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Abstract The (m, n)-online Ramsey game is a combinatorial game between two
players, Builder and Painter. Starting from an infinite set of isolated vertices, Builder
draws an edge on each turn and Painter immediately paints it red or blue. Builder’s
goal is to force Painter to create either a red Km or a blue Kn using as few turns
as possible. The online Ramsey number r̃(m, n) is the minimum number of edges
Builder needs to guarantee a win in the (m, n)-online Ramsey game. By analyzing
the special case where Painter plays randomly, we obtain an exponential improve-
ment r̃(n, n) ≥ 2(2−√

2)n+O(1) for the lower bound on the diagonal online Ramsey
number, as well as a corresponding improvement r̃(m, n) ≥ n(2−√

2)m+O(1) for the
off-diagonal case, where m ≥ 3 is fixed and n → ∞. Using a different randomized
Painter strategy, we prove that r̃(3, n) = �̃(n3), determining this function up to a
polylogarithmic factor. We also improve the upper bound in the off-diagonal case for
m ≥ 4. In connection with the online Ramsey game with a random Painter, we study
the problem of finding a copy of a target graph H in a sufficiently large unknown
Erdős–Rényi random graph G(N , p) using as few queries as possible, where each
query reveals whether or not a particular pair of vertices are adjacent. We call this
problem the Subgraph Query Problem. We determine the order of the number of
queries needed for complete graphs up to five vertices and prove general bounds for
this problem.
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1 Introduction

The Ramsey number r(m, n) is the minimum integer N such that every red/blue-
coloring of the edges of the complete graph KN on N vertices contains either a
red Km or a blue Kn . Ramsey’s theorem guarantees the existence of r(m, n) and
determining or estimating Ramsey numbers is a central problem in combinatorics.
Classical results of Erdős–Szekeres and Erdős imply that 2n/2 ≤ r(n, n) ≤ 22n for
n ≥ 2. The only improvements to these bounds over the last seventy years have been
to lower order terms (see [9, 26]), with the best known lower bound coming from an
application of the Lovász local lemma [14].

Off-diagonal Ramsey numbers, where m is fixed and n tends to infinity, have
also received considerable attention. In progress that has closely mirrored and often
instigated advances on the probabilistic method, we now know that

r(3, n) = �(n2/ log n).

The lower bound here is due to Kim [21] and the upper bound to Ajtai, Komlós
and Szemerédi [1]. Recently, Bohman and Keevash [8] and, independently, Fiz Pon-
tiveros, Griffiths and Morris [18] improved the constant in Kim’s lower bound via
careful analysis of the triangle-free process, determining r(3, n) up to a factor of
4 + o(1).

More generally, for m ≥ 4 fixed and n growing, the best known lower bound is

r(m, n) = �m(n
m+1
2 /(log n)

m+1
2 − 1

m−2 ),

proved by Bohman and Keevash [7] using the H -free process, while the best upper
bound in this setting is

r(m, n) = Om(nm−1/(log n)m−2),

again due to Ajtai, Komlós and Szemerédi [1]. Here the subscripts denote the vari-
able(s) that the implicit constant is allowed to depend on.

There are many interesting variants of the classical Ramsey problem. One such
variant is the size Ramsey number r̂(m, n), defined as the smallest N for which there
exists a graph G with N edges such that every red/blue-coloring of the edges of G
contains either a red Km or a blue Kn . It was shown by Chvátal (see Theorem 1 in
the foundational paper of Erdős, Faudree, Rousseau and Schelp [13]) that r̂(m, n) is
just the number of edges in the complete graph on r(m, n) vertices, that is,
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r̂(m, n) =
(
r(m, n)

2

)
.

Wewill be concernedwith amuch-studied game-theoretic variant of the sizeRam-
sey number, introduced independently by Beck [4] and by Kurek and Ruciński [25].
The (m, n)-online Ramsey game is a game between two players, Builder and Painter,
on an infinite set of initially isolated vertices. Each turn, Builder places an edge
between two nonadjacent vertices and Painter immediately paints it either red or
blue. The online Ramsey number r̃(m, n) is then the smallest number of turns N that
Builder needs to guarantee the existence of either a red Km or a blue Kn .

It is a simple exercise to show that r̃(m, n) is related to the usual Ramsey number
r(m, n) by

1

2
r(m, n) ≤ r̃(m, n) ≤

(
r(m, n)

2

)
. (1)

In the diagonal case, the upper bound in (1) has been improved by Conlon [10], who
showed that for infinitely many n,

r̃(n, n) ≤ 1.001−n

(
r(n, n)

2

)
.

The main result of this paper is a new lower bound for online Ramsey numbers.

Theorem 1.1 If, for some m, n, N ≥ 1, there exist p ∈ (0, 1), c ≤ 1
2m, and d ≤ 1

2n
for which

p(
m
2)−c(c−1)(2N )m−c + (1 − p)(

n
2)−d(d−1)(2N )n−d ≤ 1

2
,

then r̃(m, n) > N.

In particular, if r̃(n) := r̃(n, n) is the diagonal online Ramsey number, Theo-
rem 1.1 can be used to improve the classical bound r̃(n) ≥ 2n/2−1 by an exponential
factor. Indeed, taking p = 1

2 and c = d ≈ (1 − 1√
2
)n in Theorem 1.1, we get the

following immediate corollary.

Corollary 1.2 For the diagonal online Ramsey numbers r̃(n),

r̃(n) ≥ 2(2−√
2)n−O(1).

As for the off-diagonal case, when m is fixed and n → ∞, Theorem 1.1 can be
also used to substantially improve the best-known lower bound. In this case, we take
c ≈ (1 − 1√

2
)m, d = 0, and p = C m log n

n for a sufficiently large C > 0 to obtain the
following corollary.

Corollary 1.3 For fixed m ≥ 3 and n sufficiently large in terms of m,

r̃(m, n) ≥ n(2−√
2)m−O(1).
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For general m, Corollary 1.3 gives the best known lower bounds for the off-
diagonal online Ramsey number. However, it is possible to do better for m = 3 by
using a smarter Painter strategy which deliberately avoids building red triangles.

Theorem 1.4 For n → ∞,

r̃(3, n) = �

(
n3

log2 n

)
.

Roughly speaking, Painter’s strategy is to paint every edge blue initially, but
to switch to painting randomly if both endpoints of a freshly built edge have high
degree. Also, when presentedwith an edge that would complete a red triangle, Painter
always paints it blue. The bound given in Theorem 1.4 is n times the bound on the
usual Ramsey number that comes from applying the Lovász Local Lemma [14].
However, our argument is closer in spirit to an earlier proof of the same bound given
by Erdős [12] using alterations. This method for lower bounding r(3, n) was later
generalized to all r(m, n) by Krivelevich [22] and we suspect that Theorem 1.4 can
be generalized to r̃(m, n) in the same way.

In the other direction, we prove a new upper bound on the off-diagonal online
Ramsey number.

Theorem 1.5 For any fixed m ≥ 3,

r̃(m, n) = Om

(
nm

(log n)	m/2
−1

)
.

In particular, note that Theorems 1.4 and 1.5 determine the asymptotic growth
rate of r̃(3, n) up to a polylogarithmic factor, namely,

�

(
n3

log2 n

)
≤ r̃(3, n) ≤ O

(
n3

)
.

Theorem 1.5 has a similar flavor to the improvement on diagonal online Ramsey
numbersmade by the first author [10] andwork on the so-called vertex onlineRamsey
numbers due toConlon, Fox and Sudakov [11]. It is obtained by adapting the standard
Erdős–Szekeres proof of Ramsey’s theorem to the online setting and applying a
classical result of Ajtai, Komlós and Szemerédi [1] bounding r(m, n).

In order to prove Theorem 1.1, we specialize to the case where Painter plays
randomly. This is sufficient because Builder, who we may assume has unlimited
computational resources, will always respond in the best possiblemanner to Painter’s
moves. Therefore, if a random Painter can stop this perfect Builder from winning
within a certain number of moves with positive probability, an explicit strategy exists
by which Painter can delay the game up to this point. This motivates the following
key definition.



Online Ramsey Numbers and the Subgraph Query Problem 163

Definition 1.6 For m, n ≥ 3 and p ∈ (0, 1), define r̃(m, n; p) to be the number of
turns Builder needs to win the (m, n)-online Ramsey game with probability at least
1
2 against a Painter who independently paints each edge red with probability p and
blue with probability 1 − p. The online random Ramsey number r̃rand(m, n) is the
maximum value of r̃(m, n; p) over p ∈ (0, 1).

We note that there is a rich literature on simplifying the study of various combi-
natorial games by specializing to the case where one or both players play randomly
(see [5, 20, 23]). For example, a variant of the online Ramsey game with random
Builder instead of random Painter was studied by E. Friedgut, Y. Kohayakawa, V.
Rödl, A. Ruciński and P. Tetali [19].

We make the following conjectures about the growth rate of r̃rand(m, n).

Conjecture 1.7 (a) The diagonal online random Ramsey numbers satisfy

r̃rand(n, n) = 2(1+o(1)) 2
3 n.

(b) The off-diagonal online random Ramsey numbers (m ≥ 3 fixed and n → ∞)
satisfy

r̃rand(m, n) = n(1+o(1)) 2
3m .

These conjectures are motivated by a connection with another problem, which we
now describe.

Let p ∈ (0, 1) be a fixed probability and suppose Builder plays the following
one-player game, which we call the Subgraph Query Game, on the random graph
G(Z, p) with infinitely many vertices. The edges of the graph are initially hidden.
At each step, Builder queries a single pair of vertices and is told whether the pair is
an edge of the graph or not. Equivalently, the graph starts out empty and each edge is
successfully built by Builder with probability p (each edge may be queried at most
once). In what follows, we use the terms “query” and “build” interchangeably.

