we apply Proposition 16(iii) to remove
variables quantified by ∀1 in dependence atoms di(x, y, z) in the first conjunct of
the quantifier-free formula. ��

References

1. Abramsky, S., Väänänen, J.: From IF to BI. Synthese 167(2), 207–230 (2009)
2. Arrow, K.: A difficulty in the concept of social welfare. J. Polit. Econ. 58(4), 328–

346 (1950)
3. Casanova, M.A., Fagin, R., Papadimitriou, C.H.: Inclusion dependencies and their

interaction with functional dependencies. J. Comp. System Sci. 28(1), 29–59 (1984)
4. Ciardelli, I.: Dependency as question entailment. In: Abramsky, S., Kontinen, J.,

Väänänen, J., Vollmer, H. (eds.) Dependence Logic, pp. 129–181. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-31803-5 8

5. Ciardelli, I., Iemhoff, R., Yang, F.: Questions and dependency in intuitionistic logic.
Notre Dame J. Formal Logic (2019, to appear). arXiv:1704.01866

6. Ciardelli, I., Roelofsen, F.: Inquisitive logic. J. Philos. Logic 40(1), 55–94 (2011)
7. Corander, J., Hyttinen, A., Kontinen, J., Pensar, J., Väänänen, J.: A logical app-

roach to context-specific independence. Ann. Pure Appl. Logic (2019). https://doi.
org/10.1016/j.apal.2019.04.004

8. Enderton, H.: Finite partially-ordered quantifiers. Zeitschrift fur Mathematische
Logik und Grundlagen der Mathematik 16, 393–397 (1970)

https://doi.org/10.1007/978-3-319-31803-5_8
http://arxiv.org/abs/1704.01866
https://doi.org/10.1016/j.apal.2019.04.004
https://doi.org/10.1016/j.apal.2019.04.004

Logics for First-Order Team Properties 413

9. Engström, F., Kontinen, J., Väänänen, J.: Dependence logic with generalized quan-
tifiers: axiomatizations. J. Comput. Syst. Sci. 88, 90–102 (2017)

10. Galliani, P.: The dynamics of imperfect information. Ph.D. thesis, University of
Amsterdam (2012)

11. Galliani, P.: Inclusion and exclusion in team semantics: on some logics of imperfect
information. Ann. Pure Appl. Logic 163(1), 68–84 (2012)

12. Galliani, P.: Epistemic operators in dependence logic. Stud. Logica 101(2), 367–397
(2013)

13. Galliani, P.: On strongly first-order dependencies. In: Abramsky, S., Kontinen, J.,
Väänänen, J., Vollmer, H. (eds.) Dependence Logic, pp. 53–71. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-31803-5 4

14. Galliani, P., Hannula, M., Kontinen, J.: Hierarchies in independence logic. In Pro-
ceedings of Computer Science Logic 2013, vol. 23 of LIPIcs, pp. 263–280 (2013)

15. Galliani, P., Hella, L.: Inclusion logic and fixed point logic. In: Computer Science
Logic 2013, vol. 23 of LIPIcs, pp. 281–295 (2013)

16. Grädel, E., Väänänen, J.: Dependence and independence. Stud. Logica 101(2),
399–410 (2013)

17. Hannula, M.: Axiomatizing first-order consequences in independence logic. Ann.
Pure Appl. Logic 166(1), 61–91 (2015)

18. Hannula, M., Hirvonen, Å., Kontinen, J., Kulikov, V., Virtema, J.: Facets of dis-
tribution identities in probabilistic team semantics. CoRR abs/1812.05873 (2018)

19. Hannula, M., Kontinen, J.: A finite axiomatization of conditional independence
and inclusion dependencies. Inf. Comput. 249, 121–137 (2016)

20. Henkin, L.: Some remarks on infinitely long formulas. In: Proceedings Symposium
Foundations of Mathematics Infinitistic Methods, Warsaw, Pergamon, pp. 167–183
(1961)

21. Hodges, W.: Compositional semantics for a language of imperfect information.
Logic J. IGPL 5, 539–563 (1997)

22. Hodges, W.: Some strange quantifiers. In: Mycielski, J., Rozenberg, G., Salomaa,
A. (eds.) Structures in Logic and Computer Science. LNCS, vol. 1261, pp. 51–65.
Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-63246-8 4

23. Hyttinen, T., Paolini, G., Väänänen, J.: Quantum team logic and bell’s inequalities.
Rev. Symbolic Logic 8(4), 722–742 (2015)

24. Kontinen, J.: Coherence and complexity of quantifier-free dependence logic formu-
las. Stud. Logica 101(2), 267–291 (2013)

25. Kontinen, J.: On natural deduction in dependence logic. In: Logic Without Borders,
pp. 297–304. De Gruyter (2015)

26. Kontinen, J., Väänänen, J.: On definability in dependence logic. J. Logic Lang.
Inf. 18(3), 317–332 (2009)

27. Kontinen, J., Väänänen, J.: Axiomatizing first-order consequences in dependence
logic. Ann. Pure Appl. Logic 164, 11 (2013)

28. Lück, M.: Axiomatizations of team logics. Ann. Pure Appl. Logic 169(9), 928–969
(2018)

29. Lyndon, R.C.: An interpolation theorem in the predicate calculus. Pacific J. Math.
9(1), 129–142 (1959)

30. Pacuit, E., Yang, F.: Dependence and independence in social choice: arrow’s the-
orem. In: Abramsky, S., Kontinen, J., Väänänen, J. (eds.) Dependence Logic, pp.
235–260. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31803-5 11

31. Väänänen, J.: Dependence Logic: A New Approach to Independence Friendly
Logic. Cambridge University Press, Cambridge (2007)

https://doi.org/10.1007/978-3-319-31803-5_4
https://doi.org/10.1007/3-540-63246-8_4
https://doi.org/10.1007/978-3-319-31803-5_11

414 J. Kontinen and F. Yang

32. Walkoe, W.: Finite partially-ordered quantification. J. Symbolic Logic 35, 535–555
(1970)

33. Yang, F.: Negation and partial axiomatizations of dependence and independence
logic revisited. Ann. Pure Appl. Logic (2019). https://doi.org/10.1016/j.apal.2019.
04.010

34. Yang, F., Väänänen, J.: Propositional logics of dependence. Ann. Pure Appl. Logic
167(7), 557–589 (2016)

https://doi.org/10.1016/j.apal.2019.04.010
https://doi.org/10.1016/j.apal.2019.04.010

Modal Auxiliaries and Negation:
A Type-Logical Account

Yusuke Kubota1(B) and Robert Levine2

1 National Institute for Japanese Language and Linguistics,
Tachikawa, Japan

kubota@ninjal.ac.jp
2 Ohio State University, Columbus, USA

Abstract. This paper proposes an analysis of modal auxiliaries in
English in Type-Logical Grammar. The proposed analysis captures the
scopal interactions between different types of modal auxiliaries and nega-
tion by incorporating the key analytic idea of Iatridou andZeijlstra [6], who
classify English modal auxiliaries into PPI and NPI types. In order to tech-
nically implement this analysis, we build on Kubota and Levine’s [8,10]
treatment of modal auxiliaries as higher-order operators that take scope
at the clausal level. The proposed extension of the Kubota/Levine anal-
ysis is shown to have several interesting consequences, including a formal
derivability relation from the higher-order entry for auxiliaries to a lower-
order VP/VP entry traditionally recognized in categorial grammar (CG)
research. The systematic analysis of the scopal properties of auxiliaries and
the somewhat more abstract meta-comparison between ‘transformational’
and ‘non-transformational’ analytic ideas that become possible in a type-
logical setup highlight the value of taking a logical perspective on the syn-
tax of natural language embodied in Type-Logical Grammar research.

Keywords: Modal auxiliary · Negation · Scope ·
Type-logical grammar

1 Introduction

Modal auxiliaries in English exhibit a somewhat puzzling patterns in terms of
their scopal interactions with negation. So far as we are aware, this particular
empirical domain has not been explored in detail in the literature of Type-
Logical Grammar (TLG). In this paper, we show that by extending the analysis
of auxiliary verbs as semantically higher-order operators proposed by Kubota
and Levine [8,10], a relatively simple analysis of the modal-negation scopal inter-
action becomes available.

The proposed analysis builds on the classification of English modal auxil-
iaries into two different types based on the polarity distinction proposed by
Iatridou and Zeijlstra [6], and can be thought of as a precise logical formal-
ization of the core ideas behind the reconstruction-based analysis by Iatridou
and Zeijlstra in minimalist syntax. We show that our logical reconceptualization
of Iatridou and Zeijlstra’s configurational analysis has several interesting con-
sequences. In particular, our type-logical account illuminates the relationship
c© Springer-Verlag GmbH Germany, part of Springer Nature 2019
R. Iemhoff et al. (Eds.): WoLLIC 2019, LNCS 11541, pp. 415–432, 2019.
https://doi.org/10.1007/978-3-662-59533-6_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-59533-6_25&domain=pdf
https://doi.org/10.1007/978-3-662-59533-6_25

416 Y. Kubota and R. Levine

between the configurational analysis standard in the mainstream syntax and the
lexicalist alternative familiar in the G/HPSG and CG literature more clearly
than previous proposals in the respective traditions of generative grammar. We
formulate our analysis in Hybrid Type-Logical Grammar (Hybrid TLG) [8,9],
but the main results of the present paper are largely neutral to the particular
variant of TLG, and can be translated to other variants of CG.1

2 Modals and Negation: The Empirical Landscape

It has long been noted that the scopal relationship between modals and negation
is essentially unpredictable, though there are certain semantic aspects of modal
operators which appear to be relevant.

(1) a. John should not criticize Mary. (� ¬criticize(m)(j))
b. John need not criticize Mary. (¬� criticize(m)(j))
c. John may not criticize Mary. (♦¬criticize(m)(j), ¬♦ criticize(m)(j))

It is generally agreed that these variations in scope behavior do not admit of
any purely semantic solution following from the meanings of the modals: both
should and need denote (different flavors of) universal quantification over the
relevant possible worlds, but have opposite scoping vis-à-vis negation. Similarly,
may and might are both arguably variants of existential quantification over pos-
sible worlds, but the former can scope either way so far as negation is concerned,
whereas the latter is necessarily wide-scoping. The following table lists the rele-
vant patterns for the major familiar modal auxiliaries:

(2)
modal scopal pattern
will F > ¬
would W > ¬
shall F > ¬
should � > ¬
ought � > ¬
might ♦ > ¬
must � > ¬
may ♦ < > ¬
can ♦ < > ¬
could ♦ < > ¬
need ¬ > �

1 As a reviewer notes, transportability of the analysis depends significantly what is
common between the two frameworks. Since the Displacement Calculus [14] is largely
similar to Hybrid TLG, translation of the present analysis to the Displacement
Calculus should for the most part be straightforward (see Morrill and Valent́ın [15] in
this connection). Lowering to VP/VP is of course not available in Linear Categorial
Grammar [12] and Abstract Categorial Grammar [4], but lowering to (NP � S) �
(NP � S) should be possible.

Modal Auxiliaries and Negation: A Type-Logical Account 417

The patterns reflected in this table can be summarized as follows. The great
majority of modals outscope negation that they are syntactically associated with.
The striking exception is the deontic necessity modal need, which invariably
outscopes negation, and the three ‘possibility’ modals can, could and may, which
appear to be neutral.

Iatridou and Zeijlstra [6] argue that a principled account of the patterns in
(2) can be given directly in terms of the sensitivity displayed by the individual
modals to the scope of negation. Need is a known negative polarity item (NPI;
see Levine [11] for discussion of the somewhat unusual behavior of this NPI),
and hence when it appears with a local negator, such as not or never, it always
scopes under negation. Iatridou and Zeijlstra propose that the invariably wide
scope of must, should, ought, etc., with respect to local negation reflects their
status as positive polarity items (PPIs). On their account, the different scopal
relations between different types of modals and negation is a consequence of the
‘reconstruction’ possibilities of modals depending on their polarity statuses—
NPI, PPI or neutral modals—as summarized in the following table:2

(3)
PPI modals Neutral modals NPI modals

Universal must, should, ought to, be to have to, need to need
Existential — can, may —

On Iatridou and Zeijlstra’s account, the auxiliaries are raised to the head of TP,
and hence above negP. In the case of a sentence such as John need not worry,
need cannot be licensed unless it is reconstructed back under negP, due to its NPI
status. By contrast, PPI modals such as must, should and ought are prohibited
from reconstruction, again due to their lexical property as PPIs. Neutral modals
such as can and may optionally reconstruct to their original sites, giving rise to
scope ambiguity with negation.

2 One might wonder about the classification of must and should as PPIs, given that
they can appear unproblematically in the scope of negation in sentences such as I
don’t think that John should be even one little bit nice to anyone in that room, where
the NPIs even, anyone and one little bit appear with no hint of ill-formedness. But
here it is crucial to bear in mind that polarity items as a broad class are known to
be sensitive to not only semantic scope effects but syntactic contexts as well; see
Richter and Soehn [19] for a survey of syntactic conditions on a range of NPIs in
German. Iatridou and Zeijlstra argue that the same syntactic sensitivity holds for
PPIs, and note that

PPIs. . . are fine in the scope of negation or any other context that is known to
ban PPIs if this context is clause-external (Szabolcsi 2004:24–27), as illustrated
in (i)–(iv):
(i) I don’t think that John called someone. not > [CP/IP some
(ii) No one thinks/says that John called someone. no one > [CP/IP some
(iii) I regret that John called someone. regret > [CP/IP some
(iv) Every boy who called someone got help. every [CP/IP some

What seems to hold for the PPI modals, then, is that they cannot be in the scope
of negation that originates in syntactically local operators.

418 Y. Kubota and R. Levine

3 Higher Order Negation: The Formal Analysis

In this section, we present our type-logical analysis of modal-negation scope
interaction. After reviewing Kubota and Levine’s [8,10] analysis of modal aux-
iliaries in Hybrid Type-Logical Grammar (Hybrid TLG) in Sect. 3.1, we present
our extended fragment that takes into account the scopal interactions with nega-
tion in Sect. 3.2. Sections 3.3, 3.4 and 3.5 discuss some consequences of our pro-
posal that help clarify the relationship between the higher-order operator anal-
ysis we propose and alternative approaches in the literature.

3.1 Higher-Order Modals

Kubota and Levine [8,10] posit the following type of lexical entries for modal
auxiliaries in English (where idet = λPet.P and VPf , VPb are abbreviations of
NP\Sf , NP\Sb):

(4) λσ.σ(can′t); λF .¬♦F (idet); Sf �(Sf �(VPf /VPb))

The following derivation illustrates how the � > ∃ reading for Someone must
be present (at the meeting) is captured in this analysis (see Appendix A for a
formal fragment of Hybrid TLG):

Here, the hypothetical reasoning for the NP hypothesis (indexed 2) is for the
subject quantifier someone, which enters into the derivation once the whole
clause is built (semantically scoping over it and ‘lowering’ its prosody in the
gap position corresponding to the λ-bound prosodic variable). The deriva-
tion involves another set of steps of hypothetical reasoning, with the VPf /VPb
hypothesis (indexed 1). This lets the modal semantically take scope above the
subject quantifier (with prosodic lowering similar to the case of quantifiers). We
thus obtain the result in which the modal auxiliary and the subject quantifier
appear in their respective surface positions but in which the modal outscopes
the quantifier.

The key idea behind this analysis is that auxiliaries are treated like general-
ized quantifiers (which are of type S�(S�NP) in Hybrid TLG) except that they

Modal Auxiliaries and Negation: A Type-Logical Account 419

‘quantify over’ VP/VP type expressions rather than NPs. The meaning contri-
bution of the modal is the propositional modal operator, so, on this analysis
(unlike the VP/VP analysis more familiar in the CG literature), the semantic
scope and the ‘syntactic position’ at which the modal is introduced in the deriva-
tion correspond to each other straightforwardly. The features f and b abbreviate
the ‘VFORM’ features (in G/HPSG terms) fin and bse that mark finite and base
forms of verbs respectively. This ensures that modals can only combine with base
forms of verbs and after the modal is combined with the verb, the result is finite,
and no other modal can stack on top of the resultant VP.

The main empirical motivation for this ‘quantificational’ analysis of modal
auxiliaries comes from the famous scope anomaly in Gapping sentences noted
by Siegel [20] and Oehrle [16], as in examples such as (6).

(6) John can’t eat steak and Mary just (eat) pizza!
¬♦eat(steak)(j) ∧ eat(pizza)(m)

We do not repeat the argument here, but refer the reader to Kubota and Levine
[8,10] for a detailed discussion. The key point is that the ordinary VP/VP anal-
ysis has difficulty in accounting for the wide scope interpretation of modals in
examples like (6) in any straightforward manner (relatedly, assigning the seman-
tic translation λK .K (λgλx.�g(x)), which would correspond to the semantic
translation of a syntactically type-raised entry of the lower-order VP/VP entry,
would fail to capture the wide-scope reading in (6)).

Puthawala [18] has recently shown that the same type of scope anomaly
is observed in Stripping as well, and that the Kubota/Levine analysis can be
straightforwardly extended to the Stripping cases in (7) as well:

(7) a. John won’t apply for the job, or Mary either.
¬(Fapply-for(ι(job))(j) ∨ Fapply-for(ι(job))(m))

b. Mary can’t testify for the defense and John also!
¬♦(testify-for(defense)(m) ∧ testify-for(defense)(j))

As noted by Kubota and Levine [8,10], an interesting consequence of the
higher-order analysis of modal auxiliaries in TLG outlined above is that the
more familiar VP/VP sign for the modal auxiliary standardly assumed in the CG
literature is immediately derivable via hypothetical reasoning from the higher-
order one posited in the lexicon. The proof goes as follows:

(8)

λσ.σ(can′t);
λF .¬♦F (idet);
Sf �(Sf �(VPf /VPb))

[ϕ1;x; NP]1
[ϕ2; g; VPf /VPb]2 [ϕ3; f ; VPb]3

/E
ϕ2 ◦ ϕ3; g(f); VPf \E

ϕ1 ◦ ϕ2 ◦ ϕ3; g(f)(x); Sf
�I2

λϕ2.ϕ1 ◦ ϕ2 ◦ ϕ3; λg.G(f)(x); Sf �(VPf /VPb)
�E

ϕ1 ◦ can′t ◦ ϕ3; ¬♦ f(x); Sf \I1
can′t ◦ ϕ3; λx.¬♦ f(x); VPf

/I3
can′t; λfλx.¬♦ f(x); VPf /VPb

420 Y. Kubota and R. Levine

This is essentially a case of lowering in the sense of Hendriks [5] in a system that
extends the Lambek calculus with a discontinuous connective (in our case, �).
Ignoring directionality, it corresponds to the elementary theorem (((φ → ψ) →
�) → �) → ζ � (φ → ψ) → ζ in standard propositional logic.

We call the family of theorems of which (8) is an instance ‘slanting’. In slant-
ing derivations, the vertical slash � is eliminated from the lexical specification
of a scopal operator ‘slanting’. In addition to clarifying the relationship between
the higher-order and more familiar type assignments for scopal operators (see
Sect. 3.3), slanting is useful in ensuring the correct scoping relations between
multiple operators in certain cases, as discussed in Kubota and Levine [9] with
respect to the analysis of quantifier-coordination interaction and as we show
below in connection to modal auxiliary scope (Sects. 3.4 and 3.5).

3.2 Capturing the Modal/Negation Scope Interaction

In order to capture the polarity sensitivity of different types of modal auxiliaries
in English, we posit a syntactic feature pol for category S that takes one of the
three values +, − and ∅.3 The treatment of polarity here follows the general
approach to polarity marking in the CG literature by Dowty [3], Bernardi [2] and
Steedman [21], but differs from them in some specific details. Intuitively, Spol+
and Spol− are positively and negatively marked clauses respectively, and Spol∅ is
a ‘smaller’ clause that isn’t yet assigned polarity marking. To avoid cluttering
the notation, we suppress the feature name pol in what follows and write Spol+,
Spol− and Spol∅ simply as S+, S− and S∅, respectively. Positive-polarity modals
are then lexically specified to obligatorily take scope at the level of S+. Negative-
polarity modals on the other hand are lexically specified to take scope at the
level of S∅, before negation turns an ‘unmarked’ clause to a negatively marked
clause. We assume further that complete sentences in English are marked either
pol+ or pol−; thus, S∅ does not count as a stand-alone sentence.

The analysis of PPI and NPI modals outlined above can be technically imple-
mented by positing the following lexical entries for the modals and the negation
morpheme (where α, β ∈ {∅,−} and γ ∈ {bse,fin}):

(9) a. λσ.σ(should); λG .�G (idet); Sf,+�(Sf,β�(VPf,α/VPb,α))
b. λσ.σ(need); λG .�G (idet); Sf,∅�(Sf,∅�(VPf,∅/VPb,∅))
c. λσ.σ(not); λG .¬G (idet); Sγ,−�(Sγ, ∅�(VPb,∅/VPb,∅))

We assume that different modals are assigned the following syntactic categories,
depending on their polarity sensitivity:

3 We remain agnostic about the exact formal implementation of syntactic features in
the present paper. This could be done, for example, via some mechanism of unifica-
tion as in HPSG. Another approach would involve the use of dependent types, along
lines suggested by Morrill [13] and worked out in some detail by Pompigne [17]. So
far as we can tell, the results of the current paper does not hinge on the specific
choice on this matter.

Modal Auxiliaries and Negation: A Type-Logical Account 421

(10) IPNIPP
Sf,+�(Sf,β�(VPf,α/VPb,α)) Sf,∅�(Sf,∅�(VPf,∅/VPb,∅))

deendluohs
eradtsum

ought
might

nacnac
dluocdluoc
yamyam
lliwlliw
dluowdluow

We now illustrate the working of this fragment with the analyses for (11a)
(which involves a PPI modal) and (11b) (which involves an NPI modal).

(11) a. John should not come.
b. John need not come.

The derivation for (11a) goes as follows:

The key point here is that although both should and not are lexically specified
to take scope at the clausal level, their scopal relation is fixed. Specifically, once
should takes scope, the resultant clause is S+, which is incompatible with the
specification on the argument category for not. This means that negation is
forced to take scope before the PPI modal does.

Exactly the opposite relation holds between the NPI modal need and nega-
tion. Here, after negation takes scope, we have S−, but this specification is incom-
patible with the argument category for the NPI modal, which requires the clause
it scopes over to be S∅. Thus, as in (13), the only possibility is to have need take
scope before the negation does, which gives us the ¬ > � Scopal relation.4

4 Extending the present analysis to cases involving negative quantifiers (e.g. Nothing
need be said about this) is a task that we leave for future work.

422 Y. Kubota and R. Levine

We assume that modals that give rise to scope ambiguity with negation are
simply ambiguous between PPI and NPI variants, as in (10). This accounts for
the scope ambiguity of examples such as (1c).5

3.3 Slanting and the VP/VP Analysis of Auxiliaries

The analysis of modal scope presented above can, in a sense, be thought of as a
logical reconceptualization of the configurational account proposed by Iatridou
and Zeijlstra. Instead of relying on reconstruction and movement, our analysis
simply regulates the relative scope relations between the auxiliary and nega-
tion via the three-way distinction of the polarity-marking feature pol, but aside
from this technical difference, the essential analytic idea is the same: the seman-
tic scope of the modal and negation operators transparently reflects the form
of the abstract combinatoric structure that is not directly visible from surface

5 Though we have chosen to posit two distinct lexical entries for the ‘neutral’ modals
(can, could and may) for high and low scoping possibilities with respect to negation,
corresponding respectively to the scoping properties of the unambiguous modals, it is
easy to collapse these two entries for these modals by making the polarity features for
the two S’s and two VPs in the complex higher-order category for the modal totally
underspecified and unconstrained (except for one constraint 〈α, β〉 �= 〈∅, −〉, to
exclude the possibility of double negation marking *can not not), along the following
lines:

By (partially) resolving underspecification, we can derive both the ‘PPI’ and ‘NPI’
variants of the modal lexical entry in (10) from (i), thus capturing scope ambiguity
via a single lexical entry. (i) allows for other instantiations of feature specification,
but these are either redundant (yielding either high or low scope that are already
derivable with the PPI and NPI instantiations in (10)), or useless (i.e. cannot be
used in any well-formed syntactic derivation), and hence harmless. Thus, if desired,
the lexical ambiguity we have tentatively assumed in the main text can be eliminated
by adopting the more general lexical entry along the lines of (i) without the danger
of overgeneration.

Modal Auxiliaries and Negation: A Type-Logical Account 423

constituency, be it a level of syntactic representation (i.e. LF, as in Iatridou
and Zeijlstra’s account), or the structure of the proof that yields the pairing of
surface string semantic translation (as in our approach, and more generally, in
CG-based theories of natural language syntax/semantics).

One might then wonder whether the two analyses are mere notational vari-
ants or if there is any advantage gained by recasting the LF-based analysis in a
type-logical setup. We do think that our approach has the advantage of being
fully explicit, without relying on the notions of reconstruction and movement
whose exact details remain somewhat elusive. However, rather than dwelling on
this point, we would like to point out an interesting consequence that immedi-
ately follows from our account and which illuminates the relationship between
the ‘transformational’ analysis of auxiliaries (of the sort embodied in our analysis
of modal auxiliaries as ‘VP-modifier quantifiers’) and the lexicalist alternatives
in the tradition of non-transformational syntax (such as G/HPSG and CG).

To see the relevant point, note first that PPI modals such as should can
be derived in the lower-order category VPf,+/VPb,δ as follows (here, α, β, δ ∈
{∅,−}):

Similarly, the negation morpheme not can be slanted to the VPb,−/VPb,∅
category:

These two lowered categories can be combined to produce the following sign:

Slanting the NPI modal need, on the other hand, yields the following result:

424 Y. Kubota and R. Levine

Note that this resultant category cannot be combined with the lowered negation
category in (15) due to feature mismatch (need requires its argument to be VPb,∅,
but not marks the VP as VPb,−). Thus, the lowered need is correctly prevented
from outscoping negation.

It is however possible to derive need not as a complex auxiliary with the
correct negation-outscoping semantics:

Note also that we can derive string-level signs for modals that mimic the
higher order version in their ability to outscope generalized quantifiers:

In short, in our type-logical setup, alternative lexical signs that correspond
to the lexical entries for the relevant expressions that are directly specified in

Modal Auxiliaries and Negation: A Type-Logical Account 425

the lexicon in lexicalist theories of syntax are all derivable as theorems from the
more abstract, higher-order entries we have posited above. This is essentially the
consequence of the slanting lemma (whose basic form is shown in (8) in Appendix
B) in the revised system augmented with the polarity markings. Significantly, the
polarity markings ensure that slanting of the higher-order modals and negation
preserves the correct scope relations between these operators.

The formal derivability of the lower-order entry from the higher-order entry is
an interesting and useful result, as it potentially illuminates the deeper relation-
ship between the ‘transformational’ and ‘lexicalist’ analyses of auxiliaries in the
different traditions of the generative grammar literature. The two approaches
have tended to be seen as reflecting fundamentally incompatible assumptions
about the basic architecture of grammar, but if a formal connection can be
established between the two at an abstract level by making certain (not totally
implausible) assumptions, then the two may not be as different from each other
as they have appeared to be throughout the whole history of the controversy
between the transformational and non-transformational approaches to syntax.
In any event, we take our result above to indicate that the logic-based setup
of Type-Logical Grammar can be fruitfully employed for the purpose of meta-
comparison of different approaches to grammatical phenomena in the syntactic
literature.

3.4 Slanting and Coordination

The slanting lemma moreover plays a crucial role in deriving the correct scope
relations in certain examples involving coordination of higher-order operators.
For example, consider the conjunction of modals in (20).

There is a reading for this sentence in which the two modals outscope the subject
universal quantifier in each conjunct (‘it is possible that every physicist learns
. . . and it is deontically necessary that every physicist learns. . . ’).

Assuming that and is of type (X\X)/X, combining only expressions whose
prosodies are strings, it may appear impossible to derive (20) on the relevant
reading, since the modals in (20) must be higher-order to outscope the sub-
ject quantifier, and therefore must have functional prosodies. In fact, however, a
straightforward derivation is available with no additional assumptions or machin-
ery. Note first that the modal auxiliary can be derived in the ((S/VP)\S)/VP
Type (see the discussion in Sect. 3.3; the complete derivation is given in (19) in
Appendix B):

By conjoining two such modals via generalized conjunction, we obtain:

We apply this functor first to the sign with VP type derived for learn how to
teach quantum mechanics to the undergratuate literature majors, and finally to
the slanted version of the quantified subject every physicist, derivable as in (23):

426 Y. Kubota and R. Levine

This yields the following result, with the correct semantic translation for (20):

3.5 VP Fronting

Work in phrase-structure-theoretic approaches to the syntax/semantics inter-
face has tended to follow the treatment of negation in Kim and Sag [7], which
distinguishes not (and possibly never) as complements of auxiliaries from not
as adjuncts to the auxiliaries’ VP complements. This approach is supposedly
motivated by the ambiguity of sentences with could not/never sequences, where
both ¬ > ♦ and ♦ > ¬ readings are available.

There is, in fact, a very sparse empirical base in English for this phrase
structure-based analysis of modal/negation scoping relations, a fact that Kim
and Sag [7] themselves tacitly acknowledge. One of the few lines of argument that
Kim and Sag [7] appeal to is the fact that fronted VPs containing not adjuncts
are always interpreted with narrowly scoping negation, as illustrated in (25):

Data of this sort are intended to provide empirical support for the putative
correlation of phrase structural position with the scope of negation, and the
particular empirical fact about fronted VP with negation exemplified by (25)
needs to be accounted for in any approach to modal/negation interaction in any
theoretical framework. But there seems no strong reason to prefer the phrase
structural account to any of a number of alternatives.

Indeed, we can readily capture the pattern in (25) in our approach by requir-
ing that topicalization clauses are subject to polarity requirements which entail
narrow scope for the negation within the fronted VP. We start by presenting the
topicalization operator in (26a) (with the polymorphic syntactic type X), illus-
trating its ordinary operation to produce (26b) (where the semantics is simply
an identity function, since we ignore the pragmatic effects of topicalization):6

6 Here and below, ε denotes the null string.

Modal Auxiliaries and Negation: A Type-Logical Account 427

The derivation for (26b) is given in (27).

The requirement on the topicalization operator in (26a) effectively means that
S∅ is ‘too small’ to host a topicalized phrase. That is, in order to license topi-
calization, the clause needs to have already ‘fixed’ the polarity value to either +
or −. This condition turns out to have the immediate effect or enforcing narrow
scope on negation in fronted VPs.

To see how this condition works, let’s suppose it did not hold; that is, suppose
that β could take any of the three polarity values. Then the following would be
one way in which not inside a topicalized phrase would outscope the modal.

Here, the derivation uses the NPI version of can, in order to license the negation
wide scope reading. Since the negation is inside the topicalized phrase rather than
the main clause, topicalization needs to be hosted by a clause to which negation
hasn’t yet combined. But this is precisely the possibility that the restriction
β ∈ {+,−} excludes (note the conflict in the greyed-in expressions). Using the
other version of can will only produce the other scopal relation (one in which

428 Y. Kubota and R. Levine

the modal outscopes negation), so, this option is not available for licensing the
reading in question. Thus neither version of can admits a derivation resulting in
wide scope for topicalized negation, and the same result holds for all NPI (i.e.
narrow-scoping) modals.

There is in contrast no difficulty in obtaining the narrow scope interpretation
of negation, as shown in (26c), with α and δ = −, and β = +.

The slanted version of not combines freely with its VP argument to yield
a topicalized VP−, but the type of the mother—in particular, its polarity
specification—is determined by the highest scoping operator, can, which yields
a positive polarity clause.

4 Conclusion

In this paper, we proposed an explicit analysis of scope interactions between
modal auxiliaries and negation in English in Type-Logical Grammar. The pro-
posed analysis builds on two previous works in somewhat different research tradi-
tions: (i) Iatridou and Zeijlstra’s [6] configurational analysis of modal auxiliaries
that captures their scopal properties in terms of the distinction between PPI
and NPI modals; (ii) Kubota and Levine’s Kubota and Levine’s [8,10] anal-
ysis of modal auxiliaries in Type-Logical Grammar as higher-order operators
that take clausal scope (unlike the more traditional VP/VP analysis in lexicalist
theories such as CG and G/HPSG). Our analysis captures the different scop-
ing patterns of different types of modals via the polarity-marking distinction,
whose core analytic idea is due to Iatridou and Zeijlstra, but it does so with-
out making recourse to the notion of reconstruction, which is a type of lowering
movement whose exact formal implementation in minimalist syntax is somewhat
unclear. Our analysis moreover clarifies the relationship between configurational
(or transformational) and non-transformational analyses of modal auxiliaries by
showing precisely how the latter type of analysis can be thought of as a deriva-
tive of the former type of analysis when both are recast within a logical calculus

Modal Auxiliaries and Negation: A Type-Logical Account 429

that allows one to derive (in the literal sense of ‘derive’ in formal logic) certain
types of lexical descriptions from more abstract and seemingly unrelated lexical
descriptions. We take this result to be highly illuminating, as it helps clarify a
deeper connection between different stripes of syntactic research that is in no
sense obvious unless one takes a logical perspective on grammatical composition.

Acknowledgments. We would like to thank two anonymous reviewers for helpful
comments. This work was supported by JSPS KAKENHI JP15K16732 and the NIN-
JAL collaborative research project ‘Cross-linguistic Studies of Japanese Prosody and
Grammar’.

A Hybrid Type-Logical Grammar

A.1 Syntactic Types

Note: The algebra of syntactic types is not a free algebra generated over the set
of atomic types with the three binary connectives /, \, and �. Specifically, given
the definitions in (30), in Hybrid TLG, a vertical slash cannot occur ‘under’ a
directional slash. Thus, S/(S�NP) is not a well-formed syntactic type. This is a
deliberate design, and Hybrid TLCG differs from closely related variants of TLG
(such as the Displacement Calculus Morrill [14] and NLλ Barker and Shan [1])
in this respect.

A.2 Mapping from Syntactic Types to Semantic Types

A.3 Mapping from Syntactic Types to Prosodic Types

430 Y. Kubota and R. Levine

A.4 Deductive Rules

Notes: Corresponding to the asymmetry in the status of the directional slashes
(/, \) and the vertical slash (�) in the definitions of syntactic types, there is an
asymmetry in the definitions of the deductive rules for the two types of slashes.

Note in particular that in the Introduction rules for / (\), instead of lambda
binding, the prosodic variable of the hypothesis that is withdrawn is removed
from the prosodic term on the condition that it appears on the right (left) edge
of the prosody of the expression that feeds into the rule. (One way to make
sense of this is to take the /,\ Introduction rules as abbreviations of theorems in
which the variable is first bound by left and right lambda abstraction as usual
[23], immediately followed by a step of feeding an empty string to the prosodic
function thus obtained.)

So far as we can tell, fixing the prosodic type to be st for directional (i.e.
Lambek) syntactic types is crucial for ensuring the particular way in which the
directional and vertical slashes interact with one another in the various Slanting
lemma and related results (which play important roles in the linguistic analyses
we have presented above).

References

1. Barker, C., Shan, C.: Continuations and Natural Language. OUP, Oxford (2015)
2. Bernardi, R.: Reasoning with polarity in categorial type logic. Ph.D. thesis, Uni-

versity of Utrecht (2002)
3. Dowty, D.: The role of negative polarity and concord marking in natural language

reasoning. In: Harvey, M., Santelmann, L. (eds.) Proceedings from Semantics and
Linguistic Theory IV, pp. 114–144. Cornell University, Ithaca (1994)

Modal Auxiliaries and Negation: A Type-Logical Account 431

4. de Groote, P.: Towards abstract categorial grammars. In: Association for Compu-
tational Linguistics, 39th Annual Meeting and 10th Conference of the European
Chapter, pp. 148–155 (2001)

5. Hendriks, H.: Studied flexibility. Ph.D. thesis, University of Amsterdam, Amster-
dam (1993)

6. Iatridou, S., Zeijlstra, H.: Negation, polarity and deontic modals. Linguist. Inq.
44, 529–568 (2013)

7. Kim, J.B., Sag, I.: Negation without head movement. Nat. Lang. Linguist. Theory
20, 339–412 (2002)

8. Kubota, Y., Levine, R.: Gapping as like-category coordination. In: Béchet, D.,
Dikovsky, A. (eds.) Logical Aspects of Computational Linguistics 2012, vol.
7351, pp. 135–150. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-31262-5 9

9. Kubota, Y., Levine, R.: Against ellipsis: arguments for the direct licensing of ‘non-
canonical’ coordinations. Linguist. Philos. 38(6), 521–576 (2015)

10. Kubota, Y., Levine, R.: Gapping as hypothetical reasoning. Nat. Lang. Linguist.
Theory 34(1), 107–156 (2016)

11. Levine, R.: The modal need VP gap (non)anomaly. In: Csipak, E., Eckardt, R.,
Liu, M., Sailer, M. (eds.) Beyond ‘Any’ and ‘Ever’: New Perspectives on Negative
Polarity Sensitivity, pp. 241–265. Mouton de Gruyter, Berlin (2013)

12. Martin, S., Pollard, C.: A dynamic categorial grammar. In: Morrill, G., Muskens,
R., Osswald, R., Richter, F. (eds.) Formal Grammar 2014. LNCS, vol. 8612, pp.
138–154. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44121-
3 9

13. Morrill, G.: Type Logical Grammar: Categorial Logic of Signs. Kluwer, Dordrecht
(1994)

14. Morrill, G.: Categorial Grammar: Logical Syntax, Semantics, and Processing. OUP,
Oxford (2010)

15. Morrill, G., Valent́ın, O.: A reply to Kubota and Levine on gapping. Nat. Lang.
Linguist. Theory 35(1), 257–270 (2017)

16. Oehrle, R.T.: Boolean properties in the analysis of gapping. In: Huck, G.J., Ojeda,
A.E. (eds.) Syntax and Semantics: Discontinuous Constituency, vol. 20, pp. 203–
240. Academic Press, Cambridge (1987)

17. Pogodalla, S., Pompigne, F.: Controlling extraction in abstract categorial gram-
mars. In: de Groote, P., Nederhof, M.J. (eds.) FG 2010, FG 2011. LNCS, pp.
162–177. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32024-
8 11

18. Puthawala, D.: Stripping isn’t so mysterious, or anomalous scope, either. In: Foret,
A., Kobele, G., Pogodalla, S. (eds.) FG 2018. LNCS, vol. 10950, pp. 102–120.
Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-662-57784-4 6

19. Richter, F., Soehn, J.P.: Braucht niemanden zu scheren: a survey of NPI licensing
in German. In: Müller, S. (ed.) The Proceedings of the 13th International Confer-
ence on Head-Driven Phrase Structure Grammar, pp. 421–440. CSLI Publications,
Stanford (2006)

20. Siegel, M.A.: Compositionality, case, and the scope of auxiliaries. Linguist. Philos.
10(1), 53–75 (1987)

21. Steedman, M.: Taking Scope. MIT Press, Cambridge (2012)

https://doi.org/10.1007/978-3-642-31262-5_9
https://doi.org/10.1007/978-3-642-31262-5_9
https://doi.org/10.1007/978-3-662-44121-3_9
https://doi.org/10.1007/978-3-662-44121-3_9
https://doi.org/10.1007/978-3-642-32024-8_11
https://doi.org/10.1007/978-3-642-32024-8_11
https://doi.org/10.1007/978-3-662-57784-4_6

432 Y. Kubota and R. Levine

22. Szabolcsi, A.: Positive polarity - negative polarity. Nat. Lang. Linguist. Theory 22,
409–452 (2004)

23. Wansing, H.: Formulas-as-types for a hierarchy of sublogics of intuitionistic propo-
sitional logic. In: Pearce, D., Wansing, H. (eds.) All-Berlin 1990. LNCS, vol. 619,
pp. 125–145. Springer, Heidelberg (1992). https://doi.org/10.1007/BFb0031928

https://doi.org/10.1007/BFb0031928

Subset Models for Justification Logic

Eveline Lehmann and Thomas Studer(B)

Institute of Computer Science, University of Bern, Bern, Switzerland
{lehmann,tstuder}@inf.unibe.ch

Abstract. We introduce a new semantics for justification logic based
on subset relations. Instead of using the established and more symbolic
interpretation of justifications, we model justifications as sets of possible
worlds. We introduce a new justification logic that is sound and complete
with respect to our semantics. Moreover, we present another variant of
our semantics that corresponds to traditional justification logic.

These types of models offer us a versatile tool to work with justifi-
cations, e.g. by extending them with a probability measure to capture
uncertain justifications. Following this strategy we will show that they
subsume Artemov’s approach to aggregating probabilistic evidence.

Keywords: Justification logic · Semantics · Probabilistic evidence

1 Introduction

Justification logic is a variant of modal logic that includes terms representing
explicit evidence. A formula of the form t : A means that t justifies A (or t
represents evidence for A, or t is a proof of A). Justification logic has been
introduced by Artemov [3,4] to give a classical provability interpretation to S4.
Later it turned out that this approach is not only useful in proof theory [4,15]
but also in epistemic logic [5,6,11,12]. For a general overview on justification
logic, we refer to [2,8,16].

There are various kinds of semantics available for justification logic. Most
of them interpret justification terms in a symbolic way. In provability interpre-
tations [4,15], terms represent (codes of) proofs in formal system like Peano
arithmetic. In Mkrtychev models [18], which are used to obtain decidability,
terms are represented as sets of formulas. In Fitting models [13], the evidence
relation maps pairs of terms and possible worlds to sets of formulas. In modular
models [7,14], the logical type a justification is a set of formulas, too. Notable
exceptions are [1,9] where terms are interpreted as sets of possible worlds. How-
ever, these papers do not consider the usual term structure of justification logics.
Also note that there are topological approaches to evidence available [10,21,22],
which, however, do not feature justifications explicitly in their language.

This work was supported by the Swiss National Science Foundation grant
200021 165549.

c© Springer-Verlag GmbH Germany, part of Springer Nature 2019
R. Iemhoff et al. (Eds.): WoLLIC 2019, LNCS 11541, pp. 433–449, 2019.
https://doi.org/10.1007/978-3-662-59533-6_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-59533-6_26&domain=pdf
https://doi.org/10.1007/978-3-662-59533-6_26

434 E. Lehmann and T. Studer

It is the aim of this paper to provide a new semantics, called subset semantics
for justification logic that interprets terms as sets of possible worlds and oper-
ations on terms as operations on sets of possible worlds. We will then say that
t : A is true if A is true in all worlds belonging to the interpretation of t. We give
a systematic study of this new semantics including soundness and completeness
results and we show that the approach of [1] can be seen as a special case of our
semantics.

Usually, justification logic includes an application operator that represents
modus ponens (MP) on the level of terms. We provide two approaches to handle
this operator in our semantics. The first is to include a new constant c�, which
is interpreted as the set of all worlds closed under (MP) and then use this new
constant to define an application operator. Unlike in traditional justification
logic, this application operator will be commutative. The second way is to include
a (non-commutative) application operator directly. However, this leads to some
quite cumbersome definitions.

Another difference between our semantics and many other semantics for jus-
tification logic is that we allow non-normal (impossible) worlds. They are usually
needed to model the fact that agents are not omniscient and that they do not see
all consequences of the facts they are already aware of. In an impossible world
both A and ¬A may be true or none of them. This way of using impossible
worlds was investigated by Rantala [19,20].

We start with presenting the c�-subset models with the corresponding syntax,
axioms and semantics and proving soundness and completeness. In a second part
we will present the alternative approach, i.e. keeping the (j)-axiom and dealing
with some cumbersome definitions within the semantics. It will be shown that
the corresponding models are sound and complete as well. In a last section we
will show that c�-subset models can be used to reason about uncertain knowledge
by referring to Artemov’s work on aggregating probabilistic evidence.

2 L�
CS-Subset Models

2.1 Syntax

Justification terms are built from countably many constants ci and variables xi

and the special and unique constant c� according to the following grammar:

t ::= ci | xi | c� | (t + t) | !t

The set of terms is denoted by Tm. The operation + is left-associative.
Formulas are built from countably many atomic propositions pi and the sym-

bol ⊥ according to the following grammar:

F ::= pi | ⊥ | F → F | t : F

The set of atomic propositions is denoted by Prop and the set of all formulas is
denoted by LJ . The other classical Boolean connectives ¬,�,∧,∨,↔ are defined
as usual.

Subset Models for Justification Logic 435

We investigate a family of justification logics that differ in their axioms and
how the axioms are justified. We have two sets of axioms, the first axioms are:

cl all axioms of classical propositional logic;
j+ s : A ∨ t : A → (s + t) : A;
jc� c� : A ∧ c� : (A → B) → c� : B.

The set of these axioms is denoted by L�
α.

There is another set of axioms:

j4 t : A →!t : (t : A);
jd t :⊥→⊥;
jt t : A → A.

This set is denoted by L�
β . It is easy to see that jd is a special case of jt. By L�

we denote all logics that are composed from the whole set L�
α and some subset

of L�
β . Moreover, a justification logic L� is defined by the set of axioms and its

constant specification CS that determines which constant justifies which axiom.
So the constant specification is a set

CS ⊆ {(c,A) | c is a constant and A is an axiom of L�}
In this sense L�

CS denotes the logic L� with the constant specification CS. To
deduce formulas in L�

CS we use a Hilbert system given by L� and the rules modus
ponens:

A A → B (MP)
B

and axiom necessitation

(AN!) ∀n ∈ N, where (c,A) ∈ CS
!...!
︸︷︷︸

n

: !...!
︸︷︷︸

n−1

: ... : !!c : !c : c : A

2.2 Semantics

Definition 1 (L�
CS-subset models). Given some logic L� and some constant

specification CS, then an L�
CS-subset model M = (W,W0, V, E) is defined by:

– W is a set of objects called worlds.
– W0 ⊆ W and W0 �= ∅.
– V : W × LJ → {0, 1} such that for all ω ∈ W0, t ∈ Tm, F,G ∈ LJ :

• V (ω,⊥) = 0;
• V (ω, F → G) = 1 iff V (ω, F) = 0 or V (ω,G) = 1;
• V (ω, t : F) = 1 iff E(ω, t) ⊆ { υ ∈ W | V (υ, F) = 1 }.

– E : W × Tm → P(W) that meets the following conditions where we use

[A] := {ω ∈ W | V (ω,A) = 1}. (1)

For all ω ∈ W0, and for all s, t ∈ Tm:

436 E. Lehmann and T. Studer

• E(ω, s + t) ⊆ E(ω, s) ∩ E(ω, t);
• E(ω, c�) ⊆ WMP where WMP is the set of deductively closed worlds, see

below;
• if jd ∈ L�, then ∃υ ∈ W0 with υ ∈ E(ω, t);
• if jt ∈ L�, then ω ∈ E(ω, t);
• if j4 ∈ L�, then

E(ω, !t) ⊆
{ υ ∈ W | ∀F ∈ LJ (V (ω, t : F) = 1 ⇒ V (υ, t : F) = 1) } ;

• for all n ∈ N and for all (c,A) ∈ CS : E(ω, c) ⊆ [A] and

E(ω, !...!
︸︷︷︸

n

c) ⊆ [!...!
︸︷︷︸

n−1

c :!c : c : A].

The set WMP is formally defined as follows:

WMP := {ω ∈ W | ∀A,B ∈ LJ ((V (ω,A) = 1 and V (ω,A → B) = 1)
implies V (ω,B) = 1)}.

So WMP collects all the worlds where the valuation function is closed under
modus ponens. W0 is the set of normal worlds. The set W \ W0 consists of the
non-normal worlds. Moreover, using the notation introduced by (1), we can read
the condition on V for justification terms t : F as:

V (ω, t : F) = 1 iff E(ω, t) ⊆ [F]

Since the valuation function V is defined on worlds and formulas, the defini-
tion of truth is pretty simple:

Definition 2 (Truth in L�
CS-subset models). Let M = (W,W0, V, E) be an

L�
CS-subset model, ω ∈ W and F ∈ LJ . We define the relation � as follows:

M, ω � F iff V (ω, F) = 1

2.3 Soundness

Since non-normal worlds will not be sound even with respect to the axioms of
classical logic, we only have soundness within W0.

Theorem 3 (Soundness of L�
CS-subset models). For any justification logic

L�
CS and any formula F ∈ LJ :

L�
CS � F ⇒ M, ω � F for all L�

CS-subset models M and all ω ∈ W0

The proof straight forward is by induction on the length on the derivation of F
and can be found in [17].

The j-axiom s : (A → B) → (t : A → s · t : B) is not part of our logic. Using
the (c�)-axiom, we can define an application operation such that the j-axiom is
valid.

Subset Models for Justification Logic 437

Definition 4 (Application). We introduce a new abbreviation · on terms by:

s · t := s + t + c�

Lemma 5 (The “j-axiom” follows). For all M = (W,W0, V, E), ω ∈ W0,
A,B ∈ LJ and s, t ∈ Tm:

M, ω � s : (A → B) → (t : A → s · t : B)

The proof is straight forward and can be found in Appendix A.

2.4 Completeness

To prove completeness we will construct a canonical model and then show that
for every formula F that is not derivable in L�

CS, there is a model MC with a
world Γ ∈ WC

0 s.t. MC , Γ � ¬F . Before we start with the definition of the
canonical model, we must do some preliminary work. We will first prove that
our logics are conservative extensions of classical logic. With this result we can
argue, that the empty set is consistent and hence can be extended to so-called
maximal L�

CS-consistent sets of formulas. These sets will be used to build the
W0-worlds in the canonical model.

Theorem 6 (Conservativity). All logics L� presented are conservative exten-
sions of the classical logic CL, i.e. for any formula F ∈ Lcp:

L� � F ⇔ CL � F

The proof is standard and can be found in [17].

Definition 7 (Consistency). A logical theory L is called consistent, if L ��⊥.
A set of formulas Γ ⊂ LJ is called L-consistent if L �� ∧

Σ →⊥ for every finite
Σ ⊆ Γ . A set of formulas Γ is called maximal L-consistent, if it is L-consistent
and none of its proper supersets is.

Since all presented logics are conservative extensions of CL , we have the
following consistency result.

Lemma 8 (Consistency of the logics). All presented logics are consistent.

As usual, we have a Lindenbaum lemma and the usual properties of maximal
consistent sets hold, see, e.g., [16].

Lemma 9 (Lindenbaum Lemma). Given some logic L, then for each L- con-
sistent set of formulas Γ ⊂ LJ there exists a maximal consistent set Γ ′ such that
Γ ⊆ Γ ′.

Lemma 10 (Properties of maximal consistent sets). Given some logic L
and its language LJ . If Γ is a maximal L-consistent set, then for all F,G ∈ LJ :

(1) if L � F , then F ∈ Γ ;

438 E. Lehmann and T. Studer

(2) F ∈ Γ if and only if ¬F �∈ Γ ;
(3) F → G ∈ Γ if and only if F �∈ Γ or G ∈ Γ ;
(4) F ∈ Γ and F → G ∈ Γ imply G ∈ Γ .

Definition 11 (Canonical Model). For a given logic L�
CS we define the canon-

ical model MC = (WC ,WC
0 , V C , EC) by:

– WC = P(LJ).
– WC

0 =
{

Γ ∈ WC
∣

∣ Γ is maximal L�
CS − consistent set of formulas

}

.
– V C : V C(Γ, F) = 1 iff F ∈ Γ ;
– EC : With Γ/t := {F ∈ LJ | t : F ∈ Γ} and

WC
MP :=

{

Γ ∈ WC
∣

∣ ∀A,B ∈ LJ : if A → B ∈ Γ and A ∈ Γ then B ∈ Γ
}

we define :

EC(Γ, t) =
{

Δ ∈ WC
∣

∣ Δ ⊇ Γ/t
}

for t �= c�;

EC(Γ, c�) =
{

Δ ∈ WC
MP

∣

∣ Δ ⊇ Γ/c�
}

.

Now we must show that the canonical model is indeed an L�
CS-subset model.

Lemma 12. The canonical model MC is an L�
CS-subset model.

The proof can be found in Appendix B.
The Truth Lemma follows very closely:

Lemma 13 (Truth Lemma). Let MC = (WC ,WC
0 , EC , V C) be a canonical

model, then for any Γ ∈ WC
0 :

MC , Γ � F if and only if F ∈ Γ.

Proof.
MC , Γ � F

Def. 2⇐==⇒ V C(Γ, F) = 1 Def. 12⇐===⇒ F ∈ Γ.

Hence each maximal L�
CS-consistent set is represented by some world in the

canonical model and thus completeness follows directly:

Theorem 14 (Completeness). Given some logic L�
CS, then

M, Γ � F for all L�
CS-subset models M and for all Γ ∈ W0 =⇒ L�

CS � F.

Proof. The proof works with contraposition: Assume that L�
CS �� F . Then {¬F}

is L�
CS-consistent and by the Lindenbaum Lemma contained in some maximal

L�
CS-consistent world Γ of the canonical model MC . Then MC , Γ �� F .

3 LA
CS-Subset Models

In this part we present an alternative definition of subset models for justification
logic that directly interprets the application operator. Hence we work with the
standard language of justification logic and we consider the j-axiom instead of
the axiom (c�).

Subset Models for Justification Logic 439

3.1 Syntax

In this section, justification terms are built from constants ci and variables xi

according to the following grammar:

t ::= ci | xi | (t · t) | (t + t) | !t

This set of terms is denoted by TmA. The operations · and + are left-associative
and ! binds stronger than anything else. Formulas are built from atomic propo-
sitions pi and the following grammar:

F ::= pi | ⊥ | F → F | t : F

The set of atomic propositions is denoted by Prop and the set of all formulas is
denoted by LA

J . Again we use the other logical connectives as abbreviations.
As in the first section, we investigate again a whole family of logics. They

are arranged in two sets of axioms. The first set, denoted by LA
α contains the

following axioms:

cl all axioms of classical propositional logic;
j s : (A → B) → (t : A → s · t : B);
j+ s : A ∨ t : A → (s + t) : A.

The other is identical to L�
β (modulo the different language) and contains:

j4 t : A →!t : (t : A);
jd t :⊥→⊥;
jt t : A → A.

For the sake of uniformity we denote this set of axioms by LA
β . By LA we denote

all logics that are composed from the whole set LA
α and some subset of LA

β .
There are no differences between these logics and the ones of the former

section except in case of application. Therefore we skip all the details already
mentioned and proved before.
CS and LA

CS are defined as before except that the corresponding logic has changed
as mentioned. And deducing formulas in LA

CS works the same as in the previous
section.

3.2 Semantics

Definition 15 (LA
CS-subset models). Given some logic LA

CS then an LA
CS-subset

model M = (W,W0, V, E) is defined like an L�
CS-subset model where

E : W × TmA → P(W)

meets the following condition for terms of the form s · t:

E(ω, s · t) ⊆ {υ ∈ W | ∀F ∈ APPω(s, t)(υ ∈ [F])},

where we use

APPω(s, t) := {F ∈ LA
J | ∃H ∈ LA

J s.t. E(ω, s) ⊆ [H → F] and E(ω, t) ⊆ [H]}.

440 E. Lehmann and T. Studer

The set APPω(s, t) contains all formulas that are colloquially said derivable
by applying modus ponens to a formula justified by s and a formula justified
by t.

Truth in an LA
CS-subset models is defined as before.

Definition 16 (Truth in LA
CS-subset models). For an LA

CS-subset model M =
(W,W0, V, E) and a world ω ∈ W and a formula F we define the relation � as
follows:

M, ω � F iff V (ω, F) = 1.

3.3 Soundness

Theorem 17 (Soundness of LA
CS-subset models). For any justification logic

LA, any constant specification CS and any formula F :

LA
CS � F ⇒ M, ω � F for all LA

CS − subset models M and all ω ∈ W0.

The proof is straight forward by induction on the length of the derivation and
can be found in [17].

3.4 Completeness

Before we start defining a canonical model, we have to do the same preliminary
work for LA

CS as we had to do in the previous section for L�
CS. Since the logics L�

CS

from the former section differ only in one axiom, i.e. j replaces jc�, we skip all
the parts that are already done and focus on the changes that it brings about.

As before, we have a conservativity and consistency result.

Theorem 18 (Conservativity). All logics LA presented are conservative
extensions of the classical logic CL, i.e. for any formula F ∈ Lcp:

LA � F ⇔ CL � F.

Lemma 19 (Consistency of LA). All logics in LA are consistent.
All the other ingredients we needed in the former section to define and fur-

ther develop the canonical model were generally defined and proven and can be
adopted without additional effort.

To prove completeness we define a canonical model as follows:

Definition 20 (Canonical Model). For a given logic LA and a constant spec-
ification CS we define the canonical model MC = (WC ,WC

0 , V C , EC) by:

– WC = P(LA
J);

– WC
0 = {Γ ∈ WC | Γ is maximal LA

CS − consistent set of formulas};
– V C : V C(Γ, F) = 1 iff F ∈ Γ ;
– EC : EC(Γ, t) = {Δ ∈ W | Δ ⊇ Γ/t}.
Now we must show that such a canonical model is in fact a subset model.

Subset Models for Justification Logic 441

Lemma 21. The canonical model MC is an LA
CS-subset model.

The proof is very similar to the proof of Lemma 12 and can be found in
Appendix C

Lemma 22 (Truth Lemma). Let MC = (WC ,WC
0 , EC , V C) be some canon-

ical LA
CS-subset model, then for all Γ ∈ W0:

MC , Γ � F if and only if F ∈ Γ.

Proof.
MC , Γ � F

Def. 17⇐===⇒ V C(Γ, F) = 1 Def. 21⇐===⇒ F ∈ Γ.

Theorem 23 (Completeness). Given some constant specification CS then

M, Γ � F for all models M and for all Γ ∈ W0 =⇒ LA
CS � F.

Proof. The proof is analogue to the one of Theorem 14.

4 Artemov’s Aggregated Evidence and L�
CS-Subset Models

Artemov [1] considers the case in which we have a database, i.e. a set of proposi-
tions Γ = {F1, . . . Fn} with some kind of probability estimates and in which we
also have some proposition X that logically follows from Γ . Then we can search
for the best justified lower bound for the probability of X. He presents us a nice
way to find this lower bound. To find it, he assumes probability events u1, . . . , un,
each of them supporting some proposition in Γ , i.e. ui : Fi, and calculates some
aggregated evidence e(u1, . . . , un) for X with them. The probability of e then
provides a tight lower bound for the probability of X.

The trick he uses is the following:

(1) First he collects all subsets Δi of Γ which support X, i.e. Δi � X, and
creates a new evidence ti from all the corresponding uij s.t. uij : Fij for
each Fij ∈ Δi.

(2) In the second step he combines all these new pieces of evidence to a new
evidence (the so-called aggregated evidence) that actually is the greatest
evidence supporting X.

The model he has in mind contains some evaluation in a probability space
(Ω,F , P) with a mapping � from propositions to Ω and evidence terms to F that
meets some restrictions (for more details on this see [1]). Step (1) is to create a
new evidence ti for each Δi described above, which consists of the intersection
of the corresponding uij’s.

ti :=
⋂

{uij | uij ⊆ F �
ij for some Fij ∈ Δi}.

Step (2) then is to union all these pieces of evidence to a new so-called aggregated
evidence:

AEΓ(X) :=
⋃

{ti | ti is an evidence for X obtained by step (1)}.

442 E. Lehmann and T. Studer

On the syntactic side evidence terms are built from variables u1, . . . , un,
constants 0 and 1 and operations ∩ and ∪, where st is used as an abbreviation
for s ∩ t. With this we can built a free distributive lattice Ln where st is the
meet and s∪ t is the join of s and t, 0 is the bottom and 1 the top element of this
lattice. Moreover Artemov defines formulas in a usual way from propositional
letters p, q, r, . . . by the usual connectives and adds formulas of the kind t : F
where t is an evidence term and F a purely propositional formula.

The logical postulates of the logic of Probabilistic Evidence PE are:
(1) axioms and rules of classical logic in the language of PE;
(2) s : (A → B) → (t : A → [st] : B);
(3) (s : A ∧ t : A) → [s ∪ t] : A;
(4) 1 : A, where A is a propositional tautology,

0 : F , where F is a propositional formula;
(5) t : X → s : X, for any evidence terms s and t such that s � t in Ln.

Artemov presents Soundness and Completeness proofs connecting PE with the
presented semantic, for more details see [1].

Before we can start adapting Artemovs approach to our models, we have to
point out some differences between the semantics and syntax used. First, con-
trary to the models of Artemov, subset models may contain inconsistent worlds,
but this does not significantly affect the applicability of Artemov’s approach on
them.

Another difference is that our evidence function has another domain. In Arte-
mov’s models the evidence functions is E : Tm → P(Ω) while in our models it is
E : W × Tm → P(W). This difference is due to the fact that we allow terms to
justify non-purely propositional formulas. Although we need to adapt Artemov’s
definitions, these adaptations will maintain the essential characteristics. So let’s
adapt the L�

CS-subset models to aggregated L�
CS-subset models by first describing

the new syntax for the terms:
Definition 24 (Justification Terms). Justification terms are built from con-
stants 0, 1, ci and variables xi and the special and unique constant c� according
to the following grammar:

t ::= 0 | 1 | ci | xi | c� | (t + t) | (t ∪ t) | !t

This set of terms is denoted by TmP. As before, we introduce the abbreviation
st := s + t + c�.
Even though we have other operators as well, we can construct a free distributive
lattice where we take s + t as the meet of s and t, s ∪ t as the join of them, 0 as
the bottom element of the lattice. Note, that st then is the meet of s, t, and c�.
Moreover, 1 and !t are treated like constants.1 As usual, we have

s � t iff s ∪ t = t (2)
1 We do not claim that 1 is the top element since some set E(ω, t) for a world ω ∈ W0

and t ∈ TmP may contain non-normal worlds. If we claimed that 1 was the top
element we would obtain t � 1 and furthermore the set E(ω, 1) would contain non-
normal worlds as well. But since in non-normal worlds axioms may not be true,
E(ω, 1) �⊆ [A] for some axiom A may be the case and therefore axiom (4) would fail.

Subset Models for Justification Logic 443

So not all pairs of terms are comparable. But that has no consequences so
far.

There is no difference to our subset models regarding the rules for forming
formulas except that the terms are contained in TmP, of course. The set of
formulas built according to these grammar and rules is denoted by Lprob.

In the definition of L�
CS-subset models we only change the conditions on the

evidence function and the domain of V .

Definition 25 (PE-adapted subset models). An L�
CS- subset model is called a

PE-adapted L�
CS-subset model if the valuation function and the evidence function

meet the additional conditions respectively are redefined as follows:

– V : W × Lprob → {0, 1} where all conditions listed in Definition 1 remain the
same.

– For all ω ∈ W0 and for all s, t ∈ TmP:
• E(ω, 1) = W0;
• E(ω, 0) = ∅;
• E(ω, s ∪ t) = E(ω, s) ∪ E(ω, t).

And in fact, such an PE-adapted L�
CS-subset model is a model of probabilistic

evidence PE.

Theorem 26 (Soundness). PE-adapted L�
CS-subset models M are sound with

respect to probabilistic evidence PE, i.e. for all F ∈ Lprob

PE � F ⇒ M, ω � F for all PE-adapted L�
CS-subset models and all ω ∈ W0.

The proof is by induction on the length of the derivation of F and can be found
in Appendix D.

Theorem 27 (model existence). There exists a PE-adapted L�
CS-subset model.

Proof. We construct a model M = {W,W0, V, E} as follows:

– W = W0 = {ω}.
– The valuation function is built bottom up:

(1) V (ω,⊥) = 0;
(2) V (ω, P) = 1, for all P ∈ Prop;
(3) V (ω,A → B) = 1 iff V (ω,A) = 0 or V (ω,B) = 1;
(4) V (ω, t : F) = 1 iff t �≥ 1 or if t ≥ 1 and V (ω, F) = 1.

– E(ω, t) =

{

{ω} if t ≥ 1
∅ otherwise.

It is straightforward to show that M is indeed a PE-adapted L�
CS-subset

model. Let us only show the condition E(ω, s ∪ t) = E(ω, s) ∪ E(ω, t).
Suppose first s, t �≥ 1, Then E(ω, s ∪ t) = ∅ = E(ω, s) = E(ω, t) and hence

the claim follows immediately.
Suppose at least one term of s and t is in greater than 1, then E(ω, s) = {ω}

or E(ω, t) = {ω} and hence E(ω, s) ∪ E(ω, t) = {ω} and since s ≤ s ∪ t and
t ≤ s ∪ t we obtain s ∪ t ≥ 1 and therefore E(ω, s ∪ t) = {ω}, so the claim holds.

444 E. Lehmann and T. Studer

Note that we cannot use the canonical model to show that adapted subset
models exists since in the canonical model

E(Γ, s ∪ t) �⊆ E(Γ, s) ∪ E(Γ, t).

However, in an adapted model we need these sets to be equal (see Definition 25)
since otherwise axioms (3) and (5) would not be sound.

5 Conclusion

We introduced a new semantics, called subset semantics, for justifications. So far,
often a symbolic approach was used to interpret justifications. In our semantics,
justifications are modeled as sets of possible worlds. We also presented a new
justification logic that is sound and complete with respect to our semantics.
Moreover, we studied a variant of subset models that corresponds to traditional
justification logic.

Subset models provide a versatile tool to work with justifications. In partic-
ular, we can naturally extend them with probability measures to capture uncer-
tain justifications. In the last part of the paper, we showed that subset models
subsume Artemov’s approach to aggregating probabilistic evidence.

A The “j-axiom” Follows (Lemma 5)

For all M = (W,W0, V, E), ω ∈ W0, A,B ∈ LJ and s, t ∈ Tm:

M, ω � s : (A → B) → (t : A → s · t : B)

Proof. Suppose M, ω � s : (A → B) and M, ω � t : A. Thus E(ω, s) ⊆ [A → B]
and E(ω, t) ⊆ [A]. We find

E(ω, s · t) = E(ω, s + t + c�) ⊆
E(ω, s) ∩ E(ω, t) ∩ E(ω, c�) ⊆ [A → B] ∩ [A] ∩ E(ω, c�).

Hence for all υ ∈ E(ω, s · t) we have V (υ,A → B) = 1 and V (υ,A) = 1 and
υ ∈ E(ω, c�) and therefore V (υ,B) = 1. Hence E(ω, s · t) ⊆ [B] and we obtain
M, ω � s · t : B.

B The Canonical Model MC Defined in Definition 11 is
an L�

CS-Subset Model (Lemma 12)

Proof. In order to prove this, we have to show that MC meets all the conditions
we made for the valuation and evidence function and the constant specification
i.e.:

(1) WC
0 �= ∅.

Subset Models for Justification Logic 445

(2) For all Γ ∈ WC
0 :

(a) V C(Γ,⊥) = 0;
(b) V C(Γ, F → G) = 1 iff V C(Γ, F) = 0 or V C(Γ,G) = 1;
(c) V C(Γ, t : F) = 1 iff E(Γ, t) ⊆ [F].

(3) For all Γ ∈ WC
0 , F ∈ LJ , s, t ∈ Tm:

(a) EC(Γ, s + t) ⊆ EC(Γ, s) ∩ EC(Γ, t);
(b) EC(Γ, c�) ⊆ WC

MP ;
(c) if jd in L�: ∀Γ ∈ WC

0 and ∀t ∈ Tm : ∃υ ∈ WC
0 s.t. υ ∈ EC(Γ, t);

(d) if jt in L�: ∀Γ ∈ WC
0 and ∀t ∈ Tm : Γ ∈ EC(Γ, t);

(e) if j4 in L�:

EC(Γ, !t) ⊆
{

Δ ∈ WC
∣

∣ ∀F ∈ LJ (V C(Γ, t : F) = 1 ⇒ V C(Δ, t : F) = 1)
}

;

(f) for all (c,A) ∈ CS and for all Γ ∈ WC
0 : EC(Γ, c) ⊆ [A] and

E(Γ, !...!
︸︷︷︸

n

c) ⊆ [!...!
︸︷︷︸

n−1

c :!c : c : A] for all n ∈ N.

So the proofs are here:

(1) Since the empty set is proven to be L�
CS-consistent (see Lemma 8) it can

be extended by the Lindenbaum Lemma to a maximal L�
CS-consistent set of

formulas Γ with Γ ∈ WC
0 .

(2) Suppose Γ ∈ WC
0 :

(a) We claim V C(Γ,⊥) = 0: Suppose the opposite, then V C(Γ,⊥) = 1 hence
by the definition of V C follows that ⊥∈ Γ . But this is a contradiction to
the fact that Γ is consistent.

(b) From left to right: Suppose V C(Γ, F → G) = 1, then by the definition
of V C , F → G ∈ Γ . Since Γ is maximal L�

CS-consistent this implies by
Lemma 10 (3) that F �∈ Γ or G ∈ Γ . Hence again by the definition of
V C , V C(Γ, F) = 0 or V C(Γ,G) = 1.
From right to left: Suppose V C(Γ, F) = 0 or V C(Γ,G) = 1, then by the
definition of V C either F �∈ Γ or G ∈ Γ . Since Γ ∈ WC

0 , Γ is maximal
L�-consistent and hence in both cases by Lemma 10 (3) F → G ∈ Γ . But
this means again by the definition of V C that V (Γ, F → G) = 1.

(c) From left to right: Suppose V C(Γ, t : F) = 1, then by Definition 11
t : F ∈ Γ . Hence with the definition of Γ/t we obtain F ∈ Γ/t. So for
each Δ ∈ EC(Γ, t), F ∈ Δ (again by Definition 11). Hence for these Δ it
follows by the definition of V C that V C(Δ,F) = 1 and therefore Δ ∈ [F].
Since this is true for all Δ ∈ EC(Γ, t) we obtain EC(Γ, t) ⊆ [F].
From right to left: The proof is by contraposition.
Suppose V C(Γ, t : F) �= 1, then by the definition of V C t : F �∈ Γ . We
define a world Δ by Δ := Γ/t. Since Δ ∈ P(LJ) we can be sure that Δ
exists, i.e. Δ ∈ W . Since t : F �∈ Γ it follows that F �∈ Γ/t and therefore
F �∈ Δ. But obviously Δ ⊇ Γ/t hence Δ ∈ EC(Γ, t). So we conclude

446 E. Lehmann and T. Studer

EC(Γ, t) �⊆ [F].
It remains to show that in case of t = c�,Δ := Γ/t ∈ WC

MP since otherwise
Δ �∈ EC(Γ, c�). In fact this is the case. Since Γ ∈ WC

0 we obtain that
Γ is a maximal L�

CS-consistent set of formulas and hence, whenever c� :
A, c� : (A → B) ∈ Γ then by jc� we obtain c� : B ∈ Γ . This means
that whenever A ∈ Δ and A → B ∈ Δ then B ∈ Δ. Hence Δ = Γ/c� is
closed under modus ponens and therefore Δ ∈ WC

MP . So together with
the former reasoning Δ ∈ E(Γ, c�).

(3) Suppose Γ ∈ WC
0 :

(a) Given some F ∈ LJ , s, t ∈ Tm: We start by an observation on the relation
between the sets Γ/(s + t) and Γ/s for Γ ∈ WC

0 . If s : A ∈ Γ then since
Γ is maximal L�

CS-consistent s + t : A ∈ Γ and therefore Γ/s ⊆ Γ/(s + t).
With the same reasoning Γ/t ⊆ Γ/(s+t). Therefore if Δ ⊇ Γ/(s+t) then
Δ ⊇ Γ/s and Δ ⊇ Γ/t. This means that EC(Γ, s + t) ⊆ EC(Γ, s) and
EC(Γ, s+ t) ⊆ EC(Γ, t) and therefore EC(Γ, s+ t) ⊆ EC(Γ, s)∩EC(Γ, t).

(b) This follows directly from the definition of EC(Γ, c�).
(c) If jd in L�, then for any Γ ∈ WC

0 we obtain ¬(t :⊥) ∈ Γ . Hence ⊥�∈ Γ/t.
Therefore Γ/t is L�

CS-consistent and can be expanded by the Lindenbaum
Lemma to a maximal L�

CS-consistent set Δ ⊇ Γ/t with Δ ∈ WC
0 and

Δ ∈ EC(Γ, t).
(d) Assume for some F ∈ LJ , Γ ∈ WC

0 , t ∈ Tm that F ∈ Γ/t, i.e. t : F ∈ Γ ,
since Γ is maximal L�

CS-consistent and t : F → F is an instance of the jt-
axiom, we conclude that F ∈ Γ . Since F was arbitrary we obtain Γ ⊇ Γ/t
and hence Γ ∈ EC(Γ, t).

(e) Suppose for some Δ ∈ EC(Γ, !t), hence Δ ⊇ Γ/!t. Then assume for some
arbitrary F ∈ LJ , V (Γ, t : F) = 1 i.e. by Definition 11 t : F ∈ Γ . Since
Γ is maximal L�

CS-consistent and t : F →!t : (t : F) is an instance of the
j4-axiom we obtain !t : (t : F) ∈ Γ and hence t : F ∈ Γ/!t. But then
t : F ∈ Δ and by Definition 11 it follows that V C(Δ, t : F) = 1. Since
F was an arbitrary formula and Δ an arbitrary world of EC(Γ, !t) we
conclude that the condition holds.

(f) Suppose (c,A) ∈ CS, maximal L�
CS-consistency implies for all Γ ∈ WC

0

that c : A ∈ Γ . Hence A ∈ Γ/c and for all Δ ∈ EC(Γ, c) we obtain
A ∈ Δ and therefore EC(Γ, c) ⊆ [A].
Furthermore maximal L�

CS-consistency implies for all Γ ∈ W0 by axiom
necessitation that

!...!
︸︷︷︸

n

c : ... :!c : c : A ∈ Γ

. Hence
!...!
︸︷︷︸

n−1

c : ... :!c : c : A ∈ Γ/ !...!
︸︷︷︸

n

c

and for all Δ ∈ EC(Γ, !...!
︸︷︷︸

n

c) we obtain

!...!
︸︷︷︸

n−1

c : ... :!c : c : A ∈ Δ

Subset Models for Justification Logic 447

and therefore
EC(Γ, !...!

︸︷︷︸

n

c) ⊆ [!...!
︸︷︷︸

n−1

c : ... :!c : c : A]

.

C The Canonical Model Defined in Definition 20 Is an
LA
CS-Subset Model (Lemma 21)

Proof. In order to prove that, we have to proceed in the same way as in the
previous section, i.e. showing that MC meets all the conditions we made for the
valuation and the evidence function as well as the constant specification.

Since the canonical model is defined in the same way as the one of L�
CS-subset

models, the corresponding proofs can be reused (see Lemma 12). Nevertheless,
there is some difference. Instead of showing that EC(Γ, c�) ⊆ WC

MP we have to
show that EC(Γ, s · t) ⊆ {Δ ∈ WC | ∀F ∈ APPΓ (s, t)(Δ ∈ [F])}. Assume that
we are given Γ ∈ WC

0 , F ∈ LA
J , s, t ∈ TmA. Take any Δ ∈ EC(Γ, s · t), i.e.

Δ ⊇ Γ/(s · t). Hence for all F s.t. s · t : F ∈ Γ we know that F ∈ Δ. Hence by
the definition of V C , we have V (Δ,F) = 1 and therefore Δ ∈ [F].

It remains to show: if F ∈ APPΓ (s, t) then s · t : F ∈ Γ . Suppose for
some formula F that F ∈ APPΓ (s, t) then by definition of APPΓ (s, t) we know
that there is a formula H s.t. EC(Γ, s) ⊆ [H → F] and EC(Γ, t) ⊆ [H]. By
using Lemma 21 (the part that corresponds to Lemma 12 (2c)) we conclude
V C(Γ, s : (H → F)) = 1 and V C(Γ, t : H) = 1. Hence by the definition of V C

we obtain s : (H → F) ∈ Γ and t : H ∈ Γ and since Γ is maximal LA
CS-consistent

and s : (H → F) → (t : H → s · t : F) is an instance of the j-axiom we conclude
that s · t : F ∈ Γ .

D Soundness of PE-adapted L�-Subset Models
(Theorem 26)

PE-adapted L�
CS-subset models M are sound with respect to probabilistic evi-

dence PE, i.e. for all F ∈ Lprob

PE � F ⇒ M, ω � F for all PE-adapted L�
CS-subset models and all ω ∈ W0.

Proof. The proof is by induction on the length of the derivation of F :

– If F is derived by axiom necessitation or modus ponens or is an instance of
axiom (1), then the proof is the analogue as in Theorem 3 since the relevant
definitions have remained the same.

– If F is an instance of axiom (2) the proof is analogue to the proof of Lemma 5:
Suppose M, ω � s : (A → B) and M, ω � t : A then E(ω, s) ⊆ [A → B] and
E(ω, t) ⊆ [A].

E(ω, st) = E(ω, s + t + c�) ⊆
E(ω, s) ∩ E(ω, t) ∩ E(ω, c�) ⊆ [A → B] ∩ [A] ∩ E(ω, c�).

448 E. Lehmann and T. Studer

Hence for all υ ∈ E(ω, st) we have V (υ,A → B) = 1 and V (υ,A) = 1 and
υ ∈ E(ω, c�) and therefore V (υ,B) = 1. Hence E(ω, st) ⊆ [B] and we obtain
M, ω � st : B.

– If F is an instance of axiom (3) then F = (s : A ∧ t : A) → [s ∪ t : A] for
some A ∈ Lprob, s, t ∈ TmP. Suppose M, ω � s : A ∧ t : A hence E(ω, s) ⊆ [A]
and E(ω, t) ⊆ [A]. Therefore E(ω, s ∪ t) ⊆ E(ω, s) ∪ E(ω, t) ⊆ [A] and since
ω ∈ W0 we obtain M, ω � s ∪ t : A.

– If F is an instance of axiom (4) then either F = 1 : A for some axiom A or
0 : G for some formula G.
Suppose F = 1 : A for some axiom A. We assume that M, ω � A for all
ω ∈ W0, hence E(ω, 1) = W0 ⊆ [A] and therefore M, ω � 1 : A for all
ω ∈ W0.
Suppose F = 0 : G: For any ω ∈ W0 we have E(ω, 0) = ∅ by Definition 25.
Since ∅ is a subset of any subset of W , we obtain E(ω, 0) = ∅ ⊆ [G] for any
formula G ∈ Lprob.

– F is an instance of axiom (5). Assume M, ω � t : X for some term t and
some formula X and let s � t. By (2) we find t = s ∪ t. Thus

E(ω, t) = E(ω, s ∪ t) = E(ω, s) ∪ E(ω, t)

and therefore E(ω, s) ⊆ E(ω, t). The assumption M, ω � t : X means that
E(ω, t) ⊆ [X]. Hence we also get E(ω, s) ⊆ [X] and conclude M, ω � s : X.

References

1. Artemov, S.: On aggregating probabilistic evidence. In: Artemov, S., Nerode, A.
(eds.) LFCS 2016. LNCS, vol. 9537, pp. 27–42. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-27683-0 3

2. Artemov, S., Fitting, M.: Justification Logic: Reasoning with Reasons. Cambridge
University Press (in preparation)

3. Artemov, S.N.: Operational modal logic. Technical Report MSI 95–29, Cornell
University, December 1995

4. Artemov, S.N.: Explicit provability and constructive semantics. Bull. Symb. Logic
7(1), 1–36 (2001)

5. Artemov, S.N.: Justified common knowledge. TCS 357(1–3), 4–22 (2006)
6. Artemov, S.N.: The logic of justification. RSL 1(4), 477–513 (2008)
7. Artemov, S.N.: The ontology of justifications in the logical setting. Studia Logica

100(1–2), 17–30 (2012)
8. Artemov, S.N., Fitting, M.: Justification logic. In: Zalta, E.N. (ed.) The Stanford

Encyclopedia of Philosophy. Fall 2012 edition (2012)
9. Artemov, S., Nogina, E.: Topological semantics of justification logic. In: Hirsch,

E.A., Razborov, A.A., Semenov, A., Slissenko, A. (eds.) CSR 2008. LNCS, vol.
5010, pp. 30–39. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
79709-8 7

10. Baltag, A., Bezhanishvili, N., Özgün, A., Smets, S.: Justified belief and the topology
of evidence. In: Väänänen, J., Hirvonen, Å., de Queiroz, R. (eds.) WoLLIC 2016.
LNCS, vol. 9803, pp. 83–103. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-52921-8 6

https://doi.org/10.1007/978-3-319-27683-0_3
https://doi.org/10.1007/978-3-319-27683-0_3
https://doi.org/10.1007/978-3-540-79709-8_7
https://doi.org/10.1007/978-3-540-79709-8_7
https://doi.org/10.1007/978-3-662-52921-8_6
https://doi.org/10.1007/978-3-662-52921-8_6

Subset Models for Justification Logic 449

11. Bucheli, S., Kuznets, R., Studer, T.: Justifications for common knowledge. Appl.
Non-Class. Logics 21(1), 35–60 (2011)

12. Bucheli, S., Kuznets, R., Studer, T.: Realizing public announcements by justifica-
tions. J. Comput. Syst. Sci. 80(6), 1046–1066 (2014)

13. Fitting, M.: The logic of proofs, semantically. APAL 132(1), 1–25 (2005)
14. Kuznets, R., Studer, T.: Justifications, ontology, and conservativity. In: Bolander,

T. Braüner, T., Ghilardi, S., Moss, L. (eds.) Advances in Modal Logic, vol. 9, pp.
437–458. CollegePublications (2012)

15. Kuznets, R., Studer, T.: Weak arithmetical interpretations for the logic of proofs.
Logic J. IGPL 24(3), 424–440 (2016)

16. Kuznets, R., Studer, T.: Logics of Proofs and Justifications. College Publications
(in preparation)

17. Lehmann, E., Studer, T.: Subset models for justification logic. E-print 1902.02707.
arXiv.org (2019)

18. Mkrtychev, A.: Models for the logic of proofs. In: Adian, S., Nerode, A. (eds.)
LFCS 1997. LNCS, vol. 1234, pp. 266–275. Springer, Heidelberg (1997). https://
doi.org/10.1007/3-540-63045-7 27

19. Rantala, V.: Impossible worlds semantics and logical omniscience. Acta Philosoph-
ica Fennica 35, 106–115 (1982). Cited By 35

20. Rantala, V.: Quantified modal logic: non-normal worlds and propositional atti-
tudes. Studia Logica 41(1), 41–65 (1982)

21. van Benthem, J., Duque, D.F., Pacuit, E.: Evidence logic: a new look at neighbor-
hood structures. In: Advances in Modal Logic (2012)

22. van Benthem, J., Duque, D.F., Pacuit, E.: Evidence and plausibility in neighbor-
hood structures. CoRR, abs/1307.1277 (2014)

http://arxiv.org/abs/org
https://doi.org/10.1007/3-540-63045-7_27
https://doi.org/10.1007/3-540-63045-7_27

Algebraic Semantics for Quasi-Nelson
Logic

Fei Liang1(B) and Thiago Nascimento2

1 School of Philosophy and Social Development, Shandong University, Jinan, China
f.liang@sdu.edu.cn

2 Programa de Pós-graduação em Sistemas e Computação, UFRN, Natal, Brazil
thiagnascsilva@gmail.com

Abstract. Quasi-Nelson logic is a generalization of Nelson logic in the
sense that the negation is not necessary involutive. In this paper, we give
a Hilbert-style presentationQN of quasi-Nelson logic, and show thatQN
is regularly BP-algebraizable with respect to its algebraic counterpart
obtained by the Blok-Pigozzi algorithm, namely the class of Q-algebras.
Finally, we show that the class of Q-algebras coincides with the class of
quasi-Nelson algebras.

Keywords: Quasi-Nelson logic · Algebraizable logics ·
Quasi-Nelson algebras

1 Introduction

Nelson logic N3, introduced in [10], is a conservative expansion of the negation-
free fragment of intuitionistic propositional logic by an unary logical connective
∼ of strong negation (which is involutive). The logic N3 is by now well stud-
ied, both from a proof-theoretic view and from an algebraic view. In particular,
Nelson algebras (the algebraic counterpart of N3) can be represented as twist-
structures over (i.e., special powers of) Heyting algebras [14,16]. Moreover, the
variety of Nelson algebras is term-equivalent to the variety of compatibly invo-
luted commutative integral bounded residuated lattices satisfying the Nelson
axiom (called Nelson residuated lattices, [15]).

Rivieccio and Spinks [12] introduced quasi-Nelson algebras as a natural gen-
eralization of Nelson algebras in the sense that the negation ∼ is not involutive.
Similar to Nelson algebras, quasi-Nelson algebras can be regarded as models of
non-involutive Nelson logic, which is an expansion of the negation-free fragment
of intuitionistic propositional logic; moreover, they can be represented as twist-
structures over Heyting algebras (Definition 2). Furthermore, [12] proved that

The first author is supported by “The Fundamental Research Funds of Shandong Uni-
versity” (11090079614065). The second author was financed in part by the Coordenação
de Aperfeiçoamento de Pessoal de Nı́vel Superior – Brasil (CAPES) – Finance Code
001.

c© Springer-Verlag GmbH Germany, part of Springer Nature 2019
R. Iemhoff et al. (Eds.): WoLLIC 2019, LNCS 11541, pp. 450–466, 2019.
https://doi.org/10.1007/978-3-662-59533-6_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-59533-6_27&domain=pdf
https://doi.org/10.1007/978-3-662-59533-6_27

Algebraic Semantics for Quasi-Nelson Logic 451

the class of quasi-Nelson algebras is term-equivalent to the variety of commu-
tative integral bounded residuated lattices satisfying the Nelson axiom (called
quasi-Nelson residuated lattices therein). Like Nelson algebras, the class of quasi-
Nelson algebras forms a “quasivariety of logic” in the sense of Blok and La Falce
[1]; however, no axiomatization of the inherent logic of quasi-Nelson algebras has
yet been presented in the literature. Continuing the work above, in this paper we
shall first introduce a Hilbert-style calculus QN for quasi-Nelson logic, and show
that QN is algebraizable in the sense of Blok and Pigozzi. We shall further prove
that the algebraic counterpart of QN, viz., its equivalent variety semantics, is
equivalent to the class of quasi-Nelson algebras.

Although the results in this paper clearly pertain in universal algebra and
algebraic logic, they are potentially relevant to algebraic proof theory. Specifi-
cally, the term-equivalence results can throw light, as an interesting case study,
on some unsolved issues that have recently cropped up about how to characterize
the existence of (multi-type) analytic calculi for logical systems. In this respect,
the present paper can also be regarded as a continuation of [9]. As in the cases
of semi De Morgan logic and bilattice logic [6,7,9], the term-equivalent facts for
quasi-Nelson algebras could also pave the way for designing analytic calculi for
logics which are axiomatically presented by axioms which are not all analytic
inductive in the sense of [5].

