
Statistical Matching Theory

Péter Csikvári

Abstract In this paper, we survey some recent developments on statistical properties
of matchings of very large and infinite graphs. We discuss extremal graph theoretic
results like Schrijver’s theorem on the number of perfect matchings of regular bipar-
tite graphs and its variants from the point of view of graph limit theory.We also study
the number of matchings of finite and infinite vertex-transitive graphs.
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1 Introduction

In this paper, we survey some recent developments on statistical properties of match-
ings of very large and infinite graphs.

We will focus on two topics: extremal graph theory and vertex-transitive bipartite
graphs. Both topics are intimately related to graph limit theory. In the first case, when
we consider extremal graph theoretical problems, it turns out that in certain extremal
problems concerning matchings of d–regular bipartite graphs, the extremal graph
is not a finite graph, but the infinite d–regular tree. The proper understanding of
this phenomenon leads not only to new proofs of classical theorems, but also to
new results such as the Lower Matching Conjecture and other new theorems. In the
second case, when we study matchings of finite vertex-transitive bipartite graphs,
the direction is, in some sense, exactly the opposite: we would like to understand the
matchings of infinite lattices through finite graphs. These finite graphs exhibit certain
properties that can be utilized to study their matchings. Then these new observations
transfer to the original lattices.
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Extremal graph theory. To give an example for the discussed problems we
offer the following theorem of A. Schrijver. This theorem asserts that if G is a d–
regular bipartite graph on v(G) vertices, and pm(G) denotes the number of perfect
matchings, then

pm(G)1/v(G) ≥
(

(d − 1)d−1

dd−2

)1/2

.

It is a natural question whether we can improve on the constant on the right hand
side. The answer is no. Then it is natural to ask whether there is a finite graph G for
which

pm(G)1/v(G) =
(

(d − 1)d−1

dd−2

)1/2

.

The answer is again no! The two negative answers together mean that

inf
G

pm(G)1/v(G) =
(

(d − 1)d−1

dd−2

)1/2

,

where the infimum is taken over all d–regular bipartite graphs, but this infimum is
never achieved by a finite graph. Can we still use classical extremal graph theoretic
arguments to prove Schrijver’s theorem? The answer is yes, and this is what Sect. 4 is
about. On the other hand, there will be a little twist in the argument, and this is where
graph limit theory comes into the picture. In extremal graph theory it is a natural idea
to find a graph transformation ϕ such that for a given graph parameter p(·) we have

p(G) ≤ p(ϕ(G)),

and the studied class of graphs is closed under ϕ. An example for this strategy is
Zykov’s symmetrization which does not decrease the number of edges and the size
of the largest clique, and so it provides a powerful tool to prove Turán’s theorem,
and as it turns out, many other theorems where we expect the Turán-graph to be
extremal. In general, we apply this transformation as long as we can, and then we
solve an optimization problem on amuch restricted class of graphs. In case of Turán’s
theorem, this restricted class is the class of complete multipartite graphs. This is the
point where we will deviate from this strategy.

We will find a graph transformation ϕ such that for the graph parameter p(G) =
pm(G)1/v(G) we have p(G) ≥ p(ϕ(G)). In general, we will be able to apply ϕ in
many different ways, so ϕ(G) refers to one of the possible applications of the graph
transformation ϕ to G. As a next step we prepare a graph sequence Gi such that
G0 = G, Gi+1 = ϕ(Gi ), and consequently we have

p(G0) ≥ p(G1) ≥ p(G2) ≥ p(G3) ≥ . . . .
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The point is that the sequence (Gi ) will not stabilize as in the proof of Turán’s theo-
rem using Zykov’s symmetrization, but it will converge in the sense of Benjamini–
Schramm. We will explain this convergence in Sect. 3. This convergence enables us
to extend the universe of finite graphs with some new elements which we will call
random unimodular graphs. We will define p(·) for these new elements as well.
It turns out that in this extended topological space there will be a minimizer of the
parameter p(G), namely the infinite d–regular treeTd . Section2 contains a brief sur-
vey on related results and in Sect. 4 we give an almost complete proof of Schrijver’s
theorem along these lines.

Vertex-transitive bipartite graphs. To motivate the other main topic of this sur-
vey let us consider the following classical result of Kasteleyn [34] and independently
Fisher and Temperley [50]. Let Zm,n be the number of perfect matchings of them × n
grid. Then

Zm,n =
⎛
⎝ m∏

j=1

n∏
k=1

(
4 cos2

(
π j

m + 1

)
+ 4 cos2

(
πk

n + 1

))⎞
⎠

1/4

.

This leads to the limit formula

lim
m,n→∞
2 | mn

1

mn
log Zm,n = 4

π2

∫ π/2

0

∫ π/2

0
log(4 cos2(x) + 4 cos2(y)) dx dy.

It is intuitively clear that the grids converge to the lattice Z2. To make this statement
precise once again we need the concept of Benjamini–Schramm convergence (see
Sect. 3). Benjamini–Schramm convergence primarily grasps the local structure of a
graph. It turns out that perfect matchings are especially fragile: a small change in
the graph can lead to a dramatic change in the number of perfect matchings even
if we restrict our attention to graphs with even number of vertices, or even if we
only consider bipartite regular graphs. Fortunately, vertex-transitive bipartite graphs
behave well in this respect, and so we can build a graph limit theory using them.
More details can be found in Sect. 5.

This paper is organized as follows: in the next section we survey extremal
graph theoretic results concerning matchings of finite (regular) graphs. In the third
section we give the definition of Benjamini–Schramm convergence together with
some examples. In the fourth section we give a sample proof of an extremal graph
theoretic result on matchings that utilizes graph limit theory. In the fifth section we
will study matchings of vertex-transitive bipartite graphs. In the final section we
mention some results about matchings of dense graphs that are naturally connected
to our discussion.