Builder’s goal is to find a copy of a given graph H in the ambient random graph
as quickly as possible. We call this problem of minimizing the number of steps in
the Subgraph Query Game the Subgraph Query Problem. When H = Km , this may
be seen as a variant of the online random Ramsey game, but where Builder is only
interested in finding a red copy of Km .

A version of this problem was studied independently by Ferber, Krivelevich,
Sudakov and Vieira [16, 17], although they were interested in querying for long
paths and cycles in G(n, p). For instance, they showed that if p ≥ log n+log log n+ω(1)

n ,
then it is possible to find a Hamiltonian cycle with high probability in G(n, p) after
(1 + o(1))n positive answers. In contrast, we are mainly interested in the setting
where H is a fixed graph to be found in a much larger random graph.

Definition 1.8 If p ∈ (0, 1), define f (H, p) to be the minimum (over all Builder
strategies) number of turns Builder needs to be able to build a copy of H with
probability at least 1/2 in the SubgraphQueryGame, if each edge is built successfully
with probability p.
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It might appear equally reasonable to study theminimumnumber of turns inwhich
one can build at least one copy of H in expectation. However, for certain H , such as
a clique Km together with many leaves off a single vertex, it is possible to describe
a strategy which has a tiny probability of successfully constructing copies of H , but
upon success immediately builds a large number of copies, attaining low success
probability but high expectation. Such a strategy is undesirable for application to
online random Ramsey numbers, so we use the first definition instead.

Conjecture 1.7 is motivated by the following conjecture regarding f (Km, p). The
upper bound in this conjecture is proved in Sect. 5.2.

Conjecture 1.9 For any m ≥ 4,

f (Km, p) = 2o(m) p− 2
3m+cm ,

where

cm =

⎧⎪⎨
⎪⎩

m
2m−3 m ≡ 0 (mod 3)
2
3 m ≡ 1 (mod 3)
2m+8
6m−3 m ≡ 2 (mod 3).

The following result shows that the Subgraph Query Problem and the online
random Ramsey game are closely related.

Theorem 1.10 For any m, n ≥ 3 and p ∈ (0, 1),

r̃(m, n; p) ≤ min{ f (Km, p), f (Kn, 1 − p)} ≤ 3r̃(m, n; p).

Using Theorem 1.10, we can show that Conjecture 1.9 implies both cases of Con-
jecture 1.7.We can also determine an approximately optimal value for the probability
parameter p in the online Ramsey game with random Painter.

Theorem 1.11 For m ≥ 3 fixed and n → ∞, there exists a p = �(m/n log(n/m))

for which
r̃rand(m, n) ≤ 3r̃(m, n; p).

We say that a graph has a k-matching if it contains k vertex-disjoint edges. Our
main result on the Subgraph Query Problem shows that graphs with large matchings
are hard to build in few steps. We write V (H) and E(H) for the vertices and edges
of H and let v(H) = |V (H)| and e(H) = |E(H)|.
Theorem 1.12 If H is a graph that contains a k-matching, then

f (H, p) = �H (p−(e(H)−k(k−1))/(v(H)−k)).

Together with the upper bound construction described in Sect. 5.2, this is enough
to settle the growth rate of f (Km, p) form ≤ 5. In particular, it proves Conjecture 1.9
for m = 4, 5.
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Theorem 1.13 The asymptotic growth rates of f (Km, p) for m = 3, 4, 5 are

f (K3, p) = �(p−3/2)

f (K4, p) = �(p−2)

f (K5, p) = �(p−8/3).

Asymptotically, k = (1 − 1/
√
2)m is the optimal k to pick in Theorem 1.12.

With this value, we get the following bound on f (Km, p) which corresponds to
Corollaries 1.2 and 1.3 in the online Ramsey number setting.

Corollary 1.14 For all m ≥ 3,

f (Km, p) = �m(p−(2−√
2)m+O(1)).

In studying the function f (H, p), we were naturally led to consider the following
function. When H is a graph with no isolated vertices, define t (H, p, N ) to be
the maximum expected number of copies of H that can be built in N moves in
the Subgraph Query Game with parameter p, the maximum taken over all possible
Builder strategies.

However, if H has isolated vertices, the expected value is zero or infinite. Instead,
if H has exactly k isolated vertices v1, . . . , vk , we define

t (H, p, N ) := (2N )k t (H\{v1, . . . , vk}, p, N )

to capture the fact that the game with N turns involves at most 2N vertices and
therefore might as well be played on 2N fixed vertices.

Studying the threshold value of N for which t (H, p, N ) ≥ 1 leads to Theo-
rem 1.12 above. Intuitively, we expect the best strategy for building a copy of H
to be the same as the one which expects to build a single copy of H in as few turns
as possible.

Another natural question about the function t (H, p, N ) is: if N is very large, what
is the maximum number of copies Builder can expect to build in the Subgraph Query
Game? Here we show that for N sufficiently large the strategy of taking O(

√
2N )

vertices and building all pairs of edges between them is asymptotically optimal for
maximising t (Km, p, N ), even though it is decidedly suboptimal for trying to build
a single copy of Km .

Theorem 1.15 For all m ≥ 2, p ∈ (0, 1), ε > 0, there exists C > 0 such that if N ≥
Cp−(2m−1)(log(p−1))2, then

t (Km, p, N ) = (1 ± ε)p(
m
2)(2N )

m
2 .

The rest of the paper is organized as follows. In Sect. 2, we motivate and prove
Theorem 1.1, our lower bound on the online Ramsey number, via the method of
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conditional expectations. In Sect. 3, we prove the lower bound Theorem 1.4 for
r̃(3, n) using a Painter strategy designed to avoid red triangles. We prove the upper
bound Theorem 1.5 in Sect. 4. Then, in Sect. 5, we study the Subgraph Query Prob-
lem for its own sake, proving the upper bound in Conjecture 1.9 as well as Theo-
rems 1.10, 1.11, 1.12, 1.13 and 1.15. We include a handful of open problems raised
by our research in the closing remarks.

Unless otherwise indicated, all logarithms are base e. For clarity of presentation,
we omit floor and ceiling signs when they are not crucial. We also do not attempt to
optimize constant factors in the proofs.

2 General Lower Bounds

2.1 Motivation

In this section, we prove Theorem 1.1 via a weighting argument, motivated by the
method of conditional expectations and a result of Alon [2] on the maximum number
of copies of a given graph H in a graph with a fixed number of edges.

The first idea, the derandomization technique known as the method of conditional
expectations (see Alon and Spencer [3]), can be used to give the following “deter-
ministic” proof of the classical lower bound on diagonal Ramsey numbers. We will
show that (

r(n, n)

n

)
2−(n2)+1 ≥ 1.

Suppose that for some N ,

(
N

n

)
2−(n2)+1 < 1. (2)

Paint the edges of KN one at a time as follows. To each vertex subset U of order
n, assign a weight w(U ) which is the probability that U becomes a monochromatic
clique if the edges which remain uncolored at that time are colored uniformly at
randomly. That is, writing e(U ) for the number of edges already colored in U ,

w(U ) =

⎧⎪⎨
⎪⎩
2−(n2)+1 e(U ) = 0

2−(n2)+e(U ) e(U ) > 0 and all colored edges in U are the same color

0 otherwise.

At every step, the total weight
∑

U w(U ) is equal to the expected number of
monochromatic cliques if the remaining edges are painted uniformly at random.
It is therefore possible to paint each edge so as not to increase the total weight. Since
the condition

∑
U w(U ) < 1 is initially guaranteed by (2), we can maintain this con-
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dition throughout the course of the game, ending with a coloring where there is no
monochromatic clique of order n.

We now wish to apply such a weighting argument to the online Ramsey game.
The key observation is that if r̃(n, n) is close to r(n, n), then, since the graph built by
Builder has at least r(n, n) vertices, it must be extremely sparse. In particular, most
of the weight should be concentrated on setsU almost none of whose edges are ever
built.

This is where the idea behind Alon’s result [2] comes in. For any fixed graph
H , that paper solves the problem of determining the maximum possible number of
copies of H in a graph with a prescribed number of edges. Roughly speaking, Alon
showed that the maximum number of copies of H can be controlled by the size of
the maximum matching in H . We show that this heuristic also applies to the online
Ramsey game, though it will be more convenient for our calculations to work with
minimum vertex covers instead of maximum matchings.

Tomake this ideawork, instead of controlling the total weight function
∑

U w(U ),
we restrict the sum to subsets U with a large minimum vertex cover, which are
comparatively few in number. Even if the total weight

∑
U w(U ) becomes large, the

amount of weight supported on setsU with a large vertex cover is much smaller, and
this is the only weight that stands a chance to make it to the finish line and complete
a monochromatic clique.

2.2 The Proof

Using the weighting argument described informally above, we now prove a lower
bound on the value of r̃(m, n; p), where Painter plays randomly, independently
coloring each edge red with probability p and blue with probability 1 − p.

Theorem 2.1 If, for some m, n, N ≥ 1 and p ∈ (0, 1), there exist c ≤ 1
2m and d ≤

1
2n for which

p(
m
2)−c(c−1)(2N )m−c + (1 − p)(

n
2)−d(d−1)(2N )n−d ≤ 1

2
,

then r̃(m, n; p) > N.

We would like to show that regardless of Builder’s strategy, the online random
Ramsey game lasts for more than N steps with probability at least 1/2.

Suppose the game ends in atmost N turns and, without loss of generality, is played
on 2N vertices. Let Gt , for 0 ≤ t ≤ N , be the state of the graph after t turns. Assign
to each subset U ⊂ V (G) an evolving weight function

w(U, t) =
{
p(

|U |
2 )−e(Gt [U ]) Gt [U ] is monochromatic red

0 otherwise.
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The value ofw(U, t) is the probability thatU becomes a red clique if the remaining
edges are built.