The paper is organized as follows. In Sect. 2 we recall some basic definitions
and results about quasi-Nelson algebras. Section 3 gives a Hilbert-style presen-
tation QN of quasi-Nelson logic. In Sect. 4, we prove that QN is regularly BP-
algebraizable, and show that the algebraic counterpart of QN is equivalent to
the class of quasi-Nelson algebras. Finally, we mention some prospects for future
work in Sect. 5.

2 Preliminaries

In this section, we recall two equivalent presentations of quasi-Nelson algebras.
They will be used to establish the equivalence between differing algebraic seman-
tics for quasi-Nelson logic in Sect. 4.

Definition 1 ([12, Definition 4.1]). A quasi-Nelson algebra is an algebra A =
(A;∧,∨,∼,→, 0, 1) having the following properties:

(SN1) The reduct (A;∧,∨, 0, 1) is a bounded distributive lattice with lattice order
≤.

(SN2) The relation � on A defined for all a, b ∈ A by a � b iff a → b = 1 is a
quasiorder on A.

(SN3) The relation ≡ :=� ∩ (�)−1 is a congruence on the reduct
(A;∧,∨,→, 0, 1) and the quotient algebra A+ = (A;∧,∨,→, 0, 1)/ ≡ is a
Heyting algebra.

(SN4) For all a, b ∈ A, it holds that ∼(a → b) ≡ ∼∼(a ∧ ∼b).
(SN5) For all a, b ∈ A, it holds that a ≤ b iff a � b and ∼b � ∼a.
(SN6) For all a, b ∈ A,

452 F. Liang and T. Nascimento

(SN6.1) ∼∼(∼a → ∼b) ≡ (∼a → ∼b).
(SN6.2) ∼a ∧ ∼b ≡ ∼(a ∨ b).
(SN6.3) ∼∼a ∧ ∼∼b ≡ ∼∼(a ∧ b).
(SN6.4) ∼∼∼a ≡ ∼a.
(SN6.5) a � ∼∼a.
(SN6.6) a ∧ ∼a � 0.

Let π1 and π2 denote the first and second projection functions respectively.

Definition 2 ([12, Definition 3.1]). Let H+ = 〈H+,∧+,∨+,→+, 0+, 1+〉 and
H− = 〈H−,∧−,∨−,→−, 0−, 1−〉 be Heyting algebras and n : H+ → H− and
p : H− → H+ be maps satisfying the following conditions:

(1) n preserves finite meets, joins and the bounds (i.e., one has n(x ∧+ y) =
n(x) ∧− n(y), n(x ∨+ y) = n(x) ∨− n(y), n(1+) = 1− and n(0+) = 0−),

(2) p preserves meets and the bounds (i.e., one has p(x ∧− y) = p(x) ∧+ p(y),
p(1−) = 1+ and p(0−) = 0+),

(3) n · p = IdH− and IdH+ ≤+ p · n.

The algebra H+ �� H− = 〈H+ × H−,∧,∨,→,∼, 0, 1〉 is defined as follows. For
all 〈a+, a−〉, 〈b+, b−〉 ∈ H+ × H−,

1 = 〈1+, 0−〉
0 = 〈0+, 1−〉

∼〈a+, a−〉 = 〈p(a−), n(a+)〉
〈a+, a−〉 ∧ 〈b+, b−〉 = 〈a+ ∧+ b+, a− ∨− b−〉
〈a+, a−〉 ∨ 〈b+, b−〉 = 〈a+ ∨+ b+, a− ∧− b−〉

〈a+, a−〉 → 〈b+, b−〉 = 〈a+ →+ b+, n(a+) ∧− b−)〉.
A twist-structure A over H+ �� H− is a {∧,∨,→,∼, 0, 1}-subalgebra of

H+ �� H− with carrier set A such that for all 〈a+, a−〉 ∈ A, a+ ∧+ p(a−) = 0+

and n(a+) ∧− a− = 0−.

Lemma 1 of [13] shows that (1)–(3) implies that p also preserves →, i.e.
p(x →− y) = p(x) →+ p(y). By (SN3) in Definition 1, a quasi-Nelson algebras
has the global outline of a Heyting algebra. Moreover, let A− := {[∼a] | a ∈
A} ⊆ A+, n([a]) := [∼∼a] and p([a]) := [a], where [.] is the equivalence class
defined by ≡ in Definition 1. By Proposition 4.2 in [12], the following theorem
holds:

Theorem 1. Every quasi-Nelson algebra A is isomorphic to a twist-structure
over A+,A− by the map ι(a) := 〈[a], [∼a]〉.

3 A Hilbert System for Quasi-Nelson Logic

In this section, we give a Hilbert-style presentation QN of quasi-Nelson logic
and highlight some theorems and derivations of QN that will be used to prove
its algebraizability in subsequent sections.

Algebraic Semantics for Quasi-Nelson Logic 453

Fix a denumerable set Atprop of propositional variables, and let p denote an
element in Atprop. The language L of quasi-Nelson logic over Atprop is defined
recursively as follows:

ϕ ::= p | ∼ϕ | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | (ϕ → ϕ)

To simplify the notation, in what follows, we omit the outmost parenthesis. Let
ϕ ↔ ψ := (ϕ → ψ) ∧ (ψ → ϕ). We use Fm to denote the set of all formulas. A
logic is then defined as a finitary and substitution-invariant consequence relation
�⊆ P(Fm) × Fm.

The Hilbert-system for QN of quasi-Nelson logic consists of the following
axiom schemes:

AX1 ϕ → (ψ → ϕ)
AX2 (ϕ → (ψ → χ)) → ((ϕ → ψ) → (ϕ → χ))
AX3 (ϕ ∧ ψ) → ϕ
AX4 (ϕ ∧ ψ) → ψ
AX5 (ϕ → ψ) → ((ϕ → χ) → (ϕ → (ψ ∧ χ)))
AX6 ϕ → (ϕ ∨ ψ)
AX7 ψ → (ϕ ∨ ψ)
AX8 (ϕ → χ) → ((ψ → χ) → ((ϕ ∨ ψ) → χ))
AX9 ∼∼(∼ϕ → ∼ψ) → (∼ϕ → ∼ψ)
AX10 (∼ϕ ∧ ∼ψ) ↔ ∼(ϕ ∨ ψ)
AX11 (∼∼ϕ ∧ ∼∼ψ) ↔ ∼∼(ϕ ∧ ψ)
AX12 ∼∼∼ϕ → ∼ϕ
AX13 ∼(ϕ → ψ) ↔ ∼∼(ϕ ∧ ∼ψ)
AX14 ϕ → ∼∼ϕ
AX15 (ϕ → ψ) → (∼∼ϕ → ∼∼ψ)
AX16 ∼ϕ → ∼(ϕ ∧ ψ)
AX17 ∼(ϕ ∧ ψ) → ∼(ψ ∧ ϕ)
AX18 ∼(ϕ ∧ (ψ ∧ χ)) ↔ ∼((ϕ ∧ ψ) ∧ χ)
AX19 ∼ϕ → ∼(ϕ ∧ (ψ ∨ ϕ))
AX20 ∼ϕ → ∼(ϕ ∧ (ϕ ∨ ψ))
AX21 ∼(ϕ ∧ (ψ ∨ χ)) ↔ ∼((ϕ ∧ ψ) ∨ (ϕ ∧ χ))
AX22 ∼(ϕ ∨ (ψ ∧ χ)) ↔ ∼((ϕ ∨ ψ) ∧ (ϕ ∨ χ))
AX23 ∼ϕ ↔ ∼(ϕ ∧ (ψ → ψ))
AX24 ∼(ϕ → ϕ) → ψ
AX25 (∼ϕ → ∼ψ) → (∼(ϕ ∧ ψ) → ∼ψ)
AX26 (∼ϕ → ∼ψ) → ((∼χ → ∼γ) → (∼(ϕ ∧ χ) → ∼(ψ ∧ γ)))

together with the single inference rule of modus ponens (MP): ϕ,ϕ → ψ � ψ.

Remark 1. Notice that since the inter-derivability relation �� does not realize
a congruence on the formula algebra, QN is not selfextensional [17], and hence
does not fall within the setting of [5]. Therefore, the analytic calculus for quasi-
Nelson logic is challenge. However, the term-equivalent facts in Sect. 4 make it
possible to solve this problem.

454 F. Liang and T. Nascimento

AX1–AX8 together with (MP) provide an axiomatization of the negation-
free fragment of intuitionistic propositional logic, while AX9-AX14 are the log-
ical analogues of (SN4) and (SN6) respectively. It is not difficult to see that
intuitionistic propositional logic is a strengthening of QN.

By the usual inductive argument on the length of derivations, it is not difficult
to prove that the deduction theorem holds for QN.

Theorem 2 (Deduction Theorem). If Φ ∪ {ϕ} � ψ, then Φ � ϕ → ψ.

In what follows, we prove some theorems and derivations which will be used
in the next section.

Corollary 1. (1) ϕ → ϕ
(2) ϕ → (ψ → (ϕ ∧ ψ))
(3) (ϕ ∧ ∼ϕ) → ψ
(4) ∼(ϕ ∧ ϕ) → ∼ϕ
(5) {ϕ → ψ,ψ → χ} � ϕ → χ

Proof. The proofs for (1) and (5) are same as the proofs in classical propositional
logic [8, Chap. 2] and hence are omitted.

As to (2), we have:

1. ϕ assumption
2. ϕ → (ψ → ϕ) AX1
3. ψ → ϕ 1, 2, MP
4. ψ → ψ Corollary 1.1
5. ψ → ϕ ∧ ψ 3, 4, AX5, MP

and hence ϕ → (ψ → (ϕ ∧ ψ)) is derivable by the deduction theorem.
As to (3), we have:

1. ϕ ∧ ∼ϕ assumption
2. ∼∼(ϕ ∧ ∼ϕ) AX14
3. ∼(ϕ → ϕ) 2, AX13, MP
4. ψ 3, AX24, MP

and hence (ϕ ∧ ∼ϕ) → ψ is derivable by the deduction theorem.
As to (4), we have:

1. (∼ϕ → ∼ϕ) → (∼(ϕ ∧ ϕ) → ∼ϕ) AX25
2. ∼ϕ → ∼ϕ Corollary 1.1
3. ∼(ϕ ∧ ϕ) → ∼ϕ 1, 2, MP

4 QN Is Regularly BP-Algebraizable

In this section, we prove that QN is regularly BP-algebraizable. We give an
algebraic semantics (called Q-algebras) for it via the algorithm of [2, Theorem

Algebraic Semantics for Quasi-Nelson Logic 455

2.17]. Furthermore, we show that Q-algebras coincides with quasi-Nelson alge-
bras defined as in Sect. 2. Combining with Theorem 4.4 in [12], we arrive at four
equivalent characterizations of quasi-Nelson logic.

Before proving QN is regularly BP-algebraizable, we first recall some relevant
definitions from [4]. Let Fm be a set of formulas, henceforth the set of equations
of the language L is denoted by Eq and is defined as Eq := Fm × Fm. We write
ϕ ≈ ψ rather than (ϕ,ψ).

Definition 3. A logic L is algebraizable if and only if there are equations
E(ϕ) ⊆ Eq and a transform ρ : Eq → 2Fm, denoted by Δ(ϕ,ψ) := ρ(ϕ ≈ ψ),
such that L respects the following conditions:

(Alg) ϕ ��L Δ(E(ϕ))
(Ref) �L Δ(ϕ,ϕ)
(Sym) Δ(ϕ,ψ) �L Δ(ψ,ϕ)
(Trans) Δ(ϕ,ψ) ∪ Δ(ψ, γ) �L Δ(ϕ, γ)
(Cong) for each n-ary operator •, ⋃n

i=1 Δ(ϕi, ψi) �L Δ(•(ϕ1, . . . , ϕn), •
(ψ1, . . . , ψn))

We call any such E(ϕ) the set of defining equations and any such Δ(ϕ,ψ) the
set of equivalence formulas of L.

Definition 4. Let L be algebraizable. We say L is finitely algebraizable when
the set of equivalence formulas is finite. We say L is BP-algebraizable when it
is finitely algebraizable and the set of defining equations is finite.

Definition 5. A logic L is regularly BP-algebraizable when it is BP-
algebraizable and satisfies:

(G) ϕ,ψ �L Δ(ϕ,ψ)

for any nom-empty set Δ(ϕ,ψ) of equivalence formulas.

Let E(ϕ) := {ϕ ≈ ϕ → ϕ}, and Δ(ϕ,ψ) := {ϕ → ψ,ψ → ϕ,∼ϕ →
∼ψ,∼ψ → ∼ϕ}. In what follows, we prove in the Appendix that QN is reg-
ularly BP-algebraizable.

Proposition 1. QN is regularly BP-algebraizable.

By the algorithm in [4, Proposition 3.41], we can obtain the corresponding
algebras for QN:

Definition 6. An Q-algebra is a structure A = (A;∧,∨,∼,→) which satisfies
the following equations and quasiequations:

(1) E(ϕ) for each ϕ ∈ AX.
(2) E(Δ(ϕ,ϕ)).
(3) E(Δ(ϕ,ψ)) implies ϕ ≈ ψ.
(4) E(ϕ) and E(ϕ → ψ) implies E(ψ).

456 F. Liang and T. Nascimento

We will introduce below a class of algebras that thanks to Proposition 1 is
equivalent to the class given in Definition 6, as can be seen in [3, Theorem 30].

Definition 7. Let L be a logic with a set Ax of axioms and a set Ru of proper
inference rules. Assume L is regularly algebraizable with finite equivalence system
Δ(ϕ,ψ) = {ε0(ϕ,ψ), · · · , εn−1(ϕ,ψ)}. Let � be a fixed but arbitrary theorem of
L. Then the unique equivalent quasivariety of L is defined by the identities:

(1) ϕ ≈ � for each ϕ ∈ Ax
(2) (ψ0 ≈ �, · · · , ψp−1 ≈ �) implies ϕ ≈ �, for each inference rule in Ru.
(3) Δ(ϕ,ψ) ≈ � implies ϕ ≈ ψ.

In what follows, we show that the class given in Definition 7 is term-equivalent to
the class of quasi-Nelson algebras and as it is the unique equivalent quasivariety
of L, this class must be Q-algebras.

Proposition 2. Every Q-algebra is a quasi-Nelson algebra.

Proof. As to (SN1), let 1 := ϕ → ϕ and 0 := ∼(ϕ → ϕ), in order to prove that
(A;∧,∨, 0, 1) is a bounded distributive lattice with lattice order ≤, it suffices to
show that it satisfies the following properties: (i) idempotence, the difficult part is
∼(ϕ∧ϕ) → ∼ϕ and ∼ϕ → ∼(ϕ∧ϕ), which follow from Corollary 1.3 and AX16;
(ii) commutativity: the difficult part is ∼(ϕ∧ψ) → ∼(ψ∧ϕ) which is AX17; (iii)
associativity: the difficult part is ∼(ϕ∧(ψ∧χ)) ↔ ∼((ϕ∧ψ)∧χ) which is AX18;
(iv) absorption: the difficult part is ∼(ϕ∧(ψ∨ϕ)) ↔ ∼ϕ and ∼(ϕ∧(ϕ∨ψ)) ↔ ∼ϕ
which are AX19 and AX20 respectively; (v) distributivity: the difficult part is
∼(ϕ∧ (ψ ∨χ)) ↔ ∼((ϕ∧ψ)∨ (ϕ∧χ)) and ∼(ϕ∨ (ψ ∧χ)) ↔ ∼((ϕ∨ψ)∧ (ϕ∨χ))
which are AX21 and AX22 respectively. Hence, (A;∧,∨, 0, 1) is a distributive
lattice, it is bounded by AX23, AX24 and Corollary 1.1.

As to (SN2), it suffices to show that the relation satisfies reflexivity and
transitivity. In order to prove them, it is useful to show that ϕ → ψ ≈ 1 iff
� ϕ → ψ. The right to left direction follows from the definition of E. The left
to right direction follows from the definition of Δ. Hence, the reflexivity follows
from Corollary 1.1, and transitivity follows from Corollary 1.3.

As to (SN3), by (SN2) and Definition 6(3), the relation ≡ is a equivalent
relation. By the same proof as in intuitionistic propositional logic, we can show
that ≡ is closed under ∨,∧, 0, 1,→ and hence it is a congruence on (A;∧,∨,→
, 0, 1). To prove A+ = (A;∧,∨,→, 0, 1)/≡ is a Heyting algebra, it suffices to
show that [ϕ] ∧ [ψ] ≤≡ [χ] iff [ϕ] ≤≡ [ψ] → [χ] where [.] means the equivalence
class defined by ≡. It is equivalent to show that ((ϕ ∧ ψ) ∧ χ) ↔ (ϕ ∧ ψ) iff
(ϕ ∧ (ψ → χ)) ↔ ϕ, which follows from Theorem 2, Corollary 1.2, AX3, and
AX4.

As to (SN5), it suffices to prove that (ϕ∧ψ) → ϕ, ϕ → (ϕ∧ψ), ∼(ϕ∧ψ) → ∼ϕ
and ∼ϕ → ∼(ϕ∧ψ) iff ϕ → ψ and ∼ψ → ∼ϕ. From right to left, ∼(ϕ∧ψ) → ∼ϕ
follows from ∼ψ → ∼ϕ and AX25, others are obvious. From left to right, ϕ → ψ
follows from ϕ → (ϕ ∧ ψ), AX4 and Corollary 1.5. ∼ψ → ∼ϕ follows from
∼(ϕ ∧ ψ) → ∼ϕ, AX16, AX17 and Corollary 1.5.

(SN4) and (SN6) follows from AX9–AX15.

Algebraic Semantics for Quasi-Nelson Logic 457

Corollary 2. Given a quasi-Nelson algebra A, for any a, b, c ∈ A, we have:

(1) a ∧ (a → b) � b.
(2) a ∧ b � c iff a � b → c.

Proof. (1) By (SN2), we need to prove (a ∧ (a → b)) → b = 1. Hence, it suffices
to show 〈[(a ∧ (a → b)) → b], [∼((a ∧ (a → b)) → b)]〉 = 〈[1], [0]〉 by Theorem 1.
By (SN3), we have (a ∧ (a → b)) → b ≡ 1. Moreover, ∼((a ∧ (a → b)) → b) ≡
(∼∼a ∧ ∼∼(a → b)) ∧ ∼b ≡ ∼(a → b) ∧ ∼∼(a → b) � 0 by (SN4), (SN6.3),
(SN6.4) and (SN6.6). We also have 0 � ∼((a ∧ (a → b)) → b) since 0 is the least
element and (SN5). Therefore, ∼((a ∧ (a → b)) → b) ≡ 0.

(2) From left to right, we only need to show that: if (a ∧ b) → c = 1 then
a → (b → c) = 1 by (SN2). Hence, by Theorem 1, it suffices to show that
if 〈[(a ∧ b) → c], [∼(a ∧ b) → c)]〉 = 〈[1], [0]〉, then 〈[a → (b → c)], [∼(a →
(b → c))]〉 = 〈[1], [0]〉. The assumption implies that: (i) (a ∧ b) → c ≡ 1 and
(ii) ∼((a ∧ b) → c) ≡ 0. (i) implies a → (b → c) ≡ (a ∧ b) → c ≡ 1 by
(SN3). Since ∼((a ∧ b) → c) ≡ (∼∼a ∧ ∼∼b) ∧ ∼c by (SN4), (SN6.3) and
(SN6.4), (ii) implies (∼∼a ∧ ∼∼b) ∧ ∼c ≡ 0. Therefore, by the same argument,
∼(a → (b → c)) ≡ (∼∼a ∧ ∼∼b) ∧ ∼c ≡ 0. The argument for the right to left
direction is quite similar and hence omitted.

Proposition 3. Every quasi-Nelson algebra is a Q-algebra.

Combining Theorem 4.4 in [12] with Propositions 2 and 3, we have:

Theorem 3. The following algebras are term-equivalent:

(1) Quasi-Nelson residuated lattices ([12][Definition 2.3]);
(2) Twist-structures over pairs of Heyting algebras (Definition 2);
(3) Quasi-Nelson algebras (Definition 1);
(4) Q-algebras (Definition 6).

5 Future Work

Since its introduction in [12], many questions regarding the class of quasi-Nelson
algebras have been proposed and answered. This paper is the first attempt to
introduce a Hilbert-style axiomatization of the inherent logic of quasi-Nelson
algebras. There are some directions for future work based on the results in
the present paper. Given that intuitionistic propositional logic is an exten-
sion of quasi-Nelson logic, a natural further direction of research is to inves-
tigate the position of quasi-Nelson logic in the hierarchy of subintuitionistic
logics. In [6,7,9], the equivalence established between semi De Morgan algebras
(resp. bilattices) and their heterogeneous counterparts has made it possible to
introduce proper display (hence analytic) calculi for semi-De Morgan logic and
bilattice logic. Interestingly, in the case of semi De Morgan logic, this equivalence
result is very similar to the term-equivalence result with which Palma [11] proved
that the variety of semi De morgan algebras is closed under canonical extensions.

458 F. Liang and T. Nascimento

A natural question is then whether this strategy can be systematically extended
so as to to design analytic calculi for logics which are axiomatically presented by
axioms which are not all analytic inductive, as is also the case of quasi-Nelson
logic.

Appendix: Proofs of the Main Results

Proposition 1: QN is regularly BP-algebraizable.

Proof. As to (Alg), it suffices to prove that:

ϕ �� {ϕ → (ϕ → ϕ), (ϕ → ϕ) → ϕ,∼ϕ → ∼(ϕ → ϕ),∼(ϕ → ϕ) → ∼ϕ}

The right to left direction can be proved by Theorem 2 and MP. From left to
right, ϕ � ϕ → (ϕ → ϕ) immediately follows from Theorem 2, and hence the
proof is omitted. We only prove the last two items: (i) ϕ � ∼ϕ → ∼(ϕ → ϕ) and
(ii) ϕ � ∼(ϕ → ϕ) → ∼ϕ. For (i),

1. ϕ assumption
2. ∼ϕ → (ϕ ∧ ∼ϕ) Corollary 1.2, 1, MP
3. ∼ϕ → ∼(ϕ → ϕ) Corollary 1.3, 2, Corollary 1.5

(ii) follows from AX24, Corollary 1.3, and Corollary 1.5. (Ref) immediately fol-
lows from Corollary 1.1. (Sym) is a straightforward consequence of the definition
of Δ.

As to (Trans), we need to prove that: (i)

{ϕ ↔ ψ,∼ϕ ↔ ∼ψ} ∪ {ψ ↔ χ,∼ψ ↔ ∼χ} � ϕ ↔ χ

and (ii)

{ϕ ↔ ψ,∼ϕ ↔ ∼ψ} ∪ {ψ ↔ χ,∼ψ ↔ ∼χ} � ∼ϕ ↔ ∼χ

For (i), this is an immediate consequence of Corollary 1.5. For (ii), we show
� ∼(ϕ → ψ) → (∼(ψ → χ) → γ), which implies (ii).

1. ∼(ϕ → ψ) assumption
2. ∼(ψ → χ) assumption
3. ∼∼(ϕ ∧ ∼ψ) 1, AX13, MP
4. ∼∼ϕ ∧ ∼∼∼ψ 3, AX11, MP
5. ∼∼ψ ∧ ∼∼∼χ same as 1, 3, 4 above
6. ∼∼(ψ ∧ ∼ψ) → γ AX13, AX24, Corollary 1.5
7. (∼∼ψ ∧ ∼∼∼ψ) → γ AX11, 6, Corollary 1.5
8. (((∼∼ϕ ∧ ∼∼∼ψ) ∧ ∼∼ψ) ∧ ∼∼∼χ) → γ AX3, AX4, 7, Corollary 1.5
9. γ 4, 5, 8, MP

and hence we have � ∼(ϕ → ψ) → (∼(ψ → χ) → γ) by the deduction theorem.

Algebraic Semantics for Quasi-Nelson Logic 459

As to (Cong), we need to prove that → respects (Alg) for each connective
• ∈ {∧,∨,→,∼}.

For (∼), we need to prove that: (i)

{ϕ → ψ,ψ → ϕ,∼ϕ → ∼ψ,∼ψ → ∼ϕ} � ∼ϕ → ∼ψ

and
{ϕ → ψ,ψ → ϕ,∼ϕ → ∼ψ,∼ψ → ∼ϕ} � ∼ψ → ∼ϕ

It follows by hypothesises. And we need to prove (ii)

{ϕ → ψ,ψ → ϕ,∼ϕ → ∼ψ,∼ψ → ∼ϕ} � ∼∼ϕ → ∼∼ψ

and
{ϕ → ψ,ψ → ϕ,∼ϕ → ∼ψ,∼ψ → ∼ϕ} � ∼∼ψ → ∼∼ϕ

They are shown by AX15, hypothesises and MP.
For (∧), we need to prove that: (i)

{ϕ1 ↔ ψ1,∼ϕ1 ↔ ∼ψ1} ∪ {ψ2 ↔ ϕ2,∼ϕ2 ↔ ∼ψ2} � (ϕ1 ∧ ϕ2) → (ψ1 ∧ ψ2)

and

{ϕ1 ↔ ψ1,∼ϕ1 ↔ ∼ψ1} ∪ {ϕ2 ↔ ψ2,∼ϕ2 ↔ ∼ψ2} � (ψ1 ∧ ψ2) → (ϕ1 ∧ ϕ2)

They are shown as follows:

1. ϕ1 → ψ1 assumption
2. ϕ2 → ψ2 assumption
3. (ϕ1 ∧ ϕ2) → ϕ1 AX3
4. (ϕ1 ∧ ϕ2) → ψ1 1, 3, Corollary 1.5
5. (ϕ1 ∧ ϕ2) → ψ2 same as 1, 3, 4 above
6. (ϕ1 ∧ ϕ2) → (ψ1 ∧ ψ2) AX5, 4, 5, MP

The other proof is similar; And we need to prove (ii)

{ϕ1 ↔ ψ1,∼ϕ1 ↔ ∼ψ1} ∪ {ψ2 ↔ ϕ2,∼ϕ2 ↔ ∼ψ2} � ∼(ϕ1 ∧ ϕ2) → ∼(ψ1 ∧ ψ2)

and

{ϕ1 ↔ ψ1,∼ϕ1 ↔ ∼ψ1} ∪ {ϕ2 ↔ ψ2,∼ϕ2 ↔ ∼ψ2} � ∼(ψ1 ∧ ψ2) → ∼(ϕ1 ∧ ϕ2)

They can be proved by AX 26, hypothesises and MP.
For (∨), we need to prove that: (i)

{ϕ1 ↔ ψ1,∼ϕ1 ↔ ∼ψ1} ∪ {ψ2 ↔ ϕ2,∼ϕ2 ↔ ∼ψ2} � (ϕ1 ∨ ϕ2) → (ψ1 ∨ ψ2)

and

{ϕ1 ↔ ψ1,∼ϕ1 ↔ ∼ψ1} ∪ {ψ2 ↔ ϕ2,∼ϕ2 ↔ ∼ψ2} � (ψ1 ∨ ψ2) → (ϕ1 ∨ ϕ2)

460 F. Liang and T. Nascimento

They are shown as follows, By AX6, AX7, hypothesis and corollary 1.5 we have
the two following derivations:

1. ϕ1 → ψ1 assumption
2. ϕ2 → ψ2 assumption
3. ψ1 → (ψ1 ∨ ψ2) AX6
4. ϕ1 → (ψ1 ∨ ψ2) 1, 3, Corollary 1.5
5. ϕ2 → (ψ1 ∨ ψ2) same as 1, 3, 4 above
6. (ϕ1 ∨ ϕ2) → (ψ1 ∨ ψ2) AX8, 4, 5, MP

the other proof is similar; And we need to prove (ii)

{ϕ1 ↔ ψ1,∼ϕ1 ↔ ∼ψ1} ∪ {ψ2 ↔ ϕ2,∼ϕ2 ↔ ∼ψ2} � ∼(ϕ1 ∨ ϕ2) → ∼(ψ1 ∨ ψ2)

and

{ϕ1 ↔ ψ1,∼ϕ1 ↔ ∼ψ1} ∪ {ψ2 ↔ ϕ2,∼ϕ2 ↔ ∼ψ2} � ∼(ψ1 ∨ ψ2) → ∼(ϕ1 ∨ ϕ2)

We only prove the first one, the other proof is similar and hence omitted.

1. ∼ϕ1 → ∼ψ1 assumption
2. ∼ϕ2 → ∼ψ2 assumption
3. (∼ϕ1 ∧ ∼ϕ2) → ∼ψ1 1, AX3, Corollary 1.5
4. (∼ϕ1 ∧ ∼ϕ2) → ∼ψ2 2, AX4, Corollary 1.5
5. (∼ϕ1 ∧ ∼ϕ2) → (∼ψ1 ∧ ∼ψ2) 3, 4, AX5, Corollary 1.5
6. ∼(ϕ1 ∨ ϕ2) → ∼(ψ1 ∨ ψ2) AX10, 5, Corollary 1.5

For (→), we need to prove that: (i)

{ϕ1 ↔ ψ1,∼ϕ1 ↔ ∼ψ1} ∪ {ψ2 ↔ ϕ2,∼ϕ2 ↔ ∼ψ2} � (ϕ1 → ϕ2) → (ψ1 → ψ2)

and

{ϕ1 ↔ ψ1,∼ϕ1 ↔ ∼ψ1} ∪ {ψ2 ↔ ϕ2,∼ϕ2 ↔ ∼ψ2} � (ψ1 → ψ2) → (ϕ1 → ϕ2)

They can be shown by Corollary 1.5; And we need to prove (ii)

{ϕ1 ↔ ψ1, ∼ϕ1 ↔ ∼ψ1} ∪ {ψ2 ↔ ϕ2, ∼ϕ2 ↔ ∼ψ2} � ∼(ϕ1 → ϕ2) → ∼(ψ1 → ψ2)

and

{ϕ1 ↔ ψ1, ∼ϕ1 ↔ ∼ψ1} ∪ {ψ2 ↔ ϕ2, ∼ϕ2 ↔ ∼ψ2} � ∼(ψ1 → ψ2) → ∼(ϕ1 → ϕ2)

We only prove the first one, the other proof is similar and hence omitted.

1. ϕ1 → ψ1 assumption
2. ∼ϕ2 → ∼ψ2 assumption
3. (ϕ1 → ψ1) → (∼∼ϕ1 → ∼∼ψ1) AX15
4. ∼∼ϕ1 → ∼∼ψ1 1,3, MP
5. (∼∼ϕ1 ∧ ∼∼∼ϕ2) → ∼∼ψ1 4, AX3, Corollary 1.5
6. (∼∼ϕ1 ∧ ∼∼∼ϕ2) → ∼∼∼ψ2 same as 1, 3, 4, 5. above
7. (∼∼ϕ1 ∧ ∼∼∼ϕ2) → (∼∼ψ1 ∧ ∼∼∼ψ2) AX5, 6, 7, MP
8. ∼∼(ϕ1 ∧ ∼ϕ2) → ∼∼(ψ1 ∧ ∼ψ2) AX11, 7, Corollary 1.5
9. ∼(ϕ1 → ϕ2) → ∼(ψ1 → ψ2) AX13, 8, Corollary 1.5

Algebraic Semantics for Quasi-Nelson Logic 461

Therefore, QN is algebraizable, and it is regularly BP-algebraizable since the
set of equivalence (defined by Δ) is finite. In order to prove that QN is regularly
BP-algebraizable see that ϕ,ψ �L ϕ → ψ and ϕ,ψ �L ψ → ϕ follow from
deduction theorem and that ϕ,ψ �L∼ ϕ →∼ ψ and ϕ,ψ �L∼ ψ →∼ ϕ follow
from deduction theorem and Corollary 1.4.

Proposition 3. Every quasi-Nelson algebra is a Q-algebra.

Proof. We need to prove that a quasi-Nelson algebra satisfies all equations and
quasi-equations in Definition 7. Henceforward, see that being � a quasiorder
(SN2), it holds the following equation: ϕ → ϕ ≈ 1.

1. ϕ ≈ 1 for each ϕ ∈ AX.

E(AX1). We need to show that ϕ → (ψ → ϕ) ≈ 1. By (SN2), it suffices to show
ϕ � ψ → ϕ. By Corollary 2.2, it is equivalent to show ϕ ∧ ψ � ϕ, which can
be proved by (SN1) and (SN5).

E(AX2). We need to show that (ϕ → (ψ → χ)) → ((ϕ → ψ) → (ϕ → χ)) ≈ 1.
By Theorem 1, it suffices to show that

((〈[ϕ], [∼ϕ]〉 → (〈[ψ], [∼ψ]〉 → 〈[χ], [∼χ]〉)) →
((〈[ϕ], [∼ϕ]〉 → 〈[ψ], [∼ψ]〉) → (〈[ϕ], [∼ϕ]〉 → 〈[χ], [∼χ]〉)) = 〈[1], [0]〉

By Definition 2, it is equivalent to show:

(〈[ϕ], [∼ϕ]〉 → (〈[ψ → χ], n[ψ] ∧ [∼sχ]〉)) →
((〈[ϕ → ψ], n[ϕ] ∧ [∼ ψ]〉) → 〈[ϕ → χ], n[ϕ] ∧ [∼ χ]〉)

= (〈[ϕ → (ψ → χ)], n[ϕ] ∧ n[ψ] ∧ [∼ χ]〉) →
(〈[(ϕ → ψ) → (ϕ → χ)], n[ϕ → ψ] ∧ n[ϕ] ∧ [∼ χ]〉)

= 〈[(ϕ → (ψ → χ)) → ((ϕ → ψ) → (ϕ → χ))],
n[ϕ → (ψ → χ)] ∧ n[ϕ → ψ] ∧ n[ϕ] ∧ [∼ χ]〉 = 〈[1], [0]〉

Since A+ is a Heyting algebra, (ϕ → (ψ → χ)) → ((ϕ → ψ) → (ϕ → χ) ≡ 1.
Moreover, by the fact that n preserves meet and bounds, and A− is a Heyting
algebra, and the definition of n, we obtain that

n[ϕ → (ψ → χ)] ∧ n[ϕ → ψ] ∧ n[ϕ] ∧ [∼ χ]〉
= n[ϕ → (ψ → χ) ∧ (ϕ → ψ) ∧ ϕ] ∧ [∼ χ] ≤≡ n[χ] ∧ [∼ χ]

= [∼ ∼ χ ∧ ∼ χ] = [0]

where ≤≡ is the lattice order in A−, and hence n[ϕ → (ψ → χ)] ∧ n[ϕ →
ψ] ∧ n[ϕ] ∧ [∼ χ] = [0] since [0] is the least element in A−.

E(AX3) and E(AX4). They are immediate consequences of (SN1) and (SN5).
E(AX5). We need to show that (ϕ → ψ) → ((ϕ → χ) → (ϕ → (ψ ∧ χ))) ≈ 1.

By Theorem 1, it suffices to show that

(〈[ϕ], [∼ ϕ]〉 → 〈[ψ], [∼ ψ]〉) → ((〈[ϕ], [∼ ϕ]〉 →

462 F. Liang and T. Nascimento

〈[χ], [∼ χ]〉) → (〈[ϕ], [∼ ϕ]〉 → (〈[ψ], [∼ ψ]〉 ∧ 〈[χ], [∼ χ]〉)) = 〈[1], [0]〉
By Definition 2, it is equivalent to show:

(〈[ϕ], [∼ ϕ]〉 → 〈[ψ], [∼ ψ]〉) →
((〈[ϕ], [∼ ϕ]〉 → 〈[χ], [∼ χ]〉) → (〈[ϕ], [∼ ϕ]〉 → (〈[ψ], [∼ ψ]〉 ∧ 〈[χ], [∼ χ]〉))

= 〈[ϕ → ψ], n[ϕ] ∧ [∼ ψ]〉 →
(〈[ϕ → χ], n[ϕ] ∧ [∼ χ]〉 → (〈[ϕ], [∼ ϕ]〉 → 〈[ψ ∧ χ], [∼ ψ ∨ ∼ χ]〉))

= 〈[ϕ → ψ], n[ϕ] ∧ [∼ ψ]〉 →
(〈[ϕ → χ], n[ϕ] ∧ [∼ χ]〉 → (〈[ϕ → ψ ∧ χ], n[ϕ] ∧ 〈[∼ ψ ∨ ∼χ]〉))

= 〈[ϕ → ψ], n[ϕ] ∧ [∼ ψ]〉 →
(〈[(ϕ → χ) → (ϕ → ψ ∧ χ)], n[ϕ → χ] ∧ n[ϕ] ∧ 〈[∼ ψ ∨ ∼χ]〉))

= 〈[(ϕ → ψ) → ((ϕ → χ) → (ϕ → ψ ∧ χ))],
n[ϕ → ψ] ∧ n[ϕ → χ] ∧ n[ϕ] ∧ 〈[∼ ψ ∨ ∼χ]〉)

= 〈[1], [0]〉
Since A+ is a Heyting algebra, (ϕ → ψ) → ((ϕ → χ) → (ϕ → ψ ∧ χ)) ≡ 1.
Moreover,

n[ϕ → ψ] ∧ n[ϕ → χ] ∧ n[ϕ] ∧ 〈[∼ ψ ∨ ∼χ]〉
= n[(ϕ → ψ) ∧ (ϕ → χ) ∧ ϕ] ∧ 〈[∼ ψ ∨ ∼ χ]〉 ≤≡

n[ψ] ∧ n[χ] ∧ 〈[∼ ψ ∨ ∼χ]〉 = [∼ ψ] ∧ [∼ ∼ χ] ∧ 〈[∼ ψ ∨ ∼χ]〉 = [0]

By the fact that n preserves meet and bounds, and A− is a Heyting algebra,
and the definition of n. Hence, n[ϕ → ψ]∧n[ϕ → χ]∧n[ϕ]∧〈[∼ ψ∨∼χ]〉 = [0]
since [0] is the least element in A−.

E(AX6) and E(AX7). They are immediate consequences of (SN1) and (SN5).
E(AX8). We need to show that (ϕ → χ) → ((ψ → χ) → ((ϕ ∨ ψ) → χ)) ≈ 1.

By Theorem 1, it suffices to show that

(〈[ϕ], [∼ ϕ]〉 → 〈[χ], [∼ χ]〉) →
(〈[ψ], [∼ ψ]〉 → 〈[χ], [∼ χ]〉) → ((〈[ϕ], [∼ ϕ]〉 ∨ 〈[ψ], [∼ ψ]〉) → 〈[χ], [∼ χ]〉))

= 〈[1], [0]〉
By Definition 2, it is equivalent to show:

(〈[ϕ], [∼ ϕ]〉 → 〈[χ], [∼ χ]〉) →
((〈[ψ], [∼ ψ]〉 → 〈[χ], [∼ χ]〉) → ((〈[ϕ], [∼ ϕ]〉 ∨ 〈[ψ], [∼ ψ]〉) → 〈[χ], [∼ χ]〉))

= 〈[ϕ → χ], n[ϕ] ∧ [∼ χ]〉 →
(〈[ψ → χ], n[ψ] ∧ [∼ χ]〉 → (〈[ϕ ∨ ψ], [∼ ϕ ∧ ∼ψ]〉 → 〈[χ], [∼ χ]〉))

= 〈[ϕ → χ], n[ϕ] ∧ [∼ χ]〉 →
(〈[ψ → χ], n[ψ] ∧ [∼ χ]〉 → (〈[ϕ ∨ ψ → χ], n[ϕ ∨ ψ] ∧ [∼ χ]〉))

= 〈[ϕ → χ], n[ϕ] ∧ [∼ χ]〉 →

Algebraic Semantics for Quasi-Nelson Logic 463

(〈[(ψ → χ) → (ϕ ∨ ψ → χ)], n[ψ → χ] ∧ n[ϕ ∨ ψ] ∧ [∼ χ]〉))
= 〈[(ϕ → χ) → ((ψ → χ) → (ϕ ∨ ψ → χ))],
n[ϕ → χ] ∧ n[ψ → χ] ∧ n[ϕ ∨ ψ] ∧ [∼ χ]〉

= 〈[1], [0]〉

Since A+ is a Heyting algebra, (ϕ → χ) → ((ψ → χ) → (ϕ ∨ ψ → χ)) ≡ 1.
Moreover,

n[ϕ → χ] ∧ n[ψ → χ] ∧ n[ϕ ∨ ψ] ∧ [∼ χ]
= n[(ϕ → χ) ∧ (ψ → χ) ∧ (ϕ ∨ ψ)] ∧ [∼ χ]〉 ≤≡

n[χ] ∧ [∼ χ] = [∼ ∼χ] ∧ [∼ χ] = [0]

By the fact that n preserves meet and bounds, and A− is a Heyting algebra,
and the definition of n. Hence, n[ϕ → χ] ∧ n[ψ → χ] ∧ n[ϕ ∨ ψ] ∧ [∼ χ] = [0]
since [0] is the least element in A−.

E(AX9)–E(AX14). They are immediate consequences of (SN6.1), (SN6.2),
(SN6.3), (SN6.4), (SN4) and (SN6.5) respectively.

E(AX15). We need to show that (ϕ → ψ) → (∼ ∼ ϕ → ∼ ∼ ψ) ≈ 1. By
Theorem 1, it suffices to show that

(〈[ϕ], [∼ ϕ]〉 → 〈[ψ], [∼ ψ]〉) → (∼ ∼〈[ϕ], [∼ ϕ]〉 → ∼ ∼〈[ψ], [∼ ψ]〉 = 〈[1], [0]〉

By Definition 2, it is equivalent to show:

〈[ϕ → ψ], n[ϕ] ∧ [∼ ψ]〉 → (〈pn[ϕ], np[∼ ϕ]〉 → 〈pn[ψ], np[∼ ψ]〉)
= 〈[ϕ → ψ], n[ϕ] ∧ [∼ ψ]〉 → 〈pn[ϕ] → pn[ψ], npn[ϕ] ∧ np[∼ ψ]〉
= 〈[ϕ → ψ] → (pn[ϕ] → pn[ψ]), n[ϕ → ψ] ∧ npn[ϕ] ∧ np[∼ ψ]〉

= 〈[ϕ → ψ] → (pn[ϕ] → pn[ψ]), n[ϕ → ψ] ∧ n[ϕ] ∧ [∼ ψ]〉 = 〈[1], [0]〉.

Since A+ is a Heyting algebra and n preserves meet, n[ϕ] ∧ n[(ϕ → ψ)] =
n[ϕ ∧ (ϕ → ψ)] ≤≡ n[ψ]. Hence, pn[ϕ] ∧ pn[ϕ → ψ] = pn[ϕ ∧ (ϕ → ψ)] ≤≡
pn[ψ] by p is order-preserving and preserve meet. By residuation law, we
obtain that pn[ϕ → ψ] ≤≡ pn[ϕ] → pn[ψ], and hence [ϕ → ψ] ≤ pn[ϕ] →
pn[ψ] since IdA+ ≤≡ pn, that is, [ϕ → ψ] → (pn[ϕ] → pn[ψ]) = [1]. For
the other part, since n[ϕ → ψ] ∧ n[ϕ] ∧ [∼ψ] = n[ϕ ∧ (ϕ → ψ)] ∧ [∼ ψ] ≤≡
n[ψ] ∧ [∼ ψ] = [∼ ψ] ∧ [∼ ψ] = [0] by the fact that n preserves meet and the
definition of n. Therefore, n[ϕ → ψ] ∧ n[ϕ] ∧ [∼ ψ] = [0] since [0] is the least
element in A−.

E(AX16). Since ϕ∧ψ ≤ ϕ by (SN1), we have ∼ ϕ � ∼(ϕ∧ψ) by (SN5), which
is equivalent to ∼ϕ → ∼(ϕ ∧ ψ) ≈ 1 by (SN2).

E(AX17)–E(AX22). The arguments are similar as above. All of them are ver-
ified by (SN1), (SN5) and (SN2).

E(AX23). Since ϕ∧(ψ → ψ) ≤ ϕ, thanks (SN5) we have ∼ ϕ �∼ (ϕ∧(ψ → ψ))
and by (SN2) follows ∼ ϕ →∼ (ϕ ∧ (ψ → ψ)). The other way around is the
same idea, given that ψ → ψ ≈ 1 and ϕ ≤ ϕ ∧ (ψ → ψ).

464 F. Liang and T. Nascimento

E(AX24). We want to prove that ∼ (ϕ → ϕ) → ψ ≈ 1. By Theorem 1, it
is equivalent to prove that 〈[∼ (ϕ → ϕ) → ψ], [∼ (∼ (ϕ → ϕ) → ψ)]〉 =
〈[1], [0]〉. Thanks (SN3) we know that ∼ (ϕ → ϕ) → ψ ≡ 1. Regarding
∼ (∼ (ϕ → ϕ) → ψ), observe that ∼ (∼ (ϕ → ϕ) → ψ) ≡∼∼ ϕ∧ ∼ ϕ∧ ∼ ψ
by (SN4), (SN6.3), (SN6.4) and (SN6.6). Finally ∼∼ ϕ∧ ∼ ϕ∧ ∼ ψ ≡ 0 by
(SN6.6) and the fact that 0 is the least element.

E(AX25). We need to show that (∼ ϕ → ∼ ψ) → (∼(ϕ ∧ ψ) → ∼ ψ) ≈ 1. By
Theorem 1 it suffices to show that

(∼〈[ϕ], [∼ ϕ]〉 → ∼〈[ψ], [∼ ψ]〉) →
(∼(〈[ϕ], [∼ ϕ]〉 ∧ 〈[ψ], [∼ ψ]〉) → ∼〈[ψ], [∼ ψ]〉) = 〈[1], [0]〉

By Definition 2, it is equivalent to show:

(∼〈[ϕ], [∼ ϕ]〉 → ∼〈[ψ], [∼ ψ]〉) →
(∼(〈[ϕ], [∼ ϕ]〉 ∧ 〈[ψ], [∼ ψ]〉) → ∼〈[ψ], [∼ ψ]〉)

= (〈p[∼ ϕ], n[ϕ]〉 → 〈p[∼ ψ], n[ψ]〉) →
(∼(〈[ϕ ∧ ψ], [∼ ϕ ∨ ∼ψ]〉) → 〈p[∼ ψ], n[ψ]〉)

= 〈p[∼ ϕ] → p[∼ ψ], np[∼ ϕ] ∧ n[ψ]〉 →
(〈p[∼ ϕ ∨ ∼ψ], n[ϕ ∧ ψ]〉 → 〈p[∼ ψ], n[ψ]〉)

= 〈p[∼ ϕ] → p[∼ ψ], np[∼ ϕ] ∧ n[ψ]〉 →
〈p[∼ ϕ ∨ ∼ ψ] → p[∼ ψ], np[∼ ϕ ∨ ∼ ψ] ∧ n[ψ]〉

= 〈(p[∼ ϕ] → p[∼ ψ]) →
(p[∼ ϕ ∨ ∼ ψ]→p[∼ ψ]), n(p[∼ ϕ]→p[∼ ψ]) ∧ np[∼ ϕ∨∼ ψ] ∧ n[ψ]〉=〈[1], [0]〉
Since A− is a Heyting algebra and p preserves → and bounds, (p[∼ ϕ] →
p[∼ ψ]) → (p[∼ ϕ ∨ ∼ψ] → p[∼ ψ]) = p(([∼ ϕ] → [∼ ψ]) → ([∼ ϕ ∨ ∼ ψ] →
[∼ ψ])) = p[1] = [1]. Moreover,

n(p[∼ ϕ] → p[∼ ψ]) ∧ np[∼ ϕ ∨ ∼ψ] ∧ n[ψ]
= np([∼ ϕ] → [∼ ψ]) ∧ np[∼ ϕ ∨ ∼ψ] ∧ n[ψ]

= ([∼ ϕ] → [∼ψ]) ∧ [∼ ϕ ∨ ∼ ψ] ∧ n[ψ]
= (([∼ ϕ] → [∼ ψ]) ∧ [∼ ϕ] ∧ n[ψ]) ∨ (([∼ ϕ] → [∼ ψ]) ∧ [∼ ψ] ∧ n[ψ]) ≤≡ [0]

since np = IdA− and A− is a Heyting algebra. Therefore, n(p[∼ ϕ] →
p[∼ ψ]) ∧ np[∼ ϕ ∨ ∼ ψ] ∧ n[ψ] = [0] since [0] is the least element in A−.

E(AX26). We need to show that (∼ ϕ → ∼ψ) → ((∼ χ → ∼ γ) → (∼(ϕ∧χ) →
∼(ψ ∧ γ))) ≈ 1. By Theorem 1 it suffices to show that

(∼〈[ϕ], [∼ ϕ]〉 → ∼〈[ψ], [∼ ψ]〉) →
((∼〈[χ], [∼ χ]〉 → ∼〈[γ], [∼ γ]〉)) →

(∼(〈[ϕ], [∼ ϕ]〉 ∧ 〈[χ], [∼ χ]〉) → ∼(〈[ψ], [∼ ψ]〉 ∧ 〈[γ], [∼ γ]〉))) = 〈[1], [0]〉

Algebraic Semantics for Quasi-Nelson Logic 465

By Definition 2, it is equivalent to show:

(∼〈[ϕ], [∼ ϕ]〉 → ∼〈[ψ], [∼ ψ]〉) →
((∼〈[χ], [∼ χ]〉 → ∼〈[γ], [∼ γ]〉)) →

(∼(〈[ϕ], [∼ ϕ]〉 ∧ 〈[χ], [∼ χ]〉) → ∼(〈[ψ], [∼ ψ]〉 ∧ 〈[γ], [∼ γ]〉)))
= (〈p[∼ ϕ], n[ϕ]〉 → 〈p[∼ ψ], n[ψ]〉) →
(((〈p[∼ χ], n[χ]〉 → 〈p[∼ γ], n[γ]〉)) →

(∼〈[ϕ ∧ χ], [∼ ϕ ∨ ∼χ]〉 → ∼〈[ψ ∧ γ], [∼ ψ ∨ ∼ γ]〉))
= (〈p[∼ ϕ] → p[∼ ψ], np[∼ ϕ ∧ n[ψ]〉) →
(((〈p[∼ χ] → p[∼ γ], np[∼ χ] ∧ n[γ]〉)) →

(〈p[∼ ϕ ∨ ∼χ], n[ϕ ∧ χ]〉 → 〈p[∼ ψ ∨ ∼ γ], n[ψ ∧ γ]〉))
= (〈p[∼ ϕ] → p[∼ ψ], np[∼ ϕ ∧ n[ψ]〉) →
(((〈p[∼ χ] → p[∼ γ], np[∼ χ] ∧ n[γ]〉)) →

(〈p[∼ ϕ ∨ ∼χ] → p[∼ψ ∨ ∼ γ], np[∼ ϕ ∨ ∼ χ] ∧ n[ψ ∧ γ]〉))
= 〈(p[∼ ϕ] → p[∼ ψ]) → ((p[∼ χ] → p[∼ γ]) →

(p[∼ ϕ ∨ ∼ χ] → p[∼ ψ ∨ ∼ γ])),
n(p[∼ ϕ]→p[∼ ψ])∧n(p[∼ χ]→p[∼ γ])∧np[∼ ϕ∨∼ χ]∧n[ψ ∧ γ]〉 = 〈[1], [0]〉

Since A− is a Heyting algebra and p preserves → and bounds, (p[∼ ϕ] →
p[∼ ψ]) → ((p[∼ χ] → p[∼ γ]) → (p[∼ ϕ∨∼χ] → p[∼ ψ∨∼ γ])) = p(([∼ ϕ] →
[∼ ψ]) → (([∼ χ] → [∼ γ]) → ([∼ ϕ ∨ ∼χ] → [∼ ψ ∨ ∼ γ])) = p[1] = [1].
Moreover,

n(p[∼ ϕ] → p[∼ ψ]) ∧ n(p[∼ χ] → p[∼ γ]) ∧ np[∼ ϕ ∨ ∼χ] ∧ n[ψ ∧ γ]
= np([∼ ϕ] → [∼ ψ]) ∧ np([∼ χ] → [∼ γ]) ∧ np[∼ ϕ ∨ ∼χ] ∧ n[ψ ∧ γ]

= ([∼ ϕ] → [∼ ψ]) ∧ ([∼ χ] → [∼ γ]) ∧ [∼ ϕ ∨ ∼ χ] ∧ n[ψ ∧ γ]
= (([∼ ϕ] → [∼ ψ]) ∧ ([∼ χ] → [∼ γ]) ∧ [∼ ϕ] ∧ n[ψ ∧ γ])

∨(([∼ ϕ] → [∼ ψ]) ∧ ([∼ χ] → [∼ γ]) ∧ [∼ χ] ∧ n[ψ ∧ γ]) ≤≡
([∼ ψ] ∧ n[ψ ∧ γ]) ∨ ([∼ χ] ∧ n[ψ ∧ γ]) = [0]

since np = IdA− , n preserves meet and A− is a Heyting algebra. Therefore,
n(p[∼ ϕ] → p[∼ ψ])∧n(p[∼ χ] → p[∼ γ])∧np[∼ ϕ∨∼ χ]∧n[ψ ∧γ] = [0] since
[0] is the least element in A−.

2. We have only an inference rule in QN, modus ponens. We need to prove
that if ϕ ≈ 1 and ϕ → ψ ≈ 1, then ψ ≈ 1 and it follows from transitivity of �.

3. We shall prove that if ϕ → ψ ≈ 1, ψ → ϕ ≈ 1, ∼ϕ → ∼ ψ ≈ 1,
∼ψ → ∼ ϕ ≈ 1, then ϕ = ψ. Thanks (SN2) we have ϕ � ψ and ∼ ψ � ∼ϕ and
therefore by (SN5) follows that ϕ ≤ ψ. Following the same idea we have ψ ≤ ϕ
and being ≤ the order relation on the lattice we have ϕ ≈ ψ.

466 F. Liang and T. Nascimento

References

1. Blok, W.J., La Falce, S.B.: Komori identities in algebraic logic. Rep. Math. Logic
34, 79–106 (2000)

2. Blok, W.J., Pigozzi, D.: Algebraizable Logic, vol. 396. Memoirs of the American
Mathematical Society, Providence (1989)

3. Czelakowski, J., Pigozzi, D.: Fregean logics. Ann. Pure Appl. Log. 127, 17–76
(2004)

4. Font, J.M.: Abstract Algebraic Logic: An Introductory Textbook. College Publi-
cations (2016)

5. Greco, G., Ma, M., Palmigiano, A., Tzimoulis, A., Zhao, Z.: Unified correspondence
as a proof-theoretic tool. J. Log. Comput. 28(7), 1367–1442 (2016)

6. Greco, G., Liang, F., Palmigiano, A., Rivieccio, U.: Bilattice logic properly dis-
played. Fuzzy Sets Syst. 363, 138–155 (2019)

7. Greco, G., Liang, F., Moshier, M.A., Palmigiano, A.: Multi-type display calculus
for semi De Morgan logic. In: Kennedy, J., de Queiroz, R.J.G.B. (eds.) WoLLIC
2017. LNCS, vol. 10388, pp. 199–215. Springer, Heidelberg (2017). https://doi.org/
10.1007/978-3-662-55386-2 14

8. Hamilton, A.G.: Logic for Mathematicians. Cambridge University Press, Cam-
bridge (1978)

9. Liang, F.: Multi-type algebraic proof theory. Dissertation, TU Delft (2018)
10. Nelson, D.: Constructible falsity. J. Symb. Log. 14, 16–26 (1949)
11. Palma, C.: Semi De Morgan algebras. Dissertation, The University of Lisbon (2005)
12. Rivieccio, U., Spinks, M.: Quasi-Nelson algebras. In: Proceedings of LSFA 2018,

Fortaleza, Brazil, 26–28 September 2018. Universidade Federal do Ceará (2018)
13. Rivieccio, U., Spinks, M.: Quasi-Nelson algebras; or, non-involutive Nelson alge-

bras. Manuscript
14. Sendlewski, A.: Nelson algebras through Heyting ones: I. Stud. Log. 49, 105–126

(1990)
15. Spinks, M., Rivieccio, U., Nascimento, T.: Compatibly involutive residuated lat-

tices and the Nelson identity. Soft Comput. (2018). https://doi.org/10.1007/
s00500-018-3588-9

16. Vakarelov, D.: Notes on N-lattices and constructive logic with strong negation.
Stud. Log. 36, 109–125 (1977)

17. Wójcicki, R.: Referential semantics. In: Wójcicki, R. (ed.) Theory of Logical Cal-
culi. SYLI, vol. 199, pp. 341–401. Springer, Dordrecht (1988). https://doi.org/10.
1007/978-94-015-6942-2 6

https://doi.org/10.1007/978-3-662-55386-2_14
https://doi.org/10.1007/978-3-662-55386-2_14
https://doi.org/10.1007/s00500-018-3588-9
https://doi.org/10.1007/s00500-018-3588-9
https://doi.org/10.1007/978-94-015-6942-2_6
https://doi.org/10.1007/978-94-015-6942-2_6

A Case for Property-Type Semantics

Kristina Liefke(B)

Institute for Linguistics, Goethe University Frankfurt, Frankfurt, Germany
Liefke@lingua.uni-frankfurt.de

Abstract. In linguistic semantics, propositionalism is the view that
all intensional constructions (esp. attitude reports) can be interpreted
as relations to truth-evaluable propositional contents. Propositionalism
has been adopted for its uniformity and ontological parsimony, and
for its ability to capture natural language reasoning. These merits
notwithstanding, propositionalism has been challenged by the obser-
vation that some intensional constructions (incl. objectual and de
se-attitude reports, ‘know how’-sentences, and de dicto-readings of
depiction reports) resist a propositionalist analysis. This paper recon-
ciles the merits of propositionalism with its empirical challenges. To
this aim, it replaces propositions by properties as uniform objects of
the attitudes. This replacement is motivated by the observation that all
non-propositional attitudinal objects can be coded as properties through
established type-shifts. It is supported by the ability of the result-
ing semantics to distinguish truth-evaluable from non-truth-evaluable
attitude complements, to capture cross-attitudinal co-predication, and
to explain differences w.r.t. the acceptability of different kinds of co-
predication. At the same time, it gives a sense of what a propositionalist
semantics – if successful – might look like and which requirements it
must meet.

1 Introduction

Propositionalism (see [6,22,35,39]; cf. [55], [10, pp. 148–149]) is an approach to
the semantics of intensional constructions that analyzes these constructions as
cases of propositional1 embedding.2 Propositionalism has been adopted for its

I wish to thank two anonymous referees for WoLLIC 2019 for valuable comments on an
earlier version of this paper. The paper has profited from discussions with David Boy-
lan, Daniel Gutzmann, and Ede Zimmermann. The research for this paper is supported
by the German Research Foundation (via Ede Zimmermann’s grant ZI 683/13-1).

1 We hereafter identify propositions with sets of possible worlds or of world/time-pairs
(i.e. with sets of indices). However, the results of this paper also apply to ‘dynamic’
sentence-contents (i.e. relations to discourse referents of non-canonical arity) and
to more fine-grained candidates for propositions (e.g. sets of partial or impossible
worlds, sets of sets of worlds, or semantically primitive propositions).

2 In this paper, we assume a liberal version of propositionalism (called Propositional-
ism in [55]) that regards the general construal of information content in terms of

c© Springer-Verlag GmbH Germany, part of Springer Nature 2019
R. Iemhoff et al. (Eds.): WoLLIC 2019, LNCS 11541, pp. 467–485, 2019.
https://doi.org/10.1007/978-3-662-59533-6_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-59533-6_28&domain=pdf
https://doi.org/10.1007/978-3-662-59533-6_28

468 K. Liefke

uniformity and ontological parsimony (see [22]; cf. [23,26]) and for its ability
to capture natural language reasoning (see [17,46]). Propositionalism is often
illustrated on the example of intensional transitive verbs like want, need, and
seek. While these verbs superficially combine with an individual-denoting direct
object (in (1a): with the DP a laptop), they are commonly analyzed as taking a
proposition-denoting clausal complement with phonologically null elements and
hidden structure (in (1b): as the CP FOR PRO to HAVE a laptop; see [6,22]).
The analyses of (1a) (in (1b)) and (3a) (in (3b))3 then have a similar form to
propositional attitude reports (here: (2) resp. (4)).

(1) a. Bill wants/needs [dpa laptop].
≡ b. Bill wants/needs [cpFOR [tpPRO to HAVE [dpa laptop]]].

(2) Bill wants/expects [cpthat he has/will get [dpa laptop]].

(3) a. Bill seeks [dpa unicorn].
≡ b. Bill seeks (or strives) [cpFOR [tpPRO to FIND [dpa unicorn]]].

(4) Bill strives [cpthat he finds [dpa unicorn]].

The presence of the hidden predicate HAVE in (1a) is supported by the ability
of the lower clause to be modified by temporal adverbials (see (5b); cf. [22,27]),
to satisfy the presupposition of too and again (cf. [45, pp. 262–264]), and to
antecede ellipsis (see (6); cf. [5, p. 35]).

(5) Bill will need [dpa laptop] tomorrow.
≡ a. Tomorrow is the time of Bill’s need (when Bill’s need will arise)
≡ b. Tomorrow is when Bill needs to have the laptop

(6) A: Do you want [dpanother sausage]?
B: I can’t . I’m on a diet.

The structural similarity between (1b) and (2) enables a uniform analysis of
different occurrences of DP/CP complement-neutral verbs (see (7); cf. [12,26]),
facilitates an easy analysis of DP/CP coordinations (see (8); cf. [2,43]), and
explains the validity of inferences from propositional to ‘objectual’ attitudes
(see (9); cf. [15,26]):

(7) a. Bill wants [dpa laptop].
b. Bill wants [cpthat he gets a laptop soon].

(8) Bill wants [[dpa laptop] and [cpthat he gets it soon]].

(9) a. Bill expects [cpthat he will get a laptop].
⇒ b. Bill expects [dpsomething] (viz. a laptop/that he will get a laptop).

truth-conditions. According to this version, the ‘propositional’ reduction of inten-
sional complements proceeds by semantic representation (or coding) of the comple-
ments’ original denotation. Propositionalism (with a capital ‘P’) differs from better-
known versions of propositionalism, according to which this reduction proceeds by
syntactic means (i.e. by restructuring into a clause-embedding structure; see [6,22])
or by lexical decomposition (see [32,39]). We will discuss a variant of Propositional-
ism in Sect. 6.

3 This analysis of seek is due to Quine [39] and can be found in [31, pp. 264, 267]. For
arguments against the propositionalist analysis of seek, see [45,52,53].

A Case for Property-Type Semantics 469

2 Empirical Challenges for Propositionalism

Its empirical merits notwithstanding, Propositionalism has recently4 come under
empirical pressure. This pressure stems from intensional constructions that have
been shown to resist a propositionalist analysis. These include the following:

2.1 ‘want’/‘need’-Constructions Without HAVE

A first challenge for Propositionalism comes from want- and need-constructions
(e.g. (10)) whose analysis does not contain the implicit predicate HAVE. In
particular, the DP a marathon in (10) cannot be analyzed as the CP ‘FOR PRO
to HAVE a marathon’ (analogous to (1b); see (10b)). Rather, it suggests an
analysis as ‘FOR PRO to run/participate in a marathon’:

(10) John needs [dpa marathon]. (said by John’s coach)
≡ a. John needs [cpFOR [tpPRO to run [dpa marathon]]].
�≡ b. #John needs [cpFOR [tpPRO to HAVE [dpa marathon]]].

In contrast to ‘typical’ want/need-constructions (e.g. (1a)), (10) lacks evidence
for a hidden clausal structure (see [45, pp. 271–275]). In particular, the con-
textually supplied predicate run in (10a) resists modification by most temporal
adverbs5 (see (11b)).

(11) John needs [dpa marathon] in two hours.
≡ a. John’s need for a marathon will arise/be present in two hours
�≡ b. John will need to run the marathon in two hours

To capture the difference in modificational behavior between (5) and (11),
Deal [5, pp. 34–37] has proposed to analyze the non-specific object of need in
(11) as a property (see [52]; cf. [13,45]). (10) then receives the analysis in (12),
where BE is Partee’s [36] type-shifter from existential generalized quantifiers to
properties. For perspicuity, we hereafter mark complements in boldface. Below,
i, j, k are variables over indices (type s); x, y, z are variables over individuals
(type e).

(12) �John needs [BE [a marathon]]�i,g

= need (i)(λjλy (∃x)[marathon(j)(x) ∧ x = y]λjλy (∃x)[marathon(j)(x) ∧ x = y]λjλy (∃x)[marathon(j)(x) ∧ x = y])(john)
≡ need (i)(marathonmarathonmarathon)(john)

4 The empirical pressure on propositionalism (in some form) is not a recent phe-
nomenon. (For some early challenges, see [3,23,38].) What is new is the explicit
collection of diverse natural language constructions that challenge Propositionalism
(see [11,17,40,51]).

5 These include all durational adverbs, but exclude the adverbial before (see [45]).

470 K. Liefke

Note that Deal’s analysis of (10) gives rise to a (type-)ambiguity in the interpre-
tation of need between proposition- and property-complemented occurrences. We
will see below that our proposed property-type semantics avoids this ambiguity.

We close this subsection with a note on typing and type notation: for reasons
that will become clear below,6 we adopt Tichý’s [50] rule for the formation of
multiary function types (see also [30,34]). This rule associates types of the form
(α1 × . . . × αn) → αn+1 with functions from n-tuples of objects of the types
α1, . . . , αn to objects of type αn+1. Following Tichý, we write (α1 × . . .×αn) →
αn+1 as (α1 . . . αn;αn+1) and identify the type (α) with α.

This completes our presentation of the first challenge for Propositionalism.

2.2 De se-Reports and ‘know how’-Sentences

A second set of challenges for Propositionalism comes from de se-readings of atti-
tude reports like (13a) (see [4,23,37]) and from ‘know how’-sentences like (14a)
(see [40,51]). These constructions are usually analyzed as (13b) resp. (14b),
where PROs is a silent pronoun that is controlled by the subject of the higher
clause:

(13) a. Bill believes (of himself as himself) [cpthat he is a coffee addict].
≡ b. Bill believes [cpthat PROs is a coffee addict].

(14) a. Bill knows [cphow to brew coffee].
≡ b. Bill knows [cphow PROs to brew coffee].

The complements of the above constructions are typically interpreted as cen-
tered propositions (i.e. as sets of centered worlds, type-(se; t); see (15a)) or, equiv-
alently, as self-ascribed properties. The latter are properties that are true in all
centered worlds that are compatible with what the property-ascriber believes (see
(15b), where Doxbill, i is the set of Bill’s doxastic alternatives in i). Below, 〈j, x〉
is a variable over pairs of indices (j) and individuals (x).

(15) �Bill believes [cpthat PROs is a coffee addict]�i,g

a. = believe (i)(λ〈j, x〉[coffee-addict (j)(x)]λ〈j, x〉[coffee-addict (j)(x)]λ〈j, x〉[coffee-addict (j)(x)])(bill)
b. = 1 ⇔ (∀〈j, x〉)[Doxbill, i(j, x) → coffee-addict (j)(x)]

The type-(se; t) interpretation of the complements of de se-reports is moti-
vated by the need to capture the attitude holder’s self-identification with the
subject of the attitude complement (in (13), (14): Bill’s self-characterization as
a coffee addict/as an able coffee brewer). The absence of such self-identification
results in situations that intuitively do not support the de se-reading of the
associated sentence. For (13a), such situations include the situation where Bill is
watching a man binging on coffee and concludes that this man is a coffee addict,
6 Tichý-style types will allow us to distinguish between centered propositions (i.e.

characteristic functions of sets of ordered index/individual-pairs; type (se; t)) and
properties (i.e. functions from indices to characteristic functions of sets of individuals;
type (s; (e; t))).

A Case for Property-Type Semantics 471

without realizing that the man is his mirror image. The de se-interpretation of
‘know how’-sentences has an analogous motivation.

Note that, like PROs in (13b) and (14b), the silent pronoun PRO in (1b) is
today often7 taken to be obligatorily controlled by the matrix subject (see [1,4,
48]). The different readings of (1b) are then interpreted as structures (here: (16a),
(16b)) that also have centered propositions as their complements:

(16) a. �Bill wants [cpFOR [tpPROs to HAVE [dpa laptop]]]�i,g

= want (i)(λ〈j, y〉(∃x)[laptop (j)(x) ∧ have (j)(x)(y)]λ〈j, y〉(∃x)[laptop (j)(x) ∧ have (j)(x)(y)]λ〈j, y〉(∃x)[laptop (j)(x) ∧ have (j)(x)(y)])(bill)

b. �[dpa laptop] [λ1 [Bill wants [cpFOR [tpPROs to HAVE t1]]]]�i,g

= (∃x)
[
laptop(i)(x) ∧ want (i)(λ〈j, y〉[have (j)(x)(y)]λ〈j, y〉[have (j)(x)(y)]λ〈j, y〉[have (j)(x)(y)])(bill)

]

We will take the control-view of want/need as evidence against Propositionalism
and for our proposed property-type semantics.

2.3 Objectual Attitude Reports

Propositionalism is further challenged by objectual attitude reports like (17a)
and (17b) that contain verbs such as love, adore, worship, and fear. These reports
intuitively express relations to individuals/individual objects (in (17a): Emilie).

(17) a. Klimt adored [dpEmilie]. b. Klimt adored [dpa woman].

In contrast to the complements of de se-reports, the direct objects in objec-
tual attitude reports often resist the extension to a full CP. Syntactically, this is
due to the DP-bias of verbs like adore, s.t. sentences like (18) are ungrammatical:

(18) ∗Klimt adored [cpthat Emilie was beautiful].

On the level of semantics, this is due to the fact that many objectual attitude
reports are intuitively not equivalent to the result of supplementing their direct
object with the infinitive to be (or to be there) (see (19)8; cf. [11,55], pace [35])
or with a contextually determined VP (see (20); cf. [49,52], pace [45]):

(19) Klimt adored [dpthe fact [cpthat Emilie was there (with him)]].
(20) Klimt adored [dpthe fact [cpthat Emilie was beautiful]].

For example, Klimt might not have adored Emilie’s exemplifying any particular
property (incl. her being there), but only Emilie herself (see [15, p. 829], [49]).9

In this situation, (19) and (20) are false and are, hence, not equivalent to (17a).

7 Exceptions are Larson et al. [6,22] and Stanley [47], who assume that PRO inherits
its reference from its antecedent (cf. [51, p. 3]). In contrast to the ‘subject control’-
view, this view does not require a property-interpretation of attitude complements.

8 To compensate for the DP-bias of adore, we prefix the CP with the DP shell the
fact. This move is justified in [25].

9 Further arguments against propositional(ist) accounts of objectual attitude reports
are presented in [55, pp. 434–435] and [11, pp. 62–63].

472 K. Liefke

In view of the above, the complements of objectual attitude reports are usu-
ally interpreted as (type-(s; e)) individual concepts (see (21a), where emilie is
a constant of type (s; e);10 cf. [11,15]) or as (type-(s; ((s; (e; t)); t))) intensional
generalized quantifiers (see (21b), (22); cf. [32, p. 394 ff.], [28]). Below, P is a vari-
able over type-(s; (e; t)) properties.

(21) �Klimt adored [dpEmilie]�i,g

= a. adore ′(i)(emilieemilieemilie)(klimt)
= b. adore (i)(λjλP [P (j)(emilie(j))]λjλP [P (j)(emilie(j))]λjλP [P (j)(emilie(j))])(klimt)

(22) a. �Klimt adored [dpa woman]�i,g

= adore (i)(λjλP (∃x) [woman (j)(x) ∧ P (j)(x)]λjλP (∃x) [woman (j)(x) ∧ P (j)(x)]λjλP (∃x) [woman (j)(x) ∧ P (j)(x)])(klimt)

b. �[dpa woman] [λ1 [Klimt adored t1]]�i,g

= (∃x)
[
woman(i)(x) ∧ adore (i)(λjλP [P (j)(x)]λjλP [P (j)(x)]λjλP [P (j)(x)])(klimt)

]

2.4 Depiction and Resemblance Reports

The interpretation of objectual attitude reports suggests that the non-specific
objects of depiction verbs (see (23); cf. [11, pp. 37, 130–150], [55]), of verbs of
resemblance (see (24); cf. [28,52]), and of verbs of absence (e.g. seek/look for,
owe, (be) missing; cf. [42,54]) are also interpreted as intensional (generalized)
quantifiers.

(23) Uli is painting (/imagining) [dpa unicorn].
(24) Paul resembles [dpa penguin].

However, Zimmermann [52,53] has argued that this interpretation faces two
problems: firstly, the interpretation of the VP in such reports (in (23): paints a
penguin) cannot be systematically obtained from the interpretation of the verb
(paint) and its direct object (a unicorn), s.t. the truth-conditions of these reports
are underspecified (see [52, pp. 157–160]).11 Secondly, the interpretation of the
direct object in depiction and resemblance reports as an intensional quantifier
wrongly predicts the availability of non-specific readings of strong quantifica-
tional objects (e.g. of the DP every penguin in (25), see (25b); cf. [52, pp. 160–
161]).

(25) Uli is painting every penguin.
= a. specific: For every particular penguin in a given domain, Uli is

painting it.
�= b. non-specific: ?Uli is painting an image of all penguins.

10 For convenience, we interpret attitude subjects (e.g. the name Klimt in (17a)) as
individuals, rather than as individual concepts. In Sect. 5, we will outline a strategy
that enables the extensional (i.e. type-e) interpretation of all occurrences of proper
names.

11 In contrast to verbs like seek (which allow for a propositional paraphrase; see (3) and
our fn. 3), most depiction reports do not reduce to an attitude towards a proposition
that is definable in terms of the intensional quantifier (see [52, p. 159]).

A Case for Property-Type Semantics 473

To avoid these problems, Zimmermann has proposed to interpret the direct
objects in depiction and resemblance reports as (type-(s; (e; t))) properties (see
[52]; cf. [13,45]). The property-interpretation of the different readings of (23) is
given in (26):12

(26) a. �Uli paints [dpa unicorn]�i,g = paint (i)(unicornunicornunicorn)(uli)
b. �[dpa unicorn] [λ1 [Uli paints t1]]�i,g

= (∃x)
[
unicorn(i)(x) ∧ paint(i)(λjλy [x = y]λjλy [x = y]λjλy [x = y])(uli)

]

The rationale behind Zimmermann’s property-analysis lies in the one-to-one cor-
respondence between existential quantifiers and their restrictors (i.e. properties),
and in the attendant exclusion13 of non-specific readings of depiction and resem-
blance reports with non-existential intensional quantifiers (see (25b)). Specific
readings of such reports can still be obtained by quantifying-in (see (26b)).

The different (types of) complements of the intensional verbs from this
section are summarized in Table 1. (We temporarily neglect the rightmost col-
umn.)

3 Strategy

To preserve the merits of the propositionalist analysis (see Sect. 4), we propose
to interpret the complements of the constructions from the previous section as

12 To avoid unwarranted inferences to a common objective (see (∗)), Zimmermann [53]
has proposed to interpret the non-specific objects of depiction and resemblance
reports as existentially quantified sub-properties of the properties that are denoted
by the reports’ direct objects. On this account, (23) is then interpreted as (�), where
‘P � Q’

(
:= (∀i)(∀x)[P (i)(x) → Q(i)(x)]

)
asserts that Q is more general than P :

(∗) a. Uli is painting [dpa unicorn]. b. Penny is painting [dpa panther].

�⇒ c. Uli is painting [dpsomething Penny is painting].

(�) (∃P)[P � unicorn ∧ paint (i)(P)(uli)]

However, this move places overly strong demands on the truth of co-predication
reports like († a) (in († b)). This interpretation requires that Penny stands in the
admiring- and the painting-relation to the same sub-property of being an emu.

(†) a. Penny [[admires and paints] [dpan emu]].

b. (∃P)
[
P � emu ∧ (admire ∧ paint)(i)(P)(penny)

]

(‡) Uli imagines [[dpa unicorn] and [cpthat a boy is petting it]].

Since Zimmermann’s account further does not allow the straightforward modelling
of embedded DP/CP-coordinations like (‡), we adopt instead the simpler account
from [52]. We will suggest a strategy for blocking inferences like (∗) in Sect. 6.

13 This exclusion results from the restriction of paint, resemble, etc. to the restrictors B
(:= λjλy [Q(j)(λkλz. z = y)]) of existential quantifiers Q (see [52, p. 164]).

474 K. Liefke

Table 1. Intensional verbs and (the types of) their complements.

verb complement type type-shifter

want/need centered proposition (se; t) curry

believe (de se) centered proposition (se; t) curry

believe (non-de se) proposition (s; t) egn + curry

adore/love/fear intensional quantifier (s; ((s; (e; t)); t)) be

individual concept (s; e) lift + be

paint/resemble property (s; (e; t)) (be)

need – HAVE property (s; (e; t)) (be)

properties of individuals (type (s; (e; t))). All intensional verbs are then inter-
preted in the type (s; ((s; (e; t)); (e; t))).14 This interpretation is motivated by the
possibility of coding (centered and uncentered) propositions, intensional quan-
tifiers, and individual concepts as properties through established type-shifts. It
is supported by the ability of the resulting semantics to avoid Zimmermann’s
problems from Sect. 2.4, to distinguish truth-evaluable from non-truth-evaluable
complements, and to capture cross-attitudinal coordination and quantification.

3.1 Centered Propositions

The equivalence of centered propositions and self-ascribed properties (see
Sect. 2.2) already presupposes the possibility of representing objects of type
(se; t) in the type (s; (e; t)). This representation exploits the one-to-one cor-
respondence between multiary functions and certain unary functions of higher
type (see [44]). It is achieved by the familiar operation of Schönfinkelization, or
currying (see [33, p. 8 ff.]). The relevant instance of currying, i.e. the type-shifter
curry, is given below, where p∗ is a variable over centered propositions (type
(se; t)):

(27) curry := λp∗λjλy [p∗(j, y)]

To enable a property-type interpretation of (1b) (in (30)), we incorporate
curry into the semantics of want. The resulting interpretation of want (in (28))
applies to an index i, a centered proposition, and an individual to assert the
obtaining-in-i of the wanting-relation between the individual and the property
that results from currying the centered proposition. De se-occurrences of propo-

14 This strategy is already anticipated by Zimmermann [52, pp. 167–168, fn. 30]: “Lewis
[. . .] argues that, for reasons of theoretical homogeneity, the objects of intentional
attitudes should all be of the same type, so that preference may seem to be at odds
with propositional attitudes like belief. However, a de se account would get the two
closer to each other: both belief and (a de se version of) preference are relations.”.

A Case for Property-Type Semantics 475

sitional attitude verbs like believe are interpreted analogously (see (29)). Below,
want and believe are constants of type (s; ((s; (e; t)); (e; t))):15

(28) �want�control = λjλp∗λx [want(j)(curry(p∗))(x)]
(29) �believe�de se = λjλp∗λx [believe(j)(curry(p∗))(x)]

(30) �Bill wants [cpFOR [tpPROs to HAVE [dpa laptop]]]�i,g

= want(i)
(
curry

(
λ〈j, y〉(∃x)[laptop (j)(x) ∧ have (j)(x)(y)]

))
(bill)

≡ want(i)
(
λp∗λkλz [p∗(k, z)]

(
λ〈j, y〉(∃x)[laptop (j)(x)∧

have (j)(x)(y)]
))

(bill)
≡ want(i)(λjλy (∃x)[laptop (j)(x) ∧ have (j)(x)(y)])(bill)

The above suggests that propositional attitude and control verbs are ambigu-
ous between centered proposition-taking occurrences (see (28)) and uncentered
proposition-taking occurrences (see (31), where want ′ has type (s; ((s; t); (e; t)))):

(31) �want�non-control = λjλpλx [want ′(j)(p)(x)]

To avoid this ambiguity, we lift non-control/non-de se occurrences of attitude
verbs to centered proposition-taking occurrences. This is accomplished through
the type-shifter egn:

(32) egn := λpλ〈j, y〉[p(j)]

egn sends propositions to centered propositions that are invariant under different
individual centers, i.e. to ‘boring’ centered propositions. The latter are proposi-
tions p∗ such that, for any index w and inhabitants x, y of w, p∗(w, x) iff p∗(w, y)
(see [7, p. 107]). In combination with curry, egn enables a property-type inter-
pretation of the complement of (2):

(33) �Bill wants [cpthat he/Bill has [dpa laptop]]�i,g

= want(i)
(
curry

(
egn

(
λj(∃x)[laptop(j)(x) ∧ have(j)(x)(bill)]

)))
(bill)

≡ want(i)(λjλy (∃x)[laptop(j)(x) ∧ have(j)(x)(bill)])(bill)

To ensure that want preserves the truth-conditional contribution of want,
respectively of want ′, we posit the following axioms: (Analogous axioms also hold
for all other (subject-)control verbs and DP/CP-neutral attitude verbs.)

(Ax1.i) (∀j)(∀p∗)(∀x)
[
want (j)(p∗)(x) ⇔ want (j)(curry(p∗))(x)

]

(Ax1.ii) (∀j)(∀p)(∀x)
[
want ′(j)(p)(x) ⇔ want (j)(curry(egn(p)))(x)

]

The above suggests that there exist semantic relations between the complements
of control- and non-control-uses of want, as evidenced by (8) (see (38) in Sect. 4).

15 Since these constants have a different type from the (type-(s; ((se; t); (e; t)))) trans-
lations of want and need in (16) resp. (12), we here use different(-font) constants.

476 K. Liefke

3.2 Individual Concepts and Intensional Quantifiers

To enable a property-type interpretation of the direct objects in objectual atti-
tude reports (e.g. (17a), (17b)), we use the type-shifters kap and be from [20]
and [36], respectively. Below, c is a variable over individual concepts (type (s; e));
Q is a variable over intensional generalized quantifiers (type (s; ((s; (e; t)); t))):

(34) kap := λcλjλy [c(j) = y] be := λQλjλy [Q(j)(λkλz. z = y)]

kap is a particular instance of a variant of Kaplan’s coding strategy for inten-
sional objects16 that shifts individual concepts to properties. be is an intensional
version of the operation of Existential Lowering from [53, p. 736]. This operation
obtains properties from intensional quantifiers. kap and be enable the property-
type interpretation of (17a) and (17b) as follows:

(35) �Klimt adored [dpEmilie]�i,g

= adore(i)(kap(emilie))(klimt)
≡ adore(i)(λjλy.emilie(j) = y)(klimt)
≡ adore(i)

(
be

(
λjλP [P (j)(emilie(j))]

))
(klimt)

(36) a. �Klimt adored [dpa woman]�i,g

= adore(i)
(
be

(
λjλP (∃x)[woman(j)(x) ∧ P (j)(x)]

))
(klimt)

≡ adore(i)(λjλy (∃x)[woman(j)(x) ∧ x = y])(klimt)

b. �[dpa woman] [λ1 [Klimt adored t1]]�i,g

= (∃x)
[
woman(i)(x) ∧ adore(i)

(
be

(
λjλP [P (j)(x)]

))
(klimt)

]

≡ (∃x)
[
woman(i)(x) ∧ adore(i)(λjλy.x = y)(klimt)

]

To ensure that adore preserves the truth-conditional contribution of adore ′,
respectively of adore, we posit the following axioms:

(Ax2.i) (∀j)(∀c)(∀x)
[
adore ′(j)(c)(x) ⇔ adore(j)(kap(c))(x)

]

(Ax2.ii) (∀j)(∀Q)(∀x)
[
adore (j)(Q)(x) ⇔ adore(j)(be(Q))(x)

]

3.3 Existential Quantifiers

We have suggested in Sect. 2.4 that non-specific readings of (the direct objects in)
depiction and resemblance reports are best interpreted as relations to properties
(see (26)). To obtain properties from the standard interpretation of referential
DPs (i.e. intensional generalized quantifiers), we again use Partee’s type-shifter
be. The non-specific reading of (23) is then interpreted as follows:

(37) �Uli paints [dpa unicorn]�i,g

= paint(i)
(
be

(
λjλP (∃x)[unicorn(j)(x) ∧ P (j)(x)]

))
(uli)

≡ paint(i)(λjλy (∃x)[unicorn(j)(x) ∧ x = y])(uli)
≡ paint(i)(unicorn)(uli)

16 This strategy represents objects A of type (s; α) by type-(α; (s; t)) functions, λaαλi
[A(i) = a], from objects a to the set of indices at which the extension of A is a.

A Case for Property-Type Semantics 477

4 Support for Our Strategy

Our proposal to replace propositions by properties as uniform objects of the atti-
tudes is supported by the ability of property-type semantics to straightforwardly
accommodate ‘unlike’ coordinations in attitude complements (see (38))17 and to
account for cross-attitudinal coordination (see (39)–(40)) and quantification (see
(41)):

(38) �Bill wants [[dpa laptop] and [cpthat Mary stops whining]]�i,g

≡ �Bill wants [[FOR PROs to HAVE a laptop] and
[that Mary stops whining]]�i,g

= want(i)
(
λjλy (∃x)[(laptop(j)(x) ∧ have(j)(x)(y))∧

(stop(whine))(j)(mary)]
)
(bill)

(39) a. �[dpa woman] [λ1 [Klimt [adored and painted] t1]]�i,g

=
(
λP (∃x)[woman(i)(x) ∧ P (i)(x)]

)
(
λjλy

[
(adore∧paint)(j)(λkλz. y = z)(klimt)

])

≡ (∃x)
[
woman(i)(x) ∧ (adore ∧ paint)(i)(λjλy. x = y)(klimt)

]

b. �Klimt [[adored and painted] [dpa woman]]�i,g

= (adore∧paint)(i)
(
be

(
λjλP (∃x)[woman(j)(x)∧P (j)(x)]

))
(klimt)

≡ (adore ∧ paint)(i)(woman)(klimt)

(40) �Klimt [wanted and sought] [dpEmilie’s attention]�i,g

≡ �[Emilie’s attention] [Klimt [λ1 [wants FOR PROs to HAVE t1] and
[seeks t1]]]�i,g

= want(i)(λjλy [have(j)(emilies-attention(j))(y)])(klimt)∧
seek(i)(λkλz [emilies-attention(k) = z])(klimt)

In particular, since the different complements of want from (38) are traditionally
assigned different types (i.e. centered resp. uncentered propositions), (38) cannot
be easily captured by classical Montagovian or propositional semantic accounts.
Similar observations hold for (39) and (40), whose coordinated verbs traditionally
take intensional quantifiers and properties, respectively centered propositions
and properties as their complements.