Basic notations: Throughout the paper, G denotes a graph, and v(G) denotes the
number of vertices of G. Recall that a matching of size k is set of k edges covering 2k
vertices together. In other words, the edges e1, . . . , ek form a matching of size k, or
shortly a k-matching if ei and e j have disjoint set of endpoints for any 1 ≤ i, j ≤ k.
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The number of matchings of size k will be denoted by mk(G). The size of the largest
matching is denoted by ν(G). A matching is called perfect if it covers all vertices,
that is, it has size v(G)/2. The number of perfect matchings will be denoted by
pm(G).

2 Extremal Graph Theory

In this section we will consider lower and upper bounds for the number of (perfect)
matchings of bipartite graphs. Recall thatmk(G) denotes the number of matchings of
size k, and pm(G) denotes the number of perfect matchings. When G is a bipartite
graph with classes of size n, then the problem of counting the number of perfect
matchings of G is equivalent to computing the permanent of a 0 − 1 matrix of size
n by n. Recall that the permanent of a matrix A is defined as follows:

per(A) =
∑
π∈Sn

a1,π(1)a2,π(2) . . . an,π(n).

Let us suppose for a moment that all ai j ∈ {0, 1}, and define a graph G on the vertex
set R ∪ C , where R = {r1, r2, . . . , rn} and C = {c1, c2, . . . , cn} correspond to the
rows and columns of the matrix, respectively. If ai j = 1, then put an edge between
the vertices ri and c j . Now it is clear that per(A) = pm(G), the number of perfect
matchings of G.

A well-known result concerning permanents of 0 − 1 matrices is due to L. M.
Brégman [8].

Theorem 2.1 (L. M. Brégman [8]) Let A be a 0 − 1 matrix of size n × n, and let
ri denote the number of 1’s in the i-th row. Then

per(A) ≤
n∏

i=1

(ri !)1/ri .

Since pm(Kd,d) = d!, Theorem 2.1 immediately implies the following result about
d–regular bipartite graphs.

Theorem 2.2 Let pm(G) denote the number of perfect matchings. Then for a d–
regular (bipartite) graph we have

pm(G)1/v(G) ≤ pm(Kd,d)
1/v(Kd,d ).

A priori Brégman’s theorem implies the above result only for bipartite graphs but
using the observation

pm(G)2 ≤ pm(G × K2) (1)
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one can deduce the general case from the bipartite case. Here G × K2 is the graph
with vertex set V (G) × {0, 1}, in which (u, i) and (v, j) are adjacent if i �= j and
(u, v) ∈ E(G). This is clearly a bipartite graph. Observation 1 was rediscovered
several times, see, for instance, [4]. A generalization of this observation will be
proved in Theorem 4.3.

Let us mention that one can prove an analogue of Brégman’s result for the number
of all matchings, or even for weighted sums of matchings. Let

M(G,λ) =
	v(G)/2
∑

k=0

mk(G)λk .

It is thematching generating function of the graph G. In statistical physics it is known
as the partition function of the monomer-dimer model.

Theorem 2.3 (E. Davies, M. Jenssen, W. Perkins, B. Roberts [16]) For a d–regular
graph G and λ > 0 we have

M(G,λ)1/v(G) ≤ M(Kd,d ,λ)1/v(Kd,d ).

For λ = 1 this result simplifies to the number of all matchings, and as λ → ∞ it
also implies Theorem 2.2.

Concerning lower bounds for perfect matchings of regular graphs, M. Voorhoeve
(d = 3) and A. Schrijver (general d) proved the following result.

Theorem 2.4 (A. Schrijver [45], for d = 3 M. Voorhoeve [52]) Let G be a d–
regular bipartite graph on v(G) = 2n vertices, and let pm(G) denote the number of
perfect matchings of G. Then

pm(G) ≥
(

(d − 1)d−1

dd−2

)n

.

In other words, for every d–regular bipartite graph G we have

ln pm(G)

v(G)
≥ 1

2
ln

(
(d − 1)d−1

dd−2

)
.

There are various different proofs for Schrijver’s theorem and its generalizations
in the literature. Schrijver’s original proof is elementary but tricky. L. Gurvits [27]
gave another proof using stable polynomials. For an account of this proof, see also
[37]. This is a beautiful proof, probably one from The Book. D. Straszak and N.
Vishnoi [49] found a generalization for certain graphical models also using stable
polynomials. Another proof, revealing the extremal graph, was given in [13] and
is sketched in this survey. M. Lelarge [38] gave a variant of this proof for another
generalization of Schrijver’s theorem.



200 P. Csikvári

A result of Wilf [53] (see also [6, 46]) shows that the constant 1
2 ln

(
(d−1)d−1

dd−2

)
is the best possible. This can be shown by computing the expected value of pm(G)

for d–regular random bipartite graphs. There was no explicit construction for regular
bipartite graphswith small number of perfectmatchings for a long time.Very recently
it turned out that if a d–regular bipartite graph has a small number of short cycles, then
it has asymptotically the same number of perfect matchings as a random d–regular
graph, the more precise formulation is the following.

Theorem 2.5 (M. Abért, P. Csikvári, P. E. Frenkel, G. Kun [1]) Let (Gi ) be a
sequence of d–regular graphs such that g(Gi ) → ∞, where g denotes the girth, that
is, the length of the shortest cycle.
(a) For the number of perfect matchings pm(Gi ), we have

lim sup
i→∞

ln pm(Gi )

v(Gi )
≤ 1

2
ln

(
(d − 1)d−1

dd−2

)
.

(b) If, in addition, the graphs Gi are bipartite, then

lim
i→∞

ln pm(Gi )

v(Gi )
= 1

2
ln

(
(d − 1)d−1

dd−2

)
.

We note that it is enough to assume that (Gi ) converges to Td in Benjamini–
Schramm sense. See Sect. 3 for more details.

In [28] L. Gurvits derived a version of Schrijver’s theorem for permanents using
Schrijver’s theorem itself.

Theorem 2.6 (L. Gurvits [28]) Let A be an n by n non-negative matrix. Then

per(A) ≥ sup
B∈DSn

exp

⎛
⎝∑

i, j

Bi j ln
Ai j

Bi j
+

∑
i, j

(1 − Bi j ) ln(1 − Bi j )

⎞
⎠ ,

where DSn is the set of doubly stochastic matrices of size n by n.