We say that C ⊂ V (G) is a vertex cover of G if every edge is incident to some
vertex v ∈ C . If U ⊂ V (G), let c(U, t) be the size of the minimum vertex cover of
Gt [U ]. Note that c(U, t) is a nondecreasing function of t . For each pair (k, c) with
k ≥ 2c, we will be interested in the total weight supported on sets of order k with
c(U, t) ≥ c,

wk,c(t) =
∑

|U |=k,c(U,t)≥c

w(U, t).

Sincew(U, N ) is nonnegative andw(U, N ) = 1 if and only ifU is a red clique, we
see that for all c ≤ m/2, wm,c(N ) is an upper bound for the number of red copies of
Km built after N turns. We would like to upper bound the expected value ofwm,c(N ).

Lemma 2.2 With wm,c(t) as above, regardless of Builder’s strategy,

Ewm,c(N ) ≤ p(
m
2)−c(c−1)(2N )m−c.

Proof Each U with the property c(U, N ) ≥ c first achieves this property at a time
tc(U ). We say that U is c-critical at this time. Write

w∗
k,c(t) =

∑
|U |=k,tc(U )=t

w(U, t)

to be the contribution of the c-critical sets U to wk,c(t). Crucially, if we focus on
the family of U for which tc(U ) = t , their expected total weight will remain w∗

k,c(t)
indefinitely. Thus,

Ewk,c(N ) =
∑
t≤N

Ew∗
k,c(t).

Now, a set U which is c-critical at time t must be the vertex-disjoint union of the
edge et that Builder builds at time t and a set U ′ of size k − 2 with a vertex cover
of order c − 1. Also, because U has a vertex cover of order c − 1 before adding this
edge et , the edges incident to et must also be incident to one of the c − 1 vertices in
the vertex cover of U ′, so et is incident to a total of at most 2c − 2 edges in U . It
follows that after turn t = tc(U ),

w(U, t) ≤ p2k−2c−2w(U ′, t),

where in particular if U ′ is already not monochromatic then neither is U . The expo-
nent comes from the fact that among the total 2(k − 2) edges between et and U ′
at least 2(k − 2) − 2(c − 1) = 2k − 2c − 2 are thus far unbuilt and still contribute
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factors of p to the weight of w(U, t). Thus, since each U ′ completes at most one set
U which is c-critical at time t ,

w∗
k,c(t) ≤ p2k−2c−2wk−2,c−1(t).

Further, note that there can only be c-critical sets at time t if et is colored red,
which occurs with probability p. Otherwise, w∗

k,c(t) = 0. Taking expectations and
using the fact that Ewk,m(t) is nondecreasing in t gives

Ew∗
k,c(t) ≤ p · E[p2k−2c−2wk−2,c−1(t)]

≤ p2k−2c−1
Ewk−2,c−1(N ).

Summing over all t ,

Ewk,c(N ) ≤ N · p2k−2c−1
Ewk−2,c−1(N ).

Iterating this last inequality, we conclude that

Ewm,c(N ) ≤ Nc · p2mc−3c2
Ewm−2c,0(N )

≤ Nc · p2mc−3c2 · (2N )m−2c p(
m−2c

2 )

≤ p(
m
2)−c(c−1)(2N )m−c,

as desired. �

The same analysis with the blue weight function

w′(U, t) =
{

(1 − p)(
|U |
2 )−e(Gt [U ]) Gt [U ] is monochromatic blue

0 otherwise

leads to the conclusion that Ew′
n,d(N ) ≤ (1 − p)(

n
2)−d(d−1)(2N )n−d for all n ≥ 2d.

The assumption of Theorem 2.1 then implies that the expected number of red Km plus
the expected number of blue Kn is at most 1/2. This implies that the probability of
containing either is at most 1/2, completing the proof of Theorem 2.1. Theorem 1.1
follows as an immediate corollary.

3 Lower Bound via Alterations

In this section, we improve the lower bound for the off-diagonal online Ramsey
numbers r̃(3, n) using a different Painter strategy. Our proof extends an alteration
argument of Erdős [12] which shows that
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r(3, n) ≥ cn2

log2 n
,

for some constant c > 0. The main idea of Erdős’ proof was to show that in a random
graphG(r, p)with p ≈ r−1/2, only a small fraction of the edges need to be removed to
destroy all triangles. Moreover, with high probability, removing these edges doesn’t
significantly affect the graph’s independence number.

Our proof involves a randomized strategywhich pays particular attention to avoid-
ing red triangles. Instead of painting entirely randomly, Painter’s strategy is modified
in twoways to avoid creating red triangles. First, if an edge is built incident to a vertex
of degree less than (n − 1)/4, Painter always paints it blue. Second, if painting an
edge red would create a red triangle, Painter again always paints it blue. In all other
cases, Painter paints edges red with probability p and blue with probability 1 − p.

In order to show that this Painter strategy works, we first prove a structural result
about Erdős–Rényi random graphs. Roughly speaking, this lemma implies that if an
edge is removed from each triangle in G(r, p), the remaining graph still has small
independence number.

Lemma 3.1 Suppose n is sufficiently large, p = 20 log n/n, r = 10−6n2/(log n)2

andG ∼ G(r, p) is anErdős–Rényi randomgraph. Then, with high probability, there

does not exist a set S ⊂ V (G) of order n such that more than n2

10 pairs of vertices in
S have a common neighbor outside S.

Proof Let E1 be the event that the maximum degree of G is at most 2rp. For a given
vertex subset S of order n, let E1(S) be the event that every vertex outside S has at
most 2rp neighbors in S. Thus, E1 implies E1(S) for all S.

For a set S of size n, let E2(S) be the event that at most n2

10 pairs of vertices in S
have a common neighbor outside S and let E2 be the event that E2(S) holds for all
S. We will show E1 ∧ E2 occurs w.h.p. which in turn implies that E2 itself occurs
w.h.p.

The distribution of deg(v) for a single vertex v ∈ G is the binomial distribution
B(r − 1, p). Using the Chernoff bound (see, e.g., Appendix A in [3]), we find that

Pr[deg(v) > 2rp] <
( e
4

)rp
< exp

(
− n

5 · 105 log n
)

.

Taking the union over all vertices of G, it follows that

Pr[E1] < r exp

(
− n

5 · 105 log n
)

,

so E1 occurs w.h.p.
Fix a set S of n vertices. For v ∈ V (G)\S, define degS(v) to be the number of

neighbors of v in S. Since E1 implies E1(S), we have

Pr[E1 ∧ E2(S)] ≤ Pr[E1(S) ∧ E2(S)].



Online Ramsey Numbers and the Subgraph Query Problem 171

We will show that this last probability is so small that we may union bound over
all S.

For E1(S) to occur, the possible values of degS(v) range through [0, 2rp].
We will cut off the bottom of this range and divide the rest into dyadic inter-
vals. Let D0 = −1, D1 = 4enp, D2 = 8enp, D3 = 16enp, . . . , Dk = 2rp so that
Di = 2Di−1 for each 2 ≤ i ≤ k − 1 and Dk ≤ 2Dk−1. The number of intervals k
satisfies k ≤ log2(r/n) ≤ 2 log n.

Define di to be the number of v ∈ V (G)\S satisfying Di−1 < degS(v) ≤ Di . For
E2(S) to occur, it must be the case that

∑
v/∈S

(
degS(v)

2

)
≥ n2

10
,

as the left hand side counts each pair in S with a common neighbor outside S at least
once. In particular,

k∑
i=1

di

(
Di

2

)
≥ n2

10
. (3)

Notice that since D1 = 4enp = 80e log n and d1 ≤ r ,

d1

(
D1

2

)
≤ r · D2

1 = 64e2

104
n2 <

n2

20
,

so at least half the contribution of (3) must come from i ≥ 2. Thus,

k∑
i=2

di

(
Di

2

)
≥ n2

20
. (4)

We would like to bound the probability that E1(S) and (4) occur simultaneously.
Let T be the family of all sequences (di )ki=1 which sum to r − n and satisfy (4).
Given the choice of (di )ki=1, the number of ways to assign vertices to dyadic intervals
(Di−1, Di ] is at most

( r−n
d1,d2,...,dk

)
.

If i ≥ 2 and a vertex v is assigned to (Di−1, Di ], the probability that degS(v) lies
in that interval is at most

Pr[degS(v) > Di−1] ≤
(

n

Di−1

)
pDi−1 ≤

(
enp

Di−1

)Di−1

.

If i = 1, then we simply use the trivial bound Pr[degS(v) ∈ (D0, D1]] ≤ 1. Thus,

Pr[E1(S) ∧ E2(S)] ≤
∑

(di )∈T

(
r − n

d1, d2, . . . , dk

) k∏
i=1

Pr[degS(v) ∈ (Di−1, Di ]]
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≤
∑

(di )∈T

(
r − n

d1, d2, . . . , dk

) k∏
i=2

((
enp

Di−1

)Di−1
)di

≤
∑

(di )∈T

k∏
i=2

(
r ·

(
enp

Di−1

)Di−1
)di

,

where we used
( r−n
d1,d2,...,dk

)
< rd2+···+dk . Next, the number of compositions of r − n

into k parts is at most rk , so |T | ≤ rk and we have

Pr[E1(S) ∧ E2(S)] ≤ rk max
(di )∈T

k∏
i=2

(
r ·

(
enp

Di−1

)Di−1
)di

≤ rk max
(di )∈T

exp

(
k∑

i=2

di log Ai

)
, (5)

where

Ai = r ·
(

enp

Di−1

)Di−1

.