The above suggests that the proposed semantics also enables an easy inter-
pretation of instances of cross-attitudinal quantification. This is indeed the case.
The property-type interpretation of the non-specific reading of (41) is given in
(42):

(41) Bill wants [dpsomething that Mary fears].
(42) want(i)

(
λjλy (∃x)

[
fear(j)(λkλz. z = x)(mary) ∧ have(j)(x)(y)

])
(bill)

17 Liefke and Werning [26, p. 647] have suggested that the naturalness (or unnatu-
ralness) of these coordinations depends on the overlap (resp. disjointness) of the
world-parts with respect to which the conjuncts of such coordinations are evaluated.

478 K. Liefke

Note that – the uniform interpretation of attitudinal objects notwithstand-
ing – the proposed property-type semantics can still distinguish truth-evaluable
attitude complements (i.e. coded centered and uncentered propositions; e.g.
(43b), (43a)) from non-truth-evaluable attitude complements (i.e. coded indi-
viduals, properties, and intensional quantifiers; e.g. (44b), (44a)).

(43) a. λjλy(∃x)[laptop(j)(x) ∧ have(j)(x)(bill)]
b. λjλy(∃x)[laptop(j)(x) ∧ have(j)(x)(y)]

(44) a. woman
(≡ λjλy [woman(j)(y)]

)
b. λjλy [x = y]

For example, while the DP Emilie’s attention has clear truth- (or accuracy-)
conditions in the complement of the first coordinated verb, want, in (40),18

it lacks such conditions in the complement of the second verb, seek. Since
Propositionalists propose to analyze all attitude complements as truth-evaluable
propositional contents, they cannot easily explain this observation. The differ-
ence between truth-evaluable and non-truth-evaluable attitude complements also
explains the different modificational behavior of (5) and (11). This is achieved
by stipulating that temporal adverbials (e.g. tomorrow) can only modify truth-
evaluable complements (hence, the lower clause in (1b), but not in (10a)).

In addition to the above, the proposed property-type semantics is also able
to explain certain differences w.r.t. the acceptability of different kinds of co-
predication. It has been reported that speakers intuitively judge (45) to be more
natural than (46), which is, in turn, judged to be more natural than (47) (see
[29,45]):

(45) Bill [[wants and needs] [dpa laptop]].
(46) John [[needed and was looking for] [dpa hammer]].
(47) John [[needed and crafted] [dpa birdhouse]].

We propose to explain this difference in acceptability or naturalness through
the identity (resp. difference) between the type-shifters that are used in the
interpretation of each of the two attitude verbs. Coordinations of verbs whose
interpretations use the same type-shifter are thus more acceptable (or natural)
than coordinations of verbs whose interpretations use different type-shifters. The
high degree of naturalness of (45) is then explained by the fact that want and need
both have their control-use in (45), such that (45) can receive a ‘non-distributive’
interpretation involving the type-shifter curry (see (48)). The lower degree
of naturalness of (47) (in comparison to (45)) is explained by the fact that
the verbs need and craft assume different type-shifters (viz. curry and be),
such that (47) can only receive a distributive interpretation (see (50)).19 The
intermediate degree of naturalness of (46) is explained by the fact that the verbs

18 This conjunct is true at all indices whose agentive center has Emilie’s attention.
19 Daniel Gutzmann (p.c.) has pointed out that the distributive interpretation of (47)

(in (�)) is equally natural/acceptable as (45):

(�) John [[needed [dpa birdhouse]] and [crafted [dpa birdhouse]]].

A Case for Property-Type Semantics 479

need and look for only assume the same type-shifter (viz. be) since the relevant
occurrence of need does not have a control-use, such that it directly receives a
property-type interpretation. The report (46) can thus receive a non-distributive
interpretation (in (49)).

(48) �Bill [[wants and needs] [cpFOR [tpPRO to HAVE [dpa laptop]]]]�i,g

= (want ∧ need)(i)
(
curry

(
λ〈j, y〉(∃x)[laptop(j)(x)∧

have(j)(x)(y)]
))

(bill)
≡ (want ∧ need)(i)(λjλy(∃x)[laptop(j)(x) ∧ have(j)(x)(y)])(bill)

(49) �John [[needed to USE and was looking for] [dpa hammer]]�i,g

= (need∧look-for)(i)
(
be

(
λjλP (∃x)[hammer(j)(x)∧P (j)(x)]

))
(john)

≡ (need ∧ look-for)(i)(hammer)(john)

(50) �John [[needed [cpfor PRO to HAVE [dpa birdhouse]]] and
[crafted [dpa birdhouse]]]�i,g

=
(
λx. need(i)

(
curry

(
λ〈j, y〉(∃z)[birdhouse(j)(z)∧have(j)(z)(y)]

))
(x)

∧ craft (i)
(
be

(
λkλP (∃u [birdhouse(k)(u) ∧ P (k)(u)])

))
(x)

)
(john)

≡ (
need(i)

(
λjλy (∃z)[birdhouse(j)(z) ∧ have(j)(z)(y)]

)
(john)∧

craft (i)(birdhouse)(john)
)

5 Achieving Ontological Parsimony

In the introduction to this paper, we have suggested that our proposed property-
type semantics shares the two main lines of support for Propositionalism: empir-
ical support (see Sect. 4) and methodological support. Methodological support
for Propositionalism most saliently lies in its ontological parsimony. However,
we have seen in Sect. 3 that a compositional property-type semantics for the fea-
tured constructions still requires a large number of different intensional objects,
including centered and uncentered propositions, individual concepts, and inten-
sional quantifiers, next to properties. This is due to the need to obtain intensional
complements compositionally from the standard denotations of finite and infini-
tival clauses and of referential and quantificational DPs. The proposed version of
property-type semantics is thus ontologically lavish, rather than parsimonious.

There are two ways of answering the objection from ontological lavishness: by
restricting the domain of evaluation for ontological parsimony/lavishness to the
semantic complements of intensional verbs (alternative 1) or by further restrict-
ing the intensional objects that are assumed by compositional property-type
semantics (alternative 2). The first alternative justifies the ontological parsi-
mony of property-type semantics by restricting the domain of evaluation for
parsimony or lavishness to the types of intensional objects that can serve as the
denotation of attitude complements. Since property-type semantics assumes a

We explain this observation through the fact that – in contrast to (45) – the possi-
bility of interpreting a single occurrence of the DP a birdhouse as the common object
of need and craft is not available in (47).

480 K. Liefke

uniform(-type) interpretation of all such complements, it is more parsimonious
than Montague-style/intensionalist semantics (see Sect. 2; cf. [22]).

The second alternative assumes the possibility of restricting intensional
objects to the denotations of attitude verbs and attitudinal modifiers. All other
natural language expressions (including attitude complements) receive an exten-
sional interpretation. To get a match between the type of attitude verbs (here:
((s; (e; t)); (e; t))) and the type of their complements, we use Heim and Kratzer’s
rule of Intensional Function Application ([19, p. 186]; see [9, p. 11]):20

Definition 1 (Intensional Function Application (IFA)). If α is a branch-
ing node whose daughters are β, γ, and �β�i,g is a function whose domain con-
tains (λj.�γ�j,g), then �α�i,g = �β�i,g

(
λj.�γ�j,g

)
.

In particular, IFA enables the formation of (type-(s; (e; t))) properties from sets
of individuals (type (e; t)) that are parametrized by indices.21

The extensional interpretation of the complements in the constructions from
Sect. 2 and the shifting of these interpretations by extensional variants of egn,
kap, and be (see (51)–(53)) then enable the compositional, ontologically parsi-
monious interpretation of all intensional constructions from Sect. 2. Below, ξ, T ,
and O are variables of types t, (e; t), and ((e; t); t), respectively:

(51) ext-egn := λξλx [ξ]
(52) ext-kap := λyλx [x = y]
(53) ext-be := λOλx [O(λy. x = y)]

The interpretations of (16), (33), (17a), and (23) are given below, where the
extensional correlates of intensional non-logical constants are written in roman
font:

(54) a. �Bill wants [cpFOR [tpPROs to HAVE [dpa laptop]]]�i,g

=
(
�want�i,g

(
λj.�λy(∃x)[laptop(x) ∧ have(x)(y)]�j,g

))(
�Bill�i,g

)

b. �[dpa laptop] [λ1 [Bill wants [cpFOR [tpPROs to HAVE t1]]]]�i,g

=
((

�λT (∃x)[laptop(x) ∧ T (x)]�i,g
)

(
λx.�want�i,g

(
λj.�λy.have(x)(y)�j,x,g

)))(
�Bill�i,g

)

20 De Groote and Kanazawa [14] (see [8, pp. 195–203]) propose a generalization of IFA
that sends expressions of extensional type to expressions of intensional type through
an intensionalization operation int. This operation improves upon IFA by allowing
for the ‘intensional lifting’ of all argument- (and value-)types in an expression, rather
than only of the complete expression. For example, int sends expressions of type (e; t)
to expressions of type ((s; e); (s; t)) (equivalent to type (s; ((s; e); t))), rather than
to expressions of type (s; (e; t)), as does IFA. However, since we are presently only
interested in lifting type-(e; t) to type-(s; (e; t)) objects, we restrict ourselves to IFA.

21 The use of index-parameters is motivated by the core idea behind IFA, viz. the
possibility of constructing an intensional model from a class of extensional models
viewed as possible worlds or indices.

A Case for Property-Type Semantics 481

(55) �Bill wants [cpthat he/Bill has [dpa laptop]]�i,gnon-control

=
(
�want�i,g

(
λj.�ext-egn

(
(∃x)[laptop(x) ∧ have(x)(bill)]

)
�j,g

))
(
�Bill�i,g

)

≡ (
�want�i,g

(
λj.�λy(∃x)[laptop(x) ∧ have(x)(bill)]�j,g

))(
�Bill�i,g

)

(56) �Klimt adored [dpEmilie]�i,g

=
(
�adore′�i,g

(
λj.�ext-kap(emilie)�j,g

))(
�Klimt�i,g

)

≡ (
�adore′�i,g

(
λj.�λx. x = emilie�j,g

))(
�Klimt�i,g

)

≡ (
�adore�i,g

(
λj.�ext-be

(
λT [T (emilie)]

)
�j,g

))(
�Klimt�i,g

)

(57) �Uli paints [dpa unicorn]�i,g

=
(
�paint�i,g

(
λj.�ext-be

(
λT (∃x)[unicorn(x) ∧ T (x)]

)
�j,g

))(
�Uli�i,g

)

≡ (
�paint�i,g

(
λj.�λy (∃x)[unicorn(x) ∧ y = x]�j,g

))(
�Uli�i,g

)

Note that – contrary to its ‘intensional’ counterpart (30) – the IFA-interpretation
of (16) (in (54)) does not require an extensional variant of curry. This is due to
the fact that IFA shifts parametrized objects of type (α;β) to unary functions of
type (s; (α;β)), rather than to multiary functions of type (sα;β). For (α;β) :=
(e; t), the instances of this shift then already have the desired complement type.

6 Conclusion and Future Work

In this paper, we have presented an alternative to Propositionalism, viz.
property-type semantics. We have shown that this semantics preserves the merits
of Propositionalism (esp. the uniform interpretation of attitude complements
and the parsimony of the associated intensional ontology), while avoid-
ing its empirical shortcomings (i.e. the inability to interpret objectual and
de se-attitude reports, ‘know how’-sentences, and non-specific readings of depic-
tion/resemblance reports). This is achieved by incorporating, into the seman-
tics of attitude verbs, type-shifters from the familiar intensional complements to
properties. As a result of this incorporation, all attitude verbs can be interpreted
as relations to properties.

We close this paper with three pointers to future work. These regard an
answer to the monotonicity problem from [53] (see (i), below), the formula-
tion of a logic for relations between syntactically different attitude complements
(see (ii)), and the development of a ‘coding’-version of Propositionalism (along
the lines of property-type semantics; see (iii)):

(i) Zimmermann [53] has observed that property-type semantics like [52] and
the one proposed in the present paper wrongly predict the validity of inferences to
a common objective (see (59); cf. (∗) in fn. 12, where the direct objects in (59a)
and (59b) have a non-specific reading and where the direct object in (59c) is
interpreted as a quantifier over non-specific objects). This prediction is based
on the possibility of quantifying over the non-specific objects in (59a) and (59b)
(see (58)) and on the observation that the quantifier (∃P) in (59c) has the same
witness for Uli’s as for Penny’s painting.

482 K. Liefke

(58) a. �Uli paints [dpa unicorn]�i,g = paint (i)(unicorn)(uli)
⇒ b. �Uli paints [dpsome-thing]�i,g = (∃P)[paint (i)(P)(uli)]

(59) a. �Uli paints [dpa unicorn]�i,g = paint (i)(unicorn)(uli)
b. �Penny paints [dpa panther]�i,g = paint (i)(panther)(penny)

⇒ c. �Uli paints [dpsomething Penny is painting]�i,g

= (∃P)[paint (i)(P)(uli) ∧ paint (i)(P)(penny)]

To block such intuitively invalid inferences, one could deny that the conclusion
of such inferences (above, (59c)) involves unrestricted quantification over prop-
erties. Relevant work (see [18])22 then needs to identify a suitable mechanism
for contextual domain restriction.

(ii) We have suggested at the end of Sect. 4 that the uniform interpretation
of attitude complements enables the identification of semantic relations between
attitude complements of different syntactic categories. This is due to the partial
ordering on the domain of properties, which is induced by the ordering on the set
of truth-values. The resulting inclusion relations between properties may be used
to provide a logic for the relations between different (traditionally, different-type)
attitudinal objects. Such a logic has recently been demanded in [17, p. 16].

(iii) In linguistic semantics, propositionalism is often identified with one of
two variants: sententialism (see [6,22]; cf. [35]) or weak propositionalism (see [39];
cf. [31, pp. 264, 267]). Respectively, these variants assume that the reduction of
intensionality to clausal embedding proceeds by a syntactic (i.e. restructuring-
or ellipsis-)analysis (i.e. sententialism) or by lexical decomposition/paraphrase
(i.e. weak propositionalism). Our considerations from this paper suggest a third
version of propositionalism – reminiscent of Zimmermann’s [55] Propositionalism
(see fn. 2) – that is weaker than these variants.

The suggested version of propositionalism does not require that each inten-
sional construction be truth-conditionally equivalent to some instance of clausal
embedding. Rather, it only demands that all semantic attitude complements can
be coded (via semantic representation, or type-shift) as (centered or uncentered)
propositions. We expect that this version of propositionalism will be able to inter-
pret some intensional constructions (incl. constructions with DP-biased attitude
verbs) that resist a clausal analysis or paraphrase. We leave the development of
this version of propositionalism as a topic for future research.

References

1. Anand, P., Nevins, A.: Shifty operators in changing contexts. In: Young, R.B. (ed.)
Proceedings of SALT, vol. XIV (2004)

2. Bayer, S.: The coordination of unlike categories. Language 72(3), 579–616 (1996)
3. Castañeda, H.-N.: ‘He’: a study in the logic of self-consciousness. Ratio 8, 130–157

(1966)

22 A similar strategy is pursued in unpublished lecture notes by Ede Zimmermann
(based on joint work with Magdalena Kaufmann).

A Case for Property-Type Semantics 483

4. Chierchia, G.: Anaphora and attitudes de se. In: Bartsch, R., van Benthem,
J.F.A.K., van Emde Boas, P. (eds.) Semantics and Contextual Expression, pp.
1–11. Foris Publications, Dordrecht (1989)

5. Deal, A.R.: Property-type objects and modal embedding. In: Proceedings of Sinn
und Bedeutung 12 (2008)

6. den Dikken, M., Larson, R., Ludlow, P.: Intensional transitive verbs and
abstract clausal complementation. In: Grzankowski, A., Montague, M. (eds.) Non-
Propositional Intentionality, pp. 46–94. Oxford University Press, Oxford (2018)

7. Egan, A.: Secondary qualities and self-location. Philos. Phenomenol. Res. 72, 97–
119 (2006)

8. van Eijck, J., Unger, C.: Computational Semantics with Functional Programming.
Cambridge University Press, Cambridge (2010)

9. von Fintel, K., Heim, I.: Intensional Semantics: Lecture Notes, MIT, Cambridge
(2011)

10. Forbes, G.: Objectual attitudes. Linguist. Philos. 23(2), 141–183 (2000)
11. Forbes, G.: Attitude Problems: An Essay on Linguistic Intensionality. Oxford Uni-

versity Press, Oxford (2006)
12. Forbes, G.: Content and Theme in Attitude Ascriptions. In: Grzankowski, A., Mon-

tague, M. (eds.) Non-Propositional Intentionality, pp. 114–133. Oxford University
Press, Oxford (2018)

13. van Geenhoven, V., McNally, L.: On the property analysis of opaque complements.
Lingua 115, 885–914 (2005)

14. de Groote, P., Kanazawa, M.: A note on intensionalization. J. Log. Lang. Inf. 22(2),
173–194 (2013)

15. Grzankowski, A.: Limits of propositionalism. Inquiry 57(7–8), 819–838 (2016)
16. Grzankowski, A.: A relational theory of non-propositional attitudes. In:

Grzankowski, A., Montague, M. (eds.) Non-Propositional Intentionality, pp. 134–
151. Oxford University Press, Oxford (2018)

17. Grzankowski, A., Montague, M.: Non-propositional intentionality: an introduction.
In: Grzankowski, A., Montague, M. (eds.) Non-Propositional Intentionality, pp. 1–
18. Oxford University Press, Oxford (2018)

18. Haslinger, N.: Quantificational arguments of opaque verbs in German: disentan-
gling monotonicity and context dependency. Master’s thesis, University of Vienna
(in progress)

19. Heim, I., Kratzer, A.: Semantics in Generative Grammar, Blackwell Textbooks in
Linguistics, vol. 13. Blackwell, Malden (1998)

20. Kaplan, D.: How to Russell a Frege-Church. J. Philos. 72(19), 716–729 (1975)
21. Kratzer, A.: Decomposing attitude verbs: handout from a talk in honor of Anita

Mittwoch on her 80th birthday. Hebrew University, Jerusalem (2006)
22. Larson, R.: The grammar of intensionality. In: Preyer, G., Peter, G. (eds.) Logical

Form and Language, pp. 228–262. Oxford University Press, Oxford, (2002)
23. Lewis, D.: Attitudes de dicto and de se. Philos. Rev. 88(4), 513–543 (1979)
24. Liefke, K.: A single-type semantics for natural language. Dissertation, Tilburg Cen-

ter for Logic and Philosophy of Science, Tilburg University (2014)
25. Liefke, K.: A ‘situated’ solution to Prior’s substitution problem. In: Espinal, M.T.,

Castroviejo, E., Leonetti, M., McNally, L. (eds.) Proceedings of Sinn und Bedeu-
tung, vol. 23. Semantics Archive (to appear)

26. Liefke, K., Werning, M.: Evidence for single-type semantics - an alternative to
e/t-based dual-type semantics. J. Semant. 35(4), 639–685 (2018)

27. McCawley, J.: On identifying the remains of deceased clauses. Lang. Res. 9, 73–85
(1974)

484 K. Liefke

28. Moltmann, F.: Intensional verbs and quantifiers. Nat. Lang. Semant. 5(1), 1–52
(1997)

29. Moltmann, F.: Intensional verbs and their intentional objects. Nat. Lang. Semant.
16, 239–270 (2008)

30. Montague, R.: English as a formal language. In: Thomason, R.H. (ed.) Formal
Philosophy: Selected Papers of Richard Montague, pp. 188–221. Yale University
Press, New Haven (1976)

31. Montague, R.: The proper treatment of quantification in ordinary English. In:
Thomason, R.H. (ed.) Formal Philosophy: Selected Papers of Richard Montague,
pp. 247–270. Yale University Press, New Haven (1976)

32. Montague, R.: Universal grammar. Theoria 36(3), 373–398 (1970)
33. Muskens, R.: Meaning and Partiality. CSLI Lecture Notes. CSLI Publications,

Stanford (1995)
34. Orey, S.: Model theory for the higher order predicate calculus. Trans. Am. Math.

Soc. 92(1), 72–84 (1959)
35. Parsons, T.: Meaning sensitivity and grammatical structure. In: Chiara, M.L., et al.

(eds.) Structures and Norms in Science, pp. 369–383. Kluwer Academic Publishers,
Dordrecht (1997)

36. Partee, B.: Noun phrase interpretation and type-shifting principles. In: Groe-
nendijk, J., de Jong, D., Stokhof, M. (eds.) Studies in Discourse Representation
Theory and the Theory of Generalized Quantifiers, pp. 115–143. Foris Publications,
Dordrecht (1987)

37. Percus, O., Sauerland, U.: On the LFs of attitude reports. In: Weisgerber, M. (ed.)
Proceedings of Sinn und Bedeutung 7. Arbeitspapiere des FB Sprachwissenschaft,
vol. 114. University of Konstanz, Konstanz (2003)

38. Perry, J.: The problem of the essential indexical. Noûs 13(1), 3–21 (1979)
39. Quine, W.V.: Quantifiers and propositional attitudes. J. Philos. 53(5), 177–187

(1956)
40. Roberts, C.: Know-how: a compositional approach. In: Tor, E., Itor, E. (eds.)

Theory and Evidence, pp. 1–31. CSLI, Stanford (2009)
41. Russell, B.: On denoting. Mind 14(56), 479–493 (1905)
42. Sæbø, K.J.: Do you know what it means to miss New Orleans?: more on missing.

In: Approaches to Meaning, pp. 105–127. Brill (2014)
43. Sag, I., Gazdar, G., Wasow, T., Weisler, S.: Coordination and how to distinguish

categories. Nat. Lang. Linguist. Theory 3(2), 117–171 (1985)
44. Schönfinkel, M.: Über die Bausteine der mathematischen Logik. Math. Ann. 92,

305–316 (1924)
45. Schwarz, F.: On needing propositions and looking for properties. In: Gibson, M.,

Howell, J. (eds.) Proceedings of SALT, vol. XVI, pp. 259–276. Cornell University,
Ithaca, NY (2006)

46. Sinhababu, N.: Advantages of propositionalism. Pac. Philos. Q. 96(2), 165–180
(2015)

47. Stanley, J.: Know How. Oxford University Press, Oxford (2011)
48. Stephenson, T.: Control in centred worlds. J. Semant. 27(4), 409–436 (2010)
49. Szabó, Z.G.: Sententialism and Berkeley’s master argument. Philos. Q. 55(220),

462–474 (2005)
50. Tichý, P.: Foundations of partial type theory. Rep. Math. Log. 14, 59–72 (1982)
51. Yalcin, S.: Stanley on the de se. Handout from a talk at the Pacific APA (2012)
52. Zimmermann, T.E.: On the proper treatment of opacity in certain verbs. Nat.

Lang. Semant. 1(2), 149–179 (1993)

A Case for Property-Type Semantics 485

53. Zimmermann, T.E.: Monotonicity in opaque verbs. Linguist. Philos. 29(6), 715–
761 (2006)

54. Zimmermann, T.E.: What it takes to be missing. In: Hanneforth, T., Fanselow, G.
(eds.) Language and Logos: Studies in Theoretical and Computational Linguistics,
vol. 72, pp. 255–265. Walter de Gruyter (2012)

55. Zimmermann, T.E.: Painting and opacity. In: Freitag, W., Rott, H., Sturm, H.,
Zinke, A. (eds.) Von Rang und Namen: Philosophical Essays in Honour of Wolfgang
Spohn, pp. 427–453. Mentis, Münster (2016)

Note on Globally Sound Analytic Calculi
for Quantifier Macros

Matthias Baaz1(B) and Anela Lolic2(B)

1 Institute of Discrete Mathematics and Geometry, TU Wien, Vienna, Austria
baaz@logic.at

2 Institute of Logic and Computation, TU Wien, Vienna, Austria
anela@logic.at

Abstract. This paper focuses on a globally sound but possibly locally
unsound analytic sequent calculus for the quantifier macro Q defined
by Qx,yA(x, y) = ∀x∃yA(x, y). It is demonstrated that no locally sound
analytic representation exists.

Keywords: Sequent calculus · Cut-elimination · Quantifier macros

1 Introduction

The concept of an analytic proof introduced by Gottfried Wilhelm Leibniz is
of fundamental importance for mathematics and logic. An analytic proof is a
proof where all the information used in the proof is already contained in the
end-sequent. This is of course an idealization, however sequent calculi which are
cut-free complete can be considered since Gentzen 1934 [2] as a close approxi-
mation. In this paper we refine the concept of analyticity by considering macros
of connectives and quantifiers1.

In logic an analytic proof of a statement containing only macros of con-
nectives and quantifiers would itself be based on these macros. The question is,
whether it is possible to form inference rules for such macros that are compatible
with cut-elimination. The answer is obviously “yes” for macros of connectives,
“no” if macros of quantifiers are considered in the framework of usual eigenvari-
able conditions, which allow for a step-wise verification of the proof. In contrast
an analytic framework can be constructed if globally sound but possibly locally
unsound concepts of proof are introduced.

M. Baaz—This work is partially supported by FWF Project P 31063.
A. Lolic—Recipient of a DOC Fellowship of the Austrian Academy of Sciences at the
Institute of Logic and Computation at TU Wien.

1 Macros of connectives and quantifiers have a wide range of application in mathe-
matics and are used to deal with explicit definitions, for example the handling of
integrals as objects. In logic it is known that hierarchies of macros can be used to
abbreviate proofs [3].

c© Springer-Verlag GmbH Germany, part of Springer Nature 2019
R. Iemhoff et al. (Eds.): WoLLIC 2019, LNCS 11541, pp. 486–497, 2019.
https://doi.org/10.1007/978-3-662-59533-6_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-59533-6_29&domain=pdf
http://orcid.org/0000-0002-7815-2501
http://orcid.org/0000-0002-4753-7302
https://doi.org/10.1007/978-3-662-59533-6_29

Note on Globally Sound Analytic Calculi for Quantifier Macros 487

2 Macros for Connectives

We consider LK in a multiplicative version based on pairs of multisets as
sequents.

Definition 1 (LK).

– Axiom schema: A → A
– The propositional rules:

∧-introduction

A,B, Γ → Δ ∧l
A ∧ B,Γ → Δ

Γ1 → Δ1, A Γ2 → Δ2, B ∧r
Γ1, Γ2 → Δ1,Δ2, A ∧ B

∨-introduction

A,Γ1 → Δ1 B,Γ2 → Δ2 ∨l
A ∨ B,Γ1, Γ2 → Δ1,Δ2

Γ → Δ,A,B ∨r
Γ → Δ,A ∨ B

→-introduction

Γ1 → Δ1, A B, Γ2 → Δ2 ⊃l
A ⊃ B,Γ1, Γ2 → Δ1,Δ2

A,Γ → Δ,B ⊃r
Γ → Δ,A ⊃ B

¬-introduction

Γ → Δ,A ¬l¬A,Γ → Δ

A,Γ → Δ ¬r
Γ → Δ,¬A

weakening
Γ → Δ wl

A,Γ → Δ
Γ → Δ wr

Γ → Δ,A

contraction
A,A, Γ → Δ

cl
A,Γ → Δ

Γ → Δ,A,A
cr

Γ → Δ,A

cut
Γ1 → Δ1, A A, Γ2 → Δ2

cut
Γ1, Γ2 → Δ1,Δ2

– The quantifier rules:

A(a), Γ → Δ ∃l∃xA(x)Γ → Δ

Γ → Δ,A(a) ∀r
Γ → Δ,∀xA(x)

where a is an eigenvariable.
A(t), Γ → Δ ∀l∀xA(x)Γ → Δ

Γ → Δ,A(t) ∃r
Γ → Δ,∃xA(x)

where t is a term.

Definition 2. A macro for connectives is a formula based on propositional vari-
ables which is considered as a connective in its own right.

488 M. Baaz and A. Lolic

Example 1. We define the binary connective ↔ as

A ↔ B = (A ⊃ B) ∧ (B ⊃ A).

The semantical meaning of such a macro is obvious.

Proposition 1. To every macro � defined by connectives a left inference rule,
denoted by �l, and right inference rule, denoted by �r, are associated such that
LK extended by �l and �r admits cut-elimination.

Proof. Let B(A1, . . . , An) be the defining propositional formula.

�r: Consider → B(A1, . . . , An). Read the rules of LK backwards as long as this
is possible. Φ, Ψ ⊆ A1, . . . , An for topmost sequents Φ → Ψ . Let

ΦR
1 → ΨR

1 , . . . , ΦR
mr

→ ΨR
mr

be the topmost sequents with ΦR
i ∩ ΨR

i = ∅. Then

Γ1, Φ
R
1 → Δ1, Ψ

R
1 Γmr

, ΦR
mr

→ Δmr
, ΨR

mr �r
Γ1, . . . , Γmr

→ Δ1, . . . ,Δmr
,�(A1, . . . , An)

is the intended rule (the variables are instantiated by formulae).

�l: analogous.

Obviously in LK

ΦL
1 → ΨL

1

...

ΦL
mL

→ ΨL
mL

...
...

→ B(A1, . . . , An)

ΦR
1 → ΨR

1

...

ΦR
mR

→ ΨR
mR

...
...

B(A1, . . . , An) →
→

Consider the initial sequents as clauses. This clause set is unsatisfiable and there-
fore there is a refutation as propositional resolution is complete [4]. The critical
step of Gentzen’s cut-elimination is the grade reduction of a mix formula with
outermost symbol �: any resolution refutation of the clauses above is suitable.

Example 2. �r is defined via

A → B ⊃r→ A ⊃ B
B → A ⊃r→ B ⊃ A ∧r→ (A ⊃ B) ∧ (B ⊃ A)

and �l is defined via

→ A,B A → A ⊃l
B ⊃ A → A

B → B A,B → ⊃l
B,B ⊃ A → ⊃l

(A ⊃ B), (B ⊃ A) → ∧l
(A ⊃ B) ∧ (B ⊃ A) →

Note on Globally Sound Analytic Calculi for Quantifier Macros 489

Consequently, the inference rules for ↔ are

A,Γ → Δ,B B,Γ → Δ,A ↔r
Γ → Δ,A ↔ B

A,B, Γ → Δ Γ → Δ,A,B ↔l
A ↔ B,Γ → Δ

The critical reduction step for ↔ in the cut-elimination procedure of Gentzen is
(contractions are hidden):

Γ1 → Δ1, A,B B, Γ2 → Δ2, A ∗
Γ1, Γ

′
2 → Δ′

1,Δ2, A

A, Γ3 → Δ3, B A,B, Γ4 → Δ4 ∗
A,Γ3, Γ

′′
4 → Δ′′

3 ,Δ4 ∗
Γ1, Γ

′
2, Γ

′′′
3 , Γ ′′′

4 → Δ′′′
1 ,Δ′′′

2 ,Δ′′
3 ,Δ4

where ∗ is the mix rule.

Therefore, a sequent calculus with ↔l,↔r with only logical rules admits cut-
elimination.

In this paper we discuss the extension of this property to macros for quantifiers.
We will concentrate on the macro for ∀x∃y.

3 The Analytic Sequent Calculus LQ: A First Approach

Definition 3. A macro for quantifiers M is a formula based on quantifiers Qi ∈
{∀,∃}, 1 ≤ i ≤ n which is considered as a quantifier in its own right:

Mx1,...,xn
A(x1, . . . , xn) = Q1x1, . . . , QnxnA(x1, . . . , xn).

We will concentrate on the quantifier macro Q defined as

Qx,yA(x, y) = ∀x∃yA(x, y).

The language LQ of the calculus LQ is based on the usual language of first-order
logic with exception that the quantifiers are replaced by the quantifier Q.

Definition 4 (LQ). The calculus LQ is LK, where the quantifier rules are
exchanged by

Γ → Δ,A(a, t)
Qr

Γ → Δ,Qx,yA(x, y)

where a does not occur in the lower sequent and

A(t, a), Γ → Δ
Ql

Qx,yA(x, y), Γ → Δ

490 M. Baaz and A. Lolic

where a does not occur in the lower sequent or in t (the inference Qr is derived
from

Γ → Δ,A(a, t) ∃r
Γ → Δ,∃yA(a, y) ∀r

Γ → Δ,∀x∃yA(x, y)

where a is an eigenvariable not allowed to occur in the lower sequent and the
inference Ql is derived from

A(t, a), Γ → Δ ∃l∃yA(t, y), Γ → Δ ∀l∀x∃yA(x, y), Γ → Δ

where a is an eigenvariable not allowed to occur in the lower sequent or in t).
The dual quantifier QD to Q can be defined in the usual dual way

QD
x,yA(x, y) = ¬Qx,y¬A(x, y) = ∃x∀y¬A(x, y).

The quantifier introduction rules for QD are

Γ → Δ,A(t, a)
QD

r
Γ → Δ,QD

x,yA(x, y)

where a does not occur in the lower sequent and in t and

A(a, t), Γ → Δ
QD

lQD
x,yA(x, y), Γ → Δ

where a does not occur in the lower sequent.

The usual quantifier rules of LK can be obtained by partial dummy applications
of Q. We denote these dummy quantifiers and their introduction rules by ∀ and
∃ (∀r,∀l,∃r,∃l).

An LQ-proof is a tree formed according to the rules of LQ such that all leaves
are axioms. The notion of context formulae, auxiliary formulae and principal
formulae is as in LK.

Example 3. The sequent Qx,yA(x, y) → ∀x∃yA(x, y) is derivable in LQ:

A(a, b) → A(a, b) ∃r
A(a, b) → ∃yA(a, y)

Ql
Qx,yA(x, y) → ∃yA(a, y) ∀r

Qx,yA(x, y) → ∀x∃yA(x, y)

Theorem 1. LQ is sound.

Proof. The macro Q can be replaced by ∀∃ everywhere in the derivation. The
resulting derivation is an LK-derivation.

Note on Globally Sound Analytic Calculi for Quantifier Macros 491

Theorem 2. LQ admits cut-elimination.

Proof. We follow Gentzen’s procedure, cf. [5]. The only difference to Gentzen’s
proof is the reduction of Q, which can be performed as follows:

Γ → Δ,A(a, t)
Qr

Γ → Δ,Qx,yA(x, y)
A(t′, a′),Π → Λ

Ql
Qx,yA(x, y),Π → Λ

mix
Γ,Π → Δ,Λ

where a does not occur in the lower sequent, a′ does not occur in the lower
sequent and in t′, all occurrences of a, a′, t, t′ are indicated (note that Qx,yA(x, y)
does not occur in Δ or Π at this step). This can be reduced to

Γ → Δ,A(t′, t) A(t′, t),Π → Λ
mix

Γ,Π ′ → Δ′, Λ

Corollary 1 (Midsequent-theorem). For every proof of a prenex sequent in
LQ there is a cut-free proof with a midsequent such that every inference above
the midsequent is structural or propositional and every inference below the mid-
sequent is structural or Qr, Ql.

Proof. As in LK we can delay the quantifier inferences.

Proposition 2. LQ is incomplete w.r.t. the sequents provable in LK.

Proof. Assume the sequent Qx,yA(x, y) → Qx,y(A(x, y)∨C) was provable. Then
it was provable without cuts. A cut-free derivation after deletion of weakenings
and contractions has the initial form

A(a, b) → A(a, b)
A(a, b) → A(a, b) ∨ C

...
Due to the mixture of strong (eigenvariable dependent) and weak positions in Q
none of the inference rules Qr, Ql can be applied.

Corollary 2. Compound axioms A → A cannot be reduced to atomic ones.

Corollary 3. The sequent ∀x∃yA(x, y) → Qx,yA(x, y) is not derivable in LQ.

Proof. We would obtain completeness in case ∀x∃yA(x, y) → Qx,yA(x, y) was
derivable, because Qx,yA(x, y) → ∀x∃yA(x, y) is derivable by Example 3.

The usual quantifier shifts of classical logic are not derivable in LQ.

Definition 5 (quantifier shifts). Let Q∗ ∈ {Q,QD} and ◦ ∈ {∧,∨}. Then
the quantifier shifts for the operators ∧,∨ are:

1. Q∗
x,y(A ◦ B(x, y)) → A ◦ Q∗

x,yB(x, y),
2. Q∗

x,y(A(x, y) ◦ B) → Q∗
x,yA(x, y) ◦ B.

492 M. Baaz and A. Lolic

Let (Q∗, QD∗
) ⊆ {(Q,QD), (QD, Q)}, then the quantifier shifts for ⊃ are:

3. Q∗
x,y(A ⊃ B(x, y)) → A ⊃ Q∗

x,yB(x, y),
4. Q∗

x,y(A(x, y) ⊃ B) → QD∗
x,yA(x, y) ⊃ B,

5. A ⊃ Q∗
x,yB(x, y) → Q∗

x,y(A ⊃ B(x, y)),
6. QD∗

x,yA(x, y) ⊃ B → Q∗
x,y(A(x, y) ⊃ B).

The quantifier shifts for ¬ are:

7. Q∗
x,y¬A(x, y) → ¬QD∗

x,yA(x, y),
8. ¬Q∗

x,yA(x, y) → QD∗
x,y¬A(x, y).

Theorem 3. None of the quantifier shifts from Definition 5 is derivable in LQ.

4 LK, LK+ and LK++

The inherent incompleteness of LQ even for trivial statements is a consequence
of the fact that Q represents a quantifier inference macro combining a strong and
a weak occurrence of quantifiers. (LQ′ where Q′ is a macro of only ∀ or only ∃
quantifiers is complete and admits cut-elimination.) The solution is to consider
sequent calculi with concepts of proof which are globally but not necessarily
locally sound. This means that all derived statements are true but that not
every subderivation is meaningful.

Definition 6 (side variable relation <ϕ,LK). Let ϕ be an LK-derivation.
We say b is a side variable of a in ϕ (written a <ϕ,LK b) if ϕ contains a strong
quantifier inference rule of the form

Γ → Δ,A(a, b, c) ∀r
Γ → Δ,∀xA(x, b, c)

or of the form

A(a, b, c), Γ → Δ ∃l∃xA(x, b, c), Γ → Δ

In addition to strong and weak quantifier inferences (in LK strong quantifier
inferences are ∀r and ∃l and weak quantifier inferences are ∀l and ∃r) we define
LK-suitable quantifier inferences.

Definition 7 (LK-suitable quantifier inferences). We say a quantifier
inference is suitable for a proof ϕ if either it is a weak quantifier inference,
or the following three conditions are satisfied:

– (substitutability) the eigenvariable does not appear in the conclusion of ϕ.
– (side variable condition) the relation <ϕ,LK is acyclic.
– (weak regularity) the eigenvariables of an inference with eigenvariable condi-

tions are not the eigenvariables of another inference with eigenvariable con-
ditions in ϕ.

Note on Globally Sound Analytic Calculi for Quantifier Macros 493

Definition 8 (LK+).We obtain LK+ from LK by replacing the usual eigen-
variable conditions by LK-suitable ones.

A further weakening of the eigenvariable conditions gives rise to the notion of
weak suitability.

Definition 9 (LK-weakly suitable quantifier inference). A quantifier
inference is weakly suitable for a proof ϕ if either it is a weak quantifier inference
or it satisfies substitutability, the side-variable condition, and:

– (very weak regularity) the eigenvariable of an inference with principal formula
A is different to the eigenvariable of an inference with principal formula A′

whenever A �= A′.

Definition 10 (LK++). We obtain LK++ from LK by replacing the usual
eigenvariable conditions by LK-weakly suitable ones.

Remark 1. Note that eigenvariables may occur outside of the scope of the
intended quantifier.

Theorem 4. If a sequent is LK++-derivable, then it is already LK-derivable.

Proof. Let ϕ be an LK++-proof. Replace every universal quantifier inference
unsound w.r.t. LK by an ⊃l inference:

Γ → Δ,A(a) ∀xA(x) → ∀xA(x) ⊃l
Γ,A(a) ⊃ ∀xA(x) → Δ,∀xA(x)

Similarly replace every existential quantifier inference unsound w.r.t. LK by an
⊃l inference

∃xA(x) → ∃xA(x) A(a), Γ → Δ ⊃l
Γ,∃xA(x),∃xA(x) ⊃ A(a) → Δ

By doing this, we obtain a proof of the desired sequent, together with formulae
of the form A(a) ⊃ ∀xA(x) or ∃xA(x) ⊃ A(a) on the left-hand side. Note that
the resulting derivation does not contain any inference based on eigenvariable
conditions. We can eliminate each of A(a) ⊃ ∀xA(x) or ∃xA(x) ⊃ A(a) on
the left-hand side by adding an existential quantifier inference and cutting with
formulae of the form

→ ∃y
(
A(y) ⊃ ∀xA(x)

)

or of the form
→ ∃y

(∃xA(x) ⊃ A(y)
)
,

both of which are easily derivable. Note that the existential quantifier inferences
can be carried out in a way that is permissible by LK because <ϕ,LK does not
loop.

Corollary 4. If a sequent is derivable in LK+, then it is already derivable in
LK.

494 M. Baaz and A. Lolic

Example 4. Consider the following locally unsound but globally sound derivation
ϕ in LK+ (and LK++):

A(a) → A(a) ∀r
A(a) → ∀yA(y) ⊃r→ A(a) ⊃ ∀yA(y) ∃r→ ∃x(A(x) ⊃ ∀yA(y))

As a is the only eigenvariable the side variable relation <ϕ,LK is empty.

It is essential that the order defined by the side variable relation does not loop.

Example 5. Let ϕ be the following cut-free derivation

A(a, b) → A(a, b) ∀r
A(a, b) → ∀yA(a, y) ∃r

A(a, b) → ∃x∀yA(x, y) ∃l∃yA(y, b) → ∃x∀yA(x, y) ∀l∀x∃yA(y, x) → ∃x∀yA(x, y)

This enforces the following side variable conditions, which loop:

a <ϕ,LK b b <ϕ,LK a.

Note that the other conditions for LK-suitable quantifier inferences, substi-
tutability and weak regularity, hold. However, the construction in the proof of
Theorem 4 is impossible as neither

∃x(∃yA(y, b) ⊃ A(y, b)), A(a, b) ⊃ ∀yA(a, y),Π → Γ

nor
∃yA(y, b) ⊃ A(a, b),∃x(A(a, x) ⊃ ∀yA(a, y),Π → Γ

are derivable in LK from

∃yA(y, b) ⊃ A(a, b), A(a, b) ⊃ ∀yA(a, y),Π → Γ.

The concept of LK++-proofs can be used to handle cut-free complete quantifier
macros as Q.

In [1] the focus has been on the strongly reduced complexity of cut-free LK+

and LK++ proofs (Theorem 2.6 and Corollary 2.7). The focus of this note is
to achieve cut-free completeness for sequent calculi where logical rules introduce
mixed blocks of strong and weak quantifiers.

Note on Globally Sound Analytic Calculi for Quantifier Macros 495

5 The Analytic Sequent Calculus LQ++

From the example in the Sect. 3 it becomes obvious that there will be no ana-
lytic calculus with local rules to represent any reasonable fragment of the full
logic with Q: the reason is that the inference rules for Q need eigenvariables in
both polarities. The solution is to keep global soundness but to give up local
soundness, as in [1]. To this aim, the eigenvariable conditions will be weakened.

Definition 11 (side variable relation <ϕ,LQ). Let ϕ be an LQ-derivation.
We say b is a side variable of a in ϕ (written a <ϕ,LQ b) if ϕ contains a strong
quantifier inference of the form

A(t, a), Γ → Δ
Ql

Qx,yA(x, y), Γ → Δ

and b occurs in t.

Definition 12 (LQ-weakly suitable quantifier inferences). A quantifier
inference is LQ-suitable for a proof ϕ if the following three conditions are satis-
fied:

– (substitutability) the eigenvariable does not appear in the conclusion of ϕ.
– (side variable condition) the relation <ϕ,LQ is acyclic.
– (very weak regularity) the eigenvariables of an inference with principal for-

mula A are not the eigenvariables of an inference in ϕ with another principal
formula A′.

Definition 13 (analytic sequent calculus LQ++). The analytic sequent cal-
culus LQ++ is LQ, except that we replace quantifier inferences with LQ-suitable
quantifier inferences.

Example 6. The sequent Qx,yA(x, y) → Qx,y(A(x, y) ∨ C) is LQ++-derivable.
Consider the derivation ϕ =

A(a, b) → A(a, b)
wr + ∨r

A(a, b) → A(a, b) ∨ C
Qr

A(a, b) → Qx,y(A(x, y) ∨ C)
Ql

Qx,yA(x, y) → Qx,y(A(x, y) ∨ C)

with b <ϕ,LQ a.

In contrast to LQ the usual quantifier shifts are derivable in LQ++.

Theorem 5. The quantifier shifts from Definition 5 are LQ++-derivable.

Proof. Due to space limitations we will only demonstrate the LQ++-derivations
of two quantifier shifts. All other derivations of quantifier shifts can be carried
out analogously.

The quantifier shift QD
x,y(A(x, y) ⊃ B) → Qx,yA(x, y) ⊃ B is derivable in LQ++.

Its derivation is ϕ =

496 M. Baaz and A. Lolic

A(a, b) → A(a, b)
wr

A(a, b) → B,A(a, b)
B → B wl

B,A(a, b) → B ⊃l
A(a, b) ⊃ B,A(a, b) → B

Ql
A(a, b) ⊃ B,Qx,yA(x, y) → B

QD
lQD

x,y(A(x, y) ⊃ B), Qx,yA(x, y) → B ⊃r
QD

x,y(A(x, y) ⊃ B) → Qx,yA(x, y) ⊃ B

with b <ϕ,LQ a.

The quantifier shift Qx,yA(x, y) ⊃ B → QD
x,y(A(x, y) ⊃ B) is derivable in LQ++.

Its derivation is ϕ =

A(a, b) → A(a, b)
Qr

A(a, b) → Qx,yA(x, y) B → B ⊃l
A(a, b), Qx,yA(x, y) ⊃ B → B ⊃r

Qx,yA(x, y) ⊃ B → A(a, b) ⊃ B
QD

r
Qx,yA(x, y) ⊃ B → QD

x,y(A(x, y) ⊃ B)

with b <ϕ,LQ a.

6 Cut-Elimination for LQ++

To show cut-elimination for LQ++ we will translate LQ++-derivations into cut-
free LK-derivations and vice versa.

Definition 14. Let SQ be an LQ-sequent. Then S∀∃ is the result by replacing
the quantifier macro Qx,y everywhere in SQ by ∀x∃y.

Let S∀∃ be an LK-sequent containing quantifier occurrences only in blocks of the
form ∀x∃y. Then SQ is the result by replacing ∀x∃y everywhere in S∀∃ by the
quantifier macro Qx,y.

Lemma 1. An LQ++-derivation ϕ of SQ can be effectively transformed into a
cut-free LK-derivation from atomic axioms of S∀∃.

Proof. By translating Q to ∀∃ we obtain an LK++-derivation which can be
transformed into an LK-derivation by Theorem 4. As LK admits cut-elimination
we obtain a cut-free LK-derivation. Compound axioms in LK can be replaced
by atomic ones.

Lemma 2. A cut-free LK-derivation from atomic axioms of a sequent S∀∃ con-
taining quantifiers only in the form of blocks ∀x∃y can be transformed into a
cut-free LQ++-derivation of SQ.

Proof. First we transform the LK-proof in the following way: whenever there
is an ∃l inference we immediately infer ∀l afterwards. This has no impact on

Note on Globally Sound Analytic Calculi for Quantifier Macros 497

the result nor on the proof being cut-free. For ∀r inferences with principal for-
mula ∀x∃yA(x, y) and eigenvariable a we determine all existential inferences
with principal formula ∃yA(a, y) and introduce ∀x∃yA(x, y) immediately after
these inferences (note that the original LK-derivation is regular). The resulting
derivation is an LQ++-derivation because the weak regularity holds, the eigen-
variables do not occur in the end-sequent and <ϕ,LQ does not loop as the order
on the inferences is respected.

Theorem 6. LQ++ is sound and admits effective cut-elimination.

Remark 2. In LK+ regularity is defined by using eigenvariables exclusively for
one inference, see [1]. Let LQ+ be the corresponding variant of LQ++. LQ+ is
however not a complete calculus, because the sequent

∀x(A(x, c1) ∨ A(x, c2)) → Qx,yA(x, y)

is not LQ+-derivable. However, it is LQ++-derivable:

A(a, c1) → A(a, c1)
Qr

A(a, c1) → Qx,yA(x, y)
A(a, c2) → A(a, c2)

Qr
A(a, c2) → Qx,yA(x, y) ∨l

A(a, c1) ∨ A(a, c2) → Qx,yA(x, y) ∀l∀x(A(x, c1) ∨ A(x, c2)) → Qx,yA(x, y)

7 Conclusion

It is conjectured that all mixed macros for connectives and quantifiers can be
analytically represented in the framework of globally sound but locally unsound
calculi. The problem is that the inferences of the defining formulae might arise
from a plethora of premises, contrary to the quantifier macro defining ∀∃. The
solution might be the use of elaborated eigenvariable orders which guarantee a
specific derivation of the macro.

References

1. Aguilera, J.P., Baaz, M.: Unsound inferences make proofs shorter. J. Symb. Log.
84(1), 102–122 (2019)

2. Gentzen., G.: Untersuchungen über das logische Schließen. Mathematische
Zeitschrift 39, 176–210, 405–431 (1934–1935)

3. Mac Lane, S.: Abgekürzte Beweise im Logikkalkül. Hubert, Columbus (1934)
4. Robinson, J.A.: A machine-oriented logic based on the resolution principle. J. ACM

(JACM) 12(1), 23–41 (1965)
5. Takeuti, G.: Proof Theory. Courier Dover Publications, Mineola (2013)

Closure Ordinals of the Two-Way Modal
μ-Calculus

Gian Carlo Milanese1(B) and Yde Venema2

1 University of Milano-Bicocca, Milan, Italy
giancarlo.milanese@gmail.com

2 Institute for Logic, Language and Computation, Universiteit van Amsterdam,
Amsterdam, The Netherlands

y.venema@uva.nl

https://staff.fnwi.uva.nl/y.venema/

Abstract. The closure ordinal of a μ-calculus formula ϕ(x) is the least
ordinal α, if it exists, such that, in any model, the least fixed point of ϕ(x)
can be computed in at most α many steps, by iteration of the meaning
function associated with ϕ(x), starting from the empty set. In this paper
we focus on closure ordinals of the two-way modal μ-calculus. Our main
technical contribution is the construction of a two-way formula ϕn with
closure ordinal ωn for an arbitrary n ∈ ω. Building on this construction,
as our main result we define a two-way formula ϕα with closure ordinal
α for an arbitrary α < ωω.

Keywords: Modal logic · Fixed points · Closure ordinals ·
Two-way μ-calculus

1 Introduction

The modal μ-calculus μML, introduced by Kozen [11] in the form known today,
is an extension of basic modal logic with explicit least- and greatest fixed point
operators. The addition of these operators significantly increases the expressive
power of the formalism, enabling it to deal with various forms of recursion, as
required by applications in for instance the area of program verification. In fact,
the modal μ-calculus was shown to be expressively complete with respect to
the bisimulation-invariant fragment of monadic second-order logic [10], and it
embeds many other logics such as pdl, ctl, and ctl∗. Despite this expressive
power, the modal μ-calculus has remarkably fine computational properties, such
as a quasi-polynomial model checking problem [3] and a satisfiability problem
that can be solved in exponential time [6].

In addition, the system admits a nice logical meta-theory: it has the finite
model property, uniform interpolation, and a decent model theory [5,8,12]. The
set of all valid μ-calculus formulas admits an elegant axiomatisation, which was
already introduced by Kozen in his original paper [11], and proved to be complete

c© Springer-Verlag GmbH Germany, part of Springer Nature 2019
R. Iemhoff et al. (Eds.): WoLLIC 2019, LNCS 11541, pp. 498–515, 2019.
https://doi.org/10.1007/978-3-662-59533-6_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-59533-6_30&domain=pdf
https://doi.org/10.1007/978-3-662-59533-6_30

Closure Ordinals of the Two-Way Modal μ-Calculus 499

some years later by Walukiewicz [15]. Recently, a cut-free proof system was
introduced by Afshari and Leigh [2].

Over the years, the modal μ-calculus has developed into the ‘canonical’ or
‘universal’ modal fixed point logic. This status motivates the full development
of the meta-logical theory of the logic μML, and of its variants such as the two-
way μ-calculus, which features both forward- and backward modalities, to be
interpreted by the corresponding directions of the model’s accessibility relation.

A relatively recent line of research on the modal μ-calculus concerns its clo-
sure ordinals. For an introduction to this notion, consider a formula ϕ(x) (with
only positive occurrences of the variable x) and a Kripke model S = (S,R, V). We
may define a monotone function ϕS

x : ℘(S) → ℘(S), which intuitively expresses
how in S the meaning of ϕ depends on the valuation of x. The formula μx.ϕ is
then interpreted in S as the least fixed point of this map ϕS

x – that is, as the least
subset L ⊆ S such that ϕS

x(L) = L – and the point is that this least fixed point
can be ‘computed’ by performing an iterative process involving the function ϕS

x.
Starting from the empty set, we define the following ordinal-indexed sequence
(ϕα

S
)α∈On of subsets of S:

ϕ0
S

:= ∅, ϕβ+1
S

:= ϕS

x(ϕβ
S
), ϕλ

S
:=

⋃

β<λ

ϕS

x(ϕβ
S
),

where λ denotes an arbitrary limit ordinal. By monotonicity of the function ϕS
x,

the sequence (ϕα
S
)α∈On converges: there must be a least ordinal α such that

ϕα
S

= ϕα+1
S

. The element ϕα
S

of the sequence then coincides with the least fixed
point of ϕS

x so that we say that the function ϕS
x converges to its least fixed point

in α many steps.
The closure ordinal of a formula ϕ(x) is the least ordinal α such that the

function ϕS
x converges to its least fixed point in at most α many steps across

every model S, if such an ordinal exists. In other words, we are interested in
the least number of steps that a least fixed point formula needs to converge to
its meaning in every model. Not every formula will have a closure ordinal; for
instance, let Sα = (Sα, >) be the structure where Sα is the set of all ordinals
smaller than α and the accessibility relation is the converse order relation on
these ordinals. It is not hard to see that on this model, the formula �x needs
exactly α steps to converge to its least fixed point. Clearly then, this formula
does not have a closure ordinal across all models.

Intuitively, the closure ordinal of a formula is some measure of its complexity.
For instance, a (basic) modal logic formula ϕ(x) has a finite closure ordinal if
and only if μx.ϕ is definable in (basic) modal logic [14]. Another interesting
example is obtained if we involve the first infinite ordinal ω: call a formula ϕ(x)
constructive in x it has a closure ordinal α ≤ ω. The name ‘constructive’ is taken
loosely here, motivated by the observation that since ϕω

S
=

⋃
n<ω ϕn

S
in every

model, a formula ϕ(x) is constructive iff for each model S and for each point s
in S we only need finitely many iterations of the map ϕS

x in order to find out
whether s satisfies the formula μx.ϕ or not.

500 G. C. Milanese and Y. Venema

Generally, there are many interesting questions to ask about closure ordinals,
and at this moment only few of these have been answered. In fact, it seems that
we can summarize our knowledge in one paragraph. Otto [14] proved that it
is decidable whether a modal μ-calculus formula can equivalently be expressed
in (basic) modal logic. As a corollary, we can also decide whether a formula of
modal logic has a finite closure ordinal. Czarnecki [4] showed how to construct a
formula ϕα with closure ordinal α for an arbitrary α < ω2. An interesting result
by Afshari and Leigh [1] confirms the intuition that closure ordinals are an
indication of the complexity of a formula: they proved that the closure ordinals
reached by formulas in the alternation-free fragment of the μ-calculus are all
smaller than the ordinal ω2. Gouveia and Santocanale [9] presented a formula
with closure ordinal ω1 and proved that closure ordinals are closed under ordinal
sum.

In this paper we contribute to the theory of closure ordinals by taking a look
at the two-way modal μ-calculus. After recalling the syntax and semantics of
the logic and providing some definitions concerning closure ordinals in Sect. 2,
in the following section we show how to define a formula ϕn with closure ordinal
ωn for every n ∈ ω (some of the technical proofs of this section are delayed to
the appendix of the paper). In Sect. 4 we build on this result by proving that
every ordinal smaller than ωω is a closure ordinal in the two-way setting. One
way to achieve this is via transferring a result by Gouveia and Santocanale [9] –
stating that the class of closure ordinals is closed under taking ordinal sum – to
the two-way setting. We also define, given a representation α = ωn · k1 + ωn−1 ·
k2 + . . . + ω · kn + kn+1 of an arbitrary ordinal α < ωω, an explicit formula ϕα

with closure ordinal α. We finish the paper with mentioning some questions for
further research.

Source. The results in this paper are taken from the MSc thesis [13], which was
written by the first author under the supervision of the second.

2 Preliminaries

Definition 1. The language μTML of the two-way modal μ-calculus is given by
the following grammar:

ϕ ::= ⊥ | p | ¬ϕ | ϕ ∨ ϕ | Fϕ | Pϕ | μx.ϕ

where p, x ∈ PROP and the formation of the formula μx.ϕ is subject to the con-
straint that the variable x is positive in ϕ, that is, every occurrence of x in ϕ is
under the scope of an even number of negations.

We can define 	, ∧ and the box operators by letting Gϕ := ¬F¬ϕ and Hϕ :=
¬P¬ϕ, as well as the greatest fixed point operator as νx.ϕ := ¬μx.¬ϕ(¬x). The
intended interpretation of a formula Fϕ is ‘ϕ is true at some (one-step) future
state’, while that of Pϕ is ‘ϕ is true at some (one-step) past state’.

Closure Ordinals of the Two-Way Modal μ-Calculus 501

Formulas of this language will be interpreted in two-way models. These can
be defined as Kripke models featuring a pair of accessibility relations that are
each other’s converse, where we recall that the converse of a relation R is the
relation R−1 := {(s, t) | (t, s) ∈ R}. It will be more convenient to simply identify
two-way models with standard Kripke models with one single relation, and make
sure that the diamonds F and P access this relation in its two different directions.

Definition 2. A Kripke model is a triple S = (S,R, V) where S, the domain or
underlying set, is a set of points or states, R is a binary relation on S, and V
is a valuation on S, that is, a function V : PROP → ℘(S).

Given a model S = (S,R, V), a propositional variable x and a subset X ⊆ S,
we define V [x �→ X] as the valuation given by V [x �→ X](p) = X if p = x,
and V [x �→ X](p) = V (p) otherwise. We denote the model (S,R, V [x �→ X]) by
S[x �→ X].

Given a subset S′ ⊆ S, the submodel of S induced by S′ is the model S′ =
(S′, R′, V ′), where R′ = R ∩ (S′ × S′) and V ′(p) = V (p) ∩ S′ for all p ∈ PROP.

We now inductively define the meaning of a formula ϕ in a model S as the
set of states where this formula is true, or satisfied. At the same time we define
the function ϕS

x, which intuitively expresses how in S the meaning of the formula
ϕ varies depending on the meaning of the variable x.

Definition 3. Given a μTML-formula ϕ and a model S = (S,R, V), we define the
meaning [[ϕ]]S of ϕ in S, together with the function ϕS

x : ℘(S) → ℘(S) mapping
a subset X ⊆ S to [[ϕ]]S[x�→X], by the following simultaneous induction:

[[⊥]]S = ∅, [[p]]S = V (p),
[[ϕ ∨ ψ]]S = [[ϕ]]S ∪ [[ψ]]S, [[¬ϕ]]S = S\[[ϕ]]S,
[[Fϕ]]S = {s ∈ S | R[s] ∩ [[ϕ]]S �= ∅}, [[Pϕ]]S = {s ∈ S | R−1[s] ∩ [[ϕ]]S �= ∅},
[[μx.ϕ]]S =

⋂{U ⊆ S | ϕS
x(U) ⊆ U},

where R[s] := {t ∈ S | (s, t) ∈ R} and similarly for R−1. For an element s ∈ S
we write S, s � ϕ if s ∈ [[ϕ]]S.

Let ϕ ∈ μTML be a formula in which the variable x occurs only positively
and let S be a model. By induction on ϕ one can prove that ϕS

x : ℘(S) →
℘(S) is a monotone operation. Consequently, by the Knaster-Tarski theorem
we obtain that [[μx.ϕ]]S is the least fixed point of ϕS

x, denoted by LFP.ϕS
x. As

we saw in the introduction, the meaning of μx.ϕ in a model S can also be
computed by performing an iteration of the function ϕS

x starting from the empty
set, resulting in the ordinal-indexed sequence (ϕα

S
)α∈On. When the model S is

clear from context we will write ϕα instead of ϕα
S
; we shall also exclusively take

x as the fixed point variable of the formulas that we are looking at, so that we
need not mention this explicitly in the sequel.

In this paper we are interested in the number of times we need to iterate the
function ϕα

S
before we reach its least fixed point.

502 G. C. Milanese and Y. Venema

Definition 4. Let ϕ(x) be a formula which is positive in x. Then for a Kripke
model S, we let γx(ϕ,S) denote the closure ordinal of ϕ in S with respect to x,
that is, the least ordinal α such that ϕα

S
= ϕα+1

S
.

The closure ordinal of ϕ with respect to the variable x is the least ordinal α
such that γx(ϕ,S) ≤ α for every model S, if it exists. If α is the closure ordinal
of some (two-way) formula, we say that α is a (two-way) closure ordinal.

When proving results about closure ordinals an equivalent characterisation,
given in Proposition 1, is often useful.

Proposition 1. An ordinal α is the closure ordinal of ϕ(x) if and only if (1)
γx(ϕ,S) ≤ α for every model S and (2) γx(ϕ,S) = α for some model S.

Proof. The only nontrivial observation in the proof concerns the case, in the
direction from left to right, where the closure ordinal α of ϕ is a limit ordinal.
In order to prove (2), let B be the set of ordinals β < α for which there is a
model Sβ with γx(ϕ,Sβ) = β. This set must be cofinal in α, and it is then easy
to show that if we take S to be the disjoint union of the collection {Sβ | β ∈ B},
we find γx(ϕ,S) = α as required.

Example 1. The closure ordinal of ϕ := (G⊥ ∨ Fx) is ω. It is not hard to prove
that γx(ϕ,S) ≤ ω for every model S, and that ϕ converges to its least fixed
point in exactly ω steps in the model S depicted in Fig. 1. Indeed, one can show
that ϕn = {m ∈ ω | m < n} for all n ∈ ω: the iteration of ϕ in S traverses
the ordinal ω by adding each finite ordinal to the iteration, one by one. After ω
many steps in the iteration we observe that ϕω =

⋃
n<ω ϕn = {0, 1, 2, . . .} = ω

and ϕω+1 = ϕS
x(ϕω) = ϕω, so that the iteration converges in exactly ω steps.

0 1 2 3

Fig. 1. Model where G⊥ ∨ Fx converges in ω many steps

3 Two-Way Formulas: Closure Ordinal ωn

In this section we define a two-way formula ϕn with closure ordinal ωn for an
arbitrary n ∈ ω. We first need to define colours, which are essentially conjunc-
tions of literals as specified in the next definition.

Definition 5. Fix a subset {qi | i ∈ ω} of propositional variables. For every 0 <
n < ω we define the colour cn as the conjunction of literals cn :=

∧
0<i<n ¬qi∧qn.

For example, c1 = q1 and c2 = ¬q1 ∧ q2. Clearly, ci ∧ cj ≡ ⊥ for every i �= j.
We now define, for all 0 < n < ω, a two-way formula ϕn.

Closure Ordinals of the Two-Way Modal μ-Calculus 503

0 c1

1
c1

2
c1

3

c2ω c1

ω + 1
c1

ω + 2
c1

ω + 3

c2ω · 2 c1

ω · 2 + 1
c1

ω · 2 + 2
c1

ω · 2 + 3

Fig. 2. Model corresponding to ω2

Definition 6. By induction on i ∈ ω we define the formulas π∞
i as follows:

π∞
0 := 	,

π∞
i+1 := νyi+1.(P (yi+1 ∧ ci+1) ∧ π∞

i).

For all n ∈ ω let ϕn be the formula

ϕn := G⊥ ∨ (c1 ∧ Fx) ∨
n∨

i=2

(ci ∧ π∞
i−1 ∧ F (νy.P (y ∧ x ∧ ci−1))).

Example 2. Consider the formula

ϕ2 = G⊥ ∨ (c1 ∧ Fx) ∨ (c2 ∧ π∞
1 ∧ F (νy.P (y ∧ x ∧ c1)))

and the model S depicted in Fig. 2, consisting of ω many copies of ω, thus
intuitively corresponding to the ordinal ω2.

The formula ϕ2 crucially involves the formula νy.P (y∧x∧c1), which expresses
the existence of an infinite R−1-path of points where x and c1 are always true
starting from the R−1-next state, and which allows the iteration to move from
a copy of ω to the next, as we shall now see. The iteration of ϕ2 in this model
starts similarly as the one in Example 1, by including the state 0 through the
disjunct G⊥ and then adding, one by one, each state labelled with a finite ordinal
through the disjunct (c1∧Fx). After ω many steps in the iteration we have ϕω =
{0, 1, 2, . . .} = ω, so that every state labelled with a finite ordinal is inside the
iteration. Now it holds that S[x �→ ϕω], ω � (c2∧π∞

1 ∧F (νy.P (y∧x∧c1))), so that
ϕω+1 = [[ϕ]]S[x�→ϕω] = ω∪{ω}: the state ω is added to the iteration. The iteration
continues through the disjunct (c1 ∧ Fx), with ϕω+n = ω ∪ {ω, . . . , ω + (n − 1)},
arriving at ϕω·2 = ω ∪ {ω, ω + 1, ω + 2, . . .}, at which point the state ω · 2 will
satisfy (c2 ∧ π∞

1 ∧ F (νy.P (y ∧ x ∧ c1))), and so on. The iteration will progress in
a similar way, traversing all the copies of ω and converging in exactly ω2 steps.

504 G. C. Milanese and Y. Venema

The following example concerns the formulas of shape π∞
i that appear as sub-

formulas of ϕn. These formulas will make sure that the models of ϕn have a par-
ticular grid-like shape: we will need that whenever a state s in a model makes
ϕn true and has colour ci, then this state is the starting point of an infinite
R−1-path of points where ci−1 is always true, and from every point on this path
an infinite R−1-path starts of points where ci−2 is always true, and so on.

Example 3. Consider for instance

π∞
3 = νy3.(P (y3 ∧ c3) ∧ νy2.(P (y2 ∧ c2) ∧ νy1.(P (y1 ∧ c1) ∧))).

This formula expresses the existence of an infinite R−1-path t0t1t2 . . . such that
(i) c3 is true at every ti with i > 0; (ii) every ti makes νy2.(P (y2∧c2)∧νy1.P (y1∧
c1)) true, so from each ti there is an infinite R−1-path u0u1u2 . . . where u0 = ti
and c2 is true at every uj with j > 0; (iii) every uj makes νy1.P (y1 ∧ c1) true,
so from each uj there exists a R−1-path v0v1 . . ., with v0 = uj , such that c1 is
true at vk for every k > 0. For example, the point 0 in the model of Fig. 3 makes
π∞

3 true (as does every state of the form ω2 · n for n ∈ ω).

0 c1 c1 c1

c2ω c1 c1 c1

c2ω · 2 c1 c1 c1

c3

ω2

c3

ω2 · 2

c1 c1 c1

c2 c1 c1 c1

c2 c1 c1 c1

Fig. 3. Model corresponding to ω3

Example 4. As a further example, consider the formula

ϕ3 = ϕ2 ∨ (c3 ∧ π∞
2 ∧ F (νy.P (y ∧ x ∧ c2)))

and the model pictured in Fig. 3, which consists of ω many copies of the model
from Fig. 2, each attached to a state of the infinite path 0R−1ω2R−1ω2 · 2

Closure Ordinals of the Two-Way Modal μ-Calculus 505

The iteration of ϕ3 in this model starts similarly as the one in Example 2, but
after ω2 many steps, when the first copy of ω2 is inside the approximating set
ϕω2

, the state ω2 will satisfy the disjunct (c3 ∧ π∞
2 ∧ F (νy.P (y ∧ x ∧ c2))) of

ϕ3, so that the iteration will move to the second copy of ω2 and continue in an
analogous way, with convergence in exactly ω3 steps.

The last example also suggests a recipe for constructing a model where the
formula ϕn converges in exactly ωn steps. For n = 4, we could take an infinite
R−1-chain of c4-states, where to each such state is attached a copy of ω3 (that
is, a copy of the model of Fig. 3): the disjunct (c4 ∧ π∞

3 ∧ F (νy.P (y ∧ x ∧ c3)))
of the formula ϕ4 would allow the iteration to move between the copies of ω3,
exactly as the disjunct (c3 ∧π∞

2 ∧F (νy.P (y∧x∧c2))) of ϕ3 allowed the iteration
to move from a copy of ω2 to the next. For n = 5 we could consider an infinite
R−1-chain of c5-states, where to each such state is attached a copy of the model
we have just described, and so on.

Lemma 1. Let 0 < n < ω be a finite ordinal. Then there is a model S where
γx(ϕn,S) = ωn.

Up to this point we have only focused on one of the two conditions that the
ordinal ωn must satisfy in order to qualify as the closure ordinal of ϕn, namely
the one concerning convergence in exactly ωn steps in some model. It is less
intuitive to see why ωn should be an upper bound for the number of steps in
the iteration of ϕn in an arbitrary model. Indeed, the previous models present
a particular grid-like structure, which allows the iteration to progress in a very
controlled way: if a state is added to the iteration at some step α, then the chain
of c1-states attached to it is included in the iteration in at most ω more steps,
the chain of c2-states attached to it is included in the iteration in at most ω2

more steps, and the chain of c3-states attached to it is included in the iteration
in at most ω3 more steps (in case these chains exist). This is formulated in a
more general way in the next lemma, which states that if we have an infinite
R−1-path of ci-states presenting the desired grid-like structure (that is, each
satisfying π∞

i−1) and the first state of this path belongs to the approximating set
ϕα

n, then all the states of the path will be inside the iteration after at most ωi

more steps. Put differently, if a state t0 in a model satisfies π∞
i and is in the

approximating set ϕα
n, then all the states forming the R−1-path that witnesses

the truth of π∞
i at t0 will belong to ϕα+ωi

n .

Lemma 2. Let S = (S,R, V) be a model and let n ∈ ω. For 1 ≤ i ≤ n, let
t0t1t2 . . . be an infinite R−1-path such that

S, t0 � π∞
i−1 and, for all j > 0,S, tj � ci ∧ π∞

i−1.

Then, for any ordinal α: if t0 ∈ ϕα
n then tj ∈ ϕα+ωi−1·j+1

n for all j ∈ ω.

In order to make sure that something similar also happens in an arbitrary
model, the presence in ϕn of the subformulas π∞

i+1’s from Definition 6 is neces-
sary: by the definition of ϕn, if a state s in a model S satisfies (ϕn ∧ ci ∧ F),

506 G. C. Milanese and Y. Venema

then it must also satisfy π∞
i−1, so that the model S will present the desired grid-

like structure. This fact and Lemma 2 are essential for proving that indeed ϕn

converges to its least fixed point in at most ωn steps in every model.

Lemma 3. For an arbitrary model S and 0 < n < ω: γx(ϕn,S) ≤ ωn.

By Proposition 1, and the Lemmas 1 and 3, the following is immediate.

Theorem 1. For all 0 < n < ω, the two-way closure ordinal of ϕn(x) is ωn.

The proofs of all the statements of this section can be found in the appendix.

4 Two-Way Formulas: Closure Ordinals Below ωω

This section is devoted to the main result of our paper, stating that every ordinal
below ωω is a closure ordinal in the two-way setting. In the next subsection we
transfer a result by Gouveia and Santocanale [9] to the two-way setting. That
is, we show that for two-way formulas ϕ0(x) and ϕ1(x) with closure ordinals
α0 and α1, respectively, we can define a two-way formula ψ(x) with closure
ordinal α0 + α1. From this observation and Theorem1, our main result follows,
since every ordinal α below ωω can be written as a finite sum of ordinals of
the form ωn. In the following subsection we improve on this result by defining,
for an arbitrary ordinal α < ωω, an explicit two-way formula ϕα with closure
ordinal α.

4.1 Two-Way Formulas: Sum of Ordinals

In the introduction we already mentioned that Gouveia and Santocanale showed
the class of closure ordinals to be closed under taking ordinal sums [9]. We will
now see that their result also holds in the two-way setting.

Theorem 2. There is an effective construction transforming a pair of two-way
formulas ϕ0(x) and ϕ1(x) into a formula ψ such that, if ϕ0(x) and ϕ1(x) have
closure ordinals α0 and α1, respectively, then ψ(x) has closure ordinal α0 + α1.

Our proof follows the approach from [9], but we provide some proof details
here in order to keep our presentation self-contained, and because we can make
some simplifications in the two-way setting. We confine ourselves to a proof
sketch, focusing on intuitions rather than on technicalities. One concept we will
need is that of a strong closure ordinal.

Definition 7. An ordinal α is a strong closure ordinal for a (two-way) μ-
calculus formula ϕ(x) if γ(ϕ,S) ≤ α for all models S, while there is a model
S = (S,R, V) such that

S = [[μx.ϕ]]S = ϕα
S

and ϕα
S

�= ϕβ
S

for every β < α.

Proposition 2. If α is the two-way closure ordinal of some formula ϕ(x), then
it is a strong closure ordinal for the formula ϕ̂(x) := (μx.ϕ) → ϕ(x ∧ μx.ϕ).

Closure Ordinals of the Two-Way Modal μ-Calculus 507

Proof. As in [9] the key observation is that in any model S = (S,R, V) we have

ϕ̂γ
S

= (S \ LFP.ϕS

x) ∪ ϕγ
S
,

for any γ ≥ 1—this claim can be proved by a straightforward transfinite
induction. Consequently, for γ = α we obtain ϕ̂α

S
= (S \ LFP.ϕS

x) ∪ ϕα
S

=
(S \ LFP.ϕS

x) ∪ LFP.ϕS
x = S.

We now turn to the proof of Theorem2. Throughout this subsection we let
ϕ0(x) and ϕ1(x) be two-way formulas with closure ordinals α0 and α1, respec-
tively. Our aim is to define a two-way formula ψ(x) with closure ordinal α0 +α1.
Because of Proposition 2 we may without loss of generality assume that α0 is a
strong closure ordinal for ϕ0.

The idea underlying the definition of ψ(x) is that in any model S, in order to
calculate the least fixed point of ψ(x), one may first focus on ϕ0 and then move
on to ϕ1. More precisely, with each model S = (S,R, V) we will associate two
submodels S0 and S1 such that

γ(ψ,S) ≤ γ(ϕ0,S0) + γ(ϕ1,S1). (1)

This implies that ψ has a closure ordinal β indeed, and that β ≤ α0 + α1. To
prove that β ≥ α0 + α1 we will employ a special model S such that, for each i,
Si is a model witnessing that αi is a strong closure ordinal for ϕi.

For the details of the construction of the submodels S0 and S1, note that the
formula ψ will use one fresh variable p (so that in particular, p occurs neither
in ϕ0 nor in ϕ1), and write PROPp = PROP ∪ {p}. Now, given a PROPp-model
S = (S,R, V), we define S0 = S \ V (p) and S1 = V (p), and for i = 0, 1 let Si be
the submodel of S induced by the set Si (and with Vi restricted to the set PROP).

Syntactically, we need the following definition.

Definition 8. Let p /∈ PROP be a fresh variable and set p0 := ¬p and p1 := p.
For i ∈ {0, 1} we define the restriction of ϕ to pi as follows:

tri(y) := pi ∧ y tri(ψ0 ∧ ψ1) := tri(ψ0) ∧ tri(ψ1)
tri(¬y) := pi ∧ ¬y tri(ψ0 ∨ ψ1) := tri(ψ0) ∨ tri(ψ1)
tri(⊥) := ⊥ tri(Fψ) := pi ∧ F (pi ∧ tri(ψ))
tri() := pi tri(Gψ) := pi ∧ G(pi → tri(ψ))
tri(μz.ψ) := μz.tri(ψ) tri(Pψ) := pi ∧ P (pi ∧ tri(ψ))
tri(νz.ψ) := νz.tri(ψ) tri(Hψ) := pi ∧ H(pi → tri(ψ))

We need the following properties of these restriction formulas.

Proposition 3. Let ϕ(x) be a formula in the two-way μ-calculus and let S =
(S,R, V) be an arbitrary model. Then for i = 0, 1 we have

1. [[tri(ϕ)]]S = [[ϕ]]Si

2. with x free in ϕ, (tri(ϕ))α
S

= ϕα
Si

, for every ordinal α.

508 G. C. Milanese and Y. Venema

We are now ready for the definition of the formula ψ(x). Consider the fol-
lowing formulas (which are somewhat simpler than the corresponding one-way
formulas of [9]):

ψ0 := ¬p ∧ tr0(ϕ0)(x)
ψ1 := p ∧ tr1(ϕ1)(x) ∧ G(¬p → x)
ψ(x) := ψ0(x) ∨ ψ1(x).
To compute the least fixed point of the formula ψ(x) on an arbitrary model

S, first consider its disjunct ψ0(x) = ¬p ∧ tr0(ϕ0)(x). By Proposition 3 we may
think of the computation of its least fixed point as taking place in the ¬p-part
S0 of S, parallel to that of μx.ϕ0 in S0, and so this computation finishes after
γ(ϕ0,S0) steps. Similarly, the iterative process approximating the least fixed
point of the formula ψ′

1 := p ∧ tr0(ϕ1)(x) can be fully executed in the p-part S1

of S, and this computation would finish after γ(ϕ1,S1) steps. The formula ψ1(x),
however, has an additional conjunct, viz., the formula G(¬p → x); this ensures
that a point in S1 will only be included in an approximating set ψα+1 if each
of its successors in S0 has been included in the set ψα. As a consequence, the
computation of the S1-part of the least fixed point of ψ(x) need not be (fully)
operational before the computation of the S0-part is completed. Nevertheless,
once the latter computation has terminated indeed, the conjunct G(¬p → x)
evaluates to true in every state in S1, and so from that moment on at most
γ(ϕ1,S1) steps are needed to finish the computation of [[μx.ψ]]S. This finishes a
proof sketch of the statement (1).

It remains to provide a model S where the closure ordinal of ψ(x) is actually
identical to α0 + α1. For this purpose, consider two models S0 and S1 such that
γ(ϕi,Si) = αi for i = 0, 1. Additionally, we require that [[μx.ϕ0]]S0 = S0—such
a model exists by our assumption that α0 is a strong closure ordinal for ϕ0.
Now take the disjoint union of S0 and S1, add an arrow from every state of S1

to every state of S0, and set V (p) := S1. Call the resulting model S; it is easy
to see that this definition does not cause notational confusion, since the models
S0 and S1 are identical to the submodels of S induced by the sets S0 = [[¬p]]S

and S1 = [[p]]S, respectively. The crux of this construction is that in the model
S, because every state s in S1 has the full set S0 among its successors, and we
need exactly α0 steps to get all S0-points in the least fixed point of ψ, we can
only start adding S1-states to the least fixed point of ψ(x) after we have added
all S0-states, that is, at stage α0 + 1. It is then not hard to see that another
α1 steps are needed to include all S1-states, so that all in all we need exactly
α0 + α1 steps for ψ(x) to converge. This shows that the closure ordinal of the
formula ψ(x) is α0 + α1 indeed.

4.2 An Explicit Formula for Every Ordinal Below ωω

In this section we shall provide, for every ordinal α < ωω, an explicit two-way
formula ϕα with closure ordinal α.

In the case α is finite, it is not hard to see that n is the closure ordinal of
ϕn := (Gx ∧ Gn⊥) for every n ∈ ω, so that in the sequel we confine attention to

Closure Ordinals of the Two-Way Modal μ-Calculus 509

the infinite case. Recall that every ordinal α with ω ≤ α < ωω can be written in
a unique normal form

α = ωn · k1 + ωn−1 · k2 + . . . + ω · kn + kn+1 (2)

for some finite ordinals n, k1, . . . , kn+1 with n, k1 > 0. We may then use the
Theorems 1 and 2 to construct, for every such ordinal α, an explicit two-way
formula taking α as its closure ordinal.

Alternatively, in Definition 11 below we provide a different two-way formula
ϕα with closure ordinal α; this definition is directly based on the normal form
(2). In order to achieve this, we need to define a second set of colours.

Definition 9. Fix a subset {pi | i ∈ ω} of propositional variables that is disjoint
from the set {qi | i ∈ ω} from Definition 5. For every 0 < n < ω we define the
colour fn as the conjunction of literals fn :=

∧
0<i<n ¬pi ∧ pn.

Definition 10. For every i, k ∈ ω we define a formula π∞
i,k inductively on i as

follows:

π∞
0,k := fk

π∞
i+1,k := νyi+1.(P (yi+1 ∧ ci+1 ∧ fk ∧ Gfk) ∧ π∞

i).

We finally state the definition of the formula ϕα.

Definition 11. For n, k ∈ ω define the formulas

ϕ(n,k) := (Fx ∧ c1 ∧ fk ∧ Gfk)∨
n∨

i=2

(ci ∧ fk ∧ Gfk ∧ π∞
i−1,k ∧ F (νy.fk ∧ P (y ∧ x ∧ Gfk ∧ ci−1))),

χk := (Gx ∧ fk+1 ∧ Gfk).

Now let, for n > 0, α = ωn ·k1 +ωn−1 ·k2 + . . .+ω ·kn +kn+1. For all 0 ≤ m ≤ n

define k(−→m) :=
m∑

i=0

ki, where we let k0 := 0. The formula ϕα is defined by letting

ψ :=
kn+1−1∨

i=0

(Gx ∧
i∧

j=0

Gjfk(−→n)+1 ∧ Gi+1fk(−→n)),

ϕα := G⊥ ∨
k(−→n)−1∨

k=1

χk ∨
n−1∨
m=0

(
k(

−−−→
m+1)∨

k=k(−→m)+1

ϕ(n−m,k)

)
∨ ψ.

Example 5. Consider the formulas

ϕ(2,i) := (Fx ∧ c1 ∧ fi ∧ Gfi)∨
(c2 ∧ fi ∧ Gfi ∧ π∞

1,i ∧ F (νy.fi ∧ P (y ∧ x ∧ Gfi ∧ c1))),

ϕω2·2 := G⊥ ∨ (Gx ∧ f2 ∧ Gf1) ∨ ϕ(2,1) ∨ ϕ(2,2)

510 G. C. Milanese and Y. Venema

0 c1 c1

c2 c1 c1

c2 c1 c1

0 c1 c1

c2 c1 c1

c2 c1 c1

f1 f2

Fig. 4. Model corresponding to ω2 · 2

and a model S consisting of two submodels S1 and S2, both copies of the model
of Fig. 2, such that from the point corresponding to 0 in S2 there is an arrow
to every state of S1, and moreover S1 = [[f1]]S1 and S2 = [[f2]]S2 , as shown in
Fig. 4. The colours f1 and f2 work similarly as the fuses used by Czarnecki in [4]:
these force the iteration of ϕω2·2 to first traverse the f1-copy S1 of ω2 through
the disjuncts G⊥ and ϕ(2,1), then move to the state 0 of the f2-copy S2 of ω2

through the disjunct (Gx ∧ f2 ∧ Gf1), and finally traverse all S2 through the
disjunct ϕ(2,2).

Theorem 3 below states that the two-way formula ϕα has closure ordinal α
indeed. Due to space limitations, we have to omit the rather tedious proof; the
interested reader can find the details in [13].

Theorem 3. For every ordinal α with ω ≤ α < ωω, the two-way closure ordinal
of ϕα is α.

5 Further Research

The research regarding closure ordinals of the μ-calculus has barely scratched
the surface, and many questions remain open. We point out some possible future
research lines.

Generally, we would like to understand better which ordinals feature as clo-
sure ordinals, and which ones don’t. In particular, is there a two-way formula
with closure ordinal at least ωω? Is there a standard (i.e., ‘one-way’) formula
with a countable closure ordinal α at least ω2? The approach taken here does
not seem to work in the one-way setting—we refer to [13] for the details.

Another research direction involves decidability results. Given a formula
ϕ(x), is it decidable whether it has a closure ordinal, and can this be read off

Closure Ordinals of the Two-Way Modal μ-Calculus 511

from its syntactic shape? Given an ordinal α, is it decidable whether a formula
has closure ordinal α?

A more specific question concerns the number of proposition letters that is
needed to characterize closure ordinals. In our approach we need an infinite set
of atomic propositions to capture all ordinals below ωω. It is an interesting
question to see whether this can be done with a finite set as well. We conjecture
that this is indeed the case, by replacing the colors and fuses of Definition 11 by
suitably chosen (basic) two-way formulas.1

Gouveia and Santocanale proved that closure ordinals are closed under ordi-
nal sum [9] and we have transferred this result to the two-way setting. Is the class
of closure ordinals closed under other ordinal operations as well, such as multi-
plication? Conversely, one may ask whether the formulas ϕ∨ψ,ϕ∧ψ,ϕ[ψ/x], . . .
have a closure ordinal whenever ϕ(x) and ψ(x) do.2

Finally, we mentioned the property of constructivity in the introduction. An
interesting research direction involves the relationship between this property and
that of continuity, where a formula ϕ(x) is said to be (Scott) continuous in the
variable x if, for an arbitrary model S: S, s � ϕ iff S[x �→ V (p) ∩ F], s � ϕ, for
some finite subset F ⊆ S. In particular, the second author [7,8] has formulated
the question whether for every formula ϕ(x) that is constructive in x one may
find some formula ψ(x) that is continuous in x, and equivalent to ϕ(x) ‘modulo
an application of the least fixed point operator’ (i.e., such that μx.ϕ ≡ μx.ψ).
Some evidence supporting a positive answer can be found in [8,13].

A Proof of the Main Result in Section 3

The statement of Theorem 1 from Sect. 3 is a direct consequence of the following
lemmas.

Lemma 1. Let 0 < n < ω be a finite ordinal. Then there is a model S where
γx(ϕn,S) = ωn.