In the same paper [28] L. Gurvits also extended Schrijver’s theorem from perfect
matchings to matchings of arbitrary size.

Theorem 2.7 (L. Gurvits [28]) Let G be an arbitrary d-regular bipartite graph on
v(G) = 2n vertices. Let mk(G) denote the number of k-matchings. Set p = k

n . Then

lnmk(G)

v(G)
≥ 1

2

(
p ln

(
d

p

)
+ (d − p) ln

(
1 − p

d

)
− 2(1 − p) ln(1 − p)

)
+ ov(G)(1).

Gurvits’s theoremwas previously conjectured by Friedland, Krop andMarkström
[22] under the name Asymptotic Lower Matching Conjecture. They also had a more
precise form of this conjecture known as Lower Matching Conjecture.
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Conjecture 2.8 (Lower Matching Conjecture [22]) Let G be a d–regular bipartite
graph on v(G) = 2n vertices, and let mk(G) denote the number of matchings of size
k, then

mk(G) ≥
(

n

k

)2 (
d − p

d

)n(d−p)

(dp)np,

where p = k
n .

To see the connection between the LowerMatching Conjecture and its asymptotic
version, it is worth introducing two notations. The first one is the function appearing
in Gurvits’s theorem:

Gd(p) = 1

2

(
p ln

(
d

p

)
+ (d − p) ln

(
1 − p

d

)
− 2(1 − p) ln(1 − p)

)
.

Furthermore, let p = k
n , and let pμ = (n

k

)
pk(1 − p)n−k . This is the probability that

a random variable X with distribution Binomial(n, p) takes its mean value. It turns
out that (

n

k

)2 (
d − p

d

)n(d−p)

(dp)np = p2
μ · exp(2nGd(p)).

Using these notationsGurvits’s theoremsays thatmk(G) ≥ exp(2n(Gd(p) + on(1))),
while the Lower Matching Conjecture claims that mk(G) ≥ p2

μ · exp(2nGd(p)). It
turns out that the truth is even more beautiful.

Theorem 2.9 ([13]) Let G be a d–regular bipartite graph on v(G) = 2n vertices,
and let mk(G) denote the number of matchings of size k, then

mk(G) ≥ pμ · exp(2nGd(p)),

where p = k
n .

Furthermore, there exists a d–regular bipartite graph G on 2n vertices such that

mk(G) ≤
√
1 − p/d

1 − p
· pμ · exp(2nGd(p)).

Next we introduce the function λG(p), called the entropy function in statistical
physics, which is closely related to counting matchings. The simplest way to define
it is as follows: let rG be the disjoint union of r copies of G and let the sequence kr

be chosen in such a way that

lim
r→∞

2kr

v(rG)
= p;

then

λG(p) := lim
r→∞

lnmkr (rG)

v(rG)
.
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If G contains a perfect matching, then the limit indeed exists whenever p < 1, and
for p = 1 one can define it as

λG(1) := ln pm(G)

v(G)
.

The above definition for λG(p) is not the original definition and is really hard to
work with, but at least it is very easy to explain. Intuitively, it counts a normalized
number of matchings covering p fraction of the vertices, but it has the advantage that
it is meaningful even if p is irrational, thereby providing a continuous function. We
also mention that it is really easy to extend λG(p) to random rooted graphs G. One
can prove that for p = k

n the following inequalities hold true:

pμ · exp(2nλG(p)) ≤ mk(G) ≤ exp(2nλG(p)).

This means that

λG(p) ≈ lnmk(G)

v(G)
.

Surprisingly, it turns out that Gurvits’s theorem is equivalent to λG(p) ≥ Gd(p) for
all 0 ≤ p ≤ 1 provided that G is a d–regular bipartite graph, see [13] for details. So
practically Gurvits’s theorem implies its more precise form.

At this moment, it may be mysterious why and how the functionGd(p) appears in
these theorems. The mystery vanishes as soon as we realize that the function Gd(p)

is nothing else but the entropy function of the infinite d–regular tree:

λTd (p) = Gd(p).

We offer three more results in the spirit of Theorem 2.9. In Sect. 4 we will give
a detailed sketch of the proof of Theorem 2.10. One can prove Theorems 2.11 and
2.12 with similar tools.

Theorem 2.10 ([13]) Let G be a d–regular bipartite graph on v(G) = 2n vertices,
and let mk(G) denote the number of matchings of size k. For λ ≥ 0 let M(G,λ) =∑n

k=0 mk(G)λk . Then
1

v(G)
ln M(G,λ) ≥ 1

2
ln Sd(λ),

where

Sd(λ) = 1

η2
λ

(
d − 1

d − ηλ

)d−2

and ηλ =
√
1 + 4(d − 1)λ − 1

2(d − 1)λ
.

Alternatively, for 0 ≤ p ≤ 1 we have

n∑
k=0

mk(G)
( p

d

(
1 − p

d

))k
(1 − p)2(n−k) ≥

(
1 − p

d

)nd
.
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Note that this theorem directly reduces to Schrijver’s theorem if p = 1, and
strongly suggests that there might be some probabilistic proofs for some results
appearing in this survey.

The following theorem shows that one can extend a few theorems from d–regular
bipartite graphs to arbitrary bipartite graphs or even to the permanent of a non-
negative matrix. Before we state this result we need some notations.

The matching polytope MP(G) of a graph G is defined as the convex hull of
incidence vectors of matchings in G. We define the fractional matching polytope as

FMP(G) =
{

x ∈ R
E(G)

∣∣∣∣ xe ≥ 0 ∀e ∈ E(G),
∑
e:v∈e

xe ≤ 1 ∀v ∈ V (G)

}
.

It is known that MP(G)=FMP(G) if and only if G is bipartite. Similarly, we can
definebyMPk(G) the convexhull of incidencevectors ofmatchings inG of size k, and

FMPk(G) =
⎧⎨
⎩x ∈ FMP(G)

∣∣∣∣
∑

e∈E(G)

xe = k

⎫⎬
⎭ .

Again, if G is bipartite, then MPk(G) = FMPk(G). Finally, let ν(G) be the size of
the largest matching in G.