It remains to maximize the exponent in (5) subject to (4). Consider the function

f (D) = 1

D2
log

(
r ·

(enp
D

)D
)

= log r

D2
+ log(enp)

D
− log D

D
.

Notice that D1 = 4enp = 80e log n so that for D ≥ D1,

r ·
(enp

D

)D ≤ r ·
(
enp

D1

)D1

≤ r · 2−80e log n < 1.

Thus, f (D) takes negative values on [D1, Dk]. Its derivative is

f ′(D) = −2 log r

D3
− log enp

D2
+ log D

D2
− 1

D2
= D(log D − log(e2np)) − 2 log r

D3
.

Since r ≤ n2, we find that whenever D ≥ D1 = 4enp = 80e log n,

f ′(D) ≥ D log(4/e) − 2 log r

D3
≥ 80e log(4/e) · log n − 4 log n

D3
> 0,

and so f (D) is monotonically increasing on [D1, Dk] and attains its maximum value
at Dk = 2rp. With 2rp = 4 · 10−5n/ log n and n sufficiently large, observe that
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(
enp

2rp

)2rp

=
(
106e(log n)2

2n

)4·10−5n/ log n

≤ exp(−2 · 10−5n),

so that this maximum value is

f (2rp) ≤ 1010(log n)2

16n2
· log(n2 · exp(−2 · 10−5n)) ≤ −105(log n)2

16n
.

In particular, because
(D
2

) ≥ D2/3 for D ≥ 3 and f (D) is always negative,

k∑
i=2

di log Ai =
k∑

i=2

di

(
Di

2

)
· log Ai(Di

2

)

≤ 3
k∑

i=2

di

(
Di

2

)
· f (Di )

≤ 3 f (Dk)

k∑
i=2

di

(
Di

2

)

≤ 3 f (2rp) · n
2

20
≤ −n(log n)2

for any (di ) ∈ T .
Returning to (5), it follows that

Pr[E1(S) ∧ E2(S)] ≤ rk max
(di )∈T

exp

(
k∑

i=2

di log Ai

)
≤ rk exp(−n(log n)2).

There are at most
(r
n

) ≤ e2n log n subsets S of size n to consider and rk ≤ rn ≤ e2n log n

as well, so

Pr[E1 ∧ E2] = Pr[E1 ∨
∨
S

E2(S)]

≤ Pr[E1] +
∑
S

Pr[E1 ∧ E2(S)]

≤ Pr[E1] +
∑
S

Pr[E1(S) ∧ E2(S)]

≤ Pr[E1] + exp(4n log n) · exp (−n(log n)2
)
.

Both summands on the right vanish rapidly, so E2 holds w.h.p., as desired. �
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With this lemma in hand, we are now ready to prove Theorem 1.4.

Proof of Theorem 3.2 Let p = 20 log n/n, r = 10−6n2/(log n)2 and N = (n−1)r
8 .

We will give a randomized strategy for Painter such that, regardless of Builder’s
strategy, after N edges are colored there is neither a red K3 nor a blue Kn w.h.p.
Thus, there exists a strategy for Painter which makes the game last more than N
steps and the desired bound r̃(3, n) > N follows. Note that proving the result with
positive probability suffices, but our argument shows it w.h.p. for no additional cost.

We now describe Painter’s strategy. Initially, all vertices are considered inactive; a
vertex is activated when its degree reaches at least (n − 1)/4. The active vertices are
labeled with the natural numbers in [r ] when they reach degree at least (n − 1)/4,
using an arbitrary underlying order on the vertices to break ties. Since N = (n −
1)r/8, there will never be more than r active vertices.

When Builder builds an edge (u, v), this edge is considered inactive if either u or
v is inactive immediately after (u, v) is built and active otherwise. The status of an
edge remains fixed once it is built, so that inactive edges remain inactive even if both
of its incident vertices are active at a later turn. Painter automatically colors inactive
edges blue.

If Builder builds an active edge (u, v), Painter first checks if u and v have a
common neighbor w such that (u,w) and (v,w) are both red. For brevity’s sake, we
call such a vertex w a red common neighbor of u and v. If so, Painter paints (u, v)
blue so as to not build a red triangle and we call such an edge altered. Otherwise,
Painter paints it red with probability p and blue with probability 1 − p. Following
this strategy, Painter guarantees that no red triangles are built. It suffices to show that
w.h.p. no blue Kn is built either.

Here is an equivalent formulation of Painter’s strategy. At the start of the game,
Painter samples an Erdős–Rényi graph G = G([r ], p) on the labels which he keeps
hidden from Builder. Inactive edges are painted blue. When an active edge between
vertices labelled i and j is built, it is painted red if and only if i ∼ j in G and these
two vertices currently have no red common neighbor.

Now, we apply Lemma 3.1 to the graphG. Letting E2(S) be the event that an n-set
S has at most n2/10 pairs with outside common neighbors and E2 = ∧

S E2(S), we
see that Pr[E2] → 0 as n → ∞.

For a set S ⊆ [r ] of labels, write T (S) for the set of active vertices with labels in S.
We seek to bound the probability of the event B(T (S)) that T (S) is a blue n-clique at
the end of the game. Because any blue n-clique would have all of its vertices active
(as each vertex of the n-clique would have degree at least n − 1 ≥ (n − 1)/4), if
none of the events B(T (S)) occurs, then no blue Kn is ever built. Once we show
that the probability of a single B(T (S)) is sufficiently small, we will apply the union
bound over all S to show that w.h.p. no blue Kn is built.

First, note that if any edge (u, v) in T (S) is altered (and hence blue), we may
assume that their red common neighbors lie outside T (S). Otherwise, there must be
two red edges inside T (S) already and T (S) can never become a blue n-clique.
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With this in mind, conditioning on the event E2(S), at most n2/10 altered blue
edges are built in T (S). Within T (S) there can be at most n2/4 inactive edges.
Assuming B(T (S)) occurs, there are at least

(
n

2

)
− n2

4
− n2

10
≥ n2

8

edges between vertices of T (S) that are both active and unaltered. For B(T (S)) to
occur, each of these active and unaltered edges would have to be colored blue on its
turn. On the other hand, each of these edges has a chance p of being colored red on
that turn.

Thus, we find that

Pr[B(T (S))|E2(S)] ≤ (1 − p)
n2

8 ,

with one factor of 1 − p for each unaltered active edge built in T (S). Thus,

Pr[
∨
S

B(T (S))] ≤ Pr[E2 ∧
∨
S

B(T (S))] + Pr[E2].

The second summand goes to zero, so it suffices to show the first does as well. We
have

Pr[E2 ∧
∨
S

B(T (S))] ≤
∑
S

Pr[E2 ∧ B(T (S))]

≤
∑
S

Pr[E2(S) ∧ B(T (S))]

≤
∑
S

Pr[B(T (S))|E2(S)]

≤
(
r

n

)
(1 − p)

n2

8 .

Using 1 − p ≤ e−p, the right-hand side is at most

rne−pn2/8 ≤ en log r−pn2/8 = e−( 1
2 +o(1))n log n,

also tending to zero as n → ∞. Thus, the probability that either E2 or some B(T (S))

occurs tends to zero. Therefore, with high probability no blue Kn is built.
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4 Off-Diagonal Upper Bounds

In Sect. 2, we proved lower bounds of the form r̃(m, n) ≥ �(n(2−√
2)m+o(m)) on the

off-diagonal online Ramsey numbers through an analysis of the online randomRam-
sey number. It is easy to give an upper bound of the form r̃(m, n) ≤ O(n2m−2) simply
by applying the Erdős–Szekeres bound for classical Ramsey numbers and the trivial
observation that r̃(m, n) ≤ (r(m,n)

2

)
.

However, the simple inductive proof of the Erdős–Szekeres bound suggests a
Builder strategy that does considerably better. Namely, build many edges from one
vertex until it has a large number of edges of one color, then proceed inductively in
that neighborhood. This strategy is particularlywell suited to the onlineRamsey game
because the number of edges built is only slightly more than linear in the number of
vertices used, allowing us to derive a bound of the form r̃(m, n) ≤ O(nm).

A slight variation on this argument allows us to bound the online Ramsey number
in terms of the bounds for classical Ramsey numbers.

Lemma 4.1 Let m ≤ n be positive integers with m fixed. Let m0 = 	m/2
 + 1 and
n0 = 	√n
. Suppose L is a positive real such that for all m0 ≤ m ′ ≤ m and n0 ≤
n′ ≤ n,

r(m0, n
′) ≤ 1

L

(
m0 + n′ − 2

m0 − 1

)
,

r(m ′, n0) ≤ 1

L

(
m ′ + n0 − 2

m ′ − 1

)
.

Then

r̃(m, n) ≤ Cmn

L

(
m + n − 2

m − 1

)

for a constant Cm depending only on m.

Proof We describe a general Builder strategy for the online Ramsey game with
parametersm and n and some savings parameter L . Let f (m, n) = 1

L

(m+n−2
m−1

)
, so we

have f (m − 1, n) + f (m, n − 1) = f (m, n) by Pascal’s identity.
Begin by building f (m, n) − 1 edges out of a given initial vertex v1. If f (m −

1, n) of these edges are colored red, we proceed to the red neighborhood of v1;
otherwise, we proceed to the at least f (m, n − 1) vertices in the blue neighborhood
of v1. If at some step we reach a neighborhood with f (m − i, n − j) vertices, we
build f (m − i, n − j) − 1 edges inside this neighborhood from one of the vertices,
which we label vi+ j+1. If f (m − i − 1, n − j) of these edges are colored red, we
proceed to the red neighborhood of vi+ j+1; otherwise, we proceed to the at least
f (m − i, n − j − 1) vertices in the blue neighborhood of vi+ j+1. We stop once
m reaches m0 or n reaches n0, ending up with either f (m0, n′) vertices for some
n0 ≤ n′ ≤ n or f (m ′, n0) vertices for somem0 ≤ m ′ ≤ m. Once we reach this stage,
we build all edges in the remaining set.