Proof. For the rest of the proof we adopt the following notation: since every
ordinal α < ωn can be written as ωn−1 · k1 + . . . + ω · kn−1 + kn, we also denote
α as (k1, . . . , kn). From now on, if we write α = (k1, . . . , kn) we mean that
α = ωn−1 · k1 + . . . + ω · kn−1 + kn. Also, if a tuple (k1, . . . , kn) is of the form
(k1, . . . , ki, 0, . . . , 0), we mean that kj = 0 for i + 1 ≤ j ≤ n.
Fix n > 0 and let ϕ := ϕn as an abbreviation. We define S = (S,R, V) to be the
model where:

– S := ωn = {(k1, . . . , kn) | kj ∈ ω};
– R :=

⋃
1≤i≤n

{((k1, . . . , ki + 1, 0, . . . , 0), (k1, . . . , ki, 0, . . . , 0)) | kj ∈ ω};

– for 1 ≤ i ≤ n, V (qi) := {(k1, . . . , kn−i+1 + 1, 0, . . . , 0) | kj ∈ ω}.

1 This suggestion was raised by one of the referees.
2 One of the reviewers pointed out that the formulas p ∧ �(¬p ∧ x) and ¬p ∧ �(p ∧ x)
both have closure ordinals, but their disjunction, behaving similarly to the formula
�x, does not.

512 G. C. Milanese and Y. Venema

Note that R[(0, . . . , 0)] = ∅ and that (0, . . . , 0) falsifies qi for every 1 ≤ i ≤ n.
Before proving the key claim we make an observation about notation. Note

that an ordinal β < ωn can both be seen as an element β ∈ S = ωn of the model
and as a subset β = {γ | γ < β} ⊆ S = ωn. To avoid confusion, until the end of
the proof we write β when we consider it as an element of the domain, and Sβ

when we consider it as a subset of the domain (Sβ = β holds in any case).

Claim. For every α < ωn, ϕα = Sα.

Proof of Claim. The proof goes by induction on α. The case for α = 0 is imme-
diate. If α is a limit ordinal, then ϕα =

⋃
β<α ϕβ =IH

⋃
β<α Sβ = Sα.

Now suppose that α = β + 1. We want to show that ϕβ+1 = Sβ+1. We have
that ϕβ+1 = ϕS

x(ϕβ) =IH ϕS
x(Sβ): we show

ϕS

x(Sβ) = Sβ+1. (3)

For the ⊇ inclusion of (3) it suffices to show that S[x �→ Sβ], β � ϕ, since
Sβ+1 = Sβ ∪ {β} and Sβ = ϕβ ⊆ ϕβ+1 = ϕS

x(ϕβ). If β = 0 = (0, . . . , 0) we are
done. If β = (k1, . . . , kn + 1), then β ∈ V (q1) and (k1, . . . , kn) ∈ Sβ ∩ R[β], so
S[x �→ Sβ], β � c1 ∧ Fx and β ∈ ϕS

x(Sβ).
Otherwise let β = (k1, . . . , ki + 1, 0, . . . , 0) for some 1 ≤ i < n, so that

β ∈ V (qn−i+1). Note that

(k1, . . . , ki, k, 0, . . . , 0) ∈ Sβ for all k ∈ ω,

(k1, . . . , ki, 0, 0, . . . , 0) ∈ R[β] and
(k1, . . . , ki, k, 0, . . . , 0) ∈ R[(k1, . . . , ki, k + 1, 0, . . . , 0)] ∩ V (qn−i) for all k > 0.

By construction of the model β � π∞
n−i also holds: then S[x �→ Sβ], β � cn−i+1 ∧

π∞
n−i ∧ F (νy.P (x ∧ y ∧ cn−i)), so β ∈ ϕS

x(Sβ).
Now we move to the ⊆ inclusion of (3). Let γ ∈ ϕS

x(Sβ). We want to show
that γ ∈ Sβ+1. Since S[x �→ Sβ], γ � ϕ holds, we proceed by case distinction as to
which disjunct of ϕ is satisfied by γ. If γ � G⊥ then γ = 0 ∈ Sβ+1. If γ � c1∧Fx,
then γ ∈ V (q1), so that γ = (k1, . . . , kn + 1) and γ′ = (k1, . . . , kn) ∈ R[γ] ∩ Sβ :
as γ′ ∈ Sβ , then γ = γ′ + 1 ∈ Sβ+1.

Now suppose γ � ci ∧ π∞
i−1 ∧ F (νy.P (y ∧ x ∧ ci−1)) for some 2 ≤ i ≤ n. Then

γ ∈ V (qi), so γ = (k1, . . . , kn−i+1 + 1, 0, . . . , 0). For j ∈ ω let

δj := (k1, . . . , kn−i+1, j, 0, . . . , 0).

By construction δ0 ∈ R[γ] and δj ∈ R[δj+1] for all j ≥ 0. Since S[x �→ Sβ], γ �
ci ∧ π∞

i−1 ∧ F (νy.P (y ∧ x ∧ ci−1)) then δj ∈ Sβ for all j > 0. Hence

β > (k1, . . . , kn−i+1, j, 0, . . . , 0) for all j > 0,

implying β ≥ (k1, . . . , kn−i+1 + 1, 0, . . . , 0) = γ, so γ ∈ Sβ+1. �
Now that we have the claim, it follows that there is a γ ∈ ϕωn\ϕβ for each
β < ωn.

Closure Ordinals of the Two-Way Modal μ-Calculus 513

Proposition 4. For all m,n ∈ ω, if m ≥ n, then π∞
m |= π∞

n . Moreover, if S is
a model, S, s � π∞

m for some state s, and t0t1 . . . is an R−1-path witnessing the
truth of π∞

m at s, then tj � π∞
m for all j ∈ ω.

Lemma 2. Let S = (S,R, V) be a model and let n ∈ ω. For 1 ≤ i ≤ n, let
t0t1t2 . . . be an infinite R−1-path such that

S, t0 � π∞
i−1 and, for all j > 0,S, tj � ci ∧ π∞

i−1.

Then, for any ordinal α: if t0 ∈ ϕα
n then tj ∈ ϕα+ωi−1·j+1

n for all j ∈ ω.

Proof. We prove the statement by induction on 1 ≤ i ≤ n.
As the base case take i = 1, so that by assumption we have an infinite

R−1-path t0t1t2 . . . such that S, tj � c1 for all j > 0. Let t0 ∈ ϕα
n. We want to

show that, for all j ∈ ω, tj ∈ ϕα+j+1
n : we prove this by induction on j ∈ ω.

If j = 0, then t0 ∈ ϕα
n ⊆ ϕα+1

n . Next, inductively assume that tj ∈ ϕα+j+1
n :

then, since tj ∈ R[tj+1], it follows that S[x �→ ϕα+j+1
n], tj+1 � (c1 ∧ Fx), so

tj+1 ∈ ϕ
α+(j+1)+1
n .

For the inductive step assume that the statement holds for i. We prove it for
i+1, where i < n. Suppose then that t0t1t2 . . . is an infinite R−1-path such that
t0 � π∞

i and for all j > 0, tj � ci+1 ∧ π∞
i . Let t0 ∈ ϕα

n. We want to show that

for every j ∈ ω, tj ∈ ϕα+ωi·j+1
n .

The proof of this last statement goes by induction on j ∈ ω. The base case with
j = 0 follows immediately, as by assumption t0 ∈ ϕα

n.
Now suppose that tj ∈ ϕα+ωi·j+1

n : we show that tj+1 ∈ ϕ
α+ωi·(j+1)+1
n . By

assumption tj ∈ R[tj+1] and tj � π∞
i , which in particular means that there

is an infinite R−1-path u0u1 . . . (with u0 = tj) such that, for all k > 0, uk �
ci. But then this path satisfies the conditions of the inductive hypothesis: by
Proposition 4, since u0 � π∞

i , then u0 � π∞
i−1, and for every k > 0, uk � ci∧π∞

i−1.
Then, by inductive hypothesis, since u0 = tj ∈ ϕα+ωi·j+1

n it follows that, for
every k ∈ ω, uk ∈ ϕα+ωi·j+1+ωi−1·k+1

n . Since for all k ∈ ω it holds that

ωi · j + 1 + ωi−1 · k + 1 < ωi · j + 1 + ωi (as ωi−1 · k + 1 < ωi for i > 0)

= ωi · j + ωi (1 + ωi = ωi for i > 0)

= ωi · (j + 1)

then also

α + ωi · j + 1 + ωi−1 · k + 1 < α + ωi · (j + 1).

It follows that uk ∈ ϕ
α+ωi·(j+1)
n for all k ∈ ω, so that

S[x �→ ϕα+ωi·(j+1)
n], tj+1 � ci+1 ∧ π∞

i ∧ F (νy.P (x ∧ y ∧ ci)).

We conclude that tj+1 ∈ ϕ
α+ωi·(j+1)+1
n as desired.

514 G. C. Milanese and Y. Venema

Lemma 3. For an arbitrary model S and 0 < n < ω: γx(ϕn,S) ≤ ωn.

Proof. It is sufficient to prove that ϕωn+1
n ⊆ ϕωn

n for every model S. Let s ∈
ϕωn+1

n , that is, S[x �→ ϕωn

n], s � ϕn. We proceed by case distinction as to which
disjunct of ϕn is satisfied by s to prove that s ∈ ϕωn

n . If s � G⊥ then s ∈
(ϕn)Sx(∅) ⊆ ϕωn

n , while if s � c1 ∧ Fx, then there is a t ∈ R[s] such that t ∈ ϕα
n

for some α < ωn, so that s ∈ ϕα+1
n ⊆ ϕωn

n .
Now suppose s � ci ∧ π∞

i−1 ∧ F (νy.P (y ∧ x ∧ ci−1)) for some 2 ≤ i ≤ n.
Then in particular there is a point t ∈ R[s] and a R−1-path t0t1 . . . such that:
(i) t ∈ R[t0], (ii) for all j ∈ ω, tj ∈ ϕωn

n and tj � ci−1. In particular, t0 ∈ ϕα
n for

some α < ωn. Observe that ϕn ∧ ci−1 ∧ F	 |= π∞
i−2: this implies that tj � π∞

i−2

for all j ∈ ω, since tj ∈ ϕωn

n , tj � ci−1 and R[tj] �= ∅. This means that we can
apply Lemma 2 and it follows that tj ∈ ϕα+ωi−2·j+1

n ⊆ ϕα+ωi−1

n for all j ∈ ω.
Hence S[x �→ ϕα+ωi−1

], s � ϕn and s ∈ ϕα+ωi−1+1
n ⊆ ϕωn

n (since i ≤ n and
α < ωn imply α + ωi−1 + 1 < ωn).

References

1. Afshari, B., Leigh, G.E.: On closure ordinals for the modal μ-calculus. In: Computer
Science Logic 2013 (CSL 2013). Leibniz International Proceedings in Informatics
(LIPIcs), vol. 23, pp. 30–44. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik
(2013). https://doi.org/10.4230/LIPIcs.CSL.2013.30. http://drops.dagstuhl.de/
opus/volltexte/2013/4188

2. Afshari, B., Leigh, G.: Cut-free completeness for modal μ-calculus. In: Proceedings
of the 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS
2017), pp. 1–12 (2017). https://doi.org/10.1109/LICS.2017.8005088

3. Calude, C., Jain, S., Khoussainov, B., Li, W., Stephan, F.: Deciding parity games
in quasipolynomial time. In: Proceedings of the 49th Annual ACM SIGACT Sym-
posium on Theory of Computing, STOC 2017, pp. 252–263 (2017). https://doi.
org/10.1145/3055399.3055409

4. Czarnecki, M.: How fast can the fixpoints in modal μ-calculus be reached? In: Fixed
Points in Computer Science 2010 (FICS 2010), pp. 35–39, August 2010. https://
hal.archives-ouvertes.fr/hal-00512377/document#page=36

5. D’Agostino, G., Hollenberg, M.: Logical questions concerning the μ-calculus. J.
Symb. Log. 65, 310–332 (2000)

6. Emerson, E.A., Jutla, C.S.: The complexity of tree automata and logics of programs
(extended abstract). In: Proceedings of the 29th Annual Symposium on Founda-
tions of Computer Science, pp. 328–337. IEEE Computer Society Press (1988).
https://doi.org/10.1109/SFCS.1988.21949

7. Fontaine, G.: Continuous fragment of the μ-calculus. In: Kaminski, M., Martini,
S. (eds.) CSL 2008. LNCS, vol. 5213, pp. 139–153. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-87531-4 12

8. Fontaine, G., Venema, Y.: Some model theory for the modal μ-calculus: syntactic
characterisations of semantic properties. Log. Methods Comput. Sci. 14(1) (2018)

https://doi.org/10.4230/LIPIcs.CSL.2013.30
http://drops.dagstuhl.de/opus/volltexte/2013/4188
http://drops.dagstuhl.de/opus/volltexte/2013/4188
https://doi.org/10.1109/LICS.2017.8005088
https://doi.org/10.1145/3055399.3055409
https://doi.org/10.1145/3055399.3055409
https://hal.archives-ouvertes.fr/hal-00512377/document#page=36
https://hal.archives-ouvertes.fr/hal-00512377/document#page=36
https://doi.org/10.1109/SFCS.1988.21949
https://doi.org/10.1007/978-3-540-87531-4_12

Closure Ordinals of the Two-Way Modal μ-Calculus 515

9. Gouveia, M.J., Santocanale, L.: ℵ1 and the modal μ-calculus. In: 26th EACSL
Annual Conference on Computer Science Logic (CSL 2017). Leibniz International
Proceedings in Informatics (LIPIcs), vol. 82, pp. 38:1–38:16. Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik (2017). https://doi.org/10.4230/LIPIcs.CSL.
2017.38. http://drops.dagstuhl.de/opus/volltexte/2017/7692. An updated version
can be found at https://arxiv.org/abs/1704.03772v2

10. Janin, D., Walukiewicz, I.: On the expressive completeness of the propositional μ-
calculus with respect to monadic second order logic. In: Montanari, U., Sassone, V.
(eds.) CONCUR 1996. LNCS, vol. 1119, pp. 263–277. Springer, Heidelberg (1996).
https://doi.org/10.1007/3-540-61604-7 60

11. Kozen, D.: Results on the propositional μ-calculus. Theor. Comput. Sci. 27, 333–
354 (1983)

12. Kozen, D.: A finite model theorem for the propositional μ-calculus. Stud. Log. 47,
233–241 (1988)

13. Milanese, G.: An exploration of closure ordinals in the modal μ-calculus. Master’s
thesis, Institute for Logic, Language and Computation, University of Amsterdam
(2018)

14. Otto, M.: Eliminating recursion in the µ-calculus. In: Meinel, C., Tison, S. (eds.)
STACS 1999. LNCS, vol. 1563, pp. 531–540. Springer, Heidelberg (1999). https://
doi.org/10.1007/3-540-49116-3 50

15. Walukiewicz, I.: Completeness of Kozen’s axiomatisation of the propositional μ-
calculus. Inf. Comput. 157(1), 142–182 (2000). http://www.sciencedirect.com/
science/article/pii/S0890540199928365

https://doi.org/10.4230/LIPIcs.CSL.2017.38
https://doi.org/10.4230/LIPIcs.CSL.2017.38
http://drops.dagstuhl.de/opus/volltexte/2017/7692
https://arxiv.org/abs/1704.03772v2
https://doi.org/10.1007/3-540-61604-7_60
https://doi.org/10.1007/3-540-49116-3_50
https://doi.org/10.1007/3-540-49116-3_50
http://www.sciencedirect.com/science/article/pii/S0890540199928365
http://www.sciencedirect.com/science/article/pii/S0890540199928365

SIXTEEN3 in Light of Routley Stars

Hitoshi Omori(B) and Daniel Skurt(B)

Department of Philosophy I, Ruhr-University Bochum, Bochum, Germany
{Hitoshi.Omori,Daniel.Skurt}@rub.de

Abstract. For one of the most well-known many-valued logics FDE,
there are several semantics, including the star semantics by Richard
Routley and Valerie Routley, the two-valued relational semantics by
Michael Dunn and the four-valued semantics by Nuel Belnap. The last
semantics inspired Yaroslav Shramko and Heinrich Wansing to introduce
the trilattice SIXTEEN3. In this article, we offer two alternative seman-
tical presentations for SIXTEEN3, by applying the Routleys’ semantics
and the Dunn semantics. Based on our new semantics, we discuss related
systems with less truth values, as well as the relation to FDE-based
modal logics.

Keywords: FDE · SIXTEEN3 · Routley star · Dunn semantics

1 Introduction

1.1 Background (I): From Belnap to Shramko-Wansing

Ever since Jan �Lukasiewicz and Emil Post started to explore more than two
truth values independently in the 1920s, infinitely many kinds of many-valued
logics have been introduced. The one that plays the crucial role in this paper is
the four-valued logic of Belnap and Dunn, also known as FDE.

The four-valued truth tables for FDE were known since the 1950s, when
Timothy Smiley pointed this out to Nuel Belnap, but the four values did not
have an intuitive reading. It was Dunn who explicitly connected these four values
to the classical truth values, true and false (see [6]). This then inspired Belnap
to write the two influential papers [2,3]. In particular, the four values are now
seen as the power set P({1, 0}) of the set of the classical truth-values {1, 0}, and
receive the following intuitive reading:

The work reported in this paper started during DS’s visit to Japan which was supported
by JSPS KAKENHI Grant Number JP18K12183 granted to HO. HO was supported
by a Sofja Kovalevskaja Award of the Alexander von Humboldt-Foundation, funded by
the German Ministry for Education and Research. The work of DS has been carried out
as part of the research project “FDE-based modal logics”, supported by the Deutsche
Forschungsgemeinschaft, DFG, grant WA 936/13-1. We would like to thank Sergei
Odintsov, Yaroslav Shramko, Heinrich Wansing, Zach Weber and the referees for helpful
discussions and/or comments on an earlier draft.

c© Springer-Verlag GmbH Germany, part of Springer Nature 2019
R. Iemhoff et al. (Eds.): WoLLIC 2019, LNCS 11541, pp. 516–532, 2019.
https://doi.org/10.1007/978-3-662-59533-6_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-59533-6_31&domain=pdf
http://orcid.org/0000-0003-0392-0550
https://doi.org/10.1007/978-3-662-59533-6_31

SIXTEEN3 in Light of Routley Stars 517

{0} = told false, {} = told neither true nor false,
{1} = told true, {1, 0} = told both true and false.

The above reading also inspired another perspective on the four-values,
namely the bilattice of the power set of {1, 0} (cf. [1,8]). In particular, two
orders measure the degree of truth and the amount of information.

In [21–23] Shramko and Wansing then took this idea of Belnap even a step fur-
ther. By arguing that the computer metaphor of Belnap can be transformed into
considering a computer network communicating with each other about proposi-
tions, Shramko and Wansing developed the idea that such computers should be
able to handle information that can be, for example, overcomplete and at the
same time just true or false. In this way, they introduced SIXTEEN3 which
takes the power set of P({1, 0}) to generate a “useful sixteen-valued logic” which
is meant to represent “how a computer network should think”. This is thus a
generalization of Belnap’s “useful four-valued logic” which is meant to repre-
sent “how a computer should think”. Moreover, SIXTEEN3 is now a trilattice,
rather than a bilattice, where an independent degree of falsity can be defined as
an additional order.

Due to the interesting motivation, SIXTEEN3 has now collected a lot of
the attention it deserves. Just to mention some relevant work, Odintsov in [12],
added some new algebraic insights and marked an important step on the prob-
lem of axiomatization. Heinrich Wansing considers sequent calculi related to
SIXTEEN3 in [25], and an analytic tableaux calculus is devised by Muskens
and Wintein in [10]. Finally, the property of interpolation is studied again by
Muskens and Wintein in [11].

1.2 Background (II): Routley and Dunn Semantics for FDE

As it is well-known, the four-valued interpretation of FDE is not the only seman-
tics.1 For the purpose of this paper, we focus on the following two: Routleys’
star semantics and Dunn’s relational semantics. Let us briefly highlight the key
ideas of the two semantics which are both two-valued semantics.2

Routleys’ star semantics, devised by Routley and Routley in [20], is a two-
valued world semantics, as in the well-known Kripke semantics, but includes the
so-called star operation which is an involutive operation on worlds. This star
operation is used to interpret the negation. For conjunction and disjunction, it
remains to be completely classical.

Dunn’s relational semantics (or Dunn semantics in short) is yet another two-
valued semantics which is also free of worlds. The crucial idea is to use a relation
rather than a function in interpreting the language. In particular, formulas may
be related to both true and false, or neither true nor false. As a consequence,
truth and falsity conditions are both necessary, though in the case of FDE, those
conditions remain completely classical.

1 For a recent overview, see for example [17].
2 The formal details will be given in the next section, so we are justified to be brief.

518 H. Omori and D. Skurt

Both approaches have virtues of their own. On the one hand, Routleys’
semantics is rather successful when applied to relevant logics. On the other
hand, Dunn gives wonderful insights by giving an intuitive reading of truth val-
ues, as we already observed above through Belnap’s semantics. In any case, the
important thing here is that there are interesting two-valued semantics for FDE.

1.3 Aim

Based on these backgrounds, the motivation for this paper is rather simple: can
we also devise two-valued semantics for logics related to SIXTEEN3? To the
best of our knowledge, this seems to be not addressed yet in the literature.
Therefore, we aim at marking the first step towards filling that gap.

On a broader scope, reducing the number of truth-values of a given system
can be traced back to Suszko (cf. [24]), who believed that any multiplication
of truth-values is a “mad idea”. We do not wish to conflate our approach of
reducing the number of truth-values with Suszko’s critique about many-valued
logics in general, but rather during the course of this article we will present an
alternative strategy to obtain that goal.3

The paper is organized as follows. In Sects. 2 and 3 we will briefly recapitulate
the basics of FDE and SIXTEEN3. These are followed by Sects. 4 and 5 in
which we introduce the new two-valued semantics for SIXTEEN3. Based on
the new semantics, we will reflect upon the implications in Sect. 6. Finally, we
conclude the paper in Sect. 7 by summarizing our main observations and discuss
some possible topics for further research.

2 Two-Valued Semantics for FDE

Our propositional languages consist of a finite set C of propositional connectives
and a countable set Prop of propositional variables which we refer to as LC. Fur-
thermore, we denote by FormC the set of formulas defined as usual in LC. In this
paper, we always assume that {∼,∧,∨} ⊆ C and just include the propositional
connective(s) not from {∼,∧,∨} in the subscript of LC. Moreover, we denote a
formula of LC by A, B, C, etc. and a set of formulas of LC by Γ , Δ, Σ, etc.

First, we review Routleys’ star semantics.

Definition 1. A Routley interpretation for L is a structure 〈W, ∗, v〉 where
W 	= ∅ is a set of worlds, ∗ : W −→ W is a function with w∗∗ = w, and
v : W × Prop −→ {0, 1}. The function v is extended to I : W × Form −→ {0, 1}
as follows:

I(w, p) = v(w, p), I(w,A ∧ B) = 1 iff I(w,A) = 1 and I(w,B) = 1,
I(w,∼A) = 1 iff I(w∗, A)	=1, I(w,A ∨ B) = 1 iff I(w,A) = 1 or I(w,B) = 1.

3 For a mechanical procedure to reduce the number of truth values in FDE and its
expansions, see [16].

SIXTEEN3 in Light of Routley Stars 519

Definition 2. For all Γ ∪ {A} ⊆ Form, Γ |=∗ A iff for all Routley interpreta-
tions 〈W, ∗, v〉 and for all w ∈ W , if I(w,B) = 1 for all B ∈ Γ then I(w,A) = 1.

Second, we review Dunn’s relational semantics.

Definition 3. A Dunn-interpretation for L is a relation, r, between proposi-
tional variables and the values 1 and 0, namely r ⊆ Prop × {1, 0}. Given an
interpretation, r, this is extended to a relation between all formulas and truth
values by the following clauses:

∼Ar1 iff Ar0, ∼Ar0 iff Ar1,
A ∧ Br1 iff Ar1 and Br1, A ∧ Br0 iff Ar0 or Br0,
A ∨ Br1 iff Ar1 or Br1, A ∨ Br0 iff Ar0 and Br0.

Definition 4. For all Γ ∪{A} ⊆ Form, Γ |=r A iff for all Dunn-interpretations
r, if Br1 for all B ∈ Γ then Ar1.

Then, the following result is rather well-known.

Fact 5. For all Γ ∪ {A} ⊆ Form, Γ |=r A iff Γ |=∗ A.

A proof can be found, e.g., in [18, 8.7.17, 8.7.18]. In fact, something stronger can
be established by a careful examination of Graham Priest’s proof. To this end,
we introduce another semantic consequence relation.

Definition 6. For all Γ ∪ {A} ⊆ Form, Γ |=∗,2 A iff for all Routley inter-
pretations 〈W, ∗, v〉 such that the number of worlds is 2 and for all w ∈ W , if
I(w,B)=1 for all B ∈ Γ then I(w,A) = 1.

Then, we obtain the following.

Lemma 1. For all Γ ∪ {A} ⊆ Form, Γ |=r A iff Γ |=∗,2 A.

Proof. For the proof of the left-to-right direction, Priest’s construction works
perfectly well with the two-world case. For the other direction, Priest’s con-
struction already establishes the desired result. ��

As an immediate corollary, we obtain the following result, which can be
regarded as logical folkore.

Theorem 1. For all Γ ∪ {A} ⊆ Form, Γ |=∗ A iff Γ |=∗,2 A. That is, two
worlds suffice for the extensional fragment.

Remark 1. In view of the above result, we may conclude that there is a clear
understanding of the star in the context of the above language. The star world
is simply the other world. Of course, this only works with the simple language,
not in the language with the intensional conditional. In the latter case, the star
operation is elegantly characterized by Restall (cf. [19]).

520 H. Omori and D. Skurt

3 Basics of SIXTEEN3

3.1 Language

There are several languages discussed in relation to the trilattice SIXTEEN3.
Following the convention specified in the previous section, we will mainly deal
with L∼f

and L∼f ,∧f ,∨f
. The latter is referred to as Ltf in the literature, but for

the sake of presentation, we will use the above notation with the hope of being
more accessible to wider audience.

Note too that we are omitting the subscript t for connectives. We fully under-
stand that this goes very much against the spirit of the trilattice in general,
but for the sake of presentation, and ease of comparison between FDE and
SIXTEEN3, we keep the basic connectives free of subscripts.

3.2 Semantics

Let 16 be the set of generalized truth values which consists of the following 16
values:

1. ∅ = { }
2. N = {{ }}
3. F = {{0}}
4. T = {{1}}
5. B = {{0, 1}}
6. NF = {{ }, {0}}
7. NT = {{ }, {1}}
8. NB = {{ }, {0, 1}}

9. FT = {{0}, {1}}
10. FB = {{0}, {0, 1}}
11. TB = {{1}, {0, 1}}
12. NFT = {{ }, {0}, {1}}
13. NFB = {{ }, {0}, {0, 1}}
14. NTB = {{ }, {1}, {0, 1}}
15. FTB = {{0}, {1}, {0, 1}}
16. A = {{ }, {0}, {1}, {0, 1}}

Note here that we changed the notation slightly from the original presentation.
More specifically, we replaced T and F by 1 and 0. Moreover, the naming strategy
for the truth values is very simple. Recall the following representation:

1. n={ }, for neither true nor false
2. f={0}, for false only

3. t={1}, for true only
4. b={0, 1}, for both true and false

Then, except for the value A, the inclusion of capital letters N, F, T and B
corresponds to the fact that n, f, t and b are members of the generalized truth
value. And, for A, it stands for all values n, f, t and b are members of the set.

Now we can define three different orderings on 16.

Definition 7. For every x, y ∈ 16:

1. x ≤i y iff x ⊆ y;
2. x ≤t y iff x1 ⊆ y1 and y−1 ⊆ x−1,

where x1 := {z ∈ x : 1 ∈ z} and x−1 := {z ∈ x : 1 	∈ z};
3. x ≤f y iff x0 ⊆ y0 and y−0 ⊆ x−0,

where x0 := {z ∈ x : 0 ∈ z} and x−0 := {z ∈ x : 0 	∈ z}.
We can then easily see that meets and joins exist in 16 for all three partial orders.
Therefore, we use � and � with the appropriate subscripts for these operations

SIXTEEN3 in Light of Routley Stars 521

under the corresponding orders. Then, the algebraic structure of 16 comes out
as the trilattice SIXTEEN3 = 〈16,�i,�i,�t,�t,�f ,�f 〉.

We can associate with each of the lattice orders of SIXTEEN3 a unary
operation which is an involution of order two with respect to this ordering and
preserves the other orders. The unary operations −t, −f , and −i corresponding
to the orders ≤t, ≤f and ≤i, respectively, are defined as follows.

x −tx −fx −ix x −tx −fx −ix x −tx −fx −ix x −tx −fx −ix

∅ ∅ ∅ A B F T FTB NB FT FT FT NFB FTB NFT F
N T F NFT NF TB NF NF FB FB NT FB NTB NFT FTB T
F B N NFB NT NT FB NT TB NF TB TB FTB NFB NTB B
T N B NTB FT NB NB NB NFT NTB NFB N A A A ∅

We are now ready to assign generalized truth values of 16 to our language.
More specifically, given a 16-valuation v : Prop → 16, we extend the valuation
to Form∼f ,∧f ,∨f

as follows.

Definition 8. For every A,B ∈ Form∼f ,∧f ,∨f
:

1. v(A ∧ B) = v(A) �t v(B)
2. v(A ∨ B) = v(A) �t v(B)
3. v(∼A) = −tv(A)

4. v(A ∧f B) = v(A) �f v(B)
5. v(A ∨f B) = v(A) �f v(B)
6. v(∼fA) = −fv(A)

Based on this, we can finally define the semantic consequence relations.

Definition 9. For every A,B ∈ Form∼f ,∧f ,∨f
:

• A |=t B iff for all 16-valuations v: v(A) ≤t v(B);
• A |=f B iff for all 16-valuations v: v(A) ≤f v(B).

Remark 2. We are not using the information order at all to interpret our lan-
guage, but we introduced them above to emphasize that 16 is a trilattice. We
will come back to the unary connective interpreted via −i towards the end of
this paper, but only briefly, in the conclusion section. For discussions on the
language including informational connectives, see e.g. [14].

3.3 Proof Systems

We now turn to the proof system. Note that we will only offer the proof system
for the language L∼f

, and just remark on the case of full language, namely the
language L∼f ,∧f ,∨f

.

Definition 10. � is a binary consequence relation on the language L∼f
satis-

fying the following axioms and rules.

522 H. Omori and D. Skurt

A ∧ B � A (at1)
A ∧ B � B (at2)
A � A ∨ B (at3)
B � A ∨ B (at4)
A ∧ (B ∨ C) � (A ∧ B) ∨ C (at5)
A � ∼∼A (at6)
∼∼A � A (at7)
A � ∼f∼fA (at8)
∼f∼fA � A (at9)
∼f∼A � ∼∼fA (at10)

A � B B � C

A � C
(rt1)

A � B A � C

A � B ∧ C
(rt2)

A � C B � C

A ∨ B � C
(rt3)

A � B

∼B � ∼A
(rt4)

A � B

∼fA � ∼fB
(rt5)

Remark 3. Note that the binary consequence relation characterized in terms of
the axioms from (at1) to (at7), as well as the rules from (r1) to (rt4) is sound
and complete with respect to FDE for the language L.

Finally, the following result was established by Shramko and Wansing in [22,
Theorems 4.10, 4.13].

Theorem 2 (Shramko & Wansing). For all A,B ∈ Form∼f
, A � B iff

A |=t B.

Remark 4. The problem of axiomatizing |=t for the language L∼f ,∧f ,∨f
was left

open in [22], but Odintsov in [12] marked the first step by showing that |=t is
axiomatizable and that the consequence relation can be characterized by the
intersection of two related consequence relations. Odintsov also introduced an
expansion of L∼f ,∧f ,∨f

by adding an implication, and presented an axiomatiza-
tion of |=t in the expanded language. A definite solution to the original problem
was given in [14] by Odintsov and Wansing by making use of algebraic results
related to SIXTEEN3.

4 Alternative Semantics for SIXTEEN3 (I)

The first alternative semantics will have two star operations. More specifically, we
take the star semantics for FDE, and add one more star to capture the additional
connective ∼f . Our strategy here is to prove the soundness and completeness
with respect to the proof system given by Shramko and Wansing to establish
the equivalence between the original semantics and the two-star semantics.

4.1 Semantics

Definition 11. A two-star interpretation for L∼f
is at tuple M =

〈W, g, ∗1, ∗2, v〉 where W 	= ∅ is a set of worlds, g ∈ W ; ∗i : W −→ W is a
function with w∗i∗i = w and w∗i∗j = w∗j∗i ; v : W ×Prop → {0, 1}. The function
v is extended to I : W × Form → {0, 1} by the following condition:

SIXTEEN3 in Light of Routley Stars 523

I(w, p) = v(w, p),
I(w,∼A)=1 iff I(w∗1 , A)	=1, I(w,A ∧ B)=1 iff I(w,A)=1 and I(w,B)=1,
I(w,∼fA)=1 iff I(w∗2 , A)=1, I(w,A ∨ B)=1 iff I(w,A)=1 or I(w,B)=1.

Remark 5. It should be clear, from the definition, that the fragment with only
the “truth connectives” will coincide with FDE. Note also that the truth con-
dition for ∼f does not look like a truth condition for negation. We will reflect
upon this connective in Sect. 6.

We then define two kinds of semantic consequence relation.

Definition 12. Let Γ ∪ {A} be set of sentences in L∼f
. Then,

• Γ |=∗,∀ A iff for all two-star interpretations 〈W, g, ∗1, ∗2, v〉 and for all w ∈
W , I(w,A) = 1 if I(w,B) = 1 for all B ∈ Γ .

• Γ |=∗,g A iff for all two-star interpretations 〈W, g, ∗1, ∗2, v〉, I(g,A) = 1 if
I(g,B) = 1 for all B ∈ Γ .

Remark 6. As we will establish below, these two consequence relations are equiv-
alent as in some (not all!) modal logics (recall Kripke’s seminal paper and the
more recent text books). However, it will be useful to have both for our purposes.

4.2 Equivalence of Three Semantic Consequence Relations

We will now establish the equivalence of |=t, |=∗,∀ and |=∗,g via the proof system.
More specifically, in view of Theorem 2 of Shramko and Wansing, we prove the
following three statements: for all A,B ∈ Form∼f

,

if A � B then A |=∗,∀ B, if A |=∗,∀ B then A |=∗,g B, if A |=∗,g B then A � B.

Note here that the second item is obvious. Therefore, we prove the first and the
third item. The first item, which is soundness, is quite straightforward.

Proposition 1. For all A,B ∈ Form∼f
, if A � B then A |=∗,∀ B.

Proof. We only note that we need |=∗,∀, instead of |=∗,g, to establish the sound-
ness, especially for the rules (rt4) and (rt5). ��

For the purpose of establishing the third item, we construct a suitable canon-
ical model. To this end, we introduce some standard notions.

Definition 13. Let Γ be a set of sentences. Then, Γ is

• a theory iff Γ is closed under � and ∧, i.e., for all A,B, if A ∈ Γ and A � B
then B ∈ Γ , and if A ∈ Γ and B ∈ Γ , then A ∧ B ∈ Γ ;

• prime iff for all A,B, if A ∨ B ∈ Γ then A ∈ Γ or B ∈ Γ .

The following fact is well known, due to Lindenbaum.

Lemma 2 (Lindenbaum). For all A,B, if A 	� B then there is a prime theory
Γ such that A ∈ Γ and B 	∈ Γ .

524 H. Omori and D. Skurt

We will also make use of the following lemma which is already established
by Shramko and Wansing in [22, Lemma 4.11].

Lemma 3 (Shramko & Wansing). Let Γ be a theory, and let Γ ∗ be defined
as follows:

Γ ∗ := {A : ∼fA ∈ Γ}
Then Γ ∗ is a theory, ∼fA ∈ Γ ∗ iff A ∈ Γ , and Γ ∗ is prime iff Γ is prime.

We can then prove completeness as well.

Theorem 3. For all A,B ∈ Form∼f
, if A |=∗,g B then A � B.

Proof. The details can be found in AppendixA. ��
As a corollary, we obtain the following desired result:

Corollary 1. For all A,B ∈ Form∼f
, A |=t B iff A |=∗,g B iff A |=∗,∀ B.

We will now turn to two observations related to this result.

4.3 Two Basic Observations

First, we observe that we only need four worlds for two-star interpretations to
characterize the syntactic consequence relation �. To this end, we introduce one
more semantic consequence relation.

Definition 14. For all A,B ∈ Form∼f
, A |=∗,g,4 B iff for all two-star inter-

pretations 〈W, g, ∗1, ∗2, v〉 such that the number of worlds is 4, I(g,B) = 1 if
I(g,A) = 1.

Then, we obtain in analogy to Theorem1 the following result:

Proposition 2. For all A,B ∈ Form∼f
, A |=∗,g B iff A |=∗,g,4 B.

Proof. The left-to-right direction is obvious. For the other direction, it suffices
to prove that A � B if A |=∗,g,4 B in view of Proposition 1. But this is already
established by the proof for Theorem3. ��
Remark 7. We have a relatively clear formal understanding of star operations.
However, as in the case for FDE, we do not know what they mean. Only that
each star corresponds to a different “mate” relation, cf. [18, p. 151].

The second observation, which relies on the first observation, is that |=t

is equivalent to yet another semantic consequence relation defined in terms of
preservation of designated values. More precisely, we introduce the following
consequence relation.

Definition 15. For all A,B ∈ Form∼f
, A |=16 B iff for all 16-valuations v:

v(B) ∈ D if v(A) ∈ D, where D := {x ∈ 16 : T ∈ x}.

SIXTEEN3 in Light of Routley Stars 525

Then, by unpacking the definition of |=∗,g,4, we obtain the following result:

Proposition 3. For all A,B ∈ Form∼f
, A |=t B iff A |=16 B.

Remark 8. The reason of introducing |=∗,g is to establish this connection to the
16-valued semantic consequence relation defined via designated values.

Note also that the result of the proposition above was already discussed in
Lemma 4.3 in [22], for the language L. In Lemma 4.9 of the same paper an
additional restriction for the consequence relation is discussed for the language
L∼f ,∧f ,∨f

In the language L∼f
, however, we do not need such additional restric-

tion.

5 Alternative Semantics for SIXTEEN3 (II)

The second alternative semantics will have only one star operation, but will be
based on four-valued worlds, in analogy to the relational semantics of FDE.
Therefore, the new semantics presented in this section can be seen as a hybrid
of Routleys’ semantics and Dunn semantics. The equivalence of the semantics
will be established through the semantics given in the previous section.

5.1 Semantics

Definition 16. A one-star interpretation for L∼f
is a tuple M = 〈W, g, ∗, r〉

where W is a non-empty set of worlds, g ∈ W ; ∗ : W −→ W is a function
with w∗∗ = w; and rw ⊆ Prop × {0, 1} for all w ∈ W . Given an interpretation,
rw, this is extended to a relation between all formulas and truth values by the
following clauses:

∼Arw1 iff Arw∗0, ∼Arw0 iff Arw∗1,
A ∧ Brw1 iff Arw1 and Brw1, A ∧ Brw0 iff Arw0 or Brw0,
A ∨ Brw1 iff Arw1 or Brw1, A ∨ Brw0 iff Arw0 and Brw0,
∼fArw1 iff Arw∗1, ∼fArw0 iff Arw∗0.

Remark 9. As one can see from the above definition, the one-star interpretation
is a hybrid of Routleys’ semantics, for the use of the star operation, and Dunn
semantics, for the use of the relation instead of the function.

Definition 17. For all A,B ∈ Form∼f
, A |=r B iff for all one-star interpreta-

tions M, Brg1 if Arg1.

5.2 Equivalence of Two Semantics

Proposition 4. For all A,B ∈ Form∼f
, if A |=∗,g B then A |=r B.

Proof. The details are spelled out in AppendixB. ��
Proposition 5. For all A,B ∈ Form∼f

, if A |=r B then A |=∗,g B.

Proof. The details are spelled out in AppendixC. ��
Remark 10. As in the case for FDE it is possible that the number of worlds for
|=∗,g can be reduce to 2. This can be seen by careful examination of the proofs
of Lemma 1 and Proposition 5.

526 H. Omori and D. Skurt

6 Reflections on ∼f

The operator ∼f can be regarded as the negation with respect to the falsity
order of the trilattice SIXTEEN3. However, in the context of this article, in
which we focus solely on truth-order, it can be observed that ∼f is more than
just a simple negation.

6.1 ∼f in Special Cases

The introduction of SIXTEEN3 inspired Dmitri Zaitsev to consider some vari-
ants with less truth values in [26]. In brief, Zaitsev suggests to apply the power
set of a three-element set, rather than the four-element set used by Shramko and
Wansing. Due to the limitation of space, we cannot discuss the details of how
our two-valued semantics will capture one of Zaitsev’s systems.

However, since it is rather natural to consider some variants with less truth
values, we briefly consider three special cases of two-star interpretations, and
connect the resulting system to those known in the literature.

First, as expected, if we require w∗2 = w for all w ∈ W , then we simply
obtain an expansion of FDE with ∼fA � A and A � ∼fA. Second, if we require
w∗1 = w∗2 for all w ∈ W , then we obtain an expansion of FDE with ∼f as
conflation.4 Since classical negation is definable in terms of de Morgan negation
and conflation, and conflation is definable in terms of de Morgan negation and
classical negation, the resulting system is equivalent to the expansion of FDE
by classical negation, called BD+ in [5]. Finally, if we require w∗1 = w for all
w ∈ W , then ∼ is a classical negation, and ∼f is again conflation. Since de
Morgan negation is definable in terms of classical negation and conflation, the
resulting system is again equivalent to BD+.

6.2 ∼f as a Modal Operator

In SIXTEEN3, the operator ∼f serves as a negation over the falsity ordering.
In what follows, we will, however, show that truth condition for ∼f , understood
as in Sect. 4, suffice to interpret ∼f as a modal operator satisfying the K-axiom,
as well as the rule of necessitation. Since our language is rather weak, we add
→ which satisfies the following truth condition in a two-star interpretation.

I(w,A → B) = 1 iff I(w,A) 	= 1 or I(w,B) = 1.

In fact, this connective is the implication introduced by Odintsov in [12] as →t.
It is now possible to prove the following proposition.

Proposition 6. For all A,B ∈ Form∼f ,→,

1. |=∗,∀ ∼f (A → B) → (∼fA → ∼fB),

4 Given a Dunn interpretation, conflation, written as −, is characterized by the fol-
lowing truth and falsity conditions: −Ar1 iff not Ar0, and −Ar0 iff not Ar1.

SIXTEEN3 in Light of Routley Stars 527

2.
|=∗,∀ A

|=∗,∀ ∼fA
and

|=∗,∀ ∼fA

|=∗,∀ A
.

Remark 11. The T and S4 axiom are not valid in this semantics. Furthermore,
the equivalence ∼∼f∼A ↔ ∼fA shows that ∼f is self-dual and hence also
contains properties of a possibility operator. The negative modality ∼ behaves
in a similar way.5

Given that ∼f is not defined via an accessibility relation over worlds, but
rather a function that maps worlds to worlds, one may doubt that ∼f counts
as modal operator at all. However, as described by van Benthem in [4], it is
possible to model propositional modal logic with a family of functions F , rather
than accessibility relations. A model M = 〈W,F , V 〉 is then a tuple in the usual
manner, with the following clause for the necessity operator: I(w,�A) = 1 iff
I(f(w), A) = 1 for all f ∈ F . For example, the modal logic T is complete with
respect “for all frames whose function set F contains the identity function” [4].

In analogy to van Benthem’s approach, we may regard our two-star interpre-
tation as a model M = 〈W, g, ∗1,F , V 〉 where F = {∗2} (recall Definition 11).
We would then have I(w,∼fA) = 1 iff I(f(w), A) = 1 for all f ∈ F . Therefore,
if van Benthem’s approach is seen as an approach to modality, then ∼f will be
also counted as a modality at least in that sense. Hence, the language L∼f

can
be interpreted as an FDE-based modal language, where FDE is captured in
terms of the star semantics (recall Definition 1), as, for example, in [7,9].6

7 Concluding Remarks

What we hope to have established in this paper is that it is possible to provide
two-valued semantics for a logic based on SIXTEEN3. In particular, we made
essential use of Routleys’ star operation for both two-valued semantics. However,
our result here is just a first step, and there seem to be a number of problems
to be explored in more details. We will mention two of them.

The first problem is related to the language. In this paper, we focused on
the most simple language associated to SIXTEEN3, namely L∼f

. However,
this is only one of the many possible choices. In particular, it seems more than
natural to deal with ∧f and ∨f , but these connectives seem to be resistant. For
example, if we consider the truth condition for ∧f in a two-star interpretation,
then a straightforward application of our method suggests to split truth condition
depending on the number of stars applied at the state. We do not know, at the
time of writing, if we can capture ∧f in a two-star interpretation by a single truth
condition. We should also note that some connectives discussed in the literature
can be captured. For example, ¬ and ∼i, in a two-star interpretation, will have
the following truth conditions respectively:
5 We thank Sergei Odintsov for pointing this out.
6 For a different approach to FDE-based modal logic, where FDE is captured in terms

of the Dunn semantics (recall Definition 3), see, for example [13,15]. Comparing the
two approaches will be future work.

528 H. Omori and D. Skurt

• I(w,¬A) = 1 iff I(w,A) 	= 1
• I(w,∼iA) = 1 iff I(w∗1∗2 , A) = 1

The second problem is to explore the relation between the two-valued semantics
and the trilattice. Note that in our two-valued semantics, we are making essential
use of the star operation, but this seems to give rise to some difficulties. Here
is a reason: In the context of FDE, informational join and meet of the bilattice
naturally inspire to introduce binary connectives, and these connectives can be
captured easily in terms of Dunn semantics by giving truth and falsity conditions.
However, it is far from obvious if we can capture the same connectives based on
the star semantics by equally simple conditions. And a similar issue may carry
over to the case with SIXTEEN3. In fact, this might also be related to the first
problem related to ∧f and ∨f .

A Details of the Proof of Theorem3

We prove the contrapositive. Assume A 	� B. Then, by Lindenbaum’s lemma,
there is a prime theory Γ such that A ∈ Γ and B 	∈ Γ . We then define a two-star
interpretation 〈W, g, ∗1, ∗2, v〉 as follows:

• W = {a, b, c, d}, g = a;
• a∗1 = b, b∗1 = a, c∗1 = d, d∗1 = c, a∗2 = c, b∗2 = d, c∗2 = a, d∗2 = b;
• v : W × Prop → {0, 1} is defined as follows:

v(a, p) = 1 iff p ∈ Γ ; v(c, p) = 1 iff p ∈ Γ ∗;
v(b, p) = 1 iff ∼p 	∈ Γ ; v(d, p) = 1 iff ∼p 	∈ Γ ∗.

If we can show that the above condition holds for all formulas, then the result
follows since at a ∈ W , I(a,A) = 1 but I(a,B) 	= 1, i.e. A 	|=∗ B. We prove this
by induction on the complexity of A. We only prove the cases for ∼ and ∼f ,
since the cases for ∧ and ∨ are straightforward.

Case 1. If A is an element of Prop, the result holds by definition.

Case 2. If A = ∼B, then

v(a, ∼B)=1 iff v(a∗1 , B)�=1
iff v(b, B)�=1 Def. ∗1

iff ∼B ∈ Γ IH

v(b, ∼B)=1 iff v(b∗1 , B)�=1
iff v(a, B)�=1 Def. ∗1

iff B �∈ Γ IH
iff ∼∼B �∈ Γ (at6), (at7)

v(c, ∼B)=1 iff v(c∗1 , B)�=1
iff v(d, B)�=1 Def. ∗1

iff ∼B ∈ Γ ∗ IH

v(d, ∼B)=1 iff v(d∗1 , B)�=1
iff v(c, B)�=1 Def. ∗1

iff B �∈ Γ ∗ IH
iff ∼∼B �∈ Γ ∗ (at6), (at7)

SIXTEEN3 in Light of Routley Stars 529

Case 3. If A = ∼fB, then

v(a, ∼fB)=1 iff v(a∗2 , B)=1
iff v(c, B)=1 Def. ∗2

iff B ∈ Γ ∗ IH
iff ∼f∼fB ∈ Γ ∗ (at8), (at9)
iff ∼fB ∈ Γ Lem. 3

v(b, ∼fB)=1 iff v(b∗2 , B)=1
iff v(d, B)=1 Def. ∗2

iff ∼B �∈ Γ ∗ IH
iff ∼f∼B �∈ Γ Lem. 3
iff ∼∼fB �∈ Γ (at10)

v(c, ∼fB)=1 iff v(c∗2 , B)=1
iff v(a, B)=1 Def. ∗2

iff B ∈ Γ IH
iff ∼fB ∈ Γ ∗ Lem. 3

v(d, ∼fB)=1 iff v(d∗2 , B)=1
iff v(b, B)=1 Def. ∗2

iff ∼B �∈ Γ IH
iff ∼f∼B �∈ Γ ∗ Lem. 3
iff ∼∼fB �∈ Γ ∗ (at10)

This completes the proof. ��

B Details of the Proof of Proposition 4

We prove the contrapositive. Assume A 	|=r B. Then, there is a one-star inter-
pretation 〈W, g, ∗, r〉 such that Arg1, but not Brg1. We then define a two-star
interpretation 〈W, g∗1, ∗2, v〉 as follows:

• W = {a, b, c, d}, g = a;
• a∗1 = b, b∗1 = a, c∗1 = d, d∗1 = c, a∗2 = c, b∗2 = d, c∗2 = a, d∗2 = b;
• v : W × Prop → {0, 1} is defined as follows:

v(a, p) = 1 iff prg1; v(c, p) = 1 iff prg∗1;
v(b, p) = 1 iff not prg∗0 v(d, p) = 1 iff not prg0.

If we can show that the above condition holds for all formulas, then the result
follows since at a ∈ W , v(a,A) = 1 but v(a,B) 	= 1, i.e. A 	|=∗,g B. We prove
this by induction. We only prove the cases for ∼ and ∼f , since the cases for ∧
and ∨ are straightforward.

Case 1. If A is an element of Prop, the result holds by definition.

Case 2. If A = ∼B, then

v(a, ∼B) = 1 iff v(a∗1 , B) �= 1
iff v(b, B) �= 1 Def. ∗1

iff Brg∗0 IH
iff ∼Brg1

v(b, ∼B) = 1 iff v(b∗1 , B) �= 1
iff v(a, B) �= 1 Def. ∗1

iff not Brg1 IH
iff not ∼Brg∗0

v(c, ∼B) = 1 iff v(c∗1 , B) �= 1
iff v(d, B) �= 1 Def. ∗1

iff Brg0 IH
iff ∼Brg∗1

v(d, ∼B) = 1 iff v(d∗1 , B) �= 1
iff v(c, B) �= 1 Def. ∗1

iff not Brg∗1 IH
iff not ∼Brg0

530 H. Omori and D. Skurt

Case 3. If A = ∼fB, then

v(a, ∼fB) = 1 iff v(a∗2 , B) = 1
iff v(c, B) = 1 Def. ∗2

iff Brg∗1 IH
iff ∼fBrg1

v(b, ∼fB) = 1 iff v(b∗2 , B) = 1
iff v(d, B) = 1 Def. ∗2

iff not Brg0 IH
iff not ∼fBrg∗0

v(c, ∼fB) = 1 iff v(c∗2 , B) = 1
iff v(a, B) = 1 Def. ∗2

iff Brg1 IH
iff ∼fBrg∗1 Lem. 3

v(d, ∼fB) = 1 iff v(d∗2 , B) = 1
iff v(b, B) = 1 Def. ∗2

iff not Brg∗0 IH
iff not ∼fBrg0

This completes the proof. ��

C Details of the Proof for Proposition 5

We prove the contrapositive. Assume A 	|=∗,g B. Then, there is a two-star inter-
pretation 〈W, g, ∗1, ∗2, v〉 such that I(g,A) = 1 but I(g,B) 	= 1. We then define
a one-star interpretation 〈W, g, ∗, r〉 as follows:

• W = {a, b}, g = a;
• a∗ = b, b∗ = a;
• rw ⊆ Prop × {0, 1} is defined as follows:

pra1 iff I(g, p) = 1; prb1 iff I(g∗2 , p) = 1;
pra0 iff I(g∗1∗2 , p) 	= 1; prb0 iff I(g∗1 , p) 	= 1.

If we can show that the above condition holds for all formulas, then the result
follows since at a ∈ W , Ara1 but not Bra1, i.e. A 	|=r B. We prove this by
induction. We only prove the cases for ∼ and ∼f , since the cases for ∧ and ∨
are straightforward.

Case 1. If A is an element of Prop, the result holds by definition.

Case 2. If A = ∼B, then

∼Bra1 iff Bra∗0
iff Brb0 Def. ∗
iff I(g∗1 , B) �= 1 IH
iff I(g, ∼B) = 1

∼Bra0 iff Bra∗1
iff Brb1 Def. ∗
iff I(g∗2 , B) = 1 IH
iff I(g∗2∗1 , ∼B) �= 1

∼Brb1 iff Brb∗0
iff Bra0 Def. ∗
iff I(g∗1∗2 , B) �= 1 IH
iff I(g∗2 , ∼B) = 1

∼Brb0 iff Brb∗1
iff Bra1 Def. ∗
iff I(g, B) = 1 IH
iff I(g∗1 , ∼B) �= 1

SIXTEEN3 in Light of Routley Stars 531

Case 3. If A = ∼fB, then

∼fBra1 iff Bra∗1
iff Brb1 Def. ∗
iff I(g∗2 , B) = 1 IH
iff I(g, ∼fB) = 1

∼fBra0 iff Bra∗0
iff Brb0 Def. ∗
iff I(g∗1 , B) �= 1 IH
iff I(g∗1∗2 , ∼fB) �= 1

∼fBrb1 iff Brb∗1
iff Bra1 Def. ∗
iff I(g, B) = 1 IH
iff I(g∗2 , ∼fB) = 1

∼fBrb0 iff Brb∗0
iff Bra0 Def. ∗
iff I(g∗1∗2 , B) �= 1 IH
iff I(g∗1 , ∼fB) �= 1

This completes the proof. ��

References

1. Arieli, O., Avron, A.: Reasoning with logical bilattices. J. Log. Lang. Inf. 5(1),
25–63 (1996)

2. Belnap, N.: How a computer should think. In: Ryle, G. (ed.) Contemporary Aspects
of Philosophy, pp. 30–55. Oriel Press (1976)

3. Belnap, N.: A useful four-valued logic. In: Dunn, J., Epstein, G. (eds.) Modern
Uses of Multiple-Valued Logic, pp. 8–37. D. Reidel Publishing Co. (1977)

4. van Benthem, J.: Beyond accessibility. In: de Rijke, M. (ed.) Diamonds and
Defaults: Studies in Pure and Applied Intensional Logic. SYLI, vol. 229, pp. 1–18.
Springer, Dordrecht (1993). https://doi.org/10.1007/978-94-015-8242-1 1

5. De, M., Omori, H.: Classical negation and expansions of Belnap-Dunn logic. Stud.
Log. 103(4), 825–851 (2015)

6. Dunn, J.M.: Intuitive semantics for first-degree entailment and ‘coupled trees’.
Philos. Stud. 29, 149–168 (1976)

7. Fuhrmann, A.: Models for relevant modal logics. Stud. Log. 49(4), 501–514 (1990)
8. Ginsberg, M.: Multi-valued logics: a uniform approach to AI. Comput. Intell. 4,

243–247 (1988)
9. Mares, E.D., Meyer, R.K.: The semantics of R4. J. Philos. Log. 22(1), 95–110

(1993)
10. Muskens, R., Wintein, S.: Analytic tableaux for all of SIXTEEN3. J. Philos. Log.

44(5), 473–487 (2015)
11. Muskens, R., Wintein, S.: Interpolation in 16-valued trilattice logics. Stud. Log.

106(2), 345–370 (2018)
12. Odintsov, S.P.: On axiomatizing Shramko-Wansing’s logic. Stud. Log. 91(3), 407–

428 (2009)
13. Odintsov, S.P., Wansing, H.: Modal logics with Belnapian truth values. J. Appl.

Non-Class. Log. 20, 279–301 (2010)
14. Odintsov, S.P., Wansing, H.: The logic of generalized truth values and the logic of

bilattices. Stud. Log. 103(1), 91–112 (2015)
15. Odintsov, S.P., Wansing, H.: Disentangling FDE-based paraconsistent modal log-

ics. Stud. Log. 105(6), 1221–1254 (2017)
16. Omori, H., Sano, K.: Generalizing functional completeness in Belnap-Dunn logic.

Stud. Log. 103(5), 883–917 (2015)
17. Omori, H., Wansing, H.: 40 years of FDE: an introductory overview. Stud. Log.

105(6), 1021–1049 (2017)

https://doi.org/10.1007/978-94-015-8242-1_1

532 H. Omori and D. Skurt

18. Priest, G.: An Introduction to Non-Classical Logic: From If to Is, 2nd edn. Cam-
bridge University Press, Cambridge (2008)

19. Restall, G.: Negation in relevant logics (how i stopped worrying and learned to
love the routley star). In: Gabbay, D.M., Wansing, H. (eds.) What is Negation?,
pp. 53–76. Kluwer Academic Publishers (1999)

20. Routley, R., Routley, V.: Semantics for first degree entailment. Noûs 6, 335–359
(1972)

21. Shramko, Y., Wansing, H.: Truth and Falsehood - An Inquiry into Generalized
Logical Values, 1st edn. Springer, Dordrecht (2012). https://doi.org/10.1007/978-
94-007-0907-2

22. Shramko, Y., Wansing, H.: Some useful 16-valued logics: how a computer network
should think. J. Philos. Log. 34(2), 121–153 (2005)

23. Shramko, Y., Wansing, H.: Hyper-contradictions, generalized truth values and log-
ics of truth and falsehood. J. Log. Lang. Inf. 15(4), 403–424 (2006)

24. Suszko, R.: Remarks on �Lukasiewicz’s three-valued logic. Bull. Sect. Log. 4, 87–90
(1975)

25. Wansing, H.: The power of Belnap: sequent systems for SIXTEEN3. J. Philos. Log.
39, 369–393 (2010)

26. Zaitsev, D.: A few more useful 8-valued logics for reasoning with tetralattice
EIGHT4. Stud. Log. 92(2), 265–280 (2009)

https://doi.org/10.1007/978-94-007-0907-2
https://doi.org/10.1007/978-94-007-0907-2

An Algorithmic Approach
to the Existence of Ideal Objects

in Commutative Algebra

Thomas Powell1(B), Peter Schuster2, and Franziskus Wiesnet3

1 Technische Universität Darmstadt, Darmstadt, Germany
powell@mathematik.tu-darmstadt.de
2 University of Verona, Verona, Italy
3 University of Trento, Trento, Italy

Abstract. The existence of ideal objects, such as maximal ideals in
nonzero rings, plays a crucial role in commutative algebra. These are
typically justified using Zorn’s lemma, and thus pose a challenge from
a computational point of view. Giving a constructive meaning to ideal
objects is a problem which dates back to Hilbert’s program, and today
is still a central theme in the area of dynamical algebra, which focuses
on the elimination of ideal objects via syntactic methods. In this paper,
we take an alternative approach based on Kreisel’s no counterexample
interpretation and sequential algorithms. We first give a computational
interpretation to an abstract maximality principle in the countable set-
ting via an intuitive, state based algorithm. We then carry out a concrete
case study, in which we give an algorithmic account of the result that in
any commutative ring, the intersection of all prime ideals is contained in
its nilradical.

Keywords: Proof theory · Program extraction ·
Commutative algebra · No-counterexample interpretation

1 Introduction

This paper is an application of proof theory in commutative algebra. To be more
precise, we use proof theoretic methods to give a computational interpretation
to a general maximality principle (Theorem 1), which in particular implies the
existence of maximal ideals in commutative rings (Krull’s lemma). In the context
of second order arithmetic, the latter statement is equivalent to arithmetical
comprehension [41, Chapter III.5], and thus Theorem1 is a genuinely strong
principle, and highly non-trivial from a computational perspective.

The first, second and third author were supported by the German Science Foundation
(DFG Project KO 1737/6-1); by the John Templeton Foundation (ID 60842) and by
a Marie Sk�lodowska-Curie fellowship of the Istituto Nazionale di Alta Matematica,
respectively. The opinions expressed in this paper are those of the authors and do not
necessarily reflect the views of the John Templeton Foundation.

c© Springer-Verlag GmbH Germany, part of Springer Nature 2019
R. Iemhoff et al. (Eds.): WoLLIC 2019, LNCS 11541, pp. 533–549, 2019.
https://doi.org/10.1007/978-3-662-59533-6_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-59533-6_32&domain=pdf
https://doi.org/10.1007/978-3-662-59533-6_32

534 T. Powell et al.

The extraction of programs from proofs has a long and rich history, dat-
ing back to Kreisel’s pioneering work on the ‘unwinding’ of proofs [17,18]. In
the ensuing decades, the application of proof interpretations in particular has
become a major topic in proof theory, and today encompasses both proof mining
[12–14], which focuses on obtaining quantitative information primarily from
proofs in areas of mathematical analysis, and the mechanized synthesis of pro-
grams from proofs, which has found many concrete applications in discrete math-
ematics and computer science [3,4,40].

Though as far back as the 1950s Kreisel already discusses the use of proof
theoretic techniques to extract quantitative information from proofs in abstract
algebra [19], specifically Hilbert’s 17th problem together with his Nullstellensatz,
to date there are comparatively few formal applications of proof interpretations
in algebra, the computational analysis of which is done largely on a case by
case basis. This typically involves replacing semantic conservation theorems with
appropriate syntactic counterparts both sufficient for proofs of elementary state-
ments and provable by elementary means. This method has proved possible in
numerous different settings [5,6,21,22,34,44], and in the context of commutative
algebra the so-called dynamical method is especially dominant [7,20,45,46].1 In
dynamical algebra one deals with a supposed ideal object (such as a maximal
ideal) only by means of concrete, finitary approximations (such as finitely gen-
erated ideals, or rather the finite sets of generators), where the latter provide
partial but sufficiently complete information about the former.

Interestingly, the idea of replacing ideal objects with suitable finitary approx-
imations is already implicit in Kreisel’s unwinding program, and is captured by
his famous no-counterexample interpretation (n.c.i.). The n.c.i. plays an impor-
tant role in proof mining, where in particular it corresponds to the notion of
metastability [11,15,16], which has been made popular by Tao [43] and more
recently has featured in higher order computability theory [35].

In this article, we take a new approach to eliminating ideal objects in abstract
algebra, by solving an appropriate metastable reformulation of our general max-
imality principle. We then use this solution to extract direct witnesses from a
variant of Krull’s lemma.

The novelty of our approach lies not just in our use of the n.c.i., but in
our description of its solution as a state based algorithm, inspired by recent
work of the first author [23,24,26–28] which focuses on the algorithmic meaning
of extracted programs. This form of presentation allows us to bridge the gap
between the rigorous extraction of programs from proofs as terms in some formal
calculus, and the more algorithmic style of dynamical algebra.

It also enables us to present our results in an entirely self-contained man-
ner, without needing to introduce any heavy proof theoretic machinery. Though
behind the scenes at least, aspects of our work are influenced by Gödel’s func-
tional interpretation [8] and Spector’s bar recursion [42], neither of these make

1 The second author has contributed to a universal conservation criterion [31–33] that
includes many of the those cases [30,36,39].

An Algorithmic Approach to the Existence of Ideal Objects 535

an official appearance, and we have endeavoured to make everything as accessible
to the non-specialist as possible.

Our first main contribution, given as Theorems 3 and 4, is a time sequential
algorithm (in the sense of Gurevich [9]), whose states evolve step by step until
they terminate in some final state sj which represents a solution to the n.c.i.
of Theorem 1. Each step in this process represents an improvement to our con-
struction of an approximate ideal object, and so can also be viewed as a learning
procedure in the style of [1].

We then present a concrete application of our abstract result, in which we
analyse a classic maximality argument used to prove the well known fact that in
any commutative ring, if some element r is contained in intersection of all prime
ideals, then it must be nilpotent. We show that an instance of our sequential
algorithm can be used to directly compute an exponent e > 0 such that re = 0,
and thus our case study is another illustration of how the proof theoretic analysis
of a highly nonconstructive proof can yield direct, computational information.
We conclude by instantiating our algorithm in case of nonconstant coefficients
of invertible polynomials. This is a well known example which has been widely
studied from a computational perspective [25,29,37,38], thus facilitating a future
analysis of our work with other approaches.

2 A General Maximality Argument

We begin by presenting our abstract maximality principle, which forms the main
subject of the paper. Let X be some set (which for now is arbitrary but later will
be countable), and denote by Pfin(X) the set of all finite subsets of X. Simple
lemmas are stated without proof.

Definition 1. Let � be some subset of Pfin(X) × X. We treat � as a binary
relation and say that the element x is generated by the finite set A whenever
A � x. We extend � to arbitrary (not necessarily finite) S ⊆ X by defining
S �∗ x whenever there exists some finite A ⊆ S such that A � x.

Definition 2. Given some S ⊆ X, define the sequence (Si)i∈N of sets by

S0 := S and Si+1 := {x |
⋃

j≤i

Sj �∗ x}

and let 〈S〉 :=
⋃

i∈N
Si. We say that 〈S〉 is the closure of S w.r.t. �, since

whenever 〈S〉 �∗ x then x ∈ 〈S〉.
Definition 3. For any S ⊆ X and x ∈ X, S⊕x := 〈S ∪ {x}〉 denotes the closed
extension of S with x.

Lemma 1. Suppose that S �∗ x. Then S ⊕ x = 〈S〉.
Definition 4. Let Q(x) be some predicate on X. For S ⊆ X write Q(S) for
(∀x ∈ S)Q(x). Note in particular that Q(S) and S ⊇ T implies Q(T).

536 T. Powell et al.

Definition 5. We say that M ⊆ X is maximal w.r.t. � and Q if

(i) M is closed w.r.t. �∗,
(ii) Q(M),
(iii) ¬Q(M ⊕ x) for any x /∈ M .

Theorem 1. Suppose that Q(〈∅〉). Then there exists some M ⊆ X which is
maximal w.r.t. � and Q.

Proof. Define S := {S ⊆ X | S is closed w.r.t �∗ and Q(S)}. We show that S
is nonempty and chain complete w.r.t. set inclusion. Nonemptyness follows from
the fact that 〈∅〉 ∈ S, so it remains to prove chain completeness. Let γ be a chain
in S. Then Ŝ :=

⋃
S∈γ S is clearly closed, and moreover, if x ∈ Ŝ then x ∈ S for

some S ∈ γ, and therefore Q(x). This establishes Ŝ ∈ S.
Thus by Zorn’s lemma, S has some maximal element M , which by definition

satisfies (i) and (ii). But for x /∈ M we have M ⊂ M ⊕ x and thus M ⊕ x /∈ S.
But since M ⊕ x is closed, it follows that ¬Q(M ⊕ x).

Corollary 1. Any commutative ring X with 0 �= 1 has a maximal ideal.

Proof. We follow the standard proof. Define � by A�x iff x = x1 ·a1+. . .+xk ·ak

for some a1, . . . , ak ∈ A and x1, . . . , xk ∈ X. Note that ∅ � 0 by the convention
that an empty sum is equal to zero. In addition, define Q(x) :≡ (x �= 1). Then
S ⊆ X is closed iff it is an ideal, with Q(S) iff S is proper. Now 〈∅〉 = {0} (since
∅ � 0) and if 0 �= 1 then Q({0}), thus by Theorem 1 there exists some maximal
structure M . To see that M is a maximal ideal, if there were some M ⊂ I ⊆ X
then we would have M ⊂ M ⊕ x ⊆ I for some x /∈ M , and by ¬Q(M ⊕ x) we
would have 1 ∈ M ⊕ x and thus I = X.

3 A Logical Analysis of Theorem1

From now on, we assume that X is countable and comes equipped with some
explicit enumeration {xn | n ∈ N}. Given some S ⊆ X, the initial segment of S
of length n is defined by [S](n) := S ∩{xm | m < n}. Note that S =

⋃
n∈N

[S](n).
We define dom(S) ⊆ N by dom(S) := {n ∈ N | xn ∈ S}.

Theorem 2. Suppose that M ⊆ X satisfies

xn ∈ M ⇔ Q([M](n) ⊕ xn) (1)

for all n ∈ N. If Q(〈∅〉) then M is maximal w.r.t. � and Q.

Proof. Let Mn := 〈[M](n)〉. We first observe that Q(Mn) for all n ∈ N,
which follows by induction: For n = 0 we have M0 = 〈∅〉 and so Q(M0) is
true by assumption. Now supposing that Q(Mn) holds for some n ∈ N there
are two possibilities: If Q([M](n) ⊕ xn) then xn ∈ M and hence Mn+1 =
〈[M](n) ∪ {xn}〉 = [M](n) ⊕ xn, and if ¬Q([M](n) ⊕ xn) then xn /∈ M and
hence Mn+1 = 〈[M](n)〉 = Mn. Either way we have Q(Mn+1).

An Algorithmic Approach to the Existence of Ideal Objects 537

We now establish each of the maximality conditions in turn. For closure,
suppose that M �∗ xn but xn /∈ M , and so by definition ¬Q([M](n) ⊕ xn).
Since M �∗ xn we have [M](k) �∗ xn for some k ∈ N. First, let k ≤ n. Then
[M](k) ⊆ [M](n) and thus [M](n) �∗ xn, which implies that xn ∈ Mn and thus
by Lemma 1

[M](n) ⊕ xn = 〈[M](n)〉 = Mn.

Since Q(Mn) this contradicts ¬Q([M](n)⊕xn). But if n < k then [M](n)⊕xn ⊆
[M](k)⊕xn and thus ¬Q([M](n)⊕xn) implies ¬Q([M](k)⊕xn). But [M](k)�∗xn

and thus by Lemma 1 again, [M](k) ⊕ xn = Mk, contradicting Q(Mk).
That Q(M) holds is straightforward: For if xn ∈ M then xn ∈ [M](n + 1) ⊆

Mn+1 and thus Q(xn) follows from Q(Mn+1). Finally, to show that ¬Q(M ⊕xn)
for xn /∈ M , note that xn /∈ M implies ¬Q([M](n)⊕xn), and since [M](n)⊕xn ⊆
M ⊕ xn the result follows.

The purpose of the above theorem was to give a more syntactic formulation
of Theorem 1 in the countable setting: If Q(〈∅〉) then the existence of a some
maximal M ⊆ X is implied by the existence of some M satisfying (1). In order
to proceed, we will now take a closer look at the structure of (1) and make some
restrictions on the logical complexity of certain parameters.

Lemma 2. Suppose that the relation A � x can be encoded as a Σ0
1 -formula.

Then the membership relation x ∈ 〈A〉 can also be encoded as a Σ0
1 -formula.

Remark 1. The reader may assume that we are working in some reasonable base
theory, and that formulas can be expressed in the language of Peano arithmetic:
Thus a Σ0

1 -formula is a formula of the form (∃y)P (y) where P (y) is primitive
recursive.

Proof. We only sketch the proof, since explicit encodings will be given in the
case studies that follow. We have x ∈ 〈A〉 iff there exists some finite derivation
tree for x whose leaves are elements of A and whose nodes represent instances of
�. Given that � can be encoded as a Σ0

1 -formula, it is clear that the existence
of a derivation trees can in turn be represented as Σ0

1 -formula via a suitable
encoding.

Lemma 3. Suppose that Q(x) is a Π0
1 -formula and that A � x can be encoded

as a Σ0
1 -formula. Then Q(〈A〉) is a Π0

1 -formula i.e. Q(〈A〉) ⇔ (∀p)RA(p) for
some decidable predicate RA(p) on Pfin(A) × N.

Proof. We can write Q(x) ⇔ (∀e)Q0(x, e) for some decidable Q0(x, e), and by
Lemma 2, x ∈ 〈A〉 ⇔ (∃t)GA(x, t) for some decidable GA(x, t). Then

Q(〈A〉) ⇔ (∀m)(xm ∈ 〈A〉 ⇒ Q(xm))
⇔ (∀m)((∃t)GA(xm, t) ⇒ (∀e)Q0(xm, e))
⇔ (∀m, t, e)(GA(xm, t) ⇒ Q0(xm, e))

and the latter formula can be encoded as (∀p)RA(p) for suitable RA(p) and using
some pairing function for the tuple m, t, e.

538 T. Powell et al.

Lemma 4. Under the conditions of Lemma 3, (1) holds iff for all n ∈ N:

xn ∈ M ⇔ (∀p)R[M](n)∪{xn}(p) (2)

Proof. By Lemma 3 setting A = [M](n) ∪ {xn}, so that 〈A〉 = [M](n) ⊕ xn.

Written out in full, the existence of some M satisfying (2) becomes

(∃M)(∀n)((xn ∈ M ⇒ (∀p)R[M](n)∪{xn}(p))∧(xn /∈ M ⇒ (∃q)R[M](n)∪{xn}(q)))

and so written out in Skolem normal form, this becomes

(∃M,f)(∀n, p)(xn ∈ M ⇒ R[M](n)∪{xn}(p) ∧ xn /∈ M ⇒ R[M](n)∪{xn}(f(n))).
(3)

This motivates our final version of maximality, which is now in a form where we
can directly apply the no-counterexample interpretation.

Definition 6. An explicit maximal object w.r.t. � and Q is a set M ⊆ X
together with a function f : dom(X\M) → N such that

– xn ∈ M ⇒ R[M](n)∪{xn}(p)
– xn /∈ M ⇒ ¬R[M](n)∪{xn}(f(n))

for all n, p ∈ N.

The idea here is that the function f provides concrete evidence for why xn is
excluded from the maximal structure M : in other words, it encodes an element
xm together with some tree t and e such that xm ∈ [M](n) ⊕ xn with respect to
t but Q(xm) fails relative to e.

4 An Approximating Algorithm for Maximal Objects

In general, it is impossible to effectively compute a set M together with
an f satisfying Definition 6. However, we demonstrate how an approxi-
mate, or metastable, formulation of maximality in the spirit of Kreisel’s no-
counterexample interpretation, can be directly witnessed via an intuitive stateful
procedure.

For a detailed and modern account of the n.c.i., the reader is encouraged to
consult e.g. [10,13]. The rough idea is the following: Given some prenex formula
of the form A :≡ (∃x ∈ X)(∀y ∈ Y)P0(x, y), a functional Φ : (X → Y) → X is
said to witness the n.c.i. of A if it witnesses (∀ω : X → Y)(∃x)P0(x, ω(x)) i.e.
(∀ω)P0(Φω, ω(Φω)). This definition generalises in the obvious way to prenex for-
mulas of arbitrary complexity. In this section, we give an algorithmic description
of such an Φ for A being the statement that an explicit maximal object exists,
as in Definition 6.

Definition 7. Let (ω, φ) be functionals which take as input M and f and each
return as output a natural number. An approximate explicit maximal object w.r.t
�, Q and (ω, φ) is a set M ⊆ X together with a function f such that

An Algorithmic Approach to the Existence of Ideal Objects 539

– xn ∈ M ⇒ R[M](n)∪{xn}(p)
– xn /∈ M ⇒ ¬R[M](n)∪{xn}(f(n))

but now only for n ≤ ω(M,f) and p = φ(M,f).

Note that Definition 7 is slightly stronger than the n.c.i. of (3), since it works for
all n ≤ ω(M,f) and not just n = ω(M,f).

Approximate maximal objects are useful because when a proof of a pure
existential statement relies on the existence of some maximal M , we are typically
able to find functionals (ω, φ) which calibrate exactly how this maximal object is
used, and thereby construct a witness to the existential statement in terms of an
approximate maximal object relative to (ω, φ). For a more detailed discussion of
this phenomenon in the context of sequential algorithms the reader is directed
to [28, Section 4.5]. We will see a concrete example in Sect. 5.

4.1 The Algorithm

We now present our algorithm, which computes approximate maximal objects
given some input functionals (ω, φ). Our algorithm will be described as an evolv-
ing sequence of states

s0 �→ s1 �→ · · · �→ sk.

The basic idea is as follows: We start in some initial state s0 which contains
no information and gives rise to an ‘empty’ approximation. In each step of the
computation we query our mathematical environment to asses whether or not
our current approximation is good enough. If it is, the computation terminates
in that state. If not, we use the information gained from this query to improve
our approximation. The hope is that our algorithm always terminates on some
reasonable set of inputs. In this section we describe how the states evolve, and
in the next we deal with termination.

For us, states si are defined to be a functions of type N → {(∗)} + N i.e. si

is an array, whose nth entry si(n) is either a natural number or some default
value (∗). Any given state encodes a current approximation (M [si], f [si]) to an
explicit maximal object by defining the set M [si] ⊆ X as

M [si] := {xn ∈ N | si(n) = (∗)}

and the function f [si] : dom(X\M [si]) → N by

f [si](n) := si(n) ∈ N

where si(n) ∈ N follows from the assumption that n /∈ M [si]. Fixing some input
functionals (ω, φ), we imagine for convenience that these now act directly on
states, and write ω(si) as shorthand for ω(M [si], f [si]).

We now need to explain how our state evolves. As an initial state, we set

s0(m) := (∗)

540 T. Powell et al.

and so M [s0] = X and f [s0] has an empty domain. Now, supposing that we are
in the ith state, we define

(ni, pi) := (ω, φ)(si).

and carry out the following steps:

– Search from 0 up to ni until some 0 ≤ n ≤ ni is found such that each of the
following hold

• xn ∈ M [si],
• ¬R[M [si]](n)∪{xn}(pi)

– If no such n is found, the algorithm terminates in state si.
– Otherwise, define

si+1(m) :=

⎧
⎪⎨

⎪⎩

si(m) if m < n

pi if m = n

(∗) if m > n

and so in particular

M [si+1] = [M [si]](n) ∪ {xk ∈ N | k > n}
and xn /∈ M [si+1].

Lemma 5. For all states si ∈ N and n ∈ N we have

xn /∈ M [si] ⇒ ¬R[M [si]](n)∪{xn}(f [si](n)).

Proof. Induction on i. For i = 0 the statement is trivially true, since M [s0] = X.
So suppose the statement is true for some i, and that xn /∈ M [si+1]. Since
M [si+1] = [M [si]](n′) ∪ {xk ∈ N | k > n′} for some n′ ≤ ni there are
two possibilities. Either n < n′ and xn /∈ M [si] and so the result follow
by the induction hypothesis since f [si+1](n) = si+1(n) = si(n) = f [si](n)
and [M [si+1]](n) = [M [si]](n). Or n = n′ and so f [si+1(n)] = pi which
is defined to satisfy ¬R[M [si]](n)∪{xn}(pi), and thus the result follows since
[M [si+1]](n) = [M [si]](n).

Theorem 3. Suppose that the algorithm terminates in state sj. Then sj forms
an approximate explicit maximal object w.r.t. �, Q and (ω, φ).

Proof. If the algorithm terminates, then by definition it holds that for all n ≤
nj = ω(sj), if xn ∈ M [sj] then R[M [sj]](n)∪{xn}(pj) where pj = φ(sj). But if
xn /∈ M [sj] then ¬R[M [sj]](n)∪{xn}(f [sj](n)) by Lemma 5, and so we’re done.

4.2 Termination

It remains, then, to show that our algorithm actually terminates on some rea-
sonable set of parameters! Here, we make an additional standard assumption,
namely that the functionals (ω, φ) are continuous.

An Algorithmic Approach to the Existence of Ideal Objects 541

Definition 8. We say that (ω, φ) are continuous if for all states s : N → {∗}+N

(which encode M,f) there exists some natural number L such that for any other
input state s′, if [s](L) = [s′](L) then

(ω, φ)(s) = (ω, φ)(s′).

Note that whenever (ω, φ) are instantiated by computable functionals, they
will automatically be continuous, so restricting ourselves to the continuous set-
ting is entirely reasonable.

Theorem 4. Whenever the algorithm runs on continuous parameters (ω, φ), it
terminates after a finite number of steps.

Proof. Suppose that the algorithm does not terminate and thus results in an
infinite run {si}i∈N. We first show that for each n ∈ N, the value of si(n) can
only change finitely many times as i → ∞. More precisely, we define a sequence
j0 ≤ j1 ≤ j2 ≤ . . . satisfying

(∀i ≥ jn)([si](n) = [sjn](n)). (4)

The (jn)n∈N are defined inductively as follows: We let j0 := 0, and if jn has been
defined, either there exists some j ≥ jn such that xn /∈ M [sj], in which case we
define jn+1 = j, or xn ∈ M [sj] for all j ≥ jn and we set jn+1 := jn. To see that
this construction satisfies (4) we use induction on n. The base case is trivial, so
let’s fix some n. By the induction hypothesis and the fact that jn+1 ≥ jn we
have [si](n) = [sjn+1](n) for all i ≥ jn+1, and so we only need to check point
n. Now, in the case xn ∈ M [si] for all i ≥ jn = jn+1 we’re done since this
means that si(n) = (∗) for all i ≥ jn+1. In the other case, if xn /∈ M [sjn+1]
then sjn+1(n) = p ∈ N and observing the manner in which the states evolves at
each step, the only way this can change is if xm is removed from to si for some
i ≥ jn+1 and m < n. But this contradicts the induction hypothesis.

The second part of the proof is where we make use of continuity. Define s∞
to be the limit of the [sjn](n), and let L be a point of continuity for (ω, φ) on
this input. Define

j := jN for N := max{L, ω(s∞) + 1}
Then in particular, since [s∞](L) = [sj](L) we must have

nj := ω(sj) = ω(s∞) < N.

But since the algorithm does not terminate, there is some 0 ≤ n ≤ nj with
xn ∈ M [sj] but xn /∈ M [sj+1]. But by definition of j = jN , since n < N then
xn ∈ M [sj] implies that xn ∈ M [si] for all i ≥ j, a contradiction.

5 Case Study: The Nilradical as the Intersection of All
Prime Ideals

We now use our algorithm to carry out a computational analysis of the following
well known fact [2, Proposition 1.8], which is a frequently used form of Krull’s
lemma. Recall that a ring element r is nilpotent if re = 0 for some integer e > 0.

542 T. Powell et al.

Theorem 5. Let X be a countable commutative ring. Suppose that r lies in the
intersection of all prime ideals of X. Then r is nilpotent.

We first show how the standard proof follows from our general maximality prin-
ciple Theorem 1. Now our countable set X comes equipped with a ring structure,
which will be used to instantiate our parameters � and Q.

Proof. Define � as in Corollary 1, but now let Q(x) := (∀e)(e > 0 ⇒ x �= re).
Then S ⊆ X is closed w.r.t � and satisfies Q(S) iff it is an ideal which does not
contain re for any e > 0. Suppose for contradiction that r is not nilpotent, which
would mean that Q({0}) and thus Q(〈∅〉) hold. By Theorem1 there is some M
which is maximal w.r.t. � and Q, and in this case M ⊕ x = 〈M ∪ {x}〉 is just
the ideal generated by M and x.

Take x, y /∈ M . Then ¬Q(M ⊕ x) and hence there exists some e1 > 0 such
that re1 ∈ M ⊕ x. Similarly, there exists some e2 > 0 with re2 ∈ M ⊕ y. But
then re1+e2 ∈ M ⊕ xy and thus xy /∈ M . This would mean that M is prime, but
then Q(M) contradicts the assumption that r ∈ M .

Lemma 6. For � and Q defined as in the proof of Theorem5, we have

Q(〈A〉) ⇔ (∀b ∈ X∗, e)(|b| = k ∧ e > 0 ⇒ a1 · b1 + . . . + ak · bk �= re

︸ ︷︷ ︸
RA(b,e)

)

where A := {a1, . . . , ak}, X∗ as usual denotes the set of lists over X and |b| is
the length of b.

Our aim will be to address the following computational challenge, given any
fixed X and r,

– Input. Evidence that r lies in the intersection of all prime ideals
– Output. An exponent e > 0 such that re = 0

The first question is what we take to be evidence that r lies in all prime ideals.
Note that this assumption is logically equivalent to the statement

(∀S ⊆ X)(S is not a prime ideal ∨ r ∈ S),

so for a computational interpretation of the above it would be reasonable to ask
for a procedure which takes some S ⊆ X as input, and either confirms that r ∈ S
or demonstrates that S is not a prime ideal.

Let’s now fix some enumeration of X, where we assume for convenience that
x0 = 0X , x1 = 1X and x2 = r. This assumption is not essential, and is there
merely to simplify some of the bureaucratic details which follow. From now on
we assume that we have some function

ψ : P(X) → {0, 1, 2} + ({3, 4, 5} × N
3)

which for any S ⊆ X satisfies

An Algorithmic Approach to the Existence of Ideal Objects 543

– ψ(S) = 0 ⇒ 0X /∈ S
– ψ(S) = 1 ⇒ 1X ∈ S
– ψ(S) = 2 ⇒ r ∈ S
– ψ(S) = (3, i, j, k) ⇒ (xi + xj = xk) ∧ (xi, xj ∈ S) ∧ (xk /∈ S)
– ψ(S) = (4, i, j, k) ⇒ (xi · xj = xk) ∧ (xi ∈ S) ∧ (xk /∈ S)
– ψ(S) = (5, i, j, k) ⇒ (xi · xj = xk) ∧ (xi, xj /∈ S) ∧ (xk ∈ S)

The functional ψ witnesses the statement that r ∈ S or S is not a prime ideal.

Lemma 7. Suppose that M ⊆ X and f satisfy

xn /∈ M ⇒ ¬R[M](n)∪{xn}(f1(n), f2(n)) (5)

where RA(b, e) is as in Lemma6 and if f(n) = 〈b, e〉 then f1(n) = b and f2(n) =
e. Whenever ψ(M) �= 0 there exists some nonempty A = {a1, . . . , al} ⊆ M
together with a sequence [b1, . . . , bl] of elements of X and e > 0 such that

a1 · b1 + . . . + al · bl = re.

Moreover, e,A and b are computable in ψ, M and f .

Remark 2. Note that here 〈b, e〉 denotes the encoding of the pair b, e as a single
natural number, so that the type of f matches that of Sect. 4.

Proof. This is a fairly routine case analysis. Since ψ(M) �= 0 there are five
remaining possibilities:

– ψ(M) = 1, i.e. x1 = 1X ∈ M and so we set e := 1, A := {x1} and b := [x2]
(recall that x2 = r).