Theorem 2.11 (M. Lelarge [38]) For a vector x ∈ [0, 1]E let

FG(x) =
∑
e∈E

(−xe ln xe + (1 − xe) ln(1 − xe)) −
∑

v∈V (G)

(
1 −

∑
e:v∈e

xe

)
ln

(
1 −

∑
e:v∈e

xe

)
.

Then for any bipartite graph G and λ ≥ 0 we have

ln M(G,λ) ≥ max
x∈MP(G)

⎧⎨
⎩

⎛
⎝ ∑

e∈E(G)

xe

⎞
⎠ ln λ + FG(x)

⎫⎬
⎭ .

Furthermore, for all k < ν(G) we have

mk(G) ≥ bν(G),k

(
k

ν(G)

)
exp

(
max

x∈MPk (G)
FG(x)

)
,

where bn,k(p) = (n
k

)
pk(1 − p)n−k , that is, the probability that a binomial random

variable Bin(n, p) takes the value k.

This theorem has a counterpart for permanents. For a non-negative matrix A of
size n by n let

allper(A) =
∑

|I |=|J |
per(AI,J ),

where AI,J is the submatrix of A induced by the rows I and J .
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Theorem 2.12 (M. Lelarge [38]) Let A be a non-negative matrix of size n by n. Let
SDSn be the set of non-negative matrices such that in each row and each column the
sum of the elements is at most 1. For B ∈ SDSn let

Bi,0 = 1 −
n∑

j=1

Bi, j and B0, j = 1 −
n∑

i=1

Bi, j ,

and

FA(B) =
∑

1≤i, j≤n

Bi j ln
Ai j

B2
i j

+
n∑

i=1

Bi0 ln
1

Bi0
+

n∑
j=1

B0 j ln
1

B0 j

+
∑

1≤i, j≤n

(Bi j ln Bi j + (1 − Bi j ) ln(1 − Bi j )).

Then for any non-negative matrix A we have

allper(A) ≥ sup
B∈SDSn

exp(FA(B))

Remark 2.13 Theorems 2.6 and 2.12 are special cases of a more general phe-
nomenon. Permanents, the number of matchings or the number of homomorphisms
of graphs can be expressed as partition functions of so-called graphical models. To
a graphical model one can associate two objects: the partition function Z(G) and
the Bethe partition function Z B(G). There is no general inequality between them,
but in certain cases Z(G) ≥ Z B(G). This happens for attractive graphical models
[44], and for certain bipartite graphical models [49]. In Theorems 2.6 and 2.12 Z(G)

appears on the left hand side, and Z B(G) on the right hand side. For more details on
this subject see [44, 49].

3 Graph Limits and Examples

In the previous section we have seen that Gd(p) = λTd (p) gives a lower bound on
λG(p) if G is a d–regular bipartite graph. This establishes a claim to handle infinite
graphs and connect them to the theory of finite graphs. This is exactly the goal
of this section. In what follows we introduce the concept of Benjamini–Schramm
convergence with some examples. Before we define this concept one more remark
is in order: in this paper we will always assume that there is some Δ such that the
largest degree of any graph Gi in a given sequence of graphs is at most Δ. In such a
case we say that the graph sequence (Gi ) is a bounded-degree graph sequence. This
assumption simplifies our task significantly.
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Definition 3.1 Let L be a probability distribution on (infinite) connected rooted
graphs; we will call L a random rooted graph. For a finite connected rooted graph α
and a positive integer r , let P(L ,α, r) be the probability that the r -ball centered at
the root vertex is isomorphic to α, where the root is chosen from the distribution L .

For a finite graph G, a finite connected rooted graph α and a positive integer r ,
let P(G,α, r) be the probability that the r -ball centered at a uniform random vertex
of G is isomorphic to α.

We say that a bounded-degree graph sequence (Gi ) is Benjamini–Schramm con-
vergent if for all finite rooted graphs α and r > 0, the probabilities P(Gi ,α, r)

converge. Furthermore, we say that (Gi ) Benjamini–Schramm converges to L , if for
all positive integers r and finite rooted graphs α, P(Gi ,α, r) → P(L ,α, r).

The Benjamini–Schramm convergence is also called local convergence as it pri-
marily grasps the local structure of the graphs (Gi ).

Note that if (Gi ) is a sequence of d–regular graphs such that the girth g(Gi ) tends
to infinity, then it is Benjamini–Schramm convergent and we can even see its limit
object: the rooted infinite d-regular tree Td , so the corresponding random rooted
graph L is simply the distribution which takes a rooted infinite d-regular tree with
probability 1. When L is a certain rooted infinite graph with probability 1, then we
simply say that this rooted infinite graph is the limit without any further reference
on the distribution.

There are other very natural graph sequences that are Benjamini–Schramm con-
vergent, for instance if we take larger and larger boxes in the d-dimensional grid Zd ,
then it will converge to the rooted Z

d .
The following problem is one of the main problems in the area, and will be

especially crucial for us.

Problem. For which graph parameters p(G) is it true that the sequence (p(Gi ))
∞
i=1

convergeswhenever the graph sequence (Gi )
∞
i=1 is Benjamini–Schrammconvergent?

The problem in such a generality is intractable, but there are various tools to attack
it in special cases. One of the most popular tools is the so-called belief propagation.
For matchings we will use another way to attack this problem using certain empirical
measures called matching measures.

Concerning the general problem the reader might wish to consult with the papers
[7, 17–19, 47, 48] and the book [40] and the references therein.

4 A Proof Strategy

We have seen in Sect. 2 that many results suggest that the extremal graph for match-
ings is not finite but the infinite d–regular tree. This raises the question: how can we
attack a problem if we conjecture that the d–regular tree is the extremal graph for a
given graph parameter:
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Problem: Given a graph parameter p(G). We would like to prove that among d–
regular graphs we have

p(G) ≥ p(Td).

Proof (A possible two-step solution.)

• Find a graph transformation ϕ for which p(G) ≥ p(ϕ(G)), and for every graph
G there exists a sequence of graphs (Gi ) such that G = G0 and Gi = ϕ(Gi−1),
and Gi → Td .