Online Ramsey Numbers and the Subgraph Query Problem 177

Suppose now that we arrive at a set S of order f (m0, n′). By construction, there
are � = m + n − m0 − n′ vertices v1, . . . , v� such that m − m0 of the vertices vi are
joined in red to every v j with j > i and every w ∈ S. The remaining n − n′ vertices
vi are joined in blue to every v j with j > i and every w ∈ S. But since

r(m0, n
′) ≤ 1

L

(
m0 + n′ − 2

m0 − 1

)
= f (m0, n

′),

the complete graph on S contains either a red Km0 or a blue Kn′ , either of which can
be completed to a red Km or a blue Kn by using the appropriate subset of v1, . . . , v�.
If we had instead arrived at a set of order f (m ′, n0), a similar analysis would have
applied.

Note that the total number of edges built in the branching phase is at most
(m + n) f (m, n), while the number built by filling in the final clique is at most
max( f (m0, n)2, f (m, n0)2). Using the choice of m0 and n0, the total number
of edges built is easily seen to be at most a constant in m times the previous
expression. �

From here we derive Theorem 1.5.

Proof of Theorem 4.2 We apply the bound

r(m, n) = Om(nm−1/ logm−2 n),

due to Ajtai, Komlós and Szemerédi [1]. In particular, suppose m0 = 	m/2
 + 1,
n0 = 	√n
 and m ′, n′ satisfy m0 ≤ m ′ ≤ m and n0 ≤ n′ ≤ n. Then, for some con-
stants C,C ′ > 0 depending only on m, we have

r(m0, n
′) ≤ C

logm0−2 n′ (n
′)m0−1 ≤ C ′

log	m/2
−1 n

(
m0 + n′ − 2

m0 − 1

)

and

r(m ′, n0) ≤ C

logm
′−2 n0

nm
′−1

0 ≤ C ′

log	m/2
−1 n

(
m ′ + n0 − 2

m ′ − 1

)
,

verifying the conditions of Lemma 4.1 with L = �m(log	m/2
−1 n). It follows by that
lemma that there exists another constant C ′′ > 0 depending only on m for which

r̃(m, n) ≤ C ′′n
log	m/2
−1 n

(
m + n − 2

m − 1

)
.

Fixing m ≥ 3 and taking n → ∞, this implies

r̃(m, n) = Om

(
nm

(log n)	m/2
−1

)
,

as desired. �
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We remark that while the statement and proof of Lemma 4.1 are designed for the
case where m is a constant, they can be easily modified to make them meaningful
for all m and n.

5 The Subgraph Query Problem

The vertex cover argument in Sect. 2 was motivated by our study of the closely-
related Subgraph Query Problem. Indeed, one can view this problem as an instance
of the online Ramsey game with a random Painter where Builder single-mindedly
tries to build a clique in one color, ignoring the other color entirely.

Let p ∈ (0, 1) be the probability that Builder successfully builds any given edge
in the Subgraph Query Problem.We are primarily interested in the quantity f (H, p),
which we defined as the minimum N for which there exists a Builder strategy which
builds a copy of H with probability at least 1

2 in N turns. Of secondary interest is the
quantity t (H, p, N ), which we define as the maximum, over all Builder strategies,
of the expected number of copies of H that can be built in N turns. It is easy to see
that

t (H, p, N ) <
1

2
=⇒ f (H, p) > N .

Thus, upper bounds on t (H, p, N ) yield lower bounds on f (H, p).

5.1 Connection with Online Ramsey Numbers

We first check that the Subgraph Query Problem gets easier when edges are built
with higher probability.

Lemma 5.1 For any m ≥ 3, f (Km, p) is a nonincreasing function of p ∈ (0, 1).

Proof Suppose p < q and f (Km, p) = N . This means that in the Subgraph Query
Problemwith parameter p, Builder has an N -move strategy S to win with probability
at least half. Strategy S is defined by Builder’s choice of edge to build at each step,
given the data of which edges were successfully built in previous steps.

Builder’s strategy for the SubgraphQuery Problemwith parameter q is as follows.
For each edge that Builder successfully builds, Builder then flips a biased coin that
comes up heads p

q of the time. If the coin comes up tails, Builder pretends the edge
actually failed to build, and acts according to strategy S with respect to only the
edges for which the coin came up heads. Just looking at the edges which come up
heads, Builder is exactly following strategy S, and so builds a Km with probability
at least 1/2 in N steps. �

We now prove Theorem 1.10, which connects the Subgraph Query Problem to
the online Ramsey game. Recall the statement:
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r̃(m, n; p) ≤ min{ f (Km, p), f (Kn, 1 − p)} ≤ 3r̃(m, n; p).

Proof of Theorem 5.2 We first show the left side of the inequality. Let N = min
{ f (Km, p), f (Kn, 1 − p)} and suppose that f (Km, p) is the smaller of the two.
Then there exists an N -move Builder strategy which builds a Km with probability at
least half. Now, let Builder play the online Ramsey game against a random Painter
with the same probability parameter p. Builder’s strategy will be to treat red edges
as successfully built and blue edges as failed. In this way, Builder wins the online
Ramsey game in N moves with probability at least half, by constructing a red Km .
Similarly, if f (Kn, 1 − p) were smaller, Builder would instead treat blue edges as
successfully built and red edges as failed. This would then guarantee the construction
of a blue Kn with probability at least half.

Now we show the right side of the inequality. Suppose N = r̃(m, n; p), so in
the online Ramsey game against random Painter with parameter p, there exists an
N -move Builder strategy which builds a red Km or blue Kn with probability at least
half. In particular, this same strategy guarantees either a red Km with probability at
least 1

4 or a blue Kn with probability at least 1
4 .

Suppose the first is true. Then Builder plays the Subgraph Query Game using this
same strategy, treating red edges as successfully built and blue as failed. In N moves,
he has at least a 1

4 chance of successfully building a Km . Repeating this strategy three
independent times on three different vertex sets, Builder uses 3N moves to build a
Km with probability at least

1 −
(
1 − 1

4

)3 = 37

64
>

1

2
,

showing that f (Km, p) ≤ 3r̃(m, n; p) in this case. Similarly, if the second case
occurs, f (Kn, 1 − p) ≤ 3r̃(m, n; p). Either way, the smaller of f (Km, p) and
f (Kn, 1 − p) is bounded above by 3r̃(m, n; p).
Now we show that Conjecture 1.9 about the Subgraph Query Problem directly

implies Conjecture 1.7 about online random Ramsey numbers.

Proof that Conjecture 1.9 implies Conjecture 1.7. Assume Conjecture 1.9, i.e.,
f (Km, p) = 2o(m) p− 2

3m+cm for all m ≥ 3, p ∈ (0, 1). By Theorem 1.10, we have

r̃(m, n; p) = �(min{ f (Km, p), f (Kn, 1 − p)}). (6)

In the diagonal case of the online Ramsey game, (6) together with Lemma 5.1
implies that p = 1

2 gives the online random Ramsey number to within a constant
factor. Thus,

r̃rand(n, n) = 2
2
3 n+o(n).

This proves part (a).
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In the off-diagonal case, a value of p nearly optimizing the right hand side of (6)
satisfies p = �(mn log n

m ) by Theorem 1.11, which is proved in Sect. 5.3. Plugging
in this value of p, we get

r̃rand(m, n) = 2o(m)
(
�

(m
n
log

n

m

) )− 2
3m+cm

,

which implies case (b) of Conjecture 1.7. �

5.2 The Branch and Fill Strategy

We now prove the upper bound in Conjecture 1.9.
We will say it is possible to build a graph H in O(T ) turns, where T = T (p) is a

function of p, if for any p ∈ (0, 1) it is possible, in the Subgraph Query Game played
with probability p, to build a copy of H in O(T ) time with probability at least 1

2 .
It is a simple fact about randomized algorithms that if one can achieve any constant
success probability in O(T ) time then one can iterate the algorithm to succeed with
probability 1 − ε in O(T log ε−1) time.

We describe a Builder strategy to prove the upper bound in Conjecture 1.9 and
conjecture that this is essentially the optimal strategy for theSubgraphQueryProblem
for cliques.

Lemma 5.3 Let a ≥ 1, b ≥ 2 and n = a + b + 1 satisfy 2a + 3 − b ≥ 0. Then

f (Kn, p) = On(p
− 2a+b+1

2 + α
b ),

where α = min(1, b(2a+3−b)
2(b−1) ).

Proof To build a clique Kn in O(T ) turns, where T = p− 2a+b+1
2 + α

b , we follow a
strategy with three phases:

1. Build a clique U on a vertices. By induction, the number of turns needed will be
negligible.

2. Find paT common neighbors of U in On(T ) time with high probability. This is
done by repeatedly picking a new vertex v and trying to build each of the edges
between v and the vertices in U until one fails. Let W be the set of common
neighbors found in this way.

3. Among the vertices of W , pick a vertex w1 and try to build all edges incident
to w1 within W . Let W1 = N (w1) ∩ W be the neighborhood determined. Try to
build all

(|W1|
2

)
edges within W1. Remove {w1} ∪ W1 from W and repeat a total of

p−α times, picking w2, . . . ,wp−α , finding their neighborhoods, and filling them
in. Here, α ∈ [0, 1] is a parameter which we have not yet specified.

After the process is complete, if any one of the Wi contains a b-clique W ′
i , then we

are done, since U ∪ {wi } ∪ W ′
i forms an n-clique.