– ψ(M) = 2, i.e. x2 = r ∈ M and so e := 1, A := {x2} and b := [x1] work.
– ψ(M) = (3, i, j, k). Since xk /∈ M , by (5) for b′ = f1(k) we have

xα1 · b′
1 + . . . + xαp

· b′
p + xk · b′

p+1 = rf2(k)

for {xα1 , . . . , xαp
} = [M](k). But then

xα1 · b′
1 + . . . + xαp

· b′
p + (xi + xj) · b′

p+1 = rf2(k)

and so e := f2(k), together with A := {xα1 , . . . , xαp
, xi, xj} ⊆ M and b :=

[b′
1, . . . , b

′
p, b

′
p+1, b

′
p+1] work.

– ψ(M) = (4, i, j, k). Entirely analogously, but this time we have

xα1 · b′
1 + . . . + xαp

· b′
p + xi · (xj · b′

p+1) = rf2(k)

and so e := f2(k), A := {xα1 , . . . , xαp
, xi} and b := [b′

1, . . . , b
′
p, xj · b′

p+1] work.
– ψ(M) = (5, i, j, k). For b′ = f1(i) and b′′ = f1(j) we have xα1 · b′

1 + . . . + xαp
·

b′
p + xi · b′

p+1 = rf2(i) and xβ1 · b′′
1 + . . . + xβq

· b′′
q + xj · b′′

q+1 = rf2(j) where
{xα1 , . . . , xαp

} = [M](i) and {xβ1 , . . . , xβq
} = [M](j), and therefore

(xα1 · b′
1 + . . . + xαp

· b′
p) · rf2(j) + xi · b′

p+1 · (xβ1 · b′′
1 + . . . + xβq

· b′′
q)

+ xi · xj · b′
p+1 · b′′

q+1 = rf2(i)+f2(j)

and so e := f1(i) + f2(j), A := {xα1 , . . . , xαp
, xβ1 , . . . , xβq

, xi · xj} and the
corresponding b from the above equation work.

544 T. Powell et al.

Lemma 8. Suppose that M and f satisfy (5) as in Lemma 7 and that ψ(M) �= 0.
Then there exists some n ∈ N, sequence b and e > 0 such that

– xn ∈ M ,
– ¬R[M](n)∪{xn}(b, e)

and moreover, n, b and e are computable in ψ, M and f .

Proof. By Lemma 7 there exist, computable in ψ, M and f , a nonempty A =
{a1, . . . , al} ⊆ M together with b = [b1, . . . , bl] and e > 0 satisfying a1 · b1 +
. . . + al · bl = re. In particular, we can find some n ∈ N which is the maximal
with xn ∈ A ⊆ M , and thus A ⊆ [M](n) ∪ {xn}. But by expanding b to some
sequence b′ with zeroes added wherever needed, we have

xα1 · b′
1 + . . . + xαp

· b′
p + xn · b′

p+1 = re

where {xα1 , . . . , xαp
} = [M](n), and thus ¬R[M](n)∪{xn}(b′, e) holds.

Theorem 6. Given an input functional ψ which for any S witnesses that r ∈ S
or S is not a prime ideal, define the functionals ω, φ by

(ω, φ)(M,f) :=

{
n, 〈b, e〉 if ψ(M) �= 0, where n, b and e satisfy Lemma 8
0, 〈[], 0〉 otherwise

Suppose that the algorithm {si}i∈N described in Sect. 4.1 is run on (ω, φ), and
for RA(b, e) as defined in Lemma 6. Then the algorithm terminates in some final
state sj satisfying

sj(0)2 > 0 ∧ rsj(0)2 = 0X .

Proof. First of all, we note that (ω, φ) are computable, and so in particular must
be continuous in the sense of Definition 8. Therefore the algorithm terminates in
some final state sj . By Lemma 5 we have

xn /∈ M [sj] ⇒ ¬R[M [sj]](n)∪{xn}(f1[sj](n), f2[sj](n)). (6)

We claim that ψ(M [sj]) = 0. If this were not the case, then by Lemma 8 and the
definition of (ω, φ) we would have xnj

∈ M [sj] and ¬R[M [sj]](nj)∪{xnj
}(bj , ej) for

(nj , 〈bj , ej〉) = (ω, φ)sj

and so by definition the algorithm cannot be in a final state. This proves the
claim. But ψ(M [sj]) = 0 implies that x0 = 0X /∈ M [sj], and therefore by (6) we
have ¬R{x0}(b, e) where 〈b, e〉 = f [sj](0) = sj(0), which is just

|b| = 1 ∧ e > 0 ∧ x0 · b0 = re.

But since x0 · b0 = 0X · b0 = 0 we have re = 0 i.e. rsj(0)2 = 0X .

An Algorithmic Approach to the Existence of Ideal Objects 545

5.1 Informal Description of the Algorithm

The basic idea behind the algorithm in this section is the following.

– Each state si encodes some M [si] ⊆ X, where xn /∈ M [si] only if we have
found evidence that [M [si]](n) ∪ {xn} generates re for some e > 0, in which
case this evidence is encoded as si(n) ∈ N.

– We start off at s0 with the full set M [s0] = X.
– At state si we interact with our functional ψ, which provides us with evidence

that either M [si] is not a prime ideal, or r ∈ M [si].
– If this evidence takes the form of anything other than 0X /∈ S, then we are able

to use this to find some xn ∈ M and evidence that [M](n) ∪ {xn} generates
re for some e > 0. We exclude xn from M [si] but add all xk for all k > n
(since now the evidence that [M [si]](k)∪{xk} generates re′

could be falsified
by the removal of xn).

Eventually, using a continuity argument as in Theorem4, the algorithm termi-
nates in some state sj . But the only way this can be is if ψ(M [sj]) = 0, which
indicates that 0X /∈ M [sj]. Thus {0X} generates re for some e > 0 encoded in
the state.

5.2 Example: Nilpotent Coefficients of Invertible Polynomials

We conclude by outlining a simple and very concrete application [2, pp. 10–11]
of Theorem 5, and sketching how our algorithm would be implemented in this
case. Fixing our countable commutative ring X, let f =

∑n
i=0 aiTi be a unit in

the polynomial ring X[T]. Then each ai for i > 0 is nilpotent.
To prove this, by Theorem5 it suffices to show that ai ∈ P for all prime

ideals P of X. Let g ∈ X[T] be such that fg = 1, and let P be some arbitrary
prime ideal. Then we also have fg = 1 in (X/P)[T], but since P is prime, X/P
is an integral domain, and thus 0 = deg(fg) = deg(f) + deg(g). This implies
that deg(f) = 0 in (X/P)[T] and thus ai ∈ P for all i > 0.

In order to obtain a concrete algorithm, which for any ai for i > 0, produces
some e > 0 such that re = 0, we need to analyse the above argument to produce
a specific functional ψ which for any S ⊆ X, witnesses the statement that either
ai ∈ S or S is not a prime ideal. Fixing i > 0 and S, we define ψ(S) via the
following algorithm:

– Check in turn whether any of 0 /∈ S, 1 ∈ S or ai ∈ S are true. In the first
case, return ψ(S) = 0, and in the others, ψ(S) = 1 and ψ(S) = 2 respectively.

– Otherwise, let g =
∑m

j=0 bjT
j ∈ X[T] be such that

1 = fg =
n+m∑

k=0

ckT k

546 T. Powell et al.

for ck =
∑k

j=0 ajbk−j . Then in particular, for i > 0 we have 0 = ci =
∑i−1

j=0 ajbi−j + aib0 and so (using that a0b0 = c0 = 1):

ai = −a0

i−1∑

j=0

ajbi−j . (7)

There are now two subcases to consider.
• If all of b1, . . . , bi ∈ S, then because ai /∈ S, an analysis of the r.h.s. of

(7) allows us to find, in a finite number of steps, either some xu, xv ∈ S
and xw /∈ S such that xw = xu + xv, in which case we return ψ(S) =
(3, u, v, w), or some xu ∈ S, xv and xw /∈ S such that xw = xuxv, in which
case we return ψ(S) = (4, u, v, w).

• Otherwise we have bj /∈ S for some 1 ≤ j ≤ i. Take 1 ≤ k ≤ n and
1 ≤ l ≤ m to be the maximal such that ak, bl /∈ S (note that because
ai /∈ S then this maximal ak also exists) and consider

0 = ck+l = akbl +
∑

p+q=k+l∧(p>k∨q>l)

apbq.

Then, splitting into two further subcases: Either akbl ∈ S, in which case
we return ψ(S) = (5, u, v, w) for xu = ak, xv = bl and xw = akbl, or

−
∑

apbq = akbl /∈ S

and since for each summand apbq either ap ∈ S or bq ∈ S, an analysis
analogous to the previous case returns ψ(S) = (3, u, v, w)or(4, u, v, w) for
suitable u, v, w.

Therefore, running our algorithm for ψ as defined above results in a sequential
algorithm which, by Theorem6 terminates in some final state sj with f [sj] =
〈b, e〉 for e > 0 and ae

i = 0.

Example 1. In the very simple case where X = Z4 and f = a0 + a1T = 1 + 2T ,
the corresponding run our algorithm for a1 = 2 would be as follows;

– M [s0] = Z4, and since 1 ∈ Z4 we are in the first main case of the definition
of ψ above, and we have ψ(Z4) = 1. Therefore we remove 1 from Z4, citing
1 · 2 = 21 as evidence.

– M [s1] = Z4\{1}, and since a1 = 2 ∈ Z4\{1} we are again in the first main
case. Therefore we set ψ(Z4\{1}) = 2 and remove 2 with evidence 2 · 1 = 21.

– M [s2] = Z4\{1, 2}. We now fall into the second main case. Picking g =
b0 + b1T = 1 + 2T as our inverse for f , since in Z4:

(1 + 2T)(1 + 2T) = 1,

we have b1 = 2 /∈ Z4\{1, 2}. This puts us in the second subcase, where we
observe that a1 = b1 = 2 are the maximal coefficients with a1, b1 /∈ Z4\{1, 2}.
Then 0 = c2 = a1 · b1 ∈ Z4\{1, 2}, and thus ψ(Z4\{1, 2}) = (5, 2, 2, 0), and so
we remove 0 with evidence 0 = 22.

An Algorithmic Approach to the Existence of Ideal Objects 547

– Finally, M [s3] = Z4\{0} (since we now re-add both 1 and 2 to the approxi-
mation) and ψ(Z4\{0}) = 0, and since we have already stored the evidence
that 0 = 22, the algorithm terminates with e = 2.

Acknowledgements. The authors are grateful to the anonymous referees for their
detailed comments, which led to a much improved version of the paper.

References

1. Aschieri, F., Berardi, S.: Interactive learning-based realizability for Heyting arith-
metic with EM1. Log. Methods Comput. Sci. 6(3), 1–22 (2010)

2. Atiyah, M., Macdonald, I.: Introduction to Commutative Algebra. Addison-Wesley
Publishing Co., Boston (1969)

3. Berger, U., Lawrence, A., Forsberg, F., Seisenberger, M.: Extracting verified deci-
sion procedures: DPLL and resolution. Log. Methods Comput. Sci. 11(1:6), 1–18
(2015)

4. Berger, U., Miyamoto, K., Schwichtenberg, H., Seisenberger, M.: Minlog - a tool
for program extraction supporting algebras and coalgebras. In: Corradini, A., Klin,
B., Ĉırstea, C. (eds.) CALCO 2011. LNCS, vol. 6859, pp. 393–399. Springer, Hei-
delberg (2011). https://doi.org/10.1007/978-3-642-22944-2 29

5. Cederquist, J., Coquand, T.: Entailment relations and distributive lattices. In:
Buss, S.R., Hájek, P., Pudlák, P. (eds.) Logic Colloquium 1998, Proceedings of the
Annual European Summer Meeting of the Association for Symbolic Logic. Lect.
Notes Logic, Prague, Czech Republic, 9–15 August 1998, vol. 13, pp. 127–139. A.
K. Peters, Natick (2000)

6. Cederquist, J., Negri, S.: A constructive proof of the Heine-Borel covering theorem
for formal reals. In: Berardi, S., Coppo, M. (eds.) TYPES 1995. LNCS, vol. 1158,
pp. 62–75. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61780-9 62

7. Coste, M., Lombardi, H., Roy, M.F.: Dynamical method in algebra: Effective Null-
stellensätze. Ann. Pure Appl. Logic 111(3), 203–256 (2001)

8. Gödel, K.: Über eine bisher noch nicht benützte Erweiterung des finiten Stand-
punktes. Dialectica 12, 280–287 (1958)

9. Gurevich, Y.: Sequential abstract-state machines capture sequential algorithms.
ACM Trans. Comput. Log. (TOCL) 1, 77–111 (2000)

10. Kohlenbach, U.: On the no-counterexample interpretation. J. Symb. Log. 64, 1491–
1511 (1999)

11. Kohlenbach, U.: Some computational aspects of metric fixed point theory. Nonlin-
ear Anal. 61(5), 823–837 (2005)

12. Kohlenbach, U.: Some logical metatheorems with applications in functional anal-
ysis. Trans. Amer. Math. Soc. 357, 89–128 (2005)

13. Kohlenbach, U.: Applied Proof Theory: Proof Interpretations and their Use in
Mathematics. Monographs in Mathematics. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-77533-1

14. Kohlenbach, U.: Proof-theoretic methods in nonlinear analysis. In: Proceedings of
the ICM 2018, vol. 2, pp. 79–100. World Scientific (2019)

15. Kohlenbach, U., Koutsoukou-Argyraki, A.: Rates of convergence and metastability
for abstract Cauchy problems generated by accretive operators. J. Math. Anal.
Appl. 423, 1089–1112 (2015)

https://doi.org/10.1007/978-3-642-22944-2_29
https://doi.org/10.1007/3-540-61780-9_62
https://doi.org/10.1007/978-3-540-77533-1
https://doi.org/10.1007/978-3-540-77533-1

548 T. Powell et al.

16. Kohlenbach, U., Leuştean, L.: Effective metastability of Halpern iterates in CAT(0)
spaces. Adv. Math. 321, 2526–2556 (2012)

17. Kreisel, G.: On the interpretation of non-finitist proofs. Part I. J. Symb. Log. 16,
241–267 (1951)

18. Kreisel, G.: On the interpretation of non-finitist proofs, Part II: interpretation of
number theory. J. Symb. Log. 17, 43–58 (1952)

19. Kreisel, G.: Mathematical significance of consistency proofs. J. Symb. Log. 23(2),
155–182 (1958)

20. Lombardi, H., Quitté, C.: Commutative Algebra: Constructive Methods: Finite
Projective Modules. Springer, Dordrecht (2015). https://doi.org/10.1007/978-94-
017-9944-7

21. Mulvey, C., Wick-Pelletier, J.: A globalization of the Hahn-Banach theorem. Adv.
Math. 89, 1–59 (1991)

22. Negri, S., von Plato, J., Coquand, T.: Proof-theoretical analysis of order relations.
Arch. Math. Logic 43, 297–309 (2004)

23. Oliva, P., Powell, T.: A game-theoretic computational interpretation of proofs in
classical analysis. In: Kahle, R., Rathjen, M. (eds.) Gentzen’s Centenary, pp. 501–
531. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-10103-3 18

24. Oliva, P., Powell, T.: Spector bar recursion over finite partial functions. Ann. Pure
Appl. Log. 168(5), 887–921 (2017)

25. Persson, H.: An application of the constructive spectrum of a ring. In: Type The-
ory and the Integrated Logic of Programs. Chalmers University and University of
Göteborg (1999). Ph.D. thesis

26. Powell, T.: On bar recursive interpretations of analysis. Ph.D. thesis, Queen Mary
University of London (2013)

27. Powell, T.: Gödel’s functional interpretation and the concept of learning. In: Pro-
ceedings of Logic in Computer Science (LICS 2016), pp. 136–145. ACM (2016)

28. Powell, T.: Sequential algorithms and the computational content of classical proofs
(2018). https://arxiv.org/abs/1812.11003

29. Richman, F.: Nontrivial uses of trivial rings. Proc. Am. Math. Soc. 103(4), 1012–
1014 (1988)

30. Rinaldi, D., Schuster, P.: A universal Krull-Lindenbaum theorem. J. Pure Appl.
Algebra 220, 3207–3232 (2016)

31. Rinaldi, D., Schuster, P., Wessel, D.: Eliminating disjunctions by disjunction elim-
ination. Bull. Symb. Logic 23(2), 181–200 (2017)

32. Rinaldi, D., Schuster, P., Wessel, D.: Eliminating disjunctions by disjunction elim-
ination. Indag. Math. (N.S.) 29(1), 226–259 (2018)

33. Rinaldi, D., Wessel, D.: Cut elimination for entailment relations. Arch. Math. Log.
(2018). https://doi.org/10.1007/s00153-018-0653-0

34. Rinaldi, D., Wessel, D.: Extension by conservation. Sikorski’s theorem. Log. Meth-
ods Comput. Sci. 14(4:8), 1–17 (2018)

35. Sanders, S.: Metastability and higher-order computability. In: Artemov, S., Nerode,
A. (eds.) LFCS 2018. LNCS, vol. 10703, pp. 309–330. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-72056-2 19

36. Schlagbauer, K., Schuster, P., Wessel, D.: Der Satz von Hahn-Banach im Rahmen
einer allgemeinen Idealtheorie. Confluentes Math, forthcoming

37. Schuster, P.: Induction in algebra: a first case study. In: 2012 27th Annual
ACM/IEEE Symposium on Logic in Computer Science, pp. 581–585. IEEE Com-
puter Society Publications (2012). Proceedings, LICS 2012, Dubrovnik, Croatia

38. Schuster, P.: Induction in algebra: a first case study. Log. Methods Comput. Sci.
9(3), 20 (2013)

https://doi.org/10.1007/978-94-017-9944-7
https://doi.org/10.1007/978-94-017-9944-7
https://doi.org/10.1007/978-3-319-10103-3_18
https://arxiv.org/abs/1812.11003
https://doi.org/10.1007/s00153-018-0653-0
https://doi.org/10.1007/978-3-319-72056-2_19

An Algorithmic Approach to the Existence of Ideal Objects 549

39. Schuster, P., Wessel, D.: A general extension theorem for directed-complete partial
orders. Rep. Math. Logic 53, 79–96 (2018)

40. Schwichtenberg, H., Seisenberger, M., Wiesnet, F.: Higman’s lemma and its com-
putational content. In: Kahle, R., Strahm, T., Studer, T. (eds.) Advances in Proof
Theory. PCSAL, vol. 28, pp. 353–375. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-29198-7 11

41. Simpson, S.G.: Subsystems of Second Order Arithmetic. Perspectives in Mathe-
matical Logic. Springer, Berlin (1999)

42. Spector, C.: Provably recursive functionals of analysis: a consistency proof of analy-
sis by an extension of principles in current intuitionistic mathematics. In: Dekker,
F.D.E. (ed.) Recursive Function Theory: Proceedings of the Symposia in Pure
Mathematics, vol. 5, pp. 1–27. American Mathematical Society, Providence, Rhode
Island (1962)

43. Tao, T.: Soft analysis, hard analysis, and the finite convergence principle. Essay,
published as Chap. 1.3 of T. Tao, Structure and Randomness: Pages from Year
1 of a Mathematical Blog, Amer. Math. Soc (2008). Original version available
online at http://terrytao.wordpress.com/2007/05/23/soft-analysis-hard-analysis-
and-the-finite-convergence-principle/

44. Wessel, D.: Ordering groups constructively. Commun. Algebra, forthcoming
45. Yengui, I.: Making the use of maximal ideals constructive. Theor. Comput. Sci.

392, 174–178 (2008)
46. Yengui, I.: Constructive Commutative Algebra. LNM, vol. 2138. Springer, Cham

(2015). https://doi.org/10.1007/978-3-319-19494-3

https://doi.org/10.1007/978-3-319-29198-7_11
https://doi.org/10.1007/978-3-319-29198-7_11
http://terrytao.wordpress.com/2007/05/23/soft-analysis-hard-analysis-and-the-finite-convergence-principle/
http://terrytao.wordpress.com/2007/05/23/soft-analysis-hard-analysis-and-the-finite-convergence-principle/
https://doi.org/10.1007/978-3-319-19494-3

Reverse Mathematics and Computability
Theory of Domain Theory

Sam Sanders(B)

School of Mathematics, Leeds University, Leeds, UK
sasander@me.com

Abstract. This paper deals with the foundations of mathematics and
computer science, domain theory in particular; the latter studies certain
ordered sets, called domains, with close relations to topology. Concep-
tually speaking, domain theory provides a highly abstract and general
formalisation of the intuitive notions ‘approximation’ and ‘convergence’.
Thus, a major application in computer science is the semantics of pro-
gramming languages. We study the following foundational questions:
(Q1) Which axioms are needed to prove basic results in domain theory?
(Q2) How hard it is to compute the objects in these basic results?
Clearly, (Q1) is part of the program Reverse Mathematics, while (Q2) is
part of computability theory in the sense of Kleene. Our main result is
that even very basic theorems in domain theory are extremely hard to
prove, while the objects in these theorems are similarly extremely hard
to compute; this hardness is measured relative to the usual hierarchy of
comprehension axioms, namely one requires full second-order arithmetic
in each case. By contrast, we show that the formalism of domain theory
obviates the need for the Axiom of Choice, a foundational concern.

1 Introduction

In a nutshell, our main result is that even the most basic theorems in domain
theory are extremely hard to prove, while the objects in these theorems are
similarly extremely hard to compute; this hardness is measured relative to the
usual hierarchy of comprehension axioms, namely one requires full second-order
arithmetic in each case. This observed hardness has nothing to do with the
Axiom of Choice, and we even show that the formalism of domain theory can
obviate the need for this axiom. In this light, our paper deals with the study of
domain theory from the point of view of Reverse Mathematics and computability
theory. Let us first introduce some of the aforementioned italicised notions.

First of all, Reverse Mathematics (RM hereafter) is a program in the founda-
tions of mathematics where the aim is to identify the minimal axioms needed to
prove theorems of ordinary, i.e. non-set theoretical, mathematics. We provide an

This research was supported by the John Templeton Foundation grant a new dawn of
intuitionism with ID 60842. Opinions expressed in this paper do not necessarily reflect
those of the John Templeton Foundation. See also Remark 4.7 below.

c© Springer-Verlag GmbH Germany, part of Springer Nature 2019
R. Iemhoff et al. (Eds.): WoLLIC 2019, LNCS 11541, pp. 550–568, 2019.
https://doi.org/10.1007/978-3-662-59533-6_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-59533-6_33&domain=pdf
https://doi.org/10.1007/978-3-662-59533-6_33

Reverse Mathematics and Computability Theory of Domain Theory 551

introduction to RM in Sect. 2.1. We note that the RM of domain theory (resp.
topology) has already been initiated in [29,40] (resp. [37–39]).

Secondly, domain theory is a field in the intersection of mathematics and com-
puter science [1,19–21]. At a conceptual level, domain theory provides a highly
abstract and general formalisation for the intuitive notions of ‘approximation’
and ‘convergence’, which can be used to provide semantics for programming lan-
guages. In particular, domain theory deals with the study of certain ordered sets,
called domains, with close relations to topology. The central notions are directed
sets and nets; nets generalise the concept of sequence to uncountable index sets,
given by directed sets. For instance, nets and directed sets yield intuitive defini-
tions of the Scott and Lawson topologies (see [20, II and III]). Moreover, there
are rather strong opinions about the central role of nets and directed sets in
domain theory, even pertaining to the Axiom of Choice.

clinging to ascending sequences would produce a mathematical theory that
becomes rather bizarre, whence our move to directed [21, p. 59]

Turning to foundations, we feel that the necessity to choose chains where
directed subsets are naturally available (such as in function spaces) and
thus to rely on the Axiom of Choice without need, is a serious stain on
this approach. [1, §2.2.4].

In light of these quotes, directed sets are first-class citizens in domain theory
while sequences do not provide an acceptable substitute. We have therefore opted
to work in Kohlenbach’s higher-order RM (see Sect. 2.1) where (uncountable)
directed sets are directly available. By contrast, ‘classical’ RM is developed in the
language of second-order arithmetic, i.e. directed sets and nets are represented
by countable objects, which runs counter to the opinions in the above quotes.
Similarly, we work with Kleene’s higher-order notion of computability, given by
his S1–S9 schemes (see Sect. 2.2) and which extends Turing’s framework [55].
Based on the above, we answer the following foundational questions in this paper.

(Q1) As part of the program Reverse Mathematics, which axioms are needed to
prove basic results in domain theory?

(Q2) How hard it is to compute, in the sense of Kleene’s S1-S9, the objects in
basic results in domain theory?

Regarding (Q1), we study the monotone convergence theorem for nets, which
is implicit in the central object of study from domain theory, namely directed-
complete posets. Even for the basic case of nets in the unit interval indexed
by Baire space, this theorem is extremely hard to prove, relative to the usual
hierarchy of comprehension axioms; a proof namely requires full second-order
arithmetic which is also sufficient (see Sect. 3.1). Thus, the observed hardness
has nothing to do with the Axiom of Choice, and we show in Sect. 3.2 that using
nets rather than sequences obviates the need for this axiom, a foundational
concern expressed in the above quotes.

Regarding (Q2), it turns out that the limit in the monotone convergence the-
orem (for nets in the unit interval indexed by Baire space) is similarly extremely

552 S. Sanders

hard to compute, but we moreover show that more general index sets (definable
in the finite type hiearchy) yield a hierarchy including n-th order arithmetic for
any n ≥ 2 (see Sect. 4). We have relegated certain technical definitions (Sect. A.1)
and certain similar proofs (Sect. A.2) to the appendix.

Finally, as to prior art, it is shown in [48] that the Bolzano-Weierstrass the-
orem for nets in the unit interval indexed by subsets of Baire space, implies the
Heine-Borel theorem for uncountable covers. Dini’s theorem for nets is shown to
be equivalent to this covering theorem even. We discuss the general context and
foundational implications of these results in Sect. 5.

2 Preliminaries

We introduce Reverse Mathematics in Sect. 2.1, as well as its generalisation to
higher-order arithmetic, and the associated base theory RCAω

0 . We introduce
some essential axioms in Sect. 2.2. To obtain our main RM-results it suffices to
study nets indexed by subsets of Baire space; the latter bit of set theory shall be
represented in RCAω

0 as in Definition 2.2 in Sect. 2.1.

2.1 Reverse Mathematics

Reverse Mathematics is a program in the foundations of mathematics initiated
around 1975 by Friedman [13,14] and developed extensively by Simpson [51].
The aim of RM is to identify the minimal axioms needed to prove theorems of
ordinary, i.e. non-set theoretical, mathematics.

We refer to [53] for a basic introduction to RM and to [50,51] for an overview
of RM. We expect basic familiarity with RM, but do sketch some aspects of
Kohlenbach’s higher-order RM [27] essential to this paper, including the base
theory RCAω

0 (Definition A.1). As will become clear, the latter is officially a type
theory but can accommodate (enough) set theory via Definition 2.2.

First of all, in contrast to ‘classical’ RM based on second-order arithmetic Z2,
higher-order RM uses the richer language Lω of higher-order arithmetic. Indeed,
while second-order RM is restricted to natural numbers and sets of natural num-
bers, higher-order arithmetic can accommodate sets of sets of natural numbers,
sets of sets of sets of natural numbers, et cetera. To formalise this idea, we
introduce the collection of all finite types T, defined by the two clauses:

(i) 0 ∈ T and (ii) If σ, τ ∈ T then (σ → τ) ∈ T,

where 0 is the type of natural numbers, and σ → τ is the type of mappings from
objects of type σ to objects of type τ . In this way, 1 ≡ 0 → 0 is the type of
functions from numbers to numbers, and where n + 1 ≡ n → 0. Viewing sets as
given by characteristic functions, Z2 only includes objects of type 0 and 1.

Secondly, the language Lω includes variables xρ, yρ, zρ, . . . of any finite type
ρ ∈ T. Types may be omitted when they can be inferred from context. The
constants of Lω includes the type 0 objects 0, 1 and <0,+0,×0,=0 which are

Reverse Mathematics and Computability Theory of Domain Theory 553

intended to have their usual meaning pertaining to N. Equality at higher types
is defined in terms of ‘=0’ as follows: for any objects xτ , yτ , we have

[x =τ y] ≡ (∀zτ1
1 . . . zτk

k)[xz1 . . . zk =0 yz1 . . . zk], (2.1)

if the type τ is composed as τ ≡ (τ1 → . . . → τk → 0). Furthermore, Lω also
includes the recursor constant Rσ for any σ ∈ T, which allows for iteration on
type σ-objects as in the special case (A.1). Formulas and terms are defined as
usual. One obtains the sub-language Ln+2 by restricting the above type formation
rule to produce only type n+1 objects (and related types of similar complexity).

As discussed in [27, §2], RCAω
0 and RCA0 prove the same sentences ‘up to

language’ as the latter is set-based and the former function-based. Recursion
as in (A.1) is called primitive recursion; the class of functionals obtained from
Rρ for all ρ ∈ T is Gödel’s system T of all (higher-order) primitive recursive
functionals.

We use the usual notations for natural, rational, and real numbers, and the
associated functions, as introduced in [27, pp. 288–289].

Definition 2.1 (Real numbers and related notions in RCAω
0)

(a) Natural numbers correspond to type zero objects, and we use ‘n0’ and ‘n ∈ N’
interchangeably. Rational numbers are defined as signed quotients of natural
numbers, and ‘q ∈ Q’ and ‘<Q’ have their usual meaning.

(b) Real numbers are coded by fast-converging Cauchy sequences q(·) : N →
Q, i.e. such that (∀n0, i0)(|qn − qn+i)| <Q

1
2n). We use Kohlenbach’s ‘hat

function’ from [27, p. 289] to guarantee that every q1 defines a real number.
(c) We write ‘x ∈ R’ to express that x1 := (q1

(·)) represents a real as in the
previous item and write [x](k) := qk for the k-th approximation of x.

(d) Two reals x, y represented by q(·) and r(·) are equal, denoted x =R y, if
(∀n0)(|qn −rn| ≤ 2−n+1). Inequality ‘<R’ is defined similarly. We sometimes
omit the subscript ‘R’ if it is clear from context.

(e) Functions F : R → R are represented by Φ1→1 mapping equal reals to equal
reals, i.e. (∀x, y ∈ R)(x =R y → Φ(x) =R Φ(y)).

(f) The relation ‘x ≤τ y’ is defined as in (2.1) but with ‘≤0’ instead of ‘=0’.
Binary sequences are denoted ‘f1, g1 ≤1 1’, but also ‘f, g ∈ C’ or ‘f, g ∈ 2N’.
Elements of Baire space are given by f1, g1, but also denoted ‘f, g ∈ NN’.

(g) Sets of type ρ objects Xρ→0, Y ρ→0, . . . are given by their characteristic
functions F ρ→0

X ≤ρ→0 1, i.e. we write ‘x ∈ X’ for FX(x) =0 1.

The following special case of item (g) is singled out, as it will be used below.

Definition 2.2. [RCAω
0] A ‘subset D of NN’ is given by its characteristic function

F 2
D ≤2 1, i.e. we write ‘f ∈ D’ for FD(f) = 1 for any f ∈ NN. A ‘binary

relation � on a subset D of NN’ is given by the associated characteristic function
G

(1×1)→0
� , i.e. we write ‘f � g’ for G�(f, g) = 1 and any f, g ∈ D. Assuming

extensionality on the reals as in item (e), we obtain characteristic functions that
represent subsets of R and relations thereon. Using pairing functions, it is clear

554 S. Sanders

we can also represent sets of finite sequences (of reals), and relations thereon.
To improve readability, the variables v, w, u, . . . are reserved for finite sequence
of reals, which have the dedicated type ‘1∗’, as detailed in Notation A.3. A finite
sequence w1∗

= 〈y0, . . . , yk〉 has ‘length’ |w| = k + 1, and |〈〉| = 0.

2.2 Higher-Order Computability Theory

As noted above, some of our main results are part of computability theory. Thus,
we first make our notion of ‘computability’ precise as follows.

(I) We adopt ZFC, i.e. Zermelo-Fraenkel set theory with the Axiom of Choice,
as the official metatheory for all results, unless explicitly stated otherwise.

(II) We adopt Kleene’s notion of higher-order computation as given by his nine
clauses S1-S9 (see [30,45]) as our official notion of ‘computable’.

We only need Kleene’s S1-S9 as a ‘background theory’, as we will always obtain
primitive recursive computability, in the sense of Gödel’s T (see [30]).

For the rest of this section, we introduce some existing functionals which will
be used below. These also constitute the higher-order counterparts of second-
order arithmetic Z2, and some of the Big Five systems, in higher-order RM. We
use the formulation from [27,41]. First of all, ACA0 is readily derived from:

(∃μ2)(∀f1)
[
(∃n)(f(n) = 0) → [(f(μ(f)) = 0) ∧ (∀i < μ(f))f(i) = 0] (μ2)

∧ [(∀n)(f(n) = 0) → μ(f) = 0]
]
,

and ACAω
0 ≡ RCAω

0 + (μ2) proves the same sentences as ACA0 by [24, Theo-
rem 2.5]. The (unique) functional μ2 in (μ2) is also called Feferman’s μ [2], and
is discontinuous at f =1 11 . . . ; in fact, (μ2) is equivalent to the existence of
F : R → R such that F (x) = 1 if x >R 0, and 0 otherwise [27, §3], and to

(∃ϕ2 ≤2 1)(∀f1)
[
(∃n)(f(n) = 0) ↔ ϕ(f) = 0

]
. (∃2)

Secondly, Π1
1 -CA0 is readily derived from the following sentence:

(∃S2 ≤2 1)(∀f1)
[
(∃g1)(∀n0)(f(gn) = 0) ↔ S(f) = 0

]
, (S2)

and Π1
1 -CAω

0 ≡ RCAω
0 + (S2) proves the same Π1

3 -sentences as Π1
1 -CA0 by [46,

Theorem 2.2]. The (unique) functional S2 in (S2) is also called the Suslin func-
tional [27]. By definition, the Suslin functional S2 can decide whether a Σ1

1 -
formula (as in the left-hand side of (S2)) is true or false. We similarly define the
functional S2

k which decides the truth or falsity of Σ1
k-formulas; we also define

the system Π1
k -CAω

0 as RCAω
0 + (S2

k), where (S2
k) expresses that S2

k exists. Note
that we allow formulas with function parameters, but not functionals here.
In fact, Gandy’s Superjump S3 [18] constitutes a way of extending Π1

1 -CAω
0 to

parameters of type two, as follows:

S(F 2, e0) :=

{
0 if {e}(F) terminates
1 otherwise

, (S3)

Reverse Mathematics and Computability Theory of Domain Theory 555

where the formula ‘{e}(F) terminates’ is a Π1
1 -formula, defined by Kleene’s

S1–S9 and (obviously) involving type two parameters.
Thirdly, full second-order arithmetic Z2 is derived from ∪kΠ1

k -CAω
0 , or from:

(∃E3 ≤3 1)(∀Y 2)
[
(∃f1)Y (f) = 0 ↔ E(Y) = 0

]
, (∃3)

and we therefore define ZΩ
2 ≡ RCAω

0 + (∃3) and Zω
2 ≡ ∪kΠ1

k -CAω
0 , which are

conservative over Z2 by [24, Cor. 2.6]. Despite this close connection, Zω
2 and ZΩ

2

can behave quite differently, as discussed in e.g. [41, §2.2]. The functional from
(∃3) is also called ‘∃3’, and we use the same convention for other functionals.

Finally, the Heine-Borel theorem states the existence of a finite sub-cover
for an open cover of certain spaces. Now, a functional Ψ : R → R+ gives rise
to the canonical cover ∪x∈II

Ψ
x for I ≡ [0, 1], where IΨ

x is the open interval
(x−Ψ(x), x+Ψ(x)). Hence, the uncountable cover ∪x∈II

Ψ
x has a finite sub-cover

by the Heine-Borel theorem; in symbols:

(∀Ψ : R → R+)(∃y1, . . . , yk ∈ I)(∀x ∈ I)(∃i ≤ k)(x ∈ IΨ
yi

). (HBU)

Note that HBU is almost verbatim Cousin’s lemma (see [9, p. 22]), i.e. the
Heine-Borel theorem restricted to canonical covers. The latter restriction does
not make much of a big difference, as studied in [47]. By [41,42], ZΩ

2 proves HBU
but Zω

2 +QF-AC0,1 cannot, and many basic properties of the gauge integral [36,54]
are equivalent to HBU. Although strictly speaking incorrect, we sometimes use
set-theoretic notation, like reference to the cover ∪x∈II

Ψ
x inside RCAω

0 , to make
proofs more understandable. Such reference can in principle be removed in favour
of formulas of higher-order arithmetic.

2.3 Introducing Nets

We introduce the notion of directed set and nets, and associated concepts.
On a historical note, Moore-Smith and Vietoris independently introduced these
notions about a century ago in [34,56]. We first consider the following standard
definition (see e.g. [25, Ch. 2]).

Definition 2.3. [Nets] A set D = ∅ with a binary relation ‘�’ is directed if

(a) The relation � is transitive, i.e. (∀x, y, z ∈ D)([x � y ∧ y � z] → x � z).
(b) For x, y ∈ D, there is z ∈ D such that x � z ∧ y � z.
(c) The relation � is reflexive, i.e. (∀x ∈ D)(x � x).

For such (D,�) and topological space X, any map x : D → X is a net in X.

We denote x(d) as xd to suggest the connection to sequences. Note that a net is
officially a triple (D,�, xd), but the first two are often not mentioned explicitly.

In Sect. 3, we only study directed sets that are subsets of Baire space, i.e. as
given by Definition 2.2. Similarly, we only study nets xd : D → R where D is a
subset of Baire space. Thus, a net xd in R is just a type 1 → 1 functional with
extra structure on its domain D provided by ‘�’ as in Definition 2.2.

The definitions of convergence and increasing net are of course familiar.

556 S. Sanders

Definition 2.4. [Convergence of nets] If xd is a net in X, we say that xd con-
verges to the limit limd xd = y ∈ X if for every neighbourhood U of y, there is
d0 ∈ D such that for all e � d0, xe ∈ U .

Definition 2.5. [Increasing nets] A net xd in R is increasing if a � b implies
xa ≤R xb for all a, b ∈ D.

The notion of ‘sub-net’ was first given by Moore in [35] and is used in [25], but
is not needed in this paper. Finally, we point out that N with its usual ordering
yields a directed set, i.e. convergence results about nets do apply to sequences.

3 Reverse Mathematics

3.1 Monotone Convergence for Nets

We show that the monotone convergence theorem for nets in [0, 1] is extremely
hard to prove, while the associated limit is similarly hard to compute. Indeed,
one needs full second-order arithmetic as in (∃3) in each case.

Let MCT0
net state that every increasing net in [0, 1] converges. As discussed

in Sect. 2.3, MCT0
net is restricted to nets that are indexed by subsets of NN. We

show MCT0
net → HBU in Theorem 3.1, but Theorem 3.2 is of more importance:

MCT0
net is provable without the Axiom of Choice, i.e. the ‘hardness’ of the former

theorem has nothing to do with the latter. We obtain a relative computability
result in Theorem 3.3, the foundation for Sect. 4.

As to the provenance of MCT0
net, this theorem can be found in e.g. [7, p. 103],

but is also implicit in domain theory. Indeed, the main objects of study of domain
theory are dcpos, i.e. directed-complete posets, and every monotone net con-
verges to its supremum in any dcpo.

Theorem 3.1. The system RCAω
0 + MCT0

net proves HBU.

Proof. Note that MCT0
net implies the monotone convergence theorem for

sequences, as the latter are nets. Hence, we have access to ACA0 by [51, III.2.2].
We shall prove the theorem twice: once in case (∃2) and once in case ¬(∃2); the
law of excluded middle as in (∃2) ∨ ¬(∃2) then finishes the proof.

Now, in case ¬(∃2), all functions on R are continuous by [27, Prop. 3.12].
Hence, ∪q∈Q∩[0,1]I

Ψ
q is a countable sub-cover of ∪x∈[0,1]I

Ψ
x for any Ψ : I → R+.

By [51, VI.1], WKL already implies that the former has a finite sub-cover, i.e.
this case is finished. For the case (∃2), fix some Ψ : I → R+ and use (∃2) to
define D as the set of finite sequences of reals w1∗

such that 0 ∈ w and the cover
∪i<|w|IΨ

w(i) has ‘no holes’, i.e. any point between two intervals of this cover, is
also in the cover. We define ‘v � w’ as (∀i < |v|)(∃j < |w|)(v(i) =R w(j)).
Clearly, (D,�) is a directed set and we define the net xw : D → [0, 1] as the
right end-point of the right-most interval in ∪i<|w|IΨ

w(i), capped by 1 if necessary.
Since xw is increasing by definition, let x ∈ [0, 1] be the limit provided by

MCT0
net. If x =R 1, then apply limxd = x for ε = Ψ(1) to find a finite sub-cover

Reverse Mathematics and Computability Theory of Domain Theory 557

for the canonical cover associated to Ψ . In case x <R 1, apply lim xd = x for
ε0 = min(Ψ(x), |x − 1|/2), i.e. there is w0 ∈ D such that for all v � w0, we
have |xv − x| < ε0, implying xv ∈ IΨ

x . Fix such w0 and consider v0 := w0 ∗ 〈x〉.
The latter is in D and satisfies v0 � w0. Hence, xv0 must be in IΨ

x by the
aforementioned convergence, but xv0 ∈ IΨ

x by definition of the net xw. Hence,
we have obtained a contradiction in case x <R 1. ��

On one hand, the previous implies that nets indexed by subsets of Baire
space already give rise to HBU. On the other hand, the proof of the following
corollary suggests that such nets are ‘all we can handle’ in ZΩ

2 . Moreover, the
proof suggests that Zω

2 + HBU cannot prove MCT0
net.

Theorem 3.2. The system ZΩ
2 proves MCT0

net, while Zω
2 + QF-AC0,1 does not.

Proof. The negative result follows from [42, Theorem 4.3]. For the remaining
result, note that HBU is available thanks to [42, Theorem 4.2]. Suppose ¬MCT0

net,
i.e. there is some increasing net xd in I that does not converge to any point in I.
Hence, for every x ∈ I there is n ∈ N such that for all d ∈ D there is e � d such
that |x − xe| ≥ 1

2n . Since ∃3 is given, we may use QF-AC1,0 to obtain Φ : I → R
such that Φ(x) is the least such n ∈ N. Define Ψ(x) := 1

2Φ(x) and use HBU to find
y1, . . . , yk ∈ I such that ∪i≤kIΨ

yi
covers I. By definition, for any i ≤ k, either xd

is ‘below’ IΨ
yi

for all d ∈ D or there is di ∈ D such that xe is ‘above’ IΨ
yi

for all
e � di. Let di1 , . . . , dim

∈ D be all such numbers from the second case. There is
e0 � dij

for j ≤ m by Definition 2.3, but xe0 cannot be in I, a contradiction. ��
The previous theorem also implies that MCT0

net has the same first-order strength
as ACA0 using the above ‘excluded middle trick’ and the ‘splitting’ of (∃3) as
[(κ3

0) + (∃2)] ↔ (∃3), where (κ3
0) may be found in [49, §3.1].

Next, it is well-known that ∃2 computes a realiser for the monotone conver-
gence theorem for sequences via a term of Gödel’s T , and vice versa (see [46, §4]).
Inspired by this observation, we obtain an elegant ‘one type up’ generalisation
in Theorem 3.3. A realiser for MCT0

net is a functional taking as input (D,�D, xd)
and outputting the real x = limd xd if the inputs satisfy the conditions of MCT0

net.

Theorem 3.3. A realiser for MCT0
net computes ∃3 via a term of Gödel’s T , and

vice versa.

Proof. For the ‘vice versa’ direction, one uses the usual ‘interval halving tech-
nique’ where ∃3 is used to decide whether there is d ∈ D such that xd is in the
relevant interval. Indeed, define r : C → [0, 1] as r(f) :=

∑∞
n=0

f(n)
2n+1 and define

f0 ∈ C as follows: f0(0) = 1 if and only if (∃d ∈ D)(xd ≥ 1
2) and f0(n + 1) = 1

if and only if (∃d ∈ D)(xd ≥ r(f0n ∗ 00 . . .)). Then limd xd = r(f0), as required.
For the other direction, fix Y 2, let D be Baire space, and define ‘f � g’ by

Y (f) ≥0 Y (g) for any f, g ∈ D. It is straightforward to show that (D,�) is a
directed set. Define the net xd : D → I by 0 if Y (d) > 0, and 1 if Y (d) = 0, which
is increasing by definition. Hence, xd converges, say to y0 ∈ I, and if y0 >R 1/3,
then there is f1 such that Y (f) = 0, while if y0 <R 2/3, then (∀f1)(Y (f) > 0).
Clearly, this yields a term of Gödel’s T that computes ∃3. ��

558 S. Sanders

Corollary 3.4. The system ZΩ
2 proves MCT0

net.

The previous results show that MCT0
net is extremely hard to prove, the limit

therein similarly hard to compute. We establish in Sect. 4 that generalisations of
MCT0

net to ‘larger’ index sets have yet more extreme properties, even compared
to e.g. ∃3. We also discuss special cases for e.g. the superjump S.

3.2 The Axiom of Choice and Nets

As is clear from Sect. 1, a certain value is placed in the development of domain
theory on avoiding ‘stains’ caused by the unnecessary use of the Axiom of Choice.
In this section, we provide two important results pertaining to nets and the
Axiom of Choice. In particular, we show that replacing limits involving nets by
limits involving sequences implies QF-AC0,1, and we even obtain an equivalence
(Corollary 3.7). Moreover, we show that the definition of continuity based on
nets, as can be found in [20, p. 45], is equivalent to the epsilon-delta definition
of continuity in RCAω

0 (Theorem 3.9). By contrast, the equivalence involving
sequential continuity is not provable in ZF as it requires QF-AC0,1. In conclusion,
replacing sequences by nets can obviate the use of the Axiom of Choice, and the
latter is essential when replacing limits of nets by limits of sequences.

Nets and Sequentialisation. By the above, basic theorems regarding nets
imply HBU and are therefore extremely hard to prove. In line with the cod-
ing practise of RM, one may therefore want to replace limits involving nets by
‘countable’ limits, i.e. if a net converges to some limit, then there should be a
sequence in the net that also converges to the same limit. In this section, we
show that even elementary versions of such ‘sequentialisation’ theorems imply
QF-AC0,1. In general, it should be noted that such sequentialisation theorems
are only valid/possible for first-countable spaces.

We study the following basic sequentialisation theorem, which can be found
in Bourbaki’s general topology in general form; see [6, p. 337]. Recall I ≡ [0, 1].

Definition 3.5. [SUB0] For xd : D → I an increasing net converging to x ∈ I,
there is Φ : N → D such that λn.xΦ(n) is increasing and limn→∞ xΦ(n) =R x.

Let IND be the induction schema for all formulas in Lω. The system RCAω
0 + IND

has the same first-order strength as ACA0 (see [2]).

Theorem 3.6. The system RCAω
0 + IND proves SUB0 → QF-AC0,1.

Proof. In case ¬(∃2), all functions on Baire space are continuous by [27,
Prop. 3.7], and QF-AC0,1 reduces to QF-AC0,0, included in RCAω

0 . To observe
the latter reduction, note that the antecedent of QF-AC0,1 can be brought into
the following form in RCAω

0 : (∀n0)(∃f1)(Y (f, n) = 0), for some Y 2. Since λf.Y
is continuous by assumption, this formula is equivalent to (∀n0)(∃σ0∗

)(Y (σ ∗
00 . . . , n) = 0).

For the case (∃2), note that we also have (μ2) by [27, §3]. Define b1→1∗
as

follows: |b(f)| = f(0) + 1 and b(f)(i) for i < |b(f)| is the sequence f(1 +

Reverse Mathematics and Computability Theory of Domain Theory 559

i), f(1 + i + |b(f)|), f(1 + i + 2|b(f)|), Note that b1→1∗
provides the inverse

of a pairing function. Fix some F (0×1)→0 satisfying the antecedent of QF-AC0,1,
i.e. (∀n0)(∃f1)(F (n, f) = 0), and use IND to prove the following:

(∀n0)(∃f1)(∀i ≤ n)(F (i,b(〈n〉 ∗ f)(i)) = 0). (3.1)

The underlined formula in (3.1) is also written ‘G(n, f) = 0’ and if there is f1
0

such that (∀n0)(G(n, f0) = 0), then Y (n) := b(〈n〉 ∗ f0)(n) is as required for the
consequent of QF-AC0,1. Otherwise, i.e. in case (∀f1)(∃n0)(G(n, f) = 0), define
D := {f1 : (∃n0)G(n, f) = 0} and define ‘�’ as: f � g if and only if

(μn)(G(n, f) = 0) ≤ (μm)(G(m, g) = 0), (3.2)

which is well-defined by assumption. Note that (D,�) is a directed set by
assumption. Define the increasing net xd := 1 − 2−(μn)(G(n,d)
=0) and note that
limd xd = 1 by assumption and (3.2). By SUB0, there is some Φ0→1 such that
limn→∞ xΦ(n) = 1, i.e. (∀ε > 0)(∃m0)(∀k0 ≥ m)(|xΦ(k) − 1| < ε), and use μ2

to find Ψ2 computing such m0 from ε. Then the functional Y (n) := Φ(Ψ(1
2n+1))

provides the witness as required for the conclusion of QF-AC0,1. ��
Let ADS be the L2-sentence from the RM zoo (see [22, Def. 9.1]) that every
infinite linear order has an infinite ascending or descending sequence.

Corollary 3.7. The system RCAω
0 + IND + ADS proves SUB0 ↔ QF-AC0,1.

Proof. See Sect. A.2 ��

Nets and Continuity. We establish that ‘net-continuity’ as in Definition 3.8
and ‘epsilon-delta’ continuity are locally equivalent over RCAω

0 . As discussed in
[27, Rem. 3.13], ZF cannot prove the local1 equivalence of sequential and epsilon-
delta continuity [12], while QF-AC0,1 suffices to establish the general case.

Definition 3.8. [Net-continuity] A function f : R → R is net-continuous at
x ∈ R if for any net xd : D → R, limd xd = x implies limd f(xd) = f(x).

Note that net-continuity is equivalent to the topological definition of continuity
by [3, Example 2.7]. As it happens, the definition of continuity in [20, p. 45]
is the definition of net-continuity. Nonetheless, Scott continuity is much more
important in domain theory than (plain) net continuity.

Theorem 3.9 (RCAω
0). For f : R → R, x ∈ R, the following are equivalent:

(a) the function f : R → R is net-continuous at x,
(b) (∀ε > 0)(∃δ > 0)(∀y ∈ R)(|x − y| < δ → |f(x) − f(y)| < ε).

1 By [27, Prop. 3.6], RCAω
0 can prove the global equivalence of sequential continuity

and epsilon-delta continuity on Baire space, i.e. when those continuity properties
hold everywhere on the latter.

560 S. Sanders

Proof. The implication (b) → (a) is immediate. For the remaining implication,
note that in case of ¬(∃2), all f : R → R are continuous by [27, Prop. 3.12]. In
case (∃2), fix x ∈ R, f : R → R and suppose f is net-continuous at x, but not
epsilon-delta continuous at x, i.e. there is ε0 > 0 such that

(∀k ∈ N)(∃y ∈ R)(|x − y| <R
1
2k ∧ |f(x) − f(y)| ≥R ε0). (3.3)

Using (∃2), let D be the set of all y ∈ R such that |f(x)−f(y)| ≥R ε0 and define
‘y1 � y2’ for y1, y2 ∈ D by |x − y1| ≥R |x − y2|. Clearly, the relation � yields a
directed set. Now define a net xd : D → R by xd := d and note that xd converges
to x by (3.3). By the net-continuity of f , f(xd) then converges to f(x), which
yields a clear contradiction. ��
The previous proof highlights a conceptual advantage of nets compared to
sequences: to define a sequence λn0.xn, one has to list the members one by
one. In this light, to get a sequence from (3.3), QF-AC0,1 seems unavoidable. By
contrast, to define a net xd, one only needs to satisfy Definition 2.3, i.e. show
that there always exist ‘bigger’ (in the sense of �) elements without listing them.

Corollary 3.10. The system ZF cannot prove the local equivalence between net-
continuity and sequential continuity on R.

In conclusion, nets have the advantage that the associated notion of net-
continuity is locally equivalent to the usual epsilon-delta definition without the
Axiom of Choice as in QF-AC0,1. This confirms the opinion expressed in Sect. 1.

4 Computability Theory

The previous section is devoted to the RM-study of nets indexed by subsets
of Baire space. Our principal motivation for this restriction was simplicity: we
already obtain HBU from basic theorems pertaining to such nets. In this section,
we show that nets become more powerful when the index set is more general. In
particular, we show that for index sets expressible in Ln (n ≥ 2), the language
of n-th order arithmetic, we obtain full n-th order arithmetic from a realiser
for the associated monotone convergence theorem for nets. Thus, the ‘size’ of a
net is directly proportional to the power of the associated convergence theorem.
We have relegated the proofs of the below theorems to Sect. A.2, in light of the
similarities with the proof of Theorem3.3.

We stress that the results in this section are included by way of illustration:
the general study of nets is perhaps best undertaken in a suitable set theoretic
framework. That is not to say this section should be dismissed as spielerei : index
sets beyond Baire space do occur ‘in the wild’, namely in fuzzy mathematics or
the iterated limit theorem, as discussed in Remark 4.6 below.
First of all, we introduce the following hierarchy of comprehension functionals:

(∃E(σ→0)→0)(∀Y σ→0)
[
E(Y) =0 0 ↔ (∃fσ)(Y (f) = 0)

]
. (∃σ+2)

where σ is any finite type. Similar to Definition 2.2, we introduce the following.

Reverse Mathematics and Computability Theory of Domain Theory 561

Definition 4.1. [RCAω
0] A ‘subset E of NN → N’ is given by its characteristic

function F 3
E ≤3 1, i.e. we write ‘Y ∈ E’ for FE(Y) = 1 for any Y 2. A ‘binary

relation � on the subset E of NN → N’ is given by the associated characteristic
function G

(2×2)→0
� , i.e. we write ‘Y � Z’ for G�(Y,Z) = 1 and any Y,Z ∈ E.

Secondly, let MCT1
net be the statement that any increasing net xe : E → [0, 1],

i.e. indexed by subsets of NN → N, converges to a limit in [0, 1]. A realiser for
MCT1

net is a fifth-order object that takes as input (E,�E , xe) and outputs the
real x =R lime xe if the inputs satisfy the conditions of the theorem.

Theorem 4.2. A realiser for MCT1
net computes ∃4 via a term of Gödel’s T , and

vice versa.

Let MCTσ
net be the obvious generalisation of MCT1

net to sets of type σ+1 objects.
A realiser for the former computes ∃σ+3, and vice versa, via a straightforward
modification of Theorem 4.2. Hence, the general monotone convergence theorem
for nets is extremely hard to prove, even compared to e.g. ∃3.

Thirdly, we also study a special case of MCT0
net as follows. Let MCTS

net be
MCT0

net restricted to directed sets (D,�) and nets xd : D → I defined via arith-
metical formulas. To be absolutely clear, we assume that ‘arithmetical formulas’
are part of L2, i.e. only type zero and one parameters are allowed.

Theorem 4.3. A realiser for MCTS
net computes S2 via a term of Gödel’s T , and

vice versa.

The restriction on parameters in MCTS
net turns out to be essential: we show

that allowing type two parameters yields Gandy’s superjump S. Let MCTS
net

be MCT0
net restricted to directed sets (D,≺) and nets xd : D → I defined via

arithmetical formulas, possibly involving type two parameters.

Corollary 4.4. A realiser for MCTS
net computes S3 via a term of Gödel’s T .

To obtain a realiser for ATR0 (only), one could formulate a version of MCT0
net

restricted to directed sets (D,�) and nets xd : D → I defined via a quantifier-
free formula with continuous type two parameters. The technical details are
however somewhat involved, and we omit the proof.

Finally, let MCTseq
net be the generalisation of MCTS

net that states that for a
sequence of nets xd,n : (D × N) → [0, 1] increasing in D, there is a sequence
yn in [0, 1] such that limd xd,n = yn. Note that such ‘sequential’ theorems are
well-studied in RM, starting with [51, IV.2.12], and can also be found in e.g.
[10,11,16,17,23]. Moreover, ‘double’ nets xe,d : (D × E) → X that depend
on two index sets D,E are studied (see [25, p. 69]) for their unique convergence
properties, i.e. sequences of nets are not that exotic. Now, MCTseq

net is part of third-
order arithmetic, and we obtain the following in the same way as for Theorem4.3.

Corollary 4.5. The system RCAω
0 + MCTseq

net proves Π1
1 -CA0.

Next, we consider a conceptual remark on ‘large’ index sets and their (rather
plentiful) occurrence in mathematics.

562 S. Sanders

Remark 4.6 (Nets in fuzzy mathematics). Zadeh founded the field of fuzzy
mathematics in [58]. The core notion of fuzzy set is a mapping that assigns values
in [0, 1], i.e. a ‘level’ of membership, rather than the binary relation from usual set
theory. The first two chapters of Kelley’s General Topology [25] are generalised
to the setting of fuzzy mathematics in [44]. As an example, [44, Theorem 11.1] is
the fuzzy generalisation of the classical statement that a point is in the closure
of a set if and only if there is a net that converges to this point. However, as is
clear from the proof of this theorem, to accommodate fuzzy points in X, the net
is indexed by the space X → [0, 1]. Moreover, the iterated limit theorem for nets,
be it the standard version ([25, p. 69]; [34, §7]) or the fuzzy one [44, Theorem
12.2], involves an index set Em indexed by m ∈ D, where D is another index set.
Thus, ‘large’ index sets can be found in the wild.

Remark 4.7. This paper constitutes a spin-off from the joint project with Dag
Normann on the logical and computational properties of the uncountable. A
good starting point for those interested in this project is [41]. We thank Dag
Normann, Thomas Streicher, and Anil Nerode for their valuable advice. We also
thank the referees for all their useful comments and suggestions.

5 Nets and the Gödel Hierarchy

We discuss the foundational implications of our results, esp. as they pertain to
the Gödel hierarchy. Now, the latter is a collection of logical systems ordered via
consistency strength. This hierarchy is claimed to capture most systems that are
natural or have foundational import, as follows.

It is striking that a great many foundational theories are linearly ordered
by <. Of course it is possible to construct pairs of artificial theories which
are incomparable under <. However, this is not the case for the “natural”
or non-artificial theories which are usually regarded as significant in the
foundations of mathematics [52].

Burgess and Koellner corroborate this claim in [8, §1.5] and [26, §1.1]. The Gödel
hierarchy is a central object of study in mathematical logic, as e.g. argued by
Simpson in [52, p. 112] or Burgess in [8, p. 40]. Precursors to the Gödel hierarchy
may be found in the work of Wang [57] and Bernays (see [4,5]). Friedman [15]
studies the linear nature of the Gödel hierarchy in detail. Moreover, the Gödel
hierarchy exhibits some remarkable robustness: we can perform the following
modifications and the hierarchy remains largely unchanged:

1. Instead of the ordering via consistency strength, we can order via inclusion:
Simpson claims that inclusion and consistency strength yield the same2 Gödel

2 Simpson mentions in [52] the caveat that e.g. PRA and WKL0 have the same first-
order strength, but the latter is strictly stronger than the former.

Reverse Mathematics and Computability Theory of Domain Theory 563

hierarchy as depicted in [52, Table 1]. Some exceptional (semi-natural) state-
ments3 do fall outside of the Gödel hierarchy based on inclusion.

2. We can replace the systems with their higher-order (eponymous but for the
‘ω’) counterparts. The higher-order systems are generally conservative over
their second-order counterpart for (large parts of) the second-order language.
Hunter’s dissertation contains a number of such general results [24, Ch. 2]

Now, if one accepts the modifications (inclusion ordering and higher types)
described in the previous two items, then an obvious question is where e.g. HBU
fits into the (inclusion-based) Gödel hierarchy. Indeed, the Heine-Borel theorem
has a central place in analysis and a rich history predating set theory (see [31]).

The answer to this question may come as a surprise: starting with the results
in [41–43], Dag Normann and the author have identified a large number of natural
theorems of third-order arithmetic, including HBU, forming a branch independent
of the medium range of the Gödel hierarchy based on inclusion. Indeed, none
of the systems Π1

k -CAω
0 + QF-AC0,1 can prove HBU, while ZΩ

2 can. We stress
that both Π1

k -CAω
0 + QF-AC0,1 and HBU are part of the language of third-order

arithmetic, i.e. expressible in the same language.
In more detail, results pertaining to ‘local-global’ theorems are obtained in

[42]. Measure theory is studied in [43] while results pertaining to HBU and the
gauge integral may be found in [41]. In this paper and [43,48], we have shown
that a number of basic theorems about nets similarly fall outside of the Gödel
hierarchy, including the Bolzano-Weierstrass theorem for nets (BWnet; see [48])
and the monotone convergence theorem for nets of continuous functions (MCTnet;
see [43]) We recall that convergence theorems concerning nets are old and well-
established, starting with Moore-Smith more than a centure ago [33,34]. Our
results are summarised in Fig. 1 below.

Our results highlight a fundamental difference between second-order and
higher-order arithmetic. Such differences are discussed in detail in [49, §4], based
on helpful discussion with Steve Simpson, Denis Hirschfeldt, and Anil Nerode.
We now discuss some the technical details concerning Fig. 1 as follows.

Remark 5.1. First of all, ZΩ
2 is placed between the medium and strong range,

as the combination of the recursor R2 from Gödel’s T and ∃3 yields a system
stronger than ZΩ

2 . The system Π1
k -CAω

0 does not change in the same way.
Secondly, while HBU clearly implies WKL, MCTnet from [43] only implies

WWKL as far as we know, and this is symbolised by the dashed line.

In conclusion, in light of the results in this paper and [41–43,48], we observe a
serious challenge to the linear nature of the Gödel hierarchy, as well as Feferman’s
claim that the mathematics necessary for the development of physics can be
formalised in relatively weak logical systems (see e.g. [41, p. 24]).

3 There are some examples of theorems (predating HBU and [41]) that fall outside of
the Gödel hierarchy based on inclusion, like special cases of Ramsey’s theorem and
the axiom of determinacy from set theory [22,32]. These are far less natural than
e.g. Heine-Borel compactness, in our opinion.

564 S. Sanders

Fig. 1. The Gödel hierarchy with a side-branch for the medium range

A Technical Appendix

We provide the full definition of the system RCAω
0 in Sect. A.1, while we list some

proofs in Sect. A.2.

A.1 The Base Theory of Higher-Order Reverse Mathematics

We list all the axioms of the base theory RCAω
0 , first introduced in [27, §2].

Definition A.1. The base theory RCAω
0 consists of the following axioms.

(a) Basic axioms expressing that 0, 1, <0,+0,×0 form an ordered semi-ring with
equality =0.

(b) Basic axioms defining the well-known Π and Σ combinators (aka K and S
in [2]), which allow for the definition of λ-abstraction.

(c) The defining axiom of the recursor constant R0: For m0 and f1:

R0(f,m, 0) := m and R0(f,m, n + 1) := f(n,R0(f,m, n)). (A.1)

(d) The axiom of extensionality : for all ρ, τ ∈ T, we have:

(∀xρ, yρ, ϕρ→τ)
[
x =ρ y → ϕ(x) =τ ϕ(y)

]
. (Eρ,τ)

(e) The induction axiom for quantifier-free4 formulas of Lω.
4 To be absolutely clear, variables (of any finite type) are allowed in quantifier-free

formulas of the language Lω: only quantifiers are banned.

Reverse Mathematics and Computability Theory of Domain Theory 565

(f) QF-AC1,0: The quantifier-free Axiom of Choice as in DefinitionA.2.

Definition A.2. The axiom QF-AC consists of the following for all σ, τ ∈ T:

(∀xσ)(∃yτ)A(x, y) → (∃Y σ→τ)(∀xσ)A(x, Y (x)), (QF-ACσ,τ)

for any quantifier-free formula A in the language of Lω.

For completeness, we list the following notational convention on finite sequences.

Notation A.3 (Finite sequences). We assume a dedicated type for ‘finite
sequences of objects of type ρ’, namely ρ∗. Since the usual coding of pairs of
numbers goes through in RCAω

0 , we shall not always distinguish between 0 and
0∗. Similarly, we do not always distinguish between ‘sρ’ and ‘〈sρ〉’, where the
former is ‘the object s of type ρ’, and the latter is ‘the sequence of type ρ∗ with
only element sρ’. The empty sequence for the type ρ∗ is denoted by ‘〈〉ρ’, usually
with the typing omitted.

Furthermore, we denote by ‘|s| = n’ the length of the finite sequence sρ∗
=

〈sρ
0, s

ρ
1, . . . , s

ρ
n−1〉, where |〈〉| = 0, i.e. the empty sequence has length zero. For

sequences sρ∗
, tρ

∗
, we denote by ‘s∗t’ the concatenation of s and t, i.e. (s∗t)(i) =

s(i) for i < |s| and (s ∗ t)(j) = t(|s| − j) for |s| ≤ j < |s| + |t|. For a sequence
sρ∗

, we define sN := 〈s(0), s(1), . . . , s(N − 1)〉 for N0 < |s|. For a sequence
α0→ρ, we also write αN = 〈α(0), α(1), . . . , α(N − 1)〉 for any N0. By way of
shorthand, (∀qρ ∈ Qρ∗

)A(q) abbreviates (∀i0 < |Q|)A(Q(i)), which is (equivalent
to) quantifier-free if A is.

A.2 Some Proofs

We provide the proofs of some of the above theorems. First of all, the proof of
Corollary 3.7 is as follows.

Proof. We only need to prove the reverse implication. To this end, let xd : D → I
be an increasing net converging to some x ∈ I. This convergence trivially implies:

(∀k ∈ N)(∃d ∈ D)(|x − xd| < 1
2k), (A.2)

and applying QF-AC0,1 to (A.2) yields Φ : N → D such that the sequence
λk0.xΦ(k) also converges to x as k → ∞. Since ADS is equivalent to the state-
ment that a sequence in R has a monotone sub-sequence [28, §3], SUB0 follows.
��
Secondly, the proof of Theorem4.2 is as follows.

Proof. For the ‘vice versa’ direction, one uses the usual ‘interval halving tech-
nique’ where ∃4 is used to decide whether there is e ∈ E such that xe is in
the relevant interval. For the other direction, fix F 3, let E be NN → N itself,
and define ‘X � Y ’ by F (X) ≥0 F (Y) for any X2, Y 2. It is easy to show that
(E,�) is a directed set. Define the net xe : E → I by 0 if F (e) > 0, and 1 if
F (e) = 0, which is increasing by definition. Hence, xe converges, say to y0 ∈ I,
and if y0 > 2/3, then there must be Y 2 such that F (Y) = 0, while if y0 < 1/3,
then (∀Y 2)(F (Y) > 0). Clearly, this yields a term of Gödel’s T computing ∃3.��

566 S. Sanders

Thirdly, we provide the proof of Theorem4.3.

Proof. For the ‘vice versa’ direction, one uses the usual ‘interval halving tech-
nique’ where S2 is used to decide whether there is d ∈ D such that xd is in the
relevant interval. For the other direction, fix f1, let D be Baire space, and define
‘h � g’ by the following arithmetical formula

(∀n ∈ N)(∃m ∈ N)
[
f(gn) > 0 → f(hm) ≥ f(gn)

]
,

for any h, g ∈ D. It is easy to show that (D,�) is a directed set. Define the net
xg : D → I by 0 if (∃n0)(f(gn) > 0), and 1 if otherwise, which is arithmetical
and increasing. Hence, xd converges, say to y0 ∈ I, and if y0 > 2/3, then there
is g1 such that (∀n0)(f(gn) = 0), while if y0 < 1/3, then (∀g1)(∃n0)(f(gn) > 0).
Clearly, this provides a term of Gödel’s T computing S2. ��
Fourth, we provide the proof of Corollary 4.4

Proof. Let (∀f1)ϕ(f, F 2, e0) be the formula expressing that the e-th algorithm
with input F 2 terminates, i.e. ϕ(f, F, e) is arithmetical with type two parameters.
Let D be Baire space and define ‘f �D g’ by ϕ(f, F, e) → ϕ(g, F, e), which
readily yields a directed set. The net xd : D → R is defined as follows: xf is 0
if ϕ(f, F, e), and 1 otherwise. This net is increasing and MCTS

net yields a limit
y0 ∈ I; if y0 > 1/3, then {e}(F) does not terminate, and if y < 2/3, then {e}(F)
terminates. ��

References

1. Abramsky, S., Jung, A.: Domain Theory. Handbook of Logic in Computer Science,
vol. 3, pp. 1–168. Oxford University Press (1994)

2. Avigad, J., Feferman, S.: Gödel’s Functional (“Dialectica”) Interpretation. Hand-
book of Proof Theory. Studies in Logic and the Foundations of Mathematics, vol.
137, pp. 337–405 (1998)

3. Bartle, R.G.: Nets and filters in topology. Am. Math. Monthly 62, 551–557 (1955)
4. Benacerraf, P., Putnam, H.: Philosophy of Mathematics: Selected Readings, 2nd

edn. Cambridge University Press, Cambridge (1984)
5. Bernays, P.: Sur le Platonisme Dans les Mathé matiques. L’Enseignement

Mathématique 34, 52–69 (1935)
6. Bourbaki, N.: Elements of Mathematics. General Topology. Part 2. Addison-

Wesley, Boston (1966)
7. Brown, A., Pearcy, C.: An Introduction to Analysis. Graduate Texts in Mathe-

matics, vol. 154. Springer, Heidelberg (1995). https://doi.org/10.1007/978-1-4612-
0787-0

8. Burgess, J.P.: Fixing Frege. Princeton Monographs in Philosophy. Princeton Uni-
versity Press, Princeton (2005)

9. Cousin, P.: Sur les fonctions de n variables complexes. Acta Math. 19, 1–61 (1895)
10. Dorais, F.G.: Classical consequences of continuous choice principles from intuition-

istic analysis. Notre Dame J. Form. Log. 55(1), 25–39 (2014)
11. Dorais, F.G., Dzhafarov, D.D., Hirst, J.L., Mileti, J.R., Shafer, P.: On uniform rela-

tionships between combinatorial problems. Trans. Am. Math. Soc. 368(2), 1321–
1359 (2016)

https://doi.org/10.1007/978-1-4612-0787-0
https://doi.org/10.1007/978-1-4612-0787-0

Reverse Mathematics and Computability Theory of Domain Theory 567

12. Felgner, U.: Models of ZF-Set Theory. LNM, vol. 223. Springer, Heidelberg (1971).
https://doi.org/10.1007/BFb0061160

13. Friedman, H.: Some systems of second order arithmetic and their use. In: Proceed-
ings of the International Congress of Mathematicians (Vancouver, B.C., 1974), vol.
1, pp. 235–242 (1975)

14. Friedman, H.: Systems of second order arithmetic with restricted induction, I & II
(Abstracts). J. Symb. Log. 41, 557–559 (1976)

15. Friedman, H.: Interpretations, According to Tarski. Interpretations of Set The-
ory in Discrete Mathematics and Informal Thinking, The Nineteenth Annual
Tarski Lectures, vol. 1, p. 42 (2007). http://u.osu.edu/friedman.8/files/2014/01/
Tarski1052407-13do0b2.pdf

16. Fujiwara, M., Yokoyama, K.: A note on the sequential version of Π1
2 statements. In:

Bonizzoni, P., Brattka, V., Löwe, B. (eds.) CiE 2013. LNCS, vol. 7921, pp. 171–180.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39053-1 20

17. Fujiwara, M., Higuchi, K., Kihara, T.: On the strength of marriage theorems and
uniformity. MLQ Math. Log. Q. 60(3), 136–153 (2014)

18. Gandy, R.: General recursive functionals of finite type and hierarchies of functions.
Ann. Fac. Sci. Univ. Clermont-Ferrand 35, 5–24 (1967)

19. Gierz, G., Hofmann, K.H., Keimel, K., Lawson, J.D., Mislove, M., Scott, D.S.:
A Compendium of Continuous Lattices. Springer, Heidelberg (1980). https://doi.
org/10.1007/978-3-642-67678-9

20. Gierz, G., Hofmann, K.H., Keimel, K., Lawson, J.D., Mislove, M., Scott, D.S.: Con-
tinuous Lattices and Domains. Encyclopedia of Mathematics and its Applications,
vol. 93. Cambridge University Press (2003)

21. Goubault-Larrecq, J.: Non-Hausdorff Topology and Domain Theory. New Mathe-
matical Monographs, vol. 22. Cambridge University Press, Cambridge (2013)

22. Hirschfeldt, D.R.: Slicing the Truth. Lecture Notes Series, Institute for Mathemat-
ical Sciences, National University of Singapore, vol. 28. World Scientific Publishing
(2015)

23. Hirst, J.L., Mummert, C.: Reverse mathematics and uniformity in proofs without
excluded middle. Notre Dame J. Form. Log. 52(2), 149–162 (2011)

24. Hunter, J.: Higher-Order Reverse Topology. ProQuest LLC, Ann Arbor, MI, Thesis
(Ph.D.)–The University of Wisconsin - Madison (2008)

25. Kelley, J.L.: General Topology. Springer, Heidelberg (1975). Reprint of the 1955
edition, Graduate Texts in Mathematics, No. 27

26. Koellner, P.: Large Cardinals and Determinacy. The Stanford Encyclopedia
of Philosophy (2014). https://plato.stanford.edu/archives/spr2014/entries/large-
cardinals-determinacy/

27. Kohlenbach, U.: Higher order reverse mathematics. Reverse Mathematics (2001).
Lect. Notes Log., vol. 21, ASL, 2005, pp. 281–295

28. Kreuzer, A.P.: Primitive recursion and the chain antichain principle. Notre Dame
J. Form. Log. 53(2), 245–265 (2012)

29. Li, G., Ru, J., Wu, G.: Rudin’s lemma and reverse mathematics. Ann. Jpn. Assoc.
Philos. Sci. 25, 57–66 (2017)

30. Longley, J., Normann, D.: Higher-Order Computability. Theory and Applications
of Computability. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-
47992-6

31. Medvedev, F.A.: Scenes from the History of Real Functions. Science Networks.
Historical Studies, vol. 7. Birkhœuser Verlag, Basel (1991)

32. Montalbán, A., Shore, R.A.: The limits of determinacy in second order arithmetic.
Proc. Lond. Math. Soc. (3) 104(2), 223–252 (2012)

https://doi.org/10.1007/BFb0061160
http://u.osu.edu/friedman.8/files/2014/01/Tarski1052407-13do0b2.pdf
http://u.osu.edu/friedman.8/files/2014/01/Tarski1052407-13do0b2.pdf
https://doi.org/10.1007/978-3-642-39053-1_20
https://doi.org/10.1007/978-3-642-67678-9
https://doi.org/10.1007/978-3-642-67678-9
https://plato.stanford.edu/archives/spr2014/entries/large-cardinals-determinacy/
https://plato.stanford.edu/archives/spr2014/entries/large-cardinals-determinacy/
https://doi.org/10.1007/978-3-662-47992-6
https://doi.org/10.1007/978-3-662-47992-6

568 S. Sanders

33. Moore, E.H.: Definition of limit in general integral analysis. Proc. Natl. Acad. Sci.
U.S.A 1(12), 628–632 (1915)

34. Moore, E., Smith, H.: A general theory of limits. Am. J. Math. 44, 102–121 (1922)
35. Moore, E.: General Analysis. Part I. The Algebra of Matrices, vol. 1. Memoirs of

the American Philosophical Society, Philadelphia (1935)
36. Muldowney, P.: A General Theory of Integration in Function Spaces, Including

Wiener and Feynman Integration, vol. 153. Longman Scientific & Technical, Har-
low, Wiley (1987)

37. Mummert, C., Simpson, S.G.: Reverse mathematics and Π1
2 comprehension. Bull.

Symb. Log. 11(4), 526–533 (2005)
38. Mummert, C.: On the Reverse Mathematics of General Topology. ProQuest LLC,

Ann Arbor, MI, Thesis (Ph.D.)–The Pennsylvania State University (2005)
39. Mummert, C.: Reverse mathematics of MF spaces. J. Math. Log. 6(2), 203–232

(2006)
40. Mummert, C., Stephan, F.: Topological aspects of poset spaces. Michigan Math.

J. 59(1), 3–24 (2010)
41. Normann, D., Sanders, S.: On the mathematical and foundational signif-

icance of the uncountable. J. Math. Log. (2018). https://doi.org/10.1142/
S0219061319500016

42. Normann, D., Sanders, S.: Pincherle’s theorem in Reverse Mathematics and com-
putability theory (2018, submitted). arXiv: https://arxiv.org/abs/1808.09783

43. Normann, D., Sanders, S.: Representations in measure theory (2019). arXiv:
https://arxiv.org/abs/1902.02756

44. Pu, P.M., Liu, Y.M.: Fuzzy topology. I. Neighborhood structure of a fuzzy point
and Moore-Smith convergence. J. Math. Anal. Appl. 76(2), 571–599 (1980)

45. Sacks, G.E.: Higher Recursion Theory. Perspectives in Mathematical Logic.
Springer, Heidelberg (1990)

46. Sakamoto, N., Yamazaki, T.: Uniform versions of some axioms of second order
arithmetic. MLQ Math. Log. Q. 50(6), 587–593 (2004)

47. Sanders, S.: Reverse Mathematics of topology: dimension, paracompactness, and
splittings, p. 17 (2018). arXiv: https://arxiv.org/abs/1808.08785

48. Sanders, S.: Nets and Reverse Mathematics: Initial Results. Proceedings of CiE19.
LNCS, p. 12. Springer, Heidelberg (2019, to appear)

49. Sanders, S.: Splittings and disjunctions in Reverse Mathematics. Notre Dame J.
Formal Log. 18 (2019, to appear). arXiv: https://arxiv.org/abs/1805.11342

50. Simpson, S.G. (ed.): Reverse Mathematics (2001). Lecture Notes in Logic, vol. 21,
ASL, La Jolla, CA (2005)

51. Simpson, S.G. (ed.): Subsystems of Second Order Arithmetic, 2nd edn. Perspectives
in Logic, CUP (2009)

52. Simpson, S.G. (ed.): The Gödel hierarchy and reverse mathematics., Kurt Gödel.
Essays for his centennial, pp. 109–127 (2010)

53. Stillwell, J.: Reverse Mathematics, Proofs from the Inside Out. Princeton Univer-
sity Press, Princeton (2018)

54. Swartz, C.: Introduction to Gauge Integrals. World Scientific (2001)
55. Turing, A.: On computable numbers, with an application to the Entscheidungs-

problem. Proc. Lond. Mat. Soc. 42, 230–265 (1936)
56. Vietoris, L.: Stetige mengen. Monatsh. Math. Phys. 31(1), 173–204 (1921). (Ger-

man)
57. Wang, H.: Eighty years of foundational studies. Dialectica 12, 466–497 (1958)
58. Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)

https://doi.org/10.1142/S0219061319500016
https://doi.org/10.1142/S0219061319500016
https://arxiv.org/abs/1808.09783
https://arxiv.org/abs/1902.02756
https://arxiv.org/abs/1808.08785
https://arxiv.org/abs/1805.11342

Cut Elimination for the Weak
Modal Grzegorczyk Logic via
Non-well-Founded Proofs

Yury Savateev1(B) and Daniyar Shamkanov1,2

1 National Research University Higher School of Economics, Moscow, Russia
estlladon@gmail.com

2 Steklov Mathematical Institute of the Russian Academy of Sciences,

Moscow, Russia

Abstract. We present a sequent calculus for the weak Grzegorczyk logic
Go allowing non-well-founded proofs and obtain the cut-elimination the-
orem for it by constructing a continuous cut-elimination mapping acting
on these proofs.

Keywords: Non-well-founded proofs ⋅ Weak Grzegorczyk logic ⋅
Logic Go ⋅ Cut-elimination ⋅ Cyclic proofs

1 Introduction

The logic Go, also known as the weak Grzegorzyk logic, is the smallest normal
modal logic containing the axiom K and the axioms ◻A → ◻◻A and ◻(◻(A →
◻A) → A) → ◻A. A survey of results on Go can be found in [5]. The logic is
sound and complete with respect to the class of transitive frames with no proper
clusters and infinite ascending chains [2], and it is a proper sublogic of both
Gödel-Löb logic GL (also known as provability logic) and Grzegorzyk logic Grz.

Recently a new proof-theoretic presentation for the logic GL in the form of
a sequent calculus allowing non-well-founded proofs was given in [4,10]. Later,
the same ideas were applied to the modal Grzegorczyk logic Grz in [8,9], where
it allowed to prove several proof-theoretic properties of this logic syntactically.

In this paper we use the same approach for the logic Go. We consider a sequent
calculus allowing non-well-founded proofs Go

∞
and present the cut-elimination

theorem for it. We consider the set of non-well-founded proofs of Go
∞

and various
sets of operations acting on theses proofs as ultrametric spaces and define our
cut-elimination operator using the Prieß-Crampe fixed-point theorem (see [7]),
which is a strengthening of the Banach’s theorem.

In [3] Goré and Ramanayake remark that their method for cut elimination
for the logic Go is more complex than the similar methods for the logics GL
and Grz. This difference in complexity seems to be present in our approach as
well. The proofs of cut-elimination for Go

∞
and Grz

∞
turn out to be almost the

same, but the system Go
∞

itself seems to be more complex (it includes rules of
c© Springer-Verlag GmbH Germany, part of Springer Nature 2019
R. Iemhoff et al. (Eds.): WoLLIC 2019, LNCS 11541, pp. 569–583, 2019.
https://doi.org/10.1007/978-3-662-59533-6_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-59533-6_34&domain=pdf
https://doi.org/10.1007/978-3-662-59533-6_34

570 Y. Savateev and D. Shamkanov

arbitrary arity, where Grz
∞

has at most binary) and the translation from Go
∞

to the standard system seems to require bigger induction measure.

2 Preliminaries

In this section we recall the weak Grzegorczyk logic Go and define an ordinary
sequent calculus for it.

Formulas of Go, denoted by A, B, C, are built up as follows:

A ∶∶= � ∣ p ∣ (A→ A) ∣ ◻A ,

where p stands for atomic propositions.
The Hilbert-style axiomatization of Go is given by the following axioms and

inference rules:
Axioms:

(i) Boolean tautologies;
(ii) ◻(A→ B) → (◻A→ ◻B);
(iii) ◻A→ ◻◻A;
(iv) ◻(◻(A→ ◻A) → A) → ◻A.

Rules: modus ponens, A/ ◻A.

Now we define an ordinary sequent calculus for Go. A sequent is an expression
of the form Γ ⇒Δ, where Γ and Δ are finite multisets of formulas. For a multiset
of formulas Γ = A1, . . . ,An, we set ◻Γ ∶= ◻A1, . . . ,◻An.

The system GoSeq, is defined by the following initial sequents and inference
rules:

Γ,A⇒ A,Δ , Γ,� ⇒Δ ,

Γ,B ⇒Δ Γ ⇒ A,Δ
→L

Γ,A→ B ⇒Δ
,

Γ,A⇒ B,Δ
→R

Γ ⇒ A→ B,Δ
,

◻Π,Π,◻(A→ ◻A) ⇒ A
◻Go

Γ,◻Π ⇒ ◻A,Δ
.

The cut rule has the form
Γ ⇒ A,Δ Γ,A⇒Δ

cut ,
Γ ⇒Δ

where A is called the cut formula of the given inference.

Lemma 21. GoSeq + cut ⊢ Γ ⇒Δ if and only if Go ⊢ ⋀Γ → ⋁Δ.

Proof. Standard transformations of proofs.

Theorem 22. If GoSeq + cut ⊢ Γ ⇒Δ, then GoSeq ⊢ Γ ⇒Δ.

A syntactic cut-elimination for Go was obtained by Goré and Ramanayake
in [3]. In this paper, we will give another proof of this cut-elimination theorem.

Cut Elimination for the Weak Modal Grzegorczyk Logic 571

3 Non-well-Founded Proofs

Now we define a sequent calculus for Go allowing non-well-founded proofs.
Inference rules and initial sequents of the sequent calculus Go

∞
have the

following form:

Γ, p⇒ p,Δ , Γ,� ⇒Δ ,

Γ,B ⇒Δ Γ ⇒ A,Δ
→L

Γ,A→ B ⇒Δ
,

Γ,A⇒ B,Δ
→R

Γ ⇒ A→ B,Δ
,

◻Π,Π ⇒ A1, . . . ,An,◻A1, . . . ◻An ◻Π,Π ⇒ A1 . . . ◻Π,Π ⇒ An
◻

Γ,◻Π ⇒ ◻A1, . . . ,◻An,Δ
.

The system Go
∞
+ cut is defined by adding the rule (cut) to the system Go

∞
.

We will refer to all but the leftmost premises of the rule (◻) as “right”.
An ∞–proof in Go

∞
(Go

∞
+ cut) is a (possibly infinite) tree whose nodes are

marked by sequents and whose leaves are marked by initial sequents and that
is constructed according to the rules of the sequent calculus. In addition, every
infinite branch in an ∞–proof must pass through a right premise of the rule (◻)
infinitely many times. A sequent Γ ⇒Δ is provable in Go

∞
(Go

∞
+ cut) if there

is an ∞–proof in Go
∞

(Go
∞
+ cut) with the root marked by Γ ⇒Δ.

For a multiset of formulas Γ = A1, . . . ,An, we set

⊠Γ ∶= A1, . . . ,An,◻A1, . . . ,◻An.

Then the rule (◻) can be written as

⊠Π ⇒ ⊠(A1, . . . ,An) ⊠Π ⇒ A1 . . . ⊠Π ⇒ An
◻

Γ,◻Π ⇒ ◻A1, . . . ,◻An,Δ
.

Let us construct an∞–proof of the sequent ◻(◻(p→ ◻p) → p) ⇒ ◻p. We will
do it by defining several finite proof parts and show how they connect together
to form the full∞-proof. A proof part is a tree with non-axiom leaves marked by
numbered labels that indicate that another part must be attached there to form
a correct proof. For proofs π, ρ and τ , and a proof part α with three non-axiom
leaves by

π ρ τ
α

we will denote the proof obtained by attaching the proofs π, ρ and τ to the
leaves with labels (1), (2), and (3) respectively.

Let F = ◻(p→ ◻p) → p and let ψ be the following proof:

Ax
⊠F, p⇒ p,◻p,◻p,◻(p→ ◻p)

→R
⊠F ⇒ ⊠(p, p→ ◻p)

.