• Show that if (Gi ) is Benjamini–Schramm-convergent, then p(Gi ) is convergent,
and compute p(Td). (Or at least, show it in the case of Gi → Td .) Then

p(G) = p(G0) ≥ p(G1) ≥ p(G2) ≥ · · · ≥ p(Td).

Concerning the first step we will be more explicit: it seems that the 2-lift transfor-
mation can be used in a wide range of problems. Experience shows that the second
step can be the most difficult, but the first step can also be tricky. Nevertheless, in
the special case when we only consider a graph sequence converging to Td , there
are many available tools: see for instance the paper of D. Gamarnik and D. Katz
[24]. If p(G) = ln τ (G)/v(G), where τ (G) denotes the number of spanning trees,
then the second step is carried out in [41], and B. McKay proved [43] that p(G)

is maximized by the d–regular infinite tree among d–regular graphs. However, to
prove McKay’s result with our approach, the first step requires some modification. If
p(G) = ln I (G)/v(G), where I (G) denotes the number of independent sets, then the
first step is very easy for d-regular bipartite graphs, while the second step concerning
the limit theorem was established by A. Sly and N. Sun [47].

In this section we demonstrate this approach by sketching the proof of Theo-
rem 2.10. In the following sections we study each step separately.

4.1 First Step: Graph Transformation

In this section we introduce the concept of 2-lift (Fig. 1).

Definition 4.1 A k-cover (or k-lift) H of a graph G is defined as follows. The vertex
set of H is V (H) = V (G) × {0, 1, . . . , k − 1}, and if (u, v) ∈ E(G), thenwe choose
a perfect matching between the vertices (u, i) and (v, j) for 0 ≤ i, j ≤ k − 1. If
(u, v) /∈ E(G), then there are no edges between (u, i) and (v, j) for 0 ≤ i, j ≤ k − 1.

When k = 2 one can encode the 2-lift H by putting signs on the edges of the graph
G: the + sign means that we use the matching ((u, 0), (v, 0)), ((u, 1), (v, 1)) at the
edge (u, v), the− signmeans thatweuse thematching ((u, 0), (v, 1)), ((u, 1), (v, 0))
at the edge (u, v). For instance, if we put + signs to every edge, then we simply get
G ∪ G as H , and if we put − signs everywhere, then the obtained 2-cover H is
simply G × K2.

The following result will be crucial for our argument.
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Fig. 1 A 2-lift

Lemma 4.2 (N. Linial [39]) For any graph G, there exists a graph sequence (Gi )
∞
i=0

such that G0 = G, Gi is a 2-lift of Gi−1 for i ≥ 1, and g(Gi ) → ∞, where g(H) is
the girth of the graph H, that is, the length of the shortest cycle. In particular, if G0

is d–regular, then Gi → Td .

Proof It is clear that if H ′ is a 2-lift of H , then g(H ′) ≥ g(H). Hence it is enough to
show that for every H there exists an H ′′ obtained from H by a sequence of 2-lifts
such that g(H ′′) > g(H). We show that if the girth g(H) = k, then there exists a
lift of H with fewer k-cycles than H . Let X be the random variable counting the
number of k-cycles in a random 2-lift of H . Every k-cycle of H lifts to two k-cycles
or a 2k-cycle with probability 1/2 each, so EX is exactly the number of k-cycles of
H . But H ∪ H has two times as many k-cycles than H , so there must be a lift with
strictly fewer k-cycles than H has. Choose this 2-lift and iterate this step to obtain
an H ′′ with girth at least k + 1. �

Note that if G is a bipartite d–regular graph, and H is a 2-lift of G, then H is
again a d–regular bipartite graph.

The following theorem shows that the first step of the plan works for matchings
of bipartite graphs.

Theorem 4.3 Let G be a graph, and let H be an arbitrary 2-lift of G. Then

mk(H) ≤ mk(G × K2),

where mk(.) denotes the number of matchings of size k.
In particular, if H = G ∪ G, then mk(G ∪ G) ≤ mk(G × K2) for every k. It fol-

lows that pm(G)2 ≤ pm(G × K2).
Furthermore, if G is a bipartite graph and H is a 2-lift of G, then

ln M(G,λ)

v(G)
= ln M(G ∪ G, t)

v(G ∪ G)
≥ ln M(H,λ)

v(H)
,
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where M(G,λ) = ∑
k mk(G)λk . (Note that M(G ∪ G,λ) = M(G,λ)2.)

Proof Let M be any matching of a 2-lift of G. Let us consider the projection of M
to G, then it will consist of cycles, paths and “double-edges” (i.e, when two edges
project to the same edge). Let R be the set of these configurations. Then

mk(H) =
∑
R∈R

|φ−1
H (R)|

and
mk(G × K2) =

∑
R∈R

|φ−1
G×K2

(R)|,

where φH and φG×K2 are the projections from H and G × K2 to G. Note that

|φ−1
G×K2

(R)| = 2k(R),

where k(R) is the number of cycles and paths of R. Indeed, in each cycle or path we
can lift the edges in two different ways. The projection of a double-edge is naturally
unique. On the other hand,

|φ−1
H (R)| ≤ 2k(R),

since in each cycle or path if we know the inverse image of one edge, then we
immediately know the inverse images of all other edges. Clearly, there is no equality
in general for cycles. Hence

|φ−1
H (R)| ≤ |φ−1

G×K2
(R)|

and consequently,
mk(H) ≤ mk(G × K2).

Note that if G is bipartite, then G × K2 = G ∪ G, and so

1

v(H)
ln M(H,λ) ≤ 1

v(G ∪ G)
ln M(G ∪ G,λ) = 1

v(G)
ln M(G,λ).