Online Ramsey Numbers and the Subgraph Query Problem 181

It remains to determine the success probability and the number of steps taken
in the above process. By the standard Chernoff bounds, the sizes of all the sets Wi

concentrate around their means with high probability. Hence, with high probability,

|Wi | = (1 + o(1))pa+1(1 − p)i−1T .

Astandard application of Janson’s inequality (seeChaps. 8 and 10 of [3]) then implies

Pr[Wi contains a b-clique] = �b

(
min(p(

b
2)|Wi |b, 1)

)

= �b

(
min(p(a+1)b+(b2)(1 − p)(i−1)bT b, 1)

)
.

If i ranges up to p−α and α ≤ 1, then the decay factor (1 − p)(i−1)b is�b(1) and can
be safely ignored. Since the event that eachWi contains a b-clique is independent of
all the others, we need only pick p, T, α for which the expression p−α p(a+1)b+(b2)T b

is a positive constant. If this is the case, then with at least constant probability our
strategy constructs an n-clique.

We also need to know that the total number of turns taken is On(T ). This is true in
Phases 1 and 2 by design. With high probability, the number of turns taken in filling
out each Wi is Oa(paT + p2(a+1)T 2). Since this is repeated p−α times, it suffices to
have

T = Oa(p
α−2(a+1))

for the number of turns to be O(T ). It remains to optimize the value of T subject
to the constraints T = Oa(pα−2(a+1)) and p−α p(a+1)b+(b2)T b = �b(1). As long as
2a + 3 − b ≥ 0, this system has solutions. Solving for α which minimizes T , we
find that any

α ≤ b(2a + 3 − b)

2(b − 1)

works, as long as the decay condition α ≤ 1 was also satisfied. �

Lemma 5.3 provides upper bounds for f (Km, p) for all m ≥ 4, where the shape
of the power of p depends on the residue class of m modulo 3.

Theorem 5.4 If p ∈ (0, 1), then f (K3, p) = O(p−3/2) and, for m ≥ 4,

f (Km, p) = Om(p− 2
3m+cm ),

where

cm =

⎧⎪⎨
⎪⎩

m
2m−3 m ≡ 0 (mod 3)
2
3 m ≡ 1 (mod 3)
2m+8
6m−3 m ≡ 2 (mod 3).
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Proof For m = 3, the bound is simple. Query �(p−3/2) pairs containing a given
vertex v1 and then, among the �(p−1/2) neighbors successfully found, query all
pairs. For sufficiently large implied constants, the probability that we build a triangle
containing v1 is at least 1/2.

When m ≥ 4, we use Lemma 5.3, taking

(a, b) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
m−3
3 , 2m

3

)
m ≡ 0 (mod 3)(

m−4
3 , 2m+1

3

)
m ≡ 1 (mod 3)(

m−2
3 , 2m−1

3

)
m ≡ 2 (mod 3).

This gives the required result. �

We conjecture that the bounds in Theorem 5.4 are best possible up to the constant
factor. In the next two subsections, we prove this is the case for m ≤ 5.

5.3 Recursive Graph Building

Recall that f (H, p) is the number of queries needed in the Subgraph Query Problem
to build a copy of H with probability at least 1

2 . When H = Km , we can prove a
lower bound on f (H, p) by combining Theorem 1.10 with Theorem 2.1.

Proposition 5.5 If m ≥ 3 and c ≤ 1
2m, then

f (Km, p) ≥ 1

4
p−((m2)−c(c−1))/(m−c).

Proof Take N = 1
4 p

−((m2)−c(c−1))/(m−c), which is chosen so that

p(
m
2)−c(c−1)(2N )m−c ≤ 1

4
.

Since (1 − p)(
n
2)(2N )n → 0 as n → ∞, there is some n sufficiently large for which

p(
m
2)−c(c−1)(2N )m−c + (1 − p)(

n
2)(2N )n ≤ 1

2
.

With d = 0, this choice of m, n, N , p, c, d satisfies the conditions of Theorem 2.1,
so r̃(m, n; p) > N . By Theorem 1.10, f (Km, p) ≥ r̃(m, n; p), giving the required
result. �

Wenowdescribe a generalmethod for obtaining a similar lower bound on f (H, p)
when H is not a clique. As before, define t (H, p, N ) to be the maximum expected
number of copies of H that can be constructed in N queries. The main result of this
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section bounds t (H, p, N ) when H contains a large matching. To this end, recall
that a graph has a k-matching if it contains k disjoint edges.

Theorem 5.6 Let H be a graph containing a k-matching. Then there exists an abso-
lute constant A > 1 for which

t (H, p, N ) ≤ (Ae(H))e(H) pe(H)−k(k−1)(2N )v(H)−k,

whenever pN ≥ 1.

For any edge e ∈ H , write H\e for the graph formed by removing the edge e
from H . If U is a subset of the vertices of H , write H\U for the induced subgraph
of H on the complement of U . We begin by proving the following pair of recursive
bounds on t (H, p, N ).

Lemma 5.7 If H is a simple labeled graph, then

t (H, p, N ) ≤ p
∑

e∈E(H)

t (H\e, p, N ) (7)

and
t (H, p, N ) ≤ (1 + o(1))pN min

(u,v)∈E(H)
t (H\{u, v}, p, N ), (8)

where the o(1) term tends to 0 as pN → ∞.

Proof Suppose Builder follows an optimal strategy which achieves t (H, p, N )

expected copies of H in N turns. For each copy Hi of H that appears during the game,
distinguish the edge ei which is built last in Hi . For each e ∈ E(H), let te(H, p, N ) be
the maximum expected number of copies of H that Builder can build, only counting
those copies of H in which e is the last edge built. Then, clearly,

t (H, p, N ) ≤
∑

e∈E(H)

te(H, p, N ).

Furthermore, te(H, p, N ) ≤ pt (H\e, p, N ), since each copy of H\e can become
exactly one copy of H with success rate p if e is built. Inequality (7) follows.

As for recursion (8), note simply that the number of copies of H is bounded by
the number of choices for the images of the vertices u, v which are connected by an
edge times the number of copies of H\{u, v}. By the Chernoff bound, the number of
choices of an edge is tightly concentrated around pN , so the inequality follows. �

It remains to apply these inequalities recursively.

Proof of Theorem 5.8 By (8), there is an absolute constant A > 1 for which

t (H, p, N ) ≤ ApN min
(u,v)∈E(H)

t (H\{u, v}, p, N ) (9)
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whenever pN ≥ 1.
We proceed by induction on the number of edges in H . When H is an empty

graph on m vertices, the result is trivial with k = 0. Let H be a labeled graph for
which the induction hypothesis is true for every graph with fewer edges than H . Let
e ∈ E(H) run over all edges of H . We break into two cases:

Case 1. Every H\e contains a k-matching. Then, by induction and (7), it follows
that

t (H, p, N ) ≤ p
∑

e∈E(H)

t (H\e, p, N )

≤ pe(H)(A(e(H) − 1))e(H)−1 · pe(H)−1−k(k−1)(2N )v(H)−k

≤ (Ae(H))e(H) pe(H)−k(k−1)(2N )v(H)−k,

as desired.
Case 2. There exists e ∈ E(H) for which H\e contains no k-matching. Then,

let e2, . . . , ek be k − 1 edges which complete a k-matching of H containing e. The
edges incident to e must all be incident to one of the ei or else H\e would contain
a k-matching. Also, e cannot form a 4-cycle with any ei for the same reason. From
these two facts one finds that e can be incident to at most 2(k − 1) other edges in
total. Let H ′ be the graph obtained from H by removing the two vertices of e from
H . Applying the induction hypothesis on H ′, which is a graph on v(H) − 2 vertices
with at least e(H) − (2k − 1) edges and a (k − 1)-matching, we find that

t (H ′, p, N ) ≤ (Ae(H ′))e(H
′) pe(H)−(2k−1)−(k−1)(k−2)(2N )v(H)−2−(k−1).

Combining this with inequality (9), we have

t (H, p, N ) ≤ ApN · t (H ′, p, N )

≤ (Ae(H))e(H) pe(H)−k(k−1)(2N )v(H)−k,

as desired.

For our purposes, we will always assume pN ≥ 1. Otherwise, with high prob-
ability at most a constant number of edges are built successfully in the Subgraph
Query Game, so t (H, p, N ) will be negligibly small.

Since t (H, p, N ) < 1/2 implies f (H, p) > N , Theorem5.6 immediately implies
Theorem1.12. Comparing thiswith Proposition 5.5,we note thatwhile Theorem1.12
gives a bound for all graphs H , it gives an inferior quantitative dependence on e(H).
While this stronger quantitative dependence in Proposition 5.5 seems to be only a
minor benefit, it was needed in the proof of Theorem 1.11, which is why we retained
the proof.

For large m, this bound only gives Corollary 1.14, that

f (Km, p) = �m(p−(2−√
2)m+O(1)),
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which is still far from the conjectured growth rate p− 2
3m+O(1). However, for m ≤ 5,

Theorem 1.12 can be used to pin down the asymptotic growth rate of f (Km, p),
proving Theorem 1.13.

Proof of Theorem 5.9 The upper bounds for these cases are proved in Sect. 5.2.
Apply Theorem 1.12 by taking k = 1 for m = 3 and k = 2 for m = 4, 5 to get
the desired lower bounds. �

When m ≥ 6, the matching argument of Theorem 5.6 does not seem sufficient
for determining the exact growth rate of f (Km, p). Indeed, we will now exhibit an
infinite family of graphs for which Theorem 5.6 is tight.

For k ≥ 1, let Hk be the graph on 2k vertices ai , bi , 1 ≤ i ≤ k, such that ai ∼ a j

for all i �= j , bi � b j for all i �= j , and ai ∼ b j if and only if i ≤ j . Thus Hk is a
split graph consisting of a k-clique, a k-independent set, and a half graph between
them. We show that Theorem 5.6 is tight for Hk up to a constant factor.