572 Y. Savateev and D. Shamkanov

Let φ be the following proof part:

Ax
◻F, p⇒ p,◻p

ψ

(1)
F, p,◻F ⇒ ◻p

→R
⊠F ⇒ p→ ◻p

(2)
⊠F ⇒ p

◻

◻F ⇒ ◻(p→ ◻p),◻p, p
→L

◻F,◻(p→ ◻p) → p⇒ p,◻p

Let θ be the following proof part:

Ax

◻F, p⇒ p

ψ

(1)

F, p,◻F ⇒ ◻p
→R

⊠F ⇒ p→ ◻p

(2)

⊠F ⇒ p
◻

p,F,◻F ⇒ ◻p,◻(p→ ◻p)
→R

⊠F ⇒ ⊠(p→ ◻p)

(3)

F, p,◻F ⇒ ◻p
→R

⊠F ⇒ p→ ◻p
◻

◻F ⇒ ◻(p→ ◻p), p
→L

◻F,◻(p→ ◻p) → p⇒ p

An ∞–proof of the sequent ◻(◻(p → ◻p) → p) ⇒ ◻p can be constructed as
follows:

⋮

φ

⋮

θ
◻

F, p,◻F ⇒ ◻p

⋮

θ

φ

⋮

φ

⋮

θ
◻

F, p,◻F ⇒ ◻p

⋮

θ

⋮

φ

⋮

θ
◻

F, p,◻F ⇒ ◻p

θ
◻ .

◻(◻(p→ ◻p) → p) ⇒ ◻p

.

The n-fragment of an ∞–proof is a finite tree obtained from the ∞–proof
by cutting every branch at the nth from the root right premise of a ◻-rule. The
1-fragment of an ∞–proof is also called its main fragment. The local height of
an ∞–proof π denoted by ∣π∣ is the length of the longest branch in its main
fragment. An ∞–proof only consisting of an initial sequent has height 0.

We denote the set of all ∞-proofs in the system Go
∞
+ cut by P .

For π, τ ∈ P , we write π ∼n τ if n-fragments of these ∞-proofs coincide. For
any π, τ ∈ P , we also set π ∼0 τ .

Now we define two translations that connect ordinary and non-well-founded
sequent calculi for the logic Go.

Lemma 31. We have Go
∞
⊢ Γ,A ⇒ A,Δ for any sequent Γ ⇒ Δ and any

formula A.

Proof. Standard induction on the structure of A.

Lemma 32. We have Go
∞
⊢ ◻(◻(A→ ◻A) → A) ⇒ ◻A for any formula A.

Cut Elimination for the Weak Modal Grzegorczyk Logic 573

Proof. Consider an example of∞–proof for the sequent ◻(◻(p→ ◻p) → p) ⇒ ◻p
given above. We transform this example into an ∞–proof for ◻(◻(A → ◻A) →
A) ⇒ A by replacing p with A and adding required ∞–proofs instead of initial
sequents using Lemma 31.

Recall that an inference rule is called admissible (in a given proof system) if,
for any instance of the rule, the conclusion is provable whenever all premises are
provable.

Lemma 33. The rule

Γ ⇒Δ
weak

Π,Γ ⇒Δ,Σ

is admissible in the systems GoSeq and Go
∞
+ cut.

The rule

Γ,Π,Π ⇒Δ
ctr

Γ,Π ⇒Δ

is admissible in the system GoSeq.

Proof. Standard induction on the structure (local height) of a proof of Γ ⇒Δ.

Theorem 34. If GoSeq + cut ⊢ Γ ⇒Δ, then Go
∞
+ cut ⊢ Γ ⇒Δ.

Proof. Assume π is a proof of Γ ⇒Δ in GoSeq + cut. By induction on the size of
π we prove Go

∞
+ cut ⊢ Γ ⇒Δ.

If Γ ⇒Δ is an initial sequent of GoSeq + cut, then it is provable in Go
∞
+ cut

by Lemma 31. Otherwise, consider the last application of an inference rule in π.
The only non-trivial case is when the proof π has the form

π′

◻Π,Π,◻(A→ ◻A) ⇒ A
◻Go

,
Σ,◻Π ⇒ ◻A,Λ

where Σ,◻Π = Γ and ◻A,Λ = Δ. By the induction hypothesis there is an ∞–
proof ξ of ⊠Π,◻(A→ ◻A) ⇒ A in Go

∞
+ cut.

The required ∞–proof for Σ,◻Π ⇒ ◻A,Δ has the form:

ξ

⊠Π,◻(A→ ◻A) ⇒ A
→R

⊠Π ⇒ F
weak

⊠Π ⇒ ⊠F

ξ

⊠Π,◻(A→ ◻A) ⇒ A
→R

⊠Π ⇒ F
◻

Σ,◻Π ⇒ ◻F,◻A,Λ

χ

◻F ⇒ ◻A
weak

Σ,◻Π,◻F ⇒ ◻A,Λ
cut

Σ,◻Π ⇒ ◻A,Λ

where F = ◻(A → ◻A) → A and χ is an ∞–proof of ◻F ⇒ ◻A, which exists by
Lemma 32.

The cases of other inference rules being last in π are straightforward, so we
omit them.

574 Y. Savateev and D. Shamkanov

For a sequent Γ ⇒ Δ, let Sub(Γ ⇒ Δ) be the set of all subformulas of the
formulas from Γ ∪Δ. For a finite set of formulas Λ, let Λ∗ be the set {A→ ◻A ∣
A ∈ Λ}.

Theorem 35. If Go
∞
⊢ Γ ⇒Δ, then GoSeq ⊢ Γ ⇒Δ.

Proof. First we will prove a more general statement: if Go
∞
⊢ Γ ⇒ Δ, then

GoSeq ⊢ ◻(Λ
∗

1), Λ
∗

2,⊠Ω,Γ ⇒Δ for any finite sets of formulas Λ1, Λ2, and Ω such
that Λ2 ⊂ Λ1.

Assume π is an ∞–proof of the sequent Γ ⇒ Δ in Go
∞

and Λ1, Λ2, and Ω
are finite sets of formulas, such that Λ2 ⊂ Λ1.

We prove that GoSeq ⊢ ◻(Λ
∗

1), Λ
∗

2,⊠Ω,Γ ⇒ Δ by quadruple induction: by
induction on the number of elements in the finite set Sub(Γ ⇒ Δ)/Λ1 with
a subinduction on the number of elements in the finite set Sub(Γ ⇒ Δ)/Λ2,
subinduction on the number of elements in the finite set Sub(Γ ⇒ Δ)/Ω, and
with subinduction on ∣π∣.

If ∣π∣ = 0, then Γ ⇒ Δ is an initial sequent. We see that the sequent
◻(Λ∗1), Λ

∗

2,⊠Ω,Γ ⇒ Δ is an initial sequent and it is provable in GoSeq. Oth-
erwise, consider the last application of an inference rule in π.

The cases when this application is of rules →R or →L are trivial, since these
rules are common to both systems and the weakening rule is admissible in GoSeq.

Suppose that π has the form

π0

⊠Π ⇒ ⊠(A1, . . . ,An)

π1

⊠Π ⇒ A1 . . .

πn

⊠Π ⇒ An

Φ,◻Π ⇒ ◻A1, . . . ,◻An,Σ

where Φ,◻Π = Γ and ◻A1, . . . ,◻An,Σ =Δ.
Subcase 1: For some i, we have Ai ∉ Λ1. We have that the number of elements

in Sub(◻Π,Π ⇒ A)/(Λ1 ∪ {Ai}) is strictly less than the number of elements in
Sub(Φ,◻Π ⇒ ◻A1, . . . ,◻An,Σ)/Λ1. By the induction hypothesis for Λ1 ∪ {Ai},
Λ1, ∅ and πi, the sequent ◻(Λ∗1),◻(Ai → ◻Ai), Λ

∗

1,◻Π,Π ⇒ A is provable in
GoSeq. Then we have

◻(Λ∗1),◻(Ai → ◻Ai), Λ
∗

1,◻Π,Π ⇒ Ai
◻Go .

Λ∗2,◻(Λ
∗

1),⊠Ω,Φ,◻Π ⇒ ◻A1, . . . ,◻Ai, . . . ,◻An,Σ

Subcase 2: For all i, we have Ai ∈ Λ1, but there is i, such that Ai ∉ Λ2. We
have that the number of elements in Sub(◻Π,Π ⇒ Ai)/Λ1 is strictly less than
the number of elements in Sub(Φ,◻Π ⇒ ◻A1, . . . ,◻An,Σ)/Λ2. By the induction
hypothesis for Λ1, Λ1, ∅ and πi, the sequent ◻(Λ∗1), Λ

∗

1,◻Π,Π ⇒ Ai is provable
in GoSeq. Then we have

◻(Λ∗1), Λ
∗

1,◻Π,Π ⇒ Ai
weak

◻(Λ∗1), Λ
∗

1,◻Π,Π,◻(Ai → ◻Ai) ⇒ Ai
◻Go .

Λ∗2,◻(Λ
∗

1),⊠Ω,Φ,◻Π ⇒ ◻A1, . . . ,◻Ai, . . . ,◻An,Σ

Cut Elimination for the Weak Modal Grzegorczyk Logic 575

Subcase 3: For all i, we have Ai ∈ Λ2 ⊂ Λ1, but there is a formula F in
Π, such that F ∉ Ω. We have that the number of elements in Sub(◻Π,Π ⇒
A1)/(Ω ∪ Π) is strictly less than the number of elements in Sub(Φ,◻Π ⇒

◻A1, . . . ,◻An,Σ)/Ω. By the induction hypothesis for Λ1, Λ1, Ω ∪ Π and π1,
the sequent ◻(Λ∗1), Λ

∗

1,⊠Ω,⊠(Π/Ω),⊠Π ⇒ A1 is provable in GoSeq. Then we
have

◻(Λ∗1), Λ
∗

1,⊠Ω,⊠(Π/Ω),⊠Π ⇒ A1
weak

◻(Λ∗1), Λ
∗

1,⊠Ω,⊠(Π/Ω),⊠Π,◻(A→ ◻A) ⇒ A1
◻Go .

Λ∗2,◻(Λ
∗

1),◻Ω,Ω,Φ,◻(Π/Ω),◻(Π/Ω),◻(Π ∩Ω) ⇒ ◻A1, . . . ,◻An,Σ
ctr

Λ∗2,◻(Λ
∗

1),⊠Ω,Φ,◻Π ⇒ ◻A1, . . . ,◻An,Σ

Subcase 4: For all i, we have Ai ∈ Λ2 ⊂ Λ1 and Π ⊂ Ω. We see that ∣π0∣ < ∣π∣. By
the induction hypothesis for Λ1, Λ2, Ω and π0 the sequent ◻(Λ∗1), Λ

∗

2,⊠Ω,⊠Π ⇒
⊠(A1, . . . ,An) is provable in GoSeq. Then we have

Ax

◻(Λ∗1), Λ
∗

2 ,⊠Ω,⊠Π,◻A1 ⇒ ⊠(A1, . . . ,An) ◻(Λ∗1), Λ
∗

2 ,⊠Ω,⊠Π ⇒ ⊠(A1, . . . ,An)
→L

◻(Λ∗1), Λ
∗

2 ,A1 → ◻A1,⊠Ω,⊠Π ⇒ ◻A1,⊠(A2, . . . ,An)
ctr

◻(Λ∗1), Λ
∗

2 ,⊠Ω,⊠Π ⇒ ◻A1,⊠(A2, . . . ,An)

⋮

◻(Λ∗1), Λ
∗

2 ,An → ◻An,⊠Ω,⊠Π ⇒ ◻A1, . . . ,◻An
ctr

◻(Λ∗1), Λ
∗

2 ,◻Ω,Ω/Π,Π,◻Π,Π ⇒ ◻A1, . . . ,◻An
ctr

◻(Λ∗1), Λ
∗

2 ,⊠Ω,◻Π ⇒ ◻A1, . . . ,◻An
weak .

◻(Λ∗1), Λ
∗

2 ,⊠Ω,Φ,◻Π ⇒ ◻A1, . . . ,◻An,Σ

4 Ultrametric Spaces

In this section we recall basic notions of the theory of ultrametric spaces (cf.
[11]) and consider several examples concerning ∞-proofs.

An ultrametric space (M,d) is a metric space that satisfies a stronger version
of the triangle inequality: for any x, y, z ∈M , d(x, z) ⩽max{d(x, y), d(y, z)}.

For x ∈ M and r ∈ (0,+∞), the set Br(x) = {y ∈ M ∣ d(x, y) ⩽ r} is called
the closed ball with center x and radius r. An ultrametric space (M,d) is called
spherically complete if each descending sequence of closed balls

Br0(x0) ⊃ Br1(x1) ⊃ Br2(x2) ⊃ . . .

has a common point. We recall that a metric space (M,d) is complete if any
descending sequence of closed balls, with radii tending to 0, has a common
point.

In an ultrametric space (M,d), a function f ∶M → M is called (strictly)
contractive if d(f(x), f(y)) < d(x, y) whenever x ≠ y.

Theorem 41 (Prieß-Crampe [7], Petalas and Vidalis [6]). Let (M,d) be a
non-empty spherically complete ultrametric space. Then every strictly contractive
mapping f ∶M →M has a unique fixed-point.

576 Y. Savateev and D. Shamkanov

Now consider the set P of all ∞-proofs of the system Go
∞
+ cut. We can

define an ultrametric d
P
∶ P × P → [0,1] on P by putting

d
P
(π, τ) = inf{

1
2n
∣ π ∼n τ}.

We see that d
P
(π, τ) ⩽ 2−n if and only if π ∼n τ . Thus, the ultrametric d

P
can

be considered as a measure of similarity between ∞-proofs.

Proposition 42. The ultrametric space (P , d
P
) is complete.

In an ultrametric space (M,d), a function f ∶M →M is called non-expansive
if d(f(x), f(y)) ⩽ d(x, y) for all x, y ∈ M . For ultrametric spaces (M,dM) and
(N,dN), the Cartesian product M ×N can be also considered as an ultrametric
space with the metric dM×N((x1, y1), (x2, y2)) =max{dM(x1, x2), dN(y1, y2)}.

Let us consider another example. For m ∈ N, let Fm denote the set of all
non-expansive functions from Pm to P . Note that any function u∶ Pm

→ P is
non-expansive if and only if for any tuples �π and �π′, and any n ∈ N we have

π1 ∼n π′1, . . . , πm ∼n π′m ⇒ u(�π) ∼n u(�π′).

Now we introduce an ultrametric for Fm. For a,b ∈ Fm, we write a ∼n,k b
if a(�π) ∼n b(�π) for any �π ∈ Pm and, in addition, a(�π) ∼n+1 b(�π) whenever
m

∑

i=1
∣πi∣ < k.1 An ultrametric lm on Fm is defined by

lm(a,b) =
1
2

inf{
1
2n
+

1
2n+k

∣ a ∼n,k b}.

We see that lm(a,b) ⩽ 2−n−1 + 2−n−k−1 if and only if a ∼n,k b.
Notice that any operator U∶ Fm → Fm is strictly contractive if and only if for

any a,b ∈ Fm, and any n, k ∈ N we have

a ∼n,k b⇒ U(a) ∼n,k+1 U(b).

Proposition 43. Every strictly contractive mapping U∶ Fm → Fm has a unique
fixed-point.

This proposition can be derived from Theorem 41 by proving that the space
(Fm, lm) is spherically complete. However there is a direct proof of this result in
order to show an explicit construction of the required fixed-point (See [9]).

1 This definition is inspired by [1, Subsect. 2.1]. It reveals our intention to construct
mappings on the set of ∞-proofs by co-induction with subinduction on the sum of
local heights of the arguments.

Cut Elimination for the Weak Modal Grzegorczyk Logic 577

5 Admissible Rules and Mappings

In this section, for the system Go
∞
+ cut, we state admissibility of auxiliary

inference rules, which will be used in the proof of the cut-elimination theorem.
Recall that the set P of all∞-proofs of the system Go

∞
+cut can be considered

as an ultrametric space with the metric d
P

.
By Pn we denote the set of all ∞-proofs that do not contain applications of

the cut rule in their n-fragments. We also set P0 = P .
A mapping u ∶ Pm

→ P is called adequate if for any n ∈ N we have
u(π1, . . . , πm) ∈ Pn, whenever πi ∈ Pn for all i ⩽ n.

In Go
∞
+ cut, we call a single-premise inference rule strongly admissible if

there is a non-expansive adequate mapping u∶ P → P that maps any ∞-proof of
the premise of the rule to an ∞-proof of the conclusion. The mapping u must
also satisfy one additional condition: ∣u(π)∣ ⩽ ∣π∣ for any π ∈ P .

In the following lemma, non-expansive mappings are defined in a standard
way by induction on the local heights of ∞-proofs for the premises. So we omit
further details.

Lemma 51. For any finite multisets of formulas Π and Σ, formulas A and B,
and atomic proposition p the inference rules

Γ ⇒ΔwkΠ;Σ
Π,Γ ⇒Δ,Σ

Γ,A→ B ⇒Δ
liA→B Γ,B ⇒Δ

Γ,A→ B ⇒Δ
riA→B Γ ⇒ A,Δ

Γ ⇒ A→ B,Δ
iA→B Γ,A⇒ B,Δ

Γ ⇒ �,Δ
i
�

Γ ⇒Δ

Γ,p, p⇒Δ
aclp

Γ, p⇒Δ

Γ ⇒ p, p,Δacrp
Γ ⇒ p,Δ

are strongly admissible in Go
∞
+ cut.

Let us also define the mapping clip∶ P → P . Consider an ∞-proof π. If the
last rule application in π is not of the rule (◻) then we put clip(π) = π. If the
∞-proof π has the form

π0

⊠Π ⇒ ⊠(A1, . . . ,An)

π1

⊠Π ⇒ A1 . . .

πn

⊠Π ⇒ An

Γ,◻Π ⇒ ◻A1, . . . ,◻An,Δ

we define clip(π) to be
π0

⊠Π ⇒ ⊠(A1, . . . ,An)

π1

⊠Π ⇒ A1 . . .

πn

⊠Π ⇒ An .
◻Π ⇒ ◻A1, . . . ,◻An

Clearly this mapping is non-expansive, adequate, and ∣clip(π)∣ ⩽ ∣π∣ for any
π ∈ P .

578 Y. Savateev and D. Shamkanov

6 Cut Elimination

In this section, we construct a continuous function from P to P , which maps
any ∞-proof of the system Go

∞
+ cut to a cut-free ∞-proof of the same sequent.

Let us call a pair of ∞-proofs (π, τ) a cut pair if π is an ∞-proof of the
sequent Γ ⇒ Δ,A and τ is an ∞-proof of the sequent A,Γ ⇒ Δ for some Γ,Δ,
and A. For a cut pair (π, τ), we call the sequent Γ ⇒ Δ its cut result and the
formula A its cut formula.

For a modal formula A, a non-expansive mapping u from P ×P to P is called
A-removing if it maps every cut pair (π, τ) with the cut formula A to an∞-proof
of its cut result. By RA, let us denote the set of all A-removing mappings.

Lemma 61. In an ultrametric space (RA, l2), any contractive operator U ∶
RA →RA has a unique fixed-point.

Proof. Let us check that the set RA is non-empty. Consider the mapping ucut ∶

P
2
→ P that is defined as follows. For a cut pair (π, τ) with the cut formula

A, it joins the ∞-proofs π and τ with an appropriate instance of the rule (cut).
For all other pairs, the mapping ucut returns the first argument. Clearly, ucut is
non-expansive and therefore lies in RA.

The rest of the proof is completely analogous to the proof of Proposition 43.

In what follows, we use nonexpansive adequate mappings wkΠ;Σ , liA→B, riA→B ,
iA→B , i

�
, aclp, acrp from Lemma 51.

Lemma 62. For any atomic proposition p, there exists an adequate p-removing
mapping rep.

Proof. Assume we have two ∞-proofs π and τ . If the pair (π, τ) is not a cut
pair or is a cut pair with the cut formula being not p, then we put rep(π, τ) = π.
Otherwise, we define rep(π, τ) by induction on ∣π∣. Let the cut result of the pair
(π, τ) be Γ ⇒Δ.

If ∣π∣ = 0, then Γ ⇒ Δ,p is an initial sequent. Suppose that Γ ⇒ Δ is also
an initial sequent. Then rep(π, τ) is defined as the ∞-proof consisting only of
the sequent Γ ⇒ Δ. If Γ ⇒ Δ is not an initial sequent, then Γ has the form
p,Φ, and τ is an∞-proof of the sequent p, p,Φ⇒Δ. Applying the non-expansive
adequate mapping aclp from Lemma 51, we put rep(π, τ) ∶= aclp(τ).

Now suppose that ∣π∣ > 0. We define rep(π, τ) according to the last application
of an inference rule in π as shown in Fig. 1.

The mapping rep is well defined, adequate and non-expansive.

Lemma 63. Given an adequate B-removing mapping reB, there exists an ade-
quate ◻B-removing mapping re

◻B.

Proof. Assume we have an adequate B-removing mapping reB . The required ◻B-
removing mapping re

◻B is obtained as the fixed-point of a contractive operator
G
◻B ∶R◻B →R◻B .

Cut Elimination for the Weak Modal Grzegorczyk Logic 579

Fig. 1. Definition of rep.

For a mapping u ∈ R
◻B and a pair of ∞-proofs (π, τ), the ∞-proof

G
◻B(u)(π, τ) is defined as follows. If (π, τ) is not a cut pair or a cut pair with

the cut formula being not ◻B, then we put G
◻B(u)(π, τ) = π.

Now let (π, τ) be a cut pair with the cut formula ◻B and the cut result
Γ ⇒ Δ. If ∣π∣ = 0 or ∣τ ∣ = 0, then Γ ⇒ Δ is an initial sequent. In this case, we
define G

◻B(u)(π, τ) as the ∞-proof consisting only of the sequent Γ ⇒Δ.
Suppose that ∣π∣ > 0 and ∣τ ∣ > 0. We define G

◻B(u)(π, τ) according to the last
application of an inference rule in π as shown in Fig. 2.

Now we need to consider only the cases when π has the form
π0

⊠Π ⇒ ⊠(B,A1, . . . ,An)

πB

⊠Π ⇒ B

π1

⊠Π ⇒ A1 . . . ⊠Π ⇒ ⊠An
◻ .

Φ,◻Π ⇒ ◻B,◻A1, . . . ,◻An,Σ

We define G
◻B(u)(π, τ) according to the last application of an inference rule in

τ as shown in Fig. 3.
It remains to consider the case when τ has the form

τ0

⊠Λ,⊠B ⇒ ⊠(C1, . . . ,Ck)

τ1

⊠Λ,⊠B ⇒ C1 . . . ⊠Λ,⊠B ⇒ ⊠Ck
◻ .

Φ′,◻Λ,◻B ⇒ ◻C1, . . . ,◻Ck,Σ′

Notice that the sequent Γ ⇒ Δ, the sequent Φ,◻Π ⇒ ◻A1, . . . ,◻An,Σ, and
the sequent Φ′,◻Λ⇒ ◻C1, . . . ,◻Ck,Σ′ are the same.

Let I ∶= {i ∣ Ai ∉ C1, . . . ,Ck} and J ∶= {i ∣ Ci ∉ A1, . . . ,An}, let π′B be the
following ∞-proof:

wk
∅,◻B(πB)

⊠Π ⇒ ⊠B

πB

⊠Π ⇒ B
◻

,
⊠Π ⇒ ◻B

580 Y. Savateev and D. Shamkanov

Fig. 2. Definition of G◻B part 1.

Fig. 3. Definition of G◻B part 2.

and consider the following ∞-proofs:

ψ1 ∶= u(wkΛ/Π,◻Λ/Π;{⊠Ci}i∈J
(π0),wkΠ∪Λ,◻(Π/Λ);{⊠Ai}i∈I ,{Ci}

(clip(τ))),

ψ2 ∶= u(wkΠ∪Λ,◻Λ/Π;{⊠Ci}i∈J ,{Ai}
(clip(π)),wkΠ/Λ,◻(Π/Λ);{⊠Ai}i∈I

(τ0)),

φj ∶= u(wk⊠(Λ/Π);Cj
(π′B), reB(wk⊠(Λ/Π,◻B;∅)(πB),wk⊠(Π/Λ;∅)(τj))).

Cut Elimination for the Weak Modal Grzegorczyk Logic 581

We define G
◻B(u)(π, τ) as

reB(ψ1, ψ2)

⊠(Π ∪Λ) ⇒ ⊠Ai,{⊠Cj}j∈J

(wk
⊠(Λ/Π)(πi))

(⊠(Π ∪Λ) ⇒ Ai)

φj

(⊠(Π ∪Λ) ⇒ Cj))j∈J
◻ .

Γ ⇒Δ

Now the operator G
◻B is well-defined. By the case analysis according to the

definition of G
◻B, we see that G

◻B(u) is non-expansive and belongs to R
◻B

whenever u ∈ R
◻B .

We claim that G
◻B is contractive. It sufficient to check that for any u, v ∈ R

◻B

and any n, k ∈ N we have u ∼n,k v ⇒ G
◻B(u) ∼n,k+1 G

◻B(v), which we prove by
case analysis.

Now we define the required ◻B-removing mapping re
◻B as the fixed-point of

the the operator G
◻B ∶R◻B →R◻B , which exists by Lemma 61.

Lemma 64. For any formula A, there exists an adequate A-removing mapping
reA.

Proof. We define reA by induction on the structure of the formula A.
Case 1: A has the form p. In this case, rep is defined by Lemma 62.
Case 2: A has the form �. Then we put re

�
(π, τ) ∶= i

�
(π).

Case 3: A has the form B → C. Then we put

reB→C(π, τ) ∶= reC(reB(wk∅,C(riB→C(τ)), iB→C(π)), liB→C(τ)).

Case 4: A has the form ◻B. By the induction hypothesis, there is an adequate
B-removing mapping reB . The required ◻B-removing mapping re

◻B exists by
Lemma 63.

A mapping u∶ P → P is called root-preserving if it maps∞-proofs to∞-proofs
of the same sequents. Let T denote the set of all root-preserving non-expansive
mappings from P to P .

Lemma 65. In an ultrametric space (T , l1), any contractive operator U ∶ T → T
has a unique fixed-point.

Proof. The space is obviously non-empty, since the identity function lies in T .
The proof is analogous to the proof of Proposition 43.

Theorem 66 (cut-elimination). If Go
∞
+ cut ⊢ Γ ⇒Δ, then Go

∞
⊢ Γ ⇒Δ.

Proof We construct the required cut-elimination mapping ce so it commutes
with every application of inference rules except (cut) and satisfies the following
condition:

ce
⎛

⎝

π0

Γ ⇒ A,Δ

π1

Γ,A⇒Δ
cut

Γ ⇒Δ

⎞

⎠

= reA(ce(π0), ce(π1)).

582 Y. Savateev and D. Shamkanov

In order to do this, we define the contractive operator F∶ T → T and obtain
the mapping ce as the fixed-point of F.

For a mapping u ∈ T and an ∞-proof π, the ∞-proof F(u)(π) is defined as
follows. If ∣π∣ = 0, then we define F(u)(π) to be π.

Otherwise, we define F(u)(π) according to the last application of an inference
rule in π as shown in Fig. 4.

Fig. 4. Definition of ce.

Now assume Go
∞
+ cut ⊢ Γ ⇒Δ. Take an ∞-proof of the sequent Γ ⇒Δ in

the system Go
∞
+ cut and apply the mapping ce to it. We obtain an ∞-proof of

the same sequent in the system Go
∞

.

Theorem 22 is now established as a direct consequence of Theorems 34, 66
and 35.

7 Conclusion

We have proven the cut elimination theorem for the logic Go syntactically. The
approach from [8,9] seems to be easily adaptable to different logics and to provide
convenient tools for proving various proof-theoretic properties.

Cut Elimination for the Weak Modal Grzegorczyk Logic 583

References

1. Di Gianantonio, P., Miculan, M.: A unifying approach to recursive and co-recursive
definitions. In: Geuvers, H., Wiedijk, F. (eds.) TYPES 2002. LNCS, vol. 2646, pp.
148–161. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39185-1 9

2. Goré, R.: Tableau methods for modal and temporal logics. In: D’Agostino, M., Gab-
bay, D.M., Hähnle, R., Posegga, J. (eds.) Handbook of Tableau Methods, pp. 297–
396. Springer, Dordrecht (1999). https://doi.org/10.1007/978-94-017-1754-0 6

3. Goré, R., Ramanayake, R.: Cut-elimination for weak Grzegorczyk logic Go. Studia
Logica 102(1), 1–27 (2014)

4. Iemhoff, R.: Reasoning in circles. In: Liber Amicorum Alberti. A tribute to Albert
Visser. Tributes, vol. 30, pp. 165–176 (2016)

5. Litak, T.: The non-reflexive counterpart of Grz. Bull. Sect. Logic 36, 195–208
(2007)

6. Petalas, C., Vidalis, T.: A fixed point theorem in non-Archimedean vector spaces.
Proc. Am. Math. Soc. 118(3), 819–821 (1993)

7. Prieß-Crampe, S.: Der Banachsche Fixpunktsatz für ultrametrische Räume.
Results Math. 18(1–2), 178–186 (1990)

8. Savateev, Y., Shamkanov, D.: Cut-elimination for the modal Grzegorczyk logic
via non-well-founded proofs. In: Kennedy, J., de Queiroz, R.J.G.B. (eds.) WoLLIC
2017. LNCS, vol. 10388, pp. 321–335. Springer, Heidelberg (2017). https://doi.org/
10.1007/978-3-662-55386-2 23

9. Savateev, Y., Shamkanov, D.: Non-Well-Founded Proofs for the Grzegorczyk Modal
Logic. The Review of Symbolic Logic (to submitted)

10. Shamkanov, D.S.: Circular proofs for the Gödel-Löb provability logic. Math. Notes
96(3), 575–585 (2014)

11. Schörner, E.: Ultrametric fixed point theorems and applications. Valuat. Theory
Appl. II(33), 353–359 (2003)

https://doi.org/10.1007/3-540-39185-1_9
https://doi.org/10.1007/978-94-017-1754-0_6
https://doi.org/10.1007/978-3-662-55386-2_23
https://doi.org/10.1007/978-3-662-55386-2_23

On First-Order Expressibility
of Satisfiability in Submodels

Denis I. Saveliev1,2(B)

1 Steklov Mathematical Institute of Russian Academy of Sciences,
Moscow, Russia

2 Institute for Information Transmission Problems of Russian Academy of Sciences,
Moscow, Russia

d.i.saveliev@iitp.ru

Abstract. Let κ, λ be regular cardinals, λ � κ, let ϕ be a sentence of
the language Lκ,λ in a given signature, and let ϑ(ϕ) express the fact
that ϕ holds in a submodel, i.e., any model A in the signature satisfies
ϑ(ϕ) if and only if some submodel B of A satisfies ϕ. It was shown in
[1] that, whenever ϕ is in Lκ,ω in the signature having less than κ func-
tional symbols (and arbitrarily many predicate symbols), then ϑ(ϕ) is
equivalent to a monadic existential sentence in the second-order language
L2

κ,ω, and that for any signature having at least one binary predicate
symbol there exists ϕ in Lω,ω such that ϑ(ϕ) is not equivalent to any
(first-order) sentence in L∞,ω. Nevertheless, in certain cases ϑ(ϕ) are
first-order expressible. In this note, we provide several (syntactical and
semantical) characterizations of the case when ϑ(ϕ) is in Lκ,κ and κ is
ω or a certain large cardinal.

Keywords: Satisfiability in submodels · Infinitary language ·
Large cardinal · Ultraproduct · Model-theoretic language ·
Logic of submodels

Given a model-theoretic language L (in sense of [2]) and a sentence ϕ in L,
let ϑ(ϕ) express the fact that ϕ is satisfied in a submodel. Thus for any model A,

A � ϑ(ϕ) iff B � ϕ for some submodel B of A.

We study when ϑ(ϕ), considered a priori as a meta-expression, is equivalent to a
sentence in another (perhaps, the same) given model-theoretic language L′. Such
questions naturally arise in studies of modal logics of submodels; if L is closed
under ϑ, then ϑ induces a modal operator on sentences (where a possibility of ϕ
means the satisfiability of ϕ in a submodel), and the resulting modal logic can be
regarded as a fragment of L with the submodel relation on a given class of models.
These logics are an instance of modal logics of various model-theoretic relations,

The work was supported by grant 16-11-10252 of Russian Science Foundation and was
carried out at Steklov Mathematical Institute of Russian Academy of Sciences.

c© Springer-Verlag GmbH Germany, part of Springer Nature 2019
R. Iemhoff et al. (Eds.): WoLLIC 2019, LNCS 11541, pp. 584–593, 2019.
https://doi.org/10.1007/978-3-662-59533-6_35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-59533-6_35&domain=pdf
https://doi.org/10.1007/978-3-662-59533-6_35

On First-Order Expressibility of Satisfiability in Submodels 585

which were introduced and studied in [1]; another instance is modal logic of
forcing (see, e.g., [3]). As another source of motivation for studies undertaken
in this note, let us point out the paper [4] discussing reduction of higher-order
logics to second-order one.

Here we concentrate on first-order languages Lκ,λ. Recall that Lω,ω is the
usual first-order finitary language; Lκ,λ expands it by involving Boolean con-
nectives of any arities <κ and quantifiers over <λ first-order variables, where
λ � κ are given regular cardinals; and L∞,λ is the union of Lκ,λ for all κ; see
[2,5,6]. It was shown in [1] that, even for ϕ in Lω,ω, it is possible that ϑ(ϕ) is
not in L∞,ω; on the other hand, ϑ(ϕ) is equivalent to a second-order (in general,
infinitary) sentence; these results are reproduced as Theorems 1 and 2 below.
Nevertheless, in certain cases ϑ(ϕ) are first-order expressible. In this note, we
provide several (syntactical as well as semantical) characterizations of the case
when ϑ(ϕ) is equivalent to a sentence in Lκ,κ and κ is either ω or a certain large
(e.g., compact) cardinal.

We start with some obvious observations, which confirm, in particular, that
ϑ behaves like an S4 possibility operator.

Proposition 1. For any sentences ϕ, ψ, and ϕi, i ∈ I, in a model-theoretic
language L involving the syntactic operations under consideration, we have:

(i) ϑ(�) is equivalent to �, and ϑ(⊥) is equivalent to ⊥;
(ii) ϕ implies ϑ(ϕ);
(iii) ϑ(ϕ) is equivalent to ϑ(ϑ(ϕ));
(iv) ϕ → ψ implies ϑ(ϕ) → ϑ(ψ);
(v) ϑ(

∧
i∈I ϕi) implies

∧
i∈I ϑ(ϕi), and ϑ(

∨
i∈I ϕi) is equivalent to

∨
i∈I ϑ(ϕi);

(vi) ¬ϑ(ϕ) implies ¬ϕ, and ¬ϕ implies ϑ(¬ϕ);
(vii) ϑ(¬ϑ(ϕ)) implies ϑ(¬ϕ).

Proof. Items (i)–(v) are immediate; (vi) follows from (ii); and (vii) from (iv)
and (vi).

Corollary 1. For every sentence ϕ, the sentence ϑ(ϕ) is preserved under exten-
sions of models. A fortiori, it is preserved under elementary extensions, unions of
increasing chains of models; in purely predicate signatures: under direct unions,
direct products and powers; etc.

Proof. This follows from item (iii) of Proposition 1.

Given cardinals κ, μ with μ � κ, recall that κ is μ-compact iff the language
Lκ,κ satisfies the (μ, κ)-compactness, i.e., any theory in Lκ,κ of cardinality �μ
has a model whenever each its subtheory of cardinality <κ has a model. A
cardinal κ is weakly compact iff it is κ-compact, and strongly compact iff it is
μ-compact for all μ � κ (e.g., ω is strongly compact). By a compact cardinal κ we
shall mean strongly compact κ, and by an inaccessible, a strongly inaccessible,
i.e., a regular κ such that 2λ < κ for all λ < κ. For more on these and other large
cardinals and their connections with infinitary languages, we refer the reader to
[5,6].

586 D. I. Saveliev

Corollary 2. Let κ be ω or, more generally, a compact cardinal, and ϕ a sen-
tence in Lκ,κ. The following are equivalent:

(i) ϑ(ϕ) is equivalent to a sentence in Lκ,κ;
(ii) ϑ(ϕ) is equivalent to a sentence in Σ0

1(Lκ,κ), i.e., an existential sentence
in Lκ,κ.

Proof. (i)→(ii). By Corollary 1 since sentences in Lκ,κ that are preserved under
extensions are exactly existential ones (for κ = ω see [7]; for compact κ > ω,
modify the same argument).

Two following results on expressibility of ϑ(ϕ), one negative and one positive,
were essentially obtained in [1].

Theorem 1. For any signature having at least one binary predicate symbol R,
there exists ϕ in Lω,ω such that ϑ(ϕ) is not equivalent to any (first-order) sen-
tence in L∞,ω.

Proof. If ϕ states that there is no R-minimal element, then ϑ(ϕ) states that R is
non-well-founded; as well known, the latter property is not expressible in L∞,ω

(moreover, it is not RPC in L∞,ω, see, e.g., [2], Theorem 3.2.20).

Given a model-theoretic language L, let Lα denote the αth-order extension of
L. A formula of L2 is monadic iff it involves only unary predicate variables, and
existential second-order, respectively, universal second-order iff it involves only
existential, respectively, universal quantifiers over second-order variables preced-
ing a first-order formula (with arbitrary quantifiers). The monadic fragment of
L2 consists of its monadic formulas; similarly for the existential and univer-
sal fragments of the language, which will be denoted by Σ1

1(L2) and Π1
1 (L2),

respectively.

Theorem 2. Let κ be a regular cardinal and ϕ a (first-order) sentence of Lκ,ω

in a signature τ with <κ functional (including constant) symbols and arbitrarily
many predicate symbols. Then ϑ(ϕ) is equivalent to a monadic existential formula
in L2

κ,ω. Moreover, the following languages are closed under ϑ:

(i) the monadic fragment of L2
κ,λ for any λ � κ;

(ii) the existential fragment of L2
κ,λ for any λ � κ;

(iii) Lα
κ,λ for any λ � κ and α � 2.

Proof. If X is a second-order unary predicate variable, for each functional symbol
F in τ let ψF be an L2

ω,ω-formula stating that X is closed under F , and let ψ(X)
be the L2

κ,ω-formula

∃x
(
X(x) ∧

∧
{ψF (X) : F is a functional symbol in τ})

stating that X forms a submodel. Then ϑ(ϕ) is equivalent to the sentence

∃X
(
ψ(X) ∧ ϕX

)

where ϕX is the relativization of ϕ to X.

On First-Order Expressibility of Satisfiability in Submodels 587

As usual, a filter D is κ-complete iff
⋂

E ∈ D for all E ∈ Pκ(D), where
Pκ(A) denotes the set of all subsets of A which have cardinality <κ.

Corollary 3. Let κ be ω or, more generally, a compact cardinal, and ϕ a sen-
tence in Lκ,κ in a signature with <κ functional (including constant) symbols.
Then ϑ(ϕ) is preserved under ultraproducts by κ-complete ultrafilters. Moreover,
this remains true for sentences ϕ in Σ1

1(L2
κ,κ).

Proof. By Theorem 2, for such a ϕ the statement ϑ(ϕ) is equivalent to some
Σ1

1(L2
κ,κ)-sentence, therefore, it is preserved under ultraproducts (for κ = ω see,

e.g., [7], Corollary 4.1.14; for compact κ modify the same argument).
The next result on non-expressibility of ϑ(ϕ) shows that the restriction on

the number of functional symbols in Theorem 2 is optimal.

Theorem 3. For any signature τ having �κ functional (e.g., constant) symbols,
there exists a sentence ϕ of Lω,ω (in fact, in the empty signature) such that
ϑ(ϕ) is not equivalent to any sentence in Lα

κ,κ for all α, and moreover, in every
language L whose formulas ψ have cardinality |ψ| < κ.

Proof. Clearly, it suffices to consider only a signature τ consisting of κ constant
symbols, say, cα, α < κ. Let ϕ be the sentence ∀x∀y x = y; then ϑ(ϕ) states
the existence of a single-point submodel. Toward a contradiction, assume that
such an L has some ψ equivalent to ϑ(ϕ). Let two models A and B in τ have
the same two-point universe {a, b}, and let for all α < κ,

cAα := a, and cBα :=
{

a if cα occurs in ψ,
b otherwise.

Since |ψ| < κ, there exists α < κ such that cBα = b. So we have: A � ψ iff B � ψ
(as A and B satisfy the same formulas involving only symbols from ψ), however,
A � ϑ(ϕ) and B � ¬ϑ(ϕ) (as the singleton {a} forms a submodel of A while B
has no single-point submodels).

Let ϑ�λ(ϕ) denote that ϕ is satisfied in a submodel generated by a set of car-
dinality �λ. Obviously, ϑ�λ(ϕ) implies ϑ(ϕ). We are going to show that ϑ�λ(ϕ)
is an existential sentence in an appropriate first-order language. To simplify some
formulations, we shall consider partial models in which their operations can be
only partial. An atomic diagram of a partial model A is defined in the same way
as for usual models with total operations, i.e., it consists of all true in A atomic
and negated atomic sentences of the language expanded by constant symbols for
all elements of A.

Lemma 1. Let κ be ω or, more generally, an inaccessible cardinal, λ < κ, and
ϕ a sentence in Lκ,κ in a signature τ with <κ functional (including constant)
symbols. Then ϑ�λ(ϕ) is equivalent to an existential sentence in Lκ,κ.

Proof. Let us first consider τ without functional symbols. Then ϑ�λ(ϕ) is clearly
equivalent to the first-order sentence

∃α<λ xα ϕ {xα: α<λ}

588 D. I. Saveliev

where ϕ{xα: α<λ} is the relativization of ϕ to the set of (first-order) variables xα,
α < λ, which do not occur in ϕ. Let us verify that the relativization is equivalent
to an open formula in Lκ,κ(τ) (with parameters xα, α < λ); it will clearly follow
that ∃α<λ xα ϕ {xα: α<λ} is equivalent to a Σ0

1(Lκ,κ)-sentence.
Indeed, the relativization is obtained from ϕ by successively replacing each

subformula ∃β<γ yβ ψ with the Lκ,κ-formula

∃β<γ yβ

(
ψ ∧

∧

β<γ

∨

α<λ
yβ = xα

)
.

The latter formula is equivalent to the formula

∃β<γ yβ

(
ψ ∧

∨

f∈λγ

∧

β<γ
yβ = xf(β)

)
,

which is still in Lκ,κ since |λγ | < κ due to the condition that κ is inaccessible,
and furthermore, to the open formula

∨

f∈λγ
ψ(yβ/xf(β))β<γ

where ψ(yβ/xf(β))β<γ is obtained from ψ by substituting each variable yβ with
the variable xf(β). This eliminates all quantifiers in all subformulas of ϕ {xα: α<λ},
as required.

In the general case, the construction is slightly more complex. Let τ ′ expand
τ by λ new constant symbols cα, α < λ. We still have |τ ′| < κ. Hence, since κ
is inaccessible, there exist only <κ pairwise non-isomorphic partial models in τ ′

satisfying ϕ with the universe consisting of an interpretation of all closed terms;
say, Bβ , β < μ, for some μ < κ. Note that, though such partial models may have
size >λ (they interpret not only the cα but all terms constructed from them),
all they have size �ν for some fixed ν with λ � ν < κ. For any β < μ, let Δβ be
the atomic diagram of Bβ , and ψβ its conjunction

∧
Δβ , which is still in Lκ,κ

as |Δβ | < κ. Let xα, α < λ, be variables not occurring in Δβ , and let ϕβ be the
formula ψβ(cα/xα) obtained from ψβ by replacing each constant symbol cα with
the variable xα. Then ϕβ is an open formula in τ , and the Σ0

1(Lκ,κ)-sentence

∃α<λ xα ϕβ(xα)α<λ

characterizes the partial model Bβ up to isomorphism. It follows that ϑ�λ(ϕ) is
equivalent to the Σ0

1(Lκ,κ)-sentence

∃α<λ xα

∨

β<μ
ϕβ(xα)α<λ.

This completes the proof.

Remark 1. The argument shows that, whenever κ is an inaccessible cardinal >ω,
then moreover, ϑ�λ(ϕ) is equivalent to an existential sentence in Lκ,λ+ . Also
we can see that Lemma 1 remains true for signatures with <κ-ary symbols. For
τ with �κ functional symbols, even ϑ�1(ϕ) is non-expressible in any language
with formulas of size <κ, by the proof of Theorem3.

On First-Order Expressibility of Satisfiability in Submodels 589

A fragment of a model A is an its partial submodel, i.e., a subset of the uni-
verse of A together with the inherited structure. Thus for models in signatures
without functional symbols, fragments are just submodels; while for models in
signatures with functional symbols, operations on fragments can be partial. A
fragment can be considered as a submodel of the corresponding model in the
purely predicate language obtained from the original language by replacing each
functional symbol of arity �1 with a predicate symbol having the same interpre-
tation. Clearly, for any fragment there exists the smallest submodel including it,
the submodel generated by the fragment.

Let A be a model and I an ideal over A (the universe of A) with
⋃

I = A. We
shall say that the system (Bi)i∈I of models (in the same signature) is coherent
in A iff for every i ∈ I, the set i is included into Bi (the universe of Bi) and the
fragments of A and of Bi given by i coincide.

As usual, an upper cone of a partially ordered set (P,�) is an C ⊆ P which
is upward closed, i.e., such that b ∈ C whenever a � b for some a ∈ C. Clearly,
the set of upper cones of P generates a filter over P whenever P is directed.

Lemma 2. Let (Bi)i∈I be coherent in A and D a filter over I extending the
filter generated by upper cones of (I,⊆). Then A isomorphically embeds into
B :=

∏
D Bi, the product of the models Bi reduced by D.

Proof. For each i ∈ I we fix some bi ∈ Bi, and for each a ∈ A, let ca ∈ ∏
i∈I Bi

be the function defined by letting for all i ∈ I,

ca(i) :=
{

a if a ∈ i,
bi otherwise.

Now define f : A → B by letting for all a ∈ A,

f(a) := [ca]D,

and check that f is an isomorphic embedding of A into B.
Let R be an n-ary predicate symbol in our signature. We must check that

for all a0, . . . , an−1 in A,

RA(a0, . . . , an−1) iff RB(f(a0), . . . , f(an−1)).

Since
⋃

I = A, for any k < n there is ik ∈ I with ak ∈ Bik
, and since I is an

ideal,
⋃

k<n ik ∈ I. Moreover, since i ⊆ Bi for all i ∈ I, whenever
⋃

k<n ik ⊆ i
then {ak}k<n ⊆ Bi and ak = cak

(i), and so, since the fragments of A and Bi

given by i coincide, RA(a0, . . . , an−1) is equivalent to RBi(ca0(i), . . . , can−1(i)).
Thus we have:

RA(a0, . . . , an−1) iff
{
i ∈ I : RBi(ca0(i), . . . , can−1(i))

}
is an upper cone of I

iff
{
i ∈ I : RBi(ca0(i), . . . , can−1(i))

} ∈ D

where one implication in the second equivalence holds since D extends the filter
generated by upper cones of I while the converse implication holds since the prop-
erty inherits upward. But by definition of reduced products, the latter assertion

590 D. I. Saveliev

is equivalent to RB([ca0]D, . . . , [can−1]D) and thus to RB(f(a0), . . . , f(an−1)), as
required.

Let now F be an n-ary functional symbol in the signature. We must check
that for all a0, . . . , an−1 in A,

f(FA(a0, . . . , an−1)) = FB(f(a0), . . . , f(an−1)).

Indeed,
f(FA(a0, . . . , an−1)) = [cFA(a0,...,an−1)]D

while

FB(f(a0), . . . , f(an−1)) = FB([ca0]D, . . . , [can−1]D) = [b]D
where b(i) = FBi(ca0(i), . . . , can−1(i)).

Again, if for k < n, ik ∈ I is such that ak ∈ Bik
, and also in ∈ I is such

that FA(a0, . . . , an−1) ∈ Bin
, whenever

⋃
k�n ik ⊆ i then cFA(a0,...,an−1)(i) =

FA(a0, . . . , an−1) = FBi(a0, . . . , an−1) and also

FBi(ca0(i), . . . , can−1(i)) = FBi(a0, . . . , an−1).

It follows [cFA(a0,...,an−1)]D = [b]D, as required.
The proof is complete.

Remark 2. In general, even if D is an ultrafilter and all the Bi are submodels of
A, the embedding is not elementary, and moreover, A and B are not elementarily
equivalent, even in the sense of Lω,ω. E.g., let A = (ω,<) and Bi = (i, <) for all
finite i ⊆ ω. Then if ϕ is ∃x∀y ¬ (x < y), we have: A � ϕ, but for all i, Bi � ¬ϕ,
and hence, B � ¬ϕ.

Remark 3. If the ideal I is κ-complete, i.e.,
⋃

E ∈ I for all E ∈ Pκ(I), then
Lemma 2 remains true even for signatures involving <κ-ary symbols. Let us
point out also that whenever I is κ-complete then so is the filter DI over I
generated by upper cones in (I,⊆) (but of course not any filter D extending
DI), and that in the case I = Pκ(A), DI is the least κ-complete fine filter over
Pκ(A).

The theorem below is the main result of this note; it extends Corollary 2
by providing new characterizations – syntactical in item (iii) and semantical in
items (iv) and (v) – of the case when ϑ(ϕ) is equivalent to a first-order formula.

Theorem 4. Let κ be ω or, more generally, a compact cardinal and ϕ a sentence
in the language Lκ,κ in a signature τ with <κ functional (including constant)
symbols. The following are equivalent:

(i) ϑ(ϕ) is equivalent to a Σ0
1(Lκ,κ)-sentence;

(ii) ϑ(ϕ) is equivalent to an Lκ,κ-sentence;
(iii) ϑ(ϕ) is equivalent to a Π1

1 (L2
κ,κ)-sentence;

On First-Order Expressibility of Satisfiability in Submodels 591

(iv) any model satisfying ϕ has a fragment of cardinality <κ such that each
model having the fragment satisfies ϑ(ϕ);

(v) there exists λ < κ such that any model satisfying ϕ has a fragment of
cardinality �λ and such that each model having the fragment satisfies ϑ(ϕ).

Proof. (i)→(ii) and (ii)→(iii). Trivial.
(iii)→(iv). Assume that (iv) does not hold. Then there is A such that A � ϕ,

and for every set i ⊆ A of size < κ, there exists a model Bi such that i ⊆ Bi,
the fragments of A and of Bi given by i coincide, and Bi has no submodels
satisfying ϕ, thus Bi � ¬ϑ(ϕ). Let B :=

∏
D Bi where D is a κ-complete

ultrafilter over Pκ(A) which is fine, i.e., extends the filter generated by the sets
{i ∈ Pκ(A) : a ∈ i} for all a ∈ A (recall that the existence of such an ultrafilter
follows from the compactness of κ; see, e.g., [6], Corollary 22.18). By Lemma 2,
A isomorphically embeds into B; therefore, B � ϑ(ϕ). Let us show that (iii)
fails.

Indeed, if ϑ(ϕ) is equivalent to a Π1
1 (L2

κ,κ)-formula, then ¬ϑ(ϕ) is equiv-
alent to a Σ1

1(L2
κ,κ)-formula, and hence, is preserved under ultraproducts by

κ-complete ultrafilters (as was pointed out in the proof of Corollary 3), whence
we get also B � ¬ϑ(ϕ); a contradiction.

(iv)→(v). Assume that (v) does not hold. Let us again use an ultraproduct
argument: for any α < κ pick a model Aα which satisfies ϕ and does not have
fragments of size �λ generating submodels satisfying ϕ, pick any κ-complete
ultrafilter D over κ, and consider A :=

∏
D Aα. Clearly, A satisfies ϕ. Let us

show that A does not have fragments of size <κ generating submodels satisfying
ϕ, thus proving that (iv) fails.

Indeed, if there is λ < κ such that A has some λ-generated submodel satis-
fying ϕ, i.e., A � ϑ�λ(ϕ), then this fact is expressed by a first-order (and even
existential) sentence by Lemma 1, and hence, should hold in Aα for D-almost
all α, which is, however, not true.

(v)→(i). Assume (v). Then ϑ(ϕ) is equivalent to ϑ�λ(ϕ), which is equivalent
to a Σ0

1(Lκ,κ)-sentence by Lemma 1, thus proving (i).
The theorem is proved.

Corollary 4. Let κ be ω or, more generally, a compact cardinal and ϕ a sen-
tence in Lκ,κ in a signature without functional symbols. The following are equiv-
alent:

(i) ϑ(ϕ) is equivalent to a sentence in Lκ,κ (or Σ0
1(Lκ,κ), or Π1

1 (L2
κ,κ));

(ii) any model satisfying ϕ has a submodel of cardinality <κ satisfying ϕ (or
ϑ(ϕ));

(iii) there exists λ < κ such that any model satisfying ϕ has a submodel of
cardinality �λ satisfying ϕ (or ϑ(ϕ)).

Proof. As in such signatures the notions of fragments and submodels coincide,
this follows from Theorem 4.

Example 1. Recall that models in signatures having only unary functional sym-
bols are called unoids, and if such a symbol is unique, unars.

592 D. I. Saveliev

Let a signature τ consist of a single unary functional symbol F . Let ϕ be
the Lω,ω-sentence ∃x F (x)
= x in τ . Then ϑ(ϕ) is equivalent to ϕ itself. Clearly,
the cardinality λ < ω of a finite fragment determining satisfiability of ϑ(ϕ) in
submodels extending it, stated in Theorem 4 (v), is 1; note that there are models
of ϕ without finite submodels at all (e.g., so is the free 1-generated unar (ω, S)
where S is the successor operation).

More generally, let τ consist of κ unary functional symbols Fα, α < κ, and let
ϕ be the Lκ+,ω-sentence ∃x

∨
α<κ Fα(x)
= x in τ . Then again, ϑ(ϕ) is equivalent

to ϕ, λ is 1, and there are models of ϕ without submodels of size <κ (e.g., any
free τ -unoid).

Example 2. Let a signature τ consist of a single binary predicate symbol R.
Let ϕ be the Lω,ω-sentence ∃x∀y R(x, y) in τ . Then ϑ(ϕ) is equivalent to

∃xR(x, x), and λ from Corollary 4 (iii) is 1. Observe that ϕ is in Σ0
2 \ Π0

2 . Indeed,
assume that ϕ is in Π0

2 . Recall that Π0
2 -formulas are characterized as those that

are preserved under chain unions (see [7], Theorem 3.2.2). Let An be (n + 1,�),
and let A be the union of the chain of the An, n ∈ ω. Then An � ϕ for all n ∈ ω
but A � ¬ϕ; a contradiction.

Let also ψ be the Lω,ω-sentence ∀x∃yR(x, y) in τ . Then ϑ(ψ) is not equivalent
to any Lω,ω-sentence. Indeed, the model (ω,<) satisfies ψ but includes no finite
submodels satisfying ψ; apply Corollary 4 (iii). Similar arguments show that ψ
is in Π0

2 \ Σ0
2 and that ϑ(¬ψ) is ∃x¬R(x, x) while ϑ(¬ϕ) is not equivalent to

any Lω,ω-sentence.

Remark 4. Although any ϕ with the first-order expressible ϑ(ϕ) determines the
least size of a small fragment from Theorem 4, which is thus independent of a
particular model, it does not determine, even up to isomorphism, the fragment
itself. E.g., if ϕ is any true formula then ϑ(ϕ) is equivalent to ϕ; hence in a
purely predicate signature τ the discussed size is 1 but there can be many non-
isomorphic single-point models – arbitrarily many in an appropriate τ .

Remark 5. Despite the low complexity of the first-order expressible ϑ(ϕ), the
complexity of ϕ itself can be much higher: there exist non-first-order expressible
ϕ with first-order expressible ϑ(ϕ). Let ϕ state the finiteness, i.e., let any model
satisfy ϕ iff it is finite. As well-known, ϕ is not Lω,ω-expressible (though is
expressible in Lω1,ω or else in the weak second-order language; see, e.g., [2]).
However, in any signature without functional symbols, ϑ(ϕ) is equivalent to any
true formula. This example is generalized to the languages Lκ,κ with arbitrarily
large κ.

Remark 6. Theorem 4 (and Corollary 4) remains true even for signatures with
<κ-ary symbols; for Lemmas 1 and 2 this has been already noticed, other argu-
ments in the proof do not require any modifying.

Remark 7. The results of this note admit further improvements and generaliza-
tions.

First, in Theorem 4 (and Corollary 4) it suffices to assume that κ is inac-
cessible. Moreover, for κ > ω, if a sentence ϕ in Lκ,κ holds in a model then it

On First-Order Expressibility of Satisfiability in Submodels 593

holds in its submodel of size <κ (see, e.g., [2], Corollary 3.1.3), hence ϑ(ϕ) is
equivalent to ϑ�λ(ϕ) for some λ < κ; then items (i)–(v) of Theorem 4 follow due
to Lemma 1 (even in a nicer form with submodels instead of fragments, like as
in Corollary 4).

Further, the obtained results can be relativized to theories T in a given
language. Another natural generalization concerns the question when ϑ(T) is
equivalent to some theory in the same language.

Question 1. Characterize first-order sentences ϕ for which ϑ(ϕ) are first-order
sentences in Lω,ω.

Acknowledgement. I am grateful to N. L. Poliakov for discussions on the subject
of this note and especially for his valuable help in handling the case of functional
signatures in Lemma 1. I am indebted to F.N. Pakhomov for his remark about the
number of functional symbols in that lemma, which leaded me to Theorem 3, and for
his proposal to weaken the large cardinal property of κ to inaccessibility by using the
downward Löwenheim–Skolem theorem for Lκ,κ. I also express my appreciation to I. B.
Shapirovsky who read this note and made several useful comments. Finally, I thank
two (unknown to me) referees for some suggestions improving the text.

References

1. Saveliev, D.I., Shapirovsky, I.B.: On modal logics of model-theoretic relations. Stu-
dia Logica (2019, accepted). arXiv: 1804.09810

2. Barwise, J., Feferman, S. (eds.): Model-Theoretic Logics. Perspectives in Mathe-
matical Logic, vol. 8. Springer, New York (1985)

3. Hamkins, J.D., Löwe, B.: The modal logic of forcing. Trans. Am. Math. Soc. 360(4),
1793–1817 (2008)

4. Montague, R.: Reduction of higher-order logic. In: Symposium on the Theory of
Models, pp. 251–264. North-Holland, Amsterdam (1965)

5. Drake, F.R.: Set theory: an introduction to large cardinals. In: Studies in Logic and
the Foundations of Mathematics, vol. 76. North-Holland, Amsterdam, Oxford, New
York (1974)

6. Kanamori, A.: The Higher Infinite: Large Cardinals in Set Theory from Their Begin-
nings, 2nd edn. Springer, Heidelberg (2003)

7. Chang, C.C., Keisler, H.J.: Model Theory, 3rd edn. North-Holland, Amsterdam
(1990)

http://arxiv.org/abs/1804.09810

Substructural Propositional
Dynamic Logics

Igor Sedlár(B)

The Czech Academy of Sciences, Institute of Computer Science,
Pod Vodárenskou věž́ı 271/2, 182 07 Prague 8, Czech Republic

sedlar@cs.cas.cz

http://www.cs.cas.cz/sedlar/

Abstract. We prove completeness and decidability of a version of
Propositional Dynamic Logic where the underlying non-modal proposi-
tional logic is a substructural logic in the vicinity of the Full Distributive
Non-associative Lambek Calculus. Extensions of the result to stronger
substructural logics are briefly discussed.

Keywords: Lambek calculus · Modal logic ·
Propositional dynamic logic · Relevant logic · Substructural logic

1 Introduction

Propositional Dynamic Logic, introduced in [8] following the ideas of [24], is
a multi-modal logic for reasoning about structured actions with applications
in formal verification of programs [11], automated planning [26,33], dynamic
epistemic logic [1] and deontic logic [19], for example.

In its standard formulation, PDL is a normal modal logic extending classical
logic. Nevertheless, many non-classical versions of PDL—non-classical PDLs—
have been explored as well, ranging from intuitionistic versions [6,21,36], to
many-valued [4,5,12,15,16,34] and paraconsistent ones [29,30]. In [32], the land-
scape is extended with a study of propositional dynamic logic based on weak
substructural logics in the vicinity of the Non-associative Lambek calculus. In
that paper a formula-formula sequent system is used on the proof-theoretic side
to complement a simple relational semantics extending frames for the Lambek
calculus [7,20]. This approach, however, is not typical in all areas of substruc-
tural logic; especially in relevant logic a Hilbert-style proof theory combined
with models based on partially ordered sets is preferred [25,28]. One naturally
wonders if PDLs can be easily formulated in this setting as well.

In this paper we explore completeness of Hilbert-style formulations of sub-
structural PDLs with respect to partially ordered models. We employ the tech-
nique of [31] (itself based on [3]), where a fragment of the present setting was
studied, in combination with Nishimura’s approach to intuitionistic PDL [21].
We show that the approach works for PDLs based on some weak substructural
c© Springer-Verlag GmbH Germany, part of Springer Nature 2019
R. Iemhoff et al. (Eds.): WoLLIC 2019, LNCS 11541, pp. 594–609, 2019.
https://doi.org/10.1007/978-3-662-59533-6_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-59533-6_36&domain=pdf
http://orcid.org/0000-0002-1942-7982
https://doi.org/10.1007/978-3-662-59533-6_36

Substructural PDLs 595

logics but it fails for some stronger logics (for instance, some undecidable rel-
evant logics); these ramifications are similar to those pointed out in [32]. In
addition, extensions of Hilbert-style PDLs with primitive existential modalities
(“diamond” versions of the action-indexed modalities) are shown to be problem-
atic. These observations suggest that the study of substructural propositional
dynamic logic abounds with interesting challenges and, most probably, requires
the development of novel techniques.

The paper is structured as follows. In Sect. 2 we give the necessary back-
ground on PDL and on substructural logics. Section 3 discusses the motivation
for studying substructural PDLs (in addition to technical curiosity). Complete-
ness and decidability of PDL based on a weak substructural logic close to the
Non-associative Lambek calculus is established in Sect. 4. The ramifications of
the technique used to obtain the result, along with a number of related open
problems, are discussed in Sect. 5.

2 Preliminaries

In this section we give an outline of propositional dynamic logic based on classical
logic (Sect. 2.1, where we build on [11]) and of substructural logics (Sect. 2.2,
where we build mainly on [25]).

2.1 Classical PDL

Fix countable sets At of atomic formulas and Ac of atomic action expressions.
Formulas and action expressions are defined by mutual induction as follows: 1.
Each p ∈ At is a formula, the truth constant 1̄ and the falsity constant 0̄ are
formulas and each combination of formulas using Boolean connectives ∧,∨,→ is
a formula; moreover, if α is an action expression, then [α]ϕ is a formula. 2. Each
a ∈ Ac is an action expression; if α and β are action expressions, then so are
α;β (expressing composition of actions, “doing α and then β”), α∪β (expressing
non-deterministic choice, “doing α or β”), α∗ (representing iteration, “doing α
some finite number of times”). Moreover, if ϕ is a formula, then ϕ? is an action
expression (expressing test, “testing whether ϕ holds”). This language will be
called the dynamic language. We define � as 0̄ → 0̄, ¬ϕ and ϕ ↔ ψ are defined
as usual. Conjunctions and disjunctions of finite sets of formulas are defined as
usual, with

∧ ∅ := � and
∨ ∅ := 0̄.1

Formulas and action expressions are referred to jointly as expressions. The
notions of subformula and action-subexpression are defined as expected. The
relation of subexpression is defined as the least relation satisfying the following:
1. Each subformula of ϕ is a subexpression of ϕ; if ϕ is of the form [α]ψ, then
each subexpression of α is a subexpression of ϕ. 2. Each action-subexpression of
α is a subexpression of α; if α is of the form ϕ?, then each subexpression of ϕ

1 We distinguish between 1̄ and � for the sake of presentation; these will not be
equivalent in substructural logics. See Sect. 2.2. We need 1̄ in our language for a
technical reason, see the proof of Lemma 6.

596 I. Sedlár

is a subexpression of α. Proofs by induction on subexpressions are often used in
propositional dynamic logic.

Fix an axiomatization CPC of the classical propositional calculus in the
language {∧,∨,→, 1̄, 0̄} using axiom schemata and Modus Ponens as the only
rule of inference. The axiom system PDL is obtained by adding to CPC the
axiom schemata

([α]ϕ ∧ [α]ψ) → [α](ϕ ∧ ψ),
[α ∪ β]ϕ ↔ ([α]ϕ ∧ [β]ϕ),
[α;β]ϕ ↔ [α][β]ϕ,
[α∗]ϕ → (ϕ ∧ [α][α∗]ϕ),
[ψ?]ϕ ∧ ψ → ϕ;

and the inference rules

ϕ → ψ

[α]ϕ → [α]ψ
,

ϕ → [α]ϕ
ϕ → [α∗]ϕ

and
(ϕ ∧ ψ) → χ

ϕ → [ψ?]χ
.

Let us refer to these additional modal axioms and rules as MAX. Theorems and
derivability in PDL are defined in the usual way. (Hence, derivability is finitary:
ϕ is derivable from Γ iff it is derivable from a finite subset of Γ .)

A standard frame is a couple F = 〈W,R〉, where W is a non-empty set
(“worlds” or “states”) and R is a function from Ac to binary relations on W .
The “accessibility” relation R(a) represents actions of type a—R(a)(x, y) can
be read as “state y is accessible from x by performing an action of type a”. A
standard model is a triple M = 〈W,R, V 〉, where V is a function from At to
subsets of W . We also say that 〈W,R, V 〉 is a model based on the frame 〈W,R〉.

For each M , we define the evaluation function [[]]M that assigns subsets of
W to formulas and binary relations on W to action expressions in the following
way (again, the definition is by mutual induction):

– [[p]]M = V (p), [[1̄]]M = W and [[0̄]]M = ∅; the usual set-theoretic clauses are
used for Boolean combinations of formulas. Moreover, [[[α]ϕ]]M is the set of x
such that, for all y, if x[[α]]My, then y ∈ [[ϕ]]M .

– [[a]]M = R(a), [[α ∪ β]]M is the union of [[α]]M and [[β]]M , [[α;β]]M is the
composition of [[α]]M and [[β]]M , [[α∗]]M is the reflexive transitive closure of
[[α]]M , and [[ϕ?]]M is the identity relation on [[ϕ]]M .

Infix notation x[[α]]My is used for the fact that 〈x, y〉 is in the relation [[α]]M .
The subscript is often omitted.

Formula ϕ is valid iff [[ϕ]]M is the set of worlds in M , for all models M . More
generally, ϕ follows from a set of assumptions Γ iff

(⋂
ψ∈Γ [[ψ]]M

)
⊆ [[ϕ]]M , for

all M .

Theorem 1. ϕ is a theorem of PDL iff it is valid. The set of theorems of PDL
is decidable.

Substructural PDLs 597

Decidability of the set of valid formulas was shown in [8] using a finite model
construction. Completeness of a system equivalent to PDL without test and with
a “converse” modality was shown in [13,23], using a finite model construction
similar to the one used in [8]; it is noted in the papers that the proof strategy
is compatible with adding test and removing converse. For the full proof of this
fact consult [11].

A noteworthy feature of propositional dynamic logic is that it is not compact.
To see this, note that [a∗]p follows from {p} ∪ {[an]p | n ∈ ω}, where a1 is a
and an+1 is a; an. However, [a∗]p does not follow from any finite subset of that
set of assumptions. Hence, [a∗]p is not derivable from that set of assumptions in
PDL. As a result, one cannot hope for a strong completeness theorem for PDL.
In [14] an infinitary proof system PDLω is shown to be strongly complete with
respect to the standard semantics.

2.2 Some Substructural Logics

For the sake of simplicity, we diverge somewhat from the usual presentation
(e.g. [10,25]) and we discuss substructural logics in the language of CPC, that
is, in {∧,∨,→, 1̄, 0̄}.2 Substructural logics in this language can be seen as logics
where → lacks some properties that implication has in classical logic. Some such
properties are given in Fig. 1.

B (ϕ → ψ) → ((χ → ϕ) → (χ → ψ)) Associativity
C (ϕ → (ψ → χ)) → (ψ → (ϕ → χ)) Commutativity
CI ϕ → ((ϕ → ψ) → ψ) Weak commutativity
W (ϕ → (ϕ → ψ)) → (ϕ → ψ) Contraction
WI (ϕ ∧ (ϕ → ψ)) → ψ Weak contraction
K ϕ → (ψ → ϕ) Weakening

Fig. 1. “Structural schemata” that fail in some substructural logics.

The reasons to avoid the respective properties of implication are related to
various possible informal readings of →. The Weakening axiom is usually avoided
based on the assumption that ψ has to be relevant to ϕ in order for ψ → ϕ to
be true. Note that the Weakening axiom entails that ψ → ϕ is derivable from
the mere assumption that ϕ is the case, without assuming anything about ψ
at all. These considerations led to the study of relevant logics; the main exam-
ples of such logics—for example the logic R—include all the other schemata.
The contraction axiom is usually omitted when implication ϕ → ψ is read in
terms of resource use, for instance as “by using a resource of type ϕ, outcome of
type ψ may be produced”. It is clear that some outputs require several pieces
of resource of some type to be used. These considerations are central to linear

2 This means that we do not include the fusion ◦ and the dual implication ←.

598 I. Sedlár

logic, for instance. In addition, contraction is also avoided in some fuzzy logics
(logics of graded truth). Note that Contraction is also not plausible when for-
mulas are seen as expressing types of linguistic items (expressions) and ϕ → ψ
represents the type of expression that, when concatenated with expression of
type ϕ, results in an expression of type ψ, such as in the various versions of the
Lambek calculus. This interpretation is also inconsistent with Commutativity—
the order of expression concatenation usually matters. Finally, Associativity is
omitted in some versions of the Lambek calculus (not dealing with strings, but
with some more general class of linguistic items). See the introductory chapter
of [22] for more details on these motivations, for example. We note, in addition,
that the Explosion principle, (ϕ ∧ ¬ϕ) → ψ, follows from Weak contraction and
0̄ → ψ. Paraconsistent logics avoid the Explosion principle since it trivializes
inconsistent sets of assumptions.

Let us turn to axiomatic presentations of substructural logics. In what fol-
lows, a logic will be any set of formulas in the language {∧,∨,→, 1̄, 0̄} containing
all the formulas of the form

1̄, ϕ → ϕ, (ϕ ∧ ψ) → ϕ, (ϕ ∧ ψ) → ψ, ϕ → (ϕ ∨ ψ), ψ → (ϕ ∨ ψ),
ϕ ∧ (ψ ∨ χ) → ((ϕ ∧ ψ) ∨ (ϕ ∧ χ)), 0̄ → ϕ, ϕ → (0̄ → 0̄),
((ϕ → ψ) ∧ (ϕ → χ)) → (ϕ → (ψ ∧ χ)),
((ϕ → χ) ∧ (ψ → χ)) → ((ϕ ∨ ψ) → χ);

and closed under

ϕ

1̄ → ϕ
,

ϕ → ψ ϕ

ψ
,

ϕ ψ

ϕ ∧ ψ
,

ϕ → ψ χ → θ

(ψ → χ) → (ϕ → θ)
.

We sometimes write Λ ϕ instead of ϕ ∈ Λ.
Let Λ0 be the smallest logic; it can be seen as a Hilbert-style axiomatization

of a fragment of the Distributive Full Non-associative Lambek calculus extended
with the falsity constant 0̄ (or, as we may also say in the terminology of [10],
the {∧,∨,→, 1̄, 0̄}-fragment of the “zero-bounded” DFNL).

A Routley–Meyer frame is a structure F = 〈S,≤, L, T 〉 where 〈S,≤〉 is a
partially ordered set, L is an upwards closed subset of 〈S,≤〉 and T is a ternary
relation on S such that

Txyz, x′ ≤ x, y′ ≤ y, z ≤ z′ =⇒ Tx′y′z′ (1)

x ≤ y ⇐⇒ (∃z)(z ∈ L & Tzxy) (2)

A Routley–Meyer model based on F is M = 〈F , V 〉, where V is a function
from At to upwards closed subsets of the frame F . For each M, we define the
evaluation function [[]]M that assigns subsets of the frame on which M is based to
formulas (states that “satisfy” the formulas) in the following way: [[p]]M = V (p),
[[0̄]]M = ∅ and

[[1̄]]M = L; (3)

Substructural PDLs 599

the usual set-theoretic clauses are used for ∧,∨ and

[[ϕ → ψ]]M = {x | (∀yz)((Txyz & y ∈ [[ϕ]]M) =⇒ z ∈ [[ψ]]M)} (4)

Note that [[�]]M = S and so [[�]]M �= [[1̄]]M if L �= S.
The following well-known facts outline the reasons why Routley–Meyer

frames contain L and ≤ and why (1–2) are assumed.

Lemma 1. For all M and ϕ, [[ϕ]]M is an upwards closed set.

Proof. Use (1) for ϕ = ψ → χ; other cases are trivial.

A formula ϕ is valid in M iff L ⊆ [[ϕ]]M.

Lemma 2. ϕ → ψ is valid in M iff [[ϕ]]M ⊆ [[ψ]]M.

Proof. “If”: Take x ∈ L and assume that Txyz and y ∈ [[ϕ]]M. By (2), y ≤ z
and by Lemma 1 z ∈ [[ϕ]]M. Hence z ∈ [[ψ]]M by the assumption.

“Only if”: Take x ∈ [[ϕ]]M. By (2), we have Tyxx for some y ∈ L and so
x ∈ [[ψ]]M by the assumption.

We note that formulas in Λ0 are typically not satisfied in all states in a model.
For instance, p → p may fail in x if there are y, z such that Rxyz and y �≤ z.
However, thanks to Lemma 2, p → p is clearly satisfied in all x ∈ L.

Let Λ be a logic. A set of formulas Γ is a non-trivial prime Λ-theory iff 1.
Γ is non-empty, 2. ϕ → ψ ∈ Λ and ϕ ∈ Γ implies ψ ∈ Γ , 3. ϕ,ψ ∈ Γ only if
ϕ ∧ ψ ∈ Γ , 4. ϕ ∨ ψ ∈ Γ only if ϕ ∈ Γ or ψ ∈ Γ .

Lemma 3 (Pair Extension). Let Λ be any logic extending Λ0. Assume that
there is no conjunction γ of elements of Γ and a disjunction δ of elements of Δ
such that γ → δ ∈ Λ. Then there is a non-trivial prime Λ-theory Σ extending Γ
and disjoint from Δ.

Proof. See [25, 92–94].

A formula is valid in F iff it is valid in all models based on F .

Theorem 2. ϕ ∈ Λ0 iff ϕ is valid in all Routley–Meyer frames.

Proof. Canonical model construction, the argument uses the Pair Extension
Lemma; see [25] for details.

We note that a simpler semantics (without L and ≤) is sufficient for some
formula-formula sequent presentations of some substructural logics, i.e. where
a logic is defined as a set of ordered pairs of formulas, not as a set of formulas.

600 I. Sedlár

3 Motivation

The previous section suggests an obvious way to produce proof systems for
substructural propositional dynamic logics—take a substructural logic and add
MAX. Semantics for these proof systems do not seem hard to come by as well.
Following the lead of the literature on modal relevant logics [9,17,18,27], the idea
is to add to Routley–Meyer frames a function R from atomic action expressions
Ac to binary relations on S satisfying a tonicity condition in the style of (1) and
then define the evaluation function on complex action expressions in the style of
classical PDL. It is to be expected that if Λ is sound and complete with respect
to a class of Routley–Meyer frames, then PDLΛ, an extension of Λ with MAX,
is sound and complete with respect to suitable “modal extensions” of frames in
the class. We will show in Sect. 4 that this is indeed the case for PDLΛ0 and we
will point out some problems that pop up when stronger logics are considered
in Sect. 5.

But first, we need to address another question, namely, why is it interesting
to consider such substructural PDLs. We will not go into a detailed discussion
of this important question here. We just point out some relations of the present
question to the original motivations for omitting some of the structural schemata
of Fig. 1.

One of the crucial properties of actions expressed in the language of PDL are
partial correctness assertions of the type

ϕ → [α]ψ,

read “if ϕ is the case, then each (terminating) execution of action α leads to
a state where ψ holds”; see [11]. One may insist that such assertions express
meaningful properties of actions only if ϕ is relevant, in some sense close to the
motivations of relevant logic, to [α]ψ (or to ψ).3 This motivates the study of PDL
without the Weakening axiom. We note that most non-classical PDLs studied
in the literature so far (intuitionistic and fuzzy PDLs) assume Weakening.

In general, omissions of the structural schemata from PDL can be motivated
by the goal of formulating logics of structured actions that modify the types of
objects related to non-modal substructural logics without the respective struc-
tural schemata. For instance, assume that we want to study a logic for reasoning
about structured actions modifying linguistic items (expressions) of some kind.
It is reasonable to take a PDL based on some version of the Lambek calcu-
lus. Similarly, reasoning about actions in a setting where graded truth values
are admitted (e.g. situations where graded predicates play an important role),
requires a fuzzy version of PDL without Contraction.

4 The Basic Substructural PDL

In this section we prove completeness and decidability of the basic substructural
propositional dynamic logic PDLΛ0 , which we denote simply as PDL0. To be
3 For instance, on may wonder if p → [α]� express a meaningful specification of α.

Substructural PDLs 601

more precise, PDL0 is the least set of formulas of the dynamic language 1.
containing all the formulas of the forms used in the definition of Λ0 and closed
under all the Λ0-inference rules; and 2. containing (or closed under) all elements
of MAX.

A dynamic Routley–Meyer frame is a structure F = 〈S,≤, L, T,R〉 where
〈S,≤, L, T 〉 is a Routley–Meyer frame and R is a function from Ac to binary
relations on S such that

R(a)xy, x′ ≤ x, y ≤ y′ =⇒ R(a)x′y′ (5)

A dynamic Routley–Meyer model based on F is M = 〈F, V 〉 where V is as
in Routley–Meyer models. The evaluation function [[]]M assigning subsets of
S to formulas and binary relations on S to action expressions is defined as in
dynamic and Routley–Meyer models, respectively (the clause for → is the one
used in Routley–Meyer models), with one exception:

[[ϕ?]]M = {〈x, y〉 | x ≤ y & y ∈ [[ϕ]]M} (6)

Lemma 4. 1. Each [[ϕ]]M is upwards closed.
2. For all α, x[[α]]My, x′ ≤ x and y ≤ y′ imply x′[[α]]My′.

Proof. The claims are established simultaneously by induction on subexpressions
(in each case, the induction hypothesis is that both claims hold for all proper
subexpressions of the expression at hand). 1. The only new claim is the one
concerning formulas of the form [α]ψ—and that claim is easily seen to follow
from 2. for α (a subexpression of [α]ψ). 2. We give details of the case ψ? as it
hinges on the non-standard evaluation condition (6). If x ≤ y and y ∈ [[ψ]]M,
then x′ ≤ x and y ≤ y′ imply x′ ≤ y′ and y′ ∈ [[ψ]]M by transitivity of ≤ and
claim 1. for ψ (a subexpression of ψ?).

The proof of Lemma 4 provides the justification for our choice of the non-
standard evaluation condition (6)—note that the second claim of the lemma
would fail if [[ϕ?]]M was defined, classically, as the identity relation on [[ϕ]]M.
Nevertheless, this definition seems to bring about a significant shift in “meaning”
of the test action when compared to the classical case. Instead of “Test whether
ϕ is satisfied; do not change state”, we now have “Move to an arbitrary bigger
state that supports ϕ”, i.e. something along the lines of “Assume, ceteris paribus,
that ϕ is satisfied”. Should we even call this action test?

We note only that the classical definition of test is a special case, obtained
under particular assumptions concerning the notion of a state, of the new defi-
nition. Note that if only the maximal elements in the partial ordering are con-
sidered (assume, for the sake of discussion, that we have a model where such
maximal elements exist), then the newly defined [[ϕ?]]M is in fact the identity
relation on [[ϕ]]M—moving to an arbitrary bigger state supporting ϕ amounts to
staying in the present state if ϕ is satisfied there and “aborting” otherwise, just

602 I. Sedlár

as in the classical case. Hence, the shift here is not in the meaning of test, but
in the kind of state allowed.4

Validity in dynamic Routley–Meyer models and frames, respectively, is
defined in the same way as in Routley–Meyer models.

Lemma 5. ϕ → ψ is valid in M iff [[ϕ]]M ⊆ [[ψ]]M.

Proof. Similar to the proof of Lemma 2, using Lemma 4.

Theorem 3. Each element of PDL0 is valid in all dynamic Routley–Meyer
frames.

Proof. Induction on the length of the proof; Lemma 5 provides a useful shortcut.

Completeness is established by a finitary method related to the standard
proofs for PDL. Out of convenience we chose a combination of the method
outlined in [31] with Nishimura’s approach given in [21]. (It is also possible to
obtain the result by combining the technique of [31] with the standard approach
of [11,23] that uses non-standard models, but we have opted for a more direct
approach that we deem more elegant.)

Definition 1 (Closure). Let Σ be a set of formulas of the dynamic language.
The closure of Σ is the least set Σc ⊇ Σ closed under subformulas such that:

– 0̄ → 0̄ ∈ Σc and 1̄ ∈ Σc

– [α ∪ β]ϕ ∈ Σc implies [α]ϕ ∈ Σc and [β]ϕ ∈ Σc

– [α;β]ϕ ∈ Σc implies [α][β]ϕ ∈ Σc

– [α∗]ϕ ∈ Σc implies [α][α∗]ϕ ∈ Σc

– [ψ?]ϕ ∈ Σc implies ψ ∈ Σc

Σ is closed iff Σ = Σc.

We say that a pair of sets of formulas Γ = 〈Γ+, Γ−〉 is an independent Λ-pair
(member of IPΛ) iff there is no conjunction γ+ of elements of Γ+ and disjunction
γ− of element of Γ− such that γ+ → γ− is in Λ. (We note that both Γ+ and
Γ− may be empty or infinite.) Recall the Pair Extension Lemma 3 saying that
for each Γ ∈ IPΛ there is a non-trivial prime Λ-theory Δ ⊇ Γ+ disjoint from
Γ−.

Definition 2 (Canonical model). Let Φ be a finite closed set. The Λ-canonical
model for Φ is defined as consisting of the following elements:

– SΦ is the set of all Γ ∈ IPΛ such that Γ+ ∪ Γ− = Φ
– Γ ≤Φ Δ iff Γ+ ⊆ Δ+

– LΦ is the set of Γ such that 1̄ ∈ Γ+

4 Another interesting observation is that, on the present evaluation condition, [ϕ?]ψ is
equivalent to intuitionistic implication ϕ →IL ψ. Hence, in a sense, our substructural
PDLs contain intuitionistic PDL.

Substructural PDLs 603

– TΦΓΔΣ iff there are non-trivial prime Λ-theories Γ ′,Δ′ and Σ′ such that
Γ+ ⊆ Γ ′, Δ+ ⊆ Δ′, (Σ′ ∩ Φ) ⊆ Σ+ such that

(∀ϕ,ψ)(ϕ → ψ ∈ Γ ′ & ϕ ∈ Δ′ =⇒ ψ ∈ Σ′) (7)

– RΦ(a)ΓΔ iff, for all [a]ϕ ∈ Φ, if [a]ϕ ∈ Γ+, then ϕ ∈ Δ+

– If p ∈ Φ, then V Φ(p) = {Γ | p ∈ Γ+}; V Φ(p) = ∅ otherwise.

The canonical evaluation function [[]]Φ is defined as in dynamic Routley–Meyer
models.

Lemma 6. For each Λ and finite Φ, MΦ
Λ is a dynamic Routley–Meyer model.

Proof. We show that the “if” implication of (2) holds. Let ϕ ∈ Γ+ (recall that
ϕ ∈ Φ as a result) and TΦΣΓΔ for some Σ ∈ LΦ. The latter means that
1̄ ∈ Σ+ ⊆ Σ′ for some non-trivial prime theory Σ′ such that there are non-
trivial prime theories Γ ′ and Δ′, where Γ+ ⊆ Γ ′ and (Δ′ ∩ Φ) ⊆ Δ+, for which
it holds that if ϕ → ψ ∈ Σ′, then ψ ∈ Δ′. But Λ 1̄ → (ϕ → ϕ), so ϕ → ϕ ∈ Σ′,
so ϕ ∈ Δ′, so ϕ ∈ Δ+.

It is noteworthy that this argument could not have been simulated without
1̄ in the language. Then the only plausible definition of Σ ∈ LΦ is that Σ+ ⊆ Σ′

for some Σ′ ⊇ Λ. However, the fact that TΦΣΓΔ allows us to infer that there is
some Σ′′ ⊇ Σ+, possibly different from Σ′ ⊇ Λ, such that a version of (7) holds
for some Γ ′ ⊇ Γ+ and (Δ′ ∩Φ) ⊆ Δ+. Hence, we cannot infer that ϕ → ϕ ∈ Σ′′.

Clearly if ϕ /∈ Λ, then 1̄ → ϕ /∈ Λ and so 〈{1̄}, {ϕ}〉 ∈ IPΛ. We want to
show now that there is a state in M

{1̄→ϕ}c

Λ that satisfies 1̄ (i.e. it is a logical
state), but not ϕ. Then we will have shown that ϕ is not valid in all dynamic
Routley–Meyer frames. This yields a completeness result for PDL0 right away
as, in this case, it is not necessary to show that the frame underlying M

{1̄→ϕ}c

PDL0

satisfies any additional frame conditions.

Lemma 7. Let Γ ∈ IPΛ such that Γ+ ∪ Γ− ⊆ Φ. Then there is Δ ∈ IPΛ such
that Γ+ ⊆ Δ+, Γ− ⊆ Δ− and Δ+ ∪ Δ− = Φ.

Proof. Similar to the proof of the Pair Extension Lemma, see [25, 92–94].

Let X,Y be subsets of SΦ. We define αX as the set of such Γ where
Γ [[α]]ΦΔ implies Δ ∈ X. Let us also define f(Γ) =

∧
Γ+ and f({Γ1, . . . , Γn}) =∨

i≤n f(Γi).

Lemma 8. 1. For all ϕ ∈ Φ, ϕ ∈ [[Σ]]Φ iff ϕ ∈ Σ+.
2. If [α]ϕ ∈ Φ for some ϕ, then X ⊆ αY implies that Λ f(X) → [α]f(Y).

Proof. See the Technical appendix.

Theorem 4. Each formula valid in all dynamic Routley–Meyer frames belongs
to PDL0.