This finishes the proof. �

Remark 4.4 In certain cases it is also possible to prove that for a graph parameter
p(·) one has p(G) ≥ p(H) for all k-cover H of G. Such a result was given by N.
Ruozzi in [44] for attractive graphicalmodels. The advantage of using k-covers is that
one can spare the graph limit step in the above approach, and replace it with a much
simpler averaging argument over all k-covers of G with k converging to infinity.
For homomorphisms this averaging argument was given by P. Vontobel [51]. For
matchings such a result was established by C. Greenhill, S. Janson and A. Ruciński
[26].
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4.2 Second Step: Graph Limit Theory

In this subsection we carry out the second step of our plan. First we develop the
necessary terminology.

Recall that if G = (V, E) is a finite graph, then v(G) denotes the number of
vertices, and mk(G) denotes the number of k-matchings (m0(G) = 1). Let

μ(G, x) =
	v(G)/2
∑

k=0

(−1)kmk(G)xv(G)−2k .

We call μ(G, x) the matching polynomial. Clearly, the matching generating func-
tion M(G,λ) introduced in Sect. 2 and the matching polynomial encode the same
information.

The following theorem is crucial in the development of the theory of matching
measure.

Theorem 4.5 (O. J. Heilmann and E. H. Lieb [32]) The zeros of the matching
polynomial μ(G, x) are real, and if the largest degree Δ is greater than 1, then all
zeros lie in the interval [−2

√
Δ − 1, 2

√
Δ − 1].

Now we introduce a key concept of this theory, the matching measure.

Definition 4.6 (M. Abért, P. Csikvári, P. E. Frenkel, G. Kun [1]) The matching
measure of a finite graph G is defined as

ρG = 1

v(G)

∑
zi : μ(G,zi )=0

δ(zi ),

where δ(s) is the Dirac-delta measure on s, and we take every zi into account with
its multiplicity. In other words, it is the uniform distribution on the zeros of μ(G, x).

Example: Let us consider the matching measure of the cycle on 6-vertices, C6.

μ(C6, x) = x6 − 6x4 + 9x2 − 2 =

=
(

x − √
2
) (

x + √
2
) (

x −
√
2 + √

3

) (
x +

√
2 + √

3

) (
x −

√
2 − √

3

)(
x +

√
2 − √

3

)
.

Hence ∫
f (z) dρC6(z) =

1

6

(
f
(√

2
)

+ f
(
−√

2
)

+ f

(√
2 + √

3

)
+ f

(
−

√
2 + √

3

)
+ f

(√
2 − √

3

)
+ f

(
−

√
2 − √

3

))
.
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The following theorem enables us to consider the matching measure of a unimod-
ular random graph which can be obtained as a Benjamini–Schramm limit of finite
graphs. In particular, it provides an important tool to establish the second step in our
plan.

Theorem 4.7 (M. Abért, P. Csikvári, P. E. Frenkel, G. Kun [1]) Let (Gi ) be a
Benjamini–Schramm convergent bounded degree graph sequence. Let ρGi be the
matching measure of the graph Gi . Then the sequence (ρGi ) is weakly convergent,
that is, there exists some measure ρG such that for every bounded continuous function
f , we have

lim
i→∞

∫
f (z) dρGi (z) =

∫
f (z) dρG(z).

Theorem 4.7 is originated in the work of M. Abért and T. Hubai [3]. They showed
a similar result for measures arising from the chromatic polynomial. This result
has been generalized to a wide class of graph polynomials including the chromatic
polynomial and thematching polynomial by P.Csikvári andP. E. Frenkel [14]. It turns
out that for the matching polynomial, one does not need to use this general theorem
as it also follows from a result of C. Godsil [25], for details see [2]. Theorem 4.5
asserts that the matching measure is supported on a bounded interval. Then to show
that ρGi is weakly convergent, it is enough to show that for every fixed k the sequence∫

zk dρGi (z) is convergent. For many graph polynomials one can show that knowing
only the statistics of the k-balls already determines this integral. For instance, for
the matching polynomial the integral is directly related to the enumeration of the
so-called tree-like walks of length k, see [25]. A better-known example is that for
the spectral measure, that is, the probability measure of uniform distribution on the
eigenvalues of the adjacency matrix of the graph, this integral is determined by the
number of closed walks of length k.

To illustrate the power of Theorem 4.7, let us consider an application that also
provides us the second step of our plan.

Theorem 4.8 (M. Abért, P. Csikvári, T. Hubai [2]) Let (Gi ) be a Benjamini–
Schramm convergent graph sequence of bounded degree graphs. Then the sequences
of functions

ln M(Gi ,λ)

v(Gi )

is pointwise convergent.

Proof If G is a graph on v(G) = 2n vertices and

M(G,λ) =
v(G)/2∏

i=1

(1 + γiλ),
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then

μ(G, x) =
v(G)/2∏

i=1

(x − √
γi )(x + √

γi ).

Thus

ln M(G,λ)

v(G)
= 1

v(G)

v(G)/2∑
i=1

ln(1 + γiλ) =
∫

1

2
ln(1 + λz2) dρG(z).

Since 1
2 ln(1 + λz2) is a continuous function for every fixed positive λ, the theorem

immediately follows from Theorem 4.7. �

It is worth introducing the notation

pλ(G) = ln M(G,λ)

v(G)
.

We can even introduce pλ(G) if G is a Benjamini–Schramm-limit of sequence of
finite graphs (Gi ). (In fact, it is possible to define the function pλ(G) even if G is not
the Benjamini–Schramm-limit of finite graphs.) In particular, we can speak about
pλ(Td).

If we know the matching measure of a random unimodular graph, then it is just a
matter of computation to derive various results on matchings.

In the particular case when the sequence (Gi ) converges to the infinite d–regular
tree Td , the limit measure ρTd turns out to be the so-called Kesten–McKay measure.
It is true in general that for any finite tree or infinite random rooted tree the matching
measure coincides with the so-called spectral measure, for details see [1]. In partic-
ular, this is true for the infinite d–regular tree Td . Its spectral measure is computed
explicitly in the papers [36, 42]. The Kesten–McKay measure is given by the density
function

fd(x) = d
√
4(d − 1) − x2

2π(d2 − x2)
χ[−ω,ω],

where ω = 2
√

d − 1. Hence for any continuous function h(z) we have

∫
h(z) dρTd (z) =

∫ ω

−ω

h(z) fd(z) dz.