Note that the construction below requires N to grow like a tower of p−1’s of
height k. It is possible that the same lower bound is false in the regime N ≤ p−C for
any C = C(k) > 0.

Theorem 5.10 For every k ≥ 1, the graph Hk defined above contains a k-matching
and, for any p ∈ (0, 1),

t (Hk, p, N ) = �k(p
e(Hk )−k(k−1)Nv(Hk )−k),

provided N is sufficiently large in terms of p.

Proof In fact, Hk has k2 edges, 2k vertices, and contains a unique k-matching
(ai , bi )i≤k . It will suffice to show that for all p ∈ (0, 1) and N sufficiently large
in terms of p,

t (Hk, p, N ) = �k(p
kNk).

Builder’s strategy will involve constructing a nested sequence of vertex sets
U1,U2, . . . ,Uk . Thefirst setU1 is just an arbitrary set of N/k vertices. In each succes-
sive Ui , assuming |Ui | ≥ √

N we can pick Ni = N/(k|Ui |) vertices a(1)
i , a(2)

i , . . . ,

a(Ni )
i ∈ Ui and try to build all edges from each a( j)

i to every other vertex in Ui .
This step takes at most N/k turns. The set Ui+1 is then defined to be the common
neighborhood of a(1)

i , . . . , a(Ni )
i within Ui .

Repeating this process k times, we use at most N turns. For N sufficiently large,
with high probability the edge density from a(1)

i , a(2)
i , . . . , a(Ni )

i to the rest of |Ui | is
(1 + o(1))p. Thus, the number of copies of Hk built in this way is bounded below
by

∏
i

(Ni · p|Ui |) ≥ (1 + o(1))(pN )k/kk,

since we can choose ai out of any of the Ni vertices a
(1)
i , . . . , a(Ni )

i and bi out of
any of its (1 + o(1))p|Ui | neighbors. As long as N is large enough that |Uk | ≥ √

N
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with high probability, there will be enough vertices in the last set Uk to perform the
strategy. This argument successfully constructs �k(pkNk) copies of Hk . Taking N
to be a tower of (2 + 2p−1)’s of height k is sufficient. �

We finish the subsection with an application of the preceding results and prove
Theorem 1.11. Recall that this theorem states that for m fixed and n → ∞, a value
of p for which r̃rand(m, n) ≤ 3r̃(m, n; p) satisfies p = �(mn log n

m ).

Proof of Theorem 5.11 By Theorem 5.4,

f (Km, p) = Om(p−2m/3),

and in fact it can be checked from the proof that the explicit dependence on m is
polynomial. Moreover, using Proposition 5.5 with c = 0, we have that

f (Km, p) ≥ 1

4
p− m−1

2 ≥ 1

4
p−m/3,

since m−1
2 ≥ m

3 for m ≥ 3. Putting all this together, there exists an absolute constant
A > 0 for which

1

4
p−m/3 ≤ f (Km, p) ≤ mA p−2m/3 (10)

for all m ≥ 3, p ∈ (0, 1).
By Theorem 1.10, we have

r̃(m, n; p) ≤ min{ f (Km, p), f (Kn, 1 − p)} ≤ 3r̃(m, n; p).

Pick some p0 ∈ (0, 1)whichmaximizes the functionmin{ f (Km, p), f (Kn, 1 − p)}.
Such a p0 exists because f (Km, p) is nonincreasing in p, f (Kn, 1 − p) is nonde-
creasing, and both are integer-valued. Then, r̃rand(m, n) ≤ 3 · r̃(m, n; p0). It remains
to check that we could have chosen p0 = �(mn log n

m ). By (10) and the fact that the
bounds are continuous, we have

1

4
p

− 1
3m

0 ≤ nA(1 − p0)
− 2

3 n

and
1

4
(1 − p0)

− 1
3 n ≤ mA p

− 2
3m

0 .

Sincem ≥ 3 isfixed andn → ∞, thefirst inequality implies p0 → 0. In particular,
log(1 − p0) = −p0 + O(p20). Taking the logarithm of both sides in the inequalities
above, we have

−1

3
m log p0 − log 4 ≤ A log n + 2

3
n(p0 + O(p20))
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and
1

3
n(p0 + O(p20)) − log 4 ≤ A logm − 2

3
m log p0.

Taking n → ∞ and dividing through bymp0, these inequalities combine to show

log(1/p0)

p0
= �

( n

m

)

and it follows that p0 = �(mn log n
m ), as desired. �

5.4 The Value of t(Km, p, N) for Large N

In this section, we investigate the behavior of the function t (Km, p, N ) as N → ∞.
We find that when N is very large, the essentially optimal strategy for building as
many copies of Km as possible is to fill in the edges of a clique on

√
2N vertices.

This is in stark contrast with the rather delicate procedure described in Sect. 5.2 to
build a single copy of Km .

5.4.1 Chernoff Bounds and Subjumbledness

We will need a standard lemma (see, for example, [24, Theorem 2.1]) saying that
with high probability all moderately large induced subgraphs of a random graph
G(N , p) have the expected number of edges. Recall that if U ⊂ V (G) is a vertex
subset of G, we write G[U ] for the induced subgraph on U .

Lemma 5.12 If G = G(N , p) and ε > 0, then, with high probability,

e(G[U ]) = (1 ± ε)p

(|U |
2

)

for all |U | = �ε(p−1 log N ).

In the literature (see [24] and its references), this pseudorandomness property is
usually called jumbledness. We also use this term, though in a slightly different way
to how it is usually used.

Definition 5.13 A graph G is (p, M, ε)-jumbled if, for every U ⊆ V (G) with
|U | ≥ M ,

e(G[U ]) = (1 ± ε)p

(|U |
2

)
.

A graph G is (p, M, ε)-subjumbled if it is a subgraph of some (p, M, ε)-jumbled
graph.
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In what follows, we will show that subjumbled graphs cannot have too many
cliques. For the graph-building problem, the heuristic is that it’s not possible to build
more copies of H in a known jumbled graph G with pN queries than it is with N
queries in G(N , p).

5.4.2 Degeneracy

Define a graph to be d-degenerate if there exists an ordering of the vertices v1, . . . , vn
such that |N (vi ) ∩ {v1, . . . , vi−1}| ≤ d for all i . The following simple lemma is well
known.

Lemma 5.14 Every graph with E edges is
√
2E-degenerate.

Proof We exhibit the degenerate ordering by picking the vertices backwards from
vn to v1. At each step, pick vi to be the minimal degree vertex in the current graph
and delete it. Note that d(vi ) ≤ i − 1 because there are only i points left and also
d(vi ) ≤ 2E

i because the sum of the degrees is at most 2E and vi has minimal degree.

It follows that at every step d(vi ) ≤ min(i, 2E
i ) ≤ √

2E , as desired. �
This is not quite sufficient for our purposes, but it gives the main idea. What

we really need is a better understanding of degeneracy in jumbled graphs. In what
follows, given a candidate ordering v1, . . . , vn of the vertices, we write N−(vi ) =
N (vi ) ∩ {v1, . . . , vi−1} and d−(vi ) = |N−(vi )|.
Lemma 5.15 Any (p, M, ε)-subjumbledgraphon N edges ismax((1 + ε)M

√
p, (1

+ ε)
√
2pN )-degenerate.

Proof Let H be a graph on N edges that is a subgraph of some (p, M, ε)-jumbled
graph G. We again pick vertices of the graph H in order of increasing degree
among the remaining vertices. Let the resulting order be v1, . . . , vn and write
Ui = {v1, . . . , vi }. The construction guarantees that vi is of minimal degree inG[Ui ].

If i ≤ M , then the subgraph H [v1, . . . , vi ] has at most as many edges as
H [v1, . . . , vM ], which has at most (1 + ε)pM2/2 edges. Thus,

d−(vi ) ≤ min
(
i,

(1 + ε)pM2

i

)

≤ (1 + ε)M
√
p.

Otherwise, if i > M , the induced subgraph H [v1, . . . , vi ] has at most (1 + ε)pi2/2
edges and it clearly cannot havemore than e(H) = N edges. Because vi is ofminimal
degree in this induced subgraph,

d−(vi ) ≤ 2

i
min

( (1 + ε)pi2

2
, N

)

= min((1 + ε)pi, 2Ni−1)

≤ (1 + ε)
√
2pN

and so every vertex has d−(vi ) ≤ max((1 + ε)M
√
p, (1 + ε)

√
2pN ), as desired. �
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5.4.3 Counting Cliques

Weare ready to prove the following lemma. Recall the standard notation that t (K , H)

is the number of labeled graph homomorphisms from K to H . Up to a lower order
term, this is the same as counting labeled copies of K in H . In fact, the equality is
exact in the case we care about, where K is a clique and H is a simple graph without
self-loops.

Lemma 5.16 For all p ∈ (0, 1), m, M ≥ 2 and 0 < ε < 1, if H is a (p, M, ε)-
subjumbled graph with N edges, then

t (Km , H) ≤ (1 + Om(ε + p1/2N−1/2))p(
m
2)(2p−1N )

m
2 + Om

( m−1∑
k=2

p
m+k(k−3)

2 · Mm−k · N k
2

)
.

Proof Take a degenerate ordering v1, . . . , vn of H such that vi is of minimum degree
in H [v1, . . . , vi ]. By Lemma 5.15,

d−(vi ) ≤ max((1 + ε)M
√
p, (1 + ε)

√
2pN ),

where the second term dominates as soon as N ≥ M2/2. Conditioning on whether
or not vn is in the copy of Km+1 we are counting, we see that

t (Km+1, H) − t (Km+1, H\vn) = (m + 1)t (Km, H [N−(vn)]).