604 I. Sedlár

Proof. If �PDL0 ϕ, then �PDL0 1̄ → ϕ, so 〈{1̄}, {ϕ}〉 in IPPDL0 . By Lemma 6,
M

{1̄→ϕ}c

PDL0
is a dynamic Routley–Meyer model. By Lemma 8, ϕ is not valid in the

model. Hence, ϕ is not valid in all dynamic Routley–Meyer frames.

Theorem 5. PDL0 is a decidable set.

Proof. Note that if Γ is finite, then so is Γ c. The number of models in MΓ c

PDL0

is at most 2|Γ c|.

5 Beyond the Minimal Substructural PDL

In this section we discuss the applicability of our technique to some extensions
of PDL0.

5.1 Axiomatic Extensions

Let us refer to the schemata shown in Fig. 1 as “structural schemata”. Similarly
to modal logic, structural schemata define various properties of Routley–Meyer
frames in the sense of correspondence theory—the defining schema holds in a
frame iff the frame has the defined property. Figure 2 shows the frame proper-
ties defined by the structural schemata, see [25, ch. 11] for proofs and details
(T (xy)zw means (∃u)(Txyu & Tuzw), Tx(yz)w means (∃u)(Tyzu & Txuw).)

B T (xy)zw → Tx(yz)w
C T (yx)zw → Tx(yz)w
CI Txyz → Tyxz
W Txyz → T (xy)yz
WI Txxx
K Txyz → x ≤ z

Fig. 2. Frame properties defined by the structural schemata shown in Fig. 1.

Let us denote as ΛS1...Sn
the extension of Λ0 with S1 . . . Sn as extra axiom

schemata (in the obvious sense); PDLS1...Sn
is the extension of ΛS1...Sn

with
MAX. A plausible conjecture is the following:

Conjecture 1. PDLS1...Sn
is sound and complete with respect to the class of

dynamic Routley–Meyer models with the properties defined by S1 . . . Sn.

As it happens, the present technique can be used to establish only some
special cases of Conjecture 1.

Theorem 6. Let S1 . . . Sn be any combination of CI,WI and K. Then PDLS1...Sn

is sound and complete with respect to the corresponding class of dynamic
Routley–Meyer models.

Substructural PDLs 605

Proof. It is sufficient to show that the frame underlying MΦ
PDLS1...Sn

has the
corresponding frame properties. Let S1 . . . Sn = CI. Assume that TΦΓΔΣ; hence,
(7) holds for some appropriate Γ ′,Δ′ and Σ′. Now assume that ϕ → ψ ∈ Δ′ ⊇
Δ+ and ϕ ∈ Γ ′ ⊇ Γ+. Using the axiom schema CI and the fact that Γ ′ is a
prime theory, we have (ϕ → ψ) → ψ ∈ Γ ′. Hence, ψ ∈ Σ′ by (7). The argument
is similar in the remaining cases.

It is easy to see that our “finitary” technique cannot be used for some com-
binations of structural schemata. For instance, ΛBC and ΛBCW are fragments of
the undecidable relevant logics R−W and R [35], [25, ch. 15], so we cannot hope
for a finite model property for these logics. However, our proof always produces
a finite countermodel for a unprovable formula.

It is not straightforward to imagine a modification of our technique that
would yield a proof of Conjecture 1 in these undecidable cases. We leave this as
a curious open problem.

A surrogate strategy that might look promising at first is to work at least with
an infinitary proof system PDLω

S1...Sn
in the problematic cases (infinitary in the

sense of containing an inference rule for α∗ with a countable set of assumptions).
It is shown in [14] that, in the case based on classical logic, using an infinitary
proof system allows to construct a well-behaved infinite canonical model. This
sounds promising for logics without the finite model property. However, as shown
in [2], the Pair Extension Lemma does not hold for infinitary logics. We do not
see how our proof could be rephrased without using the Pair Extension Lemma.

5.2 Adding Diamonds

Another way to extend PDL0 is to add to the language primitive existential
modalities 〈α〉 with evaluation defined as follows:

– [[〈α〉ϕ]]M = {x | (∃y)(x[[α]]My & y ∈ [[ϕ]]M)}5

Without going into details we note two problems that arise from such an addi-
tion; both are related to the canonical model construction. Firstly, the presence
of primitive diamonds requires to modify the definition of RΦ(a) by adding the
requirement that RΦ(a)ΓΔ only if, for all 〈a〉ϕ ∈ Φ, if ϕ ∈ Δ+, then 〈a〉ϕ ∈ Γ+.
This modification makes it problematic to prove a version of Lemma 8; we have
failed to provide a proof without the extra assumption that R(a) is a serial
relation.

Secondly, neither (5) nor any other condition presently assumed entail that
[[〈α〉ϕ]]M be an upset. Some additional frame condition is required, for example:

R(a)xy & x ≤ x′ =⇒ (∃y′)(y ≤ y′ & R(a)x′y′) (8)

or the stronger
R(a)xy & x ≤ x′ =⇒ R(a)x′y (9)

5 Note that 〈α〉ϕ can be defined as ¬[α]¬ϕ in the present setting, but the defined
modality does not yield the same truth condition—recall that ¬ψ is defined as ψ → 0̄.

606 I. Sedlár

On the assumption of either one of these conditions, however, the proof of Lemma
6 seems to fail.

Acknowledgements. This work was carried out within the project Enhancing
human resources for research in theoretical computer science (no. CZ.02.2.69/0.0/
0.0/17 050/0008361), funded by the Operational Programme Research, Development
and Education of the Ministry of Education, Youth and Sports of the Czech Republic.
The project is co-funded by the EU. The author is grateful to two anonymous WoL-
LIC reviewers for useful feedback and to Vı́t Punčochář and Andrew Tedder for fruitful
collaboration on the topic.

A Technical Appendix

Lemma 8.

1. For all ϕ ∈ Φ, ϕ ∈ [[Σ]]Φ iff ϕ ∈ Σ+.
2. If [α]ϕ ∈ Φ for some ϕ, then X ⊆ αY implies that Λ f(X) → [α]f(Y).

Proof. Induction on subexpressions. 1. holds for p ∈ At by definition and the
inductive steps for the rest of the Boolean connectives are easy. The case for
[α]ϕ is more complicated. Note that we have to prove that [α]ϕ ∈ Γ+ iff Γ ∈
α[[ϕ]]Φ. The “if” part is established using claim 2. for α (a subexpression of
[α]ϕ) as follows. If Γ ∈ α[[ϕ]]Φ, then Λ f(Γ) → [α]f([[ϕ]]Φ) by 2. Note that
Λ f([[ϕ]]Φ) → ϕ by the induction hypothesis (ϕ ∈ Δ+ for all Δ ∈ [[ϕ]]Φ) and so
Λ [α]f([[ϕ]]Φ) → [α]ϕ using the fact that Λ contains MAX. Hence, Λ f(Γ) →
[α]ϕ. Now [α]ϕ is assumed to be in Φ, so if it were the case that [α]ϕ /∈ Γ+, then
Γ �∈ IPΛ contrary to our assumption. Hence, [α]ϕ ∈ Γ+. The “only if” part is
established by induction on the complexity of α using the MAX axioms for the
action operators; we skip the details.

2. Assume that X ⊆ aY . Take an arbitrary Γ ∈ X. Suppose, for the sake of
contradiction, that

�Λ f(Γ) → [a]f(Y).

Let Z = {ψ | [a]ψ ∈ Γ+}. It follows that

�Λ

∧
Z → f(Y).

Hence, by the Pair Extension Lemma, there is a non-trivial prime Λ-theory Δ
such that Z ⊆ Δ and f(Y) /∈ Δ. Now consider Σ = 〈Δ ∩ Φ, Δ̄ ∩ Φ〉 (where
Δ̄ is the complement of Δ). Obviously Σ ∈ IPΛ and RΦ(a)ΓΣ. Hence, by our
assumption, Σ ∈ Y , so

Λ f(Σ) → f(Y),

but also
Λ

∧
Z → f(Σ)

(by the construction of Σ), so

Λ

∧
Z → f(Y),

Substructural PDLs 607

contrary to our assumption. Consequently, it has to be the case that Λ f(Γ) →
[a]f(Y). The same argument can be repeated for all Γ i ∈ X. Hence, Λ f(X) →
[a]f(Y).

The inductive steps for concatenation and choice are easily established using
the MAX axioms characterising these action operators. It is worthwhile to go
through the cases for α∗ and ϕ?. Assume first that X ⊆ α∗Y . Hence

Λ f(X) → f(α∗Y)

It is easily seen that α∗Y ⊆ α(α∗Y). Hence, using induction hypothesis for α,

Λ f(α∗Y) → [α]f(α∗Y).

So, by the MAX rule characterizing α∗,

Λ f(α∗Y) → [α∗]f(α∗Y).

Yet, we have
Λ [α∗]f(α∗Y) → [α∗]f(Y)

(note that α∗Y ⊆ Y and use the monotonicity MAX rule). Therefore,

Λ f(X) → [α∗]f(Y).

The case for ϕ? is established as follows. Assume that X ⊆ (ϕ?)Y . Take an
arbitrary Γ ∈ X and assume, for the sake of contradiction, that

�Λ f(Γ) → [ϕ?]f(Y).

Hence, using the MAX rule for ϕ?,

�Λ (f(Γ) ∧ ϕ) → f(Y).

Using the Pair Extension Lemma, there is a non-trivial prime theory Δ contain-
ing f(Γ) ∧ ϕ but not containing f(Y). Now take Δ = 〈Δ ∩ Φ, Δ̄ ∩ Φ〉. It is clear
that Γ ≤Φ Δ and that Δ ∈ [[ϕ]]Φ (by induction hypothesis 1. applied to ϕ, the
subexpression of ϕ?). By the definition of [[ϕ?]]Φ, it follows that Γ [[ϕ?]]ΦΔ and,
hence, Δ ∈ Y . Consequently,

Λ f(Δ) → f(Y).

But this contradicts the observation that the prime theory Δ does not contain
f(Y). Hence, it must be the case that Λ (f(Γ) ∧ ϕ) → f(Y). Similar reasoning
can be applied to each element of X, so

Λ f(X) → [ϕ?]f(Y).

608 I. Sedlár

References

1. Baltag, A., Moss, L.S.: Logics for epistemic programs. Synthese 139(2), 165–224
(2004). https://doi.org/10.1023/B:SYNT.0000024912.56773.5e

2. B́ılková, M., Cintula, P., Lávička, T.: Lindenbaum and pair extension lemma in
infinitary logics. In: Moss, L.S., de Queiroz, R., Martinez, M. (eds.) WoLLIC 2018.
LNCS, vol. 10944, pp. 130–144. Springer, Heidelberg (2018). https://doi.org/10.
1007/978-3-662-57669-4 7

3. B́ılková, M., Majer, O., Pelǐs, M.: Epistemic logics for sceptical agents. J. Log.
Comput. 26(6), 1815–1841 (2016)

4. Boutilier, C.: Toward a logic for qualitative decision theory. In: Doyle, J., Sande-
wall, E., Torasso, P. (eds.) Principles of Knowledge Representation and Reasoning,
pp. 75–86. Morgan Kaufmann, Burlington (1994)

5. Běhounek, L.: Modeling costs of program runs in fuzzified propositional dynamic
logic. In: Hakl, F. (ed.) Doktorandské dny ’08, pp. 6–14. ICS AS CR and Matfyz-
press, Prague (2008)

6. Degen, J., Werner, J.: Towards intuitionistic dynamic logic. Log. Log. Philos.
15(4), 305–324 (2006). http://apcz.umk.pl/czasopisma/index.php/LLP/article/
view/LLP.2006.018

7. Došen, K.: A brief survey of frames for the Lambek calculus. Math. Logic Q. 38(1),
179–187 (1992). https://doi.org/10.1002/malq.19920380113

8. Fischer, M.J., Ladner, R.E.: Propositional dynamic logic of regular programs. J.
Comput. Syst. Sci. 18, 194–211 (1979)

9. Fuhrmann, A.: Models for relevant modal logics. Studia Logica 49(4), 501–514
(1990). https://doi.org/10.1007/BF00370161

10. Galatos, N., Jipsen, P., Kowalski, T., Ono, H.: Residuated Lattices: An Algebraic
Glimpse at Substructural Logics. Elsevier, Amsterdam (2007)

11. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press, Cambridge (2000)
12. Hughes, J., Esterline, A., Kimiaghalam, B.: Means-end relations and a measure of

efficacy. J. Log. Lang. Inf. 15(1), 83–108 (2006). https://doi.org/10.1007/s10849-
005-9008-4

13. Kozen, D., Parikh, R.: An elementary proof of the completeness of PDL. Theor.
Comput. Sci. 14, 113–118 (1981)

14. de Lavalette, G.R., Kooi, B., Verbrugge, R.: Strong completeness and limited
canonicity for PDL. J. Log. Lang. Inf. 17(1), 69–87 (2008). https://doi.org/10.
1007/s10849-007-9051-4

15. Liau, C.-J.: Many-valued dynamic logic for qualitative decision theory. In: Zhong,
N., Skowron, A., Ohsuga, S. (eds.) RSFDGrC 1999. LNCS (LNAI), vol. 1711, pp.
294–303. Springer, Heidelberg (1999). https://doi.org/10.1007/978-3-540-48061-
7 36

16. Madeira, A., Neves, R., Martins, M.A.: An exercise on the generation of
many-valued dynamic logics. J. Log. Algebr. Methods Program. 85(5, Part
2), 1011–1037 (2016). https://doi.org/10.1016/j.jlamp.2016.03.004. http://www.
sciencedirect.com/science/article/pii/S2352220816300256. Articles dedicated to
Prof. J. N. Oliveira on the occasion of his 60th birthday

17. Mares, E.D.: The semantic completeness of RK. Rep. Math. Log. 26, 3–10 (1992)
18. Mares, E.D., Meyer, R.K.: The semantics of R4. J. Philos. Log. 22(1), 95–110

(1993). https://doi.org/10.1007/BF01049182
19. Meyer, J.J.C.: A different approach to deontic logic: deontic logic viewed as a

variant of dynamic logic. Notre Dame J. Formal Log. 29(1), 109–136 (1987)

https://doi.org/10.1023/B:SYNT.0000024912.56773.5e
https://doi.org/10.1007/978-3-662-57669-4_7
https://doi.org/10.1007/978-3-662-57669-4_7
http://apcz.umk.pl/czasopisma/index.php/LLP/article/view/LLP.2006.018
http://apcz.umk.pl/czasopisma/index.php/LLP/article/view/LLP.2006.018
https://doi.org/10.1002/malq.19920380113
https://doi.org/10.1007/BF00370161
https://doi.org/10.1007/s10849-005-9008-4
https://doi.org/10.1007/s10849-005-9008-4
https://doi.org/10.1007/s10849-007-9051-4
https://doi.org/10.1007/s10849-007-9051-4
https://doi.org/10.1007/978-3-540-48061-7_36
https://doi.org/10.1007/978-3-540-48061-7_36
https://doi.org/10.1016/j.jlamp.2016.03.004
http://www.sciencedirect.com/science/article/pii/S2352220816300256
http://www.sciencedirect.com/science/article/pii/S2352220816300256
https://doi.org/10.1007/BF01049182

Substructural PDLs 609

20. Moot, R., Retoré, C.: The Logic of Categorial Grammars. LNCS. Springer, Hei-
delberg (2012). https://doi.org/10.1007/978-3-642-31555-8

21. Nishimura, H.: Semantical analysis of constructive PDL. Publ. Res. Inst. Math.
Sci. 18(2), 847–858 (1982). https://doi.org/10.2977/prims/1195183579

22. Paoli, F.: Substructural Logics: A Primer. Kluwer, Dordrecht (2002)
23. Parikh, R.: The completeness of propositional dynamic logic. In: Winkowski,

J. (ed.) MFCS 1978. LNCS, vol. 64, pp. 403–415. Springer, Heidelberg (1978).
https://doi.org/10.1007/3-540-08921-7 88

24. Pratt, V.: Semantical considerations on Floyd-Hoare logic. In: 7th Annual Sympo-
sium on Foundations of Computer Science, pp. 109–121. IEEE Computing Society
(1976)

25. Restall, G.: An Introduction to Substrucutral Logics. Routledge, London (2000)
26. Rosenschein, S.: Plan synthesis: a logical perspective. In: Proceedings of the Inter-

national Joint Conference on Artificial Intelligence (IJCAI) (1981)
27. Routley, R., Meyer, R.K.: The semantics of entailment-II. J. Philos. Logic 1(1),

53–73 (1972). https://doi.org/10.1007/BF00649991
28. Routley, R., Meyer, R.K.: Semantics of entailment. In: Leblanc, H. (ed.) Truth

Syntax and Modality, pp. 194–243. North Holland, Amsterdam (1973)
29. Sedlár, I.: Propositional dynamic logic with Belnapian truth values. In: Advances

in Modal Logic, vol. 11. College Publications, London (2016)
30. Sedlár, I.: Non-classical PDL on the cheap. In: Arazim, P., Lávička, T. (eds.) The

Logica Yearbook 2016, pp. 239–256. College Publications, London (2017)
31. Sedlár, I.: Substructural logics with a reflexive transitive closure modality. In:

Kennedy, J., de Queiroz, R.J.G.B. (eds.) WoLLIC 2017. LNCS, vol. 10388, pp.
349–357. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-55386-
2 25

32. Sedlár, I., Punčochář, V.: From positive PDL to its non-classical extensions. Log.
J. IGPL (2019, forthcoming)

33. Spalazzi, L., Traverso, P.: A dynamic logic for acting, sensing, and planning. J.
Log. Comput. 10(6), 787–821 (2000). https://doi.org/10.1093/logcom/10.6.787

34. Teheux, B.: Propositional dynamic logic for searching games with errors. J. Appl.
Log. 12(4), 377–394 (2014)

35. Urquhart, A.: The undecidability of entailment and relevant implication. J. Symb.
Log. 49(4), 1059–1073 (1984). http://www.jstor.org/stable/2274261

36. Wijesekera, D., Nerode, A.: Tableaux for constructive concurrent dynamic logic.
Ann. Pure Appl. Log. 135(1), 1–72 (2005). https://doi.org/10.1016/j.apal.2004.
12.001. http://www.sciencedirect.com/science/article/pii/S0168007204001794

https://doi.org/10.1007/978-3-642-31555-8
https://doi.org/10.2977/prims/1195183579
https://doi.org/10.1007/3-540-08921-7_88
https://doi.org/10.1007/BF00649991
https://doi.org/10.1007/978-3-662-55386-2_25
https://doi.org/10.1007/978-3-662-55386-2_25
https://doi.org/10.1093/logcom/10.6.787
http://www.jstor.org/stable/2274261
https://doi.org/10.1016/j.apal.2004.12.001
https://doi.org/10.1016/j.apal.2004.12.001
http://www.sciencedirect.com/science/article/pii/S0168007204001794

Modal Logics of Finite Direct Powers
of ω Have the Finite Model Property

Ilya Shapirovsky1,2(B)

1 Steklov Mathematical Institute of Russian Academy of Sciences,
Moscow, Russia

2 Institute for Information Transmission Problems of Russian Academy of Sciences,
Moscow, Russia
shapir@iitp.ru

Abstract. Let (ωn, �) be the n-th direct power of (ω, ≤), natural num-
bers with the standard ordering, and let (ωn, ≺) be the n-th direct power
of (ω, <). We show that for all finite n, the modal algebras of (ωn, �)
and of (ωn, ≺) are locally finite. In particular, it follows that the modal
logics of these frames have the finite model property.

Keywords: Modal logic · Modal algebra · Finite model property ·
Local finiteness · Tuned partition · Direct product of frames

1 Introduction

We consider modal logics of direct products of linear orders. It is known that the
logics of finite direct powers of real numbers and of rational numbers with the
standard non-strict ordering have the finite model property, are finitely axioma-
tizable, and consequently are decidable. These non-trivial results were obtained
in [5], and independently in [16]. Later, analogous results were obtained for
the logics of finite direct powers of (R, <) [14]. Recently, it was shown that
the direct squares (R,≤,≥)2 and (R, <,>)2 have decidable bimodal logics [6,7].
Direct products of well-founded orders have never been investigated before in
the context of modal logic.

Let (ωn,�) be the n-th direct power of (ω,≤), natural numbers with the
standard ordering: for x, y ∈ ωn, x � y iff x(i) ≤ y(i) for all i < n. Likewise, let
(ωn,≺) be the the direct power (ω,<)n: x ≺ y iff x(i) < y(i) for all i < n.

The main result of this paper (Theorem 1) shows that for all finite n > 0, the
modal algebras of the frames (ωn,�) and (ωn,≺) are locally finite. It particular,
it follows that the modal logics of these frames have the finite model property.

The work on this paper was supported by the Russian Science Foundation under grant
16-11-10252 and performed at Steklov Mathematical Institute of Russian Academy of
Sciences.

c© Springer-Verlag GmbH Germany, part of Springer Nature 2019
R. Iemhoff et al. (Eds.): WoLLIC 2019, LNCS 11541, pp. 610–618, 2019.
https://doi.org/10.1007/978-3-662-59533-6_37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-59533-6_37&domain=pdf
https://doi.org/10.1007/978-3-662-59533-6_37

Modal Logics of Finite Direct Powers of ω Have the Finite Model Property 611

2 Partitions of Frames, Local Finiteness, and the Finite
Model Property

We assume the reader is familiar with the basic notions of modal logics [1,4].
By a logic we mean a normal propositional modal logic. For a (Kripke) frame F,
Log(F) denotes its modal logic, i.e., the set of all modal formulas that are valid
in F. For a set W , P(W) denotes the powerset of W . The (complex) algebra of
a frame (W,R) is the modal algebra (P(W), R−1). The algebra of F is denoted
by A(F). A logic has the finite model property if it is complete with respect to a
class of finite frames (equivalently, finite algebras).

A partition A of a set W is a set of non-empty pairwise disjoint sets such
that W =

⋃ A. A partition B refines A, if each element of A is the union of
some elements of B.

Definition 1. Let F = (W,R) be a Kripke frame. A partition A of W is tuned
(in F) if for every U, V ∈ A,

∃u ∈ U ∃v ∈ V uRv ⇒ ∀u ∈ U ∃v ∈ V uRv.

F is tunable if for every finite partition A of F there exists a finite tuned refinement
B of A.

Proposition 1. If F is tunable, then Log(F) has the finite model property.

Apparently, this fact was first observed by H. Franzén (see [13]). This proposition
can be explained as follows. Let L be the logic of a frame F, or in other words, the
logic of the modal algebra A(F). Equivalently, L is the logic of finitely generated
subalgebras of A(F). Recall that an algebra A is locally finite if every finitely
generated subalgebra of A is finite. It follows that if A(F) is locally finite, then L
has the finite model property. Hence, Proposition 1 is a corollary of the following
observation.

Proposition 2. The algebra of a frame F is locally finite iff F is tunable.

Proof. From Definition 1 we have: a finite partition B is tuned in F = (W,R)
iff the family {∪x | x ⊆ B} of subsets of W forms a subalgebra of the modal
algebra A(F) = (P(W), R−1).

Assume that A(F) is locally finite and A is a finite partition of W . Consider
the subalgebra B of A(F) generated by the elements of A. Then the set B of the
atoms of B is a finite tuned refinement of A.

Now assume that F is tunable and B is the subalgebra of A(F) generated by
a finite family V of subsets of W . Let A be the quotient set W/∼, where

u ∼ v iff ∀A ∈ V (u ∈ A ⇔ v ∈ A).

Since A is a finite partition of W , there exists its finite tuned refinement B. The
finite family {∪x | x ⊆ B} is the carrier of a subalgebra of A(F) and contains V.
Hence the algebra B is finite. ��

612 I. Shapirovsky

Thus, logics of tunable frames have the finite model property, and moreover,
algebras of tunable frames are locally finite.

Example 1. Consider the frame (ω,≤), natural numbers with the standard order-
ing. Suppose that A is a finite partition of ω. If every A ∈ A is infinite, then
A is tuned in (ω,≤) and in (ω,<). Otherwise, let k0 be the greatest element of
the finite set

⋃{A ∈ A | A is finite}, and U = {k | k0 < k < ω}. Consider the
following finite partition B of ω:

B = {{k} | k ≤ k0} ∪ {A ∩ U | A is an infinite element of A}.

Each element of B is either infinite, or a singleton, and singletons in B cover an
initial segment of ω. Thus, B is a finite refinement of A which is tuned in (ω,≤)
and in (ω,<).

It follows that the algebras of the frames (ω,≤) and (ω,<) are locally finite.

Remark 1. Recall that a logic L is locally finite (in another terminology, locally
tabular) if the Lindenbaum algebra of L is locally finite [4]. Equivalently, a logic
L is locally finite if the variety of its algebras is locally finite, i.e., every finitely
generated algebra validating L is finite.

A logic of a transitive frame is locally finite iff the frame is of finite height
[8,11]. Thus, although the algebras of the frames (ω,≤) and (ω,<) are locally
finite, the logics of these frames are not. Hence, local finiteness of the algebra
A(F) does not imply local finiteness of the logic Log(F).

Local finiteness of the variety generated by an algebra A of a finite signature is
equivalent to uniform local finiteness of A: an algebra A is uniformly locally finite
if there exists a function f : ω → ω such that the cardinality of a subalgebra of
A generated by m < ω elements does not exceed f(m); see [9, Sect. 14, Theorem
3].

Local finiteness of modal logics is formulated in terms of tuned partitions
as follows [15]: the logic of a frame F is locally finite iff there exists a function
f : ω → ω such that for every finite partition A of W there exists a refinement
B of A such that |B| ≤ f(|A|) and B is tuned in F.

3 Main Result

Theorem 1. For all finite n > 0, the algebras A(ωn,�) and A(ωn,≺) are locally
finite.

The simple case n = 1 was considered in Example 1. To prove the theorem
for the case of arbitrary finite n, we need some auxiliary constructions.

Definition 2. Consider a non-empty V ⊆ ωn. Put

J(V) = {i < n | ∃x ∈ V ∃y ∈ V x(i) �= y(i)},
I(V) = {i < n | ∀x ∈ V ∀y ∈ V x(i) = y(i)} = n\J(V).

Modal Logics of Finite Direct Powers of ω Have the Finite Model Property 613

The hull of V is the set

V = {y ∈ ωn | ∀i ∈ I(V) (y(i) = x(i) for some (for all) x ∈ V)}.

V is pre-cofinal if it is cofinal in its hull, i.e.,

∀x ∈ V ∃y ∈ V x � y.

A partition A of V ⊆ ωn is monotone if

– all of its elements are pre-cofinal, and
– for all x, y ∈ V such that x � y we have J([x]A) ⊆ J([y]A),

where [x]A is the element of A containing x.

Lemma 1. If A is a monotone partition of ωn, then A is tuned in (ωn,�) and
in (ωn,≺).

Proof. Let A,B ∈ A, x, y ∈ A, x � z ∈ B. Let u be the following point in ωn:

u(i) = y(i) + 1 for i ∈ J(A), and u(i) = z(i) for i ∈ I(A). (1)

We have
{i < n | u(i) �= z(i)} ⊆ n\I(A) = J(A) ⊆ J(B);

the first inclusion follows from (1), the second follows from the monotonicity of
A. Hence, we have u(i) = z(i) for all i ∈ I(B). By the definition of B, we have
u ∈ B. Since B is cofinal in B (we use monotonicity again), for some u′ ∈ B we
have u � u′.

By (1), we have y(i) ≤ u(i) for all i < n: indeed, y(i) = x(i) ≤ z(i) = u(i) for
i ∈ I(A), and u(i) = y(i) + 1 otherwise. Thus, y � u, and so y � u′. It follows
that A is tuned in (ωn,�).

In order to show that A is tuned in (ωn,≺), we now assume that x ≺ z. Then
we have y(i) < u(i) for all i < n, since y(i) = x(i) < z(i) = u(i) for i ∈ I(A),
and u(i) = y(i) + 1 otherwise. Hence y ≺ u. Since u � u′, we have y ≺ u′, as
required. ��

Let A be a partition of a set W . For V ⊆ W , the partition

A�V = {A ∩ V | A ∈ A & A ∩ V �= ∅}

of V is called the restriction of A to V .
For a family B of subsets of W , the partition induced by B on V ⊆ W is the

quotient set V/∼, where

x ∼ y iff ∀A ∈ B (x ∈ A ⇔ y ∈ A).

Lemma 2. Any finite partition of ωn has a finite monotone refinement.

614 I. Shapirovsky

Proof. By induction on n. Let A be a finite partition of ωn.
Suppose n = 1. Let k0 be the greatest element of the finite set

⋃
{A ∈ A | A is finite}.

Put B = {{k} | k ≤ k0}. Let C be the partition induced by A∪B on ω. Consider
x ∈ ω and put A = [x]C . If x ≤ k0, then A = A = {x} and J(A) = ∅. If
x > k0, then A is cofinal in ω = A, J(A) = {0}. It follows that C is the required
monotone refinement of A.

Suppose n > 1. For k ∈ ω let Uk = {y ∈ ωn | y(i) ≥ k for all i < n}. Since A
is finite, we can choose a natural number k0 such that

if y ∈ Uk0 , then [y]A is cofinal in ωn. (2)

Indeed, if A ∈ A is not cofinal in ωn, then UkA
∩A = ∅ for some kA < ω; hence,

(2) holds whenever k0 is greater than every such kA.
It follows that the partition A�Uk0 is monotone: it consists of sets that are

cofinal in ωn (and so, they are obviously pre-cofinal), and J(A) = n for all
A ∈ A�Uk0 .

We are going to extend this partition step by step in order to obtain a
sequence of finite monotone partitions of Uk0−1, . . . , U0 = ωn, respectively refin-
ing A�Uk0−1, . . . ,A�U0 = A.

First, let us describe the construction for the case k0 = 1, the crucial technical
step of the proof.

Claim A. Suppose that B is a finite monotone partition of U1 refining A�U1. Then
there exists a finite monotone partition C of ωn refining A such that B ⊆ C.

Proof. C will be the union of B and a partition of the set

V = {x ∈ ωn | x(i) = 0 for some i < n} = ωn\U1.

To construct the required partition of V , for I ⊆ n put

VI = {x | ∀i < n (i ∈ I ⇔ x(i) = 0)}.

Then {VI | ∅ �= I ⊆ n} is a partition of V , V∅ = U1.
Each VI considered with the order � on it is isomorphic to (ωn−|I|,�). Thus,

by the induction hypothesis, for a non-empty I ⊆ n we have:

Each finite partition of VI admits a finite monotone refinement. (3)

For I ⊆ n, by induction on the cardinality of I we define a finite partition CI

of VI .
We put C∅ = B.
Assume that I is non-empty. Consider the projection PrI : x �→ y such that

y(i) = 0 whenever i ∈ I, and y(i) = x(i) otherwise. Note that for all K ⊂ I,
x ∈ VK implies PrI(x) ∈ VI . Let D be the partition induced on VI by the family

A ∪
⋃

K⊂I

{PrI(A) | A ∈ VK}. (4)

Modal Logics of Finite Direct Powers of ω Have the Finite Model Property 615

By an immediate induction argument, D is finite. Let CI be a finite monotone
refinement of D, which exists according to (3).

We put
C =

⋃

I⊆n

CI .

Then C is a finite refinement of A. We have to check monotonicity.
Every element A of C is pre-cofinal, because A is an element of a monotone

partition CI for some I. In order to check the second condition of monotonicity,
we consider x, y in ωn with x � y and show that

J([x]C) ⊆ J([y]C). (5)

Let x ∈ VI , y ∈ VK for some I,K ⊆ n. Since x � y, we have K ⊆ I. If K = I,
then (5) holds, since in this case [x]C and [y]C belong to the same monotone
partition CI . Assume that K ⊂ I. In this case we have:

J([x]C) ⊆ J([PrI(y)]C) ⊆ J(PrI([y]C)) ⊆ J([y]C).

To check the first inclusion, we observe that PrI(y) belongs to VI (since K ⊂ I).
This means that [x]C and [PrI(y)]C are elements of the same partition CI . We
have x � PrI(y), since x ∈ VI and x � y. Now the first inclusion follows from
monotonicity of CI . By (4), PrI([y]C) is the union of some elements of CI (since
K ⊂ I and [y]C ∈ CK); trivially, PrI(y) ∈ PrI([y]C), hence [PrI(y)]C is a subset
of PrI([y]C). This yields the second inclusion. The third inclusion is immediate
from Definition 2. Thus, we have (5), which proves the claim. ��

From Claim A it is not difficult to obtain the following:

Claim B. Let 0 < k < ω. If B is a finite monotone partition of Uk refining A�Uk,
then there exists a finite monotone partition C of Uk−1 refining A�Uk−1 such
that B ⊆ C.

Proof. Consider the translation Tr : Uk−1 → ωn taking (xi)i<n to (xi−k+1)i<n.
Let B′ be the set {Tr(A) | A ∈ B} of images of elements of B by Tr, and
A′ be the set {Tr(A) | A ∈ A�Uk−1}. Then A′ is a partition of ωn, B′ is a
finite monotone partition of U1 refining A′�U1. By Claim A, there exists a finite
monotone partition C′ of ωn refining A′ such that B′ ⊆ C′. The family C =
{Tr−1(A) | A ∈ C′} is the required partition of Uk−1. ��

Applying Claim B k0 times, we obtain the required monotone refinement of
A. This proves Lemma 2. ��

From the above two lemmas we obtain that the frames (ωn,�) and (ωn,≺),
0 < n < ω, are tunable. Now the proof of Theorem1 immediately follows from
Proposition 2.

Corollary 1. For all finite n, the logics Log(ωn,�) and Log(ωn,≺) have the
finite model property.

616 I. Shapirovsky

4 Questions and Conjectures

It is well-known that every extension of Log(ω,≤) has the finite model property
[3].

Question 1. Let L be an extension of Log(ωn,�) for some finite n > 1. Does L
have the finite model property?

Every extension of a locally finite logic is locally finite, and so has the finite
model property. Although the algebras of the frames (ωn,�) and (ωn,≺) are
locally finite, the logics of these frames are not (recall that a logic of a transitive
frame is locally finite iff the frame is of finite height [8,11]). Thus, Theorem 1
does not answer Question 1.

At the same time, Theorem 1 yields another corollary. A subframe of a frame
(W,R) is the restriction (V,R ∩ (V × V)), where V is a non-empty subset of W .
It follows from Definition 1 that if a frame is tunable then all its subframes are
(details can be found in the proof of Lemma 5.9 in [15]). From Proposition 2, we
have:

Proposition 3. If the algebra of a frame F is locally finite, then the algebra of
any subframe of F is also locally finite.

Corollary 2. For all finite n, if F is a subframe of (ωn,�) or of (ωn,≺), then
A(F) is locally finite, and Log(F) has the finite model property.

While Log(ω,≤) is not locally finite, the intermediate logic ILog(ω,≤) is
(see, e.g., [17, Sect. 3.4]).

Conjecture 1. For all finite n, ILog(ωn,�) is locally finite.

The logics of finite direct powers of (R,≤) and of (R, <) have the finite model
property, are finitely axiomatizable, and consequently are decidable [5,14,16].

Question 2. Let n > 1. Are logics Log(ωn,�) and Log(ωn,≺) decidable or at
least recursively axiomatizable?

In the one-dimensional case, decidability is a classical result: apparently, the
first published proof of finite axiomatizability and the finite model property of
the logic Log(ω,≤) is given in [2]; for the logic Log(ω,<), these properties were
established in [10] and [12].

Finally, let us address the following question: does the direct product opera-
tion on frames preserve local finiteness of their modal algebras?

Proposition 4. If a frame F is tunable and a frame G is finite, then the direct
product F × G is tunable.

Proof. Let F = (F,R), G = (G,S), and A be a finite partition of F ×G. For A in
A and y in G, we put Pry(A) = {x ∈ F | (x, y) ∈ A}, Ay = {Pry(A) | A ∈ A}.

Modal Logics of Finite Direct Powers of ω Have the Finite Model Property 617

Let B be the partition induced on F by the family
⋃

y∈G Ay. Since B is finite,
there exists its finite refinement C that is tuned in F. Consider the partition

D = {A × {y} | A ∈ C & y ∈ G}

of F × G. Then D is a finite refinement of A. It is not difficult to check that D
is tuned in F × G. ��

If follows that if the algebra of F is locally finite and G is finite, then the
algebra of F × G is locally finite.

Question 3. Consider tunable frames F1 and F2. Is the direct product F1 × F2

tunable?

If this is true, then Theorem1 immediately follows from the simple one-
dimensional case. And, moreover, in this case Theorem 1 can be generalized to
arbitrary ordinals in view of the following observation.

Proposition 5. For every ordinal α > 0, the modal algebras A(α,≤), A(α,<)
are locally finite.

Proof. By induction on α we show that the frames (α,≤), (α,<) are tunable.
For a finite α, the statement is trivial.
Suppose that A is a finite partition of an infinite α. If every element of A is

cofinal in α, then A is tuned in (α,≤) and in (α,<). Otherwise, we put

β = sup
⋃

{A ∈ A | A is bounded in α}.

Since A is finite, we have β < α. Put B = A�β. By the induction hypothesis,
there exists a finite tuned refinement C of B. Then the partition of α induced by
A ∪ C is the required refinement of A. ��
Conjecture 2. If (αi)i<n is a finite family of ordinals, then the algebras of the
direct products

∏
i<n(αi,≤),

∏
i<n(αi, <) are locally finite.

Acknowledgements. I am grateful to the reviewers for their suggestions and ques-
tions on an earlier version of the paper. I am also grateful to Alex Citkin and Denis
Saveliev for useful comments and discussions.

The work on this paper was supported by the Russian Science Foundation
under grant 16-11-10252 and performed at Steklov Mathematical Institute of Russian
Academy of Sciences.

618 I. Shapirovsky

References

1. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic, Cambridge Tracts in Theo-
retical Computer Science, vol. 53. Cambridge University Press, Cambridge (2002)

2. Bull, R.A.: An algebraic study of Diodorean modal systems. J. Symbolic Logic
30(1), 58–64 (1965)

3. Bull, R.A.: That all normal extensions of S4.3 have the finite model property.
Math. Logic Q. 12(1), 341–344 (1966)

4. Chagrov, A., Zakharyaschev, M.: Modal Logic, Oxford Logic Guides, vol. 35.
Oxford University Press, Oxford (1997)

5. Goldblatt, R.: Diodorean modality in Minkowski spacetime. Stud. Logica: Int. J.
Symbolic Logic 39(2/3), 219–236 (1980)

6. Hirsch, R., McLean, B.: The temporal logic of two-dimensional Minkowski space-
time with slower-than-light accessibility is decidable. In: Advances in Modal Logic,
vol. 12, pp. 347–366. College Publications (2018)

7. Hirsch, R., Reynolds, M.: The temporal logic of two-dimensional Minkowski space-
time is decidable. J. Symbolic Logic 83(3), 829–867 (2018)

8. Maksimova, L.: Modal logics of finite slices. Algebra Logic 14(3), 304–319 (1975)
9. Malcev, A.I.: Algebraic Systems. Die Grundlehren der mathematischen Wis-

senschaften, vol. 192. Springer, Berlin (1973)
10. Schindler, P.: Tense logic for discrete future time. J. Symbolic Logic 35(1), 105–118

(1970)
11. Segerberg, K.: An Essay in Classical Modal Logic. Filosofska Studier, vol. 13.

Uppsala Universitet, Uppsala (1971)
12. Segerberg, K.: Modal logics with linear alternative relations. Theoria 36(3), 301–

322 (1970)
13. Segerberg, K.: Franzen’s proof of Bull’s theorem. Ajatus 35, 216–221 (1973)
14. Shapirovsky, I., Shehtman, V.: Chronological future modality in Minkowski space-

time. In: Advances in Modal Logic, vol. 4, pp. 437–459. College Publications, Lon-
don (2003)

15. Shapirovsky, I., Shehtman, V.: Local tabularity without transitivity. In: Advances
in Modal Logic, vol. 11, pp. 520–534. College Publications (2016)

16. Shehtman, V.: Modal logics of domains on the real plane. Stud. Logica 42, 63–80
(1983)

17. Zakharyaschev, M., Wolter, F., Chagrov, A.: Advanced modal logic. In: Gabbay,
D., Guenther, F. (eds.) Handbook of Philosophical Logic, vol. 3, pp. 83–266. Kluwer
Academic, Dordrecht (2001)

Knowledge Without Complete Certainty

Hans van Ditmarsch1 and Louwe B. Kuijer2(B)

1 CNRS, LORIA, Vandœuvre-lès-Nancy, France
hans.van-ditmarsch@loria.fr

2 University of Liverpool, Liverpool, UK
Louwe.Kuijer@liverpool.ac.uk

Abstract. We present an epistemic logic ELF (Epistemic Logic with
Filters) where knowledge does not require complete certainty. In this
logic, instead of saying that an agent knows a particular fact if it is true
in every accessible world, we say that it knows the fact if it is true in a
sufficiently large set accessible worlds. On a technical level, we do this
by enriching the standard Kripke models of epistemic logic with a set
of filters: a sufficiently large set of worlds is one that is in the filter.
We introduce semantics for ELF, and give a sound and complete proof
system.

1 Introduction

In the standard Kripke semantics for epistemic logic, we say that an agent a
knows a proposition ϕ if and only if ϕ is true in every world that is epistemically
accessible for a [12,15]. In other words, according to such semantics a knows that
ϕ if and only if ϕ is true in every world that is consistent with a’s observations.

Unfortunately, it is generally not very hard to invent worlds that are consis-
tent with a’s observations where ϕ is false. Along a general line of skepticism
going back to (at least) Descartes’ evil demon (le mauvais genie) and that contin-
ues to flourish in logical and epistemological circles [10,25], consider the following
example, adapted from Harman [14].

Alice is sitting at her desk, writing a logic paper. Strictly speaking, the
skeptical scenario where she is merely a “brain in a vat” that wrongly
believes itself to be sitting at a desk is consistent with Alice’s observations.
In theory, this means that the possible world where Alice is a brain in a
vat is epistemically accessible for her, so according to the standard Kripke
semantics she does not know that she is sitting at her desk. Still, we would
typically like to say that Alice does know this fact.

There are several solutions to this problem. Firstly, we could bite the bullet
and conclude that Alice does not, and cannot, know that she is sitting at her
desk. This skeptic’s choice is internally consistent, but results in a rather trivial
notion of (unobtainable) knowledge. So while we acknowledge that the skeptics
may be correct, that is not the kind of knowledge that we are interested in here.
c© Springer-Verlag GmbH Germany, part of Springer Nature 2019
R. Iemhoff et al. (Eds.): WoLLIC 2019, LNCS 11541, pp. 619–632, 2019.
https://doi.org/10.1007/978-3-662-59533-6_38

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-59533-6_38&domain=pdf
https://doi.org/10.1007/978-3-662-59533-6_38

620 H. van Ditmarsch and L. B. Kuijer

Secondly, we could say that the scenario where Alice is a brain in a vat should
not be considered a proper possible world, and therefore should not be among
Alice’s epistemic alternatives. Doing so can be justified from a contextualist
point of view [11,21,28], which states that the conditions for knowledge depend
on context. Whenever skeptical scenarios are irrelevant, they are excluded by
the context. As long as we are modeling a context where skeptical scenarios are
excluded, we may (and must) omit the worlds where Alice is a brain in a vat,
allowing us to conclude that Alice knows that she is sitting at her desk.

This second solution is the most practical one, and commonly used in epis-
temic logic. Unfortunately, this solution is not always available. If we want to
reason about whether Alice knows that she is not a brain in a vat, then clearly
the world where she is in fact a brain in a vat is relevant to our context. So it
cannot be omitted. What are the consequences? In the epistemic logical setting,
and in particular in the modal logical propositional modeling of it, the typical
notion to fall short of knowledge within a given context is called belief, and the
minimal difference between belief and knowledge is that belief unlike knowl-
edge may be false (incorrect). Even within that restriction there is a wide gap
between defeasible belief [19] and so-called conviction [26]. Defeasible beliefs may
be defeated, i.e., the agents may be willing to change their beliefs after further
evidence or consideration. But false convictions remain false forever. When mod-
eling certain knowledge this rather Platonic focus on true knowledge is peculiar.
Why should one particular exception of the rule matter more than any other
exception? Many works have been dedicated to the difference between (modal)
knowledge and belief [16,18], and in particular on notions of knowledge closer to
belief [15,27], fallible knowledge [2] and (the more dynamically motivated) safe
belief [3]. They all fall short of modeling certain knowledge, because the set of
accessible worlds where ϕ is false is always too big, even when there is only one.

In this paper we therefore choose a third solution: we do include the world
where Alice is a brain in a vat, as well as other skeptical worlds. But we say that
we know ϕ even if there are accessible worlds where ϕ is false, as long as the set
of accessible ϕ worlds is sufficiently large.

Much like the second one, the third solution is justified by contextualism.
The key observation is that our context as modelers may be different from the
context of the agents being modelled. We are interested in whether Alice knows
she is not a brain in a vat, so our context does not allow us to omit the worlds
where she is a brain in a vat. But as long as Alice’s context allows her to ignore
such skeptical worlds, she can know she is not a brain in a vat even though the
worlds are accessible.

The remaining question, then, is to decide on what we mean by the set of
counterexamples being “small”. A simple numerical (“up to n counterexamples”)
or finite fraction (“up to n

m of the possible worlds may be counterexamples”)
rule would not solve Alice’s problem: we can create infinitely many skeptical
scenarios, so for every n ∈ N there are more than n counterexamples, and the
ratio of worlds where she is a brain in a vat divided by those where she is not is
∞
∞ and therefore not a finite fraction. Note also that a numerical or finite fraction

Knowledge Without Complete Certainty 621

threshold is vulnerable to the lottery paradox [20], while Alice’s example above
and further examples below are immune to finite lottery paradoxes.

A more promising approach would be to say that the number of counterex-
amples is small if the set of counterexamples has measure zero. Such a notion
of knowledge, employing Keisler’s infinitesimals for measure zero sets [17], has
been proposed in [1] for modeling knowledge revision. Measure theory is unnec-
essarily heavy machinery for our current purpose, however: we do not need an
exact measure of all sets of worlds, we only need to know which sets are small.
We therefore prefer a very similar but somewhat more lightweight approach: we
use filters. The notion goes back to [7], and it is frequently used within modal
logic [6], also for default reasoning [4]. We say that the set of counterexamples
is small if its complement is a member of the filter.

The structure of the rest of this paper is as follows. In Sect. 2 we formally
define the syntax and semantics of our logic Epistemic Logic with Filters (ELF).
Then, in Sect. 3 we present detailed examples. In Sect. 4 we provide a sound and
complete axiomatization for ELF. Section 5 compares our framework to the class
of non-normal modal logics known as regular modal logics.

2 Syntax and Semantics

Before defining the language, models and semantics, let us first define filters.

Definition 1. Let S be a set. Then F ⊆ 2S is a filter if

– F �= ∅,
– for every X1,X2 ∈ F , we have X1 ∩ X2 ∈ F ,
– for every X1 ∈ F and every X2 ⊆ S, if X1 ⊆ X2 then X2 ∈ F .

A filter F is proper if ∅ �∈ F .

We have no use for improper filters, so for the remainder of this paper we assume
all filters to be proper.

A filter serves to identify which subsets of S are small or large, with X ⊆ S
being large if X ∈ F and X ⊆ S being small if S \X ∈ F . Note that, by the fact
that for X1,X2 ∈ F we have X1 ∩ X2 ∈ F , the intersection of two large sets is
itself large. Typical examples of filters include (i) the co-finite subsets of S (if S
is infinite),1 (ii) the sets of full measure in a measure space and (iii) for a fixed
C ⊆ S, all sets that contain C.

The latter kind of filter, where F = {X ⊆ S | C ⊆ X}, is called a principal
filter. In that case, the set C can be considered to be the set of important, or
relevant worlds.2 So in that case it may not be quite accurate to say that a set
X ∈ F is necessarily large. It is, however, sufficiently large in the sense that
it contains all important worlds. Another way to think of this is that while C

1 An epistemic modal use of that is the Majority Logic of [24].
2 This is similar to the approach advocated in [21], see also Remark 3.

622 H. van Ditmarsch and L. B. Kuijer

may have a small cardinality, the fact that they are important gives C a larger
weight, so any set containing C has large weight.

The language of ELF is the same as that of standard single-agent modal
logic.

Definition 2. Let At be a countable set of propositional atoms. The language
L is given by the following normal form, where p ∈ At:

ϕ :: = p | ¬ϕ | (ϕ ∨ ϕ) | �ϕ,

As usual, we omit parentheses where this should not cause confusion, and use
∧,→,↔,♦ and

∧
as abbreviations.

The models of ELF are based on the usual Kripke models, but they are
enriched with filter structures.

Definition 3. A model is a tuple M = (W,R,F , V), where W is a set of worlds,
R ⊆ W × W is an accessibility relation, F : W → {F | F is a filter on W}
assigns to each world a filter and V : At → 2W is a valuation.

We write R(w) for {w′ | (w,w′) ∈ R}.

Now we can define the semantics.

Definition 4. The satisfaction relation |= is defined recursively by

M, w |= p ⇔ w ∈ V (p)
M, w |= ¬ϕ ⇔ M, w �|= ϕ
M, w |= ϕ ∨ ψ ⇔ M, w |= ϕ or M, w |= ψ
M, w |= �ϕ ⇔ [[ϕ]]M ∩ R(w) ∈ F(w)

We use |= ϕ and Γ |= ϕ in the usual way to denote ϕ being valid and ϕ being
entailed by Γ , respectively.

Note that we have M, w |= �ϕ if there is a large set of accessible ϕ worlds.
This is not exactly the same as there being a small set of accessible ¬ϕ worlds:
the accessible ϕ worlds being large always implies that the accessible ¬ϕ worlds
are small, but if R(w) �∈ F(w) it is possible for [[¬ϕ]]M∩R(w) to be small without
[[ϕ]]M ∩R(w) being large. The reason for this “largeness requirement” is that we
consider knowledge to require some amount of intellectual effort and honesty.

It is generally held (e.g., [9,13,22]) that a necessary3 condition for knowing
ϕ is that ϕ is a justified true belief. So, in particular, for an agent to know ϕ
it must be the case that there is a justification for the agent to believe ϕ. In
the case of standard epistemic logic, this justification derives from the fact that
all accessible worlds satisfy ϕ. Here, in ELF, the justification derives from the
slightly weaker condition that the accessible ¬ϕ worlds are negligible compared
to the accessible ϕ worlds.

In order to obtain this justification it does not suffice that the set of accessible
¬ϕ worlds is small in an absolute sense; if the agent considers three possible
worlds and all three of them satisfy ¬ϕ, then it would be strange to say that
3 But, unless one uses a very strong notion of justification, not sufficient [13].

Knowledge Without Complete Certainty 623

they are justified in believing ϕ simply because there are few counterexample.
Instead, the set of accessible counterexamples must be small compared to the
set of accessible ϕ worlds. But even that is not quite enough; if there are no
accessible ¬ϕ worlds and at least one accessible ϕ world, then one could argue
that the set of ¬ϕ worlds is small compared to the set of ϕ worlds. In some cases,
we would endorse the claim that this single accessible ϕ world, in the absence of
accessible ¬ϕ worlds, provides a justification for believing ϕ. But in other cases,
the fact that there is only one world that the agent considers possible can betray
a lack of effort and imagination by the agent.

We want the model M to describe what the agent knows, not what the agent
thinks they know. This means that the model is drawn from the perspective of an
outside observer who knows the agent’s mental state, not from the perspective
of the agent themselves. So the relation R describes objectively which worlds
the agent considers possible. But the mental state is itself of course a subjective
opinion of the agent: we are objectively describing a subjective mental state. If
the agent has never thought of a world w2, it would therefore be inaccurate to
say that the agent considers w2 possible, even if w2 happens to be consistent
with the agent’s observations.

As a result, if the agent does not consider a world w2 to be accessible, this
could be either because the agent has thought of w2 and determined it to be
incompatible with their information, or because the agent never though of w2.
So if the agent considers only one world to be accessible, this could be because
the agent is lazy, and didn’t think of any other worlds. In that case, even if the
only accessible world satisfies ϕ, this would not be a justification for believing
ϕ. In order for the agent to be justified in believing ϕ, they should first consider
sufficiently many worlds.

Note that the agent must consider sufficiently many worlds. This is not a
cardinality requirement: in some situations, a finite number of worlds might be
sufficient, while in another case even a continuum of worlds might not be enough.
Instead, sufficiency is determined from the perspective of the objective, outside
observer who designs the model. Specifically, the model designer determines
sufficiency using the filter function F .

If the agent considered sufficiently many worlds, so R(w) ∈ F(w), and all
but a negligible amount of these worlds satisfy ϕ, so [[ϕ]]M ∈ F(w), this yields
the justification for the agent’s belief that ϕ. These two conditions together are
equivalent to [[ϕ]]M ∩ R(w) ∈ F(w), our condition for knowledge.

Remark 1. Note that we allow the filter F(w) to depend on the world w. This is
because, otherwise, it would be impossible to have M, w1 |= �ϕ and M, w2 |=
�¬ϕ. After all, M, w1 |= �ϕ requires [[ϕ]]M ∈ F(w1) and M, w2 |= �¬ϕ requires
[[¬ϕ]]M ∈ F(w2). So if F(w1) = F(w2), then we would have [[ϕ]]M ∩ [[¬ϕ]]M ∈
F(w1), which is a contradiction since ∅ �∈ F(w1).

Remark 2. The semantics presented above do not guarantee that knowledge in
ELF satisfies certain properties that knowledge is often considered to have, such
as truthfulness and introspection. ELF is, in this sense, similar to the basic modal

624 H. van Ditmarsch and L. B. Kuijer

logic K. And, like K, ELF can be extended with axioms and frame properties to
guarantee truthfulness and introspection.

Remark 3. We recall example (iii) of a filter F given by F = {X ⊆ S | C ⊆ S}.
This can be seen as an implementation of the contextualist view from [21] of
knowledge as truth in all relevant accessible worlds. Among yet other precisions,
Lewis writes:

Then S knows that P iff S’s evidence eliminates every possibility in which
not-P—Psst!—except for those possibilities that conflict with our proper
presuppositions. [21, page 554]

In other words, a proposition (called P) is known (by an agent S) if it is true in
the intersection of the accessible worlds and the relevant worlds. On the assump-
tion that R(w) ∈ F (w), this corresponds exactly to the semantics of ELF when
S is the set of relevant worlds.

ELF is more general however, because we do not require that R(w) ∈ F (w)
and not every filter is of the form {X ⊆ S | C ⊆ S}.

Now that we have defined the semantics of our logic, we can consider a few
examples in some detail.

3 Examples

Example 1. Bob is a mathematics student. On an exam, he writes a proof by
case distinction for a proposition p in some mathematical theory T. Because
Bob is not very experienced in writing proofs, however, he is not certain that
his case distinction is exhaustive. But even though Bob does not know this, his
case distinction is in fact exhaustive and his proof is correct.

We will represent Bob’s situation by a pointed model M, w, where M =
(W,R,F , V). The possible worlds of M are closely related to the models of T.
Specifically, for every model T of T, there is a world where T is the “true” model.
Having one such world per model is not quite enough, however, because there
are other facts that may differ per world. In particular, if two worlds w1 and w2

have the same model T but Bob’s beliefs differ between w1 and w2, then they
must be different worlds. This can be represented by considering these worlds to
be pairs w = (T , i), where i is simply some index used to differentiate between
worlds with the same model of T.4

In Bob’s proof, he considered the cases q1, · · · , qn. Because the case distinc-
tion is in fact exhaustive, every model of T satisfies at least one of these cases.
So for every (T , i), there is at least one j such that M, (T , i) |= qj . Furthermore,
since the proof is correct, any world that satisfies one of these cases also satisfies
p. So we have M, (T , i) |= p.

4 Because we require W to be a set, as opposed to a class, we may have to restrict
ourselves to the models of T in some set-theoretic universe U , where W �∈ U .

Knowledge Without Complete Certainty 625

In order to represent Bob’s uncertainty about whether his case distinction is
exhaustive, we need some further worlds where none of the cases apply. While
there are no models of T that fall outside the case distinction, Bob thinks that
there might be. So we need to add a number of worlds of the form (N , i), where
M, (N , i) �|= qj for every j. Here N is objectively not a model of T, but Bob is
not certain that it is not a model. Because none of the cases apply, it is uncertain
whether these worlds satisfy p. It is possible for p to be true there, but it is also
possible for p to be false in these worlds.

The worlds that Bob considers possible are those that fall inside his case
distinction. This is true for every world, so R(w′) = V (q1)∪· · ·∪V (qn) for every
w′ ∈ W . The filters represent the “relevant” worlds, in the sense that one is
justified in believing a proposition after verifying that it holds in every world
of the filter. Bob’s belief in p is justified if p is true in every model of T, so
F(w) = {F | C ⊆ F}, where C is the set of worlds of the form (T , i). We have
R(w) ∩ [[p]]M ⊇ C, and therefore M, w |= �p. So Bob knows that p is true.

However, even though Bob’s case distinction was exhaustive, he is uncertain
about this. So in some of the accessible worlds w′ = (T , i) his case distinction
is not exhaustive. In such a world we have F(w′) = {F | C ′ ⊆ F}, where C ′

contains not only the worlds of the form (T , j), but also some worlds of the
form (N , j). In these worlds, we have R(w′) ∩ [[p]]M �∈ F(w′) and therefore
M, w′ �|= �p. Note that it does not matter whether p holds in the worlds C ′ \C.
Even if p happens to be true in all of C ′, the fact that his case distinction was
non-exhaustive means that his belief in the truth of p would be unjustified.

Example 2. Suppose that we are about to draw a random real number uniformly
from the interval [0, 1]. This situation can be modeled in the following way:

– For every x ∈ [0, 1] there is a world wx where x is the number that is drawn.
– Every world is accessible from every other world, i.e., R = {(wx, wy) | x, y ∈

[0, 1]}.
– The large sets are those that have full measure, i.e., for every x ∈ [0, 1],

we have F(wx) = {wY | μ(Y) = 1}, where μ is the Lebesgue measure and
wY = {wy | y ∈ Y }.

Under these circumstances, we can say that we know that the drawn number x
will be irrational, since the rationals have measure 0. Note that this knowledge
is fallible: even in those worlds where we will draw a rational number, we know
that the number will be irrational. Such failure is infinitely unlikely, however.

Example 3. Claire is a software engineer, who is demonstrating a program to a
client. The program has been given its input, and is now running. Claire tells
the client that she knows that the program will terminate and return the output
“TRUE”. In saying so, she ignores a number of possible worlds. In particular, if
there is a power failure then the program will not terminate at all. Claire has
thought of such possibilities, but she considers the conversation with the client to
have a number of underlying unspoken assumptions, including the assumption
that there will be no power failure. So while there are possible worlds where

626 H. van Ditmarsch and L. B. Kuijer

the program is interrupted by power failure or some other outside factor, the
unspoken assumptions render such worlds irrelevant.

The set of worlds W of our model is given by W = W1 ∪ W2, where W1 is
the set of worlds where the program will be allowed to run normally and W2 is
the set of worlds where the program will be interrupted by some outside event,
such as a power cut or a meteorite strike. The accessibility relation is given by
R = W × W . Finally, for every world w the filter F(w) is the set of all sets
containing the relevant worlds. In this case, as discussed above, we consider the
relevant worlds to be those where the program is allowed to run uninterrupted,
so F(w) = {F | W1 ⊆ F}. We let p stand for “the program terminates and
returns TRUE”, so V (p) = W1.

For any world w of this model M we have M, w |= �p. Note that, as in
the previous example, this knowledge is fallible: Claire knows p in every world,
including those where a power failure occurs. Unlike the previous example, how-
ever, such failure is not necessarily infinitely unlikely. The probability of power
failures et cetera is low, but not infinitely so, after all. But this possibility of fail-
ure does not stop Claire from knowing p, under the conversational assumptions.

Example 4. As above, except now the possibility of a power failure or other
outside event has not crossed Claire’s mind. The accessibility relation is now
given by R = W × W1. But because W1 contains all relevant worlds, Claire still
knows that the program will return TRUE.

Example 5. As above, except that Claire is now less careful in considering all
possible executions of her program. Instead of considering all possible executions
W1, she makes some implicit assumptions and only thinks of W ′

1 ⊂ W1. We
have R = W × W ′

1. The set of relevant worlds remains the same, however:
F(w) = {F | W1 ⊆ F}.

In this situation, Claire does not know that the program will return TRUE,
because R(w) �∈ F(w). Note that this is independent of whether the program
returns TRUE in the relevant worlds that she failed to consider: Claire’s belief
that the program will return TRUE is not justified, so even if she happens to be
right she doesn’t know that the program will return TRUE.

4 Axiomatization

We introduce the proof system WKL. The W in WKL stands for “weak”, since
WKL is strictly weaker than KL, which is obtained by adding the axiom L to
the standard proof system K for modal logic.5

Definition 5. The proof system WKL is given by the following rules and axiom
schemata.
5 The axiom L is, using the other axioms and rules, interderivable with the axiom D,

given by �ϕ → ♦ϕ. One could, therefore, think of WKL as “weak KD” instead
of “weak KL”. Our reason for preferring L over D in this context is that L more
closely follows the semantical constraint that ∅ �∈ F(w).

Knowledge Without Complete Certainty 627

P all substitution instances of propositional tautologies
K �(ϕ → ψ) → (�ϕ → �ψ)
L ¬�⊥
RM if ϕ → ψ is a theorem, infer �ϕ → �ψ
MP from ϕ → ψ and ϕ, infer ψ.

Definition 6. A formula ϕ is a theorem of WKL, denoted � ϕ if it can be
derived in a finite number of steps using the rules and axioms of WKL. A
formula ϕ is entailed by a set Γ of formulas, denoted Γ � ϕ if ϕ can be derived
in a finite number of steps using the rules and axioms of WKL and using Γ as
premises.

Note that WKL does not have a necessitation rule, i.e., we cannot infer from
� ϕ that � �ϕ. Instead, we use a strictly weaker monotonicity rule RM. In
particular, �� is not provable in WKL.6 ELF is therefore not a normal modal
logic, although it is a regular modal logic [23]. In Sect. 5 we discuss ELF’s position
in the landscape of non-normal modal logics.

Soundness of WKL follows immediately from the semantics.

Lemma 1 (Soundness). For all Γ ⊆ L and ϕ ∈ L, if Γ � ϕ then Γ |= ϕ.

Completeness of WKL is shown in the usual way, i.e., by constructing a
canonical model and proving that every consistent formula is satisfied in that
model (see for example [5]). Some of the following lemmas can be proven in the
exact same way as the corresponding lemmas in other completeness proofs. We
therefore omit the proofs of those lemmas.

We start with a lemma that allows us to switch between three different
characterizations of entailment.

Lemma 2. The following are equivalent.

1. Γ � ϕ
2. there is a finite subset Γ ′ of Γ such that Γ ′ � ϕ
3. there is a finite subset Γ ′ of Γ such that �

∧
Γ ′ → ϕ

As usual, maximal consistent sets will serve as worlds for the canonical model.

Definition 7. A set Γ of formulas is consistent if Γ �� ⊥, maximal if for every
formula ϕ either ϕ ∈ Γ or ¬ϕ ∈ Γ and maximal consistent if it is both maximal
and consistent.

Lemma 3 (Lindenbaum lemma). Let Γ be a consistent set. Then there is a
maximal consistent set Δ such that Γ ⊆ Δ.

Definition 8. If Γ is a set of formulas, then �−1Γ = {ϕ | �ϕ ∈ Γ}.

The proof of the following lemma is slightly more complicated than usual, since
we only have access to the monotonicity rule RM as opposed to the more pow-
erful necessitation rule. We therefore provide a detailed proof.
6 Note that �|= �� in ELF, since M, w �|= �� when R(w) �∈ F(w).

628 H. van Ditmarsch and L. B. Kuijer

Lemma 4. If Γ is consistent, then so is �−1Γ .

Proof. Suppose towards a contradiction that �−1Γ � ⊥. Then there is a finite
subset of Φ ⊆ �−1Γ such that

�
∧

Φ → ⊥.

By RM, this yields
� �

∧
Φ → �⊥. (1)

Now, note that by repeatedly applying K and MP, we also have

�
∧

�Φ → �
∧

Φ. (2)

Together, (1) and (2) imply that

�Φ � �⊥

and therefore by L and the fact that �Φ ⊆ Γ

Γ � ⊥,

contradicting the consistency of Γ . ��

Lemma 5. If Γ is maximal consistent and Γ � ϕ, then ϕ ∈ Γ .

Proof. By maximality, either ϕ ∈ Γ or ¬ϕ ∈ Γ . Since Γ ∪ {¬ϕ} � ⊥ it follows
from consistency that ϕ ∈ Γ . ��

Now, let us define the canonical model.

Definition 9. The canonical model Mc = (W c, Rc, V c,Fc) is given by:

– W c is the set of maximal consistent sets of formulas,
– F(w) = {F ⊆ W c | S(w) ⊆ F}, where S(w) = {w′ | �−1w ⊆ w′},
– if �� ∈ w, then Rc(w) = S(w) otherwise Rc(w) = ∅,
– V c(p) = {w ∈ W c | p ∈ w}.

Lemma 6 (Truth Lemma). For every w ∈ W c and every formula ϕ, Mc, w |=
ϕ if and only if ϕ ∈ w.

Proof. By induction on the complexity of ϕ. If ϕ is atomic, then the lemma
follows immediately from the definition of V c. So assume as induction hypothesis
that ϕ is not atomic and that the lemma holds for all strict subformulas of ϕ.

We continue by a case distinction on the main connective of ϕ. If it is a
Boolean connective, then the lemma is once again trivial. So let us consider the
interesting case, ϕ = �ψ.

Suppose �ψ ∈ w. By the definition of S(w), we have [[ψ]]Mc ⊇ S(w). Fur-
thermore, by P we have � ψ → �, so by RM we have � �ψ → ��. Since w

Knowledge Without Complete Certainty 629

is maximal and consistent, this implies that �� ∈ w. So Rc(w) = S(w). We
therefore have [[ψ]]Mc ∩ Rc(w) = S(w) ∈ F(w), so Mc, w |= �ψ.

Suppose, on the other hand, that �ψ �∈ w. We distinguish two sub-cases.
First, suppose that �� �∈ w. Then Rc(w) = ∅ �∈ F(w), so Mc, w �|= �ψ.

The other case is if �� ∈ w but �ψ �∈ w. In this case, suppose towards a
contradiction that �−1w ∪ {¬ψ} is inconsistent. Then there is a finite subset
Φ of �−1w such that Φ ∪ {¬ψ} is inconsistent. It follows that �

∧
Φ → ψ and

therefore � �
∧

Φ → �ψ. Since �ϕ ∈ w for every ϕ ∈ Φ, we have �
∧

Φ ∈ w
and therefore �ψ ∈ w, contradicting our assumption.

So �−1w∪{¬ψ} is consistent, and can therefore be extended to a maximally
consistent set w′. By the definition of F , we have that w′ ∈ F for every F ∈
F(w). Since w′ �∈ [[ψ]]Mc , it follows that [[ψ]]Mc ∩ R(w) �∈ F(w), and therefore
Mc, w �|= �ψ. ��

Completeness now follows immediately.

Lemma 7 (Completeness). For all Γ ⊆ L and ϕ ∈ L, if Γ |= ϕ then Γ � ϕ.

Proof. If Γ �� ϕ then Γ ∪ {¬ϕ} is consistent, so by Lemma 3 there is a maximal
consistent set w ⊇ Γ ∪{¬ϕ}. By Lemma 6 this implies that Mc, w |= ψ for every
ψ ∈ Γ and Mc, w �|= ϕ. Therefore, Γ �|= ϕ. ��

We have now proven both soundness and completeness.

Theorem 1. For all Γ ⊆ L and ϕ ∈ K, we have Γ |= ϕ if and only if Γ � ϕ.

Remark 4. In Mc, every filter is of the form F(w) = {F ⊆ W c | S(w) ⊆ F}. So
all filters in the canonical model are principal filters. It follows that the proof
system is also sound and complete for the class of models

M := {M = (W,R,F , V) | ∀w ∈ W : F(w) is principal}.

5 Comparison to Other Non-normal Modal Logics

ELF is a so-called non-normal modal logic. In this section, we therefore compare
the semantics of ELF to the commonly used neighborhood semantics, and the
proof system WKL to other proof systems for non-normal modal logics.

In neighborhood semantics [8,23], a model is a tuple M = (W,N , V), where
W is a set of worlds, N : W → 22W

is a neighborhood function that assigns to
each world a set of sets of worlds and V : At → 2W is a valuation. We then say
that M, w |= �ϕ if and only if [[ϕ]]M ∈ N (w).

The semantics of ELF can be reduced to neighborhood semantics. This is
not very surprising, both because the formalism of neighborhood semantics is
sufficiently versatile to encompass almost everything done in modal logic, and
because the filter F(w) already looks a lot like a neighborhood function N . Still,
translating from ELF to neighborhood semantics is not entirely trivial; after all,
whether M, w |= �ϕ depends not only of F(w) but also on R(w), so F is not

630 H. van Ditmarsch and L. B. Kuijer

exactly the neighborhood function that we are looking for. Instead, given an
ELF model M = (W,R,F , V) we find a neighborhood model M′ = (W,N , V)
by taking

N (w) =
{

F(w) if R(w) ∈ F(w)
∅ otherwise

Proposition 1. M, w |= ϕ if and only if M′, w |= ϕ.

Proof. By induction. As base case, suppose that ϕ is an atom p. Since M and
M′ have the same valuation, we have M, w |= p ⇔ M′, w |= p. Suppose then as
induction hypothesis that ϕ is not atomic, and that for every strict subformula
ψ of ϕ we have M, w |= ψ ⇔ M′, w |= ψ. We continue by case distinction on
the main connective of ϕ.

If the main connective of ϕ is Boolean, then it follows immediately from the
induction hypothesis that M, w |= ϕ ⇔ M′, w |= ϕ. Suppose then that ϕ = �ψ.
Then

M, w |= �ψ ⇔ [[ψ]]M ∩ R(w) ∈ F(w) ⇔ [[ψ]]M ∈ F(w) and R(w) ∈ F(w)
⇔ [[ψ]]M ∈ N (w) ⇔ [[ψ]]M′ ∈ N (w) ⇔ M′, w |= �ψ

This completes the case distinction and thereby the induction step. ��

Note that while F(w) is always a filter, N (w) need not be one. After all, a filter
is by definition non-empty, whereas N (w) is empty whenever R(w) �∈ F(w).

The neighborhood function N is, in the terminology of [23], consistent, closed
under (binary) intersection and closed under supersets. From the fact that N is
consistent, it immediately follows that |= ¬�⊥, from the fact that N is closed
under intersection it follows that |= (�ϕ ∧ �ψ) → �(ϕ ∧ ψ) and from the fact
that N is closed under supersets it follows that |= �(ϕ → ψ) → (�ϕ → �ψ).

We continue by comparing the proof system WKL, where we recall Defini-
tion 5 on page 8, to other proof systems for non-normal modal logics. We write
WK for the proof system containing P, K, RM and MP. So WK is WKL
minus the axiom L.

A regular modal logic [8] contains the following axioms and rules.

P all propositional tautologies
Dual ♦ϕ ↔ ¬�¬ϕ
M �(ϕ ∧ ψ) → (�ϕ ∧ �ψ)
C (�ϕ ∧ �ψ) → �(ϕ ∧ ψ)
RM from ϕ → ψ, infer �ϕ → �ψ
MP from ϕ → ψ and ϕ, infer ψ

We refer to the proof system containing exactly these six axioms and rules as
the minimal regular modal logic MRML.

The proof system WK is an alternative presentation of a regular modal logic
[8, Exercise 8.13a, page 241], i.e., a formula is provable in MRML if and only
if it is provable in WK. It follows that WKL is a regular modal logic.

Knowledge Without Complete Certainty 631

The axiom L is not provable in MRML. This can, for example, be seen by
noting that MRML is sound and complete for relational models with impossible
worlds (see, e.g., [23]), and that L is not valid on those models. So WKL is a
strictly stronger proof system than MRML.

Regular modal logics have been studied quite extensively, see the aforemen-
tioned [23] for an overview. But the extension of a regular modal logic with the
axiom L specifically has not, to the best of our knowledge, been studied before.

6 Conclusion

We have introduced ELF, an epistemic logic that uses filters in order to represent
situations where an agent knows (or has a justified belief) that a proposition ϕ
is true even though there are some epistemically accessible worlds where ϕ is
false. We have shown that the proof system WKL is sound and complete for
ELF. This proof system is similar to KD, except that the necessitation rule of
that proof system is replaced by a strictly weaker monotonicity rule.

In the basic version of ELF that we discussed in this paper, the properties
of truthfulness, positive introspection and negative introspection are not valid.
As with normal modal logics, we can enforce these properties by restricting
to a smaller class of models. However, unlike normal modal logic, there is not
something as elegant and general as correspondence, and there are also additional
properties to consider, such as �� (N), the dual of our ¬�⊥ (L) axiom. We can
then create a sound and complete proof system for ELF on such smaller classes of
models by adding a number of axioms to WKL. Such technical explorations are
relevant, as intuitive scenarios involving certainty and knowledge often satisfy,
or fail to satisfy, such constraints. Due to space constraints we must leave the
reporting of such frame conditions and axioms for future work.

Acknowledgements. We are grateful to Ramanujam, who suggested the idea of
defining knowledge through filters to us. We also thank two anonymous reviewers for
their helpful comments. Hans van Ditmarsch is also affiliated to IMSc, Chennai, as
associate researcher.

References

1. Aucher, G.: How our beliefs contribute to interpret actions. In: Pěchouček, M.,
Petta, P., Varga, L.Z. (eds.) CEEMAS 2005. LNCS (LNAI), vol. 3690, pp. 276–
285. Springer, Heidelberg (2005). https://doi.org/10.1007/11559221 28

2. Baltag, A., Bezhanishvili, N., Özgün, A., Smets, S.: Justified belief and the topology
of evidence. In: Väänänen, J., Hirvonen, Å., de Queiroz, R. (eds.) WoLLIC 2016.
LNCS, vol. 9803, pp. 83–103. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-52921-8 6

3. Baltag, A., Smets, S.: A qualitative theory of dynamic interactive belief revision. In:
Proceedings of 7th LOFT. Texts in Logic and Games, vol. 3, pp. 13–60. Amsterdam
University Press (2008)

https://doi.org/10.1007/11559221_28
https://doi.org/10.1007/978-3-662-52921-8_6
https://doi.org/10.1007/978-3-662-52921-8_6

632 H. van Ditmarsch and L. B. Kuijer

4. Ben-David, S., Ben-Eliyahu, R.: A modal logic for subjective default
reasoning. Artif. Intell. 116, 217–236 (2000). https://doi.org/10.1016/S0004-
3702(99)00081-8

5. Blackburn, P., van Benthem, J., Wolter, F. (eds.): Handbook of Modal Logic.
Elsevier (2006)

6. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Tracts in Theoretical Com-
puter Science, vol. 53. Cambridge University Press, Cambridge (2001)

7. Cartan, H.: Théorie des filtres. Comptes Rendus de l’Académie des Sciences de
Paris 205, 595–598 (1937)

8. Chellas, B.: Modal Logic: An Introduction. Cambridge University Press, Cam-
bridge (1980)

9. Chisholm, R.: Perceiving: A Philosophical Study. Cornell University Press, Ithaca
(1957)

10. Conitzer, V.: A puzzle about further facts. Erkenntnis (2018).https://doi.org/10.
1007/s10670-018-9979-6

11. DeRose, K.: Contextualism and knowledge attributions. Philos. Phenomenol. Res.
52, 913–929 (1992). https://doi.org/10.2307/2107917

12. van Ditmarsch, H., Halpern, J., van der Hoek, W., Kooi, B. (eds.): Handbook of
Epistemic Logic. College Publications (2015)

13. Gettier, E.: Is justified true belief knowledge? Analysis 23, 121–123 (1963). https://
doi.org/10.2307/3326922

14. Harman, G.: Thought. Princeton University Press, Princeton (1973)
15. Hintikka, J.: Knowledge and Belief. Cornell University Press, Ithaca (1962)
16. van der Hoek, W.: Systems for knowledge and belief. J. Log. Comput. 3(2), 173–195

(1993). https://doi.org/10.1093/logcom/3.2.173
17. Keisler, H.: Elementary Calculus: An Approach Using Infinitesimals. Prindle Weber

& Schmidt (1986)
18. Kraus, S., Lehmann, D.: Knowledge, belief and time. Theor. Comput. Sci. 58,

155–174 (1988). https://doi.org/10.1016/0304-3975(88)90024-2
19. Kraus, S., Lehmann, D., Magidor, M.: Nonmonotonic reasoning, preferential mod-

els and cumulative logics. Artif. Intell. 44, 167–207 (1990). https://doi.org/10.
1016/0004-3702(90)90101-5

20. Kyburg, H.: Probability and the Logic of Rational Belief. Wesleyan University
Press, Middletown (1961)

21. Lewis, D.: Elusive knowledge. Australas. J. Philos. 74, 549–567 (1996). https://
doi.org/10.1080/00048409612347521

22. Nozick, R.: Philosophical Explanations. Harvard University Press, Cambridge
(1981)

23. Pacuit, E.: Neighborhood Semantics for Modal Logic. Springer, Heidelberg (2017).
https://doi.org/10.1007/978-3-319-67149-9

24. Pacuit, E., Salame, S.: Majority logic. In: Proceedings of Ninth KR, pp. 598–605
(2004)

25. Putnam, H.: Reason, Truth and History. Cambridge University Press, Cambridge
(1982)

26. Segerberg, K.: Irrevocable belief revision in dynamic doxastic logic. Notre Dame
J. Formal Log. 39(3), 287–306 (1998). https://doi.org/10.1305/ndjfl/1039182247

27. Stalnaker, R.: On logics of knowledge and belief. Philos. Stud. 128(1), 169–199
(2005). https://doi.org/10.1007/s11098-005-4062-y

28. Unger, P.: Philosophical Relativity. Oxford University Press, New York (1984)

https://doi.org/10.1016/S0004-3702(99)00081-8
https://doi.org/10.1016/S0004-3702(99)00081-8
https://doi.org/10.1007/s10670-018-9979-6
https://doi.org/10.1007/s10670-018-9979-6
https://doi.org/10.2307/2107917
https://doi.org/10.2307/3326922
https://doi.org/10.2307/3326922
https://doi.org/10.1093/logcom/3.2.173
https://doi.org/10.1016/0304-3975(88)90024-2
https://doi.org/10.1016/0004-3702(90)90101-5
https://doi.org/10.1016/0004-3702(90)90101-5
https://doi.org/10.1080/00048409612347521
https://doi.org/10.1080/00048409612347521
https://doi.org/10.1007/978-3-319-67149-9
https://doi.org/10.1305/ndjfl/1039182247
https://doi.org/10.1007/s11098-005-4062-y

A Framework for Distributional
Formal Semantics

Noortje J. Venhuizen1(B), Petra Hendriks2, Matthew W. Crocker1,
and Harm Brouwer1

1 Saarland University, Saarbrücken, Germany
{noortjev,crocker,brouwer}@coli.uni-saarland.de
2 University of Groningen, Groningen, The Netherlands

p.hendriks@rug.nl

Abstract. Formal semantics and distributional semantics offer comple-
mentary strengths in capturing the meaning of natural language. As such,
a considerable amount of research has sought to unify them, either by
augmenting formal semantic systems with a distributional component, or
by defining a formal system on top of distributed representations. Arriv-
ing at such a unified framework has, however, proven extremely chal-
lenging. One reason for this is that formal and distributional semantics
operate on a fundamentally different ‘representational currency’: formal
semantics defines meaning in terms of models of the world, whereas distri-
butional semantics defines meaning in terms of linguistic co-occurrence.
Here, we pursue an alternative approach by deriving a vector space model
that defines meaning in a distributed manner relative to formal mod-
els of the world. We will show that the resulting Distributional Formal
Semantics offers probabilistic distributed representations that are also
inherently compositional, and that naturally capture quantification and
entailment. We moreover show that, when used as part of a neural net-
work model, these representations allow for capturing incremental mean-
ing construction and probabilistic inferencing. This framework thus lays
the groundwork for an integrated distributional and formal approach to
meaning.

Keywords: Distributionality · Compositionality · Probability ·
Inference · Incrementality

1 Introduction

In traditional formal semantics, the meaning of a logical expression is typically
evaluated in terms of the truth conditions with respect to a formal model M ,
in which the basic meaning-carrying units (i.e., the basic expressions that are
assigned a truth value) are propositions [14]. The meaning of a linguistic expres-
sion, then, is defined in terms of the truth conditions its logical translation poses
upon a formal model. Critically, these truth conditions define meaning in a seg-
regated manner; distinct propositions obtain separate sets of truth conditions.
c© Springer-Verlag GmbH Germany, part of Springer Nature 2019
R. Iemhoff et al. (Eds.): WoLLIC 2019, LNCS 11541, pp. 633–646, 2019.
https://doi.org/10.1007/978-3-662-59533-6_39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-59533-6_39&domain=pdf
https://doi.org/10.1007/978-3-662-59533-6_39

634 N. J. Venhuizen et al.

As a result, the relation between individual meanings is not inherently part of
their truth-conditional interpretation, but rather follows indirectly from mod-
els satisfying these conditions. The core strength of the distributional semantics
approach, by contrast, is that (word) meanings are defined in relation to each
other, thus directly capturing semantic similarity [18]. It has, however, proven
extremely difficult to incorporate well-known features from formal semantics
(e.g., compositionality, entailment, etc.) into a distributional semantics frame-
work [3] (but cf. [1,2,7,16,20]).

Here, we take the inverse approach: We introduce distributionality into a for-
mal semantic system, resulting in a framework for Distributional Formal Seman-
tics (DFS). This framework is based on the cognitively inspired meaning repre-
sentations developed by Golden and Rumelhart [15] and adapted by Frank et al.
[12]. In DFS, insights from formal and distributional semantics are combined by
defining meaning distributionally over a set of logical models: individual mod-
els are treated as observations, or cues, for determining the truth conditions
of logical expressions—analogous to how individual linguistic contexts are cues
for determining the meaning of words in distributional semantics. Based on a
set of logical models M that together reflect the state of the world both truth-
conditionally and probabilistically (i.e., reflecting the probabilistic structure of
the world), and a set of propositions P, we can define a vector space for DFS:
SM×P . The meaning of a proposition is defined as a vector in SM×P , which
reflects its truth or falsehood relative to each of the models in M. The resulting
meaning vector captures the probabilistic truth conditions of individual proposi-
tions indirectly by identifying the models that satisfy the proposition. Critically,
the distributional meaning of individual propositions is defined in relation to all
other propositions; propositions that have related meanings will be true in many
of the same models, and hence have similar meaning vectors. In other words, the
meaning of a proposition is defined in terms of the propositions that it co-occurs
with—or, to paraphrase the distributional hypothesis formulated by Firth [10]:
“You shall know a proposition by the company it keeps”.

In what follows, we will show how a well-defined vector space SM×P can
be derived from a high-level description of the structure of the world, how the
resulting meaning space offers distributed representations that are probabilis-
tic and inferential, and how it captures basic concepts from formal semantics,
such as compositionality, quantification and entailment. As a proof-of-concept,
we present a computational (Prolog) implementation of the DFS framework.1

Finally, we will show how the DFS representations can be employed in a neural
network model for incremental meaning construction. Crucially, we will show
how this approach to incremental meaning construction allows for the represen-
tation of sub-propositional meaning by exploiting the continuous nature of the
meaning space.

1 dfs-tools is publicly available at http://github.com/hbrouwer/dfs-tools under the
Apache License, version 2.0.

http://github.com/hbrouwer/dfs-tools

A Framework for Distributional Formal Semantics 635

2 A Framework for Distributional Formal Semantics

In DFS, the meaning of a proposition p ∈ P is defined as a vector v(p) in SM×P ,
such that each unit corresponds to a M ∈ M, and is assigned a 1 iff M satisfies
p, and a 0 otherwise. Consequently, for SM×P to be well-defined, the set of
models M that constitutes the meaning space must capture the relevant truth
conditions for each proposition p ∈ P, and conversely, the set of propositions P
must contain all propositions that are captured by each model M ∈ M. Beyond
being well-defined, the meaning space SM×P should capture the structure of the
world. First of all, the world can enforce hard world knowledge constraints on the
co-occurrence of propositions; for instance, certain combinations of propositions
may never co-occur, that is, never be simultaneously satisfied within the same
model (e.g., a person cannot be at two different places). Secondly, there may
be probabilistic constraints on the co-occurrence of propositions; a proposition
p may co-occur more frequently with p′ than with p′′ (for some p, p′, p′′ ∈ P),
that is, there should be more models M ∈ M that satisfy p ∧ p′ than models
M ′ ∈ M satisfying p ∧ p′′ (e.g., one prefers reading in bed over reading on the
sofa). For SM×P to reflect our high-level knowledge about the structure of the
world regarding the probabilistic truth-conditions of each proposition p ∈ P,
we thus need its constituent set of models M to approximate this knowledge.
One way of arriving at a satisfactory SM×P is to induce this set of models by
sampling each model M ∈ M from a high-level specification of the structure of
the world.

2.1 Sampling SM×P

For a given set of propositions P, there are theoretically 2P possible models. Hard
constraints in the world rule out any model that satisfies illegal combinations
of propositions, while probabilistic constraints require the set of models M that
constitutes SM×P to reflect that a proposition p may co-occur more frequently
with p′ than with p′′ (for some p, p′, p′′ ∈ P). Hence, the goal is to find a set
of models M such that each M ∈ M satisfies all hard constraints, and M as a
whole reflects the probabilistic structure of the world. To this end, we employ
an inference-driven, non-deterministic sampling algorithm (inspired by [13]) that
stochastically generates models from a set of hard and probabilistic co-occurrence
constraints on the propositions P.

As in traditional formal semantics, a model M ∈ M is defined as the tuple
〈UM , VM 〉, where UM defines the universe of M , and VM is the interpretation
function that assigns (sets of) entities to the individual constants and properties
that constitute P. Given the set of constants c1 . . . cn defined by P, the universe
of each M ∈ M is defined as UM = {e1 . . . en}, and the interpretation function
is initialized to map each constant onto a unique entity: VM (ci) = ei. The next
step is to stochastically define an interpretation for all propositions in P, while
taking into account hard and probabilistic constraints on world structure. To
this end, we start out with the initialized interpretation function, which will
be incrementally expanded with the interpretation of individual propositions.