In particular,

pλ(Td) =
∫

1

2
ln(1 + λz2) dρTd (z) = 1

2
ln Sd(λ),
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where

Sd(λ) = 1

η2
λ

(
d − 1

d − ηλ

)d−2

and ηλ =
√
1 + 4(d − 1)λ − 1

2(d − 1)λ
.

It is worth introducing the following substitution:

λ =
p
d

(
1 − p

d

)
(1 − p)2

.

As p runs through the interval [0, 1), λ runs through the interval [0,∞) and we have

ηλ = 1 − p

1 − p
d

and Sd(λ) =
(
1 − p

d

)d

(1 − p)2
.

One can also prove that

λTd (p) = 1

2

(
p ln

(
d

p

)
+ (d − p) ln

(
1 − p

d

)
− 2(1 − p) ln(1 − p)

)
.

Remark 4.9 Instead of using measures one can use belief propagation to establish
the convergence of certain graph parameters. For instance, M. Lelarge [38] used this
method to prove Theorems 2.11 and 2.12. In general, one can choose the sequence
G = G0, G1, . . . of covering graphs such that the sequence (Gi ) converges to the
universal cover tree of G. The advantage of belief propagation over matching mea-
sures is that it is not always easy to compute the matching measure of such a tree.
On the other hand, when it is possible to compute the limiting measure, integration
yields a wide variety of results without any difficulty.

4.3 The End of the Proof of Theorem 2.10

For every sequence of 2-covers we know from Theorem 4.3 that

pλ(G0) ≥ pλ(G1) ≥ pλ(G2) ≥ pλ(G3) ≥ . . .

Furthermore, fromTheorems 4.2 and 4.8we know thatwe can choose the sequence of
2-covers such that the sequence pλ(Gi ) converges to pλ(Td), hence pλ(G) ≥ pλ(Td)

for any d–regular bipartite graph G. In other words,

1

2n
ln M(G,λ) ≥ 1

2
ln Sd(λ).
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With the substitution λ = p
d (1− p

d )
(1−p)2

we obtain the inequality

M

(
G,

p
d

(
1 − p

d

)
(1 − p)2

)
≥ 1

(1 − p)2n

(
1 − p

d

)n
.

After multiplying by (1 − p)2n , we get that

n∑
k=0

mk(G)
( p

d

(
1 − p

d

))k
(1 − p)2(n−k) ≥

(
1 − p

d

)nd
.

This is true for all p ∈ [0, 1) and so by continuity it is also true for p = 1, where it
directly reduces to Schrijver’s theorem since all but the last term vanish on the left
hand side.

5 Perfect Matchings of Vertex-Transitive Bipartite Graphs
and Lattices

The starting point of this section is the following theoremofR.Kenyon,A.Okounkov,
S. Sheffield [35]. We will not be able to fully understand this theorem as we did not
define the characteristic function of a lattice. On the other hand, we can see that this
theorem provides a sufficient condition ensuring the convergence of

lim
i→∞

ln pm(Gi )

v(Gi )

for a given graph sequence (Gi ). Moreover, it also provides a way of computing this
limit explicitly (as long as we accept an integral as an explicit expression).

Theorem 5.1 (R. Kenyon, A. Okounkov, S. Sheffield [35]) Let G be a Z
2-periodic

bipartite planar graph, and let Gi be the quotient graph of G by the action of iZ2.
Let P(z, w) be the characteristic function of G. Assume that P(z, w) has a finite
number of zeros on the unit torus T2 = {(z, w) ∈ C

2 : |z| = |w| = 1}. Then

lim
i→∞

ln pm(Gi )

v(Gi )
= 1

(2πi)2

∫
T2
ln P(z, w)

dz

z

dw

w
.

To help one understand the setting of this theorem we provide a figure of the
square-octagon lattice, and its quotient graph by the action of (4Z)2. The fundamental
domain is given by the dotted lines (Fig. 2).
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Fig. 2 The 4–8 lattice

Fig. 3 Boxes, Aztec diamonds and modified Aztec diamonds

In particular cases, the characteristic function P(z, w) can be computed (but not
the integral!). For instance, for the square-octagon graph we have

P(z, w) = z + 1

z
+ w + 1

w
+ 5.

This theorem naturally raises the question why we needed such a special graph
sequence, why did we simply not choose larger and larger subgraphs of the lattice?
The problem is that in case of perfect matchings the boundary of the graph heavily
affects the number of perfect matchings. Let us look at the following three sequences
of graphs. All of them are Benjamini–Schramm convergent to Z2 (Fig. 3).

The first graph sequence is the sequence of boxes Bi (the graph B8 is depicted
in the figure). A classical result of Kasteleyn [34] and independently Fisher and
Temperley [50] claims that

lim
i→∞

ln pm(Bi )

v(Bi )
= 1

π

∞∑
k=0

(−1)k

(2k + 1)2
≈ 0.291.
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The second sequence of graphs are called Aztec diamonds, A4 is depicted in the
figure. A surprising fact due to N. Elkies, G. Kuperberg, M. Larsen and J. Propp [20]
is that for all i we have

pm(Ai ) = 2i(i+1)/2.

Therefore,

lim
i→∞

ln pm(Ai )

v(Ai )
= ln pm(Ai )

v(Ai )
= ln 2

4
≈ 0.173.

In the third sequence, we slightly modify the Aztec diamonds. Now it turns out that
pm(Di ) = 1 for all i , since one has to include the dotted edges in the perfectmatching
and this completely determines the whole perfect matching. Hence

lim
i→∞

ln pm(Di )

v(Di )
= ln pm(Di )

v(Di )
= 0.

This example shows that some nice boundary conditions are required for the graphs
appearing in our convergent graph sequence. Unfortunately, it is unclear what would
be such a boundary condition for nonplanar graph. One way to overcome this diffi-
culty is to consider vertex-transitive bipartite graphs.

Theorem 5.2 ([12]) Let (Gi ) be a Benjamini–Schramm convergent sequence of
vertex-transitive bipartite graphs. Then the sequence

ln pm(Gi )

v(Gi )

is convergent.