In particular, writing t (m, N ) = max∗
e(H)=N t (Km, H), where the maximum is taken

over all graphs H with N edges that are subgraphs of some (p, M, ε)-jumbled graph,
we find that

t (m + 1, N ) ≤ max
d≤U (N )

[
t (m + 1, N − d) + (m + 1)t (m, e+(d))

]
, (11)

where U (N ) = max((1 + ε)M
√
p, (1 + ε)

√
2pN ) and e+(d) is any upper bound

on the number of edges in a graph on d vertices that is a subgraph of a (p, M, ε)-
jumbled graph. The function e+ we take is

e+(d) =

⎧⎪⎨
⎪⎩

d2

2 d < M
√
p

(1 + ε)
pM2

2 M
√
p ≤ d < M

(1 + ε)
pd2

2 d ≥ M.

To see that e+(d) is indeed an upper bound on the number of edges in a graph on
d vertices that is a subgraph of a (p, M, ε)-jumpled graph, we use the trivial bound
when d is small, extend to a size M set to use jumbledness when d is somewhat close
to M , and use jumbledness directly for d larger than M .
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We are left to bound t using the system of inequalities (11). Write

t∗(m, N ) = p(
m
2)(2p−1N )

m
2

for the approximate optimum value of t (m, N ). We induct on m. The base case is
t (2, N ) = 2N . Assume, by induction, that for some m ≥ 2,

t (m, N ) ≤ (1 + Om(ε + p1/2N−1/2))t∗(m, N ) + Om

( m−1∑
k=2

p
m+k(k−3)

2 · Mm−k · N k
2

)
.

We would like to show that the same inequality holds for m + 1. Iterating (11),
there exists a sequence (di )i≥1 of positive integers summing to N for which

di ≤ U
(
N −

∑
1≤ j<i

d j

)

and
t (m + 1, N ) ≤ (m + 1)

∑
i≥1

t (m, e+(di )),

which implies, by the induction hypothesis, that

t (m + 1, N ) ≤ (1 + Om(ε + p1/2N−1/2))(m + 1)
∑
i≥1

t∗(m, e+(di ))

+ Om+1

( m−1∑
k=2

p
m+k(k−3)

2 · Mm−k ·
[∑

i≥1

e+(di )
k
2

])
. (12)

Since e+(d) is constant on the range M
√
p ≤ d < M , the optimal choice of di

will never have any points in this range. The main term of (12) can thus be separated
into the sum over di < M

√
p and the sum over di ≥ M :

∑
i≥1

t∗(m, e+(di )) ≤
∑
di≥M

t∗
(
m, (1 + ε)pd2

i /2
)

+
∑

di<M
√
p

t∗
(
m, (1 + ε)d2

i /2
)
.

(13)
Note that m ≥ 2, so t∗(m, N ) is a convex nondecreasing function in N . Also, the
function e+(d) is nondecreasing and convex in d except for the jump discontinuity
at d = M

√
p. Therefore, in each of the ranges above, t∗(m, ·) and e+(·) are both

convex nondecreasing functions.
To bound the first sum in (13), we pass to an integral. Write

Ni = N −
∑
j≤i

di .
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Then

∑
di≥M

t∗(m, e+(di )) ≤
∑
i≥1

t∗
(
m, (1 + ε)pd2

i /2
)

=
∑
i≥1

∫ Ni−1

Ni

t∗(m, (1 + ε)pd2
i /2)

di
dx .

Because t∗(m, (1 + ε)pd2/2)/d is an increasing function of d and di ≤ U (Ni−1) =
(1 + ε)

√
2pNi−1, we have

∑
i≥1

∫ Ni−1

Ni

t∗(m, (1 + ε)pd2i /2)

di
dx ≤

∑
i≥1

∫ Ni−1

Ni

t∗(m, (1 + ε)3 p(
√
2pNi−1)

2/2)√
2pNi−1

dx

≤
∑
i≥1

∫ Ni−1+(1+ε)
√
2pN

Ni+(1+ε)
√
2pN

t∗(m, (1 + ε)3 p2x

(1 + ε)
√
2px

dx

≤
∫ N+(1+ε)

√
2pN

0

t∗(m, (1 + ε)3 p2x)√
2px

dx .

We had to shift integrals in the second step to guarantee that every value of x in the
range of integration is at least Ni−1.

Next, t∗(m, N ) is a polynomial in N , so we can absorb the (1 + ε) into the error
term. Similarly, we can pull out an error term of (1 + (1 + ε)

√
2p/N ) from the

bounds of the integral to simplify. Reorganizing various error terms, we get

∫ N+(1+ε)
√
2pN

0

t∗(m, (1 + ε)p2x)√
2px

dx ≤ (1 + Om+1(ε + p1/2N−1/2))

∫ N

0

t∗(m, p2x)√
2px

dx .

Finally, explicitly evaluating the integral, we have

∫ N

0

t∗(m, p2x)√
2px

dx =
∫ N

0
p(

m
2)(2p−1 p2x)

m
2

dx√
2px

= 2
m−1
2 p

m2−1
2

∫ N

0
x

m−1
2 dx

= 1

m + 1
2

m+1
2 p

m2−1
2 x

m+1
2

∣∣∣N
0

= 1

m + 1
p(

m+1
2 )(2p−1N )

m+1
2

= 1

m + 1
t∗(m + 1, N ).
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Estimating the second sum in (13) trivially, we get

∑
i≥1

t∗(m, e+(di )) ≤ (1 + Om+1(ε + p1/2N−1/2))t∗(m + 1, N ) + Om+1

( N

M
√
p
t∗

(
m,

pM2

2

))
.

To check the error terms in (12) match up is similar: break up each sum into the
sums over di ≥ M and di < M

√
p. The first sum is estimated by an integral and the

second trivially. The result is

Om+1

( m−1∑
k=2

p
m+k(k−3)

2 · Mm−k ·
[ ∑
i≥1

e+(di )
k
2

])
≤ Om+1

( m∑
k=2

p
m+1+k(k−3)

2 · Mm+1−k N
k
2

)
,

which is the right error term for t (m + 1, N ), completing the induction. �

In particular, and this is essential, the implicit constants in this lemma do not
depend on M . As an immediate corollary, we now prove Theorem 1.15. Note that
the N above is the number of edges in H , which will correspond to (1 + o(1))pN
below if N is the number of queries made in the Subgraph Query Game.

Proof of Theorem 5.17 Applying the Chernoff bound fromLemma 5.12, we see that
for any ε > 0we can take someM = Cp−1 log N so that the randomgraphG(2N , p)
is (p, M, ε)-jumbled with high probability. Also with high probability, the number
of edges built in N queries is (1 + o(1))pN . It is easy to check that the exponentially
small probabilities with which either of these are false have negligible impact on the
value of t (Km, p, N ). The subgraph H built by Builder must therefore satisfy the
hypotheses of Lemma 5.16 with (1 + o(1))pN edges.

The main term dominates the error terms for N sufficiently large, giving the
expected answer which is just p(

m
2)(2N )

m
2 , the number of m-cliques in G(

√
2N , p).

This happens once the main term outgrows the largest error term, the term with
k = m − 1. This happens at N = �(p−(2m−3)M2), so it suffices to have N ≥
ω(p−(2m−1) log2 (p−1)). This proves the upper bound in Theorem 1.15. Of course,
the lower bound is proved by the strategy of building all edges among

√
2N vertices.

�

6 Concluding Remarks

It is an interesting problem to close the gap in the bounds for the online Ram-
sey number r̃(m, n). In particular, we know that there are positive constants c, c′
for which cn3/(log n)2 ≤ r̃(3, n) ≤ c′n3 and it seems plausible that these bounds
could be brought closer together. Indeed, we conjecture that the lower bound can
be improved to cn3/ log n by considering the following Painter strategy motivated
by the triangle-free process [6]. Painter applies the triangle-free process to obtain
an auxiliary triangle-free graph G on vertex set {1, 2, . . . , r} with r = c0n2/ log n.
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Painter does not reveal this auxiliary graph. As before, we label vertices that reach
degree n/4 with 1, . . . , r as they arrive at degree n/4. When Builder adds an edge
between two vertices in which both vertices have degree at least n/4, then these
vertices have labels, say i and j , and Painter paints the edge with the color of the
edge i j in G. Otherwise, they color the edge blue. This coloring clearly contains no
red triangles, but it remains to show that it contains no blue Kn .

In studying the online Ramsey number, we were usually led by the idea that
Builder’s optimal strategy is to fill out an extremely sparse graph on the vertex set
they touch. However, if Builder is restricted to play on a small vertex set, this intuition
seems to go awry. If we define r̃(m, n; N ) in the same manner as the online Ramsey
number but with the additional restriction that only N vertices are allowed, then we
conjecture that the function r̃(m, n; N ) increases substantially as N decreases from
2r̃(m, n), the maximum number of vertices in a graph with r̃(m, n) edges, down to
its minimal meaningful value r(m, n).

The order of growth of f (Km, p) is still open for m ≥ 6. In particular, The-
orems 1.12 and 5.4 show that f (K6, p) = �(p−13/4) and f (K6, p) = O(p−10/3)

and we conjecture that the upper bound is correct. This belief is rooted in our con-
viction that the upper bound for t (H, p, N ) given by Theorem 5.6, upon which
Theorem 1.12 relies, is not tight when N is on the order of f (H, p). Because of the
examples in Theorem 5.10, these upper bounds can be tight when N is very large,
so further progress on this problem would need to be more sensitive to the size of
N . It is plausible that any advance on this question and its generalizations could also
impinge on our estimates for online Ramsey numbers.
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