636 N. J. Venhuizen et al.

We call this interpretation function the Light World2 (LVM), to which will be
assigned all propositions that are satisfied in M . To facilitate the incremental,
inference-driven construction of M , we will in parallel construct a Dark World
interpretation function (DVM), to which will be assigned all propositions that
are not satisfied in M . Finally, we assume hard constraints to be represented by
a set of well-formed formulas C, while probabilistic constraints are represented
by a function Pr(φ) that assigns a probability to a property φ. A model M is
then sampled by iterating the following steps:

1. Given the constants c1 . . . cn defined by P, let UM = {e1 . . . en}, LVM (ci) = ei
and DVM (ci) = ei.

2. Randomly select a proposition φ = P (t1, . . . , tn) from P that is not yet
assigned in LVM or DVM .

3. Let LV ′
M be the function that extends LVM with the interpretation of φ, such

that 〈t1, . . . , tn〉 ∈ LV ′
M (P).

4. Let Light World Consistency LWC = � iff each constraint in C is either
satisfied by 〈UM , LV ′

M 〉, or if its complement3 is not satisfied by 〈UM ,DVM 〉.
5. Let DV ′

M be the function that extends DVM with the interpretation of φ ,
such that 〈t1, . . . , tn〉 ∈ DV ′

M (P).
6. Let Dark World Consistency DWC = � iff each constraint in C is either

satisfied by 〈UM , LVM 〉, or if its complement is not satisfied by 〈UM ,DV ′
M 〉.

7. Provided the outcome of step 4 and step 6:
– LWC ∧ DWC: φ can be true in both worlds, let LVM = LV ′

M with
probability Pr(φ) and DVM = DV ′

M with probability 1 − Pr(φ);
– LWC ∧ ¬DWC: φ can be inferred to the Light World, let LVM = LV ′

M ;
– ¬LWC ∧ DWC: φ can be inferred to the Dark World, let DVM = DV ′

M ;
– ¬LWC∧¬DWC: φ cannot be inferred to either world, meaning the model

thus far is inconsistent, and sampling is restarted from step 1.4
8. Repeat from step 2 until each proposition in P is assigned in LVM or DVM .
9. If LVM satisfies each constraint in C, LVM will be the interpretation function

of the resultant model M = 〈UM , LVM 〉.
Repeating this sampling procedure n times will yield a set of models M with

cardinality |M| = n. Crucially, while this procedure only samples one model at
a time, the probabilistic assignment of non-inferrable propositions to the Light
World in step 7 will assure that each probability Pr(φ) is approximated by the
fraction of models in M that satisfy φ, provided that M is of sufficient size.
An efficient implementation of this sampling algorithm is available as part of
dfs-tools (see Footnote 1).
2 cf. The Legend of Zelda: A Link to the Past (Nintendo, 1992).
3 While a constraint is a well-formed formula that specifies its truth-conditions relative

to the Light World (LVM), its complement specifies its falsehood-conditions relative
to the Dark World (DVM); e.g., the Light Word constraint ∀x.sleep(x) can be proven
to be violated if ∃x.sleep(x) is satisfied in the Dark World. See the appendix for a
full set of translation rules.

4 The sampling of inconsistent models strongly depends on the interdependency of
the constraints in C and can be prevented by defining C in such a way that all
combinations of propositions are explicitly handled.

A Framework for Distributional Formal Semantics 637

2.2 Formal Properties of SM×P

Compositionality. A well-defined semantic space SM×P defines the meaning
vectors for a set of individual propositions P relative to a set of logical models
M. Given that the meaning vector v(p) of a proposition p ∈ P defines its truth
values relative to M, we can define the negation ¬p as the vector that assigns 1
to all M ∈ M such that p is not satisfied in M , and 0 otherwise:

vi(¬p) = 1 iff Mi � p for 1 ≤ i ≤ |M|
The meaning of the conjunction p ∧ q, given p, q ∈ P, is defined as the vector
v(p ∧ q) that assigns 1 to all M ∈ M such that M satisfies both p and q, and 0
otherwise:

vi(p ∧ q) = 1 iff Mi � p and Mi � q for 1 ≤ i ≤ |M|
Using the negation and conjunction operators, the meaning of any other logical
combination of propositions in the semantic space can be defined, thus allow-
ing for meaning vectors representing expressions of arbitrary logical complexity.
Critically, these operations also allow for the definition of quantification. Since P
fully describes the set of propositions expressed in M, the (combined) universe
of M (UM = {u1, . . . , un}) directly derives from P. Universal quantification,
then, can be formalized as the conjunction over all entities in UM:

vi(∀xφ) = 1 iff Mi � φ[x\u1] ∧ . . . ∧ φ[x\un] for 1 ≤ i ≤ |M|
Existential quantification, in turn, is formalized as the disjunction over all enti-
ties in UM:

vi(∃xφ) = 1 iff Mi � φ[x\u1] ∨ . . . ∨ φ[x\un] for 1 ≤ i ≤ |M|
The vectors from SM×P are thus fully compositional at the propositional level.
Furthermore, in Sect. 3, we will show how sub-propositional meaning can be
constructed by incrementally mapping expressions onto vectors in SM×P .

Probability. The semantic space SM×P is inherently probabilistic, as the mean-
ing vectors for individual propositions in SM×P inherently encode their prob-
ability. Given a set of models M that reflects the probabilistic nature of the
world, the probability of p can be defined by the number of models that satisfy
p, divided by the total number of models:

P (p) = |{M ∈ M | M � p}|/|M|
Thus, propositions that are true in a large set of models will obtain a high
probability. Given the notion of compositionality discussed above, the probability
of a∧b can be defined as the probability of the conjunctive vector v(a∧b), where
a and b may be atomic propositions in P or any arbitrarily complex combination
thereof. Finally, the conditional probability of b given a is defined as:

P (b|a) = P (a ∧ b)/P (a)

638 N. J. Venhuizen et al.

Inference. As described above, the meaning of individual propositions in SM×P
is defined in terms of their co-occurrence with other propositions. As a result,
the vector representations inherently encode how propositions, and logical com-
binations thereof, are logically related to each other. Entailment, for instance, is
reflected in SM×P by means of vectors with overlapping truth values; (complex)
proposition a entails b (a � b) iff b is satisfied by all models that satisfy a. Based
on the definition of conditional probability described above, we can moreover
formalize probabilistic inference. Intuitively, a high conditional probability of b
given a would indicate that b can be inferred from a, since b is satisfied by a large
number of models that satisfy a. However, this conditional probability alone is
insufficient, as inference requires quantifying the degree to which a increases (or
decreases) the probability of b above and beyond its prior probability P (b). We
therefore adopt a score for logical inference that factors out this prior probabil-
ity [11]:

inf(b, a) =

{
P (b|a)−P (b)

1−P (b) if P (b|a) > P (b)
P (b|a)−P (b)

P (b) otherwise

This score yields a value ranging from +1 to −1, where +1 indicates that (com-
plex) proposition b is perfectly inferred from a (i.e., a entails b; a � b), whereas a
value of −1 indicates that the negation of b is perfectly inferred from a (a � ¬b).
Any inference score in between these extremes reflects probabilistic inference in
either direction. In what follows, we will employ this notion of inference in a
neural network model of incremental meaning construction.

3 Incremental Meaning Construction

The meaning space SM×P defines meaning vectors for all propositions in P, and
using the compositional operations described above, vectors can be derived for
complex logical combinations of propositions. The meaning space also naturally
captures sub-propositional meaning. That is, while vectors representing propo-
sitional meaning are binary—reflecting truth- and falsehood within models in
M—the meaning space itself is continuous, which means that it also captures
meanings that are not directly expressible as (combinations of) propositions.
We can exploit this continuous nature of SM×P to model the word-by-word,
context-dependent construction of (sentence-final) propositional meaning. That
is, the meaning of a sub-propositional expression is a real-valued vector that
defines a point in the vector space, which is positioned in between those points
that instantiate the propositional meanings that the expression pertains to. In
contrast to traditional semantic approaches, the DFS approach does not define
an operation that simply combines the sub-propositional meanings of two sub-
sequent expressions. Rather, sequences of words w1 . . . wn define a trajectory
〈v1, . . . ,vn〉 through SM×P , where each vi represents the (sub-propositional)
meaning induced by the sequence of words w1 . . . wi; that is, each word wi

induces a meaning in the context of the meaning assigned to its preceding
words w1 . . . wi−1. Sub-propositional meaning thus critically derives from the

A Framework for Distributional Formal Semantics 639

output (100 units)

hidden (70 units)

input (21 units)context (70 units)

[DFS representation]

[localist word representation]

(internal representation at t)

(internal representation at t-1)

Fig. 1. Simple Recurrent neural Network. Boxes represent groups of artificial neurons,
and solid arrows between boxes represent full projections between the neurons in a
projecting and a receiving group. The dashed lines indicate that the context layer
receives a copy of the activation pattern at the hidden layer at the previous time-step.
See text for details.

incremental, context-dependent mapping from word sequences onto (complex)
propositional meanings. One piece of machinery that is particularly good at
approximating such an incremental, context-dependent mapping is the Simple
Recurrent neural Network (SRN) [8]. Below, we describe an SRN for incremen-
tal meaning construction (cf. [22]) and show how it navigates the meaning space
on a word-by-word basis, allowing for incremental (sub-propositional) meaning
construction and inferencing.

3.1 Model Specification

We employ an SRN consisting of three groups of artificial logistic dot-product
neurons: an input layer (21 units), hidden layer (70), and output layer (100)
(see Fig. 1). Time in the model is discrete, and at each processing time-step
t, activation flows from the input through the hidden layer to the output
layer. In addition to the activation pattern at the input layer, the hidden layer
also receives its own activation pattern at time-step t − 1 as input (effectuated
through an additional context layer, which receives a copy of the activation
pattern at the hidden layer prior to feedforward propagation). The hidden
and the output layers both receive input from a bias unit (omitted in Fig. 1).
We trained the model using bounded gradient descent [19] to map sequences
of localist word representations constituting the words of a sentence, onto a
meaning vector from SM×P representing the meaning of that sentence.

The sentences on which the model is trained describe situations in a confined
world. This world is defined in terms of two persons (p ∈ {john, ellen}), two
places (x ∈ {restaurant, bar}), and two types of food (f ∈ {pizza, fries}) and

640 N. J. Venhuizen et al.

drinks (d ∈ {wine, beer}), which can be combined using the following 7 pred-
icates: enter(p,x), ask menu(p), order(p,f/d), eat(p,f), drink(p,d), pay(p) and
leave(p). The resulting set of propositions P (|P| = 26) fully describes the world.
A meaning space was constructed from these atomic propositions by sampling
a set of 10 K models M (using the sampling algorithm described in Sect. 2.1),
while taking into account world knowledge in terms of hard and probabilistic
constraints on proposition co-occurrence; for instance, a person can only enter a
single place (hard), and john prefers to drink beer over wine (probabilistic). In
order to employ meaning vectors derived from this meaning space in the SRN,
we algorithmically selected a subset M′ consisting of 100 models from M, such
that M′ adequately reflected the structure of the world (using the algorithm
described in [22]). Situations in the world were described using sentences from
a language L consisting of 21 words. The grammar of L generates a total of 124
sentences, consisting of simple (NP VP) and coordinated (NP VP and VP) sen-
tences. The sentence-initial NPs may be john, ellen, someone, or everyone, and
the VPs map onto the aforementioned propositions. The corresponding meaning
vectors for the sentences in L were derived using the compositional operations
described in Sect. 2.2 (where someone and everyone correspond to existential and
universal quantification, respectively). The model was trained on the full set of
sentences generated by L, without any frequency differences between sentences.5

Prior to training, the model’s weights were randomly initialized using a range
of (−.5,+.5). Each training item consisted of a sentence (a sequence of words
represented by localist representations) and a meaning vector representing the
sentence-final meaning. For each training item, error was backpropagated after
each word, using a zero error radius of 0.05, meaning that no error was backprop-
agated if the error on a unit fell within this radius. Training items were presented
in permuted order, and weight deltas were accumulated over epochs consisting
of all training items. At the end of each epoch, weights were updated using a
learning rate coefficient of 0.1 and a momentum coefficient of 0.9. Training lasted
for 5000 epochs, after which the mean squared error was 0.69. The overall per-
formance of the model was assessed by calculating the cosine similarity between
each sentence-final output vector and each target vector for all sentences in the
training data. All output vectors had the highest cosine similarity to their own
target (mean = .99; sd = .02), indicating that the model successfully learned
to map sentences onto their corresponding semantics. We moreover computed
how well the intended target could be inferred from the output of the model:
inf(vtarget,voutput).6 The average inference score over the entire training set was
0.88, which means that after processing a sentence, the model almost perfectly
infers the intended meaning of the sentence.

5 The specification of the world described here, including the definition of the lan-
guage L, is available as part of dfs-tools (see Footnote 1).

6 For real-valued vectors, we can calculate the probability of vector v(a) as follows:
P (a) =

∑
i vi(a)/|M|.

A Framework for Distributional Formal Semantics 641

Fig. 2. Visualization of the meaning space into three dimensions (using multidimen-
sional scaling; MDS) for a subset of the atomic propositions (those pertaining to john).
Grey points represent propositional meaning vectors. Coloured points and arrows show
the word-by-word navigational trajectory of the model for the sentences “john ordered
beer” and “john left”. See also Footnote 7. (Colour figure online)

3.2 Incremental Inferencing in DFS

On the basis of its linguistic input, the model incrementally constructs a mean-
ing vector at its output layer that captures sentence meaning; that is, the
model effectively navigates the meaning space SM×P on a word-by-word basis.
Figure 2 provides a visualization of this navigation process. This figure is a
three-dimensional representation of the 100-dimensional meaning space (for
a subset of the atomic propositions), derived using multidimensional scaling
(MDS). The grey points in this space correspond to propositional meaning vec-
tors. As this figure illustrates, meaning in SM×P is defined in terms of co-
occurrence; propositions that co-occur frequently in M (e.g., order(john,wine)
and drink(john,wine)) are positioned close to each other in space.7 The
coloured points show the model’s word-by-word output for the sentences “john
ordered beer” and “john left”. The navigational trajectory (indicated by the
arrows) illustrates how the model assigns intermediate points in meaning space
to sub-propositional expressions, and instantiates propositional meanings at

7 Multidimensional scaling from 100 into 3 dimensions necessarily results in a signif-
icant loss of information. Therefore, distances between points in the meaning space
shown in Fig. 2 should be interpreted with care.

642 N. J. Venhuizen et al.

−1.0

−0.5

0.0

0.5

1.0

john entered the restaurant and ordered wine

In
fe

re
nc

e
sc

or
e

enter(john,restaurant)
enter(john,bar)
order(john,beer)
order(john,wine)
drink(john,wine)
pay(ellen)

Word−by−word inference

Fig. 3. Word-by-word inference scores of selected propositions for the sentence “John
entered the restaurant and ordered wine” with the semantics: enter(john, restaurant)∧
order(john,wine). At a given word, a positive inference score for proposition p indi-
cates that p is positively inferred to be the case; a negative inference score indicates
that p is inferred not to be the case (see text for details). (Colour figure online)

sentence-final words. For instance, at the word “john”, the model navigates
to a point in meaning space that is in between the meanings of the proposi-
tions pertaining to john. The prior probability of propositions in SM×P (“world
knowledge”), as well as the sentences on which the model was trained (“lin-
guistic experience”) together determine the model’s trajectory through meaning
space. For instance, while the model was exposed to the sentences “john ordered
beer” and “john ordered wine” equally often, the vector for the expression “john
ordered” is closer to order(john,beer) than order(john,wine), because the former
is more probable in the model’s knowledge of the world (see [22] for an elaborate
investigation of the influence of world knowledge and linguistic experience on
meaning space navigation).

Using the inference score described in Sect. 2.2, we can moreover study what
the model ‘understands’ at each word of a sentence (i.e., inf(b, a), where b is
the vector of a proposition of interest, and a the output vector of the SRN).
Figure 3 shows the word-by-word inference scores for the sentence “john entered
the restaurant and ordered wine” with respect to 6 propositions. First of all,
this figure shows that by the end of the sentence, the model has understood
its meaning: the inference scores of enter(john,restaurant) and order(john,wine)
are both ≈ 1 at the sentence-final word. What is more, it does so on an incre-
mental basis: at the word “restaurant”, the model commits to the inference
enter(john,restaurant), which rules out enter(john,bar) since these do not co-
occur in the world (P (enter(john,restaurant) ∧ enter(john,bar)) = 0). At the
word “ordered”, the model finds itself in state that is closer to the infer-
ence that order(john,beer) than order(john,wine), as John prefers beer over
wine (P (order(john,beer)) = 0.81 > P (order(john,wine)) = 0.34). However, at
the word “wine” this inference is reversed, and the model understands that

A Framework for Distributional Formal Semantics 643

order(john,wine) is the case, and that order(john,beer) cannot be inferred. In
addition, the word “wine” also leads the model to infer drink(john,wine), even
though this proposition is not explicitly part of the semantics of the sentence.
This happens because the world stipulates that given that John ordered wine, it
is likely that he also drank it (P (drink(john,wine) | order(john,wine)) = 0.88).
Finally, no significant inferences are drawn about the unrelated proposition
pay(ellen).

4 Discussion

The DFS framework defines the meaning of a proposition p in terms of models
that satisfy it and those that do not. Hence, the framework relies on finding
a set of models M that truth-conditionally and probabilistically capture the
structure of the world with respect to a set of propositions P. Here, we focused
on how this space SM×P can be induced from a high-level description of the
structure of the world. We would like to emphasize, however, that none of the
described formal properties of the meaning space hinges upon this sampling pro-
cedure. An alternative approach towards arriving at SM×P , for instance, is to
induce it empirically from a semantically annotated corpus (e.g., [4]) or from
crowd-sourced human data on propositional co-occurrence (e.g., [23]). The only
requirements are that the resultant space SM×P is well-defined, and that it accu-
rately approximates the structure of the world in terms of hard and probabilistic
constraints on propositional co-occurrence.

DFS representations are inherently compositional at the level of proposi-
tions in that atomic propositions can be compositionally combined into complex
propositions. At the sub-propositional level, however, meaning is constructed
by incrementally navigating SM×P . Arriving at the meaning of “john ordered”
does not simply involve combining the meaning of “john” with the meaning
of “ordered”, but rather entails the context-dependent integration of the word
“ordered” into the meaning representation constructed after processing “john”
(cf. [5]). Crucially, this is possible due to the continuous nature of SM×P . Hence,
in the DFS framework, compositionality at the propositional level and incre-
mentality at the sub-propositional level interact in context-dependent meaning
construction.

The relatively simple neural network model presented here served to illustrate
the incremental meaning construction procedure. More sophisticated models,
however, instantiating earlier formulations of the DFS framework (cf. [12]), have
already highlighted various other interesting properties of the approach. For
one, while the current model was trained and tested on the same sentence-
semantics pairs, other models have shown generalization to unseen sentences
and semantics, in both comprehension [11] and production [6]. Crucially, this
semantic systematicity derives from the structure of the world as encoded by
the meaning space. Moreover, since in a comprehension model—such as the one
described here—each word serves as a contextualized cue for meaning space
navigation, a relatively simple SRN architecture (as compared to more complex

644 N. J. Venhuizen et al.

architectures such as Long Short-Term Memory, LSTM, [17] networks), suffices
for this systematicity to manifest. Secondly, other models have explored the
dynamics of meaning-space navigation using information-theoretic notions such
as surprisal and entropy [13,22].

In DFS, there are two levels at which semantic phenomena can be modeled:
the level of the meaning space SM×P , and the mapping from words onto points
within this meaning space. Starting with the meaning space itself, one could
explore different schemes for encoding the atomic propositions, for instance to
explicitly capture tense and aspect, or Davidsonian event semantics. Moreover,
by varying temporally-dependent proposition co-occurrence within and across
models, we obtain different encodings of time within SM×P (see [22] for a within-
model approach). At the level of the mapping between words and points in SM×P
space, in turn, the DFS framework allows for different ways to capture discourse-
level phenomena, such as modality, reference, information structure, and implica-
ture. Crucially, the fact that inference directly follows from incremental semantic
meaning construction circumvents the need for a separate pragmatic inference
mechanism. This thus blurs the strict line between semantics and pragmatics,
thereby directly implementing recent theorizing in formal semantics [21].

While the DFS framework combines formal and distributional approaches to
meaning, we take the framework to be complementary to lexically-driven distri-
butional semantics (e.g., LSA; [18]). In DFS, the ‘representational currency’ is
propositions, whereas in distributional semantics it is words. As a result, DFS
allows us to model similarity at the propositional level (e.g., order(john, beer) is
similar to drink(john, beer) as they co-occur in M), while distributional seman-
tics models lexical similarity (“beer” is similar to “wine” as they occur in simi-
lar linguistic contexts; e.g., [9]). Crucially, the DFS approach and distributional
semantics thus capture different notions of semantic similarity: while the lat-
ter offers representations that inherently encode feature-based lexical similar-
ity between words, the former provides representations instantiating the truth-
conditional similarity between propositions. The complementary nature of these
meaning representations is underlined by recent advances in the neurocognition
of language, where evidence suggests that lexical retrieval (the mapping of words
onto lexical semantics) and semantic integration (the integration of word mean-
ing into the unfolding representation of propositional meaning) are two distinct
processes involved in word-by-word sentence processing [5]. Crucially, this per-
spective on language comprehension suggests that compositionality is only at
play at the level of propositions, thus eschewing the need for compositionality
at the lexical level.

5 Conclusion

The DFS framework offers a novel approach to distributional semantics, by defin-
ing the meaning of propositions distributionally over a set of formal models. As
a consequence, the approach inherits the entire apparatus of (first-order) logic
that powers formal semantics, while offering contextualized and probabilistic

A Framework for Distributional Formal Semantics 645

distributed meaning representations similar to distributional semantics. Cru-
cially, the meaning representations differ from those from distributional seman-
tics in that they offer probabilistic information that reflects the state of the
world, rather than linguistic co-occurrence, thereby offering a complementary
perspective on meaning representation. To illustrate the approach, we have
shown how the DFS meaning space can be derived from a high-level specifi-
cation of the world, and how it naturally captures well-known concepts from
formal semantics, such as compositionality and entailment. Moreover, when
employed in an incremental model of meaning construction, it naturally captures
sub-propositional meaning and inferencing. As such, we believe that the DFS
framework—implemented by dfs-tools—offers a powerful synergy between for-
mal and distributional approaches that paves the way towards novel investiga-
tions into formal meaning representation and construction.

Appendix

The complement of any well-formed formula is found by recursively applying the
following translations, where φ′ is the complement of φ:

¬φ �→ ¬φ′ φ � ψ �→ (φ′ ∧ ψ′) ∨ (¬φ′ ∧ ¬ψ′) ∃x.φ �→ ∀x.φ′

φ ∧ ψ �→ φ′ ∨ ψ′ φ → ψ �→ ¬φ′ ∨ ψ′ ∀x.φ �→ ∃x.φ′

φ ∨ ψ �→ φ′ ∧ ψ′ φ ↔ ψ �→ (¬φ′ ∧ ψ′) ∨ (φ′ ∧ ¬ψ′) p �→ p

References

1. Baroni, M., Bernardi, R., Zamparelli, R.: Frege in space: a program of composi-
tional distributional semantics. Linguist. Issues Lang. Technol. (LiLT) 9, 241–346
(2014)

2. Baroni, M., Zamparelli, R.: Nouns are vectors, adjectives are matrices: representing
adjective-noun constructions in semantic space. In: Proceedings of the 2010 Con-
ference on Empirical Methods in Natural Language Processing, pp. 1183–1193.
Association for Computational Linguistics (2010)

3. Boleda, G., Herbelot, A.: Formal distributional semantics: introduction to the spe-
cial issue. Comput. Linguist. 42(4), 619–635 (2016)

4. Bos, J., Basile, V., Evang, K., Venhuizen, N.J., Bjerva, J.: The Groningen Meaning
Bank. In: Ide, N., Pustejovsky, J. (eds.) Handbook of Linguistic Annotation, pp.
463–496. Springer, Dordrecht (2017). https://doi.org/10.1007/978-94-024-0881-
2 18

5. Brouwer, H., Crocker, M.W., Venhuizen, N.J., Hoeks, J.C.J.: A neurocomputa-
tional model of the N400 and the P600 in language processing. Cogn. Sci. 41,
1318–1352 (2017). https://doi.org/10.1111/cogs.12461

6. Calvillo, J., Brouwer, H., Crocker, M.W.: Connectionist semantic systematicity in
language production. In: Papafragou, A., Grodner, D., Mirman, D., Trueswell, J.C.
(eds.) Proceedings of the 38th Annual Conference of the Cognitive Science Society,
Austin, TX, pp. 2555–3560 (2016)

7. Coecke, M.S.B., Clark, S.: Mathematical foundations for a compositional dis-
tributed model of meaning. In: Lambek Festschrift, Linguistic Analysis, vol. 36
(2010)

https://doi.org/10.1007/978-94-024-0881-2_18
https://doi.org/10.1007/978-94-024-0881-2_18
https://doi.org/10.1111/cogs.12461

646 N. J. Venhuizen et al.

8. Elman, J.L.: Finding structure in time. Cogn. Sci. 14(2), 179–211 (1990)
9. Erk, K.: What do you know about an alligator when you know the company it

keeps? Semant. Pragmat. 9(17), 1–63 (2016). https://doi.org/10.3765/sp.9.17
10. Firth, J.R.: A synopsis of linguistic theory, 1930–1955. In: Studies in linguistic

analysis. Philological Society, Oxford (1957)
11. Frank, S.L., Haselager, W.F.G., van Rooij, I.: Connectionist semantic systematic-

ity. Cognition 110(3), 358–379 (2009)
12. Frank, S.L., Koppen, M., Noordman, L.G.M., Vonk, W.: Modeling knowledge-

based inferences in story comprehension. Cogn. Sci. 27(6), 875–910 (2003)
13. Frank, S.L., Vigliocco, G.: Sentence comprehension as mental simulation: an

information-theoretic perspective. Information 2(4), 672–696 (2011)
14. Frege, G.: Über Sinn und Bedeutung. Zeitschrift für Philosophie und philosophische

Kritik 100, 25–50 (1892)
15. Golden, R.M., Rumelhart, D.E.: A parallel distributed processing model of story

comprehension and recall. Discourse Process. 16(3), 203–237 (1993)
16. Grefenstette, E., Sadrzadeh, M.: Experimental support for a categorical compo-

sitional distributional model of meaning. In: Proceedings of the Conference on
Empirical Methods in Natural Language Processing, pp. 1394–1404. Association
for Computational Linguistics (2011)

17. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

18. Landauer, T.K., Dumais, S.T.: A solution to Plato’s problem: the latent semantic
analysis theory of acquisition, induction, and representation of knowledge. Psychol.
Rev. 104(2), 211–240 (1997)

19. Rohde, D.L.T.: A connectionist model of sentence comprehension and production.
Ph.D. thesis, Carnegie Mellon University (2002)

20. Socher, R., Huval, B., Manning, C.D., Ng, A.Y.: Semantic compositionality
through recursive matrix-vector spaces. In: Proceedings of the 2012 Joint Confer-
ence on Empirical Methods in Natural Language Processing and Computational
Natural Language Learning, pp. 1201–1211. Association for Computational Lin-
guistics (2012)

21. Venhuizen, N.J., Bos, J., Hendriks, P., Brouwer, H.: Discourse semantics with infor-
mation structure. J. Semant. 35(1), 127–169 (2018). https://doi.org/10.1093/jos/
ffx017

22. Venhuizen, N.J., Crocker, M.W., Brouwer, H.: Expectation-based comprehension:
modeling the interaction of world knowledge and linguistic experience. Discourse
Process. 56(3), 229–255 (2019). https://doi.org/10.1080/0163853X.2018.1448677

23. Wanzare, L.D., Zarcone, A., Thater, S., Pinkal, M.: DeScript: a crowdsourced cor-
pus for the acquisition of high-quality script knowledge. In: The International Con-
ference on Language Resources and Evaluation (2016)

https://doi.org/10.3765/sp.9.17
https://doi.org/10.1093/jos/ffx017
https://doi.org/10.1093/jos/ffx017
https://doi.org/10.1080/0163853X.2018.1448677

Weak Conservativity

Richard Zuber(B)

CNRS, Laboratoire de Linguistique Formelle, Paris, France
Richard.Zuber@linguist.univ-paris-diderot.fr

Abstract. This paper focuses on formal properties of functions satis-
fying a weak conservativity, a generalisation of classical conservativity,
a well known constraint on the denotations of unary determiners. Infor-
mally, classically conservative determiners are determiners which are con-
servative “on the right” whereas weakly conservative determiners can be
conservative “on the right” or “on the left”. These notions are made
precise and it is shown in particular that the constraint of weak con-
servativity remains a very strong constraint excluding most type 〈1, 1〉
functions and that the Boolean closure of weakly conservative functions
equals the set of all type 〈1, 1〉 functions.

1 Introduction

A by now well-known and often discussed semantic universal has to do with
restrictions on the denotations of determiners: all determiners denote functions
which are restricted by the property of conservativity or, less formally, all deter-
miners are conservative. In terms of categorial grammar, determiners are func-
tional expressions which take common nouns (CNs) as arguments and form
expressions which can play the role of verbal arguments.

We will be interested mainly in unary determiners, that is determiners which
take one CN as argument and verbal arguments we will take into account are
subject noun phrases (NPs). Of course NPs can also occur in other grammatical
positions, in particular in the direct object position but exact study of deter-
miners in non-subject positions necessitates some additional definitions.

Determiners in the subject position denote binary relations between sets,
sub-sets of a given universe, and conservativity is a specific constraint on such
relations.

We will thus analyse formal properties of denotations of subject determiners
that is determiners Det as they occur in sentences of the form given in (1), where
VP is a verb phrase:

(1) Det CN VP

Given the syntactic status of Det in (1) and supposing that CNs and VPs
denote sets, one can consider that unary determiners denote functions taking
two sets as arguments and giving a truth value as result. Conservativity is a
constraint on such functions. Classically this constraint is formulated as in D1:

Thanks to Ed Keenan for various suggestions.

c© Springer-Verlag GmbH Germany, part of Springer Nature 2019
R. Iemhoff et al. (Eds.): WoLLIC 2019, LNCS 11541, pp. 647–660, 2019.
https://doi.org/10.1007/978-3-662-59533-6_40

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-59533-6_40&domain=pdf
https://doi.org/10.1007/978-3-662-59533-6_40

648 R. Zuber

Definition 1. Let F be a function taking two sets as arguments and giving a
truth value as result. Then F is conservative iff the following holds: F (X)(Y) =
F (X)(X ∩ Y), for any set X and Y .

We will call conservativity as formulated in D1 classical conservativity.
The conservativity universal is the claim that natural language determiners

denote conservative functions (Barwise and Cooper 1981, Keenan and Faltz 1985,
Keenan and Stavi 1986, Keenan and Westerst̊ahl 1997, von Fintel and Keenan
2018).

Recall that the conservativity constraint is a very strong constraint. It can be
shown (cf. Keenan and Stavi 1986, Thijsse 1984) that if the universe considered
has n elements then the cardinality of all functions of the same type as F in
D1 is 2m for m = 4n whereas the cardinality of conservative functions is 2k, for
k = 3n. So in the universe with just 2 elements there are 216 = 65.536 functions
unrestricted by conservativity and only 29 = 512 conservative functions. Thus
conservativity excludes a great majority of functions as possible denotations for
unary natural language determiners.

Recent research in the semantics of NLs shows that the classical conservativ-
ity is a too strong constraint since there are expressions which can play the role
of determiners and which do not denote classically conservative functions (see
Zuber and Keenan forthcoming, and various papers cited there). In particular
there are empirical reasons to consider that items like only, mostly, at most,
at least, even, also etc. can form NPs such as only students, at most liberals,
at least monks, mostly linguists, also students, even Japanese and consequently
these items can play the role of unary determiners. As one can check, and this
will be done below for some of them, functions denoted by these items are not
classically conservative.

It follows from the above that the conservativity constraint should be weak-
ened to weak conservativity in order to account for various counter-examples
to classical conservativity. Such a weakened version of the constraint is justi-
fied in Zuber and Keenan, forthcoming. In this paper we analyse various formal
properties of functions constrained by weak conservativity and illustrate them
occasionally by various examples.

2 Classical Conservativity

We will consider binary relations and functions over a universe E. The set {0, 1}
is the Boolean algebra of truth values. If A is a set then ℘(A) is the power set
of A that is the set of all subsets of A. Type 〈1〉 quantifiers are functions from
℘(E) onto {0, 1}. They are denotation of NPs in the subject position. Type 〈1, 1〉
quantifiers are functions from ℘(E) to type 〈1〉 quantifiers. They are denoted by
unary determiners we are interested in. The set of all type 〈1, 1〉 functions that is
the set of unrestricted type 〈1, 1〉 quantifiers will be denoted by URDET . This
set forms an atomic Boolean algebra with Boolean operations defined pointwise.

Let F be an element of URDET . Then ¬F , the negation (or Boolean com-
plement) of F and F¬, the post-negation of F , are defined as follows:

Weak Conservativity 649

Definition 2. (i) Let F be an element of URDET . Then ¬F is that element
of URDET for which ¬F (X)(Y) = 1 iff F (X)(Y) = 0.
(ii) F¬ is that element of URDET for which F¬(X)(Y) = 1 iff F (X)(Y ′) = 1,
where Y ′ is the Boolean complement of Y .

Conservativity is a property of some functions belonging to URDET . In
addition to definition D1 (classical) conservativity can be equivalently defined
in two other ways. Keenan and Faltz (1985) indicate that conservativity can be
equivalently defined as in Fact 1. Finally, using simple set-theoretical properties
one can show that D1 and Fact 1 are equivalent to Fact 2 (Zuber 2005):

Fact 1. F is conservative iff F (X)(Y) = F (X)(Z) whenever X ∩ Y = X ∩ Z.

Fact 2. F is conservative iff F (X)(Y) = F (X)(X ′ ∪ Y), where X ′ is the
Boolean complement of X.

Facts 1 and 2 provide equivalent statements of classical conservativity often use-
ful in establishing that one or another function is (classically) conservative.

As an illustration we show that the function MOST given in (2), denoted
by the determiner most, is conservative:

(2) MOST (X)(Y) = 1 iff |X ∩ Y | > |X ∩ Y ′|.
We show that MOST (X)(Y) = MOST (X)(X ∩ Y). We have: MOST (X)(X ∩
Y) = 1 iff |X ∩ X ∩ Y | > |X ∩ (X ∩ Y)′| iff |X ∩ Y | > |X ∩ (X ′ ∪ Y ′)| iff
|X ∩ Y | > |X ∩ Y ′|.

The set of classically conservative functions forms a Boolean algebra, a sub-
algebra of URDET , which will be noted CONS2. For this reason we will also
sometimes refer to members of CONS2, that is to classically conservative func-
tions, as cons2 functions.

The operation of Boolean complementation and of post-negation preserve
cons2. That is we have:

Fact 3. (i) F ∈ CONS2 iff ¬F ∈ CONS2, for any F ∈ URDET .
(ii) F ∈ CONS2 iff F¬ ∈ CONS2, for any F ∈ URDET .

The algebra CONS2 has two important sub-algebras, the algebra INT of
intersective functions, and the algebra CO-INT of co-intersective functions. By
definition (cf. Keenan 1993):

Definition 3. F ∈ INT , iff for all properties X, Y , Z and W , if X∩Y = Z∩W
then F (X)(Y) = F (Z)(W).

Definition 4. F ∈ CO-INT iff for all properties X, Y , Z and W , if X ∩ Y ′ =
Z ∩ W ′ then F (X)(Y) = F (Z)(W).

One can check that numerals (considered as determiners) and the determiners
no and some denote intersective functions. Similarly, the determiner every (but
not most) and the determiner every...but Dan, as it occurs in (3), denote co-
intersective, and thus cons2, functions. The function denoted by every... but
Dan is given in (4):

650 R. Zuber

(3) Every student but Dan is dancing.

(4) F (X)(Y) = 1 iff X ∩ Y ′ = {d}, where d is the referent of Dan.

Both sets, INT and CO-INT form atomic (and complete) Boolean alge-
bras. Their atoms (and also their co-atoms, Boolean complements of atoms)
are determined by a set (Keenan 1993): for any set P the function FP such
that FP (X)(Y) = 1 iff X ∩ Y = P is an atom of INT and the function GP

such that GP (X)(Y) = 1 iff X ∩ Y ′ = P is an atom of CO-INT . For instance
exclusion determiners denote such atomic functions: no...except Leo and Lea
denotes an atom of the algebra of intersective function determined by the set
composed of two elements, Leo and Lea. More importantly, the quantifier ALL is
an atom of the algebra CO-INT determined by the empty set: ALL(X)(Y) = 1
iff X ∩ Y ′ = ∅. Similarly, the quantifier NO is the atom of the algebra INT
determined by the empty set: NO(X)(Y) = 1 iff X ∩ Y = ∅. Consequently,
the quantifier SOME is the co-atom of INT determined by the empty set:
SOME(X)(Y) = 1 iff X ∩ Y �= ∅.

It follows from D3 and D4 that elements of INT and of CO-INT have in
particular the following properties (Zuber 2005):

Fact 4. The following three conditions are equivalent: (i) F ∈ INT , (ii)
F (X)(Y) = F (X ∩ Y)(X ∩ Y), (iii) F (X)(Y) = F (E)(X ∩ Y)

Fact 5. The following four conditions are equivalent: (i) F ∈ CO-INT , (ii)
F (X)(Y) = F (X −Y)(X ′ ∪Y), (iii) F (X)(Y) = F (X ∩Y)(∅), (iv) F (X)(Y) =
F (E)(X ′ ∪ Y)

Let us use Fact 5(iv) to show that the function denoted by the determiner
every... but Dan and given in (4), is co-intersecttve: F (E)(X ′ ∪ Y) = 1 iff
E ∩ (X ′ ∪ Y)′ = {d} iff E ∩ (X ∩ Y ′) = {d} iff X ∩ Y ′ = {d}.

The operation of post-negation relates intersective and co-intersective func-
tions in the following way:

Fact 6. F ∈ INT iff F¬ ∈ CO-INT and F ∈ CO-INT iff F¬ ∈ INT , for
any F of type 〈1, 1〉.

The Boolean algebras INT and CO-INT are important because of the fol-
lowing theorem (Keenan 1993):

Theorem 1. The Boolean closure of INT ∪ CO-INT = CONS2.

The theorem says that the full set of functions constructible from intersective
or co-intersective by forming meets, joins and complements equals precisely the
set of cons2 functions.

According to the Theorem 1, one can characterise classically conservative
functions in terms of much smaller sets of functions. For indeed, given the defi-
nitions of atoms of INT and CO-INT given above, if the domain |E| = n then
|INT | = |CO-INT | = 2m, for m = 2n. Hence, when |E| = 2 there are 16 inter-
sective and 16 co-intersective functions whereas in this case, as we have seen,
there are 512 conservative functions.

Weak Conservativity 651

It follows from Theorem 1 in particular that there are conservative functions
which are Boolean combinations of intersective and co-intersective functions but
which are neither intersective nor co-intersective. As an example consider the
denotation of the determiner some but not all given in (5):

(5) F (X)(Y) = SOME(X)(Y) ∧ ¬ALL(X)(Y).

Clearly, F is a Boolean combination of an intersective and a co-intersective
function. To show that F is neither intersective nor co-intersective consider the
values of X and Y that satisfy the following conditions: (i) X �= ∅, (ii) X �= Y ,
and (ii) Y ⊆ X. When all these conditions hold then F (X)(Y) = 1. However, in
this case F (X ∩ Y)(X ∩ Y) = 0 and thus, given Fact 4(ii), F is not intersective.
Similarly, in this situation F (X ∩Y ′)(∅) = 0 and thus, given Fact 5(iii), F is not
co-intersective.

Consider now the determiner all interpreted with the existential import that
is when it denotes the function ALLei given in (6a). This function can be equiv-
alently represented as in (6b) and thus ALLei is a Boolean combination of the
intersective function SOME and the co-intersective function ALL:

(6) a. ALLei(X)(Y) = 1 iff X �= ∅ and X ⊆ Y .
b. ALLei = SOME ∧ ALL.

The classically conservative function in (5) is a meet of two co-atoms (i.e.
Boolean complements of atoms): SOME is a Boolean complement of NO and
¬ALL is a Boolean complement of ALL. In (6b) we have a meet of a co-atom
of INT and of an atom of CO-INT .

An important class of classically conservative determiners which are neither
intersective no co-intersective is given by proportional determiners:

Definition 5. A type 〈1, 1〉 function F is proportional iff F (X)(Y) = F (W)(Z)
whenever |X ∩ Y |/|X| = |W ∩ Z|/|W |, for X �= ∅ and W �= ∅.

The quantifier MOST is proportional and it is a Boolean combination of
intersective and co-intersective functions as indicated in (7):

(7) MOST =
⋃

B∈MAJ(A)(FB ∧ HA∩B′), where A,B ⊆ E, MAJ(X) = {Y : Y ⊆
X ∧ 2 × |Y | > |X|}, FB(X)(Y) = 1 iff X ∩ Y = B and HA∩B′(X)(Y) = 1 iff
X ∩ Y ′ = A ∩ B′.

Determiners such as 10% of... and at least half of... also denote proportional
type 〈1, 1〉 functions.

3 Weakly Conservative Determiners

As indicated above recent research on the semantics of determiners shows that
NLs have many determiners which are not classically conservative. There are
various sub-classes of such determiners. Let me mention first two classes of pos-
sibly non -conservative determiners, which strictly speaking will not be discussed
in this paper given their specificity.

652 R. Zuber

The first class concerns vague determiners. Westerst̊ahl (1985) observes that
many (and few) in addition to generally accepted cardinal and proportional read-
ings also have a proportional reversed reading which is not expressed by a clas-
sically conservative function. The cardinal reading of many CMANY is defined
as CMANY (A)(B) = 1 iff the set A∩B is, roughly speaking, large. The propor-
tional reading of many corresponds to the function PMANY (A)(B) = 1 iff the
set A∩B is large compared to the set A. Westerst̊ahl (1985) considers that many
taken in the reversed proportional reading corresponds to RPMANY (A)(B)
such that RPMANY (A)(B) = 1 iff the set A ∩ B is large compared to the
set B. It is easy to see that CMANY and PMANY are classically conserva-
tive whereas RPMANY is not classically conservative beacause A ∩ B can be
large compared to B but A ∩ B is never large compared to itself. The function
RPMANY is cons1 because A ∩ A ∩ B = A ∩ B.

The counter-example to classical conservativity based on many and few is
special because it is not clear to what extent formal definition of cons2 should
apply to them. The semantics for possible readings of many presented above
has been challenged in Cohen 2001. In addition one cannot exclude that this
vagueness may involve intensionality (cf. Bastiaanse 2014) and in principle con-
servativity is restricted to extensional determiners.

Another problematic case of classical conservativity is discussed in Yi (2016).
He notices that (8a) and (8b) have different truth values in a situation in which
among four boys surrounding Bo three are funny and these three are not sur-
rounding Bo (these three are not enough to surround):

(8) a. Most of the boys surrounding Bo are funny.
b. Most of the boys surrounding Bo are funny boys surrounding Bo.

Consequently, concludes Yi, the compound determiner most of the should be con-
sidered as denoting a function which is not classically conservative. We notice,
without further discussion that this determiner has as arguments collective pred-
icates which do not denote sets.

Let us see now some more “natural” counter-examples do conservativity.
One of early such examples is the determiner mostly mentioned in Jensen 1987.
The function denoted by this determiner is given in Zuber (2004): the function
MOSTLY defined in (9) as the inverse of MOST . This function is denoted by
the determiner mostly as it occurs in (10) since (10) has plausibly the same truth
conditions as (11):

(9) MOSTLY (X)(Y) = MOST (Y)(X) = |X ∩ Y | > |X ′ ∩ Y |
(10) Mostly monks are vegetarians.

(11) Most vegetarians are monks.

Examples in (12) and (13) show that mostly can be used as a determiner:

(12) Some teachers but mostly students danced.

(13) There are mostly freshmen in that course.

Weak Conservativity 653

Conservativity defined in the previous section (cons2) can be said to be “con-
servativity with respect to the second argument” or “conservativity on the right”
of a type 〈1, 1〉 function. This is because conservativity thus defined permits a
restriction of the second argument (the argument “on the right”) of the function
to its intersection with the first argument. For this reason we call the set of
classically conservative functions CONS2.

In our discussion of weak conservativity, an essential role will be played by
“conservativity with respect to the first argument” or “conservativity on the
left” (cons1, for short). The set of functions conservative on the left will be
noted CONS1. It is defined as follows:

Definition 6. A type 〈1, 1〉 function F ∈ CONS1 (or F is cons1) iff F (X)(Y)
= F (X ∩ Y)(Y).

For functions which are cons1 the following is true (cf. Zuber 2005):

Fact 7. F ∈ CONS1 iff F (X)(Z) = F (Y)(Z) whenever X ∩ Z = Y ∩ Z.

Fact 8. F ∈ CONS1 iff F (X)(Z) = F (X ∪ Z ′)(Z).

There is an interesting relation between cons1 and cons2 functions: they are
related by the relation of inversion of their arguments. Consider the bijection i,
called inversion, from URDET to URDET defined as follows (Zuber 2005):

Definition 7. Let F ∈ URDET . Then, by definition F i(X)(Y) = F (Y)(X).

The following proposition indicates the relation between CONS1 and
CONS2:

Proposition 1. (CONS1)i = CONS2 and (CONS2)i = CONS1, where for
any K ⊆ URDET , Ki = {F i : F ∈ K}.
Proof. We prove only the first equality. Suppose that F ∈ CONS1 and let G =
F i and X ∩ Y = X ∩ Z Then G(X)(Y) = F (Y)(X) and G(X)(Z) = F (Z)(X).
This means, given Fact 7, that F (Y)(X) = F (Z)(X) and thus G(X)(Y) =
G(X)(Z). Hence, given Fact 1, G ∈ CONS2 ��

Given definition D3 of intersective functions and Proposition 1 one can see
that if F is an intersective function then F i is also intersective. Consequently, the
algebra INT is also a sub-algebra of CONS1 and thus any intersective function
is also cons1. In other words we have:

Proposition 2. CONS1 ∩ CONS2 = INT .

Thus functions which are cons1 and cons2 are precisely intersective functions.
This means that denotations of numerals (considered as determiners) and the
quantifiers NO and SOME are cons1 and also cons2.

Clearly CONS1 forms a Boolean algebra. Moreover we have:

Proposition 3. CONS1 is an atomic Boolean algebra. Its atoms are functions
hA,B for A ⊆ B such that hA,B(X)(Y) = 1 iff X ∩ Y = A and Y = B.

654 R. Zuber

The algebra CONS1 has also a sub-algebra of (classically) non-conservative
functions called CO-INT1. By definition:

Definition 8. F ∈ CO-INT1 iff if X ′
1 ∩ Y1 = X ′

2 ∩ Y2 then F (X1)(Y1) =
F (X2)(Y2)

Clearly CO-INT1 = (CO-INT)i. Thus atoms of CO-INT1 are, for any
A ⊆ E, functions FA such that FA(X)(Y) = 1 iff X ′ ∩ Y = A. By analogy with
Fact 5 we have for functions belonging to CO-INT1 the following property:

Fact 9. F ∈ CO-INT1 iff F (X)(Y) = F (∅)(X ′ ∩ Y).

It is not surprising that algebra CONS1 has a similar characterisation to
algebra CONS2:

Theorem 2. The Boolean closure of INT ∪ CO-INT1 equals CONS1.

Proof. The proof of Theorem2 uses the fact that any atom of CONS1 can be
represented as a meet of an atom of INT and of an atom of CO-INT1. Indeed
the following equality holds: hA,B = fA ∧ gB−A, where hA,B is the atom of
CONS1, for A ⊆ B, fA is the atom of INT and GB−A is the atom of CO−INT1,
that is gB−A(X)(Y) = 1 iff B − A = Y ∩ X ′. From this Theorem 2 follows since
CONS1 is an atomic and complete Boolean algebra and any element of such an
algebra is a join of some atoms of the algebra. ��

A special class of cons1 functions (which are not cons2) is obtained from
intersective functions by replacing their first argument by its complement. More
precisely we have:

Proposition 4. Let G ∈ INT . Then the function F (X)(Y) = G(X ′)(Y) is
cons1 but not cons2.

Proof. Indeed, in this case, given Fact 3(iii), we have F (X)(Y) = G(X ′)(Y) =
G(E)(X ′ ∩ Y) and F (X ∩ Y)(Y) = G(E)((X ∩ Y)′ ∩ Y) = G(E)(X ′ ∩ Y).
Thus F is cons1. Similarly, F (X)(X ∩ Y) = G(X ′)(X ∩ Y) = G(E)(∅). Thus
F (X)(X ∩ Y) is constant whereas F (X)(Y) is not. Hence F is not cons2. ��

In fact cons1 functions indicated in Proposition 4 are functions belonging to
CO-INT1. Using Fact 4(iii) and Fact 9 we prove the following proposition:

Proposition 5. Let F,G ∈ URDET and G(X)(Y) = F (X ′)(Y), for any
X,Y ⊆ E. Then F ∈ INT iff G ∈ CO-INT1.

Proof. Suppose first that F ∈ INT . Then, by definition, G(X)(Y) = F (X ′)(Y).
Hence, given Fact 4(iii), G(X)(Y) = F (E)(X ′ ∩ Y) and thus G(X)(Y) =
G(∅)(X ′ ∩ Y) which means, given Fact 9, that G ∈ CO-INT1.

Suppose now that G ∈ CO-INT1. Then, by definition, F (X)(Y) =
G(X ′)(Y). Hence, given Fact 9, F (X)(Y) = G(∅)(X ′ ∩ Y) and, thus, by defi-
nition F (X)(Y) = F (E)(X ∩ Y). It follows from this and from Fact 4(iii) that
F is intersective. ��

Weak Conservativity 655

It follows from Proposition 5 that for any n the function F (X)(Y) =
n(X ′)(Y), where n(X)(Y) = 1 iff |X ∩ Y | ≥ n, is cons1 but not cons2. Sim-
ilarly functions NONNO(X)(Y) = NO(X ′)(Y) and NONSOME(X)(Y) =
SOME(X ′)(Y) are cons1 but not cons2.

Functions which are cons1 or cons2 will be called weakly conservative:

Definition 9. WCONS = CONS1 ∪ CONS2.

The proposal defended in Zuber and Keenan, forthcoming, concerning NL
determiners is the following weak conservativity universal WCU:

WCU: All unary subject determiners denote weakly conservative functions.

It does not follow from the WCU that all weakly conservative functions are
expressible by some determiners in English, even over a finite domain. Very likely
functions indicated in Proposition 5 are functions which are not expressible by
NL determiners. This fact contrasts with the claim of Keenan and Stavi 1986 who
show that over a finite domain E for each functions F which is cons2, one can
construct a (sometimes very tedious) determiner that can be interpreted as F .

Weak conservativity remains a very strong constraint and most of type 〈1, 1〉
functions, that is most of elements of URDET , are not weakly conservative. As
shown in Zuber and Keenan, forthcoming, in a model with |E| = 2 there are,
as noted in the introduction, 65.526 (unrestricted) type 〈1, 1〉 functions of which
2× 512− 24 = 1024− 16 are weakly conservative (and 512 of these functions are
classically conservative).

Of course any classically conservative function is weakly conservative. Func-
tions indicated in Proposition 4 are weakly conservative. Let us see now some
examples of weakly conservative and denotable functions.

The function MOSTLY is not conservative because MOSTLY (X)(Y) = 1
iff |X ∩ Y | > |X ′ ∩ Y | and MOSTLY (X)(X ∩ Y) = 1 iff |X ∩ Y | > 0. It is,
however, weakly conservative since MOST is conservative.

The determiner only (understood with the existential import) is a well-known
example of a determiner which denotes a classically non-conservative function
ONLYei given in (14):

(14) ONLYei(X)(Y) = 1 iff Y �= ∅ ∧ (Y ⊆ X)

Usually, one shows that this function is not classically conservative by pointing
out that F (X)(X ∩ Y) is true for any X,Y ⊆ E, whereas F (X)(Y) is not
constant. Another way to see that ONLYei is not cons2 is to notice that ONLYei

is the inverse of ALLei and ALLei /∈ INT . This observation also indicates that
ONLYei is cons1 because ALLei is classically conservative.

As indicated above expressions at most and at least can also be used as
determiners. In this case at most is interpreted by ATM given in (15) and at
least (without the existential import) is interpreted by ATL given in (16):

(15) ATM(X)(Y) = 1 iff (Y ⊆ X) ∨ (X ∩ Y = ∅)

656 R. Zuber

(16) ATL(X)(Y) = 1 iff (Y ⊆ X) ∨ (SOME(X)(Y) ∧ SOME(X ′)(Y))

Notice that function ATM is an atom of CO-INT1: this is the function
FA, where A = ∅, such that F (X)(Y) = 1 iff X ′ ∩ Y = ∅. Thus, given Proposi-
tion 3 and Fact 9, ATM is not classically conservative but is weakly conservative.
Similarly, ATL is cons1.

The particle also used as a determiner and in this case it denoted the function
ALSO given in (17):

(17) ALSO(X)(Y) = SOME(X)(Y) ∧ SOME(X ′)(Y)

Function ALSO is not classically conservative: when X∩Y �= ∅ and X ′∩Y �=
∅ then ALSO(X)(Y) = 1 and ALSO(X)(X ∩ Y) = 0. This function is, however,
weakly conservative: ALSO(X ∩ Y)(Y) = 1 iff SOME(X)(Y) ∧ SOME((X ∩
Y)′)(Y) = 1 iff ALSO(X)(Y) = 1.

The four classically non-conservative determiners discussed above, mostly,
at most, at least and also, clearly also have non-determiner use. In particular
they can be used in an adverbial position or as modifiers of numerals. What is
important, however, is the fact that they also can be used as determiners, since
the result of their application to common nouns is like that of an “ordinary” NP.
In particular it can be Booleanly combined with other NPs in which classically
conservative determiners occur.

Finally, as observed in Sauerland (2015) many proportional determiners
expressing percentage and fractions have non-conservative interpretation, in par-
ticular when they occur in the direct object position and without the definite
article. Consider (18a) and (18b) (cf. Zuber and Keenan, forthcoming):

(18) a. The company hired fifty percent of the woman (last year)
b. The company fired fifty percent woman (last year)

Though we need to define conservativity of determiners occurring in the
object position, informally the determiner fifty percent of the behaves conserva-
tively: it says that, roughly, half of the woman have the property of being hired
by the company. Sentence (18b) says something different. It says that half of
the people that the company hired were women and this interpretation is not
classically conservative (see Zuber and Keenan, forthcoming for more details).

4 Formal Properties

We have already seen various properties of some weakly conservative functions.
In this section we indicate some other, more general properties.

The function ATM discussed above can be used to show one of differences
between the classical and the weak conservativity:

Proposition 6. WCONS is not closed with respect to post-negation.

Weak Conservativity 657

Proof. ATM¬ is not cons2 because ATM is not cons2 and, as one can easily
check, post-negation preserves conservativity. To show that ATM¬ is not cons1
we have, given the definition of post-negation and Fact 9, ATM¬(X ∩ Y)(Y) =
ATM(X ∩ Y)(Y ′) = ATM(∅)(Y ′). This means, given (11), that ATM¬(X ∩
Y)(Y) is always false. But ATM¬(X)(Y) is not constant. Hence ATM¬ is not
weakly conservative. ��

In fact it is the set CONS1 which is not closed under the post-negation. This
set is closed under the right argument restriction in the following sense:

Definition 10. Let h be a restrictive function on sets (that is h(X) ≤ X, for
any set X) and let F ∈ URDET . Then Fh, the right argument restriction of F
by h, is that element of URDET for which Fh(X)(Y) = F (X)(h(Y)).

The following proposition is true:

Proposition 7. CONS1 is closed under right argument restrictions.

Proof. Let F ∈ CONS1 and h be a restrictive function. Then Fh(X)(Y) =
F (X)(h(Y)) = F (X ∩ h(Y))(h(Y)) and Fh(X ∩ Y)(Y) = F (X ∩ Y)(h(Y)) =
F (X ∩ Y ∩ h(Y))(h(Y)). Since Y ∩ h(Y) = h(Y), we have that Fh(X)(Y) =
Fh(X ∩ Y)(Y) which means that Fh ∈ CONS1. ��

Following Proposition 7 sentences (19) and (20) are logically equivalent:

(19) Only students were dancing in the park.

(20) Only students who were dancing in the park were dancing in the park.

Though weak conservativity is not preserved by post-negation and in spite
of the fact that the set of weakly conservative functions does not form a Boolean
algebra, the Boolean combination of weakly conservative functions equals the
set of all type 〈1, 1〉 functions since we have:

Theorem 3. The Boolean closure of CONS1 ∪ CONS2 = URDET

Proof. Let FA,B be an atom of the algebra URDET . Thus FA,B(X)(Y) = 1 iff
X = A and Y = B. Let GP,Q be an atom of the algebra of classically conservative
(CONS2) functions. This means that Q ⊆ P and GP,Q(X)(Y) = 1 iff X = P
and X ∩ Y = Q. Finally let HP be an atom of non-classically co-intersective
functions, of that is inverses of co-intersective functions. These non-classically co-
intersective functions are functions H defined for instance as: H ∈ CO−INT1 iff
if X ′

1∩Y1 = X ′
2∩Y2 then H(X1)(Y1) = H(X2)(Y2). They are weakly conservative

since they are CONS1. Since HP is an atom of CO − INT1 this means that
HP (X)(Y) = 1 iff X ′ ∩ Y = P . One shows now by set-theoretic calculation that
FA,B(X)(Y) = GA,A∩B(X)(Y) ∧ HA′∩B(X)(Y). This means that any atom of
a non-restricted type 〈1, 1〉 function is a meet of atoms of weakly conservative
functions. ��

A class of cons1 but not cons2 functions is obtained by taking the inverses
of co-intersective functions. We have:

658 R. Zuber

Proposition 8. If F is non-trivial and F ∈ CO-INT then F i ∈ (CONS1 ∩
CONS2′).

Proof. Indeed, F i is cons1 because it is obtained by the inversion of a cons2
function. F i is not cons2 because, given Fact 4(iii), F i(X)(Y) = F (Y)(X) =
F (Y ∩X ′)(∅) and F i(X)(X∩Y) = F (X∩Y)(X) = F (X∩Y ∩X ′)(∅) = F (∅)(∅). ��

A class of examples which illustrate Proposition 8 is discussed in Zuber
(2004). To construct them, one uses the fact that there are exceptive deter-
miners which denote atoms of CO-INT , corresponding systematically to some
(complex) inverted determiners, which denote in the algebra CO-INT1 and thus
in CONS1. Consider:

(21) a. Every dancer except Leo is a student.
b. Apart from Leo only students are dancing.

These two sentences have very likely the same truth-conditions (though probably
not the same presuppositions). The determiner every..., except Leo in (21a) and
the determiner apart from Leo only... in (21b) denote type 〈1, 1〉 functions which
are inverses of each other. Since the determiner every..., except Leo denotes
the atom F{l} of the algebra CO-INT such that such that F{l}(X)(Y) = 1 iff
X ∩Y ′ = {l}, where l =Leo, given Proposition 8, the inverse function F i

{l} is not
cons2 but is cons1.

Observe that if we admit that determiners of the form apart from CN, only...
are acceptable in English that is if we accept that the NP apart from two teachers
only students is obtained by the application of the determiner apart from two,
only... to the CN students then there is an infinite number of determiners in
English which denote weakly conservative functions which are not classically
conservative. Indeed, the function in (22) interpreting such determiners is weakly
conservative but not classically conservative for any n �= 0:

(22) AP -ONLYA,n(X)(Y) = 1 iff |A ∩ Y | = n ∧ |Y | ≥ 2 ∧ Y ⊆ (A ∪ X)

It is easy to give examples of functions which are not weakly conservative
and which are very likely not denotable by natural language determiners. One
of the simplest examples of a function which is neither cons1 nor cons2 is the
function EQ given in (23):

(23) EQ(X)(Y) = 1 iff X = Y

Observe that when X �= Y and X ⊆ Y then EQ(X)(Y) = 0 and EQ(X)(X ∩
Y) = 1. This means that EQ is not classically conservative. Similarly, when
X �= Y and Y ⊆ X then EQ(X)(Y) = 0 and EQ(X ∩ Y)(Y) = 1 and thus EQ
is not cons1.

Similarly, the three functions given in (24) are neither cons1 nor cons2:

(24) a. UA(X)(Y) = 1 iff X ∪ Y = A.
b. Fm,n(X)(Y) = 1 iff |X| = m and |Y | = n.
c. ORINCL(X)(Y) = 1 iff X �= ∅ ∧ Y �= ∅ ∧ (X ⊆ Y ∨ Y ⊆ X).

Weak Conservativity 659

The above examples show incidentally that the meet and the join of two
weakly conservative functions do not need to be weakly conservative. This means
that weakly conservative functions do not form a Boolean algebra as do classi-
cally conservative functions.

5 Conclusions

In this paper we have been interested in some formal properties of functions
denoted by determiners found in NLs. As is well-known, such functions are
mainly classically conservative and, occasionally, non-conservative. Consequently
it is necessary to distinguish two sub-classes of non-consrvative functions: on the
one hand those which are cons1 or conservative on the left or with respect to
the first argument and, on the other hand, those which are neither conservative
with respect to the first argument nor conservative with respect to the second
argument. This distinctions leads to a weakening of the classical constraint of
conservativity concerning the class of natural language determiners. Such a weak-
ened constraint says that all (unary) natural language determiners, are, roughly
speaking, weakly conservative in the sense that they are conservative either with
respect to their first argument (they are cons1) or with respect to the second
argument (they are cons2). There do not seem to exist in NLs attested unary
determiners which denote functions which are neither conservative on the left
nor conservative on the right. In addition it has been suggested that there exists
an infinite number of determiners, related to exceptive determiners, which are
not classically conservative but are weakly conservative. We have also shown
that weak conservativity, in contradistinction to classical conservativity, is not
preserved by post-negation. Furthermore, weakly conservative functions can gen-
erate by (infinite) Boolean operations the set of all type 〈1, 1〉 functions, that is
all members of URDET .

More importantly, weak conservativity is, on the one hand, a proper, small
and natural extension of classical conservativity and, on the other hand, it still
remains a very strong constraint on type 〈1, 1〉 functions since, as it has been
shown, most of type 〈1, 1〉 functions are not weakly conservative.

References

Barwise, J., Cooper, R.: Generalised quantifiers and natural language. Linguist. Philos.
4, 159–219 (1981)

Bastiaanse, H.A.: Conservativity reclaimed. J. Philos. Log. 43(5), 883–901 (2014)
Cohen, A.: Relative readings of many, often, and generics. Nat. Lang. Semant. 9, 41–67

(2001)
von Fintel, K., Keenan, E.L.: Determiners, conservativity and witnesses. J. Semant.

35, 207–217 (2018)
Johnsen, L.G.: There-sentences and generalized quantifiers. In: Gärdenfors, P. (ed.)

Generalized Quantifiers, pp. 93–109. D. Reidel (1987)
Keenan, E.L.: Natural language, sortal reducibility and generalised quantifiers. J.

Symb. Log. 58, 314–325 (1993)

660 R. Zuber

Keenan, E.L., Faltz, L.M.: Boolean Semantics for Natural Language. D. Reidel Pub-
lishing Company, Dordrecht (1985)

Keenan, E.L., Stavi, J.: A semantic characterisation of natural language deterniners.
Linguist. Philos. 9, 253–326 (1986)

Keenan, E.L., Westerst̊ahl, D.: Generalized quantifiers in linguistics and logic. In: van
Benthem, J., ter Meulen, A. (eds.) Handbook of Logic and Language, Elsevier (1997)

Sauerland, U.: Surface Non-conservativity in German. In: Piñón, C. (ed.) Empirical
Issues in Syntax and Semantics, vol. 10, pp. 125–142 (2015)

Thijsse, E.: Counting quantifiers. In: van Benthem, J., ter Meulen, A. (ed.) Generalised
Quantifiers in Natural Language, pp. 127–146. Foris Publications (1984)

Westerst̊ahl, D.: Logical constants in quantifier languages. Linguist. Philos. 8, 387–413
(1985)

Yi, B.: Quantifiers, determiners and plural constructions. In: Carrara, M., et al. (eds.)
Plurality, and Unity: Philosophy, Logic and Semantics, pp. 121–170. Oxford Univer-
sity Press (2016)

Zuber, R.: A class of non-conservative determiners in Polish. Linguisticae Investiga-
tiones 27, 147–165 (2004)

Zuber, R.: More algebras for determiners. In: Blache, P., Stabler, E., Busquets, J.,
Moot, R. (eds.) LACL 2005. LNCS (LNAI), vol. 3492, pp. 347–362. Springer, Hei-
delberg (2005). https://doi.org/10.1007/11422532 23

Zuber, R., Keenan, E.L.: J. Semant. (forthcoming)

https://doi.org/10.1007/11422532_23

Correction to: Algebraic and Topological
Semantics for Inquisitive Logic via Choice-Free

Duality

Nick Bezhanishvili, Gianluca Grilletti, and Wesley H. Holliday

Correction to:
Chapter “Algebraic and Topological Semantics for Inquisitive
Logic via Choice-Free Duality” in: R. Iemhoff et al. (Eds.):
Logic, Language, Information, and Computation, LNCS 11541,
https://doi.org/10.1007/978-3-662-59533-6_3

In the original version of the chapter titled “Algebraic and Topological Semantics for
Inquisitive Logic via Choice-Free Duality”, the acknowledgement was missing. It has
been added.

The updated version of this chapter can be found at
https://doi.org/10.1007/978-3-662-59533-6_3

© Springer-Verlag GmbH Germany, part of Springer Nature 2019
R. Iemhoff et al. (Eds.): WoLLIC 2019, LNCS 11541, p. C1, 2019.
https://doi.org/10.1007/978-3-662-59533-6_41

http://dx.doi.org/10.1007/978-3-662-59533-6_3
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-59533-6_41&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-59533-6_41&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-59533-6_41&domain=pdf
http://dx.doi.org/10.1007/978-3-662-59533-6_3
https://doi.org/10.1007/978-3-662-59533-6_41

Author Index

Acclavio, Matteo 1
Afshari, Bahareh 17

Baaz, Matthias 486
Baltag, Alexandru 177
Bezhanishvili, Nick 35, 177
Blackburn, Patrick 53
Bozhko, Sergey 264
Brouwer, Harm 633

Caicedo, Xavier 70
Caleiro, Carlos 84
Chen, Jinsheng 99
Ciuni, Roberto 119
Conradie, Willem 140
Craig, Andrew 140
Crocker, Matthew W. 633

de Groot, Jim 161

Ferguson, Thomas Macaulay 119
Fernández González, Saúl 177
Fernández-Duque, David 195
Ferrarotti, Flavio 208
Flaminio, Tommaso 223
Fujiwara, Makoto 236

Girlando, Marianna 248
Godo, Lluis 223
González, Senén 208
Greco, Giuseppe 99
Grigorev, Semyon 264
Grilletti, Gianluca 35
Guerrieri, Giulio 282

Hannula, Miika 301
Hella, Lauri 301
Hendriks, Petra 633
Hermo-Reyes, Eduardo 195
Holliday, Wesley H. 35
Huertas, Antonia 53
Huntsman, Steve 323

Jäger, Gerhard 17
Jalali, Raheleh 342

Kanovich, Max 356, 373
Khatbullina, Leyla 264
Kontinen, Juha 392
Kubota, Yusuke 415
Kuijer, Louwe B. 619
Kuznetsov, Stepan 356, 373

Lehmann, Eveline 433
Leigh, Graham E. 17
Levine, Robert 415
Liang, Fei 450
Liefke, Kristina 467
Lolic, Anela 486

Manzano, María 53
Marcelino, Sérgio 84
Martins, Manuel 53
Metcalfe, George 70
Milanese, Gian Carlo 498

Nascimento, Thiago 450
Negri, Sara 248

Omori, Hitoshi 516

Palmigiano, Alessandra 99, 140
Pattinson, Dirk 161
Pellissier, Luc 282
Powell, Thomas 533

Rodríguez, Ricardo O. 223
Rodríguez, Ricardo 70

Sanders, Sam 550
Savateev, Yury 569
Saveliev, Denis I. 584
Sbardolini, Giorgio 248
Scedrov, Andre 356, 373
Schuster, Peter 533

Sedlár, Igor 594
Shamkanov, Daniyar 569
Shapirovsky, Ilya 610
Skurt, Daniel 516
Straßburger, Lutz 1
Studer, Thomas 433
Szmuc, Damian 119

Tortora de Falco, Lorenzo 282
Turull Torres, José María 208
Tuyt, Olim 70
Tzimoulis, Apostolos 99

Van den Bussche, Jan 208
van Ditmarsch, Hans 619
Venema, Yde 498
Venhuizen, Noortje J. 633
Virtema, Jonni 208

Wiesnet, Franziskus 533
Wijnberg, Nachoem M. 140

Yang, Fan 392

Zuber, Richard 647

662 Author Index

	Preface
	Organization
	Abstracts of Invited Talks
	Reflection Algebras for Theories of Iterated Truth Definitions
	Jointly Learning to See, Ask, and Guess
	On Infinitary Proof Theory of Logics of Information and Common Belief
	Interlingual Meaning Representations
	Proof Theory for Group-Like Structures
	Logic, Lambdas, Vectors, and Concepts
	Contents
	On Combinatorial Proofs for Logics of Relevance and Entailment
	1 Introduction
	2 Sequent Calculus, Part I
	3 Sequent Calculus, Part II
	4 Cographs
	5 Skew Fibrations
	6 RB-cographs and Combinatorial Proofs
	7 Sequent Calculus, Part III
	8 Weighted Cographs and Fibrations
	9 Weighted RB-cographs
	10 Conclusion
	References

	An Infinitary Treatment of Full Mu-Calculus
	1 Introduction
	2 Full -calculus
	2.1 Nested Sequent Calculi

	3 Completeness: Building Canonical Models
	4 Soundness: Refining Canonical Models
	5 Discussion
	A Well-Annotated Formulæ
	B Omitted Proofs
	References

	Algebraic and Topological Semantics for Inquisitive Logic via Choice-Free Duality
	1 Introduction
	2 Preliminaries
	2.1 Inquisitive Logic
	2.2 UV-Spaces

	3 Algebraic Semantics via Inquisitive Algebras
	4 Inquisitive Extension of a Boolean Algebra
	4.1 Construction of the Inquisitive Extension
	4.2 Algebraic Characterization of the Inquisitive Extension
	4.3 Topological Characterization of the Inquisitive Extension

	5 Topological Semantics for Inquisitive Logic
	6 Conclusion
	A Examples 1 and 2
	B Proof of Proposition4.2
	C Proof of Theorem4.6
	D Proof of Theorem4.9
	E Proof of Proposition4.10
	F Proof of Lemma5.2
	References

	Rigid First-Order Hybrid Logic
	1 Introduction
	2 Rigid First-Order Hybrid Logic
	3 Semantics
	4 Axiomatisation
	5 Soundness and Completeness
	6 Conclusions and Future Work
	References

	The One-Variable Fragment of Corsi Logic
	1 Introduction
	2 The One-Variable Fragments
	3 The Many-Valued Modal Logics
	4 An Interpretation of S5(G) in S5(G)C
	5 A Complexity Result
	References

	Analytic Calculi for Monadic PNmatrices
	1 Introduction
	2 Preliminaries
	2.1 Multiple Conclusions
	2.2 Logical Matrices, Non-determinism, Partiality, and Monadicity

	3 Axiomatizing Monadic PNmatrices
	4 A Detailed Example
	5 Conclusion and Future Work
	References

	Non Normal Logics: Semantic Analysis and Proof Theory
	1 Introduction
	2 Preliminaries
	2.1 Basic Monotonic Modal Logic and Conditional Logic

	3 Semantic Analysis
	3.1 Two-Sorted Kripke Frames and Their Discrete Duality
	3.2 Equivalent Representation of m-Algebras and c-Algebras
	3.3 Representing n-Frames and c-Frames as Two-Sorted Kripke Frames

	4 Embedding Non-Normal Logics into Two-Sorted Normal Logics
	5 Proper Display Calculi
	A Analytic Inductive Inequalities
	B Algorithmic Proof of Theorem1
	References

	Modeling the Interaction of Computer Errors by Four-Valued Contaminating Logics
	1 Introduction
	2 Preliminaries
	3 Basic Contaminating Logics
	4 Four-Valued Contaminating Logics
	4.1 An Algebra for the Interaction of Different Computer Errors
	4.2 Logics Based on HYB
	4.3 Characterizating Logical Consequence in HYB1
	4.4 Characterizing Logical Consequence in HYB2
	4.5 Discussion of Theorems1 and 2

	5 Sequent Calculi
	5.1 Rules
	5.2 Soundness and Completeness

	6 Conclusions
	References

	Modelling Informational Entropy
	1 Introduction
	2 Preliminaries
	2.1 Basic Normal Non-distributive Modal Logic

	3 Graph-Based Semantics for the Basic Non-distributive Modal Logic
	4 Sahlqvist Correspondence on Graph-Based Frames
	5 Graph-Based Frames as Models of Informational Entropy
	6 Sources of Informational Entropy
	7 Conclusions
	A Equivalent Compatibility Conditions in Formal Contexts
	B Composing Relations on Graph-Based Structures
	C Proof of Proposition4
	References

	Hennessy-Milner Properties for (Modal) Bi-intuitionistic Logic
	1 Introduction
	2 Preliminaries: Bi-intuitionistic Logic
	3 Frame Semantics and Duality for Bi-intuitionistic Logic
	4 Bisimulation and the Hennessy-Milner Property
	5 Generalisation to Modal Bi-intuitionistic Logic
	6 Conclusion
	References

	The McKinsey-Tarski Theorem for Topological Evidence Logics
	1 Introduction
	1.1 Logics of Knowledge and Belief
	1.2 The Interior Semantics: The McKinsey-Tarski Theorem
	1.3 McKinsey and Tarski: S4 as a Topological Logic of Knowledge
	1.4 Dense Interior
	1.5 The Logic of Topological Evidence Models

	2 Generic Spaces for the Logic of Topo-e-models
	2.1 S4.2 as the Logic of R
	2.2 Adding Belief
	2.3 The Global Modality [] and the Logic of Q

	3 Conclusions and Future Work
	A Appendices
	A.1 Proof of Theorem2.8
	A.2 Proof of Theorem2.13
	A.3 Proof of Theorem2.15

	References

	A Self-contained Provability Calculus for 0
	1 Introduction
	2 The Reflection Calculus
	3 Worms and the Consistency Ordering
	4 Hyperexponential Notation for 0
	5 Beklemishev's Bracket Notation System for 0
	6 The Bracket Calculus
	7 Translation and Preservability
	8 Concluding Remarks
	References

	Descriptive Complexity of Deterministic Polylogarithmic Time
	1 Introduction
	2 Preliminaries
	3 Deterministic Polylogarithmic Time
	4 Direct-Access Turing Machines
	5 Index Logic
	5.1 Finding the Binary Representation of a Constant
	5.2 Binary Search in an Array of Key Values

	6 Definability in Deterministic PolylogTime
	7 Discussion
	References

	A Representation Theorem for Finite Gödel Algebras with Operators
	1 Introduction
	2 Finite Gödel Algebras and Forests
	3 Gödel Algebras with -Operators
	4 Gödel Algebras with -Operators
	5 Gödel Algebras with and Operators
	6 Conclusion and Future Work
	References

	Bar Induction and Restricted Classical Logic
	1 Several Formulations of Bar Induction
	2 Decomposition of BI0 into MBI0 and CD0
	3 On 01 Restrictions of Bar Induction
	References

	Uniform Labelled Calculi for Conditional and Counterfactual Logics
	1 Introduction
	2 Conditional Logics and Preferential Models
	3 Labelled Proof Systems
	4 Structural Properties
	5 Termination and Completeness
	6 Conclusion and Related Work
	References

	Bar-Hillel Theorem Mechanization in Coq
	1 Introduction
	2 Bar-Hillel Theorem
	3 Bar-Hillel Theorem Mechanization in Coq
	3.1 Hofmann's Results Generalization
	3.2 Basic Definitions
	3.3 General Scheme of the Proof
	3.4 Trivial Cases
	3.5 Regular Languages and Automata
	3.6 Chomsky Induction
	3.7 Intersection of CFG and Automaton
	3.8 Union of Languages
	3.9 Putting All Parts Together

	4 Related Works
	4.1 Formal Language Theory in Coq
	4.2 Formal Language Theory in Other Languages

	5 Conclusion
	A Coq Listing
	References

	Proof-Net as Graph, Taylor Expansion as Pullback
	1 Introduction
	2 Preliminaries on Graphs
	3 DiLL Proof-Structures
	4 Sequent Calculi, Proof-Nets and Correctness for MLL
	5 The Taylor Expansion
	6 Conclusions
	A Computing a Pullback in the Category of Graphs
	References

	Complexity Thresholds in Inclusion Logic
	1 Introduction
	2 Preliminaries
	2.1 Team Semantics
	2.2 Inclusion Logic
	2.3 Transitive Closure Logic

	3 Maximal Subteam Membership
	3.1 Introduction
	3.2 Complexity

	4 Consistent Query Answering
	5 Model Checking
	6 An NL Fragment of Inclusion Logic
	7 Conclusion
	References

	The Multiresolution Analysis of Flow Graphs
	1 Introduction
	2 Dominance Relations
	3 Flow Graphs, Single-Entry/Single-Exit Regions, and the Program Structure Tree
	4 The Category of Flow Graphs
	5 Coarsening Flow Graphs
	6 Tensoring Flow Graphs
	6.1 Tensoring in Series
	6.2 Tensoring in Parallel
	6.3 Remarks

	7 Two-Terminal Graphs
	8 Conclusion
	A Proofs
	B Stretching Flow Graphs
	References

	An Exponential Lower Bound for Proofs in Focused Calculi
	1 Introduction
	2 Preliminaries
	3 Focused Calculi
	3.1 The Classical Case
	3.2 The Intuitionistic Case

	References

	The Complexity of Multiplicative-Additive Lambek Calculus: 25Years Later
	1 Introduction
	2 PSPACE-Hardness of the Fragment L("026E30F ,)
	2.1 The Relative Negation and Double Negation (Non-commutative)
	2.2 Complexity of the fragment L("026E30F ,)
	2.3 Verifying the Equality (2)
	2.4 Simulating the Opponent's and Proponent's Moves

	3 Grammars Based on the Lambek Calculus with Disjunction
	4 Concluding Remarks
	A PSPACE-completeness of the fragment L("026E30F ,)
	B Proofs of Technical Lemmas for Section3
	References

	L-Models and R-Models for Lambek Calculus Enriched with Additives and the Multiplicative Unit
	1 Introduction
	2 Incompleteness of L w.r.t. L-Models and R-Models
	3 Undecidability of the Fragment ("026E30F , , 1)
	3.1 From Computations to Derivations
	3.2 From Derivations to Computations

	4 Concluding Remarks
	References

	Logics for First-Order Team Properties
	1 Introduction
	2 Preliminaries
	3 Characterizing First-Order Team Properties
	4 Axiomatizing FOT
	5 Axiomatizing FOT"3223379 Consequences in DFOT"3223379
	References

	Modal Auxiliaries and Negation: A Type-Logical Account
	1 Introduction
	2 Modals and Negation: The Empirical Landscape
	3 Higher Order Negation: The Formal Analysis
	3.1 Higher-Order Modals
	3.2 Capturing the Modal/Negation Scope Interaction
	3.3 Slanting and the VP/VP Analysis of Auxiliaries
	3.4 Slanting and Coordination
	3.5 VP Fronting

	4 Conclusion
	A Hybrid Type-Logical Grammar
	A.1 Syntactic Types
	A.2 Mapping from Syntactic Types to Semantic Types
	A.3 Mapping from Syntactic Types to Prosodic Types
	A.4 Deductive Rules

	References

	Subset Models for Justification Logic
	1 Introduction
	2 LCS-Subset Models
	2.1 Syntax
	2.2 Semantics
	2.3 Soundness
	2.4 Completeness

	3 LACS-Subset Models
	3.1 Syntax
	3.2 Semantics
	3.3 Soundness
	3.4 Completeness

	4 Artemov's Aggregated Evidence and LCS-Subset Models
	5 Conclusion
	A The ``j-axiom'' Follows (Lemma 5)
	B The Canonical Model MC Defined in Definition 11 is an LCS-Subset Model (Lemma 12)
	C The Canonical Model Defined in Definition 20 Is an LACS-Subset Model (Lemma 21)
	D Soundness of PE-adapted L-Subset Models (Theorem 26)
	References

	Algebraic Semantics for Quasi-Nelson Logic
	1 Introduction
	2 Preliminaries
	3 A Hilbert System for Quasi-Nelson Logic
	4 QN Is Regularly BP-Algebraizable
	5 Future Work
	References

	A Case for Property-Type Semantics
	1 Introduction
	2 Empirical Challenges for Propositionalism
	2.1 `want'/`need'-Constructions Without HAVE
	2.2 De se-Reports and `know how'-Sentences
	2.3 Objectual Attitude Reports
	2.4 Depiction and Resemblance Reports

	3 Strategy
	3.1 Centered Propositions
	3.2 Individual Concepts and Intensional Quantifiers
	3.3 Existential Quantifiers

	4 Support for Our Strategy
	5 Achieving Ontological Parsimony
	6 Conclusion and Future Work
	References

	Note on Globally Sound Analytic Calculi for Quantifier Macros
	1 Introduction
	2 Macros for Connectives
	3 The Analytic Sequent Calculus LQ: A First Approach
	4 LK, LK+ and LK++
	5 The Analytic Sequent Calculus LQ++
	6 Cut-Elimination for LQ++
	7 Conclusion
	References

	Closure Ordinals of the Two-Way Modal -Calculus
	1 Introduction
	2 Preliminaries
	3 Two-Way Formulas: Closure Ordinal n
	4 Two-Way Formulas: Closure Ordinals Below
	4.1 Two-Way Formulas: Sum of Ordinals
	4.2 An Explicit Formula for Every Ordinal Below

	5 Further Research
	A Proof of the Main Result in Section3
	References

	SIXTEEN3 in Light of Routley Stars
	1 Introduction
	1.1 Background (I): From Belnap to Shramko-Wansing
	1.2 Background (II): Routley and Dunn Semantics for FDE
	1.3 Aim

	2 Two-Valued Semantics for FDE
	3 Basics of SIXTEEN3
	3.1 Language
	3.2 Semantics
	3.3 Proof Systems

	4 Alternative Semantics for SIXTEEN3 (I)
	4.1 Semantics
	4.2 Equivalence of Three Semantic Consequence Relations
	4.3 Two Basic Observations

	5 Alternative Semantics for SIXTEEN3 (II)
	5.1 Semantics
	5.2 Equivalence of Two Semantics

	6 Reflections on f
	6.1 f in Special Cases
	6.2 f as a Modal Operator

	7 Concluding Remarks
	A Details of the Proof of Theorem3
	B Details of the Proof of Proposition4
	C Details of the Proof for Proposition5
	References

	An Algorithmic Approach to the Existence of Ideal Objects in Commutative Algebra
	1 Introduction
	2 A General Maximality Argument
	3 A Logical Analysis of Theorem1
	4 An Approximating Algorithm for Maximal Objects
	4.1 The Algorithm
	4.2 Termination

	5 Case Study: The Nilradical as the Intersection of All Prime Ideals
	5.1 Informal Description of the Algorithm
	5.2 Example: Nilpotent Coefficients of Invertible Polynomials

	References

	Reverse Mathematics and Computability Theory of Domain Theory
	1 Introduction
	2 Preliminaries
	2.1 Reverse Mathematics
	2.2 Higher-Order Computability Theory
	2.3 Introducing Nets

	3 Reverse Mathematics
	3.1 Monotone Convergence for Nets
	3.2 The Axiom of Choice and Nets

	4 Computability Theory
	5 Nets and the Gödel Hierarchy
	A Technical Appendix
	A.1 The Base Theory of Higher-Order Reverse Mathematics
	A.2 Some Proofs

	References

	Cut Elimination for the Weak Modal Grzegorczyk Logic via Non-well-Founded Proofs
	1 Introduction
	2 Preliminaries
	3 Non-well-Founded Proofs
	4 Ultrametric Spaces
	5 Admissible Rules and Mappings
	6 Cut Elimination
	7 Conclusion
	References

	On First-Order Expressibility of Satisfiability in Submodels
	References

	Substructural Propositional Dynamic Logics
	1 Introduction
	2 Preliminaries
	2.1 Classical PDL
	2.2 Some Substructural Logics

	3 Motivation
	4 The Basic Substructural PDL
	5 Beyond the Minimal Substructural PDL
	5.1 Axiomatic Extensions
	5.2 Adding Diamonds

	A Technical Appendix
	References

	Modal Logics of Finite Direct Powers of Have the Finite Model Property
	1 Introduction
	2 Partitions of Frames, Local Finiteness, and the Finite Model Property
	3 Main Result
	4 Questions and Conjectures
	References

	Knowledge Without Complete Certainty
	1 Introduction
	2 Syntax and Semantics
	3 Examples
	4 Axiomatization
	5 Comparison to Other Non-normal Modal Logics
	6 Conclusion
	References

	A Framework for Distributional Formal Semantics
	1 Introduction
	2 A Framework for Distributional Formal Semantics
	2.1 Sampling SMP
	2.2 Formal Properties of SMP

	3 Incremental Meaning Construction
	3.1 Model Specification
	3.2 Incremental Inferencing in DFS

	4 Discussion
	5 Conclusion
	References

	Weak Conservativity
	1 Introduction
	2 Classical Conservativity
	3 Weakly Conservative Determiners
	4 Formal Properties
	5 Conclusions
	References

	Correction to: Algebraic and Topological Semantics for Inquisitive Logic via Choice-Free Duality
	Correction to: Chapter “Algebraic and Topological Semantics for Inquisitive Logic via Choice-Free Duality” in: R. Iemhoff et al. (Eds.): Logic, Language, Information, and Computation, LNCS 11541, https://doi.org/10.1007/978-3-662-59533-6_3

	Author Index