One might wonder whether vertex-transitivity is really necessary or it suffices to
assume regularity. The next theorem shows that regularity is actually not sufficient.

Theorem 5.3 (M.Abért, P.Csikvári, P. E. Frenkel,G.Kun [1]) Fix d ≥ 3. Then there
exists a sequence of d–regular bipartite graphs (Gi ) such that (Gi ) is Benjamini–
Schramm convergent and

ln pm(Gi )

v(Gi )

is not convergent.

Let us see what goes wrong with the proof of Theorem 4.8 if we apply it to perfect
matchings. If G is a graph on v(G) = 2n vertices and

M(G,λ) =
v(G)/2∏

i=1

(1 + γiλ),
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then

μ(G, x) =
v(G)/2∏

i=1

(x − √
γi )(x + √

γi ),

and therefore

ln pm(G)

v(G)
= 1

v(G)

v(G)/2∑
i=1

ln(γi ) =
∫

ln |z| dρG(z).

Now we see that ln |z| is not a bounded continuous function and this causes the
problem.

On the other hand, we also see that the situation is not as bad as one might have
previously thought. The function ln |z| is only discontinuous at 0. If we could prove
that only a small measure is supported on the neighborhood of 0, then it would
immediately resolve our problem. This is exactly the case when we consider vertex-
transitive bipartite graphs.

Theorem 5.4 ([12]) Let G be a d-regular vertex-transitive bipartite graph on 2n
vertices, and

M(G, t) =
n∏

i=1

(1 + γi t),

where γ1 ≤ γ2 ≤ · · · ≤ γn. Then

γk(G) ≥ d2

d − 1

k2

4n2
.

Consequently,

ρG([−s, s]) ≤ 2
√

d − 1

d
s

for all s ∈ R.

For vertex-transitive graphs one can also extend certain extremal graph theoretic
results. For instance, the following theorem is a strengthened form of the fact that
the infinite d–regular tree plays the role of the extremal graph for regular bipartite
graphs.

Theorem 5.5 ([12]) Let G be a finite d–regular vertex-transitive bipartite graph,
where d ≥ 2. Furthermore, let the gap function g(p) be defined as

g(p) = λG(p) − Gd(p).

Then g(p) is a monotone increasing function with g(0) = 0, and hence g(p) is non-
negative. Furthermore, if G contains an �-cycle, then
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g(p) ≥
∫ p

0
f (x)� dx,

where

f (x) = 1

4d
min(x, (1 − x)2).

5.1 Computational Results

In statistical physics matchings of large and infinite graphs are studied under the
name monomer-dimer model. Let Bn be a box of size n × n × · · · × n in Zd , and let
M(Bn) be the number of all matchings in Bn . It has been known for a long time that
the limit

λ̃(Zd) := lim
n→∞

ln M(Bn)

v(Bn)

exists. When we count only perfect matchings, then the corresponding model is
called the dimer model:

λ(Zd) := lim
2|n, n→∞

ln pm(Bn)

v(Bn)
.

The quantities λ̃(Zd) and λ(Zd) are called monomer-dimer and dimer free energies.
The computation of monomer-dimer and dimer free energies has a long history.

The precise value is known only in very special cases. Such an exceptional case is
the Fisher-Kasteleyn-Temperley formula [34, 50] for the dimer model on Z2. There
is no such exact result for monomer-dimer models if d ≥ 2. The first approach for
getting estimates was the use of the transfer matrix method. Hammersley [29, 30],
Hammersley and Menon [31] and Baxter [5] obtained the first (non-rigorous) esti-
mates for the free energy.ThenFriedland andPeled [23] proved the rigorous estimates
0.6627989727 ± 10−10 for d = 2 and the range [0.7653, 0.7863] for d = 3. Here the
upper bounds were obtained by the transfer matrix method, while the lower bounds
relied on the Friedland-Tverberg inequality. The lower bound in the Friedland-Peled
paper was subsequently improved by newer and newer results (see e.g. [21]) on
Friedland’s asymptotic matching conjecture which was finally proved by L. Gurvits
[28]. Meanwhile, a non-rigorous estimate [0.7833, 0.7861] was obtained via matrix
permanents [33]. Concerning rigorous results, the most significant improvement was
obtained recently by D. Gamarnik and D. Katz [24] via their new method which they
called sequential cavity method. They obtained the range [0.78595, 0.78599]. More
precise but non-rigorous estimates can be found in [10]. This paper usesMayer-series
with many coefficients computed in the expansion. The related paper [9] may lead
to further development through the so-called Positivity conjecture of the authors.
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Here we give some computational results arising from estimating certain integrals
along matching measures.

Theorem 5.6 ([2]) We have

λ̃(Z3) = 0.7859659243 ± 9.88 · 10−7,

λ̃(Z4) = 0.8807178880 ± 5.92 · 10−6.

λ̃(Z5) = 0.9581235802 ± 4.02 · 10−5.

The bounds on the error terms are rigorous.

6 Dense Graphs and Matchings

It is possible to extend several ideas of this paper to dense graph limits. Here we
assume some partial familiarity with the theory of dense graph limits. We only
mention some simple results.

Theorem 6.1 Suppose that (Gn) is a sequence of graphs convergent in the dense
model. Let πn be the uniform probability measure on roots of the matching polynomial
μ(Gn, x). Then the rescaled measures 1√

v(Gn)
· πn converge weakly.

In particular, this allows us to associate “matching measures” to graphons. For
instance, with this method one can prove the following result for the constant p
graphon, in other words, the limiting distribution of Erdős–Rényi random graphs.
This result was independently and prior proved in [11].

Theorem 6.2 ([11, 15]) Let p ∈ (0, 1), and let (Gn)n be a sequence of Erdős–Rényi
random graphs Gn ∼ Gn,p. Let πn be the uniform probability distribution on the roots
of the matching polynomial of Gn. Then almost surely, the measures λn := 1√

n
πn

converge weakly to the semicircle distribution SC p whose density function is

ρp(x) := 1

2π

√
4 − x2

p , −2p ≤ x ≤ 2p .
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